
Fast and Reliable Stream Storage
Through Differential Data Journali

Andromachi Hatzieleftheriou

M A S T E R T H E S I S

Ioannina, January 2009

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Ι Ω Α Ν Ν ΙΝ ΩΝ

DEPARTMENT OF COMPUTER SCIENCE
U N I V E R S I T Y O F I O A N N I N A

V

Γ ρή γορή κ α ι Α ξ ιό π ισ τ η Α π ο θ ή κ ε υ σ ή Ρ ο ώ ν μ ε
Δ ια φ ο ρικ ή Κ α τ α γ ρ α φ ή Δ ο σ ο λ η ψ ιώ ν Δ ε δ ο μ έ ν ω ν

Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Πληροφορικής Εξεταστική Επιτροπή

από την

Ανδρομάχη Χατζηελευθερίου

ως μέρος των Υποχρεώσεων για τη λήψη του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ

ΣΤΑ ΥΠΟΛΟΓΙΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Ιανουάριος 2009

4 t**r *

ΒΙΒΛΙΟΘΗΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΩΝ

02600032 ΘΘ5

/

Dedication
— -------------------------------------- :---------------------- ---------------- -----------------------------------— — — ,— ϊ— Μ·- . · . / ,,-i.

: ·Λ ' ■ - 1 * · :·: j * * < , . · ’ To my family and ΝΡ...

^ ¥ ··:· ·-■■.· ■· - ■■ ν,.

A i t ' ; ' • ' T S ' l . · ' - ' . V t : ■ !.. . ■ .· ■' ■■ i * '· . . ' ' i ' 1 ,··. , - . . _

,v;:: ’ ·.;· Η:::Λ :·ν.·: :·'· . . .·■■■ ■ - T/< -̂·

' 0-Γ ‘ · - .. i . -

" \ : - · , -
« T : : . . 7 . · :

' * % r ; :- l , l ■ > Ατ'ίΤ ·. JV. - '■ :i ‘A ̂ V , A

} A , -if,·’

/ ► r *' ' ”tί ■ , -a'‘>

·■'··'■ 1.·: . V -■« ■ vi i/ l - iyy.

A :?>'■/ .v ,· .■

VH4%·

V . I. :·ΪΜ· ?r m y c

.■C.'i·:;..

M IaA M ■ £ (7 ϊ Ηλ7·Π?^«§> kV-:-

Acknowledgements

At this point, I would like to thank all those people, who each in his way have helped for

the successful completion of this thesis.

I am mostly grateful to Prof. Stergios Anastasiadis for his systematic supervision and

guidance throughout this research, from the early stages of the design, to the last ones of

the composition of this thesis. During all these months, through his core knowledge on

the field of computer systems, he gave me the opportunity to indulge in this particular

area of knowledge.

The deepest gratitude to my parents for everything they have done, from the early

stages of my education till this point, and especially for the moral and financial support

they'provided me, and the tolerance they have shown during all these years. I am really

grateful for their continuous encouragement.

I would like to thank all the people of the Systems Research Group (SRG) at the

University of Ioannina, who turned the endless hours of study into a joyful experience.

Especially Lamprini Konsta and George Margaritis, through numerous hours of discus

sions, provided me useful feedback at several checkpoints of my thesis. Special thanks to

Nikolaos Papanikos for all the help and encouragement, and primarily for all his valuable

tolerance during the months that passed.

Finally, it should be noted that all the work presented in this thesis was in part

supported by the project INTERSAFE with approval number 303090/YD7631 of the

INTERREG IIIA Greece-Albania 2000-20006 neighboring program.

Table of Contents

1 Introduction 1

1.1 Thesis Scope.. 1

1.2 Thesis O utline... 3

2 Related Research 4

2.1 Fast and Reliable Storage Systems .. 4

2.1.1 Synchronous W rites.. 5

2 .1.2 Log-Structured File System s.. 6

2.1.3 Soft Updates 8

2.1.4 Journaling File Systems ... 8

2.1.5 Persistent M em o ry .. 10

2.1.6 Other Implementations.. 11

2.2 Stream Archival S e rv e r s 11

2 .2.1 Traditional Databases .. 12

2.2.2 General-Purpose File S y stem s... 13

2.2.3 Playback S e rv e rs ... 14

2.3 Redundancy E lim ination ... 16

2.4 S u m m a ry ... 17

3 Journaling in the Ext3 File System 18

3.1 B ackground.. lg

3.1.1 Basic File System C o n c e p ts ... 19

3.1.2 Introduction to Ext3 ... 20

3.1.3 Journaling M odes.. 21

3.1.4 Journal 24

1

3.1.5 Transactions.. ... · ·

3.1.6 Kernel Buffers... 26

3.1.7 Flushing Dirty Buffers to D isk .. 26

3.2 Commit P o l ic y .. 28

3.3 Checkpoint Policy.. 29

3.4 Recovery P o licy .. 30

3.5 S u m m a ry .. 31

4 Architectural Definitions 32

4.1 Design Goals .. 32

4.2 Partial W rite s .. 34

4.3 Commit P o l i c y ... 35

4.4 Recovery P o licy ... 35

4.5 Summary .. 36

5 Prototype Implementation 37

5.1 Partial B locks..................... 38

5.2 Journal H eads... 39

5.3 T a g s 39

5.4 Commit P o l i c y ... 40

5.5 Recovery P o licy ... 41

6 Experimental Results 42

6.1 Experimentation Environm ent.. 42

6.2 Streaming W orkloads.. 44

6 .2.1 Flushing P o lic y ... 45

6.2.2 Journal Traffic ... 47

6.2.3 Final Location Traffic... 49

6.2.4 Write Response T im e ... 51

6.2.5 CPU U tilization... 52

6.2.6 Mixed Workload .. 53

6.3 The Postmark B enchm ark .. 54

6.4 Recovery T i m e ... 55

11

6.5 Other Issues 56

7 Conclusions and Future Work 58

7.1 Conclusions 58

7.2 Future Work ... 59

s ; Λ·;·".;-· \·ί.

; =:..V , : 1

;ϊ*

Ιί:

i: Λ-

άν ί.'Ί ί

'[U r.l

Λ r ' : ί·:ν'· ..tM-f r ’■ 7. C·̂ 1 :r' ; j.

■■ . ,-r'

i s -.

i r ■ ·: - ’·■. Γ Μ :-,*■ ft >'

H sr: r f " t i r -

».■· ■' .:'<■?■■;f-ft

'··· j i t f - ; . .«1

' i

■ ' : »v

Ill

List of Figures

2.1 A log-structured file system treats its storage as a circular log and writes all

data and metadata modifications sequentially to the head of a segmented

append-only log. Log space must be constantly reclaimed and thus, a

garbage collecting process is responsible for coalescing unused space into

empty segments.. 6

2.2 A journaling file system logs updates to a circular journal file before com

mitting them to the main file system. Once the corresponding updates has

been stored to their final location, copies of the blocks in the journal can

be discarded allowing the journal space to be reclaimed.................................. 9

3'1 We illustrate the architectural view of the Linux operating system and

distinguish the Ext3 file system inside the kernel. Furthermore, we figure

the on-disk layout of the Ext3, which is based on the generic Unix file

system structure. .. 2Q

3.2 The behavior of the three different journaling modes through time. Time

flows downwards following the arrows, while the boxes represent file sys

tem updates. The two timelines represent commit and checkpoint; the

processes of updating the on-disk journal structure and the final on-disk

location, accordingly. Depending on the consistency semantics that each

mode provides, the updates can take place synchronously or not...................23

3.3 In the original design of the Ext3 data journaling, there is a full block

in the journal for each write operation, despite the size of the new data

modification. In addition, in the journal descriptor block a new auxiliary

tag is allocated each time a write update is logged, and it is used to describe

the correspondence between the journal and the fixed location disk block. 24

iv

3.4 We illustrate the on-disk layout of the journal. The journal consists of

a journal superblock, journal descriptor blocks, full data and metadata

blocks, and journal commit blocks.. 25

3.5 A buffer page is a page of data associated with special descriptors, called

buffer heads. Their main purpose is to quickly locate the disk address of

each individual block in the page... 27

3.6 Two special structures, a buffer head and a journal head, need to be allo

cated for each block buffer that is going to be journaled. The buffer head

specifies the respective block number in the journal, while the journal head

points to the corresponding transaction.. 29

4.1 We measure the amount of traffic sent to the journal device according to

the three journaling modes. The total journal traffic of data journaling is

substantially higher in comparison to the other two modes. Additionally,

at request sizes lower than 4KB, data journaling incurs traffic that changes

sublinearly as a function of the write rate. This is reasonable since data

journaling sends to the journal entire blocks rather than only the part that

is modified by each write operation... 33

5.1 In differential data journaling, the on-disk layout of the journal has one new

feature; the partial data blocks. These blocks are used to accumulate the

modifications of multiple write operations in a reduced number of journal

blocks.. 38

5.2 In the differential data journaling we use a new type of journal blocks, the

partial journal blocks, to accumulate the data modifications from multiple

writes. Full journal blocks are still used for metadata or blocks that are

completely modified by write operations. The descriptor’s tags are used

to keep the correspondence between final location and journal blocks, and

also to describe the partial modifications inside the partial journal blocks. 40

v

6.1 We examine the journal device throughput across different numbers of

streams and rates of 1Kbps, 10Kbps and 1Mbps. For low-rate streams,

the disk overhead of differential data journaling is comparable to that of

ordered and writeback modes, unlike the default data journaling mode

which leads to journal device throughput by several factors higher. Never

theless, at high rates, differential data journaling overlaps with the default

data journaling mode in terms of journaling throughput.................................48

6.2 We examine the throughput of the file system device across different num

bers of streams and rates. For low-rate streams, the two metadata-only

journaling modes require up to several factors higher throughput than the

two data journaling modes. Nevertheless, in case of high-rate streams, the

final location disk overhead is comparable across all the four modes. . . . 50

6.3 We measure the average write latency of synchronous updates at different

rates and streams. Synchronous writes are usually avoided because they

are known to incur high latency in typical file systems. However, data

journaling modes can benefit from the sequential journal’s throughput that

eventually allows the system to safely and quickly store the incoming data. 51

6.4 We investigate the total CPU utilization of the system across the different

journaling modes. In all the four cases, at both low and high rates, the

CPU remains mostly idle, whether doing nothing or waiting for the I/O

operations to finish. Thus, the extra CPU cost of differential data journal

ing due to memory copy operations is nominal, in comparison to the other

three modes... 53

6.5 We evaluate the Postmark benchmark results. Both data and differential

data journaling modes perform several factors better from the metadata-

only journaling modes. In particular, due to low write latency, data jour

naling modes manage to serve a larger number of transactions per second. 54

6.6 We measure the recovery time across the four journaling mount modes.

We observe that differential data journaling requires much lower time for

the scan pass than the default data journaling mode, while the replay pass

takes comparable time across the two modes... 56

vi

6.7 We figure the Postmark results while enabling and disabling the on-disk

write cache. We notice that the two data journaling modes almost double

the transaction rate with respect to the ordered mode that is commonly

used by default. · ■ · 57

v ii

List of Tables

6.1 Various rates used from different types of streams. 44

6.2 Flushing Policy - Stream Rate of 1Kbps 46

6.3 Flushing Policy - Stream Rate of 10K bps.. 46

6.4 Flushing Policy - Stream Rate of 1 M b p s .. 47

6.5 Flushing Policy - Postmark .. 55

vm

Abstract

Andromachi T. Hatzieleftheriou, MSc, Computer Science Department, University of Ioan-

nina, Greece. January, 2008. Fast and Reliable Stream Storage Through Differential Data

Journaling.

Thesis Supervisor: Stergios V. Anastasiadis.

Real-time storage of massive stream data is emerging as a critical component in modern

computing infrastructures used for continuous monitoring purposes. Traditional file and

database systems are not designed for such operation environments and incur excessive

resource requirements when handling high-volume streaming traffic.

In this thesis, we examine the possibility of employing data journaling techniques in

order to combine sequential throughput with low latency during synchronous writes. Ex

perimentally we demonstrate that low-rate streams incur remarkably high data journaling

traffic in a commonly used production file system. Therefore, to alleviate the problem

we introduce differential data journaling in a prototype subsystem that we have designed

and implemented for a widely available operating system. Through extensive experimen

tation, we show that our implementation achieves substantial reduction in the required

disk throughput combined with very low write latency.

IX

Εκτεταμένη Περίληψη

Ανδρομάχη Χατζηελευθερίου του Θωμά και της Φωτεινής. MSc, Τμήμα Πληροφορικής,

Πανεπιστήμιο Ιωαννίνων, Ιανουάριος, 2008. Γρήγορη και Αξιόπιστη Αποθήκευση Ροών με

Διαφορική Καταγραφή Δοσοληψιών Δεδομένων.

Επιβλέπων: Στέργιος Αναστασιάδης.

Η αποθήκευση μεγάλου όγκου ροών δεδομένων σε πραγματικό χρόνο αποτελεί βασική υπη

ρεσία των σύγχρονων συστημάτων υπολογιστών, κυρίως σε περιπτώσεις εφαρμογών παρα

κολούθησης. Τέτοιες εφαρμογές χρησιμοποιούνται ευρέως στις μέρες μας για τη διαχείριση

υπολογιστικών υποδομών και την προστασία φυσικών χώρων.

Σύμφωνα με προηγούμενες εργασίες, τα παραδοσιακά συστήματα διαχείρισης δεδομέ

νων, όπως είναι τα συστήματα αρχείων γενικού σκοπού και οι σχεσιακές βάσεις δεδομένων,

δεν επαρκούν για την αποθήκευση ροών που παράγονται με συνεχή ρυθμό από αισθητήρες

σε πραγματικό χρόνο. Στη γενική περίπτωση, ένα σύστημα παρακολούθησης λαμβάνει συ

νεχώς νέα δεδομένα από ένα μεγάλο πλήθος συνδέσεων-αισθητήρων και τα αποθηκεύει για

κάποιο χρονικό διάστημα, το οποίο εξαρτάται από το είδος της επεξεργασίας στην οποία

πρόκειται να υποβληθούν. Οι αισθητήρες μπορούν, για παράδειγμα, να παράγουν βίντεο και

ήχο υψηλής ποιότητας με υψηλό ρυθμό μετάδοσης, ή να στέλνουν περιοδικά πληροφορίες

για τη διακύμανση κλιματολογικών συνθηκών με πολύ χαμηλότερο ρυθμό. Κάτω από αυτές

τις ετερογενείς συνθήκες, προκύπτει η ανάγκη για ένα σύστημα ικανό να αποθηκεύει αξιό

πιστα την εισερχόμενη ροή, χωρίς παράλληλα να επηρεάζει την ακολουθιακή αναπαραγωγή

των δεδομένων που λαμβάνει.

Τα σύγχρονα συστήματα αρχείων εφαρμόζουν τεχνικές καταγραφής δοσοληψιών {jour

naling) προκειμένου να βελτιώσουν το βαθμό αξιοπιστίας που προσφέρουν. Βασικό γνώρι

σμα αυτής της μεθόδου είναι ότι επιτρέπει τη μεταφορά των δεδομένων ή των μεταδεδομένων

από τη μνήμη στο δίσκο σύγχρονα με ακολουθιακό τρόπο. Έτσι, αναβάλλεται προσωρινά

X

η χρονοβόρα μετακίνηση των δεδομένων ή των μεταδεδομένων στην τελική τους θέση στο

δίσκο, ενώ ταυτόχρονα μειώνεται η καθυστέρηση εγγραφής που γίνεται αντιληπτή από την

εκάστοτε εφαρμογή. Κατά κύριο λόγο, οι τεχνικές αυτές εφαρμόζονται στα μεταδεδομένα

του συστήματος, ενώ κάποια συστήματα αρχείων επιπρόσθετα υποστηρίζουν καταγραφή δο

σοληψιών στα δεδομένα που τροποποιούνται {data journaling). Σχετική έρευνα έχει δείξει

ότι μέσω της καταγραφής δοσοληψιών δεδομένων, μπορούν να εξυπηρετηθούν αιτήσεις εγ

γραφής τυχαίας προσπέλασης με ακολουθιακή απόδοση δίσκου. Αντίθετα, σε περιπτώσεις

μεγάλων αιτήσεων εγγραφής ακολουθιακής προσπέλασης έχει παρατηρηθεί ότι η τεχνική

αυτή μειώνει την απόδοση του δίσκου, καθώς αυξάνεται σημαντικά η κίνηση στο αποθηκευ

τικό μέσο. Στην περίπτωση που μελετάμε, βασικό μας μέλημα είναι η αξιόπιστη και απο

δοτική αποθήκευση πολλαπλών εισερχόμενων ροών, των οποίων η συνολική συμπεριφορά

είναι τυχαίας προσπέλασης, παρόλο που καθεμία γράφει ακολουθιακά σε κάποιο ξεχωρι

στό αρχείο. Σε τέτοια περιβάλλοντα παραμένει αδιευκρίνιστο ποιά είναι η καταλληλότερη

μέθοδος για τη διαχείριση της εισερχόμενης ροής.

Στην παρούσα εργασία, μελετάμε τη συμπεριφορά της καταγραφής δοσοληψιών δεδομέ

νων στα πλαίσια των σύγχρονων αιτήσεων εγγραφής σε συστήματα αρχείων. Ένα βασικό

μειονέκτημα αυτής της μεθόδου είναι ότι επιφέρει σημαντικό κόστος σε εύρος ζώνης δίσκου,

λόγω του υψηλού όγκου των δεδομένων που στέλνονται για αποθήκευση. Προκειμένου να

ελαττώσουμε τις απαιτήσεις σε εύρος ζώνης, υλοποιήσαμε μια νέα μέθοδο καταγραφής δο

σοληψιών δεδομένων που αποθηκεύει μόνο την πραγματική μεταβολή στα δεδομένα ως απο

τέλεσμα των αιτήσεων εγγραφής του χρήστη. Υλοποιήσαμε την προτεινόμενη μέθοδο στο

προκαθορισμένο σύστημα αρχείων ext3 του πυρήνα του λειτουργικού συστήματος Linux.

Με λεπτομερείς πειραματικές μετρήσεις δείχνουμε ότι ανάλογα με το ρυθμό μετάδοσης των

ροών, μπορούμε να μειώσουμε σημαντικά τις απαιτήσεις σε εύρος ζώνης της καταγραφής

δοσοληψιών δεδομένων. Ταυτόχρονα, πετυχαίνουμε μια σημαντική μείωση στο χρόνο από

κρισης των σύγχρονων αιτήσεων εγγραφής του συστήματος αρχείων. Συνολικά, η μέθοδος

που προτείνουμε είναι ικανή να προσφέρει γρήγορη και αξιόπιστη αποθήκευση, τόσο σε πε

ριπτώσεις ροών δεδομένων, όσο και σε παραδοσιακές εφαρμογές που απαιτούν σύγχρονες

εγγραφές για την αξιόπιστη αποθήκευση των δεδομένων τους.

X I

Chapter 1

Introduction

1.1 Thesis Scope

1.2 Thesis Outline

1.1' Thesis Scope

Continuous monitoring processes are prevalent today for a wide range of purposes such as

network administration, autonomic systems management and physical site safety. Such

important applications make stream-oriented functionality highly relevant in modern

computing infrastructures. For instance, recently proposed stream management engines

demonstrate the feasibility of flexibly applying time-series operators on high-rate streams

[3, 19]. Existing stream processing environments store stream data either temporarily

before applying real-time operators within time windows [7], or permanently in order to

support retrospective query processing [10].

Prior research has made the case that traditional data management approaches, such

as relational databases and general-purpose file systems, are not engineered to efficiently

store continuous stream data that are automatically generated from sensors in real time

[7, 10]. Sensors may generate high-resolution video and audio streams at high rates [1 1],

or send intermittent variations of environmental conditions at much lower rates [22]. A

monitoring system receives messages from high-volume links or large numbers of sensors

1

and stores the received data for a time period that depends on whether the applied

processing occurs in real time or retroactively.

Across all types of heterogeneous streams with different rate and content characteris

tics, it would be desirable to store the received data reliably on the same facility without

compromising the sequential playback performance required for statistical processing or

effective visualization. Thus, a stream storage facility could serve as a building block

for a variety of applications in the entire range from network packet processing to urban

traffic control or environmental monitoring with the appropriate indexing functionality

built separately at a higher level, when support for query processing is required.

In general, file system operations are either data operations that update user data, or

metadata operations that modify the structure of the file system itself. Existing general-

purpose file systems use journaling in order to synchronously move data or metadata from

memory to disk in a sequential manner. Thus they postpone the more costly transfer of

data or metadata to the disk location without penalizing the write latency perceived by

the application user. Indeed, previous research has used trace-based emulation to experi

mentally demonstrate that data journaling can serve random writes with high sequential

throughput, but actually makes throughput lower at high data volumes due to the extra

disk traffic generated [25]. The study made the reasonable conclusion that data journaling

should only be enabled with random writes, but disabled with large sequential writes. In

stead, we focus on the efficient and reliable storage of multiple concurrent streams whose

aggregate workload demonstrates random-access behavior even though appends corre

sponding to individual streams may be perfectly sequential. To a large extent, in such

environments it remains unclear what is the most appropriate way to handle the incoming

data.

In the present thesis, we investigate the performance characteristics of data journaling

in the context of synchronous writes that would be required among several situations

including the reliable storage of incoming streaming data. In order to lower the cost of data

journaling, we introduce differential data journaling, that constitutes a differential version

of the default data journaling mode of a widely used operating system. In particular, the

primary idea of our approach is to journal only the bytes that are actually written rather

than the entire corresponding blocks that contain them. Therefore, depending on the

rate characteristics of the streams, we can reduce the required journaling throughput up

2

to several factors. As a side-effect of the sequential writes to the journaling device, we

also manage to substantially reduce the response time of synchronous writes. Thus, we

can use data journaling to reduce the latency of writes at a reduced cost of required disk

throughput.

1.2 Thesis Outline

The remainder of this thesis is organized as follows:

In Chapter 2, an overview of the related literature is presented. We review previous

research related to techniques that have been proposed to provide file system reliability

across system crashes and achieve high performance during data and m etadata updates.

Furthermore, we define the storage needs of applications tha t manage stream data, and

present some of the most important implementations in this field. Finally, we present

recent research related to redundancy elimination that intends to reduce the consumption

of expensive resources, such as hard disk and memory space.

In Chapter 3, we describe an existing journaling method tha t is commonly used. In

particular, we examine the journaling technique that the Ext3 file system applies in order

to preserve metadata consistency across system failures, while minimizing the required

recovery time.

In Chapter 4, the design goals of our study are defined and the general architectural

decisions taken during our prototype implementation are justified.

In Chapter 5, we introduce the differential data journaling technique that we have

designed and implemented for a widely available operating system. Our prototype is

based on the idea of accumulating the modifications of multiple updates into a single

journal block, and intends to minimize the write latency at a reduced disk throughput

cost.

In Chapter 6 , we explain the experimentation environment that we used in our study

and present our measurements across different workloads. The experimental results are

displayed graphically and our conclusions are justified.

In Chapter 7, the conclusions and the future directions of this thesis are outlined.

3

Chapter 2

Related Research

2.1 Fast and Reliable Storage Systems

2.2 Stream Archival Servers

2.3 Redundancy Elimination

2.4 Summary

In this chapter, we describe approaches that have been previously proposed in order

to achieve high performance in file systems during data and m etadata updates. Further

more, we review previous research that focuses on techniques which intend to provide file

system reliability across system crashes. Next, we define the storage needs of streaming

applications, and present some of the most important proposals in this direction. Finally,

we present recent research related to redundancy elimination th a t intends to reduce the

consumption of expensive resources, such as hard disk and memory space.

2.1 Fast and Reliable Storage Systems

File systems are central parts of modern operating systems and are expected to serve two

opposing principles; performance and durability. Nevertheless, operating systems are still

susceptible to hardware, software and power failures that damage both their efficiency

and their reliability.

4

Early file systems introduced the use of a main memory buffer cache to hold writes

until they are asynchronously written to disk. Those file systems suffered from potential

corruption during a power failure or an operating system’s crash, since recovery often

required a time consuming examination of the entire state of the file system. Even today,

during reboot, verifying a file system’s consistency requires a special utility that recovers

the file system’s components to a consistent state. As disk sizes grow, this time can

become a serious bottleneck, leaving the system offline for a considerable amount of time

while the disk is scanned, checked and repaired. Although disk drives are becoming faster

through time, this speed increase is modest compared with their enormous increase in

capacity. Unfortunately, every doubling of disk capacity leads to a doubling of recovery

time needed from traditional file systems checking techniques.

It is, however, possible to make file system recovery fast without sacrificing reliability

and predictability. This is typically done by file systems which guarantee atomic comple

tion of file system updates. The principal idea behind atomic updates is tha t an entire

batch of updates can be written to the file system, but those updates do not take effect

until a final commit update is made on the disk. In order to achieve this, the file system

must keep both the old and the new contents of the updated data somewhere on disk

until the final commit.

In order to predictably recover after a crash, the recovery phase must be able to

work out what the file system was trying to do when the crash that led to incomplete

operations to disk occurred. Consistent recovery of the m etadata after a crash, due to

operating system or power failure, requires the system updates to be written on disk in a

specific order. There are many ways of achieving the required ordering between updates

and we describe some of the most important in the rest of the present section.

2.1.1 Synchronous Writes

The system can achieve consistency simply by updating the system m etadata synchronously.

The synchronous m etadata update mechanism first waits for the pending writes to com

plete, before submitting the next ones. Nonetheless, synchronous writes can significantly

impair the ability of a file system to achieve high performance as it is not feasible to batch

up multiple updates into a single disk operation. Similarly one can recover recently writ-

5

Available for reclamation

Disk

Figure 2 .1 : A log-structured file system treats its storage as a circular log and writes all

data and metadata modifications sequentially to the head of a segmented append-only

log. Log space must be constantly reclaimed and thus, a garbage collecting process is

responsible for coalescing unused space into empty segments.

ten data after a crash by writing them synchronously to disk. Synchronous data writes

are typically applied in database systems that store critical data [31, 8].

Xsyncfs introduces the idea of externally synchronous I/O that guarantees durability

not to the application, but to the external entity that observes application output [23].

In particular, an externally synchronous system call returns control to the application be

fore committing data. Subsequently, all output that causally depends on the uncommitted

transaction is buffered, and is eventually externalized only after the commitment is suc

cessfully completed. However, in the case of applications that do not produce any output,

xsyncfs commits data periodically similarly to an asynchronously mounted journaling file

system, an approach that is described later in this section.

2.1.2 Log-Structured File Systems

The main idea behind the design of a log-structured file system (LFS) is to improve write

performance by buffering a sequence of file system updates in the file cache and then

writing all the changes to disk sequentially in a single disk write operation [27]. For this

reason, a log-structured file system treats the disk as a segmented append-only log and

writes all data and m etadata modifications into it. The log is the only structure on disk

and consists of segments that facilitate the removal of deleted areas (Figure 2 .1).

Periodically, the system writes the complete and consistent file structures safely at

a fixed location of the log called checkpoint region. After a crash, the file system uses

6

the checkpoint for its initialization, and the recent portion of the log to quickly recover

recently written data. In particular, upon its next mount, the file system does not need

to walk all its data structures to fix any inconsistencies, but can reconstruct its state from

the last consistent point in the log.

Free space must be constantly reclaimed from the tail of the log to prevent the file

system from becoming full when the head of the log wraps around to meet it. When

updated data is written to the end of the log, the previous copy of the data is still on disk

in its old location and can be considered as dead space or a hole in the log. A garbage

collecting process is responsible for coalescing these holes into empty segments which are

then available for new log writes. The tail itself can skip forward over data for which

newer versions exist farther ahead in the log; the remainder is simply moved out of the

way by appending it back to the head.

Log-structured file systems maximize the write throughput on magnetic media by

avoiding costly seeks. In addition, interleaved writes to multiple streams can be allocated

closely together on disk. However, log-structured file systems induce cleaning overhead,

since the size of the file system is of finite size and the log must eventually wrap around.

Although write allocation in log-structured file systems is straightforward, the garbage

collection of storage space after files are deleted, has remained problematic. Cleaning in

a general purpose LFS must handle files of vastly different sizes and lifetimes, and all

existing solutions involve copying data to avoid fragmentation. Previous study verified

this high cleaning overhead, particularly under OLTP-like workloads, where small random

writes make up a large portion of the disk I/O requests [28]. Over the last years, many

algorithms have been proposed to reduce the cleaning cost of LFS, but the cleaning cost

is still high in systems with high disk space utilization and little idle time.

A number of file systems have been implemented based on this design, including the

Sprite LFS [27] and some prototype LFS implementations on Linux. HyLog uses a log-

structured layout for hot pages to achieve high write performance, and overwrite strategy

for cold pages to reduce the cleaning cost [32]. DualFS is a recent implementation based

on a variation of log-structured file systems [24]. It uses two separates devices for the

data and metadata, respectively; it employs a log-structured file system for the m etadata

and treats data as in typical Unix systems. We present another variation of LFS called

StreamFS in Section 2 .2 .2 , where all writes take place at a write frontier which advances

7

as data is written [10]. StreamFS does not require a segment cleaner, and applies a

prototype expiration policy in order to selectively overwrite the stored data.

2.1.3 Soft Updates

Soft updates is a mechanism that delays writes of metadata and explicitly maintains de

pendency information to specify the order in which data must be written to disk [13].

Thus, it eliminates the need for a log or most synchronous writes related to metadata.

The system maintains for each disk block a list of all the m etadata dependencies asso

ciated with the block. When a block needs to be written, which block requires other

blocks to be written first, the system rolls back the affected parts of the selected block to

their earlier state. After the write has completed, the system deletes all the completed

dependencies and restores the block to its current value. Thus, applications see the most

recent version of the metadata blocks and the system keeps disk contents consistent. After

system crashes the system can be mounted and used immediately, since the only remain

ing inconsistencies are non-fatal errors that can be corrected in the background during

normal operation.

Soft updates track and enforce metadata update dependencies, so that the file system

can safely delay writes for most file operations. This method improves system performance

because it aggregates multiple metadata updates into a reduced number of disk writes

and postpones time-consuming operations, such as deletes, to a background process.

2.1.4 Journaling File Systems

Journaling file systems use an auxiliary log to record all metadata operations and ensure

that the log and data buffers are synchronized in a way that guarantees recoverability.

Additionally, some implementations also support logging of data modifications. The goal

of a journaling file system is to avoid running time-consuming consistency checks on the

whole file system, by looking instead in the log that contains the most recent disk write

operations. Consequently, remounting a journaling file system after a system failure is a

matter of a few seconds.

A journaling file system maintains a journal of the updates it intends to make, ahead

of time. The log is maintained as a preallocated file within the same file system or as

8

Write Request

Figure 2.2: A journaling file system logs updates to a circular journal file before com

mitting them to the main file system. Once the corresponding updates has been stored

to their final location, copies of the blocks in the journal can be discarded allowing the

journal space to be reclaimed.

a standalone separate file system. After a crash, recovery simply involves replaying the

updates from the journal until the file system is consistent again. A file system transaction,

which consists of a sequence of correlative updates, is marked as complete when it is

journaled and followed by a commit record. Only then the corresponding updates can be

written to their final location (Figure 2 .2). Journaling file systems guarantee atomicity

during recovery, as all the updates of a transaction can either be rejected or replayed,

according to whether or not the transaction is followed by a commit record in the journal.

Through write-ahead logging the journaling file systems ensure tha t the log is written

to disk before any pages containing data modified by the corresponding operations. Even

though the system performs additional disk operations, they are efficient since they are

sequential. Batching of log writes that originate from different concurrent applications,

provides additional throughput improvements. In addition, file system journaling allows

synchronous writes to complete faster, because they return as soon as the sequential log

update completes. Therefore, costly disk operations at the final locations of the modified

blocks can be deferred and completed periodically and asynchronously.

Journaling of file data helps further in that direction, but incurs significant extra

throughput on the journaling device. The cost of data journaling can be high for large

writes due to the significant volume of data sent to the log. Unfortunately, current

implementations incur considerable logging activity even with small writes. In order to

9

simplify the implementation, they log the entire blocks being modified rather than just

their modified part. However, journaling reduces write latency in both small and large

writes, since it allows the synchronous log updates to be completed sequentially.

The data and metadata journaling of the Ext3 file system has been documented[29,12].

yFS is a recently proposed file system for general purposes that only uses journal transac

tions for metadata modifications [33], while it reduces disk seeking and handles large files

efficiently. Earlier, Hagmann described metadata update logging in the Cedar File System

to improve performance and achieve consistency [16]. In order to gain performance, it

used group commit, a concept derived from high performance database systems. Also, the

Echo distributed file system used a journal to record disk storage updates thus improving

performance and availability [5].

Prabhakaran et al. introduced the semantic block-level analysis technique to trace and

analyze file systems, and the semantic trace playback technique to evaluate file system

modifications [25]. Evaluation of Ext3 over Linux showed that data journaling incurs

substantial traffic to the journal but with sequential throughput, unlike the ordered mode

that mainly writes data to the final location. The authors conclude that sequential work

loads should better be served in ordered mode, while random workloads can benefit from

data journaling. Using trace-based emulation, the authors show that differential data

journaling can reduce substantially the amount of traffic to the journal in database ap

plications.

2.1.5 Persistent Memory

There exist approaches that implement some type of stable storage through specialized

hardware. The memory vulnerability to power outages can be encountered using uninter

ruptible power supply or a distinct Flash RAM device. Thus, writes to the final on-disk

location can be deferred to a later more convenient time, when the memory space needs

to be reclaimed for example. However, the main drawback of such implementations is the

extra hardware expenses.

The Rio file cache makes ordinary memory safe for persistent storage, through the

use of an uninterruptible power supply, that allows the file system to avoid synchronous

writes and guarantee the file system consistency at the same time [8]. However, durability

10

is guaranteed only as long as the power in on or the batteries remain charged.

Another approach, the Network Appliance’s WAFL (Write Anywhere File Layout) file

system checkpoints the disk to a consistent state periodically and uses Non-Volatile RAM

(NVRAM) for fast writes between checkpoints [18]. NVRAM is used to keep a log of NFS

requests that WAFL has processed since the last consistency point. WAFL keeps the

new copies of the updated data in different locations from the old copies, and eventually

reuses the old space once the updates are committed to disk. After an unclean shutdown,

it replays any requests in the log to prevent them from being lost. The Write Anywhere

File Layout improves write performance by writing file system blocks to any location on

disk and in any order, while deferring disk space allocation with the help of NVRAM.

Nevertheless, NVRAM is characterized by capacity, reliability and cost limitations.

2.1.6 Other Implementations

Hildebrand et al. highlight the prevalence of small and sequential data requests in scientific

applications [17]. They show that it is possible to improve the overall write performance

of parallel file systems by using parallel I/O for large write requests and a distributed file

system for small write requests. The Virtual Log is another effort to minimize the latency

of small synchronous writes by building the log-structured file system over a log with

entries that are not necessarily physically contiguous [31]. Virtual Log is an approach

to improve small disk write performance even in systems with no idle periods, but it

requires detailed knowledge of the disk layout and the location of the disk head at any

moment, which might be difficult to obtain from modern disks. Finally, the Google File

System handles large files typically mutated by appending new data sequentially rather

than overwriting existing data, at random file locations [14].

2.2 Stream Archival Servers

Recently a new class of data-intensive applications has become widely recognized; stream

ing data management applications. This class includes financial applications, network

monitoring, security, telecommunications data management, web applications, manufac

turing and sensor networks. In the data stream model, individual data items may be

11

relational tuples, e.g., network measurements, call records, web page visits, sensor read

ings, and so on. However, their continuous arrival in multiple, rapid and time-varying

streams yields some fundamentally new research problems.

In particular, data arrival rates which can vary from hundreds of thousands of packets

per second per link to much lower rates, complicate the storage management for such

applications. Currently, the design of a streaming-oriented storage system can be based

on two possible architectures; either a relational database can be used to store the in

coming stream data, or a custom index can be built on top of a conventional file system.

Nonetheless, at the above mentioned heterogeneous data rates, both common database in

dex structures and general-purpose file systems have been documented to perform poorly

[7, 10, 2). This motivates the need for a new storage system, that runs on commodity

hardware and is specifically designed to satisfy the storage needs of streaming data.

2.2.1 Traditional Databases

Nowadays, network monitoring systems are useful for a multitude of purposes, such as

physical site safety, network and security forensics. Monitoring applications differ sub

stantially from conventional business data processing. Traditional Database Management

Systems (DBMS) have been oriented toward business data processing, and consequently

are designed to address the needs of these applications [7]. Particularly, a DBMS is con

sidered to be a passive repository storing a large collection of data elements and typically

only humans initiate queries and transactions on this repository. Furthermore, tradi

tional DBMSs are not designed for rapid and continuous loading of individual data items,

and they do not directly support the continuous queries tha t are typical of data stream

applications. Finally, a DBMS assumes that applications require no real-time services.

Applications that continuously monitor and store massive numbers of streams in real

time could benefit from DBMSs, due to the high volume of monitored data and the query

requirements that arise. However, traditional DBMSs seem to have remarkable inefficien

cies under such circumstances. First, monitoring applications continuously receive high

volumes of data from external sources, such as sensors, rather than from humans issuing

transactions. Moreover, while for a DBMS data do not have a notion of time and any

update operation overwrites the previous value, data stream represent a sequence of val

12

ues for the same entity. Thus, the static model of databases, with dynamically changing

queries being executed over static data, is not designed for handling stream data, which

has static queries being executed over dynamically changing data. Last but not least,

handling data streams would require the DBMS to serve real-time applications, making it

imperative that the DBMS employ intelligent resource management (e.g., scheduling) and

graceful degradation strategies (e.g., load shedding) during periods of high load. These

are not features of a traditional DBMS which is designed as a store-and-query model

instead.

Digital streaming infrastructures replace traditional closed-circuit television systems

in urban traffic-control applications to store large numbers of video feeds [11]. Previously,

environmental, oceanographic and meteorological conditions have been measured and

stored over distributed relational databases [22]. Aurora is a stream processing engine

that has been developed to support primitives for streaming applications, handle query

processing on incoming messages in real time and gracefully deal with spikes in message

load [7, 3]. The CoMo is a passive monitoring system that can be used as a building block

for a network monitoring infrastructure that processes and shares network traffic statistics

over multiple sites [19]. Como includes a storage process that is data agnostic and treats

all data blocks equally. Also, load shedding techniques were developed to maintain the

accuracy of traffic queries within acceptable levels at extreme traffic conditions [4].

2.2.2 General-Purpose File Systems

The storage needs of monitoring applications result in continuous sequential writes to the

underlying storage system. In order to reduce disk seek overheads and improve system

throughput, the system should employ data placement techniques that exploit the par

ticular I/O characteristics of streams. General-purpose file systems are not engineered to

efficiently store continuous stream data that are automatically generated from sensors in

real time. Unix-like file systems, for instance, are typically optimized for writing small

files and reading large ones sequentially, while monitoring and querying applications ei

ther write very large files at high data rates, or apply small writes at much lower rates,

while issuing small reads.

File systems periodically write data to disk and transaction processing applications

13

view transactions as committed only after the data has been written to disk. A mod

ified version of the log-structured file system has been recently used for the storage of

high-volume streams [10]. StreamFS has incoming stream data written to a frontier that

moves in a circular fashion along the disk space and selectively overwrites the expired

data. However, StreamFS has been specifically designed for high-rate streams typically

generated in network monitoring systems; it is unclear how it would behave in hetero

geneous environments where high-rate and low-rate streams co-exist. Additionally, an

aggregate high-rate stream typically contains a large volume of information that makes

necessary to build an index structure online during data storage and scan entire segments

of the stored data during retrospective query processing. Instead, demultiplexing of the

incoming data into separate files would possibly facilitate and reduce the load of the

subsequent selective retrieval and processing.

In order to improve their operation reliability, recent general-purpose file systems

apply journaling techniques to preserve metadata consistency across system crashes at

minimal recovery time. Such techniques are therefore in high demand, especially, in en

vironments where high availability is important, not only to improve recovery times on

single machines, but also to allow a crashed machine’s file system to be recovered on

another machine when we have a cluster of nodes with a shared disk. Comparisons across

different journaling methods with general-purpose file server traffic has shown that, de

pending on the sequentiality workload characteristics, either ordered data writing or data

journaling may lead to better performance [25]. Nevertheless, the problem is that the

block access sequence on a content server is effectively random when many slow streams

access large files concurrently, even though individual stream appends are perfectly se

quential [1]. Therefore, it might be useful to build system facilities for the storage of

heterogeneous streams with different rate and content characteristics.

2.2.3 Playback Servers

Several research projects and commercial products of media streaming servers have al

ready established the feasibility of streaming stored files. Recent years have witnessed

an ever-increasing demand for media-on-demand applications on the Internet. Typically,

users access online media clips by clicking on a hyperlink using their Web browser, which

14

results in the browser opening a media player to play the selected media file. The playback

servers are responsible to deliver the selected media file to the player through streaming.

In the streaming mode of data delivery, the initial portion of the media is loaded into the

player buffer, which takes a brief time period. The remainder of the content is obtained

across the network, while the media file is being played back. A stream file is received,

processed, and played simultaneously and immediately, leaving behind no residual copy

of the content on the receiving device.

Therefore, the main purpose of a playback server is to read from disk the required

stored stream file, and then deliver it to the proper client. Reading a stream file from the

disk refers to finding and retrieving the blocks that contain the requested data. Addition

ally, read-ahead techniques are applied in order to enhance disk performance. Read-ahead

consists of reading several adjacent pages of data of a file from disk, before they are ac

tually requested. On the other hand, streaming storage deals with the stream files’ write

operations. Thus, the basic challenge of a streaming storage server is to quickly, reliably

and efficiently, in terms of disk throughput, store the incoming data. Write operations on

disk-based stream files are slightly more complicated, since special care must be taken in

order to avoid compromising their sequential playback performance.

Streaming workloads differ from traditional web workloads in many respects, present

ing a number of challenges to system designers and media service providers. For instance,

transmitting media files requires more computing power, bandwidth and storage and is

more sensitive to network jitter than web objects. Furthermore, media access lasts for a

much longer period of time and allows for user interaction.

In particular, although proxy caching has been successful in delivering static text-based

content, it is more difficult to deliver streaming media content. First, the size of a media

object is generally much larger than a text-based object, rendering the caching of entire

media objects as static objects inefficient. Furthermore, a client requesting some media

object demands continuous streaming delivery. While, the occasional delays that occur

when transferring data over the Internet are acceptable for text-based Web browsing, for

streaming media data this transfer delay results in undesirable playback jitter at the client

side.

Instead, whole-file transfers, or file downloading can provide continuous playback, but

it introduces a significant startup delay, in addition to large buffer space requirements

15

on the client. In comparison to traditional file downloading, media data streaming al

lows significantly faster playback initiation, provides guarantees for uninterrupted data

decoding, and requires minimal buffering requirements from the client devices.

2.3 Redundancy Elimination

Several approaches have been proposed that intend to reduce the consumption of expen

sive resources, such as hard disk and memory space or transmission bandwidth. Reducing

the number of required bytes is equivalent to the elimination of data redundancy within

memory or the storage device. A number of techniques that have been proposed towards

this effort include data compression, duplicate suppression and delta encoding methods.

Particularly, data compression eliminates the redundancy inside an object, duplicate sup

pression refers to the elimination of identical objects and, finally delta encoding eliminates

the redundancy between similar objects.

Significant improvements have occurred over the past decades in the field of virtual

ization. The main research interest lies in the multiplexing of hardware resources among

virtual machines that run commodity operating systems, in order to reduce the host’s

management overhead. Nevertheless, main memory is not amenable to inexpensive mul

tiplexing and thus a variety of redundancy elimination techniques, such as page sharing of

identical pages, memory compression inside individual pages and delta encoding between

similar pages, are performed to achieve high memory consolidation. Related study shows

that substantial memory savings are available from the sharing of identical pages between

virtual machines when running homogeneous workloads [30]. The Difference Engine, an

extension to the Xen virtual machine monitor, demonstrates the potential memory savings

available from leveraging a combination of whole page and sub-page sharing and memory

compression [15].

Kulkarni et al. exploited similarity at the block level in order to reduce the number of

bytes needed to represent an object when it is stored [21]. In particular, they proposed

the use of compression, duplicate block suppression and delta encoding to eliminate re

dundancy of stored data in a scalable and efficient way. Finally, Venti is a network-based

storage system intended primarily for archival purposes [26]. This approach enforces a

16

write-once policy, preventing accidental or malicious destruction of data, while duplicate

copies of a block can be coalesced in order to reduce the consumption of storage.

2.4 Summary

The prevalence of continuous monitoring processes for system management purposes and

general physical site safety make stream processing applications highly relevant in modern

computing infrastructures. Prior research has made the case that neither traditional

databases, nor general-purpose file systems are sufficiently engineered to efficiently store

continuous stream data that is automatically generated from sensors in real time.

Furthermore, current file systems mostly care to maintain their integrity across crashes

without compromising their performance. They achieve this goal by flushing metadata up

dates at sequential disk throughput or by avoiding the violation of the dependencies across

the block updates. Existing techniques that complete the data updates synchronously,

require significant extra disk throughput in order to achieve that at relatively low latency.

This overhead comes from the large amounts of data that needs to be written to disk, even

in cases of small updates. However, a number of effective techniques have been proposed

over the last decades, in order to reduce the consumption of expensive resources, such as

memory and disk space.

In this thesis, we reconsider the ability of conventional file systems to serve the needs of

streaming workloads, and towards this direction we modify a widely available file system

in order to alleviate its relevant design inefficiencies. At the same time, we demonstrate

that it is possible to reduce substantially the throughput overhead of synchronous data

writes while maintaining low latencies, as well.

17

Chapter 3

Journaling in the Ext3 File System

3.1 Background

3.2 Commit Policy

3.3 Checkpoint Policy

3.4 Recovery Policy

3.5 Summary

Journaling results in noticeable reduction of the time period spent during the recovery

of a file system to a consistent state after a crash. In this chapter, we analyze the popular

Linux journaling file system, Ext3 [29, 12]. In particular, we examine the journaling

techniques that are applied, in order to achieve high consistency guarantees across system

crashes at minimal recovery time, and detect design inefficiencies tha t incur significant

performance overhead to the journal device.

3.1 Background

As disk capacities grow faster than disk access speeds over time, modern file systems

use journaling to support fast recovery after a crash [29, 12, 6, 25]. Journaling reduces

possible downtime of several hours to a few seconds by avoiding running time-consuming

18

consistency checks over the entire capacity of the file system. Instead, it simply replays

the most recent disk writes stored in the log. Ext3 implements journaling by performing

each high-level change to the file system in two steps:

1. First, it copies the modified blocks into the journal.

2. Then, it transfers the modified blocks into their final disk location.

The journal is treated as a circular buffer; once the necessary information has been stored

to its final location, copies of the blocks in the journal can be discarded allowing the

journal space to be reclaimed.

3.1.1 Basic File System Concepts

A file system refers to a collection of files and file management structures on a physical

or logical mass storage device. It describes a method of organizing blocks on a storage

device into files and directories. The common file model used by the widely known Linux

operating system is object-oriented. Object is a software construct that defines both a

data structure and the methods that operate on it. It consists of the following object

types:

• The superblock object that stores information relating to a mounted file system.

• The i-node object that stores information about a single file. Each i-node object

is associated with an inode number that uniquely identifies the file within the file

system.

• The file object that stores information concerning the relation between an open file

and a process.

• The dentry object that stores information about the linking of a directory entry with

the corresponding file.

The architecture depicted in Figure 3.1 illustrates the relationships between the major

file system-related components in both user space and the Linux kernel. In particular, a

system call interface layer provides the means to perform function calls from user space

into the kernel. The Linux kernel contains a Virtual File System layer which provides a

19

Superblock

Data Bitmap

Inode Bitmap

Journal Superblock

Journal Commit Block

Journal Descriptor Block

Journal Metadata/Data Blocks

Journal file

Figure 3.1: We illustrate the architectural view of the Linux operating system and dis

tinguish the Ext3 file system inside the kernel. Furthermore, we figure the on-disk layout

of the Ext3, which is based on the generic Unix file system structure.

common interface abstraction for file systems supported by the kernel. VFS constitutes

an indirection layer which handles the file oriented system calls and calls the necessary

functions in the physical file system code to do the appropriate I/O . Finally, the file

system is responsible for applying the corresponding I/O requests on the proper devices.

3.1.2 Introduction to Ext3

The Third Extended File System, known as Ext3, is a journaling file system that is com

monly used by the Linux operating system, and constitutes the default file system for the

most recent Linux distributions. Ext3 is largely based on the Ext2 file system. Particu

larly, its on-disk layout is entirely compatible with the existing of an Ext2 file system with

an additional disk structure, the journal file (Figure 3.1). Thus, all data and m etadata

updates are placed into the standard Ext2 structures that constitute the final location

structures.

20

Information about pending file system updates is written to the journal. By forcing

journal updates to disk before updating complex file system structures, this write-ahead

logging technique enables efficient crash recovery. A simple scan of the journal and a

redo of any incomplete committed operations are needed to recover the file system to a

consistent state. The journal file is, by default, located within the file system, although it

can be also stored on a separate device or partition. The journal is treated as a circular

buffer and thus, once the necessary information has been written to its fixed on-disk

location, the corresponding journal space can be reclaimed.

3.1.3 Journaling Modes

Ext3 uses three kinds of journaling; writeback, ordered and data journaling mode.

• In writeback mode Ext3 logs only the file system metadata, while data blocks are

written directly to their fixed location. Although this mode is considered to be the

fastest, it provides the weakest consistency guarantees of the three modes, since it

does not enforce any ordering between the journal and the fixed-location data writes.

Particularly, the contents of a file might be written before or after the journal is

updated. As a result, files modified right before a crash can become corrupted. Thus,

while metadata blocks are considered to be consistent, no guarantee is provided to

the corresponding data blocks.

• In ordered journaling mode, only metadata writes are journaled. However, data

writes to their fixed location are ordered right before the journal writes of the

metadata, thus reducing the risk of corrupting data during recovery. In contrast to

writeback mode, this mode provides more sensible consistency semantics, since data

and metadata are guaranteed to be consistent after recovery. This is the default

journaling mode on many Linux distributions.

• The full data journaling mode journals both m etadata and data blocks. This mode

minimizes the risk of losing file updates, but incurs additional disk accesses. It

is considered to provide the strongest consistency guarantees of the three modes,

while it seems to have different performance characteristics, in some cases worse, and

surprisingly, in some cases better. In particular, the sequential nature of the journal

21

can improve performance, while in other cases performance gets worse because each

block is typically transferred to disk twice; once to the journal and then later to its

final location. In the rest of this thesis, we prefer to use the term data journaling

when we refer to the full data journaling mode in order to stress out the fact that

it journals data in addition to metadata.

In our research, we focus on the efficient and reliable storage of multiple concurrent

streams. Hence, we concentrate on the consistency guarantees provided through ordered

and data journaling, since writeback mode offers the weakest consistency semantics of the

three modes. However, for reasons of completeness, in our experimental measurements

we examine the behavior of all the three modes.

Figure 3.2 depicts the behavior of three different journaling modes during the commit

and the checkpoint intervals; the processes of updating the on-disk journal structure and

the final on-disk location respectively. According to the mount options, the write updates

are either written directly to their final on-disk location, or to the journal. Depend

ing on the consistency semantics that each mode provides, the updates can take place

synchronously or not. In particular, time flows downwards following the arrows, while

boxes represent file system updates. Additionally, the two timelines represent commit

and checkpoint time. As shown in Figure 3.2(a), during the commit time, the writeback

mode writes synchronously metadata to the journal, while data blocks can be flushed

asynchronously to their final location at any time. Thus, the required disk overhead is

low since only m etadata is logged. In Figure 3.2(a), the dotted boxes are used to imply

that no ordering is required between data and metadata updates as they can occur in any

order. Ordered journaling mode flushes data synchronously to the fixed location before

the corresponding journal record is updated (Figure 3.2(b)). Next, when the proper time

interval expires, m etadata is finally written asynchronously to the appropriate fixed lo

cation. Consequently, a small amount of information (only m etadata) is written to the

journal sequentially and efficiently. However, synchronous data writes to the file system

incur heavy disk traffic, which limits the system’s performance for small writes. In data

journaling the log is updated synchronously with both m etadata and data records at each

commit interval (Figure 3.2(c)). When the proper time interval expires, both metadata

and data are finally written asynchronously to their fixed on-disk locations. Once again,

22

WRITEBACK
MODE

ORDERED
MODE

DATA
MODE

| Final Location ;
I. (Data) j

^ Sync

Commit

Final Location!
(Data) _ j

Commit

.. —
Final Location;

(Metadata) ^
i

/---- " n
Final Location

(Metadata) '■
i

f Λ
Final Location ̂
 ̂(Metadata+Data)

Checkpoint Checkpoint Checkpoint
; Final Location j

(Data)

(a) (b) (c)

Figure 3.2: The behavior of the three different journaling modes through time. Time

flows' downwards following the arrows, while the boxes represent file system updates.

The two timelines represent commit and checkpoint; the processes of updating the on-

disk journal structure and the final on-disk location, accordingly. Depending on the

consistency semantics that each mode provides, the updates can take place synchronously

or not.

journal writes are efficient due to the append-only nature of the log. Nevertheless, when

large volumes of data need to be written, the duplicates due to the journal writes impair

the overall system’s performance. Although journal writes negatively affect the perfor

mance of large data writes, small writes can benefit from the sequential journal. There,

data modifications can be batched together while deferring their movement to the final

location, thus reducing disk head seeking overhead.

23

Journal Descriptor Full Blocks
Block

- block # of final
location on disk

Buffer Page

Block Buffer

Figure 3.3: In the original design of the Ext3 data journaling, there is a full block in

the journal for each write operation, despite the size of the new data modification. In

addition, in the journal descriptor block a new auxiliary tag is allocated each time a write

update is logged, and it is used to describe the correspondence between the journal and

the fixed location disk block.

3.1.4 Journal

Ext3 handles the journal through a special kernel layer called journaling block device

(JBD). The journal is implemented as either a hidden file within the root directory of

the file system or a separate disk partition. Each log record in the journal corresponds

to one low-level operation in the file system that updates one disk block. The journal

represents with a log record the entire modified block of the file system rather than the

range of block bytes actually modified (Figure 3.3). Thus, the journal is wasteful in terms

of disk throughput and space, but simple in terms of processing complexity because it

uses the buffers of the modified blocks directly. Additionally, each log record is associated

with auxiliary information that contains the number of the corresponding block in the file

system and several status flags.

As shown in Figure 3.4, Ext3 uses additional metadata structures to track the list of

journaled blocks. The journal superblock tracks summary information for the journal,

such as the block size and head and tail pointers. A journal descriptor block, as we

explain later in this chapter, marks the beginning of a transaction and describes the

subsequent journaled blocks, including their final fixed on-disk location. In data journaling

mode, the descriptor block is followed by the data and m etadata blocks; in ordered and

24

Journal On-Disk Layout

Journal Superblock

Journal Descriptor Block

Journal Commit Block

|M/I Journal Metadata/Data Block

Figure 3.4: We illustrate the on-disk layout of the journal. The journal consists of a

journal superblock, journal descriptor blocks, full data and m etadata blocks, and journal

commit blocks.

writeback mode, the descriptor block is followed by the m etadata blocks. Finally, a journal

commit block is written to the journal at the end of the transaction to mark its successful

completion and verify that the corresponding data and m etadata updates are safe on disk.

3.1.5 Transactions

Each high-level operation of the file system (e.g. a system call) is usually split into a series

of low-level operations that manipulate disk data structures. The atomic operation handle

refers to a set of low-level operations. When the system recovers from a failure, it ensures

that either the whole high-level operation is applied, or none of its low-level operations is.

For reasons of efficiency, instead of flushing each atomic handle to the journal, the system

groups into a single transaction the records of multiple atomic operation handles. All

the log records of a handle belong to one transaction. After its creation, the transaction

accepts log records of new handles for a fixed period of time. The system stores all the

log records of a transaction consecutively on the journal. After the log records have been

committed to the file system, the system reclaims all the blocks of the transaction.

The JBD layer handles each transaction as a whole. A transaction is considered

complete (equivalently in state T_FIN ISH E D), if all its log records are fully residing in

the journal including the commit block. It is incomplete, if a t least one log record of the

transaction is not in the journal. An incomplete transaction can be in one of the following

states

T _R U N N IN G It still accepts new atomic operation handles.

T .L O C K E D It does not accept new handles, but waits for the accepted handles to

25

finish.

T -FLU SH All the handles in a transaction are complete and the transaction is being

written to the journal.

T .C O M M IT All the log records have been written to the journal except for the commit

block of the transaction.

When recovering from a failure, the system skips all incomplete transactions and transfers

the blocks of the complete transactions to the file system.

3.1.6 Kernel Buffers

The Linux kernel uses the page cache to temporarily keep page copies from recently

accessed disk files in memory. In most cases, the kernel refers to the page cache when

reading or writing from disk. In particular, before a file write occurs, the kernel verifies

whether the corresponding page exists in the page cache. In case that it is found, the

write is applied to that page in memory. Otherwise, when the write perfectly falls on page

size boundaries, the page is not read from disk, but allocated and immediately marked as

dirty. Otherwise, the corresponding page is fetched from disk and requested modifications

are done. Pages that have been modified in memory for writing to disk, are marked dirty

and have to be flushed to disk before they can be freed.

A block buffer is the buffer of an individual disk block in memory. As depicted in

Figure 3.5, each block buffer has a buffer head descriptor that specifies all the necessary

handling information required by the kernel in order to locate the corresponding block

on disk. Generally, the page cache does not allocate the block buffers individually, but in

units of pages called buffer pages. The kernel addresses individual blocks using the buffer

heads pointed to by the corresponding buffer page.

3.1.7 Flushing Dirty Buffers to Disk

Write operations are deferred in the page cache. When data in the page cache is newer

than the data on the backing store, that data is called dirty. Dirty pages tha t accumulate

in memory eventually need to be written back to disk. Dirty page writeback occurs in

two situations:

26

Buffer Page

..... a·.:.:.....
Disk Block

. K·
Disk Block

......
Disk Block

-► offset in page
- * block number

Disk

Figure 3.5: A buffer page is a page of data associated with special descriptors, called

buffer heads. Their main purpose is to quickly locate the disk address of each individual

block in the page.

• When free memory shrinks below a specified threshold, the kernel must write dirty

data back to disk in order to free memory.

• When dirty data grows older than a specific threshold, sufficiently old data is written

back to disk, in order to ensure that dirty data does not remain dirty indefinitely.

The Linux kernel uses a group of general purpose kernel threads called pdflush to system

atically scan the page cache looking for dirty pages to flush, and additionally, ensure that

no page remains dirty for too long.

Therefore, a number of pdflush kernel threads flush dirty pages to their final location

on disk through two separate mechanisms:

• Systematically scan the page cache every writeback period.

• Implement a timeout mechanism on each page according to a configurable expiration

period.

Furthermore, the JBD layer uses an additional kernel thread, known as kjournald

thread. This kernel thread is responsible for two things:

• Every so often the current state of the file system needs to be committed to the

journal on disk. This happens periodically and the corresponding time interval is

known as commit interval

27

• The dirty buffers of the committed transactions need to be flushed periodically to

the final on-disk location, in order to reclaim space in the log.

A user can also use the fsync system call to synchronously flush all the data and

metadata dirty buffers of the specified file descriptor to disk. Actually, fsync moves the

blocks to the journal or the final disk location depending on the mount mode.

3.2 Commit Policy

The commit of a transaction involves writing to journal the dirty buffers that were modi

fied by this tranaction, and then writting a commit record to mark the process as complete.

The commit policy is initiated, either when the commit interval expires, or when the write

updates need to be synchronously written to disk (i.e., through fsync).

Each invocation of the write system call creates a new atomic operation handle that

is added to the current active transaction. When the transaction moves to commit state,

the kernel acquires a journal descriptor block. This block contains tags that map block

buffers to their final location on disk of the file system (Figure 3.3). When a journal

descriptor block fills up with tags, the kernel moves it to the journal together with the

corresponding block buffers. The kernel allocates additional journal descriptor blocks as

needed for each transaction.

For each block buffer that will be journaled, the kernel allocates a separate buffer

head specifically for the I/O needs of journaling. Additionally, the kernel creates an

auxiliary structure called journal head that associates the block buffer with the respective

transaction. So, as depicted in Figure 3.6, for each journal block buffer there is (i) a buffer

head that specifies the respective block number in the journal and, (ii) a journal head

that points to the corresponding transaction.

In general, the buffer head of a journaled block buffer points to the original copy of

the block buffer. However, if this block buffer is going to be used concurrently by another

transaction, then the kernel creates in memory a new copy of the block buffer for the

journal I/O transfer needs. When all the log records of a transaction have been safely

written to the journal, the system allocates and synchronously writes to the journal a

final commit block that states the transaction has committed successfully.

28

Figure 3.6: Two special structures, a buffer head and a journal head, need to be allo

cated for each block buffer that is going to be journaled. The buffer head specifies the

respective block number in the journal, while the journal head points to the corresponding

transaction.

3.3 Checkpoint Policy

Obviously, there is a limited amount of space in the journal, and this space needs to be

reused. Besides, committed transactions that have all their blocks written to the final

on-disk location, no longer need to be kept in the journal. The process of ensuring that a

section of the log is committed fully to disk, so that this area can be reclaimed, is known

as checkpointing.

The checkpointing process flushes the metadata and data buffers of a transaction not

yet written to their actual location on the disk, allowing the transaction to be safely

removed from the journal. The journal can have multiple checkpointing transactions,

and each checkpointing transaction can have multiple buffers. The process considers each

committing transaction, and for each transaction, it finds the m etadata buffers that need

to be written to the final location on disk. Subsequently, all these buffers are flushed

in one batch. Once all the transactions are checkpointed, their log is removed from the

journal.

In particular, checkpointing is initiated when the journal is being flushed to the disk

(e.g., unmount) or when a new handle is started. A new handle can fall short of guaranteed

number of buffers, so it may be necessary to carry out a checkpointing process in order

to release some space in the journal. Especially, a checkpoint process is triggered when

the amount of free journal space is between 1/4 and 1/2 of the journal size. In general,

29

the size of the journal is a configurable parameter in Ext3.

3.4 Recovery Policy

The transaction committing completes when a transaction has flushed all its records to the

journal and has been marked as finished. This is done for each running transaction within

a specified time period by the kjournald kernel thread. Subsequently, the transaction

checkpointing completes when all the blocks of a committed transaction have been moved

to their final location on disk and the corresponding transaction records are removed from

the journal.

During recovery, the file system scans the log for committed complete transactions;

incomplete transactions are discarded. Thus, if the system finds log records in the journal

after a crash, it assumes that the unmount was unsuccessful and initiates a recovery

procedure in three phases.

PASSJSCAN In the first phase, it finds the last record of the journal. From here, the

^recovery process knows which transactions need to be replayed. The exact state of

the journal is unknown since the system does not know the point at which the failure

occurred. The last transaction in the journal can be either in the checkpointing or

in the committing state. A running transaction cannot be found, as it was only in

memory during the crash. For committing transactions, the updates made need to

be discarded. Thus, the system only considers committed transactions for replaying.

PASS-REVOKE During the second phase, the kernel builds a hash table from the

revoked blocks. These are blocks of committed transactions tha t should not be

written to their final disk location, because they are obsoleted by later operations.

This is important to know in order to prevent older journal records from being

replayed on top of newer data using the same block. This table is used every time

that the system needs to find out whether a particular block should be replayed on

disk.

PASS-REPLAY In the third phase, the recovery process writes to their final disk loca

tion the newest version of all the blocks that occur in committed transactions, and

30

are not present in the hash table of revoked blocks.

If the system crashes again before the recovery finishes, the same journal can be reused

in order to complete the recovery.

3.5 Summary

The Ext3 file system is a journaling extension to the standard Ext2 file system on Linux.

Summarizing, the write updates are initially recorded sequentially in a separate area of

the disk reserved for use as a journal. File system transactions which complete have a

commit record added to the journal, and only after the commit is safely on disk may the

file system write the updates back to their original location. During the recovery phase,

the included blocks of a transaction can either be replayed or discarded. A checkpointing

process is needed to flush the buffers of an already committed transaction, that have not

yet been written to their final location through the normal dirty page flushing policy.

Then, the transaction can be safely removed from the journal.

Journaling results in massively reduced time spent recovering a file system after a

crash, and is therefore in high demand in environments where high availability is impor

tant. In addition, synchronous writes complete faster since they return as soon as the

sequential log update completes. Data journaling can improve even more the response

time of synchronous writes, but significant extra disk throughput on the journaling device

is incurred due to the large volume of data written to the log.

31

Chapter 4

Architectural Definitions

4.1 Design Goals

4.2 Partial Writes

4.3 Commit Policy

4.4 Recovery Policy

4.5 Summary

In this chapter, we define the design goals of our study and explain the general ar

chitectural decisions taken before our prototype implementation. Initially, we detect the

design inefficiencies of existing journaling techniques that lead to unnecessary disk over

head on the journal device. Then we propose a more efficient scheme for the fast and

reliable storage of multiple concurrent updates.

4.1 Design Goals

Contemporary journaling file systems mostly care to maintain their m etadata consistency.

In order to provide high consistency guarantees, they only log m etadata modifications in

the journal. Nevertheless, two commonly used file systems, Ext3 and Reiser FS, addition

ally support data journaling as a mount option.

32

Pp

ω
«5

Η
Ρ ·*«
32-
3
Ο

* "9

Ο
Η

Requirements

1000 η

100 "|

101

1 -1

ο

i r

— Data Journaling
— ■ - ■ Writeback

Ordered
i Ί m mj— r~i r r nii|—

0 1 10
1 I I I I II IΓ

100
Request Size (KB)

Figure 4.1: We measure the amount of traffic sent to the journal device according to the

three journaling modes. The total journal traffic of data journaling is substantially higher

in comparison to the other two modes. Additionally, a t request sizes lower than 4KB,

data journaling incurs traffic that changes sublinearly as a function of the write rate. This

is reasonable since data journaling sends to the journal entire blocks rather than only the

part that is modified by each write operation.

Comparisons across different journaling methods with general-purpose file server traf

fic, have shown that either ordered data writing or data journaling may lead to better

performance depending on whether the aggregate workload is sequential or random-access

[25]. Particularly, it was reported that data journaling improves the throughput of ran

dom I/O operations, but incurs much higher disk throughput than m etadata journaling.

This high cost of data journaling originates from the significant volume of data that is sent

to the log. When the journal fills up with log records, a checkpoint process is triggered

to synchronously write them to their final location, thus leading to further delay.

Furthermore, file system journaling allows synchronous writes to complete faster since

they return as soon as the sequential log update completes. In the particular cases that

both data and m etadata blocks are logged, the benefit is higher, but this costs significant

disk overhead on the journaling device. Unfortunately, the cost of data journaling can be

high even with small writes, since for simplicity reasons, journaling techniques that sup

port data journaling, log the entire blocks being modified rather than just their modified

part.

In order to verify the significant overhead of data journaling, we examine the three

33

mount options of Ext3 using periodic synchronous writes of varying request sizes. The

difference in the amount of traffic sent to the journal device across the three mount

options of Ext3 is depicted in Figure 4.1, where the total disk traffic is measured during

a time period of 5 minutes. We observe that the total journal traffic of data journaling is

substantially higher in comparison to the other two modes. Furthermore, we notice that

at request sizes lower than 4KB, which is the default file system block size, data journaling

incurs traffic that changes sublinearly as a function of the write rate. In particular, data

journaling sends a large amount of traffic to the journal for small writes regardless of the

actual size of the write requests. This is reasonable since data journaling sends to the

journal entire blocks instead of the actual newly written bytes.

In the present study, we investigate the performance characteristics of data journaling

in the context of synchronous writes that would be required among several situations

including the reliable storage of incoming streaming data. In order to lower the cost of

data journaling we introduce differential data journalings a new journaling mode where

a series of write modifications can be accumulated in a single journal block. Therefore,

when the workload consists of many small writes we manage to reduce substantially the

required journal throughput by avoiding to log a whole block for each data modification.

4.2 Partial Writes

The idea behind journaling is that an entire batch of updates can be written to the file

system, but those updates do not take effect until a final commit update is made on the

disk. In order to achieve this, the file system must keep both the old and the new contents

of the updated data somewhere on disk until the final commit. The updated contents are

stored in the journal on disk, where for each modified final block exists a corresponding

journal block.

Therefore, in order to manage the partial data block modifications we need to introduce

a new type of journal block. This new type is responsible for fitting as many partial

modifications as possible. In case that it runs out of space, a new one can be allocated in

its place.

34

4.3 Commit Policy

During the commit policy, dirty buffers are written to the journal followed by a commit

record, that states that the process has completed successfully. As we have already

explained, data journaling logs full blocks instead of the new bytes written by each update,

and thus invokes unnecessary disk traffic, even in cases of small writes. Ideally, we should

only journal the modified part of individual blocks, and this can be achieved through

the proposed new journal block type. Through the use of this block we can substantially

reduce the total number of blocks that need to be logged and, consequently we can improve

considerably the journal device throughput.

4.4 Recovery Policy

During the recovery phase, the journal is initially scanned for incomplete committed

transactions. If such transactions exist, they are replayed in the file system. Through

this process whole blocks are read from the journal and, hence they can easily be written

back ίο their final on-disk location.

However, our approach is more complicated than the default policy. In particular,

some journal blocks include updates from more than one block modifications, and in

order to be applied, the corresponding unmodified blocks need to be read from the disk.

Thus, in case of partial modifications, every original block should be first read from the

final on-disk location, and then written back, updated with the difference retrieved from

the corresponding journal record. Nevertheless, when a block is retrieved from the journal

and it is either a m etadata or a fully modified block, then the default recovery process

can be applied.

Furthermore, the successful completion of the recovery phase imposes the need for

auxiliary information. The required information, that is known and stored for each journal

block at the commit time, should include:

• the number of the corresponding block in the file system,

• the size and the starting offset of the modification inside the original disk block,

35

• anything else that could be useful during the replay of the partial updates from the

journal blocks to their final location.

Subsequently, this information can be retrieved during the recovery process and, thus help

the replay of the partial modifications.

4.5 Summary

As it is clear from the above analysis, traditional data journaling schemes can exhibit

high and unnecessary disk traffic, as whole blocks are written to the journal, regardless of

the modification size. In this thesis, we propose an advancement of the traditional data

journaling approach, where the deltas (changes) to data blocks are journaled rather than

the entire data blocks themselves. Our main idea is to accumulate a number of write

modifications in a few single journal blocks, named partial journal blocks. Subsequently,

during the uncommon case of recovering after a crash, we can easily recover the original

blocks after applying to them the corresponding modifications from the partial blocks.

36

Chapter 5

Prototype Implementation

5.1 Partial Blocks

5.2 Journal Heads

5.3 Tags

5.4 Commit Policy

5.5 Recovery Policy

According to previous research, the journaling of both data and m etadata improves

the throughput of random I/O operations, while at the same time incurs much higher

disk overhead than the metadata-only journaling modes. In the rest of this chapter, we

outline the approach that we follow in order to keep low the overhead of data journaling

and at the same time retain its significant performance gains. In particular, we describe

the implementation of differential data journaling; a variation of the full data journaling

mode of Ext3. Even though we consider our approach quite general, in our description

we use the previously introduced terminology of Ext3, over which we have implemented

our prototype.

37

Journal On-Disk Layout

m Journal Superblock [M/Dj Journal Metadata/Data Block

[■•jpj Journal Descriptor Block | p d) Journal Partial Data Block

WM Journal Commit Block

Figure 5.1: In differential data journaling, the on-disk layout of the journal has one new

feature; the partial data blocks. These blocks are used to accumulate the modifications

of multiple write operations in a reduced number of journal blocks.

5.1 Partial Blocks

The original journaling process of Ext3 transfers a full copy of each modified block buffer

from memory to journal. This is true for both data and m etadata blocks when they

are journaled according to the mount options of the file system. Thus, even a single bit

change in a bitmap results in the entire bitmap block being logged. In case of small writes

that modify only a part of a block buffer, the logging of full blocks can have a multiplier

effect- at the throughput required by the journal device, as we have already observed in

Figure 4.1. The actual waste in journal device throughput depends on the fraction of the

block buffer that is left unmodified by each write operation. Ideally, only the modified

part of the block should be written to the journal. Subsequently, a t the uncommon case

that the recovery process is initiated, the original block should be read from the final

on-disk location and then written back, updated with the difference retrieved from the

corresponding journal record.

In order to implement differential data journaling, we introduce a new type of journal

block that we use to accumulate the modifications of data blocks from multiple write

operations (Figure 5.1). We call this type of journal block partial, to differentiate it

from full blocks, which are blocks fully modified by a single write operation. Partial

blocks are only used to gather the partial updates of data blocks, rather than metadata

modifications. In summary, the commit process treats data blocks differently than the

metadata ones, while two different types of data blocks are distinguished; partial that

store writes smaller than the default block size, and non-partial tha t correspond to fully

38

written buffers.

5.2 Journal Heads

As we have already explained in paragraph 3.2, for each journal block buffer there is a

corresponding journal head that associates the block with a transaction. Additionally,

the journal head points to a buffer head that links the buffer to a buffer page and other

information required for the transfer to the journal device.

For writes that only modify part of a block, we expanded the journal head with two

extra fields, the offset and the length, respectively, of the partially modified block pointed

to by the buffer head. As we see below, we make use of the journal head in order to

prepare the blocks that we actually send to the journal.

5.3 Tags

As the commit process is started, a buffer for the journal descriptor block is allocated. In

data journaling, the transaction logs both data and m etadata modifications. The journal

descriptor block contains a list of fixed-length tags, where each tag corresponds to one

write. Originally, each tag contains two fields:

• The final disk location of the modified block.

• Four flags for journal-specific properties of the block.

In our design, we introduce three new fields in each tag:

• A flag to indicate whether the corresponding block is partially modified or not.

• The length of the new bytes written in the partial block.

• The starting offset in the data block of the final disk location.

This data is persistent and can be used for recovery if a failure occurs.

39

Partial Blocks

Buffer Page

Block Buffer ' \ C

i
________ i
(N e w Data
^Unm odified Data

Figure 5.2: In the differential data journaling we use a new type of journal blocks, the

partial journal blocks, to accumulate the data modifications from multiple writes. Full

journal blocks are still used for metadata or blocks that are completely modified by write

operations. The descriptor’s tags are used to keep the correspondence between final

location and journal blocks, and also to describe the partial modifications inside the

partial journal blocks.

Once the tags fill up a journal descriptor block, the descriptor block and all the corre

sponding data and metadata blocks are written consecutively to the journal. Furthermore,

additional journal descriptor blocks are allocated as required by the transaction.

5.4 Commit Policy

The commit process of differential data journaling differs from the original approach in

that it makes further use of partial blocks. In particular, a new partial data block is allo

cated when a new transaction is started and it is used to accumulate all the modifications

with size smaller than the default file system block size. The journal descriptor block

stores the mapping of each journal block to its actual on-disk location in the form of tags.

In our prototype, it additionally includes tags that describe the partial writes (Figure

5.2). If a write updates part of a data block, the modified bytes are copied to the current

40

partial block buffer of the transaction. When the available space of a partial data block

is not sufficient to store a new incoming update, then a new partial block is allocated to

serve the next partial modifications. In case that a write system call modifies a metadata

block or fully writes a data block, we log the corresponding full block instead.

We might still need to create a copy of the full block in order to freeze the version

that we send to the journal, if the block is going to be modified shortly by another

transaction. Once all data and metadata is on safe storage, the transaction needs to be

marked as committed so that it can be guaranteed that all its updates are safe in the

journal. Eventually, the commit process completes right after the journal commit block

is synchronously written to the log.

5.5 Recovery Policy

During the recovery process, the data modifications are retrieved from the journal, and

are subsequently applied to the blocks corresponding to the final on-disk location.

Initially, when a descriptor block is read from the log, we extract its included tags.

Each tag can describe either a partial or a full log block. When we meet the first tag that

describes a partial write modification, the next log block is retrieved from the journal,

and from that point on it is used as the partial block of the current transaction. Since

the data of consecutive writes are placed next to each other in the partial block, their

corresponding starting offsets can be deduced from the length field in the tags. In case

that the length field of a tag exceeds the end of the current partial block, the next block

is read from the journal and becomes the new partial block of the transaction. We use

the starting offset tag field to read into a kernel buffer the disk block tha t we will modify

in order to apply the data modifications.

However, if the partial block flag is not set, then the next block is retrieved from the

journal, which is eventually treated as a metadata or a full data block. Obviously, the

full block is directly written to the final disk location without reading first the previous

version from the disk.

41

Chapter 6

Experimental Results

6.1 Experimentation Environment

6.2 Streaming Workloads

6.3 The Postmark Benchmark

6.4 Recovery Time

6.5 Other Issues

In the present chapter, initially, we introduce the hardware configuration that we used

in our performance measurements. Afterwards, we study the requirements and perfor

mance of our differential data journaling implementation with respect to the ordered, the

writeback and the default data journaling modes of Ext3, and we graphically present our

experimental results.

6.1 Experimentation Environment

We implemented the differential data journaling in the Linux kernel version 2.6.18. We

evaluated our prototype implementation using x86-based server nodes running the Debian

Linux distribution. For the majority of the experiments we used nodes with a quad-core

2.66GHz processor, 2GB RAM, and two SAS 15KRPM disks, each of 300GB storage

42

capacity and 16MB internal buffer. Additionally, for one set of the experiments, a 2.33GHz

quad-core processor and two SATA 7.5KRPM disks, each of 250GB and 16MB on-disk

cache, were used.

In the general case, two separate disks are used; one for the journal and another one

for the actual file system structures, except for one case that is explained later in this

chapter. Furthermore, we use the default file system parameters of Linux that set the page

and the block size to 4KB. We also keep the default journal size of 128MB, but manually

tune for best performance the writeback period and expiration period of the dirty page

flush process. In our measurements, we assume that write operations are followed by the

fsync system call for synchronous completion.

Previous research reports that, by default, a synchronous write operation returns as

soon as the data reaches the on-disk write cache, rather than the storage media. This

behavior renders the system unreliable unless we disable the on-disk buffer cache or use

controllers with battery-backed cache [23]. In most of our experiments, we kept enabled

the disk write cache, which essentially emulates devices with battery-backed memory.

However, we also evaluated our system with the write caches disabled. As we explain,

the disk write cache adds no benefit to streaming workloads but leads to significant

performance advantages in traditional applications.

In order to study the characteristics of our system and evaluate our implementation,

we did extensive performance measurements. In particular, the first set of experiments is

based on a microbenchmark that we have built for the needs of a streaming workload eval

uation. This benchmark consists of multiple threads that periodically apply synchronous

writes at a specific rate. In our evaluation, we examine the disk throughput requirements

and the average latency of each write. During the next set of experiments, we used the

Postmark benchmark to measure performance in an environment of temporary small files

that is typical for electronic mail, newsgroups and web-based commerce [20]. Thus, we

investigate the benefit of data journaling in applications other than streaming. Finally,

we performed a series of experiments in order to examine the possible overhead of our

prototype implementation. Therefore, we measure the time needed to recover the sys

tem to a consistent state after a crash, the CPU overhead that our approach incurs and

perform some other experiments that are presented in the rest of this chapter.

At last but not least, our prototype implementation of differential data journaling is

43

Table 6.1: Various rates used from different types of streams.
S tream T ype E stim a te d A verage R a te

Environmental Measurements

(humidity, temperature etc.)
(tens of bits - hundreds of Kbits)/sec

Audio Streams

(telephone quality, mp3 etc.)
(hundreds of bits - hundreds of Kbits)/sec

Video Streams

(videophone quality, mpeg etc.)
(tens of Kbits - tens of Mbits)/sec

being used as a working environment over a period of three and a half months. The

system has demonstrated a stable behavior during this entire period.

6.2 Streaming Workloads

In our first set of experiments, we evaluate the benefits and requirements of differential

data journaling in a file system. We consider the case where the incoming data from a large

number of concurrent streams is stored synchronously on the same disk. Actually, through

the use of microbenchmark that we developed, we emulate the behavior of streaming

workloads, where massive numbers of streams need to be stored synchronously at the

same disk facility.

In digital multimedia, the data rate, or else titrate, represents the amount of informa

tion of a recording that is stored per unit of time. Various factors can influence a stream ’s

rate, such as the compression scheme that is used or the nature of the particular steaming

application. For instance, some sensors may send video and audio streams of high qual

ity at high rates, while others may generate environmental measurements at much lower

rates. In Table 6.2, we present the range of different rates that are used according to the

type of each stream.

Our microbenchmark tool allows us to examine the performance characteristics of

streams with different rates, while varying the degree of concurrency. So, in order to

press the system, we increase the total number of streams between the different runs. At

44

each execution, a sequence of write updates is synchronously applied to the system for

a specified amount of time, while according to the stream rate different record sizes are

used. Typically, a low-rate streaming workload implies many small synchronous writes

applied to the same storage media, while higher-rate streams typically correspond to

larger ones. In particular, the rate of a low-rate streaming workload varies from tens of

bits up to few tens of kilobits per second. Therefore, the corresponding write request size

is much smaller than the default Linux kernel block size. On the other hand, high-rate

streams send data over megabits per second, thus leading to request sizes that range from

hundreds of kilobytes and on.

6.2.1 Flushing Policy

In streaming workloads, even though each stream simply appends data sequentially to

the end of a separate file, the aggregate traffic is random. However, data journaling safely

stores data on the journal at sequential throughput and lazily transfers it to the final

location at a rate that we can control. Particularly, we manually tune for best performance

the writeback period and the expiration period of the dirty page flush process, according to

the rate and the number of the streams that are involved in each experiment’s execution.

The writeback period is used to define when the pdflush daemons wake up and write old

data out to disk, while the expiration period defines when dirty data is old enough to

be eligible for writeout by the pdflush daemons. Data which has been dirty in memory

for longer than this interval will be written out next time a pdflush daemon wakes up.

In Linux kernel, the writeback period is by default set to 5 seconds and the expiration

period to 30 seconds.

Ideally, in case of low-rate streams we would like to accumulate multiple write updates

in memory for a long period of time, in order to benefit as much as possible from the

batching of related writes. We achieve this by delaying the awakening of pdflush daemons

and increasing both the default expiration and writeback intervals. Nevertheless, the

new time intervals should be carefully selected, to avoid overfitting either the journal

device, or the memory. In general, when there is no available space left in the journal

or the memory, the subsequent writes should block, waiting for the journaled updates to

move from memory to their final on-disk location, through either the checkpointing or the

45

Table 6.2: Flushing Policy - Stream Rate of 1Kbps
Number of

Streams

Writeback Period

(in seconds)

Expiration Period

(in seconds)

100 10 300

500 10 300

1000 10 150

2000 10 60

3000 1 30

4000 1 30

5000 1 5

6000 1 5

7000 1 5

8000 1 5

kernel’s dirty page flush process. For this reason, we choose the expiration interval to be

long enough for low-rate streams, but we wake up the pdflush daemons rather frequently

to clean the memory from old updates. Additionally, when the number of low-rate streams

increases, so does the total amount of data written and hence, we lessen the expiration

interval to avoid the checkpointing and the dirty page flush process. Tables 6.2 and 6.3

present the particular tuning of the dirty page flushing parameters that we use in our

measurements, for low-rate streams of 1Kbps and 10Kbps respectively.

Multiple high-rate streams generate large volumes of data tha t need to be stored on

Table 6.3: Flushing Policy - Stream Rate of 10Kbps
Number of

Streams

Writeback Period

(in seconds)

Expiration Period

(in seconds)

50 10 300
100 5 100
500 5 60
1000 1 30
1500 1 10

46

Table 6.4: Flushing Policy - Stream Rate of 1Mbps
Number of

Streams

Writeback Period

(in seconds)

Expiration Period

(in seconds)

10 5 20

25 1 5

50 1 3

75 1 1

100 1 1

the same disk facility. The benefit of batching together such updates is insignificant

due to their size. Therefore, we don’t need to keep them in memory for long time. In

these cases, we can either use the default expiration and writeback periods, or slightly

reduce them according to the generated amount of data. Once again, when the number of

streams increases we can reduce the intervals even more, in order to prevent the memory

structures from getting full. Table 6.4 presents the configuration of the writeback and

expiration periods in case of high-rate streams of 1Mbps.

Finally, since we fsync every individual write, we use the default journal commit

interval of 5 seconds to wake up the kjournald daemon, as it eventually does not influence

our measurements.

6.2.2 Journal Traffic

In Figure 6.1 we measure the journal device throughput across different numbers of

streams and rates of 1Kbps, 10Kbps and 1Mbps. In Figure 6.1(a), we observe that when

the number of streams reaches several thousands, data journaling sends around 30MB/s

of log records to the journal. Instead, differential data journaling keeps the traffic lower

than 5MB/s. This behavior is less intense as the stream rate increases from 1Kbps to

10Kbps (Figure 6.1(b)), and in fact the two data journaling modes overlap for streams of

1Mbps (Figure 6.1(c)). As expected, in all three cases the two metadata-only journaling

modes keep the overhead of the journal device at the low levels, since only a small amount

of information is finally logged.

47

1 Kbps/stream
a? , — Data Journaling

9O.
JS
S I
9Oh

JS
H
"Sau
9e

25 J —x— Diff Data Jm ^ ‘

: - ·■- Writeback
-- Ordered^.'

/
*

20-

15-i

10 -i

5 -

0
2000 4000 6000 8000

Number of Streams

(a)

♦- · Data Journaling
P® 25 - —*— Diff Data Jm

; - - · - Writeback
a 20 - Ordereda

JS
§f> 15 o
£ 10 H

10 Kbps/stream

1500
Number of Streams

(b)

1 Mbps/stream

Number of Streams

(c)

Figure 6.1: We examine the journal device throughput across different numbers of streams

and rates of 1Kbps, 10Kbps and 1Mbps. For low-rate streams, the disk overhead of

differential data journaling is comparable to that of ordered and writeback modes, unlike

the default data journaling mode which leads to journal device throughput by several

factors higher. Nevertheless, at high rates, differential data journaling overlaps with the

default data journaling mode in terms of journaling throughput.

In general, we observe that at low rates, the journal throughput of differential data

journaling is close to that of ordered and writeback modes. The corresponding throughput

in the case of the default data journaling mode is several factors higher. Particularly, a

low-rate streaming workload implies many small synchronous writes applied to the same

storage media, while higher-rate streams typically correspond to larger ones. In the case of

low-rate streams, differential data journaling manages to reduce substantially the journal

throughput. This is achieved through the accumulation of multiple write updates into a

48

single journal block. On the other hand, default data journaling incurs significant journal

overhead because of the full-block logging scheme. Even though a corresponding increase

in memory copy activity is likely, this is hardly a problem as we see later. Therefore, we

can reliably store the data of low-rate streams without excessive journaling cost.

Nonetheless, at high rates, differential data journaling overlaps with the default data

journaling mode in terms of journaling throughput, while the required journal disk over

head of metadata-only modes remains significantly low. As the total amount of data

written increases, the benefit of partial writes becomes nominal and large volumes of data

are finally sent to the journal.

6.2.3 Final Location Traffic

In Figure 6.2 we measure the disk throughput for the update of the final location on the file

system. We notice that the ordered and writeback methods, that only journal metadata,

incur consistently higher throughput to the final disk location, especially at low-rate

streams. Besides, metadata-only journaling allows synchronous updates to complete by

first forcing data blocks to their final on-disk location, before the corresponding m etadata

blocks are synchronously written to the journal. Instead, the two data journaling modes

append both the m etadata and data updates synchronously, but efficiently to the journal,

and keep the corresponding data blocks in memory for some time. There, each block has

the chance to receive the updates from multiple writes, before it is transferred to its final

location on disk. Furthermore, we tune the parameters of the dirty page flush process in

order to gain as much as possible from the opportunity of batching. Hence, for low-rate

streams we open enough the expiration interval and allow many small modifications of

single blocks to be accumulated.

On the other hand, for high rate streams, we have reduced considerably the expiration

and the writeback periods, in order to prevent the journal device from becoming full.

Generally, when the journal fills up, a checkpointing process is initiated and all the sub

sequent writes are blocked. However, this tuning, in the long run, prevents us to benefit

from the batching opportunities offered during small writes. Thus, the same number of

write updates are applied to the final on-disk location, regardless of the journaling mode.

49

- Writeback
---·-■ Ordered
— - Data Journaling

-x— DiffData Jm

1 Kbps/stream

Ί---- '---- 1---- '---- 1
0 2000 4000 6000 8000

Number of Streams

3O.
• f l
WD

ιο

- Writeback
Ordered

— - Data Journaling
—x— DiffData Jm

ί 0 Kbps/stream

500 1000 1500
Number of Streams

(a) (b)

3a
JSW>3Ou
JS
H
sa>

-(-I V5 ►» cn

10 -

5 -

1 Mbps/stream
·■- Writeback
■· - - Ordered

- Data Jm ' -·
■x— DiffData

ϋ o I 1 I 1 Γ ~·~1 ■· 1 1 I
0 20 40 60 80 100

Number of Streams

(c)

Figure 6.2: We examine the throughput of the file system device across different numbers

of streams and rates. For low-rate streams, the two metadata-only journaling modes

require up to several factors higher throughput than the two data journaling modes.

Nevertheless, in case of high-rate streams, the final location disk overhead is comparable

across all the four modes.

Summarizing, a t low rates, the writeback and ordered modes tend to require up to

several factors higher throughput than the two data journaling modes. We attribute this

benefit of the two data journaling modes to the aggregation of multiple writes tha t update

the same block. Since journaling keeps each update safe on disk, dirty pages can remain

for a configurable time period in memory before they are flushed to the file system disk.

Nevertheless, in case of high-rate streams, the final location disk overhead is comparable

across all the four modes since, due to the large amount of data written, there is no benefit

from batching together related writes.

50

1 Kbps/stream

Number of Streams

10 Kbps/stream

(a) (b)

1 Mbps/stream

Number of Streams

(c)

Figure 6.3: We measure the average write latency of synchronous updates at different

rates and streams. Synchronous writes are usually avoided because they are known to

incur high latency in typical file systems. However, data journaling modes can benefit

from the sequential journal’s throughput that eventually allows the system to safely and

quickly store the incoming data.

6.2.4 Write Response Time

The benefits of the two data journaling modes are even more impressive, when we consider

the average latency of the synchronous writes, as depicted in Figure 6.3. In order to

demonstrate the differences across the different modes, we use logarithmic scale at the

y axis. As we move from higher to lower rates, the write latency of the ordered and

writeback modes appears from several factors up to orders of magnitude higher than

those of the two data journaling modes. In particular, in Figure 6.3(a), we see that the

51

ordered and writeback modes incur almost two orders of magnitude higher latency with

respect to the other two modes, when serving large numbers of low-rate streams. Thus, a

write operation that completes in tens of milliseconds with data journaling, takes as high

as 10 seconds with ordered mode.

Data journaling modes force write updates synchronously to the journal. There

the written transactions are appended sequentially and efficiently. However, in case of

metadata-only journaling modes, data is flushed synchronously to the fixed location before

the corresponding metadata blocks are synchronously written to the journal. Especially,

when we have large numbers of streams, data blocks are distributed across random loca

tions on disk, and hence incur seeking overhead and rotational latency when data writes

are forced to the final location.

Such a high write latency in the default Ext3 journaling mode, the ordered mode, raises

issues about the ability of the system to quickly and safely store incoming measurements.

This is crucial, especially at critical time periods before physical catastrophes, when the

arriving data m atter the most. Synchronous writes are usually avoided because they are

known to incur high latency in typical file systems. This is true even when the write

cache of the disk is enabled. Nevertheless, the sequential throughput of the journal has

a considerable impact to the ability of the system to store safely the incoming data in a

short period of time.

6.2.5 CPU Utilization

A possible overhead of our prototype implementation is the CPU cost that is needed,

so that multiple data modifications can be accumulated in single journal blocks. This is

achieved through the memory copy of the modified block parts to the appropriate journal

partial block.

In Figure 6.4 we evaluate the impact of the four journaling modes to the total CPU

utilization of the system. We observe that the system utilization always remains less than

10%. At both low and high rates, the CPU remains mostly idle, whether doing nothing

or waiting for the I/O operations to finish. Therefore, the processing cost of differential

data journaling remains comparable to that of the other three mount modes.

Consequently, the accumulation of multiple write updates in one block in differential

52

Total CPU
ϋ Idle ■ System

■ Idle Wait ■ User

Figure 6.4: We investigate the total CPU utilization of the system across the different

journaling modes. In all the four cases, at both low and high rates, the CPU remains

mostly idle, whether doing nothing or waiting for the I/O operations to finish. Thus, the

extra CPU cost of differential data journaling due to memory copy operations is nominal,

in comparison to the other three modes.

data journaling does not create an overhead, for the memory copy, much higher than the

other modes.

6.2.6 Mixed Workload

Finally, a number of experiments with workloads that consist of mixed set of streams

with different rates were performed and lead to measurements similar to the above. The

results of the mixed workload tend to approach respectively the behavior of streams with

low or high rate, depending on the prevalence of the corresponding type of stream in the

workload.

53

Postm ark

Figure 6.5: We evaluate the Postmark benchmark results. Both data and differential

data journaling modes perform several factors better from the metadata-only journaling

modes. In particular, due to low write latency, data journaling modes manage to serve a

larger number of transactions per second.

6.3 The Postmark Benchmark

In Figure 6.5, given the very encouraging results that we obtained for workloads with low-

rate streams, we evaluate data journaling with Postmark. This benchmark is typically

used to study the performance of small writes [17]. It is designed by Jeffrey Katcher in

order to replicate the small file workloads seen in electronic mail, netnews, and web-based

commerce under heavy load.

We measure the achieved transaction rate with a workload of 10000 transactions over

500 files, and a mix of read, append, create and delete file operations. We run Postmark

with 100 threads and file ranges from half kilobyte to a hundred kilobyte.The actual

duration of the experiment varies depending on the efficiency of the requested operations.

We run the benchmark in a range of block sizes from 128 bytes to 16KB. During our

experimental measurements, we use the kernel’s default dirty page flushing parameters

that are presented in Table 6.5. In Figure 6.5 the x axis refers to the request size of the

read and write operations, while the y axis is the number of transactions tha t can be

served per second.

Our main observation is that the two data journaling modes perform several factors

better than the metadata-only journaling modes. The performance improvement is higher

for small block sizes. However, even with the block size equal to 16KB, the data journaling

54

Table 6.5: Flushing Policy - Postmark
Writeback Period Expiration Period Commit Interval

5 seconds 30 seconds 5 seconds

modes double the measured transaction rate. This behavior comes from the low write

latency that the two data journaling modes incur, in contrast to the metadata-only modes.

Thus, within the same time period, data and differential data modes manage to serve much

more transactions than the other modes.

Consequently, if somebody uses differential data journaling to keep low the extra

journaling throughput, one can improve substantially the performance of applications

that need synchronous small writes.

6.4 Recovery Time

In a different experiment, we evaluate the ability of the system to recover quickly after

a system crash that leads to log records appearing in the journal during the reboot. In

this setting, we have 100 threads that apply 100 write updates with request size 125

bytes. Furthermore, we disable the writeback and expiration time periods of the pdflush

kernel thread, in order to ensure that the transactions commit to the journal, but don’t

checkpoint the updates to the final location on disk. Then we cut the power to the

system. During the reboot, we measure, within the kernel, the time period of the file

system recovery.

In Figure 6.6, we breakdown the total recovery across the three passes that scan the

transactions, revoke blocks, and replay the committed transactions. We notice that the

scanning period for differential data journaling is much lower than tha t of default data

journaling and actually similar to those of ordered and writeback. This is reasonable,

due to the new type of journal blocks that we introduced, the partial data blocks. Thus,

gathering small updates into a small number of journal blocks, differential data journaling

logs much fewer blocks than default data journaling, which for each update sends a full

block to the journal. Instead, in the metadata-only journaling modes, the amount of

journaled blocks is even smaller since data blocks are not logged at all.

55

Recovery Tim e

Figure 6.6: We measure the recovery time across the four journaling mount modes. We

observe that differential data journaling requires much lower time for the scan pass than

the default data journaling mode, while the replay pass takes comparable time across the

two modes.

For the revoke phase, as expected, the time period needed is comparable to all the

four modes. During the last phase, in differential data journaling extra block reads from

the disk are required so that the modifications from the journal partial blocks can be

applied to the corresponding final disk blocks during replay. On the other hand, in the

default data journaling case, this is avoided since whole blocks are logged, and during

replay these blocks can directly replace the existing final disk blocks without first reading

them. Nonetheless, despite the extra block reads involved in the replay of differential data

journaling, the time the replay phase takes ends up comparable to that of the default data

journaling.

6.5 Other Issues

Since the ordered mode does not take full advantage of the separate journal device, we

also investigate the case where we use the two SAS disks in RAIDO configuration with

hardware controller support. For the configuration of this set of experiments, we use as

journal a normal file within the same file system device rather than a separate partition.

From our measurements (not shown) we observe that the write latency drops to half in

56

Postm ark
(Disabled cache/SATA)

Request Size (Bytes)

(a)

Postm ark
(Enabled cache/SATA)

Request Size (Bytes)

(b)

Figure 6.7: We figure the Postmark results while enabling and disabling the on-disk write

cache. We notice that the two data journaling modes almost double the transaction rate

with respect to the ordered mode that is commonly used by default.

the ordered mode, when compared to the case where we dedicate one disk to the journal.

After the change, the write latency of differential data journaling remains about the same

as before. The relative difference between the latencies of the two modes is still high

across the different streams rates and in excess of a magnitude order for 1Kbps streams.

In a different experiment, we examine the effects from disabling the write cache of the

disks. For these measurements, we use a server with two 250GB SATA disks. We find

that the disabled write cache of the disks makes no difference to the streaming workload

measurements in comparison to the case that the cache is enabled. However, in the case

of the Postmark benchmark with 5000 transactions, disabling the write cache scales down

the performance of the different mount modes, as shown in Figure 6.7.

Specifically, we disable the on-disk write cache to ensure that the writes only return

after they reach the media. The advantage of differential data journaling is evident

especially with small read and write requests. Furthermore, when we enable the on-

disk write cache, performance scales similarly for the ordered mode and differential data

journaling, while the relative difference remains. Overall, differential data journaling still

maintains a significant advantage with respect to the ordered mode, especially at low

stream rates.

57

Chapter 7

Conclusions and Future W ork

7.1 Conclusions

7.2 Future Work

7.1 ' Conclusions

The unique demands placed by high-volume stream storage indicate tha t neither existing

databases nor file systems are directly suited to handle their storage needs. In our vision,

a general-purpose stream storage facility could serve as a building block for a variety of

applications in the entire range from network packet monitoring to urban traffic control

with the appropriate indexing functionality built separately at a higher level when needed.

The operation reliability in such applications is a primary challenge, especially when public

safety concerns are involved. In order to improve their operation reliability, general-

purpose file systems apply journaling techniques to preserve m etadata consistency across

system crashes at minimal recovery time. Motivated from the emerging need to reliably

store and handle large numbers of streams for real-time or retrospective processing, we

have taken a fresh look at file systems that support data journaling.

We have used a widely known file system mounted with data journaling mode and,

after applying synchronous writes, we demonstrated that the journal device throughput

is high because the journal log records store entire blocks rather than their modified part.

58

Then, we introduced the differential data journaling mode, based on the idea of accumu

lating the updates from multiple writes into a single journal block. In order to implement

differential data journaling, we designed a new type of journal block that we call partial

data block. Additionally, we tune the timing of dirty page flushing to complete in the

background rather than synchronously with the write operations. Using streaming work

loads, we found that differential data journaling reduces the journal traffic substantially

in comparison to the default data journaling mode, especially for streams with low rates.

The sequential throughput of the journal reduces the write latency up to orders of mag

nitude for the data journaling modes with respect to metadata-only journaling. Finally,

we have experimented with a typical small-write workload and measured substantial im

provement in the supported transaction rate. Overall, differential data journaling offers

fast storage across streaming and traditional workloads at relatively low disk throughput

requirements.

7.2 Future Work

There are many directions for future work, mainly regarding the performance evaluation

of our implementation. In the future, we primarily plan to extend the experimental

measurements of our prototype implementation, to validate further the contributions of

our study and emphasize the offered performance gains.

Only experimentation in a real streaming environment can reveal the potential of

our approach. Therefore, initially, we aim to examine the behavior of differential data

journaling in the context of a distributed file system that we are currently building for the

needs of streaming data storage. In particular, a real workload with varying number of

clients applying concurrent writes of stream data to the same storage server, will provide

a more realistic environment in terms of the ability of differential data journaling to serve

streaming workloads.

Regardless of the possible performance loss under certain circumstances, given the

nature of the load for which our system is designed, a direct comparison with the log-

structured file system or other journaling file systems would also be valuable in order to

demonstrate the benefits of our architecture.

59

Furthermore, heterogeneity, a main feature of most streaming storage systems, is itself

a challenging problem to be handled by the existing implementations. We have already

performed a series of measurements across mixed workloads, where low and higher rate

streams coexisted. Yet, we need to examine further how differential data journaling

performs in such heterogeneous scenarios.

Moreover, we intend to examine the behavior of differential data journaling under

some database workload. TPC-C simulates a complete computing environment where a

population of users executes transactions against a database [9]. The benchmark that

we are going to use constitutes a realistic implementation of order-entry built on top of

Postgres.

Finally, a possible extension of our work would investigate the automatic tuning of

system parameters related to the timing of dirty page flushes.

60

Bibliography

[1] Stergios V. Anastasiadis, Rajiv G. Wickremesinghe, and Jeffrey S. Chase. Circus:

Opportunistic block reordering for scalable content servers. In USENIX Conference

on File and Storage Technologies, pages 201-212, 2004.

[2] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.

Models and issues in data stream systems. In ACM Symposium on Principles of

Database Systems, pages 1-16, New York, NY, USA, 2002. ACM Press.

[3] Hari Balakrishnan, Magdalena Balazinska, Don Carney, Ugur Cetintemel, Mitch

Cherniack, Christian Convey, Eddie Galvez, Jon Salz, Michael Stonebraker, Nesime

Tatbul, Richard Tibbetts, and Stan Zdonik. Retrospective on aurora. The VLDB

Journal, 13(4):370-383, 2004.

[4] Pere Barlet-Ros, Gianluca Iannaccone, Josep Snjuas-Cuxart, Diego Amores-Lopez,

and Josep Sole-Pareta. Load shedding in network monitoring applications. In

USENIX Annual Technical-Conference, pages 59-72, Santa Clara, CA, 2007.

[5] Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy Mann, and Garret Swart.

The echo distributed file system. Technical Report TR-111, DEC Systems Research

Center, Palo Alto, CA, September 1993.

[6] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel O’Reilly Media,

Sebastopol, CA, third edition, November 2005.

[7] Don Carney, Ugur Qetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,

Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring

streams - a new class of data management applications. In International Conference

on Very Large Data Bases, pages 215-226, Hong Kong, China, 2002.

61

[8] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher Aycock, Gu-

rushankar Rajamani, and David Lowell. The rio file cache: Surviving operating sys

tem crashes. In Interlational Conference on Architectural Support for Programming

Languages and Operating Systems, pages 74-83, Cambridge, MA, 1996.

[9] Transaction Processing Council. Tpc benchmark c standard specification, revision

5.9. Technical report, 2007.

[10] Peter J. Desnoyers and Prashant Shenoy. Hyperion: High volume stream archival

for retrospective querying. In USENIX Annual Technical Conference, pages 45-58,

Santa Clara, CA, June 2007.

[11] Manuel Esteve and Carlos E. Palau. A flexible video streaming system for urban

traffic control. IEEE Multimedia, 13(1):78—83, January 2006.

[12] Ricardo Galli. Journal file systems in linux. Upgrade, 2(6):50-56, December 2001.

[13] Gregory R. Ganger, Marshall K. McKusick, Craig A. N. Soules, and Yale N. Patt.

Soft updates: a solution to the metadata update problem in file systems. ACM

Transactions on Computer Systems, 18(1): 127-153, February 2000.

[14] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.

In ACM Symposium on Operating Systems Principles, pages 29-43, Bolton Landing,

NY, October 2003.

[15] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren,

George Varghese, Geoffrey M. Voelker, and Amin Vahdat. Difference engine: Harness

ing memory redundancy in virtual machines. In USENIX Symposium on Operating

System Design and Implementation, San Diego, CA, USA, 2008.

[16] Robert Hagmann. Reimplementing the cedar file system using logging and group

commit. In ACM Symposium on Operating Systems Principles, pages 155-162,

Austin, TX, 1987.

[17] Dean Hildebrand, Lee Ward, and Peter Honeyman. Large files, small writes, and

pnfs. In ACM International Conference on Supercomputing, pages 116-124, Cairns,

Australia, June 2006.

62

[18] Dave Hitz, James Lau, and Michael Malcolm. File system design for an nfs file server

appliance. In Usenix Winter Technical Conference, pages 235-246, San Francisco,

CA, January 1994.

[19] Gianluca Iannaccone, Christophe Diot, Derek McAuley, Andrew Moore, Ian Pratt,

and Luigi Rizzo. The como white paper. Technical Report Technical Report IRC-

TR-04-17, Intel Research, 2004.

[20] Jeffrey Katcher. Postmark: A new file system benchmark. Technical Report TR-3022,

NetApp, 1997.

[21] Purushottam Kulkarni, Fred Douglis, Jason LaVoie, and John M. Tracey. Redun

dancy elimination within large collections of files. In USENIX Annual Technical

Conference, pages 59-72, Boston, MA, 2004.

[22] Darrel D. E. Long, Patrick E. Mantey, Craig M. Wittenbrink, Theodore R. Haining,

and Bruce R. Montague. Reinas: the real-time environmental information network

and analysis system. In IEEE COMPCON, pages 482-487, March 1995.

[23] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn.

Rethink the sync. In Usenix Symposium on Operating Systems Design and Imple

mentation, pages 1-14, Seattle, WA, 2006.

[24] Juan Piernas, Toni Cortes, and Jose M. Garcia. Dualfs: A new journaling file system

without meta-data duplication. In ACM International Conference on Supercomput

ing, pages 137-146, New York, NY, 2002.

[25] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Analysis and evolution of journaling file systems. In USENIX Annual Technical

Conference, pages 105-120, Anaheim, CA, 2005.

[26] Sean Quinlan and Sean Dorward. Venti: a new approach to archival storage. In

USENIX Conference on File and Storage Technologies, Monterey,CA, 2002.

[27] Mended Rosenblum and John K. Ousterhout. The design and implementation of a

log-structured file system. ACM Transactions on Computer Systems, 10(1):26—52,

February 1992.

63

[28] Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacqueline Chang, Sara Mcmains,

and Venkata Padmanabhan. File system logging versus clustering: A performance

comparison. In Usenix Annual Technical Conference, pages 249-264, 1995.

[29] Stephen C. Tweedie. Journaling the linux ext2fs filesystem. In LinuxExpo, pages

25-29, Durham, NC, 1998.

[30] Carl A. Waldspurger. Memory resource management in vmware esx server. SIGOPS

Operating Systems Review, 36(SI):181—194, 2002.

[31] Randolph Y. Wang, Thomas E. Anderson, and David A. Patterson. Virtual log based

file systems for a programmable disk. In USENIX Symposium on Operating Systems

Design and Implementation, pages 29-43, New Orleans, LA, 1999.

[32] Wenguang Wang, Yanping Zhao, and Rick Bunt. Hylog: A high performance ap

proach to managing disk layout. In USENIX Conference on File and Storage Tech

nologies, pages 145-158, Berkeley, CA, USA, 2004. USENIX Association.

[33] Zhihui Zhang and Kanad Ghose. yfs: A journaling file system design for handling

large data sets with reduced seeking. In USENIX Conference on File and Storage

Technologies, pages 59-72, San Francisco, CA, 2003.

64

Author’s P ublications

Andromachi Hatzieleftherou, Stergios V. Anastasiadis, Okeanos: Fast and Reliable Stream

Storage Through Differential Data Journaling, Technical Report DCS2008-8, Department

of Computer Science, University of Ioannina, November 2008.

Andromachi Hatzieleftheriou, Stergios V. Anastasiadis, Okeanos - Reliable Archival Stor

age for Heterogeneous Stream Data, EuroSys, Glasgow, Scotland, UK, April 2008 (poster).

Short V ita

Andromachi Hatzieleftheriou was born in Serres, Greece in 1985. She was admitted at the

Computer Science Department of the University of Ioannina in 2002. She received her BSc

degree in Computer Science in 2006 and she is currently a postgraduate student at the

same department. She is a member of the Systems Research Group of the University of

Ioannina since 2007. Her main research interests lie in the field of file and storage systems.

