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ABSTRACT

Andromachi T. Hatzieleftheriou, MSc, Computer Science Department, University of Ioan-

nina, Greece. January, 2008. Fast and Reliable Stream Storage Through Differential Data

Journaling.

Thesis Supervisor: Stergios V. Anastasiadis.

Real-time storage of massive stream data is emerging as a critical component in modern
computing infrastructures used for continuous monitoring purposes. Traditional file and
database systems are not designed for such operation environments and incur excessive
resource requirements when handling high-volume streaming traffic.

In this thesis, we examine the possibility of employing data journaling techniques in
order to combine sequential throughput with low latency during synchronous writes. Ex-
perimentally we demonstrate that low-rate streams incur remarkably high data journaling
traffic in a commonly used production file system. Therefore, to alleviate the problem
we introduce differential data journaling in a prototype subsystem that we have designed
and implemented for a widely available operating system. Through extensive experimen-
tation, we show that our implementation achieves substantial reduction in the required

disk throughput combined with very low write latency.
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CHAPTER 1

INTRODUCTION

1.1 Thesis Scope

1.2 Thesis Qutline

1.1 - Thesis Scope

Continuous monitoring processes are prevalent today for a wide range of purposes such as
network administration, autonomic systems management and physical site safety. Such
important applications make stream-oriented functionality highly relevant in modern
computing infrastructures. For instance, recently proposed stream management engines
demonstrate the feasibility of flexibly applying time-series operators on high-rate streams
[3, 19]. Existing stream processing environments store stream data either temporarily
before applying real-time operators within time windows [7], or permanently in order to
support retrospective query processing [10].

Prior research has made the case that traditional data management approaches, such
as relational databases and general-purpose file systems, are not engineered to efficiently
store continuous stream data that are automatically generated from sensors in real time
[7, 10]. Sensors may generate high-resolution video and audio streams at high rates [11],
or send intermittent variations of environmental conditions at much lower rates [22]. A

monitoring system receives messages from high-volume links or large numbers of sensors



and stores the received data for a time period that depends on whether the applied
processing occurs in real time or retroactively.

Across all types of heterogeneous streams with different rate and content characteris-
tics, it would be desirable to store the received data reliably on the same facility without
compromising the sequential playback performance required for statistical processing or
effective visualization. Thus, a stream storage facility could serve as a building block
for a variety of applications in the entire range from network packet processing to urban
traffic control or environmental monitoring with the appropriate indexing functionality
built separately at a higher level, when support for query processing is required.

In general, file system operations are either data operations that update user data, or
metadata operations that modify the structure of the file system itself. Existing general-
purpose file systems use journaling in order to synchronously move data or metadata from
memory to disk in a sequential manner. Thus they postpone the more costly transfer of
data or metadata to the disk location without penalizing the write latency perceived by
the application user. Indeed, previous research has used trace-based emulation to experi-
mentally demonstrate that data journaling can serve random writes with high sequential
thr01‘1ghput, but actually makes throughput lower at high data volumes due to the extra
disk traffic generated [25]. The study made the reasonable conclusion that data journaling
should only be enabled with random writes, but disabled with large sequential writes. In-
stead, we focus on the efficient and reliable storage of multiple concurrent streams whose
aggregate workload demonstrates random-access behavior even though appends corre-
sponding to individual streams may be perfectly sequential. To a large extent, in such
environments it remains unclear what is the most appropriate way to handle the incoming
data.

In the present thesis, we investigate the performance characteristics of data journaling
in the context of synchronous writes that would be required among several situations
including the reliable storage of incoming streaming data. In order to lower the cost of data
journaling, we introduce differential data journaling, that constitutes a differential version
of the default data journaling mode of a widely used operating system. In particular, the
primary idea of our approach is to journal only the bytes that are actually written rather
than the entire corresponding blocks that contain them. Therefore, depending on the

rate characteristics of the streams, we can reduce the required journaling throughput up



to several factors. As a side-effect of the sequential writes to the journaling device, we
also manage to substantially reduce the response time of synchronous writes. Thus, we

can use data journaling to reduce the latency of writes at a reduced cost of required disk

throughput.

1.2 Thesis Outline

The remainder of this thesis is organized as follows:

In Chapter 2, an overview of the related literature is presented. We review previous
research related to techniques that have been proposed to provide file system reliability
across system crashes and achieve high performance during data and metadata updates.
Furthermore, we define the storage needs of applications that manage stream data, and
present some of the most important implementations in this field. Finally, we present
recent research related to redundancy elimination that intends to reduce the consumption
of expensive resources, such as hard disk and memory space.

In Chapter 3, we describe an existing journaling method that is commonly used. In
particular, we examine the journaling technique that the Ext3 file system applies in order
to preserve metadata consistency across system failures, while minimizing the required
recovery time,

In Chapter 4, the design goals of our study are defined and the general architectural
decisions taken during our prototype implementation are justified.

In Chapter 5, we introduce the differential data journaling technique that we have
designed and implemented for a widely available operating system. Our prototype is
based on the idea of accumulating the modifications of multiple updates into a single
journal block, and intends to minimize the write latency at a reduced disk throughput
cost. |

In Chapter 6, we explain the experimentation environment that we used in our study
and present our measurements across different workloads. The experimental results are
displayed graphically and our conclusions are justified.

In Chapter 7, the conclusions and the future directions of this thesis are outlined.



CHAPTER 2

RELATED RESEARCH

2.1 Fast and Reliable Storage Systems
2.2 Stream Archival Servers
2.3 Redundancy Elimination

2.4 Summary

—_—

In this chapter, we describe approaches that have been previously proposed in order
to achieve high performance in file systems during data and metadata updates. Further-
more, we review previous research that focuses on techniques which intend to provide file
system reliability across system crashes. Next, we define the storage needs of streaming
applications, and present some of the most important proposals in this direction. Finally,
we present recent research related to redundancy elimination that intends to reduce the

consumption of expensive resources, such as hard disk and memory space.

2.1 Fast and Reliable Storage Systems

File systems are central parts of modern operating systems and are expected to serve two
opposing principles; performance and durability. Nevertheless, operating systems are still
susceptible to hardware, software and power failures that damage both their efficiency

and their reliability.



Early file systems introduced the use of a main memory buffer cache to hold writes
until they are asynchronously written to disk. Those file systems suffered from potential
corruption during a power failure or an operating system’s crash, since recovery often
required a time consuming examination of the entire state of the file system. Even today,
during rebodt, verifying a file system’s consistency requires a special utility that recovers
the file system’s components to a consistent state. As disk sizes grow, this time can
become a serious bottleneck, leaving the system offline for a considerable amount of time
while the disk is scanned, checked and repaired. Although disk drives are becoming faster
through time, this speed increase is modest compared with their enormous increase in
capacity. Unfortunately, every doubling of disk capacity leads to a doubling of recovery
time needed from traditional file systems checking techniques.

It is, however, possible to make file system recovery fast without sacrificing reliability
and predictability. This is typically done by file systems which guarantee atomic comple-
tion of file system updates. The principal idea behind atomic updates is that an entire
batch of updates can be written to the file system, but those updates do not take effect
until a final commit update is made on the disk. In order to achieve this, the file system
must keep both the old and the new contents of the updated data somewhere on disk
until.the final commit.

In order to predictably recover after a crash, the recovery phase must be able to
work out what the file system was trying to do when the crash that led to incomplete
operations to disk occurred. Consistent recovery of the metadata after a crash, due to
operating system or power failure, requires the system updates to be written on disk in a
specific order. There are many ways of achieving the required ordering between updates

and we describe some of the most important in the rest of the present section.

2.1.1 Synchronous Writes

The system can achieve consistency simply by updating the system metadata synchronously.
The synchronous metadata update mechanism first waits for the pending writes to com-
plete, before submitting the next ones. Nonetheless, synchronous writes can significantly
impair the ability of a file system to achieve high performance as it is not feasible to batch

up multiple updates into a single disk operation. Similarly one can recover recently writ-
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Figure 2.1: A log-struétured file system treats its storage as a circular log and writes all
data and metadata modifications sequentially to the head of a segmented append-only
log. Log space must be constantly reclaimed and thus, a garbage collecting process is

responsible for coalescing unused space into empty segments.

ten data after a crash by writing them synchronously to disk. Synchronous data writes
are typically applied in database systems that store critical data (31, 8].

Xsyncfs introduces the idea of externally synchronous 1/O that guarantees durability
not to the application, but to the external entity that observes application output [23].
In particular, an externally synchronous system call returns control to the application be-
fore committing data. Subsequently, all output that causally depends on the uncommitted
transaction is buffered, and is eventually externalized only after the commitment is suc-
cessfully completed. However, in the case of applications that do not produce any output,
xsyncfs commits data periodically similarly to an asynchronously mounted journaling file

system, an approach that is described later in this section.

2.1.2 Log-Structured File Systems

The main idea behind the design of a log-structured file system (LFS) is to improve write
performance by buffering a sequence of file system updates in the file cache and then
writing all the changes to disk sequentially in a single disk write operation [27]. For this
reason, a log-structured file system treats the disk as a segmented append-only log and
writes all data and metadata modifications into it. The log is the only structure on disk
and consists of segments that facilitate the removal of deleted areas (Figure 2.1).
Periodically, the system writes the complete and consistent file structures safely at

a fixed location of the log called checkpoint region. After a crash, the file system uses

6



the checkpoint for its initialization, and the recent portion of the log to quickly recover
recently written data. In particular, upon its next mount, the file system does not need
to walk all its data structures to fix any inconsistencies, but can reconstruct its state from
the last consistent point in the log.

Free space must be constantly reclaimed from the tail of the log to prevent the file
system from becoming full when the head of the log wraps around to meet it. When
updated data is written to the end of the log, the previous copy of the data is still on disk
in its old location and can be considered as dead space or a hole in the log. A garbage
collecting process is responsible for coalescing these holes into empty segments which are
then available for new log writes. The tail itself can skip forward over data for which
newer versions exist farther ahead in the log; the remainder is simply moved out of the
way by appending it back to the head.

Log-structured file systems maximize the write throughput on magnetic media by
avoiding costly seeks. In addition, interleaved writes to multiple streams can be allocated
closely together on disk. However, log-structured file systems induce cleaning overhead,
since the size of the file system is of finite size and the log must eventually wrap around.
Althgugh write allocation in log-structured file systems is straightforward, the garbage
collection of storage space after files are deleted, has remained problematic. Cleaning in
a general purpose LF'S must handle files of vastly different sizes and lifetimes, and all
existing solutions involve copying data to avoid fragmentation. Previous study verified
this high cleaning overhead, particularly under OLTP-like workloads, where small random
writes make up a large portion of the disk I/O requests [28]. Over the last years, many
algorithms have been proposed to reduce the cleaning cost of LFS, but the cleaning cost
is still high in systems with high disk space utilization and little idle time.

A number of file systems have been implemented based on this design, including the
Sprite LFS [27] and some prototype LFS implementations on Linux. HyLog uses a log-
structured layout for hot pages to achieve high write performance, and overwrite strategy
for cold pages to reduce the cleaning cost [32]. DualFS is a recent implementation based
on a variation of log-structured file systems [24]. It uses two separates devices for the
data and metadata, respectively; it employs a log-structured file system for the metadata
and treats data as in typical Unix systems. We present another variation of LFS called

StreamF'S in Section 2.2.2, where all writes take place at a write frontier which advances



as data is written {10]. StreamFS does not require a segment cleaner, and applies a

prototype expiration policy in order to selectively overwrite the stored data.

2.1.3 Soft Updates

Soft updates is a mechanism that delays writes of metadata and explicitly maintains de-
pendency information to specify the order in which data must be written to disk [13].
Thus, it eliminates the need for a log or most synchronous writes related to metadata.
The system mainta,insvfor each disk block a list of all the metadata dependencies asso-
ciated with the block. When a block needs to be written, which block requires other
blocks to be written first, the system rolls back the affected parts of the selected block to
their earlier state. After the write has completed, the system deletes all the completed
dependencies and restores the block to its current value. Thus, applications see the most
recent version of the metadata blocks and the system keeps disk contents consistent. After
system crashes the system can be mounted and used immediately, since the only remain-
ing inconsistencies are non-fatal errors that can be corrected in the background during
normal operation.

Seft updates track and enforce metadata update dependencies, so that the file system
can safely delay writes for most file operations. This method improves system performance
because it aggregates multiple metadata updates into a reduced number of disk writes

and postpones time-consuming operations, such as deletes, to a background process.

2.1.4 Journaling File Systems

Journaling file systems use an auxiliary log to record all metadata operations and ensure
that the log and data buffers are synchronized in a way that guarantees recoverability.
Additionally, some implementations also support logging of date modifications. The goal
of a journaling file system is to avoid running time-consuming consistency checks on the
whole file system, by looking instead in the log that contains the most recent disk write
operations. Consequently, remounting a journaling file system after a system failure is a
matter of a few seconds.

A journaling file system maintains a journal of the updates it intends to make, ahead

of time. The log is maintained as a preallocated file within the same file system or as
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Figure 2.2: A journaling file system logs updates to a circular journal file before com-
mitting them to the main file system. Once the corresponding updates has been stored
to their final location, copies of the blocks in the journal can be discarded allowing the

journal space to be reclaimed.

a standalone separate file system. After a crash, recovery simply involves replaying the
updates from the journal until the file system is consistent again. A file system transaction,
which consists of a sequence of correlative updates, is marked as complete when it is
journaled and followed by a commit record. Only then the corresponding updates can be
written to their final location (Figure 2.2). Journaling file systems guarantee atomicity
during recovery, as all the updates of a transaction can either be rejected or replayed,
according to whether or not the transaction is followed by a commit record in the journal.

Through write-ahead logging the journaling file systems ensure that the log is written
to disk before any pages containing data modified by the corresponding operations. Even
though the system performs additional disk operations, they are efficient since they are
sequential. Batching of log writes that originate from different concurrent applications,
provides additional throughput improvements. In addition, file system journaling allows
synchronous writes to complete faster, because they return as soon as the sequential log
update completes. Therefore, costly disk operations at the final locations of the modified
blocks can be deferred and completed periodically and asynchronously.

Journaling of file data helps further in that direction, but incurs significant extra
throughput on the journaling device. The cost of data journaling can be high for large
writes due to the significant volume of data sent to the log. Unfortunately, current

implementations incur considerable logging activity even with small writes. In order to



simplify the implementation, they log the entire blocks being modified rather than just
their modified part. However, journaling reduces write latency in both small and large
writes, since it allows the synchronous log updates to be completed sequentially.

The data and metadata journaling of the Ext3 file system has been documented[29, 12].
yFSisa recéntly proposed file system for general purposes that only uses journal transac-
tions for metadata modifications [33], while it reduces disk seeking and handles large files
efficiently. Earlier, Hagmann described metadata update logging in the Cedar File System
to improve performance and achieve consistency [16]. In order to gain performance, it
used group commit, a concept derived from high performance database systems. Also, the
Echo distributed file system used a journal to record disk storage updates thus improving
performance and availability [5].

Prabhakaran et al. introduced the semantic block-level analysis technique to trace and
analyze file systems, and the semantic trace playback technique to evaluate file system
modifications [25]. Evaluation of Ext3 over Linux showed that data journaling incurs
substantial traffic to the journal but with sequential throughput, unlike the ordered mode
that mainly writes data to the final location. The authors conclude that sequential work-
loads should better be served in ordered mode, while random workloads can benefit from
dataljournaling. Using trace-based emulation, the authors show that differential data

journaling can reduce substantially the amount of traffic to the journal in database ap-

plications.

2.1.5 Persistent Memory

There exist approaches that implement some type of stable storage through specialized
hardware. The memory vulnerability to power outages can be encountered using uninter-
ruptible power supply or a distinct Flash RAM device. Thus, writes to the final on-disk
location can be deferred to a later more convenient time, when the memory space needs
to be reclaimed for example. However, the main drawback of such implementations is the
extra hardware expenses.

The Rio file cache makes ordinary memory safe for persistent storage, through the
use of an uninterruptible power supply, that allows the file system to avoid synchronous

writes and guarantee the file system consistency at the same time [8]. However, durability
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is guaranteed only as long as the power in on or the batteries remain charged.

Another approach, the Network Appliance’s WAFL (Write Anywhere File Layout) file
system checkpoints the disk to a consistent state periodically and uses Non-Volatile RAM
(NVRAM) for fast writes between checkpoints [18]. NVRAM is used to keep a log of NFS
requests that WAFL has processed since the last consistency point. WAFL keeps the
new copies of the updated data in different locations from the old copies, and eventually
reuses the old space once the updates are committed to disk. After an unclean shutdown,
it replays any requests in the log to prevent them from being lost. The Write Anywhere
File Layout improves write performance by writing file system blocks to any location on
disk and in any order, while deferring disk space allocation with the help of NVRAM.
Nevertheless, NVRAM is characterized by capacity, reliability and cost limitations.

2.1.6 Other Implementations

Hildebrand et al. highlight the prevalence of small and sequential data requests in scientific
applications [17]. They show that it is possible to improve the overall write performance
of parallel file systems by using parallel I/O for large write requests and a distributed file
system for small write requests. The Virtual Log is another effort to minimize the latency
of small synchronous writes by building the log-structured file system over a log with
entries that are not necessarily physically contiguous [31]. Virtual Log is an approach
to improve small disk write performance even in systems with no idle periods, but it
requires detailed knowledge of the disk layout and the location of the disk head at any
moment, which might be difficult to obtain from modern disks. Finally, the Google File
System handles large files typically mutated by appending new data sequentially rather

than overwriting existing data, at random file locations [14].

2.2 Stream Archival Servers

Recently a new class of data-intensive applications has become widely recognized; stream-
ing data management applications. This class includes financial applications, network
monitoring, security, telecommunications data management, web applications, manufac-

turing and sensor networks. In the data stream model, individual data items may be
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relational tuples, e.g., network measurements, call records, web page visits, sensor read-
ings, and so on. However, their continuous arrival in multiple, rapid and time-varying
streams yields some fundamentally new research problems.

In particular, data arrival rates which can vary from hundreds of thousands of packets
per second ﬁer link to much lower rates, complicate the storage management for such
applications. Currently, the design of a streaming-oriented storage system can be based
on two possible architectures; either a relational database can be used to store the in-
coming stream data, or a custom index can be built on top of a conventional file system.
Nonetheless, at the above mentioned heterogeneous data rates, both common database in-
dex structures and general-purpose file systems have been documented to perform poorly
[7, 10, 2]. This motivates the need for a new storage system, that runs on commodity

hardware and is specifically designed to satisfy the storage needs of streaming data.

2.2.1 Traditional Databases

Nowadays, network monitoring systems are useful for a multitude of purposes, such as
physical site safety, network and security forensics. Monitoring applications differ sub-
stantially from conventional business data processing. Traditional Database Management
Systems (DBMS) have been oriented toward business data processing, and consequently
are designed to address the needs of these applications [7]. Particularly, a DBMS is con-
sidered to be a passive repository storing a large collection of data elements and typically
only humans initiate queries and transactions on this repository. Furthermore, tradi-
tional DBMSs are not designed for rapid and continuous loading of individual data items,
and they do not directly support the continuous queries that are typical of data stream
applications. Finally, a DBMS assumes that applications require no real-time services.
Applications that continuously monitor and store massive numbers of streams in real-
time could benefit from DBMSs, due to the high volume of monitored data and the query
requirements that arise. However, traditional DBMSs seem to have remarkable inefficien-
cies under such circumstances. First, monitoring applications continuously receive high
volumes of data from external sources, such as sensors, rather than from humans issuing
transactions. Moreover, while for a DBMS data do not have a notion of time and any

update operation overwrites the previous value, data stream represent a sequence of val-

12



ues for the same entity. Thus, the static model of databases, with dynamically changing
queries being executed over static data, is not designed for handling stream data, which
has static queries being executed over dynamically changing data. Last but not least,
handling data streams would require the DBMS to serve real-time applications, making it
imperative that the DBMS employ intelligent resource management (e.g., scheduling) and
graceful degradation strategies (e.g., load shedding) during periods of high load. These
are not features of a traditional DBMS which is designed as a store-and-query model
instead.

Digital streaming infrastructures replace traditional closed-circuit television systems
in urban traffic-control applications to store large numbers of video feeds [11]. Previously,
environmental, oceanographic and meteorological conditions have been measured and
stored over distributed relational databases [22]. Aurora is a stream processing engine
that has been developed to support primitives for streaming applications, handle query
processing on incoming messages in real time and gracefully deal with spikes in message
load [7, 3]. The CoMo is a passive monitoring system that can be used as a building block
for a network monitoring infrastructure that processes and shares network traffic statistics
over fnultiple sites {19]. Como includes a storage process that is data agnostic and treats
all data blocks equally. Also, load shedding techniques were developed to maintain the

accuracy of traffic queries within acceptable levels at extreme traffic conditions [4).

2.2.2 General-Purpose File Systems

The storage needs of monitoring applications result in continuous sequential writes to the
underlying storage system. In order to reduce disk seek overheads and improve system
throughput, the system should employ data placement techniques that exploit the par-
ticular I/O characteristics of streams. General-purpose file systems are not engineered to
efficiently store continuous stream data that are automatically generated from sensors in
real time. Unix-like file systems, for instance, are typically optimized for writing small
files and reading large ones sequentially, while monitoring and querying applications ei-
ther write very large files at high data rates, or apply small writes at much lower rates,
while issuing small reads.

File systems periodically write data to disk and transaction processing applications

13



view transactions as committed only after the data has been written to disk. A ‘mod-
ified version of the log-structured file system has been recently used for the storage of
high-volume streams [10]. StreamF$ has incoming stream data written to a frontier that
moves in a circular fashion along the disk space and selectively overwrites the expired
data. However, StreamF'S has been specifically designed for high-rate streams typically
generated in network monitoring systems; it is unclear how it would behave in hetero-
geneous environments where high-rate and low-rate streams co-exist. Additionally, an
aggregate high-rate stream typically contains a large volume of information that makes
necessary to build an index structure online during data storage and scan entire segments
of the stored data during retrospective query processing. Instead, demultiplexing of the
incoming data into separate files would possibly facilitate and reduce the load of the
subsequent selective retrieval and processing.

In order to improve their operation reliability, recent general-purpose file systems
apply journaling techniques to preserve metadata consistency across system crashes at
minimal recovery time. Such techniques are therefore in high demand, especially, in en-
vironments where high availability is important, not only to improve recovery times on
singlg machines, but also to allow a crashed machine’s file system to be recovered on
another machine when we have a cluster of nodes with a shared disk. Comparisons across
different journaling methods with general-purpose file server traffic has shown that, de-
pending on the sequentiality workload characteristics, either ordered data writing or data
journaling may lead to better performance [25]. Nevertheless, the problem is that the
block access sequence on a content server is effectively random when many slow streams
access large files concurrently, even though individual stream appends are perfectly se-
quential [1]. Therefore, it might be useful to build system facilities for the storage of

heterogeneous streams with different rate and content characteristics.

2.2.3 Playback Servers

Several research projects and commercial products of media streaming servers have al-
ready established the feasibility of streaming stored files. Recent years have witnessed
an ever-increasing demand for media-on-demand applications on the Internet. Typically,

users access online media clips by clicking on a hyperlink using their Web browser, which
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results in the browser opening a media player to play the selected media file. The playback
servers are responsible to deliver the selected media file to the player through streaming.
In the streaming mode of data delivery, the initial portion of the media is loaded into the
player buffer, which takes a brief time period. The remainder of the content is obtained
across the network, while the media file is being played back. A stream file is received,
processed, and played simultaneously and immediately, leaving behind no residual copy
of the content on the receiving device.

Therefore, the main purpose of a playback server is to read from disk the required
stored stream file, and then deliver it to the proper client. Reading a stream file from the
disk refers to finding and retrieving the blocks that contain the requested data. Addition-
ally, read-ahead techniques are applied in order to enhance disk performance. Read-ahead
consists of reading several adjacent pages of data of a file from disk, before they are ac-
tually requested. On the other hand, streaming storage deals with the stream files’ write
operations. Thus, the basic challenge of a streaming storage server is to quickly, reliably
and efficiently, in terms of disk throughput, store the incoming data. Write operations on
disk-based stream files are slightly more complicated, since special care must be taken in
order. to avoid compromising their sequential playback performance.

Streaming workloads differ from traditional web workloads in many respects, present-
ing a number of challenges to system designers and media service providers. For instance,
transmitting media files requires more computing power, bandwidth and storage and is
more sensitive to network jitter than web objects. Furthermore, media access lasts for a
much longer period of time and allows for user interaction.

In particular, although proxy caching has been successful in delivering static text-based
content, it is more difficult to deliver streaming media content. First, the size of a media
object is generally much larger than a text-based object, rendering the caching of entire
media objects as static objects inefficient. Furthermore, a client requesting some media
object demands continuous streaming delivery. While, the occasional delays that occur
when transferring data over the Internet are acceptable for text-based Web browsing, for
streaming media data this transfer delay results in undesirable playback jitter at the client
side.

Instead, whole-file transfers, or file downloading can provide continuous playback, but

it introduces a significant startup delay, in addition to large buffer space requirements
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on the client. In comparison to traditional file downloading, media data streaming al-
lows significantly faster playback initiation, provides guarantees for uninterrupted data

decoding, and requires minimal buffering requirements from the client devices.

2.3 Redundancy Elimination

Several approaches have been proposed that intend to reduce the consumption of expen-
sive resources, such as hard disk and memory space or transmission bandwidth. Reducing
the number of required bytes is equivalent to the elimination of data redundancy within
memory or the storage device. A number of techniques that have been proposed towards
this effort include data compression, duplicate suppression and delta encoding methods.
Particularly, data compression eliminates the redundancy inside an object, duplicate sup-
pression refers to the elimination of identical objects and, finally delta encoding eliminates
the redundancy between similar objects.

Significant improvements have occurred over the past decades in the field of virtual-
ization. The main research interest lies in the multiplexing of hardware resources among
virtual machines that run commodity operating systems, in order to reduce the host’s
management overhead. Nevertheless, main memory is not amenable to inexpensive mul-
tiplexing and thus a variety of redundancy elimination techniques, such as page sharing of
identical pages, memory compression inside individual pages and delta encoding between
similar pages, are performed to achieve high memory consolidation. Related study shows
that substantial memory savings are available from the sharing of identical pages between
virtual machines when running homogeneous workloads [30]. The Difference Engine, an
extension to the Xen virtual machine monitor, demonstrates the potential memory savings
available from leveraging a combination of whole page and sub-page sharing and memory
compression [15]. |

Kulkarni et al. exploited similarity at the block level in order to reduce the number of
bytes needed to represent an object when it is stored [21]. In particular, they proposed
the use of compression, duplicate block suppression and delta encoding to eliminate re-
dundancy of stored data in a scalable and efficient way. Finally, Venti is a network-based

storage system intended primarily for archival purposes [26]. This approach enforces a
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write-once policy, preventing accidental or malicious destruction of data, while duplicate

copies of a block can be coalesced in order to reduce the consumption of storage.

2.4 Summary

The prevalence of continuous monitoring processes for System management purposes and
general physical site safety make stream processing applications highly relevant in modern
computing infrastructures. Prior research has made the case that neither traditional
databases, nor general-purpose file systems are sufficiently engineered to efficiently store
continuous stream data that is automatically generated from sensors in real time.

Furthermore, current file systems mostly care to maintain their integrity across crashes
without compromising their performance. They achieve this goal by flushing metadata up-
dates at sequential disk throughput or by avoiding the violation of the dependencies across
the block updates. Existing techniques that complete the data updates synchronously,
require significant extra disk throughput in order to achieve that at relatively low latency.
This overhead comes from the large amounts of data that needs to be written to disk, even
in cases of small updates. However, a number of effective techniques have been proposed
over the last decades, in order to reduce the consumption of expensive resources, such as
memory and disk space.

In this thesis, we reconsider the ability of conventional file systems to serve the needs of
streaming workloads, and towards this direction we modify a widely available file system
in order to alleviate its relevant design inefficiencies. At the same time, we demonstrate
that it is possible to reduce substantially the throughput overhead of synchronous data

writes while maintaining low latencies, as well.
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CHAPTER 3

JOURNALING IN THE ExXT3 FILE SYSTEM

3.1 Background

3.2 Commit Policy
3.3 Checkpoint Policy
3.4 Recovery Policy

-

3.5 Summary

Journaling results in noticeable reduction of the time period spent during the recovery
of a file system to a consistent state after a crash. In this chapter, we analyze the popular
Linux journaling file system, Ext3 [29, 12]. In particular, we examine the journaling
techniques that are applied, in order to achieve high consistency guarantees across system
crashes at minimal recovery time, and detect design inefficiencies that incur significant

performance overhead to the journal device.

3.1 Background

As disk capacities grow faster than disk access speeds over time, modern file systems
use journaling to support fast recovery after a crash [29, 12, 6, 25]. Journaling reduces

possible downtime of several hours to a few seconds by avoiding running time-consuming
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consistency checks over the entire capacity of the file system. Instead, it simply replays
the most recent disk writes stored in the log. Ext3 implements journaling by performing

each high-level change to the file system in two steps:
1. First, it copies the modified blocks into the journal.
2. Then, it transfers the modified blocks into their final disk location.

The journal is treated as a circular buffer; once the necessary information has been stored
to its final location, copies of the blocks in the journal can be discarded allowing the

journal space to be reclaimed.

3.1.1 Basic File System Concepts

A file system refers to a collection of files and file management structures on a physical
or logical mass storage device. It describes a method of organizing blocks on a storage
device into files and directories. The common file model used by the widely known Linux
operating system is object-oriented. Object is a software construct that defines both a

data structure and the methods that operate on it. It consists of the following object

types':
e The superblock object that stores information relating to a mounted file system.

e The i-node object that stores information about a single file. Each i-node object
is associated with an inode number that uniquely identifies the file within the file

system.

e The file object that stores information concerning the relation between an open file

and a process.

e The dentry object that stores information about the linking of a directory entry with

the corresponding file.

The architecture depicted in Figure 3.1 illustrates the relationships between the major
file system-related components in both user space and the Linux kernel. In particular, a
system call interface layer provides the means to perform function calls from user space

into the kernel. The Linux kernel contains a Virtual File System layer which provides a
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Figure 3.1: We illustrate the architectural view of the Linux operating system and dis-
tinguish the Ext3 file system inside the kernel. Furthermore, we figure the on-disk layout

of the Ext3, which is based on the generic Unix file system structure.

common interface abstraction for file systems supported by the kernel. VFS constitutes
an indirection layer which handles the file oriented system calls and calls the necessary
functions in the physical file system code to do the appropriate I/O. Finally, the file

system is responsible for applying the corresponding I/O requests on the proper devices.

3.1.2 Introduction to Ext3

The Third Extended File System, known as Ezt3, is a journaling file system that is com-
monly used by the Linux operating system, and constitutes the default file system for the
most recent Linux distributions. Ext3 is largely based on the Ext2 file system. Particu-
larly, its on-disk layout is entirely compatible with the existing of an Ext2 file system with
an additional disk structure, the journal file (Figure 3.1). Thus, all data and metadata
updates are placed into the standard Ext2 structures that constitute the final location

structures.
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Information about pending file system updates is written to the journal. By fqrcing
journal updates to disk before updating complex file system structures, this write-ahead
logging technique enables efficient crash recovery. A simple scan of the journal and a
redo of any incomplete committed operations are needed to recover the file system to a
consistent stéte. The journal file is, by default, located within the file system, although it
can be also stored on a separate device or partition. The journal is treated as a circular
buffer and thus, once the necessary information has been written to its fixed on-disk

location, the corresponding journal space can be reclaimed.

3.1.3 Journaling Modes

Ext3 uses three kinds of journaling; writeback, ordered and data journaling mode.

o In writeback mode Ext3 logs only the file system metadata, while data blocks are
written directly to their fixed location. Although this mode is considered to be the
fastest, it provides the weakest consistency guarantees of the three modes, since it
does not enforce any ordering between the journal and the fixed-location data writes.
Particularly, the contents of a file might be written before or after the journal is

'updated. As aresult, files modified right before a crash can become corrupted. Thus,
while metadata blocks are considered to be consiétent, no guarantee is provided to

the corresponding data blocks.

e In ordered journaling mode, only metadata writes are journaled. However, data
writes to their fixed location are ordered right before the journal writes of the
metadata, thus reducing the risk of corrupting data during recovery. In contrast to
writeback mode, this mode provides more sensible consistency semantics, since data
and metadata are guaranteed to be consistent after recovery. This is the default

journaling mode on many Linux distributions.

e The full data journaling mode journals both metadata and data blocks. This mode
minimizes the risk of losing file updates, but incurs additional disk accesses. It
is considered to provide the strongest consistency guarantees of the three modes,
while it seems to have different performance characteristics, in some cases worse, and

surprisingly, in some cases better. In particular, the sequential nature of the journal
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can improve performance, while in other cases performance gets worse because each
block is typically transferred to disk twice; once to the journal and then later to its
final location. In the rest of this thesis, we prefer to use the term data journaling
when we refer to the full data journaling mode in order to stress out the fact that

it journals data in addition to metadata.

In our research, we focus on the eflicient and reliable storage of multiple concurrent
streams. Hence, we concentrate on the consistency guarantees provided through ordered
and data journaling, since writeback mode offers the weakest consistency semantics of the
three modes. However, for reasons of completeness, in our experimental measurements
we examine the behavior of all the three modes.

Figure 3.2 depicts the behavior of three different journaling modes during the commit
and the checkpoint intervals; the processes of updating the on-disk journal structure and
the final on-disk location respectively. According to the mount options, the write updates
are either written directly to their final on-disk location, or to the journal. Depend-
ing on the consistency semantics that each mode provides, the updates can take place
synchronously or not. In particular, time flows downwards following the arrows, while
boxes represent file system updates. Additionally, the two timelines represent commit
and checkpoint time. As shown in Figure 3.2(a), during the commit time, the writeback
mode writes synchronously metadata to the journal, while data blocks can be flushed
asynchronously to their final location at any time. Thus, the required disk overhead is
low since only metadata is logged. In Figure 3.2(a), the dotted boxes are used to imply
that no ordering is required between data and metadata updates as they can occur in any
order. Ordered journaling mode flushes data synchronously to the fixed location before
the corresponding journal record is updated (Figure 3.2(b)). Next, when the proper time
interval expires, metadata is finally written asynchronously to the appropriate fixed lo-
cation. Consequently, a small amount of information (only metadata) is written to the
journal sequentially and efficiently. However, synchronous data writes to the file system
incur heavy disk traffic, which limits the system’s performance for small writes. In data
Journaling the log is updated synchronously with both metadata and data records at each
commit interval (Figure 3.2(c)). When the proper time interval expires, both metadata

and data are finally written asynchronously to their fixed on-disk locations. Once again,
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Figure 3.2: The behavior of the three different journaling modes through time. Time
flows” downwards following the arrows, while the boxes represent file system updates.
The two timelines represent commit and checkpoint; the processes of updating the on-
disk journal structure and the final on-disk location, accordingly. Depending on the
consistency semantics that each mode provides, the updates can take place synchronously

or not.

journal writes are efficient due to the append-only nature of the log. Nevertheless, when
large volumes of data need to be written, the duplicates due to the journal writes impair
the overall system’s performance. Although journal writes negatively affect the perfor-
mance of large data writes, small writes can benefit from the sequential journal. There,
data modifications can be batched together while deferring their movement to the final

location, thus reducing disk head seeking overhead.
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Figure 3.3: In the original design of the Ext3 data journaling, there is a full block in
the journal for each write operation, despite the size of the new data modification. In
addition, in the journal descriptor block a new auxiliary tag is allocated each time a write
update is logged, and it is used to describe the correspondence between the journal and

the fixed location disk block.

3.1.4 Journal

Ext3 handles the journal through a special kernel layer called journaling block device
(JBD'). The journal is implemented as either a hidden file within the root directory of
the file system or a separate disk partition. Each log record in the journal corresponds
to one low-level operation in the file system that updates one disk block. The journal
represents with a log record the entire modified block of the file system rather than the
range of block bytes actually modified (Figure 3.3). Thus, the journal is wasteful in terms
of disk throughput and space, but simple in terms of processing complexity because it
uses the buffers of the modified blocks directly. Additionally, each log record is associated
with auxiliary information that contains the number of the corresponding block in the file
system and several status flags.

As shown in Figure 3.4, Ext3 uses additional metadata structures to track the list of
journaled blocks. The journal superblock tracks summary information for the journal,
such as the block size and head and tail pointers. A journal descriptor block, as we
explain later in this chapter, marks the beginning of a transaction and describes the

subsequent journaled blocks, including their final fixed on-disk location. In data journaling

mode, the descriptor block is followed by the data and metadata blocks; in ordered and
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Figure 3.4: We illustrate the on-disk layout of the journal. The journal consists of a
journal superblock, journal descriptor blocks, full data and metadata blocks, and journal

commit blocks.

writeback mode, the descriptor block is followed by the metadata blocks. Finally, a journal
commit block is written to the journal at the end of the transaction to mark its successful

completion and verify that the corresponding data and metadata updates are safe on disk.

3.1.5 Transactions

Each high-level operation of the file system (e.g. a system call) is usually split into a series
of low-level operations that manipulate disk data structures. The atomic operation handle
refers to a set of low-level operations. When the system recovers from a failure, it ensures
that either the whole high-level operation is applied, or none of its low-level operations is.
For reasons of efficiency, instead of flushing each atomic handle to the journal, the system
groups into a single transaction the records of multiple atomic operation handles. All
the log records of a handle belong to one transaction. After its creation, the transaction
accepts log records of new handles for a fixed period of time. The system stores all the
log records of a transaction consecutively on the journal. After the log records have been
committed to the file system, the system reclaims all the blocks of the transaction.

The JBD layer handles each transaction as a whole. A transaction is considered
complete (equivalently in state T_FINISHED), if all its log records are fully residing in
the journal including the commit block. It is incomplete, if at least one log record of the
transaction is not in the journal. An incomplete transaction can be in one of the following

states
T_RUNNING It still accepts new atomic operation handles.
T_LOCKED It does not accept new handles, but waits for the accepted handles to
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finish.

T _FLUSH All the handles in a transaction are complete and the transaction is being

written to the journal.

T_COMMIT All the log records have been written to the journal except for the commit

block of the transaction.

When recovering from a failure, the system skips all incomplete transactions and transfers

the blocks of the complete transactions to the file system.

3.1.6 Kernel Buffers

The Linux kernel uses the page cache to temporarily keep page copies from recently
accessed disk files in memory. In most cases, the kernel refers to the page cache when
reading or writing from disk. In particular, before a file write occurs, the kernel verifies
whether the corresponding page exists in the page cache. In case that it is found, the
write is applied to that page in memory. Otherwise, when the write perfectly falls on page
size boundaries, the page is not read from disk, but allocated and immediately marked as
dirty. Otherwise, the corresponding page is fetched from disk and requested modifications
are done. Pages that have been modified in memory for writing to disk, are marked dirty
and have to be flushed to disk before they can be freed.

A block buffer is the buffer of an individual disk block in memory. As depicted in
Figure 3.5, each block buffer has a buffer head descriptor that specifies all the necessary
handling information required by the kernel in order to locate the corresponding block
on disk. Generally, the page cache does not allocate the block buffers individually, but in
units of pages called buffer pages. The kernel addresses individual blocks using the buffer

heads pointed to by the corresponding buffer page.

3.1.7 Flushing Dirty Buffers to Disk

Write operations are deferred in the page cache. When data in the page cache is newer
than the data on the backing store, that data is called dirty. Dirty pages that accumulate
in memory eventually need to be written back to disk. Dirty page writeback occurs in

two situations:
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Figure 3.5: A buffer page is a page of data associated with special descriptors, called
buffer heads. Their main purpose is to quickly locate the disk address of each individual

block in the page.

e When free memory shrinks below a specified threshold, the kernel must write dirty

data back to disk in order to free memory.

¢ When dirty data grows older than a specific threshold, sufficiently old data is written

back to disk, in order to ensure that dirty data does not remain dirty indefinitely.

The Linux kernel uses a group of general purpose kernel threads called pdfiush to system-
atically scan the page cache looking for dirty pages to flush, and additionally, ensure that
no page remains dirty for too long.

Therefore, a number of pdflush kernel threads flush dirty pages to their final location

on disk through two separate mechanisms:
e Systematically scan the page cache every writeback period.

¢ Implement a timeout mechanism on each page according to a configurable ezpiration

period.

Furthermore, the JBD layer uses an additional kernel thread, known as kjournald

thread. This kernel thread is responsible for two things:

e Every so often the current state of the file system needs to be committed to the
journal on disk. This happens periodically and the corresponding time interval is

known as commit interval.
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e The dirty buffers of the committed transactions need to be flushed periodica_lly to

the final on-disk location, in order to reclaim space in the log.

A user can also use the fsync system call to synchronously flush all the data and
metadata dirty buffers of the specified file descriptor to disk. Actually, fsync moves the

blocks to the journal or the final disk location depending on the mount mode.

3.2 Commit Policy

The commit of a transaction involves writing to journal the dirty buffers that were modi-
fied by this tranaction, and then writting a commit record to mark the process as complete.
The commit policy is initiated, either when the commit interval expires, or when the write
updates need to be synchronously written to disk (i.e., through fsync).

Each invocation of the write system call creates a new atomic operation handle that
is added to the current active transaction. When the transaction moves to commit state,
the kernel acquires a journal descriptor block. This block contains tags that map block
buffers to their final location on disk of the file system (Figure 3.3). When a journal
descriptor block fills up with tags, the kernel moves it to the journal together with the
corresponding block buffers. The kernel allocates additional journal descriptor blocks as
needed for each transaction.

For each block buffer that will be journaled, the kernel allocates a separate buffer
head specifically for the I/0O needs of journaling. Additionally, the kernel creates an
auxiliary structure called journal head that associates the block buffer with the respective
transaction. So, as depicted in Figure 3.6, for each journal block buffer there is (i) a buffer
head that specifies the respective block number in the journal and, (ii) a journal head
that points to the corresponding transaction.

In general, the buffer head of a journaled block buffer points to the original copy of
the block buffer. However, if this block buffer is going to be used concurrently by another
transaction, then the kernel creates in memory a new copy of the block buffer for the
journal I/O transfer needs. When all the log records of a transaction have been safely
written to the journal, the system allocates and synchronously writes to the journal a

final commit block that states the transaction has committed successfully.
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Figure 3.6: Two special structures, a buffer head and a journal head, need to be allo-
cated for each block buffer that is going to be journaled. The buffer head specifies the
respective block number in the journal, while the journal head points to the corresponding

transaction.
3.3 Checkpoint Policy

Obviously, there is a limited amount of space in the journal, and this space needs to be
reused. Besides, committed transactions that have all their blocks written to the final
on-disk location, no longer need to be kept in the journal. The process of ensuring that a
section of the log is committed fully to disk, so that this area can be reclaimed, is known
as checkpointing.

The checkpointing process flushes the metadata and data buffers of a transaction not
yet written to their actual location on the disk, allowing the transaction to be safely
removed from the journal. The journal can have multiple checkpointing transactions,
and each checkpointing transaction can have multiple buffers. The process considers each
committing transaction, and for each transaction, it finds the metadata buffers that need
to be written to the final location on disk. Subsequently, all these buffers are flushed
in one batch. Once all the transactions are checkpointed, their log is removed from the
journal. |

In particular, checkpointing is initiated when the journal is being flushed to the disk
(e.g., unmount) or when a new handle is started. A new handle can fall short of guaranteed
number of buffers, so it may be necessary to carry out a checkpointing process in order
to release some space in the journal. Especially, a checkpoint process is triggered when

the amount of free journal space is between 1/4 and 1/2 of the journal size. In general,
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the size of the journal is a configurable parameter in Ext3.

3.4 Recovery Policy

The transaction committing completes when a transaction has flushed all its records to the
journal and has been marked as finished. This is done for each running transaction within
a specified time period by the kjournald kernel thread. Subsequently, the transaction
checkpointing completes when all the blocks of a committed transaction have been moved
to their final location on disk and the corresponding transaction records are removed from
the journal.

During recovery, the file system scans the log for committed complete transactions;
incomplete transactions are discarded. Thus, if the system finds log records in the journal
after a crash, it assumes that the unmount was unsuccessful and initiates a recovery

procedure in three phases.

PASS_SCAN In the first phase, it finds the last record of the journal. From here, the
_recovery process knows which transactions need to be replayed. The exact state of
the journal is unknown since the system does not know the point at which the failure
occurred. The last transaction in the journal can be either in the checkpointing or
in the committing state. A running transaction cannot be found, as it was only in
memory during the crash. For committing transactions, the updates made need to

be discarded. Thus, the system only considers committed transactions for replaying.

PASS REVOKE During the second phase, the kernel builds a hash table from the
revoked blocks. These are blocks of committed transactions that should not be
written to their final disk location, because they are obsoleted by later operations.
This is important to know in order to j)revent older journal records from being
replayed on top of newer data using the same block. This table is used every time
that the system needs to find out whether a particular block should be replayed on
disk.

PASS_REPLAY In the third phase, the recovery process writes to their final disk loca-

tion the newest version of all the blocks that occur in committed transactions, and
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are not present in the hash table of revoked blocks.

If the system crashes again before the recovery finishes, the same journal can be reused

in order to complete the recovery.

3.5 Summary

The Ext3 file system is a journaling extension to the standard Ext2 file system on Linux.
Summarizing, the write updates are initially recorded sequentially in a separate area of
the disk reserved for use as a journal. File system transactions which complete have a
commit record added to the journal, and only after the commit is safely on disk may the
file system write the updates back to their original location. During the recovery phase,
the included blocks of a transaction can either be replayed or discarded. A checkpointing
process is needed to flush the buffers of an already committed transaction, that have not
yet been written to their final location through the normal dirty page flushing policy.
Then, the transaction can be safely removed from the journal.

Journaling results in massively reduced time spent recovering a file system after a
crash, and is therefore in high demand in environments where high availability is impor-
tant. In addition, synchronous writes complete faster since they return as soon as the
sequential log update completes. Data journaling can improve even more the response
time of synchronous writes, but significant extra disk throughput on the journaling device

is incurred due to the large volume of data written to the log.
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CHAPTER 4

ARCHITECTURAL DEFINITIONS

4.1 Design Goals
4.2 Partial Writes
4.3 Commit Policy
4.4 Recovery Policy

-

4.5 Summary

In this chapter, we define the design goals of our study and explain the general ar-
chitectural decisions taken before our prototype implementation. Initially, we detect the
design inefficiencies of existing journaling techniques that lead to unnecessary disk over-
head on the journal device. Then we propose a more efficient scheme for the fast and

reliable storage of multiple concurrent updates.

4.1 Design Goals

Contemporary journaling file systems mostly care to maintain their metadata consistency.
In order to provide high consistency guarantees, they only log metadata modifications in
the journal. Nevertheless, two commonly used file systems, Ext3 and Reiser FS, addition-

ally support data journaling as a mount option.
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Figure 4.1: We measure the amount of traffic sent to the journal device according to the
three journaling modes. The total journal traffic of data journaling is substantially higher
in comparison to the other two modes. Additionally, at request sizes lower than 4KB,
data journaling incurs traffic that changes sublinearly as a function of the write rate. This
is reasonable since data journaling sends to the journal entire blocks rather than only the

part that is modified by each write operation.

Comparisons across different journaling methods with general-purpose file server traf-
fic, have shown that either ordered data writing or data journaling may lead to better
performance depending on whether the aggregate workload is sequential or random-access
[25]. Particularly, it was reported that data journaling improves the throughput of ran-
dom I/O operations, but incurs much higher disk throughput than metadata journaling.
This high cost of data journaling originates from the significant volume of data that is sent
to the log. When the journal fills up with log records, a checkpoint process is triggered
to synchronously write them to their final location, thus leading to further delay.

Furthermore, file system journaling allows synchronous writes to complete faster since
they return as soon as the sequential log update completes. In the particular cases that
both data and metadata blocks are logged, the benefit is higher, but this costs significant
disk overhead on the journaling device. Unfortunately, the cost of data journaling can be
high even with small writes, since for simplicity reasons, journaling techniques that sup-
port data journaling, log the entire blocks being modified rather than just their modified
part.

In order to verify the significant overhead of data journaling, we examine the three
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mount options of Ext3 using periodic synchronous writes of varying request sizes. The
difference in the amount of traffic sent to the journal device across the three mount
options of Ext3 is depicted in Figure 4.1, where the total disk traffic is measured during
a time period of 5 minutes. We observe that the total journal traffic of data journaling is
substantially higher in comparison to the other two modes. Furthermore, we notice that
at request sizes lower than 4KB, which is the default file system block size, data journaling
incurs traffic that changes sublinearly as a function of the write rate. In particular, data
journaling sends a large amount of traffic to the journal for small writes regardless of the
actual size of the write requests. This is reasonable since data journaling sends to the
journal entire blocks instead of the actual newly written bytes.

In the present study, we investigate the performance characteristics of data journaling
in the context of synchronous writes that would be required among several situations
including the reliable storage of incoming streaming data. In order to lower the cost of
data journaling we introduce differential data journaling; a new journaling mode where
a series of write modifications can be accumulated in a single journal block. Therefore,
when the workload consists of many small writes we manage to reduce substantially the

required journal throughput by avoiding to log a whole block for each data modification.

4.2 Partial Writes

The idea behind journaling is that an entire batch of updates can be written to the file
system, but those updates do not take effect until a final commit update is made on the
disk. In order to achieve this, the file system must keep both the old and the new contents
of the updated data somewhere on disk until the final commit. The updated contents are
stored in the journal on disk, where for each modified final block exists a corresponding
journal block.

Therefore, in order to manage the partial data block modifications we need to introduce
a new type of journal block. This new type is responsible for fitting as many partial
modifications as possible. In case that it runs out of space, a new one can be allocated in

its place.
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4.3 Commit Policy

During the commit policy, dirty buffers are written to the journal followed by a commit
record, that states that the process has completed successfully. As we have already
explained, data journaling logs full blocks instead of the new bytes written by each update,
and thus invokes unnecessary disk traffic, even in cases of small writes. Ideally, we should
only journal the modified part of individual blocks, and this can be achieved through
the proposed new journal block type. Through the use of this block we can substantially
reduce the total number of blocks that need to be logged and, consequently we can improve

considerably the journal device throughput.

4.4 Recovery Policy

During the recovery phase, the journal is initially scanned for incomplete committed
transactions. If such transactions exist, they are replayed in the file system. Through
this process whole blocks are read from the journal and, hence they can easily be written
back to their final on-disk location.

However, our approach is more complicated than the default policy. In particular,
some journal blocks include updates from more than one block modifications, and in
order to be applied, the corresponding unmodified blocks need to be read from the disk.
Thus, in case of partial modifications, every original block should be first read from the
final on-disk location, and then -written back, updated with the difference retrieved from
the corresponding journal record. Nevertheless, when a block is retrieved from the journal
and it is either a metadata or a fully modified block, then the default recovery process
can be applied.

Furthermore, the successful completion of the recovery phase imposes the need for
auxiliary information. The required information, that is known and stored for each journal

block at the commit time, should include:
e the number of the corresponding block in the file system,

e the size and the starting offset of the modification inside the original disk block,
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e anything else that could be useful during the replay of the partial updates from the

journal blocks to their final location.

Subsequently, this information can be retrieved during the recovery process and, thus help

the replay of the partial modifications.

4.5 Summary

As it is clear from the above analysis, traditional data journaling schemes can exhibit
high and unnecessary disk traffic, as whole blocks are written to the journal, regardless of
the modification size. In this thesis, we propose an advancement of the traditional data
journaling approach, where the deltas (changes) to data blocks are journaled rather than
the entire data blocks themselves. Our main idea is to accumulate a number of write
modifications in a few single journal blocks, named partial journal blocks. Subsequently,
during the uncommon case of recovering after a crash, we can easily recover the original

blocks after applying to them the corresponding modifications from the partial blocks.
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CHAPTER 5

PROTOTYPE IMPLEMENTATION

5.1 Partial Blocks
5.2 Journal Heads
5.3 Tags

5.4 Commit Policy

5.5 Recovery Policy

According to previous research, the journaling of both data and metadata improves
the throughput of random I/O operations, while at the same time incurs much higher
disk overhead than the metadata-only journaling modes. In the rest of this chapter, we
outline the approach that we follow in order to keep low the overhead of data journaling
and at the same time retain its significant performance gains. In particular, we describe
the implementation of differential data journaling; a variation of the full data journaling
mode of Ext3. Even though we consider our approach quite general, in our description
we use the previously introduced terminology of Ext3, over which we have implemented

our prototype.
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Figure 5.1: In differential data journaling, the on-disk layout of the journal has one new
feature; the partial data blocks. These blocks are used to accumulate the modifications

of multiple write operations in a reduced number of journal blocks.

5.1 Partial Blocks

The original journaling process of Ext3 transfers a full copy of each modified block buffer
from memory to journal. This is true for both data and metadata blocks when they
are journaled according to the mount options of the file system. Thus, even a single bit
change in a bitmap results in the entire bitmap block being logged. In case of small writes
that modify only a part of a block buffer, the logging of full blocks can have a multiplier
effect- at the throughput required by the journal device, as we have already observed in
Figure 4.1. The actual waste in journal device throughput depends on the fraction of the
block buffer that is left unmodified by each write operation. Ideally, only the modified
part of the block should be written to the journal. Subsequently, at the uncommon case
that the recovery process is initiated, the original bllock should be read from the final
on-disk location and then written back, updated with the difference retrieved from the
corresponding journal record.

In order to implement differential data journaling, we introduce a new type of journal
block that we use to accumulate the modifications of data blocks from multiple write
operations (Figure 5.1). We call this type of journal block partial, to differentiate it
from full blocks, which are blocks fully modified by a single write operation. Partial
blocks are only used to gather the partial updates of data blocks, rather than metadata
modifications. In summary, the commit process treats data blocks differently than the
metadata ones, while two different types of data blocks are distinguished; partial that

store writes smaller than the default block size, and non-partial that correspond to fully
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written buffers.

5.2 Journal Heads

As we have already explained in paragraph 3.2, for each journal block buffer there is a
corresponding journal head that associates the block with a transaction. Additionally,
the journal head points to a buffer head that links the buffer to a buffer page and other
information required for the transfer to the journal device.

For writes that only modify part of a block, we expanded the journal head with two
extra fields, the offset and the length, respectively, of the partially modified block pointed
to by the buffer head. As we see below, we make use of the journal head in order to

prepare the blocks that we actually send to the journal.

5.3 Tags

As the commit process is started, a buffer for the journal descriptor block is allocated. In
data journaling, the transaction logs both data and metadata modifications. The journal
descriptor block contains a list of fixed-length tags, where each tag corresponds to one

write. Originally, each tag contains two fields:
e The final disk location of the modified block.
e Four flags for journal-specific properties of the block.
In our.design, we introduce three new fields in each tag:
o A flag to indicate whether the corresponding block is partially modified or not.
e The length of the new bytes written in the partial block.
e The starting offset in the data block of the final disk location.

This data is persistent and can be used for recovery if a failure occurs.
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Figure 5.2: In the differential data journaling we use a new type of journal blocks, the
partial journal blocks, to accumulate the data modifications from multiple writes. Full
journal blocks are still used for metadata or blocks that are completely modified by write
operations. The descriptor’s tags are used to keep the correspondence between final

location and journal blocks, and also to describe the partial modifications inside the

partial journal blocks.

Once the tags fill up a journal descriptor block, the descriptor block and all the corre-
sponding data and metadata blocks are written consecutively to the journal. Furthermore,

additional journal descriptor blocks are allocated as required by the transaction.

5.4 Commit Policy

The commit process of differential data journaling differs from the original approach in
that it makes further use of partial blocks. In particular, a new partial data block is allo-
cated when a new transaction is started and it is used to accumulate all the modifications
with size smaller than the default file system block size. The journal descriptor block
stores the mapping of each journal block to its actual on-disk location in the form of tags.
In our prototype, it additionally includes tags that describe the partial writes (Figure
5.2). If a write updates part of a data block, the modified bytes are copied to the current
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partial block buffer of the transaction. When the available space of a partial data block
is not sufficient to store a new incoming update, then a new partial block is allocated to
serve the next partial modifications. In case that a write system call modifies a metadata
block or fully writes a data block, we log the corresponding full block instead.

We might still need to create a copy of the full block in order to freeze the version
that we send to the journal, if the block is going to be modified shortly by another
transaction. Once all data and metadata is on safe storage, the transaction needs to be
marked as committed so that it can be guaranteed that all its updates are safe in the
journal. Eventually, the commit process completes right after the journal commit block

is synchronously written to the log.

5.5 Recovery Policy

During the recovery process, the data modifications are retrieved from the journal, and
are subsequently applied to the blocks corresponding to the final on-disk location.

Initially, when a descriptor block is read from the log, we extract its included tags.
Each 'tag can describe either a partial or a full log block. When we meet the first tag that
describes a partial write modification, the next log block is retrieved from the journal,
and from that point on it is used as the partial block of the current transaction. Since
the data of consecutive writes are placed next to each other in the partial block, their
corresponding starting offsets can be deduced from the length field in the tags. In case
that the length field of a tag exceeds the end of the current partial block, the next block
is read from the journal and becomes the new partial block of the transaction. We use
the starting offset tag field to read into a kernel buffer the disk block that we will modify
in order to apply the data modifications. ‘

However, if the partial block flag is not set, then the next block is retrieved from the
journal, which is eventually treated as a metadata or a full data block. Obviously, the
full block is directly written to the final disk location without reading first the previous

version from the disk.
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CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Experimentation Environment
6.2 Streaming Workloads

6.3 The Postmark Benchmark

6.4 Recovery Time

6.5 Other Issues

In the present chapter, initially, we introduce the hardware configuration that we used
in our performance measurements. Afterwards, we study the requirements and perfor-
mance of our differential data journaling implementation with respect to the ordered, the
writeback and the default data journaling modes of Ext3, and we graphically present our

experimental results.

6.1 Experimentation Environment

We implemented the differential data journaling in the Linux kernel version 2.6.18. We
evaluated our prototype implementation using x86-based server nodes running the Debian
Linux distribution. For the majority of the experiments we used nodes with a quad-core

2.66GHz processor, 2GB RAM, and two SAS 15KRPM disks, each of 300GB storage
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capacity and 16MB internal buffer. Additionally, for one set of the experiments, a 2.33GHz
quad-core processor and two SATA 7.5KRPM disks, each of 250GB and 16MB on-disk
cache, were used.

In the general case, two separate disks are used; one for the journal and another one
for the actual file system structures, except for one case that is explained later in this
chapter. Furthermore, we use the default file system parameters of Linux that set the page
and the block size to 4KB. We also keep the default journal size of 128MB, but manually
tune for best performance the writeback period and expiration period of the dirty page
flush process. In our measurements, we assume that write operations are followed by the
fsync system call for synchronous completion.

Previous research reports that, by default, a synchronous write operation returns as
soon as the data reaches the on-disk write cache, rather than the storage media. This
behavior renders the system unreliable unless we disable the on-disk buffer cache or use
controllers with battery-backed cache [23]. In most of our experiments, we kept enabled
the disk write cache, which essentially emulates devices with battery-backed memory.
However, we also evaluated our system with the write caches disabled. As we explain,
the djsk write cache adds no benefit to streaming workloads but leads to significant
performance advantages in traditional applications.

In order to study the characteristics of our system and evaluate our implementation,
we did extensive performance measurements. In particular, the first set of experiments is
based on a microbenchmark that we have built for the needs of a streaming workload eval-
uation. This benchmark consists of multiple threads that periodically apply synchronous
writes at a specific rate. In our evaluation, we examine the disk throughput requirements
and the average latency of each write. During the next set of experiments, we used the
Postmark benchmark to measure performance in an environment of temporary small files
that is typical for electronic mail, newsgroups and web-based commerce {20]. Thus, we
investigate the benefit of data journaling in applications other than streaming. Finally,
we performed a series of experiments in order to examine the possible overhead of our
prototype implementation. Therefore, we measure the time needed to recover the sys-
tem to a consistent state after a crash, the CPU overhead that our approach incurs and
perform some other experiments that are presented in the rest of this chapter.

At last but not least, our prototype implementation of differential data journaling is
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Table 6.1: Various rates used from different types of streams.
Stream Type Estimated Average Rate

Environmental Measurements _ '
(tens of bits - hundreds of Kbits)/sec

(humidity, temperature etc.)

Audio Streams
(hundreds of bits - hundreds of Kbits)/sec

(telephone quality, mp3 etc.)

Video Streams
(tens of Kbits - tens of Mbits)/sec

(videophone quality, mpeg etc.)

being used as a working environment over a period of three and a half months. The

system has demonstrated a stable behavior during this entire period.

6.2 Streaming Workloads

In our first set of experiments, we evaluate the benefits and requirements of differential
data journaling in a file system. We consider the case where the incoming data from a large
number of concurrent streams is stored synchronously on the same disk. Actually, through
the use of microbenchmark that we developed, we emulate the behavior of streaming
workloads, where massive numbers of streams need to be stored synchronously at the
same disk facility.

In digital multimedia, the data rate, or else bitrate, represents the amount of informa-
tion of a recording that is stored per unit of time. Various factors can influence a stream’s
rate, such as the compression scheme that is used or the nature of the particular steaming
application. For instance, some sensors may send video and audio streams of high qual-
ity at high rates, while others may generate environmental measurements at much lower
rates. In Table 6.2, we present the range of different rates that are used according to the
type of each stream.

Our microbenchmark tool allows us to examine the performance characteristics of
streams with different rates, while varying the degree of concurrency. So, in order to

press the system, we increase the total number of streams between the different runs. At
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each execution, a sequence of write updates is synchronously applied to the system for
a specified amount of time, while according to the stream rate different record sizes are
used. Typically, a low-rate streaming workload implies many small synchronous writes
applied to the same storage media, while higher-rate streams typically correspond to
larger ones. In particular, the rate of a low-rate streaming workload varies from tens of
bits up to few tens of kilobits per second. Therefore, the corresponding write request size
is much smaller than the default Linux kernel block size. On the other hand, high-rate
streams send data over megabits per second, thus leading to request sizes that range from

hundreds of kilobytes and on.

6.2.1 Flushing Policy

In streaming workloads, even though each stream simply appends data sequentially to
the end of a separate file, the aggregate traffic is random. However, data journaling safely
stores data on the journal at sequential throughput and lazily transfers it to the final
location at a rate that we can control. Particularly, we manually tune for best performance
the writeback period and the expiration period of the dirty page flush process, according to
the rate and the number of the streams that are involved in each experiment’s execution.
The writeback period is used to define when the pdfiush daemons wake up and write old
data out to disk, while the expiration period defines when dirty data is old enough to
be eligible for writeout by the pdflush daemons. Data which has been dirty in memory
for longer than this interval will be written out next -time a pdflush daemon wakes up.
In Linux kernel, the writeback period is by default set to 5 seconds and the expiration
period to 30 seconds.

Ideally, in case of low-rate streams we would like to accumulate multiple write updates
in memory for a long period of time, in order to benefit as much as possible from the
batching of related writes. We achieve this by delaying the awakening of pdflush daemons
and increasing both the default expiration and writeback intervals. Nevertheless, the
new time intervals should be carefully selected, to avoid overfitting either the journal
device, or the memory. In general, when there is no available space left in the journal
or the memory, the subsequent writes should block, waiting for the journaled updates to

move from memory to their final on-disk location, through either the checkpointing or the
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Table 6.2: Flushing Policy - Stream Rate of 1Kbps

Number of | Writeback Period | Expiration Period
Streams (in seconds) (in seconds)
100 10 300
500 10 300
1000 10 150
2000 10 60
3000 1 30
4000 1 30
3000 1 )
6000 1 )
7000 1 3
8000 1 5

kernel’s dirty page flush process. For this reason, we choose the expiration interval to be
long enough for low-rate streams, but we wake up the pdflush daemons rather frequently
to clean the memory from old updates. Additionally, when the number of low-rate streams
increases, so does the total amount of data written and hence, we lessen the expiration
interval to avoid the checkpointing and the dirty page flush process. Tables 6.2 and 6.3
present the particular tuning of the dirty page flushing parameters that we use in our
measurements, for low-rate streams of 1Kbps and 10Kbps respectively.

Multiple high-rate streams génerate large volumes of data that need to be stored on

Table 6.3: Flushing Policy - Stream Rate of 10Kbps

Number of | Writeback Period | Expiration Period
Streams (in seconds) (in seconds)
50 10 300
100 5 100
500 5 60
1000 1 30
1500 1 10
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Table 6.4: Flushing Policy - Stream Rate of 1Mbps

Number of | Writeback Period | Expiration Period
Streams (in seconds) (in seconds)
N 10 5 20
25 1 5
50 1 3
75 1 1
100. 1 1

the same disk facility. The benefit of batching together such updates is insignificant
due to their size. Therefore, we don’t need to keep them in memory for long time. In
these cases, we can either use the default expiration and writeback periods, or slightly
reduce them according to the generated amount of data. Once again, when the number of
streams increases we can reduce the intervals even more, in order to prevent the memory
structures from getting full. Table 6.4 presents the configuration of the writeback and
expiration periods in case of high-rate streams of 1Mbps.

Finally, since we fsync every individual write, we use the default journal commit
interval of 5 seconds to wake up the kjournald daemon, as it eventually does not influence

our measurements.

6.2.2 Journal Traffic

In Figure 6.1 we measure the journal device throughput across different numbers of
streams and rates of 1Kbps, 10Kbps and 1Mbps. In Figure 6.1(a), we observe that when
the number of streams reaches several thousands, data journaling sends around 30MB/s
of log records to the journal. Instead, differential data journaling keeps the traffic lower
than 5MB/s. This behavior is less intense as the stream rate increases from 1Kbps to
10Kbps (Figure 6.1(b)), and in fact the two data journaling modes overlap for streams of
1Mbps (Figure 6.1(c)). As expected, in all three cases the two metadata-only journaling
modes keep the overhead of the journal device at the low levels, since only a small amount

of information is finally logged.
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Figure 6.1: We examine the journal device throughput across different numbers of streams
and rates of 1Kbps, 10Kbps and 1Mbps. For low-rate streams, the disk overhead of
differential data journaling is comparable to that of ordered and writeback modes, unlike
the default data journaling mode which leads to journal device throughput by several
factors higher. Nevertheless, at high rates, differential data journaling overlaps with the

default data journaling mode in terms of journaling throughput.

In general, we observe that at low rates, the journal throughput of differential data
journaling is close to that of ordered and writeback modes. The corresponding throughput
in the case of the default data journaling mode is several factors higher. Particularly, a
low-rate streaming workload implies many small synchronous writes applied to the same
storage media, while higher-rate streams typically correspond to larger ones. In the case of -
low-rate streams, differential data journaling manages to reduce substantially the journal

throughput. This is achieved through the accumulation of multiple write updates into a
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single journal block. On the other hand, default data journaling incurs significant journal
overhead because of the full-block logging scheme. Even though a corresponding increase
in memory copy activity is likely, this is hardly a problem as we see later. Therefore, we
can reliably store the data of low-rate streams without excessive journaling cost.
Nonetheless, at high rates, differential data journaling overlaps with the default data
journaling mode in terms of journaling throughput, while the required journal disk over-
head of metadata-only modes remains significantly low. As the total amount of data

written increases, the benefit of partial writes becomes nominal and large volumes of data

are finally sent to the journal.

6.2.3 Final Location Traffic

In Figure 6.2 we measure the disk throughput for the update of the final location on the file
system. We notice that the ordered and writeback methods, that only journal metadata,
incur consistently higher throughput to the final disk location, especially at low-rate
streams. Besides, metadata-only journaling allows synchronous updates to complete by
first forcing data blocks to their final on-disk location, before the corresponding metadata
blocks are synchronously written to the journal. Instead, the two data journaling modes
append both the metadata and data updates synchronously, but efficiently to the journal,
and keep the corresponding data blocks in memory for some time. There, each block has
the chance to receive the updates from multiple writes, before it is transferred to its final
location on disk. Furthermore, we tune the parameters of the dirty page flush process in
order to gain as much as possible from the opportunity of batching. Hence, for low-rate
streams we open enough the expiration interval and allow many small modifications of
single blocks to be accumulated.

On the other hand, for high rate streams, we have reduced considerably the expiration
and the writeback periods, in order to prevent the journal device from becoming full.
Generally, when the journal fills up, a checkpointing process is initiated and all the sub-
sequent writes are blocked. However, this tuning, in the long run, prevents us to benefit
from the batching opportunities offered during small writes. Thus, the same number of

write updates are applied to the final on-disk location, regardless of the journaling mode.
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Figure 6.2: We examine the throughput of the file system device across different numbers
of streams and rates. For low-rate streams, the two metadata-only journaling modes
require up to several factors higher throughput than the two data journaling modes.
Nevertheless, in case of high—raté streams, the final location disk overhead is comparable

across all the four modes.

Summarizing, at low rates, the writeback and ordered modes tend to require up to
several factors higher throughput than the two data journaling modes. We attribute this
benefit of the two data journaling modes to the éggregation of multiple writes that update
the same block. Since journaling keeps each update safe on disk, dirty pages can remain
for a configurable time period in memory before they are flushed to the file system disk.
Nevertheless, in case of high-rate streams, the final location disk overhead is comparable
across all the four modes since, due to the large amount of data written, there is no benefit

from batching together related writes.
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Figure 6.3: We measure the average write latency of synchronous updates at different
rates and streams. Synchronous writes are usually avoided because they are known to
incur high latency in typical file systems. However, data journaling modes can benefit
from the sequential journal's throughput that eventually allows the system to safely and

quickly store the incoming data.

6.2.4 Write Response Time

The benefits of the two data journaling modes are even more impressive, when we consider
the average latency of the synchronous writes, as depicted in Figure 6.3. In order to
demonstrate the differences across the different modes, we use logarithmic scale at the
y axis. As we move from higher to lower rates, the write latency of the ordered and
writeback modes appears from several factors up to orders of magnitude higher than

those of the two data journaling modes. In particular, in Figure 6.3(a), we see that the
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ordered and writeback modes incur almost two orders of magnitude higher latency with
respect to the other two modes, when serving large numbers of low-rate streams. Thus, a
write operation that completes in tens of milliseconds with data journaling, takes as high
as 10 seconds with ordered mode.

Data journaling modes force write updates synchronously to the journal. There
the written transactions are appended sequentially and efficiently. However, in case of
metadata-only journaling modes, data is flushed synchronously to the fixed location before
the corresponding metadata blocks are synchronously written to the journal. Especially,
when we have large numbers of streams, data blocks are distributed across random loca-
tions on disk, and hence incur seeking overhead and rotational latency when data writes
are forced to the final location.

Such a high write latency in the default Ext3 journaling mode, the ordered mode, raises
issues about the ability of the system to quickly and safely store incoming measurements.
This is crucial, especially at critical time periods before physical catastrophes, when the
arriving data matter the most. Synchronous writes are usually avoided because they are
known to incur high latency in typical file systems. This is true even when the write
cache of the disk is enabled. Nevertheless, the sequential throughput of the journal has
a considerable impact to the ability of the system to store safely the incoming data in a

short period of time.

6.2.5 CPU Utilization

A possible overhead of our prototype implementation is the CPU cost that is needed,
so that multiple data modifications can be accumulated in single journal blocks. This is
achieved through the memory copy of the modified block parts to the appropriate journal
partial block.

In Figure 6.4 we evaluate the impact of the four journaling modes to the total CPU
utilization of the system. We observe that the system utilization always remains less than
10%. At both low and high rates, the CPU remains mostly idle, whether doing nothing
or waiting for the I/O operations to finish. Therefore, the processing cost of differential
data journaling remains comparable to that of the other three mount modes.

Consequently, the accumulation of multiple write updates in one block in differential

52



Total CPU

& Idle M System
B 1dle Wait B User
100 e 50 ot §
h
80
t? 4
e
=~ 60
g
]
N 404
B
-
20
4

0}- o [ . o
/-oo, 06‘9%@ 0'9% ‘s o @66'%’6 0,949
1Kbps 1Mbps

Figure 6.4: We investigate the total CPU utilization of the system across the different
journaling modes. In all the four cases, at both low and high rates, the CPU remains
mostly idle, whether doing nothing or waiting for the I/O operations to finish. Thus, the
extra CPU cost of differential data journaling due to memory copy operations is nominal,

in comparison to the other three modes.

data journaling does not create an overhead, for the memory copy, much higher than the

other modes.

6.2.6 Mixed Workload

Finally, a number of experiments with workloads that consist of mixed set of streams
with different rates were performed and lead to measurements similar to the above. The
results of the mixed workload tend to approach respectively the behavior of streams with

low or high rate, depending on the prevalence of the corresponding type of stream in the

workload.
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Figure 6.5: We evaluate the Postmark benchmark results. Both data and differential
data journaling modes perform several factors better from the metadata-only journaling
modes. In particular, due to low write latency, data journaling modes manage to serve a

larger number of transactions per second.

6.3 The Postmark Benchmark

In Figure 6.5, given the very encouraging results that we obtained for workloads with low-
rate streams, we evaluate data journaling with Postmark. This benchmark is typically
used to study the performance of small writes [17]. It is designed by Jeffrey Katcher in
order to replicate the small file workloads seen in electronic mail, netnews, and web-based
commerce under heavy load.

We measure the achieved transaction rate with a workload of 10000 transactions over
500 files, and a mix of read, append, create and delete file operations. We run Postmark
with 100 threads and file ranges from half kilobyte to a hundred kilobyte.The actual
duration of the experiment varies depending on the efficiency of the requested operations.
We run the benchmark in a range of block sizes from 128 bytes to 16KB. During our
experimental measurements, we use the kernel’s default dirty page flushing parameters
that are presented in Table 6.5. In Figure 6.5 the x axis refers to the request size of the
read and write operations, while the y axis is the number of transactions that can be
served per second.

Our main observation is that the two data journaling modes perform several factors
better than the metadata-only journaling modes. The performance improvement is higher

for small block sizes. However, even with the block size equal to 16KB, the data journaling
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Table 6.5: Flushing Policy - Postmark
Writeback Period | Expiration Period | Commit Interval

5 seconds 30 seconds 5 seconds

modes double the measured transaction rate. This behavior comes from the low write
latency that the two data journaling modes incur, in contrast to the metadata-only modes.
Thus, within the same time period, data and differential data modes manage to serve much
more transactions than the other modes.

Consequently, if somebody uses differential data journaling to keep low the extra
journaling throughput, one can improve substantially the performance of applications

that need synchronous small writes.

6.4 Recovery Time

In a different experiment, we evaluate the ability of the system to recover quickly after
a system crash that leads to log records appearing in the journal during the reboot. In
this s'etting, we have 100 threads that apply 100 write updates with request size 125
bytes. Furthermore, we disable the writeback and expiration time periods of the pdflush
kernel thread, in order to ensure that the transactions commit to the journal, but don’t
checkpoint the updates to the final location on disk. Then we cut the power to the
system. During the reboot, we measure, within the kernel, the time period of the file
system recovery.

In Figure 6.6, we breakdown the total recovery across the three passes that scan the
transactions, revoke blocks, and replay the committed transactions. We notice that the
scanning period for differential data journaling is much lower than that of default data
journaling and actually similar to those of ordered and writeback. This is reasonable,
due to the new type of journal blocks that we introduced, the partial data blocks. Thus,
gathering small updates into a small number of journal blocks, differential data journaling
logs much fewer blocks than default data journaling, which for each update sends a full
block to the journal. Instead, in the metadata-only journaling modes, the amount of

journaled blocks is even smaller since data blocks are not logged at all.
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Figure 6.6: We measure the recovery time across the four journaling mount modes. We
observe that differential data journaling requires much lower time for the scan pass than
the default data journaling mode, while the replay pass takes comparable time across the

two modes.

For the revoke phase, as expected, the time period needed is comparable to all the
four modes. During the last phase, in differential data journaling extra block reads from
the djsk are required so that the modifications from the journal partial blocks can be
applied to the corresponding final disk blocks during replay. On the other hand, in the
default data journaling case, this is avoided since whole blocks are logged, and during
replay these blocks can directly replace the existing final disk blocks without first reading
them. Nonetheless, despite the extra block reads involved in the replay of differential data.
journaling, the time the replay phase takes ends up comparable to that of the default data

journaling.

6.5 Other Issues

Since the ordered mode does not take full advantage of the separate journal device, we
also investigate the case where we use the two SAS disks in RAIDO configuration with
hardware controller support. For the configuration of this set of experiments, we use as
journal a normal file within the same file system device rather than a separate partition.

From our measurements (not shown) we observe that the write latency drops to half in
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Figure 6.7: We figure the Postmark results while enabling and disabling the on-disk write
cache. We notice that the two data journaling modes almost double the transaction rate

with respect to the ordered mode that is commonly used by default.

the ordered mode, when compared to the case where we dedicate one disk to the journal.
After the change, the write latency of differential data journaling remains about the same
as before. The relative difference between the latencies of the two modes is still high
across the different streams rates and in excess of a magnitude order for 1Kbps streams.

Ina different experiment, we examine the effects from disabling the write cache of the
disks. For these measurements, we use a server with two 250GB SATA disks. We find
that the disabled write cache of the disks makes no difference to the streaming workload
measurements in comparison to the case that the cache is enabled. However, in the case
of the Postmark benchmark with 5000 transactions, disabling the write cache scales down
the performance of the different mount modes, as shown in Figure 6.7.

Specifically, we disable the on-disk write cache to ensure that the writes only return
after they reach the media. The advantage of differential data journaling is evident
especially with small read and write requests. Furthermore, when we enable the on-
disk write cache, performance scales similarly for the ordered mode and differential data
journaling, while the relative difference remains. Overall, differential data journaling still
maintains a significant advantage with respect to the ordered mode, especially at low

stream rates.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

7.2 Future Work

7.1 - Conclusions

The unique demands placed by high-volume stream storage indicate that neither existing
databases nor file systems are directly suited to handle their storage needs. In our vision,
a general-purpose stream storage facility could serve as a building block for a variety of
applications in the entire range from network packet monitoring to urban traffic control
with the appropriate indexing functionality built separately at a higher level when needed.
The operation reliability in such applicationsis a primary challenge, especially when public
safety concerns are involved. In order to improve their operation reliability, general-
purpose file systems apply journaling techniques to preserve metadata consistency across
system crashes at minimal recovery time. Motivated from the emerging need to reliably
store and handle large numbers of streams for real-time or retrospective processing, we
have taken a fresh look at file systems that support data journaling.

We have used a widely known file system mounted with data journaling mode and,
after applying synchronous writes, we demonstrated that the journal device throughput

is high because the journal log records store entire blocks rather than their modified part.
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Then, we introduced the differential data journaling mode, based on the idea of accumu-
lating the updates from multiple writes into a single journal block. In order to implement
differential data journaling, we designed a new type of journal block that we call partial
data block. Additionally, we tune the timing of dirty page flushing to complete in the
background rather than synchronously with the write operations. Using streaming work-
loads, we found that differential data journaling reduces the journal traffic substantially
in comparison to the default data journaling mode, especially for streams with low rates.
The sequential throughput of the journal reduces the write latency up to orders of mag-
nitude for the data journaling modes with respect to metadata-only journaling. Finally,
we have experimented with a typical small-write workload and measured substantial im-
provement in the supported transaction rate. Overall, differential data journaling offers

fast storage across streaming and traditional workloads at relatively low disk throughput

requirements.

7.2 Future Work

There are many directions for future work, mainly regarding the performance evaluation
of our implementation. In the future, we primarily plan to extend the experimental
measurements of our prototype implementation, to validate further the contributions of
our study and emphasize the offered performance gains.

Only experimentation in a real streaming environment can reveal the potential of
our approach. Therefore, initially, we aim to examine the behavior of differential data
journaling in the context of a distributed file system that we are currently building for the
needs of streaming data storage. In particular, a real workload with varying number of
clients applying concurrent writes of stream data to the same storage server, will provide
a more realistic environment in terms of the ability of differential data journaling to serve
streaming workloads.

Regardless of the possible performance loss under certain circumstances, given the
nature of the load for which our system is designed, a direct comparison with the log-
structured file system or other journaling file systems would also be valuable in order to

demonstrate the benefits of our architecture.
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Furthermore, heterogeneity, a main feature of most stfeaming storage systems, is itself
a challenging problem to be handled by the existing implementations. We have already
performed a series of measurements across mixed workloads, where low and higher rate
streams coexisted. Yet, we need to examine further how differential data journaling
performs in such heterogeneous scenarios.

Moreover, we intend to examine the behavior of differential data journaling under
some database workload. TPC-C simulates a complete computing environment where a
population of users executes transactions against a database [9]. The benchmark that
we are going to use constitutes a realistic implementation of order-entry built on top of
Postgres.

Finally, a possible extension of our work would investigate the automatic tuning of

system parameters related to the timing of dirty page flushes.
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