
\

Δημιουργία και Διατήρηση Ενημε|
Αντιγράφων σε Αδόμητα Συστή

Ομότιμων Κόμβων με
Power-Law Τοπολογίας

Μυρτώ Ντέτσικα

Μ Ε Τ Α Π Τ Υ Χ Ι Α Κ Η Ε Ρ Γ Α Σ Ι Α Ε Ξ Ε Ι Δ Ι Κ Ι

- ♦ -

Ιωάννινα, Ιούλιος 2009

ΤΜ ΗΜ Α ΠΛΗΡΟΦΟΡΙΚΗΣ
Π ΑΝ ΕΠ ΙΣΤΗΜ ΙΟ ΙΩΑΝΝΙΝΩΝ

DEPARTMENT OF COMPUTER SCIENCE
U N I V E R S I T Y O F I O A N N I N A

ΔΗΜΙΟΥΡΓΙΑ ΚΑΙ ΔΙΑΤΗΡΗΣΗ ΕΝΗΜΕΡΟΤΗΤΑΣ ΑΝΤΊΓΡΑΦΩΝ ΣΕ ΑΔΟΜΗΤΑ ΣΥΣΤΗΜΑΤΑ
ΟΜΟΤΙΜΩΝ ΚΟΜΒΩΝ ΜΕ ΤΟΠΟΛΟΓΙΑ POWER-LAW

Η
ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

Υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης
του Τμήματος Πληροφορικής

Εξεταστική Επιτροπή 1

από την

Μυρτώ Ντέτσικα

ως μέρος των Υποχρεώσεων

για τη λήψη

του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ

Ιούλιος 2009

DEDICATION

To my family

Ill

ACKNOWLEDGMENTS

I would like to thank my supervisor, Prof. Eyaggelia Pitoura, for her time and the

valuable comments during the elaboration of this thesis. I would also like to thank all

the members of the DMOD laboratory and especially my friends Marina Drosou,

Kostas Stefanidis, Eftychia Baikoussi and Dimitris Souravlias for their valuable

advices, understanding and encouragment throughout the years of my studies. At last,

I would like to thank my friends and family for supporting me in any possible way.

CONTENTS

DEDICATION II
ACKNOWLEDGMENTS III
CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
ABSTRACT IX
ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ x

CHAPTER 1. INTRODUCTION 12
1.1. Introduction 12
1.2. Scope of Thesis 14
1.3. Thesis outline 15

CHAPTER 2. MODELING AN OVERLAY NETWORK 16
2.1. Centrality measures 18
2.2. All pairs shortest paths problem 19
2.3. Power-law networks 22

2.3.1. Power-law networks as a model for the overlay network 22
2.3.2. Power-law definitions 24

2.4. Generating network topologies that obey power-laws 25
2.4.1. Barabasi model 25
2.4.2. Power-Law Out-Degree Algorithm 27
2.4.3. Recursive Algorithm 29

2.5. Generating connected graphs with power-law properties 31
2.6. Estimating the quality of the synthetic graphs 35

CHAPTER 3. SEARCH AND REPLICATION METHODS FOR UNSTRUCTURED
P2P SYSTEMS 42

3.1. Locating data items of interest in unstructured P2P systems 42
3.2. Creating replicas of data items in unstructured P2P systems 45

CHAPTER 4. REPLICATION ON UNSTRUCTURED P2P SYSTEMS WITH A
POWER-LAW OVERLAY NETWORK TOPOLOGY 50

4.1 Influence of Power-law overlay topology to replication strategies 51
4.1.1. Simulation Environment 51
4.1.2. Simulation Results 55

V

4.2. A degree-based replication strategy for unstructured p2p systems with a power-
law overlay network topology 62

CHAPTER 5. UPDATES ON UNSTRUCTURED P2P SYSTEMS WITH A
POWER-LAW OVERLAY NETWORK TOPOLOGY 67

5.1. Maintaining the consistency of replicas on unstructured P2P systems 67
5.2. Influence of Power-law overlay topology to update policies 71

5.2.1. Simulation Environment 71
5.2.2. Simulation Results 73

5.3. A degree-based update policy for P2P systems with a power-law network
topology 82
5.4. An adaptive quorum-based update policy 87

CHAPTER 6. RELATED WORK 91
6.1. Replication in unstructured p2p networks 91
6.2. Updates in unstructured p2p networks 98

CHAPTER 7. CONCLUSIONS 102
7.1. Summary 102
7.2. Future Work 103

REFERENCES 104
SHORT CV 107

VI

LIST OF TABLES

Table 2.1: Simulation parameters for power-law graph generators 36
Table 4.1: Simulation parameters for replication strategies 54
Table 5.1: Summary of simulation parameters for update policies 73
Table 6.1: Summary of replication methods for unstructured p2p systems 96

LIST OF FIGURES

Figure 2.1: An example structure of a power-law network 23
Figure 3.1: Flooding propagation in an unstructured overlay network 44
Figure 4.1: Distribution of replication ratios 58
Figure 4.2: Distribution of replication ratios under various replication strategies on

networks with power-law topology 58
Figure 4.3: Sum of degrees of peer with a replica of the data item for each data item

vs its query rate for networks with random topology 59
Figure 4.4: Sum of degrees of peer with a replica of the data item for each data item

vs its query rate for networks with power-law topology 59
Figure 4.5: Number of replicas of each data item vs sum of degrees of peers with a

replica of the data item for networks with random topology 60
Figure 4.6: Number of replicas of each data item vs sum of degrees of peers with a

replica of the data item for networks with power-law topology 60
Figure 4.7: Average depth found for each data item vs its query rate for networks

with power-law and random topology 61
Figure 4.8: Total communication cost under various replication strategies on networks

with random topology 61
Figure 4.9: Total communication cost under various replication strategies on networks

with power-law topology 62
Figure 4.10: Distribution of replication ratios under various replication strategies

using DPtP on networks with power-law topology 64
Figure 4.11: Sum of degrees of peer with a replica of the data item for each data item

vs its query rate for networks with power-law topology 65
Figure 4.12: Average depth found for each data item vs its query rate for networks

with power-law topology under PtP and DPtP replication strategies 65
Figure 4.13: Total communication cost under various replication strategies on

networks with power-law topology using DPtP replication strategy 66
Figure 5.1: Consistency percentage at each time round under Push/Pull and PtPU

strategies on networks with random topology when for the U-push phase a 5
random walker with TTL = 10 was used 76

Figure 5.2: Consistency percentage at each time round under Push/Pull and PtPU
strategies on networks with power-law topology when for the U-push phase a 5
random walker with TTL = 10 was used 76

Figure 5.3: Total message overhead under Push/Pull and PtPU strategies on networks
with random topology when for the U-push phase a 5 random walker with TTL =
10 was used 77

Figure 5.4: Total message overhead under Push/Pull and PtPU strategies on networks
with power-law topology when for the U-push phase a 5 random walker with
TTL = 10 was used 77

VIII

Figure 5.5: Consistency percentage at each time round under Push/Pull and PtPU
strategies on networks with random topology when for the U-push phase a 8
random walker with TTL = 10 was used 78

Figure 5.6: Consistency percentage at each time round under Push/Pull and PtPU
strategies on networks with power-law topology when for the U-push phase a 8
random walker with TTL = 10 was used 78

Figure 5.7: Total message overhead under Push/Pull and PtPU strategies on networks
with random topology when for the U-push phase a 8 random walker with TTL =
10 was used 79

Figure 5.8: Total message overhead under Push/Pull and PtPU strategies on networks
with power-law topology when for the U-push phase a 8 random walker was used

79
Figure 5.9: Consistency percentage at each time round under Push/Pull and PtPU

strategies on networks with random topology when for the U-push phase flooding
with TTL = 10 was used 80

Figure 5.10: Consistency percentage at each time round under Push/Pull and PtPU
strategies on networks with power-law topology when for the U-push phase
flooding with TTL = 10 was used 80

Figure 5.11: Total message overhead under Push/Pull and PtPU strategies on
networks with random topology when for the U-push phase flooding was used 81

Figure 5.12: Total message overhead under Push/Pull and PtPU strategies on
networks with power-law topology when for the U-push phase flooding was used

81
Figure 5.13: Consistency percentage at each time round under PtPU and DPtPU

strategies on networks with power-law topology when for the U-push phase a 5
random walker with TTL = 10 was used 84

Figure 5.14: Total message overhead under PtPU and DPtPU strategies on networks
with power-law topology when for the U-push phase a 5 random walker with
TTL = 10 was used 84

Figure 5.15: Consistency percentage at each time round under PtPU and DPtPU
strategies on networks with power-law topology when for the U-push phase a 8
random strategy with TTL = 10 was used 85

Figure 5.16: Total message overhead under PtPU and DPtPU strategies on networks
with power-law topology when for the U-push phase a 8 random walker with
TTL = 10 was used 85

Figure 5.17: Consistency percentage at each time round under PtPU and DPtPU
strategies on networks with power-law topology when for the U-push phase
flooding with TTL = 10 was used 86

Figure 5.18: Total message overhead under PtPU and DPtPU strategies on networks
with power-law topology when for the U-push phase flooding walker with TTL =
10 was used 86

Figure 5.19: Percentage of consistent reads for PtPU with read quorum level 1 and 2
89

Figure 5.20: Total number o f push and read messages for PtPU with read quorum
level 1 and 2 89

IX

ABSTRACT

Ntetsika A. Mirto. MSc, Computer Science Department, University of Ioannina,

Greece. July, 2009. Replication and Consistency Maintenance in Unstructured Peer-

to-Peer Systems with Power-Law Topology. Thesis Supervisor: Pitoura Evaggelia.

Peer-to-peer communication model has been widely used over the past few years for

data or resource sharing. In p2p applications such as Kazaa, each user is connected to

a number of other users, thus forming a logical overlay network. In decentralized,

unstructured p2p systems, peers that join the network randomly choose a number of

other participating peers to connect with and there is no precise control over the

network topology or where the data items are placed. It has been observed that this

kind of networks tend to a power-law topology, where there are few peers that are

very popular and the majority of peers have only a few connections to those popular

peers. A peer that wishes to retrieve a particular data item poses a look-up query.

Such queries are forwarded through the overlay network until a peer that offers the

data item is located. Maintaining multiple replicas of data items has been widely used

for speeding up the look-up process. This thesis summarizes some replication

methods that exist in bibliography for creating replicas of data items and maintaining

the consistency of different replicas in case of updates on the content of the data

items. We also investigate through experimental study how the performance of those

methods is affected by the topology of the overlay network. Based on our

observations, we propose alternative replication and update strategies that consider

the topological properties of the overlay network.

X

ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Ντέτσικα Μυρτώ του Αντωνίου και της Βασιλικής. MSc, Τμήμα Πληροφορικής,

Πανεπιστήμιο Ιωαννίνων, Ιούλιος 2009. Δημιουργία και Διατήρηση Ενημερώτητας

Αντιγράφων σε Αδόμητα Συστήματα Ομότιμων Κόμβων με Τοπολογία Power-Law.

Επιβλέπουσα: Ευαγγελία Πίτουρά.

Τα μη-κεντρικοποιημένα, αδόμητα συστήματα ομότιμων κόμβων όπως το Kazaa

έχουν επικρατήσει τα τελευταία χρόνια ως ένα από τα κυριότερα μέσα για τον

διαμοιρασμό ενός μεγάλου όγκου δεδομένων, πόρων ή υπηρεσιών μεταξύ ενός

μεγάλου αριθμού χρηστών. Στα συστήματα αυτά, οι χρήστες συνδέονται μεταξύ τους

σχηματίζοντας ένα λογικό δίκτυο επικάλυψης. Ο τρόπος με τον οποίο οι χρήστες που

εισέρχονται στο σύστημα επιλέγουν με ποιούς από τους ήδη συνδεδεμένους κόμβους

θα συνδεθούν είναι τυχαίος, με αποτέλεσμα να μην υπάρχει κανένας έλεγχος πάνω

στην τοπολογία του λογικού δικτύου ή στο πως είναι τοποθετημένα τα δεδομένα στο

δίκτυο. Στην πραγματικότητα, έχει αποδειχθεί ότι η τοπολογία στην οποία τείνουν

αυτά τα δίκτυα είναι η power-law, στη οποία υπάρχουν λίγοι δημοφιλείς κόμβοι με

τους οποίους οι περισσότεροι κόμβοι επιλέγουν να συνδεθούν. Για τον λόγο αυτό, οι

power-law γράφοι αποτελούν κατάλληλα μοντέλα για το δίκτυο επικάλυψης ενός

αδόμητου συστήματος ομότιμων κόμβων. Τα δίκτυα αυτά βασίζονται σε αλγόριθμους

πλημμύρας προκειμένου να εντοπιστούν κόμβοι που διαθέτουν δεδομένα για τα οποία

ενδιαφέρεται ένας χρήστης. Τα power-law δίκτυα έχουν κάποια ιδιαίτερα τοπολογικά

χαρακτηριστικά (μικρή διάμετρο, μικρή μέση απόσταση μεταξύ δύο κόμβων) τα

οποία επηρεάζουν την διαδικασία εντοπισμού δεδομένων. Η διατήρηση πολλαπλών

αντιγράφων των διαμοιραζόμενων δεδομένων (replication) χρησιμοποιείται ευρέως

για την επιτάχυνση της διαδικασίας αναζήτησης δεδομένων. Η εργασία αυτή αρχικά

συνοψίζει διάφορες τεχνικές που έχουν προταθεί τόσο για την δημιουργία

αντιγράφων όσο και για την διατήρηση της ενημερότητας των διαφορετικών

XI

αντιγράφων και ερευνά την επίδραση που έχει η τοπολογία του δικτύου επικάλυψης

στην απόδοσή τους. Από την πειραματική μελέτη προκύπτει ότι στην τοπολογία

power-law ανταλλάσσεται μεγάλος αριθμός μηνυμάτων τα οποία μπορούν να

αποφευχθούν. Μελετώνται έτσι εναλλακτικές τεχνικές δημιουργίας αντιγράφων και

διατήρησης της ενημερότητάς τους στις οποίες λαμβάνονται υπόψην οι ιδιότητες της

power-law τοπολογίας.

1 2

CHAPTER 1. INTRODUCTION

1.1 Introduction

1.2 Scope of Thesis

1.3 Thesis outline

1.1. Introduction

Peer-to-Peer (p2p) systems have gained a lot of attention in the social, commercial

and academic communities. Millions of people all over the world use p2p applications

on a daily basis for data sharing and communication. P2p systems rely on a symmetric

' communication model where participating peers are both servers and clients. They are

fully decentralized, thus avoiding the bottleneck imposed by the presence of a server

in traditional systems and they are highly resilient to peers’ arrivals and departures.

Each participating peer in a p2p system is connected to a number of other peers, thus

forming an overlay network. A peer is connected to another peer in the overlay

network if it knows its location in the p2p network. Connections between a pair of

peers are built over the physical TCP/IP network.

The overlay network is built to facilitate the operation of a p2p system. In data sharing

p2p systems, a basic functionality is discovering the data of interest. A look-up query

for data items may be posed at any peer in the overlay. The query is then routed

through the overlay to efficiently discover the peers that hold the requested data items.

For such a query routing, it is important that the number of peers in the overlay

13

network that need to be contacted for locating a data item is minimized and the

number of messages that are exchanged is as “small” as possible.

Based on how the peers are linked to each other in the overlay network, we can

classify the p2p networks as structured or unstructured. In structured p2p systems,

peers in the overlay are organized in rigid topologies, such as ring, grid or a

multidimensional cube and the data items are placed at specific peers according to

some rules. In structured overlays, lookup reduces to locating the peer in the overlay

that is responsible for the corresponding data item. Unstructured p2p systems are

formed when the peers in the overlay are linked in an arbitrary, ad hoc manner. The

topology of the resultant overlay network is not rigid, although it may have some

properties, and there is no correlation between a peer and the data items managed by

it. To locate data of interest, a peer queries its neighbors in the overlay, which in turn

query their neighbors, and so on, until the query hits on a peer holding the requested

data item. However, this procedure provides no guarantees on the complexity of

search.

In many existing systems, upon joining the network, a peer selects to connect to

another peer essentially at random. In these systems, topologies often tend towards a

power-law degree distribution, where some long-lived peers have many connections,

while most other peers have a few connections. For this reason, power-law graphs are

used for modeling the overlay network of an unstructured p2p system. Some

topological properties of power-law graphs, such as the diameter of the graph or the

degree of each peer, can help us address some crucial questions regarding the

centrality of each peer or the connectivity of the graph.

Maintaining multiple copies (replicas) of data items is a commonly used mechanism

for improving the performance and fault-tolerance of any distributed system. By

placing copies of data items closer to their requesters, the response time of queries can

be improved. In addition, replication improves load balancing. If highly demanded

data items are replicated, the query load can be evenly distributed among the peers

that hold these copies. Similarly, by eliminating hotspots, replication can lead to a

better distribution of the communication load over the network links. Besides

14

performance-related reasons, replication improves system ava ilab ility , since the larger

the number of copies of an item, the more site failures can be tolerated. Some of the

questions that need to be resolved in replication are: how many replicas should be

created, when replicas are created and where are they placed. In case of systems with

dynamic content, an extra issue is how the different replicas of each data item remain

consistent with each other, so that accessing stale data items is avoided.

1.2. Scope of Thesis

In this thesis, we focus on replication in unstructured p2p systems. Since the topology

of the overlay network in unstructured p2p systems seems to follow a power-law

distribution pattern, our first objective is to examine what are the structural properties

of power-law graphs that make them suitable for modeling an overlay network

topology and how can we generate power-law graphs for simulation studies. We then

present various approaches that have been proposed for creating replicas that aim at

achieving optim al replication, whereby the expected number of peers that are probed

during each search (expected search size) is minimized. The scope of this thesis is to

investigate the effects of the overlay network topology (especially regarding random

and power-law topology) on those methods. Based on our observations, we next

propose a new replication method that considers the power-law property of the

overlay network, in order to reduce the communication cost. We also focus on the

problem of consistency maintenance in case of updates. Particularly, our aim is to

investigate the effects of the overlay network topology on some known consistency

maintenance protocols and propose a new update policy that is intended for p2p

systems with power-law overlay network topology. Finally, we propose a different

approach for maintaining consistency which adjusts the traditional quorum consensus

to the distributed, dynamic environment of p2p systems.

15

1.3. Thesis outline

The remainder of this work is structured as follows. Chapter 2 summarizes some basic

concepts regarding the topology of an overlay network. Particularly, the power-law

topology observed in real p2p systems is described along with a theoretical analysis

that is followed by description of methods for generating power-law graph topologies

for simulation study. Chapter 3 focuses on the basic operation of a p2p network:

search. We describe the alternative flood-based techniques that have been proposed

for locating data items and provide a brief summary of the main issues about

replication in unstructured p2p systems. We also present a few approaches that are

proposed for creating a data item. In Chapter 4, we compare the performance of the

described replication methods on networks with random and power-law topology and

present experimental results to investigate whether they result in optimal replication.

We then present a degree-based replication strategy that achieves lower

communication cost. In Chapter 5, we discuss the problem of maintaining the

consistency of replicas and investigate how existing update policies perform on

networks with random and power-law topology. We also propose an alternative

update policy for p2p networks with power-law overlay topology that decreases the

massage overhead caused by peers with high degree. Based on quorum consensus

traditional consistency maintenance technique, we present an adaptive update policy

whereby the cost of updating a data item is decreased at the expense of making data

item accesses more “expensive” . In Chapter 6, we present the related work concerning

replication and consistency maintenance in unstructured p2p systems. A brief

summary of different approaches with different goals for creating and updating data

items is provided. Finally, Chapter 7 concludes this thesis and presents the open

issues for future work.

1 6

CHAPTER 2. MODELING AN OVERLAY

NETWORK

2.1 Centrality measures

2.2 All pairs shortest paths problem

2.3 Power-law networks

2.4 Generating network topologies that obey power-laws

2.5 Generating connected graphs with power-law properties

2.6 Evaluation of the quality of the synthetic graphs

. In p2p networks, autonomous peers, who may join and leave the network at any time,

share data with each other. Since these networks are usually very large and highly

dynamic, each peer only stores the IP addresses for a selected subset of peers and

other peers are reached via these neighbors. This way, peers form an overlay network

that is built on top of the physical one.

In unstructured p2p systems, peers join the network by selecting a peer from a known

list of participating peers. The selection of a peer from the list can either be random or

based on some loose rules. The overlay network is formed in a decentralized manner

as peers join and leave the network and there is no precise control over the topology

of the resulting overlay network or over data placement. A look-up query for data

items posed at any peer is routed through the overlay network according to the

strategies that will be discussed in Chapter 3. The performance of a search strategy

highly depends on the topology of the overlay network. Thus, an appropriate model of

the overlay network topology is necessary for evaluating a search method. The choice

17

of a model for the overlay network may also have strong implications on the analysis

of some replication objectives (e.g. determining an optimal number of replicas).

The overlay network is represented as an undirected graph G = (V,E). The set V of

vertices contains one vertex for each participating peer. A pair of vertices belongs to

the set E o f edges if and only if the two corresponding peers are neighbors in the

overlay network.

Some structural properties of the graph used to model the overlay network can help us

predict the behavior of a network under certain assumptions. For example, the number

of links with other nodes, the so-called degree of a node, is an indication of how

frequently this node tends to be visited. Several measures regarding the graph’s

connectivity or the centrality of each vertex or the graph’s diameter can be used to

address the following questions:

• Is the network connected?

• Is it resilient to link or node failures?

• How easy is it for the network to break down to smaller pieces and which

links would damage the connectivity of the network if they were removed?

• Are there any peers that receive more messages during a look-up process than

others?

• What is the expected average number of hops that a look-up query is

forwarded until the desired data item is located?

The rest of this chapter is organized as follows: Section 2.1 analyses some topological

measures of graphs that are used to estimate the centrality of nodes in a network

graph. In Section 2.2, a solution to the problem of finding the shortest paths between

any pair of nodes is presented. In Section 2.3, we explain why power-law graphs are

useful for modeling the topology of unstructured p2p overlay networks and define

some power-law distributions that a power-law graph should follow. In Section 2.4,

we present three known algorithms for generating undirected graphs with the defined

power-law distributions. In Section 2.5, we present variations of two of these

algorithms that generate connected graphs. In Section 2.6, simulation results are

18

shown for estimating the suitability of these algorithms for generating graphs that

obey power-laws.

2.1. Centrality measures

Usually, a graph consisting of n vertices is represented by an nxn matrix Λ, named the

adjacency matrix, which is defined as:

f 1 if there is an edge between vertices i and j
ij (0 if there is no edge between vertices i and j ̂ '

Information about the relative importance of a vertex or an edge in a graph is obtained

through some centrality measures.

The most common centrality measure is the degree dj of a vertex i, which is defined

as the number of links that / has. The degree centrality can be easily measured for a

vertex i from the adjacency matrix as:

d t = Y j= iA tJ (2.2)

The idea behind the degree centrality is that the more connections a node has the more

central and important is considered for the network.

Based on the same idea, there is another centrality measure, called eigenvector

centrality. The difference is that in this measure the centrality of a vertex also depends

on the centrality of its neighbors (the set of vertices for which an edge exists). In

general, vertices that are connected to a central vertex are considered more central

than vertices that are connected to less important vertices.

If we assign each vertex i a centrality X(, this centrality is taken to be the average of

the centralities of the neighbors of f.

x i = J Σ ;= ι Atj Xj (2.3)

where Λ is a constant. Defining the vector x as the vector of the centralities for all

vertices, equation (2.3) becomes:

λ χ = A x (2.4)

19

By the equation (2.4), it is clear that x is an eigenvector of the adjacency matrix

A corresponding to the eigenvalue λ. Especially for graphs that represent a network

topology, x should contain non-negative centralities. Thus, it is proved by the Perron-

Frobenius theorem [13] that λ must be the largest eigenvalue of A and x the

corresponding eigenvector.

In a graph, a path between two vertices is defined as a sequence of vertices such that

for each vertex in the path there is an edge to the next vertex in the sequence. The

length of a path is defined as the number of vertices (edges) it contains. The shortest

path between a pair of vertices is the path between the two vertices with the smallest

length. The length of this shortest path is known as the distance between them.

The centrality of a vertex can also be measured based on the shortest paths from every

vertex to every other vertex. The closeness centrality of a vertex i is defined as the

average length of every shortest path from vertex i to every other vertex j . Intuitively,

the average distances of a vertex with high centrality to every other vertex should be

lower compared to vertices with lower centrality. Accordingly, the betweeness

centrality measures the importance of a vertex by counting the number of shortest

paths between all pairs of vertices that it is part of.

2.2. All pairs shortest paths problem

As mentioned before, finding the shortest paths between all pairs of vertices in a

graph that represents an overlay network topology can be very useful for describing

the behavior of a network. The length of the maximum shortest path among the

shortest paths of every pair of vertices is called the diameter of the graph.

The calculation of the diameter of a graph requires the solution of a more general

problem, known as the all pairs shortest path problem, in order to obtain the set of

distances between all pairs of vertices and find the maximum among them.

2 0

More formally, given a graph G with a set V of n vertices and a set of E of edges, the

all pairs shortest paths problem is defined as finding the length of the shortest path

d i s t (i , j) between every pair of vertices in V.

An obvious solution to the all pairs shortest paths problem is running one of the

known shortest path algorithms, such as D ijkstra 's algorithm , that computes the

shortest path lengths from one vertex to every other vertex, n times, once for every

vertex. At each run the distances of one vertex to every other vertex is computed. It is

clear that the complexity of such an approach depends on the single-source shortest

path algorithm that is used.

An alternative solution is using dynamic programming instead of a single-source

shortest path algorithm. For computing the distance d i s t (i , j) between all pairs

of vertices, this approach computes the distance d is t^ i^) between every possible

intermediate vertex z and then add the last edge from z to j . The d i s t (i , j) could then

be defined as minZ(d i s t (i , z) + 1) for all vertices z for which an edge (z , j) exists.

We define the d i s t (i , j , t) as the length of the shortest path from i to j that uses at

, most t vertices. If there is no shortest path of length at most t between i and j , the

d i s t (i , j , t) is infinity. At each iteration t, all shortest paths of length at most t are

computed. A shortest path between a pair of vertices cannot contain more than \ V\

vertices (otherwise there would be a cycle). Thus, at iteration \V\ the distances

between all pairs of vertices will have been computed.

The recursive relationship that calculates all distances d i s t (i , j) at iteration t is:

d i s t (i , j , 1)
Ό if / = j

■ 1 if/^ /a n d (i,j)E E
oo if j and

(2.5)

d i s t (i , j , t) = m m kev{ d i s t (i , j , t - 1), d is t (i , k , t — 1) + d i s t (k , j , 1)} (2.6)

Algorithm 2.1 presents the algorithm used for determining the diameter of a graph.

21

Diameter calculation algorithm
I n p u t :

V //the set of vertices
E //the set of edges
n //number of vertices

O u tp u t:

int d i s t //the matrix that contains all distances from every
node to every other node

int diam //the diameter of the network
V a r ia b le s :

p r e v _ d i s t //a matrix that contains that contains all
distances from every node to every other node that are known at
the beginning of each iteration t(distances found at iteration t-1)
//initially (within a distance of 1 hop)
for every node i£V
for every node jCV
if(i == j)

dist[i] [j] = 0;
prev_dist [i] [j] = 0;

else if (i,j) e E //there is an edge between i and j
dist[i][j] « 1;
prev_dist[i][j] = 1;

else
dist[i][j) = “
prev_dist [i] [j] = «°

end if
end for

end for

t = 1
while t<n-l //find shortest paths of length t

for every node i€V
for every node jev
dist [i][j J = ”
for every node kGV
if i * j and dist[i] [j] > prev__dist [i] [k]+prev_dist [k] [j]

dist[i][j] = prev_dist[i][k]+prev_dist[k][j]
end if

end for

2 2

prev_dist[i][j] =dist(i][j];
end for

end for
t = t + 1

end while
//dist now contains the minimum distances of each pair of vertices

//the maximum between all minimum distances within diam hops
diam = 0
for every node i£V
for every node j6V

if(dist[i][j] > diam)
diam = dist[i][j]

end if
end for

end for

Algorithm 2.1: A dynamic algorithm for calculating the diameter of a graph

2.3. Power-law networks

2.3.1. Power-law networks as a model for the overlay network

Unstructured topologies evolve in more or less unpredictable ways, as nodes leave

and join the overlay at arbitrary positions. Therefore, random graph, or Erdos-Renyi

random graph is commonly used for modeling an overlay network. An Erdos-Renyi

graph [10] with n nodes can be equivalently described in two ways: it is a graph

where each of the possible — -hedges is present with some fixed probability p ; or

equivalently it is a graph selected uniformly at random among all possible graphs of n

nodes and m edges. This is a simple but powerful model, where it can be shown that

the degrees of participating nodes follow a Poisson distribution.

However, the Erdos-Renyi random graph is proved to be inappropriate for modeling

real-world networks. There are some properties of several real-world networks such

as Internet overlay network or the overlay network of an unstructured p2p system

(described in [3]) that the Erd6s-Renyi random graph cannot capture:

23

• Nodes that exist in the network for a long time tend to increase their

connectivity rapidly with the addition of new nodes (increm ental grow th)

• Nodes with a high connectivity tend to increase their connectivity as new

nodes enter the system {rich-gets-richer phenom enon)

• A node that joins the network is most likely connected to a well-connected

node that already exists in the network {preferential attachm ent).

A more realistic model for the overlay network of an unstructured p2p system is the

pow er-law random graph. In power-law graphs, the degree of each node follows a

power-law distribution with a few nodes having many connections while the majority

of nodes have only a few connections. Figure 2.1 illustrates a possible structure of a

network with power-law degree distribution.

Figure 2.1: An example structure of a power-law network
(source: http://www.mathaware.org/mam/04/essays)

The existence of nodes with degree that greatly exceeds the average (usually referred

to as hubs) makes all power-law networks share some properties. First of all, power-

law networks exhibit a fault-tolerant behavior. This is due to the fact that failures

occur in the network arbitrary with all nodes being equally likely to be affected by a

failure. Thus, since there are only a few nodes that are considered as hubs and the vast

majority of nodes are of law connectivity, the probability that a hub fails is not

significant. Furthermore, even if a hub collapses, there are other hubs to guarantee

http://www.mathaware.org/mam/04/essays

24

that the network will remain connected. This means that power-law networks are

tolerant of a small number of random failures. On the other hand, it is clear that in

case of simultaneous failures of all the hubs of the network, the connectedness of the

network would be lost and what would remain are numerous networks with no links

between them. This weakness of power-law networks can be used by adversary users

who can make a network fall apart by simultaneously attacking to all its hubs, causing

them to collapse.

Another characteristic of power-law networks is that nodes tend to form small sub

networks (sub-graphs) where every node is connected to every other node in the sub

network and those sub-networks are connected to each other through hubs. For

example, considering a social network, people tend to form small communities where

everyone knows everyone (a friend of my friend is also my friend) and one

community is connected to another only through some very popular people (such as

politicians or famous artists). This phenomenon caused by nodes with high

connectivity is known as sm all-w orld phenom enon and is responsible for the fact that

power-law networks have very small average distance between two nodes and

consequently a small diameter.

2.3.2. Pow er-law definitions

Faloutsos et al [11] have studied the topological metrics described in Sections 2.1 and

2.2 for random power-law networks and defined four power-laws regarding the

degree of nodes, the degree frequency, the eigenvalues of the network graph and the

number of shortest paths of certain length:

Power-law 1: rank exponent R : If all nodes are sorted in descending order of degree,

the rank r, of the node is the index of the node in this order. The degree, d i} of a node

i, is proportional to the rank of the node, r„ to the power of a constant, R : dt· <x r R.

This power law indicates that the most central nodes (the hubs) have much more

connections than the other nodes. The most connected the node is, the largest degree it

has.

25

Power-law 2: degree exponent O : The frequency,/), of a degree d , defined as the

number of nodes with degree d, is proportional to the degree to the power of a

constant, O : /d oc d ° .

The intuition behind this power-law is that there exist only a few nodes with a high

degree while there are many nodes with a small degree.

Power-law 3: hop-plot exponent H : The total number of pairs of nodes, P(h), within

distance of h hops, is proportional to the number of hops h to the power of a constant,

H : P (h) ot h H w ith 0 < h < d ia m , where d ia m is the diameter of the network.

According to this power-law, many pairs of nodes are within a few hops (have small

distance) and only a few nodes have a larger distance. This fact explains why power-

law networks have small diameter (small-world phenomenon).

Power-law 4: eigenvalue exponent €: If the eigenvalues of the adjacency matrix are

ordered in descending order, the rank v,· of an eigenvalue Λ* is its index in the order.

The eigenvalues, of a graph are proportional to the order, vt· to the power of a

constant, €: λ ι o c v f .

2.4. Generating network topologies that obey power-laws

2.4.1. Barabdsi model

Since undirected power-law graphs are used for modeling an unstructured p2p overlay

network, an interesting issue is how can we generate a power-law network topology

so as to be used in network simulation studies.

This problem has been addressed in [3] by Barabasi et al. The authors present a

topology generator that obeys the four power-laws defined in Section 2.3.2. In

26

particular, the model is based on the concepts of incremental growth and preferential

attachment (Algorithm 2.2).

The model assumes an initial (typically small) N0 number of nodes that form the

network with no connections between them. At every timestep (periodically), until the

desirable number of nodes n is attained, a new vertex (node) is added. The new node

is connected to m different vertices that already exist in the network. The connections

that are established are undirected. The node that joins the network chooses a node /

as its neighbor with some probability which depends on the degree dj of node i: the

probability IJ(i) that the new coming vertex is connected to vertex i is defined as

m = r s r o s r - (2.7)Lj=1 dj

where n e t_ s ize is the number of nodes that participate in the network at each

timestep.

Barabnsi model
I n p u t:

n //the number of nodes of the final network
N0 //the initial number of nodes
m //the number of edges with which each node is

//connected when it joins the network
O u tp u t:

A network topology that obeys power law
Varieties:

int A //the adjacency matrix representing the network
int net_size = N0 //current network size
int Num_connections = 0 //current number of connection of

//the newly inserted node
int d // the matrix of degrees of nodes

//Initially, the network contains N0 nodes and no edges
while net_size < n

//Add a new node u to the network
Num_connections = 0
//connect the new node to m other nodes of the network
//with preferential attachment

27

while Num_connections < m
//choose a node i from the network at random
//and add a connection between the new node u
//and node i with probability Π (i)

πω = yn.Xdb=i dj
//add a connection between nodes u and i
Num_connections = Num_connections+l
d[i] = d [i] + 1
d[u] = d[u] + 1
A(i,u) = A(u,i) = 1 //add edge (i,u)

end while
net_size = net_size + 1

end while

Algorithm 2.2: Barabasi algorithm for generating a power law network

2.4.2. Power-Law Out-Degree Algorithm

C. Palmer and J. Steffan [21] have proposed an alternative method for generating

network topologies that obey power laws: the Power-Law Out-Degree Algorithm.

According to Power-Lcn\> Out-Degree Algorithm {PLOD Algorithm) (Algorithm 2.3),

each node i is initially assigned an number of degree credits, credit,·. The number of

links (di) that a node is allowed to have in the final network is picked from an

exponential distribution βχ~α. Particularly, if the nodes of the graph are sorted in

descending order of degree, the degree of the node whose rank in this ordering is x,

will be βχ~α in the produced graph. After assigning a degree credit to each node, a

pair of nodes (n l , n 2) is randomly chosen and an undirected connection between them

is established only if a connection between them does not already exist and neither of

the nodes exceeds the degree credits that it was initially assigned. The above

procedure is repeated until every node is left with zero credits. The a parameter is the

exponent of the power-law distribution and determines the number of edges that

should be added during the generation of the graph so that power-law distribution is

achieved. It also represents the slope of the log-log plot.

28

PLOD algorithm
I n p u t:

n //the number of nodes of the network
α,β //parameters of the exponential distribution

O u tp u t:

A network topology that obeys power law
V a r ia b le s :

int A //the adjacency matrix representing the network
int cur_edges = 0 //the number of edges placed to

//the graph so far
int d //the matrix of degrees of nodes
int credit //the matrix of degree credits of nodes

//assign a number of credits to each peer picked from an
exponential distribution

for i=l to n
x = random(1,n);
credit [i] = βχ~α

end for

while there is a node with non-zero credits
//choose a pair of nodes uniformly at random
nl = random(l,n);
n2 = random(l,n);

if nl and n2 are not connected and credits[nl] > 0
and credits[n2] >0

A(nl,n2) = A(n2,nl) = 1 //add edge (nl,n2)
d[nl] = d[nl] + 1
credit[nl] = credit[nl] - 1
d[n2] = d[n2] + 1
credit[n2] = credit[n2] - 1
cur_edges = cur_edges+l

end if
end while

Algorithm 2.3: Power- Law Out_Degree algorithm for generating a power law
network

29

2.4.3. Recursive Algorithm

Palmer and Steffan in [21] also presented a method for generating topologies with

power-law properties (Algorithm 2.4) that is based on the idea of generating an 80-20

distribution and can only be used for generating weighted undirected power law

graphs of size which is a power of 2: an 2nx2n adjacency matrix of a network is

divided into 4 2n'Ix2n'1 sub-matrices. A distribution function can be defined so that a

certain percentage of the final edges will be placed at each sub-matrix. Thus, we

define a distribution of the following form: with probability ul an edge will be placed

in the upper left sub-matrix A n , with probability ur an edge will be placed in the

upper right sub-matrix A /2 , with probability ll an edge will be placed in the lower left

sub-matrix A 21 and with probability Ir an edge will be placed in the lower right sub

matrix A 2 2 · It should be clear that, as links are undirected, the adjacency matrix is

symmetric with zeros on its diagonal. Therefore, the definition of the distribution

depends on the number of non-zero elements that can potentially be placed in each

sub-matrix.

By following such a distribution, the algorithm recursively picks one sub-matrix,

splits that sub-matrix into 4 sub-matrices and picks one of these sub-matrices. This

process goes on until an edge is finally returned. Each time an edge is returned, its

weight in the adjacency matrix is incremented. This way, a symmetric weighted

adjacency matrix is generated. The algorithm stops when m edges are added in the

network.

Recursive algorithm
I n p u t :

n //the number of nodes of the network
m //the number of edges with which is node is connected
ul,ur,ll,lr //the percentage of edges that will be placed

//in each submatrix
O u tp u t:

A network topology that obeys power law
V a r ia b le s :

int A //the adjacency matrix representing the network
//Initially A contains zeros

30

while A has less than m non-zero elements
//arbitrary choose two nodes to connect
(i,j) = gensym(n)
A(i,j) = A(i,j) + 1

end while

F u n c t i o n gensym (n)

V a r ia b le s :

N1 = (n/2)2 - (n/2) //the number of potentially non-zeros
//in the upper- left lower-right sub-matrices

N2 = (n/2)2
k = 1/((1/N1)ul + (1/N2)(ur+1) +(1/Nl)lr)

//We consider the 4 sub-matrices of A: An An A2i A22
if n= 2 return (1,2)
else

with probability
u Ẑ y return gensym(n/2) //choose An

(ur + l i) ^ return gen(n/2) + (0,n/2) //choose Ai2 or A2i
l r ~ return gen (n/2) + (n/2, n/2) //choose A22

end if

F u n c t i o n gen (n)

if η = 1 return (1,1)
else

with probability
ul- return gen(n/2)
ur return gen(n/2) + (0,n/2)
11 return gen(n/2) + (n/2,0)
lr return gen(n/2) + (n/2, n/2

end if

Algorithm 2.4: Recursive algorithm for generating a power law network

31

2.5. Generating connected graphs with power-law properties

For our simulation studies, we need to generate graphs that are connected. The graphs

generated by Barabasi (Section 2.4.1) and PLOD (Section 2.4.2) algorithms are not

always connected. For this reason, we use a variation of the PLOD algorithm that is

proposed in [17] in order to generate connected graphs with power-law properties.

In order to generate a connected graph, we first create a spanning tree. The algorithm

used for generating a spanning tree is illustrated in Algorithm 2.5. We first generate a

random permutation a [l] a[ri\ of all nodes. We then add edges to form a spanning

tree. We begin with a tree consisting only of node a [l] and no edges. At each step τ,

we assume that nodes with indices a [l],a [2]..a [t\ in the random permutation are in the

tree. We then add node with index a [t+ l] by randomly choosing one node a \j] among

a [l],a [2]...a [t] (0<j<t) and adding an undirected edge between a[/+7] and a\j].

The PLOD algorithm (Algorithm 2.3) assigns a number of degree credits to each node

picked from a power-law distribution and then a pair of nodes (n l,n 2) is selected and

an edge is added between n l and n2. This process is repeated until the desired number

of edges is obtained. To ensure that eventually every node i will have a degree di

equal to the number of credits crediti it was initially assigned and all nodes will have

zero credits, a variation of the PLOD algorithm is proposed in [17]. The algorithm is

presented in Algorithm 2.6: First a pair of vertices n l and n2 of degree less than

credit,,/ and credit„ 2 respectively such that there is no edge between n l and n2 is

chosen. If such a pair of nodes exists, an edge between n l and n2 is added. If no such

pair of nodes exists, the fixup procedure is executed.

The fixup procedure works as follows: if all nodes except node u have non zero

credits, an edge (v7, v2) is selected such that (w, v7) and (u, v2) are not edges. Then

we delete the edge (v l , v2) and add edges (u, v l) and (u, v2). If more than one nodes

have non zero credits, we assume that there are pairs of nodes each of non-zero

credits, but each such pair is already connected by an edge. In that case, we find a pair

of nodes n l and u2 such that both nodes have non-zero credits and (u l , u2) is an edge.

32

Then we choose an edge (w l, w2) such that (ul, wl) and (u2, w2) are not edges.

Finally, we delete the edge (wl, w2) and add edges (ul, wl) and («2, w2).

Creating a spanning tree
F u n c t i o n r a n d o m _ p e r m u t a t i o n (n)

I n p u t :

n //the number of nodes of the network
O u tp u t:

a //a· random permutation of peers from 1 to n

for t: 1 to n
a [t] :- t

end for

for t: 1 to n
j:= uniform_radom(l, n)
swap(a[t], a [j])

end for

F u n c t i o n c r e a t e _ s p a n n i n g _ t r e e (n)

I n p u t :

n //the number of nodes of the network
O u tp u t:

int A //a spanning tree of n nodes

for τ: 2 to n
r:= a [uniform_radom(1,-c-1)]
//add an edge (r,τ)
d[r] = d[r] + 1
d [i] = d [τ] + 1

A (r, τ) = A (τ, r) = 1
end for

Algorithm 2.5: Algorithm for creating a spanning tree

33

PLOD algorithm for connected graphs
In p u t:

n //the number of nodes of the network
α,β //parameters of the exponential distribution

O utpu t:

A network topology that obeys power law
V a r ia b le s :

int A //the adjacency matrix representing the network
int d //the matrix of degrees of nodes
int credit //the matrix of degree credits of nodes

//assign a number of credits to each peer picked from an
//exponential distribution

for i=l to n
x = random(1, n);
credit[i] = βχ~α

end for

random_permutation(n);
create_spanning_tree(n);

while there is a node with non-zero credits
if there is a pair of nodes with non-zero credits and
no connection between them

//choose a pair of nodes uniformly at random
do
nl = random(1,n);
n2 = random(l,n);

while nl and n2 are connected or credit[nl] ^ 0
or credit[n2] £ 0

A(nl,n2) = A(n2/nl) = 1; //And an edge between nl and n2
d[nl] = d[nl] + 1
credit[nl] = credit[nl] - 1
d[n2] = d[n2] + 1
credit[n2] = credit[n2] - 1

else call fix_up ()
end if

end while

34

P r o c e d u r e f ix _ u p ()
//check if there is only one node, u, with non-zero credits
if all nodes except u have non-zero credits

vl = random(1,n);
v2 = random(1, n);

if vl,v2 are connected and (vl,u) and (u,v2) are
not connected
//remove edge (vl,v2) and add edges (vl,u) and (u,v2)
d [u] = d [u] + 2
credit[u] = credit[u] - 2
A(v2,vl) = A(vl,v2) = 0 //remove edge (vl,v2)
A(vl,u) = A(u,vl) = 1 //add edge (u,vl)
A(v2,u) = A(u, v2) = 1 //add edge (u,v2)

end if
else

ul = random(l,n);
u2 = random(1,n);

if ul and u2 are connected and credits[ul] > 0
and credit[u2] >0

wl = random(1,n);
w2 = random(1,n);

if wl,w2 are connected and (ul,wl) and (u2,w2)
are not connected

A(w2,wl) = A(wl,w2) = 0 //remove edge (wl,w2)
A(ul,wl) = A(wl,ul) = 1 //add edge (wl,ul)
A(u2,w2) = A(w2,u2) = 1 //add edge (w2,u2)
d[ul] = d[ul] + 1
credit[ul] = credit[ul] - 1
d[u2] = d[u2] + 1
credit[u2] = credit[u2] - 1

end if
end if

end if

Algorithm 2.6: PLOD algorithm for generating connected graphs

35

As far as the Barabasi algorithm is concerned, each newly inserted node is connected

to m of the nodes that already exist in the network. According to the model described

by Barabasi, we assume that initially there is a small number N0 of nodes with no

connections between them. Therefore, if each node selects less than N0 nodes to

connect with (m<N0), there would be non-zero probability of never choosing some

nodes and connect with another peer. Thus, to ensure that the generated graph is

connected, we choose the values of parameters m and N0 such that m is equal to N 0.

2.6. Estimating the quality of the synthetic graphs

Network topologies that obey power-laws should have the following four properties

defined in Section 2.3.2: rank exponent, degree exponent, hop-plot exponent and

eigenvalue exponent. In this section, we use the Barabasi algorithm as well as the

PLOD algorithm as described on Section 2.5 to generate connected network graphs

with the above properties. We then perform experiments on the synthetic graphs to

evaluate the extent to which the desired four power-law properties hold for the

generated topologies.

The algorithms discussed in Section 2.5 for generating connected graphs with power-

law properties were implemented in C++ using the OMNET++ simulation

programming tool. OMNET++ (Objective Modular Network Testbed in C++) [20] is

a modular, open-source discrete event network simulator. Each participating peer is

simulated as an OMNET++ module and is implemented as a C++ object whose

methods describe the expected behaviour of each peer. Modules can be connected

through input and outputs gates and communicate by exchanging messages.

The topological metrics that need to be measured in order to estimate the quality of

the synthetic undirected graphs are: the degree d, of every node i in the network, the

frequency fd of an degreed that appears in the network, the distances d i s t i jk of any

pair of nodes (t j) within k hops, with k between 0 and the diameter of the network

and the eigenvalues X\ of the resulting graph.

36

First, we generate a network graph of size n = 3000 peers by using the model

introduced by Barabasi. We used various values for No parameter. At each simulation

the m parameter is chosen to be equal N0. We also present experimental results for

PLOD algorithm with various values for a parameter and β = n 66. Then we study the

topological measures mentioned above. The algorithm parameters used for generating

the synthetic graphs are summarized in Table 2.1.

Table 2.1: Simulation parameters for power-law graph generators

Parameter Symbol Value

Network size n 3000

Initial number of peers for the Barabasi

model
N0 [2-5]

Number of edges for each newly

inserted peer in the Barabasi model
m [2-5]

a parameter of exponential distribution

in PLOD algorithm
a [0.4-1.5]

β parameter of exponential distribution

in PLOD algorithm
β

n0M

First we study the degrees d·, of nodes in the generated network graph. A node’s rank

r, is its index in the order of decreasing degree. In Figure 2.2 and Figure 2.3 we plot

all (r„ d!) pairs in log-log scale. As it is shown on both figures, the (77, d/) plots in log-

log scale are approximated well by linear regression which indicates that the rank

exponent property holds for the synthetic graphs generated either with Barabasi’s

algorithm or PLOD. In the case of PLOD algorithm (Figure 2.3), we notice that in the

resulting graph, the degree of the most connected node is determined by the value of β

parameter («° 66 * 198) while a parameter determines the total number of edges that

are added. For example, for a = 1.5 there are much more nodes with few connections

(equal or close to 1) than when a = 0.4.

In order to study whether the degree exponent holds, we study the distribution of

degrees. Figure 2.4 and Figure 2.5 we plot the degrees d\ of the nodes in the

undirected graph generated by Barabasi’s algorithm and PLOD respectively, with the

37

frequency each degree d, measured as the number of nodes with degree d. Again,

the plots are in log-log scale and observe a linear relationship, as degree exponents

suggests. Consequently, we can claim that for both synthetic graphs that are

generated, the property of degree exponent holds.

We then study the size of the neighborhood within some distance. The neighborhood

p(h) within some distance is defined as the number of pairs of peers with distance at

most h. Figures 2,6 and 2.7 show the number of pairs p(h) within distance h towards

the distance h when Barabasi’s algorithm and PLOD respectively are used. The plots

are in log-log scale. The plots show a linear relationship between \og(p(h)) and log(h)

which implies that the hop-count exponent also holds for the generated graph

topologies.

Finally, we study the eigenvalue of the synthetic graphs which are defined as the

eigenvalues of the adjacency matrices A. For the calculation of eigenvalues the eig

function of MATLAB programming tool was used. Among all eigenvalues, only the

greatest have a physical meaning when it comes to adjacency matrix. For this reason,

we plot only the 50 greatest eigenvalues 2, in descending order in comparison to the

index vt· of of the eigenvalue in the descending order. The plots are in log-log scale

and as shown in Figure 2.8 and Figure 2.9, log(2,) and log(i7t) are proportional, so

the claim that the synthetic graphs have the eigenvalue exponent property also holds.

38

sΟ)<υΟ

10 100
Rank of peer

1000 3000

Figure 2.2: Rank exponent for the network topologies generated by Barab£si
model under various values for No parameter

Figure 2.3: Rank exponent for the network topologies generated by PLOD
algorithm under various values for a parameter

39

1500
1000

4>£σια>η

οc
§σ£

100

10

+

No = 2
No = 3

+ No = 4
ν No = 5

Η- "7 ■ T

+--- ■— ■ - ' ■
10 100 200

Degree of peers

Figure 2.4: Degree exponent for the network topologies generated by Barab^si
model under various values for No parameter

Degree of peers

Figure 2.5: Degree exponent for the network topologies generated by PLOD
algorithm under various values for a parameter

40

10'

10

No = 2
No = 3
No = 4

No = 5

•σc

a>a>
a.

106ir

10

10
Hop distance

Figure 2.6: Hop-plot exponent for the network topologies generated by Barabasi
model under various values for No parameter 10

108

COQ.O 7£ 10

ω0 c(OwΈc1c
1
e<υ<υα.

10°

Ο 5
5 10 Fη ίο. ·

+ α=0.4

- α=0.7

+ α=0.9
V α = 1.5

ιο44
1

V

2
Hop distance

w

ν
+

J_________I
3 4

Figure 2.7: Hop-plot exponent for the network topologies generated by PLOD
algorithm under various values for a parameter

Ei
ge

nv
al

ue
s

of
 t

he
 a

dj
ac

en
cy

 m
at

ri
x

41

<UoTOΪΓ

25,7

10

> ■
c 0} D)

+ No = 2
No = 3

+ No = 4

T7 No = 5

+ +
‘ 7,Λ "*■·*"*«<.

1 J__L__J_U-J-
1 10

J----1—
50

Rank of eigenvalues of the adjacency matrix

Figure 2.8: Eigenvalue exponent for the network topologies generated by
Barabasi model under various values for No parameter

10
l
r

+ a=0.4

a =0.7

V or, =0.9

V a=1-5

10

10
10

?

++H+H-,V___ tv

10
Rank of eigenvalues of the adjacency matrix

10

Figure 2.9: Eigenvalue exponent for the network topologies generated by PLOD
algorithm under various values for a parameter

42

CHAPTER 3. SEARCH AND

REPLICATION METHODS FOR

UNSTRUCTURED P2P SYSTEMS

3.1 Locating data items of interest in unstructured P2P systems

3.2 Creating replicas of data items in unstructured P2P systems

3.1. Locating data items of interest in unstructured P2P systems

Distributed p2p systems have attracted a lot of attention as a means of data sharing

among a large and dynamic population of peers. Peers join and leave the system

dynamically, thus forming self-organizing overlay networks. A basic functionality of

p2p systems is discovering data items of interest. Any peer may ask to retrieve one of

the shared data items. When a peer poses a query for a data item, it uses the overlay

network to communicate with its neighbors and a look-up process is initiated for

locating the peers that hold the requested data item. Locating a data item must be

achieved by contacting as “ small” a number of nodes in the overlay as possible and by

maintaining as “ little” state information at each node as possible.

To assist lookup, structured overlays map (keys of) data items to nodes. In structured

overlays, the mapping is usually done by hashing the key space of the data items to

the id space of nodes. Thus, each node in the overlay maintains a partition of the data

space. In structured overlays, lookup reduces to locating the node in the overlay that is

responsible for the corresponding data partition. In unstructured overlays on the other

hand, there is no correlation between nodes and data items.

43

Therefore, “blind” search procedures are used and look-up queries get propagated

through the network so as to locate peers offering the requested data item.

The most commonly used blind search strategy for unstructured p2p overlay networks

is flooding. In flooding , a peer that wants to retrieve a specific data item initiates a

look-up process by communicating with all of its neighbors in the overlay network. A

peer that receives a look-up (query) message propagates it to all its neighbors, unless

it knows about the data item in question. The look-up messages are allowed to be

propagated until the data item is located or for a limited number of steps (hops),

which is the so-called tim e-to-live (TTL) parameter. The TTL value is defined by the

peer that initiated the look-up process and is included in the look-up message. Each

intermediate peer that receives a look-up message decrements the TTL value by 1 and

peers that observe a zero TTL value stop propagating the message any further. When

the propagation of a message is terminated, a reply is forwarded back following the

same path until it reaches the peer that initiated the look-up process.

Such a TTL-Iimited flooding has several shortcomings. First of all, defining an

appropriate TTL value is not an easy task. The choice of a large TTL value may

overload the network with look-up messages, while if a small TTL value is used,

many look-up queries may be unsuccessful, as their propagation may be terminated

before peers that hold the requested data item are located. Additionally, in flooding a

peer may receive the same message more than once due to cycles in the path through

which the messages are forwarded or because a peer may receive the same look-up

message more that once from multiple neighbors (different paths). For example,

Figure 3.1 illustrates a possible structure of an overlay p2p network, consisting of 7

peers. In this example overlay network, we assume that peer A wants to retrieve a

data item that is held by peer C and uses flooding that is restricted to TTL = 3 hops

for propagating its look-up query. The scenario for the propagation of the look-up

message could be the following: First peer A forwards the message to its neighboring

peers D, B and F. Then, peer D will continue forwarding to peers E, B, A, peer B will

forward the message to peers A, D, F, C, E, G and peer F will forward to peers A, B,

G. Finally, peer C that offers the desired data item would send a reply back to peer B

and B would forward the reply back to peer A. All other peers, apart from C would

44

continue forwarding the message to all of their neighbors as they are not aware that

the data item has already been locating through another path. During this look-up

process many duplicate messages overloaded the network with each peer receiving

the look-up query from all its neighbors.

Figure 3.1: Flooding propagation in an unstructured overlay network

To reduce the number of messages produced during flooding, an alternative search

technique is used: the random walks method. With random walks, each peer that

receives a look-up message, if it does not know of the data item in question, it selects

only one peer from its neighborhood and forwards the message to it instead of

forwarding the message to all its neighbors. The selection of the neighbor to which

the message will be forwarded can be uniformly random or biased according to some

criteria. To further improve the performance of this method, multiple walkers can be

deployed simultaneously. In the k random walks method, the requesting peer instead

of selecting only one neighbor, it selects k neighbors and its query request is

propagated through k different random walks. Returning to the example of the p2p

network illustrated in Figure 3.1, if 3 random walkers with TTL = 3 were used instead

of flooding the following scenario could improve the communication cost in

comparison to flooding: Peer A forwards the message to peers D, B and F and peers

D, B, F forward the message only to peers E, C and G respectively (not all of their

neighbors). Peer C then sends a reply back to peer F while peers E and G randomly

45

select one of their neighbors, say D and B respectively, and forward the message to

them. It is obvious that this search strategy reduces the number of duplicate messages.

Another variation of flooding is the random BFS or teeming where each peer

propagates the look-up message to each of its neighbors with some fixed probability

φ. A decay parameter can be used so that φ decreases with the distance. This way, the

probability that a look-up message is forwarded is very low if the message has already

been forwarded for a few steps.

An improvement of k random walks that achieves termination of search when a data

item is located at one of the different walkers is random walks with checking

according to which every walker asks the peer that initiated the search whether the

search was successful through some other path before propagating the look-up

message.

Another search method that has been proposed is expanding ring. In expanding ring, a

peer starts with a small TTL and floods the look-up message. If the search is not

successful, the TTL value is increased and the flooding process is repeated until the

data item is located or until a maximum TTL value is reached.

3.2. Creating replicas of data items in unstructured P2P systems

A commonly used approach in distributed P2P systems for improving the

performance of a look-up process is caching or replication of either data items or

search paths (or both).

Replication increases the number of copies for each shared piece of data in the

system. By doing so, the probability that some or all the data is temporarily or

permanently lost (because of a node departure or a link failure) significantly

decreases, thus the dependability of the system in terms of reliability and availability

is increased. Additionally, by having more copies for popular data items, the load for

routing and answering queries can be evenly distributed among the servers that hold

46

the copies. This way, the performance of a search method is improved in terms of

throughput and response time, since congestions in “hot” servers may be avoided.

While unstructured overlays which adopt flooding-based techniques are effective for

locating popular data, they are poorly suited for locating rare data. Thus, by

replicating the rare data, the probability of locating it during a search process

increases, consequently increasing data recall.

Several issues are associated with replication. For example, a replication strategy

should determine what should be replicated. There are two choices of what to

replicate: actual data items or index entries (pointers) of the real data. If actual data

items are replicated, the storage space required for holding the replicas is increased

compared to replicating indices. Also, replicating indices does not improve reliability

or availability since it does not lead to more physical copies. In addition, a replication

strategy should define how many replicas of each data item should be stored in the

network. Another issue that should be taken into consideration is where the replicas of

data items should be placed. The number of replicas for each data item and where

these replicas are placed can significantly affect the performance of the search method

t̂hat is used for locating peers with specified data items. Moreover, an extra overhead

is imposed by replication not only for storing the multiple copies of each data item,

but also for maintaining the consistency of the different replicas that are kept and

propagating the updates that may occur in one data item.

As far as the question of how many replicas of each data items should be created is

concerned, there are two natural ways of replicating data items, namely uniform and

proportional replication. In uniform replication (UR), the same number of replicas is

created for each data item, regardless of how popular it is considered. The popularity

of a data item *, also referred to as its query rate qx, is defined as the probability that a

peer poses a query for that data item. In proportional replication (PR) the number px

of replicas for each data item is proportional to the popularity of the item. Although it

seems natural to create more replicas for more popular data items so as to favor most

common queries, this is done at the expense of rare ones.

47

For the random probes strategy, the search process proceeds until the data item is

found or until a TTL value is exceeded. We consider a network consisting of n peers

which share s different data items. For each data item x there are p x copies in the

network. Each peer has a storage space for holding up to c replicas of data items.

Given that, for random graphs, the probability Pr(r) of locating a data item after r

probes is equal to the probability of not locating it in the previous r - 1 probes and

locating it in the r-th probe and is given as

Pr(r) = (l - ^) Γ_Ι * ~ (3.1)

The expected search size (average number of probed peers) for locating a particular

data item x is e ssx = —. Thus, the expected search size (ESS) for all data items (the
Px

average number of probed peers per query) is

ESS = Σ ί= ι <1x*essx = η * Σ Ι =i j r (3 ·2)
Px

The replication schema that minimizes equation 3.2 is the square roo t replication ,

where the number of replicas for each data item is proportional to the square root of

its query rate (p x oc y] q x) .

'However, things are different if the topology of the network is not random, but the

degrees of the peers follow a non-uniform (power-law) distribution. For the random

probes strategy it holds that

• the choice of the next peer does not depend on the previous peer (m em oryless

random walks)

• the probability of visiting a particular peer is proportional to its degree

Under these assumptions, for networks with power-law topology, the probability

Pr(r) of locating a data item after r probes is
r-1 Os,

M r) = (l - ψ) * ψ (3.3)

where Dsx is the sum of the degrees of peers that belong to the set Sx of peers that hold

a replica of data item x and D is the total sum of degrees of all peers. Thus, the

expected search size for locating data item x is e s s x = — , and the overall expected

search size is

48

ESS = Σχ=ι qx * e ssx = D * Σ*=ι ~ <3 *4)υ*χ
If all peers of the network have the same capacity c , then the total number of replicas

R is equal to c * n (i? = c * n) and the total sum of degrees for all data items

Σ? = i Dsx IS equal to c * D (Σ£ = i Dsx — c * D) because the degree of each node is

counted once for each replica it holds. Thus, the quantity Σ ί = ι DSx is limited to a

R
constant: D * - and the equation (3.4) is minimized when p x oc Ds .

Various replication strategies have been proposed for achieving SR replication. In

owner replication, which is used in Gnutella, when a search for a data item is

successful the peer that initiated the search process (the requester peer) stores a

replica of the data item. In path replication, which is used in Freenet, each query

keeps track of the path it follows starting from the requester peer. When a search

succeeds, all peers that exist in the path from the requester peer to the peer that

provides the data item are forced to keep a replica of the data item. When k random

walk strategy is used, the number of peers that are in the path from the requester peer

to the provider peer is expected to be 1/k of the total peers that where probed during

the search. Since path replication creates for each item a number of replicas that is

proportional to the search size for locating it, it should result in square-root

replication. Path replication has the drawback that it tends to create replicas of data

items to peers that are topologically along the same path, which is not very effective.

To overcome this problem, a third replication strategy, the random replication has

been proposed. The random replication strategy counts the number of peers on the

path between the requester and the provider peer, say p . Then p of the nodes that the k

walkers visited are randomly selected to replicate the data item.

A replication strategy that is based on random probes is presented in [16], the Pull-

then-Push (PtP) replication. When a peer issues a request for a data item, first it

checks if it possesses the data item. If the peer does not possess the data item, the

request is propagated through the network following the ^-random walk strategy

{pull-phase)\ the requesting peer forwards the request to k of its neighbors and each

other peer that receives the requests randomly picks one of its neighbors and forwards

the request. The propagation goes on either until the data item is found or until it has

49

been propagated for more than TTL hops. As peers are probed, along with the request,

information about the path that is followed from the requesting peer is also

propagated. When a data item is found, a reply is sent back to the requesting peer by

reversing the path from the requesting to the provider peer. After a successful search,

the requestor enters a replication {push-phase) where peers are randomly probed and

forced to hold a replica of the data item. During the push-phase the same strategy as

in the pull phase is used and the TTL value is set to the number of hops for locating

the data item minus one hop. This way, the number Tx of replicas that is created after

a successful search for x is approximately the same as the number of probed peers

during the search process (#copies = # probed peers), which leads to a square root

replication.

0 2 6 ο £ ° 3 ι η ’

50

CHAPTER 4. REPLICATION ON

UNSTRUCTURED P2P SYSTEMS WITH A

POWER-LAW OVERLAY NETWORK

TOPOLOGY

4.1 Influence of Power-law overlay topology to replication strategies

4.2 A degree-based replication strategy for unstructured p2p systems with a power-

law overlay network topology

The overall effectiveness of a replication strategy that is used in a p2p system is

' heavily dependent on the topology of the overlay network. In order to investigate the

effect of the overlay network topology (especially the topology of power-law

characteristics) on the replication methods presented in Chapter 3, we have performed

a series of experiments under a simulation environment. In Section 4.1, we describe

the simulation environment and present our experimental results. In Section 4.2, based

on some observations that derive from the simulation results, we present a replication

strategy that considers the characteristics of power-law and reduces the total

communication cost without increasing the average number of hops {average

dep th Jo im d) for locating a replica.

51

4.1 Influence of Power-law overlay topology to replication strategies

4.1.1. Simulation Environment

The replication methods discussed in Section 3.2 were implemented in C++ using the

OMNET++ simulation programming tool.

Network model: For our simulation study, we consider networks that have random

and power-law topologies. For generating networks with power-law properties, we

have used the Barabasi model as described in Section 2.4.1 (Algorithm 2.2). The

PLOD algorithm for connected undirected graphs (Algorithm 2.6) could have as well

been used for generating a network graph with power-law topology. Since the

generated graphs for both algorithms have very similar (practically the same)

topological properties (as shown in Section 2.6), it makes no difference which of the

two implemented methods will be used.

For the random (Erdos-Renyi) graph we assume that there are n peers in the final

network and the average degree of each peer is davg. The network is generated

according to the following process: first a spanning tree consisting of n peers and n-1

edges is created as described in Section 2.5 (Algorithm 2.5). Then, the rest of the

edges are placed by randomly selecting a pair of peers nl and n2 and adding a

bidirectional edge (nl,n2) if there is not already one. This process is repeated until

— edges are finally added.

Query model: A simulation starts by distributing the s distinct data items (simply

indicated by an integer from 1 to .y) randomly to the network. Then, each peer is

periodically triggered through a self message and performs the generate_query

process: The peer randomly chooses one of the s distinct data items and issues a query

for that item. Each simulation is executed for 360 seconds (real simulation time). The

frequency / with which each peer is triggered to generate a query (generate query

rate) is also measured in seconds and is given as a simulation parameter. The

probability with which each data item is chosen (query distribution or query rate)

follows a zipf distribution with a given theta value. This means that not all items are

52

chosen with the same probability but there are some items that are more popular than

others.

The search method that is used in the simulation is either flooding or the k random

walkers where k is given as an input in the simulation. When a peer issues a request

for a data item, first it checks its local cache. If the requested item is not offered

locally, the requester peer chooses at random (uniformly) k different peers from its 1-

hop neighborhood (or all of them, if flooding is used instead) and sends a request or

p u ll m essage to them. This request message contains:

• A sequence number that is unique for each new query that is generated

• The initiator, which contains the id of the peer that issued the query

• The requested data item

• The whole pa th that the message traverses starting from the initiator

• The hop counter that counts the length of the path from the initiator to

the previous hop.

• The depth J o u n d that simply indicated the number of hops between the peer

that offers the requested data item (provider) and the initiator. Until

the desired data is located, the depth_found is set to -1.

When a peer receives a request message it first checks if it offers the data item in

question. If the peer locates the requested data item in its cache, it sets the

depth J o u n d field equal to hop counter and sends a rep ly m essage to the peer from

whom it received the request message (taken from the p a th field). The reply message

has the same form as the request message. If the requested item is not in peer’s cache,

the peer checks if the hop counter does not exceed a certain value, defined by TTL

parameter. Since a message is not forwarded more than TTL times, if the hop counter

is greater than TTL, the message is not forwarded anymore. Otherwise, if k random

walkers strategy is used, the peer chooses a neighbor at random and forwards the

message to it and increments the hop counter by one, adding its own id to the path. In

the case of flood, the peer forwards the message to all of each neighbor, not only one.

53

When a peer receives a reply message, if it is not the initiator of the query, it deletes

itself from the path list and forwards the message to the peer in the path that comes

next.

Replication model: Every peer has a local cache for storing a limited number of

known data items. The capacity of a cache c is a user-defined parameter. When the

cache of a peer is full and a new data item needs to be stored, a data item is randomly

chosen from the cache and is deleted to make room for the new one. This cache

replacement policy is generally known as random deletion policy.

In our simulations, after a successful search we create and distribute replicas of data

items according to one of the following replication mechanisms: owner, path and pull-

then-push replication (Section 3.2). In owner replication, when a peer receives a reply

message for a query it has posed, it stores a replica of the data item in its cache, while

in path replication a replica of the data item is stored in the cache of every peer that

receives a reply message. In push-then-pull (PtP) replication strategy if the peer that

initiated the search (initiator) receives a reply message for its query, it begins a push

, phase by sending push messages to k (or all) of its neighbors. The pull messages are

of the same form as pull and reply messages. For the propagation of push messages

we use the same strategy as for locating the data items, with the TTL value set equal

to the value of the depth _foimd field minus one hops.

Summary: Depending on the needs of the simulation, at each experiment we need to

define the topology of the network (random or power-law), the replication method

used (owner, path or pull-then-push) and some parameters concerning the number of

peers in the network, the number of shared data items or the search method that is

used. Table 4.1 summarizes the parameters that are used in our simulations and their

default values.

54

Table 4.1: Simulation parameters for replication strategies
Parameter Symbol Default value

Network size n 5000

Number of data items s 100

Random walkers k [5-8]

TTL t 10

Generate query rate f 0.005 (seconds)

Simulation time T 360 (seconds)

Query Distribution (zipf s parameter) theta 1.2

Capacity of each peer’s cache c 10

Average degree for Random topology davg 4

Initial number of peers for the Barabasi model No 3

Number of edges for each newly inserted peer in

the Barabasi model
m 3

Output parameters: The metrics that are measured at each simulation are the

following:

a. The normalized replication ratio for each data item x, which is computed as
y·

=7 ^— , where rx is the total number of replicas that exist in the network for the
Ly=\ ry

particular data item x

b. For each data item x, the sum of degrees Dsx of all peers that hold a replica of data

item x

c. The average depth Joimd for each data item which is the average number of hops

at which the item was located among all the successful queries for that data item.

d. The total communication cost which is the total number of messages that are

exchanged during the simulation. The total number of messages is measured as the

sum of messages that are forwarded for replica location (pull messages), for replying

to a query when the data item is located (reply messages) or for the creation of new

replicas (push messages)

55

Each experiment is performed 10 times and the results presented for each measure are

the average of the 10 executions.

4.1.2. Simulation Results

In the first set of experiments, the owner, path and pull-then-push replication

strategies were applied to networks with random and power-law topologies. The

parameters that were used in the simulations are those defined on Table 4.1. The

scope of the experiments is:

• to investigate whether the optimal replication, as described in Section 3.2, is

attained by the replication strategies (considering that for random networks

optimal replication is considered to be the square-root replication while for

power-law networks optimal replication is achieved when the sum of degrees

of all peers that hold a replica of a particular data item is proportional to the

square root of its query rate)

• to investigate the effect that the topology of the overlay network has on the

performance of the replication strategies

For PtP we have used various k random walkers and present the results for two of

them: a 5 random walker with TTL = 10 and an 8 random walker with TTL = 10. We

have also experimented with flooding.

In Figure 4.1, we present results for a network with random topology where the

owner, path and PtP replication strategies were employed. Particularly, Figure 4.1

shows the normalized replication ratio of each data item in comparison to its query

rate. The plot is in log-log scale and it includes the optimal square-root (SR)

distribution, drawn with a thick line.

It is clear from Figure 4.1 that path replication does not achieve SR replication. Path

replication is closer to SR distribution than owner replication, but still not close

enough. The replication method that seems to approximate SR replication better is

PtP.

56

In Figure 4.2, we plot (again in log-log scale) the normalized replication ratio of each

data item compared to its query rate for networks with power-law overlay topology.

We notice again that PtP approximates SR quite accurately and obviously better than

owner and path replication. Intuitively, PtP replication strategy results in SR

replication because it creates for each data item a number of replicas that is

approximately the same as the number of visited peers during the search process,

regardless of the number of visited peers or the topology of the overlay network.

In Figure 4.3, we plot (in log-log scale) for each data item the sum of degrees of all

peers that hold a replica of the data item in comparison to the query rate of each data

item for the networks with random and power-law, when PtP replication strategy is

adapted (with flooding, 5 random walkers and 8 random walkers). As we observe, for

random networks, with PtP replication strategy, the sum of degrees of peers that holds

a replica of the data item is also proportional to the square root of the query rate.

However, it is clear from Figure 4.4 that with networks with power-law topology, the

sum of degrees of peers that hold a data item is not proportional to the square root of

the query rate. This is more clearly shown in Figure 4.5 and Figure 4.6 where for each

„ data item the actual number of replicas that exist in the network along with the sum of

degrees of peers that hold a replica of it is presented for networks with random and

power-law topology. Since the results obtained using 5 walkers, 8 walkers and

flooding are very similar, we present the results only for the case of 8 random

walkers. As we can notice, for random networks the number of replicas for each data

item is proportional to the sum of degrees of peers with a replica of the data item

while for power-law networks this claim is not true.

Figure 4.7 presents the average depthJound for each data item with its query rate in

log-log scale, for both random and power-law networks when PtP replication strategy

is used. Since all algorithms that are used with PtP result in the same replication ratio,

we present the results for 8 random walkers only. Flooding and 5 random-walkers

exhibit the same behavior so they are omitted from the plot for clarity. As expected,

we observe that the average depth Jound of each item has a linear relationship to its

query rate. We also observe that for the network with random topology, the average

depth Jound for each data item is greater than for networks with power-law topology.

57

This comes both from the fact that in power-law networks the average distance

between two peers is smaller in comparison to random networks. As a consequence,

the location of data items is achieved within fewer hops (on average) on networks

with power-law topology.

Figures 4.8 and 4.9 show the total number of messages that are exchanged

(communication cost) both on random and power-law networks when PtP replication

strategy is used. It should be clear from the figures that the communication cost is

larger on the network with power-law topology in any case. This is due to the fact that

in a power-law topology, random walks result in many cycles with peers receiving

and forwarding p u ll m essages from many of their neighbors more than once. Apart

from this, since the average distance between any pair of peers is smaller, there are

more successful queries and thus more reply and push messages.

In conclusion, PtP replication strategy results in SR replication when applied both on

random and power-law networks. However, we can claim that this replication is

optimal only for random networks.

58

Figure 4.1: Distribution of replication ratios
under various replication strategies on networks with random topology

Query rate

Figure 4.2: Distribution of replication ratios under various replication strategies
on networks with power-law topology

59

0.04 r

E3w

0.01 -

* PtP(5 walkers)
• 1 PtP(8 walkers)
Γ PtP(flooding)

0.001
0.001

I 1 1— I----------------------------1____________ ■ - . . I « I ..1 I

0.01 0.02 0.08

Queiy rate

Figure 4.3: Sum of degrees of peer with a replica of the data item for each data
item vs its query rate for networks with random topology

0.04

O)a>~o
E3in

0.01 -

+- PtP(5 walkers)
I PtP(8 walkers)

I PtP(flooding)

0.001
0.001

I— 1 - j — I---------------------------- 1-------------------1-----------J______ I I I I L

0.01 0.04 0.08

Query rate

Figure 4.4: Sum of degrees of peer with a replica of the data item for each data
item vs its query rate for networks with power-law topology

6 0

Figure 4.5: Number of replicas of each data item vs sum of degrees of peers with
a replica of the data item for networks with random topology

18.000 r

16.000

too
"f- 14.000

ra

f 12.000

(20)
Q- 10.000
(/)
| 8.000O)ωXJ
E3CO

6.000 ■

4.000

2.000

4 - a . .4 W

mwr*

500 1000 1500 2000
Number of Replicas

2500 3000

Figure 4.6: Number of replicas of each data item vs sum of degrees of peers with
a replica of the data item for networks with power-law topology

T
ot

al
 c

om
m

un
ic

at
io

n
co

st

61

Figure 4.7: Average depthfound for each data item vs its query rate for
networks with power-law and random topology

40000000

35000000

30000000

25000000

20000000

15000000

10000000

5000000

0

T " 5--ΪΙ

5 walkers 8 walkers flooding

Pull
S Push

Figure 4.8: Total communication cost under various replication strategies on
networks with random topology

62

45000000
40000000

Μ
Ο 35000000
c
.2 30000000
·£ 25000000

Pull3
E 20000000
E
8 15000000

is Push

£ 10000000
I-

5000000
0

5 walkers 8 walkers flooding

Figure 4.9: Total communication cost under various replication strategies on
networks with power-law topology

4.2. A degree-based replication strategy for unstructured p2p systems with a

power-law overlay network topology

,As it is obvious from our simulation study, PtP replication strategy achieves optimal

replication ratio when used on a network with power-law topology. However, the

communication cost increases due to the cycles in random walkers. Moreover, a great

proportion of the messages are duplicates. When a peer of low degree forwards a push

message, there is a great probability that it will choose a peer with high degree (one of

its few neighbors) to forward the message to. This means that if all peers of low

degree forward the push messages they receive, peers with high degree will receive

the same push message from many neighbors more than once and cycles in the

random walkers occur more frequently. Thus, a way to reduce the communication

cost is preventing peers with low degree from forwarding push messages and let only

peers with high degree propagate the push message to other peers. Since a peer has no

knowledge of the degree distribution or the average degree of all peers, the average

degree of the peers in the path from the initiator to the provider peer is used as an

indication of whether the peer is well-connected and has to forward the message or

not.

63

Based on this observation, we present a variation of the PtP replication ratio which

considers the properties of power-law topology for the creation of new replicas. With

the Degree-based Piish-then-Pull (DPtP) replication strategy, an extra field is added

to the pull (and reply, push) messages: the sum_degree which counts the sum of

degrees of all peers that are probed by a random walker. This field is initially set

equal to the degree of the initiator. Each peer that receives a pull message apart from

adding itself to the path, it also adds its degree to the value of degree-sum. When a

peer receives a reply for a query it has posed, it enters a push phase and forwards push

messages to k of its neighbors by including the sum_degree field. A peer that receives

a push message stores the data item in its cache. Then it computes the average degree

avg_degree of all peers in the path through which the data item was located as:

avg_degree SU7TI άβ QY66S
depth"found' ^ t*ie degree ° f the peer is greater than the avg_degree,

the peer keeps forwarding the push message provided that the hop count does not

exceed the TTL value which is set equal to depthJound minus one, just like in PtP

replication strategy. If the degree of the peer is less than the avg_degree, the push

message is not forwarded.

In order to evaluate the performance of the DPtP replication strategy, we have

performed a series of experiments. We have applied PtP and DPtP algorithms on the

same power-law network and experimented again with flooding with TTL = 10, 5

random walkers and 8 random walkers with the same TTL value. All the other

simulation parameters are as described in Section 4.1 (Table 4.1). Figure 4.10, Figure

4.11 and Figure 4.12 present the normalized replication ratio and the sum of degrees

of peers that hold a replica of the data item compared to the query rate and the query

rate compared to the average depthJound for each data item respectively, in log-log

scale. The figures show that PtP and DPtP result in very similar replication ratios and

approximately the same average depth Jound for all data items. The sum of degrees of

peers that hold a replica for each data item is also remains practically the same. This

is expected, since DPtP replication strategy does not practically reduce the number of

replicas that are created after a successful search for a data item. What is reduced is

the number of times that a peer may receive the same push message.

64

In Figure 4.13 we plot the total communication cost induced on power-law network

by PtP and DPtP replication strategies. As it was expected, in any case, the total

number of messages is less when DPtP replication strategy in comparison to the PtP

(Figure 4.9). This is due to the fact that with DPtP not all peers that receive a push

message forward the message.

Query rate

Figure 4.10: Distribution of replication ratios under various replication
strategies using DPtP on networks with power-law topology

65

0.04 -

Ο)α>Ό
εα</}

0.01

+ DPtP(5 walkers)
<| DPtP(8 walkers)
l- DPtP(llooding)

0.001
0.001

j __ 1___________________ i___________ ,_______ L ___ J_____1____i _ J _ t—i

0.01 0.04 0.08
Query rate

Figure 4.11: Sum of degrees of peer with a replica of the data item for each data
item vs its query rate for networks with power-law topology

Figure 4.12: Average depth_found for each data item vs its query rate for
networks with power-law topology under PtP and DPtP replication strategies

T
ot

al
 c

om
m

un
ic

at
io

n
co

st

66

j

35000000

30000000

25000000

20000000

15000000

10000000

5000000

0
5 walkers 8 walkers flooding

.I
1

Ϊ
j

Pull
* Push

Figure 4.13: Total communication cost under various replication strategies on
networks with power-law topology using DPtP replication strategy

67

CHAPTER 5. UPDATES ON

UNSTRUCTURED P2P SYSTEMS WITH A

POWER-LAW OVERLAY NETWORK

TOPOLOGY

5.1 Maintaining the consistency of replicas on unstructured P2P systems

5.2 Influence of Power-law overlay topology to update policies

5.3 A degree-based update policy for P2P systems with a power-law network

topology

5.4 An adaptive quorum-based update policy

5.1. Maintaining the consistency of replicas on unstructured P2P systems

Most of the traditional p2p systems that have been widely used over the past years,

such as Gnutella and Kazaa, enable users to retrieve and share data. The main

characteristic of the data items that are shared through those systems is that they are

considered to be static (users only wish to read shared data but do not modify them).

However, in future p2p applications, a new challenge will emerge: the need for

sharing data that may be frequently modified by the users. In p2p networks that will

support such dynamic content, data items could both be read and written. Maintaining

multiple replicas of each data item in the network introduces the additional overhead

of keeping all replicas up-to-dated. If not every peer that holds a replica of a data item

sees the same updates applied to the data item in equivalent orders, then not every

peer could respond to a query request (at least not with an up to date and not stale

68

content). Maintaining the consistency of all data items that are stored in the network

requires that every update that is made in a data item by some peer is propagated to all

other peers that hold a copy (replica) of the same data item. Therefore, consistency

maintenance polices should be used along with replication strategies.

Each consistency maintenance policy deals with three crucial issues: where (i.e at

which peers) updates take place, when updates are propagated to other replicas and

how the propagation is achieved.

In terms of the where aspect, update policies can be classified as single or master copy

and multi-master or group. In policies that are based on the single master or primary

copy approach, it is assumed that each data item is owned by a single peer, known as

the data item’s owner. The replica that is held by the owner of the data item is called

theprimaiy copy. Every replica is allowed to be read but when an update takes place,

the update must be first applied to the primary copy of the data item and then

propagated. All the other replicas of the data item must be made consistent with the

master copy. In the multi-master or group approach, multiple peers can hold primary

popies of the same data item. Such an approach is more demanding in terms of

communication cost and system complexity since concurrent updates on different

replicas need to be coordinated and any replica divergences that occur should be

reconciled.

As far as the question of when the update process takes place is concerned, there are

several approaches. One approach requires that the update propagation process is

initiated periodically. Alternatively, each peer that modifies a data item propagates

the update to other peers right after the update is completed (eager or synchronous

replication) or when an inconsistency is detected (lazy or asynchronous replication).

According to the how aspect, there exist two different types of consistency

maintenance policies: policies that use push methods, policies that use pull methods

and policies that use a combination of push and pull methods. In push policies, the

peer that changes the content of a data item is responsible for propagating (pushing)

the update to other peers. On the other hand, in pull policies, the peer that holds a

69

replica of a data item takes the initiative of contacting other peers so as to keep its

replica up to date. Push mechanisms are easily implemented but induce greater

message overhead. Furthermore, there is a possibility that an update could not reach

some peer, considering that peers join and leave the network and are not constantly

connected. On the other hand, with pull methods an appropriate pull period should be

determined. If a peer pulls too often the communication overhead is increased but

pulling too rare decreases the consistency levels. Usually, a combination ofpush/pull

techniques is used: a peer performs a limited push of the updates but the peers do not

rely only on the other peer’s push to get the update. Instead, they occasionally contact

other peers (pull) to make sure they have not missed an update of the data item. It is

proved in [16] that when a push/pull mechanism is used, better consistency levels and

less message overhead is achieve than plain push or pull.

An adaptive pulling policy is presented in [15] to determine how frequently the peer

should pull. It makes sense that for data items that are more frequently updated the

pulling frequency is greater than for less frequently updated data items. To adjust the

pulling frequency for each data item to the update rate, a time-to-refresh (777?) value

. is associated with each data item in cache. This value indicates when the next pull for

this item should happen. The 777? value varies according to previous pull results.

Specifically, the algorithm starts with a minimum TTR value and adapts it to the

update rates: if the peer finds out that a data item has not been modified between two

successive pulls, the estimate TTRe for the next pull is increased by an additive

amount C according to the equation:

TTRe = T T R + C (5.1)

If a new version of the data item is pulled, the estimate TTR e of the next TTR is

reduced by a multiplicative factor b, in portion of the difference D between the

version that the peer had before pulling and the pulled version of the data item,

according to the equation:

777? e ^ (5.2)
e D + b v '

The next TTR is a weighted average of the TTRe estimate and the current TTR:

TTRe = w * TTRe + (1 - w) * TTR (5.3)

where w determines the rate o f changes: smaller values of w make TTR change very

70

slowly, while larger w make TTR change quickly.

As mentioned before, a peer can either use a push method to communicate an update

of a replica to other replicas of the same data item or pull other peers in order to

retrieve any updates that have been made by other peers. Alternatively, a peer could

combine push and pull methods in order to achieve better consistency levels. In

particular, in a push/pull update propagation policy, a peer pushes any updates it

makes on a data item by applying a mechanism similar to the search mechanism used

for locating data items (for example k-random walks with a fixed TTL value). Apart

from pushing, a peer periodically performs a pull for every replica it holds. During the

pull process, a peer contacts a set of other peers and checks whether they hold a more

up-to-date version of the same data item.

An alternative push/pull hybrid update propagation policy is discussed in [16]. It is

assumed that the creation of replicas in the P2P network was determined by the Pull-

then-Push algorithm described in Section 3.2 where a peer that requests a data item,

after a successful search {pull phase) enters a push phase where it visits peers using

,the same algorithm as in the pull phase and forces them to hold a replica of the data

item. Given this replica creation approach, each peer that holds a data item is

characterized as owner if it holds a primary copy of the data item, responsible if it has

requested the data item before and has forced the creation of replicas or indifferent if

it has been forced to hold replica without requesting the data item. According to the

PtPU policy, the owner broadcasts the new versions of a data item as soon as an

update occurs. If a peer that is characterized as responsible for a data item receives a

push message with a new version of the data item, it undertakes the task of informing

its neighbors of the new version of the item. This is done by propagating the broadcast

message exactly as in the push phase (U-pushphase) when it has created the replicas

(using the same algorithm as in PtP with the same parameters). By using the same

algorithm in both the push phase and the U-push phase, it is guaranteed that a

responsible peer will visit the same or approximately the same number of peers when

pushing updates it becomes aware of as when creating replicas. Apart from pushing

the updates they receive from the owner, peers that are considered responsible for a

data item, pull periodically for that data item in order to obtain more updates.

71

5.2. Influence of Power-law overlay topology to update policies

5.2.1. Simulation Environment

We have evaluated the performance of both the Push-Pull and PtPU update policies

described on Section 5.1 through simulations. We also investigated whether and how

the performance of Push/Pull and PtPU is affected if the topology of the overlay

network is not a uniform random graph. For this reason we have evaluated the

performance of both plain Push/Pull and PtPU policies on networks with random and

power-law topologies.

For our simulation study, we have used the same environment settings as described in

Section 4.1.1. The networks with random (Erdos-Renyi) and power-law topology

were generated exactly as described in Section 4.1.1.

Query model: The simulation time at each experiment is divided into two parts: the

replicas creation part and the replicas update part. During the first part peers

randomly issue requests for data items and after a successful query the peer that

received a reply to its request enters a push phase where new replicas of the data item

are created. The propagation of queries, replies and push messages is done according

to the mechanism described in Section 4.1.1. The search method that is used for

locating data items is either k random walks or flooding and the replication strategy

that is employed is PtP.

During the second part, peers start updating data items. At the beginning of each

simulation each of the s data items is randomly assigned to one of the n peers, which

is considered as its owner. For simplicity we assume that each peer updates a data

item only if it is considered its owner. The simulation time is divided into time

rounds. At the beginning of each simulation time round, one of the peers is triggered

through a self message and performs the generatejupdate process: if the peer is

regarded as owner for at least one of the s data items, it randomly chooses one of

those and updates it by incrementing the version number associated with that data

item and assigning a new random value. After updating a data item, the peer enters a

72

U-push phase where it starts spreading the update by sending a U-push message to k

of its neighbors with the new value and the new version number of the data item. For

propagating the u-push messages each peer uses the strategy as when creating the

replicas. When a peer receives a U-push message it checks if it holds a replica of the

data item. If it hold a replica of the data item and has an older version number for that

data item, it updates the data item in its cache and then forwards the U-push message.

Otherwise, it just forwards the U-push message, as long as the TTL value is not

exceeded. In case the PtPU update policy is used, if a peer is characterized as

responsible for a data item and receives a U-push message with a new version for that

data item, it enters a U-push phase itself and propagates U-push messages using the

same strategy and the same TTL value as with push messages.

Apart from U-push messages, peers also exchange U-pull messages in order to get

informed of new versions of data items they hold. For each peer we follow the

adaptive pulling policy discussed in Section 5.1 in order to determine the moment of

the next pull for a particular data item. With Push/Pull update policy, each peer pulls

for every replica they hold using the same strategy as update push while with PtPU

jeach peer initiates a pull only for data items that is held responsible for and if a peer

that is responsible for a data item receives a reply with a new version of the data item,

it will begin a U-push phase using the same strategy as in the replica creation (PtP)

part.

Summary: At each experiment we need to define the topology of the network

(random or power-law), the update policy that is used (Push/Pull or PtPU). The

parameters concerning the number of peers in the network, the number of shared data

items or the search and replication methods that are used are those defined in Table

4.1. Table 5.1 summarizes the parameters that are used for the update policies.

73

Table 5.1: Summary of simulation parameters for update policies
Parameter Symbol Default value

Generate update rate u 0.2 (seconds)

Simulation time for replica creation part T 360(seconds)

Simulation time for replica update part t 50 (seconds)

Initial TTR for each peer TTR 0.5 (seconds)

C parameter for adaptive pulling policy C 0.4

b parameter for adaptive pulling policy b 0.2

Rate of changes for adaptive pulling policy w 0.8

Output parameters: The metrics that are measured at each simulation are the

following:

a. The consistency percen tage at the beginning of each simulation time round,

which is computed as the percentage of replicas in the whole network that are

consistent (have the same version number as the primary copy’s version number)

b. The number of u-pull and u-push messages that are exchanged during the replica

update simulation part. The sum of those push and pull messages constitutes the

m essage overhead of each method.

5.2.2. Simulation Results

In this set of experiments, the Push/Pull and PtPU update policies were applied to

networks with random and power-law topologies. The scope of the experiments is:

• to investigate whether PtPU achieves better consistency levels in comparison

to plain push/pull and with lower message overhead.

• to investigate the effect that the topology of the overlay network has on the

update policies

For this series of experiments, we have used a 5-random walks strategy, an 8-random

walks strategy and flooding with TTL = 10 for the PtPU algorithm (both creating

replicas of a data item (push phase) and for the propagating updates that a responsible

peer becomes aware of (u-push phase)). Each simulation was executed 10 times and

the results that are presented are the averages among the 10 executions.

74

Figure 5.1 illustrates the percentage of consistent replicas at the beginning of each

simulation time round on networks with random topology when Push/Pull and PtPU

update policies are used with responsible peers following a 5-random walks strategy

with TTL = 10 for propagating any updates they receive, while in Figure 5.2 the

consistency percentage under Push/Pull and PtPU on networks with power-law

topology is plotted. As expected, PtPU keeps better consistency levels than push/pull

both in the case of networks with random topology and networks with power-law

topology because each peer is held responsible for updating the replicas it has created.

It is also clearly shown in Figure 5.1 and Figure 5.2 that both Push/Pull and PtPU

update policies result in better consistency levels when applied to power-law

networks than when applied to uniform random networks. This can be explained by

the fact that in a network with power-law topology, a peer can easily communicate an

update or become aware of an update of a replica it holds through the well-connected

peers. When a peer pushes an update, there is a great probability that the push will

reach one of the few well-connected peers which in turn will push the update to other

, peers. As a result more peers will become aware of an update so the consistency will

increase.

Figure 5.3 and Figure 5.4 show the massage overhead associated with Push/Pull and

PtPU update policies for random and power-law topologies respectively. As it can

been observed from the figures, in both cases, Push/Pull results in greater message

overhead in comparison to PtPU. With PtPU each peer does not pull for every data

item that is stored in its cache, but only for data items it is held responsible for, thus

requiring less pull messages. However, with PtPU more push messages are exchanged

because if a peer is responsible for a data item, when it receives a new version for a

data item it pushes the new version to other peers. The total message overhead is

decreased though when PtPU update strategy is adapted. In power-law networks, the

diameter of the network is smaller and consequently the average search size of a data

item is decreased. As a result, the number of peers that manages to get a reply for

their request is greater. This means that more peers become responsible for a data

item. A peer pushes an update it receives only if it is held responsible for the data item

75

so the more the responsible peers, the more the push messages. When 8 random

walkers are used instead of 5, as one would expect, the consistency levels are higher

both for random (Figure 5.5) and power-law (Figure 5.6) network topologies as more

peers are informed of an update during a U-push. However, contacting more peers

means more pull messages and consequently extra message overhead (Figure 5.7 and

Figure 5.8). The same holds when we use flooding instead of 8 random walkers

(Figures 5.9, 5.10, 5.11).

76

Push/Pull - PtPU consistency

Figure 5.1: Consistency percentage at each time round under Push/Pull and
PtPU strategies on networks with random topology when for the U-push phase a

5 random walker with TTL = 10 was used

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 ίο

Push/Pull - PtPU consistency
+
.yWH-
■·■ X m-

%

X
-«I- .
'vifc

Push/Pull
+ PtPU

50 100 150
Simulation Time Round

200 250

Figure 5.2: Consistency percentage at each time round under Push/Pull and
PtPU strategies on networks with power-law topology when for the U-push phase

a 5 random walker with TTL = 10 was used

77

3000000

2500000
Ό
3 2000000X
v
ο 1500000ο
Μrd
$ 1000000
Σ

500000

Push/Pull

Pull

* Push

PtPU

Figure 5.3: Total message overhead under Push/Pull and PtPU strategies on
networks with random topology when for the U-push phase a 5 random walker

with TTL = 10 was used

3500000

3000000

^ 2500000 a
X

« 2000000
o
w 1500000
1Λ</)

I z Ioooooo

500000

i

I
l

Pull

R Push

Push/Pull PtP

Figure 5.4: Total message overhead under Push/Pull and PtPU strategies on
networks with power-law topology when for the U-push phase a 5 random

walker with TTL = 10 was used

78

Push/Pull - PtPU consistency

Figure 5.5: Consistency percentage at each time round under Push/Pull and
PtPU strategies on networks with random topology when for the U-push phase a

8 random walker with TTL = 10 was used
Push/Pull - PtPU consistency

Figure 5.6: Consistency percentage at each time round under Push/Pull and
PtPU strategies on networks with power-law topology when for the U-push phase

a 8 random walker with TTL = 10 was used

79

4500000
4000000
3500000*u

S 3000000JC
£ 2500000 o
o>
UP
<D
Σ

2000000

1500000
1000000

500000

Push/Pull

Pull

i Push

PtPU

Figure 5.7: Total message overhead under Push/Pull and PtPU strategies on
networks with random topology when for the U-push phase a 8 random walker

with TTL = 10 was used

XJ
«4VJZL.<u>o
a>M
(4

V
Σ

4500000
4000000
3500000
3000000
2500000
2000000

1500000
1000000

500000
0

Push/Pull PtPU

“"1

IIl

Pull

Bf Push

Figure 5.8: Total message overhead under Push/Pull and PtPU strategies on
networks with power-law topology when for the U-push phase a 8 random

walker was used

80

0.9

0.8

0.7

1

TO _ -•σ 0.6

0.5

0.4

0.3

0.2

0.1

Push/Pull - PtPU consistency

+ Push/Pull
PtPU

Simulation Time Round

Figure 5.9: Consistency percentage at each time round under Push/Pull and
PtPU strategies on networks with random topology when for the U-push phase

flooding with TTL = 10 was used

1$ι

0.9

0.8

0.7

X ·

Ξ 0,6c
03

1 0.5
oO

0.4

0.3

0.21-

Push/Pull - PtPU consistency

Push/Pull j
■ PtPU j

0.1 ί
ο

- J -------------------------------- L______________________ l_______________________ I_______________________ I

50 100 150 200 250
Simulation Time Round

Figure 5.10: Consistency percentage at each time round under Push/Pull and
PtPU strategies on networks with power-law topology when for the U-push phase

flooding with TTL = 10 was used

81

Γ
i

{

■αrtfο.πi.o>>ο
0)
SP

7000000 -i
6000000 *

5000000

4000000 f[
3000000

2000000 - ~

1000000

Push/Pull PtPU

I}\

Pull
■ Push

Figure 5.11: Total message overhead under Push/Pull and PtPU strategies on
networks with random topology when for the U-push phase flooding was used

I
|

i

i

i

9000000
8000000
7000000

■a« 6000000
£ 5000000 o
8, 4000000rtf
2 3000000
Σ

2000000

1000000

0
Push/Pull PtPU

Pull
M Push

Figure 5.12: Total message overhead under Push/Pull and PtPU strategies on
networks with power-law topology when for the U-push phase flooding was used

82

5.3. A degree-based update policy for P2P systems with a power-law network

topology

As indicated by the experimental results presented on Section 5.2, power-law

networks cause a larger message overhead but achieve better consistency levels than

uniform random networks when PtPU is applied. Due to the cycles in random walks,

the well-connected peers may be informed of an update made by some other peer

more than once through multiple paths. The reduction of such duplicate messages

would decrease the total message overhead. Furthermore, the message overhead

produced by the well-connected peers would be decreased if those well-connected

peers did not pull as often as other peers and rely more on other peer’s pushes in order

to obtain a new version. Since a push from any peer quickly reaches one well-

connected peer (according to random probes strategy), a well-connected peer will be

informed of any updates without having to pull frequently. Motivated by this

observation, we present a variation of the PtPU update policy with an adaptive pulling

policy, where the TTR value that indicates the time interval between two successive

pulls of a peer for the same data item, depends on the degree of the peer.

According the D egree-based Pull-then-Push Update (D P tP U) strategy, replication is

done using the DPtP instead of PtP strategy. During the push phase, as replies are

propagated back to the requestor, the sum of degrees of all peers in the path from the

provider to the requestor peer is computed as described on Section 4.2. When a peer

receives a reply for a request it has posed, it stores the data item in its cache and

considers itself as responsible for the received data item. Apart from storing the value

and the version number of the received data item, the responsible peer also stores the

sum of degrees {sum _of degrees) of all peers in the path through which the reply

came.

A peer that is considered as responsible for a data item that is stored in its cache,

periodically pulls for that data item. For determining the time interval TTR between

two successive pulls of a peer for a specific data item, the adaptive pulling policy

discussed in Section 5.1 is used. The adaptive pulling policy is adjusted so that peers

with high degree pull less frequently than peers with low degree. An estimation of

83

weather a peer is well-connected or not (since it cannot have knowledge of the degree

of all other peers) is computed as the portion of its degree to the sum of degrees of

peers in the path through which the peer received a reply:
= <Mt_d.gr.., 4)

sum_of _degrees

so the TTR estimation from equation 5.3 becames:

TTRe = w * TTRe + (1 - w) * TTR + h*TRe (5.5)

where h is given as an input parameter with a positive value.

To further reduce the number of unnecessary push massages, after a pull that returned

a newer version of the data item, a responsible peer initiates a U-push phase only if

the degree of the peer is larger than the average degree of peers in the path through

which the peer received the new version. Otherwise, it is considered a low-degreed

peer, therefore there is no meaning in starting pushing the new version, as most of its

neighbors most likely will have already have received the new version.

In order to investigate the effect that DPtPU policy has on the performance of PtPU

when applied to networks with power-law topology, we have performed a series of

'experiments. As in Section 5.2 we consider three cases for the PtPU strategy: 5

random walks, 8 random walks and flooding with TTL = 10. In Figures 5.13 and 5.14

we plot the consistency level and message overhead in case of 5 random walks while

Figures 5.15 and 5.16 show the same plots in the case of 8 random walkers and finally

Figures 5.17 and 5.18 show the results when PtPU uses flooding during the U-push

phase of a responsible peer. As one can notice, in all three cases, the number of both

push and pull messages are decreased causing the total message overhead to decrease

compared to the PtPU. However, the consistency percentage seems to be influenced

by the number of duplicate messages. For example, when 4 random walks is used,

PtPU has slightly better consistency levels that DPtPU due to the fact that with DPtPU

peers tend to pull less frequently than in PtPU. However, as the probability of having

duplicate messages increases (8 walkers or flooding), DPtP tends to result in higher

consistency levels. This happens because with PtPU, the TTR value of peers

(especially well-connected peers) is decremented more frequently because more pull

messages are received without locating a new version of the data item.

84

X

PtPU - DPtPU consistency

0.9 h '* * * « * ,

■ V**:.

0.8!I
1 0.7

I
I 0.6

o
5? 0.5

0.4

4tfv

Λm-
*
%

%

Push/Pull
DPiPU j

50 100 150
Simulation Time Round

200 250

Figure 5.13: Consistency percentage at each time round under PtPU and DPtPU
strategies on networks with power-law topology when for the U-push phase a 5

random walker with TTL = 10 was used

1600000

1400000

■8
1200000

3
1 1000000
>0 800000

1 600000

Σ 400000

200000

0

Pull
u Push

Figure 5.14: Total message overhead under PtPU and DPtPU strategies on
networks with power-law topology when for the U-push phase a 5 random

walker with TTL = 10 was used

85

PtPU - DPtPU consistency

Figure 5.15: Consistency percentage at each time round under PtPU and DPtPU
strategies on networks with power-law topology when for the U-push phase a 8

random strategy with TTL = 10 was used

4500000
4000000
3500000Ό

1 3000000
2 2500000 o
& 2000000 rt
S 1500000
Σ

1000000

Pull
i Push

PtPU DPtPU

Figure 5.16: Total message overhead under PtPU and DPtPU strategies on
networks with power-law topology when for the U-push phase a 8 random

walker with TTL = 10 was used

86

ο.θ

εΟ)
0.7

«2 0.6ο
Ο

0.5

0.4

-HtWjj

*
\

PtPU - DPtPU consistency

4HW;

•η Push/Pull
DPtPU

%
^MWWWWI

-INt-

50 Ί ο ο 150
Simulation Time Round

200 250

Figure 5.17: Consistency percentage at each time round under PtPU and DPtPU
strategies on networks with power-law topology when for the U-push phase

flooding with TTL = 10 was used

9000000
8000000
7000000
6000000
5000000

•u
<uJZ s-<u > o
& 4000000 f
rt |
S 3000000 !
Σ

2000000 τ-

Ι 000000 j
1

ο I

l _

Figure 5.18: Total message overhead under PtPU and DPtPU strategies on
networks with power-law topology when for the U-push phase flooding walker

with TTL = 1 0 was used

87

5.4. An adaptive quorum-based update policy

Traditional quorum consensus [1, 4, 27] has been widely used as a technique for

maintaining consistency among multiple replicas of shared data items. The basic idea

behind quorum-based techniques for consistency maintenance is that for a particular

data item we consider apart from a version number, a number of votes: when a peer

wants to read or write a data item, a minimum number of votes (quorum) must first be

obtained. When the peer has collected a specified minimum number of votes, known

as vote threshold or quorum level, it can read the data item by choosing the most up-

to-dated version number among the received votes or write a data item by pushing the

new version number to all the received votes. Usually, two different quorum levels

are defined: one for reading (read quorum level) and one for writing (write quorum

level). These thresholds indicate the minimum number of votes that need to be

collected for reading and writing.

In order to ensure consistency maintenance, there are two restrictions regarding the

values of read and write quorum levels. The first restriction is that the sum of read

q̂uorum level and write quorum level must be greater than the total number of votes

that are available in the system for the particular data item. The second restriction is

that the write quorum level must be more than half of the total number of votes

assigned for the data item. Those two restrictions ensure that the set of votes that will

be collected for a reading and the set of votes that will be written after an update will

overlap. This way, all reads In the system will be consistent as in the set of votes that

will receive, there will certainly be one vote that has the most up-to-dated version of

the data item.

The choice of appropriate read and write quorum levels may affect the total

consistency of the system and depends on the needs of the particular system. For

example, in a system with frequent reads and infrequent writes it makes sense to set a

small read quorum level and larger write quorum level but in a system with frequent

updates and rare writes a small write and a larger read quorum levels are preferred.

88

In a completely distributed and dynamic environment, where replication is used,

assigning each data item a number of votes is not easy as there is no global

information concerning the total number of replicas for the data item. Practically, the

PtPU method can be considered as a read-one-write-all quorum based policy where at

every read only one data item is accessed {readquorum level = 1) and any updates are

propagated using a TTL value equal to the TTL value used for locating the data item.

We present an adaptation of the PtPU update policy that is based on the idea of

quorum consensus. In the adaptive quorum based technique, when a peer needs to

read a data item, it is forced to read 2 replicas of the data item {read quorum level =

2) and when an update occurs in the owner of a data item, the update is forwarded {u-

push phase) with TTL value set to half as much as the TTL value used for locating the

data item. This way, we make the update process less expensive while making reads

more expensive. In a system where the updates are more frequent than reads, the total

communication cost would be decreased if the PtPU with read quorum level set to 2 is

used.

We have evaluated the performance of the adaptive quorum-based PtPU policy

t̂hrough simulation results on a network with power-law topology. Particularly, we

have altered the PtPU policy so that apart from creation of replicas and update of data

items, a peer may also occasionally perform a read where it issues a request for a data

item but if it receives a reply it does not force the creation of new replicas for the data

item. In the case of PtPU with read quorum level - 1, at each read only one replica

needs to be located and the read is considered to be consistent if the version number

that the peer received as a reply is equal to the version number of the primary copy of

the data item. When a peer creates a new replica of a data item it pushes the update

for TTL hops, equal to the TTL used for locating the data item. In the case of PtPU

with read quorum level =2, at each read two replicas need to be located and the read

is considered to be consistent if the greatest of the version numbers that the peer

received as a reply is equal to the version number of the primary copy of the data

item. When a peer creates a new replica of a data item it pushes the update for half as

much hops in PtPU with read quorum level = 1 (TTL/2). During the simulation we

count the percentage of reads that are consistent and the total messages exchanged for

pushing updates (push messages) and reading data items {read messages).

89

0.8

0.75

0.7

w 0.65

0.6

0.55

\
\

\ \
\ \\ \

----- · Read quorum level = 1
--------Read quorum le\el - 2 -

\ X

g? 0.5 ■

0.45

0.4 h

0.35
100 150 200

_1_____ 1___ —J
250 300 350

Number of reads
400 450

Figure 5.19: Percentage of consistent reads for PtPU with read

and 2

-i

500

quorum level 1

120000 r
i
j

100000 Iί
80000 t

60000 j

40000 f

20000 {
o !

loo 200 300 400 500

Read Quorum =1

100 200 300 400 500

Read Quorum - 2

Figure 5.20: Total number of push and read messages for PtPU with read

quorum level 1 and 2

90

Figures 5.19 and 5.20 present our experimental results for PtPU with read quorum

level 1 and 2 for a system where the updates are more frequent than reads.

Particularly, the number of updates that are made is 1000 for both policies and the

number of reads varies from 100 (10% of updates) to 500 (50% of updates). All the

other parameters are as summarized in Table 4.1 and Table 5.1. As it is shown in both

figures, as the number of reads increases, the percentage of consistent reads is

decreased while the total nuber of messages is increased for both policies. This

happens because the more often the reads are, the less pulls other peers have

performed. We also notice that when PtPU with read quorum level 2 is used, the

percentage of consistent reads is smaller than PtPU with read quorum level 2 but the

message overhead is smaller. There is a tradeoff between the incurred message

overhead and the achieved consistency levels; depending on the system, we can

choose to sacrifice the consistency levels of the data item read in order to achieve less

communication cost.

91

CHAPTER 6. RELATED WORK

6.1 Replication in unstructured p2p networks

6.2 Updates in unstructured p2p networks

In Chapter 6 we survey replication methods applicable to unstructured p2p systems.

Although there exist some general techniques, methodologies are distinguished

according to the issue they are targeted for (how many replicas should be created or

where should they be placed at). After replicas are created and distributed, a major

issue is their maintenance. We present strategies that have been proposed for keeping

replicas up to date so as to achieve a desired level of consistency.

6.1. Replication in unstructured p2p networks

Number of replicas: Assume that there are n peers participating in the network and s

different data items to be shared among peers. Each peer on average has a storage

capacity for storing c replicas of data items and the network has a total budget of R

copies overall (R = nc). The query rate or popu larity of item x, qx , is the probability

that any arbitrary peer issues a request for item x.

The problem of determining what is the optimal replica configuration is discussed by

Cohen & Shenker in [7], for overlays that are modeled as Erdos-Renyi random

graphs. Specifically, the authors deal with the problem of how many replicas of each

data item should exist in the network so that the search overhead for locating the item

is minimized, with the constraint of fixed storage capacity in the network. Given the

query rates for each data item, the objective is determining which fraction p x of R

92

should be allotted to each data item x, so that the expected search size (ESS), i.e. the

number of peers probed during the search process is minimized.

As mentioned in Chapter 3, two natural ways of replicating data items, namely

uniform and proportional replication, are shown to be suboptimal under the above

assumptions. In uniform replication (UR) the same number of replicas is created for

each data item, regardless of its query rate. In proportional replication (PR) the

number of replicas for each data item is proportional to the popularity of the item.

Although it seems natural to create more replicas for more popular data items so as to

favor most common queries, this is done at the expense of rare ones. In fact, it can be

shown that the ESS for a successful query is the same for both uniform and

proportional replication strategies. The optimal configuration, proved to minimize the

expected search size, is square-root replication (SR), where the number of replicas of

each data item is proportional to the square root of its query rate.

Since global knowledge is unavailable at each peer, the authors also consider ways of

realizing square-root replication using simple distributed protocols. In one of the

simplest, the number of copies created after a successful search is equal to the size of

the search, i.e. the number of peers probed during search. At steady state, and under

reasonable assumptions, this simple strategy can be shown to converge to SR. The

only critical assumption is that the fixed storage capacity of each node is managed

through replacement policies that do not depend on the identity and the query rate of

the stored items. As such, at a full node, the item that must be deleted so as to make

room for another replica cannot be given by usage-based policies such as LRU or

LFU but rather by policies like FIFO or random deletions.

Notice that although the idea is quite simple, the size of the search is normally not

known. Lv, Cao, Cohen, Li & Shenker [18] discuss two practical strategies that try to

approximate the search size, namely owner and path replication. In owner replication,

which is used in Gnutella, when a search for a data item is successful (only) the peer

that initiated the search process stores a replica of the data item. In path replication,

each query keeps track of the path it follows from the peer that issues the request to

the peer that offers the data item. When the search succeeds, all peers in this path are

93

forced to keep a replica of the data item. Clearly, path replication comes quite closer

to approximating the search size and experimental results show that it comes close to

achieving SR. Path replication is used on Freenet [6] where all nodes along the search

path are forced to create a replica using an insert message. Each node keeps both the

item and a pointer to the original data holder of the file. The replacement policy used

to manage the finite storage space at each node is LRU. Subsequent incoming

requests of evicted files, however, can still be served for much longer since the node

also holds a pointer to the original holder.

Path replication works only for search strategies based on random walks. Even in such

cases however, it may fail to discover the search size. If multiple walkers are used [7],

only the successful ones will be used to create replicas while the others will be

ignored, creating a number of replicas smaller than the total number of visited nodes.

To closely approximate the number of probes, the Pull-then-Push (PtP) strategy is

proposed [16] (already discussed in Chapter 3), where replica creation becomes a

responsibility of the inquiring peers. PtP replication consists of two phases: the p u ll

phase during which the requesting peer is trying to locate the desired data item and

t̂he push phase which begins after a successful search whereby the requesting peer

transmits the data item and causes other peers to hold replicas of it. In order to

achieve SR, the number of peers that are probed during the push phase should be

equal to the number of peers that where probed during the pull phase. Therefore, it is

essential that the same search strategy is used both for searching for the data item

(pull) and the data item transmission (push) and with the same hop limit (TTL).

Finally, every peer that is probed during the push phase is forced to hold a replica of

the data item. PtP works for both flooding and random-walker based strategies and

leads easily to SR.

For Erdos-Renyi random graphs, if flooding-based search is used and if the objective

is to minimize the search time (as opposed to search size) then proportional

replication is the optimal configuration as shown by Tewari & Kleinrock in [25],

Search time is the distance from the inquiring node where a replica of the queried

item is found. Optimality is achieved under the assumption of an ideal “controlled”

flooding strategy where search stops immediately when the data item is located. A

94

practical but slightly suboptimal search mechanism that approximates controlled

flooding is the expanding rings method described in [7]. PR has additional benefits as

well, e.g. the minimization of used network bandwidth (estimated as the average

number of links traversed per download). Tewari & Kleinrock in [25] additionally

consider practical ways of achieving PR. They basically follow owner replication (an

inquiring node keeps a copy for itself), which should naturally lead to a number of

replicas proportional to the request rates of data items. Again, a crucial factor is the

replacement strategy used in managing each node’s fixed storage space.

Experimentally, all known strategies have good but not optimal performance, with

LRU and LFU the better ones. Almost perfect PR can be achieved with a replacement

strategy based on random evictions combined with additional replica creations even if

the item is found in the inquiring node’s storage space.

Placement of replicas: The works presented so far deal mostly with determining the

optimum number of replicas and with ways to achieve this number, under certain

assumptions and constraints. Another approach is to determine where/how to place the

replicas (without striving for a particular number of them) so as to optimize some

objective. For example, the objective may be the minimization of search size or the

maximization of the percentage of successful searches.

Gia [5] has been proposed as an improvement of Gnutella to exploit peer

heterogeneity and includes mechanisms that dynamically adapt the overlay topology

and the search algorithms. The topology adaptation mechanism ensures that high-

capacity nodes are the ones that have high degree. Gia follows one-hop replication: an

index of the content of every peer is replicated to its immediate neighbors. The

rationale behind this is that since high-degree nodes are visited more frequently and

high-degree nodes are the ones with high capacity, having them know the content of

their neighbors will make them capable of providing answers to a greater number of

queries.

Jia, Pei, Li & You [14] compare various mechanisms for the problem of replica

placement in power-law networks. They consider replication of location information

(i.e. not the actual data) so as to maximize the overall performance of search queries.

95

The spread mechanisms considered are flooding, percolation-based (randomized)

flooding, random walks and high-degree random walks (HDRW). The later is a

variation of random walks where a visited peer selects the next peer randomly among

its highest-degree neighbors. By spreading location information along an HDRW,

more information reaches high-degree nodes more quickly. As a result, because it is

well known that search queries gravitate towards the high-degree nodes in the

network, potentially more searches will be resolved successfully and quickly. This

was confirmed through simulations which showed that for the same message

overhead, spreading replicas by HDRW results in better search performance than the

other mechanisms, under both flooding-based and random walk-based search.

Morselli, Bhattacharjee, Marsh & Srinivasan [19] propose LM S (Local Minima

Search), a search method and replication protocol. Assuming that both peers and data

items obtain ids uniformly at random from a given large set (so as to guarantee

uniqueness with high probability), the replication mechanism tries to replicate an item

with id x to peers with id ‘close’ to x. Such a node is called a local minimum for item

x in that its id is closest to x among the ids of all peers in the node’s /7-hop

neighborhood, where h is a given parameter. A random walk is used first, followed by

a deterministic walk that progresses towards the closest local minimum node by

selecting at each step the neighbor with the smallest distance from x. When this

random local minimum is reached, a replica is created if there is not one there already;

otherwise, the process is repeated with a random walker of double length. For locating

the item, the same procedure is used. A local minimum that receives the query replies

with the replica or with a failure message depending on whether it stores the item or

not. To improve success rate and response time, multiple such walkers can be utilized.

The protocol can achieve quite high query success probabilities but at the expense of a

possibly large number of replicas (o l j n / d h), where d h is the minimum size of an h-

hop neighborhood), which can be a problem if the storage space in each peer is

limited.

Maximization of the probability of success is also the subject of the work by Sozio,

Neumann & Weikum [23]. They consider the problem of replica placement in

96

arbitrary networks that are searched by random walks. Given the peer capacities and

the query rates qXJ, i.e. the fraction of all queries (issued in the whole network) for data

item x by peer j , the problem of finding an assignment of replicas to peers so as to

maximize the probability of a successful query is shown to be related to the multi

knapsack problem, where there is a set of bins with given capacities and a set of

elements each with size and profit and the aim is to find a feasible packing that

maximizes the profit. The problem can be tackled by good approximation algorithms,

which however are centralized. The authors present P2R2, a distributed algorithm to

solve the problem, which is based on each peery keeping a special counter for each

data item x, rxj. The counter rxj is incremented for each query about x that passes

through node j and is unsuccessful or is satisfied by a peer with larger id. This

requires that certain information is piggybacked on the query messages and that

random walks are always unfolded to their maximum length even if the item is

located at some step earlier than the expiration of TTL. P2R2 leads to a probability of

query success which is within a factor of 2 from the optimal.

Summary: Replication methods that are applicable to unstructured p2p systems

^provide answers to the questions of how many replicas are created for each data item,

according to which optimization criteria, and where those replicas are placed. Table

6.1 summarizes how replication methods described above deal with each of these

issues.

Table 6.1: Summary of replication methods for unstructured p2p systems

How many Where/How What Goal

Sqaure-root
R eplication

[1 8]

Proportional to the

square root of the

query rate of each

data item

- Data items

Minimum

expected

search size

O wner

Replication

[1 8]

Proportional to the

query rate of each

data item

Only to the

requesting peer
Data items

Minimum

expected

search size

97

Path

Replication

[18]

Proportional to the

number of probes

for locating the item

Along the path

from the

requesting peer

to the provider

peer

Data items

Minimum

expected

search size

Pull-then-Push

Replication

[16]

Proportional to the

number of probes

for locating the item

Data items

Minimum

expected

search size

Proportional

Replication

[24]

Proportional to the

query rate of each

data item

- Data items

Minimum

expected

search time

Gia [5]
Equal to the degree

of each node

1-hop

neighborhood

Location

information

Maximum

success rate

HDRW [14]

Proportional to the

number of probes

for locating the

item

Along a degree-

biased search

path

Location

information

Good

success rate

and search

size

LMS [19]
-

At peers

considered as

local minima for

a data item

Data items

Good

success rate

and search

size

P2R2J23]
-

At peers

resulting in

greatest success

rate for a data

item

Data items
Maximum

success rate

98

6.2. Updates in unstructured p2p networks

As mentioned above, the consistency mechanisms that have been proposed use a

push-based and/or a pull-based propagation algorithm. One more possibility can be

found in the work of Demers et al [9], who have applied the theory of epidemics to

the problem of update propagation in a distributed environment, proposing a number

of generic methods. The first method the authors examine is direct m oil, where the

owner of a data item contacts ('mails') all the other peers at every update. This

approach, although simple, can be overwhelming in a p2p network with a large

number of nodes. In the anti-entropy method each peer regularly chooses a neighbor

and by exchanging their content resolves any differences between them (if a newer

version of an item is found, it updates its own replica). A peer can either push its

content to the other peer letting it check for inconsistencies, or pull content, or even

push and pull content at the same time. Another update spreading algorithm

considered is rum or m ongering: at first all peers are considered ‘ ignorant' when an

update is out and the update becomes a ‘hot rumor’ . If a peer knows of such a rumor,

it periodically chooses another peer and tries to communicate the rumor. If the peer

,sees that the rumor is no longer hot (i.e. most of the peers it contacts already know it),

it stops propagating it any further.

If the direct mail method is to be used, a natural plan would be to know (most of) the

peers that hold a replica of the particular data item (statefull replication) so as to only

contact those upon an update. A mechanism like this is assumed by Datta, Hauswirth

& Aberer in [8]. The authors study the performance of a generic hybrid push-pull

consistency maintenance protocol for p2p environments where peers join and leave

the network at a very high rate. At the push phase, the owner sends the updated item,

along with its version number, to the peers that hold replicas. This requires knowledge

of who holds replicas of what, but the update is not communicated through direct

mail; it is rather propagated with a randomized flooding among the affected peers.

The owner performs a selective push of its updates to a subset of the peers that will be

affected by it (because they have a replica of the updated data item); each peer that

receives the update also propagates it to a subset of affected peers it knows, and so on.

To reduce the overhead, each message contains a partial list of the peers that have

99

already been contacted. The method is accompanied by a pull phase that takes place

whenever a peer is reconnected to the network after a disconnection or has not

received updates for a long time (in the spirit of the anti-entropy method); during this

pull phase, it contacts online peers with replicas of the items it stores, for their latest

versions.

UPTReC - update propagation thought replica chain [28] - exploits similar pull and

push mechanisms to scatter updates in decentralized and unstructured p2p systems.

The peers that hold the replicas of an item x form a logical bi-directional chain, where

each peer maintains information about the k closest peers in the chain in each

direction. Peers may join (when a new replica is created) or leave (when removing a

replica) by pushing messages at appropriate directions in the chain. Updates are

similarly propagated by pushing messages at both directions, informing up to 2k

nodes; at each direction the furthest known peer undertakes the responsibility of

reaching the next bunch of k nodes in the chain and so on. Nodes that reconnect after

a disconnection pull in order to synchronize. Maintaining such a chain for every item

reduces the message overhead on updates while also providing better consistency

levels than Datta, Hauswirth & Aberer [8] as shown experimentally.

Update propagation in the last two methods occurs strictly among the interested peers;

although this seems efficient in terms of overheads and consistency levels, it

nevertheless incurs the extra state overhead of keeping track of all peers holding a

replica of the data item, which could be prohibitive in an unstructured and dynamic

p2p network. Three update propagation policies (two based on push and pull

techniques and a hybrid one that combines the push and pull policies) are proposed in

[15] for practical networks. The authors assume a master-copy schema where the

owner of the data item always has the most up to date version and all peers that hold a

replica need to be kept consistent; the overlay network is unstructured and the owners

do not know who/where replica holders are. To achieve consistency, each data item is

associated with a version number which is incremented by the owner every time an

update occurs. In the push-based policy, the owner of a data item broadcasts an

invalidation message when a data item is modified. The invalidation message is

propagated through the network using a flooding algorithm, limited to a predefined

100

number of hops (TTL). When a peer receives an invalidation message, it checks its

cache. If it holds a replica of the data item and the stored version is smaller than the

received version number, it invalidates the replica in its cache. In the proposed pull-

based policy, a peer polls the owner of an item it holds in its cache to determine if the

replica is stale or not. An adaptive polling policy is used to determine how frequently

the peer should poll. It is based on a time-to-refresh (TTR) value associated with each

item in the cache, which indicates when the next pull for the item should occur. The

TTR is increased by an additive amount C (TTR = TTR+C) if the peer finds out that a

data item has not been modified between two successive polls, otherwise TTR is

reduced by a multiplicative factor D (TTR = TTR/Z)). A hybrid push and pull

approach can also be used to combine both techniques. In this hybrid scheme, the

owner propagates invalidation messages using a limited push. In addition, a peer that

holds a replica may pull adaptively to make sure that the replica is valid. TTR can be

further tuned by a factor that depends on the degree of a peer; the intuition behind this

is that highly connected nodes should poll less frequently since they are potentially

easier to reach by the owner push.

An alternative hybrid push/pull update propagation policy, PtPU (already discussed in

Chapter 5), is in [16]. It is assumed that for the creation of replicas in the p2p network

the PuII-then-Push algorithm was used where a peer that requests an item, after a

successful search (pull phase) enters a push phase where it transmits replicas of the

item using the same algorithm as in the pull phase. Given this replica creation

approach, each peer that holds a data item is characterized as owner if it is allowed to

apply updates, responsible if it has requested the data item and has forced the creation

of replicas or indifferent if it has been forced to hold a replica without requesting the

data item. In the PtPU policy, the owner performs a limited broadcast of the new

version of a data item when an update occurs. If a peer that is characterized as

responsible for an item receives the broadcast message with a new version of the data

item, it undertakes the task of informing the indifferent peers. This is done by

propagating the update message (U-push phase) exactly as in the push phase when the

replicas were created. Apart from pushing the updates they receive from the owner,

responsible peers also pull periodically in order to become aware of more updates. To

determine the frequency of the pull, the adaptive polling policy is used, where a TTR

101

value is increased or decreased depending on weather the data item has been changed

or not between two successive poll periods.

Wang, Kumar, Das & Shen in [29] consider multi-master replication where all replica

holders (termed “replica peers” - RPs) are allowed to update the item. In particular, a

subset of RPs become “virtual servers” (VRPs) for the data item. The set of VRPs

changes dynamically over time, based on node availability. Any replica peer updating

the item contacts a VRP to undertake the update coordination. This “master” VRP

first enters an agreement phase with the other VRPs in order to commit the update.

When agreement is achieved, the master VRP obtains the updated item from the

replica peer and pushes it to the rest VRPs and to a partial list of the other RPs.

Among the other RPs the update propagation is implemented using a combination of

push and pull. The protocol achieves one-copy serializabi 1 ity.

102

CHAPTER 7. CONCLUSIONS

7.1 Summary

7.2 Future Work

7.1. Summary

The peer-to-peer communication model has attracted considerable attention over the

past few years as a new network model, which is widely used for data sharing. Unlike

the client-server model, p2p model does not require a central node (a server) to

provide access to shared resources. The peers participating in a p2p system construct a

logical (overlay) network that is built on top of the physical one (typically the

Internet). Any peer in the network can pose a query for retrieving a particular data

item. Such queries are forwarded through the overlay network until peers that hold the

data item in request are located. Replication has been proposed for improving the

delay of a search process, robustness against frequent peer failures or departures and

system availability. However, the effectiveness of a replication strategy seems to be

influenced by the topology of the overlay network. The topology of a p2p overlay

network shows evidence of power-law behavior [11]. This property means that peers

in the overlay network are not connected randomly, but most peers are connected to a

limited number of peers. Peers with many connections have a big influence on the

stability of the overlay network. For this reason, we have defined and analyzed some

basic properties from graph theory that are reflected to real networks, including

unstructured p2p networks, and described a model for constructing network graphs

that obey power-laws.

103

We have performed a series of experiments in order to investigate the effect of the

overlay network topology on some replication strategies that exist in the bibliography.

Our results show that in power-law networks, the well-connected peers cause large

communication cost part of which can be avoided. The problem that we deal with is

how can we reduce the communication cost imposed on networks with power-law

topology. We have also studied the problem of maintaining consistency of replicas

when updates in data items occur. Particularly, we have investigated the influence of

the power-law overlay network topology on some known consistency maintenance

protocols through simulation experiments. Our result revealed that part of the message

overhead induced by those methods could be avoided if the power-law properties are

taken into consideration. Based on this observation, we have proposed a new update

policy that is intended for p2p systems with power-law overlay network topology.

Finally, we have proposed an alternative approach for maintaining consistency in

distributed, dynamic p2p systems that is based on the traditional quorum consensus.

7.2. Future Work

Throughout our simulation studies, we have assumed that the network does not

change during the execution of a replica creation or an update phase. The proposed

strategies were applied to practically static networks. However, applying those

strategies on a more dynamic environment where peers join and leave the network at

will, would be an interesting topic for further research. When it comes to the DPtPU

update policy that is used, in highly dynamic networks, we encounter the problem that

if a “responsible” peer leaves the system, a number of peers are left with replicas that

will remain stale as no one will communicate any updates to them.

It would also be useful to study the behavior of the proposed strategies on a real p2p

application so that we could obtain more realistic estimation of the real search delay

or the communication cost, taking into account the shortcomings that are encountered

in real-life (network bandwidth, traffic). Finally, adopting a quorum-based technique

for unstructured p2p networks, especially in networks with power-law topology,

remains an open research area.

104

REFERENCES

[1] Abraham, I., Malkhi, D. (2005) Probabilistic quorums for dynamic systems.,
Distributed Computing, vol. 18, no. 2, (pp. 113-124).

[2] Alqaralleh, B.A., Wang, C., Zhou, B. B., Zomaya, A.Y. (2007). Effects of
Replica Placement Algorithms on Performance of structured Overlay Networks, In
Proc. IPDPS 2007, IEEE Int 7 Parallel and Distributed Processing Symposium (pp. 1 -
8). Long Beach, CA, USA.

[3] Barab^si, A.L, Albert, R., (1999). Emergence of Scaling in Random Networks.
Science, vol. 286, pp. 509-512, 1999.

[4] Chakinala, R.C, Kumar asubramanian A., Laing K.A, Manokaran,R., Pandu
Rangan R., Rajaraman, R.(2006) Playing push vs pull, models and algorithms for
disseminating dynamic data in networks.In Procs of SPAA 2006: (p.p) 244-253

'[5] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., and Shenker, S. (2003).
Making gnutella-like P2P systems scalable. In Proc. of SIGCOMM’03 (pp. 407-418).
Karlsruhe, Germany.

[6] Clark, I., Miller, S.G., Hong, T.W., Sandberg, O., & Wiley, B. (2002).
Protecting free expression online with Freenet. IEEE Internet Computing, 6 (1), 40-
49.

[7] Cohen, E., and Shenker, S. (2002). Replication Strategies in Unstructured Peer-
to-Peer Networks. In Proc. of SIGCOMMO2 (pp. 177-190). Pittsburgh, Pennsylvania,
USA.

[8] Datta, A., Heuswirth, H.,and Aberer, K. (2003). Updates in highly unreliable,
replicated peer-to-peer systems. In Proc. of ICDCS 2003, 23rd Int Ί Conference on
Distributed Computing Systems (pp. 76-85). Providence, Rhode Island, May 2003.

[9] Demers, A., Green, D., Hauser, C., Irish, W., Larson, I , Shenker, S., Sturgis, H.,
Swinehart, D., and Terry, D. (1987). Epidemic algorithms for replicated database
maintenance. In Proc. PODC 1987, 6th Annual ACM Symposium on Principles of
Distributed Computing (pp. 1-12). Vancouver, Canada.

105

[10] Erdos, P., Renyi., A, (1960), On evolution of random graphs., Publications of
the mathematical Institute of the Hungarian Academy of Sciences, (p.p 17-61).

[11] Faloiitsos M., Faloutsos P., Faloutsos.,(1999). On power-law Relationships of
Internet Topology, In Proc. of ACM SIGCOMM’99 (pp 251-262j, Boston, USA.

[12] Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., and Keleher, P. (2004).
Adaptive replication in peer-to-peer systems. In Proc. 1CDCS 2004, 24th Int’l
Conference on Distributed Computing Systems (pp. 360-369). Tokyo, Japan.

[13] http://en.wikipedia.org/wiki/PenOn-Frobenius_theorem

[14] Jia, Z., Pei, B., Li, M. and You, J. (2005). A Comparison of Spread Methods in
Unstructured p2p Networks. In Proc. of 1CCSA 2005, Int’l Conference on
Computational Science and its Applications (pp. 10-18). Singapore.

[15] Lan, J., Liu, X., Shenoy, P., Ramamritham, K. (2003). Consistency
Maintenance in Peer-to-peer File Sharing Networks. In Proc. ofWIAPP’03, 3rd IEEE
Workshop On Internet Applications (pp. 76-85). San Jose, CA, USA.

[16] Leontiadis, E., Dimakopoulos, V. V., and Pitoura, E. (2006). Creating and
Maintaining Replicas in Unstructured Peer-to-Peer Systems, In Proc. of EURO-PAR
2006, 12th Inti Euro-Par Conference on Parallel Processing (pp. 1015-102).
Dresden, Germany. Springer: LNCS 4128.

[17] Johnsonbaugh, R., Kalin, M., (1991). A Graph Generation Software Package, In
Proc of 22nd SIGCSE Technical Symposium, (pp 151-154), San Antonio, Texas,
USA, March 7-8, 1991.

[18] Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker S. (2002). Search and replication
in unstructured peer-to-peer networks. In Proc. of ICS 2002, 16,h ACM Int’l
Conference on Supercomputing (pp. 84-95). New York, New York, USA.

[19] Morselli, R., Bhattacharjee, B., Marsh, M.A., and Srinivasan, A. (2005).
Efficient Lookup on Unstructured Topologies. In Proc. PODC 2005, 24th Symposium
on Principles of Distributed Computing. Las Vegas, NV, USA.

[20] OMNET++ - A tool for simulation programming available at
http://www.omnetpp.org 21 * *

[21] Palmer, C.R., Steffan, J.G., (2000) Generating network topologies that obey
power-laws, In Proc. Global Internet Symposium (GLOBECOM), pp. 434-432, San
Francisco, CA, USA.

http://en.wikipedia.org/wiki/PenOn-Frobenius_theorem
http://www.omnetpp.org

1 0 6

[22] Roussopoulos, M., and Baker, M. (2003). CUP: Controlled Update Propagation
in peer-to-peer networks, In Proc. of the Annual USENIX Technical Conference (pp.
167-180). San Antonio, Texas, USA.

[23] Sozio, M., Neumann, T. and, Weikum, G. (2008). Near-Optimal Dynamic
Replication in Unstructured Peer-to-Peer Networks. In Proc. PODS’08, 27th ACM
S1GMOD-S1GACT-SIGART Symposium on Principles o f Database Systems (pp. 281-
290). Vancouver, BC, Canada.

[24] Susarla, S., and Carter, J. (2005). Flexible Consistency for Wide Area Peer
Replication. In Proc. ICDCS 2005, 25th IEEE In ti Conference on Distributed
Computing Systems (pp. 199-208). Ohio, USA.

[25] Tewari, S.,and Kleinrock, L. (2006). Proportional Replication in Peer-to-Peer
Networks. In Proc. oflNFOCOM2006 (pp 1-12), Barcelona, Spain.

[26] Tewari, S.,and Kleinrock, L. (2005). Analysis of search and Replication in
Unstructured Peer-to-Peer Networks, In Proc. of SIGMETRJCS 2005 (pp 404-405).
Banff, Canada.

[27] Vecchio D. and Son, S. H. (2005). Flexible Update Management in Peer-to-Peer
Database Systems. In Proc. IDEAS 2005, Int’l Database Engineering and
Applications Symposium. Montreal, Canada.

[28] Wang, Kumar, M., Das,S.K and Shen, H. (2006) File Consistency Maintenance
Through Virtual Servers in p2p Systems, In Proc. 11th IEEE Symposium on
Computers and Communications (ISCC’06) (pp. 435-441). Sardinia, Italy. 29

[29] Wang, Z., Das, S. K., Kumar, M., and Shen, H. (2007). An efficient update
propagation algorithm for p2p systems. Computer Communications 30, 110 6-1115.

107

SHORT CV

Mirto Ntetsika was born in Ioannina, Greece in 1984. She was admitted at the

Computer Science Department of the University of Ioannina in 2002 and obtained the

BSc degree in 2006. Since the same year she is an MSc student at the same

department. She is a member of the Distributed Management of Data (DMOD)

Laboratory since 2007. So far, her research was mainly focused on Databases and

Peer-to-Peer systems, with particular interest on issues concerning replication and

consistency maintenance on Peer-to-Peer systems with non-uniform overlay

topologies, such as power-law networks.

