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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Αλεξάνδρα Πιλαλίδου του Αλέξανδρου και της Βαλεντίνης. M sc, Τμήματος 
Πληροφορικής Πανεπιστήμιο Ιωαννίνων, Ιούλιος 2010. Online negotiation for 
privacy preserving data publishing.
Επιβλέποντας: Πάνος Βασιλειάδης.

To πρόβλημα της προστασίας της ιδιωτικής των δεδομένων που δημοσιεύονται 

βρίζεται ως πρόβλημα της δημόσιας παρουσίασης δεδομένων γύρω από τις 

δραστηριότητες ή τις πράξεις από ένα σύνολο ατόμων, προκειμένου να  

εξυπηρετηθούν οι ακόλουθοι δύο ανταγωνιστικοί στόχοι: (α) να επιτρέψουμε σε ένα  

σύνολο καλοπροαίρετων χρηστών να εφαρμόζουν διάφορους αλγορίθμους εξόρυξης 

δεδομένων με σκοπό την εξαγωγή χρήσιμων πληροφοριών στατιστικού χαρακτήρα 

για το σύνολο δεδομένων, και, (β) να εμποδίσουμε έναν κακόβουλο εισβολέα να  

συνδυάσει κάποιες εξωτερικές πληροφορίες που έχει (στο αίσθηση της προσωπικής 

γνώσης του εισβολέα, άλλες δημόσια διαθέσιμα σύνολα δεδομένων, κλπ.), 

προκειμένου να συνδυάσει το συγκεκριμένο πρόσωπο στον πραγματικό κόσμο (και 

ιδίως των ευαίσθητων πληροφοριών γύρω από αυτό το πρόσωπο) με αντίστοιχη 

εγγραφή που δημοσιεύεται στο ευρύ κοινό. Η κύρια τεχνική που χρησιμοποιείται για 

την προστασία αυτών των δεδομένων είναι η ανωνυμοποίηση, η οποία μετατρέπει τα 

δεδομένα σε μια συγκεκριμένη μορφή πριν δημοσιευθεί. Στην παρούσα εργασία η 

τεχνική η οποία χρησιμοποιήσαμε για να πετύχουμε την ανωνυμοποίηση ονομάζεται 

καθολική κωδικοποίηση, η οποία (α) είναι πολύ καλή για την χρήση των αλγόριθμων 

εξόρυξης δεδομένων που χρησιμοποιεί ο καλοπροαίρετος χρήστης, (β) πολύ γρήγορη 

σε σχέση με κάποιες άλλες μεθόδους που υπάρχουν στην βιβλιογραφία, συγχρόνως 

όμως, (γ) υπάρχει το πρόβλημα της διαγραφής κάποιων εγγραφών, με σκοπό να  

πετύχουμε το επιθυμητό επίπεδο γενίκευσης.

Στην εργασία αυτή αντιμετωπίσαμε τα ακόλουθα προβλήματα που δεν υπήρχαν στην 

σχετική βιβλιογραφία. Ο πρώτος στόχος ήταν να μελετήσουμε την σύνδεση που



x u t

9 έχουν μεταξύ τους οι τρεις παράμετροι του προβλήματος -  δηλαδή, το σύνολο των 

εγγραφών που διαγράφουμε, το επίπεδο γενίκευσης και τέλος το κριτήριο 

ανωνυμοποίησης. Ο βασικός στόχος της εργασίας είναι να παρέχει στο χρήστη την 

δυνατότητα της online διαπραγμάτευσης των τριών παραμέτρων που αναφέραμε 

πάνω, δηλαδή, (α) το επίπεδο της ανωνυμοποίησης που επιθυμεί, (β) το πλήθος των 

διαγραφόμενων εγγραφών που επιτρέπει, και (γ) το βαθμό της ανωνυμοποίησης που 

επιθυμεί.

Η πρώτη προσέγγιση που έχουμε είναι ο προϋπολογισμός του ιστογράμματος για 

όλους τους διάφορους συνδυασμούς ανωνυμοποίησης που μπορεί να  κατασκευάσει 

μια μέθοδος καθολικής κωδικοποίησης. Αυτό επιτρέπει τον υπολογισμό επακριβών 

λύσεων εξαιρετικά γρήγορα (σε χρόνο μερικών m illiseconds). Παρέχουμε στο χρήστη 

και επακριβείς απαντήσεις (αν μπορούν να υπάρξουν), αλλά και προτάσεις για 

προσεγγιστικές λύσεις μέσω αυτών των ιστογραμμάτων. Π αρ’ όλα αυτά, η μέθοδος 

αυτή προϋποθέτει ένα χρόνο προ-επεξεργασίας για την κατασκευή των 

ιστογραμμάτων, ο οποίος ανέρχεται στην τάξη μεγέθους μερικών δεκάδων λεπτών -  

έτσι, υπάρχει χώρος για περαιτέρω βελτιώσεις. Για το σκοπό αυτό προτείνουμε και 

μία δεύτερη μέθοδο, η οποίο προϋπολογίζει μόνο ένα μικρό ποσοστό των 

ιστογραμμάτων, με σκοπό να επιταχυνθεί ο χρόνος προ-επεξεργασίας. Τα πειράματά 

μας έδειξαν γραμμική επιτάχυνση στο χρόνο αυτό, με πολύ καλές ή έστω αποδεκτές 

τιμές για την ποιότητα του αποτελέσματος, ανάλογα με το είδος της απάντησης. 

Τέλος, για να αντιμετωπίσουμε και τα προβλήματα ποιότητας της τελικής απάντησης 

(καθώς η προηγούμενη μέθοδος παρουσίασε αποκλίσεις σε δύο είδη προσεγγιστικών 

λύσεω ν που προτείνονται στο χρήστη), εισάγουμε μια τρίτη εκδοχή της μεθόδου, 

στην οποία υπολογίζουμε το ιστόγραμμα του υψηλότερα αποδεκτού κόμβου (σε 

σχέση με τους περιορισμούς που θέτει ο χρήστης) στο χρόνο εκτέλεσης. Αυτή η 

μέθοδος κοστίζει 0.1-0.3 δευτερόλεπτα για κάθε αίτημα ενός χρήστη, αλλά κερδίζει 

εξαιρετική ποιότητα τελικής λύσεις για όλα τα είδη απαντήσεων. Έτσι, μπορούμε να  

επιτρέψουμε στον διαχειριστή να διαπραγματεύεται την ποιότητα της λύσης, το 

χρόνο που θα πάρει για να την λάβει καθώς και της παραμέτρους του αιτήματος του 

χρήστη.
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The problem o f  p r iv a c y  p re se rv in g  d a ta  p u b lish in g  is defined as the problem o f  

publicly presenting a data set with the structured records around the activities or 

transactions o f  a set o f  persons, in order to accommodate the following two 

antagonistic goals: (a) allow  a set o f  well-intended knowledge workers to execute data 

mining algorithms over the public data set in order to extract useful information o f  

statistical nature for this data set, and, (b) prevent a m alicious attacker to combine 

these publicly available data with background knowledge (in the sense o f  personal 

knowledge o f  the attacker, other publicly available data sets, etc) in order to link a 

specific person in the real world (and in particular sen s itive  information around this 

person) with its corresponding record in the public data set. The main technique that 

data curators undergo is the a n o n ym iza tio n  o f  data, which involves transforming the 

data (in one o f  many ways that the research community has come up with) before 

presenting them for public use. in our setting, we focus on the global recoding 

approach which is a method for data anonymization with (a) high utility for the data 

mining tools o f  the well-intended users, (b) faster times than the alternative methods 

(although not fast enough for an online environment), and, at the same time, (c) the 

problem o f  having to delete (a.k.a., suppress) outlier groups to attain an acceptable 

level o f  generalization.

In this thesis we attack the follow ing goals, not previously explored by the research 

community. The first goal o f  this thesis is to study the interplay o f  suppression, 

generalization and privacy criterion and record how changes to one o f  these 

parameters affect the two others. The main goal, however, o f  this thesis is to provide 

the means to negotiate the configuration o f  the anonymization o f  a data set, by
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9 allowing a target group o f  known well-meaning users and the data curator who is 

responsible for the anonymization o f  data to agree o n lin e  on (a) the level o f  data 

generalization (and thus, the incurred information loss for the well-m eaning users), 

(b) the number o f  tuples that can be omitted from the published data set and (c) the 

privacy criterion that the data curator imposes.

Our first approach involves precomputing suitable histograms for all the different 

anonymization schem es that a global recoding method can follow. This allow s 

computing exact answers extremely fact (in the order o f  few  m illiseconds). We 

provide both exact answers, i f  they exist, and suggestions for approximate answers by 

exploiting these histograms. However, this approach requires a pre-processing time in 

the orders o f  few  dozens o f  minutes; whenever this is not feasible, alternative 

approaches must be explored. To this end, w e propose a method that precomputes a
‘K

small subset o f  the histograms in order to speed up the pre-processing time. Our 

experiments indicate a linear speedup along with very good or acceptable values for 

the quality o f  the proposed solutions, depending on the type o f  answer. Finally, to 

alleviate the problems o f  deviations from the optimal solution for tw o cases o f  

approximation suggestions, w e introduce a third variant, where the histogram o f  the 

top acceptable node (in terms o f  height constraint) is also computed at runtime. This 

method pays the price o f  0.1-0.3 seconds to gain excellent quality o f  solution for all 

kinds o f  answers. This way, the data curator is equipped with alternative tools that he 

can use depending on the constraints in terms o f  user time and quality o f  solution.

*

Ύ

S



16

CHAPTER 1. INTRODUCTION

I t is M o n d a y  m o rn in g  a n d  the d ep u ty  m in is te r  o f  the  M in is try  o f  H ealth  a n d  Insurance  

arrives a t h is  o ffice. In the corridor, he f in d s  th ree  a n g ry  p e o p le  quarre lling; the  

C h ie f  In fo rm a tion  T echno logy  (C IT ) o fficer, h is  leg a l c o u n cillo r  a n d  h is s tra teg ic  

p la n n in g  a d v iso r .

A dvisor: Ah, y o u  ca m e! P lease  te ll them  I  m u st have  these  h o sp ita l d a ta  f o r  the new  

Insurance la w ...

Law yer: No, y o u  can  Ί! I t is a g a in s t the  law  to  have a c ce ss  to the  da ta  un less they  are  

ap p ro p ria te ly  a n o n ym ized ! In d iv id u a ls  m u st be h idden  in  the  c ro w d  b e fo re  y o u  can  

have access to th e ir  hea lth  data.

C IT: B u t w e have  a n o n y m ize d  the d a ta  a n d  he d o esn  Ί  like  them  l

A dvisor: You ca ll these  ‘d a ta  7  N o t o n ly  d id  y o u  g en era lize  th e  de ta ils  o f  the  records,

b u t y o u  have su p p re sse d  10%  o f  the d a ta  se t!

M in ister: Is  th is  r ig h t?  C an  Ί  y o u  g ive  h im  a t  le a s t the  f u l l  d a ta  set, w ith o u t de le ting  

records?

C IT; We d id ! T w ice ! The f i r s t  tim e, w e u se d  a  tech n iq u e  c a lle d  fu ll-d o m a in  

g en era liza tio n  a n d  he  c o m p la in e d  the  d a ta  w ere  too  m u ch  g e n e ra lized ...

A d v is o r : .. y o u  b e t th e y  w ere ...

C IT: a n d  th e  s e c o n d  tim e, w e u se d  a  m ore  e labora te  tech n iq u e  c a lled  lo c a l recoding, 

a n d  he c o m p la in e d  th a t the  d a ta  w ere  n o t su ita b le  f o r  h im

A dviso r: You I T  p e o p le  y o u  a re  a lw a y s  g iv in g  m e  headaches. We have  sp en t z illions  

o f  h o u rs  in  m e e tin g s  w ith  a ll  the  5  d ep a rtm en ts  o f  the  m in is try  try ing  to  ‘reconcile  the  

w arehouse  d im e n s io n s ' a s  y o u  said , because  y o u r  p rec io u s  w arehouse  w ou ldn  V w ork  

otherw ise. A n d  n o w  y o u  ‘re  te llin g  m e  th a t a fte r  a ll  th is  effort, these  ‘d im e n s io n s ' a n d  

th e ir  h ie ra rch ies  a re  no  g o o d  because  y o u  h a d  to  do  th is  lo c a l recod ing  o f  y o u rs  a n d  

g iv e  m e a g e  g ro u p s  o f  1 7  - 3 2  th a t y o u  th in k  h ave  a n y  m e a n in g  to  anybody!
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9 M in ister  (ho ld in g  the C I T ’s  hands —w ho is m a k in g  a  th rea ten in g  m o ve— before  he  

p u n ch es  (he adv isor): Isn Ί there  a n y  o ther  w ay?

C IT: Well, h is  m a je s ty  re fu ses  to  take  d a ta  w ith  no ise  o r  a n y  p e r tu rb a tio n  o f  va lues  

a n d  we sh o w e d  h im  a  p rev ie w  o f  a  techn ique  c a lle d  d a ta  a n a to m iza tio n  a n d  he sa ys  

th a t the  u tility  o f  d a ta  is zero  f o r  h im ...

M inister: OK, /  g o t it. /  am  a  p o litic ia n  a n d  /  kn o w  it w hen  /  see  it: y o u  have to  

n ego tia te  y o u r  d em a n d s  a n d  se e k  f o r  a  com prom ise  fo r  the a n ta g o n is tic  d em a n d s  o f  

in fo rm a tio n  u tility , h id in g  in  the  crow d\ su p p ress io n , a n d  g e n era liza tio n ...

C IT : Yeah, right, i f  w e c o u ld  d o  th is  in tera c tive ly  w e w ou ld n  7 be  here  o n  M o n d a y  

m o rn in g  sh o u tin g  o u ts id e  y o u r  o ffic e ...

Privacy preserving data publishing is the problem o f  publicly presenting a data set 

that includes information around the activities or transactions o f  a set o f  persons, in 

the form o f  structured records in order to accommodate the follow ing two antagonistic 

goals: (a) allow a set o f  well-intended knowledge workers to execute data mining 

algorithms in order to extract useful information o f  statistical nature around the data 

set, and, (b) prevent a malicious attacker to combine these publicly available data with 

background knowledge (in the sense o f  personal knowledge o f  the attacker, other 

publicly available data sets, etc) in order to link a specific person in the real world 

(and in particular sen s itive  information around this person) with its corresponding 

record in the public data set. The main technique that data curators undergo in order to 

process the available data before making them public is the a n o n y m iza tio n  o f  data, 

which involves transforming the data (in one o f  various w ays that the research 

community has come up with) before presenting them.

To give a simple example, assume that the data curator o f  a hospital wants to make 

patient records publicly available to knowledge workers without allow ing malicious 

users understand which records corresponds to which person in the real world. In the 

case o f  the patient records o f  our example, the disease, symptom s and treatment o f  

each patient are examples o f  such sensitive values. To achieve that, a set o f  id en tifie r  

attributes o f  data are removed (in the case o f  patients’ example, this would be the 

name, SSN, tax-agency-id, or other similar attributes). However, this is not enough: as 

the bibliography has characteristically shown for the case o f  M assachusetts’ governor
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P [Swee02a] it is still possible to identify to whom a record corresponds via a set o f  so- 

called q u a si iden tifie r  attributes (for example, here: zipcode, age, sex) whose 

combination might uniquely characterize a person. In our example, a patient’s 

neighbor who knows (a) the zip code, sex and age o f  a patient, and (b)the fact that the 

patient was hospitalized on a specific date, can reason on the patient’s disease if  there 

are no other patients with similar characteristics. To attack this vulnerability, the 

research community has come up with a variety o f  techniques that aim to abstract the 

detailed values o f  the original records with more g e n e ra lize d  values in the published 

data set: so, instead o f  publishing the exact zip code 45110, a generalized version o f  it 

might be published: 4511*, or 451**. Similarly, instead o f  publishing that the age 

attribute has the value o f  35 for a certain record, one might publish that the age 

belongs to the range [31, 40], A published data set is k-a n o n ym o u s  if  every record in 

the published data shares the same quasi identifier value with at least k-1 other tuples. 

Sometimes, a generalization scheme (i.e., a decision on the level o f  abstraction for 

each o f  the quasi-identifiers) produces nice groups with the exception o f  some outlier 

groups that violate the k-anonymity criterion. Som e o f  the published approaches allow  

the deletion o f  these tuples, which is known as suppression in the literature. As we 

shall see in the sequel, the management o f  suppression is a non-trivial problem for the 

data curator.

The research community has provided several methods and statistical tests to allow  

the effective publishing o f  private data. One line o f  research deals with the p r iva c y  

c rite r io n : any privacy criterion (like the abovementioned criterion o f  k-anonymity) 

suffers from vulnerabilities o f  statistical nature; therefore different privacy criteria 

have been developed over time, each covering weaknesses o f  the previous (with the 

computational com plexity and the possibility o f  suppressing the w hole data set in the 

end being the main drawbacks o f  more and more sophisticated privacy criteria). 

Another line o f  research deals with the nature o f  anonymization process: instead o f  

generalizing the data set it is also possible to introduce noise or destroy the linkage o f  

quasi-identifiers to sensitive values. However, one o f  the criticisms against these 

approaches is that although each o f  these methods seems to perform quite well in 

terms o f  the privacy offered for the individuals whose records are in the public data 

set, it also appears to annoy the knowledge workers since the “world’s truth”
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9 presented by the data set is either false, or destroyed in terms o f  utility. Even the area 

o f  generalization has several possible approaches within it; for example, why do we 

have to generalize uniformly all postal codes? If a geographical region is densely 

represented in the data set, then the need to generalize it at the same level o f  

abstraction with a region which is sparsely represented is not directly obvious (since 

the former can easily reach groups o f  the desired privacy criterion at lower levels o f  

abstraction than the latter). Therefore, approaches that custom ize the partition o f  data 

to groups in non-uniform ways (also known as local recoding o f  values, as opposed to 

the global recoding o f  values alternatively suggested) have been proposed in the 

literature. Despite their obvious advantage, which is the minimization (or actually, the 

elimination) o f  suppression, it has also been argued that these approaches are slow , 

make it extremely difficult for the data mining tools to extract useful knowledge and
Ή

present the users with unnatural groupings o f  data [FW CY10].

Despite all this activity, there are several issues not covered by the research 

community so far, that we try to address in this thesis. To the best o f  our knowledge, 

this is the first time that these issues are explored in a systematic way. The f i r s t  

p ro b le m  invo lves  the  sys tem a tic  s tu d y  o f  the  re la tio n sh ip  b e tw een  su p p ressio n , 

g en era liza tio n , a n d  p r iv a c y  c r ite r io n . In other words, what is the amount o f  

generalization that appears to be necessary before w e restrict suppression to tolerable 

ranges? What is the role o f  the value o f  the privacy criterion in this relationship? A  

se c o n d  p ro b le m  tha t th is  th esis  a d d resses  is the  p ro p o sa l o f  e ffic ien t w a ys th a t a llo w  

th e  user a ch ieve  a n  a n o n ym o u s  d a ta  s e t  w ith  c o n stra in ts  o ver  the  g en era liza tio n  

heigh t, the  a m o u n t o f  su p p re ss io n  a n d  the  tu n a b le  va lue o f  the  p r iv a c y  criter io n . A  

th ird \ re la te d  p ro b le m  invo lves  the  a b ility  to p ro v id e  su g g es tio n s  to  th e  u ser  tha t a re  

c lo se  to  h is  o r ig in a l d esid era tu m  a ro u n d  g en era liza tio n , su p p re ss io n  a n d  privacy . 

The desideratum is that the user negotiates interactively with an anonymization 

system  the properties o f  an anonymized data set. If, for example, the user sets a 

suppression threshold too low  for the anonymization to attain the privacy criterion 

that he also sets, then the system  should ideally respond very quickly with a negative 

answer to the user, along with a set o f  proposals on what possible generalizations, 

c lose  to the one that he originally submitted, are attainable with the specific data set. 

This practically requires the ability to provide answers to the user in user time.
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Problem statem ent. The main goal o f  this paper is to provide the means to negotiate 

the configuration o f  the anonymization o f  a data set, by allowing a target group o f  

known well-meaning users and the data curator who is responsible for the 

anonymization o f  data to agree on (a) the level o f  data generalization (and thus, the 

incurred information loss for the well-meaning users), (b) the number o f  tuples that 

can be omitted from the published data set and (c) the privacy criterion that the data 

curator imposes.

We make the following assum ptions:

•  We assume that the end users require that data are published with respect to a set o f  

 ̂ generalization hierarchies whose members and structure are predetermined. To put

this in context, w e assume that the users have been working with the dim ensions o f  

a data warehouse for som e time and have a strong point o f  view  on how  they want 

information presented to them. Therefore, they are quite reluctant to work with 

automatically computed intervals o f  values that are typically produced by local or 

multidimensional recoding methods.

• Moreover, w e assume that the data curator has a range o f  acceptable values for the 

privacy preservation criterion (e.g., for the parameter / o f  l-diversity) and, despite 

the fact that he starts with a preferred value, he does not set a strict constraint on a 

specific value.

• Another assumption has to do with the possibility o f  omitting (“suppressing”) 

tuples from the published data set. The om ission o f  tuples clearly results in 

(sometimes high) information loss; however, som etim es, removing a set o f  outlier 

tuples can allow  the generalization o f  the data set to a much lower level o f  

abstraction, thus resulting to a published data set that is more rich in information

>- rather than i f  the tuples were retained. We allow , thus, the suppression o f  tuples; 

however w e im pose the reasonable constraint that a maximum number o f  

suppressed tuples is acceptable by the end users.

Furthermore, w e operate on the basis o f  the following soft-constraints:

•  Among several possible anonymization schem es for the same data sets, w e need to 

discover the one that best fits the user’s needs. Typically, a decision criterion, in 

the form o f  a u tility  fu n c tio n  is employed for the assessment o f  the quality o f  a
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candidate solution. In the rest o f  our deliberations, w e use a simple decision 

criterion by default, concerning the height o f  a possible solution in the 

anonymization hierarchies, since it is very intuitive for the user and possesses nice 

monotonicity properties.

•  Finally, we pose as a soft-constraint the desideratum o f  a non-strict privacy 

criterion. We want our method o f  privacy preservation to be pluggable to the 

proposed framework and retain the possibility o f  choosing among alternative 

methods for privacy preservation (e.g., k-anonymity, 1-diversity, t-closeness, X , Y 

anonymity etc). In our deliberations we w ill focus on two practically attainable 

criteria, specifically k-anonymity and 1-diversity; however other criteria are also  

applicable to our method.

In summary, w e can state the problem w e are attacking as follows:

Given

(a) a data set Γ, comprising an identifier attribute ID , a set o f  quasi-identifier 

attributes QI = { A . . . ,  A n}, and a sensitive attributes',

(b) a set o f  generalization hierarchies H = {h i, hn}, one for each quasi-identifier 

attribute,

(c) a privacy constraint (e.g., ^-anonymity, /-diversity, ...) ,

(d) fixed constraints for (d l)  the maximum height per attribute that the 

anonymization method can attain h -  [h\c, . . . ,  Anc], (d2) the low est value for the 

privacy constraint (e.g., k  for ^-anonymity) and (d3) the maximum number o f  

suppressed tuples that the user is willing to tolerate M a xS u p p ,

(e) a quality criterion function Q oSQ  for the assessment o f  the best possible 

anonymization when more than one answers are available (e.g., the solution with 

the lowest height, and possibly the less suppressed tuples, or maximum  

discem ibility, as another example).

Produce

(i) An anonymized data set T* such that

•  T* is a generalization o f  7,

•  T* fulfils the abovementioned privacy constraints (d l)  -  (d3), and,

•  T* m inimizes the quality criterion function Q o S (T * )9

if  such a Γ* can be attained,
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or,

(ii) A  set o f  alternative generalizations that are also generalizations o f T  and 

each o f  them minimizes the deviation for one o f  the parameters o f  the 

problem, specifically, (a) the acceptable generalization heights, (b) the 

minimum acceptable value for the privacy constraint and (c) the number o f  

suppressed tuples.

G lobal recoding  

L ocal recoding  

hAultidim. recoding  

Anatom ization

Perturbation

k-anonym ity

l-d iversity

t-closeness

Height

D iscernibility (C om)  

Classification (C cm)  

A vg  Class size (Cavg)

NCPA

Tuple anonym ization  

m ethod

P rivacy criterion Q uality  assessment

m ethod

Figure 1.1 Problem Parameters

The possible values for different parameters o f  the problem are depicted in Figure 1.1. 

The anonymization method can be any o f  global /  local /multidimensional recoding 

[LeDR05], [LeDR06], [Xu+06], [LW FP08], [GhKM09], tuple perturbation 

[AgST05], [ZK SY07], anonymization [XiTa06] or other. The privacy criterion can be 

any o f  k-anonymity [Swee02a], l-diversity (in any o f  its forms) [MaGK06], t- 

closeness [LiLV07], or other. The function that assesses the quality (or penalty) o f  a 

candidate solution can be the Height o f  the solution [SamaOl], the discernibility metric 

[BaAg05], the average class size [LeDR06], or other.
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9 O ur approach. In our case, we start with a simple setting, comprising k-anonymky 

and I-diversity, global generalization and solution height as the choices o f  preference. 

The first method proposed in this thesis involves precomputing statistical information 

for several possible generalization scheme. A generalization schem e is determined by 

deciding the level o f  generalization for every quasi-identifier -  in other words a 

generalization scheme is a vector characterizing every quasi-identifier with its level o f  

generalization. To efficiently compute the amount o f  suppression for a given pair o f  

(i) value for the privacy criterion and (ii) a generalization schem e, w e resort to the 

precalculation o f  a histogram per generalization schem e that allow  us to calculate the 

necessary statistical information. For example, in the case o f  k-anonymity we group 

the data by the quasi identifier set o f  attributes in their generalized form and we count 

how  many groups have size 1, 2, . . .  etc. So, given a specific value o f  k, we can 

compute how many tuples will be suppressed for any generalization scheme. 

Similarly, in the case o f  1-diversity, w e count the number o f  different sensitive values 

per group along with the size o f  the group per group.

We organize generalization schem es in a lattice. A node v is lower than a node u  in 

the lattice i f  u has at least one level o f  generalization higher than v for a certain quasi- 

identifier and the rest o f  the quasi-identifiers in higher or equal levels. Once the 

histogram is computed for every node in the lattice, the main algorithm checks 

whether there exists a possible solution to the abovementioned problem that satisfies 

all criteria. This is performed by first checking the solutions in the to p -a ccep ta b le -  

n o d e  vmax defined with generalization levels [A|, . . . ,  An], If a solution exists then we 

exploit a simple monotonicity property and look for possible answers in quasi 

identifiers with less or equal generalization levels than the ones o f  the top acceptable 

node. In the case that no solution exists in the top acceptable node, the algorithm 

provides the user with 3 complementary suggestions as answers:

-  The first suggested alternative satisfies k  and h but not M a x S u p p . In fact, we 

search the space under the top acceptable node and provide the solution with the 

minimum number o f  suppressed tuples. In typical situations, we can guarantee 

that the answer is already in found in the top acceptable node and by exploiting 

the original search o f  the top acceptable node, w e can provide the answer 

immediately.
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-  The second suggested alternative is a solution that finds the maximum possible k 

for which h and M axSupp  are respected for the quasi identifiers o f  the top 

acceptable node. Again, this is an answer that can be provided immediately by 

exploiting the search o f  the top acceptable node.

-  Finally, the third alternative is a solution that satisfies k  and M axSupp  but violates 

h. This means that we have to explore the space o f  quasi identifiers that are found 

in generalization levels higher or equal than the top acceptable node. We exploit 

some monotonicity properties already discussed early in the literature [SamaOl] 

to avoid unnecessary checks and utilize a binary search exploration o f  heights on 

the lattice.

The proposed method is guaranteed to provide the best possible answers for the given 

user requests. Our experiments indicate that this is performed in less than 10 

milliseconds for typical data sets used in the research literature.

However, the method comes at a price, and specifically, at the price o f  precomputing 

the histograms for all the nodes o f  the lattice. This precomputation requires several 

minutes (e.g., our experiments gave 20-40 minutes for the largest quasi-identifier 

sets). If one is to avoid the cost o f  full precomputation, w e need to devise an 

alternative approach. So, in this thesis, w e explore a second approach that tries to 

precompute a small subset o f  the lattice’s nodes with their histogram. The goal is to 

carefully select the generated nodes in order to (a) m inim ize the deviation from the 

optimal solution and (b) precompute the necessary subset o f  the lattice in times that 

are tolerable by the users. Our approach is based on the ranking o f  generalization 

levels with respect to their grouping power (since, the larger the groups, the less the 

suppression). Then, we try to rank the combinations o f  levels for all the possible 

generalization schem es and pick a fixed subset o f  them (e.g., 5%). Our experiments 

demonstrate a linear speedup o f  the precomputation time with the approximation 

factor, very good performance for the provision o f  exact answers and level 

relaxations, as w ell as certain deviations in terms o f  the approximate generalization 

heights and suppressions.

Finally, by observing that the two out o f  the three alternatives suggested in the 

absence o f  an exact answer are due to the top-acceptable node, w e propose a third
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9 method that computes the histogram o f  this node at runtime. Our experiments 

demonstrate that the time penalty for this extra computation is in the order o f  0.1 -  

0.3 sec and the two relaxations that suffered in the previous approach demonstrated 

an identical behavior to the case o f  the full lattice; therefore, i f  this time overhead can 

be tolerated in terms o f  user time (and for the case o f  our experiments w e believe it 

does), then the quality o f  solution improves drastically.

-  Roadm ap. In Chapter 2, w e discuss the fundamental concepts o f  the problem  

under investigation. In Chapter 3, we explore the interplay o f  the problem’s 

parameters, specifically, the size o f  the quasi-identifier set, and the values for the 

privacy criterion and the acceptable suppression. In Chapter 4, w e discuss the 

proposed method with a full precomputation o f  the lattice o f  generalization 

schemes. In Chapter 5, w e discuss alternatives to this full precomputation. In 

Chapter 6, w e discuss related work. Finally, in Chapter 7, w e conclude with our 

findings and present insights for future work.
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CHAPTER 2. FUNDAMENTAL CONCEPTS AND

TERMINOLOGY

2.1 Motivating Example

2.2 Background and Terminology

2.3 The annotated lattice o f  generalization Schemes

2.1. M otivating Exam ple

Assume that a trusted data curator has collected the microdata table displayed in 

Figure 2,1. The microdata comprise (a) an identifier attribute, N a m e , (b) a set o f  

quasi-identifier attributes, specifically, A g e , W ork C lass, and E d u ca tio n , and (c) a 

sensitive attribute, ( W orking ) H ours p e r  W eek . Each attribute is accompanied by 

value hierarchies, pretty much in the way OLAP dimensions are organized in value 

hierarchies. So, for example, the E duca tion  o f  a person who has attended school till
aL

the 11 grade, is characterized with respect to different levels o f  abstraction as (a) 

Detailed: l l th-grade, (b) Level l: Senior secondary, (c) Level 2: Secondary, and (d) 

Level 3: Without Post Secondary. As another example, A g e  can be organized in terms 

o f  years, 5-year intervals, 10-year intervals, etc. In Figure 3.1, the hierarchies for the 

attributes W ork C la ss  and E d uca tion  can be inspected in detail.

We want to publish the data under the following setting:

(a) every tuple belongs to a group o f  tuples with the same quasi identifiers, with 

size at least 3 (i.e., the privacy constraint is k-anonymity, with k  =  3)

(b) no tuples are suppressed (i.e., M axSupp  =0)

(c) A g e  and W ork C la ss  can be generalized at most 1 level, whereas E duca tion  

can be generalized at most 3 levels up (i.e., h= [1, 1 ,3]).
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N am e Age Work_cIass E ducation H o u rs/w eek

Thales 39 Private Hs-grad 40

Anaximander 38 Private Hs-grad 50

Anaximenes 37 Private Hs-grad 40

Pythagoras 38 Private l l th 45

Gorgias 28 Loc-gov Bachelors 30

Heraclitus 31 Federal-gov Master 50

Empedocles 30 State-gov Bachelors 60

Leucippus 32 Self-emp-not-inc Bachelors 50

Democritus 35 Self-emp-inc Prof-school 54

Protagoras 33 Self-emp-inc Assoc-acd 40

Figure 2.1 Microdata table (Based on Adult data set)

A s one can see in Figure 2.2 this setting is feasible. The microdata table is partitioned 

in three groups, each having at least 3 tuples. No tuples are suppressed and the 

generalization is respected in all three quasi identifiers. The color and format o f  the 

tuples in Figure 2.2 suggests the group to which they belong to. The identifier 

attribute N am e  is not published and presented here for intuition reasons only.

N am e  

T hales

] Anaxim ander 

A naxim enes 

i Pythagoras

Gorgias 

Heraclitus 

Empedocles 

Leucippus 

Democritus 

Protagoras

Figure 2.2 Generalized data set (3-anonymous, no suppression, h = [l,l ,3 ]) .

A ge W ork_class E ducation H o u r s /w ee k

37-41 Private W ithout-post-secondary 40

37-41 Private W ithout-post-secondary 50

37-41 Private W ithout-post-secondary 40

37-41 Private W ithout-post-secondary 45

27-31 Gov Post-secondary 30

27-31 Gov Post-secondary 50

27-31 G ov Post-secondary 60

32-36 Self-emp Post-secondary 50

32-36 Self-emp Post-secondary 54

32-36 Self-emp Post-secondary 40

Assum e now that w e want to achieve a 4-anonymous generalization o f  the microdata, 

still retaining the constraints for no suppression and generalization heights (i.e.,
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M axSupp = 0 and h = [l,l ,3 ]) . One can see that we cannot attain such a setting (only 

one group has size 4, the rest comprise o f  only three tuples). Then, w e need to 

perform some relaxation to our constraints. Several such relaxations can be suggested 

to the user:

-  The first suggested alternative satisfies k  and h but not M axSupp . W e see that a 

possible solution suppresses all the groups with less than 4 tuples, thus removing 

6 tuples.. Then, the resulting data set is depicted in Figure 2.3.

N am e  

Thales

Anaxim ander 

^Anaximenes 

j Pythagoras

Figure 2.3 Generalized data set with suppression relaxed (4-anonym ous, h = [ l,l ,3 ] ,
but 6 tuples suppressed).

Age W ork_class E ducation H o u r s /w ee k

37-41 Private W ithout-post-secondary 40

37-41 Private W ithout-post-secondary 50

37-41 Private W ithout-post-secondary 40

37-41 Private W ithout-post-secondary 45

-  The second suggested alternative is a solution that finds the maximum possible k  

for which h and M axS u p p  are respected for the quasi identifiers o f  the top 

acceptable node. Clearly this is the generalization o f  Figure 2.1 (since it only  

suffices to reduce k  — 4 by one to achieve it).

-  Finally, the third alternative that can be suggested is a solution that satisfies k  and 

M axSupp  but violates h. We can try to ascend the hierarchy for every quasi 

identifier attribute by one level, until the desired suppression is achieved. So, w e  

ascend attribute A g e  by one level and present ages in intervals o f  10 years. 

However, w e still have the same three groups as in Figure 2.2 (albeit, with 

different values in the age field). Then, w e ascend attribute W ork  C la ss  by one 

level, to a level that comprises two values only worked and never worked). These 

two transitions manage to merge the second and third group o f  Figure 2.2 into a 

single group comprising 6 tuples. This way, both constraints regarding group size  

and suppression, k  = 4 and M a xS u p p  =  0, are supported and the result is the one 

depicted in Figure 2.4.
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! N am e i
}-.............................j

T hales j...........  -i
A naxim ander!i

A naxim enes j 

Pythagoras j 

Gorgias j 

j Heraclitus j
L . .................................   JI I
| Empedocles
I
| Leucippus 

|  Democritus 

! Protagoras j

A g e Work_class E ducation H o u rs/w eek

37-46 Worked W ithout-post-sccondary 40

37-46 Worked W ithout-post-secondary 50

37-46 Worked W ithout-post-secondary 40

37-46 Worked W ithout-post-secondary 45

27-36 Worked Post-secondary 30

27-36 Worked Post-secondary 50

27-36 Worked Post-secondary 60

27-36 Worked Post-secondary 50

27-36 Worked Post-secondary 54

27-36 Worked Post-secondary 40

Figure 2.4 Generalized data set with generalization height relaxed (4-anonym ous, no 
* suppression, but h=[2,2,3]).

2.2. Background and T erm inology

In this section, we will formally introduce the fundamental concepts around the issues 

o f  anonymization that w e will address in this paper. We distill several well-known  

concepts in the related literature; consequently, the interested reader can also refer to 

[SamaOl, LeDR05, M aGK06, LWFP08) for alternative presentations o f  these 

concepts.

W e start by assuming a m icro d a ta  relation R  containing all the detailed information. 

W e have three categories o f  users. First, w e assume there is a trusted data curator with 

full access to the detailed information whose job  description includes the publishing 

o f  data without sacrificing the privacy o f  the persons to whom the data correspond. 

W e assume that the data curator is trusted. We also have a set o f  w ell-m ea n in g  

a n a ly s ts  who apply data mining algorithms over the published data whose aim is to 

find statistically important information about the data set, but not anything in 

particular for specific individuals. Finally, we also have a set o f  a tta c k ers  w hose aim  

is to discover the correct values for one or more persons in the real world, by 

exploiting any published information available (and not necessarily the published 

version o f  R).

The attributes o f  R  can be divided in the following categories:
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• identifiers: these are attributes allow anybody with access to the microdata o f R to 

relate a tuple o f  R with a person in the real world. For example, a person’s name, or 

SSN belong to the identifier class o f  attributes. When publishing data, identifiers 

are removed from the published data set.

•  Quasi-identifiers: A set o f  attributes is called a Quasi-Identifier Set if  the 

combination o f  these attributes allows a person with access to the published data 

set to relate a tuple o f  this data set to its hidden identifier (and consequently, to a 

person in the real world). In the example o f  Fig. 2.1 assuming that the attacker 

knows that Heraclitus is working for the federal government and has a bachelors 

degree, even if  the name is projected out o f  the published relation, a quick glance 

at the remaining columns quickly reveals that there is only one person with the 

characteristics o f  Heraclitus in the data set. Therefore, even if  the name is removed, 

the combination o f  W ork C la ss  and E d uca tion  is sufficient for an attacker to relate 

the respective tuple to the hidden identifier (i.e., attribute N am e). The set o f  quasi- 

identifier attributes o f  a relation w ill frequently be referred to as Q l  as a shorthand. 

An attribute that is member o f  the quasi-identifier set is called a quasi-identifier.

•  Sensitive attributes: A sensitive attribute is an attribute whose value must not be 

linked to a hidden identifier value by an attacker. The core o f  the private data 

publishing problem is to alter the original data set in such a way that the published 

data set restricts the probability o f  relating the published value o f  a sensitive 

attribute to the hidden identifier o f  a tuple. For example, in a patients1 data set, the 

name o f  the patient and disease that she suffered must not be linked by an attacker. 

In our example, it is the task o f  the data curator to prevent an attacker from relating 

a (hidden) N a m e  identifier (e.g., Heraclitus) to the value o f  H ours p e r  W eek  that he 

works (here: 50).

•  Indifferent attributes: these are any other attributes o f  the data set that we do not 

care i f  they can be linked to a hidden identifier.

As typically happens in the literature, w e w ill assume that there is one sensitive 

attribute in the microdata and that no indifferent attributes are present in the data set, 

unless this is explicitly stated. So, without loss o f  generality, we assume that R  is 

defined as R  (A\&, A u A 2 , . . . ,  A„, S ), where A  id is an identifier, A 2 , . . . ,  A n is the 

quasi-identifier set and S  is the sensitive value.

p



31

r The quasi identifier attributes are accompanied by value hierarchies in a way that 

resembles a lot the way OLAP dimensions organize their values in hierarchies. We 

assume the following setting for quasi-identifier attributes and their domains.

•  Every attribute A  is accompanied by a domain o f  values, d om (A )  that is isomorphic 

to the integers. Typically, attributes can be either nominal or arithmetical. The 

isomorphism to the integers is not obvious for the nominal values; however, an 

artificial ordering can be imposed to the domain o f  such attributes (especially, if, as 

typically happens, the microdata table has a foreign key to a lookup table for the 

quasi identifier).

•  Every quasi-identifier attribute is part o f  hierarchy o f  attributes. A  hierarchy o f  

attributes H  is a finite list o f  attributes, w hose first member is the most detailed

 ̂level o f  values (the one that belongs to the microdata table too) and the last 

member is the level //.A lt: //={Λ ο, A \, A i ,  . . . ,  A„t / / .A ll} . The attributes that 

participate in a hierarchy are called a n o n ym iza tio n  le ve ls , or sim ply le v e ls  o f  the 

hierarchy (in correspondence to the a g g reg a tio n  leve ls  in an OLAP context). The 

higher an attribute is in the hierarchy, the coarser the level o f  semantic abstraction 

its values have. The level All stands for com plete anonymization o f  the values for 

this attribute; to this end, its only member is a single value, *. For example, the 

quasi-identifier attribute A ge can belong to a hierarchy with values at the year 

level, 5-year intervals, and 10-year intervals: / / age = {A g eyear, A g e 5.ycar, A g e io-ycar, 

A g e .A ll} . W henever an attribute Au\gh is at a higher level in a hierarchy than an 

attribute Aiow> w e denote this by the notation A \ow - »  ĥigh* W e will frequently reuse 

terminology from the domain o f  OLAP and refer to a hierarchy o f  attributes as a 

d im en sio n , whose attributes w ill also be called le ve ls  (o f  detail).

•  We assume a full mapping between the domains o f  the attributes o f  a hierarchy,

A
denoted as a m  h . Formally, given two attributes A\ow and A\ow - »  Α ^ φ ,

4

vh=  a n c is a total function anc 4 .
4*

d o m (A \ow) ->  dom(Ah\gh} returning a value

Vh at a coarser level for a value vi at a lower level. In other words, for every 

detailed value (e.g ., A ge 37 years at the detailed level) there is a single value at the 

coarser level (e.g., the interval [31-40] years) to which it corresponds. We reuse the
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notation v\ -»  Vh for the values o f  the respective domains. The am
Ai

function is

defined as the identity function i f  A\ow s  ĥigh*

•  An extra well-formedness constraint involves the composition o f  ancestor 

functions. For any values o f  any three levels A \ y A zy A$y such that A \ —> A 2  —> A i,

the following property must hold: i f  v2 = ancA l(vx) and v3 = αηο^3(ν2) ,  then

A*,
v2 =anc (v,) too.

A \

•  We call a hierarchy ra g g e d  i f  the mapping o f  values in not full for all the domains 

o f  all attributes. For example, observe the value ‘Without pay’ in the third level o f  

the hierarchy for the quasi-identifier W ork c lass. The value ‘Without pay’ does not 

have any descendants mapped to it at the levels LO and LI, thus violating the 

definition o f  a hierarchy. Ragged hierarchies are easy to compensate by adding 

artificial representatives o f  coarse values at the detailed levels where such 

representatives are missing. For example, in the case o f  the value ‘Without pay’ in 

L2, we introduce two artificial values ‘W/O payJL I’ at level LI and ‘W/O 

pay LT  at level LO, and update the ancestor function appropriately to incorporate 

all these three values. Therefore, in the sequel, w e do not consider ragged 

hierarchies at all.

A full dom ain, or global, generalization o f  a relation R (A \o , A \, A 2 , A n, S )  is a 

new relation P  that is produced by (a) the projection o f  the non-identifier attributes 

and (b) the replacement o f  the values o f  a quasi-identifier attribute with their 

respective ancestor values on the basis o f  the hierarchies previously defined. 

Naturally, the ancestor function that is employed for an attribute can be the identity 

function.

Formally, we say that a relation R (A id, A t , A 2 , ..., A n, S )  is fully generalized to a 

relation P  (Q u  Q i, Qn, S ), or, equivalently, that P  is a fu ll dom ain generalization, 

or, global generalization  o f  R , if

(a) at the schema level, Q\ =  a n c (A ;), for all / =  1 , n , and,
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*(b) for every tuple / in R y we introduce a tuple t' in P, such that /[5] -  t'[S]y and, for 

every attribute A i o f  R, the value t[A\\ is replaced by a value

A generalization schem e o f  a relation R  (A id, A i, A ny S )  is a set o f  quasi

identifiers QI= {Q \y Q 2 , ··*, Qn} that produce a full domain generalization P  (Q \y Q i , 

0n, S) o f  Λ. Given a specific generalization schem e as above, w e refer to the level 

Qi as the g en era liza tio n  leve l o f  attribute A  \.

k-anonym ity [MaGK06]. A relation T  (be it microdata or a generalized relation) is 

said to be k-anonymous with respect to a set o f  (generalized or not) quasi-identifier 

attributes QI= {Q \y Q i > Q n),  i f  every tuple t in T, there exist at least A:-1 other tuples 

tii^, tj2 , . - . , tjit—1 in T such that t[Q] = t1{[Q] -  ti2[Q] =  * * * = Uk-\[Q] for all quasi- 

identifiers Q  in QI.

Blocks (equivalence classes). We will refer to a set o f  tuples o f  a relation T  under a 

generalization schem e Q I  with the same values o f  quasi identifiers (again, 

independently o f  their level o f  generalization) as a block or equivalence class for 

relation T and its generalization scheme.

Observe that a full domain generalization produces a partition o f  the published 

relation T  to blocks/partitions/equivalence classes on the basis o f  the generalization 

scheme. In other words, all tuples belonging to a block form an equivalence class. By  

definition, these partitions are disjoint, and then, T  is the union o f  these disjoint 

partitions.

Clearly, k-anonymity is the first attempt to hide individual tuples in the crowd. A k- 

anonymous generalization protects a tuple from an attacker by placing it in a block o f  

at least k tuples with the same quasi identifier values. This way, if  an attacker knows 

the quasi-identifier values for a person in a real world, the tuple that corresponds to 

the victim is ‘hidden’ in the crowd o f its respective block and it is harder for an 

attacker to relate the hidden identifier to the correct sensitive value via the quasi 

identifier. There are several weaknesses o f  k-anonymity (see, for example [MaGK06]) 

and so several extensions are constantly being developed by the research community.
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*In the context o f  this paper, we restrict ourselves to the simplest -y et quite powerful- 

extension o f  simple I-diversity [MaGK06] that tries to address the problem on non

diversity o f  the sensitive values within a block: if  all (or a significant fraction of) the 

tuples o f  a block have the same sensitive value, then the block gives away (with 

certainty or high probability) the sensitive value o f  the victim. So, the sensitive values 

o f  the tuples o f  the same group must be quite diverse (“w ell represented” in the 

[MaGK06] terminology). The simplest (and most popular) way to do this is to ensure 

that every block possesses at least l  distinct sensitive values.

Sim ple I-diversity. A  generalization T satisfies simple 1-diversity, i f  in every block q , 

no more than y o f  the tuples have the same sensitive value.

x

2.3. The anno ta ted  lattice o f generalization  schem es

2.3.1. The la ttice  o f  g en era liza tio n  sch em es

The possible generalization schem es that can occur via a combination o f  

anonymization levels for different quasi identifiers can be organized in a lattice. In 

this section, we w ill formally introduce the lattice; discuss how  it can be produced and 

what its properties are. A  first discussion o f  the lattice is in [SamaOl, Incognito].

Lem m a. A hierarchy forms a total order at the intentional level and a partial order at 

the extensional level.

Proof.

At the intentional level,' by definition we assume that the anonymization levels o f  a 

hierarchy form a line. Thus, for any two levels A x and A y, one must precede the other 

(either A x ->  A y, or A y —> A x) with the —> function being the ordering function o f  the 

total order.

At the intentional level, it is easy to show that the values o f  a hierarchy form a tree: 

there is a single value (*) at the top level o f  the hierarchy, and every value has a single 

ancestor value at the preceding anonymization level (remember, the anc  function is 

both total and a function). Thus, the resulting hierarchy o f  values can form a tree with 

the values as nodes and an edge between two values i f  they belong to consecutive 

levels and they are related via an anc  function.
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FA partial order for a set o f  values P and an ordering function <, imposes three 

constraints: reflexivity (x<x), antisymmetry (x<y and y<x imply x=y) and transitivity 

(x<y and y<z imply x<z). Assum ing the set o f  all the values o f  the union o f  the 

domains o f  the attributes o f  a hierarchy as the set P  and the anc  function as the 

ordering function, we can conclude that all three properties hold. QED

D efinition. Given a set o f  hierarchies H -[H \, ···> #n] that constitute a set o f  quasi 

* identifier dimensions, the anonym ization  lattice L  is the Cartesian product o f  the 

hierarchies at the intentional level.

Remember that given a set o f  ordered sets Λ ,  ·■■> Λι their Cartesian product P  = P \ x 

. . .  x P n is also an ordered set with the following constraint:

Oh - · ·, Xn) < iy \ , · ■., y n) <=> for each /, xi < y x in Pi

In other words, every member o f  the Cartesian product P is annotated by one level per 

quasi-identifier dimension and a member x  follow s a member y  if  all the individual 

levels o f  x  are lower or equal to the respective levels of_y, for all the quasi identifier 

dimensions.

Take for example the hierarchies for the quasi-identifier set [Age, W o rkC la ss , R ace]  

as depicted in Figure 3.1. We w ill assume that Age has five levels o f  anonymization 

μ 0> A  η Λ 2 , A$, A ^ A .A l l } ,  Workclass has four levels [Wo, W \, W2 , W ^ W .A W } ,  and 

Race has 3 levels o f  anonymization, too {#o, Λι, #2=&AI1}. In all our deliberations in 

the sequel, w e will assume that the order o f  quasi-identifiers is fixed; for example, in 

this case, w e will always list the attribute A g e  first, W orkcla ss  second and R a ce  third. 

Consequently, when w e refer to the node with levels A 2 , W 3, RO w e can refer to it as 

230 for shorthand. The lattice for the quasi identifier set is depicted in Figure 2.5.
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Figure 2.5 A lattice for the three quasi identifiers o f  the reference example A ge, Work
class and Race.

So far, w e refer to the result o f  the Cartesian product o f  the quasi identifiers as a 

lattice, but we have not proved that it is indeed a lattice.

Lem ma. The ordered set that results as a Cartesian product P  = H \ x .. .  x H n over a 

set o f  anonymization hierarchies is a lattice.

Proof. For an ordered set to be a lattice, two constraints must hold, for any two 

members o f  the set x and y:

•  x and y have a supremum or join  or least upper bound (i.e., there always exists a 

r member z such that both x<z and y<z) -  w e denote this as xv y

•  x and y have a infimum or meet or greatest lower bound (i.e., there always exists a
*

member z such that both z<x and z<y) -  w e denote this as XAy 

It is easy to see that the Cartesian Product P has a unique bottom element (typically 

denoted as J_) which is H \.L q9 H 2 .L0 , /fn-i-£o> and a unique top element

(typically denoted as T) which is //i.Laii, Hi-Laii, H n. |.Laii, H n.Lz\\. Therefore, any
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fwo members o f  the lattice will at least have these two as supremum and infimum 

(although not necessarily them). QED.

D iscussion for the extensional level. Similarly to the intentional level, one can 

explore the Cartesian product at the extensional level. We will not delve in the 

particularities o f  this aspect, since we will not use the Cartesian product o f  the 

hierarchies at the extensional level. Notice however that the result is not a lattice (in 

* contrast to the intentional level having a single member at the bottom o f  the list, the 

extensional level has several members at the bottom o f  the tree; thus, the resulting 

partial order does not have a unique bottom element).

H ow  big is the lattice? Assum e n  dimensions [D l, Dn] , each with levels 

levels{D \) levels (including the top and bottom elements). The total number o f  nodes 

in the lattice is

(£| = leve ls(D l) x levels(D 2) x ... x levels(Dn)

Assuming λ  levels per dimension on average, this quantity is approximated by λη.

2.3.2. A n n o ta tio n  o f  the  L a ttice  w ith  h is to g ra m s

Each node o f  the lattice corresponds to a generalization schem e. Thus, it can be 

annotated with information concerning the generalization schem e, the anonymization 

method, the number o f  suppressed tuples and other information related to the status o f  

the generalization scheme represented by the node.

K A -histogram . The k-anonymity histogram for a generalization schem e Q H  {Q \, Q i, 

Sn} °ver an original microdata relation Λ is a finite list o f  pairs KA=  [pi, P2, . . . ,  

p m] o f  the form p  {size, b lockC oun t)  computed as follows:

1. The original microdata relation R  is generalized according to Q I  and its 

accompanying hierarchies to a generalized relation T

2. We compute all the equivalence classes o f  T  according to Q I  and count their 

sizes in terms o f  tuples (to be reused in the histogram as the attribute size)

3. For every possible size that appears, we count how many blocks (b lo ckC o u n t) 

are o f  this size. The result o f  this is a set o f  pairs o f  the form {size, 

b lockC ount).
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Take for example the microdata table R  o f  the reference example (depicted in Fig. 

2.1) and its generalization T according to the generalization scheme Q I= [A .LI, W .LI, 

£.L3] (depicted in Fig. 2.2). We observe that there are two blocks o f  size 3 and one 

block o f  size 4. The resulting KA-histogram for T  is depicted in Figure 2.6.

s iz e b lo c k C o u n t
3 2

4 1

Figure 2.6 KA-histogram

Observe that the histogram does not trace which blocks are formed (although each 

pair can be annotated with the pairs that correspond to it). However, the histogram  

allows us to quickly compute the relationship o f  privacy to suppression. For example, 

given the histogram o f  Figure 2.6, if  one wants to im pose a constraint o f  4-anonymity, 

then 6 tuples (2 groups o f  size 3) have to be suppressed for the corresponding 

generalization scheme.

Similarly to the histogram for k-anonymity one can compute the respective histogram  

for simple l-diversity by counting the number o f  distinct sensitive values that appear 

in a group.

SLD -histogram . The simple l-diversity histogram for a generalization schem e QI=  

{Qu Qi, ···> Qn} over an original microdata relation Λ is a finite list o f  triplets 

SLD = [p\, p 2 , p m] o f  the form p id is tin c tS C o u n t , b lo ckC o u n t, su m T u p leC o u n t)  

computed as follows:

1. The original microdata relation R  is generalized according to Q I  and its 

accompanying hierarchies to a generalized relation T

2. We compute all the equivalence classes o f  T  according to Q I  and count the 

number o f  distinct values in the sensitive attribute within each equivalence 

class (to be reused in the histogram as the attribute d istin c tS C o u n t)  as well as 

the number o f  tuples for each equivalence class

3. For every possible d is tin c tS C o u n t that appears, we count how many blocks 

(iblockC oun t) are o f  this size as w ell as the overall number o f  tuples that
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r belong to these blocks (.sum T u p leC o u n t). The result o f  this is a set o f  triplets 

o f  the form (d is iin c tS C o u n t, b lo ckC o n n t, su m T u p le C o u n t).

Again, take for example the microdata table R  o f  the reference example (depicted in 

Figure 2.1) and its generalization T according to the generalization schem e Q l=[A .L2, 

f¥ .L 2 , £.L3] (depicted in Figure 2.4). We observe that there are two blocks, the first 

having three distinct sensitive values among its four tuples and the second having five 

distinct values among its six tuples. If w e had more than one blocks with the same 

„ d is iin c tS C o u n t value, we would sum the number o f  tuples that belong to each o f  them  

and obtain the overall su m T u p le C o u n t for this value o f  d is iin c tS C o u n t. The resulting 

SLD-histogram for T  is depicted in Figure 2.7

d is iin c tS C o u n t b lo c k C o u n t s u m T u p le C o u n t
3 1 4

5 1 6

Figure 2.7 SLD-histogram

C um ulative K A -histogram . Apart from the sim ple KA-histogram, a very convenient 

tool that w e will employ when relating suppression with privacy is the cumulative KA  

histogram, which, for every size k o f  the KA histogram measures the number o f  tuples 

in groups with smaller size than k.

cum K A (k) -  I sixe=i k_i (s ize* b lo ckC o u n t(s ize)) = c u m K A (k d )  + (A>1)* b lo c k C o u n t(k - l)

C um ulative SL D -histogram . Similar to the cumulative KA histogram w e can define 

a cumulative SLD histogram for the case o f  sim ple 1-diversity. The cumSLD explains 

the need for the sumTupleCount measurement in the sim ple SLD histogram, as it is 

exactly this value that is summed in order to obtain an exact measurement o f  how  

many tuples need to be suppressed when a specific request for a value o f  /  is issued. 

Specifically, for every possible value o f  /  (i.e., o f  distinct number o f  sensitive values 

within a group), the cumSLD histogram measures the total number o f  tuples 

belonging to groups with a smaller value o f  d is iin c tS C o u n t than I.

cum SLD {[) =  Idsc=u-i (su m T u p leC o u n t(d sc ))
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9 Usage. To see how the histograms facilitate the task o f  determining appropriate 

anonymization schem es, take for example the first 10 pairs o f  the KA and the cumKA 

histogram from the Adult data set with quasi identifier set {A g e , W ork c la ss , Race}

and generalization scheme A.L1, W.L1, R.LO depicted in Figure 2.8.

size K A -

h is to g ra m

c u m K A

h is to g ra m

1 26 0

2 16 26

3 10 58

4 5 88

5 8 108

6 6 148

7 4 184

9 5 2 12

10 4 2 57

11 1 297

Figure 2.8 The 10 first pairs for the KA and cumKA histogram over the Adult data set 
with quasi identifier set {A ge, Work class, Race} and generalization scheme A.L1,

W .L l, R.LO.

Figure 2.9 CKAb. The 10 first pairs for cumKA histogram depicted as graph along 
with a M axSupp  threshold o f  200 tuples.

✓



4 1

Observe the graphical representation o f  Fig. 2.9. The depicted histogram is the one o f  

Figure 2.8. Along with it, suppression maximum threshold o f  200 is also depicted in 

the figure. Then, the figure tells us that i f  we want an anonymization setting where no 

more than 200 tuples are suppressed, w e cannot use a value o f  k higher than 7. I f  we  

want to use a value o f  k =  8, 9, 10, etc, then w e must suppress at least 212, 212, 257, 

etc tuples, thus violating the constraint on our M axSupp . Therefore, it is evident, that 

given a fixed generalization scheme and maximum tolerable number o f  suppressed 

tuples, we cannot achieve any value o f  k that we want; on the contrary, there is an 

upper bound to the anonymization that we can perform, as expressed by the value o f  

k.

Discussion. To compute the size o f  the lattice with histograms (in  bytes), one has to 

multiply the lattice size |L| with the average size o f  the histogram per node.
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CHAPTER 3. VALIDITY OF THE PROBLEM:

EARLY FINDINGS

3.1 Working With Adult data set

3.2 K-anonymity for Adult data set

3.3 L- diversity for Adult data set

3.4 K-anonymity and /-diversity for IPUMS

3.5 The price o f  histograms

3.6 Summary o f  Findings

Is suppression really a problem for the well intended end users? What is the 

interrelationship between suppression, generalization and anonymity parameters?

So far, related research in the area o f  generalization has mainly follow ed a 

suppression-agnostic approach. Apart from few  early papers [SamaOl, Swee02a, 

BayardoOS] that deal with suppression issues, subsequent research was primarily 

targeted to local or multidimensional recoding techniques where suppression is not an 

issue. Despite the obvious benefits o f  these approaches, it is quite possible that the 

well-meaning end-users cannot utilize the ad-hoc generalizations o f  the quasi 

identifier data to perform their data analysis operations and might demand the 

presentation o f  data in generalization hierarchies that have been constructed in 

advance, taking into account the mappings o f  values that are intuitive to the users. In 

this case, we lose one o f  the good properties o f  multidimensional and local recoding 

which is the fitting o f  outliers in convenient areas. The presence o f  outliers demands 

either high generalization abstractions or suppression.
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The g o a l o f  (his sec tio n  is to f i l l  the a fo rem en tio n ed  g a p  a n d  a ssess  how  suppression , 

genera liza tio n  a n d  a nonym ity  criteria  are related. The m a in  desid era tu m  is the 

a n sw er  to the questions: “how  h igh  sh o u ld  we g o  in the  h iera rch ies  to ach ieve  low  

su p p re ss io n ? ”, or, “h ow  is the  a n o n ym ity  criterion  (e.g., k  in  k -anonym ity ) a ffec tin g  

the  percen ta g e  o f  su p p re sse d  tup les?  ”, o r  “a ssu m in g  th a t w e have  a  s tr ic t anonym ity  

criter io n  (e .g , a  h igh  value o f  k )t a n d  s ig n ifica n t a sc e n d in g  in  the  h ierarchy, w hat 

p e rcen ta g e  o f  the M ata se t is e ven tu a lly  su p p ressed ?  The answers to these questions 

* are important, since (a) they reveal some knowledge that the current body o f  

knowledge has not addressed and (b) they can guide us through the subsequent 

negotiation process towards acceptable solutions.

To assess how suppression, generalization and anonymity criteria are related, we start 

with a simple, but illustrative test. We chose the simplest anonymity criterion, k- 

anonymity, as our privacy criterion. The criterion o f  k-anonymity has a simple test: it 

requires that every group formed by a combination o f  values by the quasi-identifiers 

contains at least k tuples. So, if  w e want to measure the extent o f  suppression in a data 

set, for a given generalization scheme, we need to measure the tuples that fall in 

groups with size smaller than k. Again, this is the sim plest test that can be performed 

for generalization techniques; out o f  the more elaborate tests (like 1-diversity, t- 

closeness or other) that require extra constraints on the statistical properties o f  the 

sensitive values o f  each group, w e also work with 1-diversity, too. L-diversity comes 

in several flavours o f  increasing complexity; its simplest variants require that every 

sensitive value in a group is repeated no less time than a certain percentage; or else, 

that there are at least /  distinct values in the group.

For our experiments, w e work with (a) the Adult data set [UCI] and (b) the PUMS 

data set [IPUMS].

<■ **

The goal o f  the experiments was to measure the number o f  suppressed tuples as w e
*

* increase (a) the generalization height and (b) the size o f  the quasi identifier.
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'  3.1. W orking w ith the Adult data set

The first data set that we consider is the Adult data set [UCI] (a.k.a census income 

dataset), which the most common data set used in the related literature. The dataset in 

its cleansed version (after uncertain and NULL values are removed) comprises 30162  

tuples o f  the 1994 U SA census. Since w e require levels o f  generalization for the 

* quasi-identifiers, we assigned hierarchies determined in advance to the quasi 

identifiers o f  the data set. We reused the hierarchies o f  [FuW Y05] which w e found 

reasonable. The hierarchies for the fields E d u c a tio n , O ccu p a tio n , M a rita l s ta tu s , 

W ork c lass , and R ace  are depicted in Figure 3 .1-Figure 3.5. Attribute A ge  is organized 

in years, 5-year intervals, 10-years intervals, 20-year intervals and *. We have used 

the attribute H ours p e r  W eek  as the sensitive attribute. Attributes G ender  and S a la ry  

were not used due to their very small domain o f  values (Salary has only two values, 

higher or lower than 50K). Attribute N ative  C o u n try  is also not used, since out o f  the 

30162 tuples o f  the Adult data set, the 27625 tuples have a value o f  U SA , which  

practically means that the attribute is pretty much like being at level all.

An interesting experimental parameter was the choice o f  attributes for each quasi

identifier size. Since w e need to experiment with different sizes o f  the quasi-identifier 

set o f  attributes, w e needed to test the attributes on their g ro u p in g  p o w e r : I f  an  

attr ibu te  tends to  d r ive  an  a n o n ym iza tio n  sch em e  w ith  la rg e  equ iva lence  c la sses , th is  

m eans tha t the  p o ss ib ilitie s  f o r  su p p ress io n  are sm a lle r  th a n  w ith  the case  o f  an  

attr ibu te  tha t d rives  the  a n o n ym iza tio n  to w a rd s  g ro u p s  w ith  sm a ll eq u iva len ce  

classes. So, we have sorted the attributes according to their grouping power via the 

following procedure.

•  For every attribute, w e fix all other attributes at level all and keep this attribute at 

the most detailed level.

i  ·  Then, for every value o f  this attribute, we count the number o f  tuples that have this 

value and group the results per group size. For example, Table 3.1 lists attribute 

M arita l S ta tu s  at the most detailed level, as well as the first 10 rows for attribute 

A ge  that gave the follow ing histograms:

Clearly, attribute A ge drives the anonymization towards many sm all-sized  

equivalence classes compared to attribute Marital Status. Practically, this is due to
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the fact that the domain o f  attribute Age is much larger, thus resulting in many 

small groups. We considered the smallest o f  these values (which gives us the 

smaller group that can be formed) as our discriminatory criterion. This is an 

approximate estimation for the grouping power o f  the attribute. We avoided the 

average value o f  the first few  results, since this can be misleading (as for example, 

in the aforementioned case o f  attribute N ative  C oun try).

•  Then, we sort the attributes with respected to the size o f  sm allest group in 

* ascending order.

Table 3.1 Histograms for attributes M a rita l S ta tu s  and A ge.

* Marital_status levelO, 
size of group

Number of groups 
with this size

21 l
370 1

827 \

939 1
4214 1

9726 1
14065 l

Age levelO, 
size of group

Number of groups 
with this size

1 I
3 2
5 1
7 1
8 1
13 1
14 1
15 1
16 1
20 I

The resulting order o f  attributes was: A g e  with a smallest group size o f  l, O ccupa tion  

with a smallest group size o f  9, W ork C lass  with a sm allest group size o f  14, M arita l 

s ta tu s  with a smallest group size o f  21, E d uca tion  with a smallest group size o f  45, 

and, finally, R ace  with a smallest group size o f  231. We decided to mix attributes with 

high and low grouping power as much as possible in our experiments, thus resulting 

in the final order o f  attributes which is A g e , W ork c la ss , R a c e , O ccu p a tio n , E d u ca tio n , 

M a r ita l s ta tu s , N a tive  C ountry . So, for example, when we say that the quasi-identifier 

size is 3, the quasi-identifier attributes are A g e , W ork  c la ss , R ace , when we say that 

i the quasi-identifier size is 6, the quasi-identifier attributes are A g e , W ork c la ss , R a ce , 

O ccu p a tio n , E d u ca tio n , M a rita l s ta tu s.

* 3.2. K -anonym ity for the A dult data set

In this subsection, we report on our findings for the relationship o f  maximum allowed 

suppression, privacy preservation (expressed by the k-anonymity criterion) and level
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Ψ
o f  generalization over the Adult data set. In our experiments, we measure the number 

o f  suppressed tuples per node o f  the lattice o f  the Adult set. We have conducted this 

experiment for all the possible values o f  Q[ between 2 and 7. We discuss the cases o f  

QI = 3 and 5 that are the most characteristic -  the rest o f  the case behave similarly to 

the observations we make here.

(C) (d)

Figure 3.6 Cumulative histograms for different levels o f  generalization for |QI| size o f
3 (a,b) and 5(c,d)-

Figures 3.6a,b depict the cumKA histograms -  i.e., the number o f  tuples to be 

suppressed per value o f  k for two different levels o f  generalization. The size o f  the QI 

, is 3 and comprises the attributes Age, W ork C la ss , and R ace  (in this order). In Figure 

3.7a w e depict the histogram for the case where no generalization takes place 

(denoted as A0W 0R0) and Figure 3.7b depicts the histogram for the case where all 

attributes are generalized by one level (denoted as A l W I R l ) .  We observe that (a) 

 ̂ there is a practically linear increment o f  suppressed tuples per value o f  k (i.e., the 

suppression increases rather slow ly with k) and (b) once we generalize all the 

dimensions by one level, the suppression is reduced by 2 orders o f magnitude. In
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Figures Figure 3.6c,d w e can see the cumKA histograms for size o f  Ql equal to 5; 

specifically, the attributes considered are Age, W ork class, R ace , O ccupa tion  a n d  

E duca tion . It is worth noting that the increase o f  the QI size by 2 dramatically 

increases the amount o f  suppression by one order o f  magnitude. Interestingly, on the 

case where QI=5 and no generalization takes place, the amount o f  suppression 

surpasses 50% o f  the data set for a value o f  k=6. The vase where all dimensions are 

generalized by one level presents a more linear increase o f  the suppression with the 

* increase o f  k and demonstrates amounts o f  suppression lower by one order o f  

magnitude than the case o f  no suppression.

Figures 3.7a,b depict the KA histograms -  i.e., the number o f  groups per group size 

for two different levels o f  generalization. In Figure 3.7a w e depict the histogram for 

the case where no generalization takes place (denoted as A 0W 0R0) and Figure 3.7b 

depicts the histogram for the case where all attributes are generalized by one level 

(denoted as A1W 1R1). We observe that there is an exponential reduction in the 

number o f  groups per group size within each histogram. M ost importantly, however, 

if  one compares the two generalization levels, there is a reduction by a scale factor o f  

30 for the number o f  groups o f  the same size between the two generalization schemes! 

The same applies for the cumulative behavior o f  the histogram too. For exam ple, if  

we want to achieve 3-anonymity, we have to suppress 554 tuples (1*296+2*129) for 

the case o f  A0W 0R0 and 17 tuples (1*11+2*3) for the case o f  A1W 1R.

■y
*

s
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(C) (d)

Figure 3.7 Number o f  groups per group size for different levels o f  generalization for
|QI| size o f  3 (a,b) and 5(c,d).

In Figure 3.7c,d w e can see the KA histograms for size o f  QI equal to 5; specifically, 

the attributes considered are Age, W ork  class, Race, O ccu p a tio n  a n d  E duca tion . One 

can observe the following:

The exponential decrease o f  number o f  groups as the size o f  group increases is 

retained

This phenomenon applies to both cases o f  no generalization and generalization by 

one level

Most importantly, one can observe a significant increase in the number o f  

suppressed tuples between the cases o f  (a)-(b) with |QI|=3 and (c)-(d) with |QI|=5. 

For example, achieving 3-anonymity in the latter case requires suppressing 10458 

tuples (1*6920+2*1769) for AOWOROOOEO and 1619 tuples for (1*887+2*366) 

level A l WI RI OI EI .

'  In Figure 3.9 we can see the full lattice for the case o f  QI=3 (A ge, W ork c la ss , R ace). 

The numbers that annotate each node show the number o f  suppressed tuples 

introduced by the node’s generalization schem e for 3-anonymity. Figure 3.10 depicts
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the respective information for QI =  5 (Age, W ork class, Race, O ccu p a tio n  a n d  

E ducation) for a subset o f  the full lattice, and specifically, for the lattice between the 

generalization schemes 00000 and 11111.

The case o f  the partial lattice. Before proceeding, w e would like to justify the 

introduction o f  the partial lattice as one o f  the means o f  our experimental method. 

One o f  the problems w e have faced when comparing findings for different sizes o f  the 

* quasi identifier set is that the results are not directly comparable. This is due to two 

main reasons: (a) the size o f  the lattice differs significantly and (b) the reported 

numbers o f  suppressed tuples also differ significantly due to the fact that as the QI 

size grows, the number o f  groups formed grows too, and each group shrinks in size as 

a result (thus, for a fixed k, the number o f  suppressed tuples grows as the |QI| 

increases). Although this is a clear and well expected result, w e would like to be able 

to compare the two cases to the extent that this is possible. We observed that i f  we  

would focus on the sublattice between 0 0 ...0  and 11... 1, w e had a lattice o f  

comparable size to the lattice o f  QI = 3 and a quite good approximation o f  the 

behavior o f  the suppression process for the full lattice. In Fig. 3.8 w e depict the 

average number o f  suppressed tuples per level for the full and partial lattice; as one 

can see the difference is significant only for the case o f  H5 (where the partial lattice 

has only one node).
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Figure 3.8 Average number o f  suppressed tuples over different heights for 3- 
anonymity and QI size o f  5 for (a) the full lattice and (b) the partial lattice o f  the data 
set.
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&
Ο '

554

Figure 3.9 Full lattice with suppressed tuples for quasi identifier set o f  size 3. The QI
is A g e , W ork c la ss , R a c e .

773

< s >
3353 1319. 1268 2416 1051

9544 ' ·  .  6 0 2 2 9 8 7 9  ’ ; ~ ?017 4514· ' ' , / .  :

Figure 3.10 Sub-Lattice (between 00000 and 11111) with suppressed tuples for quasi 
identifier set o f  size 5. The QI is Age, W ork C lass, Race, O ccupation , E duca tion .
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w
3.2.1. C om parison  o f  different levels o f  generalization with fixed h a n d  01 size 

Observe Table 3.2 that compares the two lattices level by level. For each layer ol 

nodes we list the minimum, average and maximum numbers o f  nodes suppressed, the 

fractional decrease over the non-generalized data set and the decrease in the 

suppression with respect to the previous layer. Figure 3.11 depicts the average number 

o f  suppressed tuples per level graphically.

Table 3.2 Number o f  suppressed values for 3-anonymity as (a) the height o f  the 
generalization increases and (b) the size o f  the quasi identifier set increases (for |QI| = 

3 and 5)

IIo

o 11 CJt

Min Avg Max Avg %  

over 

full

%  over 

previous

Min Avg Max Avg

%
over

full

% over 

previous

HO 554 554 554 1,83 - 10458 10458 10458 34,67 -

HI 125 207 295 0,69 62,33 4514 7795 9879 25,84 34,15

H2 28 56 69 0,19 72,92 2169 5459 8913 18,10 42,80

H3 12 24 54 0,08 57,52 1619 3472 7398 11,51 57,22

H4 4 8 15 0,03 64,79 1051 1881 3353 6,24 84,53

H5 1 4 7 0,01 52,66 773 733 733 2,43 156,67

H6 0 2 4 Γ 0,01 58,50 ' " - - -

For each row o f  Table 3.2, we denote with ‘avg % over fu ll’ the fraction o f  the

average number o f  suppressed tuples o f  the specific height (listed in column ‘A vg’)

over the number o f  tuples o f  the whole data set. This measure allows us to see the

gradual degradation o f  the number o f  suppressed tuples as we ascend the lattice.

Also,-we denote with ‘% over previous’ the fraction:

[suppressed tuples o f  previous level) - Suppressed tuples o f  current level| 
[suppressed tuples o f  previous level|

This measure allows us to see the gain from ascending one level up in the lattice each 

time.

 ̂ The study o f  Table 3.2 presents the following observations:

C om parison  o f  d iffe ren t leve ls  f o r  the  sam e Q l. It is clear that as the height 

increases the number o f  suppressed tuples drops with a high rate (observe also



Figure 3.11 where this is graphically depicted). Clearly, there is a point after 

which the climbing o f  the lattice is not further required; this practically happens 

little after the middle o f  the lattice’s height (at height 4 for the 7 levels o f  QI=3 

and height 8 for the 14 levels o f  QI = 5 -  see Figure 3.8 for the latter.

C om parison  o f  d iffe ren t Q l  sizes. If one compares the average and the minimum  

numbers o f  suppressed tuples per height, one can see that the case o f  Ql=5 

presents numbers that are between 18 and 262 tim es(!) higher for levels HO to 

H4. For this range o f  levels, the higher the level, the higher the suppression for 

QI=5. Remember that Figure 3.8 also depicts the results for the full lattice; with 

the exception o f  level H5 which has an average number o f  suppressed tuples 

twice the size o f  the partial lattice, the observations are practically similar.

N o t a ll a ttr ib u te s  a re  born  equa l. Finally, observe that the range o f  values 

between minimum, maximum and average suppression per level is quite wide. 

Interestingly, in the low  levels o f  generalization (which are much more 

interesting, because this is where we really want our solutions to be found), the 

careful choice o f  generalization schem e can yield approximately half the 

suppressed tuples than the average case. A s the height increases, the importance 

o f  this choice remains significant albeit o f less importance. The fact that the 

generalization o f  some attributes leads to a higher reduction o f  the number o f  

suppressed tuples is due to the fact that a generalization over an attribute with a 

large domain reduces main small groups at the detailed level to coarser groups at 

the generalized level, producing, thus, higher opportunities for the reduction o f  

suppression.

- Observe, for example, level H3 for QI=3. Node 102 has the smallest 

number o f  suppressed tuples (12). It is interesting to notice its parents at 

level H2; node 002 suppressed 69 tuples (much more than node 102), 

whereas node 101 suppressed 28. In other words, the best node is produced 

by (a) generalizing attribute A g e , (b) not touching attribute W ork C lass  and 

(c) slightly ascending over attribute R ace. At the same time, the maximum  

number o f  suppressed tuples at level H3 is attained by node 030, which does 

the exact opposite o f  node 102: it only generalizes (a lot, at level 3) attribute 

W ork C lass.

- At the same time, at level H3 for QI=5 (A ge, W ork c la ss , R a ce , O ccu p a tio n , 

E d u ca tio n ) w e can observe that (again) the nodes with the largest and
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smallest number o f  suppressed tuples are practically complementary: node 

01101 yields a suppression o f  7398 tuples and node 11010 yields a 

suppression o f  1619 tuples. Observe also what happens when we generalize 

attribute W ork C la ss : very small reductions to suppression are produced in 

almost all occasions when w e move from a node without generalization o f  

W ork c lass  to a node that generalizes O ccupa tion  (except in the case o f  the 

combination o f  O ccupa tion  with W orkC lass) for practically all the levels. 

This is mainly due to the fact that moving from L0 to LI for W ork C la ss  (a) 

does not involve the values: Private, (b) has a rather small grouping for the 

values under Self-Employed and, thus, (c) ultimately reduces to grouping 

the government jobs under value ‘G ov’ at LI.

Also, observe the behavior o f  attribute O ccupa tion  (4th in the numbering o f  

attributes). Apparently, it pays o ff  to ascend from HO to HI, but not really 

to ascend from HI to H2, unless in combination with attribute A g e . At the 

same time, ascending from the nodes o f  H2 with no generalization for 

O ccupa tion  to H3 at nodes that do generalize O ccu p a tio n  practically reduce 

suppression in half(!). In other words, it appears that A ge is the dominant 

attribute to consider for suppression reduction and that O ccu p a tio n  

demonstrates different behavior at different levels, depending on the rest o f  

the generalized attributes.

Figure 3.11 Average number o f  suppressed tuples over different heights for 3- 
anonymity. The QI size o f  3 refersTo the full lattice and the QI size o f  5 to the partial

lattice o f  Figure 3.2.4.
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3.2.2. C om parison  o f  d ifferen t va lues o f k  a n d  heigh t w ith  a  f i x e d  Q I size  

In this subsection, we report on our findings when comparing different values of k for 

the privacy criterion o f  k-anonymity for their effect on the number o f  suppressed 

tuples. For each layer o f  nodes we list the minimum, average and maximum numbers 

o f  suppressed tuples, for a height up to H6, for QI sizes o f  3 (Table 3.3) and 5 (Table 

3.4). The results are also graphically depicted in Figure 3.12 and Figure 3.13.

Table 3.3 Minimum, maximum and average number o f  suppressed tuples for 
k = 3,10,25 and QI size o f  3 over the hall lattice.

|Q[|=3 (lattice up to height H6)

k=3 k=10 k=25

Min avg max min avg max min avg max

HO 554 554 554 1921 1921 1921 4578 4578 4578

H I 125 209 295 522 1030 1357 1184 2546 3573

H2 28 57 69 170 352 508 610 1153 1926

H3 12 24 54 51 148 484 195 419 1236

H4 4 8 15 28 45 94 56 127 222

H5 1 4 7 2 19 37 14 48 105

H6 0 2 4 0 9 23 14 21 40

Table 3.4 Minimum, maximum and average number o f  suppressed tuples for 
k = 3,10,25 and QI size o f  5 over the partial lattice.

|Q1|=5 (PARTIAL lattice)

k=3 k=10 k=25

Min avg max min avg max min avg max

HO 10458 •10458 10458 18916 18916 18916 25945 25945 25945

H I 4514 7795 9879 10944 15974 18801 16492 22282 25945

H2 2169 5459 8913 6151 12684 18325 10655 18624 25945

H3 1619 3472 7398 4824 9291 17359 8516 14867 25084

H4 1051 1881 3353 3990 6049 10141 7520 10923 16818

H5 773 733 733 3259 3259 3259 6712 6712 6712
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Figure 3.12 Average and minimum number o f  suppressed tuples over different heights 
for a QI size o f  3 and different k for k-anonymity. The reported numbers refer to the 
full lattice.

HO Hi H2 113 Mi US 

height

Figure 3.13 Average and minimum number o f  suppressed tuples over different heights 
for a QI size o f  5 and different k for k-anonymity. The reported numbers refer to the 

partial lattice.

Our observations can be summarized as follows:

- ' The e ffe c t o f  k  to  the  su p p re ss io n . By comparing the same lines o f  the two 

tables over different values o f  k, one can clearly see that the effect o f  the 

privacy criterion (here: k for k-anonymity) to the amount o f  suppressed tuples 

is practically analogous to the amount o f  suppression performed.

As the height is small and the number o f  suppressed tuples significant (in fact, 

higher than the value o f  k, i.e., till height H3 included), the ratio o f  the 

minimum number o f  suppressed tuples between k=3 and k=10, as well as
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k=10 and k=25 increases slow ly (w e chose the minimum since it is the value 

o f  the best solution) and remains close to the fraction o f  the two k’s.

Table 3.5 Ratio o f  minimum values for different values o f  k, QI size and height

Q i =  3 IQ I |=4 Q I =  5 10  1=6

m in (k = 1 0 )  

/ m in  (k = 3 )

m in (k = 2 5 )

/ m in (k = IO )

m in (k = 1 0 )

/ m in  (k = 3 )

m in (k = 2 5 )

/ m in (k = 1 0 )

m in (k = 1 0 )  

/ m in  (k ~ 3 )

m in (k = 2 5 )

/ m in (k = 1 0 )

m in (k = 1 0 )

/ m in  (k = 3 )

m in (k = 2 5 )  / 

m in (k = l0 )

HO * 3 , 4 7 2,38 2,86 1,56 1,81 1,37 1,57 1,18

H I 4,18 2,27 3,14 2,02 2,42 1,51 1,91 1,34

H 2 6,07 3,59 3,97 2,28 2,84 1,73 2,17 1,47

H 3 4 ,25 3,82 4,75 2,27 2,98 1,77 2,49 1,64

H 4 7 2 6,07 3,59 3,8 1,88 2,61 1,68

H 5 2 7 4,25 3,12 4 ,22 2 ,06 3,03 1,71

The e ffec t o f  h e ig h t increase  over  the  nu m b er o f  su p p re sse d  tu p le s  is the  sam e  

f o r  d ifferen t k 's . Observe Figure 3.12 and Figure 3.13. All the lines are 

practically parallel; in other words, independently o f  k, the trend o f  

suppression and the height increases is the same. Observe also, that when 

minimum values are concerned, the changes are slightly steeper than in the 

case o f  average values; however this observation is o f  secondary importance. 

C om pu tin g  the fr a c t io n  be tw een  m in im u m  a n d  a vera g e  n u m b e r  o f  su p p re sse d  

tup les . Concerning QI=3, the fraction o f  the average number o f  suppressed 

tuples over the minimum number o f  suppressed tuples is approximately 

around 2 -  and, in a couple o f  cases it raises up to 3 times. When we m ove to 

QI=5, the respective fraction ranges on average between 1.8 to 1.5 -- dropping 

as k increases. In other words, it is still important to carefully pick a good 

solution with a price o f  50% -  100% with respect to the average cost. Still, as 

QI and k increase, the importance o f  this decision diminishes.

For completeness, w e also list the average and the min numbers o f  suppressed tuples 

* for the full lattice o f  QI=5 in Table 3.6, Figure 3.14 and Figure 3.15.
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Table 3.6 Average number o f  suppressed tuples for k= 3 ,10,25 and QI size ot 5 over
the full lattice

9

|Q I|~5 (FU LL lattice), avg and min ^suppressed tuples per level

k=3 k=10 k=25

avg min avg min avg min

H0 10458.00 10458 18916.00 18916 25945.00 25945

HI 7795.20 4514 15973.80 10944 22282.00 16492

H2 5537.07 2169 12734.20 6151 18954.20 10655

H3 3711.88 1123 9652.73 3468 15463.70 6599

H4 2296.34 716 6804.24 2065 11929.88 4247

H5 1295.15 322 4400.43 1160 8539.00 2471

H6 644.26 108 2551.32 578 5524.31 1257

H7 282.98 41 1288.55 230 3173.08 648

H8 110.42 8 554.97 60 1535.83 263

H9 40.52 2 212.72 14 631.24 26

H10 14.16 0 72.94 0 223.06 12

H l l 4.92 0 25.14 0 78.46 0

H12 1.42 0 10.09 0 26.30 0

H13 0.27 0 2.87 0 6.27 0

H14 0.00 0 0.00 0 0.00 0

H15 0.00 0 0.00 0 0.00 0

30000

25000

height

Figure 3.14 Average number o f  suppressed tuples over different heights for a QI size 
o f  5 and different k for k-anonymity. The reported numbers refer to the full lattice.
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Figure 3.15 Min number o f  suppressed tuples over different heights for a QI size o f  5 
and different k for k-anonymity. The reported numbers refer to the full lattice.

3.2 .3 . C om parison  o f  d iffe ren t Q I  s ize s  (o ver  d iffe ren t leve ls) w ith  a  f i x e d  va lu e  o f k

In this subsection, w e focus our observations in the effect o f  increasing the QI size  

over the amount o f  suppressed tuples. We fix the level o f  k-anonymity to k = 3 and 

present our results per different levels o f  generalization and QI size.

Our observations can be summarized as follows:

Clearly, different QI sizes at the same level have on average an increase o f  the 

scale o f  2 -3 times, for large volum es o f  suppressed tuples. This scale factor 

changes as the volum e o f  suppressed tuples drops

Moreover, it is clear that statistically tolerable amounts o f  suppressed tuples 

are attained slower as the size o f  QI grows. For example, the suppression 

percentage falls under 1% o f  the total volum e o f  data at height HI for QI = 3, 

H3 for QI = 4, H6 for QI = 5 and after H8 for QI = 6.

The m o st im p o rta n t o b serva tio n  is th a t a  Q I  o f  s ize  n  d ro p s  to  th e  le ve ls  o f  

su p p ress io n  o f  the  Q I o f  s ize  n - l  a r o u n d  3 -4  le ve ls  o f  g e n era liza tio n  la te r  f o r  

sm a ller  Q V s  a n d  1-2 le ve ls  f o r  la rg e r  Q T s.
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3.2.3.1. Partial lattices

Table 3.7 Average number o f  suppressed tuples and percentage over the full data set 
for 3-anonymity for different QI sizes over the partial lattice.

|QI|=3 |QI|=4 |QI|=5 |Q i|=6

►

A v g A v g  %  

o v e r  fu ll

A v g A v g  %  

o v e r  fu ll

A v g A v g  %  

o v e r  

fu ll

A v g A v g  %  

o v e r  fu ll

HO 554 1,836 3297,0 10,9 10458,0 34,7 15318,0 50,8

HI 208,66 0,691 1847,8 6,1 7795,2 25,8 12808,7 42,5

H2 48,5 0,160 803,3 2,7 5458,8 18,1 10342,5 34,3

H3 '  17 0,056 217,5 0,7 3471,9 11,5 7958,4 26,4

H4 - - 47,0 0,2 1881,4 6,2 5740,1 19,0

60

--------|Q I |  - 3

—· — |Q l |  - 4  

IQil S 
—*-|QU 0

Figure 3.16 Percentage o f  suppressed tuples over different heights for 3-anonymity. 
The reported numbers refer to the partial lattices for all QI sizes.

Table 3.8 Min number o f  suppressed tuples over the full data set for 3-anonymity for
different QI sizes over the partial lattice.

min

QI|=3 QI|=4 |Q1|=5 IQH=6

HO 554 3297 10458 15318

HI 125 1042 4514 8304

H2 28 318 2169 4901

H3 12 110 1619 4023

H4 4 47 1051 3155
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20000

------ IQl| -3

------ |QI|=4

|QH=5

--- |QI|=6

* Figure 3.17 Min suppressed tuples over different heights for 3-anonymity. The 
reported numbers refer to the partial lattices for all QI sizes.

3.2.3.2. Full lattices

Table 3.9 Average number o f  suppressed tuples and percentage over the full data set 
for 3-anonymity for different QI sizes over the full lattice.

IQi|=3 IQI|=4 |QI|=5 IQI|=6

Avg Avg % 
over 
full

Avg Avg % 
over 
full

Avg Avg %  
over 
full

Avg Avg % 
over 
full

HO 554,0 1,8 3297,0 10,9 10458,0 34,7 15318,0 50,8

H I 208,7 0,7 1847,8 6,1 7795,2 25,8 12808,7 42,5

H2 56,5 0,2 868,6 2,9 5537,1 18,4 10369,3 34,4

H3 24,0 0,1 354,3 1,2 3711,9 12,3 8105,1 26,9

H4 8,5 0,0 1.21,0 0,4 2296,3 7,6 6036,7 20,0

H5 4,0 0,0 42,9 0,1 1295,1 4,3 4255,2 14,1

H6 1,7 0,0 15,1 0,0 644,3 2,1 2803,0 9,3

H7 ,  0,7 0,0 6,1 0,0 283,0 0,9 1703,8 5,6

H8 0,0 .. 0,0 2,1 0,0 110,4 0,4 941,1 3,1

H9 0,0 0,0 0,4 0,0 40,5 0,1 465,5 1,5
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Figure 3.18 Percentage o f  suppressed tuples over different heights for 3-anonymity. 
The reported numbers refer to the full lattices for all QI sizes.
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Table 3.10 Average number o f  suppressed tuples and percentage over the full data set 
for 3-anonymity for different QI sizes over the full lattice.

M in # o f suppressed tuples

IOI|=3 OH=4 QI]=5 IQ H =6

HO 554 3297 10458 15318
HI 125 1042 4514 8304
H2 28 318 2169 4901
H3 12 110 1123 2867
H4 4 28 716 1941
H5 1 12 322 1177
H6 0 4 108 629
H7 0 0 41 354
H8 0 0 8 155
H9 0 0 2 33

■|QM=3 

| QI | =4 

(QI|=S 

IQH=6

Height

Figure 3.19 Min suppressed tuples over different heights for 3-anonymity. The 
reported numbers refer to the hill lattices for all QI sizes.

3 .2 .3 .3 . Selected nodes

Observe also Table 3.11, where we compare “hom ologous” nodes. Since the quasi

identifier size is different, one might possibly argue that the abovementioned 

* comparison is uftfair. So, we compare the following cases:

-  b o th  con figura tions  have a  s ing le  a ttr ib u te  g e n e ra liz e d  (Q l= 3  w ith  nodes 001, 

010, 100 vs. Q I~ 5  w ith  no d es 00001, 10000): observe how the ranges for QI

=3 are all below 1%, whereas the smallest suppression for QI =5 is practically 

- 15%(!)
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Table 3 .1 1 Comparison o f  homologous nodes: (a) absolute numbers and (b) 
percentage o f  suppressed tuples over the full data set for 3-anonymity.

001 010 100 avg 00001 00010 00100 01000 10000 avg

# tuples 
suppressed

206 295 125 208,66 9879 9017 9544 6022 4514 7795,2

% vs 0 0,68 0,97 0,41 0,69 35,75 29,89 31,64 19,96 14,98 25,84

-  both  con figura tions  have  three leve ls g e n e r a liz e d (Q l -  3 w ith  node 1 I I  vs. Q I - 5  

* w ith  nodes 0 0 1 1 1, ..., 11100): no matter which node o f  QI=5 we pick, with a 

generalization o f  three levels, it is clear that the effect o f  the size o f  QI is very 

important: the best possible suppression o f  the nodes with QI=5 is 95 times larger 

than the respective suppression o f  node 111. At the same time, in order to 

highlight that almost all o f  these nodes are important nodes in the lattice, we 

extend T able 3.12 with the last column which shows that each of these nodes 

(with the exception o f  0 0 1 11) provides a significant reduction o f  the amount o f  

suppressed tuples with respect to the average node o f  its previous level (i.e., apart 

from node 00111, all the other nodes would be worthy candidates to consider as 

generalization schem es if  necessary).

Table 3.12 Comparison o f  hom ologous nodes: (a) absolute numbers, (b) percentage o f  
suppressed tuples over the full data set for 3-anonymity and (c) improvement over the

average o f  the previous level

N u m . %  o v e r  level %  im p ro v e m e n t  o v e r  the

su p p re s se d 0 a v g  p re v io u s  level

111 17 0 ,056 69 ,9115

00111 7398 24 ,527 -3 5 ,5 1 9

01011 4 0 4 2 13,400 25,957

01101 4 70 5 15,599 13,812

O H IO
•t

4 1 0 5 13,609 24,803

10011 2 9 1 7 9,671 46,565

10101 3390 '  11,239 37,900

to t  10 3118 10,337 42,883

11001 1629 5,400 70,159

11010 1619 5,367 70,342

m o o 1796 5,954 67,100
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-  QI = 3 with node 111 vs. QI = 5 with node 11111: In Table 3.13, w e can see that 

the top o f  the “diamond” o f  the partial lattice, which is the best that the partial 

lattice can do, is quite low, in both cases -- even despite the fact that a difference 

o f  two attributes in the Q[ size results in a scale factor o f  4 5 (!!) for the suppressed 

tuples. This is an important observation, since one might “safely” restrict the 

search within the partial lattice for a quick generalization which is not necessarily 

the optimal.

Table 3.13 Comparison o f  homologous nodes: (a) absolute numbers and (b) 
percentage o f  suppressed tuples over the full data set for 3-anonymity.

111, QI -  3 11 111, QI = 5
# tuples suppressed 17 773
% vs 0 0,056 2,56

3.2.4. B ig  p ic tu re

In the sequel we provide a combined view  o f  all the results o f  this subsection. We use 

a diagrammatic technique that combined QI sizes, heights and different values o f  k 

and depicts the number o f  suppressed tuples for every possible combination in a 

single figure.

Figure 3.20 Relative volum e o f  suppressed tuples for different combinations o f  
generalization height, k and QI size (each sub-bar depicts the avg number o f  

„ suppressed tuples fu l ly  -  i.e., not as a differential over the previous sub-bar; thus, it is 
meaningless to add the different values o f  sub-bars within a bar). Each vertical 

interval between horizontal lines corresponds to 10,000 tuples.
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Figure 3.21 Relative volume o f  suppressed tuples for different combinations o f  
generalization height, k and QI size (each sub-bar depicts the avg number o f  

suppre&ed tuples in crem en ta lly  -  i.e., with each bar as a differential over the previous 
sub-bar; thus, it makes sense to add the different values o f  sub-bars within a bar).

Figure 3.22 Relative volum e o f  suppressed tuples for different combinations o f  
generalization height, k and QI size (each sub-bar depicts the min number o f  

suppressed tuples f u l ly  -  i.e., not asfca differential over the previous sub-bar; thus, it is 
meaningless to add the different values o f  sub-bars within a bar). Each vertical 

interval between horizontal lines corresponds to 10,000 tuples.

✓
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Figure 3.23 Relative volum e o f  suppressed tuples for different combinations o f  
generalization height, k and QI size (each sub-bar depicts the min number o f  

suppressed tuples in c rem en ta lly  -  i.e., with each bar as a differential over the previous 
sub-bar; thus, it makes sense to add the different values o f  sub-bars within a bar).

Our observations can be summarized as follows:

•  A first observation (see for example Figure 3.23) is that all QI sizes have the 

same behavior: for low  generalization levels they produce high numbers o f  

suppressions and as the generalization level rises, the number o f  suppressed 

tuples drops gracefully. This is clearly depicted in Figures 3.20 for the average 

values and Figures 3.22 for the minimum values -  in both these charts the 

absolute values o f  each QI size are depicted.

•  The larger the QI size, the slower this drop is. This is evident as (a) in small 

heights, one can see QI=3 which quickly disappears then; (b) the increase to 

the suppressed tuples due to QI=6 is quite small compared, e.g., to QI=5 at 

lower levels; at higher levels however, the contribution o f  QI=5 drops whereas 

QI=6 that drops slower practically retains its contribution to suppression. See 

also Fig. 3.9 which clearly depicts the phenomenon.

•  The increase o f  suppression due to the increase o f  k increases slow ly with the 

height for as long as this has a meaning (see Table 3.5: within each column, as 

the height increases, the ratio o f  best solution for adjacent k’s increases too). 

Interestingly, all k’s fall with similar, but not identical speed as the height 

increases; see also Fig. 3.15 which clearly depicts the phenomenon.
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• When comparing average to minimum values it appears that the average 

values on suppression are practically 2,5 times as high as the minimum ones 

(observe Table 3.14). Again, this demonstrates clearly that it is worth paying 

the price to explore thoroughly the search space o f  possible solutions for a 

user’s request.

As already mentioned, another result not clearly depicted in Figures 3.20 -  3.23 has to 

do with the particularities o f  each o f  the quasi-identifier attributes. Different attributes 

have different impacts to suppression; this w ill be detailed further in Section 5.

Table 3.14 Ratio o f  average number o f  suppressed tuples over minimum number o f  
suppressed tuples for different QI sizes, values o f  k (in k-anonymity) and height.

|QIi=3 |QI|=4 IQi|=s |QI|=6 a*

vg/min k=3 K=10 k=25 k=3 k=10 k=25 k=3 k=10 k=25 k=3 k=10 k=25
HO 1 1 1 1 1 1 1 1 1 1 1 1 1.0

HI 1.7 2.0 2.2
®

 1 1.8 1.7 1.7 1.5 1.4 1.5 1.4 1.2 1.6

H2 2.0 2.1 1.9 2.7 2.6 2.5 2.6 2.1 1.8 2.1 1.8 1.5 2.1

H3 2.0 2.9 2.1 3.2 3.1 3.5 3.3 2.8 2.3 2.8 2.3 1.9 2.6.

H4 2.1 1.6 2.3 4.3 3.8 3.1 3.2 3.3 2.8 3.1 2.6 2.2 2.8

H5 4.0 9.5 3.5 3.6 4.5 4.7 4.0 3.8 3.5 3.6 2.9 2.6 4.1ί

H6 1.5 3.8 2.6 8.5 6.0 4.4 4.4 4.5 4.2 3.5 4.3*

avg 2.13 3.18 2.07 2.91 2.77 3.57 3.11 2.70 2.46 2.66 2.31 1.99 2.66
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-  3.3. L-diversity for the A dult da ta  set
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Figure 3.24 Cumulative histogram για l-diversity

3.3. / .  C om pa rison  o f  d iffe ren t leve ls  o fg e n e ra liza tio n  w ith  f i x e d  k  a n d  Q I  size

As one can clearly see in all the charts and tables o f  this section, as the height 

increases, the number o f  suppressed tuples drops with a high rate -  after a certain 

level, it becom es meaningless to climb further up the lattice. The same phenomenon 

has befcn observed in the case o f  k-anonymity, too.

>
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Figure 3.25 Full lattice with suppressed tuples for quasi identifier set o f  size 3. The QI 
is A ge, W ork c lass, R ace .
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Figure 3.26 Full lattice with suppressed tuples for quasi identifier set o f  size 5. The QI 

is A g e , W ork c lass, R ace, O ccupation , E duca tion
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N ot a ll a ttr ib u tes  are  born  equa l. Again, as in the case o f  k-anonymily, it is clear 

that the careful choice o f  generalization schem e can significantly improve the 

number o f  suppressed tuples -  especially at the lower parts o f  the lattices (that 

present the most important regions too).

Observe, for example, level H3 for QI=3. N ode 102 has the smallest 

number o f  suppressed tuples (12). It is interesting to notice its parents at 

level H2: node 002 suppressed 123 tuples (much more than node 102), 

whereas node 101 suppressed 50. In other words, the best node is produced 

by (a) generalizing attribute A ge, (b) not touching attribute W ork C la ss  and 

(c) slightly ascending over attribute R ace. At the same time, the maximum  

number o f  suppressed tuples at level H3 is attained by node 030, which does 

'  the exact opposite o f  node 102: it only generalizes (a lot, at level 3) attribute 

W ork C lass.

- At the same time, at level H3 for the partial lattice o f  QI=5 (A ge, W ork  

c la ss , R ace , O ccu p a tio n , E duca tion )  w e can observe that (again) the nodes 

with the largest and smallest number o f  suppressed tuples are practically 

complementary: node 01101 yields a suppression o f  10472 tuples and node 

11010 yields a suppression o f  2476 tuples. The latter is produced by the 

node 10010 at H2 which is also the one with the smallest amount o f  

suppressed tuples at its level. Clearly, the combination o f  the generalization 

o f  A g e  and O ccu p a tio n  minimize the suppression (see also the rest o f  the 

nodes o f  H3 that are produced by 10010: they have similar amounts o f  

suppressed tuples and they are significantly lower than the other nodes o f  

the level). Interestingly, the best generalization schem e at level H3, is not 

depicted in the partial lattice and it is 10020 (which practically says that 

occupation is fully generalized at its topmost level).

3.3 .2 . C om parison  o f  d iffe ren t va lues o f  l  a n d  h e ig h t w ith  a  f i x e d  Q f  s ize

In this subsection, w e report on our findings when comparing different values o f  / for 

the privacy criterion o f  1-diversity for their effect on the number o f  suppressed tuples. 

'  For each layer o f  nodes w e list the minimum and average numbers o f  suppressed 

tuples, for QI sizes o f  3 (Table 3.16) and 5. For the latter we explore the case o f  full
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lattice (Table 3.17). The results are also graphically depicted in Figure 3.27 and 

Figure 3.28 for QI=3 and Figures 3.29 and Figure 3.30 for QI=5.

Our observations follow  closely the respective observations for k-anonymity and can 

be summarized as follows:

As /  increases, so does the amount o f  suppressed values (for the same height 

and QI size). The amount o f  suppression is not directly analogous to the value 

o f  /, however the scaling o f  the suppression is quite close to the scaling o f  the 

value o f  /.

All the lines in all the charts o f  this subsection expose the same trend: as the 

height increases, the number o f  suppressed tuples drops quite quickly 

- As in the case o f  k-anonymity, the ratio o f  minimum to average value is higher 

'  than 50% (Table 3.15) (in fact it rises to quite large values at big heights; if  

one removes the outliers the average ratio o f  average to minimum value is 

around 3).

Table 3.15 Ratio o f  average number o f  suppressed tuples over minimum number o f  
suppressed tuples for different QI sizes, height and 1-3

avg/m in (1-3)

IQH=3 IQH=4 1QI|=5 IQI|=6
HO 1 1 1 1

H I 1,94 1,58 1,59 1,44

H2 2,27 2,58 2,29 1,92

H3 3,6 3,12 3,07 2,49

H4 1,9 5,29 3,17 2,83

H5 4,5 7,41 3,73 3,28

H6 6,17 4,78 4,03

H7 8,3 10,9 4,40

H8 2,1 10,69 5,61

H9 0,4 37,35 11,38
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T a b l e  3 . 1 6  A v e r a g e  a n d  m i n i m u m  n u m b e r  o f  s u p p r e s s e d  t u p l e s  p r e  l e v e l  f o r  Q I = 3

o v e r  t h e  fu l l  l a t t i c e  f o r  d i f f e r e n t  v a l u e s  o f  1

|QI|=3 (full lattice)

1-3 1-6 1-9

m in avg m in avg m in avg
HO 1033 1033 2476 2476 4251 4251
H I 240 468 788 1430 1258 2356
H 2 50 114 357 535 680 1160
H 3 12 43 54 182 104 377
H 4 6 11 22 50 29 99
H 5 1 5 2 19 2 28
H 6 0 2 0 10 0 11
H 7 0 1 0 2 0 3
H 8 0 0 0 0 0 0
H 9 0 0 0 0 0 0

Figure 3.27 Minimum number o f  suppressed tuples pre level for QI=3 over the full
lattice for different values o f  I

*
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Figure 3.28 Minimum number o f  suppressed tuples pre level for QI=3 over the full
lattice for different values o f  l

- r
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T a b l e  3 . 1 7  A v e r a g e  a n d  m i n i m u m  n u m b e r  o f  s u p p r e s s e d  t u p l e s  p r e  l e v e l  f o r  Q I = 5

o v e r  t h e  fu l l  l a t t i c e  f o r  d i f f e r e n t  v a l u e s  o f  1

|QI|=5 (full lattice)

1-3 1-6 1-9

m in avg m in avg m in avg
HO 13167 13167 20261 20261 25901 25901
H I 6463 10301 11971 17150 15624 22002
H 2 3347 7694 6923 13890 10027 18551
H 3 1774 5458 4043 10705 6392 15042
H 4 1132 3594 2668 7738 4173 11506
H 5 581 2172 1463 5180 2573 8181
H 6 244 1168 689 3130 1241 5259
H 7 50 545 302 1670 675 3015
H 8 20 214 63 741 250 1466
H 9 2 75 7 272 63 587
H 1 0 0 23 0 85 14 196
H l l 0 7 0 26 0 57
H 1 2 0 2 0 9 0 15
H 1 3 0 0 0 2 0 4
H 1 4 0 0 0 0 0 0
H 1 5 0 0 0 0 0 0

Figure 3.29 Minimum number o f  suppressed tuples pre level for Q I-5  over the full
lattice for different values o f  1
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3 0000

25000

Figure 3.30 Average number o f  suppressed tuples pre level for QI=5 over the full
lattice for different values o f  1

3.3.3. C om parison  o f  d iffe ren t Q l  s ize s  (over d iffe re n t leve ls) w ith  a  f ix e d  value o f  l 

In this subsection, w e focus our observations in the effect o f  increasing the QI size  

over the amount o f  suppressed tuples. We fix the level o f  /-diversity to / = 3 and 

present our results per different levels o f  generalization and QI size.

Our observations can be summarized as follows:

Clearly, different QI sizes at the same level have varying levels o f  increase to 

the minimum number o f  suppressed tuples. This scale up can range from 5 to 

2 and systematically decreases as QI increases. H owever, as in the case o f  k- 

anonymity, it is clear again that the size o f  QI is the determining factor for the 

amount o f  suppression that can take place.

Moreover, it is clear that statistically tolerable amounts o f  suppressed tuples 

are attained slower as the size o f  QI grows. For example, the suppression 

percentage falls under 1% o f  the total volum e o f  data at height HI for QI = 3, 

H3 for QI = 4, H6 for QI =  5 and after H8 for QI =  6 (all at the same level with 

k-anonymity).

A s  in  the  case  o f  k -a n o n ym ity ; w e a lso  observe  th a t a  Q I  o f s i z e  n  drops to the  leve ls  o f  

suppression  o f  (he Q I  o f  s ize  n - I  a ro u n d  2-3 leve ls  o f  g e n era liza tio n  la ter



7 9

Ρ

sizes and 1=3 over the full lattice
T a b l e  3 .1 8  A v e r a g e  a n d  m i n i m u m  n u m b e r  o f  s u p p r e s s e d  t u p l e s  p e r  l e v e l  f o r  a l l  Q I

_______ 1011=3_______ |Q I |= 4 IQ H =5 _______ IQ11=6_______

avg min avg min avg min avg min
HO 1033,0 1033 5116,0 5116 13167,0 13167 17871,0 17871
H I 467,7 240 3118,0 1972 10300,6 6463 15405,8 10671
H 2 113,7 50 1644,4 637 7694,4 3347 12928,4 6719
H 3 43,2 12 750,1 240 5457,6 1774 10518,6 4210
H 4 11,4 6 264,8 50 3593,5 1132 8200,0 2894
H 5 4,5 1 89,0 12 2171,9 581 6079,5 1848
H 6 1,7 0 24,7 4 1168,2 244 4236,2 1049
H 7 0,7 0 8,3 0 545,0 50 2740,5 622
H 8 0,0 0 2,1 0 213,9 20 1617,6 288
H 9 0,0 0 0,4 0 74,7 2 854,0 75

Figure 3.31 Minimum number o f  suppressed tuples per level for all QI sizes and 1=3
over the full lattice

✓
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20000

IQH=3 

I Ql I =4 

IQH=5 

IQl|=6

height

Figuje 3.32 Average number o f  suppressed tuples per level for all QI sizes and 1=3
over the full lattice

3.4* K-anonymity and L-diversity for the PUMS data set

In this subsection, w e report on our findings with the PUMS data set [IPUM S], The 

PUMS data set comprises 600000 records o f  the U SA  census. The attributes o f  the 

PUMS data set are age , b irth p la ce , educa tion , g e n d e r . The hierarchies o f  these 

attributes are the same for the same with Adult for the attributes age, ed u ca tio n  a n d  

g en d er  but different for the b ir th p la ce  (we can see birthplace hierarchy in Figure 

3.33).W e have used o ccu p a tio n  as the sensitive attribute for this data set.
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K-anonym ity. Although the data set size is significantly larger than the one o f  Adult, 

the quasi-identifier size o f  the PUMS data set is small, as it comprises only 4 

attributes. Therefore we have not experimented with the quasi-identifier size, but 

rather we have explored the interrelationship o f  k with the different heights o f  the 

lattice, in Table 3.19 and Figure 3.34 we depict the average number o f  suppressed 

tuples per height and in Figure 3.35 and Table 3.20 w e depict the minimum number o f  

♦ suppressed tuples per level.

Our observations can be summarized as follows:

The general trend o f  suppression as the height increases is quite sim ilar with 

the one discovered at the Adult data set: the suppression levels are high for 

^small heights and quickly drop to small amounts o f  suppressed tuples. This 

holds for all the values o f  k that we have tested (i.e ., k=3, 10, 50, 100, 150). 

Interestingly, all the values o f  k demonstrate this cut-off behavior within the 

range o f  two heights (H3 and H4) when the minimum number o f  suppressed 

tuples is concerned (see Figure 3.4.2).

Table 3 .19 Average number o f  suppressed tuples for different values o f  k for the
PUMS data set

Average # o f  suppressed tuples

k = 3 k = 1 0 k = 5 0 k = 1 0 0 k = 1 5 0

H 0 31933.0 128493.0 369177.0 490040.0 539066.0
H I 12020.3 57561.5 220812.5 330966.5 396465.0
H 2 5071.2 25413.6 124158.2 204604.8 260322.4
H 3 1790.9 9873.9 59787.8 115041.2 158743.6
H 4 530.4 3197.8 23421.8 50488.1 77780.2
H 5 149.4 1028.2 7789.6 17577.8 28101.9
H 6 31.8 290.3 2307.0 5288.1 8920.8
H 7 4.5 54.9 679.8 1534.8 2667.9
H 8 0.6 6.3 147.9 402.4 663.5
H 9 0.0 • 0.0 9.4 79.9 156.5
H 1 0 0.0 0.0 0.0 0.0 15.4

H l l 0.0 0.0 0.0 0.0 0.0

H 1 2 0.0 0.0 0.0 0.0 0.0
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------- k=3

------- k=10

-------k -5 0

------- k=100

------- k=150

Figure 3.34 Average number o f  suppressed tuples for different values o f  k for the
PUMS data set

- The relationship between minimum and average suppressed tuples is quite 

different than the case o f  the Adult data set. The minimum values drop very 

quickly with the increase o f  the height, whereas this fall is much slower than 

the case o f  the average suppression: in other words, the choice o f  a good  

anonymization schem e is much more important in the case o f  the PUMS data 

set.

✓
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Table 3.20 Minimum number o f  suppressed tuples for different values o f  k for the
PUMS data set

9

min # o f  suppressed tuples

k=3 k=10 k=50 k=100 k=150
H0 31933 128493 369177 490040 539066
HI 4462 27036 140719 226622 288288
H2 570 3778 30578 64388 95620
H3 169 1370 11141 27287 42793
H4 3 197 2037 4775 7705
H5 0 18 527 1193 2482
H6 0 0 95 391 779
H7 0 0 0 0 0
H8 0 0 0 0 0
H9 0 0 0 0 0
H10 0 0 0 0 0
H l l 0 0 0 0 0
H12 0 0 0 0 0

6 0 0 0 0 0  -------

------- k=10

k=50

------- k=100

k = 150

height

Figure 3.35 Minimum number o f  suppressed tuples for different values o f  k for the
PUM S data set

L-diversity. We have tested the PUM S data set for its behaviour concerning the 

suppression o f  tuples in the case o f  /-diversity for different values o f  / (specifically, 3, 

6, 9). The choice o f  values for l  was such that the data set was not massively 

suppressed for reasonable heights (observe Table 3.22, where H2 still holds around 

1% o f  suppression for the best possible solution). We depict our findings in Table
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3 .2 1 and Figure 3.36 for the average number o f  suppressed tuples per height and value 

o f  / as well as in Table 3.22 and Figure 3.37 for the minimum number o f  suppressed 

tuples -  i.e., the best possible solution— per height and value o f  L

Table 3.21 Average number o f  suppressed tuples for different values o f  l for the
PUMS data set

avg # o f suppressed tuples
1=3 1=6 1=9

HO 37187.0 96136.0 147964.0
HI 14255.8 41891.5 71999.5
H2 6136.4 18788.9 33843.0
H3 2177.5 7380.6 14116.6
H4 630.1 2329.0 4849.2
H5 178.1 721.6 1524.5
H6 38.1 183.8 438.3
H7 5.0 28.7 84.0
H8 0.6 2.8 9.4
H9 0.0 0.0 0.9
H10 0.0 0.0 0.0
HI 1 0.0 0.0 0.0
H12 0.0 0.0 0.0

height

Figure 3.36 Average number o f  suppressed tuples for different values o f  l for the
PUMS data set
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Table 3.22 Minimum number o f  suppressed tuples for different values o f  1 for the
PUMS data set

min # of suppressed tuples
1=3 1=6 1=9

HO 37187 96136 147964
HI 5333 20837 40589
H2 701 2779 6129
H3 204 927 2026
H4 3 89 332
H5 0 7 41
H6 0 0 0
H7 0 0 0
H8 0 0 0
H9 0 0 0
H10 0 0 0
H ll 0 0 0
H12 0 0 0

Figure 3.37 Minimum number o f  suppressed tuples for different values o f  l for the
PUMS data set

*



87

Our findings can be summarized as follows:

- The general tendency for the drop o f  suppressed tuples as the height increases 

is verified once again: there is an exponential drop o f  the suppression as the 

height increases, for all values o f  /.

The cut-off point, whereas suppression becom es acceptable low  for the best 

possible anonymization scheme (Figure 3.37) is quite low  (around HI and H2 

for all values o f  1), whereas this picture is quite different for the average case 

♦ (Figure 3.36) where it is found approximately two levels higher.

The comparison o f  k-anonymity and /-diversity show s a remarkable 

resemblance for the general trend and the behavior o f  the amount o f  

suppressed tuples as the height or the privacy criterion increase their value. 

Again, we can think o f  k-anonymity as a good estimator o f  /-diversity.

3,5. T he price o f  histogram s

The lattice o f  generalization schemes and most importantly, the histograms with 

which the lattice is annotated come with a price, both in terms o f  space and in terms 

o f  construction time. In this section, we discuss these preprocessing and storage 

prices.

K -anonym ity. In Figure 3.38 we depict the time needed to construct the full lattice 

and to annotate it with the necessary histograms for the case o f  k-anonymity. 

Naturally, the latter task takes up practically all the necessary time. As the QI size 

increases the time also increases exponentially. However, for all the QI sizes that we 

have considered, the time ranges from few seconds to less than 20 minutes.

20  i—  ------  ------

-r 15
I

4 ·» i s  10 ■
£
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IQU

Figure 3.38 Construction time for the full lattice and its k-anonymity histograms for
the Adult data set.
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Clearly, the size o f  the data set influences the time needed to construct the full 

lattice’s histograms. Remember that the histogram for each node in the lattice 

practically requires two aggregate queries over all the data set (one that constructs the 

groups and another that counts the group sizes frequencies). This does not explain, 

however, the exponential delay with the increase o f  QI size; the reason for this 

phenomenon is depicted in Figure 3.39, where we present the lattice size in terms o f

nodes and edges.

►
4000 

3000 

2000 

1000 

0
3 4 5 6 IQ 'l 3 4 s 6 |QI |

Figure 3.39 Lattice size in terms o f  nodes and edges for the k-anonymity lattice o f  the
Adult data set.

Again, we can observe the same exponential increase (esp., in the case o f edges).

Although the time spent to construct the lattice is significant, the amount o f  memory 

that is needed to keep the histograms in main memory is quite small. Observe Figure 

3.40, where we depict the amount o f  main memory spent to retain the histograms for 

all the nodes o f  the lattice in the case o f  k-anonymity. Remember that the lattice size 

is dependent only upon the number o f  dimensions and the number of levels o f  each 

dimension and not upon the size o f  the data set (in fact, the data set influences the size 

o f  the histogram only with respect to the number o f  groups produced -  however for 

each group we only need two integers, so this cost is not so important after all). 

Again,'the increase is exponential in terms o f  the QI (which is clearly due to the 

exponential increase in the number o f  lattice nodes).
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histosize (Kbytes)

Figure 3.40 Main memory spent to retain the k-anonymity histograms for the Adult
data set (KB).

L-diversity. In our experimentation with the Adult data set, w e have also explored the 

case o f  L-diversity. Specifically, in Figure 3.41 w e depict the construction time for the 

/-diversity histograms, and in Figure 3.42 w e depict the memory cost for retaining 

these histograms. The observed phenomena are practically the same as with k- 

anonymity; however observe that the number o f  distinct values that /  can take (the x- 

axis o f  the histogram, in other words) is much less than the respective values for the 

case o f  k-anonymity; therefore, the size needed is lower for /-diversity than k- 

anonymity.

Construction time

1 ^ 2  3 4

IQU

Figure 3.41 Construction time for the full lattice and its l-diversity histograms for the
Adult data set.
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Figure 3.42 Main memory spent to retain the 1-diversity histograms for the Adult data
set (KB).

IPUM S. Apart from the Adult data set, the observed values are also consistent with 

the case o f  the IPUMS data set (see Figure 3.43). As w e have already mentioned, the 

lattice size is practically independent from the data size and dependent m ainly upon 

the lattice’s hierarchies; therefore the histogram sizes are comparable for Adult with 

Q I-5 and IPUMS (the hierarchies are slightly different). The construction time, 

however is quite different and this is clearly due to the fact that the size o f  IPUMS is 

50 times the size o f  the Adult data set. This explains the difference in time costs.

k-anonym ity 1-diversity

Average tim e (minutes) 10,5 38,087

Histo size (Kbytes) 530,688 58,424

Figure 3.43 Construction time (min) and main memory spent (KB) for the IPUMS
data set.

3.6. Sum m ary o f  findings

The goal o f  this chapter has been to study the relationship o f  suppression, 

generalization height and privacy criterion and via this study, to characterize the 

importance o f  the problem. O verall, we can  sa fe ly  c la im  tha t the p ro b lem  is v a lid  a n d  

im portant. L o w  g en era liza tio n  h e igh ts  (that are  o f  m ore  in terest to us d u e  to  the ir  

in fo rm a tio n  utility), o r  la rg e  va lues  f o r  the  p r iv a c y  criter ion  (w hich  is o f  m o re  in terest 

to  us due  to  the  in c re a sed  p r iv a c y  it o ffe rs  to  ind ividuals), o r  erroneous cho ice  o f  

g en era liza tion  sch em e  ca n  resu lt in  la rge  am oun ts o f  su p p ressed  data, qu ite  p o ss ib ly



91

m u ch  h igher  as co m p a re d  to  m ore  care fu l ch o ices  co n cern in g  the genera liza tio n  

sc h e m e .

Our detailed findings concerning the relationship o f  the involved parameters can be 

summarized as follows:

-  As the generalization height increases, the suppression drops quickly at small 

heights; the drop in suppression is less important in higher heights, where the

* number o f  suppressed tuples becomes statistically small and drops slowly. 

Interestingly, the overall trend for the decrease o f  suppression is practically the 

same for different values o f  k  or l  -  o f  course, with different amounts o f  

suppressed tuples.

-  As the value for the privacy criterion (e.g., k  in k-anonymity) increases, the 

suppression increases too. This is especially important in lower heights o f  

generalization that are both important due to their information utility and 

demonstrate high volum es o f  suppression.

-  As the size o f  the quasi identifier set increases, the effect to suppression is 

significant, as suppression increases too -  som etim es drastically. Som e 

quantitative evaluations around this theme suggest that (a) given a specific 

height and k an increase in QI size by one increases the suppression by a 

factor o f  2 -  3; (b) to attain the same suppression threshold an increase in QI 

size by one, requires ascending 1-2 levels for k-anonymity and 2-3 levels for /- 

diversity.

-  Not all attributes, generalization levels and, consequently, generalization 

schemes have the same effect to suppression. It is noteworthy that within the 

same height, the minimum possible suppression is approximately 2.5 times 

lower than the average for k-anonymity and 3 times lowers for 1-diversity. 

This is especially evident in cases where the suppression has high values or 

values that cannot really be tolerated; on the other hand, for too large values o f  

suppression (e.g., too large QIs or k) the relationship between average and 

minimum value does not follow  this rule.

-  Based on the above, it is important that for case that do matter, and where we 

can really attain good amounts for tuple suppression, it is really important to 

carefully pick the generalization scheme that will minimize this suppression.

0
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The faster w e identify these generalization schem es the faster the process 

completes.

We should also note that the above findings seem  consistent with both k-anonymity 

and I-diversity over two data sets -  with slight variations o f  course. A lso, w e should 

mention here that the effect o f  QI size to lattice is really important (o f  exponential 

nature) and this mainly affects the construction time o f  the lattice’s histograms (which 

iS also affected by the database size, o f  course, however with lesser degree o f  

importance)

*



9 3

r

CHAPTER 4. ONLINE NEGOTIATION 

ALGORITHMS FOR PUBLISHING PRIVATE

DATA

4.1 Simple negotiation for k-anonymity (as privacy criterion) and the height (as 

the criterion for the quality o f  solution)

4.2 Theoretical guarantees on the correctness o f  the proposed algorithm

4.3 Experimental Method

4.4 Finding for k-anonymity over the Adult data set

4.5 Finding for 1-diversity over the Adult data set

4.6 Finding over the IPUMS data set

4 .7  Summary o f  findings

In this section, w e explore a reference algorithm for the on-line negotiation over 

antagonistic privacy criteria. The general idea o f  the algorithm is based on two steps: 

(a) an off-line, preprocessing step, where the histogram lattice is built and (b) an on

line step, where the users pose requests for anonymizations over different 

combinations o f  criteria and the algorithm returns either exact results or suggestions.
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Preprocessing step

Input:

•  a data set 7’, comprising an identifier attribute /D ,

•  a set o f  quasi-identifier attributes QI = {A \,

•  a sensitive attribute S ,

•  a set o f  generalization hierarchies H = {hi, hn}, one for each quasi-identifier 

attribute

• a privacy constraint (e.g., 6-anonymity, /-diversity, m-uniqueness, . . .) ,

Output:

•  a histogram lattice L(V,E) such that: (a) a node v, labelled [4 , 4 ]  exists for

every combination o f  hierarchy levels /j, over all quasi identifier hierarchies, (b) a 

set o f edges stemming from every node v =  [4 , . . . ,4 , . . . ,  /n] to nodes u, with u 

being nodes o f  the form [4 , . ..,4 + 1, . . . ,  /„], for all k = 1, n, (c) a histogram C  

with pairs o f  the form [sta tP rop, counter]  annotates every node v, with s ta tP ro p  

being the statistical property o f  a group that determines the privacy level and 

coun ter  being the number o f  groups with size g ro u p S ize  in the result o f  this 

grouping query.

Figure 4.1 Off-line preprocessing step

The generic pre-processing step, where the lattice is built and each o f  its nodes is 

annotated with the appropriate histogram is depicted in Figure 4.1. The only unclear 

point to the above definition is the statistical property parameter, which w e clarify 

right away. The problem is defined for privacy criteria that can be defined as 

properties o f  each group. Remember that given a node v [4 , . . . ,  4 ], its groups are 

formed when we group T  by the values o f  [4 , . . . ,  /n]. Then, a statistical property is 

tested for every group, depending on the privacy criterion. For example, the privacy 

criterion o f  k-anonymity requires that each o f  these groups accounts for at least k 

, tuples; the criterion o f  /-diversity requires at least / different sensitive values in the 

group, and so on. This statistical property is counted in each histogram. So, for 

example, a value o f  <45, 67> in /-diversity means that there are 67 groups with 45 

different sensitive values for a certain generalization scheme. Other statistical 

properties o f  this nature include the entropy o f  a group (in entropy-based /-diversity)
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o f  the distance o f  the distribution o f  the sensitive values o f  the group to the 

distribution o f  the sensitive values o f  the data set (in t-closeness).

The “pluggable” parameters o f  the problem o f  on-line privacy negotiation can be 

summarized as follows:

Parameters

9

*

Table 4.1 Problem parameters and possible examples

La tt ice P o s s ib le  va lu e s

Lattice  extent F u ll o r Partia l lattice

Lattice  construction O ff lin e  o r on -line

Lattice  contents D e pe n d s on  the p r iv a cy  constra int(s) supported.

Exam ple : h isto g ra m ’s < X -v a lu e ,  Y -v a lu e >  are < g ro u p S ize ,  counte r>  for k -  

anon ym ity

A lg o r i t h m

P r iv a c y  constraint k -anonym ity , 1-diversity, t-closeness, m -u n iq u e n e s s , ...

Q o S O A  u tility  function  that determ ines the best so lu t io n  ( in c lu d in g  tie-breakers). 

E xam p le s: H e igh t o f  a so lution, d is c e m ib il it y , ...

O nce the offline, pre-processing step, is completed, then w e are ready to exploit the 

lattice in order to devise anonymization schem es in ab on-line fashion. The problem 

specification as a set o f  input/output specification for the generic case is depicted in 

Figure 4.2.

ft
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On-line step

Input:

•  a histogram lattice L(V,E) over a data set T  and a set o f  hierarchies H as before

•  a privacy constraint (e.g., Ar-anonymity, /-diversity, m -uniqueness,.. .),

•  fixed constraints for

•  (d l)  the maximum height per attribute that the anonymization method can attain

•  h = [A|C, . . . , * nc],

•  (d2) the low est value for the privacy constraint (e.g., k  for Ar-anonymity) and

•  (d3) the maximum number o f  suppressed tuples that the user is willing to 

tolerate M axSupp,

• a quality criterion function Q oSQ  for the assessment o f  the best possible 

anonymization when more than one answers are available (e.g., the solution with 

the lowest height, and possibly the less suppressed tuples, or maximum  

discemibility, as another example).

Output:

•  An anonymized data set T* such that

•  7* is a generalization o f  Γ, T* fulfils the abovementioned privacy 

constraints (d l)  -  (d3), and, T* m inimizes the quality criterion function 

QoS(T*)> i f  such a T* can be attained,

or,

•  A set o f  alternative generalizations that are also generalizations o f  T  and 

each o f  them minimizes the deviation for one o f  the parameters o f  the 

problem, specifically, (a) the acceptable generalization heights, (b) the 

minimum acceptable value for the privacy constraint and (c) the number 

o f  suppressed tuples.

Figure 4.2 Problem specification for the generic case o f  on-line privacy negotiation

✓
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In the sequel we present a simple algorithm to perform on-line negotiation over 

conflicting privacy requirements. The following table shows how the parameters o f  

the generic problem are instantiated for the problem under consideration.

4.1. Simple negotiation for k-anonymity (as privacy criterion) and height (as the

criterion for the quality of the solution)

Table 4.2 Parameters o f  the Algorithm

O f f l in e U se d  v a lu e

Lattice F u ll lattice construction

< X -v a Iu e ,  Y -v a Iu e > g ro u p S ize  for k -anonym ity , counter

O n - l in e

P r iva cy  constra int k -anonym ity

Qoso H e igh t o f  a so lu tion

Algorithm S im p leA n o n ym iyN eg o tia tio n  operates over a relation R  with a hierarchy H  

that results in a lattice annotated with histograms L. In the rest o f  our deliberations w e  

w ill focus on the case o f  k-anonymity, however the same algorithm applies to the case 

o f  1-diversity, with the histograms o f  the lattice L  and the constraints checking for 

determining whether a candidate node o f  the lattice is actually a solution being the 

only differences among the two cases. The proposed algorithm takes as input a table 

to be generalized, a set o f  hierarchies for the quasi-identifier attributes, the histogram  

lattice for all possible combinations o f  the generalization levels, and the requirements 

for the maximum desirable generalization level per quasi-identifier, the maximum  

tolerable number o f  tuples to be suppressed and the least size o f  a group, k , as the 

privacy constraint. The output o f  the algorithm are either

(a) an riode o f  the lattice (i.e., a generalization schem e) that provides the best 
€ ··

possible e xa c t solution to the user requirements (with best possible being 

interpreted as the one with the low est height, and, i f  more than one candidate 

solutions have this low est height, the one with the minimum suppression), or,

(b) three suggestions for approximate answers to the user request, the first relaxing 

the number o f  suppressed tuples, the second relaxes the constraints on the heights 

per dimension and the third relaxing the minimum acceptable privacy criterion 

(e.g ., k  in k-anonymity).
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The algorithm proceeds as follows:
9

A lg o r i t h m  SimpleAnonymityNegotiation(L,k,h,MaxSupp)
In : Lattice  L  w ith  the  h is t o g ra m s  fo r R,H, c o n st ra in t s  fo r k, h, M a x S u p p  

O u t: an  exact so lu t io n  s[v ,k ,h ,su pp ] o r  s l, s2 ,s3 ,  s i= [v_ i,k_ i#h_i,supp_i]

V a r:  a 2 D  v e c to r  o f  c a n d id a te  s o lu t io n s  C a n d id a te s [h m a x ][]

B e g in

Let v j n a x  be the  n o d e  tha t c o r re s p o n d s  to the  c o n st ra in t  h ; 

if  v_m ax is  v is ite d  th e n  exit; 

m a rk  v_m ax  a s  v is ite d ;

if (c h e c k E x a c tSo lu t io n (v_ m a x ,L ,k ,h ,M a x Su p p ) = =  tru e ){

C a n d id a te s [h e ig h t (v „ m a x )]  =  C a n d id a te s[h e ig h t (v_ m a x )|  c j  {v _m ax }; 

fo r  a ll v_c in  lo w e r ( v .m a x )

E xa c tSu b la tt ic e Se a rch (v_ c ,L ,k ,h ,M ax Su p p ,C an d id a te s);

//when the recursion is over, the Candidates has the full list of nodes 
// th a t can serve as candidate solutions

m in H e ig h t  = m in im u m  h e ig h t  h a v in g  C a n d id a te s [m in H e ig h t ]  != {};

•*v_win =  v  in  C a n d id a te s [m in H e ig h t ]  w ith  the  lo w e s t  p o s s ib le  s u p p r e s s io n  fo r  k; 

re tu rn (v  w in ,k ,m in H e ig h t , su p p re s se d fv  w in ,k ));

}
e lse {

a p p ro x S o l_ l  =  A p p ro x im a te M a x S u p p (L ,v _ m a x ,k ,h ,M a x S u p p );  

a p p ro x S o L 2 = A p p r o x im a t e H (L , v _ m a x (h e ig h t(v _ m a x ),h e ig h t(to p },k ,h ,M a x Su p p );  

a p p ro x S o l_ 3  =  A p p ro x im a te K (L ,v _ m a x ,k (h ,M a x S u p p );

re tu rn  a p p r o x S o L l ,  a p p ro x S o I 2, a p p ro x S o L 3 ;

}
En d ._______________________________________________________________________________________________

Figure 4.3 Algorithm Simple Anonymity Negotiation

First the algorithm identifies a reference node in the lattice, to which we refer a vmax. 

The node vmax is the node that satisfies all the constraints o f  h for the quasi- 

identifiers, at the topmost level; in other words, vmax is the highest possible node that 

can obtain an exact answer to the user’s request. We will also refer to vmax as the 

h ighest con fo rm ing  cand ida te  node. Then, two cases can hold: (a) vmax is able to 

provide an exact solution (Lines 4 - 13), or (b) it is not, and thus we have to resort to 

approximate suggestions to the user (Lines 14 -  20). The check on whether a node 

can provide an exact solution is given by function checkExactSolution that looks up 

t the histogram o f  a node v and performs the appropriate check depending on the 

privacy criterion (k-anonymity, 1-diversity, ...) . Note that this is the only part o f the 

algorithm that needs to be customized according to the privacy criterion.

When the former case is concerned and an exact answer can be provided by the 

highest conforming candidate node vmax, then w e can be sure that the sublattice



9 9

W
induced by vmax contains an exact answer; however, we need to discover the one with 

the minimum possible height and, therefore, we need to descend down the lattice to 

discover it. For the case where the lowest possible height that contains a node that 

can return an answer that respects the constraints set by the user, w e resolve the tie by 

choosing the node with the least suppression. The auxiliary variable C and ida tes  

holds all the nodes that conform to the user request, organized per height. Each time 

such a node is found, it is added to C a nd ida tes  at the appropriate level (Line 5) and 

itS descendants (returned via the function low erQ ) are recursively explored via the 

call o f  function ExactSublatticeSearch. When the lattice is appropriately explored we 

need to find lowest level with a solution in the lattice (Line 10) and, among the 

(several possible) solutions o f  this level w e must pick the one with the least 

suppression (Line 11).

E x a c t S u b la t t ic e S e a r c h ( v , L , k , h , M a x S u p p , C a n d id a t e s ) {

if  v  is  v is ite d  th e n  exit; 

m a rk  v  a s  v is ite d ;

if  (c h e c k E x a c tS o lu t io n (v ,L ,k ,h ,M a x S u p p )  = =  t ru e ) {

C a n d id a te s fh e ig h t (v ) ]  =  C a n d id a te s [h e ig h t (v ) ]  U {v}; 

fo r  a ll v_c in  lo w e r ( v )

E xa c tSu b la tt ic e Se a rc h (v_ c ,L ,k ,h ,M a x Su p p ,C a n d id a te s );

}
}

Figure 4.4 Function Exact Sub lattice Search

checkExactSolution(v,L,k,h,MaxSupp){
lo o k u p  h is t o g ra m  o f  v  in  L;

i f  s u p p re s se d (v ,k )  < =  M a x S u p p  & &  h e ig h t (v )  < =  h  re t u rn  true ; 

e lse  re tu rn  false;

Figure 4.5 Function check Exact Solution

- y

I f  the highest candidate node vmax fails to provide an answer that conforms to the user 

request, then w e are certain that it is impossible to derive such a conforming answer 

* from our lattice and we need to search for approximations. So, we provide the users 

with suggestions on the possible relaxations that can be made to his criteria. In this 

context, three suggestions are considered:

The first suggestion, provided by the invocation o f  function ApproximateMaxSupp, 

retains the privacy criterion k and the max tolerable height h fixed and tries to find
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the best possible solution with respect to the number o f  suppressed tuples. Since h is 

to be respected, again we are restricted in the sub-lattice induced by vnlax. Since vmax 

has failed to provide a conforming answer, no node in the sublattice can provide such 

an answer, either. So, we assess the number o f  tuples that have to be suppressed if  we 

retain k fixed and stay at the highest candidate node vmax. Observe that any node in 

the sublattice o f  vmax will result in higher or equal number o f  suppressed tuples (see 

the next section for a proof) -  remember that the lower w e go, the smaller the groups 

are and the higher the suppression. In other words, it w ill either be vmax that will give 

the answer or one o f  its descendants in the rare case that the groups o f  the descendant 

are mapped one to one to the groups o f  vmax thus resulting in exactly the same number 

o f  suppressed tuples.

The third suggestion is quite similar to the first: this time, function ApproximateK  

retains the height constraints h (again) and the maximum tolerable number o f  

suppressed tuples M axS u p p  and tries to determine what is the highest k that can 

provide this approximation. Again, for the same reasons as in the case o f  the 

approximation o f  suppression, we restrict our search to vmax (or any o f  its descendants 

that has a 1:1 mapping o f  groups to the ones o f  vmax).

ApproximateMaxSupp(L,v,k,h,MaxSupp){
find  the  m in im u m  a m o u n t  o f  s u p p re s s e d  tup le s, a p p ro x S u p p ,  s . t  

c h e c k E x a c tS o lu t io n (v ,L ,k ,h ,a p p ro x S u p p )  re tu rn s  true; 

if  n o  s u c h  v a lu e  exists, re tu rn  {}; 

e lse f

fo r  a ll v_c in  su b la t t ic e (v )  ( re c u r s iv e ly ) f

ch e ckE xac tSo lu t io n (v_ c ,L ,k ,h , a p p ro x S u p p )  

b re a k  w h e n  a w h o le  le ve l fa ils  to p ro d u c e  a so lu t io n ;

}
let v .w in  be  the  n o d e  w ith  the  lo w e s t  h e ig h t  th a t sa t is f ie s  k ,h ,a p p ro x S u p p

(w ith  a r b it r a r y  tie re so lu t io n )  

re tu rn  v _ w in ,k ,h ,a p p ro xSu p p ;

}

Figure 4.6 Function ApproximateMaxSupp

✓
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ApproximateK(L,v,k,h,MaxSupp){
find  the  m a x im u m  va lu e  o f  k, a p p ro x K ,  s.L c h e c k E x a c tS o lu t io n (v ,L ,a p p ro x K ,h ,m a x S u p p )  

r e t u rn s  true;

i f  n o  s u c h  v a lu e  exists, re tu rn  {}; 

e lse {

fo r  a ll v_c in  su b la t t ic e (v )  ( re c u r s iv e ly )  {

ch e c k E x a c tS o lu t io n (v _ c ,L ,a p p ro x K ,h ,m a x S u p p )

b re a k  w h e n  a w h o le  le ve l fa ils  to p ro d u c e  a  so lu t io n ;

}
let v _ w in  be  the  n o d e  w ith  the  lo w e s t  h e ig h t  th a t s a t is f ie s  a p p ro x K ,h ,m a x S u p p

(w ith  a r b it r a r y  tie  re so lu t io n )

re tu rn  v_ w in ,a p p ro x K ,h ,m a x S u p p ;

♦ }
}

Figure 4.7 Function Approximately

Finally, fhe second suggestion, provided by function A pproximate!-! retains the 

maximum tolerable number o f  suppressed tuples M axS u p p  and the privacy criterion 

o f  k  and tries to determine what is the lowest height h that can provide an answer for 

these constraints. This time, we operate outside the borders o f  the sublattice o f  vmax 

since h is not to be respected. The function Approximate!-! performs a binary search 

on the height between the height o f  vmax and the upper possible height (the top o f  the 

lattice). Every time a level is chosen, we start to check its nodes for possible solutions 

via the function checklfNoSolutionlnCurrentHeight. If the function explores a height 

fully and fails to find an answer, this is an indication that w e should not search lower 

than this height (remember: failure to find a solution signals for ascending in the 

lattice). Every time the function finds a node that can answer, then w e must search in 

the lower heights for possibly lower solutions. At the end, the binary search stops and 

the value c u rren tM in H e ig h t signifies the low est possible height where a solution is 

found. Then, w e explore this height fully to determine the node with the minimum  

suppression.
r
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ApproximateH(L,v,hJow,h_high,k»h,MaxSupp){
w h i le f h j o w  < =  h _ h ig h ){

h .c u r re n t  =  m id d le  b e tw e e n  h j o w  a n d  h_high; 

flag  =  c h e c k lfN o S o lu t io n fn C u r re n tH e ig h t (L ,h _ c u rre n t ,k ,M a x S u p p );  

if  (f la g  = =  tru e ){  

lo w  = c u r re n t  +  1;

}
e lse {

c u r r e n tM in H e ig h t  =  cu rre n t- 

h ig h  =  c u r re n t  - 1 ;

}
>

♦ f o r  a ll v_c in  c u r re n tM in H e ig h t ,  fin d  the  o n e  v_w in, w it h  the  m in im u m  su p p re sse d (v_ c ,k );  

//exception: this fails only i fk  > /Rj, else top o f the lattice always answers 
re tu rn  v_ w in ,k ,h e igh t (v  w in ) ,M a x S u p p ;

}

checklfNoSoIutionInCurrentHeight(L,h_current,k,MaxSupp){
fo r a ll v_c in  h _ c u rre n t

if  su p p re s se d (v _ c ,k )  < =  M a x S u p p  re tu rn  false; 

re tu rn  true;

}

Figure 4.8 Function Approximate H

4.2. Theoretical guarantees on the correctness o f  the proposed algorithm

In this subsection, w e will discuss properties o f  the histogram-annotated lattice o f  

generalization schem es and prove that our algorithm is correct.

Notation. We will em ploy the following notation:

low er(v) the set o f  nodes u  who are connected to node v via a node (w,v) —i.e., 

the nodes whose generalization schem e is equal to v’s, with the 

exception o f  exactly one dimension where u  is one level lower than v. 

desc (v )  the set o f  nodes u for whom a path exists towards v

L(v) the sublattice induced by a node v (i.e., the subset o f  the lattice w hose

, nodes are either v, or, descendants o f  v)

cum K A (v\k) the number o f  suppressed tuples (y-value o f  the cumulative histogram) 

for node v when the cut-off constraint for k-anonymity (x-value o f  the 

cumulative histogram) is k.

cum SLD (v\l) the number o f  suppressed tuples (y-value o f  the cumulative histogram) 

for node v when the cut-off constraint for 1-diversity (x-value o f  the 

cumulative histogram) is /.
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Theorem  1. Assume a constraint on the height o f  hierarchies h=[ h \, . . . ,  h n]. Assume 

also the node vmax = [/q, . . . ,  An]. All the nodes o f  the full lattice that respect h are 

within the sub-lattice induced by vmax and there is no node outside the lattice induced 

by vmax that respects h.

Proof. Since vmax is the top element o f  the lattice, all nodes o f  the lattice have 

dimension heights lower or equal to the dimension heights o f  vmax. Consequently, all 

noties o f  the lattice induced by vmax respect h by definition. For a node u  not to belong 

in the lattice, there must be at least one dimension whose height is higher than the 

respective height o f  vmax. Then u does not respect the constraint o f  h. QED

Given a node vmax that induces a sub-lattice, the groups o f  vmax are produced by 

aggregating the groups o f  its descendants in the sub-lattice. Then, for any value a  the 

cumulative histogram for vmax has a smaller or equal value than the cumulative 

histogram for any node v in the descendants o f  vmax. This holds both for k-anonymity 

and 1-diversity. Formally:

T heorem  2. Given a node vmax and an integer any value a , the follow ing hold: 

cum K A (vmax|a) < cum K A {v |a), v e d e s c (v max) 

cum SL D (vmax|a) < cum SL D (v\a ), v e d e s c (v m!tx)

Proof. This is almost direct consequence o f  the Rollup-property introduced in 

[LeDR05]. Assume the situation depicted in the follow ing figure. Let L(vmax) be the 

lattice between vmax as the top element and vj_ as the low est element. A ssum e node v 

has a generalization scheme [l\, h , /n-i,/*n] while vmax has a schem e [/l5 k , ..., /n-i,/n] 

and ln = /*n + 1 (without loss o f  generality, w e can assume that vmax differs from v 

only by one level in one dimension, whereas all the other dimensions are exactly the 

same; this practically works as the minimum possible distance between the two 

nodes).

Then (Rollup-property), there exists a N :l  mapping o f  values o f  /*„ over / „ , /  dom (l*n)
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->  dom (ln) . f  is a total function. A 1:1 mapping is also acceptable as a rare, special 

case in this setting. As a N :\ function, we know that for every l*n there exists exactly 

one value in /n (but not obligatorily the inverse).

So, for every group **[xi, *2 , xn-i, *n*, count*]  that appears in v, there exists a

group jc[jci, *2, ··■, JCn-i, xn, count] in vmax, and due to / ,  many groups o f  v (and, at least 

one) are potentially mapped to groups o f  vmax (but not vice versa). Therefore, for 

every such pair x , **, such thaty(x*)= x, x* .coun t*  < x .coun t. Similarly, the same 

holds for the number o f  distinct sensitive values.

Remember now that the cumulative histogram records the tuples that are to be 

suppressed whenever a constraint on the minimum group size is given. There are three 

cases thabconcern us here:

(i) a <x*.count* < x .coun t: in this case, neither** nor* would be suppressed with 
a request for a.

(ii) x* .coun t*  < x .co u n t< a :  both ** and * would be suppressed with a request for a  
-  i.e., both would be counted in cum K A (v\a) and cu m K A (vmax\a), respectively.

(iii) x* .coun t*  <a. < x .coun t: in this case, ** would be counted in cum K A (v \d )  and * 
would not be counted in cw nK A (vmax\v)

For all these cases, it is impossible that a group is counted in cu m K A (vmax\a ) and its 

respective groups are not counted in the appropriate cu m K A (v \a ), v e d e s c ( v max). On 

the other hand, unless a 1:1 mapping exists, there are groups counted in cum K A (v\a) 

but not in cum K A (vmax\a).

Exactly the same holds for cum SLD . QED

C orollary 2.1. Assum e a user request q  =  [k,h ,m axSupp]  over a lattice £  annotated 

with the cumulative histograms for a data set D . If all the nodes at height h  violate q  

then it is impossible to find a node v at a height lower or equal than h  that respects q . 

Proof. Obvious.

O bservation. Observe that the simple histograms, e.g., KA(v\K) demonstrate arbitrary 

’relationships for nodes and their descendants. For example, assume the following 

table T  with a Q l= {d a te , ite m } , and the corresponding histograms at tw o different 

levels o f  the date dimension. The table has three sections. In the first section at the 

left, we depict 4 rows and their quasi-identifier values. The second section o f  the table
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in the middle, contains the counts per group at the {day, i te m } level. The third section, 

at the right, contains the counts per group at the {m on th , i te m } level.

C o u n ts  p e r  Q l  g ro u p  a t  

m on th  le v e l

Q I value CountQ

Jan/2010 Cola 3

Jan/2010 Milk 1

C ou n ts p e r  Q I  g ro u p  a t 

d a y  le v e l

Q I value CountQ

1/Jan/2010 Cola 2

2/Jan/2010 Milk 1

3/Jan/2010 Cola 1

M ic ro d a ta

1/Jan/2010 Cola

1/Jan/2010 Cola

2/Jah/20I0 Milk

3/Jan/20I0 Cola

Here are also the histograms for the nodes {d a y ,item )  and {m on th , item ):

k = l k=2 k~3

D ay 2 1 0

Month 1 0 l

Observe that for value fc=2, the histogram o f the low er-level node has a higher value 

than the histogram o f  the higher-level node. This is typical for small values o f  k  which  

appear in the histograms o f  lower level nodes but disappear at higher levels, since the 

small groups o f  the lower level are merged in large groups o f  the higher level, 

resulting in the absence o f  small sized groups at the high level. At the same time, for 

value kr=3 the opposite phenomenon is observed. Therefore, it is not possible to derive 

any theoretical guarantees for the simple histograms.

The following set o f  theorems guarantees that the proposed algorithm is correct. First 

we prove that once a node provides a solution (i.e., respects the three criteria posed by 

the user), we need to search its descendants for the low est possible node that returns 

an answer, too.

Then, we deal with the case where the top-acceptable node fails to meet the user 

^constraints and thus, we need to search for approximations.

T heorem  3. Assume a user request q  = [k,h ,m axSupp]  over a lattice £  annotated with 

the cumulative histograms for a data set D. Assum e the top-acceptable node vmax that 

has h as its generalization scheme. If vmax respects q , then the node with the lowest 

height that respects q  is in £(vmax).
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Proof. Obvious, due to Theorem I and Theorem 2: All the nodes that respect q are 

obligatorily in £(vmax) and there is at least one solution to the user request (the one o f  

vmax). Theorem 2 does not disqualify the possibility that a node with lower height than 

vmax respects the constraints o f  q; therefore, w e need to search for the best possible 

answer in Z.(vmax). QED.

Once the exact answering is covered, we need to consider the cases o f  the relaxations 

arid answer the question: where should w e search for possible relaxations i f  an exact 

answer is not there? So, assume the case where the criteria set by the user for h 

highlight node vmax which is unable to fulfill all three conditions and, we decide that 

the first approximation we want to explore involves relaxing k , respecting -a t the 

same timer m axSupp  and h.

Since w e want to respect h, w e must search for solutions within the lattice induced by 

Vmax. Assume that vmax violates k, h, m axSupp . To relax the privacy criterion w e need 

to find a smaller value than k  which w ill have the property that m axSupp  w ill be 

respected. O f course, we want to give the maximum possible privacy, so w e need to 

find the maximum possible such value. We w ill use the notation kt (standing for 

“relaxed k”), kr < k, for the largest value that respects k r, h, M axSupp  within the node 

Vmax· However, there is a catch in the situation: it is not always possible to find such a 

value k T. A  clear (and actually, frequent at small heights) example for this situation is 

when the number o f  groups o f  size 1 at vmax is larger than m axSupp. Then, it is 

impossible to find a lower k  that respects m axSupp .

In Theorem 4 w e w ill show  that, i f  a solution exists, then, in any o f  the nodes o f  the 

sublattice induced by vmax there is no value k * which is larger than kT and suppresses 

the same amount o f  tuples -  in other words, it provides better k-anonymity with the 

sacrifice o f  the same amount o f  tuples. In Theorem 5 we will deal with the case where 

no solution can be found anyway.

Theorem 4. Assum e a user request q  = [£,h,m a xS u p p \ over a lattice 1  annotated with 

the cumulative histograms for a data set D. Assum e that the top-acceptable node vmax 

which has h as its generalization schem e fails to respect q. Assume the largest value
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kt, kx < A, such that vmax respects q x=[kuU.,maxSupp]. Then, there is no node v, v^vmax, 

v e £ (v max), such that q*=[!c J \ jn a x S u p p \, k* >kt, is respected at v.

Proof. If vmax fails to meet q , then no node in £ (vmax) can respect q. This holds for an 

query qi=[kr,h ,m a xS u p p ], kx<k, too. If this did not hold, and there existed a node v, 

v^vmax, v e £ (v max) such that Aj, h, M axSupp  is respected at v and then, cum K A {v\kx) <  

cu m K A (vmn\k\). Absurd by Theorem 2 . QED.

O b serv a tio n . What this theorem says is that the maximum possible value that we can 

get for the approximation o f  k is kr. So, should we take vmax as the node that gives the 

solution? Practically, the answer is positive; however, theoretically, we need to 

perform an extra test. Observe that it is possible to have a situation where there is a 

1:1 mapping between the groups o f  the higher level node vmax and the lower level 

node v (i.e., for every group o f  the ancestor node there is exactly one group o f  the 

descendant node). In this case, their histogram is exactly the same and v is a better 

solution than vmax (due to its lower height). This means that the descendants o f  vmax 

must be recursively searched for this possibility when w e want to relax k . However, 

the search can be made in a breadth-first way; i f  a certain level does not have a node 

with the property o f  the 1:1 mapping, no further search should be performed. 

Moreover, this is a property that can be known offline, in advance.

T heorem  5. Assum e a user request q  = [k,h ,m axSupp]  over a lattice £  annotated with

the cumulative histograms for a data set D. Assum e that the top-acceptable node vmax

which has h as its generalization schem e fails to respect q. Assum e there is no value

Ar, k r < A, such that vmax respects q r-[k Tih ,m axSupp]. Then, there is no node v, v^vmax,

veT (vmax), such that q*= [k \h ,m a xS u p p ], k* >Ar, is respected at v, for any value A\

Proof. If there is no value Ar at vmax that respects q , this means that the cumulative

histogram at vmax, at position Ar, has already too many tuples to be suppressed. In other *' **
words, CM/w/C4(vmax|Ar) > m axSupp . However, cum fCA(vmax\kr) is the smallest amount 

* o f  tuples to be suppressed for all v e £ (v max)· Consequently, i f  vmax fails to provide any 

value Ar that respects q \  then no other node in £ (vmax) can. QED

The easiest case is the case when w e want to relax the amount o f  suppressed tuples.
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O bservation. Observe that for any node v, there is always a y-value (i.e., a number o f  

suppressed tuples) for a fixed k  at the cumulative histogram; this can be 0 i f  we are 

lucky and all groups are o f  size larger than k  , or \D\ i f  we are unlucky and k  is larger 

that the larger possible k  the node can sustain.

Based on the above observation, when we deal with relaxing the suppression, there is 

only one issue, specifically, which is the node that for a fixed k , h  will produce the 

* minimum suppression. Not surprisingly, it turns out that this node is either vmax or one 

i f  its descendants that has a 1:1 mapping o f  groups with vmax.

Theorem  6. Assum e a user request q =  [<k ,h ,m o xS u p p ] over a lattice £  annotated with 

the cumulative histograms for a data set D. Assum e that the top-acceptable node vmax 

which has h as its generalization scheme fails to respect q . Assum e the smallest value 

Μ  M  > m o x S u p p , such that vmax respects q t- [ k ,h,M]; actually, this is 

M = cum K A (vmax\k). Then, there is no node v, v^vmax, veL (vmax), such that ^*=[k,h,A/*], 

M* < M u is respected at v.

Proof. Since M = cum K A (vmax\ k \  by Theorem 2 this is the smallest possible 

cum K A (v\k) for any veZ,(vmax). QED.

O bservation. If vmax does not respect q , then there is no information w e can exploit 

concerning the height relaxation. The lowest possible solution that respects both k  and 

m o xSupp , i f  such a solution exists, is outside £(vmax), but it can be found in any other 

node, at any height. So, w e must search the entire lattice for the relaxation o f  h except 

for Z,(vmax).

Theorem  7. A ssum e a user request q  =  [k jh jn a xS u p p ]  over a lattice £  annotated with 

the cumulative histograms for a data set D. Assum e that the top-acceptable node vmax 

which has h as its generalization scheme. Then, the following hold:

-  If vmax respects q , then the low est node that can answer q  is in Z,(vmax).

-  If vmax does not respects q , then (i) the relaxation o f  k  and the relaxation o f  

m oxSupp  are provided by vmax; (ii) we must search the entire lattice for the 

relaxation o f  h.

Proof. Directly from the above.
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O bservation. Based on all the above, the algorithm Simple Anonymity Negotiation is 

correct.

4.3. E xperim ental m ethod

G oals. Our experiments are oriented towards assessing the follow ing properties.

E ffec tiveness. Given an initial request by the user with thresholds on the 

maximum tolerable amount o f  suppressed tuples, the maximum level o f  

generalization per quasi-identifier attribute and the minimum acceptable value for 

the privacy criterion (either k for k-anonymity, or, /  for simple 1-diversity), how  

likely is it to obtain a com pletely acceptable solution for a given setup o f  data set, 

quasi-identifier set and sensitive attribute? The set o f  experiments aim to discover 

the effect o f  all the problem parameters to the likelihood o f  achieving an 

acceptable solution as opposed to the probability o f  needing to resort to an answer 

that relaxes one o f  the above constraints. We diagrammatically depict answers to 

queries with successful answer with light color and answers to queries that 

needed relaxation with blue (dark) color.

E ffic ien cy . Given the full lattice that is derived from the hierarchies o f  the quasi

identifier attributes and the full histogram for the privacy criterion under 

consideration, how fast can we obtain an answer to the user’s request (either fully 

compliant with the user criteria, or a relaxed one, if  this is not possible)? To 

assess the efficiency o f  the method, in every experiment we measure (a) the 

n u m b er  o f  v is ite d  n o d es  o f  the lattice and (b) the total execu tio n  tim e  needed to 

produce an answer (in msec). In all occasions, the reported execution times are 

the average o f  5 executions o f  the same request o f  (lowest-acceptable-k, 

maxSupp, topmost node = constraint on all dimensions for the top tolerable 

‘ level). Naturally, the number o f  visited nodes is always the same and the varying 

quantity is the time needed to retrieve an answer or a set o f  3 possible relaxations.

D ata sets. The data sets w e have used are: (a) the Adult -  Income data set from the 

TJCI repository [UCI], (b) the IPUMS - data set downloaded from [IPUM S].
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Parameters. We have tested algorithm Simple anonymity Negotiation for its 

efficiency and effectiveness over different data sets, quasi-identifier sizes, values for 

the privacy criterion for both k-anonymity and 1-diversity, maximum allowed 

suppression levels and maximum allowed generalization heights per quasi-identifier 

attribute. For each data set and privacy criterion, we em ploy different values for these 

parameters, thus, we refer the reader to the subsequent subsections for more details on 

specific values.

Im plem entation specific da ta  s truc tu res and  d a tabase  schem a

In our implementation w e retain the lattice in a database at the hard disk as a relation 

N ode  and a relation Edges. The relation edges are straightforward: Edges(S iarL  E n d ). 

The relation N odes varies with the size o f  quasi-identifier set, as we retain two 

attributes per quasi-identifier dimension: (a) an attribute dim \ with the name o f the 

dimension and an attribute index\ with the level o f  the dimension that the node has. So

relation N odes  is as follows: N o d es(id ,d in i\,in d ex i , ...... ,d im n,indexn). A value [25,age,

2, race, I, w o rk_c la ss , 1] indicates the node with level 2 for age, level 1 for race and 

level 1 for work_cIass.

At the same time, in main memory we implement the follow ing data structures:

- For each node o f  the lattice, we retain two lists that hold the histogram: the first 

list keeps the number o f  tuples and the second list keeps the number o f  tuples that 

pertain to every value o f  the histogram (i.e., position / in the list refers to value /  

f o r  the x-axis o f  the histogram)

We retain a collection o f  nodes that practically holds all the information for the 

nodes in main memory. In other words, we keep the id, the levels and the 

abovementioned histogram for every member o f  the collection that represents a 

node o f  the lattice. A lso, w e use an attribute to mark nodes as visited or not. We 

opted for a hash-based dictionary implementation o f  the collection, with id being 

the hash-value, in order to allow  efficient lookup by id (remember that the edges 

hold id’s o f  nodes, so whenever we m ove up or down from a node this 

implementation com es handy).
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O f course, apart from the above, w e also keep the data sets in the appropriate 

databases. In the following, we list the database schemata for each o f  the two data sets 

we have employed. We depict the sensitive attribute in teletype letters.

Database schema for the Adult data set

A d u lt(ld ,A ge , G ender, Race, M a rita l S tatus, N a tive  country, W o r k C la s s , O ccup a tio n ,S a  

lary, Hours per w eek)

A g e  (le v e ls  le v e ls  le v e ls  le v e ls  levela)

Tlace(levelo, leve l\, le v e ls

M a r i ta ls ta tu s  ( le v e ls  le v e ls  leve l?, levels)

E duca tion flevelo , le v e ls  le v e ls  le v e ls  levels)

O ccupa tion (levelo , le v e ls  level?)

W o rk  C4ass(levelo, le v e ls  le v e ls  levels)

Database schem a for the loums dataset

A dult(id , age, e d u ca tio n , b ir th p la ce , gender , o ccu p a tio n ,)

A g e  ( le v e ls  le v e ls  level?, leve l3, leveU)

E duca tion(levelo , le v e l\, level?, le v e ls  level4)

B irthp lace(leve lo , le v e ls  level?, levels)

G ender(levelo , levely)

C onfiguration . In all our experiments w e have used a Core Duo 2.5G H z server with 

3GB o f memory and 300G B (7200 RPM) hard disk. The operating system was 

Ubuntu 8.10 and the database server was MySQL 5.0.67. The code is  written in Java 

in Eclipse IDE.

4.4. Findings for k-anonym ity over the A dult data set

'In this subsection, w e discuss our experimental findings when working with the Adult 

data set and k-anonymity as our privacy criterion.

s
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Table 4.3 Experimental parameters and possible values

|QI|=3 IQi|=4 |QI|=5 |Ql|=6

Generalization level 

constraints

■m

101, 211 

(default), 2 12

1001, 2011 

(default), 2 1 1 2

11001, 2 10 1 2  

(default), 2 2 1 1 2

I I 1001, 2 1 1 0 1 2  

(default), 2 2 2 1 1 2

For all Q Fs, w e have used three configurations: (a) a low  one, 

with all levels constrained low  in their hierarchies, (b) a 

m iddle-low (default) with some constraints placed on levels in 

the middle o f  their hierarchies and (c) middle, with all levels 

constrained at the middle in their hierarchies

k 3, 10 (default), 50

MaxSupp

%

32, 321 (default), 3216 (approx. 0.1%, 1%, 10% o f  the data 

set)

4.4 . /. E ffec t o f  k  o v er  tim e costs

In this sequence o f  experiments w e modify the value o f  minimum tolerable k and 

assess its impact to the number o f  visited nodes and execution time. All experiments 

operate with a fixed set o f  values for the rest o f  the parameters, and specifically: 

Maximum allowed number o f  suppressed tuples = 321

The constraint on the uppermost tolerable level is 2 1 1, 2011, 21012, 212012  

for | Q I | = 3 , 6 -  i.e., in every dimension, w e place a constraint approximately 

up to the middle o f  its hierarchy.

When |QI| is small (|QI|=3), the maximum number o f  suppressed tuples pushes the 

solution lower than the starting level (which is the maximum tolerable level). So, the 

algorithm recursively descends towards 0,0,..,0. As k increases, the solution is found 

earlier.

In all other cases, the cost in terms o f  visited nodes increases sub-linearly with k.

* There is a single exception to the sublinear increase, and this is the case o f  k = 50 and 

QI = 6, where the number o f  visited nodes drops. This is due to the fact that the binary 

search over the height was successful quick enough and gave a quick correct answer 

(you can see an example o f  such a binary search in Figure 4.9).
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P a r a m e t e r s :  10 3 2  2 1 1 0 1 2 P a r a m e t e r s :  10 3 21  2 1 1 0 1 2 P a r a m e t e r s :  10  3 2 1 6  2 1 1 0 1 2

S t a r t :  lo w :7  h ig h :  18 

C u r r e n t :  12

F in d ,  a n d  c h e c k  3 4  n o d e s  

C u r r e n t :  9

D o n ’t find , c h e c k  4 9 6  n o d e s  

C u r r e n t :  10

D o n ’t find , c h e c k  4 6 9  n o d e s  

C u r r e n t :  11

F in d ,  a n d  c h e c k  2 8 6  n o d e s  

S o l u t i o n  a t  l e v e l : 11 

C h e c k  3 9 6  n o d e s

S t a r t :  lo w :  7  h ig h :  18 

C u r r e n t :  12 

F in d ,  a n d  c h e c k  2  n o d e s  

C u r r e n t :  9

F in d ,  a n d  c h e c k  4 1 6  n o d e s  

C u r r e n t :  7

D o n ’t f in d , c h e c k  3 9 6  n o d e s  

C u r r e n t :  8

D o n ’t f in d , c h e c k  4 6 9  n o d e s  

S o lu t i o n  a t  le v e l :9  

C h e c k  4 9 5  n o d e s

S t a r t :  lo w :  7  h ig h :  18 

C u r r e n t :  12 

F in d ,  a n d  c h e c k  1 n o d e s  

C u r r e n t :  9

F in d ,  a n d  c h e c k  4  n o d e s  

C u r r e n t :  7

F in d ,  a n d  c h e c k  1 1 6  n o d e s  

S o l u t i o n  a t  le v e l :7

C h e c k  3 9 5  n o d e s

Figure 4.9 Example o f  binary search for Variant max supp (QI-6) that detects a
solution early enough

The important observation here is that the number o f  nodes visited increases 

dramatically with |QI| with a scale factor o f  5 (approximately) for every extra attribute 

added to the QI set (i.e., the values o f  QI=5 are 5 times greater than the respective 

values o f  QI = 4; the same approximately happens when w e increase QI to 6). In 

terms o f  time, the experiments do not take more than 3,5 m sec for Q l=4,5. QI — 3 

takes longer (between 5 and I msec) due to the recursive call to search in lower levels 

o f  the hierarchy. QI = 6 makes between 6 and 8 m sec for all three values o f  k.

There are certain cases, where the relaxation for the decreasing o f  k does not return a 

result. These cases do not induce a significant overhead, since the search is locally  

performed in the topmost node.

4.4.2. E ffec t o f  h e ig h t co n stra in ts  o ver  tim e  co sts

In this sequence o f  experiments w e modify the constraints over the maximum  

tolerable generalization heights per attribute and assess the impact o f  these heights to 

the number o f  visited nodes and execution time. All experiments operate with a fixed  

* set o f  values for the rest o f  the parameters, and specifically:

Lowest tolerable k = 10

 ̂ - Maximum allowed number o f  suppressed tuples = 321



114

Ψ
We employ three variants for the topmost node, for each QI. The three variants 

involve constraints in all the dimensions o f  the QI set (and thus, a respective a 

topmost node) in the following 3 fashions:

(a) every dimension is constrained by a level that is low in the hierarchy,

(b) some dimensions are constrained low in the hierarchy and some are 
constrained in the middle

(c) all dimensions are constrained in the middle o f  their hierarchy 

Specifically, the constraints employed are as follows:

Table 4.4 Constrains for the Experiment

L o w L o w -m id d le M id d le

Q I= 3 101 211 2 12

4 1001 2011 2 11 2

5 11001 210 1 2 2 2 1 1 2

6 111001 2 1 1 0 1 2 2 2 2 1 1 2

The findings for the effect o f  the constraints in the hierarchy are as follows:

- The lower the constraint is, the more search for finding adequate relaxation is 

required. In other words, when the constraints are set low, it is impossible to 

obtain an answer at the topmost acceptable node and thus, we need to climb a 

lot in the lattice until w e reach a tolerable relaxed solution. On the contrary, 

when the constraint is in the middle, the required clim bing is less.

The time required for the operation to complete is typically analogous to the 

number o f  visited nodes. All experiments for QI = 4 and 5 run between 2 and 

6 msec. The case o f  QI = 6 induces an extra overhead with times between 5 

and 8 msec.

- An exception to all the above findings is the case where the QI is small (|QI| = 

3). In this-case, the topmost node is adequate for an answer and the algorithm 

recursively descends towards the best possible answer. The times needed are 

in the range o f  1 and 6 msec.

Another observation here is that when the topmost node is low in the lattice, it 

, is quite frequent that the relaxation o f  k (keeping the topmost node and the 

maxSupp fixed) fails. This is due to the fact that when we are low  in the 

lattice, the suppressed tuples are too many and possibly even k=2 is not
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sufficient to fulfill the requirements for maxSupp. On the other hand, when the 

topmost node is relatively higher in the lattice, the number o f  suppressed 

tuples is lower; thus, finding a relaxed answer is feasible.

Again, the important finding is that, ultimately, the dominating factor in terms o f  time 

and number o f  visited nodes is the size o f  the QI. The rule o f  the scale factor o f  5 for 

every extra attribute in the QI seems to be preserved (see Figure 4.10; the shaded 

areas in Fig. 4.10 depict cases where the search was directed downwards in the 

iliblattice o f  vmax and a drop in the values is observed as QI increases; the cells not 

defined are cases where we move from a downwards search to an upwards search).

H e ig h t 3 - > 4 4 — > S 5 - > 6

L o w - 5 ,91 4 ,75

L o w -m id d le - 5 ,78 6 ,20

M id d le 0 ,90 6 ,00 3,31

Figure 4.10 Scale up in number o f  visited nodes as QI size increases for different

values o f  the height constraint

4.4.3. E ffec t o f  m a xS u p p  over  tim e costs

In this sequence o f  experiments we modify the value o f  maximum tolerable amount o f  

suppressed tuples and assess its impact to the number o f  visited nodes and execution  

time. All experiments operate with a fixed set o f  values for the rest o f  the parameters, 

and specifically:

Lowest tolerable k = 10

The constraint on the uppermost tolerable level is 211, 2011, 21012, 212012  

for | Q I | = 3 , 6 -  i.e., in every dimension, we place a constraint approximately 

up to the middle o f  its hierarchy.

T h e maximum allowed number o f  suppressed tuples takes the following values: 32,

. 321 ,3216 .*
Typically, the number o f  visited nodes logarithmically decreases as the value o f  

maxSupp increases (each time by a factor o f  10). This is clearly due to the fact that 

the higher the number o f  tolerable number o f  suppressed tuples is, the easier it is to 

find a solution. In fact, when the experiments operate on the largest possible value o f  

maxSupp (i.e., 3216 suppressed tuples), all QTs expect for the case o f  QI = 6 achieve
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an acceptable solution in the topmost node and move downwards to obtain a better 

solution. The times needed for the cases o f  Ql = 4, 5, 6 range between 1 and 8 msecs. 

There are exceptions to the above general observation, which we list:

- The case o f  QI=3 has the peculiarity that the topmost node achieves an 

acceptable solution for a maxSupp o f  321, In this case, w e observe that the 

higher the maxSupp, the more time it takes to find a good solution, since too 

many nodes qualify for acceptable solutions. In all cases, the recursive search 

* for a better solution is much costlier than the search for an approximate 

solution o f  maxSupp = 32 in QI = 3. The time ranges between 2 msecs for the 

approximate search and 5msecs for the costliest exact search.

The case o f  maxSupp =321 and QI = 6 breaks the general rule, as it is costlier 
than the case o f  maxSupp = 32 in terms o f  visited nodes.

Again, the dominating factor in terms o f  cost is the size o f  the QI. The rule o f  scale-up 

in terms o f  5 is broken: the increase for every extra attribute in the QI results in 

approximately 3 to 6 times more visited nodes. In Figure 4.11, we can observe this 

scaling up on the upper left part o f  the figure. A lso, the shaded areas in Figure 4.11 

depict cases where the search was directed downwards in the sublattice o f  vmax (where 

a drop in the values is observed as QI increases) and the cells not defined are cases 

where we m ove from a downwards search to an upwards search.

9

m axSupp 3-> 4 4 -» 5 5->6
32 3,20 6,10 3,47

321 - 5,78 6,20
3216 0,86 0,26

Figure 4 .11 Scale up in number o f  visited nodes as QI size increases for different

values o f  maxSupp

s
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4.5. Findings for l-diversity over the A dult data set

In this subsection, we discuss our experimental findings when working with the Adult 

data set and l-diversity as our privacy criterion. The assessed measures and 

parameters are the same with the ones discussed in our experimental method section 

and section 4.3 (for k-anonymity over the Adult data set). The only difference, o f  

course, concerns the values we have used for 1, which are summarized as follows:

Table 4.5 Parameters o f  the Algorithm and experiments for l-diversity

O ff lin e U se d  va lu e

Lattice F u ll lattice construction

< X -v a lu e ,  Y -v a lu e > g ro u p S ize  for 1-anonym ity, counter

O n - l in e

P r iv a c y  constra int l-d iversity

QoS() H e igh t o f  a so lu t ion

E x p e r im e n t s

L 3, 6 (default), 9

4 .5 .1. E ffect o f  l o ver  tim e  co sts

In this sequence o f  experiments we modify the value o f  minimum tolerable l  and 

assess its impact to the number o f  visited nodes and execution time. All experiments 

operate with a fixed set o f  values for the rest o f  the parameters, and specifically:

- Maximum allow ed number o f  suppressed tuples = 321

The constraint on the uppermost tolerable level is 211, 2011, 21012, 212012
for | Q I | = 3 , 6 -  i.e., in every dimension, we place a constraint approximately
up to the middle o f  its hierarchy.

* **

As with the case o f  k-anonymity, we can observe that as / increases, the cost scales up

'very slowly with the increase o f  1. One might blame the choice o f  the values for / (i.e.,

we could have picked significantly larger values for 1), but this is not correct: a value

o f  1=9 at the bottom level introduces a suppression o f  15% (for QI = 3) to 93% (for Q1 
✓
= 6) at the bottom node o f  the lattice and 0.6% (for QI=3) to 38% for 11. . .  1 (for 

QI=6). The times are always very small and range between 1 and 8 ms. The times
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ρ

reported are subject to phenomena o f  DBMS caching and thus are not in complete 

accordance to the numbers o f  visited nodes; however, the fluctuations in the time 

needed for the execution o f  the algorithm are unimportant and due to the few 1 0 ’ s 

incurred in our implementation as well as DBM S caching. Remember that the lattice 

is small and in general, it can fit in main memory: for QI = 6 w e have 3600 nodes and 

15960 edges. A lso remember that in our experiments, for the sake or program 

simplicity, we keep the edges in a relation at the hard disk, w hile w e keep the nodes 

wfth their histograms in main memory.

At the same time, the cost increases dramatically with the increase o f  QI.

Observe also that for a small QI (and small 1) -  i.e., for the cases with small numbers 

o f  suppressed tuples— the possibility o f  finding an acceptable solution within the 

constraints expressed by the user is significant. So, for QI=3 as w ell as for QI=4 and 

1=3, the algorithm found an acceptable solution at the topmost node o f  the user’s 

constraint and recursively climbed down the lattice to find a better solution. For the 

rest o f  the cases, the algorithm produced approximate solutions; interestingly for high 

values o f  QI and 1, the algorithm could not provide an approximation for a lesser 

value o f  /  (depicted as Rlx3 in the detailed results).

4.5.2. E ffec t o f  h e ig h t c o n stra in ts  over  tim e costs

In this sequence o f  experiments w e m odify the constraints on the maximum possible 

height for the quasi-identifier attributes and assess the impact o f  the height vector to 

the number o f  visited nodes and execution time. All experiments operate with a fixed 

set o f  values for the rest o f  the parameters, and specifically:

A ll experiments operate with:

‘ - Lowest tolerable 1= 6

Maximum allowed number o f  suppressed tuples = 321

Again, as in the case o f  k-anonymity w e fix three combinations o f  values for the 

height constraints: (a) all quasi-identifiers are constrained low  in their hierarchy; (b) 

som e quasi-identifiers are constrained low  and som e in the middle o f  the hierarchies
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and (c) all quasi-identifiers are constrained in the middle o f  their hierarchies. The 

specific values for these constraints are the ones reported in section 4.3.2.

The findings for the effect o f  the constraints in the hierarchy are practically the same 

with k-anonymity and can be summarized as follows:

- Exactly as in the case o f  k-anonymity, the lower the constraint is, the more 

search (both in terms o f  number o f  nodes visited and time spent) for finding 

adequate relaxation is required, since the solution that satisfies both / and

* maxSupp is found further up in the lattice. When the QI size is small (QI=3 or 

4), it is possible that middle and low-middle constraints result in exact answers 

(which, in turns, are produced by a recursive descent down the lattice from the 

topmost node o f  the specified constraints).

All the times needed to provide the user with an exact or approximate answer 

fall between 2 and 6 msec. Interestingly, the number o f  nodes visited and the 

required times are also very similar to the ones o f  k-anonymity.

Again, as in the case o f  k-anonymity, the relaxation o f  /  frequently fails to 

deliver a solution.

- Again, as in the case o f  k-anonymity, the size o f  the QI is the dominating 

factor for the cost; every extra attribute in the QI incurs a scale up o f  3 -  5 in 

terms o f  both visited nodes and time spent.

9

4.5.3. E ffec t o f  m a xS u p p  o ver  tim e  costs

In this sequence o f  experiments w e modify the constraint on the maximum possible 

amount o f  suppressed tuples and assess its impact to the number o f  visited nodes and 

execution time. All experiments operate with a fixed set o f  values for the rest o f  the 

parameters, and specifically:

- The maximum tolerable amount o f  suppressed tuples takes the values: 32, 321, 
3216< **

Lowest tolerable / =  6

- The constraint on the uppermost tolerable level is 211, 2011, 21012, 212012 
for |Q I|= 3 ,.., 6  -  i.e., in every dimension, w e place a constraint approximately 
up to the middle o f  its hierarchy

As in the case o f  the other experiments, here too the results are remarkably similar to 

the ones o f  k-anonymity.
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r
- The higher the maximum tolerable number o f suppressed tuples is, the faster 

we get a solution when the result is approximate. This is due to the fact that 

the answer is found lower in the lattice. The opposite holds when the answer 

is exact (e.g., in the case o f  QI=3, where it is possible to attain an exact 

answer); in this case, the first possible answer is attained at the topmost node 

and then the algorithm descends to find the best possible answer, resulting in 

higher execution times.

* - The costs in terms o f  time and visited nodes are quite similar to ones o f  k- 

anonymity. The time costs range between 1 and 7 msec.

- The size o f  the QI is once again the dominant factor and each extra attribute in 

the quasi-identifier set incurs a  scale up o f  4-5 times more visited nodes.

%

✓
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4.6. Findings over the IPUM S data set

In this subsection, we discuss our experimental findings when working with the 

IPUMS data set and both k-anonymity and 1-diversity as our privacy criterion. As 

already mentioned, the PUMS data set has a quasi-identifier size QI=4. The 

parameters we have used are as follows:

9

Table 4.6 Parameters for IPUMS experiments

k 3,30,50,100,150

1 3,6,10

Topmost node 
**

low (1010), middle-low (2110), middle (2220)

MaxSupp 600 ,6000 , 60000

Unless otherwise stated when we vary a parameter, the rest o f  the parameters are 

pinned to the middle o f  the above values.

Our findings are qualitatively the same as with the case o f  the Adult data set when the 

QI is small both in terms o f  time and visited nodes. Here, w e should point out again 

that: it is the lattice that matters and not the data size.

k-anonym ity. As k increases there is a certain limit above which it is not possible to 

obtain exact answers. For small k’s, where an exact answer is possible, the higher the 

value o f  k, the faster this solution is computed (remember: the algorithm is driven 

downwards the lattice recursively; a higher value o f  k stops the descent earlier). For 

higher values o f  k where we seek an approximation upwards in the lattice, the number 

o f  visited nodes increases as the need for a higher k drives the solution higher in the 

lattice. .

A s the height o f  the topmost acceptable node increases, the solution is found faster for 

the case o f  rather low  topmost nodes (where approximate answers are required).
»

W hen the topmost node is set in the middle o f  the lattice, the exact solution is found 

fast (the search is downwards the lattice and com pletes quickly). As the maximum 

tolerable number o f  suppressed values increases, the same phenomenon is also 

observed: the higher the value, the easier to obtain a solution -  tor large values o f  

m a x S u p p , w e can even attain an exact answer quite easily.
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m
A ll the  above resu lts  are  very s im ila r  to  the o b serva tio n s  we have  clone f o r  the  A du lt 

da ta  se t to o .

l-diversity. The case o f  l-diversity demonstrates a com pletely different picture than k- 

anonymity. Apart from a couple o f  cases, all the other attempts for a solution lead to 

exact answers. First, let us state that things appear to operate as expected when exact 

answers are attained:

- A s the value o f  / increases, the determination o f  a solution completes faster as a 

large value o f  l  is prohibitive for several o f  the low -level solutions 

As the height o f  the topmost node increases, the solution is computed slower (as 

the beginning o f  the descent starts higher)

As the maximum tolerable number o f  suppressed tuples increases, the solution is 

also slower since the search can go to higher depths in the lattice.

The interesting part is that the data set behaved quite close to the case o f  QI=3 o f  the 

Adult data set (and, thus, differently from the rest o f  the QI sizes o f  the Adult data 

set). Clearly this is due to the value o f  /: as the data size increases and the domains 

are comparable, the groups are larger and, most importantly, the possibilities for 

different sensitive values within a group are higher.

4.7. Sum m ary of findings

We have experimented with algorithm Simple Anonymity Negotiation over two data 

sets and with two privacy criteria: k-anonymity and l-diversity. We have assessed the 

performance in terms o f  time and visited nodes as we vary the value for the privacy 

criterion, the maximum tolerable generalization height and the maximum tolerable 

amount o f  suppressed tuples. Our findings can be summarized as follows:

-  The increase o f  the privacy criterion has divergent effects. When QI is small, 

there is an exact answer and the search is directed towards lower heights. 

Consequently, as k increases the solution is found earlier. On the contrary, for 

larger QI sizes and relaxations to user request, the increase o f  k sublinearly 

increases the search space.

-  The increase o f  the maximum tolerable height has similar behavior. When the 

' QI size is small, we can have exact solutions and the height increase increases

the search space. In all other occasions where relaxations are sought, the 

higher the constraint, the faster a solution is found.
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-  The constraint on the maximum tolerable amount o f  suppressed tuples has also 

a similar behavior: the higher the constraint is set, the faster an approximate 

solution is found (except for low QI sizes where exact answers are possible 

and the behavior is inverse)

-  In all experiments, it is clear that the costs are dominated by the QI size.

-  Finally, in all experiments, the times ranged between I and 8 msec, thus 

facilitating the online, interactive negotiation o f  privacy with the user.

-  The experiments with 1-diversity demonstrate a similar behavior as the 

experiments o f  k-anonymity. Similarly, the IPUMS data set presents similar 

behavior as compared to the Adult data set. The only exception is the case o f  1- 

diversity, where the IPUMS offered exact answers quite frequently compared 

t<T their frequency in the case o f  the Adult data set; however, the behavior o f  

the algorithm is identical to the one in the case o f  the Adult data set both for 

exact and approximate answers.

9
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CHAPTER 5. PARTIAL LATTICE

CONSTRUCTION

5.1 Partial lattice construction and the grouping power o f  generalization levels

5.2 The grouping power o f  hierarchy levels and its effect to suppression

5.3 The grouping power o f  lattice nodes and its effect to suppression

5.4 Pieprocessing time

5.5 Quality o f  solution

5.6 Performance o f  Algorithm PartialLatticeNegotiation

5.7 The effect o f  the number o f  selected nodes

5.8 Extending the partial lattice at runtime

5.9 Summary o f  findings

So far, we have seen that the on-line part o f  the determination o f  an exact or 

approximate anonymization scheme is completed within m illiseconds for all possible 

combinations o f  quasi-identifier size, data size, privacy criterion and so on. This way 

is it is clear that the user can interact in real tim e with a negotiation system that (a) 

answers anonymization requests and (b) guides the user to different alternatives if  the 

exact answer to his request is not feasible.

At the same time, the precomputation o f  the lattice at full scale, comprising all the 

histograms for every node o f  the lattice presents several problems as:

-  It requires a non-negligible amount o f  space

-  It requires a non-negligible amount o f  time to be computed

-  It has to be fully recomputed when updates occur (unless auxiliary data 

structures are also kept)
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— it scales up exponentially with the number o f  quasi identifier attributes and 

their hierarchies.

One could possibly argue that space is not really a problem in the sense that the 

lattice’s size is dependent on the size o f  the underlying data, but on the size o f  the 

quasi-identifier set and the accompanying hierarchies. The computation o f  the 

histograms for each node, on the other hand, is an aspect that deserves attention. In 

our experiments, we have observed that the construction times for the full lattices 

annotated with histograms take up time in the order o f  half an hour for a quasi

identifier size o f  up to 6 and simple privacy criteria like k-anonymity and l-diversity. 

Clearly, this can be tolerated in certain applications, however, it is possible that some 

applications may not tolerate even this amount o f  time. To address this problem, in 

this section we explore different variants o f  the pre-processing step, where instead o f  

generating the full lattice, we either opt to precompute a part o f  the lattice’s 

histograms, or we generate the histogram o f  only the node that we visit in each m ove 

we make over the lattice. We refer to these alternatives as (a) partial, or, (b) on-line  

com putation o f the lattice. O f course, in these cases, we pay the price o f  not 

necessarily obtaining the optimal answer. In the rest o f  this section, w e explore these 

alternatives and assess their impact on the effectiveness (quality o f  solution) and 

efficiency (time to build and explore the lattice) o f  the respective algorithms.

r

5.1. Partial lattice construction and the grouping pow er o f  generalization  levels

The first possibility that we can explore is the p a r tia l  co m p u ta tio n  o f  the  la ttice  w h ich  

h a s  to  be b a sed  o n  ca re fu lly  se le c tin g  w h ich  no d es to  gen era te . This is done on the 

basis o f  the effect that different attributes have to the relationship o f  suppression and 

privacy criterion. Overall, our method proceeds as follows:

1. An estimation o f  the effect that different levels have to suppression is made; 

‘ on the basis o f  this estimation, each node in the lattice is also ranked with

respect to the possible effect it can have to suppression.

2. The histograms for a specific percentage p %  o f  the nodes o f  the lattice are 

computed.

'  3. Once this preprocessing is completed, the partial lattice is ready for usage;

then, a modified version o f  the algorithms o f  section 4 is used to address user 

requests.
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As we have already seen, not all dimensions and not all levels are equally affecting 

the amount o f  suppression w e need to perform. Clearly, it is desirable that our node 

selection process picks lattice nodes that reduce the amount o f  suppression. Since we 

want to avoid generating alt the lattice’s histograms, we have to resort to prediction / 

estimation methods for the suppression power o f  a candidate node. To this end, a 

possible alternative to explore is the estimation o f  the importance o f  attributes to the 

suppression process. In the first o f  the following subsections we discuss the metrics 

vfe use for estimating the grouping power o f  le v e ls ; in the subsequent subsection we 

discuss how we exploit these metrics in order to achieve the desirable, i.e., the 

prediction o f  the grouping power (and thus, its effect to suppression) for la ttice  nodes.

Before proceeding w e would like to remind the reader that relations involve identifier 

attributes that are removed, quasi-identifier attributes that are candidates for 

generalization, sensitive attributes that are to be protected and indifferent attributes 

that play no role in the generalization process. In general, we assume that a relation R 

is defined as Λ(Λ[0, A \, . . . ,  A n, X u X m> S), where A  id is an identifier, A \,  . . . ,  A n is 

the quasi-identifier set, X u  ...» X m are the indifferent attributes and S  is the sensitive 

value.

5.2. The grouping power of hierarchy levels and its effect to suppression

Both the case o f  k-anonymity and the case o f  1-diversity suggest that the larger the

groups are, the less suppression we need to perform. Therefore, it would be desirable

to be able to identify levels that produce large groups and promote them against levels

that do not have this property. We use two fundamental metrics, the first concerning

the average group size produced by a level and the second concerning the importance

o f  a level as compared to its previous level in the same hierarchy.
* *

L

Average Group Size. We estimate the effect that a generalization to a level A  will 

have to suppression via the average group size for this level. To compute the average 

group size w e perform a simple query where (a) w e group the relation R by the quasi

identifier set at the detailed level for all the quasi-identifiers but the one into 

investigation who is generalized to level h, and (b) we compute the average group size 

for this generalization schem e by diving the size o f  R  with the number o f  groups that
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m
are formed in the previous step. Technically, if  the quasi-identifier set is A \,

A n, then the group by clause o f  the query that retrieves the number o f  groups is set to 

A \,  . . . ,  A h, Bear in mind that this is quite different than simply grouping by 4̂h.

The former produces the groups and their cardinality for all the combination o f  

dimension A with the rest o f  the dimensions whereas the latter will only produce a 

number o f  tuples per value o f  the domain o f  A h. This way we can also get reasonable 

estimations for the topmost level o f  a hierarchy, too (as opposed to the production o f  a 

sifigle group that grouping by A MX would produce). Observe also the role o f  the 

indifferent attributes here: the primary key o f  the relation does not obligatorily 

comprise only quasi-identifiers; however our method works for any configuration 

with or without indifferent attributes (in the latter case, the average group size o f  the 

low est level is 1).

Relative Importance of Generalization Levels. The average group size o f  a level is 

a quite powerful indicator o f  the effect a level has to the suppression; however it is not 

the only one. Whenever a certain dimension (e.g., the dimension A g e  as w e shall see 

in the examples for the Adult data set) consistently produces large group sizes, it 

dominates the decisions on the possible generalizations that we should consider. It is 

possible, for example, that both levels A g e 2 and A g e 3 produce good large group sizes, 

but the benefit from moving from level 2 to level 3 in the age dim ension might be 

small (i.e., A ge  does a pretty good job, and despite the fact that A ge  produces larger 

groups it would be better to generalize another dimension one level up; unfortunately, 

average group size does not give us this information). So, w e need to introduce a 

metric that captures the relative importance o f  a level within its dimension -  i.e., as 

compared to levels o f  the same dimension. To this end, we define the rela tive  

im p o rta n ce  o f  a  g en era liza tio n  leve l A h, i.e., o f  an attribute in dim ension A  at height h  

as the fraction

a v g G r o u p S i z e ( A )   ̂ ^  ^  heights h  in A ll, . . . ,  I, or
a v g G ro  u p S ize (  A  h )

re lim p  (>4h) =  4

p o w e r ( A l )
, for h = 0
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A first comment on the internals o f  the relative importance measure, observe the 

recursion in the definition: we can define the relative importance o f  a level as the 

increase in group size with respect to its lower level; o f  course, this is impossible for 

the lowest, most detailed level o f  a hierarchy. To define the relative importance o f  this 

lowest level, we could choose among alternative scores. We avoided the lowest 

possible score o f  0, since setting the value to 0 would be unfair for nodes o f  the form 

400000 (that would score much lower than they deserved). We also avoided setting 

the score to 1 (as one would normally expect) as a score o f  1 is too c lose  to several 

scores o f  middle-height levels (as we observed during our experim ents) and this 

would result again in unfair rankings. Finally, w e opted for fine-tuning the importance 

o f  the lowest level o f  each hierarchy to the inverse o f  the importance o f  level 1 as (a) 

it makes^sense in terms o f  intuition and (b) it appears to work fine in practice. In terms 

o f  the introduced recursion, it is clear that we can always perform the computation o f  

re lIm p(A h) for all possible values o f  h.

Experim ental findings. To illustrate the concept o f  the relative importance o f  each 

level, we list the measurements for the Adult data set. Remember that in our 

experiments we have used Age, W ork C lass, R ace , O ccupa tion , E d u c a tio n  a n d  

M arita l S ta tus  as the quasi-identifier, G en d er  and N a tiv eC o u n try  as indifferent 

attributes (the former because it only has two values and the second because it is too 

biased for the value USA; thus, they both tend to be generalized always) and H ours  

p e r  W eek  as the sensitive attribute. In Table 5.1, we present both the relative 

importance o f  attributes organized per hierarchy as well as the total ordering o f  

attributes by their importance.

The results are not surprising at all: as already observed in the previous experiments, 

the age hierarchy presents remarkable improvements when w e chose to use it for 

generalization. This is due to the vast domain o f  its levels, compared to the other 

attributes (observe that a g e 1 is the most strong attribute and the best choice to direct 

* efforts for generalization that minimize suppression and, not surprisingly, a g e 0 is the 

weakest attribute to keep at a generalization scheme). As mentioned early in this 

paper, age  and occu p a tio n  appear to be the attributes where generalization appears to 

'pay off, the former due to its domain and the balance o f  the mappings am ong different 

levels) and the latter due to the structure o f  its first level that comprises three values
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only along with a nice balance to the lower-level values, too. The rest o f  the attributes 

rise to significant heights before being comparable with age  and occupation .

Table 5.1 Relative Importance o f  generalization levels for the Adult data set. Left: 
number o f  groups and average group size per level; Right: total order o f  all the levels

by relative importance (descending)

Level rellmpO

age I 1.70
age4 1.56
occupation! 1.42
occupation2 1.38
age3 1.30
education3 1.30
age2 1.30
education4 1.26
work_class2 1.24
marital_status3 1.16
marital_status2 1.14
race2 1.13
education2 1.09
work class I 1.06
education 1 1.05
marital status 1 1.05
racel 1.02
work_class3 1.00
raceO 0.98
marital_statusO 0.96
educationO 0.95
workclassO 0.94
occupationO 0.71
ageO 0.59

level num
groups

Avg group 
size

rellmpO

agfe 400000 3455 8.73 1.56
300000 5380 5.61 1.30
200000 7015 4.30 1.30
100000 9117 3.31 1.70
000000 15537 1.94 0.59

education 040000 8247 3.66 1.26
030000 10407 2.90 1.30
020000 13526 2.23 1.09
010000 14796 2.04 1.05
000000 15537 1.94 0.95

marital_status 003000 11190 2.70 1.16
002000 13018 2.32 1.14
001000 14855 2.03 1.05
000000 15537 1.94 0.96

occupation 000200 7932 3.80 1.38
000100 10975 2.75 1.42
000000 15537 1.94 0.71

race 000020 13478 2.24 1.13
000010 15210 1.98 1.02
000000 15537 1.94 0.98

work_c!ass 000003 11790 2.56 1.00
000002 11798 2.56 1.24
000001 14668 2.06 1.06
000000 15537 1.94 0.94

5.3. T he grouping  pow er o f lattice nodes and  its effect to suppression

Having defined the grouping power and the relative importance o f  a generalization 

level, we can now proceed to define the estimated importance o f  a node. Assuming a 

node v, defined by its quasi-identifier levels as v [^ |hly42h2, . . .^ nhn], w e exploit the 

* individual metrics o f  each level and combine them in order to predict the importance 

o f  a node in the lattice with respect to its ability to provide as low  suppression as 

possible, if  chosen as the elected generalization scheme.
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Early failures and level m etrics that w e have used, in our deliberations, we first 

started by using the average group size metric as the measure for each level. We tried 

to provide an estimation o f  the group size o f  each node by multiplying the shrinking 

power o f  each o f  its levels and assessed how w ell the produced metric approximated 

the actual order o f  nodes per height with respect to their suppression. This approach 

did not work very well as the levels with very large group sizes dominated the 

outcome; so, we decided to change the way w e combined the individual metrics and 

d^ted for simple summation. Here, observe that the combined metric tries to estimate 

the goodness o f  each node as compared to the other nodes in a very efficient way; so, 

the actual meaning o f  the produced score is not so important.

The problem with the domination o f  the scores by large groups came again when w e  

tried to Gombine the average group size and the relative importance o f each node in its 

hierarchy as the product o f  these two metrics. So, we decided to use the logarithm o f  

the group size as a useful indication. Overall, the level metrics w e have used are:

• Average group size (γ)

•  Relative importance o f  a level (μ)

•  The product γ* μ

•  The product log2(y)*p

Estim ated node im portance. Given these individual metrics, w e define the estimated 

importance o f  a node (with respect to its power to reduce suppression) as the sum o f  

the metrics o f  each o f  the levels that define the node.

•  Γ(ν)= Σ(γί)

• Μ (ν)=Σ (μΟ

•  ΓΜ (ν)=  Σ (γί* μί)

•  Λ (ν)=  Z(log(Yi)* μι)

.For example, assume the case o f  QI=3 for the Adult data set, with A g e , R ace, 

W orkC lass  as the quasi-identifier set, and the node A 3R 2W 2 (A ge3, R ace2, 

W orkC lass2) o f  the resulting lattice. Then, according to the values o f  Table 5.1, the 

estimated importance o f  the n o d e A 3 R 2 W 2  with the μ metric is 1.30+1.13+1.24=3.67.

Experimental method and findings. We measured the estimated importance o f  all 

nodes o f  the lattice for Q I=3,4,5,6 for the Adult data set. For each o f the estimator
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measures, we have measured the 5% top nodes in terms of actual suppression for the 

case o f  k-anonymity with k = 3, 10, 50. For heights with too few nodes, we kept at 

least 2 nodes. The goal o f  the experiment is to identify which o f  our prediction 

metrics provides the best possible approximation to the exact results that the full 

lattice would give.

For every height A, w e compare the case o f  the full lattice and the case o f  our node 

selection according to each o f  the four metrics. According to the nodes selected, we 

pitk the one with the least actual suppression, which we call the winner node for the 

metric under inspection. Then, we compare this best node per metric with the best 

actual node and w e count the m isses we get as w ell as the deviation o f  the winner’s 

node suppression against the best possible suppression (o f  the full lattice).

k = 3 T i l l  3 0  t u p le s O v e r a l l

# d e v (T ) E r r f D # d e v f A ) E r r f A ) f f d e v f n E r r f D # d e v f A ) E r r f A )

0 1 = 3 0 0 , 0 0 % 0 0 , 0 0 % 3 2 8 , 2 1 % 4 2 6 , 6 7 %

0 1 = 4 2 2 1 , 9 6 % 1 3 , 4 1 % 5 2 9 , 6 4 % 5 1 1 , 8 5 %

0 1 = 5 2 2 , 8 6 % 2 2 , 3 5 % 4 1 , 4 3 % 6 7 , 4 2 %

0.1=6 1 0 , 6 0 % 1 1 , 3 1 % 4 8 , 2 1 % 6 8 , 5 9 %

k = 1 0 T i l l  3 0 t u p le s O v e r a l l

f t d e v f D E r r f D # d e v f A ) E r r f A ) # d e v f D E r r f D t f d e v fA ) E r r f A )

Q I= 3 2 5 2 , 9 9 % 0 0 % 3 2 2 , 2 7 % 2 0 , 3 6 %

0 1 = 4 3 5 7 , 8 7 % 1 8 , 5 3 % 4 2 9 , 8 3 % 5 5 4 , 5 6 %

Q I= 5 3 6 , 8 4 % 2 4 , 5 1 % 5 3 , 8 5 % 6 2 , 5 4 %

Q I= 6 0 0 , 0 0 % 2 1 , 8 5 % 2 5 , 2 7 % 7 6 , 3 4 %

k = 5 0 T i l l  3 0 t u p le s O v e r a l l

t fd e v f r ) Ε γ γ (Γ ) # d e v f A ) E r r f A ) # d e v f D E r r f D # d e v ( A ) E r r f A )
Q I= 3 2 3 3 , 2 0 % 2 1 2 , 3 0 % 2 1 6 , 6 0 % 4 4 4 , 0 1 %

Q I= 4 4 3 8 , 3 8 % 1 0 , 6 1 % 5 2 2 , 3 9 % 3 0 , 3 6 %

Q I= 5 1 0 , 0 5 % 1 1 , 3 0 % 2 0 , 0 4 % 3 0 , 9 0 %

0 1 = 6 0 0 , 0 0 % 2 1 , 0 0 % 3 2 4 , 4 4 % 7 2 5 , 0 8 %

Figure 5.1 Number o f  deviations and accuracy for the estimator functions fan d  Λ

To forestall any possible criticism on the evaluation o f  selected nodes with respect to 

their actua l suppression, we would like to remind the reader that the underlying idea 

here is as follows: had we used the estimation metric in practice, we would have 

picked these particular nodes via the metric under inspection and we would have 

calculated their histogram. Then, a simple exhaustive algorithm could go through all
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these histograms (that are too few to present a problem) and find the winner per 

height.

Since the error is the percentage o f  the difference between the best solutions between 

full and partial lattice construction over the full lattice’s value, we had to handle the 

cases where the actual suppression was zero. In this case, each extra tuple was given a 

penalty |D|_1, with \D\ being the size o f  the data set. Again, this does not cover 

adequately all cases as there exist cases where the actual suppression was very small 

(less than 0.1% o f  the overall data set) and small differences in the amount o f  

suppression resulted in large errors. So, when we give consolidate results we present 

one report for the overall experiment and another for the subset o f  the lattice’s heights 

where the best solution is larger than 0.1% o f  the data set (in the case o f  the Adult 

data set, 30 tuples).

The results are depicted in consolidated form in Figure 5.1 and in detailed form in 

Figures 5.2-5.13. The consolidated results per combination o f  k  and QI size report the 

number o f  times that the estimator missed the best possible node (#dev) and the 

average o f  the error made by the estimator.

In Figure 5.1 we present the two best estimator methods, the average group size (Γ) 

and product o f  the group s ize’s logarithm with its relative importance (A). The 

former, Γ, presents very good results for the largest QI size (6) and a large range o f  

results for the other QI sizes. The latter, A, retains a very good estimation range for 

all occurrences. It is true, however, that its performance drops at the higher level o f  

the lattice, where the best possible suppression is 0; in these cases, A frequently 

misses this possibility, although the selected nodes approximate the best possible 

solution with very low  numbers o f  suppressed tuples. For completeness, it should be 

also noted that the relative importance o f  levels (M ) produces frequent m isses o f  the 

best possible solution, sometimes with significant deviations, whereas the behavior o f  

* ΓΜ follows the one o f  Γ quite closely -  sometimes, with even better results.

O vera ll, b a sed  on  a ll  the  above, w e f i n d  A to  be  the  e stim a to r  o f  ch o ice  f o r  the  

subsequen t e xp er im en ts .
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Q i 3 k  3

h e ig h t a c tu a l Γ E r r ( r ) M E r r f M ) Γ Μ E r r f n v t ) Λ E r r ( A )

0 5 5 4 5 5 4 0 % 5 5 4 0 % 5 5 4 0 % 5 5 4 0 %

1 125 1 25 0 % 125 0 % 125 0 % 125 0 %

2 28 5 8 1 0 7 , 1 4 % 2 8 0 % 2 8 0 % 2 8 0 %

3 12 21 7 5 , 0 0 % 17 4 1 , 6 7 % 18 5 0 , 0 0 % 17 4 1 , 6 7 %

4 4 4 0 % 9 1 2 5 , 0 0 % 4 0 % 9 1 2 5 , 0 0 %

5 1 2 1 0 0 , 0 0 % 1 0 % 2 1 0 0 , 0 0 % 2 1 0 0 , 0 0 %

6 0 0 0 % 0 0 % 0 0 % 2 0 , 0 1 %

7 0 0 0 % 0 0 % 0 0 % 0 0 %

*  8 0 0 0 % 0 0 % 0 0 % 0 0 %

9 0 0 0 % 0 0 % 0 0 % 0 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r )

T i l l  3 0  t u p le s 0 0 , 0 0 % 0 0 , 0 0 % 0 0 , 0 0 % 0 0 , 0 0 %

O v e r a l l 3 2 8 , 2 1 % 2 1 6 , 6 7 % 2 1 5 , 0 0 % 4 2 6 , 6 7 %

Figure 5.2 Detailed table o f  deviation for |QI|=3 and k -3

_____________________________________________________Q 4  k  3

h e ig h t a c t u a l Γ E r r f D M E r r f M ) Γ Μ E r r f r M ) Λ E r r f A )

0 3 2 9 7 3 2 9 7 0 % 3 2 9 7 0 % 3 2 9 7 0 % 3 2 9 7 0 %

1 1 0 4 2 1 0 4 2 0 % 1 0 4 2 0 % 1 0 4 2 0 % 1 0 4 2 0 %

2 3 1 8 5 5 4 7 4 , 2 1 % 3 1 8 0 % 3 1 8 0 % 3 1 8 0 %

3 1 1 0 1 25 1 3 , 6 4 % 1 10 0 % 1 2 5 1 3 , 6 4 % 1 2 5 1 3 , 6 4 %

4 2 8 8 9 2 1 7 , 8 6 % 4 7 6 7 , 8 6 % 5 8 1 0 7 , 1 4 % 5 0 7 8 , 5 7 %

5 12 18 5 0 , 0 0 % 19 5 8 , 3 3 % 18 5 0 , 0 0 % 18 5 0 , 0 0 %

6 4 4 0 % 11 1 7 5 , 0 0 % 4 0 % 4 0 %

7 0 2 0 , 0 1 % 2 0 , 0 1 % 2 0 , 0 1 % 4 0 , 0 1 %

8 0 0 0 % 0 0 % 0 0 % 2 0 , 0 1 %

9 0 0 0 % 0 0 % 0 0 % 0 0 %

10 0 0 0 % 0 0 % 0 0 % 0 0 %

11 0 0 0 % 0 0 % 0 0 % 0 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r )

T i l l  3 0  t u p le s 2 2 1 , 9 6 % 0 0 , 0 0 % 1 3 , 4 1 % 1 3 , 4 1 %

O v e r a l l 5 2 9 , 6 4 % 4 2 5 , 1 0 % 4 1 4 , 2 3 % 5 1 1 , 8 5 %

Figure 5.3 Detailed table o f  deviation for |Ql|=r4 and k-3

*
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Q I_5_k_3

h e ig h t a c tu a l Γ Ε γ γ (Γ ) M E r r f M ) Γ Μ E r r ( T M ) A E r r f A )

0 1 0 4 5 8 1 0 4 5 8 0 % 1 0 4 5 8 0 % 1 0 4 5 8 0 % 1 0 4 5 8 0 %

1 4 5 1 4 4 5 1 4 0 % 4 5 1 4 0 % 4 5 1 4 0 % 4 5 1 4 0 %

2 2 1 6 9 2 1 6 9 0 % 2 1 6 9 0 % 2 1 6 9 0 % 2 1 6 9 0 %

3 1 1 2 3 1 1 2 3 0 % 1 6 1 9 4 4 , 1 7 % 1 1 2 3 0 % 1 1 2 3 0 , 0 0 %

4 7 1 6 7 1 6 0 % 7 5 3 5 , 1 7 % 7 31 2 , 0 9 % 7 3 1 2 , 0 9 %

5 3 2 2 3 4 2 6 , 2 1 % 3 7 7 1 7 , 0 8 % 3 4 2 6 , 2 1 % 3 2 2 0 %

6 1 08 1 2 6 1 6 , 6 7 % 1 6 4 5 1 , 8 5 % 1 26 1 6 , 6 7 % 1 2 6 1 6 , 6 7 %

7 41 41 0 % 4 7 1 4 , 6 3 % 41 0 % 4 1 0 %

8  * 8 8 0 % 31 2 8 7 , 5 0 % 8 0 % 8 0 %

9 2 2 0 % 16 7 0 0 , 0 0 % 2 0 % 4 1 0 0 , 0 0 %

10 0 2 0 , 0 1 % 9 0 , 0 3 % 2 0 , 0 1 % 2 0 , 0 1 %

11 0 2 0 , 0 1 % 0 0 % 2 0 , 0 1 % 2 0 , 0 1 %

12 0 0 0 % 2 0 , 0 1 % 0 0 % 2 0 , 0 1 %

13 0 0 0 % 0 0 % 0 0 % 0 0 %

14 0 - 0 0 % 0 0 % 0 0 % 0 0 %

15 0 0 0 % 0 0 % 0 0 % 0 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ] # d e v a v g f e r r )

T i l l  3 0  t u p le s 2 2 , 8 6 % 5 1 6 , 6 1 % 3 3 , 1 2 % 2 2 , 3 5 %

O v e r a l l 4 1 , 4 3 % 9 7 0 , 0 3 % 5 1 , 5 6 % 6 7 , 4 2 %

F ig u r e  5 .4  D e ta i l e d  t a b l e  o f  d e v i a t i o n  f o r  |Q I |= 5  a n d  k = 3
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Q.I_6_k_3

h e ig h t a c tu a l Γ E r r ( T ) M E r r f M ) Γ Μ E r r ( T M ) Λ E r r f A )

0 1 5 3 1 8 1 5 3 1 8 0 % 1 5 3 1 8 0 % 1 5 3 1 8 0 % 1 5 3 1 8 0 %

1 8 3 0 4 8 3 0 4 0 % 8 3 0 4 0 % 8 3 0 4 0 % 8 3 0 4 0 %

2 4 9 0 1 4 9 0 1 0 % 4 9 0 1 0 % 4 9 0 1 0 % 4 9 0 1 0 %

3 2 8 6 7 2 8 6 7 0 % 4 0 2 3 4 0 , 3 2 % 2 8 6 7 0 % 2 8 6 7 0 %

4 194 1 194 1 0 % 2 4 4 6 2 6 , 0 2 % 2 1 9 6 1 3 , 1 4 % 2 1 9 6 1 3 , 1 4 %

5 1 1 7 7 1 2 4 8 6 , 0 3 % 1 1 7 7 0 % 1 1 7 7 0 % 1 1 7 7 0 %

6 6 2 9 6 2 9 0 % 7 5 2 1 9 , 5 5 % 6 2 9 0 % 6 2 9 0 %

7 3 5 4 3 5 4 0 % 5 2 4 4 8 , 0 2 % 3 5 4 0 % 3 5 4 0 %

8 * 1 55 1 55 0 % 2 4 3 5 6 , 7 7 % 1 55 0 % 1 5 5 0 %

9 33 33 0 % 7 8 1 3 6 , 3 6 % 33 0 % 3 3 0 %

10 9 9 0 % 33 2 6 6 , 6 7 % 9 0 % 9 0 %

11 2 5 1 5 0 , 0 0 % 17 7 5 0 , 0 0 % 5 1 5 0 , 0 0 % 5 1 5 0 , 0 0 %

12 0 1 0 , 0 0 3 % 10 0 , 0 3 % 2 0 , 0 1 % 4 0 , 0 1 %

13 0 1 0 , 0 0 3 % 2 0 , 0 1 % 2 0 , 0 1 % 2 0 , 0 1 %

14 ____ 0 ^ _ 0 0 % 0 0 % 0 0 % 2 0 , 0 1 %

15 0 0 0 % 0 0 % 2 0 , 0 1 % 2 0 , 0 1 %

16 0 0 0 % 0 0 % 0 0 % 0 0 %

17 0 0 0 % 0 0 % 0 0 % 0 0 %

18 0 0 0 % 0 0 % 0 0 % 0 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r )

T i l l  3 0  t u p le s 1 0 , 6 0 % 6 3 2 , 7 1 % 1 1 , 3 1 % 1 1 , 3 1 %

O v e r a l l 4 8 , 2 1 % 10 7 0 , 7 2 % 5 8 , 5 9 % 6 8 , 5 9 %

Figure 5.5 Detailed table o f  deviation for |QI|=6 and k=3
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h e ig h t a c tu a l Γ E r r ( T ) M E r r ( M ) ΓΜ E r r ( T M ) Λ E r r ( A )

0 1921
1921 0 % 1 92 1 0 % 1921 0 % 1 92 1 0 %

1 5 2 2
5 2 2 0 % 5 2 2 0 % 5 2 2 0 % 5 2 2 0 %

2 170
2 5 7 5 1 , 1 8 % 1 7 0 0 % 1 70 0 % 1 7 0 0 %

3 51
1 33 1 6 0 , 7 8 % 51 0 % 51 0 % 51 0 %

4 28
31 1 0 , 7 1 % 29 3 , 5 7 % 31 1 0 , 7 1 % 2 9 3 , 5 7 %

5 2
2 0 % 14 6 0 0 , 0 0 % 2 0 % 2 0 %

6 0
0 0 % 0 0 % 0 0 % 2 0 , 0 1 %

7 0
0 0 % 0 0 % 0 0 % 0 0 %

8 0
0 0 % 0 0 % 0 0 % 0 0 %

9 0
0 0 % 0 0 % 0 0 % 0 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r )

T i l l  3 0  t u p le s 2 5 2 , 9 9 % 0 0 % 0 0 % 0 0 %

O v e r a l l 3 2 2 , 2 7 % 2 6 0 , 3 6 % 1 1 , 0 7 % 2 0 , 3 6 %

Figure 5.6 Detailed table o f  deviation for |QI|=3 and k=10

U A U i Ι ϋ Μ Μ
lu u ju m ·
r l k U I K H K I

h e ig h t a c tu a l Γ Εγ γ (Γ) M E r r f M ) ΓΜ E r r f r M ) Λ E r r f A )

0 9 4 1 6 9 4 1 6 0 % 9 4 1 6 0 % 9 4 1 6 0 % 9 4 1 6 0 %

1 3 2 7 3 3 2 7 3 0 % 3 2 7 3 0 % 3 2 7 3 0 % 3 2 7 3 0 %

2 1 26 1 1 9 2 1 5 2 , 3 4 % 126 1 0 % 1 2 6 1 0 % 1 2 6 1 0 %

3 5 2 2 5 2 2 0 % 7 52 4 4 , 0 6 % 5 2 2 0 % 5 2 2 0 %

4 170 3 7 8 1 2 2 , 3 5 % 2 8 5 6 7 , 6 5 % 2 5 7 5 1 , 1 8 % 2 5 7 5 1 , 1 8 %

5 51 1 39 1 7 2 , 5 5 % 61 1 9 , 6 1 % 1 39 1 7 2 , 5 5 % 5 1 0 %

6 28 31 1 0 , 7 1 % 29 3 , 5 7 % 31 1 0 , 7 1 % 2 9 3 , 5 7 %

7 2 2 0 % 14 6 0 0 , 0 0 % 2 0 % 14 6 0 0 , 0 0 %

8 0 0 0 % 0 0 % 0 0 % 2 0 , 0 1 %

9 0 0 0 % 2 0 , 0 1 % 0 0 % 2 0 , 0 1 %

10 0 0 0 % 0 0 % 0 0 % 0 0 %

11 0 0 0 % 0 0 % 0 0 % 0 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r )

T i l l  3 0  t u p le s "  3 5 7 , 8 7 % 3 2 1 , 8 9 % 2 3 7 , 2 9 % 1 8 , 5 3 %

O v e r a l l 4 2 9 , 8 3 % 6 6 1 , 2 4 %  1 3 1 9 , 5 4 % 5 5 4 , 5 6 %

Figure 5.7 Detailed table o f  deviation for |Q I|-4 and k 10
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m m * m m mam.
h e ig h t a c tu a l r Εγγ(Γ) M E r r f M ) ΓΜ E r r ( T M ) Λ E r r f A )

0 1 8 9 1 6 1 8 9 1 6 0 % 1 8 9 1 6 0 % 1 8 9 1 6 0 % 1 8 9 1 6 0 %

1 1 0 9 4 4 1 0 9 4 4 0 % 1 0 9 4 4 0 % 1 0 9 4 4 0 % 1 0 9 4 4 0 %

2 6 1 5 1 6 1 5 1 0 % 6 1 5 1 0 % 6 1 5 1 0 % 6 1 5 1 0 %

3 3 4 6 8 3 4 6 8 0 % 4 8 2 4 3 9 , 1 0 % 3 4 6 8 0 % 3 4 6 8 0 %

4 2 0 6 5 2 0 6 5 0 % 2 8 6 8 3 8 , 8 9 % 2 5 0 8 2 1 , 4 5 % 2 5 0 8 2 1 , 4 5 %

5 1 1 6 0 1 2 0 7 4 , 0 5 % 2 0 0 7 7 3 , 0 2 % 1 2 0 7 4 , 0 5 % 1 1 6 0 0 %

6 5 7 8 5 7 8 0 % 1 0 0 4 7 3 , 7 0 % 5 7 8 0 % 5 7 8 0 %

7 2 3 0 2 7 4 1 9 , 1 3 % 2 3 0 0 % 2 7 4 1 9 , 1 3 % 2 7 4 1 9 , 1 3 %

8  * 6 0 83 3 8 , 3 3 % 141 1 3 5 , 0 0 % 83 3 8 , 3 3 % 60 0 %

9 14 14 0 % 41 1 9 2 , 8 6 % 14 0 % 14 0 %

10 0 14 0 , 0 5 % 22 0 , 0 7 % 14 0 , 0 5 % 14 0 , 0 5 %

11 0 2 0 , 0 1 % 8 0 , 0 3 % 2 0 , 0 1 % 2 0 , 0 1 %

12 0 0 0 % 14 0 , 0 5 % 0 0 % 2 0 , 0 1 %

13 0 0 0 % 4 0 , 0 1 % 2 0 , 0 1 % 2 0 , 0 1 %

14 0 0 0 % 0 0 % 0 0 % 0 0 %

15 0 0 0 % 0 0 % 0 0 % 0 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r )

T i l l  3 0  t u p le s 3 6 , 8 4 % 5 3 9 , 9 7 % 4 9 , 2 2 % 2 4 , 5 1 %

O v e r a l l 5 3 , 8 5 % 10 3 4 , 5 5 % 7 5 , 1 9 % 6 2 , 5 4 %

F ig u r e  5 .8  D e ta i l e d  t a b l e  o f  d e v i a t i o n  f o r  |Q I |= 5  a n d  k = 1 0
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v”*··1 · ' ? ? . ' / ' · ,  .
1 Ψ· i t / r . i o v  · .. '■ ; i V ' VAt.

h e ig h t a c tu a l Γ Ε γ γ (Γ ) M E r r f M ) Γ Μ E r r f r M ) Λ E r r f A )

0 2 4 0 4 0 2 4 0 4 0 0 % 2 4 0 4 0 0 % 2 4 0 4 0 0 % 2 4 0 4 0 0 %

l I 5 8 3 6 1 5 8 3 6 0 % 1 5 8 3 6 0 % 1 5 8 3 6 0 % 1 5 8 3 6 0 %

2 1 0 6 4 9 1 0 6 4 9 0 % 1 0 6 4 9 0 % 1 0 6 4 9 0 % 1 0 6 4 9 0 %

3 7 1 5 3 7 1 5 3 0 % 9 2 0 0 2 8 , 6 2 % 7 1 5 3 0 % 7 1 5 3 0 %

4 5 0 6 3 5 0 6 3 0 % 6 2 3 6 2 3 , 1 7 % 5 8 2 7 1 5 , 0 9 % 5 8 2 7 1 5 , 0 9 %

5 3 5 6 2 3 5 6 2 0 % 3 6 1 6 1 , 5 2 % 3 5 6 2 0 % 3 5 6 2 0 %

6 1 8 2 3 1 8 2 3 0 % 2 6 6 0 4 5 , 9 1 % 1 8 2 3 0 % 1 8 2 3 0 %

7 1 2 2 2 1 2 2 2 0 % 1 8 9 5 5 5 , 0 7 % 1 2 2 2 0 % 122 2 0 %

8  * 6 3 9 6 3 9 0 % 9 7 0 5 1 , 8 0 % 6 3 9 0 % 6 3 9 0 %

9 2 8 5 2 8 5 0 % 4 9 3 7 2 , 9 8 % 2 8 5 0 % 3 0 0 5 , 2 6 %

10 5 4 5 4 0 % 1 8 8 2 4 8 , 1 5 % 5 4 0 % 5 4 0 %

11 21 21 0 % 73 2 4 7 , 6 2 % 21 0 % 21 0 %

12 7 14 1 0 0 , 0 0 % 2 9 3 1 4 , 2 9 % 14 1 0 0 , 0 0 % 14 1 0 0 , 0 0 %

13 0 14 0 , 0 5 % 14 0 , 0 5 % 14 0 , 0 5 % 14 0 , 0 5 %

14 0 ^ 0 0 % 8 0 , 0 3 % 2 0 , 0 1 % 14 0 , 0 5 %

15 0 0 0 % 14 0 , 0 5 % 2 0 , 0 1 % 2 0 , 0 1 %

16 0 0 0 % 4 0 , 0 1 % 2 0 , 0 1 % 2 0 , 0 1 %

17 0 0 0 % 0 0 % 0 0 % 0 0 %

18 0 0 0 % 0 0 % 0 0 % 0 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g ( e r r )

T i l l  3 0  t u p le s 0 0 , 0 0 % 8 4 7 , 9 3 % 1 1 , 3 7 % 2 1 , 8 5 %

O v e r a l l 2 5 , 2 7 % 14 5 7 , 3 3 % 6 6 , 0 6 % 7 6 , 3 4 %

Figure 5.9 Detailed table o f  deviation for |QI|—6 and k -10

01 3  k  5 0

h e ig h t a c tu a l Γ Εγ γ (Γ) M E r r f M ) Γ Μ E r r f r M ) Λ E r r f A )

0 8 2 9 7 8 2 9 7 0 % 8 2 9 7 0 % 8 2 9 7 0 % 8 2 9 7 0 %

1 2 1 2 3 2 1 2 3 0 % 2 1 2 3 0 % 2 1 2 3 0 % 2 1 2 3 0 %

2 1 3 4 5 1 3 4 5 0 % 1 4 0 2 4 , 2 4 % 1 4 0 2 4 , 2 4 % 140 2 4 , 2 4 %

3 4 2 8 6 9 8 6 3 , 0 8 % 6 7 3 5 7 , 2 4 % 6 9 8 6 3 , 0 8 % 6 7 3 5 7 , 2 4 %

4 1 3 7 2 7 8 1 0 2 , 9 2 % 1 3 7 0 % 2 7 8 1 0 2 , 9 2 % 137 0 %

5 14 14 0 % 7 6 4 4 2 , 8 6 % 1 4 0 % 67 3 7 8 , 5 7 %

6 14 14 0 % 14 0 % 1 4 0 % 14 0 %

7 0 0 0 % 14 0 , 0 5 % 1 4 0 , 0 5 % 14 0 , 0 5 %

8 0 0 0 % 0 0 % 0 0 % 0 0 %

9 0 0 0 % 0 0 % 0 0 % o 1 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r )

T i l l  3 0  t u p le s 2 3 3 , 2 0 % 2 1 2 , 3 0 % 3 3 4 , 0 5 % 2 1 2 , 3 0 %

O v e r a l l 2 1 6 , 6 0 % 4 5 0 , 4 4 % 4 1 7 , 0 3 % 4 4 4 , 0 1 %

F ig u r e  5 .1 0  D e ta i l e d  t a b l e  o f  d e v i a t i o n  f o r  |Q I |= 3  a n d  k = 5 0
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01 4  k  50

h e ig h t a c tu a l Γ Εγγ(Γ) M E r r ( M ) Γ Μ E r r f T M ) Λ E r r f A )

0 2 0 0 6 6 2 0 0 6 6 0 % 2 0 0 6 6 0 % 2 0 0 6 6 0 , 0 0 % 2 0 0 6 6 0 %

1 1 0 0 5 3 1 0 0 5 3 0 % 1 0 0 5 3 0 % 1 0 0 5 3 0 , 0 0 % 1 0 0 5 3 0 %

2 4 6 1 2 7 0 3 6 5 2 , 5 6 % 4 6 1 2 0 % 4 6 1 2 0 , 0 0 % 4 6 1 2 0 %

3 2 1 2 3 2 1 2 3 0 % 3 2 1 7 5 1 , 5 3 % 2 1 2 3 0 , 0 0 % 2 1 2 3 0 %

4 1 34 5 1 8 4 8 3 7 , 4 0 % 1 5 5 5 1 5 , 6 1 % 1 4 0 2 4 , 2 4 % 1 4 0 2 4 , 2 4 %

5 3 5 9 6 3 1 7 5 , 7 7 % 3 5 9 0 , 0 0 % 6 3 1 7 5 , 7 7 % 3 5 9 0 %

6 137 2 7 8 1 0 2 , 9 2 % 1 37 0 , 0 0 % 2 7 8 1 0 2 , 9 2 % 1 3 7 0 %

7 14 14 0 % 7 6 4 4 2 , 8 6 % 14 0 , 0 0 % 14 0 %

8  · 0 14 0 % 14 0 , 0 5 % 14 0 , 0 5 % 14 0 , 0 5 %

9 0 0 0 % 14 0 , 0 5 % 14 0 , 0 5 % 14 0 , 0 5 %

10 0 0 0 % 0 0 % 0 0 % 0 0 %

11 0 0 0 % 0 0 % 0 0 % 0 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r )

T i l l  3 0  t u p le s 4 3 8 , 3 8 % 2 9 , 5 9 % 3 2 6 , 1 3 % 1 0 , 6 1 %

O v e r a l l 5 2 2 , 3 9 % 5 4 2 , 5 1 % 5 1 5 , 2 5 % 3 0 , 3 6 %

Figure 5.11 Detailed table o f  deviation for |QI|=4 and k=50

Q I 5 k  5 0

h e ig h t a c tu a l Γ Ε γ γ (Γ ) M E r r f M ) Γ Μ E r r f r M ) Λ E r r f A )

0 2 9 6 5 0 2 9 6 5 0 0 % 2 9 6 5 0 0 % 2 9 6 5 0 0 % 2 9 6 5 0 0 %

1 1 9 7 5 0 1 9 7 5 0 0 % 1 9 7 5 0 0 % 1 9 7 5 0 0 % 1 9 7 5 0 0 %

2 1 4 5 7 5 1 4 5 7 5 0 % 1 4 5 7 5 0 % 1 4 5 7 5 0 % 1 4 5 7 5 0 %

3 1 0 5 4 6 1 0 5 4 6 0 % 1 2 9 3 3 2 2 , 6 3 % 1 0 5 4 6 0 % 1 0 5 4 6 0 %

4 6 9 5 4 6 9 5 4 0 % 8 0 7 3 1 6 , 0 9 % 7 3 2 8 5 , 3 8 % 7 9 4 7 1 4 , 2 8 %

5 4 3 3 6 4 3 3 6 0 % 6 8 7 0 5 8 , 4 4 % 4 3 3 6 0 % 4 3 3 6 0 %

6 2 0 0 2 2 0 0 2 0 % 5 0 1 4 1 5 0 , 4 5 % 2 0 0 2 0 % 2 0 0 2 0 %

7 1 3 6 6 1 3 6 6 0 % 2 2 4 3 6 4 , 2 0 % 1 3 6 6 0 % 1 3 6 6 0 %

8 6 1 3 6 1 3 0 % 1 0 6 8 7 4 , 2 3 % 6 1 3 0 % 6 1 3 0 %

9 1 6 9 1 7 0 0 , 5 9 % 2 3 4 3 8 , 4 6 % 1 7 0 0 , 5 9 % 1 6 9 0 %

10 5 9 5 9 0 % 1 3 7 1 3 2 , 2 0 % 5 9 0 % 5 9 0 %

11 14 14 0 % 14 0 % 1 4 0 % 14 0 %

12 0 14 0 , 0 5 % 14 0 , 0 5 % 14 0 , 0 5 % 14 0 , 0 5 %

13 0 0 0 % 14 0 , 0 5 % 1 4 0 , 0 5 % 14 0 , 0 5 %

14 0 0 0 % 0 0 % 0 0 % 0 0 %

15 0 o - 0 % 0 0 % 0 0 % 0 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r )

T i l l  3 0  t u p le s 1 0 , 0 5 % 8 5 0 , 6 1 % 2 0 , 5 4 % 1 1 , 3 0 %

O v e r a l l 2 0 , 0 4 % 10 3 4 , 8 0 % 4 0 , 3 8 % 3 0 , 9 0 %

F ig u r e  5 .1 2  D e t a i le d  ta b le  o f  d e v ia t io n  fo r  |Q I |—5 a n d  k - 5 0
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01 6  k  5 0

h e ig h t a c tu a l Γ Ε γ γ (Γ ) M E r r f M ) Γ Μ Ε γ γ Γ Γ Μ ) Λ E r r f A )

0 2 9 8 6 8 2 9 8 6 8 0 % 2 9 8 6 8 0 % 2 9 8 6 8 0 % 2 9 8 6 8 0 %

1 2 4 6 2 6 2 4 6 2 6 0 % 2 4 6 2 6 0 % 2 4 6 2 6 0 % 2 4 6 2 6 0 %

2 1 9 0 8 4 1 9 0 8 4 0 % 1 9 0 8 4 0 % 1 9 0 8 4 0 % 1 9 0 8 4 0 %

3 1 5 3 8 0 1 5 3 8 0 0 % 1 8 3 6 4 1 9 , 4 0 % 1 5 3 8 0 0 %  Ί 1 5 3 8 0 0 %

4 1 2 2 7 8 1 2 2 7 8 0 % 1 3 8 9 3 1 3 ,1 5 % 1 3 1 5 6 7 , 1 5 % 1 3 6 3 0 1 1 , 0 1 %

5 9 0 8 8 9 0 8 8 0 % 9 8 5 5 8 . 4 4 % 9 0 8 8 0 % 9 1 7 6 0 , 9 7 %

6 5 5 1 5 5 5 1 5 0 % 8 4 4 4 5 3 , 1 1 % 5 5 1 5 0 % 5 5 1 5 0 %

7 4 3 6 0 4 3 6 0 0 % 6 6 8 4 5 3 , 3 0 % 4 3 6 0 0 % 4 3 6 0 0 %

8 * 2 4 8 2 2 4 8 2 0 % 3 9 5 9 5 9 , 5 1 % 2 4 8 2 0 % 2 4 8 2 0 %

9 Γ  1 7 8 6 1 7 8 6 0 % 2 4 4 9 3 7 , 1 2 % 1 7 8 6 0 % 1 7 8 6 0 %

10 8 6 9 8 6 9 0 % 1 1 6 9 3 4 , 5 2 % 8 6 9 0 % 8 6 9 0 %

11 1 37 1 3 7 0 % 5 1 5 2 7 5 , 9 1 % 1 37 0 % 1 3 7 0 %

12 14 79 4 6 4 , 2 9 % 2 3 4 1 5 7 1 , 4 3 % 79 4 6 4 , 2 9 % 7 9 4 6 4 , 2 9 %

13 0 14 0 , 0 5 % 14 0 , 0 5 % 14 0 , 0 5 % 1 4 0 , 0 5 %

14 0. 0 0 % 14 0 , 0 5 % 14 0 , 0 5 % 14 0 , 0 5 %

15 0 14 0 , 0 5 % 1 4 0 , 0 5 % 14 0 , 0 5 % 14 0 , 0 5 %

16 0 0 0 % 14 0 , 0 5 % 14 0 , 0 5 % 1 4 0 , 0 5 %

17 0 0 0 % 0 0 % 0 0 % 0 0 %

18 0 0 0 % 0 0 % 0 0 % 0 0 %

# d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r ) # d e v a v g f e r r )

T i l l  3 0  t u p le s 0 0 , 0 0 % 9 4 6 , 2 1 % 1 0 , 6 0 % 2 1 , 0 0 %

O v e r a l l 3 2 4 , 4 4 % 1 4 1 1 1 , 9 0 % 6 2 4 , 8 2 % 7 2 5 , 0 8 %

Figure 5.13 Detailed table o f  deviation for |Ql|=6 and k=50

5 .4 . P r e p r o c e s s in g  t im e

The time to complete the preprocessing time for the different QI sizes o f  the Adult 

data set is depicted in Fig. 5.14. We observe that the time falls to approximately one 

minute for QI = 6 (remember that it used to be approximately 20 minutes for the full 

lattice, which demonstrates a linear speedup with the approximation factor.
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Figure 5.14 Total constuction time for the partial lattice o f  the Adult data set

We can observe the exponential curve in the construction time as QI increases. This is 

clearly due to the nature o f  the problem: as w e keep the percentage o f  nodes fixed  

(here; 5%) every extra attribute in the QI scales up the number o f  nodes by the size o f  

its levels.

The breakdown o f  the lattice and histogram construcion time is as listed in Table 5.2  

for the Adult data set and Table 5.3 for the IPUMS data set.

Table 5.2 Breakdown o f  construction time (sec) o f  partial lattice for the Adult data set

Q I= 3 Q I= 4 Q I= 5 Q l= 6

L e ve l im portance 

comp.
1.15 1.8 3.27 5 .24

N o d e  im portance 

com p.
0.05 0.18 0.40 0 .99

H isto g ram  com putation
2 .52 4.25 13.32 58.47

O ve ra ll 3 .72 6.24 17.00 64 .70

W e observe that, as expected, the^ interaction with the database is the one that 

consum es most o f  the time.The first o f  these interactions, specifically the computation 

o f  level importance requires one aggregate query per level and does not take too much 

>time. At the same time, the computation o f  histograms is largely affected by the 

number o f  nodes selected to be part o f  the partial lattice; since our rule indicates a
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fixed percentage, the exponential nature of the cost remains, albeit significantly 

reduced.

Table 5.3 Breakdown o f  construction time (m sec) o f  partial lattice for the IPUMS data
set

QI=4

Level importance comp. 31,64
Node importance comp. 0,18
Histogram computation 77,65

Overall 109,47

5.4.1. A n sw erin g  u ser requests  via  the  p a r tia l  la ttice

The method for answering a request by the user is a modified variant o f  the algorithm 

o f  the fuU lattice.

1.
2.
3.

4.

5.

6.
7.
8.
9.
10. 

11. 

12.
13.

14.

15.

16.

17.

18. 

19.

20.
21. 

22. 

< 23.

24.

25.

26.

27.

28.

Algorithm PartialLatticeAnonymityNegotiation(L,k,h,MaxSupp)
In: P a rtia l la ttice  L  w ith  the  h is t o g ra m s  fo r  R,H, c o n s t ra in t s  fo r  k, h, M a x S u p p  

Out: a n  e xact s o lu t io n  s[v ,k ,h ,su pp ] o r  s l, s 2 , s 3 ,  s i = [ v j , k j , h j , s u p p j ]

Begin
Let v_ m ax  be  the  n o d e  th a t c o r r e s p o n d s  to  th e  c o n s t r a in t  h ; 

i f  v_ m ax  is  p a r t  o f  L {

C h e c k  v_ m ax  fo r  a n  e xact a n sw e r ;  

i f  n o  s u c h  a n sw e r  e x ists, g o to  Appr;
}
fflE e v e ry  h e ig h t  h, in  h e ig h t (v _ m a x ) - l,  d o w n  to 0 {

fo r e v e ry  n o d e  v  in  h, v  in  d e sc e n d a n t s (v _ m a x ),  { 

if  a n  exact a n sw e r  is  g iv e n  b y  v

ke e p  the  v  w it h  the  m in im u m  s u p p r e s s io n  a s  v_opt;

(b re a k  tie s b y  h)

} /'/observe: all descendants o f v_max must be checked in all levels
}
i f  an  exact a n s w e r  is  found,

re tu rn  v_o p t w ith  its a n sw e r;

e lse {

Appr: fo r  e v e ry  h e ig h t  h, in  h e ig h t (v _ m a x )  d o w n  to  0 {  

fo r  e v e ry  n o d e  v  in  d e sc (v _ m a x )  in  h  { 

c h e ck  s u p p re s se d (v .k ) ;

kee p  v „ o p tM the n o d e  w ith  the  le a s t  s u p p re s s io n ,  k  respected;

c h e c k  m ax  k  fo r  v, s.t, M a x S u p p  is  re spected ;

ke e p  v  o p tk the  n o d e  w ith  the  m a x  k  th a t re sp e c t s  M a x S u p p ;

* }
} "
a p p ro x S o l_ l= s o Iu t io n ( v _ o p t k)

a p p r o x S o L 3 = s o lu t io n ( v _ o p t M)
a p p ro x S o L 2 = A p p ro x im a te H (L ,v _ m a x ,h e ig h t (v _ m a x ),h e ig h t (to p ),k ,h ,  M a x S u p p ) ;  

re tu rn  a p p ro x S o l  1, a p p r o x S o L 2 ,  a p p ro x S o l_ 3 ;

}

✓  Figure 5.15 Algorithm for Partial lattice Anonymity Negotiation
The algorithm starts with a quick check: if  the highest node o f  the sublattice o f  valid

answers, v_max, cannot return an exact answer, then it is clear that no other node in
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the suB-lattice can; therefore the search is directed towards finding a set o f  

approximate answers (Line 15-28). If however, the node v_max is not part o f  the 

partial lattice or, it is part o f  the partial lattice and gives an exact answer, then, the 

sublattice must be checked. Due to the small size o f  the sublattice, it is quite 

reasonable to explore it via a practically exhaustive search (Lines 6 -1 2 ). So, we 

search all levels and keep the answer with the minimum suppression (ties over 

suppression are broken by picking the solution with the least height). Here, due to the 

fact that the lattice is partial, we must note that w e cannot rely on any pruning criteria: 

if  a node fails to give an exact answer at height A, this does not mean that there are no 

nodes in heights lower than h  that can answer. Therefore, the entire sublattice must be 

searched. Observe also, that due to the constraint that at least two nodes per level are 

computed, the bottom node is always computed; so, there is always at least one 

descendant o f  v_max in the partial lattice L.

If an exact answer is not found, we must search for approximate answers. The two o f  

the three approximations are performed in a simple way: we search all nodes in the 

heights from v max to 0 to find (a) the node that gives the least suppression, keeping 

k fixed, and (b) the node that gives the maximum k, keeping MaxSupp fixed. This is 

shown in lines 1 6 - 2 3 .  Apart from these two suggestions, w e need to find the node 

with the least height that respects both k and MaxSupp. This is done the same way as 

in the full lattice (Line 26) - s e e  also function A p p ro x im a te / / ,  which w e summarize 

here: we search the upper part o f  the lattice with binary search; i f  a node answers 

positively we search downwards for lower nodes that can answer too; else w e search 

upwards and check if  the level under investigation is unable to provide a solution.

5.5. Q uality  of solution

Having explained the method via which user requests are answered, w e can now  

proceed to discuss our findings concerning the quality o f  answers returned by the 

algorithm o f  the previous subsection. Figures 5.16 -  5.18 depict the detailed results o f  

the workloads o f  section 4 when the partial lattice is used instead o f  the full one.
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F i g u r e  5 . 1 6  Q o s  in  d e t a i l s  f o r  V a r i a n t  k



P a r a m e t e r s A c t u a l  s o l u t i o n
A p r o x i m a t e

s o l u t i o n Q o S

he igh t I k su p p  I h e igh t 1j d ( k ) d f s u p p )  1 d ( h l|

J i b -  J SUPP i s s i

10 , 3 2 1 ,  1 0  1 10 2 5 7 2 10 2 5 7 2
0 0 0

1 0 , 3 2 1 ,  2 1 1 10 170 2 10 170 2
0 0 0

1 0 , 3 2 1 ,  2  1 2 10 170 2 10 1 70 2 0 0 0

Ί ί ό Ι ® m m m b S S

10, 3 2 1 ,  1 0  0  1 10 2 3 4 9 2 10 2 3 4 9 2 0 0 0

10 170 4 10 2 5 7 4 0 87 0
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Figure 5.17 Qos in details for Variant level
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Figure 5.18 Qos in details for Variant max supp
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The detailed Tables do not reveal too much per se; we complement them with Tables 

5 . 1 9 - 5 . 2 1  where we discuss each answering method (i.e., exact answers along with 

the 3 relaxations) in isolation. In all these Tables, the cells with grey background are 

the ones where the full lattice allowed the derivation o f  an exact solution and the 

partial lattice failed. The cells with the blue background are the ones where the 

respective phenomenon occurred for relaxation 3. Remember that:

-  Approximation 1 keeps k  and h fixed and tries to find the closest possible 

♦ suppression that the data set can provide

-  Approximation 2 keeps k  and mcvcSupp fixed and tries to find the lowest 

possible level where both these values are respected

-  Approximation 3 keeps m axSupp  and h fixed and tries to find the closest 

pQSsible k  to the original one that the data set can support

The overall performance o f  the partial lattice with just a 5% support o f  the full 

lattice’s nodes seems quite satisfactory.

-  Approximation 1 has the tendency to m ove downwards the lattice, until a node 

that is within the sublattice o f  vmax is found. So, all the solutions are quite 

lower than the height constraint (with a difference ranging between -1 and -5) 

and therefore provide significantly larger suppressions than the one suggested  

by the full lattice. Remember, however that this is just a suggestion in the 

context o f  an interactive user session.

-  Approximation 2 tries to minimize the height that provides a solution that 

respects both k and maxSupp and apparently it does a pretty good job in all 

occasions (see all three tables for column Aheight and section Approximation 

2 in all three tables) with small deviations for the suppressed tuples (but still, 

within the user’s threshold) and no deviations for k with respect to the answer 

o f  the full lattice. Remember that this is the most complicated search as it 

travels throughout the whole lattice in search for an answer.

-  Approximation 3 fails frequently in both the full and the partial lattice. 

Unfortunately, the partial lattice fails to support this approximation. Out o f  the 

36 possible value combinations, 9 had an exact answer in both the full and the 

partial lattice(so the approximation never fired in the first place) and out o f  the 

27 remaining cases, (a) 17 cases presented no solution in neither the full nor
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rthe partial lattice, (b) 6 cases had an exact answer in the full lattice and no 

solution in the partial lattice, (c) 3 cases had an answer in the full lattice and 

an approximation in the partial lattice, and (d) only 1 case had an 

approximation in the both lattices.

Overall, w e practically had three occurrences where the full lattice gives an exact 

answer and the partial lattice fails: (i) QI=3, k=50, (ii) QI=4, k=3 (iii) QI=5, 

maxSupp=3I26. We find this performance quite satisfactory.
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5,6. Perform ance o f A lgorithm  P artialL atticeN egotiation

In this subsection w e discuss the performance o f  the algorithm  

PartialLatticeNegotiation in terms o f  time and visited nodes. Our findings are as 

follows:

-  The full lattice was already a fast answering mechanism for the QI sizes that 

we have explored. In all occasions, the time to navigate over the full lattice 

before returning an answer was between 0.66 -  8 msec. In the case o f  the 

partial lattice, the times range between 0.33 to 2 msecs, due to the reduced 

“lattice” size. In cases where time is really critical then this scaling dow n with 

a scale factor between 2 and 8 can be useful.

-  Exactly as in the case o f  the full lattice, the increase o f  k results in an increase 

in the number o f  visited nodes for the case where we resort to relaxations. 

Concerning the case o f  exact answers, although our experiment does not give 

conclusive answers on the behavior o f  the algorithm, it is noteworthy that out 

o f the 3 cases in QI=3 where the full lattice gave an exact solution, the two 

were retained in the partial lattice too.

-  The behavior o f  the algorithm over the full lattice as the height o f  the allowed  

exact solution rises is retained. A s the height constraints are put higher, there 

are more nodes to be visited for exact solutions from this height downwards. 

On the contrary, when we have to resort to relaxations things remain quite 

stable. Here, it is noteworthy to discuss the role o f  the top acceptable node 

vmax. If vmax is present w e can have a very quick test on whether w e wil l need 

relations (in most case w e w ill), or an exact answer is possible (this happens in 

the case o f  QI=4, height=low, for example). In general, however, this luxury is 

not always available in the partial lattice, and this increases the search space.

-  The behavior o f  the algorithm over the full lattice as m a xSupp  increases is also 

retained: time drops as maxSupp increases, since we find a desired solution 

faster.

-  In all cases, the dominant factor for the performance o f  the algorithm is again 

QI size; naturally the effect is scaled down as the lattice size is scaled down 

too. Interestingly, it is worth noting that the maximum number o f nodes visited
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*by the algorithm over the partial lattice is 94 which is the 5.2% o f  the 

maximum number o f  visited nodes in the case o f  full lattice (1792).

~r
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Ĥ CM CO rH CMuftCL.
X X X Cfla.

X X
os OS os OS OS

CO ’■ <· ncmin c 
Q.S 
§■£ 
c- c
r -ί Li-ϋ i
a !
r. E 
S ioS o

j>
COΓ-moro_£l>
a
2
CL
CL3(Λ
vOCM
■d
•acic:c
50T3
01 > 
o  S

cu><υ

c
.2
05
>

cm η T- η o
r- O
(sui) auit)

C -
cm m T- in o 

o’
(stu) θΐυμ

ο η ο η oCM T- r-
sepoupejisjA#

□  *

□  λ

ο  η  ο  η  o  CM r- T-
sepoupeiisjA#

coο  ·χ3 
O  3  
ο  o in

co  o
,ι; _  3  _  _i:

_>
CO

COoCM
>

COcn
rH
rsi £

COoCM
COTt“CMfM ίό vO (Τ ' ίό LOo in o O'CM d

s Q.
C L
oovo

inO'rH
Q.
s C l3tod Q. to _· d a.a.3 D.3 CO in a.3 ex3 rH

</) 10 5 to to to 5rH vo rH L· CM Ό CMCM CO CM CM CO CM
TD T3 ■u 0) -a T3 TJ

Oto
? o■ CM

«—< >

cm °5
CM ---  (/)

. .  O . to 
CL a .

!Λ ΙΟ

CM i-H 
■d T3

X X
3  3

co rt
5  «cs a.

x x
5  5

rH  cm r o  
_X X _x
5  5  5

—  *>

2 no 'G G r? 3  
3 t  oo  <u m
1/1 Du O
ο  H  -  
rH 0.-1 
rH CX ΓΜ

CO er- .2 r- tiro 3

CM lO
o ' S3. o  o  -a o

Ό o

οι o

3 °

3 ~
vO o  
CM o■d o — vo
■a o ' 2 inII— · . tt‘‘ 10 
a u
> υ o a· o  g
> 2
2  a.

co
o  *S
»—< 3

Η  ̂ H m

cm.W in o' in Jil i)

. .  o_> t-t
CO rH 
■Φ CM

is oo a ,
5 3,
d .  Cl  
CL CL

1Λ H  ΙΛ ΙΛ W

O
Is01 o '  

in

cm vo 
cm co

X
5  as

c-- ο 
cm e g  
Ό  "d

X X
5  5

S 8 *5
" s lΨ. %
CL CL ^

= = 3lO CO -X η [m 
cm o o  CM

h  cm r o  X x
3  S  ei



166

5.7. The effect o f the n u m b er o f selected nodes

Insofar, w e have explored the case where we restrict the number o f  selected nodes to 

5% o f the full lattice (to be exact, to at least two nodes per height and 5% o f  the 

height’s nodes otherwise). However, we have not explored the case where w e modify 

this selectivity parameter to other values. To this end, we have explored to other 

values with a reasonable amount o f  selectivity, specifically 1% and 10%. We believe 

Jhat given the antagonizing goals o f  fast lattice pre-computation and reasonably 

constraint deviation from the optimal solutions, these seem quite appropriate limits for 

the selectivity factor.

W e varied p %  to the values 1%, 5%, 10% and £ to the typically used values £=3,10,50  

and observed the results. The results are astonishing:

-  The exact answers and the relaxation o f  m a xS u p p  (approximation I) or £ 

(approximation 3) are identical in all three values o f  p%, for all values o f  £.

-  The relaxation o f  height (Approximation 2), which explores all the available 

lattice, was slightly better when p %  was raised to 10% and slightly worse 

when p%= 1%. In Fig. 5.22, we depict the differences o f  1% and 10% with 

respect to 10% with dark background and white font.

Based on the above, we can argue that a reasonable value for the selectivity factor 

between 1% and 10% suffices to provide the same results without further tuning.
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5.8. Extending the partia l lattice a t run tim e

A critical factor that differentiates the full-lattice and the partial lattice methods is the 

existence o f  the histogram o f  the top-acceptable node. As we have seen, the partial 

lattice methods approximates the full lattice method quite well when (a) an exact 

answer can be found and (b) when w e relax the height constraint and the search is 

expanded throughout all the available lattice. On the other hand, the partial-lattice 

method suffers at the relaxations o f  k  and M a xS u p p , which are exactly the ones that 

are executed over the top-acceptable node and nowhere else.

Therefore, it is clear that the presence o f  the histogram o f  the top-acceptable node 

would ameliorate the quality o f  the provided relaxations. O f course, this com es at the 

price o f  constructing the node’s histogram at run-time. How severely is performance 

degraded if  we pay the price o f  runtime construction to gain the high quality o f  

solutions?

We have experimented with this extension. The algorithm Partial Lattice Negotiation  

is altered by adding the computation o f  the histogram o f the top-acceptable node as

the first step o f  the algorithm and restricting the approximations 1 and 3 to this node.

1.
2.

3.

4.
5.
6.
7.

8.
9.

10. 
11. 
12.
13.

14.

A l g o r i t h m  P a r t ia lL a t t ic e W it h T o p A c c e p t a b le H is t o ( L , k , h ,  M a x S u p p )

In : P a rtia l lattice  L  w ith  the  h is t o g ra m s  fo r  R,H, c o n s t ra in t s  fo r  k, h, M a x S u p p  

O u t: a n  exact so lu t io n  s[v ,k ,h ,supp ] o r  s l, s 2 , s 3 ,  s i= [v j ,k _ i,h _ i, s u p p j ]

B e g in

C o m p u te  the  h is t o g ra m  o f  v_ m ax  if  n o t  a lre a d y  in  L;

I f  v_m ax  g iv e s  e xact a n s w e r f

f o r  e v e r y  h e ig h t  h, in  h e ig h t (v _ m a x ) - l,  d o w n  to 0 {  

fo r  e v e ry  n o d e  v  in  h, v  in  d e sc e n d a n t s (v _ m a x ),  {

I f  a n  e xac t a n s w e r  is  g iv e n  b y  v

k e e p  the  v  w it h  the  m in im u m  s u p p r e s s io n  a s  v.opt;

(b re a k  t ie s  b y  h )

}
}

e lse f

a p p ro x S o l_ l  =  A p p ro x im a te M a x S u p p (L ,v _ m a x ,k ,h ,  M a x S u p p ) ;  

a p p ro x S o L 2 = A p p ro x im a te H (L ,v _ m a x ,h e ig h t (v _ m a x ) ,h e ig h t ( t o p )1k ,h ,M a x Su p p );  

a p p ro x S o l_ 3  =  A p p ro x im a te K (L ,v _ m a x ,k ,h ,M a x S u p p ) ;

15. re tu rn  a p p ro x S o l 1, a p p ro x S o l_ 2 ,  a p p r o x S o L 3 ;

16. }

Figure 5.23 Algorithm Partial Lattice W ith Top Acceptable Histogram
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We have experimented by keeping p %  to 5%. The results o f  our experimentation are 

very interesting. In a nutshell, the introduction o f  the computation o f  the histogram for 

the top-acceptable node introduces a significant overhead compared to the simple case 

o f  the partial lattice o f  the order o f  140 -  335 msec, but, all the solutions practically 

coincide with the ones o f  the full lattice. Specifically, our results are as follows:

The cases where an exact answer was given by the full lattice are all captured 

* (as opposed to the three m isses o f  the simple partial lattice). Out o f  these 12 

occasions, there are two occasions where there is a discrepancy between the 

answer o f  the full lattice and the answer o f  the extended partial lattice.

The relaxation o f  height remains practically the same as with the case o f  the 

partial lattice; remember that this is the case where all the available lattice is 

explored for the lowest possible height where a solution exists.

The relaxation o f  m a xSupp  provides significant improvements compared to 

the case o f  the simple lattice. As expected, all the deviations in terms o f  

suppressed tuples disappear (remember that the relaxations o f  m a x S u p p  and k  

are performed at the top-acceptable node).

Similarly, the deviations in terms o f  suppression and k  for the relaxation o f  k  

also disappear. Most importantly, all the cases where the partial lattice failed 

to follow  the behavior o f  the full lattice have disappeared. Again, this is due to 

the fact that the relaxation o f  k  takes place on the top-acceptable node too.

In terms o f  time, it is clear that the time is practically stable and dominated by 

the cost o f  the computation o f  the histogram for the top-acceptable node. In 

Figures 5.24-5.26 w e depict the time and the number o f  visited nodes for 

different size o f  QI and different ky level o f  topmost, and M axSupp.

Overall,' one can argue with safety that i f  the time to compute the histogram for the 

top-acceptable node can be tolerated at runtime (and for the case o f  our experiments 

w e believe it does), then the quality o f  solution improves drastically.

9

✓
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T im e  (m s e c )

k Q l= 3 Q l = 4 Q l= 5 Q l = 6

3 1 44 ,00 2 0 6 ,6 7 2 6 0 ,0 0 3 3 4 ,3 3

1 0 1 43 ,00 2 0 5 ,3 3 2 5 9 ,6 7 3 3 4 ,3 3

5 0 1 42 ,67 2 0 4 ,0 0 2 6 0 ,0 0 3 3 4 ,3 3

#  v is ite c n o d e s

3 7 4 10 4 7

1 0 7 6 19 7 4

5 0 7 7 25 8 8

Figure 5.24 Time and visited nodes for all Qi and Variant k

T im e m se c )

le v e l Q I= 3 Q I= 4 Q l= 5 Q I= 6

L o w 1 5 3 ,3 3 1 97 2 5 9 ,3 3 3 2 7 ,6 6

L o w - m id d le 1 45 ,33 2 0 2 ,6 6 2 6 7 ,3 3 3 2 5 ,3 3

m id d le 1 4 4 2 0 6 ,6 6 2 6 2 3 1 0 ,6 6

#  o f  v i s i t e d  n o d e s

L o w 4 8 23 7 4

L o w - m id d le 7 6 19 7 4

m id d le 9 9 11 2 7

Figure 5.25 Time and visited nodes for all QI and Variant level

T im e ( m s e c )

M a x _ s u p p Q l= 3 Q I= 4 Q i= 5 Q l= 6

3 2 1 4 2 ,3 3 1 9 3 ,3 3 2 7 0 3 3 3 ,6 6

3 2 1 1 3 9 ,6 6 1 93 2 6 9 3 3 3 ,3 3

3 2 1 6 1 3 7 ,6 6 1 93 2 6 9 3 3 4

#  v i s i t e d  n o d e s

3 2 5 7 2 6 8 8

3 2 1 7 6 19 7 4

3 2 1 6 7 4 4 2 5

Figure 5.26 Time and visited nodes for all QI and Variant
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«! 1

E x a c t k = 3 k = 1 0 k = 5 0 E x a c t k = 3 X II (-* © k = 5 0 E x a c t k = 3 k = 1 0 k = 5 0

Q I= 3 0 0 0 0 1 = 3 0 0 0 0 1 = 3 0 0 0

Q l= 4 -1 4 2 - - 0 1 = 4 1 - - Q l = 4 0 - -

Q I= 5 - - - Q I= 5 - - - ____ -

Q I= 6 . - - Q I= 6 - - - Q I= 6 - - -

A p p r o x  1 k = 3 k = 1 0 k = 5 0 A p p r o x  1 k = 3 k = 1 0 k = 5 0 A p p r o x  1 k = 3 k = 1 0 k = 5 0

Q I= 3 - - - 0 1 = 3 - - - Q l= 3 - -

Q I= 4  . - 0 0 Q I= 4 - 0 0 0 1 = 4 . 0 0

Q I= 5 0 0 0 Q I= 5 0 0 0 Q I= 5 0 0 0

Q I= 6 0 0 0 0 1 = 6 0 0 0 Q I= 6 0 0 0

A p p r o x  2 k = 3 k = 1 0 k = 5 0 A p p r o x  2 k = 3 k = 1 0 k = 5 0 A p p r o x  2 k = 3 k = 1 0 k = 5 0

Q l= 3 - . . 0 1 = 3 - - - 0 1 = 3 _ _
Q l= 4 8 7 0 Q l= 4 - 0 0 Q l = 4 . 0 0

Q I= 5 18 4 4 0 Q I= 5 0 0 0 0 1 = 5 0 0 0

Q l= 6 0 15 0 Q I= 6 0 0 0 Q I= 6 0 0 0

A p p r o x  3 k = 3 k = 1 0 k = 5 0 A p p r o x  3 k = 3 k = 1 0 k = 5 0 A p p r o x  3 k = 3 k = 1 0 k = 5 0

Q l= 3 - - - Q I= 3 - - . 0 1 = 3 . . .
Q I= 4 - 0 0 Q I= 4 - 0 0 Q l = 4 . 0 0

Q I= 5 - - - 0 1 = 5 . - , 0 1 = 5 . _ _
Q l= 6 - - - Q I= 6 - - - Q I= 6 - - -

Figure 5.27 Summary o f  Qos deterioration for variant k (with vmax histogram
construction)
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ϊ ί

E x a c t lo w

lo w -

m id d le m id d le E x a c t lo w

lo w -

m id d le m id d le E x a c t lo w

lo w -

m id d le m id d l e

Q l= 3 0 0 0 Q l= 3 0 0 0 0 1 = 3 0 0 0

Q l = 4 . - 0 Q l = 4 . - 0 0 1 = 4 - - 0

Q l= 5 . - - Q l= 5 . - . Q ! = 5 - - -

Q I= 6 . - . Q l= 6 . - . Q l = 6 - - -

A p p r o x  1 lo w

lo w -

m id d le m id d le A p p r o x  1 lo w

lo w -

m id d le m id d le A p p r o x  1 l o w

lo w -

m id d le m id d l e

Q != 3 - - - Q l= 3 - - - Q l= 3 - - -

0 1 = 4 0 0 - Q l = 4 0 0 - Q l = 4 0 0 .

Q I= 5 0 0 0 Q l= 5 0 0 0 Q I= 5 0 0 0

0 1 = 6 0 0 0 Q l= 6 0 0 0 0 1 = 6 0 0 0

\ p p r o x  2 lo w

lo w -

m id d le m id d le A p p r o x  2 lo w

lo w -

m id d le m id d le A p p r o x  2 l o w

lo w -

m id d le m id d l e

J I= 3 - - - Q l= 3 - - - Q I= 3 - . .

J l= 4 8 7 8 7 - Q l = 4 0 0 - Q l = 4 0 0 .

>1=5 4 4 4 4 0 Q l= 5 0 0 0 Q I= 5 0 0 0

>1=6 15 15 0 Q l= 6 0 0 0 Q I= 6 0 0 0

ip p r o x  3 lo w

lo w -

m id d le m id d le A p p r o x  3 lo w

lo w -

m id d l e m id d le A p p r o x  3 l o w

lo w -

m id d le m id d l e

! l= 3 - - - Q l= 3 . _ . Q I= 3 _ _ _
[1=4 - - - Q l= 4 - - - Q l = 4 . _ _
!I=S - - 0 Q l= 5 - - 0 Q l = 5 . 0

11=6 - - 0 Q l = 6 - - 0 Q l = 6 - - 0

Figure 5.28 Summary o f  Qos deterioration for variant height (with vmax histogram
construction)
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Ρ

m m

E x a c t 3 2 3 2 1 3 2 1 6 E x a c t 3 2 3 2 1 3 2 1 6 E x a c t 3 2 3 2 1 3 2 1 6

Q l= 3 - 0 0 Q l= 3 - 0 0 Q I= 3 - 0 0

Q I= 4 - - 2 3 9 Q I= 4 - - 0 Q I= 4 - 0

0 1 = 5 - - 0 Q I= 5 - - 0 Q I= 5 - - 0

Q . I-6 - - - Q l= 6 - - - Q l= 6 - -

A p p r o x  1 3 2 3 2 1 3 2 1 6 A p p r o x  1 3 2 3 2 1 3 2 1 6 A p p r o x  1 3 2 3 2 1 3 2 1 6

Q I= 3  * 0 - - Q I= 3 0 - - 0 1 = 3 0 - .

Q l= 4 0 0 - Q I= 4 0 0 - Q I= 4 0 0 -

Q I= 5 0 0 - Q I= 5 0 0 - Q I= 5 0 0 .

Q I= 6 0 0 0 Q I= 6 0 0 0 Q I= 6 0 0 0

A p p r o x  2 3 2 3 2 1 3 2 1 6 A p p r o x  2 3 2 3 2 1 3 2 1 6 A p p r o x  2 3 2 3 2 1 3 2 1 6

Q I= 3 U - - Q I= 3 0 - - Q I= 3 0 . .

Q l= 4 1 87 - Q I= 4 0 0 - Q I= 4 0 0 .

Q l= 5 0 4 4 - Q I= 5 0 0 0 Q l= 5 0 0 .

Q I= 6 0 15 0 Q I= 6 0 0 0 Q I= 6 0 0 0

A p p r o x  3 3 2 3 2 1 3 2 1 6 A p p r o x  3 3 2 3 2 1 3 2 1 6 A p p r o x  3 3 2 3 2 1 3 2 1 6

Q l= 3 0 - - Q l= 3 0 - - 0 1 = 3 0 . _
Q I= 4 - 0 - Q l= 4 - 0 Q l = 4 _ 0 .
Q I= 5 - - - Q I= 5 - - _ 0 1 = 5 .
0 1 = 6 - - 0 Q I= 6 - ' 0 Q ( = 6 - - 0

Figure 5.29 Summary o f  Qos deterioration for variant maxSupp (with vmax histogram
construction)
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5.9. Sum m ary o f  findings

We have experimented for the effectiveness and efficiency o f  the proposed method 

over two data sets, the Adult and the IPUMS data sets, with the same parameters as 

we have experimented in the full lattice approach.

In summary, we can state the following about the simple partial lattice construction:

* - The exact answering and the answering for the relaxation o f  height (that explores

all the available lattice) provide very good approximations to the optimal 

solutions provided by the exact lattice. Specifically,

(a) Only 3 out o f  10 exact answers are missed and compensated by relaxations 

 ̂ (b) The height relaxation has very small, or zero deviations from the suggestions 

o f  the full-lattice method.

- The relaxation o f  suppression provides answers that are gravitated towards the 

lower parts o f  the sublattice o f  the top-acceptable node and, thus, result in high 

values o f  suppression as compared to the ones provided by the top-acceptable 

node in the full lattice approach.

The relaxation o f  k was already having a hard time finding answers in the 

full-lattice approach. This becomes worse in the partial-lattice approach and few  

results are returned.

Concerning the rest o f  the problem’s parameters, w e can state the following:

-  The time needed to answer a user request ranges between 0.33 -  2 m secs for 

the case o f  simple partial lattice

-  The increase o f  k  increases the search space for the relaxations; the same 

happens as the m axS u p p  is decreased

-  The size o f  QI is a determining factor for the behavior o f  the proposed 

; method. Observe that small QI sizes give exact answers. At the same time, the

size o f  the partial lattice, and consequently, the time to construct its histograms 

is proportional to the selectivity factor. For example, in the case o f  QI=6 with 

p  = 5%, the lattice size is 94 -  i.e., the 5.2% o f  the full lattice with 1792 nodes.

The extension that computes the histogram o f  the top-selection node at runtime results 

in
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m
a time penalty o f  0.1 -  0.3 sec;

- a drastic improvement o f  the two relaxations that suffered in the previous 

approach (identical behavior to the case o f  the full lattice);

— small improvement for the exact answers and no improvement for the relaxation 

o f  height.

*
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CHAPTER 6. RELATED WORK

6 .1 Alternative techniques

6.2 Generalization

6.3 Suppression without generalization

The problem o f  preserving data privacy has been extensively studied both in the past 

and in the recent literature. Previous to the ‘00s, the largest part o f  research was 

conducted in the context o f  statistical databases, and several techniques have been 

proposed that involve swapping values and adding noise to the data in order to meet a 

general statistical property [AdW o89]. During the ‘OOs, the area received a renewed 

interest by the research community. Γη this section, w e cover the most important 

papers that are related to our approach; we refer the interested reader to the excellent 

survey o f  Fung et al. [FWCY10] for further probing.

Privacy in the field o f  data management deals with the problem o f  concealing 

sensitive information about individual records without destroying the data mining 

utility o f  the published data set. Take for example the case o f  medical records o f  a 

relation T(N am e,A getZ ipC ode ,D isease) that is to be exported to analysts for data 

mining purposes. On the one hand, our aim is to provide the analysts with as much 

statistically important information as possible; on the other hand, we want to hide the 

relationship o f  individuals (identified by the id en tifier  attribute N am e) with the 

' sensitive  attribute D isease. This equilibrium among goals is primarily achieved by 

removing the statistically insignificant attribute N am e  from the published version o f  

the relation. Unfortunately, it is still possible to breach the individuals’ privacy via 

quasi-iden tifier  attributes (in our example, A ge  and Z ipC ode)  which can convey 

contextual information to an attacker about the concealed identifier attributes and 

their linkage to sensitive attributes (in our example, a patient’s neighbor who knows
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the zip code and age o f  a patient can reason on the patient’s disease it' there are no 

other patients with similar characteristics). For this purpose three main families o f  

techniques has been presented to preserve data:

-  Domain generalization which is the main technique explored by the research 

literature with several sub-categories.

-  Perturbation and control introduction o f  noise

-  Anatomization o f  the published relation to separate the coexistence o f  quasi

identifiers and sensitive values in the same published record

6.1. A lterative techniques

Th^ last o f  these methods (also latest in terms o f  when they were introduced), is 

anatom ization. Anatomization dictates that w e should not seek to modify the quasi- 

identifiers or the sensitive attribute, but, rather, it de-associates the relationship 

between them. So, we organize records in groups, each group with a variant set o f  

sensitive values and we publish two tables: one with the sensitive values o f  each 

group and another with the quasi-identifiers and a group id in the place o f  the 

sensitive value. In Figure 6.1 we demonstrate the effect o f  anatomizing the data o f  

table in Figure 2.1. Unfortunately, the data presented by anatomization are not very 

helpful for the well-meaning users due to their nature (remember that the published

(a) (b)

Figure 6.1 Anatomization: (a) quasi identifier table, and, (b) sensitive attribute.

G roup
ID

H ours 
per w eek

C ount

1 40 2

1 50 1

1 45 1

1 30 t

2 50 2

2 60 1

2 54 1

2 40 1

data can have thousands o f  records).

Age Work_class Education Group ID

39 Private Hs-grad 1

38 Private Hs-grad 1

37 Private Hs-grad 1

38 Private 11th 1

28 . Loc-gov Bachelors 1

31 Federal-gov Master 2

30 State-gov Bachelors 2

32 Self-emp-not-inc Bachelors 2

35 Self-emp-inc Prof-school 2

33 Self-emp-inc Assoc-acd 2
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A second method for the publishing o f  data involves the p e rtu rb a tio n  o f  tuples. These 

means that vve distort the sensitive values o f  the published tuples while keeping the 

statistical properties o f  the published data set as close as possible to the ones o f  the 

original data set. We refer the interested reader to [FWCY10] for a detailed survey o f  

the works in this area. The main problems with perturbation are that (a) the published 

data contain noise (som etim es statistically significant) and it is possible that the well- 

meaning data analysts are annoyed by its presence and (b) the noise introduction is 

performed in a way that retains a specific statistical property, thus resulting in 

sometimes significant deviations for any other statistical measure o f  the published 

data set.

6.2. G eneralization

The third area, provides a privacy-preserving version o f  original data by replacing the 

values o f  the original table with abstractions (e.g., a value o f  451** for zip code 

instead o f  45110). The ultimate goal in terms o f  privacy is to conceal each individual 

tuple into an appropriately constructed group o f  data, in a way that an attacker cannot 

easily reason about the participation o f  individuals into the group.

This method is called g e n era liza tio n  as it iteratively generalizes the values o f  the 

published data set in higher levels o f  abstraction until the desired level o f  privacy is 

attained. In every step o f  this process, each individual tuple becomes a member o f  a 

larger group o f  tuples that all share the same quasi-identifier values ( ‘hidden in the 

crowd’). If the data set is almost capturing the privacy criterion for most o f  its groups 

and there are only few groups that violate it, instead o f  generalizing again, it is 

possible to resort in the removal o f  the tuples o f  these outlier groups. This process is 

called suppression . The area o f  generalization is organized in three sub-areas.

-  Full-domain generalization, or global recoding 

- '  Multidimensional recoding

-  Local recoding

The three main classes o f  works to which the related literature around data 

generalization is classified, all have their own characteristics, along with advantages 

and disadvantages. Full domain generalization or global recoding assumes a fixed set 

o f  anonymization levels to which values are generalized. Each quasi identifier comes 

with its own hierarchy o f  anonymization levels and mappings o f  values. For example,
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ages can come in years, 5 year periods, 10 year periods; in accordance to this scheme 

at the schema level, age 23 at the year level is mapped to the interval [21,25] at the 5- 

year level and the interval [21,30] at the 10-year level. On the other hand, 

multidimensional and local recoding instead o f  trying to create groups according to 

these hierarchies, they work in the opposite direction: they exploit the distribution o f  

data in the multidimensional space in order to create the groups.

Formally, assume a relation T  that is to be published as a transformed relation T*.. 

The sem an tics  o f  the generalization process can be regarded as the execution o f  two 

steps:

(a) First, the employed method partitions T  to a set o f  disjoint groups, P = {Pj U 

P 2 U  .. .  P m}, such that the privacy constraint holds for each group.

■*(b) Then, Γ* is produced by removing the identifier attribute from T  and replacing 

the values o f  the quasi identifier attributes with a characteristic representation; 

this is typically the generalized variants o f  the microdata values (e.g ., replace 

zip code 45110 with 451**).

N ote  tha t th is  is the fu n d a m e n ta l in tu ition  o f  the  p ro c e s s  a n d  n o t n e ce ssa r ily  the  

a lg o rith m ic  s tep s  to  be fo llo w e d .

The different categories o f  the generalization family o f  algorithms are distinguished  

mainly by the way they partition data. Global recoding replaces values independently 

o f  their group, whereas local as w ell as multidimensional recoding replace values with 

respect to the contents o f  the group. The difference o f  multidimensional from local 

recoding is that the former groups tuples in disjoint regions o f  the multidimensional 

space, whereas local recoding allows dense regions to “lend” data to sparse regions so 

that every group satisfies the privacy constraint. The replacement is typically done 

either by using a predefined hierarchy or by taking the m in im u m  b o u n d in g  box  o f  the 

region in the multidimensional space; however, other presentation methods can be 

devised too (such as the choice o f  representative values from each group). Observe 

that in terms o f  our formal definition, the constructed groups are not necessarily  

equivalence classes: in local recoding, two tuples with same quasi identifier values 

may end up in different groups and different replacement (i.e., anonymization) 

method.
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Full-domain generalization is supported by quite efficient algorithms. The problem 

with full-domain generalization is that it generalizes sparse and dense regions o f the 

multidimensional space in the same way. So, it generalizes all the data set to the 

generalization scheme needed by the weakest o f  its groups. To avoid this, suppression 

can be used, but then, the utility o f  the published data set diminishes as a (sometimes 

large) part o f  it is removed. On the contrary, multidimensional and local recoding 

avoid suppression and instead o f  aligning the groups o f  tuples to the level hierarchies, 

* they align the bounds o f  the groups to the distribution o f tuples in the 

multidimensional space. This is not so efficient as in the case o f  global recoding but 

provides higher utility for the detailed inspection o f  the tuples. Unfortunately, the data 

mining tools suffer since the data are not in a homogeneous level o f abstraction and 

therefore the classification or association rules that are extracted miss information. At 

the same time, the users are not always happy with the grouping o f  tuples given by the 

local recoding algorithms, as they are accustomed to the semantically meaningful 

hierarchies that are used in the case o f  global recoding.

6.2.1. F u ll-dom ain  g en era liza tion

Full domain generalization is quite fast, since the com plexity o f  the anonymization 

process mainly depends on the combinations o f  levels, one per quasi identifier that 

must be tested. Here, w e cover the (rather straightforward) case o f  k-anonymity 

quickly, and expand the case o f  1-diversity more.

K-anonymity. In [SamaOl, Swee02] the fundamental notion o f  k-anonymity is 

introduced along with the techniques o f  generalization and suppression that are 

mainly used in order to transform the initial dataset to an anonymized one that meets 

tho k-anonymity principle. From that time, there has been a large body o f  work that 

contributes to data privacy using several k-anonymization algorithms. In [BaAg05], 

the authors introduce an algorithm that provides an anonymization o f  the data set 

based on the total ordering o f  the domains o f  its attributes. The idea is that even 

categorical domains are mapped to integers and an iterative process examines all the 

possibilities o f  grouping these values in abstraction groups (via an enumeration tree). 

Every anonymization scheme is accompanied by the cost in terms o f  information loss;
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due to monotonicity reasons, a node can be pruned if  its descendants cannot meet the 

optimal cost. LeFevre et.al [LeD R05| have proposed a clear way to describe full- 

domain generalization and introduce Incognito, a sound and complete algorithm for 

producing k-anonymous full domain generalizations using bottom-up aggregation 

along generalization dimensions and a-priori computation [AgSr94]; we discuss 

Incognito in more detail later in this section since it has been the basis for the 

recursive construction o f  our lattices and their exploration.

L-diversity. The achievement o f  k-anonymity alone does not guarantee immunity to 

attacks: the authors o f  [MaGK06, M KGV07] present some severe privacy problems 

that can occur in a k-anonymized dataset when the distribution o f  values for the 

sensitive attribute within a group is small (a single value in the worst case); to 

alleviate the problem, the authors introduce l-diversity as a new privacy-aware 

principle. The main idea o f  the paper is to go beyond k-anonymity in ensuring that 

identifier attributes are not linked to their sensitive counterparts via background 

knowledge o f  the attacker. The two highlighted vulnerabilities o f  k-anonymity are (a) 

the possibility o f  a whole group to have the same sensitive value and (b) the 

possibility o f  having too few sensitive values in the same group. In both cases, the 

individuals are not ‘hidden in the crowd’ o f  their group since all (or, a large number 

of) the members o f  the group have the same sensitive value. If this is the case, i f  an 

attacker relates an individual with a certain group, then he can confer with high 

probability the sensitive values o f  the hidden individual.

L-diversity is a criterion that tells us whether a group is versatile enough in order to 

effectively hide its members by exploiting both a large number o f  members and a 

large number o f  ‘well-represented’ values. The purpose is that the probability o f  

relating an individual with its sensitive values is low, even in the case where the 

attacker can identify the individual’s group. The authors o f  [MaGK06] propose three 

ways to implement the term ‘well-represented’:

(i) the distinct number o f  sensitive values in a group should be higher than l

(ii) the entropy o f  each group should be higher than log{[)

(iii) recursive l-diversity is achieved for each group. Assume that we sort the

values o f  an sensitive attribute by their frequency in the group; let r \ , r 2i

rm be the respective frequencies. In this case, w e require that the highest
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frequency (ri) is not greater than the sum o f  the lowest [L.m] frequencies (n, 

. . . ,  /*m), multiplied by a scale factor c. (In other words, the frequent values 

are not too frequent and the infrequent values are not too infrequent).

Incognito. The Incognito algorithm [LeDR05] is an efficient algorithm for the 

extraction o f  all the possible generalizations o f  a data set in order to achieve the 

criterion o f  k-anonymity or 1-diversity.

Properties. The pillars o f  the algorithm are three important properties that characterize 

the nodes o f  the lattice and exploit the monotonicity o f  the hierarchies and the 

resulting groupings that derive from it. Specifically, a ssu m in g  a node o f  the la ttice  

tha t is fo u n d  to  be k -a n o n ym o u s , these properties are:

'  - G en era liza tio n : Nodes found higher in the lattice that are derived from this

node, are also k-anonymous

- R ollup  p r o p e r ty : Frequency sets o f  higher nodes can be computed from the 

current ones via the ancestor relationships o f  the involved values in their 

domain hierarchies

S u b se t p r o p e r ty : Nodes with fewer QI attributes are also anonymous

Specifically, the Generalization property dictates that i f  a relation T  is k-anonymous

over a set o f  quasi-identifier attributes P, then Z  is also k-anonymous over a set o f

quasi-identifier attributes Q  that are ancestors o f  the attributes o f  P  in the respective

hierarchies (D ^  <p D n). In other words, i f  a node found low  in the lattice qualifies for

a solution, then, its ancestors also qualify as solutions. This is a simple outcome o f  the

fact that the groups o f  the higher level node are produced by mergers o f  the groups at

the lower level node; this results in fewer groups o f  larger cardinality.

The Rollup property states that once an ancestor node is a candidate solution, we can

also compute its groups by exploiting the groups o f  any o f  the lower level nodes that

are its descendants. Specifically, this is done by mapping the QI values o f  the 
* *r

descendant’s groups to their respective values o f  the ancestor level; then, the 

* frequency sets o f  all the descendant’s groups that are mapped to the same ancestor 

group are summed to compute its frequency set. Observe Figure 6.2, where the values 

for the quasi-identifier A g e  (A ), S e x  (iS), C o u n try  (Z) are rolled-up from the exact level 

o f  age (on the left o f  the figure) to the age level o f  5-year intervals (on the right o f  the 

figure): the new frequency sets are sim ple sums o f  the respective frequency sets at the
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detailed level. The same applies again when we further anonymized the data set as 

depicted at the bottom o f  Figure 6.2.

A g e S e x Country count
4 0 M Italia 3
4 7 F G re ec e 4  ■
4 1 M Italia 3 ·
4 9 F G reece 7  -

A g e S e x Country count
' 4 0 - 4 4 M Italia 6

; 4 5 - 4 9 F G r e e c e 11

o
A g e S e x Country count
4 0 - 4 9 * E u ro p e 17

Figure 6.2 Incognito’s Rollup Property

Finally, the Subset property dictates that i f  you expand the quasi-identifier set with a 

new  member (i.e., add an extra attribute to the QI set), then the groups are de- 

aggregated. The inverse is also useful, since the removal o f  an attribute from the QI, 

results in the merging o f  groups. Therefore, if  a node is k-anonymous when the Q l-set 

involves attributes, then it is also k-anonymous with AM o f  them as the quasi

identifier set. More importantly, in a manner that resembles Apriori pruning a lot, i f  a 

node is not k-anonymous when it is tested under N  attributes as the quasi-identifier 

set, then there is no need to test it for k-anonymity for any superset o f  these N  

attributes, either.

Algorithm. Like all anonymization algorithms, Incognito uses as input the original 

data set (denoted as 7), the set o f  attributes that constitute the quasi-identifier set 

(denoted as Q [) along with their domain hierarchies and a value for the privacy 

criterion -  here w e use k  for k-anonymity. The output o f  the algorithm is a graph that 

is a subset o f  the lattice formed by the Cartesian product o f  the domain hierarchies o f  

the quasi-identifier set and contains all the generalizations that fulfill the input privacy 

criterion.

The crux o f  the algorithm is the stepwise expansion o f  the quasi-identifier set and the 

exploration o f  the respective intermediate lattices generated each time. The algorithm
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starts with all the possible Ql-sets o f  size one (i.e., checks each attribute in isolation). 

Every intermediate lattice is visited via a breadth-first search, starting from the bottom 

all the way to the top. During this traversal, generalizations that fail to fulfill the k- 

anonymity criterion are pruned. This check is easily performed by counting the 

number o f  records per frequency set. Once all lattices o f  quasi-identifier size N  have 

been explored, their subsets that survive the pruning process are combined to 

construct lattices o f  quasi-identifier size AM-1. To generate these new lattices, the 

algorithm takes pairs o f  lattices o f  size N  that are identical in the first AM attributes 

and joins them. An interesting, Apriori-like, optimization is also the fact that for a 

node o f  Q l-size N  to be considered, a ll its generating nodes o f  Q[-size AM must have 

survived the process. This process terminates when the designated quasi-identifier set 

o f  attributes is explored.

Within this process, the aforementioned properties are exploited: if  a lower-level node 

is found to be k-anonymous, all the nodes at higher levels o f  generalization that can 

be derived from it are marked as k-anonymous too. Moreover, the groups o f  higher- 

level nodes are produced by the groups o f  lower level nodes whenever this is possible.

The authors prove that the algorithm is sound (the solution generated is correct and 

does not violate the consistency constraints that a solution to the problem described is 

required to have) and complete (all correct solutions are returned).

Moreover, two extensions are also suggested:

(a) Due to the pruning process, some low  level nodes are not part o f  the solution; 

however they can be reused to generate the rest o f  the surviving nodes. So, it 

is possible to pre-compute these ‘super-root’ nodes and avoid computing the 

lower parts o f  the output lattice all the way from the base relation.

(b) All possible subsets o f  the quasi-identifier size o f  the base-level generalization 

are pre-computed and re-used to avoid computing lower level solutions from 

the base relation.

6 .2.2. M u ltid im en sio n a l a n d  lo ca l reco d in g

M ultidim ensional recoding. Multidimensional recoding can be achieved via the 

Mondrian algorithm [LeDR06] which appears to be efficient and produces results
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with “more information at the browsing level” than global generalization. However, if  

one wishes to work with predetermined hierarchies, Mondrian is not suitable.

Local recoding. Fast algorithms for local recoding do exist [GhKM09]]; however, 

they do suffer from the same problem as Mondrian: they produce arbitrary (and, in 

fact, overlapping) regions for the grouping o f  source data. Algorithms performing 

local recoding with hierarchies are also available [Xu+06]; however, their 

* performance is very slow  for an on-line setting (Ghinita mentions that the Top-Down  

method o f  Xu et al takes around 2 hours for settings where the Hilbert Method o f  

Ghinita et al., and the Mondrian method o f  Lefevre et al., take between 10 to 60  

seconds; Xu et al in their KJDD’06 paper mention: “...th e runtime o f  the top-down 

approach is just less than 6 times slower than that o f  the MultiDim method.”).

k-anonym ity as spatial indexing. Iwuchukwu and Naughton [IwNa07] utilize an R-

tree to speed up the anonymization process. The idea is that the internal nodes o f  the

R-tree can be tuned in order to guarantee that the descendants o f  an internal node can

always operate in groups o f  tuples o f  size no more than k. Once this is achieved, the

anonymization process is very fast; in fact, it can also be easily tuned to the value o f  k

the user desires for k-anonymity. The method operates w ell when an intuitive

ordering o f  the detailed values can be achieved; in other words, whenever the domain

o f  an attribute can be isomorphically mapped to the set o f  integers in an intuitive way,

the R-tree approach is a very good solution. There are several benefits from the R-tree

approach: it can be incrementally updated, it can be tuned to accommodate specific

workloads fast, it can provide the aforementioned m u lti-g ra n u la r  anonymity and it

provides good anonymizations very fast. At the same time, it is not straightforward

how  the method operates in categorical domains accompanied by hierarchies. In this

case (which is also the case that we explore in our paper), it is not obvious that an

internal node can always have a bounded number o f  descendants within the ranges
*

required by the R-tree.
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6.3. Suppression w ithout generalization

Finally, despite the fact that the bulk o f  the research has been focused on various 

privacy criteria beyond k-anonymity and 1-diversity, as well as towards efficient 

algorithms, mainly for local recoding, there exist some papers that explore the 

theoretical limits o f  optimal anonymization with respect to suppression and provide 

algorithms for its approximation. In this section we present these works as they seem  

to be the closest to our case.

Optimality and Approximate Algorithms for k-anonymity. The problem o f  finding 

the best possible anonymization schem e is in principle NP-hard. The theoretical 

foundations o f  the problem are given in [M eW i04]. The problem investigated in 

[MeW i04] is based on the idea o f  locally recoding a data set without reference to any 

hierarchies o f  values for the quasi-identifiers. Specifically, the problem is to try to 

minimize the number o f  cells (attention: cells, not tuples) that are suppressed (i.e., 

they take a value o f  *) in order to achieve k-anonymity. The authors o f  [M eW i04] 

prove that the problem is NP-hard and provide approximation bounds for it, based on 

the idea o f  the d ia m e ter  o f  a set (which measures the maximum distance between any 

two tuples o f  the set, measured as the number o f  cells in which they differ). It is also 

interesting to note that the groups o f  the partition that are generated can be o f  bounded 

size: they are - o f  course- larger or equal than k , but they need not be larger than 2 k - \ . 

The authors provide an algorithm for the problem by adjusting a w ell-know n greedy 

algorithm for the set cover problem to the setting o f  the problem. The set to be 

covered is the set o f  tuples o f  the table to be anonymized, say T, and therefore, the 

input to the algorithm is the set o f  all sets o f  tuples that are subsets o f  T  whose 

cardinality is in the range o f  [k , 2 /> l]. The greedy algorithm requires a penalty 

measure for each o f  these subsets that is selected each time and this is the diameter o f  

the subset. The greedy algorithm results in a set cover o f  the original table T\ since a 

cover is not a partition (i.e., a member o f  the original data set may be assigned to 

more than one o f  the covering sets) an adjustment must be made in order to turn the 

cover to a partition. The adjustment is simple test, applied repeatedly until no tuple 

belongs to two sets: if  a tuple belongs to two sets, one o f  which is larger than k, then,
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it is removed from this set; if  there are two sets to which the tuple belongs and they 

are both o f  size k , they are merged in one set.

Park and Shim in [PaSh07] extend the fundamental approximation approach o f  

[MeW i04] with different levels o f  approximation. The authors still operate in the 

same setting as [M eW i04] —  i.e., local recoding with no hierarchies and counting o f  

suppressed cells—  and start by changing the penalty for the greedy algorithm to 

operate on the basis o f  the su p p ressio n  len g th  o f  a set, which is the number o f  

attributes where a value o f  * must be assigned, in any o f  the tuples o f  the set. Still, the 

previous approach suffers from the problem o f  having a too large input to generate. 

So, the authors o f  [PaSh07] extend this approach by observing that the frequent 

itemsets o f  the table T  can serve as good starting point for identifying this input. The 

idea is that if  a tuple t  contains a frequent itemset that spans som e o f  its attributes 

(which are called the representatives o f  /), it is possibly a good choice to leave them 

intact and consider the rest o f  the values as candidates for suppression. For each 

frequent itemset (frequent being the itemset with support larger than k  in this paper) 

w e compute the set o f  all tuples o f  T  that contain it; this set is added to a set F'fq 

which is inserted as input to the proposed algorithm. Several adjustments are also 

made in the algorithm, since it is possible that some o f  these sets are too large (larger 

than 2 k A )  than what is necessary. Moreover, the authors prove that instead o f  

frequent itemsets, it is also possible to operate with closed frequent itemsets with the 

same approximation factor. In fact, the authors show  that it is also possible to 

constrain the size o f  the suppression length by a factor o f  β  with a bounded scale 

factor o f β  to the approximation factor. Finally, the authors provide a greedy 

algorithm that takes as input the subsets o f  T  that are based on the closed frequent 

itemsets o f  T  and sorts them with respect to their suppression length in increasing 

order. Then, the algorithm each time picks the next set o f  tuples and retains only its 

tuples not already covered; this new set is considered as a possible group o f  the final 

partition if  its size is larger or equal than k. The authors have experimented with data 

sets o f  varying size; these experiments demonstrate that this last algorithm is 

significantly faster and provides a very good amount o f  suppression to the data set.

C urse o f dim ensionality  on k-anonym ity. In [Agg05] the author tries to prove that 

the amount o f  suppressed data increases more and more as the number o f  the
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attributes that can act as quasi-identifiers increases. The author starts with a 

theoretical analysis o f  how achieving k-anonymity via generalization relates to the 

probability that k-anonymity is violated for an arbitrary record in a data set. The 

author assumes that every attribute in the dataset can serve as a quasi-identifier. Also, 

the author assumes an identical normal distribution for a set o f d  independent 

dimensions o f  quantitative (i.e., not categorical) nature. Moreover, the method o f  

generalization is reduced to replacing a tuple with the range o f  a surrounding “cell” 

* around it (practically assigning a range o f  values for every dimension). Then, the 

author proves that the probability o f  achieving k-anonymity tends to zero as the 

number o f  dimensions rises to infinite. This practically means that since no data point 

in the data set can achieve k-anonymity at high dimensionalities, all the data set will 

have to be suppressed. Similarly, the second result o f  the paper relates to 

anonymization via clustering and demonstrates that as the number o f  dimensions 

tends to infinite, the replacement o f  a value by its appropriate cluster is meaningless, 

as the highest possible distance o f  two points in each cluster in the high-dimensional 

space is practically the same with the maximum distance o f  any two points in the 

whole data set. Finally, the author performs a simulation study for the aforementioned 

results and works with two data sets: (a) a synthetic data set containing 10000 points 

and 50 dimensions, generated in a way that the number o f  clusters can be regulated 

and (b) a market basket data set generated via the IBM generator, which contains data 

with higher skew. In both cases, the amount o f  suppressed tuples quickly rose from 

0% in low dimensionalities to 80-90% in high dimensionalities for the simple case o f  

2-anonymity.

This is one the few  papers dealing with the problem o f  suppression in k-anonymity. 

The paper is focused to the theoretical study o f  the effect o f  high dimensionality to the 

suppression; since these theoretical results demonstrate that high dimensionalities are 

rather prohibitive for anonymization, w e have constrained ourselves to more practical 

settings that we have explored thoroughly. So, in our approach, w e explore the 

problem taking into account various other parameters (hierarchies for the 

generalization, different values o f  k, different privacy criteria, and a more constrained 

approach to the dimensionality o f  the data sets, as compared to the theoretical limits 

of[A gg05]).
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CHAPTER 7. CONCLUSIONS

The goal o f  this thesis has been to extend our documented knowledge and proposed 

on-line methods for the problem o f privacy preserving data publishing. The ultimate 

goal pursuded by this thesis is to equip the data curator with the means to fine-tune 

several parameters around the privacy-preserving publishing o f  his data with other 

stakeholders by negotiating the values o f  suppression, generalization and privacy 

criterion in user-time, in order to quickly reach a consensus on the anonymization  

scheme among all interested stakeholders. Specifically, in this thesis we have attacked 

the following problems, not previously explored by the research community.

The f i r s t  g o a l o f  th is  thesis  has been  to  s tu d y  th e  in te rp la y  o f  suppression , 

g e n era liza tio n  a n d  p r iv a c y  criter io n  a n d  re c o rd  h ow  ch a n g es  to  one  o f  these  

p a ra m e te rs  a ffe c t the  tw o  o th e rs . This would also determine whether the problem is 

worth investigating or not. We have worked with the criteria o f  k-anonymity and 

sim ple l-diversity over two data sets, the Adult and the IPUMS data set and our 

findings can be summarized as follows:

O verall, w e can  sa fe ly  c la im  th a t the  p ro b le m  is  v a lid  a n d  im portan t. L o w  

g en era liza tio n  h e ig h ts  (th a t a re  o f  m ore  in te re s t to  u s d u e  to  th e ir  in fo rm a tio n  utility), 

o r  la rge  va lues  f o r  the  p r iv a c y  criter io n  (w h ich  is  o f  m ore  in teres t to  us due  to  the  

in c re a sed  p r iv a c y  it  o ffe rs  to  ind ividua ls), o r  e rro n eo u s cho ice  o f  g e n era liza tio n  

sch e m e  c a d  re su lt in  la rge  a m o u n ts  o f  su p p re sse d  data, qu ite  p o s s ib ly  m uch  h ig h er  as  

co m p a re d  to  m ore  c a re fu l c h o ices  co n cern in g  the g e n era liza tio n  schem e.

Our detailed findings concerning the relationship o f  the involved parameters can be 

summarized as follows:

-  As the generalization height increases, the suppression drops quickly at small 

heights; the drop in suppression is less important in higher heights, where the
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number o f  suppressed tuples becomes statistically small and drops slowly. 

Interestingly, the overall trend for the decrease o f  suppression is practically the 

same for different values o f  k  or /  -  o f  course, with different amounts o f  

suppressed tuples.

-  As the value for the privacy criterion (e.g., k  in k-anonymity) increases, the 

suppression increases too. This is especially important in lower heights o f  

generalization that are both important due to their information utility and 

demonstrate high volumes o f  suppression.

-  As the size o f  the quasi identifier set increases, the effect to suppression is 

significant, as suppression increases too -  som etim es drastically. Som e 

quantitative evaluations around this theme suggest that (a) given a specific

" height and k an increase in QI size by one increases the suppression by a 

factor o f  2 -  3; (b) to attain the same suppression threshold an increase in QI 

size by one, requires ascending 1-2 levels for k-anonymity and 2-3 levels for 1- 

diversity.

-  Not all attributes, generalization levels and, consequently, generalization 

schemes have the same effect to suppression. It is noteworthy that within the 

same height, the minimum possible suppression is approximately 2.5 times 

lower than the average for k-anonymity and 3 times lowers for 1-diversity. 

This is especially evident in cases where the suppression has high values or 

values that cannot really be tolerated; on the other hand, for too large values o f  

suppression (e.g., too large QIs or k) the relationship between average and 

minimum value does not follow  this rule.

-  Based on the above, it is important that for case that do matter, and where we 

can really attain good amounts for tuple suppression, it is really important to 

carefully pick the generalization schem e that w ill minimize this suppression. 

The faster w e identify these generalization schem es the faster the process 

completes.

A sec o n d  g o a l o f  th is  thesis  w as to  p r o v id e  e ffic ien t w a ys  th a t a llow  the  u ser ach ieve  

an anonym ous d a ta  se t w ith  co n stra in ts  over  the  g e n era liza tio n  height, the  am oun t o f  

suppression  a n d  the  tunab le  va lue o f  the  p r iv a c y  criterion . A  third, r e la te d  g o a l has
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been the ab ility  to p ro v id e  su g g es tio n s  to  the  user th a t a re  c lo se  to  h is o rig ina l 

desidera tum  a ro u n d  genera liza tion , su p p ressio n  a n d  p rivacy .

We have attacked the above two goals via three methods. Both methods are based on 

precomputing statistical information for several possible generalization schem es (i.e., 

triplets o f  values for the minimum allowed value for the privacy criterion, the 

maximum allowed value for the generalization heights per attribute and the maximum  

tolerable amount o f  suppression). We organize generalization schem es in a lattice and 

compute histograms (appropriate to the employed privacy criterion) for the nodes o f  

the lattice.

The first method we have employed pays the price to precompute the histograms for 

all the nodes in the lattice. Then, at runtime, the user gives as input three values, one 

for each o f  the abovementioned criteria as a desirable constraint. The algorithm we 

have introduced checks whether there exists a possible solution to the that satisfies all 

criteria and outputs either the schem e o f  lowest height that can respect all three 

criteria or, alternative schem es that provide relaxations to the user input. The three 

relaxations are based on the idea o f  keeping the two o f  the three values o f  the user 

input fixed and finding the closest possible approximation for the third parameter. We 

have proved that the proposed method is guaranteed to provide the best possible 

answers for the given user requests. Our experiments indicate that this is performed in 

less than 10 m illiseconds for typical data sets used in the research literature.

However, the method com es at a price, and specifically, at the price o f  precomputing 

the histograms for all the nodes o f  the lattice. This precomputation requires several 

minutes (e.g., our experiments gave 20-40 minutes for the largest quasi-identifier 

sets). In one wishes to avoid this precomputation w e provide a second method that 

precomputes only a small subset o f  the lattice’s nodes with their histogram. To this 

end, we have also addressed the problem o f  which nodes o f  the lattice to select. Our 

approach is based on the ranking o f  generalization levels with respect to their 

grouping power (since, the larger the groups, the less the suppression). Then, w e try to 

rank the combinations o f  levels for all the possible generalization schemes and pick a 

fixed subset o f  them (e.g., 5%). Our experiments demonstrate a linear speedup o f  the 

precomputation time with the approximation factor. The on-line answering has been 

sped up (due to the significantly smaller size o f  the lattice) and remain within few
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milliseconds per user request. At the same time, the quality o f  solution is quite good 

for (a) the case where an exact answer exists and (b) the relaxation requires exploring 

the full lattice. The price to pay however, is located in a couple o f  relaxations where 

the proposed solution is either gravitated towards lower nodes in the lattice (and 

provides, thus, solutions with high suppressions), or, fails to give an answer at all.

Finally, by observing that the two out o f  the three approximations are due to the top- 

acceptable node, w e have proposed a third method that computes the histogram o f  this 

node at runtime. Based on our experiments, the time penalty for this extra 

computation is in the order o f  0.1 -  0.3 sec and the two relaxations that suffered in the 

previous approach demonstrated an identical behavior to the case o f  the full lattice; 

therefore, i f  this time overhead can be tolerated in terms o f  user time (and for the case 

o f  our experiments we believe it does), then the quality o f  solution improves 

drastically.

Future work can take up on our results and explore alternative directions. A first 

possible way to go is the attempt to come up with some deeper understanding o f  the 

laws connecting the problem parameters and the measurable effects. So, 

experimentations over different data sets are required to observe the interrelationships 

o f the parameters and how they affect the amount o f  suppression needed.

Second, we could extend the negotiation to other directions that could serve user 

needs. Maybe a user decided that some o f  the attributes make the negotiation difficult 

and wants to get rid o f  them. Or maybe, a user decides that the full domain 

generalization method that w e support is not good for him and he would like to work 

with an alternative anonymization method. Maybe the user would like to have a quick 

preview on what results data mining tools can give for the anonymization scheme that 

our method proposes. All these possible user needs, provide unexplored turf for 

subsequent research

✓
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