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IMnpogopixig, IMavemompio loavviveov, lodviag, 2014. Opydvoon kot Avaffimon o€ Bdoeig

Ympeowvv Awdiktoov. EmPArénoviag: Andotohog Zappag.

H avantuén vmmpes1o-kevipikod AOyIopIKoY, Tapd TV apyikd vrooyouevn eEEMEN g, Oev
£xeL KaTapEper va avaderyBel o€ pia EVpENG XPNCHOTOI0VUEVT) TEXVOAOYia. Kipia artia yLavtd
AMOTEAEL 1| TEPIOPICUEVT] AMOTEAECUATIKOTNTO KOl ONMOSOTIKOTNTO TWV YPNCIUOTOLOVUEVHV
EQVIKOV avalimong: dev mpoceépoviar TpOmoL avalong OYETIKA pe tn dopn TV
VIMPECIDV, Y10 TO OMOI0 EVOIAPEPOVTOL TEPICOTEPO Ol TPOYPAUUATICTEG, EVA Kat O XpOVOG
avafiimnomng eivar vymiode, yiati anarteitoan Epevva KA vaMpeosiag, ondte 0 YPovog avalnTong

givan avaAoyog e Tov apiBpd TV VINPESIDV.

To cdompa AoSBM (Abstraction-Oriented Service Base Management), éva Aoylopiko
avoIKToD KAOdIKa, E1GGyeL o TexvViKY opadomotiong. Kdbe oudda yopakmpiletar and pa
ovvoyT, OV ALYETOL aQaipeat) VINPESIOY. Mid 0Qaipest) VINPESIOY AVTIIPOCHOREVEL pId
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ABSTRACT

P, D. MSc, Department of Computer Science and Engineering, University of loannina, Greece.
June, 2014. Organization and Search in Web Service Bases. Thesis Supervisor: Zarras,

Apostolos.

Service-Oriented Computing (SOC), despite emerging as a very promising trend for application
development, has failed to be widely used. The main reason for that is the limited efficiency
and effectiveness of the current search technologies; structured queries, which mainly concern
a developer, are not offered, while search time is high, since answering a query requires
matching it against all the services, thus meaning that search time scales with the number of

services,

Abstraction-Oriented Service Base Management (AoSBM) is an open source software that
introduces a clustering technique; the summaries that characterize the clusters are called service
abstractions. A service abstraction represents a group of services that have similar functional
properties (operations, inputs, outputs, etc.). The lookup queries are matched against service
abstractions, thus the query execution time scales with the number of services abstractions,

instead of scaling with the number of service descriptions.

We build upon the notion of service abstractions and the abstractions mining algorithm offered
by AoSBM to enable the organization of large unstructured collections of service descriptions
and the execution of service lookup queries. More specifically, we propose a service discovery
facility that we call service base. The main constituents of the service base are a distributed
abstractions mining facility that enables the clustering of large collections of service
descriptions, and a developer-friendly query engine facility that enables the execution of service
lookup queries over abstractions. Moreover, we developed a Web service that provides access

to the query engine and allows using the service base in a distributed setting.



CHAPTER 1. INTRODUCTION

1:1 Objectives
1.2 Thesis Structure

1.1 Objectives

The faster and cheaper Internet becomes, the more intriguing Internet Computing gets. Service-
Oriented Computing (SOC) is the most widely acknowledged paradigm for Internet Computing
[22]. Using services as reusable software components makes application development faster,
easier and cheaper. More than that, a great opportunity for distributed applications development
is emerging, as one does not need to own vast computational facilities in order to execute heavy-
weighted processes. In fact, such a process can be substituted by a distributed one which can be

executed even in heterogeneous environments.

Although much attention has been focused on services over the last few years, both in terms of
research and technology, the expectations that SOC would serve as a major medium for
Business to Business (B2B) and Business to Consumer (B2C) interaction has not been fulfilled.
As the authors in [7] denote, the business applications using third party web services as part of
their functionality are very few. Rather than that, businesses prefer to develop their applications
from scratch and, therefore, web services remain much more a convenient wrapping
technology, than a basic construct for serious enterprise applications. To deal with this, there is

a need for efficient and effective service discovery facilities.

The typical service discovery approaches involve two key actors; the service providers who

register information about the services they provide in a service registry (centralized, or

Ll |



distributed) and the service consumers who perform lookup queries over the contents of the
registry. To enable efficient and effective querying the information that is stored in the service
registries is typically organized according to a particular classification schema that is exploited

by the providers towards the registration of the services that they provide.

Recently the availability of service crawlers that crawl the web and collect information about
large collections of services introduced a shift in the conventional service discovery paradigm
[1,7, 25]. A large collection of services that is returned by the crawler is stored in the registry.
By default the information is not structured in any way. The implication of this is that
answering a query requires matching it against all the services, which in turn means that the

query execution time scales with the number of services.

A possible solution to this problem is to treat service descriptions as documents and employ
typical document indexing techniques for efficient information retrieval. Another possible
solution is to employ typical clustering techniques that group similar services and construct a
summary for each group (e.g. , tags). The main drawback of these solutions is that they only
support keyword based querying, which may be adequate in the case of the retrieval of
documents, but really unsuitable in the case of services. In the case of services we have to keep
in mind that the typical query author is a developer. The main concern of the developers is to
ask structured queries for services that offer certain operations, which have certain inputs,
outputs, etc. To cover such requirements we need a clustering technique that not only groups
similar services, but also summarizes each group in a form that can support the matching of

structured queries.

Athanasopoulos et al. [6] proposed such a clustering technique; they call the summaries that
characterize the clusters service abstractions. A service abstraction represents a group of
services that have similar functional properties (operations, inputs, outputs, etc.). Moreover, a
service abstraction is characterized by an abstract interface and a set of mappings between the
abstract interface and the concrete interfaces of the represented services. The original purpose
of this technique was to be executed over a small set of services, so as to find groups of similar
services that can substitute each other. Nevertheless, the concept of service abstraction can also
be applied to enable the execution of efficient service lookup queries. The main idea in this

case is to group similar service descriptions with respect to service abstractions and match
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lookup queries against service abstractions, instead of matching them against service
descriptions. Doing so implies that the query execution time would scale with the number of

service abstractions, instead of scaling with respect to the number of service descriptions.

Unfortunately, the main problem with this approach is that the algorithm that mines service
abstractions is computationally and resource demanding. Hence, it does not scale for large
collections of service descriptions. As stated in [13], a significant growth in the number of
available service descriptions is anticipated. According to [1, 11, 14, 15], from 2003 till 2009,
the amount of available service descriptions progressively increased from few hundreds to
thousands. Moving on to the future, as documented in the EU FI Assembly vision document
[12], from 2010 to 2015, the number of available service descriptions is expected to scale up to

millions, while beyond 2015, this number is expected to grow up to billions, trillions and so on.

In this thesis, we build upon the notion of service abstractions and the abstractions mining
algorithm proposed in {6} to facilitate the organization of large unstructured collections of
service descriptions and the execution of service lookup queries. More specifically, we propose
a service discovery facility that we call service base. The main constituents of the service base

are the following;

* A novel, scalable, distributed abstraction mining facility that makes the clustering of large
collections of service descriptions feasible. The proposed facility is part of a relational
storage facility that stores service abstractions along with the collections of service

descriptions that are represented by the service abstractions.

* A query engine facility that enables the execution of service lookup queries over
abstractions. Moreover, we developed a Web service that provides access to the query

engine and allows using the service base in a distributed setting.

1.2 Thesis Structure

We organize the rest of this thesis in six chapters; Chapter 2 probes further into the ideas beyond
the existing Web services search systems, by analyzing the way they collect, organize, classify
and retrieve Web services. Chapter 3 details the system proposed by [6], AoSBM, which served

as the basis for our development. Chapters 4 and 5 present our contribution; in particular,



Chapter 4 presents our distributed version of the AoSBM’s abstractions mining process, while
Chapter 5 comprises our developed query engine. In Chapter 6, we present our experiments on
the distributed abstractions mining process, measuring its execution time, as well as the
execution time and the quality of the results for specific query workloads posed to the service
base produced by our distributed abstractions mining process. Finally, Chapter 7 concludes this
thesis, and sets a number of significant challenges concerning Web services organization and

retrieval.

R
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CHAPTER 2. RELATED WORK

The baseline approach adopted for the interaction between service providers and consumers is
based on the idea of a public service registry, acting as the broker who brings together providers
and users, as illustrated in Figure 2.1, while the data model mostly used is the one that has been
proposed in the Universal Description Discovery and Integration (UDDI) specification.
According to this, service providers who want to publish and advertise their services, must
provide appropriate meta-data to the registry. These meta-data can be divided in three
categories, (a) white pages, where businesses express their identity, (b) yellow pages, where
they categorize their services and (c) green pages, where technical description for the services
invocation is provided. For the technical description, UDDI proposes the use of tModels
(technical models), while mappings to corresponding WSDL documents are also supported.
Then, developers interested in finding useful web services as components for their applications,
_can search for them in two ways; either by browsing the registry, or via keyword (or value) -
based search facilities. The most well-known attempt to provide such a public repository was
the UDDI Business Registry (UBR) supported by IBM, Microsoft and SAP. The big drawback
of such attempts, however, is the fact that they rely almost exclusively on human maintenance,
i.c. on providers, without making any attempt of periodical checking for invalid or outdated
services. Consequently, either the quality of their contents quickly degrades and becomes
unusable, or, if maintenance is employed, the overhead of maintening is so large that far

outweighs the benefits.

Search engines emerged as the newer trend for finding services, starting from the big search
engine corporations, like Google, Amazon and Yahoo, who decided to publish their Web
services through their own websites instead of using public registries. This enables developers

to discover web services using a search engine model. Additionally, these sites generally exploit

™
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their web page crawling technology by using it to capture WSDL documents, since nowadays
there are plenty of WSDL documents publicly accessible. These crawlers also apply some kind
of automatic maintenance, by periodically updating their contents and removing invalid
services. Al-Masri et al. [1] show that services registered in public registries are decreasing in
contrast with services crawled by search engine’s crawlers. In addition to this, more than 53%
of the UDDI business registry registered services are invalid, while 92% of Web services
cached by Web service search engines are valid and active. Thus, it is more effective. and has
become more common, to use search engines to discover Web services, in comparison with

UDDI registries.

Service Broker
(Registry)

publish

Service Provider bind J Service Consumer

Figure 2.1 Standard service interaction model.

Atkinson et al. [7] created a crawler which crawls source code along with service desriptions,
testing four different retrieval techniques. The two of them were signature matching and
keyword searching, based on source code. The other two were name matching and abstraction
matching, based on the service interface. The experiments showed that name and interface-

driven forms of search provide significantly better precision than simple text-based approaches.

Indexing and managing Web services in the same manner as Web pages, though, results in very
limited searching choices offered to users, specifically keyword matching on names, locations,
businesses, and buildings defined in the Web service description file. This happens because
typical search engines indexing processes do not take into consideration the semantic structure
of a Web service description, which is the most essential conception regarding the user. For
instance, a developer would like to search for a service that offers a function with 2 input
parameters, both of type String, and 2 output parameters, one of type Double and one of type

Integer. This kind of queries are not supported by search engines. In addition to this, the search



terms entered by the user must partially match those indexed by the search engine for a specific
service, i.e. if the query term does not contain at least one exact word such as the service name,
the service is not returned. The user must, therefore be aware of the concise keywords in order
to retrieve the most relevant services that match the request, however, most developers are
mainly concerned with functionality rather than exact naming. A user may not even retrieve
services with synonyms on their descriptions, which often leads to low recall. For example, a

query looking for “city”” may fail to return a service containing *“town™ in the results.

A naive approach to confront this problem is to perform a broad matching process which would
return a large number of services, most of which may not be of interest to the user. This method
would increase the recall but would also decrease the precision of the query results. Another
approach that has been proposed is to annotate Web services descriptions with tags coming
from a reference ontology. Using tools that exploit the semantic relationships of the ontology’s
terms, like synonyms, would take advantage of semantic information contained in services
descriptions [18, 21, 23]. Nevertheless, such an approach would be an obstacle towards

scalability.

A newer approach attempting to overcome these drawbacks is clustering Web services into
semantically similar groups. This would dramatically reduce the search space while at the same
time improving the matching process, leading to a much better trade-off between query
execution time, precision and recall. The main idea is that each cluster has a representative (like
summary tags), which is one of its contained services or an abstract one, and a query will search
only representatives. If a representative matches the query terms, all the services of the cluster
are returned as result, as all these similar services may be of user’s interest. Regarding this
approach, various methods have been proposed, which either employ well-known clustering

algorithms [10, 20, 25] or classification techniques [16].

Authors in [10] presented a clustering approach that uses five key features extracted from
WSDL documents in order to group Web services into clusters of functionally similar services.
These features are service name, content, types, messages and ports. For the content extraction,
they initially parse the whole WSDL document, remove tags and apply word stemming (for
example, “connect”, “connected”, “connecting”, “connection” all have the same stem

“connect”). Afterwards, they remove function words using a Poisson distribution to model word




occurrence in the document, thus distinguishing function words from content words. Then, k-
means algorithm with k = 2 is applied to the extracted words, in order to distinguish general
computing words, like “data”, “web™, “port™, etc. from the actual content words. The distance
measure that is used between words is Normalized Google Distance (NGD) [8]. which is also
used to measure the distance between the names of the services. Quality Threshold (QT)
clustering algorithm is used to cluster services, with a similarity function that counts for the
five aforementioned features. The authors experimented on 400 services gathered from real-
world service providers. They applied their approach as well as a similar one, presented in [17].
The latter approach differs only in that it counts for service context and service host name as
well. They evaluated the two approaches by measuring the precision and recall of the clusters
created. The comparison base was the clusters that the authors manually extracted. Experiments
showed that their approach improves the quality of the retrieval, compared with the other

approach.

The main drawback of these solutions is that they only support keyword based querying, which,
as mentioned before, is not adequate for developers who want to ask structured queries. Taking
a step further, in [6], the authors proposed a clustering method that could be used for more
advanced queries. The authors of [6] were mainly concerned about the development of an
adaptation middleware that provides an abstract level of service reuse, hiding the details of
various alternative design options, i.e. the different services with similar functionality. The
adaptation takes place, by substituting the concrete services that are hidden behind the
composed service abstractions. For that, a systematic approach for extracting service
abstractions out of the vast amount of services that are available all over the web, is analysed.
The core of this approach is an agglomerative clustering algorithm that takes as input Web
service descriptions gathered by crawling the Web, and constructs a hierarchy of service
abstractions. The similarity function used for the clustering accounts for names of service,
operations, messages and parameters, as well as the types of parameters. Finally, the woogle
data set is used for the evaluation of this approach [9]. There were found relatively high
percentages of useful abstractions, meaning those that actually represent semantically

compatible services.




CHAPTER 3. BACKGROUND - BASELINE

3.I'Overview

3.2 Main Memory model

3.3 Database Model

3.4 Service Base Query Language (SBQL)

3.5 Mining Service Abstractions

3.1 Overview
The authors in [6] propose the idea of an Abstraction-Oriented Service Base Management
(AoSBM), a stand-alone system designed to facilitate service discovery and adaptation, relying
on the concept of service abstractions. The AoSBM is available as open-source software under
GPL License'.

Intuitively, a service abstraction represents a group of services that offer similar functional
properties; it is characterized by an abstract interface, i.e, a service interface constructed to
represent the interfaces of the group of services, and a mapping between the abstract interface
and the interfaces of the represented services. The system manages a database in which both
information concerning services and abstractions is stored and retrieved via the AoSBM'’s
facilities. To assist in efficient and structured querying, a major need for programmers, the
authors of [6] proposed a specific query language called Service Base Query Language (SBQL),
a language tailored to the concept of abstractions. The SBQL query is matched against

abstractions, instead of being matched against service descriptions of concrete services.

! hitp://www.choreos.eu/bin/view/Documentation/Abstraction_Oriented_Service_Base_Management
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Therefore, the query execution time scales up with the number of abstractions, instead of scaling

up with the number of available services. Figure 3.1 provides an overview of the main AoSBM

facilities.
1
Abstraction-oriented Service Base Management (AoSBM)
1 |
Service Registration Service Discovery
1 1
Browsing Engine || Querying Engine
| ~ |
~
| ~ {
I NG l ¥
Abstraction-driven Abstraction Base
Service Organization

Figure 3.1 Overall architecture of the Abstraction-oriented Service Base Management?.

The ServiceRegistration facility is responsible for populating the AoSBM with
information about services, gathered from collections of service descriptions. The
collections of service desriptions are provided by the end-user of the AoSBM. The
collections of service descriptions are given as input to the ServiceRegistration

facility, then they are parsed and transformed to objects that comply with the service
model, which we detail later.

The Abstraction-driven Service Organization facility realizes the main
algorithms that construct hierarchically structured abstractions for the service model
that resulted from the registration of a collection of service descriptions to the
ServiceRegistration facility. The abstractions comply with the abstractions
model, which we detail later. In particular, the Abstraction-driven Service

Organization facility comprises a hierarchical clustering algorithm that produces

http://www.choreos.eu/bin/download/Share/DeliverablessfCHOReOS_WP02_D2.3_CHOReOS-dyn-develop-
process-meth-and-tools_V3.0.pd{


http:///vw/v.choreos.eu/bin/do/vnload/Share/Deliverabies/CHOReOS_WP02_D2.3_CHOReOS-dyn-develop-process-meth-and-tools_V3.0.pdf
http:///vw/v.choreos.eu/bin/do/vnload/Share/Deliverabies/CHOReOS_WP02_D2.3_CHOReOS-dyn-develop-process-meth-and-tools_V3.0.pdf
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clusters of service descriptions, which provide similar functional properties. For each
cluster, the hierarchical clustering algorithm constructs a corresponding functional
abstraction.

» The AbstractionBase is the relational store (developed over MySQL) that is used
to store information about service descriptions and service abstractions. The schema of
the relational store, which mainly mirrors the service model and the abstractions model,

is defined later.

The ServiceDiscovery facility provides the basic means for exploring the information
that is stored in the AbstractionBase. In particular, the QueryEngine accepts as input
SBQL queries, which are matched against the information that is stored in the
AbstractionBase, and provides as output service and abstraction related information that

satisfies the issued queries.

3.2 Main Memory Model

3.2.1 Service Conceptual Model

Figure 3.2 depicts the representation of the service model concepts that concern services,
including service interfaces, service instances, messages and their structure. The center of the
service model is the notion of ServiceInterface which comprises a collection of
ServiceOperation objects. The ServiceOperation concept comprises information
regarding input and output messages. The Message concept carries a set of types
parameters/fields (coded as message types and components in the Web service model). The
ServiceInterface concept is further associated with ServiceInstance objects that
represent  information concerning the actual service endpoints (URIs). The
ServiceCollection concept groups service information that comes from a specific

provenance.

3.2.2 Abstraction Conceptual Model
Figure 3.3 depicts the representation of abstractions, in terms of a class diagram. Abstractions

form  hierarchies that include FunctionalAbstraction objects. The
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FunctionalAbstraction concept contains information concerning a set of structurally
similar interfaces. More specifically, the FunctionalAbstraction concept is
characterized by (a) the set of the interfaces that are represented by the functional abstraction,
and, (b) an abstract interface, which stands out as a representative for the represented interfaces.
The represented interfaces have been described in the service model of the previous subsection;
the representative interface is similarly characterized by ServiceOperation, Message
and Parameter objects. The interesting part is that we record the mappings among
represented and representative interface (also keeping trace of their similarity in the form of a
distance attribute); this happens for interfaces, operations and messages. Abstractions form tree-
like hierarchies with abstractions at higher levels being composed as the “union™ of a set of

abstractions at the lower level.

ServiceCollection Operation
id :int name : String
. p . String
0.1 0.. pre . String
post: String
dbkey - int
dbAbstractionKey : int
0.*
Servicelnterface 0.1 0 1<f
name : String
p: String 0.1 InMessage | OutMessage
b : String U
C : String ™~
dbkey - int 0..1 0.1y
dbAbstractionKey : int Message
name : String
0.1 constraintviolation : String
dbkey : int
dbAbstractionKey : int
inOrOut . String
0.* 0.1
Servicelnstance 0.1
name : String
protocol . String MessageType
url : String name : String
d : String type : DeclaredType
R: String constraintViolation : String
dbkey : int dbkey :int

Figure 3.2 Service conceptual model.
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Figure 3.3 Abstraction conceptual model.



3.3 Database Model
We briefly describe the database model concerning the representation of services, service

interfaces and their components, service instances and abstractions inside the Service Base
that is used for persistent storage. The authors in [6] employed a relational DBMS, namely
MySQL, for the storage and ultimate querying of the Service Base. They stressed that they
employed typical and standard features of practically all mainstream relational DBMSs both in
terms of representation and querying; therefore the usage of other DBMSs as persistent storage
and querying engines is straightforward. Roughly, the database model comprises relations (a.k.a
tables) that correspond directly to the concepts of the service representation model. In order to
distinguish between the concepts of the service representation model and the relations of the
database model, we employ a different naming convention for the relations; relations are named

with lowercase letters.

3.3.1 Service Storage Model

Figure 3.4 depicts the part of the database model that concerns services and their internal
structure. The notion of aggregation in the object oriented paradigm is modeled via foreign key
relationships in the relational paradigm. Observe the upper middle part of the figure; there is a
1:M relationship between relations serviceinterfaces and serviceoperations,
representing the fact that a serviceinterface object encompasses one or more
serviceoperation objects. This is modeled via a foreign key from relation
serviceoperations to the primary key of relation sexviceinterfaces; specifically,
attribute OP_SI ID in serviceoperations is a foreign key (and thus, a subset of)
attribute SI_1ID in relation serviceinterfaces. The same pattern appears consistently
throughout the database schema. In Figure 3.4, starting from right to left, service interfaces
include operations that include messages that include parameters (relation message types).
Service instances (bottom of the figure) are also linked to their respective service interfaces for

a foreign key.

3.3.2 Abstraction Storage Model
Figure 3.5 depicts the part of the database model that concerns abstractions and how they are
related to services. A functional abstraction includes several interfaces that it represents via

relation representedintexfaces. A representative interface of a functional abstraction
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is captured via relation representativeinterfaces. A representative interface's
decomposition in its parts is captured via the line of relations
representativeoperations and representativemessages. The mappings
between the parts of the abstraction's represented interfaces and the respective parts of the
components of the representative interface of the functional abstraction are depicted in the

middle “line” of the Figure 3.5.

o Prerm———— Doperations ¥
b ' s};m INT(11) | OP_ID INT(11)

» SI_NAME VARCHAR(160) v OP_NAME VARCHAR( 160)

~ SI_PROFILE VARQHAR(160) ' OP_PROFILE VARCHAR(150)

*SIBEMAV VARCHAR(SO0) | S > OP_PRE VARCHAR(150)
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it an el | 8 vy

S——

Dmessagetypes Y
* MT_ID INT(11)

2 MT_NAME VARCHAR(160)

‘w MT_PREFIX_TYPE VARCHAR(160)
> MT_TYPEKIND VARCHAR(10)

‘- MT_TYPE VARCHAR(160)

@ MT_MS_ID INT(11) ;

L e >4

Figure 3.4 Service 'stdrageﬁinc‘)del. o
Finally, in Figure 3.6 we give the part of the database schema that concerns the abstractions,
their properties and inter-relationships. As one can see, service collections include hierarchies
that, in turn, include abstractions. The abstractions form hierarchies and relation hierEdges

captures the mother-child ancestor-descendant relationship.
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Figure 3.5 Abstraction storage model.
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Figure 3.6 The basic database relations concerning abstractions and their hierarchies.

3.4 Service Base Query Language (SBQL)
Hereafter, we present the Service Base Query Language (SBQL). We begin with the main

concepts of the language. Then, we give the syntax and the semantics of the SBQL language.

3.4.1 Basic Concepts - Generalized Trees for Querying Services

The querying of the Service Base requires the query author to think of the database as a
generalized tree. As we will describe later, a generalized tree is a graph that resembles a tree a
lot; however there are nodes that break the fundamental property that a tree's non-root node has

exactly one father, and consequently, we use the -hopefully intuitive- term generalized trees.

To query the abstraction's part of the Service Base schema (i.e., to retrieve abstractions),
we think of this part of the schema as a tree. The model that the query author has to keep in
mind is depicted in Figure 3.7. We call this tree the Generalized Tree of the Service Base at the

Schema Level and we textually detail the parts right away.

® A service collection contains several hierarchies of abstractions
® A hierarchy contains several abstractions.

* Functional abstractions have representative interfaces.

» These representative interfaces have operations.

= Each operation has input and output messages.

* Each message has a set of parameters.
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hierarchies

f-abstractions

Eunctional
Abstraction

representative interface

Interface

Q rsi_neme

representativeloperations

Operation

Q rop_name

representative messages

Q rms_name

representativelmessage types

Parameter

Q rmt_name
Q rmi_type

Figure 3.7 The tree that abstracts the structure of functional abstractions at the Schema Level.
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let $db = db{‘localhost/mySB’)
for $c in $db/servicecollections
for $fa in $c/hierarchies/abstractions
for $if in $fa/representativeinterfaces
for - %0l in $if/representativeoperations
for $02 in $if/representativeoperations
for $pl in $ol/representativemessages/representativemessagetypes
for $p2 in $o2/representativemessages/representativemessagetypes
for $p3 in $o03/representativemessages/representativemessagetypes
where
$if/rsi_name like ‘$SMSSend$%’ and
$opl/rop name like ‘$sendMe%’
$op2/rop_name = ‘exactSearch’ and
$pl/rmt_name = ‘Sender’ and
$pl/rmt_type = ‘String’ and
$p2/rmt_name = ‘IP’ and
$p3/rmt_name = ‘text’
return

Abstractions.representativelnfo

Figure 3.8 A SBQL query example.

Except for the Generalized Tree of the Service Base at the Schema Level, the Service Base
involves service instances too. Instances are represented via the Generalized Tree of the Service
Base at the Instance Level. As the abstraction part of the Service Base obeys the schema
of the Generalized Tree of the Service Base at the Schema Level, its contents can form the

Generalized Tree of the Service Base at the Instance Level.

3.4.2 SBOL Syntax
Figure 3.8 gives an example of an SBQL query that queries the Service Base for functional

abstractions that are characterized by the following characteristics:

The abstractions that belong to the result of the query:
» have a representative interface whose name includes ‘SMSSEND’
* have two operations with the following characteristics

e The first operation has
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» aname which include the text ‘sendMe’
> an input message with two parameters: (a) a parameter with type ‘String’
and name ‘Sender’ and (b) a parameter with name ‘[P’

¢ The second operation has an output message with a parameter with name *“text’

ery returns to the user all the information concerning the functional abstractions that

fulfill the aforementioned criteria.

The general syntax of a SBQL query is given in Figure 3.9.

let databaseSpecifier
variableDefinitionArea
[where filterLlist)
return returnExpression
Figure 3.9 The general syntax of a SBQL query.
As can be seen, the syntax of the language largely follows XQuery. The reserved words that

distinguish the different parts of an SQBL query are presented with underlined format. We

discuss

each of these parts separately in the sequel, after we have formally defined their

constituent elements. These are:

Variables. A variable is an alphanumeric string that begins with a dollar sign ‘$’.
Path Expressions. A path expression is of the form

variableo/edge;/../edgen
A path expression is well-defined if the sequence of edge names creates a linear path in
the generalized tree of Figure 3.7.
Variable Definition. A variable definition is of the form

for variable in pathExpression,
i.e.,, for variable in variableg/edge;/../edgen

It is worth noting here that variables have a type, defined by the last edge of their path
expression. In our abstract notation, variableo has type edgey,.
Filters. A filter is an expression of the form

variable/field © value, ® € ( =, LIKE, <, >, <=, >=, <>}
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= Database Specifier. A database specifier characterizes which database we will query.

The syntax of a database specifier is
databaseVariable = db(database)

where databaseVariable is going to be used in subsequent variable definitions
and database is a string with the name of the database that we query (as understood
by the underlying DBMS).

» Variable Definition Area. A list of variable definitions. Variable definitions are
separated by newlines in the variable definition area.

» Filter List. A list of filters. More than one filters are connected by and connectors in
the filter list. The whe re clause is optional and consequently, the list may be empty; in
this case we assume that a filter with semantics true is implicitly implied.

= Return Type. The return type dictates what the ultimate result will be in terms of main-

memory representation and it is an expression of the form

Abstractions.returnType
where:

returnType € {RepresentativeInfo, fullObject}

3.4.3 SBQL Semantics
The semantics of the query language are largely based on the correct definitions of the
individual parts of a SBQL query. We will employ the term well defined to refer to the

individual parts whose declaration by the user makes sense.

*  Well Defined Variables. Every variable definition in the variable definition area
involves two variables, specifically, (a) the declared variable at the beginning of the
definition and (b) an auxiliary variable at the beginning of the involved path

expression.Then, every variable has

e An abbreviated path, which is the one appearing in the variable definition area
e A full path that is produced if we replace the auxiliary variable in the path

expression with its own full path

For this recursive definition to work, we need to define the full path for the auxiliary

variable(s) that appear in the database specifier, which is the empty set.
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A variable is well defined if its full path is a continuous path in the Generalized tree of
the Service Base at the Schema level, starting at collections and ending at the type of

the variable, as a simple line.

Well Defined Filters. A filter is a triple of the form

variable/field © value, ® € { =, LIKE, <, >, <=, >=, <>}
Assuming the variable to be of type T, filter is well defined if the field appearing in the

filter’s expression belongs to type T.

In the sequel we assume that all variables and filters are well defined; if not, the query

returns an error code and an empty result set.

Query semantics. The semantics of a query, i.e., the list of returned objects that
correspond to the application of the query expression over an arbitrary service base are

defined via the sequence of the following four steps.

1) The query takes as input the Generalized tree of the Service Base at the Instance
Level.

2) Each node is intended to be annotated with a variable as prescribed in the let
clause of the query. For every abstraction appearing in the let clause of the
query, all possible clones of its subtree with all the applicable combinations of
variable assignments are produced.

3) Every such clone is passed via the set of filters prescribed in the where clause
of the query. The semantics of the filter list are conjuctive; in other words, for a
subtree to become part of the result, all the filters of the filter list must evaluate
to true (see next). These subtrees are called survivor subtrees.

4) For every survivor subtree, its return graph of objects is computed, as prescribed

from the return clause of the query.

Filter Semantics. The semantics of a filter are as follows:
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o The input to the filter is a subtree of an abstraction as previously defined.

o The filter annotates a node in the tree. The node which is annotated is the one
resulting from the full path of the variable.

e The variable/field part of the filter’s expression is replaced with the
respective value of the node.

e If the resulting expression evaluates to true then the input path is added to the

result of the filter, i.e., its output; else nothing is added to the output.

A filter list is the conjunction of filters and each of them is applied to the appropriate
node. A subtree survives if all its filters evaluate to true. If the filter list of a query is
empty, we assume that a single filter with semantics rrue is added; thus all subtrees

evaluate to true without further checking.

*  Query Completion for the Return Type. After all survivors have been computed as
mentioned before, the part of their information that will constitute the final result
depends on the result type of the query. Specifically, for every survivor the following is

returned;

e If the return type is RepresentativeInfo, the information returned is the
one related to the representativelnterface attribute of the
FunctionalAbstraction class. What is returned is actually the full
ServiceInterface object that stores the information about the
representative interface of the functional abstraction, and its components,
belonging to classes Operation, Message and MessageType.

e If the return type is fullObject, the full FunctionalAbstraction

object is returned.

3.5 Mining Service Abstractions
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3.5.1 Basic Concepts
Figure 3.10 defines the basic concepts regarding services. their components and service
functional abstractions.These have already been depicted in the previous section, however a

more formal view is utilized here, for the needs of the abstractions mining specification.

ServiceInterface = (n : String, 0)

O = {opi : Operation}

Operation = (n : String, In : Message, Out : Message)
Message = (n : String, Ps)

Ps = {pi : MessageType)

MessageType
XMLDataType

Abstraction = (I : Servicelnterface, D, M)

(n : String, type : XMLDataType)

Builtin | Complex

D = {s; : Servicelnterface}
M= {mgi : I.0 - s;.0}

Figure 3.10 Definitions of basic concepts.

A service interface is specified in terms of a name and a set of operations, O. Each operation is
characterized by a name, an input message, /n, and an output message, Out. In general, a
message is hierarchically structured, consisting of a number of message types (also called
“elements” or “parts”), characterized by their names and their XML data types. The data type
of a particular message type could be either built-in or complex (i.e., a hierarchically structured
element, consisting of further built-in or complex data types). In their mining process, the
authors in [6] consider only the leaf elements of the message type’s hierarchical structure. The
reason for this choice is that the particular structure of the input and output data of an operation

adds further complexity, while not providing much useful information to the mining process.

Ideally, a service abstraction should represent a set of available services that have in common
a certain set of semantically compatible functionalities, realized by corresponding sets of
operations, which most possibly would be syntactically different. Finding within a given set of
services that were gathered by crawling the Web, services that provide common semantically
compatible functionalities is very hard. However, is has been empirically observed that it is
very frequently encountered to have semantically compatible services that provide syntactically

similar interfaces.
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Figure 3.11 Distance formulas between service constituents.

Then, to assess the similarity between two service interfaces, the authors in [6] rely on a distance
metric Dy, which is defined as follows (Figure 3.11). Given two interfaces s;, s; and a mapping
Mopi; € 5.0 % s;.0 between the most similar operations of the interfaces, the distance Dyfsi, s;)
is defined as the average of the Normalized Edit Distance (NED) between the names of the
interfaces, and the average of the distances between the mapped operations. The distance
bop(opi, op;) between two operations opi, op; is defined as the average of the normalized edit
distance between the names of the operations and the average of the distances of their input and
output messages. Given a mapping Mm; < m; x mj; between the most similar parts of two
messages mi, ni; , the distance between the messages is defined as the average of the distances
between the mapped parts. Finally, the distance between two message parts is defined as the
average of the normalized edit distance between their names and the normalized distance
between their build-in types NDr(type;, type; ); if these types are in the same branch of the
standard XML type hierarchy, then NDr(type;, type;) is the absolute difference of their depths,
divided by the maximum height of the XML type hierarchy (see Figure 3.12), otherwise it is
assumed that the types are incompatible and NDr (typei, type;) = .

Based on the previous concepts, a service abstraction is defined as a tuple that consists of: an

abstract interface  and a set of represented service interfaces D (Figure 3.10). Each operation
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of the abstract interface I is mapped, through a set of mappings M, to a set of operations,
provided by the represented interfaces. Specifically, for each service interface s; of D, M

comprises a one-to-one function ms; between the operations of I and the operations of si.

Finally, it should be noted that, in general, the interface a.] of a service abstraction a may be
included in the set of interfaces a’.J of another service abstraction a’. In other words, it is
possible to define a hierarchy that consists of higher level service abstractions, which represent

lower level service abstractions.
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Figure 3.12 The standard XML type hierarchy [24].

3.5.2 Agglomerative Clustering
The ultimate goal of the mining process is to construct the interfaces of service abstractions,
along with mappings between these interfaces and the interfaces of the represented services.

Following, we discuss the core steps of the proposed algorithm, while the interested reader may
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refer to the technical report [4] for further technical details. The mining algorithm accepts as
input a set of interfaces S = {s; : Servicelnterface}. The output of the algorithm is a set of
hierarchically structured service abstractions 4 = {a; : Abstraction}. To this end, the algorithm

iteratively performs the following steps:

Step 1: For every pair of interfaces s; € S, s; € S the algorithm finds the distance Dy (s, 5; ). To
this end, the most similar pairs of operations (opi, op;) € 5.0 x ;.0 (i.€., the mapping Mop;; -
Subsection 3.5.1) are found by solving the maximum weighted matching problem in a bipartite
graph [19]. The nodes of the graph correspond to the operations of s; and s; , while the edges
correspond to the distances between the operations. Finding the distances between two
operations op; € 5.0 and op; € 5;.0 involves finding the most similar pairs of elements for the
input messages (respectively the output messages) of the operations (i.e., the mapping Mm;; -
Subsection 3.5.1). This problem is also solved by solving the maximum weighted matching
problem in a bipartite graph that represents the input messages (respectively the output
messages). Note that in this step it is possible to calculate a distance between two interfaces that

equals to . This case may come up in two circumstances:

» The first possibility occurs if the best possible matching between messages results in at
least one pair of incompatible types. In such a case, it is considered that it is not possible
to create an abstraction out of the two interfaces.

* The second possibility occurs if the distance calculated exceeds a threshold that authors

in [6] have set.

Step 2: Based on the calculated distances the most similar pair of interfaces (s, ;) is selected
and an abstraction a is constructed as follows: By convention, the name of a./ is the longest
common substring of the names of s;, s;. For every pair of matched operations (opi, op;) found
in the previous step, a./ comprises a corresponding operation opa, named by following the same
convention. The input (respectively output) message of op., contains a message part p, for every
matched pair (pi, p;) of elements of the input (respectively output) messages of opi, opj.
Concerning the type of the input (respectively, output) element pa, we have pa.type = pitype if
pitype is higher (respectively lower) than p;.type in the standard XML type hierarchy;
otherwise, pa.type = pj.type.
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Step 3: The abstraction a is included in the result, i.e., 4 =4 U {a}. Moreover, the services that
are represented by a are removed from the input set, i.e., S =S - a.D. Finally, a./ is included in

S, i.e., §=S U {a.l}, so as to serve for the construction of higher level abstractions.

Step 4: The mining process repeats steps (1) to (3), until the input set comprises only one
element, namely, the root abstraction of the resulting abstraction hierarchy A4, which generalizes

all the available service interfaces, or until no further abstractions can be recovered.
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CHAPTER 4. DISTRIBUTED ABSTRACTIONS
MINING

4.1 Overview

4.2 General Idea

4.3 Phase 1. Standalone Subsystem: Service Collection Splitting

4.4 Phase 2. Standalone Subsystem: Pass Subcollections to Master Node

4.5 Phase 3. Master Node: Distribute Subcollections to Leaf Nodes

4.6 Phase 4. Each Leaf Node: Mine Abstractions Hierarchy, Prune it & Call Parent Node

4.7 Phase 5. Each Internal Node: Get Independent Abstractions from Children Nodes,
Join them, Mine Abstractions Hierarchy Over them, Prune it & Call Parent Node

4.8 Phase 6. Standalone Subsystem: Call Root Node to Get Final Result

4.9 Software Components and their Interaction

4.10 Data transmission and optimization

4.11 Random Choice Technique For Name Extraction

4.1 Overview

AoSBM posed some serious challenges towards, mainly, computational resources consumption
and scalability. The process of functional abstractions mining that the authors in [6] proposed
is not aimed at service discovery and cannot support large collections of services. Specifically,
using a conventional personal computer, we found that the process is feasible only for a few
hundreds of services, before the main memory is exhausted and the algorithm crashes. Even if

we tackle this by providing much more memory in some way, the process is also very time
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consuming, so that the number of services it could manipulate would not exceed a few

thousands.

Our contribution is facilitating the organization of large unstructured collections of service
descriptions, building upon the AoSBM’s conceptional models and its abstractions mining
algorithm. In particular, we have developed a distributed facility for abstractions mining, which
can be executed in a set of computers (nodes) and exploits the proposed abstractions mining
algorithm, extended with a pruning technique that retains only a part of the most useful
abstractions, thus improving the effectiveness and feasibility of the overall abstractions mining

process.

4.2 General Idea

Figure 4.1 illustrates a coarse-grained aspect of the architecture of our distributed abstractions
mining facility. The rectangle at the bottom represents our extension to AoSBM, i.e., a
standalone component which also uses remote software components to carry out its
functionality. The elliptical objects represent the software components installed at the
computational nodes that are to participate in the distributed process execution. These
components form a tree structure. Intense consecutive arrows represent a call to the respective
software component (the one at the arrow’s target), while numbers on them correspond to the
phase they are activated. The overall process comprises the following basic phases, which we

'brieﬂy mention here and further detail in the following subsections.

Phase 1: The input collection of service descriptions is divided into a number of subcollections,

equal to the number of leaf nodes. This phase is executed at the standalone component.

Phase 2: Subcollections resulting from Phase 1 are passed to a master node, which acts as the

connector between the standalone component and the remote software components.

Phase 3: The master node distributes the subcollections to the leaf nodes, by calling the

respective software component.

Phase 4: Each software component of a leaf node executes the following process (also depicted

by the brief textual description beside the respective elliptical objects): Firstly, it mines
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abstractions out of the subcollection of services, by employing the local algorithm proposed in
[6]. thus producing a hierarchy of functional abstractions. Then, by employing a pruning
technique that we analyze later on, it retains a part of the abstractions of the initial hierarchy.
thought to be the most useful ones. No hierarchical structure is formed between the retained
abstractions. Next, the retained abstractions are passed to the parent node, which is an internal

node, via a call to the respective software component.

Phase S: Each sofiware component of an internal node executes the following process (as
depicted by the brief textual description beside the respective clliptical objects): Firstly, it gets
the abstractions from the two child nodes and produces their union, i.e.. a single collection of
abstractions. Then, it mines abstractions out of this collection, by employing the algorithm
proposed in {6], thus producing a hicrarchy of functional abstractions. Then, by employing the
pruning technique we mentioned before, it retains a part of the abstractions of the initial total
hierarchy (forming no hierarchy). Finally, the retained abstractions are passed to parent node,
via a call to the respective software component. This phase is executed repeatedly, starting from

the leaves of the first category tree and ending to its root.
Phase 6: The initiator standalone component calls root node to get the final result.

As can be deduced from Figure 4.1, the sofiware components that must be installed to the
'depicted tree’s computational nodes so that the proposed architecture functions, should offer
two functionalities, one that exccutes the abstractions mining algorithm proposed in 6], and
one that executes our pruning technique. As for the master node, here there is a need for a
functionality that serves for the master’s broker facilitics, i.e., calling the leaf nodes by also
passing them the subcollections, getting final results fron the root node and sending them to the

standalone component.

We deployed these functionalities as services, which offer respective mecthods. As our
architecture dictates, the execution of our distributed abstractions mining facility forms a
choreography, with one service calling another, until the standalone component gets the final

results from the root node.
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Figure 4.1 General architecture of distributed abstractions mining facility.

4.3 Phase 1. Standalone Subsystem: Service Collection Splitting

As we mentioned in the previous subsection, at Phase 1, our standalone AoSBM component
divides the input service collection into a number of subcollections, equal to the number of leaf
nodes. The purpose of this step is that each subcollection will later be passed, via the master

node, to a leaf software node. At this point one would wonder how this function is aware of the
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available master node, the rest software nodes, and their exact tree structure, so as to know what
the leaves are. The fact is that the available nodes and the master node are provided as input by
the user, which must define this input with a simple text file, as the one presented in Figure 4.2;
The information needed for each available node is its binding URI, i.e., the URI at which the
respective service is deployed. Each URI must be written in a separate line, starting from the
first line, with no blank lines between URIs. The first line is where the master node’s URI is

provided, whereas the other lines are for the tree's computational nodes.

http://192.168.20.0:8082
http://171.1.30.1:8083
http://192,168.20.3:8082
http://155.161.27.2:8088
http://90.151.20.1:8090
http://192.172.10.5:8082
http://192.12.20.4:8082
http://92,.128.34.1:8092

Figure 4.2 An example of a user-defined file of available nodes.

An issue that we must make clear is that the URIs in the text file correspond to the hardware
components (real computers) that are available to the user. The hypothesis is that each URI
provided by the user, corresponds to a service deployer (server), which can serve all services
we have mentioned, i.e., services for abstractions mining and pruning, so all services must be
bound to this server. This means that each node appearing in the hierarchy of Figure 4.1 regards
a specific role (service), i.e., regards a software and not a hardware component. Therefore, a
hardware component may correspond to more than one nodes in the nodes hierarchy, each time
with a different service. Later on this subsection, we analyze how our system automatically
configures the tree of software components, by taking as input this text file, and another input,

specifically, the number of hardware components that will be used.

It is possible that the user may not want all components in the text file to be used (e.g., for
experimental purposes or because some of them are not on line any more, etc.). Let ¢ be the
number of components, excluding the first component that regards the master node, and p be
the user-defined preferable number of components to be used in our facility. If p <= c, then the

first p components of the text file (excluding the very first one) are going to be used, otherwise
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http://155.161.27.2:8088
http://90.151.20.1:8090
http://192.172.10.5:8082
http://192.12.20.4:8082
http://92.128.34.1:8092
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an error message is thrown. Of course, the very first component is used in any case, as it regards
the master node, but if this component is supplied with other services too, besides the master
service, then it can also play a role in the nodes hierarchy and, if the user wants so, he must

include one more copy of its URI in the text file.

Phase I starts by reading the text file of available nodes. Based on that, as well as on the input
number of nodes to use, a software components tree, like the one in Figure 4.1, is constructed.
A valid number of nodes to be used. must be equal to or bigger than 2. The tree structure
constructed is a full, balanced, binary tree, i.e., each internal node has exactly two children, and
balanced, as, for each internal node, its children’s depths differ by at most one. A valid number
of service descriptions contained in the input collection, must be equal to or bigger than the
number of nodes that are dictated to be used. Subsequently, the input collection of service
descriptions is divided in as many equal parts as the number of leaves in the nodes tree. This
means that each part (subcollection) consists of the same number of service descriptions, except
for the case in which the division leaves a remainder; in such case, the remaining service
descriptions are inserted to some of the created subcollections arbitrarily. The division takes

place in random manner.

The reason why we chose a balanced tree can be inferred from Figure 4.3, in which two different
tree configurations are compared, with the textual descriptions beside the nodes indicating the
data inputs and outputs to and from the nodes, during execution. For ease of presentation, Figure
4.3 does not take into consideration the pruning facility. The fact that Phase 1 divides the input
service descriptions collection randomly into equal-size groups leads to the fact that the leaf
nodes, that work concurrently, consume approximately the same time for their processing. Left-
deep alternative shows a non-balanced tree, whereas balanced alternative shows a balanced one.
The hypothesis is that in both occasions, each leaf node takes 10 service desriptions as input.
At time t; all leaves have (approximately) concurrently finished their processing. Similarly, at
time t2 nodes 5 on both occasions along with node 6 of balanced alternative, finish concurrently.
But then we observe that in left-deep alternative, two serial activities remain, one with an input
of 26 abstractions and one with an input of 34 abstractions, whereas in balanced alternative,
only one activity with an input of 34 abstractions remains. The conclusion is that the balanced

tree configuration leverages more parallelism of activities.
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Another issue concerning the configuration is how the input nodes the user defined via
providing the text file along with the number of nodes he prefers to be used, are configured. A
straightforward solution one could imagine is simply using each software component provided
by the user, to be represented by one hardware component in the tree configuration. For
example, if a user defined that 7 hardware components should be used, namely 1, 2,..., 7, then
we could use the exact configuration illustrated in balanced alternative of Figure 4.3, i.e., having
the hardware components forming this hierarchy, each participating with its respective role

(service), as depicted in Figure 4.1.

get 34 abstractions Time
mine 33 abstractions

get 34 abstractions
mine 33 abstractions

get 18 abstractions gt.t 18 .absuacw
mine 17 abstractions mine 17 abstractions

S e DD .

get 10 senices get 10 senvices get 10 senvices get 10 senvices get 10 senvices get 10 senices get 10 senvices get 10 services
mine 9 abstractions mine 9 abstractions tnme 9 abstractions mme 9 abstractons mine 9 abstractions mine 9 abstractions mine 9 abstractions mine 9 abstractions
Left-deep alternative Balanced alternative

Figure 4.3 Comparing two different tree configurations for seven software nodes.

Instead, we chose to spend computational resources more effectively, by having some hardware
components assigned to more than one software component node in the tree configuration. For
example, in balanced alternative of Figure 4.3, for the bottom level of nodes we should use four
different hardware components to exploit the fact that they work concurrently, however, for the
above level it would be a waste to use other hardware components, since the hardware

components that correspond to their children are free of work at this point, so they can be reused.

Figure 4.4 shows how our facility would assign hardware components to the configuration of
software components for the balanced alternative of Figure 4.3. Only four computational

sources would be needed. Figure 4.5 illustrates a realistic example of the configuration our



36

system would produce in case the user defines the text file of Figure 4.2 as the available nodes,

and number 4, as the number of nodes to be used by our facility.

Following, we detail the algorithm we use to configure the user-input hardware components,
i.e., to produce the corresponding software components tree. Figure 4.6 presents our Node
class, which serves for the basic construct of our tree. It has four attributes, namely url, for
the respective service’s url, parent, for the node’s ancestor in the tree’s hierarchy, and
childl, child2, for the node’s descendants in the tree’s hierarchy. The class constructor
does not set the parent attribute, as parent value is not known at the point the constructor is
used in our tree construction algorithm. Actually, the set Parent () operation is used for this
purpose, later on. Ancestor information is necessary for finding the path from the leaf nodes to
the root. As we mentioned before, this path is passed by the master node to the leaf nodes, so

that they become aware of the service calls chain till the completion of the distributed
/ ®\ / ®\
® o ® ®

Figure 4.4 Configuration for four hardware components.

abstractions mining process.

http:790.151.20.1:8090

T

http:/1192.168.20.3-8082 hitp:155.161.27.2:8088

SN N

http://171.1.30.1:8083 hitp:/'192.168.20.3:8082 http://155.161.27.2:8088 http::'90 151 20 1:8090

Figure 4.5 Configuration for four hardware components, based on Figure 4.2.
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Figure 4.7 presents the algorithm, in pseudocode, that constructs the software components tree.
Function createSoftwareComponentsTree () takes as input a list containing the URLs
of the software components which the user demands to be used, by providing the
aforementioned file and the number of components to be used. Produces as output a Node
object, standing for the root of the tree, from which we can navigate through the entire tree.
Generally, the tree is constructed bottom-up, starting from the leaf nodes and creating ancestors
till the root'is created. The construction is done by levels, each one in an iteration of the while

loop.

Node

String url

Node parent

Node child1

Node child2

Node(String url, Node child1, node child2)
setParent(Node parent) : void

getParent() : Node

getChild1() : Node

getChild2() - Node

Figure 4.6 The structure used for software components tree node.

Initially the function fills two queues. The currentLevel queue represents the upper tree
’level constructed for the moment and, initially, at the first foreach loop, it is filled with the
leaf nodes that are created. The internalNodesURLs queue stores the URLs of the internal
software  components and, initially, it is filled with all URLs in
softwareComponentsURLs, but the first; this can be deduced from the fact that we reuse
components, and since such a tree like ours would always have one less internal node than the
number of leaf nodes. However, the choice to leave out the first service of the list is arbitrary,
i.e., we could choose any other as well. Each time an ancestor is constructed, an element of this

list is removed.

The while loop’s functionality is as follows:
* The nested while loop removes currentLevel nodes per pair, constructing an
ancestor over them, whose URL is obtained by removing an element from

internalNodesURLs queue. Ancestors are inserted in nextLevel queue.
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s The if clause deals with the rest one node of currentLevel node that could
probably remain. In such case, an ancestor is constructed over the remaining node from
currentLevel and one node from nextLevel. This way we achieve the tree to be
balanced.

» Finally, nextlevel becomes the currentLevel and the loop is going for a new

repetition, until no more elements remain in internalNodesURLs.

At the end, the function returns the only element of currentLevel at that point, which is the

tree root node.

Node createSoftwareComponentsTree (List<String> softwareComponentsURLsS) {
Queue<Node> currentLevel = new LinkedList<Node>();
Queue<String> internalNodesURLs = new LinkedList<String>();

foreach scURL in softwareComponentsURLs
currentLevel.add( new Node (scURL, null, null) ):

foreach scURL in softwareComponentsURLs except for the first
internalNodesURLs.add (scURL) ;

while (internalNodesURLs is not empty) {
Queue<Node> nextLevel = new LinkedList<Node>();
while (currentlevel.size() >= 2) |
Node nodel = currentlevel.remove();
Node node2 = currentlevel.remove();
Node internalNode = new Node (internalNodesURLs.remove (), childl, child2);

nextLevel.add(newInternalNode);

if (currentlevel.size() == 1) {
Node nodel = currentlevel.remove();
Node node2 = nextLevel.remove();
Node internalNode = new Node (internalNodesURLs.remove(), childl, child2);
nextLevel.add(newlnternalNode};
}
currentLevel = nextLevel;

Node rootNode = currentlevel.remove();

return (rootNode);

Figure 4.7 The software components tree configuration in pseudocode.
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Figure 4.8 presents an example of an application of this algorithm to a set of seven service
URLSs, hypothetically the user dictates to be used. The figure is divided in 7 frames (steps), each
one illustrating the tree’s part constructed (at the left side) and the queues® contents (at the right
side) up to_the step’s start, while the circular and rectangular drawings around queues’ elements
stand for the removals of these elements from the queues, during the step. After a removal of
three elements (i.e., two children and a future ancestor), the ancestor is constructed over the two

children, which is illustrated in the next frame’s left side.

In Figure 4.8, we suppose that the two foreach loops of the algorithm of Figure 4.7 have
constructed the leaf nodes and have set the queues, as presented in frame 1. The shaped
drawings in frame 1, as well as the rest of the frames detail the actions performed by the external

while loop of the algorithm. Below we give a concise description of these actions:

= I*'jteration of external while loop (steps 1-4)
e Step 1: Ancestor 2 is constructed over the leaf nodes 1 and 2.
o Step 2: Ancestor 3 is constructed over the leaf nodes 3 and 4.
o Step 3: Ancestor 4 is constructed over the leaf nodes 5 and 6.

e Step 4: Ancestor 5 is constructed over the leaf node 7 and the internal node 2.

» 2™ jteration of external while loop (steps 5-6)
e Step 5: Ancestor 6 is constructed over the internal nodes 3 and 4.

e Step 6: Ancestor 7 is constructed over the internal nodes 5 and 6.

* 3 jteration of external while loop (step 7)

e Step 7: loop terminates

When the configuration is completed, the standalone component not only is aware of the exact
path of calls for each leaf-to-root choreography, but also knows which the root is, so that it can

call it at the end (phase 6) to get the final result.
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Figure 4.8 Configuration for seven hardware components, in 7 steps.
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4.4 Phase 2. Standalone Subsystem: Pass Subcollections to Master Node

When our standalone AcSBM component finishes Phase 1, it makes a call to the master node’s
service, which is responsible for distributing the subcollections to service nodes. The input data
that come along with this call, are not only the subcollections but also information regarding

the configuration of nodes. In fact, Phase 2 constructs:

s A mapping that assigns a subcollection to each leaf node (URI). The assignment of
subcollections to leaf nodes is random.

* A mapping that assigns to each leaf node (URI) the path to the root of the tree, i.e., a list
of URIs of the nodes comprising the path from the leaf to the root. at the nodes tree.

These two mappings comprise the input data passed to master node. Thus, the master node is
aware of the addresses of the leaf nodes. with which it must communicate, which subcollection
to pass to each of them, and, finally, which calls path to pass to each of them. The technique of
passing to a node the rest of the calls path is applied to the entire choreography, in particular,
each node, when called, takes as an input the rest of the calls path to the root, and, when calling
the next node in the path, it abstracts the first node from the calls path list and passes the list as
input to the calling node.

4.5 Phase 3. Master Node: Distribute Subcollections to Leaf Nodes
At this phase, the master node calls each leaf node by passing input data consisting of:
s asubcollection of service descriptions

= acalls path (the path from this node to the root of the nodes tree).

4.6 Phase 4. Each Leaf Node: Mine Abstractions Hierarchy, Prune it & Call Parent Node
During this phase, each leaf node called by the master node, mines an abstractions hierarchy
out of the subcollection of service descriptions using the algorithm proposed in [6].
Subsequently, a pruning technique is applied towards the produced hierarchy, with the purpose

of retaining only a part of the most informative - representative abstractions.

Prior to further analyzing our pruning approach, we first have to examine some important
aspects regarding the algorithm of [6].
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4.6.1 Important aspects regarding the abstractions mining algorithm of [6]

First of all, the hierarchy produced over a set of services. Figure 4.9 illustrates a realistc example
of a possible outcome of the application of this algorithm to a set of 13 services. The squared
objects represent concrete services, while the circular ones represent functional abstractions.
Solid arrows represent the parent - child relationships between objects, and one can use them
to deduce the intermediate steps followed by the algorithm to come to this result. Dashed arrows
also indicate steps of the abstractions hierarchy production process, but they refer to concrete
services that are abstracted. which are not part of the abstractions hierarchy. As we can see,
there is not a singlehierarchy produced over the 13 services, but there are actually three
independent hierarchies. As we have mentioned in subsection 3.5.2, there are two circumstances
in which the distance calculated between two interfaces is set to c. In such a case, an abstraction
over these two interfaces cannot be constructed in any case, i.e., even if their distance () is the
lower among all pairs’ distances. This can lead to a final result of having more than one

independent hierarchies constructed, as depicted in Figure 4.9.
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Figure 4.9 A possible abstractions hierarchy over thirteen services.

Another aspect we must clarify concerns the mappings part of an abstraction’s structure. Figure
4.10 illustrates an example of an abstraction’s mappings data and how they are related to the
representative  interface data, which are also part of an abstraction. The
InterfacesMapping field of FunctionalAbstraction consists of information about
the two mapped interfaces which are abstracted, and information about the mapped operations
of the two interfaces, namely OperationsMappings. In particular, the
OperationsMappings field contains OperationsMapping objects. Each such object
is much like the InterfacesMapping object, i.e., consists of the two mapped operations,

etc. This nested mappings structure finishes at message types mappings. For reasons of clarity,
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Figure 4.10 presents a simplified view that stops at mapped operations' names. The dashed lines
represent the mappings between operations. As we see, each operation in the
RepresentativelInterface field is positioned relatively to the respective pair of mapped
operations that abstracts (depicted by the numbering at the left and also by the consecutive

lines).

FunctionalAbstraction
Representativelnterface
—— DopR1
—— 2)opR2
— 3)opR3
InterfacesMapping
InterfaceA InterfaceB OperationsMappings
opAl \T\ , opBl 1) opA2 — opB3
opAl | 74\ opB2 H—- 2) opAl — opB2
oPAY | T opB3 Lt 3) 0pAS — opBI
) ) opAS — op
opAd opB4 P
opAS /

Figure 4.10 The mappings aspect of the abstraction structure.

4.6.2 The concept of pruning

Our pruning algorithm retains only a part of the constructed abstractions, on the purpose of
reducing the number of abstractions that will be sent to the next software component. Thus, it
has to retain the most informative abstractions whereas throwing out the less

informative/useless ones.

The major concept is that, for each abstraction, either itself or its children should be retained,
but not both of them. The criterion we use for this choice is the calculated distance between the
two interfaces which an abstraction abstracts, compared to a user-given threshold. Let 4 be an
abstraction over two interfaces, namely A7 and 42, d(4) = d(A1l, A2) the distance between the
two interfaces, and disThres the distance threshold defined by the user. Then:
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* If d(4) < disThres, only the parent is retained.
s If d(4) >= disThres, only the children are retained.

Moreover, the algorithm has to take care of the mappings between the interfaces of the
abstractions, and how this will be sustained during the pruning process. For this reason we have
inserted a new field to the FunctionalAbstraction object, namely
interfacesMappings, which is a list of InterfacesMapping objects. To sustain
compatibility with the adaptation facility of the AoSBM, we kept the standard existing
inteffacesMapping field, but, after the termination of our algorithm, the only actually
valid field regarding interfaces mappings is interfacesMappings. In case children
abstractions are pruned, the sustained parent abstraction has its interfacesMappings field
filled with all the mappings between the concrete interfaces that are abstracted by it. The
association between the representative interface of the parent and the mappings, regarding the

places of the corresponding matched operations, is kept as described, for all mappings.

Yet, as indicated in Figure 4.11, there are different types of abstractions, regarding the children
they do or do not have, with our pruning algorithm performing a different series of actions for
each of them. Following, we examine the three types of abstractions along with the respective

actions performed when the criterion mentioned before is applied to them:

a) Abstraction having no children (Figure 4.11, shape (2)). This is a leaf of the abstractions
hierarchy. It abstracts concrete services. Since it has no children we cannot apply the
aforementioned criterion, thus the abstraction is retained anyway. No change in
interfaces mapping information (interfacesMapping field) is needed, except for

itis added to interfacesMappings list.

b) Abstraction having a single child (Figure 4.11, shape (b)). It abstracts a concrete service
and an abstract one. In this case the criterion is applied, considering the concrete service

as a child too. We distinguish between two cases:

1) If d(A) < disThres, the child is pruned. We construct and add to abstraction’s

interfacesMappings list an InterfacesMapping object that maps the
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concrete service's interface to itself. We also add the single child’s

interfacesMapping field.

2) If d(A) >= disThres, we cannot prune the parent, because it holds information for
the concrete service object, which won’t be stored in any other abstraction retained
(since the retained abstractions do not form a hierarchy). Thus, both abstractions
are retained. Concerning the parent abstraction retained, all information about the

* " single child is abstracted from it, relieving it of redundant data. The eliminated
information contains the interfacesMapping object and the record in
representedInterfaces object that respects to the single child. We
construct and add to parent abstraction’s interfacesMappings list an

InterfacesMapping object that maps the concrete service’s interface to itself.

c) Abstraction having two children (Figure 4.11, shape (c)). It abstracts two abstract

services. In such case the criterion is applied with the standard actions taking place:

1) If d(A4) < disThres, children are pruned. The InterfacesMapping objects that
correspond to all the abstracted concrete services are added to parent’s

interfacesMappings list.

2) If d(4) >= disThres, the parent is pruned.

I' ‘\ / \\ / \
O QO O O o O
(a) (b) (©
Figure 4.11 The three different types of abstractions regarding the objects they abstract.

4.6.3 Our pruning algorithm

As mentioned, the application of the abstractions mining algorithm proposed in [6] may lead to
more than one hierarchies produced. We prune each one of them, with the goal of retaining only
a part of the initially produced abstractions. We give the user the choice of defining how big

this part will be, by providing as input the proportion of the abstractions to be retained, with
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respect to the total number of initially produced abstractions. Thus, we apply to each abstraction
in the hierarchy, a technique which decides whether this abstraction will be retained or not,
according to the previously described criteria (cases (a), (b), (c)) and according to one more

criterion, the user-input number of abstractions that should be retained.

Our dicision to apply both the two aforementioned criteria in the pruning process, and not just
one of them, lies on the fact that the two criteria’s roles are supplementary. The idea behind this
is that we need to retain only a part of the initial mined hierarchy of abstractions, but that part,
instead of being chosen arbitrarily, it could be chosen by the application of a quality criterion,

like the distance threshold. In this way we retain few but informative abstractions.

Figures 4.12 and 4.13 present our pruning algorithm in pseudocode. For briefness, we use the
abbreviations H, for the Hierarchy class and FA, for the FunctionalAbstraction

class.

Function prune () is the main function of our approach, taking as input three arguments, a list
of abstraction hierarchies and the aforementioned two thresholds, namely the retention
threshold and the distance threshold. The hierarchies argument contains the complete
result of the application of [6]’s abstractions mining technique, i.e., a list of abstraction
, hierarchies. The other two arguments, that represent a proportion, must be in the form of a real
number between 0 and 1. The output of the function is a list of functional abstractions, i.e., the
retained abstractions, which do not form a hierarchy, but just a list of independent elements.
The reprIfacesNum variable stores the total number of represented interfaces of all
hierarchies. The foreach loop prunes each hierarchy, and adds the respective retained
abstractions to result variable, which is returned as a result when the function terminates.
The loop calculates the number of abstractions that are going to be retained for a specific

hierarchy (retNum) and calls pruneHier () function to prune the hierarchy.

Because pruneHier () prunes recursively, per level of the abstractions hierarchy, it is called
each time taking as input a hierarchy’s level of abstractions, so the first time it is called takes
as input the first level, which has only one element; the root. Also, retNum is decreased by

one, as we consider that the root abstraction has already been retained.
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List<FA> prune(List<H> hierarchies, double retThres, double disThres) ({
List<FA> result = new List<FA>();
int reprIfacesNum = getNumberOfRepresentedInterfaces (hierarchies};
foreach h in hierarchies {
int retNum = (int) ((h.reprifacesNum / reprIfacesNum) * retThres);
List<FA> firstLevel = new List<FA>();
firstlevel.add (h.root);
retNum --;
List<FA> retainedFAs = pruneHierarchy(h, firstLevel,retNum,disThres);
fesult.add(retainedFAs);

}

return result;

Figure 4.12 Our pruning algorithm in pseudocode - pruning the set of hierarchies.

List<FA> pruneHier(H h, List<FA> level, double retNum, double disThres) {
if (level is empty) return h.toList(); // termination condition
else {

List<FA> nextLevel = new List<FA>();
foreach fa in level ({
List<FA> children = fa.children{();
double distance = fa.distance():;
if (retNum == || distance < disThres)
children are pruned
else {
fa is pruned
retNum --;

nextLevel.add(children);

}
pruneHier (h, nextLevel, retNum, disThres):; //recursive call

Figure 4.13 Our pruning algorithm in pseudocode - pruning an hierarchy.

The pruneHier () function prunes a hierarchy and works, as said, recursively, taking as
input, each time it is called, the hierarchy itself and a specific level of the hierarchy, i.e., a list

of abstractions of the same level. The other inputs are the number of abstractions to be retained
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(retNum) and the distance threshold (disThres). The function’s output is a list of
independent functional abstractions. The function checks each abstraction of the level’s list and
prunes it or its children, depending on the values of the two thresholds, retNum and
disThres (Figure A.1 in Appendix contains a more detailed view of the algorithm; the
function calls indicated by bl (), b2 (), c1() and c2 (), represent the respective actions
described by the three cases (a), (b), (c) previously in this subsection). In cases children are
retained, they are added to the nextLevel list. After all abstractions of the level are examined,
prune_ﬁier() is recursively called by passing nextLevel as argument. Recursion is
terminated when the level list is empty. At this point, the hierarchy h consists of abstractions
having no bonds between them, i.e. it is just a set of independent abstractions. This is converted

to a list and returned.

Figure 4.14 depicts an example of our pruning algorithm applied to a functional hierarchy like
the one in the figure, which abstracts 15 services. It consists of 8 basic steps, illustrating the
algorithm’s steps. The numbers below the abstractions’ circles stand for the distance between
their children’s interfaces. We consider that retNum=6 and disThres=0.2. The grayed
circles imply that the respective abstractions are retained for the time being, while the
intersected gray lines represent abstractions that have been pruned. Unlike grayed circles, which
do not represent something permanent (as at a next step the abstraction may be pruned), the
» intersected gray lines stand for permanent deletion of the respective abstractions. A call to the

pruneHier () function and 3 recursive calls of it will take place till the process terminates.

Hereafter, we analyse each step of the application of our algorithm to the hierarchy of the Figure
4.14, in a brief form. Specifically, we mention the operation that is called, i.e,. pruneHier (),
the input level, which is a list of abstractions that will be processed, eg [h, i, j], and the number
of retained abstractions, which is set to 6, thus before the first call of pruneHier (), it will
be reduced to 5, and each time an abstractions is retained, it will be reduced by one. The steps

that we mention, correspond to the ones illustrated in Figure 4.14.

s pruneHier () call, input level: [n], retNum: 5

step 2: check n — 0.38 > 0.2, thus n is pruned, retNum = 4
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» pruneHier (), 1*recursive call, input level: [I, m], retNum: 4
step 3: check 1 — 0.30 > 0.2, thus | is pruned, retNum = 3
step 4: check m — 0.33 > 0.2, thus m is pruned, retNum = 2

» pruneHier (), 2" recursive call, input level: [h, i, j, k], retNum: 2
step 5: check h — 0.28 > 0.2, retNum = |
step 6: check i — 0.11 < 0.2, thus b, ¢ are pruned
step 7: check j — 0.22 > 0.2, thus j is pruned, retNum = 0
step 8: check k — retNum == 0, thus f, g are pruned

. £>runeHier (), 3"recursive call, input level: [a], retNum: 0
check a — has no children, thus nothing happens

* pruneHier (), 4" recursive call, input level: [], retNum: 0

level is empty, thus return list of abstractions

4.7 Phase S. Each Internal Node: Get Independent Abstractions from Children Nodes,
Join them, Mine Abstractions Hierarchy Over them, Prune it & Call Parent Node

This phase is executed by the internal nodes of the software components tree. The first internal
nodes entering this phase are those having children that are leaves. When these leaves finish
their processing, they call their parent nodes, also passing them the results of their processing,
i.e, a list of independent abstractions. Thus, the internal node’s service deployed for our
, distributed organization, takes as input two lists of independent abstractions, each one from the
respective child node. It also takes as input the two thresholds used in our approach, namely the

retention threshold and the distance threshold.

During this phase, the two input lists are simply merged into their union, which is the input to
the abstractions mining algorithm of [6]. From this point, the steps followed are mainly the
same as those followed by leaf nodes at phase 4. The only difference is that the input to the

algorithm of [6] is not a list of services but a list of abstractions.

4.8 Phase 6. Standalone Subsystem: Call Root Node to Get Final Result

The standalone component calls a specific method of the root node and gets the final result. The
standalone component is not triggered by the root to do that, on the contrary, it periodically
checks if the root has finished, and, when it finds that the root has finished, it calls the root and

gets the result.
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Figure 4.14 An example of our pruning algorithm applied to a hierarchy, with retNum

=0.2.

and disThres
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4.9 Software Components and their Interaction

Hereafter, we summarize the software facilities we had to develop for our approach, and present

the corresponding classes and the interaction between them. We also describe the structure of

the data transmitted in this interaction.

Mainly, the developed facilities include (Figure 4.15):

)

2)

A standalone facility which takes the user-inputs, such as the available hardware
components, the number of available hardware components to be used, the services
collection to be registrated in service base and abstracted, the proportion of functional
abstractions to be retained and the distance threshold between the interfaces an
abstraction abstracts, that will be used in the distributed abstractions mining process.
The standalone facility firstly configures the components tree. Secondly, it registrates
the service collection and stores it into the service base. Subsequently, it divides the
collection into a list of subcollections (they are equal-sized and the division is done
arbitrarily), and calls the master components, passing it the subcollections. The master
component distributes the subcollections to the tree’s leaf components. The tree
components perform the distributed abstractions mining and, when they have finished,
the resulted list of functional abstractions lies in the hardware component that respects
to the root software component of components’ tree. This software component offers an
operation which just returns the final result. That operation is called by the standalone
facility, the result is obtained and stored in the abstractions base. Class
DistributedFAMiningLauncher represents the standalone component, which
offers LaunchDistributedFAMining () operation, with the functionality that

was described.

A master facility, responsible for the distribution of the subcollections to the leaf
components. This facility is developed as a service, named MasterService, which
offers a respective operation, nanageDistributedFAMining (). The operation is

called by the launchDistributedFAMining () operation of
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DistributedFAMiningLauncher componentand takes as inputaMasterData

object, which includes:

e A list of the subcollections of the initial service collection, as divided by the
standalone component.

¢ An integer, representing the number of abstractions that should be retained.

e A real number, representing the distance threshold between the children of an

abstraction.

The operation calls the LeafService service of every leaf node, passing it a

respective subcollection of service interfaces.

A leaf facility which executes the abstractions mining algorithm of [6] and then applies
our pruning algorithm, thus retaining a list of independent abstractions. This facility is
developed as a service, namely LeafService, offering a respective operation,
mineAndPruneFunctionalHierarchy (), which performs the aforementioned

steps. The operation takes as input a LeafData object, which includes:

e A list of service interfaces (subcollection).

e An integer, representing the number of abstractions that should be retained.

e A real number, representing the distance threshold between the children of an
abstraction.

o A list of component URLSs, standing for the rest of the calls path till the root of

the tree.

The operation is called by the MasterService’s operation. When it finishes, it calls
the next service in the calls list, passing it the list of independent abstractions. This next
service is an InternalService, and the operation of it that is called is the

mergeFAsAndMineAndPruneFunctionalHierarchy () operation.

An internal facility which merges the two lists of independent functional abstractions
that takes as input from the respective leaf facilities. Following, it performs what the

leaf facility performs, i.e., mining an abstractions hierarchy over the list of abstractions
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and then prune it. The only difference is that the leaf facility starts mining abstractions
over concrete interfaces, whereas the internal facility starts mining abstractions over
abstractions. To apply this facility, we developed a service named

InternalService, which offers two operations:

=  The mergeFAsAndMineAndPruneFunctionalHierarchy ()
operation performs the aforementioned steps. It takes as input two
InternalData objects, each one from the respective child component. An

InternalData object comprises:

o A list of independent functional abstractions.

e An integer, representing the number of abstractions that should be
retained.

e A real number, representing the distance threshold between the children
that an abstraction abstracts.

e A list of component URLs, standing for the rest of the calls path till the

root of the tree.

When finished, the operation calls the next service in the calls list, specifically
the mergeFAsAndMineAndPruneFunctionalHierarchy () method
of the next service. This process is repeated till the component called is the root
of the tree. When the operation of the root component finishes, it stores the result

in a structure that getFinalResult () operation can access.

* ThegetFinalResult () operation is called to return the final result

4.10 Data transmission and optimization

The technology we chose to use for the services’ implementation, deployment and call leaded
to a serious issue concerning the efficiency of the overall process. Specifically, the data
transmitted during a service call, i.e., the arguments to the respective operation called, are

wrapped into an XML structure. This results to large XML structures being constructed and
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transmitted, because in an XML structure, the net information (excluding tags) is many times

less than the total one.

InternalService

result : List<FunctionalAbstraction>
mergeFAsAndMineAndPruneFunctionatHierarchy(input : intemalData) : void \L 0..2
r;‘ getFinalResult() : List<FunctionalAbstraction>

1

IntemalData

independentFAs : List<FunctionalAbstraction>
reiNum int

disThres : double

callsPath : List<String>

o
.

1.2 1

- LeafService 0.1

0.1

LeafData

mineAndPruneFundtionalHierarchy(input : LeafData) : void

|
|
|
|
I
|
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|
|
| interfaces List<Servicelnterface>
!
I
|
l
|
|
|
!
|
I
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retNum . int
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MasterService
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manageDistributedFAMining(input . MasterData) - void 0.1
)
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| subCollectionsList : List<Coltection>
1 retNum : int
DistributedFAMiningLauncher disThres : double
Lo e e L e — —
lauchDistributedFAMining() : void

Figure 4.15 Distributed abstractions mining: software components and their interaction.

The impact of this is a significant memory waste in both sides of caller and called services.
Also, there is a time overhead concerning the coding and decoding information into XML

structures, as well as a time waste in transmitting all this information.

An action we take for this is to adapt the specifical part of our code which transforms our

structures into XML form, so that small XML tags be formed.

Another action is to eliminate redundant information from data structures before they are

wrapped and transmitted. Specifically:
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= The standalone component, just before calling the master component and pass it the list
of subcollections of service interfaces, eliminates every service interface structure from
service instances objects; since the registration and storage of the initial collection of
services has already been done at that point. the information concerning the service

instances can be retrieved from the service base anyway.

= A leaf component, after mining and pruning a functional hierarchy over the concrete
service interfaces passed to it by the master node, has to call an internal component (its
};arent) and pass it the list of independent abstractions it has retained. Just before passing
the list, it scans every functional abstraction object and performs the following

eliminations:

¢ From every represented interface object, only data base key information is kept;
represented interfaces are concrete interfaces, which are stored in the service

base, thus only their data base keys are needed to retrieve them.

¢ From every mappings object, i.e., interfaces/operations/messages/messagetypes
mappings, the respective mapped elements objects, i.e, mapped
interfaces/operations/messages/messagetypes, are eliminated from everything

else but their data base key, for the same reason as mentioned before.

4.11 Random Choice Technique For Name Extraction

We added an extra option on the abstractions mining algorithm of [6]. The extra option regards
the technique used by the algorithm to extract the name of a representative object, i.c., a
representative interface, operation, message or message type, out of the names of the
represented objects that it abstracts. Specifically, the algorithm exploits the Longest Common
Substring (LCS) technique for this, i.e., the representative name is constructed from the longest
common substring of the names of the two represented objects. Our added technique sets the
representative name by randomly choosing between the two represented names (RC). In our

experiments we applied both techniques.
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CHAPTER 3. QUERY ENGINE

5.1 Query Engine
5.2 Service Lookup over the Service Model

5.3 Service Lookup over the Abstractions Model

We developed a query engine, to serve as a more developer-friendly tool for querying the
service base, than SBQL was. Additionally, we developed a Web service that provides access

to the query engine, allowing the service base to be used in a distributed setting.

5.1 Query Engine

- As presented, AoSBM provides a query language, named SBQL, and a corresponding facility,
which executes SBQL queries using the mined abstractions stored in the abstractions base.
Based upon this facility, we developed a more friendly one, which simplifies querying. Also,
we made all querying facilities available in a distributed setting by designing and realizing a
REST API, named QueryEngineService, which exposes them as a service. Following, we
provide further details concerning the design and the functionalities offered by the

QueryEngineService.

Overall, the QueryEngineService API provides several operations that can be used for
service lookup (Figure 5.1). In general, these operations accept as input constraints that should
be satisfied by the discovered services and produce as output information concerning the
discovered services. In general, we divide the operations that are offered by the

QueryEngineService API in two different categories:
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= The operations of the first category allow to use the AoSBM as a typical service registry
that does not employ abstractions in the service lookup process. Specifically, the first
category consists of operations for which the input constraints are matched against the

service model information that is stored in the AoSBM.

= The operations of the second category enable abstraction-driven service discovery. In
particular, the second category comprises operations for which the input constraints are
matched against the abstractions model information that is stored in the AoSBM. To
support typical and more experienced developers, each category provides operations for

simple and more advanced lookup queries.

{ QueryEngineService - S

foexecMeSBQLQuery( userName : String, password . String, sbqlQuery : String )  QueryEngneSer viceResponse

IsexecuteSimpleQueryOver Abstractions( userName ' Strng, password * String, query - SimpleQuery ) - QueryEngineSet viceRe sponse
+executeSimpleQueryOverinstances( userName - Striing, password . String, query  SimpleQuery )  OueryEngineServiceFesponse
l+executeAdvancedQueryOverAbstractions( userName String, password . String, query © AdvancedQuery ) Quei yEngineSet viceResponse
[-rexecuteAdvancedOueryOverlnstances( userName - String, password - String, query - AdvancedQuery ) - Quer yEngineServiceResponse

AdvmcedOu;ry | Slmpl;a;;erwy
~operationConstraints : OperationConstraints {*] -operationNames . Stiing [*)
-RQs : String -RQs : String [*)
+getOperationConstraints() . OperationConstraints [*] +getOperationNames() - String]’)
+setOperationConstraints( operationsConstaints : OperationConstraints (*) )| |*9€tRQs() : String[*]
+getRQs() : String +setRQs( 1Qs - String [*))
+setRQs( String ) +setOperationNames( operationNames  String ['])
OperstionConstraints

-name | String

-inParamNames : String }*)

-outParamNames . String [*] QueryEngineServiceResponse

-inParamTypes . String [*}

-outParamTypes - String [*) “hitpStatus - Status

-efrorMessage . Stiing

+setName( name : String ) -functionalAbstractions . FunctionalAbstractions [*)
+getName() : String ~concreteServices - ConcieteService {°)
+setinParsmNames( inParamNames : String [*] ) -

+getnParamNames() : Stiing [*] +gethitpStatu() - Status

i . String [* +getErrorMessage() - String
ey Sna (D) +getFunclionalAbstractions() . Functionalabstractions [']
; ! : [N : ‘.
+setOuParamTypes( outParamTypes : String [} ) +getConcreteServices() : ConcreteService (*)
+getOutParamTypes() : String {*} L
E—o;\&éteService

-queryOperations - Stiing [*)
-retrievedinterface Servicelnterface
-query2ietrievedOper ationsMapping . Hashiap

+getQueryOperations() Sting (*]

+getRetrievedOperations( queryOperation . String ) - String {*}
+getRetrievedinterface() Servicelrterface
+getServiceinstancesURIs() String {*)
+getBehavioralSpecificationURI() - Stiing

Figure 5.1 Design of the QueryEngineService.
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5.2 Service Lookup over the Service Model

To enable service lookup over the service model information that is stored in the AoSBM we

provide the following alternative options:

AdvancedQuery

opi(i1, 12, ...01,02,.)

SimpleQuery oncrateService ConcretoService
op1, op2, ... I op2(it, i2, ...01, 02, .)) rl
VA \ /n
input oulput input output

ryOvecinstances executeAdvancedQueryOverinstances

) N
output  input output  input
s S L N
SQL Query Servicelnterface (*] SOL Query Servicelnterface [*]
input oul;ut input ou l 1
(—AOSB* Relational Service Lﬂodeiﬁ (-AoSB* Relational Service Mode!—w
Servicelnterfaces Servicelnterfrces

Servicelnstances

(A)

Servicelnstances

(B)

1)

Figure 5.2 Lookup operations over the service model.

The executeSimpleQueryOverInstances,takesasinputa SimpleQuery object
and produces as output a QueryEngineServiceResponse object. The code snippet
in Figure 53 gives an example of  how to call the
executeSimpleQueryOverInstances and navigate through the results. The

SimpleQuery object contains the following information:

® A list of operation names that should match with corresponding names of the

operations of the services that will be returned as a result. Specifically, for each
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required operation name, a discovered service must provide at least one operation,

whose name comprises the required operation name.

A specification of requirements that concern the services that are used by the

-discovered services. These requirements may comprise, for instance, the names of

the operations that are called by the discovered services.

The QueryEngineServiceResponse object that is produced as output includes a list

of ConcreteService objects. Each ConcreteService object contains information

about a discovered service. Specifically, a ConcreteService object includes:

The list of the required operation names of the input SimpleQuery object.

The full specification of the ServiceInterface that is offered by the
discovered service.

A mapping between the required operations and the operations of the interface that

is offered by the discovered services.

To facilitate the work of the developer the ConcreteService object provides operations

that provide easy access to the URIs of the discovered services and to the behavioral

specification of the discovered services. These operations reveal the developer from the

need to navigate in the ServiceInterface object structure.

The execution of the executeSimpleQueryOverInstances operation takes place

in three main steps (Figure 5.2 (A)):

Based on the given SimpleQuery object, an SQL query is generated over the
relations of the AoSBM service model.

The generated query is executed and a list of ServiceInterface objects is
reconstructed, based on the information that is retrieved from the AoSBM relational

store.
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» Finally, the QueryEngineServiceResponse that encapsulates the

reconstructed ServiceInterface objects is constructed and returned to the

developer.

List<String> operations = new ArrayList<String>();
operations.add{"request”);

operations.add ("get”);

string RQs = null;

SimpleQuér§ simpleQuery = new SimpleQuery(operations, RQs);

Responsé response = client.executeSimpleQueryOverInstances (simpleQuery);

QueryEngineServiceResponse geResponse = null:
try {
InputStream in = (InputStream) response.getEntity();
JAXBContext context = JAXBContext.newlInstance (QueryEngineServiceResponse.class):
Unmarshaller unmarshaller = context.createUnmarshaller():
geResponse = (QueryEngineServiceResponse) unmarshaller.unmarshal(in);
} catch (WebApplicationException e) { e.printStackTrace(); }
catch (JAXBException e) { e.printStackTrace(); }

List<ConcreteService> gueryResults = geResponse.getConcreteSexvices();
for( int i = 0; i < queryResults.size():; i++) {
ConcreteService concService = queryResults.get(i);
String LTS_URI = concService.getBehavioralSpecificationURI();
String ENC_URI = concService.getEnactementURI ():

List<String> queryOperations = simpleQuery.getOperationNames ();
for( int j = 0; j < queryOperations.size(); j++) {
String queryOp = queryOperations.get(j):
List<Operation> retrievedOpers = concService.getRetrievedOperations (queryOp);

if (retrievedOpers != null) {
for( int k = 0; k < retrievedOpers.size(); k++)

String retrievedOperName = retrievedOpers.get (k) .getName();

List<String> retrievedURIs = concService.getServiceInstancesURIs();
for( int j = 0; j < retrievedURIs.size(); j++)

String URI = retrievedURIs.get(j);

Figure 5.3 Executing a simple query over the service model.
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2) The executeAdvancedQueryOverInstances, takes as input  an

AdvancedQuery object and produces as output a QueryEngineServiceResponse

object. The code snippet in Figure 5.4 gives an example of how to call the

executeAdvancedQueryOverInstances. The AdvancedQuery object contains

the following information:

= AlistofOperationConstraints objects, which contain functional constraints

that

should be satisfied by the discovered services. Specifically, an

OperationConstraints object contains the following information:

An operation name that should match with corresponding names of the
operations of the services that will be returned as a result. Specifically, a
discovered service must provide at least one operation, whose name

comprises the required operation name.

A list of input (resp. output) parameter names that should match with
corresponding input (resp. output) parameter names that should match with
corresponding input (resp. output) parameter names of the operations of the
discovered services. For each required input (resp. output) parameter name,
a discovered service must provide at least one operation with an input (resp.

output) parameter name that includes the required input (resp. output)

parameter name.

A list of input (resp. output) parameter types that should match with
corresponding input (resp. output parameter types of the operations of the
discovered services. For each required input (resp. output) parameter type, a
discovered service must provide at least one operation with an input (resp.

output) parameter type that matches with the required input (resp. output)
patameter type.

We assume that the lists have equal number of elements and that elements

stored in the same list position correspond to the same required parameter.
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A list element may be null in case there are no requirements on the name, or

the type of the parameter.

» A specification of requirements that concern the services that are used by the
-discovered services. These requirements may comprise, for instance, the names of

the operations that are called by the discovered services.

As in the case of the executeSimpleQueryOverInstances, the
QueryEngineServiceResponse object that is produced as output from the
executeAdvancedQueryOverInstances includes a list of ConcreteService

objects. The execution of the operation takes place as follows (Figure 5.2(B)):

® Based on the given AdvancedQuery object, an SQL query is generated over the
relations of the AoSBM service model.

® The generated query is executed and a list of ServiceInterface objects is
reconstructed, based on the information that is retrieved from the AoSBM relational
store.

* Finally, the QueryEngineServiceResponse that encapsulates the
reconstructed ServiceInterface objetcs is constructed and returned to the

developer.

5.3 Service Lookup over the Abstractions Model
To enable service lookup over the abstractions model information that is stored in the AoSBM

we provide the following alternatives:

1) The executeSBQLQuery, takes as input a SBQL query and produces as output a
QueryEngineServiceResponse object. The code snippet in Table 5.3 gives an
example of how to call the executeSBQLQuery and navigate through the results.
The QueryEngineServiceResponse object that results from the operation
contains a list of FunctionalAbstraction objects that contain information
regarding the discovered functional abstractions that satisfy the given SBQL query. The

developer may navigate through the information that is included in each
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FunctionalAbstraction object to get the specification of the abstract interface
that characterizes the functional abstraction, the specification of the represented service
interfaces, the mappings between the abstract interface and the represented service

interfaces, etc.

String opNl = “request”;

List<String> iNl1l = new ArrayList<String>():
iN1.add (’parameters”);

List<String> iTl = new ArraylList<String>();
iTl.add(”string”);

List<5t§ing> oNl = new ArrayList<String>();
oNl.add (“parameters”):

List<String> oTl = new ArrayList<String>();
oTl.add (”string”);

String opN2 = “get”;

List<String> iN2 = new ArrayList<String>():
iN2.add (“parameters”);

List<String> iT2 = new ArrayList<String>{();
iT2.add(”strxing”):

List<String> oN2 = new ArrayList<String>();
ON2.add (”parameters”);

List<String> oT2 = new ArraylList<String>();
oT2.add(”string”);

JOperationConstraints opCl = new OperationConstraints(opNl, iN1l, iT1l, oN1l, oT1l);
OperationConstraints opC2 = new OperationConstraints(opN2, iN2, iT2, oN2, oT2);
List<OperationConstraints> operConstraints = new ArrayList<OperationConstraints>();
operConstraints.add(opCl);

operConstraints.add (opC2) ;

AdvancedQuery advancedQuery = new AdvancedQuery(operConstraints, null, null);
Response response = client.executeAdvancedQueryOverInstances (advancedQuery);
QueryEngineServiceResponse geResponse = null;
try {
InputStream in = (InputStream) response.getEntity():;
JAXBContext context = JAXBContext.newlnstance (QueryEngineServiceResponse.elass);
Unmarshaller unmarshaller = context.createUnmarshaller():
geResponse = (QueryEngineServiceResponse) unmarshaller.unmarshal(in);
)} catch (WebApplicationException e) ( e.printStackTrace(); }
catch (JAXBException e) { e.printStackTrace(); )

List<ConcreteService> queryResults = geResponse.getConcreteServices();

Figure 5.4 Executing an advanced query over the service model.



65

2) The executeSBQLQuery, takes as input a SBQL query and produces as output a
QueryEngineServiceResponse object. The code snippet in Figure 5.6 gives an
example of how to call the executeSBQLQuery and navigate through the results.
Thé QueryEngineServiceResponse object that resuits from the operation
contains a list of FunctionalAbstraction objects that contain information
regarding the discovered functional abstractions that satisfy the given SBQL query. The
dg;veloper may navigate through the information that is included in each
FunctionalAbstraction object to get the specification of the abstract interface
that characterizes the functional abstraction, the specification of the represented service
interfaces, the mappings between the abstract interface and the represented service

interfaces, etc.
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Figure 5.5 Lookup operations over the abstractions model.

The execution of the executeSBQLQuery operation takes place in three main steps

(Figure 5.5 (A)):
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» Based on the given SBQL query, an SQL query is generated over the relations
of the AoSBM abstraction model.
= The generated query is executed and a list of FunctionalAbstraction
objects is reconstructed, based on the information that is retrieved from the
- AoSBM relational store.
= Finally, the QueryEngineServiceResponse that encapsulates the
reconstructed FunctionalAbstraction objects is constructed and

returned to the developer.

String sbqlQuery =

” let $db = db(’localhost/mySB’}” + “\n\n” +

” for $c in $db/servicecollections” + “\n\n” +

“ for $fa in $Sc/hierarchies/abstractions” + “\n\n” +
” for $ri in $fa/representativeinterfaces” + “\n\n” +
” for $nfa in $c/hierarchies/abstractions” + “\n\n” +
” for $prl in $nfa/gproperty” + “\n\n” +

” where $ri/rsi name like ’%forecast%’ and” + “\n\n” +
” $prl/qgp name = ’Availability’ and” + “\n\n” +

” $prl/qgp value = 'High’” + “\n\n”

” return Abstractions,fullObject”;

Response response = client.executeSBQLQuery(sbglQuery);
QueryEngineServiceResponse geResponse = null;
‘try {
InputStream in = (InputStream) response.getEntity():
JAXBContext context = JAXBContext.newlInstance (QueryEngineServiceResponse.class);
Unmarshaller unmarshaller = context.createUnmarshaller();
geResponse = (QueryEngineServiceResponse) unmarshaller.unmarshal (in);
} catch (WebApplicationException e) { e.printStackTrace(); }
catch (JAXBException e) { e.printStackTrace(); }

List<FunctionalAbstraction> abstractions = geResponse.getFunctionalAbstractions{();
if (abstractions != null && abstractions.size() != 0) {
for( int i = 0; i < abstractions.size(); i++)

String representativeName = abstractions.get (i).getInterface(}.getName();

Figure 5.6 Executing a SBQL query over the abstractions model.

3) The executeSimpleQueryOverAbstractions, takes as input a

SimpleQuery object and produces as output a
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QueryEngineServiceResponse object. The code snippet in Figure 5.7 gives an
example of how to call the executeSimpleQueryOverAbstractions and

explore the results. The SimpleQuery object contains the following information:

"= A list of operations names that should match with corresponding names of
abstract operations (i.e.. the operations of the abstract interfaces that characterize
the discovered functional abstractions), offered by the discovered functional
abstractions. For each required operation name. a discovered functional
abstraction must provide at least one operation, whose name comprises the

required operation name.

® A specification of requirements that concern the services that are used by the
services that are represented by the functional abstractions. These requirements
may comprise, for instance. the names of the operations that are called by the

represented services.

The QueryEngineServiceResponse object that is produced as output includes a
list of ConcreteService objects. Each ConcreteService object contains
information about the services that are represented by the discovered functional

abstractions. Specifically, a ConcreteService object includes:

® The list of the required operation names of the input SimpleQuery object.

s The full specification of the ServiceInterface that is offered by the
represented service.

= A mapping between the required operations and the operations of the interface

that is offered by the represented service.

The execution of the executeSimpleQueryOverAbstractions operation
takes place as follows (Figure 5.5(B)):

= Based on the given SimpleQuery object. a SBQL query is generated over the
relations of the AoSBM abstractions model.
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= The generated query is executed and a list of FunctionalAbstraction
objects is reconstructed, based on the information that is retrieved from the
AoSBM relational store.

= The ConcreteService objects that contain information about the services
that are represented by the reconstructed FunctionalAbstraction objects
are created and encapsulated in the QueryEngineServiceResponse
object.

4) The executeAdvancedQueryOverAbstractions, takes as input an
AdvancedQuery object and produces as output a
QueryEngineServiceResponse object. The code snippet in Figure 5.8 gives an
example of how to call the executeAdvancedQueryOverAbstractions. The

AdvancedQuery object contains the following information:

s A list of OperationConstraints objects, which contain functional
constraints that should be satisfied by the abstract interfaces of the discovered
functional abstractions. Specifically, an OperationConstraints object

contains the following information:

e An operation name that should match with corresponding names of the
abstract operations, offered by the discovered functional abstractions.
Specifically, a functional abstraction must provide at least one abstract

operation, whose name comprises the required operation name.

e A list of input (resp. output) parameter names that should match with
corresponding input (resp. output) parameter names of the abstract
operations of the discovered functional abstractions. For each required
input (resp. output) parameter name, a discovered functional abstraction
must provide at least one operation with an input (resp. output) parameter

name that includes the required input (resp. output) parameter name.
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e A list of input (resp. output) parameter types that should match with
corresponding input (resp. output) parameter types of the abstract
operations of the discovered functional abstractions. For each required
input (resp. output) parameter type, a discovered functional abstraction
must provide at least one operation with an input (resp. output) parameter

type that matches with the required input (resp. output) parameter type.

= A specification of requirements that concern the services that are used by the
services that are represented by the discovered functional abstractions. These
requirements may comprise, for instance, the names of the operations that are

called by the represented services.

The QueryEngineServiceResponse object that is produced as output includes a
list of ConcreteService objects that contain information about the services that are

represented by the discovered functional abstractions.

The execution of the executeAdvancedQueryOverAbstractions operation

takes place as follows (Figure 5.5(C)):

® Based on the given AdvancedQuery object, a SBQL query is generated over
the relations of the AoSBM abstractions model.

* The generated query is executed and a list of FunctionalAbstraction
objects is reconstructed, based on the information that is retrieved from the
Ao0SBM relational store.

* The ConcreteService objects that contain information about the services
that are represented by the reconstructed objects are created and encapsulated in

the QueryEngineServiceResponse object.
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List<String> operations = new ArrayList<String>();
operations.add(”request”);
operations.add(”get”);
String RQs = null;
SimpleQuery simpleQuery = new SimpleQuery (operations, RQs);
Response response = client.executeSimpleQueryOverAbstractions (simpleQuery);
QueryEngineServiceResponse geResponse = null;
try {

InputStream in = (InputStream) response.getEntity();

JAXBContext context = JAXBContext.newInstance (QueryEngineServiceResponse.class);

Unmarshaller unmarshaller = context.createUnmarshaller():

geResponse = (QueryEngineServiceResponse) unmarshaller.unmarshal(in);
} catch (WebApplicationException e) { e.printStackTrace(); }

catch (JAXBException e) { e.printStackTrace(); }

List<ConcreteService> queryResults = geResponse.getConcreteServices();
for( int i = 0; i < queryResults.size(); i++) {

ConcreteService concService = queryResults.get (i);

String LTS _URI = concService.getBehavioralSpecificationURI();

String ENC_URI = concService.getEnactementURI();

List<String> queryOperations = null;
if (simpleQuery != null)

queryOperations = simpleQuery.getOperationNames();

» for( int j = 0; j < queryOperations.size():; j++) {
String queryOp = queryOperations.get (j);

List<Operation> retrievedOpers = concService.getRetrievedOperations (queryOp);

if (retrievedOpers != null) {
for( int k = 0; k < retrievedOpers.size(); k++)

String retrievedOperName = retrievedOpers.get (k) .getName();

List<String> retrievedURIs = concService.getServiceInstancesURIs();
for( int j = 0; j < retrievedURIs.size(); j++)

String retrievedURI = retrievedURIs.get(j);

Figure 5.7 Executing a simple query over the abstractions model.
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String opNl = “request”;

List<String> iNl = new ArrayList<String>();
iNl.add (”parameters”);

List<String> iTl = new ArrayList<String>{();
iTl.add (”string”);

List<String> oNl = new ArrayList<String>();
oNl.add (”parameters”); '
List<String> oTl1 = new ArrayList<String>();
oTl.add{”string”):;

String opN2 = “get”;

List<String> iN2 = new ArrayList<String>():
iN2.,add(“parameters”);

List<String> iT2 = new ArrayList<String>();
iT2.add(”string”);

List<String> oN2 = new ArrayList<String>{();
oN2.add (”parameters”) ;

List<String> oT2 = new ArrayList<String>();
oT2.add(”string”};

OperationConstraints opCl = new OperationConstraints(opNl, iN1, iTl, oN1, oT1l);

OperationConstraints opC2 = new OperationConstraints(opN2, iN2, iT2, oN2, oT2);

List<OperationConstraints> opConstraints = new ArrayList<OperationConstraints>();
opConstraints.add (opCl);
opConstraints.add (opC2) ;

AdvancedQuery advancedQuery = new AdvancedQuery(opConstraints, null, null);

Response response = client.executeAdvancedQueryOverAbstractions(advancedQuery);
QueryEngineServiceResponse geResponse = null;
try {
InputStream in = (InputStream) response.getEntity():
JAXBContext context = JAXBContext.newInstance(QueryEngineServiceResponse.class);
Unmarshaller unmarshaller = context.createUnmarshaller():;
geResponse = (QueryEngineServiceResponse) unmarshaller.unmarshal(in);
} catch (WebApplicationException e) { e.printStackTrace(}; }
catch (JAXBException e) { e.printStackTrace(); }

List<ConcreteService> queryResults = geResponse.getConcreteServices({();

Figure 5.8 Executing an advanced query over the abstractions model.
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CHAPTER 6. EVALUATION

6.1 Overview
6.2 Performance and Quality Assessment
6.3 Scalability Assessment

6.4 Conclusion

6.1 Overview

This chapter presents the results of the experiments we have performed in order to evaluate our

distributed service base system.

‘We have performed experiments with our distributed service base system, based on real data.
Using a set of hardware components and various inputs to our algorithm, we executed a set of

experiments so as to evaluate both the performance and the quality of our method.

We have also performed a set of experiments to measure the mined abstractions’ impact on the
queries’ execution time, in relation to the scaling of the number of services and abstractions.
These experiments are not based on any abstractions mining technique, neither on the algorithm
of [6] nor on our distributed one, but, on the contrary, we loaded synthetic data in the service
base, i.e., synthetically created services and abstractions. In this way we managed to scale up
to rather large number of services/abstractions, so as to be able to evaluate the actual scalability

of abstractions-based querying in general, related to the queries execution time.
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6.2 Performance and Quality Assessment

To evaluate our approach we used the OWLS-TC benchmark?, which is a collection of services
annotated with OWL-S semantic descriptions. The benchmark also contains a set of queries.
The OWLS-TC benchmark was the source of our experimental data set, i.e., we used our system
to registrate the benchmark’s service descriptions and mine abstractions with our distributed
approach. The OWLS-TC benchmark was also the source of our queries set, which was the

means to evaluate the query execution performance and the quality of the answers returned.

®  We chose the latest version, 4.0, of OWLS-TC. We did not exploit the OWL-S semantic
descriptions, on the contrary, we isolated the two folders, containing the WSDL service
descriptions and the queries.

* For the input data set, we isolated the htdocs->wsdl folder, which contains 1076 WSDL
files, each one specifying a service description.

® For the queries data set, we isolated the htdocs->queries folder, which contains 42
queries over the described services. We used the 1.1 version of the set of queries. The
queries are in the form of OWLS files, i.e., files describing the desirable features of the

services.

6.2.1 Description of the Input Data Set
‘The benchmark’s service descriptions cover a wide thematical domain. In particular, there are
descriptions for services referring to communication, economy, education, food, geography,

medicine, simulation, travel and weapon.

We had to modify the service descriptions slightly, so that they could be parsed by the AoSBM’s
WSDL parser. Figure 6.1 depicts a WSDL snippet comprising some type declarations and a
message. We present this snippet to illustrate the issues that made the initial WSDL files

unsuitable for being parsed by the AoSBM’s parser. Mainly, there were two issues:

®» Self-nesting for complex types is not supported. As an example, the complex type
PersonType in Figure 6.1 contains an element of the same type, i.e., PersonType,

which cannot be parsed.

? http://www.semwebcentral.org/projects/owls-tc


http://w/v/v.sem/vebcentral
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To refer to a declared type from outside the <wsdl: t ypes> declaration element, this
type must be declared, apart from its <xsd:complexType> or
<xsd:simpleType> declaration element, also ina <xsd:element> element. For
example, in the message declaration (<wsdl :message> element), the first part refers
to a Person type, for which there is a corresponding <xsd:element> element. On
the other side, the second part refers to a CompanyType type, for which there is no

such element.

To make the document of Figure 6.1 parsable we had to substitute the PersonType type of

the third element of the declared complex type, with another type, e.g., xsd:string. Also,

we had to add the following <xsd:element> declaration line:

<xsd:element name = “Company” type = “CompanyType”/>

For all the 1076 WSDL files that we used, we had to perform such modifications for making

the files parsable.

<wsdl:types>

<xsd:element name = “Person” type = “PersonType”/>

<xsd:complexType name = “PersonType”>

<xsd:sequence>

<xsd:element name “name” type = “xsd:string”/>

<xsd:element name = “age” type = “xsd:integer”/>

<xsd:element name “wife” type = “PersonType”/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name = “CompanyType”>

<xsd:restriction base = “xsd:string”/>

</xsd:simpleType>

</wsdl:types>

<wsdl:message name

“sendInfo”>

<wsdl:part name = “person” type = “Person”/>
<wsdl:part name = “company” type = “CompanyType”/>
</wsdl:message>

Figure 6.1 Example of a WSDL document.




76

6.2.2 Description of the Input Queries

The benchmark, as mentioned, contains a set of OWLS queries. The notion of these queries is
to combine naming, structural and behavioral properties of the searched services, however our
query engine is not tailored to that. Thus, we had to adjust the queries to our query engine
abilities, i.e., form queries into structures that could be passed as input to our query engine
service's operations. We used the AdvancedQuery structure to form each query, and the
respective operation to execute the queries. Below we detail the process we followed to produce

the advanced queries.

Foreach OWLS query file, we formed a text file containing information able to form an
advanced query. Each OWLS document of the queries folder describes a service offering a
single operation, with a number of input and output parameters and this information is included
in a compact form in the <process:AtomicProcess> element of the OWLS document.
Figure 6.2 presents an example of such a query definition. For each OWLS document, we
extracted the <process:AtomicProcess> element and wrote a text file serving as a form
of advanced query. This was done automatically by an application we developed for this
purpose, however we manually applied an additional modification over the text file. We
illustrate our preprocessing with an example: Figure 6.3 shows an advanced query in text form,
particularly the query derived from Figure 6.2 definition, after the manual modification phase.
‘As can be inferred, the purpose of our manual intervention, was to keep only meaningful words,
i.e, throw out parts such as “# ” and common words, such as “PROCESS” (or “METHOD”,
"OPERATION”, "RETURN?", "GET”, "SET", etc in other circumstances). We also separate
the semantical terms by adding an underscore (*_") character between them. Thus, each

operation or parameter name consists of a set of semantical terms.

<process:AtomicProcess rdf:ID="DVDPLAYERMP3PLAYER PRICE_ PROCESS">
<service:describes rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_SERVICE"/>
<process:hasInput rdf:resource="# MP3PLAYER"/>
<process:hasOutput rdf:resource="# PRICE"/>
<process:hasInput rdf:resource="# DVDPLAYER"/>

</process:AtomicProcess>

Figure 6.2 Example of an operation’s definition in a OWLS document.
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Operation:
PLAYERS_PRICES

Input Message Types (2)
MP3_PLAYER

DVD_PLAYER

Output Message Types (1)
PRICE

Figure 6.3 The advanced query corresponding to the example of Figure 6.2, in plain text form.
Based 0;1 such a query in text form, we produce a series of advanced queries, each one
corresponding to a combination of elements. Each advanced query comprises two elements; an
operation name and a parameter name (either input or output, but not both). Specifically, each
advanced query comprises, as the operation name, a term of the actual operation name and, as
the input (resp. output) parameter name, a term of the actual input (resp. output) parameter
name. Additionally, we produce advanced queries, each one comprising just the operation name
(a term of the actual operation name) and nothing else. In every produced advanced query, the
parameter’s type is set to null. Figure 6.4 shows the set of advanced queries produced from
Figure 6.3 in text form. Each line represents an advanced query in a brief form, in particular,
the word in the left stands for the operation name, while the word in the right stands for the
message type name (inpur or output). Each line represent an advanced query. The first two
,advanced queries comprise only the operation name, while the others comprise the operation

name and a parameter name.

PLAYERS

PRICES

PLAYERS - MP3
PLAYERS - PLAYER
PLAYERS - DVD
PLAYERS - PLAYER
PLAYERS - PRICE
PRICES - MP3
PRICES -~ PLAYER
PRICES - DVD
PRICES - PLAYER
PRICES - PRICE

Figure 6.4 A representation of the advanced queries produced from text query of Figure 6.3.
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6.2.3 Experimental Setup
We executed our standalone component on an Intel Dual-Core, 2.00 GHz, 3 GB RAM. The
operating system was Windows 7 Professional. For the service base we employed MySQL

Server 5.5;

For our distributed approach, we used as hardware components the nodes of a cluster of AMD
Dual-que, 2.2 GHz, 4 GB RAM computers, running Ubuntu 13.04,

In our experiments, we used our distributed abstractions mining tool to produce abstractions
over the 1076 service descriptions that we mentioned before. Note that our algorithm takes four
inputs, apart from the collection of service descriptions and the available nodes:

= the number of available nodes to be used

= the retention threshold

» the distance threshold

= the name extraction technique (LCS or RC)

We experimented on a big variety of combinations of the input values, and chose to present the
most representative ones. We organized our presentation in three sets. For each set, we executed
our tool by keeping constant the two of the first three inputs listed above, while varying the
“other two. Thus, each time, a different database instance was produced. Subsequently, we posed
queries over these instances, using our query engine service. We measured our system’s mining

and querying efficiency, as well as the quality of the retrieved answers.

Measurement of the quality of the query results

We analysed how, based on a OWLS query, we extract a set of advanced queries, like the one
depicted in Figure 6.4. For each OWLS query, we posed all these advanced queries to the
system, using the executeAdvancedQueryOverAbstractions () operation of our
query engine service. We also posed the same queries using the
executeAdvancedQueryOverInstances () operation, reminding that this operation
matches queries against concrete services instead of service abstractions. In both cases, we
collected the answers from each advanced query and formed a union of them. Let

retrievedAnswers ~ be  the union of the answers returned by the
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executeAdvancedQueryOverAbstractions () operation, and relevantAnswers be
the union of the answers returned by the executeAdvancedQueryOverInstances ()
operation. We calculated the precision and recall values, as the measures of quality of the

answers to the OWLS query. In particular, we applied the following well-known formulas:

| relevantAnswers NretrievedAnswers |
| retrievedAnswers |

Precision =

| relevantAnswers N retrievedAnswers |
| relevantAnswers |

Recall =

We applied the steps mentioned in the previous paragraph to each of the 42 OWLS queries
using a tool we developed for this purpose. Finally, we aggregated all queries measurements,
producing an average value and a standard deviation of them, which are the values we actually
present in this chapter. In some cases, the value of a query’s quality metric is not defined
mathematically, thus leading us to exclude this value from the calculation of the average value

and the standard deviation.

Measurement of the query execution time

Similar to our query results quality presentation, we present the average execution time of the
‘42 queries, as a representative value for the entire query workload. Additionally, we present the
measurements of what we call the “search” time, which is a part separated from the total query

execution time. Basically, the query execution consists of two discrete phases:

* In case of querying over abstractions it comprises, in the following time order:
e the phase of SQL querying, till the abstractions’ table keys are found, i.e.,

the relevant functional abstractions are found

o the phase of SQL table joining to compose the FunctionalAbstraction

objects, that will be finally returned.

* In case of querying over instances (concrete services), it comprises, in the following

time order:
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o the phase of SQL querying till the serviceinterfaces’ table keys are
found, i.e., the relevant concrete service interfaces are found
o the phase of SQL table joining to compose the ServiceInterface objects,

that will be finally returned.

In both cases, we call “search™ time, the time consumed for the first phase, while we call “non

search” time, the time consumed for the second phase.

The presented time durations were calculated in the following way: we executed our distributed
abstractions mining tool once per case, as we relied on an experiments-dedicated Ubuntu
computers cluster. On the other side, we executed the 42 queries 20 times per case, and present

the average query time, as we relied on a typical Windows platform.

6.2.4 Findings
Hereafter, we present our experimental findings. For each investigated impact (set of
experiments), we give the results of the two different representative name extraction techniques

by presenting a pair of charts, namely:

a) for the technique which uses the longest common substring, (LCS), and
b) for the technique which just picks randomly one of the names of the two abstracted
interfaces, (RC)

For each technique, we measured the distributed abstractions mining execution time, the

precision and recall of the query results, as well as the query execution time.

1* set of experiments: the impact of the number of nodes
We investigated the impact of the number of hardware components participating in the
distributed approach. We fixed the abstractions retention threshold to 0.9 and the distance

threshold to 0.2. For the number of hardware components to be used, we gave the values 2, 4,
8.

* Figure 6.5 depicts the impact of the number of nodes on the abstractions mining

execution time.
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The findings show that the time decreases when the number of nodes increases, almost
proportionally. An increase in the number of used nodes reduces proportionally the time
spent by the leaf nodes, but on the other hand, introduces more steps (tree nodes) to the
root. However, the additional steps are not so much, so as to overturn the time gained

during the leaf level processing.

We also clearly observe that LCS is much faster than RC. A fact regarding the two
methods, LCS and RC, is that LCS extracts rather small representative names. On the
contrary, RC retains the names intact, this causing a serious delay in the name distance

calculations.

Figure 6.6 depicts the impact of the number of nodes on the precision of the query

results.

For RC, we observe that the precision decreases when the number of nodes increases.
An increase in the number of used nodes introduces more pruning steps, this causing
less abstractions retained. Thus the quality of the results degrades. For LCS, a constant
absolute precision is observed, with its values being equal to 1. We would expect it to

decrease, however, this finding may be due to our small data set.

Comparing the precision values for the two methods, we find, as expected, that LCS
gives better results. This happens beacause the names of all the represented objects
(interfaces, operations, e.g.) of the abstractions that are mined using LCS, are relevant
to the respective representative objects’ names. RC extracts the representative name by
randomly choosing one of the two represented ones, thus meaning that, if an abstraction
matches a user’s query, not all of its represented interfaces, which will be also retrieved,

are relevant to the query.

Figure 6.7 shows the impact of the number of nodes on the recall of the query

results.
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Quite medium recall values, as well as a values' decrease with the increase of the
number of nodes is observed for both methods. As also mentioned in the case of
precision values, the results quality is expected to degrade as the number of nodes
increases, due to the introduction of more pruning steps, which causes less abstractions

to be retained.

We also find that RC’s values are generally bigger than those of LCS; LCS extracts too
cropped representative names, that cannot be easily matched with the names the user
includes in his query. On the contrary, RC does not crop the initial names, therefore,
despite the small relativeness of some of the represented services with the representative

one, it gives more chances to query-relevant services for being retrieved.

Regarding LCS, we see that the recall values in cases of 4 and 8 used nodes do not much
differ. An explanation for this could be that the numbers of retained abstractions in cases
of 4 and 8 nodes used, do not much differ, and, particularly they are both quite small (if
they were both big, they would probably differ more). This is also justified by the query
execution time behavior, which we discuss in the next paragraph. Since we expect LCS
to mine abstractions with quite low children distance threshold, we conclude that most
of the abstractions mined by LCS have a distance threshold value which is smaller than

the 0.2 value that we set.

Figure 6.8 shows the impact of the number of nodes on the query execution time.

We generally observe the time values decreasing with the increase in the number of
nodes; less abstractions retained means less time consumed for searching, as the

searching is applied to the abstractions and not to the concrete services.

We also find LCS faster than RC. Actually, LCS should be faster, due to the small
extracted names; it should be faster in terms of search time, because sql name
comparisons will delay, and it should be quicker also in terms of the non-search time,
i.., the composition time, because smaller names would need to be retrieved from the
database.
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We find RC leading to rather expected results, with the time values almost constantly
decreasing with the increase in the number of nodes. Nonetheless, LCS would behave
the same, if it was not for the observed misconduct in the case of 8 nodes used and,
actually, this is confirmed by all the three presented charts; even the search time chart
shows a decrease, but not to the expected degree. This probably relates to the previous
p\arggraph’s respective finding, which, as explained, may occur due to the little

. difference between the retained abstractions, in cases of 4 and 8 used nodes.
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Figure 6.5 The impact of the number of nodes on the abstractions mining execution time.
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Figure 6.7 The impact of the number of nodes on the recall of the query results.
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Figure 6.8 The impact of the number of nodes on query execution time.

2" set of experiments: the impact of the abstractions retention threshold

We investigated the impact of the abstractions retention threshold. We fixed the number of

nodes to 8 and the distance threshold to 0. Actually, the two thresholds interact during the

overall distributed mining process and the pure impact of each of them is affected by the other.

Setting the distance threshold to 0 leads to the distance threshold not affecting the overall



86

distributed mining process, since every time the distance between the two abstracted interfaces

of an abstraction is examined, it will be found equal or bigger than 0, thus the child abstractions

will be retained and the parent abstraction will be thrown away. For the retention threshold, we
gave the values 0.33, 0.50, 0.66, 0.83, 1.00.

Figure 6.9 shows the impact of the abstractions retention threshold on the
abstractions mining execution time.

There is found an increase in the consumed time as the abstractions retention threshold
increases. For our distributed process, bigger proportion of abstractions’ retention
means more abstractions retained at each node, thus more abstractions passed to the
parent node. This results to each node having to process more abstractions, i.e., the

overall processing time increases.

Another point is that the curves’ gradient is not proportional to the increase of the
abstractions retention threshold, and this can be due to the fact that a part of the
consumed time regards the initial abstractions mining performed by the leaf nodes,
which is the same in all cases. Also, the pruning process adds an overhead, thus in cases

of smaller retention threshold, i.e, more pruning, the overhead will be bigger.

LCS is much faster than RC, for the reasons we mentioned earlier.

Figure 6.10 depicts the impact of the abstractions retention threshold on the

precision of the query results.

In case of RC, we observe a slight increase in the precision values, as the retention
threshold increases. This happens because, bigger proportion of abstractions retention

means more abstractions retained, thus the results’ quality upgrades.

We find again LCS giving better results than RC, in particular, the observed precision

values are equal to 1, independently of the change in the value of the abstractions

retention threshold.
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Figure 6.11 depicts the impact of the abstractions retention threshold on the recall

of the query results.

Thé two methods’ behavior is much similar in this occasion; as explained in the previous
bullet, an increase in the number of retained abstractions means better quality of the
query results, the recall values increase with the increase of the retention threshold.

The precision values in case of RC are generally bigger than those in case of LCS, an

expected finding that we explained earlier..

Figure 6.12 shows the impact of the abstractions retention threshold on the query

execution time.

First of all, we observe that, for both methods, the pure search query time behaves in a
rather expected manner, increasing, at an almost constant rate, as the retention
threshold’s value increases. This is explained by the fact that there are more abstractions

retained, thus more abstractions to be searched.

Secondly, the indicated by the (b3) chart change rate, is confirmed by the (b2) one but
not quite confirmed by the (b1) chart. Additionally, the (a3) chart is not quite confirmed
by neither the (al) chart nor the (a2) chart. Another point is that, according to (b1) and
(b2) charts, when the threshold’s value exceeds 0.33, the query execution time exceeds
the respective one consumed by querying over instances. Later on, we explain some of

the reasons that cause this kind of findings.

Another finding is that, as expected, LCS leads to a considerably faster query execution

time than RC, both in terms of total time and search time.
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Figure 6.12 The impact of the abstractions retention threshold on query execution time.

3rd set of experiments: the impact of the distance threshold

We investigated the impact of the represented interfaces distance threshold. We fixed the
number of nodes to 8 and the abstractions retention threshold to 0.83. For the distance threshold,
we gave the values 0.00, 0.16, 0.33, 0.50, 0.66.
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Figure 6.13 depicts the impact of the distance threshold on the abstractions mining

execution time.

Both methods behave normally; the execution time decreases as the distance threshold
increases. An increase in the distance threshold’s value causes more children
abstractions being pruned (or else, more parents retained), thus meaning less
abstractions retained.

Again, we find that LCS is significantly faster than RC.

A more close look at the findings concerning LCS reveals that, above a specific value
of the distance threshold, no significant changes in the time values happen. Actually,
this is expected to be observed not only in case of the abstractions mining execution
time, but in all cases of our metrics. The reason for that is that there should normally be
a limit in the distance threshold’s value, above which almost all parent-children
abstraction structures will have their children pruned. This, in conjunction with the fact
that there is a priority in the application of the two thresholds criteria, i.e., the distance
threshold is firstly applied, leads, especially in cases of big distance threshold values, to
the pruning of an abstractions hierarchy terminate, even if the number of retained
abstractions is not even close to the number of abstractions that are dictated to be
retained. Thus, when the distance threshold’s value reaches that limit, the number of
retained abstrations will be abruptly reduced to a very small number, not likely changed

any more.

We observe, as we would expect, that this limit is lower for LCS than for RC; RC
chooses entire names as representative names, and this leads to more heterogeneous
abstractions, as the abstractions mining process goes on to higher levels, i.e.,
abstractions not actually representing the services they are supposed to represent. On
the contrary, LCS uses parts of all services’ (and operations’, messages’, etc.) names to
compose representative names, thus mining more homogeneous abstractions. Therefore,
most abstractions mined by LCS have a lower children distance threshold, than those
mined by RC.
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Figure 6.14 depicts the impact of the distance threshold on the precision of the query

results.

Concerning RC, we observe a small decrease in the precision values, as the distance

threshold increases, which is an expected finding.

Again, we observe the precision values for LCS being constantly 1, not affected by the

change in the distance threshold.

Figure 6.15 depicts the impact of the distance threshold on the recall of the query

results.

The two methods behave quite differently in this case; while for RC we observe a slight
decrease in the recall values as the distance threshold increases, for LCS we observe a
significant decrease. Moreover, for LCS, we observe that when the distance threshold’s
value reaches a limit, around 0.50, there is an abrupt reduction of the recall values to a
disappointing level. We also see that, above this limit, no significant changes to the
recall values happen. This phenomenon, regarding the distance threshold's limit and

why it is lower for LCS, was explained earlier.

Figure 6.16 shows the impact of the distance threshold on the query execution time.

We find that, for both methods, the pure search query time behaves as expected,
decreasing as the retention threshold’s value increases. The (a3) and (b3) charts’
indications are almost confirmed by the rest of the charts, except for the fact that the

little changes in (a3) and (b3), correspond to practically no changes in the other charts.

Concerning LCS, we observe that, above value 0.50 of the distance threshold, all
metrics’ values are only slightly affected by the threshold’s further increase. This is not
observed in RC’s charts, confirming our expectations regarding the distance threshold’s

limit and why it is lower for LCS. In this case we conclude that, for LCS, this limit must
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be inside the distance threshold values’ range that we experimentally used, while, for

RC, must be outside.
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Figure 6.13 The impact of the distance threshold on the abstractions mining execution time.
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Figure 6.14 The impact of the distance threshold on the precision of the query results.
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Figure 6.15 The impact of the distance threshold on the recall of the query results.
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Figure 6.16 The impact of the distance threshold on query execution time.

Additional explanations concerning the experimental findings
We have mentioned that the query process can be divided in two phases, the search and the

non-search (composition) phase.

Thus, the main difference between the two querying methods is the additional composition of

the representative interface and the interfaces mappings. in the case of querying over



94

abstractions. Approximately, this time overhead is proportional to the total number of concrete

services that the returned abstractions represent.

In the small-scale experiments performed with OWL-TC benchmark, we found that, in both
querying cases, the proportion of the time consumed during the first phase is quite small,
compared with the overall consumed time. We measured these proportions for all queries in all
experiments, and we present the average values. As Figure 6.17 points out, only a 4.6% of the
overall tlme is consumed during the first phase in case of querying over instances. An even
much smaller percentage, 0.8% of the overall time, is consumed during the first phase in case
of querying over abstractions. As we can see, the first phase, in case of querying over instances,
proportionally lasts almost 6 times more than the respective one in case of querying over
abstractions. Figure 6.18 depicts how many times bigger the non-search time is, than the search

time, in the two querying cases.

All the aforementioned findings show that, the quicker search time that we expect for the
querying over abstractions method, comes along with an overhead to the non-search time. This
implies that the clear difference observed in search times, between the two querying methods,
may not be observed in total times, and perhaps, in some cases, the total time consumed by the
querying over abstractions method may exceed the total time consumed by the querying over

- instances method.

querying over instances

™ total time

8 search time

e

fj 100

querying over abstractions

0 20 40 60 80 100

Figure 6.17 Comparing the pure search time with the total time consumed for querying.
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Figure 6.18 The quotient of the non-search time / total time, in the two querying cases.

. In our experiments, we observed some unexpected findings, e.g., querying over abstractions
being slower than querying over instances. The explanation of these phenomena lies in the

combination of three main facts:

= The time overhead of the querying over abstractions method, which we described
earlier.

* The high deviation of the number of services returned by each query. For instance, the
querying over instances method returns 161 services on average, with a standard
deviation of 283 services.

» The fact that not all 42 queries are uniformly affected by a change in a threshold’s value
of our experiments. By this we mean that the proportion of resulted services that each
query produces, can significantly change, owing to a change in a threshold’s value. The
problem for us is that, measuring the mathematical average query execution time of the
42 queries, we consider each query execution having the same importance, not taking
into consideration the very different number of services each query returns. The 42
queries are not equally affected, in fact, what the most affected queries are, plays a
critical role; if the queries that usually (in executions with other threshold values)
retrieve big numbers of services are affected the most, this may lead to unexpectable
findings. Thus, the average value can be easily affected by a few overweighted queries.

® The small scale of our data set. An important issue comes from the experiments towards
scalability, presented in section 6.3. We observe that, no matter what the

abstractions/services ratio is, the more the number of registered services decreases, the
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much closer the querying over abstractions time becomes to the corresponding time of
querying over instances. This implies that, in the case of the 1076 services, which we
use in these experiments, the difference in the two querying methods’ execution times

could be quite small or non-existent.

6.3 Scalability Assessment

Description of the Input Data Set

The input data we have used in these sets of experiments were synthetically produced data. We
developed a data generator for this purpose. The generator takes as input the number of services
and the number of abstractions, and creates, for each of our service base’s relations, a text file
consisting of synthetic records, according to the input parameters. We also manually changed
some records to fit our query needs. Specifically, in the ServiceInterface’s text file, we
changed some records’ name to weather, in Operation’s text file we changed some records’
name to getHumidity some others’ to getTemperature. We did so because, the query we used

for our experiments comprises the aforementioned terms.

Description of the Input Queries
We used our SimpleQuery class to query the service base. In particular, we created a simple
query to search for services offering 2 operations, one whose name contains the term

getTemperature and one whose name contains the term getHumidity.

Experimental Setup and Findings
We executed our experiments on an Intel Dual-Core, 2.00 GHz, 3 GB RAM. The operating

system was Windows 7 Professional. For the service base we employed MySQL Server 5.5.

We organized our experiments in two sets, which are briefly described below. In both sets we
compare querying over service abstractions with querying over concrete service descriptions,
while varying different parameters. Further details concerning the experiment setup for each
set of experiments (operations per service, in/our parameters per operation, required disk space)

are given in Table 6.1. We performed each experiment 10 times and we report the average
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execution times. Figure 6.19 gives the results that we obtained; the reported numbers are the

average values,

« Istset of experiments: The impact of scaling the number of services and the number

of abstractions
We varied the number of service abstractions from 5 * 10° to 10° and the number of

service descriptions from 5 * 10* to 107; hence, each service abstraction represented 10

services.

» 2" get of experiments: The impact of scaling the number of services
The number of stored abstractions was 10%, while the number of service descriptions

ranged from 5 * 10% to 10; thus, the number of represented services per abstraction
varied from 5 to 1000.

Table 6.1 Experimental setup for query execution performance towards scaling.

1st set of experiments data set properties

# service abstractions 5%10° ) 10° | 5*10° | 10° | 5*10°| 10¢

# concrete services S5*104 [ 10° [ S*10°] 10° [ 5*10°] 107

# represented services per abstraction 10

# operations per service 3

# in parameters per operation 2

# out parameters per operation 2

overall disk space (MB) 159 |325] 1700 {3451 17920 | 37478
2nd set of experiments data set properties

# service abstractions 10*

# concrete services 5*100 ] 10° | S*10° | 10° | 5*10°| 107

# represented services per abstraction 5 10 50 100 500 1000

# operations per service

# in parameters per operation
# out parameters per operation
overall disk space (MB) 171 1325 | 1587

o | W

3205 | 16486 | 33382

Concerning the query over concrete services, in both sets of experiments (Figure 6.19 (a) and
(b)), we observe that the execution time increases with the number of concrete service

descriptions stored in the service base. Concerning the query over abstractions, in the 1* set of
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experiments, the execution time increases with the number of stored service abstractions. On
the other hand, in the 2™ set of experiments, the execution time increases with the size of the
result; the number of represented services for the service abstractions that are returned by the
query varies from 5 to 1000. In both sets of experiments querying over service abstractions is
much faster than querying over concrete service descriptions. More specifically, in the 1% set
of experiments, querying over service abstractions is 88% to 99% faster than querying over
concrete semce descriptions. Similarly, in the 2" set of experiments, querying over service

abstractlons is 90% to 99% faster than querying over concrete service descriptions.
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5 6
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Figure 6.19 Querying over abstractions vs. querying over instances.
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6.4 Conclusion

Performance and Quality

There normally exists an inherent trade-off in trying to improve the consumed time, both in
cases of abstractions mining execution and query execution, while retaining the quality of the
query results in a satisfying level. Our experimental findings quite justify our efforts to confront
this issue.

In general, we found that we can tune the three inputs of our tool, namely the number of nodes.
the abstractions retention threshold and the distance threshold, so as to reduce the abstractions
mining and query execution times, while obtaining query results of good quality. In fact, the
abstractions mining execution time significantly decreases, the query execution time generally
decreases, and the query results quality is bearably degraded. Some observed unexpected
findings, mainly regarding the query execution time values, are due to the limited number and
variety of our input service descriptions, and most of all, the high diversity of the applied

queries.
We briefly denote the three thresholds® impact:

s Number of nodes
An increase in the number of used nodes:
e enhances parallelism, thus the abstractions mining execution time is
significantly reduced
¢ introduces more pruning steps, which causes less abstractions being retained,
thus
> the query execution time decreases

» the query results’ quality decreases

8 Abstractions retention threshold:
An increase in the abstractions retention threshold:
e retains more abstractions to be processed by each internal node, so the

abstractions mining execution time increases
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e increases the final number of retained abstractions, thus
» the query execution time increases

> the query results’ quality increases

»  Distance threshold:
An increase in the distance threshold's value
.o retains less abstractions to be processed by each internal node, so the
: abstractions mining execution time decreases
e decreases the final number of retained abstractions, thus
» the query execution time decreases
» the query results’ quality decreases
However, there is normally a limit in the distance threshold’s value, above which, no

significant changes happen.

Based on the aforementioned findings, we come to the conclusion that, given a fixed number
of nodes, the combination of values of the two thresholds, that should be specified in order to
achieve better results, has to be quite small for the distance threshold, preferably in the range
[0.1, 0.3], and quite high for the abstractions retention threshold, prefcrably in the range [0.7,
0.9]. The exact values’ specification depends a lot on the collection of service descriptions that
have to be processed, especially on the level of thematical diversity among services. A practical
approach to this issue, is that the administrators create a sample collection out of their entire
collection of service descriptions. As a preprocessing step, our system could be tried with the
sample data set and using a set of different combinations of input values, thus finding the

combination which best fits the administrators’ needs.
We briefly denote the differences between the LCS and the RC method:

* Distributed abstractions mining execution time:
The critical part concerns the names’ distance calculations. The LCS method extracts
smaller names, thus the mining process is quicker than the RC method. Moreover, the
more calculations are executed, the bigger the difference between the two methods’

execution time becomes. We have more calculations when the number of nodes
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increases, the abstractions retention threshold increases and the distance threshold

decreases.

®  Query results precision:
The LCS method mines abstractions with their representative names being more
relevant to the corresponding represented ones, than in case of RC method happens.
Thus, an application of the LCS method leads to a better precision of the query results,

in fact, a constant absolute precision is observed.

s Query results recall:
The LCS method extracts too cropped representative names, that cannot be easily
matched with the names the user includes in his query. The RC method, when applied,
leads to a better recall of the query results since, despite the small relativeness of some
of the represented services with the representative one, it gives more chances to query-

relevant services for being retrieved.

®  Query execution time:
Because of the small representative names, the LCS method leads to quicker query

execution, than the RC method does.

Additionally, the two methods differ in that the aforementioned limit in the distance threshold
value, will generally be smaller in the case of LCS method. That happens because the
abstractions mined by the LCS method are more homogeneous, i.e., there is a bigger relevance

between the representative and the represented interfaces.

Overall, we find the LCS method much more efficient that the RC method. In particular, the
RC method gives better results only in terms of the recall of the query results, while the LCS

method leads to much quicker execution times and much better precision of the query results.
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Scalability
Our substantial experimental finding is that, the more the number of registrated services

increases, the much more quicker querying over abstractions becomes, compared with querying
over concrete services. Regarding an ultra large scale of services, the results are rather

impressive.
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CHAPTER 7. CONCLUSION AND ADDITIONAL
CHALLENGES

7.1 Conclusion
7.2 Additional Challenges

7.1 Conclusion

Service-Oriented Computing (SOC), despite emerging as a very promising trend for application
development, has failed to be widely used. The main reason for that is the limited efficiency
and effectiveness of the current search technologies; structured queries, which mainly concern
a developer, are not offered, while search time is high, since answering a query requires

matching it against all the services, thus meaning that search time scales with the number of

services.

Abstraction-Oriented Service Base Management (AoSBM) introduces a clustering technique;
the summaries that characterize the clusters are called service abstractions. A service
abstraction represents a group of services that have similar functional properties (operations,
inputs, outputs, etc.). The lookup queries are matched against service abstractions, thus the

query execution time scales with the number of service abstractions, instead of scaling with the

number of service descriptions.

We built upon the notion of service abstractions and the abstractions mining algorithm used in
AoSBM to facilitate the organization of large unstructured collections of service descriptions

and the execution of service lookup queries. More specifically, we developed a service
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discovery facility that we called service base. The main constituents of the service basc are the

following:

= A novel, scalable distributed abstractions mining facility that makes the clustering of large
collections of service descriptions feasible.

» A user-friendly query engine facility that enables the execution of service lookup queries
over abstractions. Moreover, we developed a Web service that provides access to the

query engine and allows using the service base in a distributed setting

We experimentally tested our system for scalability. performance and quality of query results.

* For scalabilty, using an ultra large scale of synthetic data, we found that, the more the
number of registrated services increases, the much faster the querying over abstractions

is, than querying over concrete services.

» For performance and quality of query results, using a benchmark of 1076 real-world
service descriptions, we found that our approach suggests a considerable solution to the
aforementioned issues, besides the normal trade-off in trying to improve both

performance and quality.

7.2 Additional Challenges

The baseline system (AoSBM) accompanied with our distributed abstractions mining approach
is aimed at improving the overall process of organizing Web services on the purposc of quicker
and qualitative service retrieval. This approach, as illustrated in our experiments, improves the
query execution time, while returning satisfactory results in terms of their quality. However,
our experimental findings reveal a number of challenges and potential future improvements
regarding the abstractions mining execution time, the query execution time and the quality of
the query results. Hereafter, we present some of them, starting from the more straightforward

ones, i.c., those that can be realized without radical changes.

The division of the services collection into subcollections, prior to their distribution to the

computer nodes during the distributed abstractions mining process, could not be arbitrary.
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Specifically, a fast clustering technique could be applied to the initial collection, which would
divide it into clusters of similar services. There are many chances that this will improve the
quality of the retrieved query results, both in terms of precision and recall, since it would

increase the homogeneity of the abstractions mined by the leaf computer nodes.

A challenge for improving the query execution time comes from the experimental findings; As
indicated in the evaluation chapter, the pure search query time metric, behaves as expected; in
all sets_‘of our experiments, the querying over abstractions method’s values have an almost
constant rate of increase or decrease, and are many times less than the respective values of the
querying over instances method. However, the behavior of the total query execution time
metric, is not enough tailored to this. We explained that this misconduct is due to the additional
load of the querying over abstractions method, which is the composition of the representative
interface and the interfaces mappings. Thus, for users not concerning about software component
adaptation, and moreover, can search themselves to find the results’ elements mapping their

query elements, this additional load could be alleviated.

Moreover, the querying over abstractions method has the load of the composition of the
represented interfaces, i.e., the interfaces of the concrete services, stored in the service base
after the service descriptions are parsed. We could additionally store the entire WSDL
documents as plain text, so that we could retrieve them, rather than reconstructing them, i.e.,
the abstraction object could be composed of a string, representing the WSDL file, instead of the

represented interfaces’ list.

Another challenge emerges from the storage architecture of our system. We employed a
standalone database for storing both services and abstractions. We could make this architecture
distributed. In this way, a set of computational nodes would be utilized to store the mined
abstractions to their own instances of the database. This would decrease the distributed
abstractions mining execution time, because it would eliminate the time it is currently consumed
for the storage of the mined abstractions to the standalone database. However, the main reason
for such an approach, is a possible great improvement in the query execution time, since the
distribution of a query, as well as the results’ joining, is quite easy; the same query will be posed

to each node, and the final result would simply be the union of the individual ones.
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An important aspect we should also consider, is the calculation of the distance between two
service interfaces, proposed by the authors in [6], and particularly, the part that calculates the
distance between the two names, either regarding interfaces names, operations names, messages
names or message types names; it relies on the syntactical diferrence between the two words,
based on’experimental findings showing that such a syntactical difference usually indicates a
respective semantical difference. However, we could even improve the algorithm by calculating
the semantical difference between the two words. A simple approach comprises a database
storing_information about words, their synonyms and antonyms, and perhaps a ranking of them.
Then, the names distance calculation could leverage this information to calculate the semantic
distance between the two names. Of course, a name usually contains not a single, but several
semantically different words, so a preprocessing step which separates them would be needed.
In cases one or more words of a name are not contained in the database, the syntactical
difference calculation could be additionally applied. Another solution similar to this, comprises

service descriptions containing semantic information, as have been proposed in [18, 21, 23].

Another approach based on the proposal of the previous paragraph, regards the representative
name extraction. As the names would consist of a number of separated words, the pairs having
the biggest semantical similarity could be chosen as constructs for the representative name; for
each pair, the one of the two words could be finally chosen, or perhaps none of them would be
chosen, but their synonym which best expresses their meaning, and could be found in the

aforementioned database.
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APPENDIX

List<FA> pruneRier(H h, List<FA> level, double retNum, double disThres) {
if(level is empty) return h.tolist(}: // termination condition
else {

® List<FA> nextlevel = new List<FA>();
foreach fa in level {
List<FA> children = fa.children():
double distance = fa.distancel():
if(children.size() == 1) {
if (retNum == 0) bl ()
else {
if (distance < disThres) bl():
else {
retNum =--;
b2():
nextlLevel.addAll (children);

}
else if(children.size() == 2) {
1f (retNum == Q) cl();
else {
if (distance < disThres) cl():
else {
retNum ==
c2);
nextLevel.addAll (children);

}
pruneHier(h, nextLevel, retNum, disThres); //recursive call




