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ABSTRACT

Georgios Rogkakos, MSc, Computer Science Department, University of loannina,
Greece. July, 2010. Similarity Measures For Multidimensional Data.

Thesis Supervisor: Panos Vassiliadis.

How similar are two data-cubes? In other words, the question under consideration is:
given two sets of points in a multidimensional hierarchical space, what is the distance
value between them? Due to the great amount of data stored nowadays, it is
fundamental to provide similarity measures within sets of multidimensional data. This
problem is generic since it can be found within a number of applications in fields such
as multimedia information retrieval, scientific databases and digital libraries. In the
context of such applications a huge amount of heterogeneous data is stored. This leads
to the necessity of similarity search among this type of data. Therefore, there is a need

for similarity measures that can capture human demands of search computing.

In this thesis we explore various distance functions that can be used over
multidimensional hierarchical spaces. We organize the discussed functions with
respect to the properties of the dimension hierarchies, levels and values. Especially,
the taxonomy of distance functions we provide is as follows: Firstly, we describe
distance functions that compute the distance between two values of a dimension of a
multidimensional space, secondly we describe distance function that compute the
distance between two points of a multidimensional space and finally we describe
distance functions that compute the distance of two sets of points of a

multidimensional space.

In order to discover which distance functions are more suitable and meaningful to the

users, we conducted two user study analysis. The first user study analysis concerns
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the most preferred distance function from the category of distance functions between
two values of a dimension. The findings of this user study indicate that the most
preferred distance function was the length of the path between the two values and

their common ancestor in the dimension’s hierarchy.

Taking into consideration the findings of the first user study we conducted a second
user study. The second user study aimed in discovering which distance function,
between the closest relative and the Hausdorff, from the category of distance
functions between two data cubes, users prefer. The results of the second user study

indicate that the closest relative distance function was rather preferred by users in

congrast to the Hausdorff function.



CHAPTER 1. INTRODUCTION

How similar are two data-cubes? To put the question a little more precisely, given two
sets of points in a multidimensional hierarchical space, what is the distance between
these two collections? The above research problem is generic and has several
app‘licalions in domains such as multimedia information retrieval, statistical data
analysis, scientific databases and digital libraries [ZADBO06]. In such applications,
where contemporary data lead to huge repositories of heterogeneous data stored in
data warehouses, there is a need of similarity search that complements the traditional
exact match search. For example, one might easily envision a context where a user of
an OLAP tool is proactively informed on reports that are similar to the one she is

currently browsing.

In this thesis, we address the problem by (a) organizing alternative distance functions
in a taxonomy of functions and (b) experimentally assessing the effectiveness of each

distance function via a user study.

So far, related work has dealt with similar problems in different ways; however, this
particular problem has not been dealt per se. Specifically, Sarawagi in [Sara99] and
[Sara00] has dealt with the problem of discovering interesting patterns and differences
within two instances of an OLAP cube. The DIFF and RELAX operators summarize
the difference between two sub-cubes in order to discover the reason of abnormalities
within the measures of two given cells. The only common factor of this work with
ours is the usage of the Manhattan distance function in the procedure of discovering
abnormalities. Our work addresses the problem of finding the appropriate distance
function among a great variety of functions in order to compute the similarity between
two given OLAP cubes. Giacometti et. al. [GMNSO09] propose a recommendation

system for OLAP queries by evaluating distances between multidimensional queries.



This work involves the distance between queries whereas our work involves distance
functions between the data of multidimensional queries. Li et.al. in [LiBMO03]
describe the semantic similarity between ontologies. In contrast to our work, they
consider a limited set of functions whereas we have a wider range of distance

functions and our work focuses on distances between data in the multidimensional

space.

The main findings of our approach are due to two user studies that we have conducted
to assess which distance functions appear to work better for the users (Section 4). The
first experiment involved 15 users of various backgrounds and the Adulr real dataset
[FulWYO05]. Each user was given 14 scenarios that contained a reference cube as well
as a set 0 variant cubes, each associated with a distance function. The task of the user
was to select a cube from the set of variant cubes that seemed more similar to the
reference cube. The diversity of users and data types contained in the experiment was
taken into consideration in order to discover which distance function between two
values of a dimension is preferred depending on the user group or the type of data.
The first user study showed that all distance functions under test were used at least
once, but there were a couple of distance functions that were most preferred among
the others. In particular, the users seemed to prefer distance functions that express the
similarity between two cubes based on the hierarchical shortest path or in regards to

ancestor values.

The second user study involved 39 users and the results of the first usér study were
taken into account. Each user was given 14 scenarios that contained a reference cube
and three variant cubes. The purpose of this second user study concerns the most
preferred distance function between two data cubes.

Our approach is structured as follows: We start (Chapter 2) with the a description of
the related work then (Chapter 3) we provide some formal foundations of modeling
multidimensional spaces and cubes based on an existing model in the related literature
[VaSk00]. and we also provide a taxonomy of distance functions for cubes based on a

detailed study of the characteristics of dimension hierarchies, levels and members.
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At first, we organize our families of functions as follows: Initially we describe
functions that can be applied between two specific values that belong in the same
level of hierarchy within a given dimension. Following, we describe distance

functions that are applied between two cells of a cube and then distance functions

between two OLAP cubes.

"

Finally, in chapter 4 the implementation issues of this thesis are presented and also the

user study experiments along with the results of the most preferred functions.
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CHAPTER 2. RELATED WORK

2.1 Fundamentals
2.2 Distances on Graphs and Lattices
2.3 Distances for Collections of Structured Data

2.4 Integrating Texts and Databases

In the related literature there are a number of papers that have pointed out the
necessity of having appropriate similarity measures in order to discover objects that
are similar to each other and measure in a quantitative way the distance among them.
Most of them examine similarity measures used between objects that are described
from a number of various features such as in image retrieval or data that are stored in
a hierarchical taxonomy. In addition, there are a few papers that describe how
similarity measures used by human perception and computer science follow different
properties. Not only computer scientists, but also scientists from other areas need
similarity measures for the purpose of comparing data and objects of their expertise.
In the area of Biology, a well-known example is the need of compéring genes.
Another area that has dealt with the problem of introducing similarity measures is that
of mathematics. Computer scientists in the areas of data mining and information
retrieval have also considered the problem of introducing appropriate similarity
measures. Few papers have associated the areas of mathematics and computer science
and have introduced similarity measures for the concept of lattices by mapping them

with semantic hierarchies.

In the following subsections we will present the related work. More precisely
subsection 2.1 describes some fundamental concepts about distance functions.

subsection 2.2 presents some distance functions that can be applied on graphs and
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lattices, subsection 2.3 presents distances for structured data and finally subsection 2.4

describes a work about integrating texts and databases.

2.1. Fundamentals

In this subsection, we start with the presentation of some fundamental distance
functions and their properties that were used in this MSc thesis. Specifically, this
subsection is structured as follows: in section 2.1.1 we start the analysis of several
distance measures that are categorized according to the types of variables that are
applied on, in section 2.1.2 the Hausdorff distance is presented and in section 2.1.3 we
discuss a work that introduces a similarity measure and demurs at the classic metric

axioms.

2.1.1. Distance Measures

In this section, we follow the presentation of fundamental concepts around some
common distance measures made by Han and Kamber in [JK00]. Generally, a
distance measure is called a metric when it satisfies the following criteria:

d(ij)=0

d(iy) = d(.i)

d(i,i) =0

d(ij) < d(i ky+d( k)

The distance measures are categorized according to the type of variables that they are
applied on, in order to describe their dissimilarity. The different types of variables are
the interval-scaled variables, the binary variables, the categorical variables and,

finally, variables of mixed types.

-

As for the interval-scaled variables the presented distances are the Euclidean, the
Manhartan and the Minkowski distances. For two points py(x;, x2 ,..., x, ) and
P2(1Y2,- -, Yn) in the n dimensional space, the formulas for the above distances are
expressed as:

Manhattan: dist(py.p2)=|x, =y, |+ x, =y, | +... +|x, =y, |
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Euclidean: dist(py,p))= \/l X, =¥, 2 +x, -y, P+ +]x, -y,

Minkowski (p-norm): dist(p\,p2)= {/[ X, =" +x, =y, |7+ Hx, =y, 17

Binary variables. The Jaccard distance is defined for pairs of sets comprised of
members that are treated as binary variables (i.e., we can only check them for identity
| AN B|
AV B

from another point of view, we need to define two categories of binary variables

or not). For two objects 4 and B the jaccard distance isJ(A4, B) = . Viewed

before defining the Jaccard similarity. The first category is the symmetric binary
variables and the second the asymmetric binary variables. The difference between
asymmetric and symmetric binary variables is that when considering of symmetric
variables, both of its states are equally valuable. For example, the agreement of two 1s
(positive match) is considered the same as the agreement of two 0s (negative match).

.y . . i . r+s
So, for the symmetric binary objects i,/ we can use the equation d(i, j) = ——————
g+r+s+t

where ¢ is the number of variables that equal 1 for both i and j, r is the number of
variables that equal to 1 for object i but that are 0 for object j, s is the number of
variables that equal 0 for 7/ but equal 1 forj and ¢ is the number of variables that equal
0 for both 7 and j. For the asymmetric binary dissimilarity between two objects i and j

. . . . r+S -
the previous equation becomes d(i,j)= ———— because negative matches

gq+r+s

considered unimportant and so ¢ is ignored. Based on the notion of similarity between
i and j the equation of similarity issim(i, j) = 9 - —d(i,j). Then, sim(ij) is
g+r+s

called Jaccard coefficient.

A categorical variable is a generalization of the binary variable because it can take

more than two states. So, the dissimilarity for two categorical objects i,j is computed

) .. p—m . . .
by the equation d(i, j) = P77 \where m is the number of matches and p is the total
P

number of variables.



2.1.2. Hausdorff Distance
In [ZADBO6] the authors describe the Hausdorff distance. For two sets of features
A(xX1,X2,....Xn) and B(y1),....ym) the Hausdorff distance is defined as: d(4,B) =

max{dy(A.B),dy(B,A)}. In the above formula di(4,B) = sup dp(x;,B) and di(B,A)=

N€EA

sup dp(4.yj) where sup is the supremum of all the distances d,. The dj(x;,B) and
yeB -

dy(A,y;) are denoted by the following formulas : dpy(x,B)= i,“,’; de(x,y;) and dy(Ay)=
in{' de(x;,y) where inf is the infimum of all the distances d. Finally, d. can be an

arbitrary distance measure, e.g. the Euclidean distance.
For example, in the figure 2.1 there are two sets of points, the set 4 containing {a;, a,
a3} and the set B containing {b,,b,,b;}. We assume, without loss of generality, that d.

denotes the Euclidean distance. In this example the notions of inf and sup coincide in

being the min and max respectively. So dp(al,B)=in§ de(ay.y))=de(a,, b) and similarly
ye

dy(ar,B)= de(aa, by), dy(as,B)=d(a3, by), di(4,b1)=de(az, by), dp(A4,b2)=dc(az, by) and
dy(A,b3)=dc(ay,b3). From the above, we have that dy(4,8)= sup dj(x;,B)= de(a;, by) and

X€A

also  dyB,A)= sup dyAy)= dy4,b3)=d(a, B;). Finally, d4,B) =

yeB

max{dy(A,B),d{(B,A)}=max{ de(a,, by), de(ay, b3)}.

Figure 2.1 Two sets of points



2.1.3. Controversy on Metric Axioms

In [SJ95] and [SJ99] the authors introduce a similarity measure as an extension of
Tversky’s Feature Contrast. This extension is based on Fuzzy Logic and it is called
Fuzzy Feature Contrast (FFC). Especially in the area of image and texture comparison
the authors suggest that similarity measures must be close enough to human’s
similarity judgment introduced by psychologists. The authors were driven to use
Fuzzy Logic because in a variety of works there is a disagreement on the
correspondence of the metric axioms to the behavior of the real users in practice.

Specifically, they provide a collection of references where the metric axioms have

been refuted.

-

After rejecting the geometrical distance axioms such as symmetry and triangular
inequality, the authors present the extension of Tversky’s Feature Contrast by making
use of Fuzzy Logic. The trivial procedure of measuring the similarity of two images is
by expressing it as a combination (e.g., average, weighted summation) of a number of
individual similarity measures between the various features that describe an image. In
this paper, the authors introduce a similarity measure based on Fuzzy Logic. This
way, the authors manage to express similarity between two images that are described
by a number of features by taking into consideration the relationship and degree of
association among the object’s features. The idea of expressing a similarity measure
through a Fuzzy Logic model was mainly motivated by the need of expressing a
measure that can capture the human judgment. Also, the authors conducted a number
of experiments trying to find similarities between images of faces and textures. Their
main goal was to introduce a measure between features that captures the human
perception as close as possible. Therefore, in their experiments they compared FFC
and a couple of other measures (e.g., Euclidean distance) with human perception.
Specifically, human subjects provided a ranking of images (faces, textures), which

were compared with the equivalent rankings that occurred from the FFC and the other

measurcs.



2.2. Distances on Graphs and Lattices

In this section we present distances that are applied on Graphs and Lattices. In section
2.2.1 the basic ideas of highway hierarchies and distances in semantic hierarchies are
presented. Following, in section 2.2.2 the distances on lattices and semantic
hierarchies are presented. Finally, in section 2.2.3 the similarity of words in semantic

hierarchies is discussed.

2.2.1. Highway Hierarchies

In [SS05] the authors introduce a technique for the faster computation of shortest
paths.between two nodes of a graph. This technique borrows the idea of the highway
roads in the road networks and also the Dijkstra’s algorithm idea. The technique is
based on the observation that the shortest paths among two points in a road network,
usually consists of small roads locally and a highway road. So, the distance between
two nodes in a road network is calculated by finding the shortest path of each node
from a highway road and then by making use of the highway road. Based on the
previous idea, a highway hierarchy is constructed. Specifically, the highway hierarchy
consists of highway edges with attached sub trees of locally computable shortest paths
of nodes from the highway network. An edge of the complete graph belongs in the set
of highway edges if it represents an important road according to the information that it

carries.

The approach of [SaSc05] was motivated by the great amount of time needed to
compute distances of shortest paths in large road networks when using Dijkstra’s
Algorithm. The authors proposed an approach that uses the highway hierarchies in
order to compute distance matrices. The basic algorithm for fast computation of
distance tables is introduced based on the basic concepts and definitions of highway
hierarchies. This algorithm is making use of the Highway Hierarchies query algorithm
and two specific operations, namely the operations Highway Hierarchy Forward
Search Space and Highway Hierarchy Backward Search Space. Highway Forward
Search Space finds the nodes that belong in the shortest path originating {from a source
node in a graph G. Backward Search on the other hand finds the set of nodes that

belong in the shortest path originating from a target node in the converse graph of G.
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Finally, some optimizations on this algorithm bring further improvement on the
computationa) time of the distance tables. In their experiments, the authors compared
Dijkstra’s Algorithm with the Highway Hierarchies method for the computation of
distance matrices. The first experiment included 100 random nodes on the street
network of Germany and the second included 173 nodes on the street network of four
European countries. The experiments showed that the proposed approach for the

computation of distance matrices outperforms Dijkstra’s algorithm.

2.2.2. Lattices and Semantic Hierarchies

In [1004], the author describes some fundamental ideas about treating large posets as
data objects. Specifically, he refers to the notions of distance and level in such
structures as an interval-valued property. A partially order set (poset) is a directed
graph with no cycles and it is more general than a tree or a lattice and a node can have
multiple parents. The main idea that gave feed to this work was the POSet Ontology
Categorizer (POSOC), which was motivated by the needs of biologists to use
algorithmic tools to navigate the Gene Ontology (GO). After reviewing POSOC’s
foundations, including some elementary theory about partially ordered set (poset) and
in general semantic hierarchies, the author introduces two basic distance metrics in
the overall structure of object under the poset notion. Namely, these metrics are (a)
the interval valued poset rank and (b) the vector-valued poset distance. The first
metric describes a rank as a measure of the vertical “level” of a node within a poset.
The second metric describes a distance measure among nodes by taking into
consideration their horizontal relationship as well. Finally, the author provides a
discussion of how the two proposed metrics could work in concept lattices. This

discussion is based on the trivial observation that lattices are special cases of posets.

In [JBOS5] paper the authors introduce link weights and weighted normalized pseudo-
distances among comparable nodes in a poset. Taking into consideration some
fundamental elements on DAGs, Posets and Covers, the authors continue by
reintroducing the pseudo-distances implemented in Posoc. Posoc is a Categorizer for a
gene ontology poset which is called a POSet Ontology (POSO) [JMFHO04]. These

pseudo-distances briefly are (a) the minimum chain length. (b) the maximum chain
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length, (c) the average of extreme chain length and (d) the average of all chain

lengths. A collection 4 of nodes in a poset is called chain if Va,be A, a<borazb

In addition there is a quick review on the basic operations of probabilities on posets.

2.2.3. Semantic Similarity between Words

In [YZMO3] the authors introduce a similarity measure in the field of semantic
similarity between words. The propose measure combines different, already known
measures such us the path length between two words in a semantic hierarchy, the
depth of the subsumer concept node of these words in the hierarchy and the
information content that makes use of the probability of encountering an instance of a
concept in a corpus. The proposed measure and other measures were tested through an
extensive experimental analysis in order to discover which measure captures better
the human perception. For the needs of their experiments, the authors used two
databases, the WordNet [M]95] and the Brown Corpus [7]. To evaluate their method
against the state of the art methods, they applied word similarity on a word set with
human ratings. The word set consisted of two subsets. The first word set included 30
pairs of words and the second included 37 pairs. All pairs were rated for similarity in
meaning. The authors used the second word set in order to design their method. The
first word set was used in order to test their proposed method. The authors tested 10
variations of different measures where each one occurred as a combination of the
above similarity measures (i.e., the one proposed by the authors and the already
known measures) and by altering the values of different parameters. The findings of
[YZMO3] show that the best similarity measure among the 10 measures that were
tested was the similarity measure, that combined the shortest path length and the
depth of the subsumer in a nonlinearly type of combination. Moreover, this new

measure outperforms all previous published methods.

2.3. Distances for Collections of Structured Data

This category includes works where the distance between collections of data is

measured.
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In [Sar99] the author introduces a new operator for Online Analytical Processing
(OLAP) products. This idea was motivated by the needs for data analysts to perform
data mining tasks faster. Current OLAP products provide operators for aggregations
such as Sum and Average and also provide navigational operators like Roll-up and
Drill-down. The analysts use these operators for exploring the data but as the size and
dimensionality increases, ad hoc exploration gets difficult and error prone. The
introduced operator, called DIFF, saves time and effort for the analysts by eliminating
the manual exploration for detecting reasons of fluctuations observed at an aggregated
level. More precisely, the DIFF summarizes the reasons for which a cell has a bigger
or a smaller aggregated quantity compared with another and completes the above
operation in one step. Without the DIFF operator, the analysts should make use of a
combination of several Roll-up and Drill-down operations in order to achieve the

same result and with a possibility of containing errors.

The use of the DIFF operator is simple. The analyst highlights two aggregated cells
on a report and then invokes the DIFF operator. The operator then will return the top
rows that contain aggregated data over lower levels. These top rows are the ones that
mostly affect the variance of the two cells. The number of the rows that will be

returned 1s configurable by the user.

In general, given the two aggregated cells, the operator firstly finds the rows at the
detailed level that have the biggest changes among them and secondly, it summarizes
some or all of them that have similar changes. For this reason, the returned rows
include also a ratio and an error field. In this part of the procedure a problem that
arises concerns whether the changes of a larger magnitude are more important than

the summarization of rows with similar changes.

To handle this problem the author developed an information theoretic model for
cleanly capturing these tradeoffs and also suggests an algorithm that is making use of
dynamic programming. The author firstly presents the way the algorithm works for a
single dimension with no hierarchies. Then, this method is generalized for a single

dimension with hierarchies and, finally. for multiple dimensions.
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Concerning the implementation of the proposed work, the author developed the DIFF
operator as a stored procedure that resides on the server’s side. The stored procedure
is a light-weight addition to the server because the indexing and query processing
capability of the server is used to do the heavy-weight processing. Moreover, the
amount of memory used by the stored procedure is independent of the number of

TOWS.

Finally, for the experiments the author used two datasets. The first dataset was the
OLAP Council Benchmark [Cou] and the other was the demo dataset Grocery Sales
data, ‘which was obtained from the Microsoft DSS product [Mic98a]. The results of
the experiments showed that even for a huge number of tuples included in the DIFF
query, the processing time was maximum 1 minute. Also, the scalability of the
algorithm was tested over increasing number for the database tuples, the number of

levels of the hierarchy and the answer size.

In [SSO1] the authors propose a new operator to make the exploration of large
multidimensional databases easier. This new operator called RELAX is very similar
to the DIFF [Sar00] operator with the main difference that it acts the opposite way.
Specifically, this new operator generalizes a drop or an increase between two cells in
the detailed level. That means that the operator tries to generalize the observed
drop/increase on a higher lever in some of the dimension’s hierarchies. Without
RELAX the analyst should use multiple Roll-ups and pivots followed by multiple
drill-downs and so on. This operation might be tedious and imprecise especially for

large datasets.

The use of the Relax is simple. The analyst specifies a tuple 7 and a property of T
that he wants to generalize. An example of a property is that the sales in current year
are less than sales in previous years. Then a function R measures how closely another
tuple 7 conforms to the generalization property. Function R is called the
generalization error and is zero when T is very close to 7§ and increases as 7 departs

from the generalization property. There is also a penalty function S that is close to 0
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when the difference between T and 7 increases and large when 7 is close to 7. A
generalization is approved when the sum of S(7) is greater than the sum of R(7). In

every generalization there might be exceptions that also appear in the results.

The authors used two datasets for their experiments, the OLAP Council Benchmark
[Cou] and the Food dataset. The findings of the experiments showed that their
algorithm for finding exceptions is optimal for the case of single hierarchies and
finite-domained functions. Also the algorithm assigns the heavy-weight processing to

the DBMS and the amount of needed memory 1s independent of the number of tuples.

In [MUFLO6] the authors try to describe the distance between two relational databases
under the same schema. One example of such databases is in the presence of replicas
of a given database that might have different modifications. The motivation on the
way the authors compute the distance stems from the common way that the distance
between two strings is computed. More precisely, the authors define the distance of a
relational database 4 from another relational database B, as the number of updates that
must be performed to 4, in order to become identical to B. By referring to updates, the
authors refer to sqgl-like insertions, deletions and updates. Without loss of generality,
they don’t use insertions and deletions on their algorithms. There might be several
update sequences that can bring the desired result. The sequence with the fewer
updates is considered the optimal. As they present, when an update is performed it
might cause more conflicts between the two relational databases than before the

update but it might ease the next updates in order to achieve less number of updates.

2.4. Integrating Texts and Databases

In [XDH++08] the authors integrate traditional OLAP cubes with text data and
introduce Informational Retrieval (IR) techniques on these text data. The result is
what they call a Text Cube. The contributions of this work are (a) the introduction of a
new semantic hierarchy over the terms of text collections, (b) the ability of making
use of IR measures over aggregated text data and (c) the partial materialization of
some previously computed cubes in order to compute more efficiently the complete

aggregated cube. In the 7ext Cube two kinds of hierarchies coexist. the traditional
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~ OLAP dimension hierarchy and the proposed term hierarchy. The term hierarchy is a
semantic hierarchy that helps the navigation in the text data. Its structure is similar
with the traditional OLAP hierarchies which are based on levels. In addition, the term
hierarchy is related with two operations that are called pull-up and push-down. In the
detailed Text Cube, for a specific assignment of the values in the cube’s dimensions, a
document collection is attached. In this model, if an aggregation is performed on the
text data, then two IR measures, rerm frequency and inverted index, are materialized.
Consequently, IR queries on the aggregated text data can be efficiently answered.
Moreover, the authors introduce algorithms for the optimal processing of OLAP
queries. Taking into consideration that the materialization of the full text cube is
prohibitive, the authors materialized the cube partially. In addition, the authors

propose an optimization on the partially materialized cube by bounding the query

processing cost.
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CHAPTER 3. FAMILIES FOR SIMILARITY
MEASURES

3.1 OLAP Fundamentals

3.2 Distance Functions between two Values

3.2 Distance Functions between two Cells of OLAP Cubes
3.4 Distance Functions between two OLAP Cubes

In this section, we organize the distance functions that can be used to measure the
distance between two cubes. We begin with a presentation of the OLAP model that
was used in this thesis. Then we build our taxonomy of distances progressively: In
section 3.2 we describe the distance functions that can be applied between two values
for a given dimension. In section 3.3 we provide a taxonomy for distance functions
between two cells of cubes and in 3.4 a taxonomy for distance functions between two
OLAP cubes. Throughout all our deliberations we will refer to two reference
dimensions, Time and Location. The hierarchies of these dimensions are shown in
figure 1(a). In more detail, the Time dimension hierarchy consists of 5 levels. The
levels of Time are Day (L)), Week (L,) and Month (L;), Year (L3) and All (Ls). The
dimension Location consists of four levels of hierarchy which are City (L,), Country
(L), Continent (L3) and All (L4). In figure 1(b) we illustrate the lattice of the

dimension Location at the instance level.

3.1. OLAP Fundamentals
Our model consists of data that are stored under a structured form making use of

OLAP technologies. We model a collection of data in the form of a multi-dimensional
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array called Cube. Each cell of the cube contains data and the cell is uniquely defined

by its coordinates as values of the dimensions of the cube.

Definition 1 (level). A level L= (4;, >1) is a set of finite names where 4; is a name.

Definition 2 (dimension) [VS00]. A dimension D is a lattice (£, < ) such that: L=
(L, ..., Lo, ALL) is a finite subset of levels and < is a partial order defined among the
levels of £, such that Ly < Lij< ALL for every 1<i<n. We require that the upper
bound of the lattice is always the level ALL, so that we can group all the values of the
dimension into the single value ‘all’. The lower bound of the lattice is called the

detailed level of the dimension.

Each dimension has an associated hierarchy of levels of aggregated data. In addition,

for every level L; there is a domain of values denoted as dom(L;). Therefore, for every

dimension D; the domain is denoted as DOM(D,) = Udom(L/ ) which states that it is
J=

the union of the domains of every level of hierarchy of the specific dimension.
Definition 3 (hierarchy). A hierarchy %= (hy, hs, ..., h,) is a preordered set of levels.

Definition 4 (Cube) [VS00]. A cube c over the schema [L,, ...Ln, M), ...,My], is an
expression of the form: e= (DS, ¢, [L1, ...Ln, My, ...My], [aggi(M\°, ..., ag€a(MaD)]),
where DS’ is a detailed data set over the schema S= [L;O, LY ML, ...Mmo], m<k, ¢
is a detailed selection condition, M° ...M,° are detailed measures, M,, ...,M, are
aggregated measures, L;” and L; are levels such that L, < L;, 1<i<n and agg;, 1<i<m

are aggregated functions from the set {sum, min, max, count}.

A strict hierarchy is defined as a one-to-many relationship between the values of the
different levels in a dimension. In other words, assume that L; < Ljs; are two levels of
hierarchy in a dimension. This hierarchy is characterized as strict when each value
from L; is related to only one value from L;:; and a value from Lj;; may be related to

many values from the level L;. Therefore. the relationship between values of different
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L.

levels of hierarchy can be achieved through the use of a set of functions: anc Lj is a
i

function that assigns a value from the domain of Z; to a value from the domain of L; ,

where Li< L;

Thus, for the set of functions anc LJ the following conditions hold:

{

For each pair of levels L, and L, such that L; < L, the function anc,l_';, maps each

element of dom(L,) to an element of dom(L,).

Given levels Ly, L, and L3 such that L; < L, < L; the function ancf;* equals to the

-

L L3
composition anc 2ogne 3.
Ll L2

For each pair of levels L; and L, such that L) < L; the function ancl is monotone i.e.,
1

L L
‘v’x,yedom(L]):x<y:>ancL2 (x)SancL2 ()
1 1

L
For each pair of levels L; and L, such that L, < L, the function anc L2 determines a
1

set of finite equivalence classes Xi such that:

L L
Vx,ye dom(L] ),L] < L2 :ancL2 (x)= ancL2 (¥) = x,y belongs to the same X;.
1 1 .

The relationship desc L2 is the inverse of the anc Lz function i.e.,
1 1

L2 L
descL (1) ={x e dom(L) :arch2 (x)=1
1 1

According to the type of values that a dimension level may have we can classify the
distance functions that can be applied. Thus, we categorize the dimension levels
according to the values of their domain as following.

A dimension’s level domain is Nominal when its values hold the distinctness
property. In other words, the values in such a dimension can be explicitly
distinguished. For example in a dimension Location the level City can take distinct

values such as London, New York etc.
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A dimension’s level domain is Ordinal when its values hold the distinctness property
as well as the order property. The order property implies that the values of such a
dimension abide by an order. For example in a dimension Size a level can take distinct
and ordered values such as small, medium, large.

A dimension level is Inferval when its values apart from the distinctness and order
property also have the addition property. The addition property states that a unit of
measurement exists. The difference between two values has a meaning, indicating
how many values intermediate between them.

A dimension level is Ratio when its values apart from the distinctness, order and
addition property also satisfy the multiplication property. The multiplication property
states that differences and ratios between values have a meaning. In other words, the
ratio between two values indicates their analogy difference expressed in a percentage

scale.

3.2. Distance Functions between two Values

In this section we specify the distance functions that can be applied over two specific
values of a dimension. In order to clarify things distance functions described in this
section apply only between two dimension values and not between measure values of

a cube.

Assume a specific dimension D, its lattice of level hierarchies Ly <L, <...<ALL, and
two specific values x and y from levels of hierarchy L, and L, respectively. We
classify the distance functions in the following categories: (a) locally computable and

(b) hierarchical computable distance functions.

3.2.1. Locally Computable Distance Function.
The first category of locally computable distance functions can be divided into three
subcategories: (a) Distance functions with explicit assignment of values, (b) Distance

functions based on attribute values and (¢) Distance functions based on the values of x

and y.
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Distance Functions with Explicit Assignment of Values. The functions of this category
explicitly define n° distances for the #n values of the dom (L;) (the compared values
must belong in the same level of the hierarchy). This requires dom (L;) is a finite set.
For example, assume a case where the distance between two cities is explicitly

defined via a distance table.

Distance Functions based on Attribute Values. Assume a level whose instances are
accompanied with a set of attributes. Then every level instance can be described as a
tuple of attribute values. In this case, the distance between the two values x and y can
possibly be expressed with respect to their attribute values via simple distance
function applicable to the attributes” domains (e.g., simple subtraction for arithmetic
values). For instance, assume a dimension Products accompanied with an attribute
Weight which describes the weight of the products and assume a level of hierarchy of
the dimension named Drinks. In addition, assume two specific values x = ‘milk” and y
= ‘orange juice’ where their weight attributes are x.weight = 500 and y.weight = 330
respectively. Then the distance between these two values can be expressed according
to their weight aftribute by making use, for instance, of the Minkowski distance
function which is described in the following subsection. Thus, the distance between

the values x and y can be defined as |x.weight — y.weight| = 170

Distance Functions based on the Values x and y. In this subcategory, the distance
between two values may be expressed through a function of their actual values
whenever this is possible. In this subcategory one option is to make use of the simple
identity function for nominal values. Thus, a value from the set {0, 1} where
0,ifx=y
dist(x, y)= { )
L,ifx#y

This function is applicable for all type values even for nominal values.

Another option is to make use of the Minkowski family distance functions especially
in case where the values are of interval type. Minkowski family distance functions can
be applied between two ordinal type values under the condition that the ordinal values

have been mapped to the set of integer numbers. In this section. since the distance
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function is applied for two specific values, all types of Minkowski distances reduce to
the Manhattan distance which is |x-y|. As an example, consider the dimension Time
whose levels are shown in figure 1(a). Assume two instances x and y from the level
Year, where x= ‘1995" and y= 2000°. Then the distance between these two values is
obviously ]1995-2000f = 5. In order to normalize this distance function within the
interval [0, 1], we can divide the distance value with the difference between the

maximum and minimum values of the level where x and y belong in.

All Al i1l all
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Year Continent .. EID'OP(’ America
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Week Month Country . . Us1  CANADA
. Contry , .
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Figure 3. 1. (a) The hierarchy of levels for dimensions Time and Location (b) Values
of the Location dimension

3.2.2. Hierarchical Computable Distance Funcfions

The second category of hierarchical computable distance functions can be divided
into four subcategories: (a) Distance functions with respect to an aggregation
function, (b) Distance functions with respect to hierarchy path, (c) Percentage

distance functions and (d) Highway distance functions.

The distance for two values that do not belong to the detailed level L, can be
expressed with respect to an aggregation function (e.g., count, max) applied over the

descendants of the two values in a Jower level of hierarchy.
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Distance functions with respect to an Aggregation Funciion. Assume an instance x

from level L; and desc,’ (x) the set of its descendants, where L is any lower level of
L;. The result of applying an aggregation function over the set desc,’jL (x)is denoted as
Xoggr = fagg,(desc,'l (x)). Assume two values x and y with x, = fam:,(a’esc,'_“L (x)) and

Vaeer = J g (descf: (¥)). where L, could be any lower level of L; and L;, xel;, yel;

and faeer denotes an aggregation function such as count, min, max, avg or sum. The
distance between the values x and y can now be expressed according to the following

formula: dist(x, y) = g(x ), where the function g can be computed from the

ager > Y ager

locally computable functions. The normalized form of this function, within the

X, sV,
8 Xage> Voger) , Where a and b are
max{g(a,y, , bmt )}

interval [0, 1], can be expressed as dist(x, y) =

any possible values from the same level of hierarchy as x and y, i.e., a,be L; .

Distance Functions with respect to Hierarchy Path. The distance between two values
x and y can be expressed according to the length of the path in the hierarchy that
connects them. Several distance functions and combinations falling into this
subcategory where described by Li, Bandar and McLean in [LiBMO03]. Here, we
describe the distance functions that can be applied between two values x and y from a
hierarchy, (a) with respect to the length of the path in the hierarchy, and, (b) with
respect to the depth in the hierarchy path. Assume two values x and y such that x € L,

and y € L,. We denote the Lowest Common Ancestor of x and y as lca(x.y).

The lowest common ancestor Ica, of two values x and y where x € Ly and y € L,, lca

€ L, and L, is any non lower level of Ly and Ly, L,> Ly, Ly is a value such that:

lea={z|z = anc,'_‘: (XAz= anc,':f VAP z'z= anc,'j;‘ (XIAz= anc,"':‘ WAL <L,} (1)

The distance between the values x and y can be expressed with one of the following

formulas:

w, *| path(x,lca)|+w, *| path(y,lca) JJ

1. dist(x, ¥) = fpam ( (w, +w, y*| path(ALL, L) |
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»

2. dist(x, ) = faepth [ | path (ea, L,)| J
| path(ALL,L))|
The first formula indicates that the distance is a function of the weighted sum of the
length of the path from the values x and y to their lowest common ancestor /ca. The
second formula indicates that the distance of the values is expressed as a function of
the length of the path of the lowest common ancestor Ica from the detailed level L, of
’ the hierarchy. In both formulas the functions fpan and fiepmn may be any linear or
exponential function such as f{x) = ¢, where c¢ is any real parameter. These two
functions are normalized in the interval [0, 1] by making use of the height of the

hierarchy. Specifically, the first formula is divided by (w, +w)*| path(ALL,L))|

whereas the second formula is divided by | path(ALL,L,)|. As an example, assume

two values x="NY’ and y=‘Canada’ from the hierarchy Location denoted in figure
1(b) where their lowest common ancestor is the value /ca = ‘America’ from the level
Continent. For simplicity, assume the functions fpan and faepm are equal to the identity
function and the weighted factors wy and wy are set to 1. Therefore, the functions
become: fraw= (path (x, lca)| + |path (y, lca)|)/ 2*|path(ALL, L)| and foepw= |path (Ica,
L)/ [path(ALL, L,)|. The distance between x and y occurs to be fpun= (2+1)/2*3 =0.5
and fgepin=2/3.

Percentage Distance Functions. According to this subcategory, the distance between
two values x and y, where y is an ancestor of x, may be expressed according to a
percentage of occurrences over the values of the hierarchy. In other words, the -
similarity of two values is expressed as the similarity of the number of descendants
this two values have. Assume the lattice of level hierarchies be denoted as
Ly<...<L < Ly < Ly < All where L, denotes the most detailed level. The distance of a
value x in a level L, in regards to its ancestor y in level L, may be calculated according
to the function:

| descfji* (x)}

I‘\
| desc;” (¥)]
The above formula expresses the distance between a value x and one of its ancestors y

dist(x,y) = , where L;is one of the levels Ly, L, and L, (3)

as a percentage via three ways. In case L; is Ly, then the distance is expressed as a

percentage in regards to the occurrences of all the other values from L. whose



24,

ancestor is y. In case L; is Ly(or L;), the distance is expressed as a percentage of
occurrences of the descendants of x in a lower level of hierarchy L (or L) in regards
to the descendants of y in the same lower level Ly (or L;). As an example. assume the
dimension Location where its lattice can be visualized in figure 1(a) and the values of
this dimension are visualized in figure I(b). Assume the values x=‘USA’ and
y=‘America’. Then, in regards to the above formula the distance between these two
values can be computed as:

. X . 1 .
i.  dist("USA',' America') = — - =-]— where L; is chosen to
| desc,.m ™™ (' America')| 2

Country

be the level Ly, 1.e., Leountsy

-

N desc(':mmr)‘ IUSA,
. dist('USA'",' America') = | ( )|

Cuy

Contiment
Cuy

=§ where L, is chosen to

| desc ('America’) |

be the detailed level ), i.e., Ly
As for the third case, in this example it coincides with the second since the lower and

detailed level, i.e. City, are identical.

Highway Distance Functions. Assume that every level of hierarchy L is grouped into
k groups and every group has its own representative rx. Then, the distance between
two representatives can be thought of as a highway [SaSc05]. We denote with r(x)
and r(y) the representatives of the groups where x and y belong in respectively. There
fore, the distance between the values x and y can be expressed with the following

formula:

dist (x, y) = dist (x, r(x)) + dist (r(x), r(y)) + dist (y, r(»)) (2)

The partial distances between a value and its representative and the distance between
the two representatives r(x) and r(y) depend on the way the representative is selected.
In most cases the representatives are selected so that they belong in the same level of
hierarchy and thus their distance can be computed from the locally computable
functions, the path functions or the aggregated functions (in case the two
representatives belong in different levels their distance may be computed by applying
any distance function from the path section or the aggregated distance function

scction). The main categories of selecting the representative apart from an explicit
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assignment are in regards to (a) an ancestor and (b) a descendant. For the following,
dist(a, b) denotes the distance of any two values a, b. Without loss of generality

assume Ly < Ly. In addition, assume the ancestor of x in level L, denoted as

x, :anc;_" (x) and a representative of y in the level of hierarchy L, denoted

asy =/ (desc,'j\‘ (»)) . These can be visualized through figure 2. The function f
* applied over the descendants of y can result either to an explicitly assigned descendant
or to the result of an aggregation function (e.g., min, max) over the set of descendants.
In the following we describe the partial distances of formula 2 depending on the way

the representative is selected.
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Figure 3.2 Partial distances between two values in different levels of hierarchy.

a) The representative of a_group is an ancestor. The representative of each value x and

y could be r(x) = anc,’_‘:’ (x) and r(y) = anc,'j‘V (¥)where Ly and Ly is any upper level

of Ly and L, respectively. Ly and Ly are not obligatory different. In general, the
distance between a value x and its representative may be computed through any
distance function from the path, the percentage or the aggregated functions. For
example, assume two values x="UK’ and y=‘USA’ from the level Couniry of the

hierarchy Location denoted in figure 3.1(b). Assume the representative r(x)="Europe’
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and the representative r(y)=*America’. The distance of the values x and y is by

summing the distances dist/(‘UK’, ‘Europe’), disf/(‘Europe’, ‘America’) and

dist(‘America’, ‘USA"). In this category there are two special cases:

1. The representatives r(x) and r(y) coincide in being the lowest common ancestor /ca,
where the formula is simplified as: dist (x, y) = dist (x, lca) + dist (y, lca).

2. The representative r(y) is identical to the actual value of y. In this case the distance
is expressed as a summation of dist(x, xy) and dist(xy, y). as shown in figure 2, where
x, is the representative of x from the level L,. Therefore, the distance dist(y, r(y)) =

0. Formally this is expressed as:

dist(x, y)= dist(x,x,)+ disl(x),, y) = dist(x, ancll_‘; (x)) + dist(anc;: (x),»).

In case the representative x, of x and y coincide, the distance is simplified as
dist(x, y) = dist(x, x,). Since disi(x, xy) and dist(xy, y) are within the interval [0, 1],

the normalized form of dis/(x, y) occurs by dividing it with 2. For example, assume

two values x = ‘USA” and y = ‘Europe’ from the dimension Location as seen in figure

Contment
Country

1. The ancestor x, of x is anc (x) ="America'. Assume dist(x, xy) is computed

from the percentage family functions. dist(x, ) is computed through the first formula
from the path family functions where the weighted factors wy and wy are set to 1. The
distance between x and y becomes dist(‘USA’, Europe )= (disi(x, xy) + dist(xy, y))/2 =
(dist(*USA’, ‘America’) + dist(‘America’, ‘Europe))/2 = (1/2 + 2/3)/2 = 7/12.

b) The representative of a group is a descendant. The representative of a group can be
selected with respect to the descendants of the group where x belongs. For example,
consider countries whose representatives can be selected among their cities, based for

instance on the major airport or the highest population. In case the representative r(x)

is a value from the domain of L;_ (i.e., r(x) picked explicitly from the set desc,'_‘f (x)or

by applying a min or max aggregation over the setdesc ,’L (x)), the distance between x

and r(x) can be any function from the families of path, percentage or aggregated
functions. In case r(x) is an arithmetic type value (i.e., a sum or count aggregation
function applied over the set desc,'f} (x)), the distance between x and r(x) can be any

simple arithmetic function such as the Minkowski. There is a special case where the

representative r(x) is identical to the actual value of x. Thus. the distance is expressed
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as a summation of dist(y, yx) and dist(yx, x), where yx is the representative of y from

the level L, as shown in figure 2. Therefore, the distance dis/(x, r(x))=0. Formally this

is expressed as:

dist(y, y, )+ dist(y,,x) dis((y,f(desc,l_'i )+ dis’(.f(descll',': (¥)),x)
2 - 2

where the denominator is set to 2 for normalization reasons. For example, assume two
L 4

values from the hierarchy Location, x=*USA" and y=‘Europe’, where the descendant

dist(x,y)=

of y is selected as f (desc,""i (»))='UK'. Assume the distance between y and its

| desc,> ()]

> from the
| desc,” ()]

descendant yy is computed through the formula dist(y ,y) =

-

percentage family functions. The distance between x and y, is computed through the
first formula from the path family functions with wy and wy set to 1. Consequently, the

distance between X and y becomes dist("USA’,'Europe') =

dist(y, y,)+dist(y,,x) _dist('Europe',' UK') + dist('UK',' USA") _1/1+4/6 5

2 2 2 6

In the special case where x is a descendant of y the above formula is simplified

as:dist(x, y) = dist(y, y ).

3.3. Distance Functions between two Cells of Cubes

In this section we describe the distance functions that can possibly be applied in order
to measure the distance between two cells from a cube. Assume an OLAP cube C
defined over the detailed schema C=[L,°, L,, ..., L., M\°, Mo°, ... ,M,,"}, where LY is
a detailed level and M is a detailed measure. In addition assume two cells from this

) 2 2
s, My, ...,

cube, c; = (I, B, . L), my', my), mm') and ¢z = 2R L my
my2), where I}, I? ¢ dom(LiO) and m;', m;® denote the values of the corresponding
measure M;? . The distance betweeri two cells ¢, and ¢, can be expressed in regards to
a) their level coordinates di(L;', L;2) and b) their measure values d{M;', M?). In other
words, disi(c;, c2= f (d(Li', L?), d{M;, Miz)), The function f can possibly be (a) a
weighted sum, (b) Minkowski distance, (c) min or (d) proportion of common

coordinates.
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3.3.1. Distance functions berween rwo Cells of a Cube Expressed as a Weighted Sum.

In this category the distance between two cells ¢;. ¢2 where ¢y, ¢; € C can be

m

Zu}ld! (]ll’lez) ZM’:C]‘ ("11] ’"112)
i=|

expressed through the formula 1 : = + , where w; and

m

"

[
S, S
1=1 1=1

w' are parameters that assign a weight for the level L; and the measure A

respectively, dy(l;', I?) denotes the partial distance between two values of the detailed
level L;" from dimension D; and di(m;'. mf) denotes the partial distance between two
instances of the measure M. Regarding the distance d(/i', Ii*), this is expressed
through the various formulas from the section 3.1 which describes the possible
distance functions between two values from the same level of hierarchy over a
dimension. The distance di(m;’, miz) between two instances of a measure can be

2 are of arithmetic

calculated through the Minkowski family distance when ny', m;
type, or through the simple identity function in case ', m;* are of character type. The
above formula is a general expression of the distance between two cells.
Simplifications of this can be applied. For instance, the distance of two cells can be
calculated only with respect to the coordinates that define each cell and without taking
into consideration the measure values of each cell, i.e., by omitting from the above
formula the second fraction. Moreover, in case the partial distances are normalized in
the interval [0, 1] then, f expresses the overall distance between two cells normalized
in the same interval [0, 1]). For example, assume we want to compute the distance
between cells ¢, ¢, as shown in figure 3.3. Both cells consist of two dimensions
(Time, Location), where their hierarchy levels can be seen in figure 3.1, and contain
one measure (Sales). In the above formula we set the weight factors of the dimensions
(w) and the weight factors of the measures (w') equal to 0.5. The distance between
dimensions is computed according to the function fpun that takes into account the
length of the path of the hierarchy. The distance between the measures is computed
through the normalized Manhattan distance function. In addition, assume that the
overall maximum and minimum values of the measure sales are 10 and 1 respectively.
With the above settings we obtain: d(cy,c2)-

w*d(Month, . Month_)+w*d(Country,, .Country, ) w'*d(Sales, ,Sales, )
2 + 1 2 —

w4+ w w'
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_O.5*1/3+0.5*]/3+0.5*(|4—3I/|10—1|) =4/9

0.5+0.5 0.5
Month Counrry Sales
Q] Mayr2000 Us4 4
Month Counny Sales
Cy Apr2000 canada 3

Figure 3.3 Instances of cells ¢; and ¢;

To comipute the distances d(Monthq,Monrhc)) and d(Coumryq,Countrch) we refer

the reader to the figures 3.4 and 3.5. In figure 3.4 we see that the length of the path
between the nodes a and /ca is 1, and the length of the path between the nodes b and

lca is 1 again. According to the function fpam, d(Monthq,Mothz)——-]—;]:%. In a

similar manner, by using the information that derives from the figure 3.5

d(Country, , Country, )= =] .

6 3
Dimension TIME
ALL ——All level
lca I }
» Year level
a b
Apr/2000 May/2000 Month level
d/Apr/2000 d/May/2000 Day level

Figure 3.4 Lattice of the dimension TIME for the values of cells of figure 3.3
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Dimension TIME
lca
@ Continent level
a b
Us4 Canada County level
New York Toronto city level

Figure 3.5 Lattice of the dimension LOCATION for the values of cells of figure 3.3

3.3.2. Distance functions between two Cells of a Cube Expressed in regards 10 the
Minkowski Family Distances.
In this section we describe the possible distance functions between two cells from a

cube by making use of the Minkowski family distances. In general the Minkowski

distance is defined via the formula L,,[(xl,...,x"),(y,,...,y,,)]zK/Zd,(x,,m)” ,
=1

where di(x;, y;) denotes the distance between the two coordinates x; and y; of two given
points x and y. Assume two cells ¢; = (/,', 15, ey In', mll, m', ..., mm') and c; = (l.z,
122, oo l,,z, m,z, mzz, ees n1m2), where li', 12 e dom(L;) and m-.', m;® denote the values of
the corresponding measure M;. The Minkowski distance can be applied in this
category, by substituting point coordinates x; and y; with cell coordinates, thus I and
12, In general, in the Minkowski family distances the partial distances are defined as
di(x;, yi)=lxi - ¥i|. When applying the Minkowski distance over cell coordinates, then
the partial distances d(/;', /i*) can be expressed as the distance between two values

from the same level of hierarchy as described in section 3.1.

So far, the distance between two cells is described only in regards to their level
coordinates. However, the distance between two cells can also be expressed by taking
into consideration the instance values of the cells, thus their measure values. The

Minkowski family distances can be applied, as well, in regards to the partial distances
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di(m;', m?). Therefore, the distance between two cells can be expressed by adding the
equivalent two formulas. Depending on the value of p the Minkowski distances over

two cells are defined as:

L=>d(17)+Y d(m',m’), 1-norm distance
=] i=!

o L, =\/Z(d, (l,],l,.z))2 + \/i(d,(m,',m,z))z , 2-norm distance
=1 i=1

L, =;{/Z(d,. @12 +r Z(d, (m,',m?))" , p-norm distance

i=] =1

L= E_‘L‘,[” > (l,',lf»"J + “_’P[\/Z (d,(m,',m,")" J =

max(dl ([l]’llz)s dz(lzialzz)s'--adn([nlalnz)) +
max(d, (m,',m),d,(m,)' ,m,*),....d (m,", mmz))

infinity norm distance or Chebyshev distance.

3.3.3. Distance Functions between two Cells of a Cube Expressed as the Minimum
Partial Distance.

In this category the distance between two cells ¢; = (I}, 1, ..., L), m\', m)', ..., my)

and ¢, = (112, L, ..., l.,2, mlz, my’, ee mmz) can be expressed as:

min{d,(1, 1))} + min{d, (m,',m")} = minfd, (1) 1), dy (1 1,7 Yordy 0, 1,7

. ] 2 ] 2 ] 2
+m1n{d,(mI »m," ), d,(m, ,m,"),....,d_(m,_ ,m, }

Therefore, the distance between two points is expressed as the minimum distance of

their level coordinates plus the minimum distance of their measure values.
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3.3.4. Distance Functions berween rwo Cells of a Cube Expressed as a Proportion of
Common Coordinates.

In this category the distance between two cells can be expressed as a proportion of

their common values of their level coordinates and their measure values. Therefore,

the distance between two cells ¢; = (1,', L. ..., A m.', my', ....my')and ¢; = (1,2, 122,

hh o om? om, ..., mpY) can be expressed through the formula f

L 2
counl(iil = 1|2Vi €{1.2,..,1n}) + C'oum(m,l = m,z‘v'i e{l.2,.,m})
n m

. The above formula states the

distance between two cells as a summation of two fractions. The first fraction is the
number of level values that are same for both cells, divided by the number of all level
values-that describe a cell. The second fraction expresses the number of measures that
have the same value for both cells divided by the number of all possible measures in a

cell.

3.4. Distance Functions between two OLAP Cubes

Assume two OLAP cubes C and C defined through the same detailed schema [L.O,
LY ..., LY M°, MY, .. M), where L is a detailed level and M is a detailed
measure. In addition assume that cube C consists of / cells of the form ¢ = (), b, ...,
In, my, my, ..., my,) and cube C’ consists of k cells of the form ¢’ = (I, b, ..., In, my,
my, ... mm'), where [, li' € dom(L;O) and m;, m; denote the values of the
corresponding measure M? . In general the two cubes can be of different cardinality,
i.e., | # k. Assume dist(c, ¢’) where ¢ € C and ¢’ € C’ denotes the distance between
two specific cells according to the various categories of section 3.3. The distance
between the two cubes can be expressed as a synthesis of the partial distances dist(c,
c¢’). In other words dist(C, C*)= f (dist(c, c’)) is a function of the partial distances
dist(c, ¢’). The function f can possibly belong to one of the following families: (a)
closest relative, (b) Hausdorff distance, (c) a weighted sum, (d) Minkowski distance,
and (e) Jaccard’s coefficient. Specifically, distance functions that fall within the
families (c) and (d) include the Cell Mapping method which is described in the next
subsection. The rest distance function families (i.e., (a), (b), (e)) do not include the

cell mapping method.
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For example, assume we want to compute the distance between the two cubes CUBE)
and CUBE, as shown in figure 3.6 CUBE; consists of three cells whereas CUBE,
consists of 5 cells. Each cell in both cubes consists of two dimensions in different
levels of hierarchy and the measure Sales. Specifically, each cell of CUBE) is of the
form ¢ = (Day, City, Sales) and each cell of CUBE) is of the form ¢’ = (Year, Country,
Sales). The distance between the two cubes can be expressed by applying a function f

over the partial distances dist(c,c’) of the cells of the two cubes.

CUBE, CUBE,
Dav  Clity Sales Year Country  Sales
| 3/5/2000 | London S 2000 USA 3
| 3/572001 | New York 6 ] 2000 USA 6
5| 4/5/2001 | New York 7 Gl 2001 Canada 8
e 2001 UK 5
o 2000 UsA 9

Figure 3.6 Instances of two cubes

3.4.1. Cell Mapping and Categories of Distance Functions according to it

In this section we introduce the method that is used in order to map the cells of one
cube to the cells of another cube. We refer to this method as Cell Mapping. For two
cubes C and (3, the simple mapping of their cells includes the connection of every
cell of the cube C, with one cell of the cube C;. Intuitively, the mapping of a cell in
cube C) tries to capture the discovery of the “closest possible representative” of this
cell in cube C;. The “closest representative” is the cell of the cube C; with the less
distance among the dimension values with the cell of the cube C,. In principle, the
Cell Mapping method can be thought of as a relation that connects the cells of a cube
to the cells of another cube (i.e., one can consider several candidate “representatives”
of a cell). However, in our setting, this relation is reduced to a function, since we are
interested in mapping each cell from the first cube to only one cell from the second
cube. This is done for reasons of simplicity and allows the elegant definition of cube
distances (see next). We impose the restriction that the function is total, i.e., each and

every cell from the first cube is mapped to a cell of the second cube. We do not
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require that the mapping is 1:1 and onto; thus, in the second cube there might be a cell

in which more than one, or, no cells at all, from the first cube are mapped to it.

As an example assume the cubes that are presented in the figure 3.7. In figure 3.7 (a)
the cells A4, B, C of CUBE) are mapped to the cells E, D, H of CUBE, respectively.
Moreover, in the same figure the cells F, G of CUBE; are not mapped with any cell of
CUBE),. In figure 3.7 (b) we can observe that the cell £ of CUBE, is mapped with two
cells of CUBE].

The cell mapping method needs to compute the distances between the dimensions of
each cell of the first cube with the dimensions every cell of the second cube and
ignoring the distance between the measures. So, if the distance between two cells ¢,
¢y is expressed as f (d,-(L;] , Liz), a’,-(M;l R M;z)) then the mapping method considers only
the di(Li', L%). Thus, each cell of the first cube is mapped to the cell of the second

cube with the less d,-(Li], L,'z) distance.

In our taxonomy, two distance functions between cubes make use of the cell mapping
method. These are (a) distance functions expressed in regards to the Closest Relative
and (b) the distance function expressed by Hausdorff distance. Afier the mapping has
been accomplished, the distances between the mapped cells are computed. Finally, the
computation of the distance between the two cubes involves the distances among the

mapped cells.

The distance functions that can be used in order to compute the distance between two
OLAP cubes can be divided into two categories. The first category involves distance
functions that include the cell mapping method. The second category contains
distance functions that do not include the cell mapping method. Following, we
describe each distance function and provide its analytical formula. The distance
functions of the first category are the Closest Relative and the Hausdorff Distance
(section 3.4.2) that include the cell mapping method. Then, the category of families

that do not consider the cell mapping method in their definition, include the Weighted
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Sum function, the minkowski family of distance functions, the Jaccard’s Coefficient

and the minimum of distances function.

CUBE, CUBE,

>
O

Ow
I O

(a)
CUBE, CUBE,
B
~~c

H

O ®m™>

(b)

Figure 3.7 (a) cells of cube CUBE| mapped to the cells of cube CUBE; (b) cells of
cube CUBE| mapped to the cells of cube CUBE;

3.4.2. Distance Functions that Include Mappings

This subsection contains the description of the distance functions that involve the Cell
Mapping method. These distance functions are the Closest Relative and the Hausdorff
and are described as follows.

Distance function between two cubes expressed in regards to the closest relative. In
this category the distance between two cubes C and C* is expressed as the summation

of distances between every cell of a cube with the most similar cell of another cube

through the formula:

i(dist(c, ,c'))

dist(C,C'") = 2! - ve' | disty,, (¢, ') = min{dist,, (c,,c')}  where  distaim

denotes the distance of two cells excluding the distance of their measures. The
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V' dist,, (c,,c) = min{dist, (c,,c')} part of the above formula reveals the cell

mapping method. Each one of the k cells from cube C is mapped to the cell of the

cube C' that has the minimum dist gy, from it.

As an example, we will analyze the computation of the distance between the cubes
» CUBE, and CUBE, shown in figure 3.8. The first step is to map the cells of the cube
CUBE, to the appropriate cells of the cube CUBE,. In order to simplify the example
the computational part of the cell mapping method is not described here, but the cell
mapping is denoted in figure 3.8 through arrows between the cells of the two cubes.
The distance function used in this example for the purpose of computing the distance
between the cells of the two cubes is the weighted sum. The weight that was used is
0.5, equal for both the dimensions and measures. In addition. the distance function
used to measure the distance between the dimensions is the f,,,, function. The cells ¢,
¢, €3, are mapped to the cells ¢, ¢s, and cs respectively. According to this mapping, in

order to compute the distance between the two cubes, the needed distances between

cells are:

d(c), c7)= 0.5*]0/.2:8:2*1/6+ 0.5*(]5—05‘;”10—1 D ~1/6+0=1/6
d(ca, c5)= 0.5*10/.21812*1/64_ 0.5*(|6—O6é/|10~1|) ~1/6+0=1/6
d(cs, cs)= 0'5*]0/.2:2::*”6+ 0'5*('6'07;/“0_1 D _1/6+1/9=5/18

For the above computations we refer the reader to the figures 3.4 and 3.5 where the
hierarchies of the dimensions LOCATION and TIME are presented. With the above
distances, we can now compute the full distance between the cubes CUBE; and
CUBE, through the first formula of the closest relative family functions:

d(c,,c;)+ d(c,,c5)+ d(cy,65) _1/6+1/6+5/18
3 3

=0.319444

d(CUBE,,CUBE,)=
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CUBF, CUBE,
D City Sales Year Country  Sales
ol 3/5/2000 | London S ¢l 2000 Us4 3
| 3/3/2001 | New York 6 | o 2000 UsA 6
3| 4/5/2001 | New York 7 G| 2001 Canada 8
el 2001 UK 5
o 2000 UsA 9

) Cell Mapping

Figure 3.8 Instances of two cubes and the mapping of their cells

Distance functions between two cubes expressed by Hausdorff distance. In this
category the distance between two cubes can be expressed by making use of the
Hausdorff distance [HuKR93]. The Hausdorff distance between two cubes can be

defined as H(C, C’) = max(h(C,C"), h(C’,C)) where h(C,C*) = mcéx{micrg{dist(c,c’)}}

and dist (c, ¢’) 1s the distance between two cells ¢ and ¢’ from the cubes C and C*
respectively. The function A(C, C’) is called the directed Hausdorff distance from C to
C" and the distance measured is the maximum distance of a cube C to the “nearest”
cell of the other cube C’. The Hausdorff distance is the maximum of A(C. C°) and
wC ., C).

In the Hausdorff distance function the cell mapping method is bidirectional. That
means that except from the mapping that we have examined in the closest relative
function we need an extra mapping and that is the mapping from the cells of cube C”

to the cells of Cube C.

When the bidirectional mapping is completed, we obtain two sets of mapped cells. In
each set, for every pair of mapped cells, we compute their distance considering now
their measures as well. Thus, essentially, we have two sets of minimum distances
between cells, the set of minimum distances from the cells of cube C to the cells of
cube C" and the set of minimum distances between from the cells of cube C” to the
cells of cube C. From each of the two sets we pick the greatest distance and finally

from these two distances we pick the greater one.
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To make things more clear an example follows. Assume again the cubes CUBE) and
CUBE, as shown in figure 3.9. The figure 3.9 also presents the mapping from the cells
of CUBE; to the cells of CUBE,. In figure 3.9 we can observe the same cubes and the
mapping from the cells of CUBE; to the cells of CUBE;. According to this
bidirectional mapping the two resulting sets of minimum distances are:
Si{d(c,,c,),d(c,,c5),d(cy,c5)}

S {d(c,,¢c,;),d(cs,c,),d(cy,c,),d(c;,c;),d(cg, )}

The distances of the S; are already computed on a previous example, so here we only
need to compute the distances of S;. The distances d(cs.c3).d(c7.c)) coincide with the
distanc?s d(c3,¢5),d(c),¢7) respectively. The computations below use the same distance

functions between values and cells and also the same weight factors like the previous

example.
* * * — —
d(C4,c3)=O'5 1/6+0.5 1/6+0.5 (3-71/]10 ]|)=l/6+4/9=11/18
0.5+0.5 0.5
* * * _ _
d(ce, c)= 0.5%1/6+0.5 3/6+0.5 (18-61/]10 1D=4/12+2/9=]0/18
0.5+0.5 0.5
* * *(]Q_ _
d(cs, c3)= 0.5*1/6+0.5 1/6+O.5 (9-7]/]10 ID=1/6+2/9=7/18
0.5+0.5 0.5

Now, the Hausdorff distance between the cubes CUBE, and CUBE, is equal to the
next formula:

d(CUBE,.CUBEy=max{max{S,},max{S,} }=

max{max{1/6,1/6,5/18} ,max{11/18,5/18, 1/6,10/18,7/18} }=

max{5/18,11/18}=11/18.

CUBE, C'UBE,
Dy Citv Sales Year Country  Sales
)| 3/5/2000 | London S e 2000 USA 3
ey| 3/5/2001 | New York 6 o 2000 UsA 6
4| 4/5/2001 | New York 7 @l 2001 Canada 8
o 2001 UK S
f o 2000 USA 9

Cell Mapping

Figure 3.9 Instances of cubes CUBE, and CUBE) and the mapping of the cells of the
cube CUBE, to the cells of the cube CUBE),
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3.4.3. Distance functions that do not include Mappings
This subsection includes the distance functions that don’t include mappings. These
functions are the Weighted Sum function, the Minkowski family of distance functions,

the Jaccard’s Coefficient and the minimum of distances function. The analytical

formula of each function is described bellow.

Distance functions between two cubes expressed as a weighted sum. In this category
the distance between two cubes can possibly be expressed as a weighted sum over the

distances between each cell from one cube to every cell from the other cube.

1 k&

Z Z w, disi(c,c')

1=l =l

i i Wi

i=l j=I

Therefore, the distance can be expressed through the formula: 1 :

b

where disi(c, c’)is the distance between a cell from cube C to a cell from cube C* and

wij denotes the weight factors assigned to each distance.

Distance functions between two cubes expressed through Minkowski family distances.
The distance between two cubes C and C’ can be expressed by making use of a
distance function from the Minkowski family. The distance between C and C by
applying the Minkowski family distances, depending on the values of the parameter p,

are defined as:

1k
L= ZZdist(c, ¢'), 1-norm distance

i=l =

&
L, = ZZdist(c, c’)2 , 2-norm distance

i=l j=1

| %
L = ZZdisl(c,c')" , p-norm distance

i=) j=i

Ik

L = lim(xJZZdisr(c,c')p J -

P2 Y i il

- max{dist(c,.c', ). dist(c,, 'y ... dist(c,.c"; ),....dist(c,, ¢, ), dist(c;, 'y ),....disI (¢, 'y )}
infinity norm distance or Chebyshev distance.
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Distance functions between two cubes expressed by Jaccard’s Coefficient. In this
category the distance between two cubes can be expressed in regards to the Jaccard's
coefficient  [ZADB06].  The  Jaccard’s  coefficient is  defined as:
NiSalS

|CuC|

of intersection and union of the cubes C and C’. In addition, based on the Jaccard’s

dist(C,C") =1 . The distance is based on the ratio between the cardinalities

coefficient the distance between two cubes can be expressed by applying the Dice’s
coefficient. For two cubes C and (' the Dice’s coefficient is defined as:

21CnC|

Clelc . This formula expresses the similarity between two cubes as
+

disi(C,C") =

the ratie between the cardinality of intersection and the summation of cardinalities of

the two cubes.

The Minimum of distances Function. Another option is to express the distance as the
minimum distance among all possible distances between the cells of the compared
cubes. Therefore the distance between C and (C° is expressed as:
dist(C,C") = min{dist(c,c')| c € C,c'e C'}, where dist(c, ¢’) is the distance between a
cell from cube C to a cell from cube C’. In case the two cubes are disjoint i.e.,
CnC'=0, then disi(C, C’) is a positive number, whereas if the two cubes have

common cellsi.e., CNC'# @, then dist(C, C’) is zero.

As a simple example, assume the two cubes from figure 3.7 and ignore the arrows that
denote the cell mapping. According to the minimum of distances function, the distance
between the two cubes is computed through the following formula where j denotes the
any cell from CUBE;:

d(CUBE,,CUBE>)= mjin{d(c,,cj ),d(cy,c; ). d(cy,¢,)}V) € {4,5...8} =1/6
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CHAPTER 4. IMPLEMENTATION AND
EXPERIMENTS

4.1 Implementation Issues
4.2 User Study for Distances between two Values of Dimensions

4.3 User Study for Distances between two OLAP Cubes

This Chapter includes the technical part of this thesis and also the user studies that we
conducted in order to examine the user preferences on the distance functions that are
described in chapter 3. Thus, in section 4.1 several implementation issues are
examined including a short description of the implemented classes and their UML
diagram. In section 4.2 we present the findings of the first user study that we
conducted in order to examine which of the distance functions between values of
dimensions is most preferred by the users. Finally, in section 4.3, we provide the
results of the second user study that is conducted taking into account the findings of
the previous section. In the second user study users show their preference between the

closest relative and the Hausdorff distance functions.

4.1. Implementation Issues

In this section we will present the implementation part of this thesis, which is
organized as follows. In subsection 4.1.1 we describe the architecture of the
application and the background of the database and the Database Management system
that was used and in subsection 4.1.2 there is the UML diagram and a short

description of the implemented classes.
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4.1.1. Application Architecture

This section contains the description of the implemented application for the
comparison of two OLAP cubes that we call Cube Comparison OLAP (CuCOOL)
tool. The application takes as input two OLAP cubes in the form of two queries and
returns their distance taking into account the selected distance functions. firstly
between the values of the dimensions, secondly between the cells of the two cubes

and finally between the cubes. The code is written in Java and it is implemented in the

NetBeans IDE 6.5.1.

The Database Management System (DBMS) that is used is the MySQL Server 5.1.
The application connects to the DBMS using the driver MySQL-AB JDBC 5.1.7. The
application interacts with the DBMS by sending SQL queries and retrieving the
resulting tuples. Further information about the data and the database schema that is

used are described analytically in section 4.2.

Output

input file

——

Standar

Figure 4.1 CuCOOL Tool architecture

4.1.2. UML Diagram and Basic Description of the Implemented Classes
The UML Diagram of the application is shown in the figure 4.2. The part of the
implementation that concerns the distance functions includes the classes Cube_func

and berween_cells and the interface functions_benween_values. In addition, there are
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several more classes (eg. Fparh, Highway desc etc) that implement the function
intercompute() of the interface functions between_values, according to the distance
function between values that we select. The class benveen cells implements the
weighted sum function from the functions between two cells of cubes. The Cube_func
implements the cell mapping method as well as the closest relative and the Hausdorff

distance functions.

There are also some classes that are needed to store information about the dimensions,
their hierarchies and the levels of each hierarchy. These classes are named Dim,
Hierarchy and Lev. Specifically, the class Hierarchy contains objects of type Lev. So,
each ‘object of type Hierarchy denotes a hierarchy and contains its levels (Lev
objects). The class named Dim is the class in which the names of the dimensions are
stored. Each object Dim can contain many Hierarchy objects but each hierarchy is

related to only one dimension.

Parsing. As we mentioned in 4.1.1, the input of the application are two OLAP cube
queries. These queries are written in a specific form in a text file called “Cubes.txt™.
The form of these queries is shown in figure 4.3. The tag name is followed by the
name we give to the cube and the tag Selecr is followed by the attributes that we want
to retrieve their data. The tag facr is followed from the fact table of our database and
together with the information of the tag dimensions these will create the “From™ part
of the SQL query. The tag joins where contains the attributes from the dimension
tables that we want to connect with the respective foreign keys of the fact table to
achieve the join. The tags where and values where contain the where conditions of
the query. The constraint here is that the order of the information in the values _where
tag must follow the order of the information in the where tag. For more than one
where conditions the tag add where must contain the logical connectives (i.e., and,
or) in the same order as the conditions in the previous two tags. Finally, the group_by
tag contains the attribute for the group by condition. The resulting SQL query of the
figure 4.3 is:“select ag_levell, ed levell. hours_per_week from age2, education2,
| adult where ag_level0=adult.age and ed_levelO=adult.education and ag_level2="27-

36" and ed_level2="Secondary” group_by ed_level0~.
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Figure 4.2 The UML Diagrain of the OLAP cube comparison application

To parse a query given in the form as shown in the figure 4.3, a parser is needed. For
this reason the class Parser with the function cube_parser() is created. Moreover, an
extra class named Cube_Insertion is created in order to keep the parsed values of each

query. Finally, to create the final SQL query, a class create_q is constructed. This
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class uses the information that is stored in Cube Insertion objects in order to create

the appropriate SQL queries.

name cubel

select ag_levell ed_levell hours_per_week

fact adult

dimensions age2 education2

joins_where ag_levelO=age ed_levelO=education
where ag_level2 ed_level2

values where ="27-36" ="Secondary"

add_where and

groupby ed levelQ

Figure 4.3 Form of a query that is given as input in the application

Apart from the queries, the application must be given also the hierarchies of the
dimension tables of the database. The file “hierarchies.txt” serves this purpose and an
example of such a file is presented in the figure 4.4. In the “hierarchies.txt™ file, the
word that follows the name tag denotes the name of the hierarchy and it must coincide
with the dimension table of the database. For example, in figure 4.4 age2 is a
dimension table in the database. The word that follows the FK tag denotes the foreign
key of the dimension table in the fact table, and the words after the tag levels denote
the levels of the hierarchy with the constraint that every level must be an attribute of
the dimension table. The process of parsing for this file is done from the function
parse_hierarchies() in the Parser class. This information is stored in the classes

Hierarchy and Lev.

Name age?2

FK age

Levels ag_leveld ag level3 ag_level2 ag_levell ag_levelO
Name education2

FK education

levels ed_leveld ed_level3 ed_level2 ed_levell ed_level0

Figure 4.4 A caption from the file “hierarchies.txt”
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4.2. User Study for Distances between two Values of Dimensions

In this section we describe a user study we conducted for discovering which distance
functions between two values of a dimension seem to be more suitable for user needs.
The experiment involved 15 users out of which 10 are graduate students in Computer
Science and 5 that are of other backgrounds. In the rest of the paper we refer to the set
of users with computer science background as Users_cs, the set of users with other
background as Users_non and the set of all users independently of their background

as Users_all.

In the experiments we used the “Adult” real data set according to the dimension
hierarchies as described in [FuWYO05]. This dataset contains the fact table Aduir and 8
dimension tables which are described in Table 1. The figure 4.5 shows the dimension

hierarchies of the dataset “Adult™ and the figure 4.6 shows the database schema of the

dataset.
Table 4.1 Adult dataset tables
Table Value Type # Tuples # Dim. Levels

Adult fact 30418 -
Age Dim. Numeric 72 5
Education Dim. Categorical 16 5
Gender Dim. Categorical 2 2
Marital Status Dim. Categorical 7 4
Native Country Dim. Categorical 41 4
Occupation Dim. Categorical 14 3
Race Dim. Categorical 5 3
Work Class Dim. Categorical 7 4

I

: ,, ‘wj / "
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Age hierarchy
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Figure 4.5 Dimension hierarchies of the dataset adult
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Figure 4.6 Database schema for the Adult dataset

The purpose of the experiment is to assess which distance function between two

. values is best in regards to the user preferences. Each user was given 14 case
scenarios. Each scenario contained a reference cube and a set of cubes, which we call
variant cubes, that occurred by slightly altering the reference cube. The 14 scenarios

" included different kinds of cubes in regards to the value types and the different levels
of granularity. For each reference cube which was randomly selected, the variant

cubes were generated from the fact table by altering the granularity level for one
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dimension, or by altering the value range of the reference cube. For instance, assume
a reference cube containing the dimension levels Age level,, Education_level, under
the age interval [17, 21]. According to the first type of modification. a variant cube
could be generated by changing the dimension level to Age level, or Age levely, or
changing the level of the Education Dimension. According to the second type of
‘modiﬁcation, another variant cube could be generated by changing the age interval to
[22, 26] or to [17, 26). Among all possible variations of the reference cube we
manually chose the set of variant cubes such that each of them was most similar to the
reference cube according to a distance function. In order to observe which distance
function is preferred by users depending on the type of data of the cubes. we have
organized the 14 scenarios into 3 sets. The first set consists of cubes containing only
arithmetic type values (5 scenarios). The second set consists of cubes containing only
categorical type values (2 scenarios). The third set consists of cubes containing a
combination of both categorical and arithmetic type values (7 scenarios). A sample
scenario can be seen in figure 4.7. At this figure the cube with the bolded outline is
the reference cube. Due to space limitations all the scenarios used for the user study

are not presented here but can be found in the appendix at the end of this thesis.

Cubeb Cube6_1

ed_levell nc_levelt salary ed_level nc_level salary

Bachelors Central-Europe  <=50K AsSsOC-acdm Western-Europe  <=50K

Senior-$eccndary  Eastern-furope  <=50K 5th-6th Southern-Europe >50K

Junror-Secondary  Southern-furope <=50K Masters CentrakEurope  <=5GK

AssOC-acdm Western-Eurgpe  <=50K Senior-Secondary  Western-Europe  <=530K
Scme-college Western-Europe  <=50K

Cubeb_2 Bachelors Central-Europe  <=50K

ed_levelt nc_levell salary

Masters Eastern-Asia >50K Cubeb_3

Masters Middle-East >50K ed_levell nc_levell salary

Senior-Secondary  Southeastern-Asis >50K Bachelors Central-Europe  >50K

Bachelors Southern-Asia >50K Senior-Secondary Eastern-Eurcpe  >50K
Assot-voc Southern-Europe >50K

Cubet_4 Bachelors Western-Europe  >50K

ed_level2 nc_levell salary

University Central-Europe  <=50K

Secondary Eastern-Europe  <=50K

Secondary Southern-Europe <=50K

ASSOC western-turope  <=50K

Figure 4.7 Sample scenario
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Table 4.2 Notation of distance functions used in the experiment

Family Abbr. Distance function name
Local oM Manhattan
Aggregation O.ow.c With respect to a lower level of hierarchy where
Jfager =COUNt
OLow.m With respect to a lower level of hierarchy where
Jager = Max
Hierarchical Path OLCAP Lowest common ancestor through fpam
JLCA.D Lowest common ancestor through faepin
Percentage Ov, Applying percentage function
Highway O Anc With respect to an ancestor x,
Opesc With respect to a descendant yy
OH.Desc Highway, selecting the representative from a
. descendant
OH.Anc Highway, selecting the representative from an
ancestor

In each scenario, the users were asked to select the variant cube that seemed more
similar to the reference cube based on their personal criteria. The distance functions
that have been used in the experiment are shown in Table 2, where the first column
shows the family in which each distance function belongs to according to Chapter 3.
In the second column there is an abbreviated name for each function. To compute the
distance between two cubes, the Closest Relative distance function is used (section
3.4.2), The distance between two cells of cubes is the weighted sum of the partial

distances of the two values, one from each cell, with all weights set to 1 (section 3.3).

Table 4.3 Top three most frequent distance functions for each user group.

Users_all Users_cs Users_non
SLcA P 40.47% 38.57% 44.28%
dAnc 18.09% 20% 14.28%
OH.pese 9.52% 10.71% 7.14%

The analysis of the collected data provides several findings. The first finding concerns
the 1op three most preferred distance functions measured over the detailed data for all
" scenarios and all users. It is remarkable that the top three distance functions for each

of the user groups were the same and with the same ordering and specifically, these
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are the dycap, the danc and the dypesc. The frequencies for each one of the top three

distance functions in each group of users is shown in Table 4.3.

The second finding concerns rhe most preferred function by users depending on the
type of data the cubes contained. Table 4.4 summarizes the result of the most frequent
distance function for each set of scenarios and each set of users. We observe that for
the categorical type of cubes, all user groups prefer the dcap distance function,
whereas for the arithmetic and the arithmetic & categorical sets, the functions that
users mainly prefer are the d) cap and danc. More than one distance functions appear as

winners in Table 4 due to ties in the frequency of occurrences for each function.

-

Table 4.4 The most frequent distance function for each set of scenarios.

Users_all Users_cs Users_non
Arithmetic 6Anc 8LCA.P: 8H.Desc, 8Anc OLcar
Categorica] dLCAP SLC/LP SLCAP
Arithmetic &
Categorical 6Anc 8Anc 8LCA.P: SAnc

The third finding concerns the winner distance function per scenario. For every
scenario, we take into account the 15 occurrences by all users and see which distance
function is the most frequent. We call this function the winner function of the
scenario. The most frequent winner function was Jicap. The percentages were
35.711% for the Users_all group, 35,71% for the Users_cs group and 57.14% for the
Users_non group. The most frequent function for 14 users was the Jdicap function.

For one user from the Users_cs group the most frequent function was the ,.ca.p.

The fourth finding concerns the diversity and spread of user choices. There are two
major findings: (a) All functions were picked by some user and (b) there are certain
functions that appeared as user choices for all users of a user group. Specifically,
functions d1cap. Oupesc and Janc were selected at least once by users of group

Users_cs. Similarly. functions dicap. diowm and danc were selected at least once by

Users_non.
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The fifth finding concerns the most preferred family of functions. Table 4.5 depicts
the absolute number of appearances of each distance function family per user group.
The most preferred family of distance functions is the Hierarchy Path family. which
also contains the top one most preferred distance function dcap. Moreover, we

observe that the ranking of the distance function families was exactly the same for

each user group.

Table 4.5 Frequencies of preferred distances within each user group for each distance

family.

- Local | Aggregation | Hierarchy Path | Percentage | Highway
Users cs 1 9 69 9 52
Users non 2 5 34 5 24
Users all 3 14 103 14 76

The selection stability (e.g., how stable are users answers at the same questions) of
users was the sixth observation. The selection stabiliry was determined by the
following results, where the 13" and the 14" scenario were a reordering of the 3™ and
10™ scenario respectively. 4 out of 5 users from the set of Users non. 6 out of 10
users from the set of Users_cs (consequently, 10 users from Users_all set) selected
the same function for both of the two similar scenarios. The rest of the users selected

the same function for only one out of the two repeated scenarios.

Summary. Overall, the findings indicate that the most preferred distance function is
the dicap, Which is expressed in regards to the shortest path of a hierarchy dimension.
Apart from the J cap, the distance functions danc and Jdypesc Were widely chosen by
users. In addition, the most preferred distance function family is the Hierarchy Path

family.

4.3. User Study for Distances between two Cubes

_This second user study is a follow up of the previous user study. In the previous user
study the overall observation was that the users prefer the dcap distance function
between two values of the same dimension. Based on this result and also by setting as

the distance function between cells the weighred sum function we set up the second
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user study such that we can examine which distance function between two cubes the
users prefer. Specifically, we try to find out which distance function among the two
functions that include the cell mapping method (section 3.4.1) is most closelyv related
to the human perception. These two distance functions are namely the closest relative
and the Hausdorff distance function (section 2.4.2). The table 4.6 shows the distance

functions that were used in this user study

The user study contained 14 new scenarios. Each scenario included 4 cubes named A4,
B, C and D. The cube 4 in every scenario was the reference cube. The users were
asked to order the rest of the three cubes from the most similar to the less similar
when cc‘)mpared to the cube A. The cubes B. C and D were chosen such that one of
them was the closest to the cube A according to the closest relative function and
another was the closest to cube 4 according to the Hausdorff distance function. The
remaining cube was chosen to be the most distant from cube 4 for both distance
functions. A sample scenario can be seen in figure 4.8. In this figure the cube which is
filled with light blue color is the reference cube. Due to space limitations all the
scenarios used for this user study are not presented here but can be found in the

appendix at the end of this thesis.

All scenarios were uploaded as jpeg pictures in an html page where users were asked
to complete an answer sheet and send it back to us via email. The url link of this page
was sent via a social network and also by email at the email-list of the graduate

students of the Computer Science Department of the University of loannina.

In order to test a user’s answer reliability, in the 6™ scenario the cube B was identical
with the cube 4. Moreover, the 13" and 14™ scenarios were replicas of the 5" and 9"
scenarios respectively with a reordering on the columns of the cubes. This was done

in order to measure the user stability of their choices.
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A B
Age WorkClass Race I Age | Work Class | Race
(levell) (levell) (levell) (levell)| (levell) |(levell)
52-56 |Gov White 27-31 |Gov Colored
52-56 |Private Colored 52-56 |Private Colored
47-51 (Self-emp White 47-51 |Self-emp White
52-56 |Without-pay |White | 52-56 |Without-pay |White
C
Age | WorkClass | Race
(level2)| (level2) |(levell)
47-56 |With-Pay Colored
47-56 |With-Pay White
) 47-56 Without-pay |White
Scenario 1 D
Age | Work Class | Race
(levell}! (levell) |(levell)
47-51 |Self-emp White
52-56 [Without-pay |White

The 12 first scenarios can be divided into three groups according to the weights in the
distance function between cells. The first 4 scenarios consist of cubes that they do not
include measures. We refer to this group as the no_measures group. The next 4
scenarios consist of cubes that include measures where the weight factors on measures
and dimensions in the function berween cells are not equal. Specifically, assuming
that cubes consist of k dimensions and / measures, the weight factors for the
dimensions was set to be k/(/+k) and for the measures was set to be I/(/+k). We refer to
this group as the not_equal group. Finally, the last four scenarios consist of cubes that
include measures and the weight factors on the measures and on the dimensions in the

between cells distance function are equal and set to 0.5. We refer to this group as the

equal group.

Figure 4.8 Sample scenario
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Table 4.6 The distance functions that are used in the second user study

Hausdorff
Closest relative
Distance function between two cells of cubes | weighted sum

Distance functions between two cubes

] i wo values of a
Distance functloq betwgen two e SLCA,P
dimension
Distance function between two measures Manhattan

The number of users that responded with an answer sheet was 39. Two from the 39
users did not choose the cube B in the sixth scenario as the most similar to the cube 4.
For that reason their answers were not taken into consideration. We refer to the

-

remaining 37 users as valid_users.

The first finding of this user study concerns the most frequent distance function that
was chosen from the users as their first choice. Among all the 11 (scenarios) * 37
(users) = 407 answers (the sixth scenario is excluded), 232 times (= 57%) the users
gave as their first choice the cube that represents the closest relative distance function.
The cube that represents the Hausdorff distance function was chosen 154 times
(=38%) as the first choice of the users. Only 21 times (~5%) the users chose the most
distant cube as their first choice. The summarization of the above results is shown in

the table 4.7.

Table 4.7 Frequency of chosen as first distance function among all the 444 answers

Frequency Percentage
Hausdorff 154 38%
Closest relative 232 57%
Most distant cube 21 5%

The second finding of the user study concerns the stability of the user choices. As we

™ scenario

mentioned before, the 13" and 14" scenario were replicas of the 5" and 9
respectively. In each of these two scenarios a user that orders the cubes in the same
‘way as in the original scenario is denoted as user_OK. A user that gave the same
answer for the most similar cube but the order of the other cubes was not the same is

denoted as user Half OK. Finally, a user that was denoted as wser_(K for both
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replicas scenarios, or denoted as wser OK for the one replica scenario and
user _Half OK for the other replica scenario is denoted as user_ Stable. According to
the answers of the valid 37 users of this user study, in the 13™ scenario there were 28
user OK users and 5 user_Half OK users. In the 14" scenario there were 19 user OK
users and 8 user_Half OK users. The 24 of the 37 (=65%) users were user_Stable
users. We believe that a 65% is a safe number that can ensure the stability and

reliability of their answers. The table 4.8 summarizes the above results and

percentages.
> Table 4.8 User stability
User OK user Half OK user Stable
Frequency | Percentage | Frequency | Percentage | Frequency | Percentage
13th
scenario 28 75% 5 13% 24 65%
14th
Scenario 19 51% 8 21% 24 65%

The third observation concerns the wining function per scenario. The term wining
Junction refers to the function that was mostly selected as the first choice from the
users in one scenario. The closest relative function was the wining function for 6
scenarios and the Hausdor{f function was the wining function for the rest 5 scenarios.
These results cannot ensure that one of the two functions is more preferred than the

other.

The fourth observation concerns the winner function per scenario group. For a group
of scenarios its winner function occurs to be the function that appeared as wining
Junction in most scenarios of the group. For the no_measures group the winner
Junction was the closest relative function which it was the wining function for the 3
out of the 4 scenarios. For the nof_equal group the winner function was the Hausdorff
which it was the winning function for the 2 out of the 3 scenarios. Finally, for the
group equal, in two scenarios the wining function was the closest relative function
vand in two scenarios the wining function was the Hausdorff function. The above
results reveal a user preference in the closest relative function for scenarios that do no

include measures. On the other hand for the other types of scenarios the results are not
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clear. The analytical results of the third and fourth observation are presented in table

4.9.

Table 4.9 The winning functions and the winner functions

Scenario Group Scenario | Winning function | Winner function
no_measures Scenariol Closest relative
Scenario2 Closest relative Closest relative
Scenario3 Closest relative
Scenario4 Hausdor{f
nol_equal Scenario$ Hausdorff
Scenario? Closest relative Hausdorff
- Scenario8 Hausdorff
equal Scenario9 Hausdorff
Scenario]( Hausdorff -
Scenariol 1 Closest relative
Scenariol2 Closest relative
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CHAPTER 5. CONCLUSIONS

This thesis presented a variety of distance functions that can be used in order to
compute the similarity between two OLAP cubes. The functions were described with
respect to the properties of the dimension hierarchies and based on these they were
groliped into functions that can be applied (a) between two values from a dimension
of a multidimensional space, (b) between two points of a multidimensional space and

(c) between two sets of points of a multidimensional space.

In order to assess which distance functions are more close to human perception, we
conducted two user study analysis. The first user study analysis was conducted in
order to discover, which distance function between two values of a dimension is best
In regards to the user needs and data type. Our findings indicated that the distance
function dy.cap, Which is expressed as the length of the path between two values and
their common ancestor in the dimension’s hierarchy was the most preferred by users
in our experiments. Two more functions were widely chosen by users. These were the
highway functions day that is expressed in regards to the ancestor x, and dy pesc that is

expressed by selecting the representative from a descendant.

The second user study we conducted, took into account the results of the first user
study analysis. Specifically, the second user study analysis aimed in discovering
which distance function (the closest relative or the Hausdorff distance function) from
the category of distance function between two data cubes, users prefer. The findings
of this user study analysis indicated that the closest relative distance function was

rather preferred by users in contrast to the Hausdorff distance functions.
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Future work can be pursued in various directions including (a) the deeper examination

of the presented families of functions with more complicated scenarios and (b) the

discovery of the foundational reasons for the observed user preferences.

i~



60

REFERENCES

[Cou] The OLAP Council. The OLAP benchmark.
http://www.olapcouncil.org

[JB05] CHff Joslyn and William J. Bruno. Weighted pseudo-distances for
categorization in semantic hierarchies. In ICCS. pages 381~ 395, 2005.

[JKGO] Jiawei Han. Micheline Kamber: Data Mining: Concepts and
Techniques Morgan Kaufmann 2000

[JO04] Cliff Joslyn. Poset Ontologies and Concept Lattices as Semantic
Hierarchies. In ICCS, pages 287-302. 2004

[IMFHO04] CIiff Joslyn. Susan M. Mniszewski. Andy W. Fulmer. and Gary
Heaton. The gene ontology categorizer. In ISMB/ECCB (Sup- plement
of Bioinformatics), pages 169~177, 2004.

[LDH+08} Cindy Xide Lin, Bolin Ding, Jiawei Han, Feida Zhu. and Bo Zhao.
Text cube: Computing IR measures for multidimensional text database
analysis. In ICDM. pages 905-910, 2008. 2

[MI95] G.A. Miller. WordNet: A lexical Database for English. Comm. ACM ,
pages 39-41, 1995

[Mic98a]  Microsoft corporation. Microsoft decision support services version 1.0.
1998

[MUFLO06] Heiko Miiller Johann-Christoph Freytag and UIf Leser. Describing
differences between databases. In CIKM, pages 612-621, 2006

[PPO3] Dennis Pedersen and Torben Bach Pedersen. Achieving adaptivity for
olap-xml federations. In DOLAP, pages 25-32, 2003.

[PRPO2) Dennis Pedersen. Karsten Riis, and Torben Bach Pedersen. Xml-
extended olap querying. In SSDBM, pages 195-206, 2002.

[Sar99] Sunita Sarawagi. Explaining differences in multidimensional
aggregates. In VLDB, pages 42-53, 1999.

[Sar00] Sunita Sarawagi. User-adaptive exploration of multidimensional data.
In VLDB, pages 307-316, 2000.

[Sar01] Sunita Sarawagi. idiff: Informative summarization of differences in
multidimensional aggregates. Data Min. Knowl. Dis- cov.. 5(4):255-
276, 2001.

[SaSc05] P. Sanders and D. Schultes. Highway Hierarchies Hasien Exact
Shortest PathQueries. In ESA, LNCS 3669. pages 568-579. Springer,
2005.

[SJ95] Simone Santini and Ramesh Jain. Similarity matching. In ACCYV,
pages 571-580, 1995.

[S199] Simone Santini and Ramesh Jain. Similarity measures. IEEE Trans.

Pattern Anal. Mach. Intell.. 21(9):871-883.1999.3


http://www.olapcouncil.org

61

[SSO1]
[SS05]

[TDP06]

[VS00]

[XH07]

[YZMO3)

-

[YPO4]

[ZADBO06]

Gayatri Sathe and Sunita Sarawagi. Intelligent rollups in
multidimensional olap data. In VLDB, pages 531-540, 2001.

Peter Sanders, Dominik Schultes: Highway Hierarchies Hasten Exact
Shortest Path Queries. In ESA, pages 568-579, 2005

Igor Timko, Curtis E. Dyreson, and Torben Bach Pedersen. Pre-
aggregation with probability distributions. In DOLAP, pages 3542,
2006.

P. Vassiliadis, S. Skiadopoulos, “Modelling and Optimisation Issues
for Multidimensional Databases”, In CAIiSE '00, pp. 482-497,
Stockholm, Sweden, 5-9 June 2000.

Dong Xin and Jiawei Han. Integrating olap and ranking: The ranking-
cube methodology. In ICDE Workshops, pages 253- 256, 2007.

Yuhua Li, Zuhair Bandar and David McLean. An Approach for
Measuring Semantic Similarity between Words Using Multiple
Information Sources. In IEEE Trans. Knowl. Data Eng, pages 871-882,
2003

Xuepeng Yin and Torben Bach Pedersen. Evaluating xmlextended
olap queries based on a physical algebra. In DOLAP, pages 73-82,
2004.

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal and Michal Batko.
Similarity Search: The Metric Space Approach. Springer, 2006



62

APPENDIX

Scenarios of the 1 user study

Cube1 Cube1_1
ag_level2 ed_fevel2 oC_leveld ag_levell ed_level2 oc_leveil
726 Assoc Craferepar 3756 Assot Craft-reparr
7-46 Elementary  Machine-op-inspct 87-56 Elementary Matchine -op-inspct
< 7-46 Post-grad Exec-managerial 37-56 Post-grad Exec-manageral
37-36 Preschoo! Machine-op-inspct 37-56 Preschool Machine-op-inspct
57-96 Secondary Handlers-ceaners 37-56 Secondary Handlers-cleaners
37-48 Some-college Exec-managerial 37-56 Some-college Exec-manageral
37-26 University Adm-clerical 37-56 Unersity Adm-clercat
Cube?_2 Cube1_3
ag_level2 ed_level2 oc_level0 ag_level2 ed_levell oc_level0
47-56 Assoc Prof-spe cialty 37-46 ASSOC-vOC Craft-repair
37-46 tiementary  Machine-op-inspct 37-46 Sth-6th Machine-op-inspct
37-56 Post-grad Exec-manageriaf 37-46 Masters Exec-manager i
47-56 Preschool Machine -op-inspct 37-46 Preschoo! Machine -op-inspct
37-46 Secondary Handlers-ckaners 37-46 Senior-Secondary Handlers-cleaners
37-45 Some-coliege Exec-manageriat 37-46 Some-college Exec-managera!
37-46 Universty  Adm-clerical 37-46 Bachelors Adm-clerical
Cubel 6 Cubel 4
ag_level2 ed_level2 oc_level0 ag_level?2  ed_level2 oc_leveld
37-45 University Adm-clericel 37-46 Secondary Hanglers-cleaners
37-46 Secondary Armed-Forces 37-46 Secondary Other-service
37-46 Assoc Craft-re pair 37-46 Secendary Sales
37-36 Post-prad Exec-managerial
37-46 Secondary ferming-fishing Cube?_5
37-46 Secendary Handlers-cleaners 20_level2 ed leveld oc_tevelld
37-46 Elementary  Machine -op-inspct 37-36 Post-Secondary Craft-repair
37-46 Secondary the r-se rvice 37-46 Without-Post-Secondary - Machine-op-inspct
37-46 Secondary  Priv-house-serv 37-46 Post-Secondary Exec-managerial
37-36 Post-grad Prof-specialty 37-36 Without-Post-Secondary  Machine-op-inspct
37-46 Post-grad Protective-senv 37-46 Without-Post-Secondary Handlers-cleaners
37-25 Secandary Sales 37-46 Post-Secondary Exec-manageral
37-46 Some-cotlege Tech-suppor: 37-46 Post-Secondary Adm-clericel
37-36 Secondary Transport-moving

Figure A.1 Cube scenario ]
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Cube2 Cube?_1
nc_levell ed_level2 oc_level nc_levell ed_level oc¢_level
[Western-Europe  Assoc \white<cllar South-America  Assac Ocher
Central-Europe Elementary Blue-collar South-Amerka Elementary Blue-collar
Scuthern-Asia Post-grad white-cotar South-Amerca Post-grad white-collar
Scuthern-Asia Presthcat Blue-collar {Southern-Asia Or gscneol Blue-cotlar
Western-Europe  Secondary whitecollar South-Amerca S$econdsry Other
Southern-Asia Seme-college Blue-cclfar South-Amerka Some-college white-collar
Scuthern-Asia uUniversity whitecollar South-America University white-cok:ar
Cuhe2_ 2 Cube2_3
ne_levell ed_levell oc_levell nc_tevell ed_level} oc_levell
Western-£urope  Assoc-acdm white-collar \Western-Europe  Post-Seconcary whrte-collar
Central-Europe 7th-8th Blue-cohar Central-Furcpe Without-Ppst-Secondary Blue-coltar
Southern-Asia Masters white-coltar Southern-Aua Post-Secondary white-coltar
Southern-Asia Prescheal Bkse-collar Southern-Asia wiahout-Post-Secondary Bluecatlar
Western-Surope  Senior-Secondary  whitecollar Western-Ewrope  Without-Post-Secondary white-coflar
Southern-Asia Scme-coflege Blue-collar Southern-Asia Pact-Secancary Blue-collar
Scuthern-Asia Bachelors whitecollar Southern-Aus Post-Seconcary wnie-collar
Cube2_4 Cube2_5
nc_levell ed_level? oc_level ne_levell ed_level oc_levell
Western-Europe  Secondary Blue-collar \Western-Ewrope  Assoc-acom white-collar
Southern-Asia Secordary Other Lentral-Ewope 7th-8th Blue<oflar
Southermn-Asia Universiy white—coflar Southern-Asis Masters white-collar
Southern-Asie Preschoct Bluex dltar
Cube2_6 Western-Europe  Senior-Secondary white-collar
nc_level ed_level? oc_leveH Southern-As:é some-coilege Blue<ollar
Western-Europe  Secondary Blue-coliar Southern-Asia Bachelors whie-collar
Scuthern-Asia Secondary Other
Southern-Asia University white-collar
Figure A.2 Cube scenario 2
Cubel Cube3 1
ag_levell wc_levelt ag_levell wc_leveld
27-31 Gov 22-26 Gov
27-31 Private 22-26 Private
27-31 Self-emp 22-26 Self-emp
27-31 Without-pay 22-26 Without-pay
Cube3_2 Cube3_3
ag _levell wc_leveld ag_levell wc_levell
27-31 State-gov 127-31 Private
27-31 Private 27-31 Without-pay
27-31 Self-emp-not-inc
27-31 Without-pay Cube3_4
ag_levell wc_levell
Cube3 5 27-31 Gov
ag_level2 wc levell | 27-31 Gov
27-36 Gov 27-31 Private
27-36 Private 27-31 self-emp
27-36 Self-emp 27-31 Self-emp
27-36 Without-pay 27-31 Gov
27-31 Without-pay

Figure A.3 Cube scenario 3
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Cubed

ag_levell wc_levell ra levell
52-56 Gov White
52-56 Private Colored
47-51 Self-emp White
52-56 Without-pay White
Cubed_4

ag_levell- wc_levell ra leveltl
52-56 Gov White
52-56 Private Colored
52-56 Self-emp White
52-56 Without-pay White
Cubed 5

ag_levell wc_levell ra_levell
27-31 Gov Colored
52-56 Private Colored
47-51 Self-emp White
52-56 Without-pay White
Cubed 6

ag_levell wc_levell ra levell
47-51 Self-emp  White
52-56 Without-pay White
Cubed_8

ag_level2 wc_levell ra_levelt
47-56 Gov White
47-56 Private Colored
47-56 Self-emp White
47-56 Without-pay White

Figure A.4 Cube scenario 4

Cubed 1

ag_levell wc_levell ra_levell
3741 Gov White
3741 Private White
47-51 Self-emp White
62-66 Without-pay White
Cubed 2

ag_levell wc_levell ra levell
5256  Gov White
47-51 Private White
47-51 Self-emp White
52-56 Without-pay White
Cubed 3

ag_levell wc_levell ra_level
3741 Gov White
3741 Private White
4246 Self-emp White
4246 Without-pay White
Cubed 7

ag_levell wc_level2 ra_levell
52-56 With-Pay White
52-56 With-Pay Colored
47-51 With-Pay White
52-56 Without-pay White
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Cube5 Cube5_1
ed levelt we levell ms_levelt ta_levell ed_level! we_levell  ms_levelt ro_levelt
soc-acdm Gov Neve:-married White Bachelors Gov Never-married White
th-6th Frivate Partner-present  White Senior-Secendary  Private Partner-absent  White
ABSIers privaie Partner-present  White Bachelors self-emp Partner-present \White
reschoc) Gov Never-marned  \White
enor-Secondary  Private Pariner-absent  White Cube5_2
ome-coltege Gov Parmer-present  \White ed_levell we jovell _ms level ra levelt
Bachelors Gev Never-married \White ome-ollege Gov Bartmer-present \White
Bachelors Gov Partner-present White
Cubed_3 Senicr-Secondary Private Partmer-absent White
ed_levell we levell ms_levell o _levell Senior-Secendary  Self-emp Parner-absent \White
1s52-4th Private Pariner-present  \White Bachelcrs Self-emp Parmer-present White
S¢h.6th Private parmespresens  Whre Bachelors Gov Never-marned \White
72h-Sth GOV Parnerpresent  \while Sentor-Secondary  Withcut-pay Never-marded White
Assoc-acdm Gov Never-marcied  Whiie
As sT-vor Gov Parner-present  White Cube5_4
Bahelors Gov Never-marned  White ed_levell we_levell  ms level ra_levell
Doctorate Private Pariner-present  Yhite Assoc-acdm Private Never-married Colored
tunior-Secondary  Private Pariner-present  Whice th-8h Private Parmer-present Colored
M.aszers private Parner-present  White Masters Sefi-emp  Partner-absent Colored
Freschoal Gov Never-mscied  White Preschool Private Never-marded Colored
pref-cchool Private Parner-present  White Senlor-Seccndary Gov Never-mariied Colored
Semor-Secondary  Private Pariner-absent \hite Some-ccllege Privaie Parmer-gresent Colored
Some-colliege Gov Pariner-present  White |Bachelors Private Parmer-present Colored
Cube5_5 Cube5_6
ed_levell wo_level2 ms_levell ra_levell od_level we_levell  ms_leveli ra_tevell
Assoc-Xdm With-Pay Never-marned  White AssoC Gov Never-married  White
5th-6th With-Pay  Partner-preseni  Whie Elementary Private Parter-present \White
Wiaciers Wrh-Pay Partner-present Whiwe Posi-grad Private Partner-present White
preschool With-Pay  Never-married hite Prescheol Gov Never-marded White
senior-Seccndary  With-Pay  Pariner-absent  White Secondary Private Partmer-absent  White
some-college with-Pay  Pariner-present  \White Some-college Gov Partmer-present White
|Bachelors Wwith-Pay _ Never-married  White University Goy Never-maried White
Figure A.5 Cube scenario 5
Cubeb Cubeb_1
ed_levell nc_levelt salary ed_levelt nc_level salary
!Bache!ors Central-Europe  <=50K Assoc-acdm Western-Europe  <=50K
Senior-Secondary Eastern-Europe  <=50K S5th-6th Southern-Europe >50K
Junior-Secendary  Southern-Europe <=50K Masters Central-Europe =50K
AsSSOC-acdm Western-Europe  <=50K Senior-Secondary Western-Europe <=50K
Some-college Wwestern-Europe  <=50K
Cubeb_2 Bachelors Central-Europe =50K
ed levelt nc_levell salary
Masters €astern-Asia >50K Cubeb_)
Masters Middle-East >50K ed_levell nc_levell s alary
Senior-Secendary  Southeastern-Asia >50K Bachelors Centrat-Europe  >50K
Bachelors Southern-Asia >50K Senior-Secondary Eastern-Europe  >50K
AssOC-vOC Southern-Eurcpe >50K
Cubeb_4 Bachelors Western-Europe  >50K
ed_level? nc_levell salary
University Central-Europe  <=50X
secondary €astern-Europe  <=50K
Secondary Southern-Europe <=50K
Assoc Western-Europe  <=50K

Figure A.6 Cube scenario 6
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Cube7os Cube?_1

ed_levell ne_levell hours_per_week ad_levell nc_level hours_per_week

Senior-Secondary Cemtral-Lurope 55) AssOC-acdm Western-Eurcpe 40

Bachelers Eastern-Europe 65 5th-6th Southern-Europe 59

Senlor-Secondary  Southern-Europe 75 Masters Centra)-Europe 30

Senior-Secondary  Western-Europe 62| Senior-Seconcary Western-Europe 40
Some-college Western-Europe 42

Cube? 2 Bathelors Central-Europe 40

ed_levelt nc_level2 hours_per_week

Bachelors Europe 40 Cube7_4

Senior-Secondary Europe 50, ed_lavelt nc_levelt hours_per_week

Junior-Secondary  Europe 40 Bachelors CentrakEurope 40

Assot-acdm - Europe ) 40 Bachelors €astern-Europe 40
Bachelors Southern-Europe 50

Cube?_3 Bachelors western-Europe 40

ed_levell nc_levell hours_per_week

Bachelors Central-Europe 40, Cube?_5

Some-coliege Eastern-Europe 40 ed_levell nc_levetl hours_per_week

Junior-Secondary  Southern-Europe 40 Profschool Mwddie-America 80

Assoc-acdm western-Europe 40 Some-coltege North-America 80
Senior-Secondary South-America 72

Cube7_6

ed_level? ne_level hours_per_week

University Central-furope 40,

Secondary Eastern-Europe 50

Secondary Southern-Europe 40,

Assoc Western-Europe 40

Figure A.7 Cube scenario 7
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Cube8

ed_levell wc_levell salary
Ass0C-vOC GOV >90K
7th-8th Private >50K
Masters Private »50K
senior-Secondary Seff-emp  >50K
some-college Private >50K
Bachelors Private >50K
Cube8_2

ed_levell wc_levell salary
Assoc-acdm Private <=50K
7th-8th Private <=50K
Masters Private <=50K
Preschool Private <=50K
Senior-Secondary Private <=50K
Some-college Private >50K
Bachelors Private <=50K
Cube8_4

ed levell we_levell salary
Assoc-acdm Private >50K
7th-8th Private >50K
Masters Private >50K
Senior-Secondary Private >50K
Some-college Private >50K
Bachelars Private >50K
Cube8_6

ed levell we_levell salary
Bachelors Gov »50K
Bachelors Gev >50K
Masters Private >50K
Some-college Self-emp  >50K
Senior-Secondary  Self-emp  >50K
Bachelors Gov >50K

Cube8_1

ed_levell wc_levell salary
AsSSOC-VaC Gox >50K
7th-8th Private >50K
Masters Private »>50K
Senior-Secondary Self-emp  >50K
Some-college Private >50K
Cube8_3

ed levell wc_fevell salay
Assoc-acdm Private <=50K
7th-8th Private <=50K
Masters Private <=50K
Preschool Private «=50K
Senior-Secondary Private <=50K
Some-college Private <=50K
Bachelors Private <=50K
Cube8 5

ed levell we_levell salary
Assoc-voc Gov >S0K
5th-6th Gov >50K
Doctorate Gov >50K
Senior-Secondary Gov >50K
Some-college Gov >50K
Bachelors Gov >50K
Cube8 7

ed level? wc_levell salary
Assoc Gov >50K
Elementary Private >50K
Post-grad Private >50K
Secondary Self-emp  »50K
Some-college Private >50K
University Private >30K

Figure A.8 Cube scenario 8
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Cubel

ag_level0 salary hours_per_week

[ 28 <=50K 20
30 <=50K 40
32 <=50K 55
32 <=50K 40
28 <=50K 50
27 <=50K 35
29 >50K 50
33 <=50K 45
29 <=50K 40
35 >»50K 40

Cube9_3

ag_level) salary hours_per_week
36 <=50K 40
33 <=50K 55
35 >50K 50
32 <=50K 55
32 <=50K 25
32 <=50K 40
35 <=50K 55
33 <=50K 45
35 >50K 40

Cubed 5

ag_leveld salary hours_per week
27 >50K 40
31 <=50K 60
30 >50K 40
30 <=50K 50
29 <=50K 40
30 <=50K 40
27 <=50K 40
30 >50K 50

Cubed_1

ag_leveld salary hours_per week
34 <=50K 40
35 <=50K 35
32 <=50K 40
35 <=50K 40
34 >50K 40
35 <=50K 60
33 <=50K 40
34 <=50K 60
34 >50K 35
33 <=50K 35
36 <=50K 40

Cube$ 2

ag_level0 salary hours_per week
28 <=50K )
30 <=50K 40
27 >50K 65
28 <=50K 50
27 <=50K 35
29 >50K 50
31 <=50K 30
29 <=50K 40
31 <=50K 40

Cube9 4

ag_level0 salary hours_per_week
28 <=50K a0
27 <=50K 35
29 <=50K 40

Figure A.9 Cube scenario 9
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Cubel0

ag_level0 salary hours_per_week
36 <=50K 24
30 <=50K 40
35 >50K 50
35 <=50K 40
32 <=50K 40

Cube10_4

ag_level) salary hours _per week

[ 36 <=50K 40

Cube10_5

ag_levell salary hours _per week
36 <=50K 24
35 <=50K 40

Cube10_1

ag_leveld salary hours_per_week
34 >50K 40
35 >50K 30

Cubel0_2

ag_level0 salary hours_per_week
20 <=50K 30
17 <=50K 438
21 <=50K 48

Cubel0_3

ag_leveld salary hours_per week

l 35 >50K 40|

Figure A.10 Cube scenario 10
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Cube11

ag_leved1 salary hours_per_week
27-31 <=50K 4
32-36 <=50K 55
32-36 <=50K 40
27-31 <=50K 5C
27-31 <=50K 35
27-31 >50K SC
32-36 <=50K 45
32-36 >50K 40
Cube11_3

ag_level1l salary hours_per_wveek
32-36 Z=5CK 35
32-36 >50K 40
32-36 <=50K 40
32-36 <=50K 60
32-36 >50K 35
Cube11_5

ag_levell salary hours_per week
27-31 <=50K 40
27-31 >50K 65
27-31 <=50K 50
27-31 <=50K 35
27-31 >S0K SQ
27-31 <=50K 30
Cube11_6

ag_levei1 salary hours_per_week
27-31 <=50K 40
27-31 <=50K 35
Cube11_8

ag_level1l salary hours_per_week
[32-35 >50K 40)

Cube11_1

ag_levelt salary hours_per_week
32-36 <=5CK 35
32-36 >50K 40
32-36 <=50K a0
32-36 <=5CK 60
32-36 >5CK 35
Cube11_2

ag_levell salary hours_per_week
32-36 <=50K a0
32-36 >50K 5C
32-36 <=50K 25
32-36 <=50K S5
32-36 <=50K 45
32-36 >50K 4
Cube11_4

ag_levell salary hours_per_week
17-21 <=50K 12
17-21 <=50K 35
17-21 Z=50K 3C
17-21 <=50K 20
17-21 <=50K 40
Cube11_7

ag_levelt salary hours_per_week
32-36 <=50K <0
32-36 <=50K 35
32-36 <=50K 45
Cube11_9

ag_levell salary hours_per_week
32-36 ==50K 46
32-36 <=50K 25
32-36 >S5 0K a0
32-36 “=50K 4ac

Figure A.11 Cube scenario 11
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Cubel2 Cubet2_1
ag_levell salary hours__pzr;week ag_levell salary hours_per_week
32-36 <=50K 24 32-36 >50K 40
27-31 <=50K 40 32-36 >50K 80
32-36 >50K 50
32-36 <=50K 40 Cube12_2
ag_levell salary hours_per_week
Cube12_5 [32-36 <=50K 40
ag_levell salary hours_per_week
27-31 <=50K 43 Cube12_3
27-31 <=5QK 35 ag_levell salary hours_per_week
2731 <=50K 40 [27-31 <=50K 40]
Cube12 6 Cube12_4
ag_levelt salary hours per_week ag_levell salary hours_per week
32-36 <=50K 24 [32-26 >50K 40}
32-36 <=50K 40
Figure A.12 Cube scenario 12

Cubell Cube13 1
wc_levell ag_levell we_levell ag_levell
Gov 27-31 Gov 22-26
Private 27-31 Private 22-26
Self-emp 27-31 Self-emp 22-26
Without-pay 27-31 Without-pay 22-26
Cubet3_2 Cube13_3
wc_level) ag_levell we_levell ag_levell
State-gov  27-31 Private 27-31
Private 27-31 Without-pay 27-31
Self-emp-no127-31
Without-pay 27-31 Cube13_4

we_levell ag_levell
Cube13 5 Gov 27-31
wc_levell  ag_level2 Gov 27-31
Gov 27-36 Private 27-31
Private 27-36 Self-emp 27-31
Self-emp 27-36 Self-emp 27-31
Without-pay 27-36 . Gov 27-31

Without-pay 27-31

Figure A.13 Cube scenario 13
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Cubel1d Cubel4_1
salary hours_per_week ag_levell salary hours_per_week ag_level0
<=50K 24 36| >50K 40 34
<=50K 40 30 >50K 80 35
>50K 50 35
<=50K 40 35 Cube14_2
<=50K 40 32 salary hours _per_week ag_level0
<=50K 30 20
Cubetd_4 <=50K 48 17
salary hours_per_week ag_leveld <=50K 48 21
[<=s0k 40 36]
Cube14_3
salary hours _per week ag_level0
Cubet4_5 >50K 40 35
salary hours_per_week ag_leveld
<=50K 24 36
<=50K 40 35

Figure A.14 Cube scenario 14

Scenarios of the 2" user study

A B
Age WorkClass Race Age | Work Class | Race
(levell) (levell) (levell) (levell)| (levell) |((levell)
'52-56 |Gov White 27-31 |Gov Colored
52-56 |Private Colored 52-56 |Private Colored
:47-51  [Self-emp White 47-51 |Self-emp White
152-56  |Without-pay {White 52-56 |Without-pay |White
C
Age | WorkClass | Race
(level2)| (level2) |(levell)
47-56 |With-Pay Colored
47-56 |With-Pay White
47-56 |Without-pay White

Scenario 1 D

Age | Work Class | Race
(levell)| (levell) |(levell)
47-51 |(Self-emp White
52-56 |Without-pay |White

Figure A.15 Scenario 1of the 2" user study
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A
Education Work Class
(levell) (levell)
Assoc-voc Gov
7th-8th Private
Masters Private
Senior-Secondary (Self-emp
Some-college Private
Bachelors Private
Scenario 2

B
Education Work Class
(levell) (levell)
Assoc-acdm Private
7th-8th Private
Masters Private
Preschool Gov
Senior-Secondary |Private
Some-college Private
Bachelors Gov
C
Education Work Class
(levell) (levell)
Assoc-voc Gov
5th-6th Gov
Doctorate Gov
Senior-Secondary |Gov
Some-college Gov
Bachelors Gov
D
Education Work Class
(levell) (levell)
Some-college Private

Figure A.16 Scenario 2 of the 2™ user study
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| Ed Work Class Marital Status

ucation

) {levell) {levell) (levell)
Assoc-acdm Private Never-married
7th-8th Private Partner-present
Masters Private Partner-present
Preschool Private Never-married
.Senior-Secondary |Private Partner-absent
.Some-college Private Partner-present
iBachelors Gov Never-married

Scenario 3

B
Education Work Class| Marital Status
{level2) {levell) {levell)
Assoc Private | Never-married
Elementary Private | Partner-present
Post-grad Private | Partner-present
Preschool Gov Never-married
Secondary Private | Partner-absent
Some-college Private | Partner-present
University Gov Never-married
C
Education Work Class| Marital Status
{levell) {levell) {levell)
Bachelors Gov Partner-absent
Senior-Secondary Gov Partner-present
Bachelors Gov Partner-present
Some-college Gov Partner-absent
Bachelors Gov Never-married
Senior-Secondary Gov Partner-absent
Masters Gov Partner-absent
D
Education Work Class{ Marital Status
(level2) (level2) {levell)
Assoc With-Pay | Never-married
Elementary With-Pay | Partner-present
Post-grad With-Pay | Partner-present
Preschool With-Pay | Never-married
Secondary With-Pay | Partner-absent
Some-college | With-Pay | Partner-present
University With-Pay | Never-married

Figure A.17 Scenario 3 of the 2™ user study
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A
Education Native Country
(levell) (levell)
Senjor-Secondary | Central-Europe
Bachelors Eastern-Europe

Senior-Secondary

Southern-Europe

Senior-Secondary

Western-Europe

B
Education Native Country
{levell) (levell)
Masters Eastern-Asia
Masters Middle-East
Bachelors Southeastern-Asia
Bachelors Southern-Asia
C
Education Native Country
(levell) (levell)
Bachelors Central-Europe

Senior-Secondary

Eastern-Europe

Junior-Secondary

Southern-Europe

Assoc-acdm Western-Europe
D
Education Native Country
(levell) (level2)
Bachelors Europe
Senior-Secondary Europe
Junior-Secondary Europe
Assoc-acdm Europe

Figure A.18 Scenario 4 of the 2" user study

Scenario 4
A
Education Native Country AVG
{leveil) {levell) hours_per_week
Senior-Secondary | Central-Europe 60.8636
Bachelors Eastern-Europe 60.75
Senior-Secondary | Southern-Europe 64.8095
Senior-Secondary | Western-Europe ©3.5652
Scenario 5

8
Education Native Country AVG
{levell) (levell) hours_per_week
Masters Eastern-Asia 41,9768
Masters Middle-East 44,0714
Bachelors Southeastern-Asia 39.8717
Bachelors Southern-Asia 41.53
C
Education Native Country AVG
{levell} (levell) hours_per_week
Bachelors Central-Europe 40.6447
Senior-Secondary | Eastern-Europe 44,5625 ]
Junior-Secondary | Southern-Europe 42.626
Assoc-acdm Western-Europe 43.0738
D
Education Native Country AVG
{levell) {level2) hours_per_week
Bachelors Europe 40.6447
Senior-Secondary Europe 44.5625
Junior-Secondary Europe 42.626
Assoc-acdm Europe 43.0738
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Figure A.19 Scenario 5 of the 2" user study

A B
Education Native Country AVG Education Native Country AVG
{tevell) {levell) hours_per_week {levell) {levell) hours_per_week
Bachelors Central-Europe 40.6447 Bachelors Central-Europe 40.6447
Senior-Secondary | Eastern-Europe 44,5625 Senior-Secondary | Eastern-Europe 44.5625
Junjor-Secondary | Southern-Europe 42,626 Junior-Secondary | Southern-Europe 42.626
Assoc-acdm Western-Europe 43.0738 Assoc-acdm Western-Europe 43.0738
C
Education Native Country AVG
(levell) (levell) hours_per_week
Prof-school Middle-America 45.5625
Senior-Secondary | North-America 45,7566
< Some-college South-America 42.0492
D
Education Native Country AVG
Scenario 6 {levei2) (levell} hours_per_week
Assoc Eastern-Europe 48.6667
Elementary Eastern-Europe 20
Secondary Eastern-Europe a2
Some-college Eastern-Europe 46.6667
University Eastern-Europe 49.25
Figure A.20 Scenario 6 of the 2™ user study
A B
Age  Work Class AVG Age | Work Class AVG
(levell) (levell) hours_per_week (levell)| (levell) |[hours_per_week
27-31 Gov 41.636 37-41 Gov 40.9351
27-31 Private 42,2742 62-66 | Without-pay 32.7143
27-31 | Self-emp 46.3854
27-31 | Without-pay 65 C
Age Work Class AVG
{levell)| (levell) |hours_per_week
22-26 Gov 36.5979
22-26 Private 38.602
22-26 Self-emp 43.6528
. 22-26 | Without-pay 40
Scenario 7 D
Age Work Class AVG
(levell)| (levell) [hours_per_week
27-31 Gov 41.636
27-31 Private 42.2742

Figure A.21 Scenario 7 of the 2" user study
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A 8
i Age  Education Occupation AVG Age { Education Occupation AVG
‘(IeveIZ} (levei2) (level0) hours_per_wee level2 {level2) {level0} hours_per_wee
37-46 Assoc Craft-repair 42.4773 27-36 Assoc Sales 43.143
i 37-46 | Elementary | Machine-op-inspct 41.0847 27-36 | Elementary | Transpor:i-moving 40.7958
i 3746 | Post-grad Exec-managerial 45.5272 27-36 Post-grad prof-specialty 44,4815
3746 Preschool | Machine-op-inspct 35.7778 27-36 preschool |  Other-service 38
I 3746 Secondary | Handlersleaners 42.3831 27-36 | Secondary | Machine-op-inspct 42.4468
37-46 | Some-college | Exec-managerial 43.6332 27-36 | Seme-college Adm-clerical 42.5865
37-46 | University Adm-clerical 45.3889 27-36 | University Prof-specialty 44,3959
C
Age Education Occupation AVG
level2 {level2) _{levelo) hours_per wee
47-56 AsscC prof-specialty 42.205
37-46 | Elementary | Machine-op-inspct 40.3118
37-46 Post-grad Exec-managerial 45.7161
47-56 | Preschool | Machine-op-inspct 38.5
3746 | Secondary | Handlers-cleaners 41.652
3746 | Some-tollege | Exec-managerial 42.9059
= 37-46 | University Adm-clerical 44.7706
D
Age Education Occupation AVG
(level2)[ {level?} {levelo) | hours_per_wee
37-46 | University Adm-clerical 39.9895
3746 | Secondary Armed-Forces 45
3746 Ass50¢ Crafi-repair 43.1377
3746 Posi-grad Exec-managerial 46.4003
. 3746 | Secondary Farming-fishing 50.8405
Scenario 8 3746 | Secondary | Handters-cieaners 41.3594
37-46 | Elementary | Machine-op-inspct 41.2668
3746 | Secondary Qther-secvice 38.6933
37-46 | Secondary Priv-house-serv 30.7727
37-46 Post-grad Prof-specialty 43.8034
37-46 Post-grad Protective-serv 45.549
37-46 | Secondary Sales 46.3443
37-46 | Some-college Tech-support 40.9124
37-46 | Secondary | Transpori-moving 45.5857

Figure A.22 Scenario 8 of the 2™ user study
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A

Age WorkClass Race AVG
{levell)  (levell} (levell) hours _ber_week
47-56 Gov White 42.3757
47-56 Private | Colored 42.3026
47-56 | Self-emp | White 47,9307
47-56 | Without-pay | White 30

Scenarioc 9

8
Age Work Class Race AVG
(levell) (levell} |{levelO) | hours_per_week
32-36 Gov Black 39.4125
52-56 Private Black 38.241
67-71 Self-emp Black 42,8727
17-21 | Without-pay | Black 40
C
Age | Work Class | Race AVG

Figure A.23 Scenario 9 of the 2™ user study

A
Age  Work Class AVG
(levell) (levell)  hours_per_week
27-31 Gov 41,636
27-31 Private 42.2742
27-31 Self-emp 16.3854
27-31 | Without-pay 65
Scenario 10

(leveil}| (levell) (level1) | hours_per_week
57-61 Gov Colored 39.5879
57-61 Private White 39.3317
57-61 Self-emp White 41.8661
62-66 | Without-pay | White Y
D
Age Work Class Race AVG
(levell)| (levell) |(levell) | hours_per_week
47-51 Self-emp White 43,5387
52-56 Private Colored 42.8894
B
Age Work Class AVG
(levell)| (levell) |hours_per_week
37-41 Private 40.2509
62-66 | Without-pay 32.7143
C
Age Work Class AVG
(levell)| (levell) hours_per_week
22-26 Gov 36.5979
22-26 Private 38.602
22-26 Self-emp 43.6528
22-26 | Without-pay 40
D
Age Work Class AVG
(fevell) {levell) hours_per_week
27-31 Gov 41.636
32-36 Private 42.8008

Figure A.24 Scenario 10 of the 2™ user study
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A B
Native Country  Education  Occupation AVG Native Country | Education | Occupation AVG
{levell) (levei2) {levell)  hours_per week {level2) (level?) (levell) [hours_per week
Western-Europe Assoc white-collar 42 Western-Europe Assoc white-collar 41,9388
Central-Europe | Elementary | Blue-collar 39.0625 Central-Europe | Elementary | Blue-collar 40.4
Southern-Asia | Post-grad [white-collar 42.2638 Western-Europe| Post-grad | white-coltar 45.5106
Southern-Asia Preschool | Blue-collar 40.5714 Western-Europe| Secondary |white-collar 41.454
Western-Europe| Secondary |white-collar 40.9172 Central-Eurape | Some-college [vhite-collar 40,1772
Southem-Asia | Some-college! Blue-collar 39,6615 Central-Europe | University Jwhite-collar 43.3036
Southern-Asia | University {white-collar 43.0597
C
Native Country | Education | Occupation AVG
{levell) {level2} {levell) |hours per week
North-America Assoc white-collar 41.6362
North-Amenca | Elementary Other 39,4748
North-Amenca | Post-grad |white-coltar 44,9085
North-America | Preschool [ Blue-collar 36.8667
North-America | Secondary | Blue-collar 39.9%34
North-America | Some-college | white-collar 39.4113
-
Scenario 11 o
Native Country Education | Occupation AVG
{levell) (level2) {levell) lhours_per week
Western-gurope| Secondary | Blue-collar 41.3601
Southern-Asia | Secondary Other 39.9945
Southern-Asia | University |white-collar 41.977%
. : nd
Figure A.25 Scenario 11 of the 2™ user study
A B
Education Work Class AVG Education Work Class AVG
levell levell  hours_per_week) levell levell | hours_per_week
Assoc-voc Gov 44,2217 Assoc-acdm Private 40.7085
7th-8th Private 47.3962 7th-8th Private 39.035
Masters Private 46.672 Masters Private 42.2935
Senior-Secondary | Self-emp 45.1358 Preschool - Gav 36.8667
Some-college Private 45.0569 Senior-Secondary | Private 39.1367
Bachelors Private 46.3124 Some-college Private 37.9991
Bachelors Gov 41.0494
C
Education Work Class AVG
levell levell hours_per_week
Bachelors Gov 43.3342
Bachelors Gov 44,0033
. Masters Private 45.4934
Some-college Self-emp 50.2533
Senior-Secondary | Self-emp 46.7451
Bachelors Gov 44,1744
Scenario 12
D
Education Work Class AVG
levell levell hours_per_week
Some-college Gov 45.0569
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Figure A.26 Scenario 12 of the 2™ user study

A B
Natlve Country Education AVG Native Country Education AVG
levell levell hours_per_week levell levell hours_per_week
Central-Europe | Senior-Secondary 60.8636 Eastern-Asia Masters 41.9768
Eastern-Europe Bachelors 60.75 Middle-East Masters 44.0714
Southern-Europe | Senior-Secondary 64.8095 Southeastern-Asia Bachelors 39.8717
Western-Europe | Senior-Secondary 63.5652 Southern-Asia Bachelors 41.53
C
Native Country Education AVG
levell levell hours_per_week
Central-Europe Bachelors 40.6447
- Eastern-Europe | Senior-Secondary 43.5625
Southern-Europe | Junior-Secondary 42.626
Western-Europe Assoc-acdm 43.0738
D
Native Country Education AVG
) level2 levell hours_per_week
Scenario 13 Europe Bachelors 4£4;7
Europe Senior-Secondary 44.5625
Europe Junior-Secondary 42.626
Europe Assoc-acdm 43.0738
Figure A.27 Scenario 13 of the 2™ user study
A B
WorkClass Race Age AVG Work Class | Race | Age AVG
levell levell level2 hours_per_week levell level0 |levell | hours_per_week
Gov White {47-56 42.3757 Gov Black |32-36 39.4125
Private | Colored | 47-56 42.3026 Private Black |52-56 38.241
Self-emp White | 47-56 47,9392 Self-emp Black |67-71 42.8727
Without-pay | white |47-56 30 Without-pay | Black |17-21 40
C
Work Class | Race Age AVG
levell levell |levell| hours_per_week
) Gov | Colored | 57-61 39.5879
Private | White |57-61 393317 |
. Self-emp | White | 57-61 41.8661 |
Without-pay | White | 62-66 34
D
Scenario 14 Work Class | Race | Age AVG
levell levell |levell | hours_per week
Self-emp White | 47-51 43.5387
Private | Colored | 52-56 42.8394 |

Figure A.28 Scenario 14 of the 2™ user study
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