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ABSTRACT

Ntetsika A. Mirto. MSc, Computer Science Department, University of Ioannina, 

Greece. July, 2009. Replication and Consistency Maintenance in Unstructured Peer- 

to-Peer Systems with Power-Law Topology. Thesis Supervisor: Pitoura Evaggelia.

Peer-to-peer communication model has been widely used over the past few years for 

data or resource sharing. In p2p applications such as Kazaa, each user is connected to 

a number of other users, thus forming a logical overlay network. In decentralized, 

unstructured p2p systems, peers that join the network randomly choose a number of 

other participating peers to connect with and there is no precise control over the 

network topology or where the data items are placed. It has been observed that this 

kind of networks tend to a power-law topology, where there are few peers that are 

very popular and the majority of peers have only a few connections to those popular 

peers. A peer that wishes to retrieve a particular data item poses a look-up query. 

Such queries are forwarded through the overlay network until a peer that offers the 

data item is located. Maintaining multiple replicas of data items has been widely used 

for speeding up the look-up process. This thesis summarizes some replication 

methods that exist in bibliography for creating replicas of data items and maintaining 

the consistency of different replicas in case of updates on the content of the data 

items. We also investigate through experimental study how the performance of those 

methods is affected by the topology of the overlay network. Based on our 

observations, we propose alternative replication and update strategies that consider 

the topological properties of the overlay network.
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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Ντέτσικα Μυρτώ του Αντωνίου και της Βασιλικής. MSc, Τμήμα Πληροφορικής, 

Πανεπιστήμιο Ιωαννίνων, Ιούλιος 2009. Δημιουργία και Διατήρηση Ενημερώτητας 

Αντιγράφων σε Αδόμητα Συστήματα Ομότιμων Κόμβων με Τοπολογία Power-Law. 

Επιβλέπουσα: Ευαγγελία Πίτουρά.

Τα μη-κεντρικοποιημένα, αδόμητα συστήματα ομότιμων κόμβων όπως το Kazaa 

έχουν επικρατήσει τα τελευταία χρόνια ως ένα από τα κυριότερα μέσα για τον 

διαμοιρασμό ενός μεγάλου όγκου δεδομένων, πόρων ή υπηρεσιών μεταξύ ενός 

μεγάλου αριθμού χρηστών. Στα συστήματα αυτά, οι χρήστες συνδέονται μεταξύ τους 

σχηματίζοντας ένα λογικό δίκτυο επικάλυψης. Ο τρόπος με τον οποίο οι χρήστες που 

εισέρχονται στο σύστημα επιλέγουν με ποιούς από τους ήδη συνδεδεμένους κόμβους 

θα συνδεθούν είναι τυχαίος, με αποτέλεσμα να μην υπάρχει κανένας έλεγχος πάνω 

στην τοπολογία του λογικού δικτύου ή στο πως είναι τοποθετημένα τα δεδομένα στο 

δίκτυο. Στην πραγματικότητα, έχει αποδειχθεί ότι η τοπολογία στην οποία τείνουν 

αυτά τα δίκτυα είναι η power-law, στη οποία υπάρχουν λίγοι δημοφιλείς κόμβοι με 

τους οποίους οι περισσότεροι κόμβοι επιλέγουν να συνδεθούν. Για τον λόγο αυτό, οι 

power-law γράφοι αποτελούν κατάλληλα μοντέλα για το δίκτυο επικάλυψης ενός 

αδόμητου συστήματος ομότιμων κόμβων. Τα δίκτυα αυτά βασίζονται σε αλγόριθμους 

πλημμύρας προκειμένου να εντοπιστούν κόμβοι που διαθέτουν δεδομένα για τα οποία 

ενδιαφέρεται ένας χρήστης. Τα power-law δίκτυα έχουν κάποια ιδιαίτερα τοπολογικά 

χαρακτηριστικά (μικρή διάμετρο, μικρή μέση απόσταση μεταξύ δύο κόμβων) τα 

οποία επηρεάζουν την διαδικασία εντοπισμού δεδομένων. Η διατήρηση πολλαπλών 

αντιγράφων των διαμοιραζόμενων δεδομένων (replication) χρησιμοποιείται ευρέως 

για την επιτάχυνση της διαδικασίας αναζήτησης δεδομένων. Η εργασία αυτή αρχικά 

συνοψίζει διάφορες τεχνικές που έχουν προταθεί τόσο για την δημιουργία 

αντιγράφων όσο και για την διατήρηση της ενημερότητας των διαφορετικών



XI

αντιγράφων και ερευνά την επίδραση που έχει η τοπολογία του δικτύου επικάλυψης 

στην απόδοσή τους. Από την πειραματική μελέτη προκύπτει ότι στην τοπολογία 

power-law ανταλλάσσεται μεγάλος αριθμός μηνυμάτων τα οποία μπορούν να 

αποφευχθούν. Μελετώνται έτσι εναλλακτικές τεχνικές δημιουργίας αντιγράφων και 

διατήρησης της ενημερότητάς τους στις οποίες λαμβάνονται υπόψην οι ιδιότητες της 

power-law τοπολογίας.
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CHAPTER 1. INTRODUCTION

1.1 Introduction

1.2 Scope of Thesis

1.3 Thesis outline

1.1. Introduction

Peer-to-Peer (p2p) systems have gained a lot of attention in the social, commercial 

and academic communities. Millions of people all over the world use p2p applications 

on a daily basis for data sharing and communication. P2p systems rely on a symmetric 

' communication model where participating peers are both servers and clients. They are 

fully decentralized, thus avoiding the bottleneck imposed by the presence of a server 

in traditional systems and they are highly resilient to peers’ arrivals and departures.

Each participating peer in a p2p system is connected to a number of other peers, thus 

forming an overlay network. A peer is connected to another peer in the overlay 

network if it knows its location in the p2p network. Connections between a pair of 

peers are built over the physical TCP/IP network.

The overlay network is built to facilitate the operation of a p2p system. In data sharing 

p2p systems, a basic functionality is discovering the data of interest. A look-up query 

for data items may be posed at any peer in the overlay. The query is then routed 

through the overlay to efficiently discover the peers that hold the requested data items. 

For such a query routing, it is important that the number of peers in the overlay
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network that need to be contacted for locating a data item is minimized and the 

number of messages that are exchanged is as “small” as possible.

Based on how the peers are linked to each other in the overlay network, we can 

classify the p2p networks as structured or unstructured. In structured p2p systems, 

peers in the overlay are organized in rigid topologies, such as ring, grid or a 

multidimensional cube and the data items are placed at specific peers according to 

some rules. In structured overlays, lookup reduces to locating the peer in the overlay 

that is responsible for the corresponding data item. Unstructured p2p systems are 

formed when the peers in the overlay are linked in an arbitrary, ad hoc manner. The 

topology of the resultant overlay network is not rigid, although it may have some 

properties, and there is no correlation between a peer and the data items managed by 

it. To locate data of interest, a peer queries its neighbors in the overlay, which in turn 

query their neighbors, and so on, until the query hits on a peer holding the requested 

data item. However, this procedure provides no guarantees on the complexity of 

search.

In many existing systems, upon joining the network, a peer selects to connect to 

another peer essentially at random. In these systems, topologies often tend towards a 

power-law degree distribution, where some long-lived peers have many connections, 

while most other peers have a few connections. For this reason, power-law graphs are 

used for modeling the overlay network of an unstructured p2p system. Some 

topological properties of power-law graphs, such as the diameter of the graph or the 

degree of each peer, can help us address some crucial questions regarding the 

centrality of each peer or the connectivity of the graph.

Maintaining multiple copies (replicas) of data items is a commonly used mechanism 

for improving the performance and fault-tolerance of any distributed system. By 

placing copies of data items closer to their requesters, the response time of queries can 

be improved. In addition, replication improves load balancing. If highly demanded 

data items are replicated, the query load can be evenly distributed among the peers 

that hold these copies. Similarly, by eliminating hotspots, replication can lead to a 

better distribution of the communication load over the network links. Besides
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performance-related reasons, replication improves system ava ilab ility , since the larger 

the number of copies of an item, the more site failures can be tolerated. Some of the 

questions that need to be resolved in replication are: how many replicas should be 

created, when replicas are created and where are they placed. In case of systems with 

dynamic content, an extra issue is how the different replicas of each data item remain 

consistent with each other, so that accessing stale data items is avoided.

1.2. Scope of Thesis

In this thesis, we focus on replication in unstructured p2p systems. Since the topology 

of the overlay network in unstructured p2p systems seems to follow a power-law 

distribution pattern, our first objective is to examine what are the structural properties 

of power-law graphs that make them suitable for modeling an overlay network 

topology and how can we generate power-law graphs for simulation studies. We then 

present various approaches that have been proposed for creating replicas that aim at 

achieving optim al replication, whereby the expected number of peers that are probed 

during each search (expected  search size) is minimized. The scope of this thesis is to 

investigate the effects of the overlay network topology (especially regarding random 

and power-law topology) on those methods. Based on our observations, we next 

propose a new replication method that considers the power-law property of the 

overlay network, in order to reduce the communication cost. We also focus on the 

problem of consistency maintenance in case of updates. Particularly, our aim is to 

investigate the effects of the overlay network topology on some known consistency 

maintenance protocols and propose a new update policy that is intended for p2p 

systems with power-law overlay network topology. Finally, we propose a different 

approach for maintaining consistency which adjusts the traditional quorum consensus 

to the distributed, dynamic environment of p2p systems.
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1.3. Thesis outline

The remainder of this work is structured as follows. Chapter 2 summarizes some basic 

concepts regarding the topology of an overlay network. Particularly, the power-law 

topology observed in real p2p systems is described along with a theoretical analysis 

that is followed by description of methods for generating power-law graph topologies 

for simulation study. Chapter 3 focuses on the basic operation of a p2p network: 

search. We describe the alternative flood-based techniques that have been proposed 

for locating data items and provide a brief summary of the main issues about 

replication in unstructured p2p systems. We also present a few approaches that are 

proposed for creating a data item. In Chapter 4, we compare the performance of the 

described replication methods on networks with random and power-law topology and 

present experimental results to investigate whether they result in optimal replication. 

We then present a degree-based replication strategy that achieves lower 

communication cost. In Chapter 5, we discuss the problem of maintaining the 

consistency of replicas and investigate how existing update policies perform on 

networks with random and power-law topology. We also propose an alternative 

update policy for p2p networks with power-law overlay topology that decreases the 

massage overhead caused by peers with high degree. Based on quorum consensus 

traditional consistency maintenance technique, we present an adaptive update policy 

whereby the cost of updating a data item is decreased at the expense of making data 

item accesses more “expensive” . In Chapter 6, we present the related work concerning 

replication and consistency maintenance in unstructured p2p systems. A brief 

summary of different approaches with different goals for creating and updating data 

items is provided. Finally, Chapter 7 concludes this thesis and presents the open 

issues for future work.
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CHAPTER 2. MODELING AN OVERLAY

NETWORK

2.1 Centrality measures

2.2 All pairs shortest paths problem

2.3 Power-law networks

2.4 Generating network topologies that obey power-laws

2.5 Generating connected graphs with power-law properties

2.6 Evaluation of the quality of the synthetic graphs

. In p2p networks, autonomous peers, who may join and leave the network at any time, 

share data with each other. Since these networks are usually very large and highly 

dynamic, each peer only stores the IP addresses for a selected subset of peers and 

other peers are reached via these neighbors. This way, peers form an overlay  network  

that is built on top of the physical one.

In unstructured p2p systems, peers join the network by selecting a peer from a known 

list of participating peers. The selection of a peer from the list can either be random or 

based on some loose rules. The overlay network is formed in a decentralized manner 

as peers join and leave the network and there is no precise control over the topology 

of the resulting overlay network or over data placement. A look-up query for data 

items posed at any peer is routed through the overlay network according to the 

strategies that will be discussed in Chapter 3. The performance of a search strategy 

highly depends on the topology of the overlay network. Thus, an appropriate model of 

the overlay network topology is necessary for evaluating a search method. The choice
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of a model for the overlay network may also have strong implications on the analysis 

of some replication objectives (e.g. determining an optimal number of replicas).

The overlay network is represented as an undirected graph G =  (V,E). The set V of 

vertices contains one vertex for each participating peer. A  pair of vertices belongs to 

the set E  o f  edges if and only if the two corresponding peers are neighbors in the 

overlay network.

Some structural properties of the graph used to model the overlay network can help us 

predict the behavior of a network under certain assumptions. For example, the number 

of links with other nodes, the so-called degree  of a node, is an indication of how 

frequently this node tends to be visited. Several measures regarding the graph’s 

connectivity or the centrality of each vertex or the graph’s diameter can be used to 

address the following questions:

• Is the network connected?

• Is it resilient to link or node failures?

• How easy is it for the network to break down to smaller pieces and which 

links would damage the connectivity of the network if they were removed?

• Are there any peers that receive more messages during a look-up process than 

others?

• What is the expected average number of hops that a look-up query is 

forwarded until the desired data item is located?

The rest of this chapter is organized as follows: Section 2.1 analyses some topological 

measures of graphs that are used to estimate the centrality of nodes in a network 

graph. In Section 2.2, a solution to the problem of finding the shortest paths between 

any pair of nodes is presented. In Section 2.3, we explain why power-law graphs are 

useful for modeling the topology of unstructured p2p overlay networks and define 

some power-law distributions that a power-law graph should follow. In Section 2.4, 

we present three known algorithms for generating undirected graphs with the defined 

power-law distributions. In Section 2.5, we present variations of two of these 

algorithms that generate connected graphs. In Section 2.6, simulation results are
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shown for estimating the suitability of these algorithms for generating graphs that 

obey power-laws.

2.1. Centrality measures

Usually, a graph consisting of n vertices is represented by an nxn  matrix Λ, named the

adjacency matrix, which is defined as:

f 1 if there is an edge between vertices i and j  
ij ( 0 if there is no edge between vertices i and j   ̂ '

Information about the relative importance of a vertex or an edge in a graph is obtained

through some centrality measures.

The most common centrality measure is the degree dj of a vertex i, which is defined 

as the number of links that / has. The degree centrality  can be easily measured for a 

vertex i from the adjacency matrix as:

d t =  Y j= iA tJ (2.2)

The idea behind the degree centrality is that the more connections a node has the more 

central and important is considered for the network.

Based on the same idea, there is another centrality measure, called eigenvector  

centrality. The difference is that in this measure the centrality of a vertex also depends 

on the centrality of its neighbors (the set of vertices for which an edge exists). In 

general, vertices that are connected to a central vertex are considered more central 

than vertices that are connected to less important vertices.

If we assign each vertex i a centrality X( , this centrality is taken to be the average of 

the centralities of the neighbors of f.

x i =  J  Σ ;= ι Atj  Xj (2.3)

where Λ is a constant. Defining the vector x  as the vector of the centralities for all 

vertices, equation (2.3) becomes:

λ χ  =  A x (2.4)
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By the equation (2.4), it is clear that x is an eigenvector of the adjacency matrix 

A corresponding to the eigenvalue λ. Especially for graphs that represent a network 

topology, x should contain non-negative centralities. Thus, it is proved by the Perron- 

Frobenius theorem [13] that λ must be the largest eigenvalue of A and x the 

corresponding eigenvector.

In a graph, a path between two vertices is defined as a sequence of vertices such that 

for each vertex in the path there is an edge to the next vertex in the sequence. The 

length of a path is defined as the number of vertices (edges) it contains. The shortest 

path between a pair of vertices is the path between the two vertices with the smallest 

length. The length of this shortest path is known as the distance between them.

The centrality of a vertex can also be measured based on the shortest paths from every 

vertex to every other vertex. The closeness centrality of a vertex i is defined as the 

average length of every shortest path from vertex i to every other vertex j .  Intuitively, 

the average distances of a vertex with high centrality to every other vertex should be 

lower compared to vertices with lower centrality. Accordingly, the betweeness 

centrality measures the importance of a vertex by counting the number of shortest 

paths between all pairs of vertices that it is part of.

2.2. All pairs shortest paths problem

As mentioned before, finding the shortest paths between all pairs of vertices in a 

graph that represents an overlay network topology can be very useful for describing 

the behavior of a network. The length of the maximum shortest path among the 

shortest paths of every pair of vertices is called the diameter of the graph.

The calculation of the diameter of a graph requires the solution of a more general 

problem, known as the all pairs shortest path problem, in order to obtain the set of 

distances between all pairs of vertices and find the maximum among them.
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More formally, given a graph G with a set V of n vertices and a set of E  of edges, the 

all pairs shortest paths problem is defined as finding the length of the shortest path 

d i s t ( i , j ) between every pair of vertices in V.

An obvious solution to the all pairs shortest paths problem is running one of the 

known shortest path algorithms, such as D ijkstra 's algorithm , that computes the 

shortest path lengths from one vertex to every other vertex, n times, once for every 

vertex. At each run the distances of one vertex to every other vertex is computed. It is 

clear that the complexity of such an approach depends on the single-source shortest 

path algorithm that is used.

An alternative solution is using dynamic programming instead of a single-source 

shortest path algorithm. For computing the distance d i s t ( i , j ) between all pairs 

of vertices, this approach computes the distance d is t^ i^ )  between every possible 

intermediate vertex z and then add the last edge from z to j .  The d i s t ( i , j ) could then 

be defined as minZ( d i s t ( i , z )  +  1) for all vertices z for which an edge (z , j ) exists. 

We define the d i s t ( i , j ,  t ) as the length of the shortest path from i to j  that uses at 

, most t  vertices. If there is no shortest path of length at most t  between i and j ,  the 

d i s t ( i , j , t )  is infinity. At each iteration t, all shortest paths of length at most t  are 

computed. A shortest path between a pair of vertices cannot contain more than \ V\ 

vertices (otherwise there would be a cycle). Thus, at iteration \V\ the distances 

between all pairs of vertices will have been computed.

The recursive relationship that calculates all distances d i s t ( i , j ) at iteration t  is:

d i s t ( i , j ,  1)
Ό  if / =  j

■ 1 if/^ /a n d  (i,j)E E  
oo if j  and

(2.5)

d i s t ( i , j ,  t ) =  m m kev{ d i s t ( i , j ,  t  -  1), d is t ( i ,  k , t  — 1) +  d i s t ( k , j ,  1)} (2.6)

Algorithm 2.1 presents the algorithm used for determining the diameter of a graph.
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Diameter calculation algorithm
I n p u t :

V //the set of vertices 
E //the set of edges 
n //number of vertices

O u tp u t:

int d i s t //the matrix that contains all distances from every 
node to every other node 

int diam //the diameter of the network 
V a r ia b le s :

p r e v _ d i s t //a matrix that contains that contains all 
distances from every node to every other node that are known at 
the beginning of each iteration t(distances found at iteration t-1) 
//initially (within a distance of 1 hop) 
for every node i£V 
for every node jCV 
if(i == j)

dist[i] [ j ] = 0; 
prev_dist [i] [ j ] = 0;

else if (i,j) e E //there is an edge between i and j 
dist[i][j] « 1; 
prev_dist[i][j] = 1;

else
dist[i][j) = “ 
prev_dist [i] [ j ] = «° 

end if 
end for 

end for

t = 1
while t<n-l //find shortest paths of length t 

for every node i€V 
for every node jev 
dist [i][ j J = ” 
for every node kGV
if i * j and dist[i] [j] > prev__dist [i] [k]+prev_dist [k] [j] 

dist[i][j] = prev_dist[i][k]+prev_dist[k][j] 
end if 

end for
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prev_dist[i][j] =dist(i][j]; 
end for 

end for 
t = t + 1 

end while
//dist now contains the minimum distances of each pair of vertices 

//the maximum between all minimum distances within diam hops 
diam = 0
for every node i£V 
for every node j6V

if(dist[i][j] > diam) 
diam = dist[i][j] 

end if 
end for 

end for

Algorithm 2.1: A dynamic algorithm for calculating the diameter of a graph

2.3. Power-law networks

2.3.1. Power-law networks as a model for the overlay network 

Unstructured topologies evolve in more or less unpredictable ways, as nodes leave 

and join the overlay at arbitrary positions. Therefore, random graph, or Erdos-Renyi 

random graph is commonly used for modeling an overlay network. An Erdos-Renyi 

graph [10] with n nodes can be equivalently described in two ways: it is a graph

where each of the possible — -hedges is present with some fixed probability p ; or

equivalently it is a graph selected uniformly at random among all possible graphs of n 

nodes and m edges. This is a simple but powerful model, where it can be shown that 

the degrees of participating nodes follow a Poisson distribution.

However, the Erdos-Renyi random graph is proved to be inappropriate for modeling 

real-world networks. There are some properties of several real-world networks such 

as Internet overlay network or the overlay network of an unstructured p2p system 

(described in [3]) that the Erd6s-Renyi random graph cannot capture:



23

• Nodes that exist in the network for a long time tend to increase their 

connectivity rapidly with the addition of new nodes (increm ental grow th)

• Nodes with a high connectivity tend to increase their connectivity as new 

nodes enter the system {rich-gets-richer phenom enon)

• A node that joins the network is most likely connected to a well-connected 

node that already exists in the network {preferential attachm ent).

A more realistic model for the overlay network of an unstructured p2p system is the 

pow er-law  random graph. In power-law graphs, the degree of each node follows a 

power-law distribution with a few nodes having many connections while the majority 

of nodes have only a few connections. Figure 2.1 illustrates a possible structure of a 

network with power-law degree distribution.

Figure 2.1: An example structure of a power-law network
(source: http://www.mathaware.org/mam/04/essays)

The existence of nodes with degree that greatly exceeds the average (usually referred 

to as hubs) makes all power-law networks share some properties. First of all, power- 

law networks exhibit a fault-tolerant behavior. This is due to the fact that failures 

occur in the network arbitrary with all nodes being equally likely to be affected by a 

failure. Thus, since there are only a few nodes that are considered as hubs and the vast 

majority of nodes are of law connectivity, the probability that a hub fails is not 

significant. Furthermore, even if a hub collapses, there are other hubs to guarantee

http://www.mathaware.org/mam/04/essays
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that the network will remain connected. This means that power-law networks are 

tolerant of a small number of random failures. On the other hand, it is clear that in 

case of simultaneous failures of all the hubs of the network, the connectedness of the 

network would be lost and what would remain are numerous networks with no links 

between them. This weakness of power-law networks can be used by adversary users 

who can make a network fall apart by simultaneously attacking to all its hubs, causing 

them to collapse.

Another characteristic of power-law networks is that nodes tend to form small sub

networks (sub-graphs) where every node is connected to every other node in the sub

network and those sub-networks are connected to each other through hubs. For 

example, considering a social network, people tend to form small communities where 

everyone knows everyone (a friend of my friend is also my friend) and one 

community is connected to another only through some very popular people (such as 

politicians or famous artists). This phenomenon caused by nodes with high 

connectivity is known as sm all-w orld  phenom enon  and is responsible for the fact that 

power-law networks have very small average distance between two nodes and 

consequently a small diameter.

2.3.2. Pow er-law  definitions

Faloutsos et al [11] have studied the topological metrics described in Sections 2.1 and

2.2 for random power-law networks and defined four power-laws regarding the 

degree of nodes, the degree frequency, the eigenvalues of the network graph and the 

number of shortest paths of certain length:

Power-law 1: rank exponent R : If all nodes are sorted in descending order of degree, 

the rank r, of the node is the index of the node in this order. The degree, d i} of a node 

i, is proportional to the rank of the node, r„ to the power of a constant, R : dt· <x r R.

This power law indicates that the most central nodes (the hubs) have much more 

connections than the other nodes. The most connected the node is, the largest degree it 

has.
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Power-law 2: degree exponent O : The frequency,/), of a degree d , defined as the 

number of nodes with degree d, is proportional to the degree to the power of a 

constant, O : /d oc d ° .

The intuition behind this power-law is that there exist only a few nodes with a high 

degree while there are many nodes with a small degree.

Power-law 3: hop-plot exponent H : The total number of pairs of nodes, P(h), within 

distance of h hops, is proportional to the number of hops h to the power of a constant, 

H : P (h ) ot h H w ith  0 <  h <  d ia m  , where d ia m  is the diameter of the network.

According to this power-law, many pairs of nodes are within a few hops (have small 

distance) and only a few nodes have a larger distance. This fact explains why power- 

law networks have small diameter (small-world phenomenon).

Power-law 4: eigenvalue exponent €: If the eigenvalues of the adjacency matrix are 

ordered in descending order, the rank v,· of an eigenvalue Λ* is its index in the order. 

The eigenvalues, of a graph are proportional to the order, vt· to the power of a 

constant, €: λ ι o c v f .

2.4. Generating network topologies that obey power-laws

2.4.1. Barabdsi model

Since undirected power-law graphs are used for modeling an unstructured p2p overlay 

network, an interesting issue is how can we generate a power-law network topology 

so as to be used in network simulation studies.

This problem has been addressed in [3] by Barabasi et al. The authors present a 

topology generator that obeys the four power-laws defined in Section 2.3.2. In
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particular, the model is based on the concepts of incremental growth and preferential 

attachment (Algorithm 2.2).

The model assumes an initial (typically small) N0 number of nodes that form the 

network with no connections between them. At every timestep (periodically), until the 

desirable number of nodes n is attained, a new vertex (node) is added. The new node 

is connected to m different vertices that already exist in the network. The connections 

that are established are undirected. The node that joins the network chooses a node / 

as its neighbor with some probability which depends on the degree dj of node i: the 

probability IJ(i) that the new coming vertex is connected to vertex i is defined as

m  =  r s r o s r -  (2.7)Lj=1 dj

where n e t_ s ize  is the number of nodes that participate in the network at each 

timestep.

Barabnsi model
I n p u t:

n //the number of nodes of the final network 
N0 //the initial number of nodes 
m //the number of edges with which each node is 

//connected when it joins the network
O u tp u t:

A network topology that obeys power law 
Varieties:

int A //the adjacency matrix representing the network
int net_size = N0 //current network size
int Num_connections = 0 //current number of connection of

//the newly inserted node 
int d // the matrix of degrees of nodes 

//Initially, the network contains N0 nodes and no edges 
while net_size < n

//Add a new node u to the network 
Num_connections = 0
//connect the new node to m other nodes of the network 
//with preferential attachment
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while Num_connections < m
//choose a node i from the network at random 
//and add a connection between the new node u 
//and node i with probability Π (i)

πω = yn.Xdb=i dj
//add a connection between nodes u and i 
Num_connections = Num_connections+l 
d[i] = d [i] + 1 
d[u] = d[u] + 1
A(i,u) = A(u,i) = 1 //add edge (i,u) 

end while
net_size = net_size + 1 

end while

Algorithm 2.2: Barabasi algorithm for generating a power law network

2.4.2. Power-Law Out-Degree Algorithm

C. Palmer and J. Steffan [21] have proposed an alternative method for generating 

network topologies that obey power laws: the Power-Law Out-Degree Algorithm.

According to Power-Lcn\> Out-Degree Algorithm {PLOD Algorithm) (Algorithm 2.3), 

each node i is initially assigned an number of degree credits, credit,·. The number of 

links (di) that a node is allowed to have in the final network is picked from an 

exponential distribution βχ~α. Particularly, if the nodes of the graph are sorted in 

descending order of degree, the degree of the node whose rank in this ordering is x, 

will be βχ~α in the produced graph. After assigning a degree credit to each node, a 

pair of nodes (n l , n 2 ) is randomly chosen and an undirected connection between them 

is established only if a connection between them does not already exist and neither of 

the nodes exceeds the degree credits that it was initially assigned. The above 

procedure is repeated until every node is left with zero credits. The a  parameter is the 

exponent of the power-law distribution and determines the number of edges that 

should be added during the generation of the graph so that power-law distribution is 

achieved. It also represents the slope of the log-log plot.
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PLOD algorithm
I n p u t:

n //the number of nodes of the network
α,β //parameters of the exponential distribution

O u tp u t:

A network topology that obeys power law 
V a r ia b le s :

int A //the adjacency matrix representing the network 
int cur_edges = 0 //the number of edges placed to

//the graph so far
int d //the matrix of degrees of nodes
int credit //the matrix of degree credits of nodes

//assign a number of credits to each peer picked from an 
exponential distribution 

for i=l to n
x = random(1,n); 
credit [i] = βχ~α 

end for

while there is a node with non-zero credits
//choose a pair of nodes uniformly at random 
nl = random(l,n); 
n2 = random(l,n);

if nl and n2 are not connected and credits[nl] > 0 
and credits[n2] >0

A(nl,n2) = A(n2,nl) = 1 //add edge (nl,n2)
d[nl] = d[nl] + 1
credit[nl] = credit[nl] - 1
d[n2] = d[n2] + 1
credit[n2] = credit[n2] - 1
cur_edges = cur_edges+l

end if 
end while

Algorithm 2.3: Power- Law Out_Degree algorithm for generating a power law
network
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2.4.3. Recursive Algorithm

Palmer and Steffan in [21] also presented a method for generating topologies with 

power-law properties (Algorithm 2.4) that is based on the idea of generating an 80-20 

distribution and can only be used for generating weighted undirected power law 

graphs of size which is a power of 2: an 2nx2n adjacency matrix of a network is 

divided into 4 2n'Ix2n'1 sub-matrices. A distribution function can be defined so that a 

certain percentage of the final edges will be placed at each sub-matrix. Thus, we 

define a distribution of the following form: with probability ul an edge will be placed 

in the upper left sub-matrix A n , with probability ur an edge will be placed in the 

upper right sub-matrix A /2 , with probability ll an edge will be placed in the lower left 

sub-matrix A 21 and with probability Ir an edge will be placed in the lower right sub

matrix A 2 2 · It should be clear that, as links are undirected, the adjacency matrix is 

symmetric with zeros on its diagonal. Therefore, the definition of the distribution 

depends on the number of non-zero elements that can potentially be placed in each 

sub-matrix.

By following such a distribution, the algorithm recursively picks one sub-matrix, 

splits that sub-matrix into 4 sub-matrices and picks one of these sub-matrices. This 

process goes on until an edge is finally returned. Each time an edge is returned, its 

weight in the adjacency matrix is incremented. This way, a symmetric weighted 

adjacency matrix is generated. The algorithm stops when m edges are added in the 

network.

Recursive algorithm
I n p u t :

n //the number of nodes of the network 
m //the number of edges with which is node is connected 
ul,ur,ll,lr //the percentage of edges that will be placed 

//in each submatrix
O u tp u t:

A network topology that obeys power law 
V a r ia b le s :

int A //the adjacency matrix representing the network 
//Initially A contains zeros
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while A has less than m non-zero elements
//arbitrary choose two nodes to connect 
(i,j) = gensym(n)
A(i,j) = A(i,j) + 1

end while

F u n c t i o n  gensym (n)

V a r ia b le s :

N1 = (n/2)2 - (n/2) //the number of potentially non-zeros
//in the upper- left lower-right sub-matrices

N2 = (n/2)2
k = 1/((1/N1)ul + (1/N2)(ur+1) +(1/Nl)lr)

//We consider the 4 sub-matrices of A: An An A2i A22 
if n= 2 return (1,2) 
else

with probability
u Ẑ y return gensym(n/2) //choose An

(ur + l i ) ^  return gen(n/2) + (0,n/2) //choose Ai2 or A2i
l r ~  return gen (n/2) + (n/2, n/2) //choose A22

end if

F u n c t i o n  gen (n )

if η = 1 return (1,1) 
else

with probability
ul- return gen(n/2)
ur return gen(n/2) + (0,n/2)
11 return gen(n/2) + (n/2,0)
lr return gen(n/2) + (n/2, n/2

end if

Algorithm 2.4: Recursive algorithm for generating a power law network
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2.5. Generating connected graphs with power-law properties

For our simulation studies, we need to generate graphs that are connected. The graphs 

generated by Barabasi (Section 2.4.1) and PLOD (Section 2.4.2) algorithms are not 

always connected. For this reason, we use a variation of the PLOD algorithm that is 

proposed in [17] in order to generate connected graphs with power-law properties.

In order to generate a connected graph, we first create a spanning tree. The algorithm 

used for generating a spanning tree is illustrated in Algorithm 2.5. We first generate a

random permutation a [ l ]  a[ri\ of all nodes. We then add edges to form a spanning

tree. We begin with a tree consisting only of node a [ l ] and no edges. At each step τ, 

we assume that nodes with indices a [l],a [2 ]..a [t\ in the random permutation are in the 

tree. We then add node with index a [ t+ l] by randomly choosing one node a \j] among 

a [l],a [2 ]...a [t]  (0<j<t) and adding an undirected edge between a[/+7] and a\j].

The PLOD algorithm (Algorithm 2.3) assigns a number of degree credits to each node 

picked from a power-law distribution and then a pair of nodes (n l,n 2 ) is selected and 

an edge is added between n l and n2. This process is repeated until the desired number 

of edges is obtained. To ensure that eventually every node i will have a degree di 

equal to the number of credits crediti it was initially assigned and all nodes will have 

zero credits, a variation of the PLOD algorithm is proposed in [17]. The algorithm is 

presented in Algorithm 2.6: First a pair of vertices n l  and n2 of degree less than 

credit,,/ and credit„ 2  respectively such that there is no edge between n l  and n2 is 

chosen. If such a pair of nodes exists, an edge between n l  and n2 is added. If no such 

pair of nodes exists, the fixup procedure is executed.

The fixup procedure works as follows: if all nodes except node u have non zero 

credits, an edge (v7, v2) is selected such that (w, v7) and (u, v2) are not edges. Then 

we delete the edge ( v l ,  v2) and add edges (u, v l )  and (u, v2). If more than one nodes 

have non zero credits, we assume that there are pairs of nodes each of non-zero 

credits, but each such pair is already connected by an edge. In that case, we find a pair 

of nodes n l  and u2 such that both nodes have non-zero credits and (u l , u2) is an edge.
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Then we choose an edge (w l, w2) such that (ul, wl)  and (u2, w2) are not edges. 

Finally, we delete the edge (wl, w2) and add edges (ul, wl)  and («2, w2).

Creating a spanning tree
F u n c t i o n  r a n d o m _ p e r m u t a t i o n ( n )

I n p u t :

n //the number of nodes of the network
O u tp u t:

a //a· random permutation of peers from 1 to n

for t: 1 to n 
a [t] :- t 

end for

for t: 1 to n
j:= uniform_radom(l, n) 
swap(a[t], a [j]) 

end for

F u n c t i o n  c r e a t e _ s p a n n i n g _ t r e e ( n )

I n p u t :

n //the number of nodes of the network
O u tp u t:

int A //a spanning tree of n nodes 

for τ: 2 to n
r:= a [uniform_radom(1,-c-1) ]
//add an edge (r,τ) 
d[r] = d[r] + 1 
d [ i ]  = d [ τ ] + 1 

A (r, τ) = A (τ, r) = 1 
end for

Algorithm 2.5: Algorithm for creating a spanning tree
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PLOD algorithm for connected graphs
In p u t:

n //the number of nodes of the network 
α,β //parameters of the exponential distribution 

O utpu t:

A network topology that obeys power law 
V a r ia b le s :

int A //the adjacency matrix representing the network
int d //the matrix of degrees of nodes
int credit //the matrix of degree credits of nodes

//assign a number of credits to each peer picked from an 
//exponential distribution 

for i=l to n
x = random(1, n); 
credit[i] = βχ~α 

end for

random_permutation(n); 
create_spanning_tree(n);

while there is a node with non-zero credits
if there is a pair of nodes with non-zero credits and 
no connection between them

//choose a pair of nodes uniformly at random 
do
nl = random(1,n); 
n2 = random(l,n);

while nl and n2 are connected or credit[nl] ^ 0 
or credit[n2] £ 0

A(nl,n2) = A(n2/nl) = 1; //And an edge between nl and n2 
d[nl] = d[nl] + 1 
credit[nl] = credit[nl] - 1 
d[n2] = d[n2] + 1 
credit[n2] = credit[n2] - 1 

else call fix_up () 
end if 

end while
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P r o c e d u r e  f ix _ u p ( )
//check if there is only one node, u, with non-zero credits 
if all nodes except u have non-zero credits 

vl = random(1,n); 
v2 = random(1, n);

if vl,v2 are connected and (vl,u) and (u,v2) are 
not connected
//remove edge (vl,v2) and add edges (vl,u) and (u,v2)
d [u] = d [u] + 2
credit[u] = credit[u] - 2
A(v2,vl) = A(vl,v2) = 0  //remove edge (vl,v2)
A(vl,u) = A(u,vl) = 1 //add edge (u,vl)
A(v2,u) = A(u, v2) = 1 //add edge (u,v2) 

end if 
else

ul = random(l,n); 
u2 = random(1,n);

if ul and u2 are connected and credits[ul] > 0 
and credit[u2] >0

wl = random(1,n); 
w2 = random(1,n);

if wl,w2 are connected and (ul,wl) and (u2,w2) 
are not connected

A(w2,wl) = A(wl,w2) = 0 //remove edge (wl,w2)
A(ul,wl) = A(wl,ul) = 1 //add edge (wl,ul)
A(u2,w2) = A(w2,u2) = 1 //add edge (w2,u2) 
d[ul] = d[ul] + 1 
credit[ul] = credit[ul] - 1 
d[u2] = d[u2] + 1 
credit[u2] = credit[u2] - 1 

end if 
end if 

end if

Algorithm 2.6: PLOD algorithm for generating connected graphs
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As far as the Barabasi algorithm is concerned, each newly inserted node is connected 

to m of the nodes that already exist in the network. According to the model described 

by Barabasi, we assume that initially there is a small number N0 of nodes with no 

connections between them. Therefore, if each node selects less than N0 nodes to 

connect with (m<N0), there would be non-zero probability of never choosing some 

nodes and connect with another peer. Thus, to ensure that the generated graph is 

connected, we choose the values of parameters m and N0 such that m is equal to N 0.

2.6. Estimating the quality of the synthetic graphs

Network topologies that obey power-laws should have the following four properties 

defined in Section 2.3.2: rank exponent, degree exponent, hop-plot exponent and 

eigenvalue exponent. In this section, we use the Barabasi algorithm as well as the 

PLOD algorithm as described on Section 2.5 to generate connected network graphs 

with the above properties. We then perform experiments on the synthetic graphs to 

evaluate the extent to which the desired four power-law properties hold for the 

generated topologies.

The algorithms discussed in Section 2.5 for generating connected graphs with power- 

law properties were implemented in C++ using the OMNET++ simulation 

programming tool. OMNET++ (Objective Modular Network Testbed in C++) [20] is 

a modular, open-source discrete event network simulator. Each participating peer is 

simulated as an OMNET++ module and is implemented as a C++ object whose 

methods describe the expected behaviour of each peer. Modules can be connected 

through input and outputs gates and communicate by exchanging messages.

The topological metrics that need to be measured in order to estimate the quality of 

the synthetic undirected graphs are: the degree d, of every node i in the network, the 

frequency fd  of an degreed that appears in the network, the distances d i s t i jk of any 

pair of nodes ( t j)  within k  hops, with k  between 0 and the diameter of the network 

and the eigenvalues X\ of the resulting graph.
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First, we generate a network graph of size n = 3000  peers by using the model 

introduced by Barabasi. We used various values for No parameter. At each simulation 

the m parameter is chosen to be equal N0. We also present experimental results for 

PLOD algorithm with various values for a  parameter and β  = n 66. Then we study the 

topological measures mentioned above. The algorithm parameters used for generating 

the synthetic graphs are summarized in Table 2.1.

Table 2.1: Simulation parameters for power-law graph generators

Parameter Symbol Value

Network size n 3000

Initial number of peers for the Barabasi 

model
N0 [2-5]

Number of edges for each newly 

inserted peer in the Barabasi model
m [2-5]

a parameter of exponential distribution 

in PLOD algorithm
a [0.4-1.5]

β parameter of exponential distribution 

in PLOD algorithm
β

n0M

First we study the degrees d·, of nodes in the generated network graph. A node’s rank 

r, is its index in the order of decreasing degree. In Figure 2.2 and Figure 2.3 we plot 

all (r„ d!) pairs in log-log scale. As it is shown on both figures, the (77, d/) plots in log- 

log scale are approximated well by linear regression which indicates that the rank 

exponent property holds for the synthetic graphs generated either with Barabasi’s 

algorithm or PLOD. In the case of PLOD algorithm (Figure 2.3), we notice that in the 

resulting graph, the degree of the most connected node is determined by the value of β  

parameter («° 66 *  198) while a  parameter determines the total number of edges that 

are added. For example, for a  = 1.5 there are much more nodes with few connections 

(equal or close to 1) than when a  = 0.4.

In order to study whether the degree exponent holds, we study the distribution of 

degrees. Figure 2.4 and Figure 2.5 we plot the degrees d\ of the nodes in the 

undirected graph generated by Barabasi’s algorithm and PLOD respectively, with the
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frequency each degree d, measured as the number of nodes with degree d. Again, 

the plots are in log-log scale and observe a linear relationship, as degree exponents 

suggests. Consequently, we can claim that for both synthetic graphs that are 

generated, the property of degree exponent holds.

We then study the size of the neighborhood within some distance. The neighborhood 

p(h) within some distance is defined as the number of pairs of peers with distance at 

most h. Figures 2,6 and 2.7 show the number of pairs p(h )  within distance h towards 

the distance h when Barabasi’s algorithm and PLOD respectively are used. The plots 

are in log-log scale. The plots show a linear relationship between \og(p(h)) and log(h) 

which implies that the hop-count exponent also holds for the generated graph 

topologies.

Finally, we study the eigenvalue of the synthetic graphs which are defined as the 

eigenvalues of the adjacency matrices A. For the calculation of eigenvalues the eig  

function of MATLAB programming tool was used. Among all eigenvalues, only the 

greatest have a physical meaning when it comes to adjacency matrix. For this reason, 

we plot only the 50 greatest eigenvalues 2, in descending order in comparison to the 

index vt· of of the eigenvalue in the descending order. The plots are in log-log scale 

and as shown in Figure 2.8 and Figure 2.9, log(2,) and log(i7t) are proportional, so 

the claim that the synthetic graphs have the eigenvalue exponent property also holds.
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CHAPTER 3. SEARCH AND 

REPLICATION METHODS FOR 

UNSTRUCTURED P2P SYSTEMS

3.1 Locating data items of interest in unstructured P2P systems

3.2 Creating replicas of data items in unstructured P2P systems

3.1. Locating data items of interest in unstructured P2P systems

Distributed p2p systems have attracted a lot of attention as a means of data sharing 

among a large and dynamic population of peers. Peers join and leave the system 

dynamically, thus forming self-organizing overlay networks. A basic functionality of 

p2p systems is discovering data items of interest. Any peer may ask to retrieve one of 

the shared data items. When a peer poses a query for a data item, it uses the overlay 

network to communicate with its neighbors and a look-up process is initiated for 

locating the peers that hold the requested data item. Locating a data item must be 

achieved by contacting as “ small” a number of nodes in the overlay as possible and by 

maintaining as “ little” state information at each node as possible.

To assist lookup, structured overlays  map (keys of) data items to nodes. In structured 

overlays, the mapping is usually done by hashing the key space of the data items to 

the id space of nodes. Thus, each node in the overlay maintains a partition of the data 

space. In structured overlays, lookup reduces to locating the node in the overlay that is 

responsible for the corresponding data partition. In unstructured overlays  on the other 

hand, there is no correlation between nodes and data items.
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Therefore, “blind” search procedures are used and look-up queries get propagated 

through the network so as to locate peers offering the requested data item.

The most commonly used blind search strategy for unstructured p2p overlay networks 

is flooding. In flooding , a peer that wants to retrieve a specific data item initiates a 

look-up process by communicating with all of its neighbors in the overlay network. A 

peer that receives a look-up (query) message propagates it to all its neighbors, unless 

it knows about the data item in question. The look-up messages are allowed to be 

propagated until the data item is located or for a limited number of steps (hops), 

which is the so-called tim e-to-live (TTL) parameter. The TTL value is defined by the 

peer that initiated the look-up process and is included in the look-up message. Each 

intermediate peer that receives a look-up message decrements the TTL value by 1 and 

peers that observe a zero TTL value stop propagating the message any further. When 

the propagation of a message is terminated, a reply is forwarded back following the 

same path until it reaches the peer that initiated the look-up process.

Such a TTL-Iimited flooding has several shortcomings. First of all, defining an 

appropriate TTL value is not an easy task. The choice of a large TTL value may 

overload the network with look-up messages, while if a small TTL value is used, 

many look-up queries may be unsuccessful, as their propagation may be terminated 

before peers that hold the requested data item are located. Additionally, in flooding a 

peer may receive the same message more than once due to cycles in the path through 

which the messages are forwarded or because a peer may receive the same look-up 

message more that once from multiple neighbors (different paths). For example, 

Figure 3.1 illustrates a possible structure of an overlay p2p network, consisting of 7 

peers. In this example overlay network, we assume that peer A wants to retrieve a 

data item that is held by peer C and uses flooding that is restricted to TTL = 3 hops 

for propagating its look-up query. The scenario for the propagation of the look-up 

message could be the following: First peer A forwards the message to its neighboring 

peers D, B  and F. Then, peer D  will continue forwarding to peers E, B, A, peer B  will 

forward the message to peers A, D, F, C, E, G  and peer F  will forward to peers A, B, 

G. Finally, peer C that offers the desired data item would send a reply back to peer B  

and B would forward the reply back to peer A. All other peers, apart from C would
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continue forwarding the message to all of their neighbors as they are not aware that 

the data item has already been locating through another path. During this look-up 

process many duplicate messages overloaded the network with each peer receiving 

the look-up query from all its neighbors.

Figure 3.1: Flooding propagation in an unstructured overlay network

To reduce the number of messages produced during flooding, an alternative search 

technique is used: the random walks method. With random walks, each peer that 

receives a look-up message, if it does not know of the data item in question, it selects 

only one peer from its neighborhood and forwards the message to it instead of 

forwarding the message to all its neighbors. The selection of the neighbor to which 

the message will be forwarded can be uniformly random or biased according to some 

criteria. To further improve the performance of this method, multiple walkers can be 

deployed simultaneously. In the k random walks method, the requesting peer instead 

of selecting only one neighbor, it selects k neighbors and its query request is 

propagated through k  different random walks. Returning to the example of the p2p 

network illustrated in Figure 3.1, if 3 random walkers with TTL = 3 were used instead 

of flooding the following scenario could improve the communication cost in 

comparison to flooding: Peer A forwards the message to peers D, B and F  and peers 

D, B, F  forward the message only to peers E, C  and G  respectively (not all of their 

neighbors). Peer C then sends a reply back to peer F  while peers E  and G  randomly
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select one of their neighbors, say D and B respectively, and forward the message to 

them. It is obvious that this search strategy reduces the number of duplicate messages.

Another variation of flooding is the random BFS or teeming where each peer 

propagates the look-up message to each of its neighbors with some fixed probability 

φ. A decay parameter can be used so that φ decreases with the distance. This way, the 

probability that a look-up message is forwarded is very low if the message has already 

been forwarded for a few steps.

An improvement of k random walks that achieves termination of search when a data 

item is located at one of the different walkers is random walks with checking 

according to which every walker asks the peer that initiated the search whether the 

search was successful through some other path before propagating the look-up 

message.

Another search method that has been proposed is expanding ring. In expanding ring, a 

peer starts with a small TTL and floods the look-up message. If the search is not 

successful, the TTL value is increased and the flooding process is repeated until the 

data item is located or until a maximum TTL value is reached.

3.2. Creating replicas of data items in unstructured P2P systems

A commonly used approach in distributed P2P systems for improving the 

performance of a look-up process is caching or replication of either data items or 

search paths (or both).

Replication increases the number of copies for each shared piece of data in the 

system. By doing so, the probability that some or all the data is temporarily or 

permanently lost (because of a node departure or a link failure) significantly 

decreases, thus the dependability of the system in terms of reliability and availability 

is increased. Additionally, by having more copies for popular data items, the load for 

routing and answering queries can be evenly distributed among the servers that hold
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the copies. This way, the performance of a search method is improved in terms of 

throughput and response time, since congestions in “hot” servers may be avoided. 

While unstructured overlays which adopt flooding-based techniques are effective for 

locating popular data, they are poorly suited for locating rare data. Thus, by 

replicating the rare data, the probability of locating it during a search process 

increases, consequently increasing data recall.

Several issues are associated with replication. For example, a replication strategy 

should determine what should be replicated. There are two choices of what to 

replicate: actual data items or index entries (pointers) of the real data. If actual data 

items are replicated, the storage space required for holding the replicas is increased 

compared to replicating indices. Also, replicating indices does not improve reliability 

or availability since it does not lead to more physical copies. In addition, a replication 

strategy should define how many replicas of each data item should be stored in the 

network. Another issue that should be taken into consideration is where the replicas of 

data items should be placed. The number of replicas for each data item and where 

these replicas are placed can significantly affect the performance of the search method 

t̂hat is used for locating peers with specified data items. Moreover, an extra overhead 

is imposed by replication not only for storing the multiple copies of each data item, 

but also for maintaining the consistency of the different replicas that are kept and 

propagating the updates that may occur in one data item.

As far as the question of how many replicas of each data items should be created is 

concerned, there are two natural ways of replicating data items, namely uniform and 

proportional replication. In uniform replication (UR), the same number of replicas is 

created for each data item, regardless of how popular it is considered. The popularity 

of a data item *, also referred to as its query rate qx, is defined as the probability that a 

peer poses a query for that data item. In proportional replication (PR) the number px 

of replicas for each data item is proportional to the popularity of the item. Although it 

seems natural to create more replicas for more popular data items so as to favor most 

common queries, this is done at the expense of rare ones.
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For the random probes strategy, the search process proceeds until the data item is 

found or until a TTL value is exceeded. We consider a network consisting of n peers 

which share s different data items. For each data item x  there are p x copies in the 

network. Each peer has a storage space for holding up to c replicas of data items. 

Given that, for random graphs, the probability Pr(r) of locating a data item after r 

probes is equal to the probability of not locating it in the previous r - 1 probes and 

locating it in the r-th probe and is given as

Pr(r) =  ( l  -  ^ ) Γ_Ι * ~  (3.1)

The expected search size  (average number of probed peers) for locating a particular 

data item x is e ssx =  —. Thus, the expected search size (ESS) for all data items (the
Px

average number of probed peers per query) is

ESS =  Σ ί= ι <1x*essx =  η * Σ Ι =i j r  (3 ·2)
Px

The replication schema that minimizes equation 3.2 is the square roo t replication , 

where the number of replicas for each data item is proportional to the square root of 

its query rate ( p x  oc y ] q x ) .

'However, things are different if the topology of the network is not random, but the 

degrees of the peers follow a non-uniform (power-law) distribution. For the random 

probes strategy it holds that

• the choice of the next peer does not depend on the previous peer (m em oryless  

random walks)

• the probability of visiting a particular peer is proportional to its degree

Under these assumptions, for networks with power-law topology, the probability 

Pr(r) of locating a data item after r  probes is
r-1 Os,

M r )  =  ( l  -  ψ )  * ψ  (3.3)

where Dsx is the sum of the degrees of peers that belong to the set Sx of peers that hold 

a replica of data item x and D  is the total sum of degrees of all peers. Thus, the

expected search size for locating data item x  is e s s x =  — , and the overall expected

search size is
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ESS =  Σχ=ι qx * e ssx = D * Σ*=ι ~  <3 *4)υ*χ
If all peers of the network have the same capacity c , then the total number of replicas 

R is equal to c * n (i? =  c * n ) and the total sum of degrees for all data items 

Σ? = i Dsx IS equal to c * D (Σ£ = i Dsx — c * D) because the degree of each node is 

counted once for each replica it holds. Thus, the quantity Σ ί  = ι DSx is limited to a

R
constant: D * -  and the equation (3.4) is minimized when p x oc Ds .

Various replication strategies have been proposed for achieving SR replication. In 

owner replication, which is used in Gnutella, when a search for a data item is 

successful the peer that initiated the search process (the requester peer) stores a 

replica of the data item. In path  replication, which is used in Freenet, each query 

keeps track of the path it follows starting from the requester peer. When a search 

succeeds, all peers that exist in the path from the requester peer to the peer that 

provides the data item are forced to keep a replica of the data item. When k random 

walk strategy is used, the number of peers that are in the path from the requester peer 

to the provider peer is expected to be 1/k of the total peers that where probed during 

the search. Since path replication creates for each item a number of replicas that is 

proportional to the search size for locating it, it should result in square-root 

replication. Path replication has the drawback that it tends to create replicas of data 

items to peers that are topologically along the same path, which is not very effective. 

To overcome this problem, a third replication strategy, the random replication has 

been proposed. The random replication  strategy counts the number of peers on the 

path between the requester and the provider peer, say p .  Then p  of the nodes that the k 

walkers visited are randomly selected to replicate the data item.

A replication strategy that is based on random probes is presented in [16], the Pull- 

then-Push (PtP) replication. When a peer issues a request for a data item, first it 

checks if it possesses the data item. If the peer does not possess the data item, the 

request is propagated through the network following the ^-random walk strategy 

{pull-phase)\ the requesting peer forwards the request to k of its neighbors and each 

other peer that receives the requests randomly picks one of its neighbors and forwards 

the request. The propagation goes on either until the data item is found or until it has
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been propagated for more than TTL hops. As peers are probed, along with the request, 

information about the path that is followed from the requesting peer is also 

propagated. When a data item is found, a reply is sent back to the requesting peer by 

reversing the path from the requesting to the provider peer. After a successful search, 

the requestor enters a replication {push-phase) where peers are randomly probed and 

forced to hold a replica of the data item. During the push-phase the same strategy as 

in the pull phase is used and the TTL value is set to the number of hops for locating 

the data item minus one hop. This way, the number Tx of replicas that is created after 

a successful search for x  is approximately the same as the number of probed peers 

during the search process (#copies = # probed peers), which leads to a square root 

replication.
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CHAPTER 4. REPLICATION ON 

UNSTRUCTURED P2P SYSTEMS WITH A 

POWER-LAW OVERLAY NETWORK

TOPOLOGY

4.1 Influence of Power-law overlay topology to replication strategies

4.2 A degree-based replication strategy for unstructured p2p systems with a power- 

law overlay network topology

The overall effectiveness of a replication strategy that is used in a p2p system is 

' heavily dependent on the topology of the overlay network. In order to investigate the 

effect of the overlay network topology (especially the topology of power-law 

characteristics) on the replication methods presented in Chapter 3, we have performed 

a series of experiments under a simulation environment. In Section 4.1, we describe 

the simulation environment and present our experimental results. In Section 4.2, based 

on some observations that derive from the simulation results, we present a replication 

strategy that considers the characteristics of power-law and reduces the total 

communication cost without increasing the average number of hops {average  

dep th Jo im d)  for locating a replica.
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4.1 Influence of Power-law overlay topology to replication strategies

4.1.1. Simulation Environment

The replication methods discussed in Section 3.2 were implemented in C++ using the 

OMNET++ simulation programming tool.

Network model: For our simulation study, we consider networks that have random 

and power-law topologies. For generating networks with power-law properties, we 

have used the Barabasi model as described in Section 2.4.1 (Algorithm 2.2). The 

PLOD algorithm for connected undirected graphs (Algorithm 2.6) could have as well 

been used for generating a network graph with power-law topology. Since the 

generated graphs for both algorithms have very similar (practically the same) 

topological properties (as shown in Section 2.6), it makes no difference which of the 

two implemented methods will be used.

For the random (Erdos-Renyi) graph we assume that there are n peers in the final 

network and the average degree of each peer is davg. The network is generated 

according to the following process: first a spanning tree consisting of n peers and n-1 

edges is created as described in Section 2.5 (Algorithm 2.5). Then, the rest of the 

edges are placed by randomly selecting a pair of peers nl and n2 and adding a 

bidirectional edge (nl,n2) if there is not already one. This process is repeated until

— edges are finally added.

Query model: A simulation starts by distributing the s distinct data items (simply 

indicated by an integer from 1 to .y) randomly to the network. Then, each peer is 

periodically triggered through a self message and performs the generate_query 

process: The peer randomly chooses one of the s distinct data items and issues a query 

for that item. Each simulation is executed for 360 seconds (real simulation time). The 

frequency /  with which each peer is triggered to generate a query (generate query 

rate) is also measured in seconds and is given as a simulation parameter. The 

probability with which each data item is chosen (query distribution or query rate) 

follows a zipf distribution with a given theta value. This means that not all items are
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chosen with the same probability but there are some items that are more popular than 

others.

The search method that is used in the simulation is either flooding or the k  random 

walkers where k is given as an input in the simulation. When a peer issues a request 

for a data item, first it checks its local cache. If the requested item is not offered 

locally, the requester peer chooses at random (uniformly) k different peers from its 1- 

hop neighborhood (or all of them, if flooding is used instead) and sends a request or 

p u ll m essage to them. This request message contains:

• A sequence number that is unique for each new query that is generated

• The initiator, which contains the id of the peer that issued the query

• The requested data item

•  The whole pa th  that the message traverses starting from the initiator

• The hop counter that counts the length of the path from the initiator to 

the previous hop.

• The depth J o u n d  that simply indicated the number of hops between the peer 

that offers the requested data item (provider) and the initiator. Until

the desired data is located, the depth_found is set to -1.

When a peer receives a request message it first checks if it offers the data item in 

question. If the peer locates the requested data item in its cache, it sets the 

depth J o u n d  field equal to hop counter and sends a rep ly  m essage  to the peer from 

whom it received the request message (taken from the p a th  field). The reply message 

has the same form as the request message. If the requested item is not in peer’s cache, 

the peer checks if the hop counter does not exceed a certain value, defined by TTL 

parameter. Since a message is not forwarded more than TTL times, if the hop counter 

is greater than TTL, the message is not forwarded anymore. Otherwise, if k  random 

walkers strategy is used, the peer chooses a neighbor at random and forwards the 

message to it and increments the hop counter by one, adding its own id to the path. In 

the case of flood, the peer forwards the message to all of each neighbor, not only one.
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When a peer receives a reply message, if it is not the initiator of the query, it deletes 

itself from the path list and forwards the message to the peer in the path that comes 

next.

Replication model: Every peer has a local cache for storing a limited number of 

known data items. The capacity of a cache c is a user-defined parameter. When the 

cache of a peer is full and a new data item needs to be stored, a data item is randomly 

chosen from the cache and is deleted to make room for the new one. This cache 

replacement policy is generally known as random deletion policy.

In our simulations, after a successful search we create and distribute replicas of data 

items according to one of the following replication mechanisms: owner, path and pull- 

then-push replication (Section 3.2). In owner replication, when a peer receives a reply 

message for a query it has posed, it stores a replica of the data item in its cache, while 

in path replication a replica of the data item is stored in the cache of every peer that 

receives a reply message. In push-then-pull (PtP) replication strategy if the peer that 

initiated the search (initiator) receives a reply message for its query, it begins a push 

, phase by sending push messages to k (or all) of its neighbors. The pull messages are 

of the same form as pull and reply messages. For the propagation of push messages 

we use the same strategy as for locating the data items, with the TTL value set equal 

to the value of the depth _foimd field minus one hops.

Summary: Depending on the needs of the simulation, at each experiment we need to 

define the topology of the network (random or power-law), the replication method 

used (owner, path or pull-then-push) and some parameters concerning the number of 

peers in the network, the number of shared data items or the search method that is 

used. Table 4.1 summarizes the parameters that are used in our simulations and their 

default values.
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Table 4.1: Simulation parameters for replication strategies
Parameter Symbol Default value

Network size n 5000

Number of data items s 100

Random walkers k [5-8]

TTL t 10

Generate query rate f 0.005 (seconds)

Simulation time T 360 (seconds)

Query Distribution (zipf s parameter) theta 1.2

Capacity of each peer’s cache c 10

Average degree for Random topology davg 4

Initial number of peers for the Barabasi model No 3

Number of edges for each newly inserted peer in 

the Barabasi model
m 3

Output parameters: The metrics that are measured at each simulation are the 

following:

a. The normalized replication ratio for each data item x, which is computed as
y·

=7 ^— , where rx is the total number of replicas that exist in the network for the
Ly=\ ry

particular data item x

b. For each data item x, the sum of degrees Dsx of all peers that hold a replica of data 

item x

c. The average depth Joimd for each data item which is the average number of hops 

at which the item was located among all the successful queries for that data item.

d. The total communication cost which is the total number of messages that are 

exchanged during the simulation. The total number of messages is measured as the 

sum of messages that are forwarded for replica location (pull messages), for replying 

to a query when the data item is located (reply messages) or for the creation of new 

replicas (push messages)
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Each experiment is performed 10 times and the results presented for each measure are 

the average of the 10 executions.

4.1.2. Simulation Results

In the first set of experiments, the owner, path and pull-then-push replication 

strategies were applied to networks with random and power-law topologies. The 

parameters that were used in the simulations are those defined on Table 4.1. The 

scope of the experiments is:

• to investigate whether the optimal replication, as described in Section 3.2, is 

attained by the replication strategies (considering that for random networks 

optimal replication is considered to be the square-root replication while for 

power-law networks optimal replication is achieved when the sum of degrees 

of all peers that hold a replica of a particular data item is proportional to the 

square root of its query rate)

• to investigate the effect that the topology of the overlay network has on the 

performance of the replication strategies

For PtP we have used various k  random walkers and present the results for two of 

them: a 5 random walker with TTL = 10 and an 8 random walker with TTL = 10. We 

have also experimented with flooding.

In Figure 4.1, we present results for a network with random topology where the 

owner, path and PtP replication strategies were employed. Particularly, Figure 4.1 

shows the normalized replication ratio of each data item in comparison to its query 

rate. The plot is in log-log scale and it includes the optimal square-root (SR) 

distribution, drawn with a thick line.

It is clear from Figure 4.1 that path replication does not achieve SR replication. Path 

replication is closer to SR distribution than owner replication, but still not close 

enough. The replication method that seems to approximate SR replication better is 

PtP.
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In Figure 4.2, we plot (again in log-log scale) the normalized replication ratio of each 

data item compared to its query rate for networks with power-law overlay topology. 

We notice again that PtP approximates SR quite accurately and obviously better than 

owner and path replication. Intuitively, PtP replication strategy results in SR 

replication because it creates for each data item a number of replicas that is 

approximately the same as the number of visited peers during the search process, 

regardless of the number of visited peers or the topology of the overlay network.

In Figure 4.3, we plot (in log-log scale) for each data item the sum of degrees of all 

peers that hold a replica of the data item in comparison to the query rate of each data 

item for the networks with random and power-law, when PtP replication strategy is 

adapted (with flooding, 5 random walkers and 8 random walkers). As we observe, for 

random networks, with PtP replication strategy, the sum of degrees of peers that holds 

a replica of the data item is also proportional to the square root of the query rate. 

However, it is clear from Figure 4.4 that with networks with power-law topology, the 

sum of degrees of peers that hold a data item is not proportional to the square root of 

the query rate. This is more clearly shown in Figure 4.5 and Figure 4.6 where for each 

„ data item the actual number of replicas that exist in the network along with the sum of 

degrees of peers that hold a replica of it is presented for networks with random and 

power-law topology. Since the results obtained using 5 walkers, 8 walkers and 

flooding are very similar, we present the results only for the case of 8 random 

walkers. As we can notice, for random networks the number of replicas for each data 

item is proportional to the sum of degrees of peers with a replica of the data item 

while for power-law networks this claim is not true.

Figure 4.7 presents the average depthJound for each data item with its query rate in 

log-log scale, for both random and power-law networks when PtP replication strategy 

is used. Since all algorithms that are used with PtP result in the same replication ratio, 

we present the results for 8 random walkers only. Flooding and 5 random-walkers 

exhibit the same behavior so they are omitted from the plot for clarity. As expected, 

we observe that the average depth Jound of each item has a linear relationship to its 

query rate. We also observe that for the network with random topology, the average 

depth Jound for each data item is greater than for networks with power-law topology.
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This comes both from the fact that in power-law networks the average distance 

between two peers is smaller in comparison to random networks. As a consequence, 

the location of data items is achieved within fewer hops (on average) on networks 

with power-law topology.

Figures 4.8 and 4.9 show the total number of messages that are exchanged 

(communication cost) both on random and power-law networks when PtP replication 

strategy is used. It should be clear from the figures that the communication cost is 

larger on the network with power-law topology in any case. This is due to the fact that 

in a power-law topology, random walks result in many cycles with peers receiving 

and forwarding p u ll m essages from many of their neighbors more than once. Apart 

from this, since the average distance between any pair of peers is smaller, there are 

more successful queries and thus more reply  and push  messages.

In conclusion, PtP replication strategy results in SR replication when applied both on 

random and power-law networks. However, we can claim that this replication is 

optimal only for random networks.
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Figure 4.1: Distribution of replication ratios 
under various replication strategies on networks with random topology

Query rate

Figure 4.2: Distribution of replication ratios under various replication strategies
on networks with power-law topology
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Figure 4.3: Sum of degrees of peer with a replica of the data item for each data 
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Figure 4.4: Sum of degrees of peer with a replica of the data item for each data 
item vs its query rate for networks with power-law topology
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Figure 4.5: Number of replicas of each data item vs sum of degrees of peers with 
a replica of the data item for networks with random topology
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Figure 4.7: Average depthfound for each data item vs its query rate for 
networks with power-law and random topology
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Figure 4.8: Total communication cost under various replication strategies on
networks with random topology
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4.2. A degree-based replication strategy for unstructured p2p systems with a 

power-law overlay network topology

,As it is obvious from our simulation study, PtP replication strategy achieves optimal 

replication ratio when used on a network with power-law topology. However, the 

communication cost increases due to the cycles in random walkers. Moreover, a great 

proportion of the messages are duplicates. When a peer of low degree forwards a push 

message, there is a great probability that it will choose a peer with high degree (one of 

its few neighbors) to forward the message to. This means that if all peers of low 

degree forward the push messages they receive, peers with high degree will receive 

the same push message from many neighbors more than once and cycles in the 

random walkers occur more frequently. Thus, a way to reduce the communication 

cost is preventing peers with low degree from forwarding push messages and let only 

peers with high degree propagate the push message to other peers. Since a peer has no 

knowledge of the degree distribution or the average degree of all peers, the average 

degree of the peers in the path from the initiator to the provider peer is used as an 

indication of whether the peer is well-connected and has to forward the message or

not.
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Based on this observation, we present a variation of the PtP replication ratio which 

considers the properties of power-law topology for the creation of new replicas. With 

the Degree-based Piish-then-Pull (DPtP) replication strategy, an extra field is added 

to the pull (and reply, push) messages: the sum_degree which counts the sum of 

degrees of all peers that are probed by a random walker. This field is initially set 

equal to the degree of the initiator. Each peer that receives a pull message apart from 

adding itself to the path, it also adds its degree to the value of degree-sum. When a 

peer receives a reply for a query it has posed, it enters a push phase and forwards push 

messages to k of its neighbors by including the sum_degree field. A peer that receives 

a push message stores the data item in its cache. Then it computes the average degree 

avg_degree of all peers in the path through which the data item was located as:

avg_degree SU7TI άβ QY66S
depth"found' ^  t*ie degree ° f  the peer is greater than the avg_degree,

the peer keeps forwarding the push message provided that the hop count does not 

exceed the TTL value which is set equal to depthJound minus one, just like in PtP 

replication strategy. If the degree of the peer is less than the avg_degree, the push 

message is not forwarded.

In order to evaluate the performance of the DPtP replication strategy, we have 

performed a series of experiments. We have applied PtP and DPtP algorithms on the 

same power-law network and experimented again with flooding with TTL = 10, 5 

random walkers and 8 random walkers with the same TTL value. All the other 

simulation parameters are as described in Section 4.1 (Table 4.1). Figure 4.10, Figure 

4.11 and Figure 4.12 present the normalized replication ratio and the sum of degrees 

of peers that hold a replica of the data item compared to the query rate and the query 

rate compared to the average depthJound for each data item respectively, in log-log 

scale. The figures show that PtP and DPtP result in very similar replication ratios and 

approximately the same average depth Jound for all data items. The sum of degrees of 

peers that hold a replica for each data item is also remains practically the same. This 

is expected, since DPtP replication strategy does not practically reduce the number of 

replicas that are created after a successful search for a data item. What is reduced is 

the number of times that a peer may receive the same push message.
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In Figure 4.13 we plot the total communication cost induced on power-law network 

by PtP and DPtP replication strategies. As it was expected, in any case, the total 

number of messages is less when DPtP replication strategy in comparison to the PtP 

(Figure 4.9). This is due to the fact that with DPtP not all peers that receive a push 

message forward the message.

Query rate

Figure 4.10: Distribution of replication ratios under various replication 
strategies using DPtP on networks with power-law topology
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Figure 4.12: Average depth_found for each data item vs its query rate for 
networks with power-law topology under PtP and DPtP replication strategies
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CHAPTER 5. UPDATES ON 

UNSTRUCTURED P2P SYSTEMS WITH A 

POWER-LAW OVERLAY NETWORK

TOPOLOGY

5.1 Maintaining the consistency of replicas on unstructured P2P systems

5.2 Influence of Power-law overlay topology to update policies

5.3 A degree-based update policy for P2P systems with a power-law network 

topology

5.4 An adaptive quorum-based update policy

5.1. Maintaining the consistency of replicas on unstructured P2P systems

Most of the traditional p2p systems that have been widely used over the past years, 

such as Gnutella and Kazaa, enable users to retrieve and share data. The main 

characteristic of the data items that are shared through those systems is that they are 

considered to be static (users only wish to read shared data but do not modify them). 

However, in future p2p applications, a new challenge will emerge: the need for 

sharing data that may be frequently modified by the users. In p2p networks that will 

support such dynamic content, data items could both be read and written. Maintaining 

multiple replicas of each data item in the network introduces the additional overhead 

of keeping all replicas up-to-dated. If not every peer that holds a replica of a data item 

sees the same updates applied to the data item in equivalent orders, then not every 

peer could respond to a query request (at least not with an up to date and not stale
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content). Maintaining the consistency of all data items that are stored in the network 

requires that every update that is made in a data item by some peer is propagated to all 

other peers that hold a copy (replica) of the same data item. Therefore, consistency 

maintenance polices should be used along with replication strategies.

Each consistency maintenance policy deals with three crucial issues: where (i.e at 

which peers) updates take place, when updates are propagated to other replicas and 

how the propagation is achieved.

In terms of the where aspect, update policies can be classified as single or master copy 

and multi-master or group. In policies that are based on the single master or primary 

copy approach, it is assumed that each data item is owned by a single peer, known as 

the data item’s owner. The replica that is held by the owner of the data item is called 

theprimaiy copy. Every replica is allowed to be read but when an update takes place, 

the update must be first applied to the primary copy of the data item and then 

propagated. All the other replicas of the data item must be made consistent with the 

master copy. In the multi-master or group approach, multiple peers can hold primary 

popies of the same data item. Such an approach is more demanding in terms of 

communication cost and system complexity since concurrent updates on different 

replicas need to be coordinated and any replica divergences that occur should be 

reconciled.

As far as the question of when the update process takes place is concerned, there are 

several approaches. One approach requires that the update propagation process is 

initiated periodically. Alternatively, each peer that modifies a data item propagates 

the update to other peers right after the update is completed (eager or synchronous 

replication) or when an inconsistency is detected (lazy or asynchronous replication).

According to the how aspect, there exist two different types of consistency 

maintenance policies: policies that use push methods, policies that use pull methods 

and policies that use a combination of push and pull methods. In push policies, the 

peer that changes the content of a data item is responsible for propagating (pushing) 

the update to other peers. On the other hand, in pull policies, the peer that holds a
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replica of a data item takes the initiative of contacting other peers so as to keep its 

replica up to date. Push mechanisms are easily implemented but induce greater 

message overhead. Furthermore, there is a possibility that an update could not reach 

some peer, considering that peers join and leave the network and are not constantly 

connected. On the other hand, with pull methods an appropriate pull period should be 

determined. If a peer pulls too often the communication overhead is increased but 

pulling too rare decreases the consistency levels. Usually, a combination ofpush/pull 

techniques is used: a peer performs a limited push of the updates but the peers do not 

rely only on the other peer’s push to get the update. Instead, they occasionally contact 

other peers (pull) to make sure they have not missed an update of the data item. It is 

proved in [16] that when a push/pull mechanism is used, better consistency levels and 

less message overhead is achieve than plain push or pull.

An adaptive pulling policy is presented in [15] to determine how frequently the peer 

should pull. It makes sense that for data items that are more frequently updated the 

pulling frequency is greater than for less frequently updated data items. To adjust the 

pulling frequency for each data item to the update rate, a time-to-refresh (777?) value 

. is associated with each data item in cache. This value indicates when the next pull for 

this item should happen. The 777? value varies according to previous pull results. 

Specifically, the algorithm starts with a minimum TTR value and adapts it to the 

update rates: if the peer finds out that a data item has not been modified between two 

successive pulls, the estimate TTRe for the next pull is increased by an additive 

amount C according to the equation:

TTRe = T T R  +  C (5.1)

If a new version of the data item is pulled, the estimate TTR e of the next TTR is 

reduced by a multiplicative factor b, in portion of the difference D  between the 

version that the peer had before pulling and the pulled version of the data item, 

according to the equation:

777? e ^  (5.2)
e D + b  v '

The next TTR  is a weighted average of the TTRe estimate and the current TTR:

TTRe =  w  * TTRe +  (1 -  w) * TTR  (5.3)

where w determines the rate o f  changes: smaller values of w  make TTR  change very
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slowly, while larger w make TTR change quickly.

As mentioned before, a peer can either use a push method to communicate an update 

of a replica to other replicas of the same data item or pull other peers in order to 

retrieve any updates that have been made by other peers. Alternatively, a peer could 

combine push and pull methods in order to achieve better consistency levels. In 

particular, in a push/pull update propagation policy, a peer pushes any updates it 

makes on a data item by applying a mechanism similar to the search mechanism used 

for locating data items (for example k-random walks with a fixed TTL value). Apart 

from pushing, a peer periodically performs a pull for every replica it holds. During the 

pull process, a peer contacts a set of other peers and checks whether they hold a more 

up-to-date version of the same data item.

An alternative push/pull hybrid update propagation policy is discussed in [16]. It is 

assumed that the creation of replicas in the P2P network was determined by the Pull- 

then-Push algorithm described in Section 3.2 where a peer that requests a data item, 

after a successful search {pull phase) enters a push phase where it visits peers using 

,the same algorithm as in the pull phase and forces them to hold a replica of the data 

item. Given this replica creation approach, each peer that holds a data item is 

characterized as owner if it holds a primary copy of the data item, responsible if it has 

requested the data item before and has forced the creation of replicas or indifferent if 

it has been forced to hold replica without requesting the data item. According to the 

PtPU policy, the owner broadcasts the new versions of a data item as soon as an 

update occurs. If a peer that is characterized as responsible for a data item receives a 

push message with a new version of the data item, it undertakes the task of informing 

its neighbors of the new version of the item. This is done by propagating the broadcast 

message exactly as in the push phase (U-pushphase) when it has created the replicas 

(using the same algorithm as in PtP with the same parameters). By using the same 

algorithm in both the push phase and the U-push phase, it is guaranteed that a 

responsible peer will visit the same or approximately the same number of peers when 

pushing updates it becomes aware of as when creating replicas. Apart from pushing 

the updates they receive from the owner, peers that are considered responsible for a 

data item, pull periodically for that data item in order to obtain more updates.
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5.2. Influence of Power-law overlay topology to update policies

5.2.1. Simulation Environment

We have evaluated the performance of both the Push-Pull and PtPU update policies 

described on Section 5.1 through simulations. We also investigated whether and how 

the performance of Push/Pull and PtPU is affected if the topology of the overlay 

network is not a uniform random graph. For this reason we have evaluated the 

performance of both plain Push/Pull and PtPU policies on networks with random and 

power-law topologies.

For our simulation study, we have used the same environment settings as described in 

Section 4.1.1. The networks with random (Erdos-Renyi) and power-law topology 

were generated exactly as described in Section 4.1.1.

Query model: The simulation time at each experiment is divided into two parts: the 

replicas creation part and the replicas update part. During the first part peers 

randomly issue requests for data items and after a successful query the peer that 

received a reply to its request enters a push phase where new replicas of the data item 

are created. The propagation of queries, replies and push messages is done according 

to the mechanism described in Section 4.1.1. The search method that is used for 

locating data items is either k random walks or flooding and the replication strategy 

that is employed is PtP.

During the second part, peers start updating data items. At the beginning of each 

simulation each of the s data items is randomly assigned to one of the n peers, which 

is considered as its owner. For simplicity we assume that each peer updates a data 

item only if it is considered its owner. The simulation time is divided into time 

rounds. At the beginning of each simulation time round, one of the peers is triggered 

through a self message and performs the generatejupdate process: if the peer is 

regarded as owner for at least one of the s data items, it randomly chooses one of 

those and updates it by incrementing the version number associated with that data 

item and assigning a new random value. After updating a data item, the peer enters a
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U-push phase where it starts spreading the update by sending a U-push message to k 

of its neighbors with the new value and the new version number of the data item. For 

propagating the u-push messages each peer uses the strategy as when creating the 

replicas. When a peer receives a U-push message it checks if it holds a replica of the 

data item. If it hold a replica of the data item and has an older version number for that 

data item, it updates the data item in its cache and then forwards the U-push message. 

Otherwise, it just forwards the U-push message, as long as the TTL value is not 

exceeded. In case the PtPU update policy is used, if a peer is characterized as 

responsible for a data item and receives a U-push message with a new version for that 

data item, it enters a U-push phase itself and propagates U-push messages using the 

same strategy and the same TTL value as with push messages.

Apart from U-push messages, peers also exchange U-pull messages in order to get 

informed of new versions of data items they hold. For each peer we follow the 

adaptive pulling policy discussed in Section 5.1 in order to determine the moment of 

the next pull for a particular data item. With Push/Pull update policy, each peer pulls 

for every replica they hold using the same strategy as update push while with PtPU 

jeach peer initiates a pull only for data items that is held responsible for and if a peer 

that is responsible for a data item receives a reply with a new version of the data item, 

it will begin a U-push phase using the same strategy as in the replica creation (PtP) 

part.

Summary: At each experiment we need to define the topology of the network 

(random or power-law), the update policy that is used (Push/Pull or PtPU). The 

parameters concerning the number of peers in the network, the number of shared data 

items or the search and replication methods that are used are those defined in Table

4.1. Table 5.1 summarizes the parameters that are used for the update policies.
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Table 5.1: Summary of simulation parameters for update policies
Parameter Symbol Default value

Generate update rate u 0.2 (seconds)

Simulation time for replica creation part T 360(seconds)

Simulation time for replica update part t 50 (seconds)

Initial TTR for each peer TTR 0.5 (seconds)

C parameter for adaptive pulling policy C 0.4

b parameter for adaptive pulling policy b 0.2

Rate of changes for adaptive pulling policy w 0.8

Output parameters: The metrics that are measured at each simulation are the 

following:

a. The consistency percen tage  at the beginning of each simulation time round, 

which is computed as the percentage of replicas in the whole network that are 

consistent (have the same version number as the primary copy’s version number)

b. The number of u-pull and u-push messages that are exchanged during the replica  

update simulation part. The sum of those push and pull messages constitutes the 

m essage overhead  of each method.

5.2.2. Simulation Results

In this set of experiments, the Push/Pull and PtPU update policies were applied to 

networks with random and power-law topologies. The scope of the experiments is:

• to investigate whether PtPU achieves better consistency levels in comparison 

to plain push/pull and with lower message overhead.

•  to investigate the effect that the topology of the overlay network has on the 

update policies

For this series of experiments, we have used a 5-random walks strategy, an 8-random 

walks strategy and flooding with TTL = 10 for the PtPU algorithm (both creating 

replicas of a data item (push phase) and for the propagating updates that a responsible 

peer becomes aware of (u-push phase)). Each simulation was executed 10 times and 

the results that are presented are the averages among the 10 executions.
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Figure 5.1 illustrates the percentage of consistent replicas at the beginning of each 

simulation time round on networks with random topology when Push/Pull and PtPU 

update policies are used with responsible peers following a 5-random walks strategy 

with TTL = 10 for propagating any updates they receive, while in Figure 5.2 the 

consistency percentage under Push/Pull and PtPU on networks with power-law 

topology is plotted. As expected, PtPU keeps better consistency levels than push/pull 

both in the case of networks with random topology and networks with power-law 

topology because each peer is held responsible for updating the replicas it has created.

It is also clearly shown in Figure 5.1 and Figure 5.2 that both Push/Pull and PtPU 

update policies result in better consistency levels when applied to power-law 

networks than when applied to uniform random networks. This can be explained by 

the fact that in a network with power-law topology, a peer can easily communicate an 

update or become aware of an update of a replica it holds through the well-connected 

peers. When a peer pushes an update, there is a great probability that the push will 

reach one of the few well-connected peers which in turn will push the update to other 

, peers. As a result more peers will become aware of an update so the consistency will 

increase.

Figure 5.3 and Figure 5.4 show the massage overhead associated with Push/Pull and 

PtPU update policies for random and power-law topologies respectively. As it can 

been observed from the figures, in both cases, Push/Pull results in greater message 

overhead in comparison to PtPU. With PtPU each peer does not pull for every data 

item that is stored in its cache, but only for data items it is held responsible for, thus 

requiring less pull messages. However, with PtPU more push messages are exchanged 

because if a peer is responsible for a data item, when it receives a new version for a 

data item it pushes the new version to other peers. The total message overhead is 

decreased though when PtPU update strategy is adapted. In power-law networks, the 

diameter of the network is smaller and consequently the average search size of a data 

item is decreased. As a result, the number of peers that manages to get a reply for 

their request is greater. This means that more peers become responsible for a data 

item. A peer pushes an update it receives only if it is held responsible for the data item
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so the more the responsible peers, the more the push messages. When 8 random 

walkers are used instead of 5, as one would expect, the consistency levels are higher 

both for random (Figure 5.5) and power-law (Figure 5.6) network topologies as more 

peers are informed of an update during a U-push. However, contacting more peers 

means more pull messages and consequently extra message overhead (Figure 5.7 and 

Figure 5.8). The same holds when we use flooding instead of 8 random walkers 

(Figures 5.9, 5.10, 5.11).
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Push/Pull - PtPU consistency

Figure 5.1: Consistency percentage at each time round under Push/Pull and 
PtPU strategies on networks with random topology when for the U-push phase a 

5 random walker with TTL = 10 was used
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Figure 5.2: Consistency percentage at each time round under Push/Pull and
PtPU strategies on networks with power-law topology when for the U-push phase

a 5 random walker with TTL = 10 was used
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Push/Pull - PtPU consistency

Figure 5.5: Consistency percentage at each time round under Push/Pull and 
PtPU strategies on networks with random topology when for the U-push phase a 

8 random walker with TTL = 10 was used
Push/Pull - PtPU consistency

Figure 5.6: Consistency percentage at each time round under Push/Pull and
PtPU strategies on networks with power-law topology when for the U-push phase

a 8 random walker with TTL = 10 was used
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5.3. A degree-based update policy for P2P systems with a power-law network 

topology

As indicated by the experimental results presented on Section 5.2, power-law 

networks cause a larger message overhead but achieve better consistency levels than 

uniform random networks when PtPU is applied. Due to the cycles in random walks, 

the well-connected peers may be informed of an update made by some other peer 

more than once through multiple paths. The reduction of such duplicate messages 

would decrease the total message overhead. Furthermore, the message overhead 

produced by the well-connected peers would be decreased if those well-connected 

peers did not pull as often as other peers and rely more on other peer’s pushes in order 

to obtain a new version. Since a push from any peer quickly reaches one well- 

connected peer (according to random probes strategy), a well-connected peer will be 

informed of any updates without having to pull frequently. Motivated by this 

observation, we present a variation of the PtPU update policy with an adaptive pulling 

policy, where the TTR value that indicates the time interval between two successive 

pulls of a peer for the same data item, depends on the degree of the peer.

According the D egree-based  Pull-then-Push Update (D P tP U ) strategy, replication is 

done using the DPtP instead of PtP strategy. During the push phase, as replies are 

propagated back to the requestor, the sum of degrees of all peers in the path from the 

provider to the requestor peer is computed as described on Section 4.2. When a peer 

receives a reply for a request it has posed, it stores the data item in its cache and 

considers itself as responsible for the received data item. Apart from storing the value 

and the version number of the received data item, the responsible peer also stores the 

sum of degrees {sum _of degrees) of all peers in the path through which the reply 

came.

A peer that is considered as responsible for a data item that is stored in its cache, 

periodically pulls for that data item. For determining the time interval TTR  between 

two successive pulls of a peer for a specific data item, the adaptive pulling policy 

discussed in Section 5.1 is used. The adaptive pulling policy is adjusted so that peers 

with high degree pull less frequently than peers with low degree. An estimation of
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weather a peer is well-connected or not (since it cannot have knowledge of the degree 

of all other peers) is computed as the portion of its degree to the sum of degrees of 

peers in the path through which the peer received a reply:
= <Mt_d.gr.., 4)

sum_of _degrees

so the TTR estimation from equation 5.3 becames:

TTRe = w * TTRe + (1 -  w) * TTR + h*TRe (5.5)

where h is given as an input parameter with a positive value.

To further reduce the number of unnecessary push massages, after a pull that returned 

a newer version of the data item, a responsible peer initiates a U-push phase only if 

the degree of the peer is larger than the average degree of peers in the path through 

which the peer received the new version. Otherwise, it is considered a low-degreed 

peer, therefore there is no meaning in starting pushing the new version, as most of its 

neighbors most likely will have already have received the new version.

In order to investigate the effect that DPtPU policy has on the performance of PtPU 

when applied to networks with power-law topology, we have performed a series of 

'experiments. As in Section 5.2 we consider three cases for the PtPU strategy: 5 

random walks, 8 random walks and flooding with TTL = 10. In Figures 5.13 and 5.14 

we plot the consistency level and message overhead in case of 5 random walks while 

Figures 5.15 and 5.16 show the same plots in the case of 8 random walkers and finally 

Figures 5.17 and 5.18 show the results when PtPU uses flooding during the U-push 

phase of a responsible peer. As one can notice, in all three cases, the number of both 

push and pull messages are decreased causing the total message overhead to decrease 

compared to the PtPU. However, the consistency percentage seems to be influenced 

by the number of duplicate messages. For example, when 4 random walks is used, 

PtPU has slightly better consistency levels that DPtPU due to the fact that with DPtPU 

peers tend to pull less frequently than in PtPU. However, as the probability of having 

duplicate messages increases (8 walkers or flooding), DPtP tends to result in higher 

consistency levels. This happens because with PtPU, the TTR value of peers 

(especially well-connected peers) is decremented more frequently because more pull 

messages are received without locating a new version of the data item.
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5.4. An adaptive quorum-based update policy

Traditional quorum consensus [1, 4, 27] has been widely used as a technique for 

maintaining consistency among multiple replicas of shared data items. The basic idea 

behind quorum-based techniques for consistency maintenance is that for a particular 

data item we consider apart from a version number, a number of votes: when a peer 

wants to read or write a data item, a minimum number of votes (quorum) must first be 

obtained. When the peer has collected a specified minimum number of votes, known 

as vote threshold or quorum level, it can read the data item by choosing the most up- 

to-dated version number among the received votes or write a data item by pushing the 

new version number to all the received votes. Usually, two different quorum levels 

are defined: one for reading (read quorum level) and one for writing (write quorum 

level). These thresholds indicate the minimum number of votes that need to be 

collected for reading and writing.

In order to ensure consistency maintenance, there are two restrictions regarding the 

values of read and write quorum levels. The first restriction is that the sum of read 

q̂uorum level and write quorum level must be greater than the total number of votes 

that are available in the system for the particular data item. The second restriction is 

that the write quorum level must be more than half of the total number of votes 

assigned for the data item. Those two restrictions ensure that the set of votes that will 

be collected for a reading and the set of votes that will be written after an update will 

overlap. This way, all reads In the system will be consistent as in the set of votes that 

will receive, there will certainly be one vote that has the most up-to-dated version of 

the data item.

The choice of appropriate read and write quorum levels may affect the total 

consistency of the system and depends on the needs of the particular system. For 

example, in a system with frequent reads and infrequent writes it makes sense to set a 

small read quorum level and larger write quorum level but in a system with frequent 

updates and rare writes a small write and a larger read quorum levels are preferred.
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In a completely distributed and dynamic environment, where replication is used, 

assigning each data item a number of votes is not easy as there is no global 

information concerning the total number of replicas for the data item. Practically, the 

PtPU method can be considered as a read-one-write-all quorum based policy where at 

every read only one data item is accessed {readquorum level = 1) and any updates are 

propagated using a TTL value equal to the TTL value used for locating the data item. 

We present an adaptation of the PtPU update policy that is based on the idea of 

quorum consensus. In the adaptive quorum based technique, when a peer needs to 

read a data item, it is forced to read 2 replicas of the data item {read quorum level = 

2) and when an update occurs in the owner of a data item, the update is forwarded {u- 

push phase) with TTL value set to half as much as the TTL value used for locating the 

data item. This way, we make the update process less expensive while making reads 

more expensive. In a system where the updates are more frequent than reads, the total 

communication cost would be decreased if the PtPU with read quorum level set to 2 is 

used.

We have evaluated the performance of the adaptive quorum-based PtPU policy 

t̂hrough simulation results on a network with power-law topology. Particularly, we 

have altered the PtPU policy so that apart from creation of replicas and update of data 

items, a peer may also occasionally perform a read where it issues a request for a data 

item but if it receives a reply it does not force the creation of new replicas for the data 

item. In the case of PtPU with read quorum level -  1, at each read only one replica 

needs to be located and the read is considered to be consistent if the version number 

that the peer received as a reply is equal to the version number of the primary copy of 

the data item. When a peer creates a new replica of a data item it pushes the update 

for TTL hops, equal to the TTL used for locating the data item. In the case of PtPU 

with read quorum level =2, at each read two replicas need to be located and the read 

is considered to be consistent if the greatest of the version numbers that the peer 

received as a reply is equal to the version number of the primary copy of the data 

item. When a peer creates a new replica of a data item it pushes the update for half as 

much hops in PtPU with read quorum level = 1 (TTL/2). During the simulation we 

count the percentage of reads that are consistent and the total messages exchanged for 

pushing updates (push messages) and reading data items {read messages).
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Figures 5.19 and 5.20 present our experimental results for PtPU with read quorum 

level 1 and 2 for a system where the updates are more frequent than reads. 

Particularly, the number of updates that are made is 1000 for both policies and the 

number of reads varies from 100 (10% of updates) to 500 (50% of updates). All the 

other parameters are as summarized in Table 4.1 and Table 5.1. As it is shown in both 

figures, as the number of reads increases, the percentage of consistent reads is 

decreased while the total nuber of messages is increased for both policies. This 

happens because the more often the reads are, the less pulls other peers have 

performed. We also notice that when PtPU with read quorum level 2 is used, the 

percentage of consistent reads is smaller than PtPU with read quorum level 2 but the 

message overhead is smaller. There is a tradeoff between the incurred message 

overhead and the achieved consistency levels; depending on the system, we can 

choose to sacrifice the consistency levels of the data item read in order to achieve less 

communication cost.
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CHAPTER 6. RELATED WORK

6.1 Replication in unstructured p2p networks

6.2 Updates in unstructured p2p networks

In Chapter 6 we survey replication methods applicable to unstructured p2p systems. 

Although there exist some general techniques, methodologies are distinguished 

according to the issue they are targeted for (how many replicas should be created or 

where should they be placed at). After replicas are created and distributed, a major 

issue is their maintenance. We present strategies that have been proposed for keeping 

replicas up to date so as to achieve a desired level of consistency.

6.1. Replication in unstructured p2p networks

Number of replicas: Assume that there are n peers participating in the network and s  

different data items to be shared among peers. Each peer on average has a storage 

capacity for storing c  replicas of data items and the network has a total budget of R 

copies overall (R =  nc). The query rate or popu larity  of item x, qx , is the probability 

that any arbitrary peer issues a request for item x.

The problem of determining what is the optimal replica configuration is discussed by 

Cohen & Shenker in [7], for overlays that are modeled as Erdos-Renyi random 

graphs. Specifically, the authors deal with the problem of how many replicas of each 

data item should exist in the network so that the search overhead for locating the item 

is minimized, with the constraint of fixed storage capacity in the network. Given the 

query rates for each data item, the objective is determining which fraction p x of R
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should be allotted to each data item x, so that the expected search size (ESS), i.e. the 

number of peers probed during the search process is minimized.

As mentioned in Chapter 3, two natural ways of replicating data items, namely 

uniform and proportional replication, are shown to be suboptimal under the above 

assumptions. In uniform replication (UR) the same number of replicas is created for 

each data item, regardless of its query rate. In proportional replication (PR) the 

number of replicas for each data item is proportional to the popularity of the item. 

Although it seems natural to create more replicas for more popular data items so as to 

favor most common queries, this is done at the expense of rare ones. In fact, it can be 

shown that the ESS for a successful query is the same for both uniform and 

proportional replication strategies. The optimal configuration, proved to minimize the 

expected search size, is square-root replication (SR), where the number of replicas of 

each data item is proportional to the square root of its query rate.

Since global knowledge is unavailable at each peer, the authors also consider ways of 

realizing square-root replication using simple distributed protocols. In one of the 

simplest, the number of copies created after a successful search is equal to the size of 

the search, i.e. the number of peers probed during search. At steady state, and under 

reasonable assumptions, this simple strategy can be shown to converge to SR. The 

only critical assumption is that the fixed storage capacity of each node is managed 

through replacement policies that do not depend on the identity and the query rate of 

the stored items. As such, at a full node, the item that must be deleted so as to make 

room for another replica cannot be given by usage-based policies such as LRU or 

LFU but rather by policies like FIFO or random deletions.

Notice that although the idea is quite simple, the size of the search is normally not 

known. Lv, Cao, Cohen, Li & Shenker [18] discuss two practical strategies that try to 

approximate the search size, namely owner and path replication. In owner replication, 

which is used in Gnutella, when a search for a data item is successful (only) the peer 

that initiated the search process stores a replica of the data item. In path replication, 

each query keeps track of the path it follows from the peer that issues the request to 

the peer that offers the data item. When the search succeeds, all peers in this path are
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forced to keep a replica of the data item. Clearly, path replication comes quite closer 

to approximating the search size and experimental results show that it comes close to 

achieving SR. Path replication is used on Freenet [6] where all nodes along the search 

path are forced to create a replica using an insert message. Each node keeps both the 

item and a pointer to the original data holder of the file. The replacement policy used 

to manage the finite storage space at each node is LRU. Subsequent incoming 

requests of evicted files, however, can still be served for much longer since the node 

also holds a pointer to the original holder.

Path replication works only for search strategies based on random walks. Even in such 

cases however, it may fail to discover the search size. If multiple walkers are used [7], 

only the successful ones will be used to create replicas while the others will be 

ignored, creating a number of replicas smaller than the total number of visited nodes. 

To closely approximate the number of probes, the Pull-then-Push  (PtP) strategy is 

proposed [16] (already discussed in Chapter 3), where replica creation becomes a 

responsibility of the inquiring peers. PtP replication consists of two phases: the p u ll 

phase  during which the requesting peer is trying to locate the desired data item and 

t̂he push phase  which begins after a successful search whereby the requesting peer 

transmits the data item and causes other peers to hold replicas of it. In order to 

achieve SR, the number of peers that are probed during the push phase should be 

equal to the number of peers that where probed during the pull phase. Therefore, it is 

essential that the same search strategy is used both for searching for the data item 

(pull) and the data item transmission (push) and with the same hop limit (TTL). 

Finally, every peer that is probed during the push phase is forced to hold a replica of 

the data item. PtP works for both flooding and random-walker based strategies and 

leads easily to SR.

For Erdos-Renyi random graphs, if flooding-based search is used and if the objective 

is to minimize the search time (as opposed to search size) then proportional 

replication is the optimal configuration as shown by Tewari & Kleinrock in [25], 

Search time is the distance from the inquiring node where a replica of the queried 

item is found. Optimality is achieved under the assumption of an ideal “controlled” 

flooding strategy where search stops immediately when the data item is located. A
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practical but slightly suboptimal search mechanism that approximates controlled 

flooding is the expanding rings method described in [7]. PR has additional benefits as 

well, e.g. the minimization of used network bandwidth (estimated as the average 

number of links traversed per download). Tewari & Kleinrock in [25] additionally 

consider practical ways of achieving PR. They basically follow owner replication (an 

inquiring node keeps a copy for itself), which should naturally lead to a number of 

replicas proportional to the request rates of data items. Again, a crucial factor is the 

replacement strategy used in managing each node’s fixed storage space. 

Experimentally, all known strategies have good but not optimal performance, with 

LRU and LFU the better ones. Almost perfect PR can be achieved with a replacement 

strategy based on random evictions combined with additional replica creations even if 

the item is found in the inquiring node’s storage space.

Placement of replicas: The works presented so far deal mostly with determining the 

optimum number of replicas and with ways to achieve this number, under certain 

assumptions and constraints. Another approach is to determine where/how  to place the 

replicas (without striving for a particular number of them) so as to optimize some 

objective. For example, the objective may be the minimization of search size or the 

maximization of the percentage of successful searches.

Gia [5] has been proposed as an improvement of Gnutella to exploit peer 

heterogeneity and includes mechanisms that dynamically adapt the overlay topology 

and the search algorithms. The topology adaptation mechanism ensures that high- 

capacity nodes are the ones that have high degree. Gia follows one-hop replication: an 

index of the content of every peer is replicated to its immediate neighbors. The 

rationale behind this is that since high-degree nodes are visited more frequently and 

high-degree nodes are the ones with high capacity, having them know the content of 

their neighbors will make them capable of providing answers to a greater number of 

queries.

Jia, Pei, Li & You [14] compare various mechanisms for the problem of replica 

placement in power-law networks. They consider replication of location information 

(i.e. not the actual data) so as to maximize the overall performance of search queries.
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The spread mechanisms considered are flooding, percolation-based (randomized) 

flooding, random walks and high-degree random walks (HDRW). The later is a 

variation of random walks where a visited peer selects the next peer randomly among 

its highest-degree neighbors. By spreading location information along an HDRW, 

more information reaches high-degree nodes more quickly. As a result, because it is 

well known that search queries gravitate towards the high-degree nodes in the 

network, potentially more searches will be resolved successfully and quickly. This 

was confirmed through simulations which showed that for the same message 

overhead, spreading replicas by HDRW results in better search performance than the 

other mechanisms, under both flooding-based and random walk-based search.

Morselli, Bhattacharjee, Marsh & Srinivasan [19] propose LM S  (Local Minima 

Search), a search method and replication protocol. Assuming that both peers and data 

items obtain ids uniformly at random from a given large set (so as to guarantee 

uniqueness with high probability), the replication mechanism tries to replicate an item 

with id x to peers with id ‘close’ to x. Such a node is called a local minimum for item 

x in that its id is closest to x  among the ids of all peers in the node’s /7-hop 

neighborhood, where h is a given parameter. A random walk is used first, followed by 

a deterministic walk that progresses towards the closest local minimum node by 

selecting at each step the neighbor with the smallest distance from x. When this 

random local minimum is reached, a replica is created if there is not one there already; 

otherwise, the process is repeated with a random walker of double length. For locating 

the item, the same procedure is used. A local minimum that receives the query replies 

with the replica or with a failure message depending on whether it stores the item or 

not. To improve success rate and response time, multiple such walkers can be utilized. 

The protocol can achieve quite high query success probabilities but at the expense of a

possibly large number of replicas ( o l j n / d h), where d h is the minimum size of an h-

hop neighborhood), which can be a problem if the storage space in each peer is 

limited.

Maximization of the probability of success is also the subject of the work by Sozio, 

Neumann &  Weikum [23]. They consider the problem of replica placement in
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arbitrary networks that are searched by random walks. Given the peer capacities and 

the query rates qXJ, i.e. the fraction of all queries (issued in the whole network) for data 

item x  by peer j ,  the problem of finding an assignment of replicas to peers so as to 

maximize the probability of a successful query is shown to be related to the multi

knapsack problem, where there is a set of bins with given capacities and a set of 

elements each with size and profit and the aim is to find a feasible packing that 

maximizes the profit. The problem can be tackled by good approximation algorithms, 

which however are centralized. The authors present P2R2, a distributed algorithm to 

solve the problem, which is based on each peery keeping a special counter for each 

data item x, rxj. The counter rxj is incremented for each query about x that passes 

through node j  and is unsuccessful or is satisfied by a peer with larger id. This 

requires that certain information is piggybacked on the query messages and that 

random walks are always unfolded to their maximum length even if the item is 

located at some step earlier than the expiration of TTL. P2R2 leads to a probability of 

query success which is within a factor of 2 from the optimal.

Summary: Replication methods that are applicable to unstructured p2p systems 

^provide answers to the questions of how many replicas are created for each data item, 

according to which optimization criteria, and where those replicas are placed. Table 

6.1 summarizes how replication methods described above deal with each of these 

issues.

Table 6.1: Summary of replication methods for unstructured p2p systems

How many Where/How What Goal

Sqaure-root
R eplication

[1 8 ]

Proportional to the 

square root of the 

query rate of each 

data item

- Data items

Minimum 

expected 

search size

O wner

Replication

[1 8 ]

Proportional to the 

query rate of each 

data item

Only to the 

requesting peer
Data items

Minimum 

expected 

search size
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Path

Replication

[18]

Proportional to the 

number of probes 

for locating the item

Along the path 

from the 

requesting peer 

to the provider 

peer

Data items

Minimum 

expected 

search size

Pull-then-Push

Replication

[16]

Proportional to the 

number of probes 

for locating the item

Data items

Minimum 

expected 

search size

Proportional

Replication

[24]

Proportional to the 

query rate of each 

data item

- Data items

Minimum 

expected 

search time

Gia [5]
Equal to the degree 

of each node

1-hop

neighborhood

Location

information

Maximum 

success rate

HDRW [14]

Proportional to the 

number of probes 

for locating the 

item

Along a degree- 

biased search 

path

Location

information

Good

success rate 

and search 

size

LMS [19]
-

At peers 

considered as 

local minima for 

a data item

Data items

Good

success rate 

and search 

size

P2R2J23]
-

At peers 

resulting in 

greatest success 

rate for a data 

item

Data items
Maximum 

success rate
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6.2. Updates in unstructured p2p networks

As mentioned above, the consistency mechanisms that have been proposed use a 

push-based and/or a pull-based propagation algorithm. One more possibility can be 

found in the work of Demers et al [9], who have applied the theory of epidemics to 

the problem of update propagation in a distributed environment, proposing a number 

of generic methods. The first method the authors examine is direct m oil, where the 

owner of a data item contacts ('mails') all the other peers at every update. This 

approach, although simple, can be overwhelming in a p2p network with a large 

number of nodes. In the anti-entropy  method each peer regularly chooses a neighbor 

and by exchanging their content resolves any differences between them (if a newer 

version of an item is found, it updates its own replica). A peer can either push its 

content to the other peer letting it check for inconsistencies, or pull content, or even 

push and pull content at the same time. Another update spreading algorithm 

considered is rum or m ongering: at first all peers are considered ‘ ignorant' when an 

update is out and the update becomes a ‘hot rumor’ . If a peer knows of such a rumor, 

it periodically chooses another peer and tries to communicate the rumor. If the peer 

,sees that the rumor is no longer hot (i.e. most of the peers it contacts already know it), 

it stops propagating it any further.

If the direct mail method is to be used, a natural plan would be to know (most of) the 

peers that hold a replica of the particular data item (statefull replication) so as to only 

contact those upon an update. A mechanism like this is assumed by Datta, Hauswirth 

& Aberer in [8]. The authors study the performance of a generic hybrid push-pull 

consistency maintenance protocol for p2p environments where peers join and leave 

the network at a very high rate. At the push phase, the owner sends the updated item, 

along with its version number, to the peers that hold replicas. This requires knowledge 

of who holds replicas of what, but the update is not communicated through direct 

mail; it is rather propagated with a randomized flooding among the affected peers. 

The owner performs a selective push of its updates to a subset of the peers that will be 

affected by it (because they have a replica of the updated data item); each peer that 

receives the update also propagates it to a subset of affected peers it knows, and so on. 

To reduce the overhead, each message contains a partial list of the peers that have
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already been contacted. The method is accompanied by a pull phase that takes place 

whenever a peer is reconnected to the network after a disconnection or has not 

received updates for a long time (in the spirit of the anti-entropy method); during this 

pull phase, it contacts online peers with replicas of the items it stores, for their latest 

versions.

UPTReC -  update propagation thought replica chain [28] -  exploits similar pull and 

push mechanisms to scatter updates in decentralized and unstructured p2p systems. 

The peers that hold the replicas of an item x  form a logical bi-directional chain, where 

each peer maintains information about the k closest peers in the chain in each 

direction. Peers may join (when a new replica is created) or leave (when removing a 

replica) by pushing messages at appropriate directions in the chain. Updates are 

similarly propagated by pushing messages at both directions, informing up to 2k 

nodes; at each direction the furthest known peer undertakes the responsibility of 

reaching the next bunch of k nodes in the chain and so on. Nodes that reconnect after 

a disconnection pull in order to synchronize. Maintaining such a chain for every item 

reduces the message overhead on updates while also providing better consistency 

levels than Datta, Hauswirth & Aberer [8] as shown experimentally.

Update propagation in the last two methods occurs strictly among the interested peers; 

although this seems efficient in terms of overheads and consistency levels, it 

nevertheless incurs the extra state overhead of keeping track of all peers holding a 

replica of the data item, which could be prohibitive in an unstructured and dynamic 

p2p network. Three update propagation policies (two based on push and pull 

techniques and a hybrid one that combines the push and pull policies) are proposed in 

[15] for practical networks. The authors assume a master-copy schema where the 

owner of the data item always has the most up to date version and all peers that hold a 

replica need to be kept consistent; the overlay network is unstructured and the owners 

do not know who/where replica holders are. To achieve consistency, each data item is 

associated with a version number which is incremented by the owner every time an 

update occurs. In the push-based policy, the owner of a data item broadcasts an 

invalidation message when a data item is modified. The invalidation message is 

propagated through the network using a flooding algorithm, limited to a predefined
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number of hops (TTL). When a peer receives an invalidation message, it checks its 

cache. If it holds a replica of the data item and the stored version is smaller than the 

received version number, it invalidates the replica in its cache. In the proposed pull- 

based policy, a peer polls the owner of an item it holds in its cache to determine if the 

replica is stale or not. An adaptive polling policy is used to determine how frequently 

the peer should poll. It is based on a time-to-refresh (TTR) value associated with each 

item in the cache, which indicates when the next pull for the item should occur. The 

TTR is increased by an additive amount C (TTR = TTR+C) if the peer finds out that a 

data item has not been modified between two successive polls, otherwise TTR is 

reduced by a multiplicative factor D (TTR = TTR/Z)). A hybrid push and pull 

approach can also be used to combine both techniques. In this hybrid scheme, the 

owner propagates invalidation messages using a limited push. In addition, a peer that 

holds a replica may pull adaptively to make sure that the replica is valid. TTR can be 

further tuned by a factor that depends on the degree of a peer; the intuition behind this 

is that highly connected nodes should poll less frequently since they are potentially 

easier to reach by the owner push.

An alternative hybrid push/pull update propagation policy, PtPU (already discussed in 

Chapter 5), is in [16]. It is assumed that for the creation of replicas in the p2p network 

the PuII-then-Push algorithm was used where a peer that requests an item, after a 

successful search (pull phase) enters a push phase where it transmits replicas of the 

item using the same algorithm as in the pull phase. Given this replica creation 

approach, each peer that holds a data item is characterized as owner if it is allowed to 

apply updates, responsible if it has requested the data item and has forced the creation 

of replicas or indifferent if it has been forced to hold a replica without requesting the 

data item. In the PtPU policy, the owner performs a limited broadcast of the new 

version of a data item when an update occurs. If a peer that is characterized as 

responsible for an item receives the broadcast message with a new version of the data 

item, it undertakes the task of informing the indifferent peers. This is done by 

propagating the update message (U-push phase) exactly as in the push phase when the 

replicas were created. Apart from pushing the updates they receive from the owner, 

responsible peers also pull periodically in order to become aware of more updates. To 

determine the frequency of the pull, the adaptive polling policy is used, where a TTR
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value is increased or decreased depending on weather the data item has been changed 

or not between two successive poll periods.

Wang, Kumar, Das & Shen in [29] consider multi-master replication where all replica 

holders (termed “replica peers” -  RPs) are allowed to update the item. In particular, a 

subset of RPs become “virtual servers” (VRPs) for the data item. The set of VRPs 

changes dynamically over time, based on node availability. Any replica peer updating 

the item contacts a VRP to undertake the update coordination. This “master” VRP 

first enters an agreement phase with the other VRPs in order to commit the update. 

When agreement is achieved, the master VRP obtains the updated item from the 

replica peer and pushes it to the rest VRPs and to a partial list of the other RPs. 

Among the other RPs the update propagation is implemented using a combination of 

push and pull. The protocol achieves one-copy serializabi 1 ity.
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CHAPTER 7. CONCLUSIONS

7.1 Summary

7.2 Future Work

7.1. Summary

The peer-to-peer communication model has attracted considerable attention over the 

past few years as a new network model, which is widely used for data sharing. Unlike 

the client-server model, p2p model does not require a central node (a server) to 

provide access to shared resources. The peers participating in a p2p system construct a 

logical (overlay) network that is built on top of the physical one (typically the 

Internet). Any peer in the network can pose a query for retrieving a particular data 

item. Such queries are forwarded through the overlay network until peers that hold the 

data item in request are located. Replication has been proposed for improving the 

delay of a search process, robustness against frequent peer failures or departures and 

system availability. However, the effectiveness of a replication strategy seems to be 

influenced by the topology of the overlay network. The topology of a p2p overlay 

network shows evidence of power-law behavior [11]. This property means that peers 

in the overlay network are not connected randomly, but most peers are connected to a 

limited number of peers. Peers with many connections have a big influence on the 

stability of the overlay network. For this reason, we have defined and analyzed some 

basic properties from graph theory that are reflected to real networks, including 

unstructured p2p networks, and described a model for constructing network graphs 

that obey power-laws.
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We have performed a series of experiments in order to investigate the effect of the 

overlay network topology on some replication strategies that exist in the bibliography. 

Our results show that in power-law networks, the well-connected peers cause large 

communication cost part of which can be avoided. The problem that we deal with is 

how can we reduce the communication cost imposed on networks with power-law 

topology. We have also studied the problem of maintaining consistency of replicas 

when updates in data items occur. Particularly, we have investigated the influence of 

the power-law overlay network topology on some known consistency maintenance 

protocols through simulation experiments. Our result revealed that part of the message 

overhead induced by those methods could be avoided if the power-law properties are 

taken into consideration. Based on this observation, we have proposed a new update 

policy that is intended for p2p systems with power-law overlay network topology. 

Finally, we have proposed an alternative approach for maintaining consistency in 

distributed, dynamic p2p systems that is based on the traditional quorum consensus.

7.2. Future Work

Throughout our simulation studies, we have assumed that the network does not 

change during the execution of a replica creation or an update phase. The proposed 

strategies were applied to practically static networks. However, applying those 

strategies on a more dynamic environment where peers join and leave the network at 

will, would be an interesting topic for further research. When it comes to the DPtPU 

update policy that is used, in highly dynamic networks, we encounter the problem that 

if a “responsible” peer leaves the system, a number of peers are left with replicas that 

will remain stale as no one will communicate any updates to them.

It would also be useful to study the behavior of the proposed strategies on a real p2p 

application so that we could obtain more realistic estimation of the real search delay 

or the communication cost, taking into account the shortcomings that are encountered 

in real-life (network bandwidth, traffic). Finally, adopting a quorum-based technique 

for unstructured p2p networks, especially in networks with power-law topology, 

remains an open research area.
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