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ASIEPOXH

Yrouc avbpdrouc mov ue nioteday, ue otipiéay xar ue evémvevoay.

Ye autodc mov n moAdtiun ovuPfolrsj toug ftay xabopiotic]
mpotndleon yia Ty odoxAfpwon autic tn¢ dtatpific.

Yrov emPBAénovra xablnynti uov x. Xptotépopo Nixouv

otoug yovelc uov Evdyyelo xar BaotAuxi)

xar puotxd
oto oulvyé uov I'idpyo
xar ota gadid You
Ayyehixsp xar Havayioty ...

mou anotedoly yia uéva aotelpeutn TNy yapds, aydrne xar dUvaune.



EYXAPIZTIES

Ereidn miotedw nw¢ xdbe Epyo exmopeletal, népay and tov Snuiovpyd tou,
xar ané dAouc exelvoug mou oe aupldpoun oyéon uall tou, tou §ivouy
™) duvatdTyTa va xataotel Snuiovpyss, oL EUYUPLOTIEC WOV TPOS GAOUS aUTOUS
eddyioto avtidwpo yia T SuvatoTnTA TOU UOU TECOPEQAY.

[Tpdtov an’ dhoug euyaplotd tov enBhénovia xafnynt wou x. Xpotdgopo Nixou,
Enixovpo Kafnynth Tuduatog IIinpogopixfic tou lavemotnuiov Iwavvivwy, otov onoto
ogelhw TNV TEAYUdTWwon TNS ouyxexpluévng Sdaxtopuxric StateBrc. Tov euyapiotd t600
YLoL TNV EUTLOTOGUVY Tou hou édetle avahauBdvovtag Ty eniBiedn tne St uou, 660
xal vl Ty ddoyn ouvepyaota uag, v auéplotn Bonbeld tou oe xdbe mEdBinua Tou
avtiueTwrioaue, TNV oThpllr Tou ot xdfe duoxolio Tou TpoéxunTte, TNV XATAVONOT TOU, TNHY
UTOUOVT TOU, TLC YVAOELS Xat TLg XaTeLdUVoELS ToU Uou TedoPepe aThbyERa, ETOL HOTE AUTH
1 ddaxtopLxt| dtatelr) va ohoxhnpowbel ue emtuylo. H ouvepyaotio wou ue tov x. Nixou
urthple eunelpla Lwnig, a@old exTéC omd TIC YVOGCELS TOL améxtnoa, Blwoa To Tog opiletol
0 oaxadnuaixog ddoxarog, o dllog emoThRUovag xou To axadnuaixd fhog otny mpayUaTIXh
TOUg JLEOTAUOT, EVVOLES TTOU EVPEWS ATAELOVOVTAL OTO TOANOUC GHUERA.

"Eva ueydho euyaplotd ogelhw 6TNny oxoYEVeLd Lov, To GLwTNAG onuelo avagopds uou,
Tou TavTa elval dlmha uou xal pe otnellel oe 6hec TIC emhoyéc wou. Buyapiotd to oUluyd
uou [dpyo v Ty aydnn Tou, Ty xatavénor tou, ) Beter tou ddbeor, v nduxy
OUUTAPAOTAOT XAl TNV WXaVOTNT TOu Vo UE eXTAHOOEL euydplota oe xdbe avtiodTnTa.
Euyaplotd ta mawdid pou, Ayyeiwr xow [oavayudtrn, tou arotedolyv mnyr éunveuong xat
e@ahtripla SUvaun otn Lwn uou, expeacuévn xoL oTny utddn SlateLBn, Yo To }pdvo Tou Loy
ddveloay, YLoL TN yoed xal TV aydnn TOU UOU TPOGHPEPOLY XAl Yo TLC o€y AOTES EUTELplES
Tou anohauPdvew xabnueptvd.

Evyapiotd toug yovelc uou, Eudyyeho xou Baocihixy, yur tny unootholln xou v
umouovY toug, ylatl ywelc auth Ty moAdtiun Porbeld Toug, n didaxtopxt) SlatelSr Sev
Oa umopovoe va ohoxhnpwdel. Eilvar autol ou agavelc fpweg, mou ndvta PBeloxoviol xovtd
UOU %Ol UE aydmn xou SLaxptTixdTnTa Slvouy aneptéploTa TNV €UnpaxTn oThpllr Toug.

Oa Hbela enlong vo euyoplotiow dhoug Toug avip®noug Tou Ue To dxd Toug TEOTO
o xafévac Borbnoav, xatd v exmévnon authc g Statedhc. Euyapliotd Ttoug yovelc
Tou oullyou wou, Iavayidtn xar Ayyehxr) I'xavidtoo, vy ) Borfela xar tn otipllh
Toug.  Euyaplotd toug ouyyevelc pou Kwvotavtivo xaw EXévny MrouxouBdia, yua Tig



oUUPBoUAES, TN ocuunapdotacy xal Tn Pordeld Touc. Euyapiotd ta adépgua uou, Kdota
xat Bixn, Tidpyo xar Mdym, xav tov T'idvvn, yior tn et nbu) cuunapdotoaoT, xabdg
xat v un. 3. Evavbila Teimohitn, yia v othplln xol ovclootixt| forleia oe Oéuota
gpeuvnTXd ot un.  Buyaplotd vy adeppux] uou ¢idn Xmuptdovla LiyAwulen, mou Ue
ouvodevoe oo Takidl uou oty Bakévoia xat mou oy xat elvat mévta dimha wou. Euyapiotd
Tov xakd giho Xploto Ilohatondvo yio tic umodelleic xat dtopbdoeic.  Euyoapiotd
@idn wou Tatdva Ianadoroviov, yia T e¥oTOYEC GLUBOUAES TTOU UOU EdwoE OE Xalpleg
oTLYUES, xat Tou TeAd xabdpLioay Ty Topela tng datpPric uou. Euyapiotd Toug um. 3.
Anurten Lepoyidvvn xaw Muydin Belyxa, yia Tig euydplioteg oTLyUég Tou tepdoaue oTo (So
epyaothpto. Ernlong, euyapiotd v x. Aviwvia Xopyavty|, Exixoven KaOnyrreia Tatpuxrc
Yyolfc Tou Havemotnuiouv Iwavvivey yua tig xateufivoeig mou pag édwoe, oL omoleg Rtay
ATAPAULTNTES YLOL TNV OAOXATIPOOT) TNS StaTEBNC.
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This thesis is focused on the development of image segmentation methods in combi-
nation with classification and clustering techniques for efficiently addressing the specific
problems presented in Pap smear microscopic images. The several steps that must be fol-
lowed for the the effective analysis of such images in an automated manner are described
in the chapters of this thesis. As these images present great complexity and particular
characteristics, the challenge for any automated methodology is to overcome the limi-
tations of the Pap smear images. Namely, the high degree of cell overlapping, the lack
of homogeneity in image intensity and the existence of many artifacts. The goal is to
achieve accurate identification of the regions of interest, and as a result to obtain reliable
conclusions about the contents of the Pap smear.

The processing of Pap smear images is related with several aspects of the scientific field
of biomedical image processing, such as object detection, object delineation, separation
of partially occluded or overlapping objects and identification of normal and abnormal
figures of the object in images containing noise and artifacts. In the case of Pap smear
images the objects of interest are the nuclei of the cells, as these are the structural parts of
the cells which present significant changes when the cell is affected by a disease. However,
the accurate detection and segmentation of the nuclei in Pap smear images is a difficult
task for several reasons. First of all, in many cases the nuclei present similar characteristics
with background objects. Secondly, the nuclei usually lie in areas of cell clusters, which
present inhomogeneity in image intensity and the actual boundaries of each nucleus are
not easily recognized. Furthermore, in cell clusters, it is common to encounter overlapping
nuclei, where the borders of each nucleus are partially occluded. The correct segmentation
of the nuclei is very important, at it leads to the calculation of salient features, which
may contribute in the identification of abnormalities in the shape or the structure of the
nucleus, in order to recognize normal or abnormal categories of the cells.

The first issue that we have successfully addressed in this thesis is the correct detection
of the locations of the nuclei in images containing both isolated cells and cell clusters. The
method we have developed combines global knowledge about the nucleus appearance, and
local characteristics of the area and the shape of the nucleus, in order to achieve a reliable



approximation of the nuclei locations in the image. In this scope, techniques based on
mathematical morphology are developed in order to detect the locations of the candidate
nuclei centroids in the image. The initial rough approximations of the nuclei locations are
then refined in a second step, which incorporates a priori knowledge about the expected
shape of the nucleus and it is accomplished by the determination of the circumference
of each nucleus. Finally, the elimination of the undesirable findings is achieved in two
steps: the application of a distance dependent rule on the resulted centroids and the
application of classification algorithms, employing features of the neighborhood of the
candidate nuclei. We have examined the performance of classification techniques based
on both supervised and unsupervised learning, and in all cases the effect of the refinement
step improves the classification, which indicates the importance of this step.

Furthermore, based on the detection of the locations of the nuclei centroids, we have
developed an automated method for the boundary determination of cells nuclei. The
segmentation of the nuclei boundaries is accomplished with the application of the wa-
tershed transform in the morphological color gradient image, using the nuclei markers
extracted in the detection step in order to avoid eventual oversegmentation generated by
the watershed transform. For the elimination of false positive findings, features charac-
terizing the shape, the texture and the image intensity are extracted from the candidate
nuclei regions, which are used as input in a classification step, performed to determine
the true nuclei. These features are tested for their discriminative ability, and a rank of
the most powerful features is calculated through a feature selection scheme based on the
minimum-Redundancy - Maximum-Relevance criterion. The method was evaluated on a
large data set and comparisons with the segmentation results of a gradient vector flow
(GVF) deformable model and a region based active contour model (ACM) are performed,
which indicate that our method produces more accurate nuclei boundaries.

Concerning the separation of partially overlapped nuclei, we have developed an au-
tomated method which is based on training a physically based deformable model. More
specifically, an efficient framework for the training of active shape models (ASM), based
on the representation of a shape by the vibrations of a spring-mass system is employed.
A deformable model whose behavior is driven by physical principles is trained on im-
ages containing single nuclei, and attributes of the shapes of the nuclei are expressed in
terms of modal analysis. Based on the estimated modal distribution and driven by the
image characteristics, we develop a framework, to detect and describe the unknown nuclei
boundaries in images containing two overlapping nuclei. The problem of the estimation
of an accurate nucleus boundary in the overlapping areas is successfully addressed with
the use of appropriate weight parameters that control the contribution of the image force
in the total energy of the deformable model. Comparisons with other segmentation meth-
ods, proposed especially for the separation of overlapped nuclei, indicate that our method
produces more accurate nuclei boundaries that are closer to the ground truth.

Moreover, we have investigated the case of the successful classification of cells in
normal and abnormal categories. Thus, a framework for the efficient classification of
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cervical cells is introduced, based on features extracted exclusively from the nucleus area
and ignoring the contingent cytoplasm features. This task is of high importance, since the
nuclei are the only distinguishable areas in complex Pap smear images, as these images
present a high degree of cell overlapping and the exact borders of the cytoplasm areas
are ambiguous. We have used a database of presegmented cell images, containing both
cytoplasm and nuclei features for each cell. Based on these features, we examine the
ability of non-linear dimensionality reduction schemes to produce accurate representation
of the features manifold, along with the definition of an efficient feature subset, and their
influence on the classification performance. Two unsupervised classifiers were used and
the results indicate that we can achieve high classification performance when only the
nuclei features are used.

The aspects, which are discussed in this thesis, provide an integrated context for the
efficient analysis of Pap smear images. The specific limitations that these images exhibit
are successfully overcome and methodologies that address the restrictions in the fields of
applied image analysis are described in detail. Finally, some directions for future research
are also provided in this thesis.
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EKTETAMENH IEPIAHUH STA EAAHNIKA

Moaptva ITinettn Tou Evayyéhou xat tng Baotluxrc

Awaxtopunh) Awatp3y, Turua IIinpogopuxic, Haveniothuo Iwavvivwy, lavoudplog, 2012.
Tithog: MéBodor Avdiuone Kuttapohoyxdv Ewxdvov

EnfBiénovroac Kabnynmic: Xetotdgopog Nixou

H rapotoa Statpl3r eotidletat otny avantuln autoUatnY UeBOSwY xoTdTUNoNS XUTTUPO-
AOYLXGY EXOVODY, OL OTOlEC GE GUVBLAOUS UE TEYVIXESC XAUTNYOPLOTOINoTC Xat ouadoroinong,
avTietonilouvy Siedodixd ta ewdixd TEOBAAUATI TOU UTEEYOUY OTIC UXPOCXOTIXES ELXOVES
and teot [lam. Autéc ot euxdveg Tapouctdlouy UEYIAT TOAUTAOXOTNTO Yol LOLALTEROL YAQUXTT)-
ELoTIXG, 6w 0 ueydhog Babude emxdiuvdng tov xuTtdpwy, 1 EAAeL) ouolOYEVELIS OTN
POTELVOTNTA TNC EXOVAC Xl 1) UTopE N TOAAGY avemlHountwy aviixelwévoy. 'Etol, nelaywyr
amOdEXTMY Xt AELOTLOTWY ATOTEAECUATOY anoTelel TpdxAnoT yio xdbe autduatrn uebodolro-
via enelepyaocioc edvwy and teot Ilan. ‘ANwote, 0 6T6Y0c auTHY TV UebodoroyLdy
elva 1 oaxEBhC AVUY VORLOT TWV TEQLOY MY EVILAPEROVTOC XL 1) TOEAY WY T AELOTLOTWY SLoLY VK-
OTXOV GUUTEPAOUATWY Yot To e€eTalduevo xuTTapoloyxd Selyua.

H enelepyaoia tov emdvwy and teot [lam eunepiéyelr ToANd mpofAfjuata Tou 1 enliuct
Toug elval avtixeluevo Tou yevixdtepou gpeuvnTixoy medlou tne enelepyaotog Plolateixdy
EXOVOY: TNV AVIYVEUGT), TNV XATATUNGCT], TOV Sl WELOUS TV UERIXOS EMLXAAUTTOUEVWY
AVTIXELWUEVWY X0ODC XL TNV OVOYVOPLOY) QUOLOAOYIXGV XAl U QUOLOAOYIXGY PLOAOYIXGDY
OYNUATLOU®Y o€ exdveg Ue HOpuPBo %ol TAaouaTd EupHUATI. XTNY TEPITTOON TOY EXOVWY
and teot Ilam, o aviixelyeva evilagépovtog elval oL Tuphveg TV XUTTdpwY, oL oToloL
amOTENOVY Tal B0UlXd OTOLYELN TV XUTTAE®Y TOU TapoLGLdlouy OTUAVTIXES AAAXYEC OTAY
10 x0TTOEO0 TPooPBdlhetal and uia acbhévela. Q2otdoo, N axpBhc aviyveuor xal xaTdTUNoN
TOV TUPRVLY OTLC XUTTapolOYWEC exdvec and teot [lam elvar uia dVoxoln Siadixacia
v ToAhoUg Adyoug. Ilpdto an’ 6ha, o dpxeTéC MEPINTMOOELS, Ol TUPTVES Ttapoualdlouy
TOEOUOLYL YAPUXTNELOTIXG Ue avTuxelueva Tou unoPdbpou tng ewdvag. Ernlong, ta xOttapa
ouvhfloe Beloxovtal oe cuoTddee, oL omoleg TaEOVOLELOUY AVOUOLOYEVELL GTY) PWTELVOTNTA
TNG EXOVOC YOl TA TEAYUATIXE OpLo TV TUEHVEY dev TeplypdpovTtal Ue cagrvela. Enimiéoy,
OTLC CUOTABES TWY XUTTAP®Y, ElVOL GUY VO QULYOUEVO 1) ETLXIAUYT TWY TURTVEDY, UE GUVETELYL
€var U€pog NS TEPLOY S TwV TUpHveY va anoxpuntetal. H axp3fc xatdtunon twv tupivewy
arotehel éva Oéua ue Wiaitepn onuocia, agol odnyel GTOV UTOAOYLOUO GTUAVTIXGY YOQUXTY-
PLOTIXGY TOU GUUBIANOUY GTNY aVAYVORLOT, AVOUIALGY OTO GYHUd XL 0T Sour| Twv
TUENVWY, XL GUVETOS OTNV XATTYOPLOTOINGT] TV XUTTAPWY GE YUOLOAOYLXI XA UT) PUOLOAO-
Yixd.
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To mpdto Béua ue To onolo acyornbiixaue ota Thatoo g StateBric elvar 1 emTLY TG
aviyveuon Twv BEoEmY TV TURHVOY OE EXOVES TOU TEPLEYOUV UEUOVOUEVO XUTTURO Xal
ovotddeg xuttdpwyv. H uébodog mou avantilaue ouvdudlel Tn YEVLXY| YVOOY TOU €)Y0UUE
YLOL TNV OVOUEVOUEVY LOP®T TOU TUprva, oL Ta oTolyelod mou e&dyovtal and Ta TOTXA
YOPAXTNELOTIXA TNG TEQLOYNAS XAl TOU OYHUATOS TOU TUPHVA, UE OXOTO TOV UTOAOYLOUO
utag allOmLoTNe TPocEyYLong Twv Bécewy Twv Tuphvey otny ewdva. 't autd To oxond,
avantOyOnpay teyvixéc mou Boaotlovtal otn ualbnuatix uopgohoyla ol omoleg otoyelouy
otnv aviyveuorn twv mbavdy Bécewy Twv ®EVvTpwy TV TUEHVLY oty exdéva. H opywxd
TEOCEYYLOTIXT eXTiUNOT TV Béoewv TwV TUPHVWY YIVETAL OTN GUVEYEW TLo axpUBhc UeE
évar Oeltepo (BUa EXAETTUVOTC, TOU EVOOUATMVEL TS YVWOTES WOLOTNTES TOU OYHUATOS
TOU TUphva, xal Tpayuoatonoteitar ue tov xabopioud tng mepwuétpou xdbe muprva. To
TeEAx 0TABL0 aopd 0Ty e€dAeldn un emtBuunTdY evpnUATLY Xal TepthauBdvet dvo Bruota:
TNV EQUPUOYT EVOC xavOvo andoTaone ot onuela mou aviyvellnxay oL TV eQapuoyt
ahyoplBuwy xatnyoplonolnong, Ue oxond tnv xatdtaln Twv onuelwy oe dUo xatnyopleg,
TNY XATNYOoRLo TV TRAYUATIXGY XEVTPWY TUPHYODY Xdl TNV xatnyopld Tou meplhouBdvel
To. onueta TOU BEV AVTLOTOLYOUV OE TRAYUATIXE XEVIPA TURHVWDY. XE outd TO OTAdLO
EXMETOMAEUTAXAME TO YORAXTNELOTIXG TNS YelTovlde xdbe mbavol xévtpou muprva. Xta
Telpduatd uag, egetdouue TNV enidoorn TEYVIXOV xatnyoplonoinone mou PBaoctlovial oe
exnoldevon ue eniBhedn xau exnaldevon ywplc eniBredn. Xe dheg Tic TepnTdoeLe, To Pria
eXAEMTUVOTC amodelxyUeToL OTL €yel xabopLloTixr onuaocta, agol Bektidvel TNy anddoon Tng
TalLvounonc.

Baolouévol 6ty aviyveuon Twv x€vipey TwV TUpvey, avantuiaue Ui autouatn uebodo-
Aoylo yio Tov xafoploud Tou TERLYEAUUATOS TOY TURHVRY Twv xuttdpny. H xatdtunon
TOU TEPLYPGUUATOS TOU Tupfiva Tparyuatonotelton uéow tou akyopiBuou udpoxpltdy (wa-
tersheds) oty ewdva LOpQOROYXAC YpOUATIXAC XALONC, YPNOLLOTOLOVTAS WS DEIXTES TWY
Béoewv TV TupHveoy Ta onuela Tou aviyvelnxayv oto mponyoluevo BHua, ue oxond TNy
ATOQUYT| TNG UTERXATATUNOTS TOU EVOEYOUEVWS UTOREL VO TROXAAECEL O UETACY NUATLOUOG
udpoxpttdyv. T v e&dhewdn twv evpnudtony Tou evitoniotnxay Aavbaouéva, v xdbe
mhavi| TepLoy ) e€AYOVTOL YAPAXTNELOTIXG TOL a(popoVY TO Gy U, THY UGT| XAl TN QOTELVOTY-
Ta, TO OTOloL OTN GUVEYELX YpNoLUoToloUvTal we elcodol ot Tadivountée, yia Tov xaboploud
TOV TEAYUATIXOV TUphvwy. Autd Ta yopaxtnelotixd, e€etdloviol wg Tpog TNV Sy wpel-
OTIXY] TOUG LXAVOTNTO, XUl XUTUTAOCOVTOL O Uldl XALUAXA TOU TEQLEYEL TA TLO LoYLEd
YALOXTNELOTIXG, UEOW TOU OYAUATOC ETLAOYAS YoEAXTNRLOTIXGY Tou BacileTal 6TO XpLTHELO
mRMR (minimum Redundancy - Maximum Relevance). H uébodoc egopudotnxe oe
éva Ueydho aptbud ewdvoy xou e€iylinoayv ouyxpltixd anoteréouoto 6 oYEoT UE GAAES
uebodoug xatdtunong, mou Bactlovtal oe evepyd meptypdupata. Ot ouyxploelc Tou éylvay
€dellav 6Tl T anoteréoyota xatdtunong tne uebédou uag elvor mo alidmioTa xat axpLBn.

‘Ocov 0Qopd 6TO LY WELOUO TOVY UERIXMC ETUXAAUTTOUEV®Y TUPHV®DY, AVITTOEOUE UL
autouatn uebodoroyia 1 onola Paoiletal otny exnaldevon evog YuOLXOY TAPAULOPPDOLUOU
uovtérou. Ilo ouyxexpuueva, npotelvaue éva anodotixd thalolo extaideuong Twv evepy®V
TEPLYPOUMETOY, Tou BacileTal oTNY avaTaedoTaoy TOU oY NUATOC UEGK TOY TAAALYTOCEWY
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evog ovothuatog “udlec-ehatiipwa”. "Eva mapapop@doluo Uoviého Tou 1 GUUTERLPORH
Tou xobopiletar and v urépbeor Twv ehelbepwy TAAAVTOCEWY TOU GUGTAUATOC “Udlec-
ehathipla”, exmoldeleTal O Ul OERd ATd EWXOVEC TOU TEQLEYOLY €val UOVo Tuprva. Me
Bdomn tny exnaldeuot TwV UOVTEA®Y Xl XATEVOUVOUEVOL AT ToL YORAXTNELOTIXG TNE ELXOVAC,
avanTUZAUE €Vol TAALOLO YLaL TNV oVl VEUGT XAl TNV TEPLYPAPT| TOU TEQLYPAUUATOS &Y VOO TWY
TUERVWY, OF EXOVES TOU TEPLEYOLY dUo emuxaluntouevoug muphves. To mpdPinua tng
aZLOTLOTNG EXTIUNGNEC TOU TEPLYPAUUOTOS TOU TUPHVA OTIC TEELOYEC ETxdALYNG emthveTol
ue TN Yenon xatdAAnAoyv Bopdy Tou EAEYYOUV TN GUUUETOYY TNG SUVAUNG NG EXOVIQ
OTN GUVOAXT, EVEQYELA TOU ToEAUORPPGGLUOL ovTélou. Ou ouyxploelg ue dileg uebodoug
XaTdTUNONG, TOU EYouY TEOTAbEL e8I VLol TO DAY WELOUS TWY ETUXAAUTTOUEVWY TURPHVWY,
detyvouv 6Tl 1 uéfoddc uog mapdyel mo axplBY) meplypduuata TUpRVeOY Tou TAnoldlouv
TEQLOGOTERO TO TEAYUATIXO OpLO.

Télog, epeuvAcaUE TNV XATTYORLOTOINGT] TWV XUTTAPMY GE PUOLOAOYLXE XAL UT) QUOLONO-
yYwd, Pooléuevol anoxheloTixd e YopaxTnelotixd mou egdyovial and TNV TEQLOYY| TOU
TUENVOL XAl OYVOMVTAC TA oVTIOTOLYO YAPAXTNELOTIXE TOU XUTTapomAdouatos. Auth 1
dradixaota €yel ueydAn onuacto, apold UGVo 0 TUEHVIS TOY XUTTAPWY UTOEEL Vol TpoodLopLoTEl
oTLC TOAUTAOXES exdveg and TeoT [an, Adyw Tne aodgelac 6TOV TPOadLOPLOUS TV TEOLYUOTL-
%GV 0plwy Tou xUTTAPOTAdoUaTOS eContiag Tou ueydiou Babuol emxdiudng Twv xuTTdpwWY.
Y1 mepduaTtd Yag €Youue yenoldonothoel Ul Bdor dedoUuivmy amd EXOVES XUTTIPWY
mou 1 xobeulo TepLéyel UOVO €val XUTTUPO oL TO YAPAXTNELOTIXE TOU XUTTUEOTALOUATOC
xal Tou Tuprva umopovv va elayfolv ue axplBeia. Me Bdorn autd To yopaxTNELGTIXY,
e€etdooue TNy anddoomn un yeauuxody webddwy uelwong g Sidotaong Ty dedouévwy, yia
TNY TOEAYWYT Miag aldToTNG avamapdoToonS TOU TOAUTTUYUATOS TWY YUPUXTNELOTIXGY
xafdg xau Ty enidpaor Toug otny enidoon e talivéunone. To anoteréopata delyvouv
OTL UTOPOVUE VoL TETUYOUUE ATOTEAECUATIXT TAELYOUNOT TV XUTTdpwy Pootlouevol Ubvo
OTA YALUXTNPLOTIXG TOU TUPYVaL.

To Oéuata tou avaltinxay oe auth T SlateLBr) Tapéyouy €va oAoxANpwUévo TAAloLO YL
Y a€LOTLOTY avdAuoT TV ewdvwy and teoT ITan. Ou diaitepol neplopiouot tou undpyouv
o€ QUTEC TLC EOVES aVTLUETWRL ovTal anoTeAesuatixd xat ot uebodoloyiec mou enthbouy ta

TeoPAuaTo 6To TEdLo TNS EPAPUOCUEVNC AVIAUCTC EXOVIC TEQLYPAPOVTAL UE AETTOUERELEC.
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CHAPTER 1

INTRODUCTION

Cervical smear screening is the most popular method used for the detection of cervical
cancer in its early stages. The most eminent screening test is the Pap smear, which
is based on the staining of cervical cells, using the technique that was first introduced
by George Papanicolaou [7]. This screening technique is used for over 60 years for the
prevention and diagnosis of cervical cancer. Precancerous conditions, abnormal changes
or infections in the endocervix and endometrium that may develop into cancer are early
recognized through this routine gynaecological examination. As a result, they are early
treated preventing the development of cervical cancer and the widespread use of this test
in developed countries has significantly reduced the incidence and mortality of invasive
cervical cancer. A regular program of Pap smear screening, with appropriate follow-up,
can reduce cervical cancer incidence by up to 80% [8].

The basic steps of a conventional Pap test are depicted in (Fig. 1.1)'. The cervical
cells are sampled and then smeared onto a glass slide and the characterization of the slide
(as normal or abnormal) is accomplished through the careful microscopical examination
of the slide by an expert cytologist. It must be noted that unstained cells cannot be
seen with a light microscope and as a consequence they do not provide any information
about their status. On the other hand, the Papanicolaou technique provides a staining
procedure of cervical cells, which can be easily examined under an optical microscope.
Through this procedure, tinctorial dyes and acids are selectively retained by cells. Pa-
panicolaou chose stains that highlighted cytoplasmic keratinization in his experiments,
however the diagnostic conclusions obtained through a Pap test are highly based on the
nuclear features.

More specifically, normal and abnormal cells are identified by evaluating changes in
the density and morphology of the structural parts of the cells, which are the nucleus

!The images were taken from:
http://www.reshealth.org/yourhealth /healthinfo/default.cfm?pageid=P00577,
http://redscrubs.com/2008,/06 /new-insight-into-cardiac-risks/,
http://www.brooksidepress.org/Products/ed2/Enhanced /Pap%20Smears/PapInterpretation.htm,
http://apps.pathology.jhu.edu/blogs/pathology /the-legacy-of-the-pap-smear-and-what-came-next



and the cytoplasm. The nucleus is the structural part of the cell that presents signifcant
changes when the cell is affected by a disease. As an example, we can mention that the
nucleus border abnormalities are highly correlated with the infection of cells by the Human
Pappiloma Virus (HPV) [9] and the shape modifications of the nucleus are associated with
the existence of Cervical Intraepithelial Neoplasia (CIN) [10]. These changes are identified
through visual interpretation of the slide by an expert.

However, this manual procedure can result in an erroneously characterization of a slide
as normal, while it is abnormal (False Negative). This is mainly due to the experience,
stress or fatigue of the observer. Nevertheless, abnormal findings (either valid or due to
technical error) usually result in considerable anxiety and in the last years many efforts
have been made for computer-assisted screening and analysis of Pap smear slides. These
systems attempt to provide reliable conclusions about the contents of Pap smear slides,

in a fast, consistent and reproducible way.

Pap Test

Vagina Cervix Uterus

Figure 1.1: The steps of the Pap test. (a) The sample of cells is collected from the
cervix using a small cone-shaped brush, (b) the material is transferred from sampling
instrument to the slide, (¢) a typical Pap smear slide, (d) examination of the slide under
the microscope for the detection of abnormalities.

Thus, nowadays the efficient analysis of Pap smear images is a research area of great
scientific interest. Automated methodologies are proposed by several researchers, aiming
at the accurate processing and classification of Pap smear images. In this scope, this thesis
concerns novel techniques and sophisticated methods that have been developed and tested



on a large number of Pap smear images, in order to overcome the special issues that arise
from the specific characteristics that these images exhibit. A detailed description of these
techniques is provided in the following chapters.

1.1 Thesis Contribution

This thesis is focused on the development of innovative and efficient image segmentation
methods, which in combination with classification and clustering techniques are able to
successfully address the specific problems presented in Pap smear microscopic images.
These images present great complexity and particular characteristics, namely, the high
degree of cell overlapping, the lack of homogeneity in image intensity and the existence of
many artifacts. The analysis of these images is related with several general aspects of the
scientific field of biomedical image processing, such as object detection, object delineation,
separation of partially occluded or overlapping objects and identification of normal and
abnormal figures of the object in images containing severe noise and artifacts. The goal is
to achieve accurate identification of the regions of interest, which in the case of Pap smear
images are the nuclei of the cells, and as a result to obtain reliable conclusions about the
contents of the Pap smear. In this direction, automated methods for cell nuclei detection,
segmentation and overlapped nuclei separation along with classification of the cells are
described and evaluated in the chapters of this thesis.

In Chapter 2, a detailed description of the characteristics of the Pap smear images
is provided. Furthermore, an extensive review of automated techniques for cervical cell
image analysis and classification is included, in order to provide an integrated essay of
the state of the art methods in the specific scientific field. Special focus has been given
on two main concepts with great research interest: the cell image segmentation and the
classification techniques proposed for the characterization Pap smear images. The special
features and the different scientific approach for each reported method are presented in
detail in both cases. Moreover, the methods that present similarities are grouped under the
same heading, in order to provide a more compact description for the general techniques
that have been used in Pap smear images.

In Chapter 3, a method which successfully addresses the correct detection of the
locations of the nuclei in images is proposed. The method can be applied directly on
images captured from an optical microscope, as it is able to detect the candidate nuclei
positions in both isolated cells and cell clusters. Using the powerfull techniques that the
mathematical morphology provides and exploiting all the color channels of the image,
an initial rough approximation of the nuclei positions is calculated. In a second step,
these approximations of the nuclei locations are refined with the determination of the
circumference of each nucleus, incorporating a priori knowledge about the expected shape
of the nucleus. The undesirable findings are eliminated with a two steps procedure: the
application of a distance dependent rule on the resulted centroids and the application of
classification algorithms, employing features of the neighborhood of the candidate nuclei.



We have examined the performance of classification techniques based on both supervised
and unsupervised learning, and in all cases the effect of the refinement step improves the
classification, which indicates the importance of this step. Furthermore, comparisons with
other techniques proposed in the literature for the detection of the cells centroids indicate
that the performance of our method is higher.

In chapter 4, we investigate the accurate segmentation of the cells nuclei in Pap smear
images. Based on the detection of the locations of the nuclei centroids, the boundaries of
each cell nucleus are determined automatically. The method is based on the marker based
watershed transform in the morphological color gradient image. The nuclei markers are
extracted in the detection step in order to avoid oversegmentation. In a second step, we
extend the segmentation of nuclei boundaries with the determination of meaningful fea-
tures of the detected areas, which contribute to the identification of the true nuclei in Pap
smear images and the elimination of false positive findings. Thus, features characterizing
the shape, the texture and the image intensity are extracted from the candidate nuclei
regions, and they are tested for their discriminative ability through a feature selection
scheme based on the minimum-Redundancy - Maximum-Relevance criterion. Compar-
isons of the proposed method and the results of a gradient vector flow (GVF) deformable
model and a region based active contour model (ACM) indicate that the segmentation
results of our method are closer to the ground truth.

In chapter 5, we propose a method for the separation of partially overlapped nuclei.
The method is based on the combination of physically based deformable models, which
provide a compact representation of the shape of the nucleus, and active shape models,
which take advantage of the a priori knowledge of the expected shape. Thus, a deformable
model whose behavior is driven by physical principles is trained on images containing
single nuclei. The learning process deals with the attributes of the nuclei shapes, expressed
in terms of modal analysis. Based on the estimated modal distribution and driven by
the image characteristics, a framework for the detection and description of the unknown
nuclei boundaries in images containing two overlapping nuclei is developed. The nuclei
boundaries are extracted after the convergence of the deformable model. It must be
noted that the contribution of the image characteristics in the energy function of the
deformable model is defined by the locally adaptive image force, which is introduced in
order to extract reliable nuclei boundaries in the regions of overlap. Comparisons with
other segmentation methods, proposed especially for the separation of overlapped nuclei,
indicate that our method produces more accurate nuclei boundaries.

In chapter 6, the classification of the cells in normal and abnormal categories is stud-
ied. As the automated detection and segmentation of the nuclei in such images has
been successfully addressed in the previous chapters, we have investigated the case of the
classification of cells in normal and abnormal categories using features extracted exclu-
sively from the nucleus area and ignoring the contingent cytoplasm features. This task
is of high importance, since the nuclei are the only distinguishable areas in complex Pap
smear images, while the exact borders of the cytoplasm areas are ambiguous. Thus, non-



linear dimensionality reduction schemes are tested for their ability to produce accurate
representation of the features manifold and to define an efficient feature subset. The ex-
periments showed that high classification performance is obtained, when only the nuclei
features are used.

The several steps that must be followed for the the effective analysis of such images in
an automated manner are described in the chapters mentioned above. In the last chapter,
concluding remarks and some directions for future research and extension of the proposed
methods are also provided.



CHAPTER 2

A REVIEW OF CERVICAL CELL IMAGE ANALYSIS
METHODS

Microscopic cell image analysis is one of the most significant application fields of computer
vision. It concerns the analysis of images containing different samples, such as tissue (his-
tological) or cells (cytological) images, and also images captured from different types of
microscopes (optical, fluorescence etc). From the large range of these different kind of im-
ages, Pap smear images present special features, and their processing demands specialized
and sophisticated techniques. In the next paragraphs, an extensive description of their
characteristics and limitations is provided. Furthermore, the methods proposed in the
literature are also presented, categorized by the general image processing methodology
they are based on.

2.1 Pap smear images

Conventional Pap smears (Fig. 2.1) exhibit certain characteristics, such as variances
in illumination and dye concentration of the cells due to the staining procedure. Also,
there are numerous variables, such as air-drying, excessive blood, mucus, bacteria or
inflammation which make the recognition of the suspicious cells a difficult task. In terms
of screening tests, liquid-based cytology was developed as an alternative to conventional
cytology, which provides more homogeneous sampling of the cervical specimen [11], and
reduction in technical artifacts that limit conventional Pap test samples. However, recent
systematic reviews conclude that because of the lack of well-designed comparative studies,
convincing evidence to determine the superiority of the liquid based cytology for detecting
high-grade lesions does not exist [12, 13, 14, 15].

The variation in cell types each Pap smear image includes is another factor of com-
plexity of these images. There are generally three types of squamous cells seen on Pap
smear images (Fig. 2.2):
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Figure 2.1: A conventional Pap smear image.

1. the superficial cells are the largest of the three types of cells and they have small py-
knotic (degenerative) nuclei and cytoplasm that generally stains eosinophilic (red),

2. the intermediate squamous cells, which are similar in appearance but are slightly
smaller in size and have larger, clearly structured, round nuclei with cytoplasm that
usually stains basophilic (blue) and

3. the parabasal cell type that is smaller, more rounded and immature cell type.

In addition, the large number of cells (50,000-300,000 cells for an average slide), which
must be reviewed by an expert, in order to characterize the smear as normal or abnormal is
another important factor of difficulty. For all these reasons, significant efforts and various
research approaches and algorithms have been introduced focusing on the automated
analysis of cytological Pap smear images.

The accurate detection of the nuclei is crucial because the nucleus is a very impor-
tant structure within the cell and it presents significant characteristics. In pathological
situations, the nucleus may exhibit disproportionate enlargement, irregularity in form
and outline, hyperchromasia or irregular chromatin condensation. The identification and
quantification of these changes in the nucleus morphology and density contribute in the
discrimination of normal and abnormal cells in Pap smear images. Thus, the challenge
for any method proposed for the automated segmentation of cell nuclei is to overcome the
limitations of the Pap smear images such as the high degree of cell overlapping, the lack
of homogeneity in image intensity and the existence of many artifacts, in order to achieve
accurate identification of the cells nuclei.

Through the segmentation of the area of the cell, several salient features can be ex-
tracted, which can contribute to the classification of the cells and therefore the charac-
terization of the smear slide. The existence of automated classification systems would
not only diminish the required time for the smear classification, but it would also avoid
misclassifications due to human error. In the last years, several classification methods
have been proposed for the Pap smear images, in order to identify abnormalities in the



cells morphology. In general, these methods require that single cells in the slides are
automatically isolated and analyzed.

Figure 2.2: The several types of cells that are included in Pap smear images (see text
for details). In this image, the high degree of cell overlapping, the inhomogeneity in cells
intensity and the existence of many artifacts are clearly present.

In the next paragraphs, the segmentation and classification methods proposed for the
cervical cell images are reported. The special features and the different scientific approach
for each method are presented in detail in both cases. Furthermore, an attempt has been
made for the methods that present similarities to be grouped under the same heading, in
order to provide a more compact description for the general techniques that have been

used in Pap smear images.

2.2 Segmentation of Pap smear images

The prerequisite for any further processing of Pap smear images and the derivation of
conclusions for the characterization of their contents is the accurate determination of the
cell nuclei area. However, the exact nuclei locations in the image and the boundaries of
the nuclei areas are not clearly defined in many cases, mainly due to cell overlapping,
inconsistent staining and the existence of many artifacts. For this reason, there are two
open problems for every method proposed for the automated analysis of Pap smear images:
the exact detection of nuclei locations and the accurate determination of nuclei boundaries.
If a proposed method resolves the aforementioned restrictions, then it would be capable
for direct application in images obtained from an optical microscope. However, as these
images are very complicated, many segmentation methods are applied in presegmented
images containing a single cell or a part of the initial microscopic image (Fig. 2.3).

The detection of the nuclei and cytoplasm boundaries in such images has been the
subject of research for several scientists and many methodologies have been proposed.
These methods exhibit remarkable performance in the segmentation of the structural parts
of the cell. However the direct application of these methods in original Pap smear images,
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Figure 2.3: (a) Original cell image and (b) the structural parts of the cell; the nucleus
and the cytoplasm.

which may contain a large number of cells, cell overlapping and image artifacts would
probably be doubtful, without an anterior step for the determination of the locations of
the cells in the image. Thus, more sophisticated approaches to the automated analysis
of Pap smear images are the methods which are applied on images containing a large
number of isolated cells and cell clusters, which are clearly more complicated. These
methods manage to exclude the background of the image and to recognize the locations
and the boundaries of the cells. It must be noted that clustering algorithms are used in
this scope for the rejection of false positive nuclei positions.

In the following paragraphs, the several detection and segmentation methods are cat-
egorized in terms of the general image processing method they are based on, for the
determination of the nuclei boundaries in Pap smear images. In chronological order, the
first approaches were quite simple and tested on a limited data, while the most recent

ones are more advanced and effective.

2.2.1 Thresholding

The first attempts to detect and segment cells in cervical microscopic images were based
on image thresholding techniques exploiting the intensity histogram characteristics of the
pixels [16, 17, 18]. The earliest works were proposed in the late '70s and this confirms
the great scientific interest that these images attract. In general, the scope of these
methods was to automatically identify threshold values in order to separate the cell from
the background and the nucleus from the cytoplasm. A comparison of some threshold
selection methods is included in MacAulay and Palcic [19]. In Poulsen et al. [20], a
method for the detection of regions of interest in reduced resolution Pap smear images
is proposed. The segmentation problem is transformed into an optimisation process in
[21], where the determination of an optimal threshold value refers to a parametric image,
which is an approximation of the initial one. A thresholding technique was also proposed
n [22], for the binarization of the images and the determination of the nuclei locations,
which entails in the feature extraction and the classification of the nuclei in normal or



abnormal classes using a fuzzy Radial Basis Function (RBF) neural network. A multiscale
local adaptive threshold method based on shape stability was proposed in [23] for the
extraction of the nuclei region from the background, where the value of the threshold is
obtained by preserving the expected shape of the segmented objects in the image. Finally,
in [24], the detection of the nuclei is accomplished through the thresholding of the images
obtained after the application of mean filters and rescaling of the gray level of the pixels.
A line-scan algorithm is also proposed for the detection of abnormal nuclei.

2.2.2 Edge Detection

Several methods developed for the segmentation of the nucleus and the cytoplasm are
based on edge detection, which does not require any prior knowledge of the objects of
interest in the image. Thus, in [25] a cytoplasm and nucleus contour (CNC) detector is
developed, which segments the structural parts of cervical cells in presegmented images.
The algorithm adopts the bi-group enhancer to suppress the noises and emphasize the
object contours. Then, the K-means algorithm is used to discern the cytoplasm from
the background and finally, the maximal colour difference (MCD) method can precisely
determine the nucleus contour.

A similar semiautomatic method was proposed by Yang-Mao et al. [26], where an
edge enhancement nucleus and cytoplasm contour detector is presented and applied in
presegmented cervical images. In a preprocessing step, three techniques, namely the
trim-meaning filter, the bi-group enhancer and the mean vector difference enhancer are
employed to eliminate the noise and enhance the contrast in cervical images. This results
in the construction of an image having a bi-modal like intensity histogram, from which
an optimal threshold can be obtained for the segmentation of the images. Finally, a
relative-distance-error measure is presented to evaluate the segmentation error.

In [27], a nuclei segmentation algorithm that uses anisotropic dilation for curve closing
is used. More specifically, the Canny edge detector followed by a series of morphological
processes result in the detection of refined and closed edges. Then, in the edge image,
a distance transform based on geodesic distances in the curved Riemmanian manifold
is calculated, and a binary image is constructed after thresholding, skeletonization and
morphological operations, resulting in the final segmentation of nuclei structures.

Another method based on edge detection for the segmentation of cervical images was
proposed in [28]. At first, a colour depth equalization method is used in order to improve
the contrast between the nucleus and the cytoplasm, and a Gaussian filter for noise
removal. A two-group edge enhancement technique is then implemented based on the
coarseness of each pixel. Then the Sobel operator and the non-maximum suppression are
used for the extraction of the gradient image, which is binarized by setting an upper and
lower edge value limit. Finally, the two longest closed curves from all the detected edges
are selected to form the nucleus and the cytoplasm boundaries.
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2.2.3 Mathematical morphology

The powerful techniques that the mathematical morphology provides for image segmen-
tation are exploited extensively in some published methods aiming at the analysis of Pap
smear images. In [29] a water immersion algorithm, similar in spirit with watersheds was
introduced for the detection of the location of isolated cells in a microscopic image. The
method is composed of three stages: the quadtree smoothing, the lowest level classifica-
tion and the boundary re-estimation. The outcome of this procedure is the determination
of the boundary of the isolated cells. It must be noted that this method does not provide
the detection of nuclei locations in cell clusters.

Methods based on watersheds for the analysis of Pap stained images have also been
proposed in the literature. In the method proposed by Jackway [30, 31], images containing
one single nucleus of a Pap stained squamus epithelial cell are oversegmented with the
multiscale gradient watershed transform for the extraction of texture features, in order to
characterize each cell as normal or abnormal. However, the problem of the detection of
the accurate nuclei boundaries is not resolved.

Several other methods based on mathematical morphology have also been proposed. In
[32], sequential fuzzy greyscale morphological operations are performed for the extraction
of the cell nucleus. The watershed transform has also been used in [33], where a hierarchi-
cal tree is implemented by performing multi-scale watershed segmentation on the image
and then a region selection step using a measure based on spectral homogeneity and cir-
cularity identifies the regions occupied by cells in the image. In this method, a clustering
step is performed, in which the cytoplasm and the nucleus regions are determined using
an SVM. Finally, a method based on the watershed transform using multiscale morpho-
logical gradient and HSI colourspace was proposed in Nallaperumal et al.[34] | and this
method was also applied in macroscopic cancer images.

2.2.4 Pixel classification

Another way of detecting the structural parts of the cells is based on pixel classification
schemes. In [35], a pixel classification method based on a multifractal algorithm is devel-
oped in a first step in order to classify the pixels of the image in background, cytoplasm
or nucleus. Then, an optimization step is added, by learning through genetic algorithms,
and the pixels are reclassified in the above three categories. This optimization step in-
creases the precision of the borders of the detected areas, and in the same time decreases
the confusion between various classes.

As the watershed transform has been extensively used for the segmentation of the
nuclei boundaries in Pap smear images, salient markers of the nuclei locations were inves-
tigated. The method proposed by Lezoray and Cardot [1] is based on pixel classification
techniques for the detection of the nuclei markers, in order to avoid the oversegmenta-
tion that the watershed algorithm may produce. For this purpose, the K-means and a
Bayesian classifier were used for the detection of the nuclei and other pixels class. For
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the later algorithm, a training set of images containing the ground truth was used for the
estimation of the parameters of each Gaussian distribution.

Another approach that introduces a criterion function based on statistical structure
of the objects in the image was proposed by Bak et al. [36], which reflects both local and
global characteristics of the image. A local spatial likelihood is defined and combined with
local spatial prior probabilities, producing the local spatial posterior, which is treated as a
criterion function. Initially, the pixels are clustered through the K-means algorithm, and
then the segmentation of the image is achieved through an iterative procedure, in which
each pixel is assigned at the most probable region (nucleus, cytoplasm or background)
using the predefined criterion function.

In [37], the areas of interest within the smears are detecting through fuzzy-based
techniques and pixel classification. Then, the nuclei detection in images of higher mag-
nification follows, which is also based on fuzzy rules. Moreover, in [38], a three-color
based algorithm that combines colour information, experts knowledge and fuzzy systems
is proposed, aiming at the improvement of the accuracy of the method proposed in [37]
for the detection and the segmentation of the nuclei in Pap smear images.

Finally, a modified seed based region growing (MSBRG) algorithm for the automated
segmentation of cervical cells was proposed by Mustafa et al. [39]. The K-means clustering
algorithm classifies the pixels of the image into three categories (cytoplasm, nucleus and
background) in a first step. Then from the extracted classification and using moments
calculation, the location of seed pixels are determined and the MSBRG algorithm is
performed. The method provides a simultaneous segmentation of all cells in the image,
by identifying the pixels of the cytoplasm, the nucleus and the background.

2.2.5 Template matching

Since the nucleus in general presents an ellipse-like shape, some methods based on tem-
plate matching have been proposed, for the determination of the nuclei boundaries in Pap
smear images. A parametric fitting algorithm for the segmentation of cell images with
application to a cervical image was firstly proposed by Wu et al. [40], which employs both
shape and regional image information. In this work, a parametric elliptical model for the
nucleus shape is introduced, and the parameters are adjusted to fit the nucleus shape by
minimizing a cost function. In order to find the optimal fitting, a coarse optimization
search followed by a fine optimization procedure is performed. Thus, by incorporating
the shape information, the number of parameters is significantly reduced and the method
results in the detection of the nucleus boundary.

Furthermore, in [41] a methodology based on a deformable template approach is de-
veloped. It consists of three steps: 1) initial estimation of the location of the cells in
the image, 2) calculation of an elliptical approximation of the nucleus boundary and 3)
refinement of the nucleus boundary using locally deforming models. More specifically,
the detection of the location of the nuclei is obtained through a reformulation of the
generalized Hough transform. Then the initial shapes of the nuclei are estimated by the
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determination of an ellipse. The final solution is obtained using Grenander’s deformable
template model [42], which converges in the correct nucleus boundary.

2.2.6 Deformable models

In general, the application of deformable models for the definition of the nuclei boundary
is constrained by the requirement for the initial approximation of the model, which is
essential to be close to the real boundary of the nuclei in the image. For this reason,
the proposed methods based on deformable models have to solve also the problem of
correct detection of the nucleus position in an image containing a large number of cells,
or otherwise, their application is limited in presegmented images including only one cell.

Thus, in [43], the boundary of the nuclei is determined on presegmented images with
the use of an active contour model, which is initialized through the construction of a
search space, consisting of two concentric cycles. In the limits of the predefined search
space, the most probable locations for the points of the nuclei boundaries are defined,
following a Viterbi search-based dual active contour algorithm.

In [44], a method for the localization of cells in low resolution combined with the
detection of the nucleus and cytoplasm boundaries in high resolution is proposed. The
geometric active contour without re-initialization (GACWR) method is used for the lo-
calization of the cervical cells in an image of low resolution, which are then classified in
free-lying cells, connected cells and irrelevant objects. After the detection of the position
of each cell, the original image is partitioned into subimages containing the detected cells,
and on each subimage, a binary mask is generated, in which the unwanted objects elim-
ination and the selection of the objects of interest is achieved. In order to separate the
different cells in the cell clusters, the cells are firstly modelled by a circle, which serves as
the initial contour of a GACWR model. It must be noted that the GACWR is applied on
an image of higher resolution, and entails in the identification of the cytoplasm. The same
procedure is followed for the delineation of the nuclei boundaries, which is also initially
approximated by a circle.

2.2.7 Segmentation of overlapping nuclei in cervical images

The first work concerning the recognition of overlapping cells nuclei in Pap smear images
was proposed by Bengtsson et al. [45]. The overlap detection algorithm was based on
information both from the nucleus contour and from the density profile. The method was
based on the detection of significant concavities along the contour and the extraction of
a set of features for the classification of the object of interest as single or overlapping. It
must be noted that the nucleus contour is extracted through a thresholding procedure.
In more recent studies, the distance transform in a binary image containing the regions
of the nuclei is calculated by Jung et al. [5] and the topographic surface generated by
the distance transform is considered as a Gaussian mixture. The EM algorithm is then
applied for the determination of the parameters of each nucleus cluster and the separation
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line of the overlapped nuclei is defined with the minimization of a criterion function. It
must be noted, that in this approach, the occluded area of each nucleus is reconstructed
with a constrained ellipse fitting technique.

In [4], the segmentation of clustered nuclei is treated as an optimization problem and
a marker extraction scheme based on the H-minima transform is introduced to obtain the
optimal segmentation result from the distance map.

2.3 Classification of Pap smear Images

The examination of the Pap smear images by expert cytologists results in the characteri-
zation of the slide, and in many cases the specific disease of the cells can be recognized.
The classes that a smear slide can automatically be classified by an expert system are
determined by a specialist physician. For the creation of a standardized framework for
laboratory reports, the Bethesda System [46] was developed. This system was firstly in-
troduced in 1989 and updated in 2001 as a uniform system of terminology that would
provide clear guidance for clinical management. In this system, the smears are divided
in two categories: normal and abnormal. The abnormal category can be further divided
into four groups: atypical squamous cells (ASC), low grade squamous intraepithelial lesion
(LSIL), high grade squamous intraepithelial lesion (HSIL) and squamous cell carcinoma.

Furthermore, in [6] a Pap-smear benchmark database is presented. The database
consists of 917 samples distributed unevenly in 7 classes by the careful examination of
skilled cyto-technicians and expert cytologists. There are two main classes that a cell
may be classified: normal and abnormal. Both of these classes can be further separated
into more categories. Thus, superficial squamous epithelial, intermediate squamous ep-
ithelial and columnar epithelial cells constitute the normal class. On the other hand,
the characterization of the cells as mild squamous non-keratinizing dysplasia, moderate
squamous non-keratinizing dysplasia, severe squamous non-keratinizing dysplasia, and
squamous cell carcinoma in situ intermediate indicate the existence of abnormality in the
Pap smear slide.

The characterization of the slide is mainly feasible by the evaluation of salient fea-
tures of the nuclei of the cells, which, in general, is subjective to the experience of the
observer. In the last years, some efforts have been made in order to obtain reproducible
and objective characterization of the Pap smear images through computer vision, reducing
the dependency to human experts. In this scope, several commercial interactive systems
have been developed, aiming at the automated classification of the Pap smear images.
These systems, such as PAPNET [47], and AutoPap [48] are based on machine learning
algorithms in order to assist in cervical cytology screening.

Along with the commercial packages, the automated classification of Pap smear images
has been an interesting field for the researchers and many methods have been proposed,
which involve both intelligent feature extraction techniques and machine learning algo-
rithms, in order to recognize abnormalities in these images. The basic steps of these
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methods are depicted in Fig. 2.4. In the following paragraphs, the features extracted
from Pap smear images and the proposed techniques for their classification are described.

Pap smear
microscopic
image acquisition

Feature

Extraction Classification
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Segmentation >

Figure 2.4: Schema of Pap smear microscopic image classification process.

2.3.1 Features of cervical cells used for classification

The published methods which deal with the classification of Pap smear images are based
on the calculation of features extracted from the areas of the nucleus and the cytoplasm.
It must be noted that most of these methods use presegmented images which contain
only one cell, so the correct segmentation of the nucleus and the cytoplasm is feasible.
In images containing cell clusters, the detection of the cytoplasm boundary is a difficult
problem and until now, there is not any method in the literature that results in the
automated delineation of cytoplasm in cell clusters.

The features used in these methods involve both intensity and shape characteristics
of the nucleus and the cytoplasm. The most commonly used shape features are the
area (size), the nucleus to cytoplasm area ratio, the shortest and longest diameter, the
perimeter, the elongation and the roundness (circularity). Furthermore, the positions of
the nucleus and cytoplasm centroids are used for the definition of the relative placement
of the nucleus inside the cytoplasm.

Concerning the intensity characteristics, the brightness, the mean grey level and in-
tensity disparity between the nucleus and the background are used by several techniques.
In many methods, more sophisticated features are calculated in Pap smear images. Thus,
in [49] a set of features extracted from the two dimensional Fourier transform of single
cell images is utilized, without the need of a segmentation step, which would result in the
detection of the cytoplasm and nuclei boundaries. The proposed features are based on the
mean, the variance and the entropy obtained from the frequency components along the
circle having as center the center of the spectrum and the frequency components along
the radial line having an angle 6.

Feature vectors based on the wavelet transform were proposed in [50]. The statistical
wavelet analysis and the wavelet analysis in “Brute force” approach are combined for the
extraction of feature patterns. These features are then used as input in a neural network
classifier for the final classification of the image in normal or abnormal categories.

Several methods of automated feature selection have been proposed for the construc-
tion of subsets of features with high discriminative ability. Thus in [51], a technique
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based on a genetic algorithm is proposed for the selection of the best optimal performing
feature subset. The algorithmic scheme is combined with a number of nearest neighbour
based classifiers, and a comparison with a tabu search based metaheuristic algorithm for
feature selection is presented. Furthermore, in [52], a method based on particle swarm op-
timization is proposed for the feature selection problem. In this work, nearest neighbour
techniques were also used for the calculation of the performance of the proposed algo-
rithm. The results were obtained for both the two-class problem (normal or abnormal)
and for the seven-class problem (as they were described in the previous section).

2.3.2 Classification techniques

The extracted features are used for training classifiers, in order to recognize and classify
a certain image/cell into the corresponding class. The first attempts to classify the cells
in Pap smear images were based on the Bayes rule. Thus, [53] a training set containing
normal and abnormal cells is used for the calculation of the parameters of the classifier, and
two decision rules are combined for the classification of each cell. In [54], the parametric
Bhattacharyya distance is used for the determination of a pair of textural features and
the Bayes classifier is then applied for the classification of the samples. The Bayesian
classifier was also used in [49] and [55].

Another widespread technique used for the classification of Pap smear images are
the artificial neural networks. In [56], a hierarchical hybrid multilayer perceptron net-
work (H2MLP) is illustrated for the classification of cervical images into three categories:
normal, low-grade squamous intraepithelial lesion (LSIL) and high grade squamous in-
traepithelial lesion (HSIL). In this work, the input data are first classified as normal and
abnormal by a hybrid multilayer perceptron (HMLP), and in the abnormal case, they are
further classified by a second HMLP into the LSIL and HSIL categories. The performance
of the HXMLP neural network has been compared with RBF, MLP and HMLP artificial
neural networks with the number of hidden nodes varying from 1 to 50. The effectiveness
of the proposed diagnostic system has been demonstrated using 550 annotated Pap smear
images.

The Rank M-Type Radial Basis Function (RMRBF) neural network was implemented
in [57] for the classification of microscopic Pap smear images. The Median M-Type (MM)
estimator was used in an RBF neural network for the estimation of the parameters of the
proposed network. The results presented in terms of the sensitivity and specificity were
compared with the results of simple RBF and median RBF neural network.

Several other proposed methods are based on neural networks. A feed forward neural
network with a single hidden layer is used in [50] and the training method selected was
backpropagation with a variable learning rate. A multilayer sigmoid neural network along
with Levenberg-Marquardt backpropagation training algorithm was implemented in [58]
for the classification of samples for which fuzzy based classification is unclear.

Furthermore, some classification techniques based on fuzzy logic have also been pro-
posed. Thus, in [22], the fuzzy RBF network is applied to classify and identify the normal
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and abnormal nuclei. In [32], the fuzzy Adaptive Resonance Theory (ART) algorithm is
used in order to classify and distinguish normal, abnormal and cancerous cells, based on
the standard categories of the Bethesda System.

Support Vector Machines (SVM) were also used for the classification of Pap smear cells
into normal and abnormal categories [49], [59]. Moreover, a method for cervical cancer
detection using SVM based feature screening has also been proposed by Zhang and Liu
[60], and it concerns the reduction of the feature space dimension in multispectral Pap

smear images.

2.4 Conclusion

The task of the automated analysis and classification of Pap smear images is one of the
most interesting and challenging issues in computer vision and artificial intelligence scien-
tific fields. The identification of cervical cell nuclei areas in conventional Pap smear images
is a difficult problem, as these images present great complexity and certain limitations.
The accurate segmentation of the area of nucleus is a prerequisite for the derivation of
diagnostic conclusions and the characterization of the contents in Pap smear images. This
is feasible with the extraction of salient features which contribute in the discrimination
of the cells in normal and abnormal categories by the expert classifiers.

As we can conclude, great effort has been made by several researchers in order to
present effective techniques concerning both the segmentation and the classification of
Pap smear images. Although the proposed techniques present high performances, the au-
tomated processing of a Pap smear slide, which would result in the documented diagnosis
is not possible yet. In the future, the development of fully automated methods for the
Pap smear interpretation is expected.

In the following chapters we describe our contribution in this scope. The automated
methodologies that that we have proposed and developed for the efficient addressing of
the nuclei detection, segmentation, classification and overlapping nuclei separation are
analyzed in detail, providing qualitative and quantitative results and comparisons with
some of the state of the art methods mentioned above.
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CHAPTER 3

AUTOMATED DETECTION OF CELL NUCLEI
USING MORPHOLOCICAL RECONSTRUCTION
AND CLUSTERING

3.1 Introduction

The first attempts to detect and segment cells in cervical microscopic images were based
on image thresholding techniques exploiting the intensity histogram characteristics of the
pixels [16, 17, 18, 19, 21]. In addition, pixel classification was also proposed for the
segmentation of cervical images [36]. Another class of methods concerns morphological
watersheds for the separation of the cytoplasm and the nucleus of each cell [29, 1]. The
boundaries of the structuring elements of the cells can be obtained employing methods
based on active contours [43], template fitting [40, 41], genetic algorithms [35], region
growing with moving K-means [61] and edge detectors [26, 28].

In Table 3.1, the methods that have appeared in the literature in the last fifteen
years for the segmentation of Pap smear images are presented in chronological order. For
every method, its advantages and limitations are also included. As it can be observed,
many methods do not take advantage of the color information of the cervical images by
converting the color image to its grayscale counterpart [40, 26, 28, 29, 35, 41, 43, 61],
and therefore missing the color information. Also, the problem of overlapping cells is not
considered in many methods, which are able to identify the borders of the nucleus and the
cytoplasm in cervical images which contain only one cell or isolated cells [26, 28, 29, 35, 43].
Moreover, as it will be described in the next sections, most of these methods confine in
presenting qualitative review for the segmentation results in several images, while their
performance is usually estimated using a limited number of test images.

Considering the general methods that these approaches are based on, we can conclude
that the powerful techniques that the mathematical morphology provides for the image
segmentation are not efficiently exploited. Even in the case where morphological water-
sheds are used in [29] and [1], these methods seem to suffer from several limitations. The
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Figure 3.1: (a) Initial cell image. (b) Mapping of the intensity values in the color space,
where high intensity values are represented by red color and small intensity values are
represented by blue color. Point A corresponds to the location of a true nucleus and
points B and C correspond to areas of cell overlapping. (c) Mapping of the initial image
in 3D space. The points A, B and C are lying in the same intensity level but only point
A corresponds to the location of a true nucleus. As it is observed, the local depth A4 of
this point is more pronounced with respect to hg and h¢.

method proposed by Bamford et al. [29] was applied in gray scale images of low resolution
and results in the identification of the location of isolated cells in each image. However,
cell nuclei that are in cell clusters are not detected. Furthermore, the method proposed by
Lezoray et al. [1] is based on pixel classification techniques for the detection of the nuclei
markers, in order to avoid the oversegmentation that the watershed algorithm may pro-
duce. In pixels classification techniques, the choice of the number of the classes the pixels
belong plays a crucial role for the final segmentation result. Pap smear images exhibit
great complexity and the number of pixel classes is not obvious. The rough assumption
that all the pixels of the image are distributed into two classes, such as nuclei pixels and
other pixels would produce noisy results.

In this chapter, we propose a novel method for the detection of nuclei locations in
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conventional Pap stained cervical cell images, which may contain both isolated cells and
cell clusters. The method exploits the color information as it searches for possible nuclei
locations in all three channels of the color image. Furthermore, for the final determination
of the true nuclei set, local color nuclei characteristics are used in a classification procedure.
The method is not affected by the existence of overlapping cells and it can be applied in
any cervical Pap smear image. This is confirmed by the high performance of our method
in the experimental results from a large number of cervical images which contain in total
5617 cell nuclei.
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Figure 3.2: Schema of the proposed method.

More specifically, the proposed method exploits the particular nuclei characteristics
through morphological image analysis, in order to obtain automatically their locations in
the image. In general, the cell nucleus is darker than the surrounding cytoplasm (Fig.
3.1(a)). However, its image intensity value exhibits extensive variation due to the staining
procedure or the type of the cell and sometimes it may coincide with other areas of the
image with cell overlapping (Fig. 3.1(b)). If we consider the mapping of the image in
the three dimensional space (Fig. 3.1(c)), we can see that the locations of the nuclei are
depicted as intensity valleys. Nevertheless, not all the intensity valleys of the same depth
correspond to the location of a nucleus. As we can see in Fig. 3.1(c), the points A, B
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and C belong to different intensity valleys, which approximately have the same depth.
However, only point A belongs to the location of a true nucleus. For the determination of
the true nucleus location, the local depth of the intensity valley must be compared with
the corresponding local depth of its surrounding area. This figure depicts clearly that the
local depth h,4 of point A has higher value than the local depths hp and h¢ of points B
and C respectively. Based on this fact, we propose a method that can distinguish the true
nuclei locations in Pap smear images.

Our work is summarized in Fig. 3.2. The proposed method consists of four phases: (a)
the preprocessing, (b) the detection of candidate cell nuclei centroids, (c) the refinement of
candidate cell nuclei centroids and (d) the decision phase which includes the determination
of the final nuclei locations. In the preprocessing phase, the regions of interest in the
image occupied by the cells are defined. The outcome is a binary mask which indicates
the cell clusters in the initial image. In the second phase, the identification of the probable
locations of the centroids of the cells nuclei takes place. A morphological-based image
process is proposed for the detection of the regional minima in the image, which indicate
the existence of candidate nuclei of cells. The third phase is a procedure that exploits the
spatial characteristics of the nuclei and the circumference of each nucleus is approximated,
which results in the refinement of the nuclei centroids locations. In the fourth phase, a
decision process which extracts the true nuclei locations is proposed and it is based on
two steps. In the first step, an empirical rule which depends on the distance between
the centroids is applied, for the reduction of false positive occurrences. In the second
step, unsupervised (fuzzy C-means [62]) and supervised (Support Vector Machines [63])
classification techniques are used in order to determine the final set of nuclei centroids. It
should be noted that in the last step, we have examined the influence of the refinement
of the nuclei centroids, with the construction of two data sets of patterns obtained from
the initial and the refined centroids of the cells nuclei. These data sets are used as input
in the classification algorithms and the results reveal that the refinement of the detected
nuclei centroids is necessary for the improvement of the performance of the method.

3.2 Methodology

3.2.1 Preprocessing

In conventional Pap smear images, it is often observed that the location of the cells
(isolated cells or cell clusters) is restricted in a limited space. Especially in images of low
magnification (such as those obtained with 10x magnification lens), it is common that the
major portion of the image is the background. However, due to a considerable amount
of noise that arises from the staining process, the background is not homogenous and
contains small cell particles that are not of interest. These particles must be eliminated,
because they may interfere with the automated detection of cell nuclei.

In general, the preprocessing phase is necessary for the extraction of the background
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Table 3.1: Advantages and limitations of state of the art methods for Pap smear cell

nuclei determination.

METHOD

ADVANTAGES

LIMITATIONS

Bamford et al. [29]

Bamford et al. [43]

Wu l et al. [40]*

Garrido et al. [41]

Lezoray et al. [1]**

Lassouaoui et al. [35]

Bak et al. [36]

Mat Isa et al. [61]

Yang-Mao et al. [26]

Lin et al. [28]

- Simple segmentation method for the
determination of the boundaries of the cells
- Ensures closed boundaries

- Ensures closed boundaries for the nucleus and
the cytoplasm of isolated cells

- High rate of accurate segmentation

- Large number of test images

- Incorporates a priori knowledge about the
shape of the cell

- Investigates the case of overlapping breast
cells

- A reformulated Hough transform is
introduced

- A deformable template model is used for the
refinement of the cells boundary

- Incorporates color information on the water-
shed segmentation
- High rate of accurate segmentation

- Introduces an optimization step based on
genetic algorithms to increase the segmenta-
tion quality

- A new criterion function based on statisti-
cal structure of the object in the cell image is
introduced

- Region growing based technique in which the
seed points locations and the threshold values
are determined automatically

- A new edge enhancement nuclei and
cytoplast contour detector is used

- A new error measurement method is intro-
duced

- Ensures closed boundaries

- Does not handle overlapped cells

- Grayscale images

- Lack of identification of the nucleus
boundary

- Does not handle overlapped cells

- Grayscale images

- Two captures (one of low and one of high
magnification) of the cell image were used

- Grayscale images
- Many parameters to be tuned

- Grayscale images

- The method is affected by the excess of
edge points or overlapped objects in com-
plex images

- A training set is needed for the achieve-

ment of best results

- Does not handle overlapped cells
- Grayscale images

- Grayscale images

- Grayscale images

- Does not handle overlapped cells
- Grayscale images

- Does not handle overlapped cells
- Grayscale images

*Cervical specimen that was used for the acquisition of the test image was stained by the Crocker and Nar

staining technique.

**The method was applied on images from serous cytology stained with the Pap technique.

and the definition of smooth and noise-free regions of interest, in order to reduce the
searching area in the image. In our work, this step aims at accomplishing two goals: a)
the definition of areas occupied by cells, and b) the rejection of areas in the image that are
not of interest. In order to define the area of the cells we create a binary mask, containing
the locations of the cells in the image. This mask is obtained from the initial RGB image
after the application of three steps: image enhancement, global thresholding and small
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particles elimination in all three components of the initial color image.

In the first step, the contrast-limited adaptive histogram equalization [64] is performed
individually to each color component image, which results in contrast enhancement and
edge sharpening. Next, in each derived filtered image, a global threshold is obtained using
the standard method proposed by Otsu [65] and with this threshold the intensity image
is converted into a binary one. Finally, in the third step, the binary mask which includes
the regions of interest of the image is extracted with the union of the three resulted binary
images obtained from the processing of the RGB components, that is:

BW = BW, U BW, U B3, (3.1)

where BW;, BW,, BWj3 are the binary masks in the red, green and blue channels of
the initial image obtained with the global thresholding. The final binary image contains
connected components that indicate the regions of the cells in the image. A morphological
dilation is then performed in order to expand the boundaries of the region of interest and
the binary mask is obtained with:

BW = BW @ X, (3.2)

where X is a 3 x 3 flat structuring element.

After this operation, the connected components with an area smaller than the area
of an isolated cell are undesired, because they were probably produced by the presence
of image artifacts. For this reason, we remove all connected components with an area
smaller than 500 pixels, which is a value smaller than the area of an isolated cell (which
in general varies in the range of 900 - 7000 pixels, determined empirically after careful
examination by a cytopathologist) and larger than the size of the small objects in the
image. In this way, small particles are eliminated. The resulted binary image (Fig. 3.3)
is used as a mask to indicate the regions that are covered by cell clusters in the initial
image. Notice that it is relatively easy to eliminate the small isolated dots by the area
thresholding. In these regions the detection algorithm is then applied.

3.2.2 Detection of candidate cell nuclei centroids

The areas of interest in the image obtained in the preprocessing step (Fig. 3.3(b)) contain
either isolated cells or cell clusters. In the first case, the detection of cell nucleus centroid
is a relatively easy procedure, as the area of the nucleus is darker than the cytoplasm. On
the other hand, in cell clusters, the high degree of cell overlap and the inhomogeneities in
the nuclei intensity make the detection of the nuclei a difficult task.

Our approach to this problem is based on the gray-scale morphological reconstruction
[66] in combination with detection of regional minima [67] in the image. The regional
minima are connected components of image pixels, whose intensity value is the same and
less than the intensity value of the external boundary pixels. These minima indicate the
positions of the candidate cell nuclei.
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i ™

Figure 3.3: (a) The initial Pap smear image, and (b) the binary mask which is obtained
after the preprocessing step.

Once we have found the regions of cell clusters, we search locally in each part of the
image in order to detect the nuclei. For the definition of the search area, we compute the
bounding box for each white area in the binary image and then we define the corresponding
subimage in the color image. Considering that the nuclei are darker than the surrounding
cytoplasm, in each subimage, we search for intensity valleys in the red, green and blue
channels of the color image. These valleys consist of pixels with intensity value lower than
a specific threshold, and they are bounded by pixels whose intensity value is greater than
this threshold.

For the formation of homogenous minima valleys we apply the H-minima transform
in the original image, which is a gray scale morphological reconstruction [68]. In this
way, if the depth of each minimum is greater than or equal to a given threshold h, then
the minimum is treated as a marker, otherwise it is eliminated. Thus, shorter peaks are
removed, while higher peaks remain, even though they are not as significant as before.
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The application of H-minima transform requires the construction of a marker image
GG, whose peaks determine the location of the objects of interest in the original image. A
morphological reconstruction of the original image I from marker G is then performed.
For the construction of the marker image (G, we subtract a threshold A from every pixel
of the complement I of the initial image of dimension Dj:

G(p)=1(p) —h,p € Dy (3.3)

Following the definition in [66], the grayscale reconstruction is defined with regard to the
elementary geodesic dilation 651)(G) of grayscale image G < I “under” I:

s(@) = (GaB) NI, (3.4)

where (G @ B) is the dilation of G by a flat structuring element B and A stands for the
pointwise minimum. Thus, the grayscale geodesic dilation of size n > 0 is obtained by
iterating n elementary geodesic dilations:

37(G) =00 (85" (6 (.0 (@)))). (3.5)

In this equation, the output of an elementary geodesic dilation is used as input in a new
elementary geodesic dilation, and this is repeated n times. With the above definitions,
the grayscale reconstruction p;(G) of image I from marker G is obtained by iterating
grayscale geodesic dilations of G “under” I until stability is reached:

pi(G) = Tim 57" (G) (3.6)

The algorithm used for the construction of the final image is described in [66] as the
fast hybrid grayscale reconstruction algorithm. The final image is the complement of the
outcome image and it contains the regional minima, whose depth is less than h, suppressed
(Fig. 3.4(b)).

For the determination of these regional minima, we perform the non regional maxima
suppression [67] in the complement of the derived image. If we assume that f(x) is the
input grayscale image, F' the domain of support for f and mwal the minimum allowed
value of f(z), the output image g(x) is derived as follows:

Lg«f

2. Vr€F

3. if g(x) # mual

4.if 3y € Nbr(z) : g(y) > f(=)

5. g(2) + mwal,Vz € T, {w : g(w) = f(x)},
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Figure 3.4: (a) Initial image of a cell cluster with overlapped cells, (b) the resulted image
with the suppressed regional minima, (c) the areas of regional minima (notice that both
cell nuclei and non-cell nuclei are extracted at this step) and (d) the centroids of the areas

of regional minima.

where Nbr(z) is the neighborhood positions associated with the image position = and
I', is the binary connected opening. This algorithm sets the minimum intensity value
to any pixel of the image that does not belong to a regional maximum. If a pixel has a
neighbor of higher intensity value, then all pixels connected to this pixel and having the
same intensity are set to the minimum allowed value (mval = 0).

The resulted image is a binary image with the areas of intensity valleys highlighted.
This procedure is applied independently in the three channels of the initial color image
obtained after the preprocessing step. The areas of valleys found in the three images
are joined using a logical OR operator. Following this procedure the boundaries of these
valleys are calculated and the candidate nuclei are considered to be enclosed in these
boundaries (Fig.3.4(c)). The location of each candidate nucleus is determined with the
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calculation of the centroid r. of each detected intensity valley and it is defined as:

N
re=(5.9) = 5 (e w) 3.7
i=1
where N is the number of pixels consisting the boundary of the valley, and z;,y; are the
coordinates of the pixel ¢ of the boundary.

The list of image pixels found in this step (Fig. 3.4(d)) indicates the location of the
regional minima of the image, whose depth is less than h. In general, the cell nuclei
are darker than the surrounding cytoplasm and as a consequence the performance of this
method is very high as it will be described in the results section. However, the centroids of
these regional minima of the image do not coincide precisely with the true nuclei centroids.
This happens because these minima are rough approximations of the real nuclei boundary.
Moreover, as it can be seen in Fig. 3.4(d) some undesired points are detected during this
step. For the detection of more accurate nuclei centroids and the rejection of regional
minima centroids that do not correspond to the true nuclei locations, further processing
of the image is necessary, as it is described in the following steps.

3.2.3 Refinement of candidate cell nuclei centroids

For the determination of the cell nuclei centroids we have used the global information
from the cell image. However, a priori knowledge about the nucleus appearance in these
images has not been incorporated. Most of the nuclei usually have ellipse-like boundaries,
from which we can observe that the intensity of the pixels inside these boundaries are
lower than those lying outside. As a result, we expect high gradient of the image across
the nuclei boundaries.

Nevertheless, the value of the gradient in nucleus/cytoplasm borders varies in different
parts of the image, because of the inhomogeneities in dye concentration and the variances
in illumination. This is the reason why edge detectors based on the selection of a threshold
in the gradient value, are inappropriate for the determination of a more precise nuclei
boundary, because low thresholds would result in the detection of too many false edges,
while high values would result to the loss of some true nuclei boundaries.

In this approach, we propose the use of the morphological gradient calculated with an
alternative way, in order to obtain an estimation of the nuclei borders. More specifically,
from the initial color image I (Fig. 3.5(a)), we construct two different images A and
B. The first image A (Fig. 3.5(b)) is constructed from the original image I after the
application of a grayscale erosion of the original image, that is:

A=I16X, (3.8)

where X is a flat disk shaped structuring element with radius 3. The use of a disk-shaped
structuring element for the construction of the eroded image, pronounce the objects of
the image in such a way that dark objects are enlarged radial. Thus, the nuclei become
smoother and more pronounced (their area is larger and darker).
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(8) () (i)

Figure 3.5: Ilustration of the different steps of the refinement procedure. (a) Initial
image, (b) eroded image, (c) filtered image, (d) difference of images in (b) and (c), (e)
contrast enhanced image, (f) construction of the search space, (g) determination of pixels
in the nucleus circumference by selecting the local maxima of the gradient amplitude, (h)
the resulted nucleus contour superimposed onto initial image and (i) the initial (black
cross) and the refined (white circle) centroid of the nucleus.

28



The image B (Fig. 3.5(c)) is the outcome of the application of a 5 x 5 averaging filter
on the original image, given by:

Blry)= 5 >3 T(0.4), (3.9

i=1 j=1

where n = 5 and I(i, ) is the intensity value of the image I at the pixel (i,7) and (z,y)
is the center pixel of the 5 x 5 region of the image. Following this procedure, noise effects
and inhomogeneities in nuclei intensity are limited and a smoother image is extracted.
For the construction of the morphological gradient J of the image I, where the bound-
aries of the nuclei are accentuated, the subtraction of these two images is performed:

During this stage, we are interested in the determination of high intensity differences,
which indicate the location of the boundaries of the nuclei, so we disregard the color
information and we obtain the corresponding grayscale image (Fig. 3.5(d)). For the
sharpening of nuclei borders we apply a contrast enhancement filter in the final image,
which saturates 1% of data at low and 1% of data at high intensities of the original image
(Fig. 3.5(e)). Finally, in the resulting gradient image, we search locally in each derived
centroid for the selection of some points with high intensity values, which indicate the
existence of the nucleus border.

The pixel of the initial candidate nucleus centroid is used as the starting point for
the construction of a confined search space in the neighborhood of the specific regional
minimum of the image (Fig. 3.5(f)). The search area in which we expect to include the
boundary of each nucleus is determined using 8 radial profiles in equal arc length intervals
consisted of 8 points each. After the search space is defined, in every radial profile we
choose the pixel with the highest intensity (non maximum suppression, Fig. 3.5(g)). This
procedure is repeated once for each candidate nucleus.

The final step is the redefinition of the nuclei centroids based on the resulted boundary
pixels (Fig. 3.5(h)) using 3.7. The outcome of the entire procedure can be observed in Fig.
3.5(i). This example shows clearly that a more accurate nucleus centroid is determined.

3.2.4 Decision

The application of the method described above for the detection of nuclei centroids,
produces a number of false positive occurrences, as it can be observed in Fig. 3.6 and
the elimination of those points of the image that do not correspond to the true nuclei
locations is necessary. This can be accomplished following a decision process based on
two steps: the application of a distance dependent rule and the application of classification
techniques, as it is described in the following paragraphs.
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Figure 3.6: The detection of regional minima of the image results in many candidate
points. This is also true for a single nucleus.

Application of the distance dependent rule

Before applying a more sophisticated classification/clustering algorithm, we have firstly
applied a distance dependent rule in the set of the resulted image points. It is observed
that a lot of extracted points are located in small distances between them. Even in the case
of one single nucleus, the existence of more than one candidate centroid is possible and
these centroids are generally spread into the nucleus circumference (Fig. 3.6). For this rea-
son, for all the obtained centroids we apply the following rule:

repeat
Vp=(z,y) € R,
if 3¢ = {(z4,9,)|D(p,q) < T} then
select r = {p, glmin{(I(p), 1(q)}}
update R,
until no change in R,

where R, is the set of all centroids, D the Euclidean distance between two points, 1" is
the threshold on the minimum distance and I(p) is the intensity of the image at point p.
The threshold for the minimum distance that we use is derived from the prior knowledge
we have about the true diameter of a nucleus. This is an empirical rule that is based on
the fact that the points, which belong to the area of a nucleus, are usually darker than
the surrounding points. By applying this rule, we have a significant reduction of the total

number of the resulted centroids, while at the same time we have no loss of the true nuclei
(Fig 3.7(b)).

Application of classification/clustering techniques

After the determination of the final candidate nuclei centroids, we proceed with the ap-
plication of classification algorithms in order to separate the points that belong to the
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true nuclei and the points that belong to other regional minima, which do not indicate
the existence of a nucleus in the image. Furthermore, we have examined the influence
of the selection of a feature data set that is obtained using the refinement scheme of the
centroids.

We have tested our method using an unsupervised and a supervised classification
algorithm, namely the fuzzy C-means (FCM) [62] and the support vector machine (SVM)
[63] respectively. Given the fact that the FCM algorithm does not require any training,
it is applied independently in each image. However, for the application of the SVM
classification algorithm a training data set is constructed, with the random selection of 34
images from the entire data set, and the remaining 4 images are used as the test set. After
training, the performance of the SVM classifier is calculated using the unknown images
of the test set. A brief description of FCM clustering and SVM classification algorithms
are included in Appendix A. Representative results of the FCM clustering algorithm in
the real image are shown in Fig. 3.7(c)-(d).

Feature vectors

The nuclei centroids obtained with the application of the proposed method in the image
data set, have been detected by taking into account the general appearance and local
attributes of the nuclei. For the definition of the set of nuclei patterns containing more
representative features that will be used as input in the classification algorithms, we have
used the intensity information which is comprised in the neighborhood of the image points
found in the previous step. The dimensions of the neighborhood of the image vary in our
experiments. More specifically, we have tested the performance of our method using four
pattern sets of different sizes for the neighborhood, that is D1 with 3 x 3 x 3 pattern size,
D2 with 5 x 5 x 3 pattern size, D3 with 7 x 7 x 3 pattern size and D4 with 9 x 9 x 3 pattern
size (the third dimension corresponds to the color). Each pattern was centered at each
centroid, in the initial color image. We have constructed two data sets of patterns using
as the center pixel of each neighborhood the initial and the refined centroid respectively,
in order to compare the performance of the method.

3.3 Results

3.3.1 Study Group

The data set that is used in this work is composed by conventional Pap stained cervical
cell images, acquired through a CCD camera (Olympus DP71) adapted to an optical
microscope (Olympus BX51). We have used a 10x magnification lens and the acquired
images with size 1536 x 2048 were stored in JPEG format. We have collected 38 images
from 15 Pap smear slides and the total number of cell nuclei in the images is 5617. In
order to obtain the ground truth, the nuclei locations were manually identified by two
expert cytopathologists.
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3.3.2 Numerical evaluation

Our method is fully automated and the final detected nuclei are obtained even in areas
with high degree of cell overlapping such as the cell clusters in the image (Fig. 3.4),
without any user interference. For the evaluation of the performance of the method we
have to examine the performance of the different steps of the method, starting from the
preprocessing step until the application of the classification algorithms, in which we have
tested several different parameters. Furthermore, as a measure of the computational
efficiency of the segmentation method, we present in Table 3.2 the processing times of the
individual steps of the method developed in Matlab using a Pentium 2.0 GHz with 3GB
RAM.

The preprocessing is a fast procedure which results in the determination of the region
of interest in the image, since it excludes all the background and leaves, for further
processing, the parts of the image containing isolated cells or cell clusters. It misses 9 cell
nuclei in all images and it produces a reduction of true positives cell nuclei of 0.16% of
the total initial number of nuclei. For this reason, the number of cell nuclei which must
be detected in the following steps is decreased to 5608.

The detection step of the cell nuclei centroids has shown that the detected points have
successfully identified the location of most of the nuclei in the image, as it is confirmed
by the expert observer. During this step, 42 true nuclei centroids are missed and the true
nuclei detection rate is 99.25%.

The application of the distance dependent rule on the refined nuclei centroids yields
in the reduction of false positive findings at the rate of 14.13% while we have no loss of
true nuclei centroids. This rate could be higher if we select a distance threshold higher
than 8 pixels. However, with a selection of a higher value for this threshold, true nuclei
centroids are missed, as it can be observed in Fig. 3.10.

For the application of the classification algorithms, we have used two data sets, as it is
already described. In FCM algorithm we have used the Euclidean and the diagonal norm
as the distance-dependent metric. The Euclidean norm is defined as:

D= | (wg —vp)% 1<k <p, 1<i<N, (3.11)

Jj=1

where N is the number of the x; unlabeled column vectors in R, p is the number of fea-
tures in each vector zy, ¢ is the number of different clusters and {v;}{_, are the prototypes
of the clusters. Respectively, the diagonal norm is defined as:

D" = \/(:ri —v))TAp(z; —v;), 1<i< N, 1<j<e¢ (3.12)
where Ap = diag(%, 0—12, ..., ) and o; is the standard deviation of each measured char-
1 2

acteristic. The results of the classification are presented in Fig. 3.8.
Furthermore, we have trained the SVM classifier with a training set of 34 randomly
selected images and the performance of the SVM classification is calculated using the 4
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remaining unknown images from our dataset. This experiment was repeated 20 times,
and the average performance was calculated. The results are summarized in Fig. 3.9.

For the comparison of the results we have calculated the number of true positive
(T'P), true negative (T'N), false positive (F'P) and false negative (F'N) findings of each
classification technique. Then, two widely used statistical measures for the performance
of the classification are calculated:

1. The Sensitivity, which measures the proportion of actual nuclei which are correctly
identified as such and it is defined as:

TP

—_— 1
TP+ FN (3:13)

Sensitivity =
2. The Specificity which measures the proportion of candidate centroids that are not
nuclei and are correctly characterized as such by the classification techniques, and

it is defined as:
it is defined as TN

(3.14)
These measures were selected in order to evaluate the ability of the method to recognize
the true nuclei and the true artifacts from the total number of findings in the image.

As it is depicted in Fig. 3.8 and Fig. 3.9, the FCM algorithm has higher Sensitivity
than the SVM, which means that fewer true nuclei are missed by the algorithm classifica-
tion. However, the Speci ficity of FCM is low relatively to SVM, which means that FCM
includes a lot of false positive centroids in the final set of the points characterized as nuclei
centroids by the algorithm. On the contrary, the Sensitivity of the SVM classification
is relatively low, namely it misses more true nuclei centroids during the classification.
Nevertheless, it presents high Speci ficity rate which means that in the final set of points
characterized as nuclei, the false positive occurrences are limited.

An important fact that must be noted is that, as we can see in Fig. 3.8 and in Fig.
3.9, in both unsupervised (FCM) and supervised (SVM) classification techniques, the
use of the refined centroid data set leads to a better classification performance. This
indicates that with the refinement step, the prior knowledge of the nucleus shape that is
incorporated leads to more accurate localization of the nucleus centroid. The contribution
of this step is crucial because the refined centroids are closer to the true nuclei centroids
and the datasets of patterns that are constructed contain more representative features of
the nuclei centroids neighborhood. This results in the improvement of the discrimination
ability of the classification techniques, since the patterns of the true nuclei class are more
compact as they contain only pixels from the nucleus area and they do not include pixels
from the cytoplasm area.
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Table 3.2: Execution time for images of size 1536 x 2048.

Step of the method Processing time in sec. (mean =+ std)
Preprocessing 3.53 £0.22

Detection of candidate cell nuclei centroids 72.45 £ 39.55

Distance dependent rule 7.06 £ 13.00

3.4 Discussion

3.4.1 Evaluation of the proposed method

The proposed method is fully automated and its application was performed without any
observer interference. The method consists of four individual stages: the preprocessing,
the detection of candidate nuclei, the centroids location refinement and the decision step,
which results in the final determination of the cell nuclei locations. As it is verified by the
results, the method is suitable for the detection of cell nuclei in Pap smear images, even
when cell overlapping is present.

Table 3.3: Parameter Values.

Step of the method Parameter Value
Preprocessing Area threshold for the elimination of small particles 500
Detection of candidate cell nuclei centroids Intensity depth threshold (h) 15
Minimum allowed Image value (mval) 0
Refinement of candidate nuclei centroids Number of radial profiles 8
Length of radial profiles 8
Distance Dependent Rule Minimum Distance threshold (T) 8
FCM Weighting component (m) 2
SVM Linear Kernel: C 0.001
RBF Kernel: C 1
RBF Kernel: v 1

Concerning the parameters involved in the algorithm (Table 3.3), from the entire image
data set (38 images) we have used 19 randomly selected images which contain in total
3616 cells nuclei, in order to estimate the values of these parameters, which correspond to
the prior knowledge of the cells nuclei. After careful examination of these images from an
expert cytopathologist, the area threshold of 500 pixels was considered to be sufficient for
the small particles elimination in the image. Thus, connected components of area smaller
than 500 pixels are characterized as objects of no interest, while the isolated cells in the
image are preserved. Nevertheless, the loss at this step is due to the fact that some of the
cell cytoplasms are faintly stained, and they are not distinguishable from the background.
As a consequence, the nucleus is considered as an isolated object, and with the application
of this step, it is removed.

The selection of the threshold of the depth of the intensity valleys influences the
number of true positives and false positives. For the choice of the threshold we have
performed several tests using different values, and we chose the threshold value 15, which
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produce the minimum loss of true positives centroids. As it is depicted in Fig. 3.11, with
this threshold value we obtain the maximum number of true nuclei centroids detected,
while the number of false positive centroids is kept at a low rate.

The outcome of this step is the detection of image regional minima, which may indicate
the locations of cell nuclei. As it is observed in many cases, the projection of these
centroids in the images does not coincide with the true nuclei centroids (Fig. 3.5(i)).
This occurs because the determination of the initial centroid is a coarse approximation of
the true nuclei centroid. With the exploitation of the a priori knowledge of the nucleus
shape characteristics in the refinement step, we obtain more accurate nuclei centroids in
the image. We search for 8 points in the nucleus circumference and for the construction
of the search space we use radial profiles of 8 pixel length, as this was estimated to be
the average size of the nuclei radius by the expert observer. By these means, we obtain a
smooth nucleus boundary, and based on this, we calculate a new refined nucleus centroid.

The result of this step is the extraction of nuclei markers in the image. However,
in some areas of the image it is observed that two or more markers are lying on the
same nucleus (Fig. 3.6). This is a consequence of the inhomogeneity in the nucleus
dye concentration. The elimination of these additional markers is necessary and may be
achieved by the application of the distance dependent rule. If we omit this step, then
there will be some centroids which belong to the same nucleus and they will introduce
interference in the clustering step. For instance, if they are classified in the same class (e.g.
the nuclei class) we will not be able to compute the number of true detected nuclei, since
one single detected nucleus will be counted twice. On the other hand, if they are assigned
to different classes (one centroid in the nuclei class and the other one in “other findings”
class) then one centroid will be counted as true positive and the other one as false negative.
This would be wrong, since they are both lying in the area of the same nucleus. For this
reason, the distance dependent rule is necessary, in order to overcome such configurations.
We calculate the Euclidean distance of each marker from its neighboring markers and the
threshold we use is 8 pixels, as it approximates the average nucleus radius in our images.
In this step, we achieve to maintain all the true nuclei locations. After the determination
of these values, the method was applied in all 38 images of our data set and the obtained
results indicate that the selection of these values corresponds to a reliable estimation of
the shape and the intensity characteristics of the cells nuclei.

In Table 3.2 the processing times of the individual steps of the method are provided.
As we can see, the execution time varies significantly in the detection of regional minima,
and in the application of the distance dependent rule. This is a consequence of several
factors. First of all, the number of the real cell nuclei that each image includes plays
a crucial role in the execution time of the detection of regional minima step. As the
number of the nuclei in our image data set varies from 26 to 522 nuclei, we expect high
variation in the execution time. Furthermore, the result of the preprocessing step and the
proportion of the image that is identified as background is another factor that influences
the execution time. In an image with smooth background and well stained cells, the
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region of the image that is excluded as background is large and the cells clusters were
successfully recognized. However, in an image with artifacts, severe noise and variation in
cell staining, the preprocessing step results in the selection of some regions of the image,
that do not correspond to the true location of the cell clusters. Even that in those areas
no cells are present, the regional minima detection step is also performed in those areas,
and this demands additional execution time. This also results in the detection of false
positive findings, which affects the execution time of the distance dependent rule step,
because more candidate points are processed. Finally, the variation of the execution time
of these steps is affected by the presence of outlying images which exhibit high difference
from the mean execution time and although are a few, their influence in the total variation
is significant. All of the above factors lead to a distribution of execution times having a
central concentrated blob around its mean value and several sparse cases with very high
execution times, thus leading to an increased standard deviation of the run time in the
set of the experiments.

The final step of the proposed method is the application of the clustering/classification
techniques (FCM or SVM) for the extraction of the final set of true nuclei centroids. As
it is already mentioned, in FCM we used two clusters and the weighting exponent m is
set to 2. The values of the parameters in SVM are C' = 0.001 for the linear kernel type,
and C' =1 and v = 1 the RBF kernel type. The training of the SVM classifier leads to
the selection of some tens of support vectors, depending on the type of the kernel, the
data set and the dimensions of the patterns that we use.

Considering the classification performances, the selection of one of the above classifi-
cation techniques (FCM or SVM) depends on the purpose of the detection of nuclei in a
specific Pap smear image. For instance, if the purpose is to find abnormal or malignant
cell nuclei, the FCM is preferable, as it produces lower loss of true nuclei and the prob-
ability of a missed abnormal nucleus is reduced. On the other hand, if the purpose is to
detect cells nuclei in order to calculate, for example, morphological characteristics, a pure
set of true nuclei would be desirable and the SVM classification technique is suitable, as it
reduces the false positive occurrences in the final set. However, since the performance of
SVM depends on the selected values of the parameters, its use becomes more demanding,
especially when a limited number of images exist. On the other hand, the application of
the FCM algorithm can be performed directly in one single image. As a result and in
combination with the high performance it presents, the FCM algorithm is preferable for
the classification step of our method.

3.4.2 Comparison of the proposed method with other methods

We have also compared our method with the detection methods proposed by the state of
the art technique of Lezoray et al. [1] which is based on pixel classification schemes. More
specifically, the k-means clustering algorithm and a Bayesian pixel classification scheme
were applied to our image data set following the principles in [1]. Tt must be noted that
these schemes were performed in the preprocessed images, with the background removed,
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and they classify each pixel as “nuclei” pixel or “cytoplasm” pixel. The application of the
k-means classification algorithm does not need any training and it is applied directly in
every image of our data set. However, in Bayesian pixel classification, some parameters
must be determined. Thus, the a priori probabilities of each class are considered as
equal and all the parameters of the mixture of Gaussian distributions were calculated
on a training set of color vectors, which were derived from randomly selected images of
our data set (50% of the images), as it is also proposed in [1]. More specifically, in each
preprocessed image, the pixels of the nuclei locations and the pixels of the cytoplasm
were used for the calculation of the mean and the covariance matrix of each Gaussian
distribution. Then, the Bayesian classifier was used for the classification of the pixels in
the remaining images. This experiment was repeated five times, each time with a different
(randomly selected) training set.

The outcome of both the k-means algorithm and the Bayesian pixel classification
schemes was the determination of some regions in the images that would probably be
occupied by the nuclei. These regions are considered as connected components and they
are compared with the connected components extracted from the detection of regional
minima of our method, in terms of how many true nuclei centroids were recognized.
Thus, the number of the true nuclei centroids that each connected component contains
was calculated, in order to compare the performance of each method. The expected results
would be the detection of one nucleus per connected component, since the existence of
more than one nucleus centroid in one connected component does not provide the correct
localization of the nuclei, as it leads to erroneous estimation of the nucleus centroid. Thus,
the desirable performance of each method is a high number of connected components
that contain only one nucleus. In Fig. 3.12, we can observe the average number of
the detected connected components, over the test sets of images, which were recognized
by the compared methods. As we can see, our method is superior compared to the
pixel classification schemes, since it produces more single connected components which
contain only one nucleus, while the other methods may result in the detection of connected
components that contain even 10 true nuclei centroids. This is a major drawback of the
standard pixels classification schemes, as they can not detect accurately a big number of
the true nuclei centroids of our image data set. Let us also notice that the vertical axis in
Fig. 3.12 has a logarithmic scale making the differences in performance more pronounced.

Beyond the comparison of our method with pixel classification schemes, Table 3.4
shows a comparison of the proposed method and other methods appeared in the literature
for the segmentation of cell nuclei in cervical images. In general, it is difficult to compare
the methods directly since many of the methods do not include quantitative results and the
performance criteria that they use vary extensively. Furthermore, some data parameters
are not clearly defined, such as the number of different smear slides, the number of images
captured from the optical microscope, the size of the test images and the number of cells
that the images contain. These parameters are important for the evaluation of the general
behavior of each method, when it is applied in a large number of different data resources.
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From Table 3.4 we can assert that the performance of our method is superior for several
reasons. First, the data set that was used includes images captured from different Pap
smear slides taken from 15 individual patients, which evince that the data set contains a
big variety of different cells and the obtained results describe more precisely the general
behavior of the method and the expected performance in a new image. Also, the proposed
method can be applied in images captured directly from an optical microscope with size
1536 x 2048 and is able to successfully recognize the cells nuclei, even in cases where cell
overlapping is present. Thus, there is no need to presegment the individual cells of the
image in order to find the nuclei locations. Moreover, the average number of cells nuclei
in these images is 148, and they are clearly more complicated than those images that
contain only isolated cells, such as in methods [26, 28, 29, 35, 43].

In terms of the general image processing approach, the method exploits the color
information of the image, in contrary to the techniques in [40, 26, 28, 29, 35, 41, 43, 61].
This is advantageous, since the staining process of the smear has different effects in the
three color components of the image and some nuclei are more distinguishable in a single
color channel. The use of three different thresholds (one for each color channel) in the
Otsu’s method in the preprocessing step is more effective than the use of one single
threshold in the grayscale image. Furthermore, the detection of the intensity valleys in
the three channels of a color image and the merge of the detected regions in a final image
results in the determination of more true nuclei locations, rather than the detection of the
intensity valleys in the grayscale image. To underpin these observations, in Fig. 3.13 we
depict the results of the steps of the proposed method, when it is performed in a color and
the corresponding grayscale image. As we can see, both the preprocessing step and the
regional minima step fail to recognize the same number of the true nuclei in the grayscale
image, as it is successfully achieved in the case of the application of the method in the
color image. The individual processing of each color component and the combination of
the results in all three components leads in no loss of information and in the determination
of more accurate nuclei centroids.

3.5 Conclusion

The task of identifying the cell nuclei in conventional Pap smear images is a challenging
issue, especially when it must be automated. From this point of view we propose a
robust and accurate method. Given the fact that our image data set derive from different
Pap smear slides, we expect our method to give acceptable results and to present high
performance, when it is applied in a new Pap smear image. Moreover, the proposed
method can be used as the basis for further processing of cell images, which is a non
trivial and time consuming procedure for expert observers. The major advantage of the
proposed methodology is that it is fully automated and it is suitable for cell images with
high degree of cell overlapping, as it can detect not only the nuclei of isolated cells but
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Table 3.4: Comparison of the proposed method with the state of the art.

Method #Slides #Images Size Cells Performance Criteria Quantitative Results
Bamford et al. [43] - - 128x128 20130* Visual inspection 99.64% correctly segmented cells
Wu et al. [40] 1 1 80x100 1 Comparison with K-means and  Misclassification rate lower than
Bayes classifier in a synthetic 5%
image
Garrido et al. [41] - 3 - - Visual inspection Lack of quantitative results
Lezoray et al.[1] - 10 - 209 Vinet measure Mean Vinet measure of 2.24 for
Number of segmented regions RGB and 3.41 for HSL Mean dif-
ference of the segmented regions
and manually segmented regions
of 2.87% for RGB and 0.47% for
HSL
Lassouaoui et al. [35] - 2 256256 - Visual inspection Lack of quantitative results
Bak et al. [36] - 2 - - Visual inspection Lack of quantitative results
Mat Isa et al. [61] - 3 - - Visual inspection Lack of quantitative results
Yang-Mao et al. [26] - - 64 %64 124* Misclassification error, edge Average segmentation error of
mismatch, relative foreground 0.1145
area error, modified Hausdorff
distance, region nonuniformity,
relative distance error
Lin et al. [28] - 10 - 10* Misclassification error, relative  Average segmentation error of
foreground area error, modified  0.1323
Hausdorff distance
This work 15 38 15362048 5617 Sensitivity (Se) Indicative mean values are

Specificity (Sp)

Se = 90.57%, Sp = 75.28% for
FCM and

Se = 69.86%, Sp = 92.02% for
SVM

*These numbers correspond to presegmented individual cells (one cell/test image)

also the nuclei in cell clusters with high sensitivity.
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Figure 3.7: (a) The initial image with the centroids of regional minima depicted with an
“x”. (b) The result of the application of the distance depended rule, (c) the result of the
application of the FCM, where the positive class (nuclei centroids) is depicted with a cross
and the negative class (other findings) is depicted with a circle. (d) Resulted centroids of

the positive class.
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Figure 3.8: Results of the application of the FCM clustering with respect to (a) Sensitivity
and (b) Specificity (see text for the description of the pattern sets).
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Figure 3.9: Results of the application of the SVM classification with respect to (a) Sen-
sitwity and (b) Specificity (see text for the description of the pattern sets).
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Figure 3.12: Comparative results of our method and the pixel classification schemes
proposed in [1] in terms of correct nuclei localization. The index of performance is the
number of connected components and the number of true nuclei (true positives) they
contain. An algorithm performs well if each connected component it produces contains
only one nucleus. The vertical axis has a logarithmic scale.
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Figure 3.13: a) The initial image, (b) the result of the preprocessing step (denoted with
the black line) in the color image, (¢) the result of the preprocessing step in the grayscale
image. The missed nuclei are marked with the arrows, (d) a part of the initial image, (e)
the result of the detection of regional minima step (denoted with white lines) in the color
image, (f) the result of the same step in the grayscale image. The missed nuclei of this
step are marked with the arrows.
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CHAPTER 4

CELL NUCLEI EXTRACTION BY COMBINING
SHAPE, TEXTURE AND INTENSITY FEATURES

4.1 Introduction

The correct characterization of Pap smear slides and the derivation of conclusions for the
contents of the Pap smear in a high degree depend on the general appearance of the cells
nuclei. Some of the methods proposed in the literature deal only with the segmentation
of the cell nucleus and cytoplasm boundaries (ignoring the detection of the nuclei position
in the image). The images that are used as test set, are presegmented from the original
Pap smear images and they contain only one cell and consequently one single nucleus.
Several image processing methods are proposed in this scope, such as active contours [43],
template fitting [40] and edge detectors [25, 26, 28]. These methods exhibit remarkable
performance in the segmentation of the structural parts of the cell. However the direct
application of these methods in original Pap smear images, which may contain a large
number of cells, cell overlapping and image artifacts is not appropriate, as they are focused
on the recognition of the boundaries of the nucleus and the cytoplasm in images which
contain only one single cell.

More sophisticated approaches to the automated analysis of Pap smear images are the
methods which are applied on images containing a large number of cells in cell clusters.
In these methods the background is excluded and the locations and the boundaries of
the cells are automatically recognized. Several approaches have been proposed, such as
deformable templates [41], genetic algorithms [35], region growing with moving K-means
[61] and pixel classification schemes [36]. Although these methods present promising
results, their evaluation is restricted in a small data set of images and the performance
criterion that is used is visual inspection, from which no reliable results about the general
behavior of these methods can be obtained.

Methods based on watersheds for the analysis of Pap stained images have also been
proposed in the literature. In [31], images containing one single nucleus of a Pap stained
squamus epithelial cell are oversegmented with the watershed transform in order to define
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the differently stained subareas of the nucleus. Furthermore, in [29] watersheds are used
for the detection of isolated cells in low resolution images. However, in both methods, the
problem of the detection of the accurate nuclei boundaries has not been resolved. Fur-
thermore, Lezoray et al. [1] proposed a method for the determination of nuclei boundaries
in Pap stained serous cytologies using color watersheds, which requires the cooperation
of pixel classification schemes for the extraction of the nuclei markers.

In this chapter, we describe a two-stage fully automated method for the accurate
determination of the nuclei boundaries in Pap smear images, which may contain both
isolated cells and cell clusters. More specifically, in the first step, nuclei and cytoplasm
markers are detected using the technique described in the previous chapter. The centroids
of the areas of the regional minima are considered as markers in the watershed transform
for the extraction of the nuclei boundaries. The morphological color gradient image is
used for the flooding process, in order to retain the color information of the image.

In the second stage, we extend the segmentation of nuclei boundaries with the determi-
nation of meaningful features of the detected areas, which contribute to the identification
of the true nuclei in Pap smear images. It must be noted that several methods [52, 2]
propose a number of cell features for the characterization of a cell as normal or abnormal.
However, they involve images containing one single cell. Since our images contain over-
lapped cells and cell clusters, our aim is to identify the nuclei areas and to separate the
results of the segmentation in two categories: the true nuclei and other findings. There-
fore, from the extracted boundaries, features describing the shape and the texture of each
segmented regions are calculated. In addition we have also integrate texture features
and intensity disparity features of the neighborhood of each detected area. The latter
evince to be some of the most discriminative features by a feature selection step based on
minimum-Redundancy - Maximum-Relevance (mRMR) criterion [69]. It must be noted
that in our experiments we have estimated the mRMR feature rank with two different
approaches, namely using the entire image data set and the “leave-one out” strategy, as
it is explained in more details in the following paragraphs.

A classification step is then performed for the reduction of unwanted findings. In this
framework, the performance of two unsupervised (K-means and the spectral clustering)
and one supervised (Support Vector Machine, SVM) classification schemes were examined.
Our method was evaluated not only for the correct identification of cells nuclei locations
but also for the accurate determination of nuclei boundaries with the boundaries obtained
using the Gradient Vector Flow (GVF) deformable model [70] and a region based active
contour model (ACM) [71] in terms of the Hausdorff distance from the ground truth. The
method was evaluated using a large data set of 90 Pap smear images containing 10248
recognized cell nuclei, and the results indicate that the proposed method demonstrates
high performance in both detection and segmentation of nuclei boundaries.
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4.2 Methodology

4.2.1 Detection of the nuclei and cytoplasm markers

The first step of the proposed method is the detection of the nuclei markers in each
image. This is accomplished following a two stage procedure, which includes the image
preprocessing and the estimation of candidate nuclei centroids. It must be noted that the
nuclei markers are obtained automatically in both isolated cells and cell clusters in the
image, as it was described in section 3.2. Furthermore, we perform the distance transform
in the binary mask obtained in the preprocessing step (section 3.2.1), in order to construct
the cytoplasm markers.

0

(© @

Figure 4.1: (a) Initial image of overlapped cells, (b) the detected nuclei markers, (c) the
corresponding color morphological gradient image, (d) the watershed segmentation.
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4.2.2 Morphological color gradient image

For the application of the watersheds, an image containing pronounced nuclei boundaries
is required. Given the fact that most of the nuclei usually have ellipse-like shape, with the
intensity of the pixels inside the nucleus area lower than those lying outside, high gradient
of the image across the nuclei boundaries is expected. However, the extensive variances in
nuclei intensity which are present due to the staining procedure result in gradient values
of nucleus/cytoplasm borders that fluctuate in a wide range. For this reason, the use of
a threshold after the application of edge detectors in order to determine the nuclei edges
in the image would produce noisy results, because low thresholds would result in the
detection of too many false edges, while high values would result in the loss of some true
nuclei boundaries (Fig. 4.2). Therefore, we construct a gradient image using the color
morphological gradient [72], in order to exploit the color information of the image for the
estimation of the nuclei borders. In general, the morphological gradient of a grayscale
image is defined as:

Vf=164(f) —e4(f), (4.1)

where 0,4(f) and g,4(f) is the grayscale dilation and grayscale erosion for a structuring
element ¢ respectively. Alternatively, the morphological gradient can be expressed as:

Vi@) = max{f(@)} - min {(z)}
= max{lf() = fWI}. ¥ {z.} e, (4.2

which is the maximum absolute intensity difference between two pixels in the area of the
structuring element. For color images with pixels denoted as three dimensional vectors
the color morphological gradient (CMG) can be expressed as:

CMG, = max {|la; = a;ll,} (43)

where z;, z; are pixels in the structuring element ¢g. In our experiments we compute the
second norm (p = 2) and the structuring element that is used is a 3 x 3 flat structuring
element. The color morphological gradient of a representative Pap smear image is de-
picted in Fig. 4.1(c). In this image, with the appropriate nuclei and cytoplasm markers
superimposed, the marker based watershed transform (Appendix B) is applied. The result
of the watershed transform in an image with nuclei markers is depicted in Fig. 4.1(d).

4.2.3 Clustering of the candidate nuclei

The determination of the watershed lines, usually results in the correct identification of
the nuclei positions in the image. However, some false positive areas are also detected,
due to the existence of a regional minimum. This is a consequence of the detection of
the nuclei markers step, which produces some centroids of regional minima that do not
indicate the existence of nuclei (Fig. 4.3). Therefore, the elimination of these areas is
necessary and a clustering step is performed for the separation of the detected areas into
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Figure 4.2: (a) Initial image of overlapped cells and (b) the corresponding grayscale
image, in which we apply the Canny edge detector. Using a small threshold results in (c)
an image with many undesired edges, while using a high threshold results in (d) an image
with several significant edges missing.

two classes: the true nuclei class and the rest of the findings. Thus, for every detected
area a vector of features is determined, which will be used as input to the clustering
algorithms.

Feature extraction

The efficient separation of the true nuclei regions from the total segmented regions requires
the generation of meaningful features of very good discriminative ability. Having found
the areas of the nuclei enclosed by the detected boundaries, features concerning the shape,
the texture and the intensity of the detected regions can be easily determined. However,
the restriction of the calculation of these features only for the area enclosed by the detected
boundaries is not sufficient because regions of regional minima not corresponding to true
nuclei may also have similar features. In this step it is expedient to take advantage of
the fact that the nuclei are darker than the surrounding cytoplasm and the detected
nuclei regions would present significant differences from their neighborhood. Moreover,
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Figure 4.3: The detected centroids of the regional minima in the image. The true nuclei
locations are represented by a yellow cross and the false positive findings are represented
by a black circle.

the detected regions that do not belong to nuclei were probably detected due to the
existence of shallow minima in the intensity of the area of the cytoplasm in the image,
and they are more likely to present similar features values from their neighborhood (Fig.
4.4).

For this reason, we propose the calculation of features also for the neighborhood of
the detected areas, which is defined in terms of the bounding box of these areas (Fig.
4.5). More specifically, for each detected area A, the bounding box B is calculated as
the maximum rectangle that contains the detected region, and the neighborhood Ngh
is determined as the complement A€ in B, that is Ngh = A°N B. In our work, for
the construction of the feature set, the pixels within the detected region, the pixels of the
neighborhood and the pixels of the bounding box are taken into account. Three categories
of features are developed: shape, textural and intensity disparity features.

Shape Features The detected boundaries for the nuclei are expected to present an
ellipse-like shape and several features to describe this characteristic are chosen. More
specifically, six features extracted from the shape of the detected region boundary
are calculated, that is the Circularity, the Eccentricity, the Major and the Minor
Axis Length, the Equivalent Diameter of a circle with the same area as the region,
and the Perimeter of the detected region. The Major Axis Length, the Minor Axis
Length and the Eccentricity are defined in terms of an ellipse that has the same
central second moments as the region. The shape features are presented in (Table
4.1).

Textural Features The texture analysis of the detected regions is based on the statis-
tical properties of the intensity histogram in the three color components and the
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Figure 4.4: (a)-(b) The result of the watershed transform in parts of two different cell
images. The regions R; and R, that are detected in both images with the watershed
transform are joined with a line for better visualization purposes. In (a), the detected
areas Ry and Rs correspond to the areas of true nuclei, while in (b), the detected area
R, corresponds to a nucleus and the area R, corresponds to a cytoplasm overlapping
area. The variation of the average color image intensity value along the line which joins
the areas R; and Ry is depicted in (c). Notice that for the area R; we observe sharp
reduction of the intensity value in both images. For the area Ry, although the average
intensity value is similar in both images, sharper intensity reduction (in relation with its
neighborhood pixels) occurs only for the true nucleus in image (a). This indicates that
the use of the neighborhood of each detected area contributes in the recognition of the

true nuclei.

22



(c) (d)

Figure 4.5: The selected areas for the construction of the feature set. (a) A cell from the
initial image, (b) the detected nucleus boundary with the watershed transform and the
enclosed area A, (c) the area B of the bounding box of the detected boundary, (d) the
area of the neighborhood Ngh (A¢N B) of the detected nucleus.
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Figure 4.6: The topology of the neighborhood used for the calculation of the LBP [2, 3]:
(a) circle, (b) hyperbola.
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Table 4.1: Shape Features.
Minor Axis Length* K = \/—2(1‘20%027&

U1l

Major Axis Length* I — . /2ua0tueatd)

U1l

Ly2_(Ky2
Eccentricity B — 2—\/(2)L(2)

Equivalent Diameter ED = W%
Perimeter P =number of boundary points
Circularity C = 47T>;ngrea

*The formulas for A and the central moments wup,, of order p + g of

the region s(z,y) are defined as: A = \/4u?| + (ug0 — up2)? and wup, =
S>3 (x—z)P(y — 4)9, where T and j are the coordinates of the centroid of
z y

the region.

calculation of some texture descriptors such as the local binary patterns (LBP, see
Appendix C) [2, 3]. Thus, for every segmented region we have calculated the Third
Moment, the Uniformity, the Entropy and the Smoothness of the intensity histogram
for the three predefined regions (A, B, Ngh). Moreover, the normalized uniform
rotation-invariant LBP occurrence histogram was calculated for the bounding box
(B) of the segmented regions, using LBP of two different neighborhood topologies:
a circle (LBPI™?) of unit radius and a hyperbola (LBP!®?) with semi-major and
semi-minor axis lengths equal to one (Fig. 4.6). In both topologies, the number
of equally spaced pixels was P = 8 (see Appendix C for more details and [2] and
[3] for a more in depth explanation of these features). The mean and the standard
deviation of each histogram were used as features. All the textural features are
calculated for all three color channels and they are summarized in (Table 4.2).

Intensity Disparity Features The feature that characterizes the intensity of each re-
gion is the average of the intensity value of all the pixels of the region. However,
as it is observed, the average intensity of the nuclei varies in a wide range and may
coincide with regions of cell overlapping in the image. An equivalent intensity fea-
ture that pronounces the disparity of the detected region and its neighborhood is
the difference of the average intensity between those regions (Table 4.3). We ex-
pect high values for this feature when it refers to nuclei regions, as the nuclei area is
darker than the surrounding cytoplasm. Three values of this feature were calculated
independently for the red, green and blue component of the original image.
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Table 4.2: Texture Features.

L1
Third Moment* pz = ; (z; — m)3p(z;)
L-1
Uniformity U=> p*(z)
i=1
L-1
Entropy e=— > p*(z)logap(z;)
i=1
Smoothness R=1- H%, 5= Lg (zi — m)?p(2;)
Mean LBPr? See Appendix C
StDev LBPr? See Appendix C
Mean LBP™? See Appendix C
StDev LBP]™? See Appendix C

*Given that z; is the intensity value ¢ and p(z) is the histogram of the intensity levels in a

region with L possible intensity levels, then the average intensity of the region is calculated
L—1

asm = 3 zp(z)
i=0
Table 4.3: Intensity Disparity Features.
Foreground-Background contrast in red* dR = my —mi,.,
Foreground-Background contrast in green dG = mgﬁ%EN — MARrEEN
Foreground-Background contrast in blue dR = mgﬁm — M rE
*mL o™ is the average intensity value of an image region in a specific color component. The

RGB color space is used in our experiments and the regions of the image that are considered
are the enclosed boundary area A and its neighborhood Ngh = AN B, where B is the
bounding box of area A.

Feature selection

For each detected region we have calculated in total 57 features. More specifically, 6
features concerning the shape of the region, 3 features concerning the intensity disparity
of the detected areas and their neighborhood and finally, for the three color components,
3 x4 textural features for the enclosed area (A), 3 x4 textural features for the neighborhood
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(Ngh),3 x 8 textural features for the bounding box B were calculated. However, the
contribution of each feature is different in the categorization of the data. For the selection
of the most discriminative features, a feature selection technique is employed which is
based on the Minimum-Redundancy-Maxium-Relevance (mRMR) criterion [69]. More
specifically, given a data set of N samples of M features X = {xf, 1 =1,..,. M, j =
1,..,N}, and the target classification variable ¢, the objective is to find from the M
dimensional space R a subset of m features that characterizes ¢ more efficiently.

Woatershed feature # 1 Watershed feature # 19 Watershed feature # 22
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S S S 2000
3 150 3 2w 2 o
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Figure 4.7: Representative histograms of some features of the watershed and the GVF
segmentation. Notice that their distribution consists of a single blob and this allows their
discretization into three states at the positions 4 £ o.

The mRMR criterion combines both Max-Relevance (maxD) and Min-Redundancy
criteria (minR), which are defined respectively as [69]:

glca)%cD(S c |S| mze; e (4.4)
1
min R(S), R= Wm;s[(%%), (4.5)

where S is the feature set and I(x;y) is the mutual information between two random vari-
ables, which is defined in terms of their marginal and joint probability density functions

p(z), p(y) and p(z,y) as:

I(x;y) // x,y log )I’)())da:dy (4.6)
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The mRMR criterion is then defined as:

max (D(S,c¢) — R(S)). (4.7)

SCX

The selection of features for the construction of the final set is obtained incrementally,
that is if m — 1 features are already selected in the S,,_;, then the m'* selected feature
will be the one that satisfies eq. (4.7). The optimal size of the features set depends on
the specific classification algorithm that will be used.

Thus the features were ranked in a range beginning from the most powerful discriminative
feature to the feature with the least discriminative power. It must be noted that for the
calculation of the mutual information, each feature variable was discretized into three
states at the positions © £ o (p is the mean value and o is the standard deviation of
the specific feature distribution). More specifically, it takes —1 if the feature value is less
than p — o, 1 if the feature value is larger than p + o and 0 otherwise. This assumption
is reliable when our features follow a unimodal-like distribution. This was verified by
the construction of the histograms of each feature and some representative examples are
depicted in Fig. 4.7. In Table 4.4 the first 16 most discriminative features for all the
segmentation techniques are presented.

Application of classification/clustering algorithms

For comparison purposes, three clustering methods are employed for the separation of the
detected areas in the true nuclei class and the other findings class: the K-means [73], the
spectral clustering [74] (see Appendix A) and the Support Vector Machine (SVM) classifier
with the radial basis function (RBF) kernel [63]. Given the fact that the K-means and the
spectral clustering algorithms do not require any training, they are applied independently
in each image. However, for the application of the SVM classification algorithm a training
data set is constructed. In our experiments, we use the “leave one out” technique for the
evaluation of the performance of the classifier. Thus, 21 slides were used as training set
and the remaining slide was used as test set. This experiment was repeated 22 times, each
time using a different slide as test set. The performance of the classification is calculated
using the trained SVM classifier in the test set.

4.3 Results

4.3.1 Study group

We have collected 90 images from 22 different Pap stained cervical cell slides, which were
acquired through a CCD camera adapted to an optical microscope. We have used a
10x magnification lens and the acquired images of size 15362048 were stored in JPEG
format. The total number of cell nuclei in the images, which were identified by an expert

observer is 10248. In order to obtain the ground truth, the nuclei locations were manually
identified.
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Table 4.4: mRMR rank of the 16 most discriminative features for the watershed, the
GVF and the ACM segmentation in decreasing order with respect to their discriminative

ability. The features highlighted in bold face are common for all segmentation methods.

Watersheds

GVF

ASM

1.

10.

11.

12.

13.

14.

15.

16.

Entropy of B in green

Perimeter

Foreground-Background
contrast in red

StDev LBP;"? in green
Circularity

Foreground-Background

contrast in green

Mean LBP/"? in blue

Entropy of B in red
Mean LBP["? in blue
Smoothness of B in green

StDev LBPr®? in red

Entropy of A in green

Foreground-Background
contrast in blue
StDev LBP,S"“2 in red

Smoothness of A in red

Third moment of Ngh in blue

Foreground-Background
contrast in green

Minor Axis Length

Third moment of A in blue

StDev LBP,Z;"“2 in red
Entropy of Ngh in red
Mean LBP!2 in green
Foreground-Background
contrast in blue
Eccentricity

Mean LBP]"? in blue
Uniformity of B in green

Foreground-Background
contrast in red

StDev LBPT™? in red

StDev LBP/™? in green

Circularity
Entropy of B in green

Third moment of Ngh in red

Foreground-Background
contrast in red

Minor Axis Length

Uniformity of Ngh in green

StDev LBP;;“Q in red
Smoothness of Ngh in green
Eccentricity
Foreground-Background
contrast in green

Mean LBPT"? in blue
Mean LBP]*? in blue
Third moment of A in red
Circularity
Foreground-Background
contrast in blue

StDev LBP}™? in green

Entropy of Ngh in red
Mean LBPT%? in red

Third moment of A in blue

4.3.2 Numerical evaluation

The presented method was bilaterally evaluated in order to estimate the performances of

the clustering algorithms for the detection of the true nuclei in the images, and also the ac-
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curacy of the segmentation, in comparison with the ground truth (manually traced nuclei
boundaries). Furthermore the method performance was compared with the corresponding
performance of two different segmentation techniques, namely the GVF deformable model
[70] and the ACM model [71] in terms of both classification and segmentation results. In
the detected regions of both GVF and ACM segmentation techniques, the previously de-
scribed features were determined. For the classification performance, we have calculated
the number of true positive (T'P), true negative (T'N), false positive (F'P) and false neg-
ative (F'N) findings in all images of our data set, and we have defined the Sensitivity
and the Specificity statistical measures. In addition, the segmentation performance was
evaluated with the calculation of the Hausdorff Distance (Dpqusdorss) between the man-

ual traced boundary M and the boundary ¥ obtained from the segmentation procedure
defined as:

Dyausdorff = max {Ibrélqul{D(Oz, b)}} , (4.8)
where D is the Euclidean distance.

It must be noted that in the detection of the nuclei markers the method misses in total
147 true nuclei position which is a total loss rate of 1.01%. Thus in the following steps,
the total number of true nuclei is reduced to 10101.

mRMR feature rank for watershed segmentation

@leave-one-out mRMR feature rank
W global MRMR feature rank

L1
41 9 156 4 237485438491331 3 1755 7 10143447 4519521125 5 502329 5742 6 15 46 36 53 51 27 8 28 35 18 43 40 21 24 26 22 39 16 44 20 30 33 12 32

Feature index

Figure 4.8: The leave-one-out and global mRMR feature rank for the watershed transform.
For the leave-one-out mRMR feature rank the standard deviation is also depicted with
error bars.

Classification

In our experiments we have tested several configurations of the classification process
which involve both the calculation of the mRMR feature rank and the clustering algo-
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mRMR feature rank for ACM segmentation
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Figure 4.9: The leave-one-out and global mRMR feature rank for the ACM segmentation
algorithm. For the leave-one-out mRMR feature rank the standard deviation is also
depicted with error bars.

mRMR feature rank for GVF segmentation
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Figure 4.10: The leave-one-out and global mRMR feature rank for the GVF segmentation

algorithm. For the leave-one-out mRMR feature rank the standard deviation is also
depicted with error bars.

rithms (K-means, spectral clustering and SVM). For this reason we include the following
experiments, which were executed for all the data sets obtained from the three segmenta-

tion algorithms (watersheds, GVF, level sets). The estimation of mRMR rank of feature
was determined in two different ways:
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1. The estimation of mRMR rank of feature was determined in two different ways:

e The whole data set of patterns was used as input to the mRMR criterion (global
mRMR) and a ranking was obtained which was then used in the classification
algorithms.

e The set of patterns was separated into 22 folds (each fold corresponds to a single
slide). Then, 21 folds were used for training and the remaining fold was used
for testing. From the training set, we obtained the mRMR rank (leave-one-
out mRMR) of features and this rank was used in the classification algorithms
applied to the image of the testing slide. This procedure was repeated 22 times,
each time using a different slide as test set. By these means, we obtained 22
different feature ranks, which were assigned in the 22 folds (slides).

Therefore, all of the classification techniques (K-means, spectral clustering and
SVM) were executed twice, using the above mRMR, rankings (global mRMR, and
leave-one-out mRMR). For the selection of the ideal number of features, the perfor-
mance of the classification techniques was estimated on the test set using a pattern
of increasing dimension varying from 2 to 57 features. Starting from a pattern
described by only 2 features, one feature was added incrementally until all of the
57 features are employed. In the second case described above, the selection of the
feature that is added in the pattern is different for each test slide (and consequently
for the images belonging to this slide) and it was determined by the corresponding
mRMR rank (obtained using the other 21 slides as training set). In order to evaluate
the importance of each feature, the mean position and its standard deviation in a
feature histogram was calculated (Figures 4.8, 4.9, 4.10).

2. The estimation of the best value for parameter o in spectral clustering was also
obtained using a leave-one-out strategy. The set of patterns was separated into 22
folds (each fold corresponds to a single slide), with 21 folds were used for training
and the remaining fold was used for testing. Several experiments with different
values for 6 were performed in the training set, using patterns containing all of the
features (the dimension of each pattern was 57). Then, we selected the value of o
that exhibited the best performance in the training set. This value was used for the
application of spectral clustering in the images of the test set. This procedure was
repeated 22 times, each time using a different training and test set.

3. The values of the parameters of the SVM classifier (y and C for the RBF kernel)
were obtained by constructing two different data sets, each one containing half of the
slides (11 slides were randomly selected for the training set and the remaining were
used as test set). We performed several experiments with different pairs of values for
v and C, namely (C,v) € {0.01,0.125,0.25,0.5,1,2,4, 8}, while the SVM classifier
was trained with the training set of patterns containing 57 features. Afterwards the
performance of the classifier was estimated with the test set. The values for v and
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C were selected as those which exhibit the best performance of the SVM classifier in
the test set and they were v = 0.01 for all the segmentation methods and C' = 2 for
the GVF segmentation and C' = 4 for the watershed and the ACM segmentation.

The number of features that results in the best classification performance depends on the
specific classification algorithm. When a performance criterion is maximized for a specific
number of features, then this subset of features is selected. In our work, the performance
criterion that the clustering algorithm should maximize is the harmonic mean (HM) of
the Sensitivity and the Speci ficity defined as:

2 x Sensitivity X Specificity

HM = (4.9)

Sensitivity + Speci ficity
Recall that these quantities were defined in (3.13) and (3.14).
In Fig. 4.11, the values of HM criterion versus the number of features are depicted
for the ACM, GVF and the watershed segmentation for the K-means algorithm. Similar
experiments were performed for the definition of the best feature subset using the spectral
clustering algorithm (Fig. 4.12) and the SVM classifier (Fig. 4.13). The performance
of the SVM classifier for the watershed and the GVF segmentation increases as more
features are used, and reaches the maximum performance at 57 features. For the ACM
segmentation, the SVM classifier reaches the maximum performance at 26 features. In
all cases as it can be observed, the HM measure for the watershed segmentation is higher
than the other two segmentation techniques. More specifically, the best results in terms of
the HM for all the segmentation schemes using the global and the leave-one-out mRMR
rank are presented in 4.5. As we can see, the best results were obtained with the K-
means clustering algorithm using patterns obtained from the watershed segmentation.
The SVM classifier is preferable for the ACM and GVF segmentations, as it produced
higher performances than the K-means and the spectral clustering. Furthermore, in most
of the cases, the use of leave-one-out mRMR feature rank produces better results in
comparison with the use of the global mRMR rank. It must be noted that for comparison
purposes, the performance of the SVM classifier was selected for 26 features for all the
segmentation techniques.

Table 4.5: Clustering Performance.
K-means Spectral clustering SVM

mRMR type Global Leave-one-out Global Leave-one-out Global Leave-one-out

Watersheds  84.09% 84.36% 82.64% 82.93% 82.46% 82.52%
ACM 80.09% 79.64% 76.84% 77.00% 81.87% 81.95%
GVF 77.83% 78.76% 77.20% 77.33% 80.20% 80.28%

Segmentation

In order to evaluate the performance of the segmentation method, the obtained nuclei
boundaries were compared with the corresponding resulted nuclei boundaries of the GVF
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Figure 4.11: Results in terms of the HM measure for the K-means clustering for ACM,
GVF and watershed segmentation for both (a) global and (b) leave-one-out mRMR rank.
The vertical line indicates the number of features where the HM measure takes its max-
imum value for the three segmentation methods. These values of HM are contained in
Table 4.5.

deformable model and the ACM model and also with the manually traced boundaries.
It must be noted that for the application of the GVF deformable models, an initial
approximation of every nucleus boundary is required. For this reason, we search for
some points in the neighborhood of each detected centroid, which are likely lying in
the nucleus circumference [75]. In the morphological color gradient image, having as
starting points the candidate nuclei centroids we construct a circular searching grid with
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Figure 4.12: Results in terms of the HM measure for spectral clustering for ACM, GVF
and watershed segmentation for both (a) global and (b) leave-one-out mRMR rank. The
vertical line indicates the number of features where the HM measure takes its maximum

value for the three segmentation methods. These values of HM are contained in Table
4.5.

8 radial profiles consisted of 8 points each and centered at the location of each candidate
nucleus centroid. In each radial profile we choose the pixel with the highest intensity (non
maximum suppression) and the initial approximation of the nuclei boundaries is obtained
with the convex hull of the circumferential points found in the this step. The values for
the weighting parameters of the GVF deformable model are fixed for all the images and
they are set to be a = 0.9 for the tension, g = 1.5 for the rigidity and v = 3 for the image
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Figure 4.13: Results in terms of the HM measure for the SVM classification for ACM,
GVF and watershed segmentation for both (a) global and (b) leave-one-out mRMR rank.
For comparison purposes, the indicative values for HM measure were evaluated using the
first 26 features. The values of HM are contained in Table 4.5.

force.

In a similar way, the ACM model was also applied to the same images. More specifically,
having found the nuclei markers, we apply the ACM model, as it is described in [71] in the
21 x 21 image window centered at each marker. The model was initialized as a rectangle
in the middle of the selected neighborhood and it was applied in the morphological color
gradient image with a = 20, where « is the balloon force which controls the contour
shrinking or expanding.
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Figure 4.14: (a)-(c) Segmentation results for several detected nuclei.

Several examples of the segmentation results are depicted in Fig. 4.14. The Hausdorff
Distance for the ground truth and the watershed segmentation was estimated as 1.71
+ 0.54 (. £ o). The corresponding distance for the GVF and ACM segmentation is
2.65 £ 3.23 and 2.48 £ 2.30 respectively. This implies that the watershed segmentation
is closer to the manually traced nuclei boundaries, and as a result it is more accurate
than GVF and the ACM segmentation. Furthermore, the ACM segmentation is more
performing than the GVF segmentation, as it exhibits lower Hausdorff Distance. In
the next paragraph, some reasons of failure for the GVF and ACM segmentations are
discussed.

4.4 Discussion

The proposed method for the segmentation of the cell nuclei in Pap smear images is
fully automated and it can be applied directly in any conventional Pap stained cervical
smear images, in order to produce accurate nuclei boundaries. It consists of five steps:
the preprocessing, the estimation of the candidate nuclei centroids, the application of
the watershed transform, the feature extraction and the classification step. The method
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was developed in Matlab using a dual core PC with a 2.0 GHz processor and 3GB of
RAM. The execution time for each step of the method depends on several factors, such
as the proportion of the image characterized as background in the preprocessing step, the
number of the candidate nuclei centroids in each image, the classification algorithm and
the number of features in each pattern. An indicative execution time for the segmentation
of the images (steps one to four of our method) is 2-5 min. The mean execution time of
K-means in an image using 16 features is less than a second, while the corresponding time
for the spectral clustering algorithm is 5-6 seconds. Finally, the mean execution time for
the training of the SVM classifier using 21 slides and the evaluation of the performance
in the test set (one slide) varies from 2 to 4.5 minutes.

The parameters used in the several steps of the segmentation method were determined
after careful examination of the images by an expert cytopathologist in combination with
the results of several tests. For the detection of the nuclei markers, the same parameters
are used, as they are described in the previous chapter. However, as it was mentioned
before, this step misses some of the true nuclei positions. This is mainly due to the
faintly staining and the uneven layering of some cells. In the first case, the cells are
undistinguished from the background and as a consequence, the nuclei of these cells are
considered as isolated objects in the image background and they are rejected as image
artifacts. In the second case, the intensity of the nucleus does not well differentiate from
the cytoplasm intensity and no regional minimum is detected in the nucleus position.

The nuclei markers obtained in the previous step are used in the application of the
watershed transform. The importance of this step is crucial, as it prevents from the
oversegmentation that would be produced by the application of the watershed transform
in the images without markers. Hence, using the detected cytoplasm markers, the flooding
process starts from a position in the catchment basins of the nuclei area and finally
converges to the actual boundaries of the true nuclei. Furthermore, the problem of the
detection of false positive detected centroids is effectively resolved in the classification
step.

The feature selection using the mRMR criterion produces different feature ranks for the
three segmentation techniques, as it can be observed in Table 4.4. This is a consequence
of the differences between the segmented regions provided by each method (ACM, GVF,
watersheds) necessitating different features for its representation. As it can be observed
by the feature ranking, we can conclude that the discriminative ability of some features is
equally important for all the segmentation techniques, as seven of them were selected by
all of the segmentation techniques in the first 14 positions. These features are highlighted
in bold face fonts in Table 4.4. Furthermore, from figures 4.8, 4.9, 4.10 we can observe that
in general, the standard deviation of the features selected by the leave-one-out mRMR is
rather insignificant for the first 10 and the last 20 positions in the mRMR rank, which
indicates that from the entire data set of features, the most discriminative and the least
discriminative features are the same for every fold (slide) of our image data set.

As it was verified by the results, the watershed segmentation is more accurate than
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Watersheds Ground Truth

(c)

Figure 4.15: Representative cases of failure for ACM and GVF segmentation in images
with (a) weak gradient at the nucleus boundary, (b) the inhomogeneities of the nucleus
intensity and (c) the existence of high value of gradient in the neighborhood of the nucleus
boundary.

the GVF and the ACM segmentation. For both these segmentation techniques, the main
reason of failure is that their behavior highly depends on the values of their parameters.
Furthermore, the existence of a high gradient value in a small distance of the detected
nucleus and the inhomogeneities on the nuclei intensity affect the performance of these
techniques. Some examples of these cases are depicted in Fig. 4.15. In Fig. 4.15(a)
as the gradient in the border of the nucleus/cytoplasm is weak, the shape of the GVF
deformable model is mainly determined by its internal forces, which enforce it to be of a
relatively small length and smooth. Furthermore, in Fig. 4.15(b) the existence of intensity
variations in the area of the nucleus attracts the points of the GVF deformable model,
which converges to a position far from the actual nucleus boundary. For the same images,
the ACM model also fails to accurately determine the nucleus borders. Finally, in Fig.
4.15(c) both the GVF and ACM model are attracted by the points of high image gradient,
which do not correspond to the boundary of the detected nucleus. In all these cases the
GVF and ACM model do not succeed in detecting the accurate nucleus boundary. In
contrast, as it is observed, the watersheds overcome these limitations and produce nuclei
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boundaries that are closer to the ground truth.

The accurate determination of the nuclei boundaries leads to the calculation of more
accurate features, which improve the performance of the clustering algorithms. This
is the reason why the use of features extracted with the watershed segmentation present
better classification performance than the corresponding features extracted from the GVF
and the ACM segmentation. Furthermore, for the determination of a feature set we
exploit the fact that the true nuclei area presents significant variations with respect to its
neighborhood and the calculation of neighborhood features would result in the effective
discrimination of the true nuclei areas and the false positive areas. This is also confirmed
by the use of mRMR criterion (Table 4.4), which indicates that for the feature set obtained
with all the segmentation techniques (Watersheds, GVF, ACM), at least 7 out of 10 most
discriminative features concern the outer area (bounding box B and neighborhood Ngh)
of the detected boundaries.

Traditionally, immediate fixation and staining of the cellular sample on the slide with
70% ethyl alcohol and Papanicolaou stain have been established as the professional stan-
dard. This fixation and staining combination results in a cellular sample, that, not only
has well-defined and tinted morphological features, but also its transparency allows for
microscopic visualization of nuclear and cytoplasmic boundaries through multiple layers
of epithelial cells. In our work, we use 90 conventionally stained Pap smear images, which
exhibit several differences in colorization (e.g. the blue color can vary from deep blue to
light blue). Although we have not included any process of color correction and detec-
tion of improper staining, the method provides accurate results when it is applied to the
images of our data set.

4.5 Conclusion

The identification of the cervical cell nuclei areas is a prerequisite for the derivation of
diagnostic conclusions and the characterization of the contents in the Pap smear images.
The automated detection and segmentation of the nuclei boundaries in these images is
a challenging issue, as these images present several limitations. In this work, we have
effectively overcome the problem of the detection of the nuclei locations and we have
developed a fully automated method for the segmentation of cell nuclei in Pap smear
images. Moreover, we propose the determination of a meaningful feature set for the
detected areas, which results in the efficient discrimination of the true nuclei class by the
clustering algorithms. As it is verified by the results, the method produces more accurate
nuclei boundaries which are closer to the ground truth, compared to the GVF deformable
model and the ACM segmentation method. The main advantage of the proposed method
is that it can be applied directly in Pap smear images obtained by an optical microscope,
without any observer interference, for the accurate automated identification of the cell
nuclei boundaries.
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CHAPTER 5

OVERLAPPING CELL NUCLEI SECMENTATION
USING A SPATIALLY ADAPTIVE ACTIVE
PHYSICAL MODEL

5.1 Introduction

One of the most interesting and challenging issues in the automated analysis of microscopic
images, is the delineation of the overlapped cells or cells nuclei. The cell overlapping
areas in the microscopic slides are very common phenomena, especially in the case of the
well-known Pap smear. The segmentation of these images has been studied by several
researchers [26, 43, 76, 77], as the nucleus is the structural part of the cell that presents
significant changes when the cell is affected by a disease. Furthermore, features that are
based on the nuclei shape have been used by several researchers for the discrimination of
normal and abnormal nuclei [52, 55]. Thus, the accurate and detailed identification of the
nucleus shape is important for the correct interpretation of the Pap smear.

Usually, the existence of the different layers of the cervical specimen in the slide results
in areas, where the cells of an upper layer partially obscure the cells lying underneath. In
real time microscopic examination this problem is commonly solved in most cases with
the adjustment of the lens focus, and the cells of different layers are clearly identified.
However, in static images acquired through a digital camera adopted on a microscope,
this is not possible and for this reason efforts have been made by several researchers in
order to contribute to the automated segmentation of the overlapped cells or overlapped
nuclei in many cytological images.

More specifically, in terms of the general segmentation techniques used for the separa-
tion of overlapped nuclei, the geometric active contours are used in [78]. In this approach,
each cell is represented by its own level-set function and a coupling constrain prevents
neighboring contours from overlapping each other and maintaining the separation of sim-
ilar cells in contact. Furthermore, the distance transform in a binary image containing

the regions of the nuclei is calculated in [5] and the topographic surface generated by
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the distance transform is considered as a Gaussian mixture. The EM algorithm is then
applied for the determination of the parameters of each nucleus cluster and the separation
line of the overlapped nuclei is defined with the minimization of a criterion function. It
must be noted, that in this approach, the occluded area of each nucleus is reconstructed
with a constrained ellipse fitting technique.

The segmentation technique that has been extensively used in many methods for the
separation of clustered cell nuclei is the watershed transform [79, 4, 80, 81]. The main
concern for these methods is to overcome the oversegmentation resulting by the water-
shed transform. For this purpose, special attention has been paid on the determination
of marking strategies and the selection of appropriate nuclei and background markers.
Thus, shape markers are extracted using an adaptive H-minima transform and a marking
function based on the outer distance transform is introduced in a watershed-like algo-
rithm in [79] for the separation of clustered nuclei. In [4], the segmentation of clustered
nuclei is treated as an optimization problem and a marker extraction scheme based on
the H-minima transform is introduced to obtain the optimal segmentation result from
the distance map. In order to optimize the selection of markers from which the flooding
process will start during the watershed-based segmentation, prior information about the
usual shape of cells nuclei, which is included in the determination of two templates for the
identification of aggregating or overlapping nuclei, is employed in [80]. Finally, in [81],
the boundary of the overlapping nuclei is extracted through the marker based watershed
transform and the separation of touching cells is obtained by ellipse fitting.

The above methods were applied in different cytological images such as fluorescence in
situ hybridization (FISH) images [79, 80, 82] or microscopic images from several specimens
such as mammary invasive ductal carcinoma or cervical images [5, 4]. In the first case,
the separation line between the clustered nuclei is obtained through the application of
the watershed transform. However, these cases are very sensitive to the selection of
appropriate markers, in order to identify the correct location of each nucleus marker and
a marker for the overlapping area between the nuclei. Furthermore, in [4, 78, 81], the
partial nuclei boundaries lying in the areas of overlap are estimated with ellipse fitting
algorithms, exploiting the prior knowledge about the elliptical shape of the nuclei.

In this chapter, we present an alternative method for the separation of overlapping
nuclei which is based on the representation of the nucleus shape by the vibrations of a
spring-mass system [83] and the statistical learning of the vibration modes of the system
in the framework of Active Shape Models (ASM) [84]. More specifically, through physics-
based shape parameterization, the elastic 2-D boundary modeling can be achieved by
a closed chain topology of virtual masses on the contour. Each node of the model has
a mass and it is connected with two neighboring nodes through springs with the same
stiffness and damping parameters. The physics-based equations of motion govern the
deformation of the model [83], which reaches the equilibrium when it is placed on the
object’s boundary. Segmentation methods based on these models have been proposed for
multimodal brain image analysis [85], skeleton family generator [86] and reconstruction
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of serially acquired slices for the determination of volumes [87].

In addition, active shape models (ASM) [84] are well-known parametric deformable
models which are based on the construction of a statistical model of the global shape
variation from a training set of shapes. They have been extensively used for the recognition
and localization of objects that follow the same geometric form of a sample of well known
shapes, such as face detection [88], biomedical image segmentation [89] and handwritten
character recognition [90]. Image segmentation with ASM requires the representation of
the shape of the object of interest by a set of points. Based on this representation, a
deformable model is iteratively deformed to fit to an instance of the object of interest in
an unknown image. The model is constrained by the Point Distribution Model (PDM)
[84], in order to vary only in ways that are learnt in a training set of labeled examples.

Our work combines the segmentation of an image with ASM [84] and the representation
of an object using modal analysis [83]. Thus, a physical model is adopted in the training
phase, in which the parameters to be learnt are the variations of the modes of the model.
The attributes of the nuclei shapes are expressed in terms of modal analysis and in the
training phase the modal distribution is estimated. Therefore, a more compact description
of the shape model is obtained. Next, we develop a framework for the deformation of an
active physical model similar to ASM, for the detection of an unknown new nucleus in
images containing two overlapped nuclei.

It must be noted that the idea of combining the physically-based and the active shape
models was first proposed in [91]. However, no closed form solution for the deformation
of the model was provided, and only admissible deformations in the neighborhood of the
initial position of the model were acceptable, providing a heuristically obtained solution
for the deformation of the model. Furthermore, in [41] a method for the segmentation of
nuclei boundaries based on the elliptical approximation of the nucleus boundaries and a
deformable model, which can accommodate a certain degree of variability is presented.
However, in that work the motion of the deformable model is controlled by a probabilistic
framework and the parameters that control the variability of the shapes have been selected
experimentally.

As it will be explained in the following paragraphs, our method significantly differs
from the aforementioned work in many perspectives. First of all, we provide a closed form
solution for the deformation of the model, which does not depend on trial and error based
admissible configurations in the shape of the model, but it is based on the dynamic change
of the generalized displacement, in order the model to be attracted from the significant
characteristics of the image and also to be consistent with the learnt parameters. Thus, the
generalized displacements are updated through gradient based optimization. Furthermore,
the model converges to a position close to the desired boundary, as it always provides
admissible solutions. This is possible even in the case of the overlapping part of the nuclei
where no significant edges are present, as the contribution of the external energy in the
model deformation is mutable.

The method proposed herein is motivated by [85]. The main difference is that in [85]
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the a priori knowledge was obtained for one anatomical structure (the skull) and then,
the other structures (e.g. the brain) are estimated by least squares. In our case, the a
priori knowledge concerns the occluded parts of the nuclei, whose estimation relies on an
iterative gradient descent method resulting naturally from the linear form of the model.

Moreover, there are two main differences of our method with respect to standard
ASM algorithm: first, the modal amplitudes of the learnt model are used instead of the
2D landmark points and second, the cost function to be minimized for the detection of
the nuclei boundaries is affected by the locally adaptive image force, which is introduced
in order to extract reliable nuclei boundaries in the regions of overlap. An important
characteristic of the proposed method is that it provides a smooth representation of the
nucleus boundary by the physical model, which entails in the reduction of the number
of parameters employed in the segmentation step. This is possible since the number of
the modal amplitudes that contain the most important information about the shape of
the model is small, due to the principal components analysis step. Furthermore, another
significant characteristic is that the proposed model is flexible and it converges fast in
the position of the desired boundary, due to the linear transformation adopted in the
deformation step. Finally, the method is evaluated using a test set of 50 cytological
images of conventional Pap smears, which contain two overlapped nuclei each and it
presents high performance, as it is verified by the results.

5.2 Methodology

5.2.1 Training phase

In this phase, the physical model is constructed and it is applied on a training set of
images containing a single nucleus, in order to learn the modal distribution describing the
shape of the nuclei. The basic steps of the training phase are described in detail in the
following paragraphs.

Construction of the physical model

In order to obtain a compact representation of the shape of the nuclei boundary, we adopt
the physical deformable model proposed by Nastar and Ayache [83]. A physics based
deformable model is used, whose behaviour is controlled by the governing equations of
motion. More specifically, the physical model consists of N virtual masses located at
points X(t) = {x1(t),x2(¢),,...,xn(t)}. The motion of the physical model towards the
border of the object of interest is expressed by a finite element formulation and is estimated
by solving a 2N-dimensional differential matrix equation (for the horizontal and vertical
direction):

MU, (t) + CU,(t) + KU, (t) = F,(t) (5.1)



where M, C and K are N x N matrices describing the mass, the damping and the stiffness
of the model. Moreover, F, and F, are vectors containing the image force at the nodes
locations and U,, Um, U, and u,, Uy, Uy are the vectors of displacement, velocity and
acceleration of the model in the horizontal and vertical direction respectively.

The above equations describe the equilibrium between internal and external forces of
the system. The internal forces are expressed by the definition of the virtual masses of the
model and the interaction between them, while the external forces are usually defined as
the intensity or the gradient of the image at the pixels where the nodes of the model are
located. The system (5.1) can be solved by setting the initial values of displacement and
velocity equal to zero and then using an explicit Euler scheme. However, instead of solving
directly the equilibrium equation (5.1), we can use a frequency based technique called
modal analysis, which describes the motion of the model in terms of the free vibrations
of the system.

More specifically, at a first step the following change of basis is used [85]:

U=2oU (5.2)

where @ is a square non-singular matrix and U is the vector of the generalized displace-
ment. The columns of the matrix are selected to be the eigenvectors of the generalized

eigenproblem:
Ko; = w’Md; (5.3)

where ¢; is the i-th mode and w; its frequency. This is an effective way for the expression
of the displacement vector U in terms of modal displacements, that is :

U=aU-= Zai(t)@ (5.4)

where @; is the amplitude of the i-th mode. It can be shown [43] that matrices K, M and
C are simultaneously diagonalized by

*'MP =1
'K = QF (5.5)

where I is the identity matrix and Q2 is the diagonal matrix whose elements are the
eigenvalues w;, t = 1, ..., V.
Premultiplying (5.1) by @7 and substituting the displacement vector with its equiva-
lent form in (5.2) leads to: ) .
U+CU+QU=F (5.6)
where C = ®7'C® and F = ®”F. The above matrix-form equation can be decoupled for
each dimension into /N scalar equations of the form:

Ui (t) + Gt (t) + @2 (t) = filt). (5.7)
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The solution of these equations at time ¢ leads to the calculation of the amplitudes ;(t),
¢t =1,..., N and the deformation of the model is estimated using the modal superposition
equation (5.4). At each time step, the new positions of the nodes of the model X(¢) are
given by

X(t) = X(to) + U(t) (5.8)

where X (%) is the vector containing the initial spatial positions of the model and U(t) is
the nodal displacement vector.

In practice, the nodal displacements U(t) are approximated by U(t) using a fraction
of the modes of vibration, which present the highest amplitudes, that is:

Ut) = iilt)g; (5.9)

i=1

where [ < N. For the choice of the number of modes [, the total energy is calculated by:

N
E=>)u (5.10)
i=1

and we chose the first [ amplitudes carrying a predefined percentage of the total energy.
An issue that must be clarified is the calculation of the eigenvectors and eigenvalues of

the generalized problem of (5.3). From the classical theory of vibration of a crystal lattice,

it can be proved that the relationship between spatial (k) and temporal (w) frequencies

WA (p) = % sin® (k(g)a) : (5.11)

where « is the distance between the points of a closed chain. In (5.11), due to the

is given by:

periodicity of the closed chain:

2
k(pa = =F. pe BW) (5.12)
where B(N) is the Brillouin zone [84]:
e ﬁ} for N even
B = 4 73 Pl gl 5.13
V) {[—%#ww%?L for N odd (5:13)

Combining (5.11) and (5.12) we can calculate the temporal frequencies w?, which corre-

spond to the eigenvalues of the problem in (5.3). The corresponding eigenvectors ¢(p) are
then given by:

2mp 4
W, ...}

Thus, using (5.14), analytic forms for the eigenvectors are obtained and the motion of the

o(p) = {, cos (5.14)

model can be easily expressed in terms of frequency modes as described in (5.9).
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Training the physical model

Instead of describing the object of interest by a set of n labeled landmark points as in the
standard ASM algorithm, we focus on the learning of the generalized displacements U of
the model, in each image of the training set. This is an equivalent representation, since
the combination of (5.2) and (5.8) results in the spatial coordinates of the shape. In the
training phase, the nuclei boundaries were manually traced by an expert in all the images
of the training set. An issue that must be taken into account for the correct training of the
model is that the shapes in each image must be registered. Given the fact that the nuclei
generally follow an ellipse-like shape, we registered all the manually traced shapes with
a reference shape having its major axis horizontally oriented. Based on this boundary,
the distance transform was estimated for every image. On the resulted image, a physical
model was initialized and deformed until convergence, in order to detect the desired
boundary. As a result an accurate nucleus boundary was obtained. This procedure is
depicted in figure 5.1(b

Figure 5.1: Convergence of the physical model to the boundary of a cell nucleus in the
training phase. (a) The initial image, (b) the manually traced nucleus boundary, (c)
registration of the boundary to a reference shape oriented horizontally, (d) the distance
transform of (c¢), (e) the initial (red) and the final (white) position of the physical model,
(f) the detected nucleus boundary in the initial image rotated appropriately. The figure
is better seen in colour.

From the final shape of the model, the generalized displacement vector U was esti-
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mated and from the entire training set, the mean U was calculated, which entails in the
representation of the mean shape of the nucleus boundary. More specifically, given a set
of L vectors U; , the mean is calculated as:

L

— 1 -

U=-)1, (5.15)
=1

il

The covariance of the vectors is calculated by:

1 L ~ — ~ -\ 7

s=—3 (0:,-0) (0; - 0) 5.16

L—-1 — ( )

Using principal component analysis (PCA), the eigenvectors a; with the corresponding

eigenvalues \; of the covariance matrix S are used for an equivalent representation of the
shape, that is o

U="U + Ab, (5.17)

where A is the matrix with columns the eigenvectors a; and b is a vector containing the
model coordinates in the basis of the eigenvectors:

b=AT (fj - ﬁ) (5.18)

Taking into account the .J eigenvectors which correspond to the J largest eigenvalues of
the covariance matrix, the shape can by approximated by:

GZE—FAJI)J: [al a ...aJ] [bl b2 ...bJ]T (519)

where A; and b are derived from A and b by using only the .J selected eigenvectors.
Figure 5.2 shows the modes of variation of the shape of the nuclei along four individual
eigenvectors a;, j = 1,...,4, extracted from the learning phase. Thus, using (5.15) and
(5.9), the mean shape of the nuclei is described and this will be used as an initial template,
in order to separate the overlapped nuclei in the images of the test set.

5.2.2 Segmentation of overlapping nuclei boundaries

This procedure includes the determination of the initial positions of the two models in the
image and the deformation process that the models follow until convergence. A graphical
description of this step is depicted in Figure 5.3 and the details are described in the
following paragraphs.

Initialization of the model

The most important prerequisite of our method in order to provide reliable results is
the accurate localization of the initial model. If the initial model is not close to the
real boundary, then the results would probably be highly erroneous, as the model would
converge in local minima of the image, which do not correspond to the real nucleus
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Figure 5.2: Modes of variation of the nuclei shape. Each row corresponds to the variations
of the shape of the model by approximating U using only one eigenvector a;, j = 1,...4
and setting the corresponded value of b; to the values in the last row, with all the values
of by =0, for k£ # j in (5.19). In the middle column, the mean shape is depicted.

Construction and training (PCA)
of the physical model

A 4

Initialization of the two mean
models in the image

|

Deformation of the models until |—»{ Compute the locally adaptive
convergence image force term g

y

Update the displacement vector

new o J df
Repeat for the U =u —rQZ(afr E(D} a,
second model =

A 4

Compute the new position of the model
X=X, +U™"

Figure 5.3: The basic steps of the segmentation of the overlapping nuclei (see text for
details).

boundary. The mean nuclei boundary that has been determined in the training phase
stands as the initial model of the nucleus boundary. As we are looking for two nuclei in
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the images of the test set, the initial positions of two models must be detected close to the
real nuclei boundaries. For this reason, each image is first preprocessed for the detection
of the strong nuclei edges, which will force the mean nuclei boundary to be located near
to the real one through chamfer matching [92].

More specifically, in the grayscale counterpart of the initial image, we first reduce the
noise by applying a Gaussian filter. Then, using histogram equalization technique, the
contrast of the nuclei and the background is enhanced. In order to avoid the inhomo-
geneities inside the nuclei areas, which are commonly present due to uneven staining of
the smear, we proceed with the formation of homogenous minima intensity valleys. This
is feasible with the application of the H-minima transform in the original image, which is
a grayscale morphological reconstruction [68]. Thus a marker image is constructed by the
subtraction of a threshold value h from every pixel of the complement of the initial image.
Then through the grayscale reconstruction process, we obtain an image that contains the
regional minima, whose depth is less than h, suppressed. The result of this process is de-
picted in Figure 5.4(b), where a rough description of the positions of the two overlapped
nuclei is defined. In this image, the Canny edge detector is applied (Figure 5.4(c)), and
some strong boundary edges are detected. The distance transform ¢ is then calculated
[93].

To obtain the distance potential force, a distance surface is first built, that is:

r,Y) = min d(z,y;p, 5.20
9(z,y) (p,q)e{(a,b):BW(a,b)zl}[( YD, q)) (5.20)

where d(x,y;p, q) is the Euclidean distance between pixels (x,y) and (p,¢) in the binary
image BW, which is obtained after the application of the Canny edge detector. It must
be noted that the location (p, q) corresponds to the location of a detected edge.

In the resulting image we search for the best two matching positions of the initial
model (Figure 5.4(d)). The measure of correspondence between the edges and the model
is the sum of the pixel values at which the model is located. A perfect match would
produce a zero value in this measure (as the model would perfectly match in the edges of
the image, in which the value of the distance transform is zero). However, as this is an
extremely rare case in real images, we search for the position of the model in the image
that minimizes this sum.

It must be noted that in each image the nuclei size and orientation may vary. Thus,
the initial model is rotated by a step of 1° angle and scaled by factors between 0.6 and
1.2 of its original position and size. In this way, more accurate initial approximations of
the nuclei boundaries are detected (Fig. 5.5). After the detection of the initial position
of the models, we proceed with the deformation of the models in order to converge to the
final nuclei boundaries.

Deformation of the models

Using the shape representation defined in (5.19), the algorithm fits the desired model in
the image, driven by the image characteristics and the prior training. In each iteration,
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Figure 5.4: (a) The initial image, (b) image obtained after noise reduction, histogram
equalization and H-minima transform of the greyscale counterpart of the initial image,
(c) the result of the application of the Canny edge detector in (b), (d) initial placement
of the learnt model on each nucleus, after the chamfer matching. The figure is better seen

in colour.

the changes in the generalized displacements should be consistent with the learnt param-
eters, and this is feasible by the minimization of a cost function f (ﬂ) =g (Xo + <I’I~J),
where ¢ is the distance transform of the image as it is defined in the initialization step
and its argument is the deformed shape with respect to (5.8) by omitting the temporal
dependency for simplicity. More specifically, in each step, the algorithm selects the new
generalized displacements by the following optimization schemes:

Hljl’l f(fj) = ) Hllln Jf <E+ [3.1 az ... aJ] [bl b2 bJ]T> (521)
19) iy t=1..y
The gradient descent scheme of (5.21) with the new variables b; is given by:
d
e (aT—f) (5.22)
dU

where 7 is the time step and:

G aX

fo_ 4 dX _ 2
G0 dX4q0  dX (5:23)
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Figure 5.5: Initial positions of the models in several images. Notice that best initial
positions are obtained with the rotation and the scaling of the learnt model. The figure

is better seen in colour.

The term i
d_X = [v.g(xlayl):"'7Vg(xN7yN)]T (524)

is actually the gradient of the image force term, where ¢ is again the distance transform
of the image as it is described above. In terms of the original variable fJ, the update rule
(5.22) turns out to be

) . 4 df
urey  — Uold . TZ (aZTE> a, (525)
=1
J df
_ f7old _ PR ;3 ;
U 7'; (aZ IX >a

Notice that the initial value for U is the mean shape obtained with the training of ASM.
Premultiplying (5.25) by @ to the left we get

J
) ) d
PUeY — @UOld — 7P § (aT_f@> a; (526)



Regarding (5.22), we have

J
urev — Uold — 7P Z (a?;—g{@) a;. (527)
=1

Finally, from (5.8), the local positions of the landmark points are calculated by:
X = X+ UV, (5.28)

where X is the initial position of the mean shape of the model in the image. The models
deform until convergence, i.e. no significant change is observed in the location of the
points consisting the models between two sequential steps.

Spatially adaptive image force

The image force is defined as the force due to the potential field created by the image
characteristics. The most common approach is to use the image gradient magnitude as
the external force, in order to guide the deformable model in the areas of the image where
high gradients are located (which usually imply the existence of strong edges of the objects
of interest). However, the limitation of the gradient image force becomes evident in parts
of the image with smooth intensity transitions, in which the gradient magnitude is very
low. In Pap smear images, the staining procedure introduces variances in illumination and
dye concentration. In some cases the nuclei borders may not be clearly distinguishable
from the background, and these locations present weak image gradient. If a deformable
model is initialized in such locations, it is not probable to guide it toward an edge. Thus,
the gradient-based force field has a limited capture range for the deformable model. The
distance potential force alleviates this issue for binary images.

As we can observe from (5.27) and (5.28), the deformation of the model is also con-
trolled by the image force term. The degree of the influence of the image force term in the
motion of the deformable model can be modulated by setting appropriate weight values
wi, Wa, ..., w, at each image point that belongs to the model, and the image force can be
defined as

daf T
X = [wi1Vg(z1,y1), ., wnVg(xn,yn)| - (5.29)

Thus, if the weights of this term have large values, the model will deform mainly
according to the image characteristics. On the other hand, if the image force weight is
small, the model deformation would be driven by the learnt nuclei shape. In images of
overlapping nuclei, the edges of the isolated part of the nuclei boundary must be taken
into account, in order to attract the model for the detection of the true nuclei boundaries.
In those points, high value of the image force term is desirable. However, in the area of
overlap, there is no edge information and with the use of high weight values, the model
could be attracted from the boundary of the isolated part of the neighbor nucleus, resulting
in a high erroneous identification of the real nucleus boundary. An immoderate example
of the influence of the values of the image force weights in the deformation of the models
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is depicted in Figure 5.6, where we attempt to emphasize the influence of different weight
values in the final segmentation results. For this reason, we have used extreme weight
values and we let the deformable model move without any restrictions, using (5.26) and
(5.27). As we can observe, the segmentation results are highly erroneous.

(d)

Figure 5.6: (a) Initial image and, (b) initial position of the two models. Result obtained
using (c¢) small and (d) large weights values for the image force of one of the two nuclei.
Notice that in (c) there exist small differences from the initial position of the models.
However in (d), the model of one nucleus converges in a position of high gradient of the
image, resulting in the erroneous identification of the boundary of the area containing
both of the nuclei. The figure is better seen in colour.

In order to avoid such phenomena, we use different values for the weights in the image
force term, depending on the position of the point in the boundary (Fig. 5.7). Thus,
in each step of the deformation of the two models, the area of overlap is determined,
and the points of the models lying in this area are associated with small weight values
compared with the weight values in the non overlapping area, as it is explained in the
next paragraphs. Therefore, the influence of the image force in the deformation of this
part of the model is limited. However, in the rest of the points of the model, we use
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large values for the image term weights, and this results in the detection of the actual
nuclei boundaries in the non-overlapping area of each nucleus. The PCA coordinates a;
estimated by the non-overlapping part of the model yield a set of modal amplitudes which
determine the behavior of the rest of the points based on the learnt vibrations.

(c) (d)

Figure 5.7: (a) Initial image, (b) initial position of the models, (c) calculation of the
overlapping area, (d) points lying in the area of overlap, denoted with yellow, have very
small weights with respect to the rest of the points. The figure is better seen in colour.

5.3 Experimental results and discussion

5.3.1 Study group

In our experiments, we have used 46 images containing a single normal nucleus of conven-
tional Pap smear slides, in order to construct the training set used for the training of the
physically based model. The proposed method was tested in terms of the accurate de-
termination of the nuclei boundary on a test set of 50 images containing two overlapping
nuclei each (as in Figure 5.4), yielding 100 nuclei in total. Thus, the training and the test
set of images are independent. All of these images were acquired through a CCD camera
(Olympus DP71) adapted to an optical microscope (Olympus BX51). We have used a
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40x magnification lens and the acquired images were stored in JPEG format. The initial
images obtained by the optical microscope have size 3072 x 4080 pixels. These images
are then segmented manually in order to construct the database of images containing the
overlapped nuclei and a small portion of the neighboring background (such as in Figures
5.4, 5.6, 5.10 and 5.11). The average size of all the images in our database is 260 x 300
pixels.

5.3.2 Numerical evaluation

For the evaluation of the performance of the method, the boundaries of the nuclei in the
entire test set were estimated manually, after careful examination of an expert cytopathol-
ogist. The determination of the boundary of each nucleus in the overlapping area was
based on the exploitation of small variances in the intensity of this area, which an expert
could identify. However, in many cases, there was no existence of intensity variances, and
the boundary of each nucleus was manually drawn by the expert, following the expected
shape of the nucleus in the specific image. Based on the ground truth, we have calculated
the mean (u) and the standard deviation (o) for the area of overlap in our data set. The
overlapping area varies between 4.0% and 48.2% with 18.52 + 11.77 (%) (pu %+ o).

In order to evaluate the performance of the proposed method, the Euclidean and Haus-
dorff distance of the final position of the model and the ground truth was calculated in
each image. The presented method underwent a twofold evaluation: a) we have tested
the influence of the use of different weight values in the final segmentation compared
to the use of one single value and b) the results of the method were compared to the
results of different segmentation methods, such as the standard ASM algorithm using
different weight values in the area of overlap (as it is proposed in our method), the con-
ventional technique of the ellipse fitting in the overlapped nuclei boundary incorporated
in our method (instead of using different image force weight values), the unsupervised
segmentation of overlapped nuclei using Bayesian classification [5] and the H-minima
transform-based marker extraction and contour parameterization method for segmenting
overlapped nuclei [4]. It must be noted that the ellipse fitting technique is extensively
used from several researchers ([5, 4, 81]), in order to estimate the nucleus boundary in
the overlapping areas and it is based on the hypothesis that the nuclei shape is gener-
ally ellipse-like. Thus, in each step of the deformation of the model, the points of the
boundary of the nucleus of the non-overlapping area are used for the calculation of the
interpolated ellipse using the direct least squares fitting of ellipses [94]. Then, the part
of the boundary in the overlapping area is completed using the corresponding part of the
interpolated ellipse and the link points are smoothed (they are calculated as the average
of the previous and the next point of the model).

The choice of the weights in our work is performed with a two step procedure: First,
we use the same value for the weights of overlapping and non-overlapping areas, and
we test the method for several different values for the weights. The Hausdorft distance
between the result of the proposed method and the ground truth using a single value for
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the image force term is depicted in 5.8. As we can see, the best results were obtained
for wy,. , = 0.1 and the Hausdorff distance for this weight is 24.29. However, with the
use of different weight values, the corresponding Hausdorff distance is reduced, which
indicates that the use of different weight values renders the method more performing.
Thus, in the next step, having found that the best segmentation was obtained with the
weight value 0.1 (Figure 5.8), we keep this value constant for the external weights in non
overlapping areas and we test multiple values for the weights in the overlapping areas.
This is described in Figure 5.9, which contains the segmentation results of the method
from several experiments, where we have used different weight values for the overlapping
areas, while the weight value in non overlapping areas was fixed to 0.1. From this image,
we can observe that the best segmentation results were obtained for w; . ; = 0.001, where
k is the number of the points of the model lying in the overlapping areas.

Segmentation results using a single value weight for the image force
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Figure 5.8: The result of the proposed method using the same value for the image force
term, for all of the points of the model. Notice that best results are obtained using the
value of 0.1 and the corresponding Hausdorff distance is 24.29.

The comparative results of the proposed method and the other segmentation tech-
niques are included in Table 5.1. As we can see, our method exhibits better performance,
since both the Euclidean and Hausdroff distances are smaller compared with the other
methods, and it does not exhibit large variations, as the standard deviation is small.
This implies that the proposed model is closer to the manually traced nuclei boundaries,
and as a result it is more accurate than the other approaches. Furthermore, based on
the experimental results and the overlapping percentage of our image data set (as it was
described in the above paragraphs), we can conclude that our method can successfully
segment nuclei that present grade of overlap lower than 50%.

Several examples of the segmentation results of our method are depicted in Figure 5.10.
The segmentation results in images of 5.11. of our method and several methods proposed
in the literature are depicted in 5.12. As we can see, the use of the ellipse fitting algorithm
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Segmentation results using different value weights for overlapping areas

Average Hausdorff Distance

0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05
Image Force Weights w, for overlapping areas

Figure 5.9: The result of the proposed method using the same value w; = 0.1 for the image
force term in the points lying in the non-overlapping area of the nuclei, and multiple values
w1 2, for the k points of the model lying in the overlapping area. Notice that best results
are obtained using the value of 0.001 and the corresponding Hausdorff distance is 19.58.

Table 5.1: Results of overlapped nuclei segmentation methods in terms of Euclidean and
Hausdorff Distances (u =+ o)

Hausdorff Euclidean

Proposed method 19.58 £ 8.52  8.64 £3.77
Ellipse fitting 20.73 £ 10.38  8.73+3.90
ASM 21.33+11.48 9.78 +£4.10
Bayesian classification 24.18 +12.61 10.95 +4.79
H-minima 22.70 £11.90 10.71 +4.35

for the overlapped parts of the nuclei in our method produces some rugged points in the
nuclei boundaries, and the boundaries of the overlapping areas are not well detected, as
they do not follow an elliptical form in the overlapping areas. Furthermore, the standard
ASM algorithm produces noisy results and this indicates that the representation of the
shape of the nuclei by the vibrations of a spring-mass system instead of landmark points,
assures a smooth representation of the shape, and as a result more accurate boundaries
for the nuclei.

It must be noted that in our work, we have trained the ASM having as training shapes
the nuclei boundaries obtained with the convergence of the physical model in the training
set, and not with independently distributed points as it is the standard procedure. By
these means, the ASM method is unbiased with respect to the manual tracing of the nuclei
and the comparison of the two methods may be performed on the same basis. Besides,
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(a) (b)

Figure 5.10: Segmentation results of the method. (a) Ground truth, (b) nuclei boundaries
obtained with the convergence of the models. The figure is better seen in colour.

these shapes can be considered as an accurate representation of the nuclei boundaries,
since the mean Euclidean distance of the final position of the physical model and the
ground truth is 1.76 pixels in the images of the training set. For this reason, the main
eigenvectors for the ASM model do not exhibit significant differences from the main
eigenvectors of the physical model. However, the noisy results of the ASM method are
due to the minimization procedure, in which the ASM is more sensitive to the image
force. This can be observed in Figure 5.12(d), where the discontinuities in the detected
edges (Figure 5.11(b), second image, points A and B) produce rugged segments of points
in the convergence of ASM. Furthermore, the detected edges in the inner area of the
nucleus (Figure 5.11(b), first image, point A) seem to interfere to the convergence of the
model, which fails to identify the actual nuclei borders. The reason for this effect is that
in the standard ASM algorithm, the image force term Ed)fz has a direct influence on the
new variables (the projection of the points of the model on the eigenvector space), which
are then multiplied by the eigenvectors to obtain the new position of the model. On the
other hand, in our case, the new variables (the projection of the generalized displacements
on the eigenvector space) change according to di% in (5.22), or equivalently according to
d%fzq) in (5.27). Thus, the new position of the model depends on the specific product,
which provides a smooth image force term. In this way, the model is not affected by the
potential noise contained in the image force.
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(a)

(c)

First Image Second Image

Figure 5.11: (a) Representative images containing overlapped nuclei. (b) Edge images
resulted after the application of the Canny edge detector (initialization step). The point
A in the first image indicates some falsely detected edges in the inner area of the nucleus.
The points A and B in the second image indicate the existence of discontinuities. (¢) The
corresponding distance transform.

For the methods proposed in [5] and [4] the results are not quite accurate, and this is
a consequence of several reasons. In [4] the outcome is actually the ellipse obtained by the
detected nuclei boundary points produced by adaptive thresholding. As we can observe in
Figure 5.12(e), the estimated ellipses provide a rough approximation of the actual nuclei
boundaries and additional processing is required for the detection of more refined nuclei
borders. The method in [4] may be considered similar to the initialization step of our
algorithm; however, there are several differences with our method. More specifically, in
the initialization step, we use the H-minima transform for the construction of smooth
intensity valleys and the reduction of the noise in the image, in contrast with [4], in which
the H-minima transform is used in a marker extraction scheme. For this reason we have
used only one threshold value for h (Table 5.2) and we do not test many threshold values
as it is proposed in [4]. Furthermore, the edges of the image are detected with the Canny
edge detector, in order to obtain a binary image, without the use of global thresholding
or the watershed transform as in [4]. In the binary image we try all possible similarity
transformations, in order to achieve a reliable initial position of our model, which is known
through the training step.

Furthermore, in [5] the boundaries of the non-overlapping area of the nuclei are ob-
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First Image Second Image

Figure 5.12: Segmentation results. (a) The ground truth in the initial image, the seg-
mentation results for (b) the proposed method, (c) the ellipse fitting algorithm, (d) the
standard ASM algorithm, (e) H-minima marker extraction [4], (f) Bayesian [5].

tained after morphological operations and adaptive thresholding. Although this procedure
is fast, it does not always succeed in the detection of accurate boundaries. As we can
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Table 5.2: Parameter values used in the experiments.

Parameter Value
h (H-minima transform) 20
Stiffness K

Mass M

Dumping ¢;, 1 =1,..., N

Radius of the initial model 85
Model points 120
Initial time step g 0.001
Weights of image force (overlapping area) 0.001
Weights of image force (non overlapping area) 0.1
Number of modes u; 14
Number of eigenvectors a; 4

see in Figure 5.12(f) ( first image, white traced nucleus), the nucleus boundary that was
erroneously detected in the bottom of the non-overlapping area, results in the estimation
of an ellipse for the overlapping area that does not correspond to the expected nuclei
boundaries. Furthermore, in Figure 5.12(f), (second image, white traced nucleus) we can
observe that the inhomogeneity in the image intensity results in the wrong detection of
the nucleus boundary in the non-overlapping area (near the bottom, right hand corner of
the image). Therefore, we may conclude that in images with noise and artifacts (like Pap
smear images), adaptive thresholding techniques do not provide accurate detection even
for the non-overlapping boundaries of the nuclei and further processing is required.
Moreover, as a measure of the computational efficiency of the segmentation method,
we present in Table 5.3 the mean times for the processing of each image (including the
initialization and the deformation of the two models), developed in Matlab using a Pen-
tium 2.0 GHz with 3GB RAM. As we can observe, the computational burden that the
ellipse fitting algorithm introduces in each step of the deformation of the model, results in
an increase of the processing time of each image. Furthermore, the reduction of the learnt
parameters, as it is described in (5.19), renders our method superior to the standard ASM
algorithm. In the cases of non iterative procedures, in which an ellipse fitting algorithm
is implemented such as in [5] and [4] the required processing times are clearly shorter
than in the rest of the methods. In both of these methods, the estimation of a suitable
ellipse that fits the points in the non overlapping area is calculated once, and no iteration
is performed. In contrast, the computational cost of the ellipse fitting algorithm in our
method is bigger, because the ellipse is calculated in every iteration of the algorithm. The
iterative procedure that we propose for the convergence of the model, although it requires
more computational time, is necessary for the refinement of the nuclei borders in both
the overlapping and non-overlapping areas, which is not achieved by the non-iterative
methods. This can be easily verified by the comparative results in Table 5.1, where we
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can observe that the non-iterative methods have lower performance than the proposed
method.

Table 5.3: Execution time (u % o).

Segmentation method Time (sec)
Proposed method 17.89 +£0.79
Standard ASM 26.42 £2.90
Proposed method with ellipse fitting algorithm 46.21 £ 3.57
Bayesian classification [5] 441 +£1.26
H-minima [4] 2.86 £ 0.64

The parameters of the steps of the method were selected after several tests (Table 5.2).
Thus, the threshold A in the H-minima transform in the initialization of the models is set
to 20. For the calculation of modal vibrations in (5.11), we selected K =5 and M = 1.
Furthermore, in (5.7), the value for all ¢;, 1 = 1,..., N was set to 1. For the initialization
of the physical model, a circle of radius 85 pixels and 120 points in its circumference was
used centered at the centroid of the registered manually traced shape.

It must be noted that the change of the weight values for a large number of points in a
single step may lead to a large displacement of the deformable model, as the additive value
of the image force term in (5.27) would be large. In our implementation we have eliminated
this effect with a variable time step, which is calculated in each iteration. Thus, given an
initial time step 7o = 0.001, the time step in (5.27) is calculated as 7, = 79(1 — OPR),
where OPR is the overlapping points ratio, which is defined as the percentage of the
points of the physical model lying in the overlapping area. By these means, a weighted
sum of the contribution of the points in the non-overlapping and in the overlapping area
is obtained which ensures the stability of the algorithm, as the deformation of the model
is smooth and it avoids abrupt changes.

From (5.9), we have calculated that the first 14 modes ; contain more than 99% of
the total energy in each image of the training set. Thus, only 14 parameters (instead of
120 landmark points) are sufficient for the accurate representation of the desired shape.
Furthermore, after the application of PCA in these learnt parameters, only 4 eigenvectors
which correspond to the highest eigenvalues lead to an almost exact shape representa-
tion, as they represent the 99.9% of the total energy. This clarifies that the proposed
segmentation method provides a more compact shape representation which results in the
reduction of the parameters to be learnt.

It must be noted that our method could be extended to be able to segment three
overlapped nuclei as the main steps remain the same and the models deform independently.
The only differences would be in the initialization of the three models in the image and
the detection of the overlapping area. In the first case, the process which is described
in section 5.2.2 could be followed, but instead of two models, we search for three models
through the chamfer matching. In the second case, for each model, the area of overlap
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could be defined as the union of the areas of the two other models and the model under
consideration. Thus, the weights of the specific model would be defined accordingly. In
the case where the images contain unknown number of nuclei, then an initial step of

counting the existed nuclei is necessary, such as in [81].

5.3.3 Relation between the weight values and the overlapping per-
centage

In order to investigate the influence of the selected weight values compared to the degree
of overlapping, we have performed an experiment on a synthetic image, constructed from
two individual images of the training set, each one containing a singe nucleus (Fig. 5.13).
In these images, we have selected the area of each nucleus based on the ground truth.
Then, in a new image, the areas of the nuclei were incrementally overlapped, and we
have compared the segmentation results of our method with respect to the degree of
overlapping of the nucleus area and the selected value weights. To this end, we have
calculated the Hausdorff distance of the obtained boundary of one nucleus of interest,
whose area overlapping was ranging from 10% to 90% (Figure 5.14). The gray level value
of the area of overlap of the examined nucleus is set to 95% of the initial gray level. The
rest of the nuclei areas contained the same intensity value as in the original images and
the background was set to the mean value of both images. It must be noted that, in
the synthetic image, we considered that the initialization step produced acceptable initial
positions for the models.

Figure 5.13: The original images of the training set used for the construction of the
synthetic image.

The method was applied in this image for the drawing of conclusions about the in-
fluence of different rates between the weight values of overlapping and non overlapping
areas, and how they affect the segmentation results with respect to the degree of overlap.
Thus, the weight value for the points lying in the non-overlapping area was fixed to 0.1 for
all the images. Then, the method was applied using different values for the weights of the
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Figure 5.14: Construction of a synthetic image. The degree of area overlapping for the
upper left nucleus is 10%, and for the bottom right is 90%.

nodes belonging to the overlapping areas. These weights were set to 2, 5, 10, 20, 100, 200
and 1000 times lower than the value of the weights of the nodes in the non overlapping
areas. Furthermore an experiment with equal weight values of the overlapping and non-
overlapping areas (set to 0.1) was also performed. The degree of overlap of the nucleus of
interest in the synthetic images varied from 10% to 90%. As we can see from Figure 5.15,
the choice of equal value for the weights produces worse results for almost all the cases
of overlapping. Furthermore, values lower than 100 times of the non-overlapping weight
value have the same result in the Hausdorff distance. In general, we can conclude that for
overlapping percentage greater than 45% the best results were obtained using a weight
value for the overlapping areas which is half than the weight value for the non overlapping
areas. For smaller overlapping rates, the best results are obtained using a weight value of
overlapping areas which is at least five times smaller than the weight value for the non
overlapping areas. It must be noted, that the Hausdorff distance for this experiment is
generally small, as the image of overlapping nuclei is, in a way, ideal, since it does not
contain any noise or background artifacts.



Segmentation Results in the synthetic image
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Figure 5.15: The Hausdorff distance in the synthetic image with respect to the nuclei
overlapping percentage. The curves correspond to the segmentation obtained using the
specific rates of the weight values of the non-overlapping areas to the weight values of the
overlapping areas.

5.4 Conclusion

We have developed a segmentation method combining the physically based model, which
provides a compact representation of the shape of the object of interest, and the active
shape model, which takes advantage of the a-priori knowledge of the expected shape. The
introduction of variable weights in the contribution of the image force in the deformation
of the model results in the correct identification of the part of the nuclei boundary that
lies in the overlapping areas. The method has been tested in terms of the accurate
segmentation of the nuclei borders in images from Pap smear slides, and as it was verified
by the results it presents a high performance. Thus, the method produces more accurate
nuclei boundaries which are closer to the ground truth, compared to the standard ASM
algorithm and the segmentation obtained by two methods proposed for the segmentation
of overlapped nuclei. The main advantage of the proposed method is that it provides a
flexible way for the simultaneous recognition of the isolated and the overlapped nucleus
boundary. This avoids the development of an additional algorithm for the detection of
the nuclei boundaries in occluded areas, such as the ellipse fitting algorithm.
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CHAPTER 6

CERVICAL CELL CLASSIFICATION BASED
ExcLusIVELY ON NUCLEUS FEATURES

6.1 Introduction

The interpretation of Pap smear images relies basically on the visual recognition of the
changes of the structural parts of the cells (nucleus and cytoplasm). However, this process
is a tedious, time-consuming and in many cases error-prone procedure due to the high
degree of complexity that these images exhibit. Several approaches have been proposed

Figure 6.1: (a) An isolated cell and (b) overlapping cells. Notice that the cytoplasm area
is clearly recognized in (a) while in (b) its determination is very ambiguous for each cell.

for the classification of cells in Pap smear images and they concern techniques such as
Bayesian classifiers [55], artificial neural networks [56], support vector machines (SVM)
[59] and nearest neighbor based classifiers [51]. It must be noted that most of these
methods use presegmented images which contain only one cell, so the correct segmentation
of the nucleus and the cytoplasm is feasible (Fig. 6.1(a)). In images containing cell clusters
(Fig. 6.1(b)), the detection of the cytoplasm boundary is a difficult problem and until
now, there is not any method in the literature that results in the automated delineation of
the cytoplasm areas in cell clusters. However, the detection and segmentation of the nuclei
in images containing cell overlapping and cell clusters has been successfully addressed by
several studies [76, 77].
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The methods which deal with the classification of Pap smear images are based on the
calculation of features extracted from the areas of the nucleus and the cytoplasm [51, 52].
These features are usually based on shape and intensity characteristics of the objects of
interest. However, the calculated features do not exhibit the same discriminative ability.
For the determination of the most efficient feature set which will be used as input in a
classifier, some feature selection schemes have been proposed, and they concern particle
swarm optimization [52] and genetic algorithms [51].

Based on the aforementioned facts, we can conclude that there are two open problems
in the automated classification of a Pap smear image acquired directly from an optical
microscope: a) the limitation to use only the features extracted from the nuclei areas, as
these are the areas that can be automatically segmented, and b) the determination of the
most efficient feature subset, which will provide the best discriminative ability.

In this chapter, we evaluate the classification of cervical cells, based exclusively on
nucleus features and ignoring the features extracted from the cytoplasm area. This is a
crucial step for the correct characterization of Pap smear images acquired directly from
an optical microscope, where the cell overlapping is an often found phenomenon and the
delineation of the cytoplasm area can not be obtained automatically. In this direction, we
investigate the representation of the features in low dimensional spaces using non linear
dimensionality reduction methods. These techniques are advantageous in comparison
with their linear counterparts, because they can properly handle complex nonlinear data,
as they better describe the manifold where the data lie.

The low dimensional feature subsets serve as input in two unsupervised classifiers
(spectral clustering [74] and fuzzy C-means [73]). As it was verified by the results, the
non-linear dimensionality reduction techniques lead to a construction of nucleus-only fea-
ture subsets which can be used for the separation of normal and abnormal cells by the
classifiers, presenting high performance.
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Figure 6.2: Types of cells included in the Pap smear benchmark [6]. (a)-(b) Abnormal
cells and (c¢)-(d) normal cells.
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6.2 Methodology

6.2.1 Study group

Our experiments are based on the Pap-smear benchmark database presented in [6] . The
database consists of 917 images containing a single cell each (Fig. 6.2), and the samples
are distributed unevenly in seven classes. Three of them are considered as normal and
four of them are considered as abnormal types of cell. The detailed description of the
database is depicted in Table 6.1.

Table 6.1: Distribution of cells in the Pap-smear benchmark database [6].

NORMAL F#cells
Superficial squamous epithelial 74
Intermediate squamous epithelial 70
Columnar epithelial 98
TOTAL 242
ABNORMAL #cells
Mild squamous non-keratinizing dysplasia 182
Moderate squamous non-keratinizing dysplasia 146
Severe squamous non-keratinizing dysplasia 197
Squamous cell carcinoma in situ intermediate 150
TOTAL 675

6.2.2 Feature generation and dimensionality reduction

The images of the database have been manually segmented by experts and the areas of
the nucleus and the cytoplasm are accurately defined. From these areas, twenty features
concerning the intensity and the shape characteristics of the specific area are determined
(Table 6.2). Nine out of twenty features concern the nucleus area and they can be calcu-
lated independently.

The techniques that we have used for the construction of the new feature sets con-
cern non-linear dimensionality reduction schemes. In our study we have investigated the
performance of four nonlinear techniques: Kernel-PCA [95], Isomap [96], Locally Linear
Embedding [97] and Laplacian Eigenmaps [98]. A brief description of these techniques is
presented in the following paragraphs.

Kernel Principal Component Analysis (K-PCA)

Kernel PCA [95] is actually an extension of the conventional PCA in a high-dimensional
space, which is obtained with the use of a kernel function. The main difference in com-
parison with the standard PCA is that the eigenproblem is solved for the “kernelized”
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Table 6.2: Features extracted from each image in the database [6].

Cytoplasm Features Nuclei Features

1. Area 1. Area

2. Brightness 2. Brightness

3. Short Diameter 3. Short Diameter
4. Longest Diameter 4. Longest Diameter
5. Elongation 5. Elongation

6. Roundness 6. Roundness

7. Perimeter 7. Perimeter

8. Maxima' 8. Maxima'

9. Minima! 9. Minima!

10. Nucleus Position
11. Nucleus/Cytoplasm (size)

! The number of pixels with the maximum /minimum

intensity value in a 3 X 3 neighborhood of the specific area.

covariance matrix. If X = {xq,2s,...,xx} is the original data set, the elements of this
N x N matrix are defined as k;; = K(z;,x;), where K is the kernel function and z;, z;
are D-dimensional feature vectors of X. In our implementation, we have used the poly-
nomial and the Gaussian kernels. The kernel matrix is centered, in order the features in
the high dimensional space to be defined by a kernel function with zero mean and the
eigenvectors «; are then calculated. The projection of a datum y; in the low dimensional
space is defined as:

N N
Y = {Za{K(:rj,xi),...,ZaZiK(xj,mi)}, (6.1)
j=1 j=1
where a! denote the j-th component of the i-th vector and d < D is the number of the
retained eigenvectors.

Isomap

Isomap [96] is a variant of multidimensional scaling (MDS) [99], in which the distances
between the datapoints in the high dimensional space are also retained in the low di-
mensional space. In MDS, this is accomplished by the eigendecomposition of a pairwise
distance matrix (instead of the covariance matrix which is involved in PCA). In Isomap,
the Euclidean distance between the points is substituted by their geodesic distance. Thus,
the pairwise geodesic distance between the datapoints in the high dimensional space is
preserved in the low dimensional space, by the construction of a neighborhood graph G,
in which each datapoint is connected with its £ nearest neighbors. The geodesic distance
of two points may be approximated with the shortest path in the graph G between these
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points, using, for instance, Dijkstra’s algorithm [100]. Having estimated the geodesic dis-
tances for all the points in the data set, the representation of the datapoints in the low
dimensional space are computed by applying MDS on the resulting distance matrix.

Locally Linear Embedding (LLE)

This method is similar in spirit to Isomap, as it is also based on the construction of a
distance graph G. However, in LLE [97] each datapoint is described as a linear combination
of its k£ nearest neighbors, thereby assuming that the manifold is locally linear. The
weights w;; describe the contribution of the j-th point to the reconstruction of the i-th
point and they are computed by minimizing the cost:

N k
arg mwi/n EW) = Z ||z; — Z wijzi; |, (6.2)
i=1 =1

where ;. is the j-th nearest neighbor of the i-th point. Thus, the weights w;; that best
reconstruct each point x; from its neighbors are used to compute the corresponding points
y; in the low dimensional space by minimizing the following cost function with respect to

Y = (y17 Y2, -0 yN)T:
N k
. - 2
argmin (V) = 3 [|yi - leijyij\l : (6.3)
i j=

This minimization problem is equivalent to the calculation the eigenvectors corresponding
to the smallest eigenvalues of the matrix (I — W)? (I — W), where I is the identity matrix
and W is a matrix with elements w;;. The above minimization is performed in two steps
with the additional constraint ; Wij = 1 to make the representation translation invariant.

Laplacian Eigenmaps

The main philosophy of Laplacian Eigenmaps [98] is to calculate the low dimensional
representation of the data in such a way that the local neighborhood information is
optimally preserved. For this reason, the distance graph G is computed, in a way similar
with the methods described above. Each edge of the graph is associated with a weight,
which is a measure of closeness of the respective neighbors. The weights are attributed

2
;=11

by the Gaussian kernel function w;; = e~ 20>, where o is the kernel width. Thus, the
weights exhibit high values for nearest neighbors and small values for distant datapoints.
Next, a diagonal matrix A is constructed, with elements A;; = > w;j,7 = 1,..,n and

j
the generalized eigendecomposition Lu = AAu is performed, where L = A — W. The
low dimensional representation is obtained using the d eigenvectors corresponding to the

smallest nonzero eigenvalues.
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6.3 Results and discussion

In order to investigate the effectiveness of the above dimensionality reduction schemes,
we have used two unsupervised classifiers and two datasets of patterns. More specifically,
spectral clustering and fuzzy C-means are tested using patterns from two different feature
sets (Table 6.1): one containing both cytoplasm and nucleus features (20 features) and
the other containing only nucleus features (9 features). Several experiments were per-
formed and the performance of the classification techniques was measured using patterns
of increasing dimension varying from 1 to 20 features for the first subset and from 1 to
9 for the second subset. Furthermore, different values for the kernel width of spectral
clustering have been tested (107%,1073,1072,1071,1,2,5). In Isomap, LLE and Lapla-
cian Eigenmaps, different numbers of nearest neighbors ranging from 4 to 20 were also
tested for the construction of the distance graph G. The best results for each classifier are
presented in this work.

For comparison purposes, PCA was also implemented. For the evaluation of the
classification performance, the harmonic mean (HM) of the Sensitivity and the Specificity
indices was calculated. The sensitivity measures the proportion of abnormal cells which
are correctly identified as such by the classification algorithm, and the specificity measures
the proportion of the normal cells that are correctly characterized as such.

The classification results of spectral clustering and fuzzy C-means are depicted in
Table 6.3. For each feature subset, the HM and the number of features retained by the
dimensionality reduction techniques are presented. As we can observe, the initial features
without the use of dimensionality reduction schemes, lead to the weakest classification
performance. The use of either linear or non-linear dimensionality reduction schemes
results in a significant improvement of the classification.

More specifically, regarding the linear dimensionality reduction technique (PCA), we
can conclude that there is a small improvement in the classification results, compared to
the case where no dimensional reduction technique is used. Furthermore, in fuzzy C-means
we observe a significant reduction in the retained features. Only 3 out of 20 dimensions are
retained in first set of features and only 4 out of 9 for the nuclei feature subset. Finally, in
spectral clustering, better classification results are produced when only the nuclei features
are used, in comparison with the use of both nuclei and cytoplasm features.

In non-linear dimensionality reduction schemes, we can notice that the performance
of the classifiers is clearly better when they are based only on nuclei features (except in
the case of LLE with spectral clustering, where the results are approximately similar). In
spectral clustering, an improvement of 12.16% in the classification is observed in Isomap,
where the best value of HM (88.77%) using only the nuclei features is reached. Fur-
thermore, in fuzzy C-means, the corresponding highest difference in classification rates is
11.17% and it is observed using K-PCA with polynomial kernel. Nevertheless, the best
classification result using only the nuclei features is 90.58% with K-PCA and the Gaussian
kernel. It must be noted that this result is obtained using only seven features, while for
different number of features the HM value is smaller (Fig. 6.3).

101



The obtained results clarify that the use of non-linear dimensionality reduction schemes,
not only improves the classification performance of spectral clustering and fuzzy C-means,
but they also allow the successful separation of normal and abnormal cercival cells, based
exclusively on nuclei features.

Classification results of Fuzzy C-means with K-PCA (Gaussian Kernel)
using Nucleus Features
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Figure 6.3: Results obtained in terms of HM for Fuzzy C-means classification. Notice
that the HM reaches its highest value for seven features.

Table 6.3: Performance of classification in terms of HM and the number of retained

features.
Spectral Clustering Fuzzy C-means

All Features Nuclei Features All Features Nuclei Features

#feat | HM(%) | #feat | HM(%) | #feat | HM(%) | #feat | HM(%)

No dimensionality reduction | 20 | 74.21 9 73.59 20 | 72.89 9 71.98
PCA 6 74.25 7 83.38 3 74.23 4 71.99
K-PCA (polynomial) 2 85.78 9 88.53 3 74.24 3 85.41
K-PCA (Gaussian) 16 | 84.44 7 87.52 9 19042 | 7 | 90.58
Isomap 1 76.61 9 | 88.77 1 75.02 3 75.08
LLE 17 | 86.97 | 9 86.45 15 | 81.69 6 87.17
Laplacian Eigenmaps 20 | 80.84 3 87.52 11 85.31 1 87.20

6.4 Conclusion

The correct characterization of the cell nuclei in Pap smear images is a prerequisite for
the derivation of accurate diagnostic decisions. Since in cell clusters presented in Pap
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smear images the automated cytoplasm segmentation is not feasible, in contrast to the
automated nuclei segmentation [76, 77|, we have investigated the case of the successful
classification of cells with exclusively nuclei features using two unsupervised classifiers. In
this direction, non-linear dimensionality reduction techniques were also used, for the more
accurate representation of the features manifold. As it was verified by our experiments,
the obtained results using only the nuclei features are better than the results obtained
using all the extracted features (from the areas of nucleus and the cytoplasm). This
implies that the characterization of a Pap smear image as normal or abnormal is feasible
with the use of the nuclei features alone.
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CHAPTER 7

CONCLUSIONS AND PERSPECTIVES

In this thesis, we have studied in depth the special issues that Pap smear image pro-
cessing exhibits. The accurate processing of these images that would lead to correct
conclusions about the context of the examined slide is a difficult task for several reasons.
The difficulties in the process of these images accrue from the noise and the artifacts
that they contain, in combination with the extended cell overlapping and the variances
in illumination and dye concentration of the cells. Thus, the effective process of such
images demand specialized approaches that are able to provide object detection, object
delineation, separation of partially occluded or overlapping objects and identification of
normal and abnormal figures of the object of interest, which in the case of Pap smear
images are the cells nuclei.

Our approach was mainly focused on the segmentation of the cells nuclei. This task is
of high importance, as the nuclei detection and area determination result in the evaluation
of salient nuclei features, which present great diagnostic value. Furthermore, we have
extended the cell nuclei segmentation with a classification process for the detection of
normal and abnormal nuclei, using exclusively shape and intensity nuclei features. More
specifically, the techniques presented in this thesis concern the detection of the nuclei
positions, the definition of the actual nuclei boundaries, the separation of the overlapped
nuclei and finally the classification of normal and abnormal nuclei in Pap smear images.
These techniques overcome the limitations arising from the complexity of these images,
and they provide an effective framework for the reliable analysis of such images. This
is clearly verified from the experimental results of the methods presented in this thesis.
We can conclude that the proposed methodologies achieve accurate identification of the
regions of interest and they present high performance, compared with the state of the art
methods.

The method for the detection of the nuclei centroids described in Chapter 3 is based on
mathematical morphology and clustering techniques and it includes a priori knowledge
about the expected shape of the nuclei. This method results in the definition of the
positions of the cell nuclei in a Pap smear image that contain both isolated cells and
cell clusters. A rough estimation of the boundary of the nuclei was also calculated by
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the definition of the circumference of each nucleus, which resulted in the refinement of
the detected centroid. This method can be directly applied to images captured from an
optical microscope without the need of the predefinition of the region of interest. However,
an issue that must be solved in the future is the separation of clustered nuclei, since the
method in its current form indicates the existence of one nucleus in a specific location.
Thus, an interesting extension of this method could be the annexation of an additional
step, which would count the number of the overlapped nuclei in an eventual detected
nuclei cluster.

In Chapter 4 we presented a method for the automated nuclei boundaries determi-
nation, which is able to extract the accurate boundaries of non overlapping nuclei. This
method is accomplished with the application of the marker based watershed transform,
using the nuclei markers extracted in the detection step. In order to include information
from the three color channels of the image, the morphological color gradient image is cal-
culated, in which the watershed transform is applied. The features of the detected areas
concerning the shape, the texture and the image intensity are ranked through the mRMR
feature selection scheme, in order to estimate their discriminative ability for the definition
of the true nuclei set from the total findings. The features involving the neighborhood
of the nuclei present high discriminative ability, indicating that useful information is
contained not only inside the nucleus area but also in its neighborhood. The method
was tested in a large image data set and it presents higher performance compared with
segmentation methods based on deformable models (GVF, ACM). This method can be
extended in the future with the investigation of the ability of the detected features for
the recognition of normal and abnormal nuclei in Pap smear images.

Furthermore, a method for the boundary determination of overlapping nuclei is de-
scribed in Chapter 5. The method incorporates a priori knowledge about the nuclei
shape, and it is based on the training of a physically based deformable model in terms
of modal analysis. Based on the estimated modal distribution and driven by the image
characteristics the method succeeds in the determination of the nuclei boundaries in im-
ages containing two overlapping nuclei. The introduction of the locally adaptive image
force using appropriate weight parameters, controls the contribution of the image force in
the total energy of the deformable model. Thus, in the overlapping area, the deformation
of the model is mainly driven by the learnt parameters obtained through the training
procedure. Comparisons with other segmentation methods, proposed especially for the
separation of overlapped nuclei, indicate that our method produces more accurate nuclei
boundaries. In the future, the examination of the efficiency of our method in the seg-
mentation of images containing three or more overlapped nuclei is an interesting research
issue. Furthermore, the method can be extended with the development of an anterior
step which would automatically determine the number of the overlapped nuclei.

In the above methods, the segmentation of cells nuclei in Pap smear images is effi-
ciently addressed. The nucleus is the part of the cell which presents significant changes
in abnormal circumstances and in contrast to the cytoplasm its segmentation is feasible
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in an automated manner. Thus, in Chapter 6, we investigated the case of the successful
classification of cells in normal and abnormal categories based on features extracted ex-
clusively from the nucleus area and ignoring the contingent cytoplasm features. We have
examined non-linear dimensionality reduction schemes, in order to produce accurate rep-
resentation of the features manifold and their influence on the classification performance
of two unsupervised classifiers. The results indicate that high classification performance
is achieved when only the nuclei features are used. In the future, experiments with super-
vised classifiers using exclusively nuclei features lying in low dimensional manifolds may
provide an interesting extension of the proposed method.

The combination of all the methods described in this thesis could result in the develop-
ment of an integrated fully automated system for the analysis of Pap smear slides, which
would embody automated nuclei segmentation, nuclei feature extraction and finally clas-
sification. The methods described in this thesis are general and suitable for the addressing
of the specific problems that Pap smear images processing presents. However, we can as-
sert that their application is not limited only to these images, as the nuclei segmentation
is the main field of research interest for the detection of the cancer in several cytological
images. In the field of biomedical image analysis, the processing of microscopic images
containing cells from several tissues, such as breast, lung or blood, occupies a large part of
the scientific community. Thus, the proposed methods in this thesis, with the appropriate
modifications, could be applied to a large range of microscopic images, resulting in the
accurate segmentation and classification of the cells nuclei.
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APPENDIX A

A. Fuzzy C-means clustering

The standard fuzzy C-means [62] objective function for partitioning a set of N unlabeled
column vectors in RP (where p is the number of features in each vector) X, 1 <k < N
into ¢ clusters is given as:
c N
I = > Y vl — vil?, (A.1)
i=1 k=1
where {v;}§_, are the prototypes of the clusters. The parameter m is the weighting
exponent on each fuzzy membership, which determines the amount of fuzziness of the

resulting classification. v;; represents the membership value of the feature vector xy in
cluster i. The following conditions must hold [62]:

vk=1 k=1.N (A.2)
=1

N
0<> vp <N, i=1,.,C

k=1

The set of values satisfying the above conditions can be arranged in a matrix of the
form Ulc, N|. The fuzzy C-means objective function is minimized when high membership
values are assigned to pixel data which are close to the centroid of its particular class.
Low membership values are assigned to pixel data located far from the centroid. For
the determination of crisp clusters, each column vector zj is assigned to a cluster with

maximum membership value.

B. Support Vector Machines

Given a training set D = {(z;,y;)|z; € R, y; € {—1,1}}_,, where z; are the data and y;
is the label for each z;, the support vector machine (SVM) [63] determines the decision
hyperplane between the two classes y; and y,, which is obtained by the solution of the
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following optimization problem:

J1 g &
glé%{iw W+C;&}
subject to y; (W' ¢(x;) +b) > 1—§&, & >0, i=1.n (A.3)

where w is a normal vector perpendicular to the hyperplane, C' is a positive constant that
reflects the influence of margin errors, b determines the offset of the hyperplane from the
origin along the normal vector w and &; are slack variables, which measure the degree of
misclassification of the datum x;. The function ¢(z;) maps the training vectors (z;) into
a higher dimensional space. If we consider the dual form of this problem, the decision
function is

sgn <Z(%%K($i;$) + b> : (A4)

i=1
where the terms a;,7 = 1,..,n constitute a dual representation for the weight vector in
terms of the training set, such as:

w = Zaiyl-xi. (A.5)

Furthermore, K (z;,z;) = ¢(z;)" ¢(z;) is the kernel function. In our experiments we
have used the linear and the radial basis function (RBF) kernels, which are given by:

K(z;,xj) = :riij, (A.6)

and
K(z;,x;) = exp (—’y”xi - :erQ) , v >0, (A7)

respectively.

C. Spectral Clustering

Given a set of vectors (1, xa,..,2n), 2 € RP and the number ¢ of desired clusters to be
separated, the spectral clustering algorithm [74] performs the following steps:

1. Define the affinity matrix ANN as A; ; = exp(—|lz; — z;|*/20?).

2. Define the diagonal matrix DV*V as Dy;; = Y Ajj
i

3. Define the matrix L = D~1/24D~1/2,

4. Define the c largest eigenvalues \;,7 = 1, .., c of L and the corresponding eigenvectors

yi,2=1,..,c.

5. Form the matrix Y which has as columns the eigenvectors ;.
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. Normalize each row of Y to have unit length.
. Treat each row of Y as a point in R¢ and cluster them into ¢ clusters via K-means.

. Assign the original points x; to cluster j if and only if row ¢ of the matrix Y was
assigned to cluster j.
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APPENDIX B

The watershed transform

The concept of watersheds [101] in image processing is based on considering an image
in three dimensional space, with two spatial coordinates versus intensity. The value of
the intensity is assumed to be the elevation information. In terms of this topographic
representation of the image, the pixels are divided into three categories: pixels of re-
gional minima, pixels of catchment basins and pixels of watershed lines, which sepa-
rate neighboring catchment basins and consequently they separate different characteristic
parts of the image. For the detection of the watershed lines in an image I with regional
minima My, My, ..., Mr a flooding process is performed in integer flood increments from
no = min(l) 4+ 1 to nye, = max(l)+ 1. Let C(M;),i = 1,.., R be the sets of points in the
catchment basin corresponding to the regional minimum M; and let C'[n] be the union
of the flooded catchment basins at stage n of the flooding process. The set of the image
points with intensity value lower than n is defined as T'[n| = {p|I(p) < n}. The above
sets of points are initialized as Cmin(I) 4+ 1] = T'[min(¢) + 1]. In the next steps of the
algorithm, the set C'[n] is sequentially derived from C[n — 1] as follows:

Let @ be the set of the connected components in T'[n]. Then for each connected compo-
nent ¢ € @ the intersection A with the set C[n — 1] is calculated as A = ¢ N C[n — 1].
Depending on the value of A there are three possibilities:

1. If X is empty then a new minimum is present and the connected component ¢ is
added into C[n — 1], thus C[n] = C[n — 1] Ug.

2. If A contains one connected component of C[n — 1] then ¢ belongs to an existing
catchment basin of a regional minimum and consequently C[n] = C[n — 1] U g.

3. If A contains more than one connected component of C[n — 1] this means that ¢
partially belongs to different catchment basins and the next step of flooding would
cause the water level in these catchment basins to merge. For this reason, a wa-
tershed line must be constructed to prevent the overflow between these catchment

basins.

The application of the watershed transform in this form usually results in oversegmenta-
tion of the image, because of the presence of artifacts and noise. To avoid this undesirable
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effect, the watersheds are applied in edge images with markers, which are connected com-
ponents belonging to specific regions of interest in the image and they are used as starting
points of the flooding process.
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APPENDIX C

Local Binary Patterns

According to [3], the texture T in a local neighborhood of a monochrome image is the
joint distribution of the gray levels of P (P > 1) image pixels:

T = t(gcago, ",gP—l)a (Cl)

where the gray value g. corresponds to the gray value of the center pixel of the neighbor-
hood and g,(p =0, .., P — 1) correspond to the gray values of P equally spaced pixels on
a loci of points (usually a circle with radius R(R > 0)). By subtracting the gray value of
the center pixel g. from the gray value of the neighborhood pixels, we obtain an equivalent
form of the texture, that is:

T =t(ges Go = Ger 91 = Ges - 9P—1 — ge), (C.2)
If we assume that the differences g, — g, are independent of g., (C.1) can be factorized as:
T = t(ge)t(go = Ger g1 = Ges - GP—1 = ge), (C.3)

and since the distribution ¢(g.) describes the overall luminance of the image, it does not
provide useful information for texture analysis, leading to a simplified form of (C.2)

T~ t(go = ger G1 — Yoy -, GP—1 — Ge), (C.4)

which is a highly discriminative texture operator, as it records the occurrences of various
patterns in the neighborhood of each pixel in a P-dimensional histogram. The invariance
with respect to the scaling of the gray scale is achieved by considering just the signs of
the differences g, — ¢g. and not their exact value:

T %t<8(90 _gc)as(gl _gc)a"’s(ngl _gc))a (05)

where

0, z<0’

S(x):{ 1, 2>0
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By assigning a binomial factor 27 for each sign s(g, — ¢.), (C.4) is transformed into a
unique LB Pp r number that characterizes the spatial structure of the local image texture:

LBPpr =Y s(gp— gc)2". (C.6)
P

~
-

Il
o

It is observed that certain local binary patterns are fundamental properties of texture,
and they are characterized as “uniform”. The uniformity measure U (pattern) corresponds
to the number of spatial transitions (bitwise 0/1 changes) in the pattern. In general, the
operator for grayscale texture description using rotation invariant uniform patterns intro-
duced by [3] is defined as:

P—1
| —g.), ifU(LBPpg) <2
LBP]/Q?}L%Q _ 1;) S(gp g ) 1 ( P,R) (C?)

P + 1, otherwise

P-1
where U(LBPpr) = |s(9p-1 — 9c) — (90 — g¢)| + 21 |s(gp — gc) — s(gp—1 — 9c)|-
p:
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