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ABSTRACT

Tziovara, Vasiliki, A.
MSc, Computer Science Department, University of Ioannina, Greece.
October, 2006.

Order-Aware ETL Workflows.

Thesis Supervisor: Panos Vassiliadis.

Data Warehouses are collections of data coming from different sources, used mostly to
support decision making and data analysis in an organization. To populate a data warchouse
with up-to-date records that are extracted from the sources, special tools are employed, called
Extraction — Transform — Load (ETL) tools, which organize the steps of the whole process as
a workflow. An ETL workflow can be considered as a directed acyclic graph (DAG) used to
capture the flow of data from the sources to the data warehouse. The nodes of the graph are
activities that apply transformations or cleansing procedures on data or recordsets used for
storage purposes. The edges of the graph are input/output relationships between the nodes.
The workflow is an abstract design at the logical level, which has to be implemented
physically, i.e., to be mapped to a combination of executable programs/scripts that perform
the ETL workflow. Each activity of the workflow can be implemented physically using
various algorithmic methods, each with different cost in terms of time requirements or system
resources (e.g., memory, space on disk, etc.).

The objective of this work is to identify the best possible implementation of a logical ETL
workflow. For this reason, we employ (a) a library of templates for the activities and (b) a set
of mappings between logical and physical templates. First, we use a simple cost model, that
computes as optimal, the scenario with the best expected execution speed. In this work, we
model the problem as a state-space search problem and propose an exhaustive algorithm for
state generation to discover the optimal physical implementation of the scenario. To this end,
we propose a cost model as a discrimination criterion between physical representations, which
works also for black-box activities with unknown semantics. We also study the effects of

possible system failures to the workflow operation. The difficulty in this case, lies at the



computation of the cost of the workflow in case of failures. Therefore, we propose a different
cost model that works for the case of failures. To further reduce the total cost of the scenario,
we introduce an additional set of special-purpose activities, called sorter activities which
apply on stored recordsets and sort their tuples according to the values of some, critical for the

sorting, attributes.
In addition, we provide a set of template structures for workflows, to which'we refer as
butterflies because of the shape of their graphical representation. Finally, we assess the

performance of the proposed algorithm through a set of experimental results.
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EKTENHX IIEPIAHYH

Baocwukn TCwBapa tov Apiiéa xar g Zropdodiog.

MSc, Turiua ITAnpogpopucig, lavemotiuo Ioavvivev, EAAGSa.
Oxtdpprog, 2006.

Ta&wéunom oe Poég Epyaciog Amobnkav Asdopévov.
EmPiénoviag: Tlavayidtng Baciieddng.

O1 Anofrjkeg Aedopévav eivar cuAloyég dedopévav mov Tpoépyoviar and SopopeTikés Anyég
Kol ypnowonoovvranl kuplwg yw ™ Afqyn amopdocwv o éva opyovicpd. o va
tpopodomBel o omobixn pe véo dedopéva, Omwg avtd maphyoviar ot TNYES,
xpnowomotovvial epyareio EEaymyng — Metaoynpatniopod — Oéprwong dedopévov (Extract
~ Transform — Load tools, ETL), 1 omola opyaviavovv ta emi pépovg Bripaza tng O6Ang
Swdwaciag cav pwe por epyaciag. M pony epyaciag ETL umopei va Bswpndei wg évag
katevBuvopevog axvidikog ypaeog (DAG) mov xpnowonoieital Yo vo avorapacTiost )
poW dedopévav and mg mnyég dedopévav mpog ™V amodikm dedopfvov. Ov x6puBor tov
Ypapov eivar dwdikaciceg kabapiopov/ petacynuaTcpod dedopévav i civola eyypapdv Kal
o axpég oyéoelg £166d0v/eE6d0v petatd twv xépPwv. H poij epyaciog eivan évo agnpnpévo
oyua o hoywd eminedo, 10 omoio mpéner va viomomBei oe Yuokd eminedo, dnhadh va
avuiotoymOei oc éva cuvdvaoud and smeu\:mua npoyphppata wov extelovv v ETL pofy
epyaciag. Kabe dwdikasio g porg epyasiog propel va vhomomOei pe morkikeg adyoprBpikée
pedodovg, kabBepi pe Sapopemikd k60T0G GCOV APOPG aTATHCEG OF XPOVO 1 MOPOVG
oVoTNPATOS (TL.X., LVIiUN, XOPO 670 dicko, KAR.).

O oxondg avtig g epyasiog eivar va eviomicovpe ™V xohdtepn Suvathi viomoinen evog
Aoywod ypdoov ETL. ' 10 oxond avto, ypewaldpaocte (a) pa Biriodnikm and xpdruma yia
15 dwdwkaocieg ko (B) avnoroyioes petald Aoyikdv kat QUOIKGV TPOTHMWV. Apxixd
Eexivodpe pe Evo amho poviého kdoTovg, mov vrohoyilel wg BEATIOTO, TO oEVAPILO EXTEAEOTC
HE TV KOADTEPT aVapEVOUEVT ToxDTNTA EKTEAEOTIC. ZE auTY} TV £pyacia, Y v, evTorticovps
m BéAnotn vhomoinon evég Aoywcod ypépov ETL, poviehomowodpe to mpéPinua og




xiii

npéPAnua avaliymong o€ ydHPo KaTaCTACEWV Kal TpoTeivovpe évav egaviinmikd alyopiBpo
xatactdoenv. Eriong, mpoteivovpe éva poviého kéotovg @G kpiniplo dudkpiong petalo
QUGIKAOV aVOnUpacTacewv, To onoio yapaxtpiletor and v xoTeAAAdTNTE TOL YW
SoufGEG AOYIOHIKOD PE TNV TEYVIKT] TOV HODPOV KOVTION KOt TN Xp1oT ETOWLOV CVCTATIKOV
oroyginv Aoyopkod o k6uPwv Tov Ypaeov.

Emnpoofeta g xavovikiig Aettoupyiog, peAETApE TG EMUTTOGEK, TN AsLTovpyin TG porig
epyaciog and mBavég amotvyies Tov cvotiuatoc. H dvoxohia Tov mpofAfiparog evromifetal
OTOV VAOAOYICUO TOV KOGTOVG ADY® TV ATOTUXUDV KOl, KATH CUVEREWL, TPOTEIVOVUE Eva
owpopeTIkd POVTEAD KO6OTOUG OV EPIAGUPAVEL KO TIG TEPUTTOOELS ATOTVYLDV.

Emmdéov, pe oxond va pewwdel nepartépm 10 x6610¢ 10V YpAPov, EI6GYOVUE £vo. emAPOGOETO
obvoro dwdwacihv mov Tafivopoldv kdmolr amd T EPmAEKOpEVA GOVOAM EYYPAQOV
ovppwva pe Tig Tpég kKdmowwy, xpiowmv Yo v toivéunom, nediov.

Télog, opyavdvovpe T poég epyaciog oe apdrumeg dopés, Tg omoieg ovopdlovpe
«metohoDdecy (AMOYm TOL OYNHATOE TNG YPAPUKIG TOVG AVORUPAOTOGTC) KOl EASYXOUMUE
REWPOPOTIKG TNV anddoon Tov wpotewdpevov adyopiBuov Yo Swpopstikéc katyopicg
RETAAODOWV.
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CHAPTER 1. INTRODUCTION

1.1 Introduction
1.2 Thesis Structure

1.1. Introduction

A Data Warehouse (DW) is an information infrastructure that collects, integrates and stores
an organization's data. The most important feature of a Data Warehouse is that it produces
accurate and timely management information, so companies utilize data warehouses to enable
their employees (executives, managers, analysts, etc.) to make better and faster decisions.
Furthermore, data warehouses can be used to support complex data analysis. According to
Inmon {Inmo02], a DW is “a collection of subject-oriented, integrated, non-volatile and time-

variant data in support of management decisions”.

W. H. Inmon {Inmo02] presents a formal definition of a data warehouse as a database
consisting of computerized data that is organized to most optimally support reporting and

analysis activity. According to Inmon, a data warehouse has four characteristics:

1. It is subject-oriented, meaning that the data in the DW is organized so that all data
elements relating to the same real-world event or object are linked together.

2. Integrated, meaning that the database contains data from most or all of an
organization’s operational applications, and that this data is gathered in a single
location to be made consistent.

3. Non-volatile, meaning that data in the database is never over-written or deleted, but

retained for future reporting,
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4. Time-variant, meaning that the changes to the data in the database are tracked and

recorded so that reports can be produced showing changes over time.

There are many advantages of using a data warehouse. First of all, a data warehouse is able to
combine a variety of data from different sources in a single location. Interesting information is
extracted from various distributed sources, which are usually heterogeneous. This means that
the same data is represented differently at the sources, for instance through different database
schemata. The data warehouse has to identify same entities, represented in different ways at
the sources, and model it under a unique database schema. This means that data in a data
warehouse have to go through a series of transformations to be made consistent and up-to-
date. This process is often referred to as semantic reconciliation and is an important property
of the data warehouse. Another advantage of a data warehouse is that it can support changes
to data, since modifications to the data in a data warehouse are tracked and recorded. The data
warehouse also keeps a historical record of the loaded data. Finally, data quality is an
important issue, since data arriving at the data warehouse are in most cases inconsistent. The
above features of a data warehouse show that a data warehouse is always expected to contain
up-to-date, consistent and integrated data in order to support decision making and data

analysis.

Figure 1.1 presents the architecture of a data warehouse.

Reporting /
DLAP tools|

Quality

Issues

Metadata
Repository

Sources |

A0 QE £ it

Administrator  Administrator Designer

Figure 1.1 Architecture of a Data Warehouse
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The primary components of a data warechouse are Data Sources, Data Staging Area, Data
Marts, the Metadata Repository, ETL and other reporting and OLAP applications.

a. Data Sources or Operational Databases are databases that store structured or
unstructured data as part of the operational environment of a company or an
organization. Data Sources supply the data warehouse with operational data. Data
derived from various Sources are usually heterogeneous.

b. The Data Staging Area (DSA) is a smaller database used to store intermediate results
produced by the application of cleansing techniques or transformations to the source
data.

c. The Data Warehouse and the Data Marts are systems that store data provided to the
users. The data in the warehouse are organized in fact and dimension tables. Fact
tables contain the records with the actual information in terms of measured values,
whereas dimension tables contain reference values for these facts. For example,
assuming that a customer purchases a part for a certain price, the reference values for
the customer and the part are stored (along with all their extra details) in the dimension
tables, and the fact table records the references to these records (through foreign keys)
along with the price paid. Data marts focus on a single thematic area and usually
contain only a subset of the enterprise information. For example, a data mart may be
used in a single department of the company and may contain only the data that is
available to this department. |

d. The Meradata Repository is a subsystem that stores information concerning the
structure and the operation of the system. This information is called Metadata and
concerns the ETL design and runtime processes.

e. ETL (Extraction - Transformation - Loading) applications extract the data from the
sources, clean it and apply transformations over it before the loading of data to the
data warehouse.

f. Finally, reporting and OLAP tools are reporting applications that perform OLAP and
Data Mining tasks. OLAP tools form data into logical multi-dimensional structures
and allow users to select which dimensions to view data by. On the other hand, Data
mining tools allow users to perform detailed mathematical and statistical calculations

on data to detect trends, identify patterns and analyze data.
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The primary components of a data warehouse are Data Sources, Data Staging Area, Data
Marts, the Metadata Repository, ETL and other reporting and OLAP applications.

a.

Data Sources or Operational Databases are databases that store structured or
unstructured data as part of the operational environment of a company or an
organization. Data Sources supply the data warehouse with operational data. Data
derived from various Sources are usually heterogeneous.

The Data Staging Area (DSA) is a smaller database used to store intermediate results
produced by the application of cleansing techniques or transformations to the source
data.

The Data Warehouse and the Data Marts are systems that store data provided to the
users. The data in the warehouse are organized in fact and dimension tables. Fact
tables contain the records with the actual information in terms of measured values,
whereas dimension tables contain reference values for these facts. For example,
assuming that a customer purchases a part for a certain price, the reference values for
the customer and the part are stored (along with all their extra details) in the dimension
tables, and the fact table records the references to these records (through foreign keys)
along with the price paid. Data marts focus on a single thematic area and usually
contain only a subset of the enterprise information. For example, a data mart may be
used in a single department of the company and may contain only the data that is
available to this department. |

The Metadata Repository is a subsystem that stores information concerning the
structure and the operation of the system. This information is called Metadata and
concerns the ETL design and runtime processes.

ETL (Extraction - Transformation - Loading) applications extract the data from the
sources, clean it and apply transformations over it before the loading of data to the
data warehouse.

Finally, reporting and OLAP tools are reporting applications that perform OLAP and
Data Mining tasks. OLAP tools form data into logical multi-dimensional structures
and allow users to select which dimensions to view data by. On the other hand, Data
mining tools allow users to perform detailed mathematical and statistical calculations

on data to detect trends, identify patterns and analyze data.
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The process of moving data from the sources into a warehouse is performed in three steps:
e Extraction — is the process used to determine which data stored in the sources should
be further processed and ultimately loaded to the data warehouse.
e Transformation — is the step in which data are adapted into the format required by the
warehouse.
e Loading — is the process of populating the data into the warehouse.
This process is normally abbreviated E7L. Figure 1.2 presents these three steps of an ETL

process.

Read and
S\.Transmit
Port
Cleansing

Tool

Conversion
Tool

Loading Tool

Data
Warehouse

Source
Databases

Extract Cleansing Transform Load

Figure 1.2 Extract - Transform - Load

In order to manage the data warehouse operations, specialized tools are available in the
market, called ETL tools. ETL (Extraction-Transformation-Loading) tools are a category of
software tools responsible for the extraction of data from distributed sources, their cleansing

and customization and finally their loading to the data warehouse ([VaSS02]).

Their basic tasks are:
a. the identification of relevant information at the source side

b. the extraction of this information

c. the customization and integration of the information coming from multiple sources

into a common format

d. the cleansing of the resulting data set, on the basis of database and business rules

e. the propagation and loading of the data to the data warehouse and/or data marts,




As we mentioned earlier, in data warehousing, data are extracted from various sources and
have to go through a set of transformations and cleansing procedures before they reach their
destination, usually a data warehouse and/or data marts. Typical data transformations are data
conversions (e.g., conversions from European formats to American and vice versa), orderings
of data, generation of summaries of data (in other words groupings), etc. Finally, data are
loaded into the data warehouse. A typical load of data involves processing large volumes of
data (e.g., several GBs of data) and requires many complex transformations of data. This
means that this process is time-consuming (often takes many hours or even days to complete)
and usually takes place during the night, in order to avoid overloading the system with extra
workload. Moreover, in many systems, the warehouse load must be completed within a
certain time window, which means that the request for performance is pressing. Based on the
above, we can summarize the main problems of ETL tasks: (a) the enormous volumes of data
for processing, (b) performance, since all operations must be completed within a specific
period of time, (c) quality problems, since data usually have to be cleansed. Furthermore, (d)
failures during the transformation process or the warehouse loading process, cause significant
problems to the warehouse operation and finally, (e) the evolution of the sources and the data
warehouse can lead to daily maintenance operations. Under these conditions, we see that we

can overcome the problems of ETL tasks by designing and managing ETL tasks efficiently.

In our setting, we start with a rigorous, abstract modeling of ETL scenarios, based on the
logical model of [VaSS02]. The main idea is that each individual transformation or cleansing
task is treated as an activity in a workflow. An ETL workflow represents graphically the
interconnections among the constituent transformations of an ETL scenario and models the
flow of data from the sources to the warehouse, through these transformations. In our
deliberations, we will refer to workflows as scenarios, too. The two terms will be used
interchangeably. In our approach, we model an ETL workflow as a directed acyclic graph
(DAG) that consists of two kinds of nodes: activities and recordsets. Activities are software
modules that perform transformations or cleansing procedures over data, while recordsets are
used for data storage purposes. Furthermore, the edges of the graph are used to capture the

flow of data from the sources to the data warehouse.

Recordsets can be distinguished in the following broad categories, as described analytically in
[JLVV00]:

e B




a. Data Sources or Operational Databases: Databases that store structured or
unstructured data as part of the operational environment of a company or an
organization. Data are collected from the Sources and go through a number of
transformations before they reach the Data Warehouse.

b. DSA (Data Staging Area): Smaller recordsets used to store intermediate results
produced by the application of transformations to the source data.

c. Targets: The transformed data are guided towards one or more destinations, called
Targets. Each target is a repository used for data storage. One of the targets is a central
repository called a Data Warehouse. Data Warehouses hold large amounts of data
(Terabytes of data) and typical warehouse loads range from 1 to 100 GB and take
many hours or even days to execute. Other targets may be materialized views, which
are the stored results of pre-computed user queries. Later queries that need this data
automatically use the materialized views, thus saving the overhead of asking again the
entire data warehouse. Materialized views usually increase the speed of subsequent
queries by many orders of magnitude.

Source databases and DSA Tables can have one or more outputs, since the same data can be

forwarded towards one or more destination. DSA and Target Tables can receive only one data

stream as input.
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Figure 1.3 A Simple ETL Workflow

Figure 1.3 presents a simple ETL scenario. This scenario involves (a) two source recordsets R
and S, (b) a central data warehouse DW and (c) three DSA tables V, T and Z. The schemata of
the source data are R(4, B) and S(4, B) respectively. Activities are annotated with numbers
from / to 4 and tagged with the description of their functionality. Furthermore, the sources are
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marked with the amount of extracted tuples and the edges of the graph are tagged with the
number of tuples that flow from the data providers to the data consumers. Finally, below each
activity we note its selectivity (i.e., percentage of tuples that reach the output) with the

notation sel;, where i=1,...,4.

We discuss the functionality of each activity of the workflow:

1. Activity / is a filter that allows only tuples with value less or equal to 500 on attribute
A to pass through.

2. Activity 2 is a filter that performs a check on whether the attribute B is greater or equal
to 50.

3. Activity 3 is a join that unifies the two flows and performs a join of the stored tuples
produced by activities / and 2.

4. Finally, activity 4 is an aggregation that groups tuples on 4, B values.

We now examine the problem of designing efficiently an ETL process. Typically, a designer
will construct an abstract (logical) scenario for the ETL process, in the form of a workflow.
The workflow consists of activities, which perform the transformation processes and
recordsets used for data storage. Still, the workflow is only an abstract design that has to be
implemented physically. In other words, the logical workflow has to be mapped to a
combination of scripts/programs that will perform the actual ETL process. In this setting, the
process of finding implementation methods for each activity of the workflow is not
straightforward. The simple case is that each logical operator corresponds to exactly one
physical implementation. Still, existing work'in relational database systems implies that each

logical operator can be mapped to more than one physical implementation method.

For example, assume a filter ¢ that tests N incoming tuples over the condition 4<=500 and
filters out tuples that do not satisfy this condition. The typical implementation method for
filters is to check whether each tuple satisfies the condition, outputting those that satisfy it. On
the other hand, if tuples are ordered in ascending order of 4 values, we can be sure that the
tuples that satisfy the condition are first and those that do not satisfy it are last. This means
that we can avoid testing all tuples and examine only the first selectivity(e)* N tuples, where
selectivity of the filter is the percentage of tuples that satisfy the condition of the filter. If we

measure the amount of tuples the filter has to process in each case, we can see that the second




implementation method requires the testing of fewer tuples. As a result, this method is

beneficial in terms of processing time.

Taking into consideration all the possible implementation methods available for each logical
activity, we can see that the selection of which physical implementation should be applied for
each logical activity of the workflow is a difficult problem. This problem becomes even more
complicated because of the interactions between activities. This means that the
implementation method selected for an activity affects the selection of the implementation
methods for the subsequent activities of the workflow. For example, assume an activity that
performs a Sort-Merge Join followed by an aggregation. Since the output tuples of a Sort-
Merge Join are ordered according to the join attribute, the aggregation could be implemented
using a Sort-based algorithm that exploits this ordering rather than a Nested-Loops
implementation. Thus, the choice of the implementation method for the second activity (i.e.,

the aggregation) depends on the physical implementation of the first one.

Finally, the same problem of logical-to-physical mappings occurs if instead of deciding which
implementation algorithm to use for each logical operator, we have some available libraries of
templates for activities. Assume a library of logical templates and a library of physical
templates. In this case, we map each logical operator to a logical-level template from the
library. Then, we employ logical-to-physical mappings at the template level to map the logical
template to a set of physical templates. Finally, we customize each physical template to a
physical activity, taking into consideration all physical-level constraints.

Since ETL processes handle large volumes of data, the management of such a workload is a
complex and expensive operation in terms of time and system resources. Therefore, the
minimization of the resources needed for ETL tasks and the elimination of the time
requirements for their completion present a problem with clear practical consequences.
Therefore, we need to identify the optimal configuration, in terms of performance gains, out
of all the computed physical representations of the workflow. In this work, we are interested
in the optimization of an ETL scenario, i.e., in the minimization of the cost of the scenario.
We will refer to this cost as the fotal cost of the scenario. We consider ways to minimize the

total cost of an ETL scenario. For this reason, we investigate all possible physical
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implementations of a given ETL scenario and discover the one that is more profitable in terms

of time or consumption of system resources.

So far, research work has only partly dealt with the aforementioned problem. For the moment,
research approaches have focused on different topics, such as query optimization. The first
paper to address this problem was the paper of P. Selinger et al [SAC+79] that dealt with
query optimization techniques. This problem is one of the issues an optimizer has to address
during the evaluation of queries. Part of the optimizer’s job is to produce one or more
interesting orders, i.e., a set of ordering specifications that can be useful for the query

rewriting and the generation of a plan with lower cost.

Other approaches are concerned with order optimization, which refers to the subarea of plan
generation that is concerned with handling interesting orders. Later papers ([SiSM96],
[Hell98], [WaCh03]) have mainly focused on techniques to “push down”, combine or exploit
existing orders in query plans. These papers focus on relational queries and do not handle
ETL processes. ETL processes cannot be considered as “big” queries, since there are
processes that run in separate environments, usually not simultaneously and under time
constraints. Thus, the traditional techniques for query optimization can be blocked, due to

data-manipulation functions.

Furthermore, many of the studies employ inferesting orders, but rely on functional
dependencies ([SiSM96], [NeMo04]) and predicates applied over data. Some work has been
done on exploiting existing orderings and groupings. For example, Wang and Cherniack
({WaChQ3]) recognize that orderings and groupings are expensive operations and propose the
exploitation of existing operators for the pruning of redundant orderings and groupings. Most
of these papers are discussed systematically in Chapter 2, as part of the Related Work. To our

knowledge, none of the above approaches consider the introduction of new orderings.

On the other hand, leading commercial tools allow the design of ETL workflows, but do not
use any optimization technique. Few ETL tools employ optimization methods, such as Arktos
I [Arkt05). Arktos II not only allows the logical design of an ETL scenario, but also the
physical representation of ETL tasks. Furthermore, Arktos II takes into consideration the

optimization of ETL scenarios and tries to improve the time performance of ETL processes.
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The objective of this work is to discover the best possible physical implementation of a given
logical ETL workflow. For this reason, we need (a) a library of templates for the activities and
(b) possible mappings between logical and physical templates. As a first approach, we employ
a simple cost model that computes as optimal, the scenario with the best expected execution
speed. To discover the optimal physical implementation of the scenario, we model the
problem as a state-search space problem and propose an exhaustive algorithm for state
generation. To identify the optimal physical representation of the scenario, we propose a cost
model as a discrimination criterion between physical representations, which works also for
black-box activities with unknown semantics. We also study the effects of possible system
failures to the workflow operation. The difficulty in this case, lies in the computation of the
cost of the workflow in case of failures. Therefore, we propose a different cost model that
works for the case of failures. In addition, to further reduce the total cost of the scenario we
introduce an additional set of special-purpose activities, called sorter activities which apply

on stored recordsets and sort their tuples according to the values of some, critical for the

sorting, attributes.

In the absence of a standard way to perform experiments on the topic, we organize our
experiments on the basis of a reference collection of ETL scenarios. Each such scenario is a
variant of a template workflow structure, which we call Butterfly, due to its shape when
depicted graphically. A butterfly comprises a left wing, where data coming from different
sources are combined in order to populate a fact table in the warehouse. This fact table is
called body of the butterfly. The right wing involves the refreshment of materialized views

\

lying in the warehouse.

Finally, we experimentally assess the performance of the proposed algorithm on different

categories of butterflies.

Our contributions can be summarized as follows:
e We provide a theoretical framework for the problem of mapping a logical ETL
workflow to alternative physical representations.
e We implement an exhaustive algorithm that generates all possible physical

representations of a given ETL scenario and returns the one having minimal cost.

. s o =
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e We study the effects of system failures to the workflow operation and propose an
extended cost model for the case of failures.

e We devise a method that can further reduce the execution cost of an ETL workflow by
introducing sorter activities to certain positions of the workflow.

e We provide a set of template structures for workflows, to which we refer as Butterflies
because of the shape of their graphical representation.

e Finally, we discuss technical issues and assess our approach through a set of

experimental results.

1.2. Thesis Structure

This thesis is organized as follows: Chapter 2 presents Related Work and its shortcomings
with respect to the problem we are interested in. In Chapter 3 we model the problem as a
state-space search problem and present the formal statement of the problem. Furthermore, we
discuss the mapping of a logical-level ETL scenario to alternative physical-level scenarios.
Then, we present the generic properties of activities and a library of templates for ETL
activities. As a method to further reduce the cost of an ETL workflow, we propose the
exploitation of interesting orders and the introduction of sorter activities to the workflow. In
Chapter 4 we discuss implementation issues and present the exhaustive algorithm. This
algorithm along with different cost models are experimentally assessed in Chapter 5. In
addition, we organize workflows into template structures, called butterflies. Finally, in

Chapter 6 we summarize our results and discuss interesting issues for future research.

A}
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CHAPTER 2. RELATED WORK

2.1 Optimizing ETL Processes in Data Warehouses

2.2 Lineage Tracing

2.3 Techniques to Deal with Interrupted Warehouse Loads
2.4 Optimization of Queries with Expensive Predicates

2.5 Avoiding Sorting and Grouping in Query Processing
2.6 Grouping and Order Optimization

2.7 Comparison of our Work to Related Work

2.1, Optimizing ETL Processes in Data Warehouses

In section 1.1, we explained that ETL (Extraction - Transformation - Loading) tools are
software tools responsible for the extraction of data from different sources, their cleansing,
transformation and insertion into a data warehouse. This course of action must be completed
within certain time limits. Thus, the minimization of the execution time of the above
processes presents a research problem with clear practical consequences. The authors of
[SiVS05] model an ETL workflow as a Directed Acyclic Graph (DAG), whose nodes are
activities or recordsets and whose edges represent the flow of data through the graph nodes.
The authors handle the problem of the optimization of an ETL workflow, i.e., minimizing its
execution cost, as a state-space search problem. Every ETL workflow is considered as a state.
Equivalent states are assumed to be states that based on the same input, provide the same
output. The authors propose some transformations that can be applied to the graph nodes to
produce new equivalent states, called transitions. They introduce five transitions: Swap,

Factorize, Distribute, Merge and Split and the corresponding notations.

e Swap: This transition is applied to a pair of unary activities by exchanging. their
position in the workflow. Swapping is conducted with the aim of pushing highly
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selective activities towards the beginning of the workflow (same as in query
optimization). Thus, there is a reduction in the number of tuples that have to be
processed.

Factorize: Factorize replaces two unary activities that (a) have the same functionality
and (b) act as the two providers of the same binary activity with a new unary activity,
which is placed after the binary activity. Factorization is performed in order to exploit
the fact that a certain operation is performed only once instead of twice in a workflow,
possibly over fewer data.

Distribute: This transition is the reciprocal of Factorize. If an activity operates over a
single data flow, it can be distributed into two different data flows. For example,
distribution is conducted if an activity is highly selective. In this way, highly selective
activities are pushed towards the beginning of the workflow.

Merge: Merge is applied over a pair of activities, which are combined into a single
activity. Merge is performed when some activities have to be grouped according to the
constraints of the workflow, e.g., a third activity cannot be placed between this pair of
activities or these two activities cannot be commuted.

Split: This transition indicates that a pair of grouped activities can be ungrouped and

separates the activities.

The problem of the “optimization of an ETL workflow” involves the discovery of a state
equivalent to the given one, which has the minimal execution cost. Furthermore, the authors
prove the correctness of the proposed transitions and make a reference to cases where each of
these transitions can be applied. Then, a cost model is introduced and the following
optimization algorithms of the ETL processes are presented: the exhaustive algorithm ES, the

heuristic algorithm HS that reduces the search space and a greedy variation of the heuristic

algorithm.

. The exhaustive algorithm ES works as follows: We generate all the possible states that

can be generated by applying all the applicable transitions to every state.

2. The heuristic algorithm HS involves the following steps:

o Pre-Processing: Use Merge before any other transition.
o Phase 1: Use Swap only in linear paths.

e Phase 2: Factorize only homologous activities placed in two converging paths.
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e Phase 3: Distribute only if transformation is applicable.
e Phase 4: Swap again only in the linear paths of the new states produced in phases
‘2’ and ‘3°.
3. The Greedy variant of the Heuristic search works as follows:

e Apply Swap only if we gain in cost.
Finally, the authors compare the performance of the three algorithms, and present relative
experimental results. The ES algorithm was slower compared to the other two and in most
cases it could not terminate due to the exponential size of the search space. As a threshold, £ES
run up to 40 hours. For small workflows, although both HS and HS-Greedy provide solutions
of approximately the same quality, HS-Greedy was faster at least 86%. For medium
workflows, HS finds better solution than HS-Greedy, while HS-Greedy is much faster than
HS. In large test cases, HS has an advantage because it returns workflows with much

improved cost, whereas HS-Greedy returns unstable results in approximately half of the test

cases.

2.2. Lineage Tracing

Data warehousing systems collect large amounts of data from different data sources into a
central warehouse. During this process, source data go through a series of transformations,
which may vary from simple algebraic operations (such as selections or joins) or aggregations
to complex data cleansing procedures. In [CuWi03) the authors handle the darta lineage
problem, which means tracing certain warehouse data items back to the original source items
from which they were derived. During this process, it is useful to look not only at the
information in the warehouse, but also to investigate how these items were derived from the
sources. The tracing procedure takes advantage of any known structure or properties of
transformations but can also work in the absence of such information and provide tracing

facilities.

A data set is defined as a set of data items (tuples, values or complex objects) with no
duplicates in the set. A transformation T is a procedure that applies to one or more datasets
and produces one or more datasets as output. Then, the authors present some basic properties

of transformations, which are the following:
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e A transformation T is stable if it never produces spurious output items, i.e., if it never
produces datasets as output without taking any datasets as input. An example of an
unstable transformation is one that appends a fixed data set or set of items to every
output set, regardiess of the input.

e A transformation T is deterministic if it always produces the same output set given the
same input set.

e A transformation T is complete if each input data item always contributes to some

output data item.

The authors assume that all transformations employed in their work are stable and
deterministic. Another useful term is the /ineage of an output item o, which is described as the

actual set /* of input items / that contribute to o’s derivation and is denoted as /*=T%(o, /).

Three transformations classes are defined: dispatchers, aggregators and black-boxes. Figure
2.1 shows these three transformation classes.

(a) dispatcher (b) aggregator (c) black-box
Figure 2.1 Transformation Classes [CuWi03)

A transformation is a dispatcher, if each input data item produces zero or more output items
independently. Figure 2.1 (a) illustrates a dispatcher, in which input item / produces output
items /-4, input item 3 produces items 3-6 and input item 2 produces no output. The authors
claim that to trace the lineage of an output item produced by a dispatcher, one has to scan the
entire input dataset and call the dispatcher transformation for each input item. A special
category of dispatcher transformations are filters. A dispatcher is a filter if each input item

produces either itself or nothing. The lineage of any output data item produced by a filter is
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the same item in the input set. (No calls of transformation T needed or scan of the input data

set). Thus, the lineage tracing of a filter is straightforward.

A transformation is an aggregator, if it is complete and there exists a unique disjoint partition
of the input data set that contributes to some output data item. Figure 2.1 (b) illustrates an
aggregator. Lineage tracing for aggregators involves the enumeration of subsets of the input
set in increasing size, such that the lineage produces exactly this output. For example, assume
a projection transformation z4 on the input set / [4, B]= {(a, b), (a, b’), (a’, b)}. Then, 4 (]) =
{(a), (a@")}. Given the output subset {(a)}, its correct lineage is the set {( g, b), (a, b")}.

e An aggregator is context-free if any two input data items either always belong to the

same input partition or they always do not.

Finally, a transformation is a black-box, if it is neither a dispatcher nor an aggregator and it
does not have a provided lineage tracing procedure, because any subset of the input items may
have been used to produce a given output item. Thus, we can say that the entire input data set
is the lineage of each output item. Figure 2.1 (c) illustrates a black-box transformation.
Example of a black-box is a transformation that sorts the input data and attaches a serial

number to each output item according to its sorted position.

Moreover, the authors present techniques of building indexes on the input data set to improve
tracing performance, i.e. to speed up the proced'ure. In addition, the authors propose the
combination of a pair of adjacent transformations in a sequence by replacing the two
transformations with a single one, when it is beneficial to do so. Then, they determine the
properties of the combined transformation based on the properties of their component
transformations. The combination of the transformations applies when the properties of the
combination are more desirable than those of the components and. In other words,
transformations are combined when the application of the combined transformation reduces
the overall tracing cost and the tracing accuracy is retained or improved. Instead of
determining a detailed cost model to decide whether it is beneficial to combine subsequent
transformations, the authors suggest a greedy algorithm, called Normalize, which repeatedly
discovers beneficial combinations of adjacent transformations and combines the best pair of

transformations.

'i
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2.3. Techniques to Deal with Interrupted Warehouse Loads

Data Warehouses collect large amounts of data from distributed sources. A typical load of
data to the warehouse involves processing several GBs of data, requires many complex
transformations of the data and eventually takes many hours or even days to complete. If the
Joad fails, an approach is to “redo” the entire load. A better approach is presented in
[LWGGO00], where the authors suggest resuming the incomplete load after the system
recovery, from the point it was interrupted. According to this approach, work already
performed is not repeated during the resumed load. The authors propose an algorithm called
DR, which resumes the load of a failed warehouse load process by exploiting the main

properties of the data transformations.

First of all, the loading stages and the transformations are presented in the form of a
component tree. The edges of the component tree are tagged with input and output
parameters, as well as properties that hold for these edges. Some of the properties of

transformations and special attributes are presented next.

Now, we present properties for transformations. A transformation is:

e Map-to-one: if every input tuple contributes to ar most one output tuple.

o Subset-feasible: if the whole path to the data warehouse is map-to-one.

o Suffix-safe: if any prefix/suffix of the output can be produced by some prefix/suffix of
the input sequence. For example, if the input is ordered, the output is ordered as well.

e Prefix-feasible: if the whole path to the data warehouse is suffix-safe.

e In-det-out: if the same output sequence is produced given the same input sequence.
(This property was referred to as deterministic transformation by the authors of
[CuWi03]).

o Set-to-seq: if the same set of output tuples is received, irrespectively of the order in
which the input tuples are processed.

e Same-seq. a transitive property based on in-det-out and set-to-seq properties. This
property holds if all the transforms from the source are in-det-out or set-1o-seq, thus the
transform receives the same sequence at resumption time.

e No-hidden contributors: the values of some input attributes remain unchanged at the

output.
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Special attributes:

CandAttrs: the set of attributes which are present throughout the path to the warehouse,
unless some input parameter has hidden contributors.

No-spurious-output: each output tuple has at least one contributor from the input. (The
transformation with this property was referred to as stable by the authors of [CuWi03]).

IdAttrs: the minimum set of identifying attributes all the way to the warehouse.

In addition, some procedures are defined for the re-extraction of data. These procedures are

applied on the sources and re-extract data. Then, different types of Filters are introduced:

1.

Clean-Prefix filter: discards tuples from its input until it finds a tuple that has a
matching value in attribute A and returns the remaining tuples.

Dirty-Prefix filter: works as a Clean-Prefix filter, with the difference that it also
returns the tuples with matching values.

Clean-Subset filter: discards tuples from its input that have already been stored at the

warehouse.

The DR resumption algorithm involves the phases Design and Resume.

Design computes the transitive properties Subset-feasible, Prefix-feasible and the IdAttrs
of each input parameter. Then, Design constructs a component tree G . First, it assigns
re-extraction procedures to the extractors based on their computed properties and
identifying attributes. Then, it chooses which filters can be applied (prefix and subset
filters) in order to reduce the amount of data each component has to process. According
to its functionality, each filter discards either a prefix or a subset of the input sequence,
which does not have to be used for the resumption algorithm, since the tuples to which it
contributes have already been stored at the warehouse.

The next phase, Resume, involves the initialization of the re-extraction procedures. In
order for Resume to work properly, the filters at G’ receive the values of the tuples that
have already been stored at the warchouse before the failure. Then, the re-extraction
procedures are applied and the load of the warehouse continues from the point the

failure occurred and forward.

It can be proved experimentally that DR can significantly reduce the cost of the system

resumption, compared to other traditional techniques that can be applied.
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2.4. Optimization of Queries with Expensive Predicates

Object — Relational database management systems allow users to define new data types and
new methods for these types. In [Hell98] the author presents a study of optimization
techniques that contain time-consuming methods. These “expensive methods” are natural for
user-defined data types, which are often large objects that contain complex information (e.g.

images, video, maps, fingerprints, etc.).

Traditional query optimizers have focused on “pushdown” rules that apply selections in an
arbitrary order before as many joins as possible. In case any of these selections involves the
invocation of an expensive method, the cost of evaluating the expensive selection may
outweigh the benefit gained by doing the selection before join. This means that the traditional
optimizer cannot produce an optimal plan. The author proposes an algorithm called Predicate
Migration and proves that it produces optimal plans for queries with expensive methods.
Predicate Migration increases query optimization time modestly, since the additional cost
factor is polynomial in the number of operators in a query plan. Furthermore, it has no effect
on the way that the optimizer handles queries without expensive methods — if no expensive
methods are used, the techniques of the algorithm need not be invoked. With modest overhead

in optimization time, Predicate Migration can reduce the execution time of many practical

queries by orders of magnitude.

Predicate Migration can also be applied to expensive “nested subqueries”. Current relational
languages, such as SQL, have long supported expensive predicates in the form of nested
subqueries, whose evaluation is arbitrarily expensive, depending on the complexity and the
size of the subquery. Traditional optimizers convert these subqueries into joins. The problem
that arises is that not all subqueries can be converted into joins. When the computation of the
subquery is necessary for the predicate evaluation, then the predicate should be treated as an

expensive method.

Some important definitions are the following:
e A predicate is a Boolean factor of the query’s WHERE clause.
o Selectivity of a predicate p is the ratio of the cardinality of the output result to the
cardinality of the input (i.e. the ratio of tuples that satisfy the predicate).
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e A plan tree is a tree whose leaves are scan nodes and whose internal nodes are either
joins or selections.

e A sfream in a plan tree is a path from a leaf node to the root.

o A job module is a subset S’ of nodes in a plan, such that all the other plan nodes have
the same constraint relationship (must precede, must follow or unconstrained) with all
the nodes of S’.

o ¢, the differential expense of a predicate p;.

e rank: a metric used for the ordering of expensive selection predicates.

rank=(selectivity-1) / differential cost

Then, some cost formulas are defined for computing the expense of a stream of predicates.
The author now uses the following lemma proved by Monma and Sidney ([MoSi79]): The
minimization of the overall cost is achieved by ordering the predicates in ascending order of
the metric rank. Furthermore, swapping the positions of two nodes with equal rank has no

effect on the cost of the plan tree.

The Predicate Migration Algorithm:

Each of the streams in a plan tree is treated individually and the nodes in the streams are
sorted based on their rank. The order of streams | the plan is constrained in two ways: we are
not allowed to reorder join nodes and we must ensure that each stream stays semantically

correct.

The Predicate Migration algorithm uses the .S:eries-ParaIIeI Algorithm Using Parallel Chains
by Monma and Sidney, which is an O(n logn) algorithm that isolates job modules in a stream,
optimizes each job module individually and uses the results to find a total order for the

stream.

The Predicate Migration algorithm is based on the following idea: To optimize a plan tree,
push all predicates down as far as possible, and then repeatedly apply the Series-Parallel
Algorithm Using Parallel Chains to each stream in the tree, until no more progress can be
made.

e The function predicate_migration pushes all predicates down as far as possible. Then,

for each stream in the tree calls series_parallel function.

T
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e The function series_parallel traverses the stream top-down, finding modules of the
stream to optimize. Given a module, it calls parallel _chains to order the nodes of the
module optimally.

e The function parallel_chains finds the optimal ordering for the module and introduces
constraints to maintain that ordering as a chain of nodes. Thus, series_parallel uses the
parallel_chains subroutine to convert the stream, from the top down, into a chain.

o The find_groups routine identifies the maximal-sized groups of poorly ordered nodes.
After all groups are formed, the module can be sorted by the rank of each group.

The Predicate Migration algorithm is guaranteed to terminate in polynomial time, producing a

semantically correct, join-order equivalent tree in which each stream is well-ordered.

An advantage of Predicate Migration is that it works not only for left-deep trees but for bushy

trees as well.

User-defined functions and predicates are supported by many relational database management
systems. These predicates are Boolean factors used in the WHERE clause of SQL queries and
can be very expensive since most of them involve substantial CPU and I/O cost. A logical
approach would be to evaluate the expensive predicate after all the joins the query involves,
so that fewer tuples need to be considered during the evaluation. However, if the predicate has
high selectivity, it would be better to evaluate the expensive predicate first, to reduce the cost

of subsequent joins.

In [ChSh99] the authors address this problem and present a number of related algorithms.
They use the quantity rank of a predicate, which is a metric later used to order predicates
properly. This metric is defined using the following equation: rank = ¢ / (I — s), where ¢ is
the cost-per-tuple and s is the selectivity of the selection or join predicate. The proposed
approach is based on the selection ordering rule, which is valid when all predicates apply on a
relation without any intervening join nodes. According to this rule, the optimal ordering of a
number of predicates is in the order of ascending ranks and is independent of the size of the

participating relations.
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The first algorithm is the naive optimization algorithm, which uses the notion of tags. The tag
of a plan is the set of user-defined predicates that belong to the plan and have not been
evaluated yet, i.e., the complement of the set of predicates that were evaluated in the plan.
First the dynamic programming algorithm of System R is applied and all possible plans are
produced. Some of them must be stored and retained for the optimizer’s future steps. Two
plans represent the same expression, if they represent the join of the same set of relations and
have the same tag. If the optimizer produces two plans that represent the same expression,
only one of them is kept and the other is pruned. This reduces the number of plans that have
to be stored for future process. Each produced plan p is compared to those previously stored
plans which occupy the same set of relations with p and have the same tag. If p is more
expensive than the stored plans, it is pruned. Otherwise, p is added to the list of stored plans.

The complexity of this algorithm is exponential in the number of user-defined predicates for a

given number of relations in the query.

To improve the complexity of the above algorithm, the authors exploit the use of rank
ordering and arrange predicates in the order of ascending ranks, even if predicates are
separated by join nodes. This is based on the assumption that all join nodes must satisfy
certain properties. Then, we can order all predicates according to their rank. This makes the

optimization algorithm polynomial in the number of user-defined predicates for a given

number of relations.

2.5. Avoiding Sorting and Grouping in Query Processing

The recent work of Wang and Cherniack [WaChO03] recognizes the benefit of detecting
orderings or grouping requirements needed for a more efficient evaluation of queries. This
can prove to be crucial since sorting and grouping operators are amongst the most costly
operations performed during query evaluation. The authors show that existing orderings and

groupings can be exploited to avoid redundant ordering or grouping operators in query

processing.

Another contribution of this paper is a systematic treatment of groupings. Groupings have not
been treated as thoroughly as orderings. While orderings and groupings as related, groupings
behave differently to some extent. The approach of [WaCh03] treats groupings of tuples in a
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way similar to orderings, since each grouping can be seen as an ordering of tuples, followed

by an application of a grouping function over the items of the same group.

First, the authors discriminate between primary and secondary orderings and groupings. As
primary orderings and groupings the authors refer to the sort and group operators applied first
to the stream tuples. Secondary orderings and groupings are those which hold within each
group determined by a primary ordering or grouping. Then, Wang and Cherniack introduce
order properties, which are primary and secondary orderings and groupings that hold of
physical representations of relations. The order properties refer to way the relation’s tuples are
physically stored. For example, the order property 4° — B of relation R with schema R(4, B)
suggests that the tuples of R are stored first ordered by 4 and then (within the block of tuples
with the same 4 value) grouped by B. Order properties can be used to infer ordering and
grouping constraints, thus it is possible to make decisions on how to “push down” sorts and

avoid unnecessary sorting or grouping over multiple attributes.

The authors propose a Plan Refinement Algorithm that accepts a query plan tree as input and
produces as output an equivalent plan that does not contain any unnecessary sorf operators.
These sort operators had initially been used to order or group data tuples. A number of axioms
and identities are presented according to which the refinement algorithm applies. More
specifically, these identities are inference rules used to get all orderings and groupings

satisfied by the plan and are necessary for the operaiion of the refinement algorithm.

The plan refinement algorithm also requires the introduction of four new attributes, which are
associated to each node of the query plan. These are the keys of the node’s inputs, the
Junctional dependencies that are guaranteed to hold for the node’s inputs, a single required
ordered property that must hold for the node’s inputs in order for the node to work and finally,
a set of order properties that are satisfied by the node’s outputs. The above properties are

referred to as keys, fds, req and sat respectively and are computed during the execution of the

refinement algorithm,

The algorithm involves three passes of the query plan. The first pass is performed in the
bottom — up direction of the query plan tree and starting from the leaf nodes, keys and
functional dependencies (fds) are computed and propagated upwards through most nodes
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unchanged, except few operators such as joins, where new keys and functional dependencies
are added, or other operators where keys and dependencies are lost. When these properties are
computed, they decorate the nodes of the query plan. During the second pass, the algorithm
starts at the root of the tree and continues downwards. The required order properties (req) are
calculated according to query operators and inherited from parent nodes to child nodes. The
final pass is a bottom — up pass of the query plan that decides which order properties are
satisfied by each node’s outputs (sat). Then, it removes a node’s subsequent sort operator, if it
has one of these order properties as its required property. This property can be satisfied

without ordering, which means that this sort operator is redundant.

Experiments were held in Postgres and the results showed significant reduction in the plan’s
cost. They showed that when we avoid sorting towards the end of the computation on
intermediate join results where the join selectivity is very low, the plan refinement can reduce
execution costs by an order of magnitude. In addition, further experiments showed that in

most cases the overhead of the plan refinement algorithm added to the query optimization cost

is low.

2.6. Grouping and Order Optimization

In the work of Neumann and Moerkotte ([NeMo04]), the authors recognize the performance-
critical role of interesting orders to the query optimization. First, they differentiate between

physical and logical orderings of a stream of tuples.
- A physical ordering of a set of tuples is an ordering relative to the actual succession of

tuples in the stream.
- On the other hand, logical orderings specify conditions a tuple stream must meet to

satisfy a given ordering.

One form of logical orderings are considered to be interesting orders. Interesting orders are
defined as orderings required by operators of the physical algebra and orderings produced by
such operators. Interesting groupings are defined similarly as groupings required by operators

of the physical algebra and groupings produced by these operators.
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The authors suggest that functional dependencies can be used to infer new orderings and new
groupings. It is assumed that relevant functional dependences are known, since they can be
discovered with the procedure described in detail in [SiSM96]. Thus, Neumann and
Moerkotte define an inference mechanism based on the following ideas:
1. Given a logical ordering 0 = (4oy, ..., Ao,) of a tuple stream R, then R obviously
satisfies any logical ordering that is a prefix of o including o itself.
2. Given two groupings g and g’ c g and a tuple stream R satisfying the grouping g, R
need not satisfy the grouping g’.

Based on the above propositions, the authors suggest the construction of a finite state machine
(FSM) to represent the set of logical orderings. The states of the FSM represent physical
orderings and the edges are labeled with functional dependencies. Since one physical ordering
can imply multiple logical orderings, e-edges are used. As a result, the FSM is Non-
deterministic. Before the actual plan generation the Non-deterministic FSM (NFSM) is
converted into a Deterministic FSM (DFSM). The FSM allows order optimization operations
in O(l) time. Furthermore, the authors suggest constructing a similar FSM for groupings and
integrating it into the FSM for orderings. The FSM for groupings is similar to those for
orderings but much smaller, since groupings are only compatible with themselves, no nodes
for prefixes are required. The FSM for groupings is integrated into the FSM for orderings by
adding e-edges from each ordering to the grouping with the same attributes. This is due to the
fact that each ordering is also a grouping. Moreover, pruning techniques are used to minimize

the size of the NFSM. This NFSM must be converted into a DFSM.

Experimental results show that with a modest increase of the time and space requirements
both orderings and groupings can be handled at the same time. More importantly, there is no

additional cost for the addition of groupings in the order optimization framework.

2.7. Comparison of our Work to Related Work

So far, research work has not dealt with the problem of mapping a logical ETL scenario to
alternative physical ones. Most papers are concerned with query optimization techniques.

These papers focus on queries and do not handle ETL processes. ETL processes cannot be
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treated as “big” queries, since they contain activities which run in separate environments,
usually not simultaneously and under time constraints. Thus, the traditional techniques for

query optimization can not be applied, due to data-manipulation functions with unknown or

impossible to express semantics.

For the moment, research approaches have focused on topics, such as the order optimization,
which refers to the subarea of plan generation that is concerned with handling interesting
orders. This problem is one of the issues an optimizer has to address during the evaluation of
queries. Part of the optimizer’s job is to produce one or more interesting orders, i.e., a set of
ordering specifications that can be useful for the query rewriting and the generation of a plan
with lower cost. The first paper to address this problem was the paper of P. Selinger et al
[SAC+79] that dealt with query optimization techniques. Later papers ([SiSM96], [Hell98],

{WaCh03]) have mainly focused on techniques to “push down”, or combine existing orders in

query plans.

Furthermore, many of the studies employ interesting orders, but rely on functional
dependencies ([SiSM96], [NeMo04]) and predicates applied over data, without handling
orders more abstractly. Existing work is concerned with the exploitation of orderings, for

optimization purposes, although the introduction of new orderings is not considered at all.

In their work, Wang and Cherniack ([WaCh03]) récognize that orderings and groupings are
expensive operations and propose the pruning of redundant orderings and groupings. The
proposed Plan Refinement Algorithm produces an equivalent query plan without unnecessary
order or group operators. Thus, the authors manipulate existing orderings and groupings and

do not explore the possibility of adding orderings to a given workflow, or the benefits of this

procedure.

In the work of [NeMo004] and [WaCh03], the authors recognize the performance-critical role
of interesting orders to the query optimization. Their research work proposes the exploitation
of orderings and groupings in query plans. They focus on the utilization of functional

dependencies and propose a set of inference rules for the deduction of logical orderings.
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On the other hand, the authors of [SiVS05] deal with ETL workflows and their optimization
and propose a set of transitions that generate equivalent workflows possibly with lower cost.

In this work, interesting orders are not considered.

Hellerstein [Hell98] deals with lefi-deep or bushy relational query plans and not ETL
workflows. Thus, we can not employ the procedures or the cost model proposed by

Hellerstein.

In the research work of Labio et al ([LWGGO00]), the authors present a resumption technique
that can be initiated in case of failures to resume a failed load. On the other hand, the authors
of [CuWi03] are considered with a different problem: they handle the data lineage problem,
which means tracing certain warehouse data items back to the original source items from

which they were derived.
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CHAPTER 3. FORMAL STATEMENT OF THE
PROBLEM

3.1 Formal Statement of the Problem
3.2 Introduction of Sorter Activities to an ETL Workflow
3.3 Reference Example

3.4 System Failures - Resumption

In this section, we first describe the structure of an ETL workflow. Then, we discuss the
generic properties of activities and logical-to physical mappings. We also present a library of
templates for activities and model the problem as a state-space search problem. Then, we
present the formal definition of the problem addressed in this thesis. Furthermore, we present
a library of transformations. Then, we discuss the exploitation of orderings in minimizing the
cost of the physical implementation of ETL scenarios. For this reason, we introduce a special-

purpose set of activities, which we refer to as Sorters and present their characteristics.

3.1. Formal Statement of the Problem

3.1.1. The Structure of an ETL Workflow

An ETL workflow captures the flow of data from the sources to the data warehouse and/or
data marts. In this work, we model an ETL workflow as a directed acyclic graph (DAG)
G(V,E), where V is the set of the graph nodes and E the set of edges which connect the nodes.

Each node v € V is either an activity or a recordset.

e An activity is a software module that processes the incoming data, either by
performing some transformations over the data or by applying data cleansing
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procedures. Activities have one or more input schemata, i.e., finite lists of attributes
that describe the schema of the data coming from the data providers of the activity. An
activity with one input schema is called unary, while an activity with two input
schemata is called binary. Activities also have one or more output schemata which
play the role of the schemata that provide the processed data to the subsequent nodes.
Furthermore, the semantics of the activity is an expression in an extended relational

algebra with black-box functions that characterizes the activity.

e A recordset is a set of records in the form of a data storage structure. Formally, a
recordset is characterized by its name, its logical schema and its physical extension
(i.e., a finite set of records under the recordset schema). Recordsets have exactly one
schema that describes the structure of the stored data. If we consider a schema
S=[A4,,...,4i], for a certain recordset, where A4, , i=/,....k are schema attributes, its
extension is a mapping S=[A},...,AiJ—dom(A;)x...xdom(A;). Thus, the extension of
the recordset is a finite subset of dom(A,) x... xdom(A) and a record is the instance of
a mapping dom(A;) ... xdom(Ay)—[x,, ...,xx], xi€dom(A4,). Thus, a record is defined as
the instantiation of a schema to a list of values belonging to the domains of the
respective schema attributes. In the rest of this work, we will mainly deal with the two
most popular kinds of recordsets, i.e., relational tables and record files. Relational
tables consist of structured data (i.e., data having an internal structure that follows a
specific schema), whereas data stored in files can be unstructured (where data cannot
be constrained within a schema such as image, video or audio files) or semi-structured
(such as web content where there is no separate schema for the data or a schema exists
but places loose constraints over data). For the latter case, we assume the existence of
a relational wrapper that abstracts the physical details under a relational, logical

schema.

To fully capture the characteristics and interactions of the activities and recordsets mentioned
previously, we model their relationships as the edges of the graph. The edges of the graph
denote data provider relationships. An edge (a, b)) coming out of a node a into a node b
denotes that b receives data from node a for further processing. Node a plays the role of the
data provider, while node b is the data consumer. In our setting, we allow recordsets to have

more than one data consumers. On the other hand, we limit our consideration to activities with
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exactly one output schema and assume that activities have exactly one data consumer, i.e.,

there is only one edge coming out of an activity.

180 | >

a) Recordset feeding Recordset b) Activity without Input

R I

¢) Activity without Output d) Feedback

Figure 3.1 Illegal Cases for the Interconnection of Activities and Recordsets

To this point, we present a set of constraints which determine the logical design of an ETL
workflow. These constraints are based on common logic concerning the routine functionality
of an ETL workflow and their application guarantees that the three-step process of Extraction,
Transformation and Loading of a data warehouse can be executed. The following logical
constraints determine the interconnection of nodes m ETL workflows:
(a) The data consumer of a recordset cannot be another recordset.
(b) Each activity should have at least one provider (either another activity or a recordset).
In case an activity has more than one data providers, these data providers can be other
activities or activities combined with recordsets.
(c) Each activity should have exactly one consumer (either another activity or a
recordset).
(d) Feedback of data is not allowed, i.e., the data consumer of an activity cannot be the

same activity.

Figure 3.1 presents some cases for the interconnection of nodes of ETL workflows that do not
comply with the aforementioned rules. Each case violates exactly one constraint. Specifically,

the first case presents a recordset forwarding data to another recordset, the second case
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involves an activity that has no input, while the third case shows an activity with no output.

Finally, the fourth case contains feedback of data.

3.1.2. Generic Properties of Activities

Each activity has a number of properties that describe its functionality as a constituent of an

ETL workflow. We now present the generic properties of activities:

L.
2. Each activity can have one input schema (unary) or two input schemata (binary).

3.

4. In order for the activity to be executed, its input data must satisfy one or more

Each activity is characterized by a name (a unique identifier for the activity).

Each activity has exactly one output schema.

conditions. From this point, we will refer to such conditions as preconditions for the
activity’s execution.

There exist one or more different implementation algorithms for the activity’s
execution.

The activity produces output data that satisfy some ordering or not.

It is possible that one or both its inputs have to be stored.

Type/Class of the activity. Different kinds of activities have different characteristics
and different time and system requirements. Thus, they produce different
computational costs. '

Selectivity of an activity is a numeric value that describes the percentage of input
tuples that appear in the output. It is computed as the ratio of the cardinality of the
output to the cardinality of the input.

10. Each activity is characterized by its semantics, i.e., a description of its functionality

expressed in a program in a declarative database language (e.g., SQL, Datalog, etc.)
extended with black-box functions.

3.1.3. Logical to Physical Mappings

We now define some terms that are useful to our approach. First, we discuss the difference

between the logical-level activity and the physical-level activity.
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- A logical-level activity is a representation of the activity that describes declaratively
the relationship of the output with the input without delving into algorithmical or
implementation issues. For example, the notation R><S is a logical-level join of tables
R and S and does not provide further information on the implementation technique

followed for the activity’s execution.
- A physical-level activity is a representation of the activity that includes detailed

information on the implementation techniques that must be employed for the activity’s
execution. For example, assume an activity @, which performs the join of tables R and
S. If we define that this join is implemented using the Nested-Loops algorithm, the
execution engine is informed about the inner procedures followed to produce the result
of the join and can be aware of the cost of this implementation in terms of time or

system resources like memory, disk space allocation, etc.

Mapping of a Logical-Level Activity to Alternative Physical-Level Activities

Pretty much like in traditional query processing, each logical-level activity of an ETL
workflow can be implemented physically using a number of different methods. We represent
each of these implementation methods using a physical-level activity, as defined in the
previous paragraph. In this setting, we can assume a one-fo-many mapping (i.e., 1:N
relationship) between the logical-level and the physical-level activities as follows: one
logical-level activity can possibly have more than one physical implementations while a
physical implementation of an activity can only correspond to one logical-level activity).
Figure 3.2 presents the example of an ETL stenario that consists of two sources R and S, a
join activity a; and a target data warehouse DW. In this scenario, the logical-level activity a;
can be implemented physically using one of the following algorithms: Nested-Loops Join,
Merge Join, Sort-Merge Join or Hash Join. Figure 3.3 presents the mapping of a logical-level

join to a set of alternative physical implementations.

A physical-level implementation for an activity is characterized by the following elements:
e The algorithm employed for the physical execution of the activity,
e A set of constraints that determine whether this physical implementation is feasible or

not. Certain physical implementations can be implemented only if specific conditions
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are met by the source data. E.g., a Merge Join requires both inputs to be sorted on the
join attribute.
o The cost of this implementation in terms of time or system resources like memory,

disk space allocation, etc.

Figure 3.2 A Logical-Level Activity

Nested-Loops Join

Join Merge Join

Sort-Merge Join

Hash Join

Figure 3.3 Mapping of a Logical-Level Activity to Physical-Level Activities

Black-Box Treatment of Activities. In our framework, activities are logical abstractions
representing parts, or full modules of code. The execution of an activity is performed by a
particular program. Normally, ETL activities \will be either performed in a black-box manner
by a dedicated tool, or they will be expressed in some general programming/scripting
language (e.g., PL/SQL, Perl, C, etc). This means that we usually cannot interfere with their
interior (e.g., their source code). Furthermore, ETL workflows may contain data-manipulation
functions with unknown semantics or difficult/impossible to express in relational algebra. In
this setting, we can pursue a black-box approach and consider each logical activity of the
workflow as a black-box module independent of its semantics that can be mapped to one or
more alternative physical-level implementations. We mentioned in previous sections that we
describe the semantics of each activity using an expression in a relational algebra extended
with black-box functions.
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Notation. We will employ the following notation to show which physical implementation is
chosen for a particular activity at the logical level: (i) first, the activity’s name (i.e., a; in this
case), (ii) second, the symbol “@” to denote the physical instantiation and (iii) third, an
abbreviation for the physical implementation (NLJ for Nested-Loops Join, MJ for Merge Join,
SMJ for Sort-Merge Join, HJ for Hash Join, etc.). Figure 3.4 demonstrates the four alternative
physical implementations for the join activity a; of the example scenario of Figure 3.2. The
examples of Figure 3.4 use the introduced notation.

m S
a@NLJ a,@MJ
s
—— >> ' < » ﬂ
a) Nested-Loops Join b) Merge Join
~l-
g
\ .1@5"-’ - \\ a,@nH)
A - ps>—{=]
¥ :
c) Sort-Merge Join d) Hash Join

A Y

Figure 3.4 Alternative Physical-Level Activities

In Table 3.1, we present a list of the abbreviations we use to convey physical-level activities.
In this point, we have to notice that we do not use any abbreviation for filters, although two
implementation techniques exist for filters. This happens because both methods handle input
tuples in the same way. The only difference lies in the cost formula for each method.
Furthermore, the number of available implementation methods for functions is usually more
than one and depends on the specific function. For this reason, we do not use any abbreviation

to demonstrate the implementation methods for functions.

g e 7 e T T s wavemee
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Table 3.1 Abbreviations for Physical-Level Activities

Logical-Level Activity Physical-Level Activities Abbreviation
Filter - -
Join Nested-Loops Join NLJ
Merge-Join MJ
Sort-Merge Join SMJ
Hash Join HJ)
Aggregation Nested-Loops NL
Sort-based SO
Hash-based HS
Function - -

Templates. To facilitate the mapping of a logical-level activity to its alternative physical-
level implementations, we can build an ETL engine using templates for activities and
customizing them per scenario. Therefore, in the rest of this work we will provide a library of
templates for ETL activities. Each template in this library has a set of properties, which
involve some predefined semantics and a set of parameters that determine the functionality of
the template. To construct a certain activity, the designer continues to the instantiation phase:
the designer picks a certain template from the library of templates and specifies the input
schemata and the output schema of the activity and provides concrete values to the template

parameters.

For example, when the designer of a workflow materializes a Not_Null template he must
specify the attribute over which the check is performed. Then, these parameters are replaced
by the concrete values defined by the designer.
In this work, we employ two categories of templates:

1. logical templates that materialize logical-level activities and

2. physical templates that materialize physical-level activities.
We assume a library of logical templates and a library of physical templates. Similar to

logical and physical activities, there is a /:N mapping between logical and physical templates.

Using logical and physical templates, a certain physical-level activity is constructed as
follows:
e the designer picks a logical template out of the library of logical templates

b
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o in order to create the logical instance of the activity he specifies necessary schemata

and concrete values for the logical template parameters
¢ the logical-to-physical mapping of templates produces one or more physical templates
e if certain constraints/preconditions are met, the physical template is instantiated to a

physical instance.

To elucidate the above consideration, we present the generic properties of templates and

instances in Table 3.2.

Table 3.2 Properties of Templates / Instances

LOGICAL TEMPLATE LOGICAL INSTANCE
1. A finite set of input schemata 1. Name
2. An output schema 2. Belongs to a logical template,
3. Semantics (abstract) whose schemata it customizes with
4. A set of physical template specific attributes
implementations 3. Semantics (concrete)
PHYSICAL TEMPLATE PHYSICAL INSTANCE

t—
.

A logical template to which it refers 1. Cost
2. Preconditions concerning:
a. storage of input

b. ordering of input
Output order
Cost formula
Implementation Algorithm

v W

We illustrate the logical-to-physical mappings of activities using templates with the example

of a Filter oz-500. We present the templates and instances for this Filter in Table 3.3.

Summarizing, the procedure to construct a physical-level activity is the following:
a. Based on the logical-level activity, find the logical template for the activity.
b. Map the logical template to one or more physical templates.
c. Taking into consideration all physical-level constraints, customize each physical

template to a physical-level activity.
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Table 3.3 Properties Templates / Instances for a Filter

LOGICAL TEMPLATE LOGICAL INSTANCE
1. Input schema: (#1, #2, ..., #N) 1. Name: a;
2. Output schema: (#1, #2, ..., #N) 2. Belongs to the logical template of
3. Semantics (abstract): gsop 52 Filters
4. A set of physical template 3. Input schema: (4, B, C)
implementations 4. Output schema: (4, B, C)
5. Semantics (concrete): as>s00
PHYSICAL TEMPLATE PHYSICAL INSTANCE
1. It refers to the logical template for 1. Cost= 1000
Filters
2. No Preconditions
3. Output order: Same as Input Order
4. Cost formula:
5. Cost(o) = selectivity(o)* |input
tuples|
6. Implementation Algorithm

Mapping of a Logical-Level Scenario to Alternative Physical-Level Scenarios

Having discussed the mapping of a logical-level activity to its physical implementations, we
continue our consideration to the scenario-level. Similarly, we define the logical-level
scenario as opposed to the physical-level scenario.

o A logical-level scenario is a representation of the scenario that identifies it as a
collection of data stores and activities that extract data from the sources, process it and
propagate it further to the data warehouse and/or data marts. This description of the
scenario does not delve into algorithmical or implementation issues.

e A physical-level scenario is a description of the scenario that states declaratively the
implementation methods that have to be followed for the physical execution of the

scenario. Obviously, the physical-level scenario consists of physical-level activities.

The obvious question that arises in this setting is the following: Given a logical-level scenario

and a set of templates for logical activities, how can we discover all the corresponding

physical-level scenarios?

The procedure to determine the alternative physical-level scenarios is presented next:

o First, identify the appropriate logical template of each activity of the workflow.
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e Second, use the available logical-to-physical mappings to discover physical
implementations for each activity.

o Finally, generate all possible combinations of logical-to-physical mappings such that
constraints are met. These constraints concern physical-level activities and determine
whether they can be implemented or not.

Each possible combination that is generated with the aforementioned procedure constitutes a

physical-level scenario, which corresponds to the original logical-level scenario.

To elucidate the above procedure we employ the example of Figure 3.5. This reference ETL

scenario consists of two sources R and S, two activities a; and a; and a data warehouse DW.

:
>

Figure 3.5 An Example ETL Scenario

First, we identify the type of the two activities. Activity a; is an aggregation and a; is a join.
The template of aggregation suggests that physical implementations for a; abbreviated
accordingly are: NL, SO, HS, whereas for the join template that applies to activity a, the
physical implementations are: NLJ, MJ, \SMJ and HJ. Finally, we combine these
implementations to generate all possible physical representations for the scenario. All these
physical-level activities are listed in Table 3.4 using the appropriate notation.
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Table 3.4 All Possible Combinations of Physical-Level Activities
ai@NL , a;@NLJ
a.@SO . az@NLJ
ai@HS N az@NLJ
aj@NL , a;@MJ
a.@SO , az@MJ
m@HS ’ az@MJ
al@NL ’ az@SMJ
a;@S0 , a,@SMJ
a;@HS , 2, @SMJ
a.@NL . az@HJ
a;@S0 , a;@HJ
a;@HS ’ az@HJ
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3.1.4. The State-Space Nature of the Problem

To this point, we show how the optimization problem can be modeled as a state-space search
problem. First, we describe the states. Then, we define a set of transitions that can be applied
to the states in order to produce the search space.

We model the problem as a state-space search problem.

States. Each state is a graph as described in section 3.1.1, i.e., states are ETL workflows.
Transitions. Transitions are used to generate new, equivalent states. In our setting, equivalent
states are considered to be equal states in terms of semantics, In other words, equivalent states
have the same semantics. The difference between them can be traced at the physical level, i.e.,
at the selected physical implementations for the activities. Now, we discuss how new states

are generated.

Given an original state G', we create a state G,” by replacing each logical-level activity a’ of

G’ with a randomly selected appropriate physical-level activity, such that constraints are met.

Then, we replace each physical-level activity a” of G,” with another from the set of feasible

physical-level activities for a’ to generate all possible states. This procedure can be formally
stated as follows:
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Given a logical graph G‘(V*,E"), then determine the physical-level graph G ”(V,E?), as
follows: Va' eV*,3a” eV?, where a' is a logical-level activity, while 4” is a physical-
level activity. Then, Va” € V” replace a” with a” such that a”,a” € phys _impl(a‘), where

phys_impl(i) is the set of feasible physical implementations of activity i.

We assume a given logical-level ETL scenario and a set of physical-level scenarios generated
with the procedure discussed in the previous section. We have already mentioned that each
physical-level activity has different cost, i.e., requirements in terms of system resources or
time specifications. In this setting, it is not obvious which of the generated physical-level
scenarios is best in terms of performance gains. In order to choose the optimal scenario at
physical level, we have to introduce a cost model or the estimation of the cost of each activity.

Based on the cost model, the cost of each generated physical-level scenario is computed and

the one with minimal cost is selected.

Now, we can review the problem we have to address, which has various sides:
o First, establish a cost model suitable for our system. According to the cost model, we
can specify the cost of the workflow activities.
e Second, given a logical representation of an ETL scenario, determine all physical-level
implementations of the scenario.
¢ Finally, determine the optimal conﬁguratioﬁ with respect to its performance, out of the

collection of physical-level scenarios.

A}

3.1.5. Formal Definition of the Problem

Assume a library of logical template activities L' ={¢',1;,....,t°}. Also assume a library of
12°%2 n

physical template activities L” = {11” A7 ,...,tf} and a 1:N mapping among them m: L' - ¥ .

The mapping m maps each logical template to a set of physical template implementations.

Assume an infinitely countable set 4 of activities and an infinitely countable set £ of

templates. Assume a transformation T, such that; 7: A — £.
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Assume an activity a which is a materialization of template . We denote this fact through the
function 7 that maps an activity a to its appropriate template ¢. In our case, T{a) = t. The
function T applies both to logical and physical-level activities.

Assume also the mapping Cgn,g, which is the inverse of function 7. Then, Co,5 : 2 — A.
Given a logical scenario G(V, E), the customization of a template ¢ for an activity a belonging

to V is given by the mapping Ce.£(9)= a.

Assume a physical-level activity a. Then constr(a) is a predicate in a simple conjunctive form

denoting the set of constraints that exist for the physical implementation of activity a. Le.,

constr(a) ={ ¢, Ac, A..Ac, }, Where ¢; =1, ..., k are constraints.

Assume an activity a. Then, cost(a) is a function that returns the cost of an activity. The cost
of an activity depends on the cost model and possibly on its position on the workflow.
Furthermore, the cost of the activity depends on the physical implementation that is selected
for its execution. Then, the total cost of the scenario is obtained by summarizing the cost of all

its activities. In other words, the total cost of the scenario is given by the following formula:

Cost(G) = Z:’d cost(i) , where n is the number of the activities of the scenario.

Having introduced all necessary definitions concerning templates, mappings and available

functions, we can now present the formal definition of the problem, which can be stated as

follows: \

Given a logical-level graph G‘(V‘,E’), where V'= {a,,az, @ r‘,,rz,...,rk} and
al,i=1,.,n are logical-level activities, 7,i=1/,...k are recordsets, then determine the
physical-level graph G”(V",E"), with V'’ = {a, " L ,r,,rz,...,n}, where a/,i=1,...,n
are physical-level activities, such that:

o a’eCpuyp, (m(T(a,’))), i=l,...n

* Ve'=(a,a/),e' e E', introduce e”to E” where e’ =(af,a’)

o Ve'=(a',r)e' £, r,eV introduce e’to E” where e’ =(al,r,)
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Ve' =(r,a,),e' € E‘, r,e V" introduce e”to EP where e® =(r, ,af)

A,.conslr(a"’ )=true,i=l,...,.n

Z,cost(af )= minimal, i=1,....n

The above problem formulation states that in order to construct a physical-level activity, the
procedure is the following:

a. Apply function T on the logical-level activity to find the logical template for the

activity.

b. Map the logical template to one or more physical templates (using mapping m).

c. Customize each physical template to a physical-level activity.
If we perform this procedure for each logical activity of the workflow, taking into
consideration all physical-level constraints, we construct a physical-level scenario. The

physical scenario having minimal cost is the optimal scenario.

3.1.6. Issues Concerning the State-Space Nature of the Problem Formulation

An obvious issue that arises in our setting concerns this mapping of a given logical
description of an ETL scenario to all the available physical ones. We come across to the
following questions: '
1. Which mappings are legal for our activities?
2. Which physical-level description of the scenario is the best in terms of performance
gains?

In the following paragraphs we will refer to each of the above considerations separately.

Legal Mappings for activities. We also have to mention that some of the mappings may
produce physical-level scenarios that can not be feasible, since certain physical
implementations of activities require some preconditions to be fulfilled in order to be
executed. Examples of such preconditions for activities are discussed in detail in section 3.1.7
where we present a library of templates for logical activities and their characteristics. For the
moment, we simply mention two examples of such:

e Both inputs of a merge-join template have to be ordered according to the join attribute.
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e The second input of a join template must be stored.

Discover Physical-Level Scenario having Minimal Cost. Having outlined the state-space
generation, we now move on to make a few general remarks concerning the cost model and

the identification of the configuration with the minimum cost.

In order to choose the optimal physical representation, we have to introduce a discrimination
criterion among physical-level ETL scenarios. This criterion is a cost model, used for the
estimation of the cost of each activity. The selection of a cost model is a difficult task in our
case, because of the existence of black-box activities and functions. In the work of Hellerstein
([Hell98]), the author states that black-box activities can be written in a general programming
language such as C, or in a database query language, for example, SQL. Given that black-box
functions may be written in a general-purpose language such as C, Hellerstein recognizes that
it is difficult to correctly estimate the cost of these functions, at least initially. The only
available information is the initial size of input data. After repeated applications of a black-
box function, one could collect performance statistics, such as the average Cost_per_tuple of
each black-box activity, the output size as a function of the input size, etc. Then, using curve-
fitting techniques (e.g., interpolation) one can make estimates about the activity’s behavior.
On the other hand, it can be difficult to estimate the cost of an activity written in a procedural
language, because of the non-declarative statements that this activity may contain. For
example, for cases of various if/for/while statements, the execution time (and consequently
the total cost and the Cost_per_tuple) for the activity depend on undefinable factors. Based on
the above considerations, we can say that a cost model useful for our case should be able to
incorporate black-box activities with unknown semantics. On the other hand, if the internals
of such an activity is known (white-box semantics), we should be able to plug-in more

elaborate formulae to the cost model.

Hellerstein uses the principle of optimality proposed by Monma and Sidney ([MoSi79]),
which states that the cost of a set of predicates can be minimized by rearranging them in
ascending order of the metric rank. The problem that appears in our setting is that this
principle of optimality does not work for our case, because we do not deal with left-deep or
bushy relational query plans, but ETL workflows. Thus, we can not employ the cost model

proposed by Hellerstein. Furthermore, the formulae for the cost model of Hellerstein assume
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that the cost of passing parameters to functions is known. This is impossible for black-box
functions.

We now refer to a set of properties that the chosen cost model should have:
1. First, the cost model must be generic enough to apply to the black-box abstraction of
activities.
2. Second, the model should provide the means to evaluate the performance of the
proposed algorithm, in terms of time or system requirements.
3. It should take into consideration the possibility of failures during the warehouse load
and it should provide formulae that calculate the expected cost of resuming load after

the system recovery.

Now, we can proceed to the identification of the configuration having minimum cost. The
obvious, exhaustive procedure is the following:
e Based on the chosen cost model, we compute the cost of each physical description of
the scenario.
o Then, we compare the costs of the physical descriptions and select the one having the

minimum cost.

3.1.7. Library of Transformations

To exemplify how the aforementioned generic properties of activities fit with our framework,
we discuss the following four broad categories of activities: Filters (a), Joins (p<),
Aggregations (y) and Function applications (f). In this section, we describe in detail these four

categories of transformations and their characteristic properties:

1. Filters (6,(R)):

o Filters are unary activities that provide checks for the satisfaction (or not) of a certain
condition. The semantics of these filters are the obvious (starting from a generic
selection condition ¢ and proceeding to the check for null values, primary or foreign
key violation, etc.). Filters preserve the schema of the input to the output.

e No precondition has to be fulfilled in order for the filter to be executed.
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o There are two different physical implementations for filters. Assume a relation R:

a. The obvious, exhaustive method to implement a filter is to scan the entire
relation R and perform the check on each tuple, outputting those that satisfy it.
This leads to the following formula for the filter’s cost:

Cost(a(R)) = |input tuples|
If only a small number of tuples satisfy the condition, the cost of scanning the
entire relation is high.

b. In case a filter receives tuples ordered according to the attribute that
participates in the selection condition ¢, we avoid the complete scan of the
input tuples and examine only the first selectivity(a(R))* |input tuples| tuples.
The cost of the filter now becomes:

Cost(o(R)) = selectivity(o(R))* |input tuples|
o Filters retain the order of their input data to their output data.
o The filter’s input does not have to be stored.

2. Joins (R < p4=545):

® Joins are binary activities.

e The necessary precondition for all join algorithms is that the inner input has to be
stored. For example, for the join RS, S must be stored. Furthermore, a specific
precondition exists for the Merge-Join template: both inputs have to be sorted on the
join attribute. '

e A join can be evaluated using one of the following algorithms:

o Nested-Loops algorithm: For each tuple in the outer join relation, the entire
inner join relation is scanned, and any tuples that match the join condition are
added to the result set. Naturally, this algorithm performs poorly if either the
inner or outer join relation is very large.

o Merge Join: It requires that both relations R and S are sorted on the join
attribute. Then, it merées the two relations by matching only tuples that have
the same value in the join attribute.

o Sort-Merge Join: It is another way to evaluate a join and resembles Merge-
Join. The only difference is that Sort-Merge-Join first sorts each relation on the

join attribute and then finds matching tuples using a merge procedure: it scans
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both relations simultaneously and compares the join attributes. When a match
is found, the joined tuple is added to the result.

o Hash Join: Applying the hash join algorithm on a join of two relations
proceeds as follows: Assuming that the smaller relation fits in main memory,
we prepare a hash table for the smaller relation, by applying a hash function to
the join attribute of each tuple, and then we scan the larger relation and find the
matching tuples by looking on the hash table.

e According to the different implementations, output data can be ordered or not. We will
discuss each implementation separately:
0 Nested-Loops: The ordering of output data is the same as the ordering of the
data coming from the outer relation of the join.
o Merge Join: Output data are ordered according to the join attribute.
o Sort-Merge Join: Output data are ordered according to the join attribute.
o Hash Join: Output data do not have an ordering.
o The cost of the join depends on the implementation: if n = |input tuples of R| and m =
linput tuples of S|, then:
o Nested-Loops Join(NLJ):
Cost(yni(R)) = n+(/ (b)) * m, where b=max(n, m)
o Merge Join(MJ):
Cost(yms(R)) = n+m
o Sort-Merge Join(SMJ).
a. The cost of SMJ is:
Cost(ysmu(R)) = n*logn+m*logm+n+m
b. The Sort-Merge Join can be computed less costly if both inputs are ordered
according to the values of the join attribute. Then, there is no need to order
the inputs, so the cost of Sort-Merge Join becomes equal to the cost of
Merge Join:
Cost(ysurR)) = ntm
o Hash Join(HJ):
Cost(yn/(R)) = 3*(n+m)
To the above formulae, if the inputs of the join are not stored, we add the cost (n+m) to store

it and read it afterwards.
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3. Aggregations (¥ groping-tin(R)):
e Aggregations are unary activities used to condense information about large volumes of

data. Aggregation is based on the idea of partitioning items into groups and

representing each group with a single value. The grouping-list consists of a number of

attributes that participate in the partitioning. Data is divided into groups according to

the values of the grouping attributes.

e An Aggregation can be evaluated using one of the following algorithms:

o Nested-Loops: a temporary file is used to aggregate output data. For each input

record, the algorithm searches the output file to find it. If the search is
successful, the output file is updated to include the input data. Otherwise, a

new group is created to the output file to include the incoming record.

o Sort-based implementation: Data are first ordered according to the grouping

attributes. This way similar tuples are placed in neighboring positions and
aflerwards cach tuple is placed into the appropriate group. This implementation
of aggregations can exploit any preexisting ordering of the input data, since in
case such an ordering exists we do not have to sort the initial data to perform
the grouping.

Hash-based implementation: With hashing, we hash on the aggregation key.
Then tuples that belong to the same group are mapped in the same place of the
hash table, thus aggregation can be done automatically on their insertion to the
hash table.

A

e According to the physical implementation of an aggregation, output data can be

ordered or not. We will discuss each implementation separately:

(o]

Nested-Loops: There are two different cases that arise with the Nested-1.oops
implementation. a) In case the ordering of the incoming data is a prefix of the
list of grouping attributes, output data become ordered according to the
grouping attributcs. We present this using an illustrative example, Assume the
case of an activity y4. The incoming data arrive ordered by A, B. Then, the NL-
implementation causes output data to be ordered by A. b) If this is not the case,
output data are unordcred.

Sort-based implementation: Output data are ordered according to the order of

the grouping attributes.
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o Hash-based implementation: Output data are not ordered.
¢ Its input must be stored.
o The cost of aggregation depends on the implementation:
o Nested-Loops (NL):
Cost(ynL(R)) = \input tuples|
o Sort-based implementation (SO):

a. The Sort-based implementation of an aggregation is implemented by
first sorting the input tuples according to the grouping attribute and
then dividing data into groups according to the values of the grouping
attribute. Thus:

Cost(yso(R)) = |input tuples| *log,(|input tuples|)+|input tuples|

b. The cost of an aggregation can become lower if the aggregation
receives input tuples that are already sorted according to the grouping
attribute. If input data are sorted, we save ourselves the trouble to sort
data. This means that we proceed immediately to the second phase of
the implementation, which is the formation of groups. The
aggregation’s cost now becomes:

Cost(yso(R)) = |input tuples|

o Hash-based implementation: The cost is the same with the cost of NL:

Cost(yus(R)) = |input tuples|

To the above formulae, if the input of the aggregation is not stored, we add the cost |input
tuples| to store it and read it afterwards.

4. Function application (f(R)):
A function application is a unary activity that applies a function predicate to input data.
Functions can be applied to the attributes of the relational tables involved in the scenario.
These attributes have different data types, e.g., some consist of arithmetic values, while others
have the form of strings, etc. Each function applies to the values of one or more attributes and

produces some new values as its return values.

 Function applications are unary activities that apply a function predicate to input data.

A function is described by a name, a finite list of parameters, and a single return data
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type. The parameters determine the functionality of the function. There are four kinds
of function applications.
The function does not require any condition to be fulfilled in order to be executed.
The number of available implementation methods for functions is usually more than
one and depends on the specific function. |
Order-Preserving functions retain the ordering of its input data. On the other hand,
Order-Independent functions force the output to be ordered according to function
parameters. In addition, the output of No-order functions is not ordered, while Order-
Imposing functions force the output to be ordered according to other attributes that are
not included in the function parameters.
A function’s input does not have to be stored.
The cost of a function application is dependent to the function. Each function is
described by a Cost_per_tuple metric that refers to the cost to process a single tuple of
the relation.

Cost(f(R)) = |input tuples|* Cost_per_tuple

If the input tuples of the function are ordered, there is no reduction to its cost, since the

function must be applied to all incoming tuples.

3.2, Introduction of Sorter Activities to an ETL Workflow

3.2.1. Transformations Dependent on Orderings

Keeping in mind our goal to discover the physical representation of the scenario having the
minimal cost, we have explored further techniques to lower the cost of the scenario. We have
performed several experiments testing the performance of the workflow, based on the
assumed cost model. Through this experimental setup, we have made the following
observations concerning transformations:

a. Some of these transformations can only be applied if their inputs are ordered, e.g.,

Merge Join.

b. Other transformations produce ordered data, e.g., the Sort-based implementation of

Aggregations, Order-Imposing functions, etc.
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c. Others may be physically implemented less costly if their input data are ordered
properly. The observation that the cost of some transformations declines if their input
data are ordered applies to many types of transformations: filters, aggregations, joins,
etc. We discussed this issue thoroughly in section 3.1.5.

d. Furthermore, there are transformations that retain the order of their input data, , e.g.,
Filters, Order-Preserving functions, etc.

a. Other transformations impose their own ordering on data.

Another important observation is the following: in case the input data of an activity are
ordered properly, additional techniques for the activity’s evaluation can be employed, e.g., if
both inputs of a join are sorted on the join attribute, we can employ a Merge-Join algorithm
for the join, rather than a Nested-Loops implementation. This means that the existence of
orderings produces even more alternative choices for the activity’s evaluation than the
available techniques we had before. As a result, we can further eliminate the execution cost of

the activity.

The above considerations have led us to the conclusion that transformations can be heavily
dependent on orderings and possibly data orderings play a determinant role to the
operational cost of transformations. Therefore, we suggest the exploitation of orderings as a

method of reducing the total cost of an ETL scenario.

Our approach suggests introducing one or more orderings of data in certain positions of the
workflow, such that the overall cost of the new scenario is lower than the cost of the original
one. At the logical level, the generated scenario and the original scenario are similar in terms

of semantics. The difference between these two scenarios can be traced at the physical level.

Under these thoughts, we introduce a set of special-purpose, additional, physical-level
transformations, called Sorter activities or Sorters (S). Sorter activities apply on stored
recordsets and rearrange the order of their input tuples according to the values of some
specified attributes. We further discuss sorters and their key properties in the following

sections.




51

3.2.2. Properties of Sorter Activities

Sorter activities (Sordermng-ust(R)) have the following characteristics:

A sorter activity S is a unary activity (see p.31 for the definition of unary activities)
that receives a finite set of tuples as input and performs an ordering over them
according to the values of one or more attributes of their input schema. The attributes
contained in the ordering-list are the ones according to which sorting is performed.
Tuples can be sorted in ascending or descending order.
There is no condition to be fulfilled in order for the sorter to be executed.
Although there are several ways to perform a sorting over a set of tuples, we resort to
the classical external sorting algorithm ([RaGe02]). Thus, there is exactly one
implementation method for a sorter activity S(R) in our deliberations, which involves
scanning the entire relation R and reordering each tuple.
The sorter imposes the ordering of the ordering attributes to output data.
The sorter’s input does not have to be stored.
The cost of the sorter is to scan all tuples of the input relation. Specifically:

Cost(S) = |input tuples|*log;|input tuples|

To the above formulae, if the input of the sorter is not stored, we add the cost |input ruples| to

store it and read it afterwards.

3.2.3. Introduction of Sorters to an ETL Workflow

Adding sorter activities to a physical-level graph does not impose significant changes to the
functionality of the workflow: Each graph node produces the same output tuples as it used to

in the original scenario. The differences between the original and each generated graph can be

listed as follows:

L.

The sort order of certain edges of the graph changes according to the order imposed
by the sorter, e.g., the addition of sorter S, 5 on the data of table R, rearranges the
tuples of R and they become ordered by 4, B. Thus, each edge of the form (R, x),
where x is a graph node, has now data ordered by 4, B.
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2. Certain activities of the workflow that follow the sorter in the graph, may now receive
ordered data produced by the sorter. This means that these activities may be evaluated
using a cheaper implementation technique that exploits this ordering. For example, if
data arrive ordered properly to the inputs of a join activity, Merge Join can be
employed for its execution rather than Nested-Loops. Merge Join is usually cheaper
than Nested-Loops. This way, the cost of these activities can be significantly reduced

when the incoming data become ordered.

We now investigate changes to the total cost of the scenario caused by the introduction of
sorters. The addition of each sorter activity to the graph causes an increase to the total cost of
the workflow, of the order of O(n*log,n), where n is the number of tuples the sorter has to
order. This raise of the workflow’s operational cost is significant, especially for large values
of n. On the other hand, if the ordering imposed by the sorter can be exploited by activities
that follow the sorter in the workflow, the cost of these activities declines considerably.
Altogether, the total cost of the workflow can be reduced significantly and the gain in the

performance of the scenario can be crucial.

Transitions. Transitions are used to generate new, equivalent workflows. In our approach,
this is achieved by inserting sorter activities to the workflow. We introduce the transitions

ASR and ASE, which are described in more detail below:

1. ASR(v, R): Add Sorter on Recordset
This transition can be applied on the data (;f a source or DSA table R. It places a sorter
activity v to the graph and a pair of edges that connect this node to the graph.

We formally introduce the transformation ASR(v, R) as follows:

Assume a graph G=(V,E). ASR(v, R) over G produces a new graph G'(V’,E’). In this graph,
introduce a new node v into ¥’ such that ¥’ = V' U {v}. Then, introduce into E’ the edges
e’=(R, v) and e'’=(v, R). In other words, E’ = E Ue 'Ue’". The rest of the graph edges remain

the same.

Figure 3.6 depicts the placement of a sorter activity S4 over a source table R. Apart from the
sorter activity, the edges (R, S) and (S4, R) are added to the graph.

- s
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Figure 3.6 Placement of Sorter on Recordset

2. ASE(v, a, b): Add Sorter on Edge
Each time a sorter v is inserted on an edge (a,b) (i.e., between nodes a and b), a transition
ASE(, a, b) is applied to the graph. This transition adds a new node to the graph (a sorter

activity) as well as a set of edges that connect it to nodes a and 5.

We formally introduce the transformation ASE(v, a, b) as follows:

We assume a graph G=(V,E). ASE(v, a, b) over G produces a new graph G’(V’,E’). In this
graph, introduce a new node v into ¥’ such that ¥’ = V' U {v}). Remove the edge (a, b). For
each edge e € E, with e=(a, b) introduce into E’ the edges e’=(a, v) and e’’=(¥, b). This

means that E’ = E Ue'Ue’ - e. The rest of the graph edges remain the same.

Since activities can be unary or binary, we discern two different cases for node b: (a) b is a
unary activity and (b) b is a binary activity (e.g., join). In both cases the number of edges to be
added to the graph is the same (i.e., two edges). The difference lies in the procedures that have
to be followed in order to inform the neighboring activities for the sorter’s arrival and update
their inputs and outputs accordingly to include the new activity.

Tables 3.5 and 3.6 show instances of a part of a graph G before and after the insertion of a
sorter activity v between activities a and b of G. The introduced sorter activity v is presented

with double lines, while all other activities are represented using single lines.
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e CaseI: b is a unary activity
Table 3.5 Placement of Sorter before Unary Activity b

- Transition Before After

ASE(v; a, b) , D“ , Db , D" ,[>" , Db ,

e Case II: b is a binary activity

Table 3.6 Placement of Sorter before Binary Activity b

Transition Before After

ASE(, a b)

Tables 3.5 shows that in case b is a unary activity, the input schema of the sorter activity v is
the output schema of the first activity g and the input schema of activity b is the output
schema of the sorter activity v. Table 3.6 shows that in case activity b is binary, its inputs
must be updated, i.e., one of its former inputs that used to be activity a must be replaced with
the sorter activity. For the sorter’s input one can follow the same procedure as discussed

earlier for the unary activity.

3.2.4. Issues Raised by the Introduction of Sorters
Given a graph G(¥,E) and keeping in mind our objective to produce an optimal physical-level
scenario for the workflow, one needs to address the following issues:

1. Where to introduce orderings of data?

2. Each time, over which attributes should we apply orderings?

3. Each time, should we choose ascending or descending ordering of data?
In the three paragraphs that follow, we will try to provide answers to the above
considerations. Before proceeding we would like to clarify a subtle issue in our modeling: a
logical-level ETL graph is a DAG, whereas a physical-level graph is not. Still, at the physical
level the graph of a scenario is a DAG extended with loops of length 2 (involving a couple of
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a recordset and a sorter as the loop’s nodes), and thus, it can easily be converted to its
underlying DAG, wherever necessary. In the rest of our deliberations, the nature of an ETL
graph will be clear from the context, or else, explicitly specified.

3.2.5. Candidate Positions for the Introduction of Sorter Activities
Given a logical graph G(V,E), our first consideration is to discover all the candidate places to
insert sorter activities. We assume that our original logical-level workflow G contains:

a. Source, DSA and target tables; and,

b. One or more activities.

In this setting, candidate positions to place sorter activities are considered to be the following:
1. Source tables.
2. DSA tables.
3. Edges that connect two activities, i.e., edges whose data provider and data consumer

are both activities.

a) Sorter on RecordSet b) Sorter between activities 2 and b

Figure 3.7 Candidaté Positions for Sorters

The sorter S, on the data of a source or DSA table, is added in a way that a self loop is created
as shown in Figure 3.7.a. When added to the workflow, the sorter works as expected: it
rearranges the tuples of the table according to their values on attribute 4. Apart from the
sorter, two new edges are added to the graph, the edges (R, S4) and (S4, R). On the other hand,
when we insert a sorter S4 between two activities a and b, the edge (a, b) is replaced by the
edges (a, Sy) and (S, b).

Figure 3.8 shows an ETL scenario involving two Source Databases R and S, one DSA table ¥,
three activities /, 2, 3 and a target data warehouse DW. This Figure illustrates the candidate

g1t~ et Sl
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positions to place sorter activities. Candidate positions for sorters are marked with letters
enclosed in parentheses (places (@) to (@), i.e., on the data of tables R, S and Y and on the edge

(1, 3)).
(s)

»y = A

Figure 3.8 Candidate Places for Sorters

3.2.6. Selection of Candidate Attributes for Orderings
A second problem that needs to be solved, concerns the choice of the attributes of each

recordset’s schema/activity’s output schema accordingly, over which an ordering of data will

be performed.

We now define some terms that are useful to our approach. First, we discuss interesting
orders, whose critical role in cost-based query optimization has been recognized in
[SAC+79].

An interesting order for a set of tuples as defined in [SAC+79] is a specification for any
ordering of data that is important for query optimization. If we determine all interesting orders
for a set of tuples, we can form the set of interesting orders. In our setting, the set of
interesting orders consists of a list of attributes over which we can sort the input of an activity
or the contents of a recordset. Thus, the set of interesting orders consists of a set of candidate
attributes such that an ordering over any of these attributes is interesting (i.e., can be

beneficial for workflow optimization purposes).

Interesting Orders for ETL Activities

Our objective is to identify the set of interesting orders for each activity of the workflow. The

interesting orders for an activity are defined at physical-template level. Then, they are
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customized per scenario. In other words, one of the properties of a physical-level template for
activities is the set of interesting orders for the activity. To construct the activity, the designer

specifies the activity and provides concrete values to the template parameters.

For example, when the designer of a workflow materializes a Not_Null template for the
activity with concrete semantics onsmesvuLL, the physical template for Not_Null contains the
following elements:

1. Semantics (abstract): os.wvurLL

2. Interesting Orders (abstract): {$}
Thus, the interesting order for Not_Null is instantiated as {NAME}.

We present more examples of interesting orders next:

1. For filters, each of the attributes involved in the check performed by the filter
composes an interesting order. E.g., the attribute 4 in the filter 64<,000 produces an
interesting order.

2. In case of a Join, (binary activity), each attribute that participates in the join condition
produces an interesting order. For the example join condition R.4 = S.B both attributes
A and B that take part in the joining of tables R and S generate the interesting orders 4
and B respectively. ,

3. We now examine the case of Aggregations. In such a case, each attribute in the
grouping-list produces an interesting order.

4. In case of a function that applies over \a number of attributes, each of these attributes
produces an interesting order. Furthermore, each of the attributes produced by the
function, may compose an interesting order. Another thing to consider is that certain
activities do not produce any interesting order. For example, the function Convert$2€

does not have an interesting order. These activities are ignored in the whole process.

How to Determine Interesting Orders for Sorters

Having discussed ways to discover interesting orders for black-box ETL activities, we now

proceed to the case of sorters and describe a method to choose candidate attributes for sorter
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activities. The interesting order of a sorter Sy depends on its position on the workflow and on

the activities in the output of the sorter. We discern two usual cases for sorters (Sy):

First, we examine the case where a sorter activity is placed on the data of an edge that
connects two activities. We assume the graph contains two activities a and b (Figure
3.9). To place a sorter Sy between these activities, we have to discover the candidate
attributes X for orderings. In this case, the candidate orderings depend exclusively on

activity b. In other words, the interesting orders of activity b determine the ordering X

imposed by the sorter Sy.
Figure 3.9 Candidate Sorters

Second, we discuss the placement of a sorter Sy on the data of a source or DSA table.
In such a case, we examine the outputs of the table, i.e., the activities that receive data
from the table for further processing. We already mentioned that recordsets can
forward their data to more than one destination. Thus, we discover the interesting
orders of the activities that receive data (i.e., the outputs) from the table. Then, we
combine these interesting orders into a single set, making sure that there is no overlap
of interesting orders, i.e., each inlerestingvorder is considered once in the set. We
present this consideration using the example of Figure 3.10. This scenario contains a
source table R, three activities and three targets X, Y and Z. The first activity is a filter
and the interesting order for a filter is composed of the attribute over which the check
is performed, i.e., in our reference example attribute 4. This means the interesting
order is {A4}. The other activities are aggregations, having as interesting orders the sets
{A} and {B} respectively. Therefore, we identify the set of interesting orders as: {{4},

{B}}.
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Figure 3.10 Candidate Sorters

Having discovered the set of interesting orders, our approach suggests generating all possible
physical representations of the scenario by placing all possible sorters in the workflow. This
means that we place zero or one sorter for each of the items in the set of interesting orders and
generate all different scenarios. For the example of Figure 3.10, we can place: (i) no sorter,
(ii) the sorter Sy, or (iii) the sorter Sy on the data of R and generate three different scenarios. In
this setting, it is meaningless to place a sorter on recordset R that orders data in a different
fashion rather than attributes 4 or B, because any other ordering cannot be exploited for the
physical implementation of activities that follow the sorter. For example, the introduction of a
sorter S4p or Sp4 is irrelevant to this setting, because it cannot contribute into the

minimization of the total cost of the scenario.

\

3.2.7. Ascending Vs Descending Ordering of Data

Assume a relation R with N tuples and a Filter of the form oaiary<1000(R). The selectivity of the
Filter is known and is denoted by sel(o(R)). If the input data come unordered, the typical
implementation method for filters is employed, where all tuples are tested over the condition
salary<1000, thus the cost of the Filter is Cost(o(R)) = N. We now assume that we insert a
Sorter activity on the edge that provides data to the Filter. Assume that the Sorter orders the
tuples of R in ascending order of the attribute salary. Since the ordering of tuples according to
salary values is ascending, we can be sure that the tuples that satisfy the selection condition
are placed first and those that do not satisfy it are last. This means that we can avoid the

complete scan of the relation and examine only the first sel/(a(R))*N tuples.
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3.3. Reference Example

In Figure 3.11, we present a reference example. The purpose of this example is twofold: (a) to
illustrate the mapping of logical-level scenarios to physical-level scenarios using appropriate
templates, and (b) to demonstrate that the introduction of sorter activities to workflows can
eliminate their operational cost. Our reference scenario consists of a source table R, a DSA
table V, three target tables Z, W, Y and five activities. The activities are numbered with their
execution priority and tagged with the description of their functionality. The schema of the
source table is R(4, B). The flow for source R is:

(1) This filter performs a check on attribute 4 and allows only tuples having values lower

than 600 to reach the output.

(2) Data with values greater than 300 pass through this filter.

(3) The aggregation on attribute 4 is performed.

(4) Data are aggregated on 4, B values.

(5) Data are aggregated on B values.

SRS Eo

100000

Figure 3.11 An Example ETL Workflow

We assume a library of physical templates for filters, such that:
1. If the input data of a filter are not ordered, the cost of the filter is cost(o) =
assuming » input tuples.
2. For ordered input with respect to attribute A4, the cost is cost(c) = sel; * n.
In the original scenario, tuples arrive unordered to filter / and 2, thus we use the first
template for both filters.

Aoetyptay o s Ao hiire o ookt
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Furthermore, we assume a library of physical templates for aggregations: NL, SO and HS. In
this example, the NL and the HS implementation are not feasible for activities 3 to 5, since
their output tuples do not meet the condition |output tuples|<V(jinput tuples|). If we assume n

input tuples for an aggregation, then the cost of the sort-based implementation method is:

costso(y) = n*log:(n)+n

Based on the aforementioned cost formulae, we compute the cost of the original scenario:

Cost(G) =Y. cost(i) =100.000+10.000+3%[5.000*log,(5.000)+5.000] = 309.316

We continue to generate all possible physical implementations of the scenario and consider
candidate positions to place sorter activities. According to our approach, sorter activities can
be placed on the data of tables R and V, as well as on the edge (7, 2).

e For a sorter placed on the data of table R, the interesting order is {4}.

e For a sorter placed on edge (/, 2) the interesting order is {4}.

e For a sorter on the data of table V the interesting orders are: {4}, {B}, {A, B}, {B, A}.
Our approach suggests inserting combinations of the above sorters on the workflow and

computing relevant costs.

In the sequel, we do not explore all these alternative interesting orders. Specifically, assume
that we apply a transition ASR(S, 5, R) to generate an equivalent workflow G'. Thus, a sorter
S s is introduced on the data of table V of the workflow. Then, we observe changes imposed
by the sorter to the sort order of the tuples originating from V and reaching activities 3 to 5 for
further processing:

o We notice that activity 3 gets data ordered according to 4, B. This means that data are
ordered according to the grouping attribute A. Thus, the cost of the aggregation is
reduced to: cost(3) = |input tuples| =5.000

e Similarly, the cost of 4 is reduced to: cost(4) = 5.000.

e The cost of activity 5 remains the same, since its input data are not ordered by B.

Thus, the cost of the workflow G’ can be computed as follows:
Cost(G') = Zf_' cost(i) =100.000+10.000+2*5.000+(5.000*log(5.000)+5.000] = 247.877

On the whole, we notice that Cost(G’)<Cost(G). This means that the transition ASR(S; 5 R)
has produced an equivalent workflow G’ with lower cost than the original scenario. In other
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words, the addition of a sorter to the data of table ¥ produced a physical-level scenario having

lower cost.

3.4. System Failures - Resumption

Figure 3.12 presents the example of an ETL scenario that contains a source R with 4 tuples, an
activity that filters incoming tuples and a data warehouse DW. The Figure shows the schema
of the source R, which is R(4, B), similar to the schema of the data warehouse DW(A4, B).
Assume that R is sorted according to the values of attribute 4. The tuples are extracted from
the source and they go through activity 7, which allows only tuples with value greater that 200
on attribute B to pass and reach DW. Furthermore, activity / records in a log file which tuples
it has successfully processed. We assume the following succession of events in the time

sequence:

DW (A, B)

Figure 3.12 Resumption Techniques

1. Activity / processes the tuple with value a; on attribute 4.

2. This tuple is propagated to the DW as it passes the filter with selection condition
B>200.

3. Activity / processes the tuple with value a; on attribute 4.

4. This tuple is not propagated to the DW as it fails the test B>200.

5. A system failure occurs.

After the failure, the loading process of the data warehouse must be restarted. To find a

solution to this problem, we have to consider the two invariants of the problem:
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- All the tuples of R must be processed and
- No duplicate records must reach the DW.
To answer the problem, there are two different techniques we can follow:

1. The first choice is to redo the entire load after the failure. This means to filter out the
already stored tuples at the warehouse and reprocess data in its entirety. If the whole
process manages to complete, then we hope that another failure does not occur.

2. The second option is to resume the incomplete load of DW, starting from the point it
was interrupted assuming that we can avoid redoing work with rescued output and we
know where to start.

The first option can be time consuming, since the loading of a data warehouse usually takes
hours or even days to complete. Moreover, if there is not enough time for the load to finish, it
may be skipped for a next period of time, leaving the database incomplete, possibly

inconsistent and out of date.

On the other hand, the second technique seems to be more convenient for this problem. We
now present its successive stages after a failure occurs. On system restart, activity / discovers
that DW contains only one tuple, the tuple with value a; on attribute 4. Since we know that
tuples are processed in alphabetical order by activity /, we can exploit the fact that activity /
“remembers” which tuples it has already processed. This means that after the failure, activity
1 does not have to reprocess tuples with values a; and a; on attribute 4, so we continue by

retrieving tuples from R starting from the ones with value a3 on attribute A.

We assume that system failures happen durh;g the operation of the workflow. To overcome
the obstacles that failures cause to the warehouse load, we suppose that each DSA table plays
the role of a savepoint of the workflow state. Each DSA table stores an amount of processed
data and when a failure occurs, the DSA table makes this data available to the activities
following it in the workflow. Each activity refers to the latest DSA savepoint to extract tuples
for processing. In other words, each DSA recordset serves as a bridge that in case of a failure
provides all activities that follow it in the workflow with the most recently saved data, ready

for further processing.

In case the workflow does not contain any DSA tables, the workflow operation must be

restarted from scratch, i.e., each activity has to reprocess all input tuples. On the other hand, if
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the workflow contains savepoints, an activity that fails to complete its operation can receive
input data from its closest DSA savepoint. Assume that activity i fails during processing.
Then, activity i refers to its closest DSA table and receives tuples from it. In this case, not all
activities have to restart their work. Only activity i and the activities that follow it in the
workflow must resume their operation. This means that the cost to resume the workflow
operation can be lower due to the existence of savepoints. Thus, the use of savepoints is

beneficial in most cases.
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CHAPTER 4. TECHNICAL ISSUES AND PROPOSED
ALGORITHMS

4.1 Architecture of the Implemented ETL Engine
4.2 Technical Issues — Proposed Algorithms

4.3 Alternative Cost Models

4.4 Implementation Issues

In this section, we present the architecture of our ETL engine. Then, we discuss signarures,
which provide a compact way to represent a scenario with a string. In addition, we refer to the
algorithms used in our approach and present the algorithm Exhaustive Ordering. We present
two different cost models, one for the regular operation of an ETL workflow and another with
recovery from failures. Furthermore, we introduce the language DEWL for the description of
ETL scenarios and describe its syntax. Finally, we describe the construction of a parser for
language DEWL.

4.1. Architecture of the Implemented ETL il‘ngine

We described in previous sections that ETL tools are software tools responsible for the
extraction of information from different sources, their transformation and cleansing and
finally their loading into the target data warehouse. Most ETL tools are either engine-based,
or code-generation based. According to the engine-based approach all data have to go
through an engine for transformation and processing. This means that all processing takes
place in the engine, which typically runs on a single machine. On the other hand, in code-

generating tools all processing takes place only at the target or source systems.
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In this thesis, we are concerned with the engine-based approach. In these architectures, an
ETL engine is located between the sources and the data warehouse. The role of the engine is
to perform all the data transformation and the cleansing tasks before the data are moved or
loaded to the data warehouse. Figure 4.1 shows the successive steps followed for the
extraction, transformation and loading of data to the warehouse and the transformation work

of the ETL engine.

Extract Transform Load

Figure 4.1 Extract - Transform - Load Process

In this work, we implemented an optimizer for ETL scenarios. The transformation work of an
ETL engine that works for our case can be described as follows:
o First, an ETL scenario is loaded to the engine.
¢ Then, the engine creates a logical workflow, called the original state.
¢ From the original state, we generate all possible states that can be physically
implemented, using transitions.
e For each state, the engine takes into consideration the given cost model and produces
its operational cost.
e Finally, the engine decides which is the optimal state based on cost criteria, i.e., the

state having minimal cost.

Figure 4.2 schematically presents the operations of our ETL engine:
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Figure 4.2 ETL engine operations

4.2. Technical Issues - Proposed Algorithms

This section refers to the representation of ETL scenarios using signatures and the algorithms
developed in this work.

4.2.1. Signatures
For ease of representation, we have searched for a compact way to represent a scenario with a
string. This notation can be used for the description of any workflow, simple or more
complex. For this reason, we use the notation of signatures presented in [SiVS04] and extend
them to describe workflows containing DSA tables‘ and having several targets. A signature is
a string that characterizes a graph G =(V, E) and it is formed using the following rules;

1. Activities that form a linear path are separated with dots (“.”).

2. Concurrent paths are delimited by a double slash (“//”). Then, each path is enclosed in

e

Figure 4.3 Exemplary Scenario

For example, the signature for the scenario depicted in Figure 4.3 is ((R. 1)//(S)).2.DW
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The authors of [SiVS04] developed an algorithm, called Get_Signature (GSign), which
generates the signature of a given ETL scenario. This algorithm works well for simple
scenarios that contain one or more source tfables, one or more activities and a single target
data warehouse table. In our work, we have examined more complex scenarios that cannot be
covered by the algorithm GSign. Specifically:
o First, in this work we permit the existence of more than one target recordsets (meaning
data warehouse and/or data marts).
e Second, in our scenarios we incorporate the use of DSA tables that store intermediate
results. While activities have a single output, DSA tables can forward their output data
to more than one destination for further processing, i.e., DSA tables can have more

than one output.

For example, we can deal with more complex workflows, such as forks or butterflies which
cannot be handled by the algorithm GSign. Figure 4.4 presents a fork and a butterfly
configuration. These structures and many others are explained in detail in Chapter 5.

> TR >
050 g P et C
o T >

Butterfly

Fork

(b)

Figure 4.4 More Complex Workflows

In the sequel, we first describe the steps of the algorithm GSign and then the alterations and

additions we performed to make it work for our case.

GSign gets as input a state S, i.e., a logical-level graph G= (¥, E) and a target node of the
graph. Starting from the target node, GSign recursively adds the Id of each activity to the
signature. In case the activity is unary, we just put a dot (*.”) and the /d of the activity to the
signature. If the activity is binary, GSign has to follow two separate paths to reach the source
nodes. Finally, GSign computes the signature S of the entire graph. Figure 4.5 presents the
algorithm GSSign, while Figure 4.6 presents the algorithm Extended GSign (EGS).

T

g
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IR 4

Algorithm Get Signature (GSign)
1. Input: A state S, i.e., a graph G=(V,E), a state
S’ with edges in the reverse direction than the
ones of S, and a node v that is a target node for

* Algorithm Extended GSign (EGS)

1. Input: A state S, i.e,, a graph G=(V,E), a state S’
with edges in the reverse direction than the ones of
S, and a set T with the target nodes for the state S

the state S 2. Output: The signature sign of the state S
2. Output: The signature sign of the state S 3. Begin
3 Be . 4. n = 0;
gin 5 for each v in T (
4 1d € find the 1d of v; 6' GSign(S,v,C(n]);
5. sign = "." + Id + sign; 7' ++?n Py !
6. 4if (outdeg(v)==2) { . ’n ’
7 vliénext of v with the lowest Id; ’
R 9, if (n==1) {
8. GSign(s,vl,sl); .
. , 10. sign = C[0];
9. v2€next of v with the highest Id; 11. )
11, tgmen((vasiem 1/ (nes2en)) s sign; 12188 ¢
" )sg“ 9% 13, for i = 1 ton {
: ) . _ 14. V = FindRecordset(C[i],C[0]);
13. '1':_ if (outdeg(v)==1) { 15. stre=first part of C[0] until V;
: i: ;Si nesxt Ofi Vi 16. str,=rest of C[0Q]}, after V;
16. } gn( fv,s gn): 17. str,=rest of C[i], after V;
- 17‘ ign = si 1 LTIy 18. ClO)=stro+" (("+str +")//("+str+"))";
sign = sign.replace all("(.","(™)i 14 (¢10]= c[0].replace all("(.","(");
18. End. -
. 20. }
21.}
22, sign = C[0];
23, End.
- - - - - - - —- .. - - —— - - ]
Figure 4.5 Algorithm GSign ([SiVS04)) Figure 4.6 Algorithm Extended GSign

We mentioned that our approach permits the existence of more than one target nodes to the
graph. In this setting, the algorithm Extended GSign (EGS) works as follows: first, we select
the target nodes of the workflow (line 5) and then apply the algorithm GSign for each of the
targets (line 6). GSign generates a signature for each of the targets. We employ a collection C
to store the signatures generated by GSign. If the collection contains only one signature, C[0]

is the signature of the state (lines 9-10). If it contains more than one signatures, we call
function FindRecordsel(). This function searches the two signatures C[0] and C[i], i=],...,n
backwards for a common recordset with 2 or more outputs, which is also returned. Let ¥ be
such a node. We partition C[0] and C[i] with respect to V' and form 3 strings stry, str,, str,
(lines 15-17) as follows:

~ stro= the first part of C{0] until V (included)

- str; = the remaining part of C[0]

- str; = the remaining part of C[i]
We compose these strings and store the result in C[0): C[0}=strg+"(("+str/+"W/("+str+"))"
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The final signature is stored in C[0] (line 21). Concurrent paths are again delimited by a
double slash (“//’) and paths are enclosed in parentheses.

Figure 4.7 presents an example of a scenario that involves a source table R, four activities /,

2, 3 and 4, a-DSA table V and three target tables X, Y and Z.

pd l : .

. R L //'
‘ 7 <>
' >
<

Figure 4.7 Several Target Nodes

Assume we apply algorithm EGS on the scenario of Figure 4.7. The procedure that generates

the signature for this scenario is the following:
o First, we apply GSign to each of the target tables. GSign returns three signatures,
which we store on a collection C. Table 4.1 shows the items stored in the collection C.

Table 4.1 Signatures Stored in Collection C

index item
0 R.1.V2X
1 R.1.V3Y
2 R.1.V4.Z

A

e Then, we examine the signature stored at C[0] backwards (i.e., starting from the last
element which is node X) and test whether each node is a recordset with 2 or more
outputs. This way, we stop the search at node V.

e We partition the signatures stored at C[0], C[/] with respect to node ¥ and we form 3
strings as follows:

- strg=R1LV.
~ stri=2X
~ Stry=3Y
e We merge these strings and store the result in C[0]:
C[0] = stro + "(("+stri+") I/ (" + stro+")"
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e Similarly, we test each remaining signature stored at C with C[0] and merge strings.

e Thus, the final signature is: R.1.V. (2.X)//(3.Y)))//(4.2))

Extensions to Extended GSign

To adjust the algorithm Extended GSign to cover all possible scenarios in our setting, we
made the following extensions:
1. First, we incorporated physical-level activities to signatures and adjusted the algorithm
EGS to generate such signatures.
2. Second, we extended the algorithm EGS to work for workflows that contain sorter

activities.

For the first case, we present an example using the scenario of Figure 4.7. Assume that the
aggregation is performed using a NL implementation method. Then, the signature of the
scenario generated by EGS is R.1.V.((2@NL.W)//(3.Z)). This example shows that EGS uses
the notation introduced in section 3.1.3 for physical-level activities.

For the latter case, we have to mention how the algorithm is extended when sorters are
present.
e Whenever a sorter that orders data according to attributes 4, B is placed on an edge (q,
b), where a, b are activities, we name the sorter a_b and the signature contains the
notation a_b(4, B) to convey the sorter.
e On the other hand, if we introduce a sorter on table V that orders tuples according to
A, B the signature contains the notation V/(4, B) using the separator “/” to differentiate

the name of the sorter from the ordering attributes.

4.2.2. Algorithm Generate Possible Orders (GPO)

The designer of a new scenario has to provide to the system information concerning the
logical description of the scenario. This means that he has to describe analytically all the
recordsets and activities contained in the scenario and their interconnections (by referring to
inputs/outputs of activities). This way the ETL engine can initiate its transformation work.
Furthermore, some additional information is needed for each type of activity. The designer

needs to specify a comma delimited list of parameters, which correspond to the set of
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interesting orders for the activity. We have already mentioned that each activity has a set of
interesting orders associated with it, i.e., a set of attributes that an ordering over any of those
attributes can be exploited to lower the cost of the scenario. After defining the activity type,
one specifies the list of interesting orders enclosed in parentheses. Some of these parameters
are necessary for the execution of the scenario, while others are optional. To this point, we

explain the items of the parameter list, according to each different class of activity.

Once all recordsets and activities with their interesting orders have been defined, the system
executes the algorithm Generate Possible Orders (GPO). This algorithm takes as input a
number of items, e.g., the interesting orders /D, DEPT and produces all possible combinations
of those items that can be generated. In this example, the algorithm produces the following
combinations: {ID}, {DEPT}, {ID,DEPT}, {DEPT,ID)}. These combinations of attributes will
be very useful for the subsequent steps of this work, when we will try to discover all possible

scenarios that can be generated from the original scenario, by adding one or more sorters to it.

To generate combinations, the algorithm Generate Possible Orders (GPO) uses three sets:
o LookupSet is a set of n items that contains the interesting orders of an activity.
o TempSet is a set that stores temporarily the combinations of orders that arise in the
intermediate steps of the algorithm.
e ResultSet is the set that contains all the sets of possible orders produced by the
algorithm.

The algorithm GPO starts by filling the Res1\11tSet with all the items that exist in Tempset,
each forming a different set. Then, each item of the LookupSet is combined with each set of

the ResultSet to produce all possible combinations that can be generated.

For example, we assume an activity y, 5 of type AGGREGATION with a set of interesting orders
(A,B). Then, the algorithm proceeds as follows:
1. First, we form the set LookupSet: LookupSet = {A, B}.
2. Now the ResultSet can be filled with two sets: ResultSet = {{A}, {B}}.
3. The first item of LookupSet (i.e., 4) is now combined with each set of ResultSet and
combination of 4 with {4} produces nothing, while combination of 4 with {B}
produces the set {4, B}. Then, the algorithm combines the second item of LookupSet
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(i.e., B) with each set of ResultSet and produces {B,4}, so we add the combination
{B,A} to TempSet. This means that in the end the following sets are produced:
TempSet = {{A, B}, {B,A}} and ResultSet = {{A}, {B}, {4,B}, {B,A}}.

4. The algorithm continues by combining each item of LookupSet to each set of the new
ResultSet. In this example, no more combinations are produced, so TempSet becomes
empty and the algorithm terminates.

5. At the end of the algorithm ResultSet = {{A)}, {B}, {A,B)}, {BA}}.

Figure 4.8 presents the algorithm Generate Possible Orders (GPO).

1. Input: A set LookupSet with n items

2. Output: A set Resultset that contains all possible orders.

3. Begin

4, Let LookupSet = {I,, I, .., I,} be a set with n items
5
6

. TempSet = {};
. Add to ResultSet all items of LookupSet as different sets, i.e., ResultSet = {{

Iy, (I2)s o s {Ip}):
7. do
8. {
9. TempSet = {};
10. for each set s in ResultSet {
11. for each item i in LookupSet ({
12. if (i ¢ 8)
13. {
14. TempSet = TempSet U {s U {(i}};
15. }
16. }
17. ResultSet = ResultSet U TempSet;
18.}
19.while (TempSet # @);
20. return ResultSet;
21.End.

Figure 4.8 Algorithm Generate Possible Orders (GPO)

4.2.3. Algorithm Compute Place Combinations (CPC)

Having discovered all possible sorters that can be inserted in the graph, we now examine
candidate positions for sorters in the graph. We explained in earlier sections that candidate
places for sorters are either source and DSA tables, or edges whose data provider and
consumer are both activities. To this point, we have to generate combinations of those places
where we can insert sorters. For this reason, we designed the algorithm Compute Placé
Combinations (CPC), which takes a set of places as input and generates all combinations of

those places as output. For example, for the ETL scenario presented in Figure 4.9, the input
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for the algorithm is the set S of the graph places: § = {R, S, (/,2)}. The algorithm returns the
set: 8" = {{R}, {S}, {(I-2)}. {R S}, (R (1,2)}, {S, (1L.2)}, (R S, (1,2)}}.

Figure 4.9 Example Scenario

The algorithm CPC is designed similarly to the algorithm GPO. The only difference is that
CPC produces fewer results, since the edge (7,2) is similar to the edge (2,1), thus the edge
(1,2) is calculated once in the result set. For example, for input {4,B}, algorithm GPO
produces the set {{4}, {B}), {A,B}, {B,A}}, while CPC produces the set {{A}, {B}, {4,B}},
because edge {4, B} is considered the same as edge {B,4}.

1.
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18.
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20.
21.
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23.
24.

Input: A set LookupSet with n items

Output: A set ResultSet that contains all possible orders.
Begin
Let LookupSet = (I, I, .. , I,} be a set with n items
TempSet = (};
Add to ResultSet all items of LookupSet as different sets, i.e., ResultSet = ({
i}, {I2dy o 4 (L))
do
{
TempSet = {};
for each set s in ResultSet {
for each item i in LookupSet { N
if (i e )
{
z =8 UV {i};
if Not (ExistsIn(TempSet,z)){
TempSet = TempSet U (z};
}
}
}
ResultSet = ResultSet U TempSet;
}
while (TempSet # @)
raturn ResultSet;
End.

L R —

Figure 4.10 Algorithm Compute Place Combinations (CPC)
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Figure 4.10 presents the algorithm Compute Place Combinations (CPC). The function
Existsin(TempSet, z) (line 15) checks whether an item z already exists in a set TempSet, either
in this form, or permuted. For example, assume z = {4,B}. The algorithm checks if the
TempSet contains {4,B} or {B,A} (the elements of z in this order or permuted). Only if it does

not contain such an item, item z is inserted to TempSet (line 16).

4.2.4. Algorithm Generate Possible Signatures (GPS)

The algorithm GPS uses the algorithm CPC to generate combinations of candidate positions
to place sorters, which it stores at the set ResultSet (lines 4-6). Then, it uses the algorithm
GPO to generate possible sorters, which are stored at the set CandidateSet (line 9). Finally,
the algorithm uses a collection C to store all generated signatures. For each candidate order o
in CandidateSet it calls the function AppendOrder(S, o, p), that appends order o in place p of
signature S.

Algorithm Generate Possible Signatures (GPS)

1. Input: A signature S of a graph G=(v,E) with n nodes

2. Output: c is a collection with all signatures that contain possible sorters.

3. Begin

4. for each place p in G {

5. ResultSet = CPC(p): //combinations of places

6. }

7. for each combination ¢ in ResultSet { //for each combination of places
8. for each place p in combination ¢ { //for each place

9. CandidateSet = GPO(p); //candidate orderings for place p

10. for each order o in CandidateSet{

11. tempSignature = AppendOrdex(S,o,p); //append order o in place p of S
12. C = C U {tempSignature};

The function AppendOrder(S, o, p) works as follows:
- if place p is an edge (a, b), then replace in signature S the string a.b with the string
a.a_b(o).b |
- else if place p is a recordset ¥, replace in signature S the string V with the string

V.Vi(o)
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Then, we store each generated signature to collection C. Figure 4.11 presents the algorithm
GPS.

4.2.5. Exhaustive Algorithm

The algorithm Exhaustive Ordering (EO) takes as input an initial logical-level graph G=(V,E)
with n nodes and generates all possible states that can be generated by placing all possible
sorters over the candidate positions of the graph where they can be introduced. The algorithm

proceeds in finding the state having minimal cost and returns it as output.

The exhaustive algorithm employs a dictionary D to store signatures and their respective
costs. Furthermore, the algorithm uses the function Compute_Cost(). This function receives as
input the signature of a scenario and evaluates its cost. The function Compurte_Cost()
examines the signature to discover activities and recordsets. For the scenario of Figure 4.12,
the signature is ((R.1.V.)//(S.2.2_3(A,B).)).3@NLJ.Z. The function Compute_Cos!() finds all
nodes and according to the role of each node in the original scenario (activity or recordset) it
determines that nodes R, V, S and Z are recordsets whereas nodes /, 2 and 3 are activities.
Moreover, activity 2_3 is a sorter that orders tuples of the edge (2, 3) over attributes 4, B.

D

Figure 4.12 Example Scenario

For this example, Compute_Cost() proceeds as follows:

1. First, it assigns zero cost to recordsets.

2. Second, each type of activity (filter, join, aggregation, function, etc.) produces
different cost. The cost formulas that method Compute_Cost() uses depend on the cost
model and were discussed in detail in section 3.1.7. We must point out that
Compute_Cosi() scans the signature to decide on the implementation method for the
activity, For the above example, activity 3 is a join and the available implementation
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technique is Nested-Loops Join (NLJ). As we explained in section 3.1, the cost of the
activity depends on the implementation method. Using all these considerations,

Compute_Cost() produces the cost of the activity as output.

Figure 4.13 presents the algorithm Exhaustive Ordering. First (line 5), the algorithm uses the
algorithm Extented GSign (EGS) to generate the signature of the original graph G. The
signature of the original graph is denoted by Sp. Then (line 6), the function Compute_Cost() is
applied to Sy to evaluate the cost of the initial scenario. Both Sp and its relevant cost are stored

to dictionary D (line 7).

Algorithm Exhaustive Ordering (EO)

1. [Input: An initial graph ¢ =(v,E) with n nodes

2. Output: A signature Sy, of a graph G’ =(v’ ,E’) having minimal cost.

3. Begin

4. Let D be a dictionary that contains Scenario Signatures and respective costs

5. S, € EGS (G); //Compute the signature of the original graph G

6. Cost(S,) € Compute_Cost (Sy):

7. Add S; and Cost(S;} to dictionary D;

8. Let C = {c;, C2; . » Cn} be the set of all possible combinations of candidate
positions for sorters generated by the algorithm CPC

9. Given a c in C, let P = {pcis Pez, -~ rPm) be the set of candidate positions for
sorters

10. Given a position p., let O, = {0;, 03, .. , On) be the set of candidate sorters

over p. generated by the algorithm GPO
11. Suiy = So?
12. for each ¢ in C {
13. for each p. in P. {

14. for each o in O, {

15. generate a new signature S,..;

16. if (Soec # D)

17. {

18. Cost (Sgec) € Compute_Cost (Seec) ¢

19. Store S, and Cost (S,ec) to dictionary D;
20. if (COSt(SooC)< Cost (SMIH)) Suin = soec;
21. }

22. }}1}

23. return Sy’

24. Bnd.

e R

Figure 4.13 Algorithm Exhaustive Ordering

In the sequel (line 10), the algorithm determines all candidate sorters that can be inserted
among graph nodes (all candidate sorters compose the set O;;) and uses them to generate all
possible signatures that can be produced if one or more sorters are added to the initial graph.
Each new signature that is produced, denoted by S, (line 15), corresponds to a new scenario
that differs from the original scenario in the sense that it contains one or more additional
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sorter activities. It also differs from the original scenario, because it contains implementation
methods for the activities. This is shown by the abbreviations NLJ, SMJ, etc. that follow the
name of the activity in the signature, e.g., 3@NLJ. We exploit all this information gathered by
scanning each generated signature in line 18 of the Exhaustive Algorithm, when we apply the

function Compute_Cost() to the new signature to compute the cost of each generated scenario.

Then (line 16), the algorithm checks if the new signature S, already exists in dictionary D. If
not, the algorithm computes the cost of the scenario that corresponds to signature S,.. and
adds the S, and its cost to the dictionary (lines 18-19). Finally (line 20), the algorithm
searches among signatures in the dictionary to check whether the newly inserted one has a
minimal cost. This way, the algorithm chooses the signature having the minimal cost (Syy) as

the solution to our problem.

4.3. Alternative Cost Models

We now illustrate the different cost models we have incorporated in this work. The first
model is based only on operational/computational cost, i.e., the cost for each activity to
process incoming tuples. We refer to this model as the model for regular operation. On the
other hand, the second model, computes not only the operational cost for each activity, but
also the cost to resume it in case of failure. This quel is referred to as regular operation with

recovery from failures. We discuss both models in the following sections.

4.3.1. Regular Operation

As a first approach, we have used a simple cost model. This model takes into consideration
only the operational/computational cost for each activity, i.e., the number of tuples the activity
has to process and it is based on simple formulae. These considerations are explained in more
detail below:
1. We assume that each recordset has zero computational cost, since recordsets are used
for data storage purposes.
2. For activities with known semantics, the computational cost of the activity is the
number of tuples it has to process. Assume m input tuples. The computational_cost of

activity / depends on the physical implementation of the activity. Thus, it is defined at
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physical template level as a function of m. In section 3.1.7 we have explained how the
computational_cost is computed for some classical categories of activities: filters,
joins, aggregations and function applications.

3. For black-box activities with unknown semantics, we can use the following formula:

computational _cost(i) =m* cost_per_tuple(i)

where m is the number of input tuples and cost_per_tuple(i) is the cost for activity i to
process a single record.

4. Assume a workflow G with » activities. Then, the total computational cost for the
entire workflow G(V, E) is obtained by summarizing the computational costs of all its

activities. The total computational cost is given by the following formula:

Computational cost(G) = Zl‘ computational _cost(i)

4.3.2. Regular Operation with Recovery from Failures

Apart from the regular operation of an ETL workflow, real-world scenarios involve the
resumption of the workflow in the case of failures [LiSt93]. The resumption process can be
accelerated if the results of the workflow are stored at intermediate storage points (a.k.a.
savepoints in the database literature). Clearly, if an activity fails to complete its operation it
can receive input data from its closest DSA savepoint. Assume that activity i fails during
processing. Then, activity i refers to its closest DSA table and receives tuples from it. In this
case, not all activities have to restart their work. Only activity i and the activities that follow it
in the workflow must resume their operation. This means that the cost to resume the workflow
operation can be lower due to the existence of savepoints. Thus, the use of savepoints is

beneficial in most cases.

We can design a resumption-effective ETL process as follows:
1. Assume that the cost to process incoming tuples for each activity i is
computational _cost(i).
2. Assume that each activity has already processed the 50% of input tuples before the
failure occurs. We denote by cost_until crash(i) for activity i the cost for processing
of the 50% of tuples before the failure.

cost_until_crash(i) = 50% * computational_cost(i)
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3. A failure occurs in activity i and it fails to complete its operation. Assume k activities
in the path from activity i to the latest savepoint. Their work must be repeated.
Furthermore, assume that m activities follow activity i in the path towards the data
warehouse. Then, the work of i and the work of all m subsequent activities must be
restarted.

Then, the resumption cost for activity i can be computed as follows:

k .
resumption_cost(i) = cost_until_crash(i) + Z el computational _cost(j) +

computational_cost(i) + 2:;1 computational _cost(j)

4. Then, we assign to each activity i of the workflow a probability p, that stands as the
probability of failure before the successful completion of the regular operation of the
activity. Thus, we calculate the probability of failure as the probability of each activity
failing during a single execution. Typical values for such probabilities are 1%,,- 5%o.
The resumption cost for a workflow with n activities G(V,E) is evaluated as the

weighted sum of the resumption costs of activities, with weights the probabilities p;:

Resumption_cost(G) = Z; p, * resumption _ cost(i)

We have to make clear that we consider as a savepoint the latest Source, DSA table, or sorter
activity. We also measure the cost of intermediate activities in the path from the savepoint to
the activity that fails, because the work of these activities must be repeated. We add this cost
to the cost_until_crash to compute the resumption_cost. Finally, we add the cost of the
activity that failed to the resumption_cost because its work is restarted and the cost of

activities that follow the failed activity, because their work can now begin.
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Figure 4.14 Example of Resumption

To illustrate this consideration, we use the reference example depicted in Figure 4.14. This
example scenario consists of a Source database R, two DSA tables V, T, five activities
denoted with numbers from 7 to 5 and three Target tables Z, # and Q. We assume that each
activity has a probability p; to fail, i= 1, 2,..., 5. When a failure occurs to the operation of
activity i, activity i gets input data from its closest savepoint and starts to process it. Then, its
output data is forwarded to the subsequent nodes and the processing is continued. For the
example of Figure 4.14, if a failure happens to the operation of activity 5, instead of replaying
the whole scenario, activity 5 receives input data from savepoint V and starts processing. The
only activity whose work must be restarted is activity 5, so the cost we must pay to resume
activity 5 is: resumption_cost(5)= cost_until_crash(5) +computational_cost(5). The same
applies to activities 3 and 4, which receive data fro table T. On the other hand, in case activity
2 fails, it then receives input data from savepoint V. In this case, activities whose work must
be restarted are 2, 3 and 4. This leads to the following formula:

resumption_cost(2) = cost_until_crash(2)+computational_cost(2)+computational_cost(3)

+computational cost(4)

Table 4.2 illustrates the steps we follow during the resumption process to compute the
resumption cost for each activity and then to evaluate the resumption cost for the entire

workflow.
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Table 4.2 Resumption steps
Activity that | Probability {Then resume With computational_cost
fails to fail activities | (computational_cost(i)+ Z:/ computational_cost(j))
5 Ds 5 computational _cost(5)
4 . P4 4 computational cost(4)
3 D3 3 computational _cost(3)
2 p 234 computational_cost(2)+computational_cost(3)
2 7 +computational cost(4)
computational_cost(1)+computational_cost(2)
1 Di 1,2,3,4,5 [+computational_cost(3)+computational cost(4)
+computational cost(5)

Then, the resumption cost of the workflow G can be computed as follows:

Resumption_cost(G) = Z ; D, * resumption _ cost(i)=
= p; * (cost_until_crash(1)+ Zj--: computational _cost(j)) + p2 *

(cost_until_crash(2)+ stz computational _cost(j)) +

D3 ¥ (cost_until_crash(3) + computational_cost(3))+p4* (cost_until_crash(4) +

computational_cost(4)) + ps* (cost_until_crash(5) +computational cost(5))

4.4. Implementation Issues

In this section, we discuss issues concerning the construction of the Optimizer. Furthermore,
we refer to the description of ETL scenarios using the workflow description language DEWL
and the construction of a parser for this language.

4.4.1. UML Class Di;zgram for the Optimizer

In this subsection, we discuss the UML Class diagram for the optimizer of the ETL engine.

The optimizer can handle loaded ETL scenarios. Each ETL scenario consists of one or more.

nodes and edges that connect nodes. Each node can be either activity or recordset, while
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recordsets are further discriminated in tables or files. Figure 4.15 shows the UML Class

diagram for the optimizer.

We now analyze each component of the UML Class diagram.

1.

The Scenario is set of data transformation processes that must be executed
sequentially. Each scenario is characterized by a name (ScenarioName) and contains
an activity list (ListOfActivities) and a recordset list (ListOfRecordsets). Both activities
and recordsets compose a list of graph nodes (ListOfNodes). Furthermore, there exists
a list of graph edges (ListOfEdges) and a list with the orders on each edge
(ListOfEdgeOrders). Each scenario has an operational cost (ScenarioCost) and a
unique signature (ScenarioSignature). The signature of a scenario is a string that
characterizes the scenario and is described in detail in section 4.1.4. The scenario also
contains the method ComputeScenarioCost() that computes the cost of the whole
scenario, by adding the costs of its activities and recordsets. The method
ComputeResumptionCost() computes the resumption cost and
ComputeScenarioSignature() evaluates the signature of the scenario.

Nodes are the component parts of an ETL scenario and are connected through the
graph Edges. Each node has a name to which someone can refer (NodeName) and a
cost that represents the cost to process the incoming data. The resumption cost for the
node is called Rescost. Each node has a number of nodes as inputs and a number of
nodes as outputs. The number of inPut tuples is called ImputTuples.The methods
getCost() and getOutputSize() are used for the retrieval of the NodeCost and the node’s
OutputSize (i.e., number of output tuples) accordingly. On the other hand, the
methods  ComputeCost(),  ComputeResCost(), ComputeOutputSize()  and
ComputeSignature () calculate the cost of the node, the resumption cost, its
outputSize and generate the signature accordingly. Each Edge has a name (EdgeName)
and connects two nodes (SourceNode and TargetNode). Moreover, each edge that was
part of the initial workflow is described as Original, while others are not Original
edges.

Tables are relational tables that play a part in the scenario and store the input and
output tuples of each activity. Each table has a name (TableName) and a type,
characterized by one of the keywords: SOURCE, DSA or TARGET. Furthermore,
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each table has an integer number associated with it (TableSize) which describes the
number of tuples the table contains. We can compute the number of tuples the table
supplies for further processing with the method OutputSizeComputation() at the
beginning of the execution of the scenario.

. Activities are processes that perform some transformations over the data or apply data
cleansing procedures. Activities have a name (ActivityName) and a Selectivity,
meaning a real number from 0 to 1 that describes the percentage of input tuples that
appear in the output. The attribute Type reveals the coarse category of the activity as a
FILTER, JOIN, AGGREGATION, FUNCTION or SORTER. An activity’s semantics
(Semantics) is specified by an expression in SQL. CostPerTuple refers to the cost for
the processing of a single input tuple, while Cost is the operational cost to process all
input tuples. The methods CostComputation(), ResCostComputation() and
OutputSizeComputation() calculate the cost, resumption cost and outputSize of the
activity.
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+ScenarioName : String 0.* -

+ListOfActivities : myDictionary
+ListOfRecordsets : myDictionary +New()
+ListOfNodes : myDictionary +main(
+ListOfEdges : myDictionary
+ListOfEdgeOrders : myDictionary
+ScenarioCost : Double
+ScenarioSignature : String

N

+ComputeScenarioCost()
ComputeResumptionCost()

+
4+

+ResCost : Double :
+SourceNode : String 1 leinputs : String i
+TargetNode : String +Outputs : String i
+Original : Boolean +InputTuples : Long :
|+New() +OutputSize : Long i

+New()

+getCosl() : Double

+ComputeCost() : Double
+ComputeResCost() : Double
+getOutputSize() : Long
+ComputeOulputSize() : Long
+getSignature() : String
+ComputeSignature() : String

+ActivityName : String
|+Selectivity : Double
+Type : String
+Semantics : String

TableName : String .
+TableSize : integer meﬁ’up:: : Double
+Probability : Double
+QutpuiSizeComputation() : Long .

+CostComputation() : Double
[+ResCostComputation() : Double
+OutputSizeComputation() : Long

L
[+New() [+NewD +New() +New() +New(
+CostComputation() : Doubte +CosiComputation() : Double +CostComputation() : Double +CostComputation() : Double
T 1
o
[+New() +New() +New( [+New() +New() %

{+New()

Figure 4.15 UML Class diagram for the ETL Scenario
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S. The subclasses of the Activity class are: Filter, Join, Aggregation,

Function_application and Sorter. Most of them have a method CostComputation() to
compute their cost, except for Filter that uses the corresponding function of its super-
class Activity to compute their cost.

The - Filter class is the superclass of Filter_Lower, Filter_LowerEqual,

Filter_Greater, Filter_GreaterEqual, Filter Equal and Filter_NotEqual.

7. The Filter_Equal class is a super-class of the NotNull class.

4.4.2. Language DEWL for ETL Scenarios

Apart from the logical representation of an ETL scenario as a directed acyclic graph that we

discussed in previous sections, we have introduced a new language for the description of ETL
scenarios. We call this language DEWL (Data Exchange Workflow Language). DEWL is

simple and easy to write. DEWL is composed of four statements: the CREATE SCENARIO,

CREATE ACTIVITY, CREATE TABLE and the DECLARE INPUT OUTPUT statement.

1.

The CREATE SCENARIO statement is used to define a new scenario. The user has to
provide the name of the scenario along with the names of the tables and the names of
the activities that compose the scenario.

The CREATE ACTIVITY statement defines an activity of the scenario. One has to
provide the name of the activity and its type, using one of the keywords: FILTER,
JOIN, AGGREGATION or FUNCTION. To this point, we have to make clear that sorter
activities cannot be part of the original scenario. This means that sorters cannot be
created through DEWL statements and the user cannot define any kinds of activities
other than filters, joins, aggregations or functions. Then the user provides a list of
parameters enclosed in parenthesis, which refers to the inmteresting orders for the
activity. In case the activity is a FILTER, one has to provide a comma delimited list
that contains the selection condition of the activity’s semantics. For example, for a
FILTER that expresses the selection 6age>20 one has to provide the list (AGE,>,20). In
case the activity is a JOIN, one has to supply two lists of interesting orders, one for
each input of the activity, e.g., (/D;EMP_ID). The two lists of attributes are delimited
by a semicolon. For all other types of activities (aggregations, functions, etc.), one has

to provide one list of attributes that symbolize interesting orders, e.g., (ID,SAL).
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Furthermore, one must provide the selectivity of the activity and its semantics, in the
form of a typical SQL statement enclosed in double quotes.

3. The creaTE TABLE defines a relational table that takes part in the scenario. The user
defines the name of the table and its type, providing one of the keywords: SOURCE, DsA
or TARGET. Then, one must provide the schema (i.e., list of attributes) of the relational
table. The list of attributes has to be enclosed in parentheses. In case the table is a
SOURCE, one must notify the system for the number of tuples stored in the Table using
the s1zE clause. In case of DsA tables, the size of the table is optional, while for target
tables it is unnecessary.

4. The DECLARE INPUT OUTPUT statement is used to describe the connections between the
activities and recordsets of the scenario. For each activity created above using a
CREATE ACTIVITY statement, one has to employ a DECLARE INPUT OUTPUT statement,

to inform the system of the activities’ inputs and outputs.

Figure 4.16 illustrates the syntax of DEWL for the CREATE SCENARIO, CREATE ACTIVITY,

CREATE TABLE and DECLARE INPUT OUTPUT statements.

CREATE SCENARIO <scenario_name> WITH
TABLES <table,, table;, ..., tabley>
ACTIVITIES <activity,, activity,, .., activity,>;

CREATE ACTIVITY <activity name> WITH

TYPE <activity type> (<param,,paramy,..,param,|;param;,param;,.., param,>])
SELECTIVITY <selectivity_number>

PROBABILITY <probability number> *

SEMANTICS “[<SQL_statement>]";

CREATE <table_ type> TABLE <table_name> [(<column;, column;, .., column,>)]
[WITH SIZE <intnum>);

ACTIVITY <activity name> WITH
INPUT <input,, input,, .., inputy>
OUTPUT <output,, output,, .., output,>;

Figure 4.16 The syntax of DEWL for the four common statements

Figure 4.17 shows the logical representation of an example ETL scenario. The scenario
contains two Sources R and S and a data warehouse DW. The activities of the workflow are

numbered with their execution priority and tagged with the description of their functionality.
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Figure 4.17 An Example ETL Scenario

CREATE SCENARIO SCENARIO1 WITH
TABLES R,S,DW
ACTIVITIES 1,2;

CREATE SOURCE TABLE R(ID,NAME,AGE, SAL,DEPT) WITH
SIZE 100000;

CREATE SOURCE TABLE S(ID,AGE,DEPT) WITH

SIZE 100000;

CREATE TARGET TABLE DW (1D, NAME, AGE,DEPT);

CREATE ACTIVITY 1 WITH
TYPE FILTER(SAL,<,500)
SELECTIVITY 0.2
PROBABILITY 0.001
SEMANTICS "SELECT SAL
FROM R
WHERE SAL<500";

CREATE ACTIVITY 2 WITH
TYPE JOIN(ID;ID)
SELECTIVITY 0.00005
PROBABILITY 0.004 .
SEMANTICS "SELECT SAL
FROM R, S
WHERE ID=ID";

ACTIVITY 1 WITH
INPUT R *
OUTPUT 2; '

ACTIVITY 2 WITH
INPUT 1,8
OUTPUT DW;

Figure 4.18 An Example ETL Scenario expressed in DEWL

Then, in Figure 4.18 we present the entities of the same ETL scenario expressed in language
DEWL. In this Figure, by sel;,, i=1, 2 we mark the selectivities of activities and by p, i=1, 2
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their probabilities of failure. These probabilities are necessary for the calculation of the

resumption cost.

4.4.3. Parser

We mentioned in earlier sections that the ETL engine gets as input loaded ETL scenarios.
These scenarios are expressed in DEWL and stored at simple text files. In this work, we
decided to build a parser for our workflow definition language DEWL, because a parser can
be quite useful in programming tasks, such as reading source text files, extracting data from
formatted files, and verifying the correctness of data formats. For this reason, we
implemented a parser for the workflow definition language DEWL using the program
ProGrammar Parser Development Toolkit v1.20a by NorKen Technologies, Inc., a trial
version of which is available through the Internet ((PPDT06]). ProGrammar is a software tool
for Building, Testing and Debugging Parsers. ProGrammar is a visual development

environment that simplifies the process of building parsers. ProGrammar consists of the

following components:
Table 4.3 ProGrammar Components
Interactive Development Visual environment for building, testing and
Environment debugging parsers.
Grammar Definition High-level notation used to express data
Language syntax.
Runtime component that parses input data.
The parse engine is available as a Windows
Parse Engine e .
g DLL, static library, and as an ActiveX
control.
Application ProGrammar Programming interface for calling the parse
Interface (APJ) engine at runtime.

One of the reasons it was selected for the development of a parser for DEWL, is the ease with
which ProGrammar can be integrated to Microsoft Visual Studio NET 2003. The parse
engine can be called from any development environment that supports ActiveX controls,
including Visual Basic NET. The only thing one has to do from the Visual Basic project is to
add a reference to the ProGrammar library PgmrX120Lib.dll located in the directory
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“<INSTALLDIR>\lib\PgmrX120Lib.dlI”. This procedure is essential for calling the parse

engine from your application, in order to parse data and process the results.

The parser that we created using Programmar takes as input a file, which contains the
description of an ETL scenario expressed in DEWL and breaks data into smaller elements,
according to a set of rules. The set of rules that describe the structure, or syntax, of a
particular type of data is called a grammar. Each rule in the grammar, known as a production
rule, describes the composition of a named symbol. This parser uses the “::=" notation for
production rules, which may be interpreted as “is composed of”. Once the syntax of a data
source has been described by grammar rules, the parser can use the grammar to parse the data
source; that is, to break data elements such as statements for the creation of a new scenario
into smaller elements, such as statements for the creation of activities or tables. The parser
constructs the representation of the workflow in memory, based on the classes presented in
section 3.1.1. The parser returns the message “Parser successful” if it is syntactically correct.
Otherwise, the execution of the project stops. We should also point out that the DEWL file

can be written in lowercase or uppercase letters or a combination of those.

The output of the parser is a parse tree. The parse tree expresses the hierarchical structure of
the input data. The resulting parse tree is a mapping of grammar symbols to data elements.
Each node in the tree has a label, which is the name of a grammar symbol; and a value, which
is an element from the input data. For example, Figure 4.19 presents the parse tree that is

generated when the following statement is parsed:

CREATE ACTIVITY 1 WITH

TYPE FILTER(SAL,<,500)

SELECTIVITY 0.2

PROBABILITY 0.001

SEMANTICS "SELECT SAL FROM R WHERE SAL<500";
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4.4.4. Parameters of the Algorithm GPO

We mentioned in section 4.2.2 that in order for the algorithm GPO to work for black box

activities, the designer of the workflow needs to specify a set of parameters.

1. FILTERS:
We assume that filters contain simple selection conditions of the form: <Attribute>

<Relational operator> <Value>, e.g., age>20. More composite filters can be created by
creating more than one activities that filter tuples. For example, a selection condition of the
form age >20 and salary<2000 can be expressed by creating two filters: one having
AGE>20 as its selection condition and another with the condition salary<2000. To construct
a filter, the designer supplies the parameters of the selection condition. The first parameter is
considered as the interesting order for the filter. Thus, in our setting, filters have only one
interesting order. For example, for a filter with condition age >20, the designer supplies the

parameter list age,>,20 and only the attribute age is the interesting order.

2. JOINS:
In case the activity is a join of tables 4 and B, one has to supply fwo lists of parameters, i.e.,
interesting orders, one (id; emp_id). for each input of the activity. The two lists of attributes
are delimited by a semicolon, e.g., Both parameters correspond to the attributes that
participate in the join of the tables. In our example, the join condition for the join of the tables
Aand Bis A.id = B. emp_id. The designer supplies the list (id; emp_id).

3. AGGREGATIONS:
The designer supplies the grouping attributes in a comma delimited list of parameters. For
example, for an activity yaepagc Of type aggregation the designer provides the list of interesting

orders: (dept, age). All the parameters in the list are considered interesting orders.

4. FUNCTIONS:
For functions, one has to provide one list of attributes that symbolize interesting orders, e.g.,

(id, age).

Tables 4.4 to 4.7 summarize the aforementioned considerations for the interesting orders of

each activity class.

b
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Table 4.4 Interesting Orders for Filters

Type of Activity Parameters
FILTER parameter; parameter; parameters
<Attribute> | <Relational operator> | <Value>

- Table 4.5 Interesting Orders for Joins

Type of Activity Parameters
JOIN parameter; parameter;
<Attribute;> | <Attribute,>

Table 4.6 Interesting Orders for Aggregations

Type of Activity Parameters
AGGREGAT parameter; parameter; ... parameter, | ;
G GATION <Attribute,> <Attribute;> ... <Attribute,> | :

Table 4.7 Interesting Orders for Functions

Type of Activity Parameters
parameter, parameter; ... parameter,
FUNCTION <Attribute,> <Attribute;> ... <Attribute,>
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CHAPTER 5. EXPERIMENTS

5.1 Categories of Workflows

5.2 Experiments for Regular Operation with Recovery from Failures
5.3 Linear Workflows

5.4 Wishbones

5.5 Primary Flows

5.6 Trees

5.7 Forks

5.8 Butterflies

5.9 Observations Deduced from Experiments

In this Chapter, we experimentally assess the proposed approach using different classes of
workflows. We present a number of experiments that we have conducted to support the
conclusions of our theoretical work and to demonstrate the quality and the efficiency of the
proposed method. We tested the exhaustive algoﬁthm on several classes of workflows by
making variations over different measures, such as:

o the size of the workflow (i.e., the number of nodes contained in the graph),

¢ the size of data originating from the sources,

o the selectivities of the activities of the workflow

o the values of probabilities of failure, etc.
For each set of experiments, we recorded certain measures, such as:

e Completion time: Time needed by the exhaustive algorithm to discover the optimal
physical-level scenario.
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o Number of generated signatures: The number of generated signatures corresponds to
the number of the physical-level scenarios created by exploring all the alternative
combinations of physical-level activities, along with the possible addition of one or
more sorters to the original logical-level scenario.

e Computational Cost: Cost for processing of source data, assuming that all activities
complete their regular operation successfully (i.e., the system works without failures).

e Resumption Cost: Cost to restart processing of data due to failures in the operation of
the activities of the workflow.

e Total Cost: The sum of the operational cost of the scenario and the resumption cost.

e Number of sorters: The number of sorters contained in a signature (i.e., a physical
representation of the scenario).

e Cost of Sorters: The additional cost for the system caused by the introduction of sorter
activities to the scenario. This cost is computed by adding the cost of all sorters
contained in a workflow.

e Percentage of Sorter Cost. The percentage of the cost of sorters with respect to the
total cost of the workflow. This percentage for a state / is computed as follows:

Cost of Sorters(i)

Total Cost(i)
All the experiments were conducted on an Intel(R) Pentium(R) M machine running at 1,86

GHz with 1 GB RAM.

Percentage of Sorter Cost(i) =

5.1. Categories of Workflows

In this work, we have set up a series of experiments for various types of workflows. We
classify workflows according to their node structure. To this point, we introduce a broad
category of workflows, called Butterflies. A butterfly is an ETL workflow that consists of
three distinct components: (a) the left wing, (b) the body and (c) the right wing of the
butterfly. The left and right wings are two non-overlapping groups of nodes which are
attached to the body of the butterfly. The three parts of the butterfly are presented in more

detail as follows:

wasaan
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(a) The left wing of the butterfly is consisted of one or more Sources, activities and
auxiliary data stores used to store intermediate results. This part of the butterfly
performs the ETL processing part of the workflow and forwards the processed data to
the body of the butterfly.

(b) The body of the butterfly is a fact table that is populated with the data produced by the
left wing.

(c) The right wing gets the data stored at the body and utilizes this data to support
reporting and analysis activity. The right wing consists of materialized views, reports,

fact table combinations, etc.

Figure 5.1 presents a butterfly configuration. The left wing of the butterfly contains £ nodes
denoted as ny, ny, ..., ng, the body is the fact table ¥, whereas the right wing contains m nodes,

labelled with ny, ny, ..., np. The wings are shown in this Figure using dashed lines.

N o Left wing Right wing 4
N . /
S Body . s
n e ~

3
N

Ny

‘———---——-———
[ X N J

Figure 5.1 Butterfly Components

We continue the examination of butterfly configurations using another example. Figure 5.2
presents a small ETL workflow with 10 nodes. R and S are Source tables providing 100,000
tuples each to the activities I, 2, 3, 4 and 5 of the workflow. These activities apply
transformations to the source data. Table V is a fact table and tables Z and ¥ are Target tables.
This ETL scenario is a butterfly with respect to the fact table V. The left wing of the butterfly
is formed as {R, S, /, 2, 3} and the right wing is {4, 5, Z, W}.
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Figure 5.2 Butterfly Configuration

To this point, we have to mention that the right wing of a butterfly is optional. This is the case
when a butterfly does not contain materialized views, etc. We continue our consideration on
butterflies and further discriminate butterfly configurations based on the components of their

wings. The wing components can be either Lines or Combinations.

1. Lines: Lines are sequences of activities and recordsets such that:
(a) no recordsets are directly linked
(b) all activities have exactly one input and one output, i.e., unary activities. In these
workflows, nodes form a single data stream.
Workflows formed by exactly one line are called Linear workflows. Linear workflows are the

simplest form of butterfly configurations.

2. Combinations: A combination is a jc;in variant (a binary activity) with lines/ other
combinations as its inputs/outputs. Practically, combinations form parallel data
streams. To this point, we differentiate combinations in two categories: lefi-wing
combinations and right-wing combinations as follows:

o Left-wing combinations are constructed by lines and combinations forming the left
wing of the butterfly. The left wing contains at least one combination. The inputs
of the combination can be:

o Two lines. In other words, two parallel data streams are unified into a
single stream using a combination. These workflows are called Wishbones.
Wishbones are shaped like the letter Y.

.
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o A line and a recordset. The primary flow of data is the line part of the
workflow. The line and a Look-up table are joined into a single stream by
the combination.

o Two or more combinations. The use of combinations leads to many parallel
data streams. These workflows are called Trees.

e Right-wing combinations are constructed by lines and combinations on the right
wing of the butterfly. These lines and combinations form either a flat or a deep
hierarchy. These hierarchies are explained next:

o Flat Hierarchies: These configurations have small depth (exactly 2) and
large fan-out. By depth, we mean the number of nodes (activities or
recordsets) in the longest path from the body of the butterfly to the target
table(s). We assume zero depth for the body and measure depth
incrementally as we follow the stream towards the targets. By fan-out we
refer to the number of outputs of the body of the butterfly, i.c., to the
number of streams generated by the body. An example of such a workflow
is a Fork, where a single data stream is split in two or more parallel data
streams. The split is performed with the assistance of a fact table (the body)
that forwards its data in two or more activities.

o Right - Deep Hierarchies: These configurations have depth more than 4
and medium fan-out. Figure 5.3 (f) shows a right - deep hierarchy with
depth 6.

Figure 5.3 shows examples of the aforementioned special butterfly configurations. Observe
that the sources and the warehouse are depicted with simple lines in their borders, whereas the
bodies of the butterflies are depicted in thicker border. In the cases of trees and primary flows,
the target warehouse acts as the body of the butterfly (i.e., there is no right wing). We can
construct more complex butterfly structures by combining some of the above configurations.
In the following sections, we will present the experiments we conducted using special

categories of butterfly configurations, i.e., Linear Workflows, Forks, Wishbones, Trees, etc.

§.2. Experiments for Regular Operation with Recovery from Failures
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In this set of experiments we assume that failures happen during the processing of data, thus
activities have the extra cost to resume their work in case of failures. This means that this set
of experiments takes into consideration not only the computational cost for each activity, but
also the resumption cost. Therefore, we measure the Total Cost of each generated scenario as
the sum of computational and resumption cost. Thercfore, we employ the cost model for
regular operation with recovery from failures presented in section 4.3.2.

B0 8

(a) Linear Workflow (b) Wishbone

(c) Primary Flow (d) Tree

=

85 0 e apsosel 27

\1> \1> .1> &

(e) Flat Hierarchy - Fork (f) Right - Deep Hierarchy

Figure 5.3 Special Butterfly Configurations

5.3. Linear Workflows

In this set of experiments, we test the performance of Linecar Workflows. Figure 5.4 shows a
workflow of this category. In this Figure, below each activity we mark its selectivity sel,
(i=1,2, ... n), as well as the probability p, of failure for the activity. This probability is
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necessary for the computation of the resumption cost of each activity, as discussed in section
4.3.2. The schema of the source data is R(4, B, C), as shown in Figure 5.4.

The goal of the experiment is to discover the optimal physical representation of the scenario
taking into consideration the computational cost and the cost to restart the workflow operation
after failures. We measure the total cost of each generated workflow for source data of size
100,000 tuples extracted from Source R. We also measure the execution time and the number

of generated signatures for the scenario. Finally, the physical-level scenario with minimal

total cost is returned.

R(AB.C)
<> 1 2 - 3 o 4 § <
01,20.5 sel=10 \_,) '
100000 Pi*0 004 Pr0.008 oy by . ey
Figure 5.4 Linear Workflow
Workflow characteristics:

e Number of nodes: 9

e Time to discover optimal scenario: 6 sec

e Number of generated signatures: 81

Table 5.1 presents the 10 signatures with the lowest total cost, in ascending order of total cost.
The signatures are tagged with an identifier S_id which refers to their generation number. The
computational and the resumption cost for each physical representation are also depicted.
Observe the physical representation of the scenario with the minimal cost in the first line of
Table S.1. The total cost is minimized by the addition of a sorter that orders the data of table V'

according to attributes A4, B. }




Table 5.1 Top-10 Signatures for Linear Workflow

S_id Top-10 Signatures Com;g:::tt ional Res‘(';::stmn Total Cost
6 [RR.1.2.V.VI(AB).3@SO.T.-4.5@S0.Z 1.040.482 880 1.041.362
2 .1.2.V.3@S0.T.4.5@S0.Z 1.040.482 3.612 1.044.094

28 1.2.V.VI(A,B).3@S0.T.4.4 5(A).5@SO.Z| 1.346.236 860 1.347.096
10 R.1.2.V.3@SO.T.4.4 5(A).5@S0.Z 1.346.236 3.592 1.349.828
20 |R.1.2.V.VI(A,B).3@SO.T.TY(A).4.5@SO.Z 1.651.991 880 1.652.871
8 [R.1.2.V.3@SO.T.T!(A)4.5@S0.Z 1.651.991 3.612 1.655.602
4 [R.1.2.V.VI(A).3@SO.T4.5@S0.Z 1.820.964 3.612 1.824.576
5 |R.1.2.V.V{(B).3@SO.T.4.5@S0.Z 1.820.964 3.612 1.824.576
7 .1.2.V.V{(B,A).3@S0.T.4.5@S0.Z 1.820.964 3.612 1.824.576
24 [R.1.1 _2(B).2.V.V/(A,B).3@S0.T.4.5@S0O.Z 1.870.964 780 1.871.744
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In the sequel, we use the scenario of Figure 5.4 as a reference example and vary the size of the

input data, the volume of data pushed towards the warehouse and the graph size to assess their

impact over the completion time of the algorithm and the sensitivity of the top-10 solutions.

For the latter metric, we examine the effects of these factors to the top-10 solutions and to the

average of the top-10 solutions. Before proceeding, though, on these issues, we start with an

assessment of the role of the introduction of sorters to the scenario.

3.3.1. Overhead of Sorters

Table 5.2 presents the number of sorters contained in each of the aforementioned top-10 5

signatures, the sorters’ cost, and the percentage of this cost over the total cost of the scenario.

Table 5.2 Sorter Cost for Linear Workflow

S id Number of Costof | Percentage of

- Sorters Sorters Sorter Cost
6 1 780.482 75%

2 0 0 0%
28 2 1.086.236 81%

10 1 305.754 23%
20 2 1.391.991 84%

8 ] 611.508 37%

4 1 780.482 43%

5 1 780.482 43%

7 1 780.482 43%

24 2 1.610.964 86%

Observe that the overheads incurred by the introduction of sorters are quite significant in

several cases (in fact, the best and the third best solution have a quite high percentage of
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sorter cost). In other words, the introduction of sorters minimizes the cost of the rest of the
activities so much, that the combination of activity and sorter costs ends up lower than (or
quite close to) the cost of the best possible configuration without any sorters (S_id = 2). In the
cases where the resumption cost has an upper threshold (i.e., the problem is stated as “find the
optimal configuration while guaranteeing that the resumption cost does not exceed a certain

threshold”), then the solutions with sorters are clearly the winners (see the resumption costs in

Table 5.1).

3.3.2. Effect of Input Size

The size of source R in the reference scenario of Figure 5.4 is 100,000 rows. We have also
experimented by varying the size of source data as 50,000, 150,000 and 200,000 rows. All
experiments return the same top-10 solutions. We have also observed that the total cost of the
optimal solution in all cases is practically linearly dependent upon the input size. This
observation holds also for the average cost of the top-10 signatures and the 10™ solution.

5.3.3. Effect of the Overall Selectivity of the Workflow

In the experiments of this paragraph, we modify the selectivity values of the workflow in such
a way, that small, medium or large volumes of data reach the output. In particular, we
appropriately tune the selectivities, so that the ratio of the output data over the input data is:
0.1, 0.3, 0.5 or 0.7. In other words, we try to assess the impact of the overall selectivity of the

Ay

workflow to the overall cost.

Table 5.3 Effect of Data Volume propagated towards the Warehouse

[EP Y.

0.1[R| 0.3R| 0.5[R| 0.7IR|
# of different solutions in
top-10 list 0 0 0 0
Change at Optimal Solution No No No No
Total cost (Optimal) 1.041.362 1.718.192 1.538.360 1.981.880
Total cost (Avg(Top-10)) | 1.543.632 2.624.910 2.389.660 3.100.692
Total cost(10™) 1.871.744 3.101.109 2.734.915 3.552.968
) Optimal 0 676.830 496.998 940.518
Difference
in total cost Avg(Tc:hp-IO) 0 1.081.277 846.028 1.557.060
10 0 1.229.365 863.171 1.681.224
Difference Optimal 0 65% 48% 90%
in total cost| Avg(Top-10) 0 70% 55% 101%
(%) 10" 0 66% 46% 90%
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In the reference example of Figure 5.4, we notice that the ratio of output data over input data
is approximately 0.1. We compare the top-10 signatures for all the variants of the reference
scenario and measure the following metrics:
- The number of different signatures in the top-10 list.
- The existence of a change at the optimal (top-1) solution.
~ The absolute costs for (a) the optimal solution, (b) the average cost of the top-10
signatures and (c) the 10" solution.
- The difference in total cost of the aforementioned 3 solutions compared to the
corresponding values of the reference example.
- The above difference as a percentage.
Table 5.3 depicts the measurements for the above metrics when the ratio of output data over
inputdatais 0./, 0.3, 0.5 and 0.7.

Notice that the top-10 solutions remain the same, irrespectively of the data volumes that reach
the data warehouse. This means that linear workflows are quite reliable to the case of wrong

selectivity estimation.

In addition, observe that the relationship of the overall workflow selectivity and total cost is
not linear: in fact, the total cost drops for all the top-10 solutions for the case of 0.5|R|. This is
shown more clearly in the diagram of Figure 5.5, where the total cost values for the (a)
optimal solution, (b) the average of the top-10 signatures and (c) the 10th solution are
depicted. This relationship is not linear due to the fact that the total cost depends on the
volume of data that have to be ordered by the sorter of table V. In the case of 0.5|R|, the
selectivity of the first filter is higher than the one of the case of 0.3|R|. This means that (a) the
cost of the left wing of the line is lower for the case of 0.5|R| and (b) that the sorter applied
over the butterfly’s body V is also lower. Therefore, the lessons taught out of this experiment
lie in the role of the left wing as a filter: the more selective the left wing is, the higher the

possibility of exploiting sorters efficiently to speed up the operation of the right wing.
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Figure 5.5 Relationship of Data Volume and Total Cost

3.3.4. Effect of Graph Size

In the experiments of this paragraph, we vary the size of the workflow (the number of nodes

contained in the graph), to (a) small, (b) medium, and (c) large linear workflows. Then, we

measure the time to discover the optimal scenario. Figure 5.6 depicts the results.

Categories of linear workflows - Time results: '
® Small workflow (Graph Size = 4 nodes) - Time: 2 sec |
e Medium workflow (Graph Size = 9 nodes) - Time: 6 sec

e Large workflow (Graph Size = 17 nodes) - Time: 650 sec

SENREER
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Figure 5.6 Completion Time of Exhaustive Algorithm

As expected, the exhaustive algorithm results in exponential completion time with respect to
the size of the input graph.

5.4. Wishbones
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In this set of experiments, we examine wishbone-shaped workflows. Figure 5.7 depicts our
reference, wishbone-shaped, scenario. The schemata of the source data are R(4, B, C) and
S(A, B, C). The size of both relations in the reference scenario is 100,000 tuples. The goal of
these experiments is to assess the total cost of each generated scenario, the completion time of

the exhaustive algorithm and the number of generated signatures.

Workflow characteristics:
¢ Number of nodes: 12
¢ Time to discover optimal scenario: 17 sec

e Number of generated signatures: 435

R(A B.C)

10000
u« =0.1 ;..,-o ° ) <
P+=0.005 6400 | -
Ohoso
§(AB.C) 0001 o
10000 Pe=0.004
T Ow-so I

Figurc 5.7 Wishbone

Table 5.4 shows the 10 signatures having the lowést total cost produced by the Exhaustive
algorithm. Observe the physical representation of the scenario with the minimal cost in the
first line of Table 5.4. This representation employs the Hash-Join algorithm for the join
activity. Notice that the optimal representation does not contain any sorter. In fact, the cost of
the best solution is 73% of the cost of the second best solution (that involves sorters). The rest
of the top-10 solutions remain close; still, observe the difference among the best and the 10®
solution (which is almost twice expensive). The resumption cost remains quite stable in most
cases.
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Table 5.4 Top-10 Signatures for Wishbone

S_id Top-10 Signatures Com‘g:::: ional Res:::zs;:tmn Total Cost
4  K(R.1.2.V)//(S.3.4.7)).5@H).X.6.DW 282.100 900 283.000
19  K(R.1.2.V)//(S.3.4.7).5@H).X.X!(A).6.DW 385.648 889 386.537
13 K(R:1.2.V.V!(A))//(S.3.4.T)).5@H).X.6.DW 400.321 900 401.221
16 K(R.1.2.V)//(S.3.4.T.T!(A))).5@H].X.6.DW 400.321 900 401.221
22 ((R.1.1_2(B).2.V)//(S.34.1)).5@H].X.6.DW 423.977 797 424774

25  K(R.1.2.V)//(S.3.3_4(C)4.T)).5@H).X.6.DW 423.977 797 424,774
64 K(R.1.2.V.V{(A))//(S.3.4.T.T!(A))).5@MJ.X.6.DW 480.923 691 481.614
3 ((R.1.2.V)/(S.3.4.T)).5@SMJ.X.6.DW 480.923 1.992 482914
68 [(R.1.2.V.V{(A))//(S.3.4.7)).5@H).X.X)(A).6.DW 503.869 889 504.759
77 KR.1.2.V)//(S.3.4.T.TI(A))).S@HI.X.X!(A).6.DW 503.869 889 504.759

5.4.1. Overhead of Sorters
Table 5.5 presents the number of sorters contained in each of the aforementioned top-10

signatures, the sorters’ cost, and the percentage of this cost over the total cost of the scenario.
Observe that the cost of the sorters ranges among the one third and half of the total cost (in

fact, the six best solutions have approximately a 30% percentage of sorter cost).

Table 5.5 Sorter Cost for Wishbone

S id Number of Cost of |Percentage of

- Sorters Sorters Sorter Cost
4 0 .0 0%

19 1 105.168 27%

13 1 118.221 29%

16 1 118.221 29%

22 1 ‘| 142.877 34%

25 1 142.877 34%

64 2 236.443 49%

3 0 0 0%

68 2 223.389 44%

77 2 223.389 44%

5.4.2. Effect of Input Size

In the reference scenario of Figure 5.7, each of the sources R and S contains 100,000 rows.
We have also experimented by varying the size of data extracted from each source to 150,000
and 200,000 rows. These experiments return the same 8 solutions out of the top-10 list
produced by the reference scenario. The two solutions found for the cases of 150,000 and

200,000 but not for 100,000 are the same for the former two experiments. We have also
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observed that the total cost of the optimal solution in all cases is practically linearly dependent
upon the input size. This observation holds also for the average cost of the top-10 signatures

and the 10" solution.

3.4.3. Effect of the Overall Selectivity of the Workflow

In the experiments of this paragraph, we modify the selectivity of the wishbone’s join in such
a way, that small, medium or large volumes of data reach the output. The selectivity values
were tuned to the following values: |OuterRelation|!, 5 * |OuterRelation|', 10 *
|OuterRelation|”*. We have chosen these values to simulate the following possibilities: (a) for
each tuple of the inner relation R, exactly one tuple of the outer relation is matched (a.k.a. 1:1
join in the database literature), (b) for each tuple of the inner relation R, there are several
tuples (in our experiments: 5 or 10) of the outer relation matched on average (a.k.a. 1:N join
in the database literature). Since the latter is a rather high value for typical join situations, the
last experiment simulates the possibility of a N:M join, where the mappings of tuples of the

two relations are many to many.

Table 5.6 Effect of Data Volume propagated towards the Warehouse

1//OUTER 5//OUTER 10//OUTER
RELATION| RELATION] RELATION]
# of different solutions in
top-10 list 0 3 3
Change at Optimal Solution No ' No No
Total cost (Optimal) 283.000 315.610 356.374
Total cost (Avg(Top-10)) 429.557 481.801 520.934
Total cost(10™) 504.759 575.606 616.370
] Optimal 0 32.611 73.374
i‘; 'g;’f:g:t Avg(Top-10) 0 52.244 91.377
10" 0 70.848 111.611
Difference Optimal 0 12% 26%
in total cost | Avg(Top-10) 0 12% 21%
(%) 1ot 0 14% 2%

Observe that the optimal solution remains the same, irrespectively of the data volumes that are
propagated to the warehouse. As the volume of data is increased, only 3 out of the top-10
solutions are different. Furthermore, observe that the relationship of join selectivity and total
cost is linear: the total cost rises for all the top-10 solutions for larger data volumes. This is

shown more clearly in the diagram of Figure 5.8, where the total cost values for the (a)
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optimal solution, (b) the average of the top-10 signatures and (c) the 10™ solution are
depicted.

—o—Tep1 Total Coat
- —— Av(Tap-10)

1/ JOUTER 5/ |OUTER 10/ [OUTER
RELATION RELATION RELATON

Figure 5.8 Relationship of Join Selectivity and Total Cost

5.4.4. Effect of Graph Size
In the experiments of this paragraph, we vary the size of the workflow (the number of nodes
contained in the graph), to (a) small, (b) medium, and (c) large wishbones. Then, we measure

the time to discover the optimal scenario. The specific values for the three variants of the
workflow are as follows:

¢ Small workflow (Graph Size = 8 nodes) - Time: 6 sec
e Medium workflow (Graph Size = 12 nodes) - Time: 17 sec

e Large workflow (Graph Size = 15 nodes) - Time: 1487 sec
Figure 5.9 depicts the results.
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Figure 5.9 Completion Time of Exhaustive Algorithm
As expected, the exhaustive algorithm results in exponential completion time with respect to

the size of the input graph.

5.5. Primary Flows

In this set of experiments, we examine workflows of the Primary Flow category. A primary
flow is a special kind of tree, where the data of one source relation are pushed towards the
warehouse, possibly through binary transformations that require combining the propagated
data with tuples of lookup relations. The latter relations do not constitute data sources, but are
simply used for the purpose of data transformation. Thus, a primary flow is formed,
comprising a line of transformations pushing data from one source to the warehouse. Figure
5.10 depicts our reference primary flow comprising a source relation S(4, B) and two lookup
relations O(4, B) and R(A, B). The size of relation S in the reference scenario is 100,000
tuples and the sizes of R and Q is 10,000 tuples. As with previous categories, the goal of these
experiments is to assess the total cost of each generated scenario, the completion time of the

exhaustive algorithm and the number of generated signatures.
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Figure 5.10 Primary Flow
Workflow characteristics:
® Number of nodes: 9
* Time to discover optimal scenario: 13 sec

®  Number of generated signatures: 341

Table 5.7 Top-10 Signatures for Primary Flow

S_id Top-10 Signatures Com'g;:: lonal Rcs::l::s]:tlon Total Cost
10 K(((S.1.X)/(Q)).2@HJ.Z)//(R)).3@H).DW 277.000 650 277.650
55_K(((S.1.X)//(Q)).2@H).Z.Z!(B))/(R)).3@HJ.DW 395.221 650 395.871
28 N(((S.1.X)/(Q.QU(A)).2@HJ.2)//(R)).3@HI.DW 409.877 650 410.527
37 K(((S.1.X)(Q)).2@H1.Z)//(R.R!(B))).3@HJ.DW 409.877 650 410.527
140 K(((S.1.X)/AQ)).2@H).Z.Z\(B)V/(R.RI(B))).3@M).DW 490.099 517 490.615
T KUS. LXYAQN.2@HI.ZY/R)).3@SMI.DW 490.099 1.395 491.494
122 ((((S.1.X)VAQ.QUA))).2@H).Z.Z(B))/AR)).3I@H).DW 528.099 650 528.748
143 X(((S.1.X)//(Q).2@H).Z.ZY(B)Y/(R.RY(B))).3@HI.DW 528.099 650 528.748
101 K((S. 1. XVAQ.QUAN).2@HI.ZY/(R RYBY)).3@H).DW 542.754 650 543.404
52 K(((S.1. X)/(Q).2@H).Z.Z(B))//(R)).3@SM).DW 608.320 1.395 609.715

Table 5.7 shows the 10 signatures having the lowest total cost for our reference scenario.
Observe the physical representation of the scenario with the minimal cost in the first line of
Table 5.7. This representation employs the Hash-Join algorithm for all join activities. Notice
that the optimal representation does not contain any sorter. In fact, the cost of the best solution
is 70% of the cost of the second best solution (that involves sorters). The rest of the top-10
solutions remain close; still, observe the difference among the best and the 10™ solution
(which is more than twice expensive). The resumption cost remains quite stable in most cases.
Also observe the top-10 signatures and notice that sorters are placed on look-up tables Q and
R and the DSA table Z that contains a small volume of data. Therefore, candidate positions
for sorters in primary flows are the look-up tables Q and R which contain small data sizes, or,
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it is highly recommendable that these relations are already sorted before the execution of the
scenario. All other positions are not appropriate for sorters, due to the large number of join

activities, which produce large volumes of data to primary flows.

5.5.1. Overhead of Sorters
Table 5.8 presents the number of sorters contained in each of the top-10 signatures, the
sorters’ cost, and the percentage of this cost. Observe that the cost of the sorters ranges among

the one fifth and half of the total cost (in fact, the four best solutions have approximately a

30% percentage of sorter cost).

Table 5.8 Sorter Cost for Primary Flow

S id Number of Cost of | Percentage of
- Sorters Sorters Sorter Cost
10 0 0 0%

55 [ 118.221 30%
28 ] 132.877 32%
37 1 132.877 32%
140 2 251.099 51%
7 0 0 0%
122 2 251.099 47%
143 2 251.099 47%
101 2 265.754 49%
52 ] 118.221 19%

As in previous categories, the main lesson learned from this observation concerns the fact that
no more than a couple of sorters are affordable; still in several cases the existence of sorters
can significantly speed up the rest of the operations. Observe the case of configuration with
S_id = 37 that employs one sorter over the lookup relation R. In this case, the overall cost

would be very close to the optimal if the lookup relation was already sorted.

3.5.2. Effect of Input Size
The size of source R in the reference scenario of Figure 5.10 is 100,000 rows. We have also

experimented by varying the size of source data as 150,000 and 200,000 rows. The second
and third experiments return the same 9 solutions out of the top-10 list produced by the
reference scenario. We have also observed that the total cost of the optimal solution in all
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cases is practically linearly dependent upon the input size. This observation holds also for the

average cost of the top-10 signatures and the 10" solution,

3.5.3. Effect of the Overall Selectivity of the Workflow
In the experiments of this paragraph, we modify the selectivity of each join of the workflow in
such a way, that small, medium or large volumes of data reach the output. The selectivity
values were tuned to obtain the following outputs:
1. First case:
a. activity, produces an output of size 1/3*|OuterRelation|
b. activity; produces an output of size 1*|OuterRelation|
2. Second case:
a. activity, produces an output of size 1*|OuterRelation|
b. activity; produces an output of size 1*|OuterRelation|
3. Third case:
a. activity, produces an output of size 3*|OuterRelation|

b. activity; produces an output of size 3*|OuterRelation|

Table 5.9 depicts the effect of data volume propagated towards the warehouse.
Table 5.9 Effect of Data Volume propagated towards the Warehouse

Firstcase  Second case Third case

# of different solutions in .
top-10 list 0 3 6

Change at Optimal Solution No No No
Total cost (Optimal) 277.650 340.870 521.500
Total cost (Avg(Top-10)) | 468.730 682.929 898.170

Total cost(1 0"') 609.715 841.175 1.153.234

. Optimal 0 63.221 243.851
i': 'tir;'f::; Avg(Tt:hp- 10) 0 214.199 429.440
10 0 231.460 543.519
Difference Optimal 0 22,77% 87,83%
in total cost| Avg(Top-10) 0 45,70% 91,62%
(%) 1o® 0 37,96% 89,14%

Notice that the optimal solution remains the same, irrespectively of the data volumes that are
propagated to the warehouse. As the volume of data is increased, first 3 and then 6 out of the

top-10 solutions are different. Also, all costs increase as the volume of processed data
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increases. Still, although the cost of the average solution is linearly dependent upon the size of
involved data, the best solution does not follow this pattern.

Total cost

1.200.000

1.000.000

800.000

800.000

400.000

200,000 S

Firat case Second case Third case

Figure 5.11 Relationship of Data Volume and Total Cost

3.5.4. Effect of Graph Size
In the experiments of this paragraph, we vary the size of the workflow to (a) small, (b)
medium, and (c) large primary flows. Then, we measure the time to discover the optimal
scenario. The specific values for the three variants of the workflow are as follows:

e Small workflow (Graph Size = 6 nodes) - Time: 8 sec

e Medium workflow (Graph Size = 9 nodes) - Time: 13 sec

o Large workflow (Graph Size = 13 nodes) - Time: 558 sec

s e

s 48888

Q
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Figure 5.12 Completion Time of Exhaustive Algorithm
Figure 5.12 depicts the results. Clearly, the exhaustive algorithm results in exponential

completion time with respect to the size of the input graph.
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5.6. Trees

In this set of experiments, we examine tree-shaped workflows. Trees are workflows with
multiple binary activities on their left wing and no right wing at all. Figure 5.13 depicts our
reference tree comprising two source relations R(4, B) and S(4, B) as well as a lookup relation
Q(A4, B). Several DSA tables are also involved. The size of relations R, S and Q in the
reference scenario is 100,000 tuples. As with previous categories, the goal of these
experiments is to assess the total cost of each generated scenario, the completion time of the

exhaustive algorithm and the number of generated signatures.
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(A.8) ps=0.001

'——V*@ . ' /. / s

£2=0.001
OTpcw700,
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100000

Figure 5.13 Tree

Workflow characteristics:
¢ Number of nodes: 13
¢ Time to discover optimal scenario: 66 sec

e Number of generated signatures: 1459

Table 5.10 shows the 10 signatures having the lowest total cost. Observe the physical
representation of the scenario with the minimal cost in the first line of Table 5.10. This
representation employs the Hash-Join algorithm for all join activities. Notice that the optimal
representation does not contain any sorter. In fact, the cost of the best solution is 83% of the
cost of the second best solution (that involves a sorter). Observe the difference among the best
and the 10" solution (which is more than twice expensive). The resumption cost remains quite
stable in most cases. Also observe the top-10 signatures and notice that sorters are placed on

the table P that contains a small volume of data. In fact, sorters cannot highly contribute into
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the minimization of the cost of trees, because they contain a large number of join activities.
These join activities are responsible for large volumes of data flowing through the nodes of

the tree. Thus, a sorter has to order large volumes of data, which increases the sorter’s cost.

Table 5.10 Top-10 Signatures for Tree

S_id Top-10 Signatures *Comlgl::tt lonall R&sg::::tlon Total Cost
10 ((((R.1.X)//(8.2.Y))-3@HJ.Z)//(Q.4.P)).5@H).DW 648.000 1.944 649.944
73 (((R.1.X)/A(S.2.Y)).3@HI.Z)//(Q.4.P.PY(B))).5@HI.DW 780.877 1.944 782.821
46 ((((R.L.X.X!(A))//(S.2.Y)).3@HI.Z)//(Q4.P)).5@HI.DW 1.094.180 1.944 1.096.124
64 ((((R.1.X)//(S.2.Y)).3@H).Z.Z\(B))/(Q.4.P)).5@H).DW 1.192.886 1.944 1.194.830
244 ((((R.1.X.XYNA)VAS.2.Y)).3@HI.Z)/(Q.4.P.PY(B))).5@HI.DW 1.227.057 1.944 1.229.001
268 K(((R.1.X)//(S.2.Y)).3@H).Z.Z\(B))//(Q.4.P.P(B))).5@SMJ.DW| 1.233.763 1.438 1.235.201
271 (((R.1.X)//(S.2.Y)).3@HI.Z.ZY(B))/(Q.4.P.P!(B))).5@MJ.DW 1.233.763 1.438 1.235.201
7 K(((R.1.X)//(S.2.Y)).3@HJ.Z)//(Q.4.P)).5@SMJ.DW 1.233.763 5.166 1.238.928
55 K(((R.1.X)/N(S.2.Y.Y!(A))).3@H).Z)//(Q.4.P)).5@H).DW 1.259.508 1.944 1.261.452
274 K(((R.1.X)//(S.2.Y)).3@H).Z.Z\(B))//(Q.4.P.P!(B))).5@HJ.DW 1.325.763 1.944 1.327.707

3.6.1. Overhead of Sorters

Table 5.11 presents the number of sorters contained in each of the top-10 signatures, the
sorters’ cost, and the percentage of this cost. Observe that the cost of the sorters ranges among
the 30% and 60% of the total cost.

Table 5.11 Sorter Cost for Tree

S id Number of Cost of |Percentage of
- Sorters . Sorters Sorter Cost
10 0 0 0%

73 1 132.877 17%

46 1 446.180 41%

64 1 544 .886 46%
244 2 579.057 47%
268 2 677.763 55%
271 2 677.763 55%

7 0 0 0%

55 1 611.508 48%

274 2 677.763 51%

The sorter’s cost in this category is quite higher than in other categories. This is important

since it means that once the data were already sorted in the sources, the overall speed of the
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scenario could be significantly enhanced. Still, as already mentioned, the intermediate sorters
incur high costs due to the high volume of sorted data.

5.6.2. Effect of Input Size
In the reference scenario, each of the sources R, S and Q contains 100,000 rows. We have also

experimented by varying the size of data extracted from each source to 200,000 rows. The
second experiment returns the same 6 solutions out of the top-10 list of the reference scenario.
We have also observed that the total cost of the optimal solution in all cases is practically
linearly dependent upon the input size. This observation holds also for the average cost of the

top-10 signatures and the 10™ solution.

5.6.3. Effect of the Overall Selectivity of the Workflow

In the experiments of this paragraph, we modify the selectivities of the activities of the tree in
such a way, that small, medium or large volumes of data reach the output. In particular, we
appropriately tune the selectivities of all the activities of the workflow, so that the ratio of data
of the final, target relation over the input data is 0.1, 0.3, 0.5, 0.7. Table 5.12 shows the size of
the output after each activity of the workflow (activity numbers in the first line of the table
refer to the numbers of Figure 5.13).

Table 5.12 Size of the Output of each Activity of the Scenario in Fig. 5.13

1 2 3 4 5
Caseof 0.1 | 03[R| 0.4R| " 0AR| 0.1R| 0.1[R|_
Caseof 0.3 | O0.6/R| 0.8R| 0.8[R| 0.3R| 03[R|
Case of 0.5 | 0.7R| 0.83R| 0.8R| 0.5R| 0.5|R|
Caseof 0.7 | O9(R]| 0.9R| 09[R 09R| 0.7R|

Table 5.13 depicts the effect of data volume propagated towards the warehouse. Observe that
the optimal solution remains the same, irrespectively of the data volumes that are propagated
to the warehouse. A lesson learned here is the stability of the best solution, which, at the same
time, does not include any sorters. As the volume of data is increased, one third of the top-10
solutions are different. The costs in the different scenarios increase mainly depending upon
the join selectivities: as the amount of data produced by the joins increases, the overall cost
follows this increase. For example, the reason for the significant cost increase between 0.1|R|

and 0.3]R| is due to the drastic increase of the selectivity of the join activity 3, which rises
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from 0.4 to 0.8. The diagram of Figure 5.14 also shows that the trend among the best, 10" and
average top-10 solution is identical. Still, it is quite impressive to see how close the average
and the 10" solutions are: this means that there is a very narrow part of the search space with
the potential of a very cheap solution (practically involving the two best solutions), while the
rest of the top-10 solutions remain high and close to one another. This also signifies the

difficulty of obtaining good heuristics for trees.

Table 5.13 Effect of Data Volume propagated towards the Warehouse

0.1jR| 0.3[R] 0.5R} 0.7|R|
# of different solutions in
top-10 list 0 4 3 3
Change at Optimal Solution No No No No
Total cost (Optimal) 649.944 1.101.999 1.139.344 1.297.832
Total cost (Avg(Top-10)) | 1.125.121 2.331.085 2.435.489 2.760.842
Total cost(10™) 1.327.707 2.851.196 2.936.285 3.441.582
Dilfs Optimal 0 452.055 489.400 647.888
ifference
in total cost Avg(Tc:hp-IO) 0 1.205.965 1.310.368 1.635.721
10 0 1.523.490 1.608.578 2.113.875
Difference Optimal 0 70% 75% 100%
in total cost| Avg(Top-10) 0 107% 116% 145%
(%) 10" 0 115% 121% 159%
Tt Total Cost
—&— Av(Top-10)
4.000.000 1o o,
3500.000
3.000.000
2.500.000
2,000,000
1.500.000 :
1.000.000
$00.000

1R 0 0sR

Figure 5.14 Relationship of Data Volume and Total Cost
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5.6.4. Effect of Graph Size
In the experiments of this paragraph, we vary the size of the workflow to (a) small, (b)
medium, and (c) large primary flows. Then, we measure the time to discover the optimal
scenario. The specific values for the three variants of the workflow are as follows:

e Small workflow (Graph Size = 9 nodes) - Time: 13 sec

e Medium workflow (Graph Size = 13 nodes) - Time: 66 sec

e Large workflow (Graph Size = 16 nodes) - Time: 609 sec

Time (sec)

- 83888838

Figure 5.15 Completion Time of Exhaustive Algorithm
Figure 5.15 depicts the results. As expected, the exhaustive algorithm results in exponential
completion time with respect to the size of the input graph.

5.7. Forks

In this subsection, we discuss Fork configurations. Forks are configurations with a linear left
wing (implying a simple set of cleanings or transformations) and a broad, shallow right wing
(implying the population of a large set of materialized views directly from the fact table,
which is the body of the workflow). Figure 5.16 shows our reference fork scenario. The
schema of the source data is R(4, B, C, D). We measure the total cost of each generated
workflow for source data of size 100,000 tuples. We also measure the completion time and

the number of generated signatures for the scenario.

Workflow characteristics:
e Number of nodes: 10
¢ Time to discover optimal scenario: 2 sec

e Number of generated signatures: 21
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Table 5.14 presents the top-10 signatures and relevant costs. Observe the physical

representation of the scenario with the minimal total cost in the first line of table 5.13. The

optimal scenario contains a sorter that orders the data of table ¥ according to attributes 4, B.

Observe also that 9 solutions out of the top-10 list contain a sorter. Most of these signatures

contain a sorter on table V. In other words, the introduction of an appropriate sorter on table ¥’

minimizes the cost of the activities that follow V in the workflow significantly (observe that

the best solution is 75% of the second best, which is also employing a sorter). Furthermore,

the configurations with sorters benefit compared to the best possible configuration without

any sorters (S_id = 2) in terms of resumption cost.

Table 5.14 Top-10 Signatures for

Fork

Eomputationallkesumption

S id Top-10 Signatures Cost Cost Total Cost
6 R.1.2.V.V{(A,B).((((3@S0.2)/(4@SO.W)))//(5@S0.Y)) 1.676.187 3.282 1.679.469
4  R.1.2.V.VI(A).((((3@S0.Z)//(4@SO.W))Y/(5@S0.Y)) 2.371.781 5.717 2.377.498
5 .1.2.V.VY(B).((((3@S0.2)//(4@SO.W)))//(5@S0.Y)) 2.371.781 5.717 2.377.498
7 R.1.2.V.VI(B,A).((3@SO.Z)//(4@SO. W)Y (5@S0.Y)) 2.371.781 5.717 2.377.498
2 RI2V(((3@SO.Z)//(4@SO.W)Y/(5@S0.Y)) 2.371.781 8.151 2.379.932
16  R.1.1_2(A).2.V.V{A,B).(((3@S0.Z)//(A@SO.W))/(5@S0.Y)y 2.501.669 3.170 2.504.839
8 1.1 2(A).2.V.((B@S0.Z)//(4@SO.W)Y/(5@S0.Y)) 2.501.669 5.604 2.507.274
14 R.1.1_2(A).2.V.V{(A).(((B@SO.Z)/(4@SO.W)Y/(5@S0.Y)) 3.197.263 5.604 3.202.867
15 1.1 2(A).2.V.V{(B).(((3@SO.Z)//(4@SO.W)))/{(5@S0.Y)) 3.197.263 5.604 3.202.867
17 R 1 2(A).2.V.V{(B,A).(((3@SO.2)//(A@SO.W)))/(5@S0.Y)) 3.197.263 5.604 3.202.867
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5.7.1. Overhead of Sorters

Table 5.15 presents the number of sorters contained in each of the top-10 signatures, the
sorters’ cost, and the percentage of this cost. Observe that the cost of the sorters ranges among
the 30% and 60% of the total cost.

Table 5.15 Sorter Cost for Fork

S id Number of Costof | Percentage of
- Sorters Sorters Sorter Cost
6 ] 695.594 41%

4 | 695.594 29%
5 ] 695.594 29%
7 ] 695.594 29%
2 0 0 0%
16 2 1.526.076 61%
8 1 830.482 33%
14 2 1.526.076 48%
15 2 1.526.076 48%
17 2 1.526.076 48%

3.7.2. Effect of Input Size

In the reference scenario, the source R contains 100,000 rows. We have also experimented by
varying the size of data extracted from source R to 150,000 and 200,000 rows. These
experiments return the same top-10 solutions with the reference scenario. We have also
observed that the total cost of the optimal solution in all cases is practically linearly dependent
upon the input size. This observation holds also for the average cost of the top-10 signatures

and the 10" solution.

5.7.3. Effect of the Overall Selectivity of the Workflow

In the experiments of this paragraph, we modify the selectivity values of the workflow in such
a way, that small, medium or large volumes of data reach the output. In particular, we
appropriately tune the selectivities, so that the ratio of the output data over the input data is:
0.1, 0.3, 0.5 or 0.7. In other words, we try to assess the impact of the overall selectivity of the
workflow to the overall cost.

Table 5.16 shows the size of the output after each activity (activity numbers in the first line of
the table refer to the numbers of Figure 5.16.




Table 5.16 Effect of Data Volume propagated towards the Warehouse

1 2 3 4 5
Case of 0.1 0.5R] 0.45/R| 0.1|R] 0.2|R| 0.2]R|
Case of 0.3 0.8[R| 0.6|R| 0.4R| 0.2R| 0.1R|
Case of 0.5 0.8R| 0.7R| 0.6R| 0.5R| 0.6|R|
Caseof 0.7 |  0.9R| 0.8|R| 0.8R| 0.7R]| 0.6/
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Table 5.17 depicts the results of the assessment of the best cost, the average of the top-10 and
the cost of the 10™ solution. There are only 3 solutions changed as the volume of data
processed through the workflow increases. The best solution remains the same. The impact of
the increase of processed data to the overall cost presents a certain burst between 0.1|R| and

0.3|R), and then behaves linearly. This involves all three measured costs.

Table 5.17 Effect of Data Volume propagated towards the Warehouse

OUTPUT SIZE: 0.1]R| 0.3[R] 0.5[R] 0.7R|
# of different solutions in
top-10 list 0 3 3 3
Change at Optimal Solution No No No No
Total cost (Optimal) 1.679.469 2.420.319 2.724.814 3.080.461
Total cost (Avg(Top-10)) | 2.581.261 3.669.123 4.048.001 4.541.540
Total cost(10") 3.202.867 4.812.582 5.265.549 5.967.905
] Optimal 0 740.849 1.045.345 1.400.991
Difference =0 Top-10) 0 1.087.862 1.466.740 1.960.279
in total cost
10" 0 1.609.715 2.062.681 2.765.038
Difference Optimal 0 44% 62% 83%
in total cost| Avg(Top-10) 0 42% 57% 76%
(%) 10* 0 50% 64% 86%

5.7.4. Effect of Graph Size
In the experiments of this paragraph, we vary the size of the workflow to small and medium

forks. Then, we measure the time to discover the optimal scenario. The specific values for the

two configurations are as follows:
¢ Small workflow (Graph Size = 10 nodes) - Time: 2 sec
e Medium workflow (Graph Size = 16 nodes) - Time: 64 sec

5.8. Butterflies
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In this set of experiments, we examine the general case of balanced butterflies. First, we
examine butterflies with both wings having similar size and structure. Figure 5.18 depicts our
reference scenario. The body of the butterfly is the fact table V. This scenario has a highly
selective left wing. Then, we discuss Right Deep Butterflies and we depict the reference

scenario for them in Figure 5.17.
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Figure 5.17 Butterfly
Balanced Butterflies. First, we start with balanced butterflies. The workflow characteristics
for the scenario of Figure 5.17 are:
e Number of nodes: 11
e Time to discover optimal scenario: 28 sec

o Number of generated signatures: 181

Table 5.18 Top-10 Signatures for Balanced Butterfly

S_id Top-10 Signatures lCom%l;:ttion;IReSIél:ztmnT Total Cost
56 K(R.1.1_3(A))/(S.SY(A).2@SO.P)).3@MI.V.(4@SO.ZY/(5@SO.W))  2.560.021 2.753 2.562.774
23 K(R.1.1_3(A)/(5.2@SO.P)).3@ML.V.(4@S0.Z)//(5@SO.W)) 2.560.021 5.244 2.565.266
50 K(R.IYAS.SHA).2@S0.P)).3@H).V.VI(A).(4@SO.Z)//(5@SO.W)) | 2.943.325 3.133 2.946.457
53 K(R.1//S.SI(A).2@S0.P)).3@HJ.V.VI(B).(4@SO.Z)/(5@SO.W)) | 2.943.325 3.133 2.946.457
11 K(R.1)//AS.S)(A).2@S0.P)).3@HJ.V.(4@SO.Z)//(5@SO.W)) 2.943.325 5.141 2.948.465
17_K(R.1YIS.2@SO.P)).3@HI.V.VI(A).((4@SO.Z)//(5@SO.W)) 2.943.325 5.624 2.948.949
20 KR.1/(S.2@S0.P)).3@HI.V.VY(B).((4@SO.Z)/(5@SO.W)) 2.943.325 5.624 2.948.949
4 ((R.1/S.2@S0.P)).3@HJ.V.((4@SO.Z)/(5@S0.W)) 2.943.325 7.632 2.950.957
10 X(R.1YAS.SYA).2@S0.P)).3@SMJ.V ((4@S0.2)/(5@S0.W)) 2.996.202 4.880 3.001.081]
3_X(R.1)//(S.2@SO0.P)).3@SMJ.V.((4@SO.Z)/(5@S0.W)) 2.996.202 7.371 3.003.573

Table 5.18 shows the 10 signatures having the lowest total cost for the scenario. Observe the

physical representation of the scenario with the minimal cost in the first line of Table 5.16.

Notice that the optimal physical representation for this butterfly contains a sorter on edge /_3

and a sorter on table S. Observe also that this scenario has a highly selective left wing. Thus,
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the introduction of a sorter is beneficial even for the source data of S. Furthermore, the
difference between the 10" solution and the optimal signature is small (in particular 17%).

5.8.1. Overhead of Sorters

Table 5.19 presents the number of sorters contained in each of the aforementioned top-10
signatures, the sorters’ cost, and the percentage of sorters’ cost. Observe that the cost of the
sorters is significant for the best solution (70% as percentage). This means that the addition of
the two sorters minimizes the cost of the rest of the activities so much, that the total cost of
the entire scenario is minimized, so that this solution is definitely a winner compared to the

best possible solution without any sorters (S_id = 4).

Table 5.19 Sorter Cost for Butterfly

S id Number of Costof | Percentage of
- Sorters Sorters Sorter Cost
56 2 1.803.841 70%

23 1 142.877 6%
50 2 2.107.144 72%
53 2 2.107.144 72%
11 1 1.660.964 56%
17 1 446.180 15%
20 1 446.180 15%
4 0 0 0%
10 1 1.660.964 55%
3 0 0 0%

The fluctuation of the sorter’s overhead, nevertheless, is impressive: the overhead ranges from
6% (for the second best solution) to approximately 70% for the best, third and fourth solution.
This is due to the balanced nature of the butterfly, which has many candidate positions for the
introduction of sorters: therefore, the results of a combination of sorters can produce

significant variances.

5.8.2. Effect of Input Size

In the reference scenario, each of the sources R and S contains 100,000 rows. We have also
experimented by varying the size of data extracted from each source to 200,000 rows. The
second experiment returns the same 8 solutions out of the top-10 list produced by the

reference scenario. We have also observed that the total cost of the optimal solution in all
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cases is practically linearly dependent upon the input size. This observation holds also for the

average cost of the top-10 signatures and the 10" solution.

5.8.3. Effect of the Overall Selectivity of the Workflow

In the experiments of this paragraph, we modify the selectivity values of the workflow in such
a way that small, medium, or large volumes of data pass through the body of the butterfly. In
particular, we appropriately tune the selectivities, so that the ratio of the data of table V over
the inputdatais: 0.1, 0.3, 0.5 or 0.7.

Table 5.20 Effect of Data Volume propagated towards the Warehouse

DATA VOLUMES ON V: 1/3*R] 1/5%R} 1/75R]
# of different so_lutions in 0 6 4
top-10 list
Change at Optimal Solution No No Yes
Total cost (Optimal) 2.562.774 6.166.805 2.518.853
Total cost (Avg(Top-10)) | 2.882.293 6.644.516 2.597.239
Total cost(10™) 3.003.573 7.444.406 2.714.168
. Optimal 0 3.604.031 -43.922
Difference I Avg(Top-10) 0 3.762.223 285.054
10" 0 4.440.834 -289.405
Difference Optimal 0 141% 2%
in total cost| Avg(Top-10) 0 131% -10%
(%) 10" 0 148% -10%

Observe that the latter case of 1/7*|R| data reaching table ¥, is the representation of a butterfly
configuration with a highly selective left wing. The differences in total cost of the optimal
solution, average and 10" solution are negatﬁ'e. This means that this is cheaper than 1/3*(R|.
Since the volume of data reaching V is small, a sorter can be placed on this table without
causing a severe increase in total cost. In fact, the optimal solution for the 1/7*|R| case
contains a sorter on the data of table V. Thus, we can conclude into the following
consideration: highly selective left wings of butterflies highly favor the butterfly’s body as a
good candidate position for a sorter.

5.8.4. Effect of Graph Size
In the experiments of this paragraph, we vary the size of the workflow to (a) small, (b)
medium, and (c) large primary flows. Then, we measure the time to discover the optimal

scenario. The specific values for the three variants of the workflow are as follows:
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e Small workflow (Graph Size = 8 nodes) - Time: 3 sec
o Medium workflow (Graph Size = 11 nodes) - Time: 28 sec
o Large workflow (Graph Size =20 nodes) - Time: 13.563 sec

Time (sec)
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Figure 5.18 Completion Time of Exhaustive Algorithm
Figure 5.18 depicts the results. As expected, the exhaustive algorithm results in exponential
completion time with respect to the size of the input graph.

Right-Deep Butterflies. Another type of workflow under consideration is a Right - Deep
Hierarchy. We illustrate a reference Right-Deep scenario in Figure 5.19.
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Figure 5.19 Right - Deep Hierarchy
Workflow characteristics:

e Number of nodes: 13
o Time to discover optimal scenario: 14 sec

e Number of generated signatures: 49

Table 5.21 shows the 10 signatures having the lowest total cost. Observe the physical

representation of the scenario with the minimal cost in the first line of Table 5.21. Notice that
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the optimal physical representation for this scenario contains a sorter on table V that orders
data according to attributes B, C. Observe the resumption cost, too. The costs remain
reasonably close except for the configuration without a sorter (S_id = 2), where the

resumption cost are significantly higher.

Table 5.21 Top-10 Signatures for Right - Deep Hierarchy

S_id Top-10 Signatures C““‘"(‘:‘::t‘““" ResemPEOn | rotal Cost
6 [R1.V.VI(B.0)(((G.U4@SOZY/I2@SO.T.5@SO.W))/(6@SO0.Q)) 3.058.034 | 4400 |3.062.434
27 R1LV.VI(A).((3.U.U(B)4@S0.2)//Q@SO.T.5@S0.W))/(6@S0.Q) | 3.772470 | 4.320 [3.776.789
8 [R.1.V.VI(A)((3.U4@SOZ)/(2@SO.T.5@SO.W)y/(6@S0.Q)) 3772470 | 6932 |3.779.402
25 [R.1.V.VI(B,C)(((3.U.UNB)4@SO.Z)/(2@SO.T.5@S0.W.))/(6@S0.Q))| 3.804470 | 4.400 [3.808.869
10 [R.1V.((3.U.UXB) 4@SO.Z)/(2@S0.T.5@S0.W))/(6@S0.Q)) 3.804470 | 7.657 |[3.812.127
2 [R1V(GU4@S0.Z)/2@SO.T.5@S0. W))V/6@S0.Q)) 3.804470 | 10270 |3.814.739
20 [R.1.V.VI(B,C)(3.UA@SO.Z)/2@SO.T.T\(B) 5@SO.W))//(6@SO.Q)) | 4.079.844 | 4400 |4.084.244
17 [RRY(A).1.V(((3.U.UYB) 4@SO.Z)//2@SO.T S@SO.W))(6@SO.Q) | 4.110417 | 4290 [4.114.706
3 [RRY(A).1V(((GUA@SO.Z)/(2@SO.T.5@S0.W)))(6@SO.Q)) 4110417 | 6902 [4.117319
4 R.1.V.VI(B).((3.U4@SO2)/(2@SO.T.5@S0.W)))/(6@S0.Q)) 4361051 | 7.657 |4.368.708

Table 5.22 Sorter Cost for Right - Deep Hierarchy

S id Number of Costof |Percentage of
- Sorters Sorters Sorter Cost
6 1 1.303.017 43%

27 2 2.049.453 54%
8 I 1.303.017 34%
25 2 2.049.453 54%
10 1 746.436 20%
2 0 . 0 0%
20 2 2.324.827 57%
17 2 2.407.400 59%
3 1 1.660.964 40%
4 1 1.303.017 30%

In Table 5.22 we depict the sorter costs for the top-10 solutions. It is interesting to see that
although the number of activities is small (only 6 activities in a graph of 13 nodes) the best
solutions typically contain sorters. This is an interesting lesson since it highlights the
possibility of exploiting sorters in recordset-heavy configurations. The sorter costs remain

significant between the range 20% - 60% in the top-10 list.
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5.8.5. Effect of Input Size

In the reference scenario, the source R contains 100,000 rows. We have also experimented by
varying the size of data extracted from source R to 150,000 and 200,000 rows. All
experiments return the same top-10 list as the reference scenario. We have also observed that
the total cost of the optimal solution in all cases is practically linearly dependent upon the
input size. This observation holds also for the average cost of the top-10 signatures and the

10" solution.

5.8.6. Effect of Graph Size
In the experiments of this paragraph, we vary the size of the workflow to (a) small, (b)
medium, and (c) large primary flows. Then, we measure the time to discover the optimal
scenario. The specific values for the three variants of the workflow are as follows:

e Small workflow (Graph Size = 11 nodes) - Time: 5 sec

e Medium workflow (Graph Size = 13 nodes) - Time: 14 sec

e Large workflow (Graph Size = 20 nodes) - Time: 311 sec
Clearly, the exhaustive algorithm results in exponential completion time with respect to the
size of the input graph.

3.8.7. Effect of Complexity (Depth and Fan-out) of the Right Wing

In this set of experiments, we vary the following metrics: the size, the depth and the average
fan-out (we count the average fan-out of the recordsets contained in the right wing) of the
right wing of the butterfly. Then, we measure the candidate positions for sorters and the

completion time of the exhaustive algorithm. Table 5.23 depicts the results.

Table 5.23 Effect of Depth and Fan-out

First case Second case Third case Fourth case

# of nodes on the right wing 8 10 14 15
Depth 4 6 4 6
Avg(Fan-out) 2 0.8 23 2
Candidate positions for sorters 2 3 3 6

Completion Time (sec) 5 14 59 311
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Observe that the third case of Table 5.23 contains 14 nodes on the right wing, whereas the
fourth case 15 nodes, still the latter has 6 times larger completion time than the former. This is
due to the fact that the third case contains a small number of candidate positions for sorters
compared to the fourth case. The only factor that rises the completion time of the third case is
the number of possible physical implementations of each activity. The lesson learned from
these experiments is that the depth and the average fan-out do not play a determinant role to
the completion time, whereas the number of candidate positions for sorters plays a certain role

and the critical factor is ultimately, the size of the right wing.

5.9. Observations Deduced from Experiments

The conducted experiments reveal several interesting properties of our setting. First, we
discuss findings that concern all kinds of scenarios and then, we summarize our findings for

specific butterfly categories.

Completion time and early termination. The completion time of the exhaustive algorithm is
exponential to the size of the butterfly, as typically anticipated. Still, in all categories of
workflows, the optimal signature is found relatively early in the execution of the exhaustive
algorithm, i.e., the signature with minimal cost is usually found in the first 50-60 signatures
produced by the algorithm. This can be interpreted as follows: If the number of sorters we add
to the workflow is high, the cost of sorters is significant, thus the addition of too many sorters

does not contribute to the minimization of the total cost.

Sorters to source and lookup tables. There are several top-10 configurations where the cost
of sorters is quite higher than the cost of the rest of the activities of a workflow. Several of
these sorters are applied upon stored data, and this can be exploited in several occasions. In all
our settings, we have assumed that the source or lookup tables were not sorted. If these tables
were originally sorted, then the overall cost of the scenario could be quite lower. Still, we
must highlight that in the case that this is not possible, there are certain dangers with sorting
recordsets at runtime. In fact, placing sorters to recordsets can be very beneficial or very
inappropriate for the overall cost, depending on the place and size of the recordset. Placing

sorters to the data of the source tables causes the total cost to become extremely high, because
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the sorters apply on large volumes of data. The opposite applies to lookup tables, which are of

relatively small size.

Resumption cost. The computational cost dominates the total cost (by orders of magnitude)

and therefore, it is not really necessary to explore them separately.

Still, this does not mean that the resumption cost is unnecessary in different problem
formulations. One can assume a very similar but different variant of the problem, where an
upper threshold on the (worst or average) resumption time is posed. In other words, the
designer must take care that the scenario is constructed in such a way that in the case of a
failure, there is enough time to resume the workflow within a certain time window. The only
danger in this variant is the usage of an appropriate cost model. In our cost model for regular
operation with failures, we calculate the probability of failure as the probability of each
activity crashing during a single execution. Therefore, the resumption cost is computed as a
weighted sum of costs, with the weights corresponding to the failure probabilities. Instead of
this cost model, an alternative would be to annotate all our signatures with the proper variant

of the resumption scenario, e.g., the average resumption time, the worst case resumption time,

etc.

The role of failure probabilities. We have also performed experiments on butterfly
configurations with varying values of the failure probabilities p;. For example, for a butterfly
workflow with n activities, we have conducted experiments in which the sum of failure

probabilities has been:

a. Y p,~0.01, thus the sum was approximately 1%.

b. > p,~0.05, where the sum was around 5%.

n

c. P, = 0.1, where the sum was almost 10%.

These experiments have produced similar results for the same butterfly configuration,
irrespectively of the value of failure probabilities. In the Appendix (Figures A.1, A.2 and
A.3), we present the results of the exhaustive algorithm for the butterfly of Figure 5.17 using
the three aforementioned values for the sum of failure probabilities (i.e., 1%, 5% and 10%).
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Now, we discuss findings that pertain to specific categories of butterflies.

Lines. We can observe that the generated space of alternative physical representations of a
Linear scenario is linear to the size of the workflow (without addition of sorters). For
example, consider two successive activities with 2 and 3 physical implementations
respectively. Then, the number of generated signatures is 2*3=6. In our experiments we have
also observed that due to the selectivities involved, the left wing might eventually determine

the overall cost (and therefore, placing filters as early as possible is beneficial, as one would

typically expect).

Butterflies with ne right wing. In principle, the butterflies that comprise just a left wing are
not particularly improved when sorters are involved. In particular, we have observed that the
introduction of sorters in Wishbones and Trees does not lead to the reduction of the total cost
of the workflow. There are certain cases, in trees, however, where sorters might help —

provided that the data pushed through the involved branch has a small size.

Forks. Sorters are highly beneficial for forks. This is clearly anticipated since a fork involves
a high reusability of the butterfly’s body. Therefore, the body of the butterfly is typically a

good candidate for a sorter.

Balanced butterflies. The most general case of butterflies is characterized by many candidate
positions for sorters. Overall, the introduction of sorters appears to benefit the overall cost.
Moreover, the sorters significantly improve the resumption cost. The body of the butterfly is a

good candidate to place a sorter, especially when the left wing is highly selective.

Butterflies with a right-deep hierarchy. These butterflies behave more or less like the
general case of balanced butterflies. The size of the right wing is the major determinant of the

overall completion cost of the exhaustive algorithm.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions
6.2 Future Work

6.1. Conclusions

In this work, we have dealt with the problem of mapping a logical ETL scenario to its
alternative physical representations. Each logical ETL workflow is an abstract design that has
to be implemented physically, i.e., mapped to a combination of executable scripts/programs
that perform the actual ETL process. The activities of the workflow can be implemented using
various algorithmic methods, each with its own cost in terms of time or system resources. The
purpose of this work has been to discover the best possible physical implementation of a
given logical ETL workflow. To this end, we have employed libraries of templates for
activities and possible mappings among them to map the original logical workflow to
alternative physical ones. We have modeled the problem as a state-space problem. We have
defined states and transitions used to generate new, equivalent states. Furthermore, we have
proposed an exhaustive algorithm that works as follows: Given a logical ETL workflow, the
algorithm generates all possible alternative physical representations of the workflow. Through
this set of physical representations of the workflow, it is not obvious which physical
representation is optimal in terms of performance gains. In this work, we have focused on the
optimization of the ETL process based on cost-criteria. This problem has been a difficult one,
since ETL workflows contain processes that run in separate environments, usually not
simultaneously and under time constraints. Thus, traditional query optimization techniques
can not be employed. To determine the optimal physical representation we have introduced a
cost model to estimate the cost of the workflow activities. We have also presented the effects
of system failures during the warehouse load and introduced a different cost model in case of
failures. We have also discussed a resumption-effective ETL process. As a method to further

reduce the cost of the workflow, we have proposed the introduction of a set of additional,
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special-purpose activities, called sorters. Furthermore, we have presented several categories
of workflows and tested the performance of the exhaustive algorithm on different classes of

workflows. Finally, we have presented experimental results for the exhaustive algorithm.

6.2. Future Work
There are many issues that present interesting topics for future research. One of them involves

incorporating the order properties introduced by Wang and Cherniack {WaCh03] into our
work. In other words, a possible extension of this work would be to consider primary and
secondary orderings and groupings in our setting and use inference rules to avoid unnecessary
sort or group operators. This way the results of our exhaustive algorithm would possibly be
fewer since unnecessary sorters are eliminated and redundant states are avoided. Furthermore,
the cost of certain activities can be reduced, such as joins or aggregations. The incorporation
of inference rules in our work appears to be smooth, since we have already employed
required orderings (order specifications of the inputs essential for the physical
implementation of the activity) and satisfied orderings (orderings guaranteed to be satisfied
by the outputs of the activity) in our setting. All the above observations show that the
consideration of primary and secondary orderings and groupings, as well as functional
dependencies and inference rules can further improve the performance of our exhaustive

algorithm in terms of time response.

Another direction of research has to do w1th the chosen cost model. In this work, we have
used a simple cost metric for the estimation of the workflow’s performance. Clearly, it would
be interesting to develop a more sophisticated, detailed cost model that deviates from the

stringent requirement to provide a cost model on a per-tuple basis.
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In Figures A.l1, A2 and A.3 we present the results of the exhaustive algorithm for the

butterfly configuration of Figure 5.17, using the following values for the sum of failure
probabilities: 1%, 5% and 10%.
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