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ABSTRACT

Antonopoulos, Georgios, N.

MSc, Computer Science Department, University of loannina, Greece. November, 2010.

Fast Realistic Skinning For Animating Highly Deformable Objects.

Thesis Supervisor: Ioantiis Foudos

In 3D animation, key-frame compression is essential for the efficient storing and processing of 

the animation sequence. Compression is usually performed by producing an approximation of the 

animation. In the case of animating articulated objects, there exists an abundance of methods for 

skinning the object by using the bones of the model to establish bone-vertex influences, 

determine the movement of vertices as a function of the movements of the bones and achieve 

high quality results with satisfactory compression. In the case of highly deformable objects 

however there is no appropriate skeletal hierarchy to facilitate the skinning methods. A set of 

proxy-joints has to be introduced and distributed across the model so as to offer the best possible 

coverage. Influence weights also need to be established so as to introduce as many degrees of 

freedom as possible. We present a method that distributes the proxy-joints based on the 

deformation caused during the animation. Areas of similar deformation are identified and proxy- 

joints are distributed in these areas according to the degree o f deformation. The goal is to position 

more proxy-joints in areas of high deformation to provide for the need of multiple degrees of 

freedom. We also accelerate the fitting process by applying it on decimated versions of the 

model. We show that although the simplification radically accelerates the fitting process, it barely 

affects the quality of the approximation.
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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Γεώργιος Αντωνόπουλος του Νικολάου και της Ευγενίας

MSc. Τμήμα Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Νοέμβριος, 2010.

Μέθοδοι Ανακατασκευής Περιβλήματος για την Αποδοτική Αναπαραγωγή της Κίνησης 

Αντικειμένων Υψηλής Παραμόρφωσης 

Επιβλέπων: Ιωάννης Φούντος

Η συμπίεση των στιγμιότυπων (key-frames) από τα οποία αποτελείται μια τριδιάστατη 

ακολουθία κίνησης (animation sequence) είναι απαραίτητη για την αποδοτική αποθήκευση και 

επεξεργασία του. Στην περίπτωση των αρθρωτών σκελετικών αντικειμένων είναι δυνατό να 

χρησιμοποιήσουμε μεθόδους προσδιορισμού του περιβλήματος (skinning) με πολύ καλά 

αποτελέσματα σχετικά με την συμπίεση που επιτυγχάνουμε και το σφάλμα που προκύπτει. Στην 

περίπτωση όμως των αντικειμένων υψηλής παραμόρφωσης δεν υπάρχει σκελετική ιεραρχία αλλά 

μπορούμε να εισάγουμε ένα σύνολο από ψευδό-αρθρώσεις που πρέπει να κατανεμηθούν πάνω 

στο μοντέλο ιοστε να παρέχεται η καλύτερη δυνατή προσέγγισή του. Μια παράμετρος που 

επηρεάζει σημαντικά τα χαρακτηριστικά της μεθόδου αυτής είναι ο προσδιορισμός των βαρών 

επιρροής των αρθρώσεων στα σημεία του αντικειμένου. Στην εργασία αυτή παρουσιάζουμε μια 

μέθοδο προσδιορισμού των αρθρώσεων σε αντικείμενα υψηλής παραμόρφωσης βασιζόμενοι 

στην ποσότητα παραμόρφωσης που υφίσταται κάθε περιοχή του μοντέλου κατά την διάρκεια του 

animation. Η επιφάνεια του αντικειμένου διαμερίζεται σε περιοχές συναφούς παραμόρφωσης, 

ενώ οι αρθρώσεις κατανέμονται στις περιοχές αυτές με βάση την ποσότητα παραμόρφωσης. 

Σκοπός είναι η κατά το δυνατό καλύτερη προσέγγιση των περιοχών με υψηλή παραμόρφωση 

ώστε να μειώσουμε το σφάλμα της συμπίεσης σε αυτές. Επιπλέον για να επιταχύνουμε την 

διαδικασία της συμπίεσης εφαρμόζουμε μεθόδους μείωσης της ανάλυσης του αντικειμένου και 

δείχνουμε ότι είναι εφικτό να μειώσουμε δραστικά τον χρόνο χωρίς μεγάλη αύξηση του 

σφάλματος. Αρχικά παραθέτουμε το μαθηματικό υπόβαθρο που απαιτείται για την κατανόηση 

των μεθόδο3ν που παρουσιάζουμε. Στην συνέχεια παρουσιάζουμε την επικρατούσα μέθοδο 

συμπίεσης για αρθρωτά, σκελετικά αντικείμενα και κάνουμε αναγωγή της μεθόδου αυτής σε 

αντικείμενα υψηλής παραμόρφωσης. Υποδεικνύουμε αρχές για αποδοτική διάδοση βαρών 

επιρροής, παρουσιάζουμε την έννοια της ποσότητας παραμόρφωσης και παρουσιάζουμε
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μεθόδους κατανομής των ψευδο-αρθρώσεων. Στην συνέχεια περιγράφουμε κανόνες και 

μεθόδους μείωσης της ανάλυσης των αντικειμένων και πώς γίνεται η εφαρμογή των μεθόδων 

συμπίεσης σε αντικείμενα που έχουν υποστεί την μείωση αυτή. Ακολουθούν υπάρχουσες καθώς 

και δικές μας μέθοδοι για εκ’ των υστέρων βελτίωση της συμπίεσης. Τέλος υπάρχει μια σύντομη 

περιγραφή της εφαρμογής μας, αποτελέσματα των μετρήσεών μας, συμπεράσματα και 

επεκτάσεις.
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CHAPTER 1

INTRODUCTION

1.1 Related Work

Computer animation plays a major role in 3D visualization process. Animation is used in a broad 

spectrum of applications such as heavy industry, medicine, clothing, fashion design industry or 

entertainment industry (cinema, computer games). Although articulated (skeletal) animations 

currently dominate the field, with the advance of computer graphics hardware the demand for 

highly deformable animations has also been made feasible. Highly deformable animations are 

used to describe objects that deform under no skeletal influence, or act as a complement to 

existing skeletal animations. Highly deformable objects can be used to model clothes, both 

independently and in conjunction with skeletal animation. 3D animations of soft body internal 

organs are also used in medicine in the process of treatment, research and virtual reality medical 

training. Heavy industry also employs 3D animations of deformable objects in the process of 

studying material behavior under certain conditions such as pressure or temperature of variable 

intensity. Finally, highly deformable objects, in the form of clothing, are being employed by the 

clothing and fashion, entertainment and computer game industry. 3D animated movies 

production has increased in recent years and so has the use of animated models as substitute to 

real actors in the representation of crowds or to generate realistic scenes.

A 3D animation consists of a sequence of poses or key-frames of the same model. The 

production of such a sequence can be done, on certain occasions, by advanced scanning 

machinery. However in most cases it is the result of strenuous labor from the part of artists, who 

create the animation pose by pose. Specialized computer software provides several automated 

techniques for the generation of deformations but adding fine details always requires human 

intervention.

Apart from creation, real time animation sequence rendering and processing also raises 

challenges. The animation processing can occur key-frame by key-frame. However this technique
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introduces the problem of storage. Animation sequences consist of hundreds, sometimes 

thousands of frames, with each frame enclosing the same amount of information slightly 

changed. When animating large models, each sequence can sum up to hundreds of megabytes. 

The ramifications of size manifest not only in terms of the space used on the disk but also in 

terms of time required by an application to load the sequence as well as the amount of space to 

used in RAM. Furthermore the processing of the sequence is affected by size. In a scene a 

sequence may have to be replicated at various levels of details or required to interact with other 

objects (e.g. collide). Additionally to save time, for animating similar objects the animator may 

require the deformation of an object to be transferred to another. The amount of space and 

processing time increases dramatically considering that a scene may contain more than one 

animation sequences.

Matrix palette skinning (also referenced as Skeletal Subspace Deformation, or simply 

Skinning), is an alternative real-time rendering technique. It operates on the observation that on 

articulated models, in accordance to the skin, the deformation of each vertex is influenced by the 

skeleton. It assigns each vertex of the animation an influencing bone and the amount (weight) of 

this influence. The most popular algorithm employing this technique is Linear Blend Skinning. 

Instead of having a key-frame by key-frame representation, the animation sequence is diminished 

in a single reference key-frame and a collection of bone transformations and vertex weights. 

However, specifying the bones and their transformations' and finding the vertex weights requires 

a processing of the sequence as a whole so, although model reproduction is hitherto simplified, 

the size of the animation sequence is still a drawback. So data reduction is imperative.

Although matrix palette skinning assumes the existence of some underlying skeletal 

hierarchy, it can still be applied to highly deformable objects which contain no skeleton. In this 

paper we present extensions of matrix palette skinning in this direction. We attempt to efficiently 

specify bones and areas of bone influences using clustering techniques based on the amount of 

deformation of the object. In addition we study and employ mesh decimation techniques to 

reduce the amount of data processed by the linear blend skinning algorithm and speed up the 

weight specification procedure. Weight acquisition is performed using both affine and rigid body 

transfonnations.
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The rest of the document is structured as follows. In Chapter 2 the required mathematical 

background for this thesis is given. It contains elements of transformation theory describing the 

use of transformation matrices and dual quaternions. Certain aspects of plane theory are also 

discussed as well as the Barycentric coordinate system. Chapter 3 explains Matrix palette 

skinning and elaborates on two existing methods of fitting that where the motivation for this 

thesis. It distinguishes three stages of the fitting process. That of proxy joint specification, 

transformation fitting and weight fitting and each one is analyzed in depth. Chapter 4 describes 

how the fitting process can be made more efficient using a simplified version of a model. Chapter 

5 describes refinement techniques that can improve the visual fidelity of the approximation. 

Chapter 6 contains implementation specifics and results. Finally, Chapter 7 offers conclusions 

and future research directions.

1.1 Related Work

Although a lot of work has been done on matrix palette skinning for articulated objects and quasi- 

articulated not much literature is concerned with this class of highly deformable objects.

In the case of quasi-articulated objects, which are more relevant, [8] constructs a skinning 

approximation by computing the transformations of near rigid components on the model. These 

are identified using facet deformation gradient and mean shift analysis. The results are very good 

but the algorithm presents with poor quality in highly deformable objects.

For highly deformable objects, Kavan et. al in [9] present a fitting method using dual 

quaternions which manages to reduce the execution time of the fitting process in the expense of 

quality. A refinement technique similar to Eigen-Skin [18] is also presented which improves the 

results with the cost of extra complexity and reduction in compression since more information 

must be stored. In [20] a fast approach in of the fitting process is presented, based on an iterative 

global optimization process. However no topology information is preserved and the location of 

proxy joints is occluded once the optimization process begins and can no longer be used.

In the field of mesh segmentation, [21] presents a method for identifying regions of similar 

movement by also employing mean shift analysis on the deformation gradient of vertices which 

is extracted from the weighted transformation matrices of each vertex. However only one proxy
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joint with a set of parameters is associated with each area and the goal is to produce a reduced 

representation of the model for animation editing. [22] also employs deformation gradient to 

identify near rigid sections onto the model. Using region growing and a geodesic distance metric, 

it identifies regions of low deformation and sets as segmentation boundaries the areas of high 

deformation. These near rigid areas are destined for use in decimation and defonnation transfer. 

In this method the use of geodesic distances causes areas with different deformation to be group 

together due to proximity. What we need is to identify areas of similar defonnation, whether low 

or high. Another technique for identifying near-rigid components is presented in [23]. Dihedral 

angle is used as deformation quantity and the method performs region partitioning based on 

minimum spanning tree expansion. However this method produces lots of fragmented sets and a 

merging algorithm must be employed. Furthermore dihedral angle greatly depends on the 

triangulation density of the model and may not produce accurate results.
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CHAPTER 2

PRELIMINARIES

2.1 Matrix Transformations

2.2 Quaternion Transformations

2.3 Plane Theory Elements

2.4 Barycentric Coordinate System

2.1 Matrix Transformations

In this section we will describe certain theoretical aspects of matrix theory and how matrices are 
related to 3D transfoimation

2.1.1 Linear Transformations

In linear algebra, a linear transformation from a linear vector space R" to R'"is a map 

L : R" -> Rw that preserves the linear properties of R” :

L(x +,y) = L(x) + L(y), € R"

L(ax) = aL(x), Vx e Rn, a e R
(2. 1)

This map can be represented by a matrix A e R ,wx” such that:

of matrix A is the image of the standard basis vector ei e R" under the map I , i.e.:

A = [L(el),L(e2),...)L(elf)]e  R (2.3)
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This is an important property of linear transformations since it allows for sequences of 

transformations to be expressed as a sequence of matrix multiplications. Matrix multiplication 

can be efficiently implemented in the hardware and thus allow for very fast transformation 

operations.

In computer graphics, all rendering transformations take place in 3 dimensions, i.e. n, m = 3 

so we narrow our approach to this dimension. When applied, linear transformations have the 

property of maintaining the angles of the transformed object, i.e. parallel lines remain parallel 

after the transformation. Depending on the effect of the transformation upon the object, linear 

transformations can represent rotations, scaling, shearing or reflections, with rotations, scaling 

and reflections being the most commonly used.

Rotation

In 3-D, rotation transformations have the effect of rotating the transformed data around an axis 

for a' certain angle. For arbitrary axis described byn = [nx ny n j r , the matrix that performs 

rotation around it by Θ degrees is given by:

R(n,9)
nx(l-cos#) + cos# nxny(l -cos#)-nz sin(#) nxnz(l-cos#) + ny sin <9 

nxny(l-cos#) + nz sin# nJ(l-cos#) + cos# nynz( l -cos#)-nx sin# 
nxnz(l-cos#)-ny sin# nynz(l-cos#) + nx sin(9 nz(l-cos#) + cos#

(2.4)

For example, for rotation around X-axis in a right-handed (the rotation direction is that of the 

fingers of the right hand, when the thumb shows down the positive X axis) coordinates system, 

where η = [1 0 0]r :

1 0  0 
Λ(η,#) = 0 cos# -sin#

0 sin # cos #

Figure 2.1 shows the effect of applying such transformation for# = 90".

(2. 5)
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Figure 2.1: Rotation about X-Axis by 90 degrees

Scaling

Scaling transformations affect the size of an object towards an axis by a factors . For arbitrary 

axis described by n = [nx ny n J r , the transformation matrix is given by:

l + (s-l)n^ ( s - l ) n vn v ( s - l ) n A.n,
5,(n,s) = (s-  l)n ,nv l + 0 - l)n J ( s - l ) n vn;

(s-  l)nA.nz (s-l)n ,,n z l + (5-l)n;_

To double the size of an object towards the Y-Axis, that is η = [0 1 0]r and 5 = 2 , the resulting 

transformation matrix would be:

S(nts) =
1
0
0

0 0
2 0
0 1

(2. 7)

Figure 2.2 shows the application of such transformation on the object to the left.
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I

Figure 2.2: Scaling an object towards the Y-axis by factor 2.

Shearing

In 3-D, shearing is a transformation that “skews” the coordinate space and stretches it non- 

uniformly. It operates on the coordinate of one axis by adding to it a scalar multiple of the other. 

Depending on which axis is affected the transformation matrices are as follows:

Ί  o o' o01 _ 1 s t
0 1 0
s t 1

s i t  
0 0 1

0 1 0 
_° 0 1_

Figure 2.3 depicts the effect of shearing upon a model.

Figure 2.3: Shearing an object towards X-Axis

Reflection

In 3-D, reflection, or mirroring is a transformation that “flips” the object about a plane. 

Reflection is achieved if a scaling of factor s = - l i s  applied upon the object. Thus, if 

n = [nx,n v,n .]r is the normal (perpendicular) vector to the plane then the reflection matrix is by:
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Figure 2.4: Reflection about the XZ -plane

(2. 9)

2.1.2 Composition o f Transformations

Several consecutive transformations can be expressed via a single matrix. The process of 

composing individual transformations is carried out by multiplying the corresponding matrices in 

an order, reversed to the one the transformations occur. For a rotation/? followed by a scaling 

transformation S , the composition matrix is:

M  = SR
(2. 10)

2.1.3 Affine Transformations

An affine transformation I  from R" to R"is defined by a non-singular, linear transformation 

matrix A e R ”*", and a vector b e  R" such that:

L : R" —► R” x Ax + b (2 . 1 1 )
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It should be noted that such a map is not linear unless6 = 0. To alleviate this and allow for 

affine transformations also to be perfonned as matrix multiplications Lis raised by one

dimension. Expressing x s R" as 

becomes:

L becomes a map from R"+lto iT Mand (2. 11)« + Ι

IiM "*1-»·®"*1;
Γ Ί X

h-4
*A b X

_1_ _0 1_ _1_
(2. 12)

This representation of xis  called homogenous representation and it is used extensively in 

computer graphics since it allows for A,bto be expressed with a single matrix while preserving 

linearity of transformations.

Translation

The addition of vector b e R nto a linear transformation (2. 12) denotes another commonly used 

transformation called translation and has the effect of changing the transformed vectors location. 

The matrix representation of a translation by a vectort = [tr t v t .]7 , in homogenous 

representation is given by:

T(t) =

1
0
0
0

0
1
0
0

0

0

1

0

t ,
t ,
t2
1

(2.13)

2.1.4 Euclidean Transformations

A Euclidean transformation L from R" to R" is defined by a non-singular, linear transformation 

matrix R e R"*" which has the property of being orthogonal (i.e. RTR = RRT = I ), and a vector 

T e  R" such that:

L:Rn -+Rn;x\^Rx + T (2. 14)
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The notation choice of R is not random. Of all linear transformations, only rotation has the 

property of being orthogonal. Thus a Euclidian transformation is an affine transformation, which 

in homogenous representation is expressed by :

and represents a rotation and a translation. Such transformations are also called rigid body 

Transformations since, upon application, the shape of the transformed object remains intact and 

what changes is the orientation and the location of the transformed object.

R T 
0 1

2.1.5 Inverse Transformations

A transformation is invertible if an opposite transformation exists that can restore the transformed 

object to its former condition. Since transformations are expressed as matrices, finding the 

inverse transformation is equivalent to finding the inverse matrix of the transformation. As far as 

the affine transformations are concerned, inverting the translational part is only a matter of 

negating it, i.e. translating the object to the opposite direction. However not all linear 

transformations are invertible thus A ’s singularity has to be checked. This is not the case with 

Euclidean transformations which are always invertible since R is orthogonal and /Γ 1 = RT. 

Knowing that the composing transformations of M  -  M xM v ..Mn are invertible, the inverse 

transformation of M  is given by:

2.2 Quaternion Transformations

(2. 16)

In this section we present the theory behind using quaternions and dual quaternions to substitute 

matrix transformations.



12

A vector p = [x y]T can be expressed as a complex number as follows:

p = (x + yi) (2.17)

Then it can be rotated around the origin (Figure 2.5) by an angle θ'\ί it gets multiplied by another 

complex number# = (cosΘ + (sinθ)ΐ).

2.2.1 Quaternions

Figure 2.5: Complex number rotation around the origin by angle Θ

Quaternions where introduced by William Hamilton [1] in an attempt to extend this notion in 

3-D. As the name denotes, a quaternion is a quad of numbers q -  [w η] = [νν,χ,^,ζ] that can be 

expressed a complex number

q = w+ xi + yj + zk (2.18)

where /2 = j 1 -  k 2 = -1, ij -  k, j i  = -k , jk  = /', kj -  -z, ki = j ,  ik ~ - j  . A quaternion can be used 

to represent a rotation (angular displacement) by #  degrees about an arbitrary vector n in 3-D. 

Figure 2.5 shows the relation between the quaternion elements, the angle 0and the axis of 

rotation n .
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r θ θ . q = [cos — sin —η]

Γ θ . θ . Θ . Θ . ? = [ c o s - s m - n x s m - n y s m - n j
(2.19)

Note that only those quaternions that can be described by this equation can be used for 

angular displacement representations.

Quaternion Magnitude

The magnitude of a quaternion is given by :

Ml=Ik p||=|k Op* Py p,)|| = Vw2+ p*2+Py2+p*2 = Vw2+IpI (2·20)

If 1̂ 1 = 1, a quaternion is called Unit Quaternion. Only unit quaternions can be used to describe 

angular displacement. Unit quaternions are described by (2. 24).

3-D Roint as Quaternion

3-D points can also be represented by a quaternion. A point can be interpreted a quaternion that 

inflicts zero angular displacement around it, i.e. for point p = [px py p j 7 the following equation 

holds:

P = ? p = [0  p] = [0 p 5 py p j  (2.21)

Quaternion Negation

Denoted by —̂ , negating a quaternion is performed by negating each of its elements:

-q  = [-w - n } -[ -w  - x i  - y j  - zk] (2.22)

q and -q  represent the same angular displacement, executed from the opposite direction.
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Identity quaternions inflict no angular displacement upon a quaternion. The quaternion that 

achieves this is:

Identity Quaternion

-q  = [ - 1 0] results in the same angular displacement but, mathematically, only q = [1 0] is to be 

considered as a identity quaternion.

Quaternion Normalization

As with vectors, transforming quaternions into unit ones is carried out by dividing them by their 

length:

q=[ 1 0] = [1 0 0 0] = l + 0/ + 0;/ + 0£ (2. 23)

normal (2.24)

*
Quaternion Conjugate and Inverse

Following the complex number conjugate, the conjugate of a quaternion is given by:

q = [w (x y  z)]*=[w ~(x y  z)] = w - x i - y j~ z k (2.25)

The inverse quaternion is given by:

-i _ q
(2. 26)

In the case of unit quaternions, the inverse is equal to the conjugate.
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According to their complex number representation, multiplication among two quaternions is 

defined as:

Quaternion Product (Cross Product)

Note that, as with matrices, quaternion multiplication is associative but not commutative:

(M 2>?3 =<7iOM3) „(2. 28)
M

Angular Displacement via Quaternions

To rotate a 3-D point p = [px py p j r by angle Θ about an axis defined by a vector 

n = [nx ny nz]r , the point p and the angular displacement are expressed as a quaternions p  and 

q respectively (2. 21). Rotation is performed as follows:

showing that as series of rotations, as with matrices, it can be performed as a series of quaternion 

multiplications.

Quaternion Dot Product

Dot product among quaternions is defined as follows:

(2. 27)

p 1 — qpQ~

and then p ' is expressed back as 3‘D point. For multiple rotations equation becomes:

(2. 29)

p ' = <j2(<hP4."1 )?21 = (m  )p(q2<h)"' (2.30)

(2.31)
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Scalar multiplication by a scalar k is performed by multiplying each of quaternion elements with 

k:

aq -  [aw an] = [aw axi ayj azk] (2.32)

2.2.2 Dual Quaternions 

Dual numbers
* A

Similar to complex numbers, a dual number a is written as a = a0 + εαε , where ε  has the property

ε 2 = 0. <30is considered the non-dual part, a£ is the dual part and ε  is the dual unit. Dual number

operations follow complex numbers operations. For example dual number multiplication is 

carried out as follows:

Quaternion Scalar M ultiplication

(«ο + εαε Wo + A )  = aA  + £(aoK + «A ) (2- 33)

The inverse of a dual number is given by:

λ -1
a

a0 + εαν αΌ
1 αε = —  + ε ~

a,: (2.34)

Quaternions and dual numbers

Dual quaternions are dual numbers with their dual and non-dual parts being quaternions:

?  =  ? 0  +  £ 9 ε = Κ  X0 Λ  Z o ] + * K  χ ε y c ZJ

=  w0 +  x0i + y j  + z0k  + £WS + s x j  +  e y j  + s z ck

where

£7 = ίε 

£ j  = je
εΐί = ks

(2.36)



A 3-D point p = [px py pz f  can be expressed as a dual quaternion by:

3-D Point as Dual Quaternion

p = 1 + s (pxi + pxj  + pzk) (2.37)

where q6 — P XZ +  p xj  +  P7k  is given by (2. 21).

Dual Quaternion Conjugate

There are three types o f dual quaternion conjugates depending upon which component the 

operant is applied:

a) Dual conjugate: Conjugation is applied only upon the dual unit and the result is given by:

b) Quaternion Conjugate: Conjugation is applied only upon quaternion parts and the result 

is given by:

c) Dual Quaternion Conjugate: Conjugation is applied both on quaternion parts and the 

dual unit and the result is given by:

<1 = <1ο-ε<1ε (2.38)

q* =ql+eql (2.39)

= 4 o - (2. 40)

Dual Quaternion Magnitude

The magnitude o f a dual quaternion is given b y :
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= yjq*q = |M  + *
(go>Q
Ik! (2. 41)

If = 1 > i.e. \\q0\\ = \,(q0,qs) = 0, then q is a unit dual quaternion and has the property of always

being invertible.

Dual Quaternion Inverse

The inverse of a dual quaternion exists if q0 * Oand is given by:

Λ - ]

q (2.42)

In the case of a unit dual quaternion it holds that q -  q .

Dual Quaternion Normalization

Transforming a dual quaternion into a unit one is carried out by dividing it by its magnitude:

(2.43)

Using (2. 41), this equation becomes:

qn
\

y
(2. 44)
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Rigid Body Transformations via Dual Quaternions

Dual quaternions have the property of representing both rotation and translation trails formations 

in 3-D. The non-dual is the rotational part and the dual is the translational part of a 

transformation. Similar to simple quaternions, only unit dual quaternions can be used to represent 

transformations.

Rotation

As with simple quaternions, for a 3-D point to be rotated, it must be represented as a dual 

quaternion (2. 37). Rotation is then carried out by multiplying the vector with the dual quaternion 

in an analogous fashion as in (2. 29):

p ' - q p q '  = q p q * (2. 45)

The second part of the equation holds due to use of unit dual quaternions. Since q is a 

rotation only dual quaternion, qe = 0 . So the above is simplified into:

i 0(l + e(p ,i + pyy + p1*))?„’ = l + ff?0(pI/ + p y7' + pI*)?; (2.46)

Notice that the dual part is the quaternion rotation equation described by (2. 29). Also notice 

that after the multiplication operation is completed, what remains is the transformed 3-D point 

expressed as a dual quaternion.
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Translation

Λ A t t t
A unit dual quaternion t defined as t -1  + £■(— /' + — y' + - 2- k) corresponds to a translation by the

2 2 2

vector t = [tx ty tz]r . Notice that the rotational part is the identity quaternion, thus there is no 

angular displacement.

Translation of a 3-D vector is carried out in the same way described in (2. 45):

*tpt‘ = 1 + £-((p„ + 1„ )i + (py + ty ) j  +  (p. + 1. )k) <2·47)

and what remains is the 3-D vector, expressed as a dual quaternion, translated by t .

Rigid Body Motion
A A

A unit dual quaternion q which describes rotation can be combined with a unit dual quaternion t 

which describes translation, to jointly describe a rigid body motion. The combination of these 

two quaternions, as in matrix representation, is their product. Again, the order of multiplication is 

important:

<7 =  (1 +  £ ( y  i + \ j  + \  * ) ) ? o  =  <7o +  ε ( y  i + y  ;  + y  k )? o  =  <7o +  ε<1£ <2 · 4 8 >

Applying the combined transfoimation is done in the way described by (2. 45) and in the form of 

quaternion transformations the result is:

p ' = (q<, + eqc)p(ql - s q ’,)  = (q0 + eqt )(pq‘ - ep q ’c) =

q o p q l-sq tp q ’.+ sq .p q l l + ε '  g j j x h z l ο£2Γ (2. 49)

/>
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2.2.3 Quaternion to Matrix Transformation

On several occasions it is required to change representation from quaternion to matrix. For a dual 

quaternion:

q = (w0+x0i + y j  + z0k) + &iw£ + x£i + y j  + zi:k) (2.50)

its matrix representation is given by:

1 - 2yl - 2 z\ 2(x0v0 -  w0z0) 2(x0z0 + w0v0) -2 (w£x0 - xew0 + y£z0 - z£v0)
2(%Vo + ) 1 ~ 2x^ — 2z0' 2(> ’0z0 -  w0x0) —2(wey0 — xezQ — y£w0 + z£x0')
2(x0z0 -w 0y0) 2(y0z0 + w0x0) l - 2 * 2- 2 y 2 -2(wez0 +x£y0 - v £xQ - z ew0)

0 0 0 1

The representation for a simple quaternion is acquired by setting :

<ls =0:ws =0, xe = 0, yc = 0, = 0

2.2.4 Matrix VS Quaternion

Quaternions and dual quaternions offer an alternative representation for rotation and rigid body 

transformations respectively. When compared to matrices, quaternions appear to be advantageous 

in terms of required storage and in composition of transformations. However, they require 

considerably more operations to apply the transformation. Dual quaternions too require less 

storage than matrices, but the number of operations both for transformation composition and 3-D 

vector transfonnation is very high.

Table 2.1 shows a comparison between the quaternions and matrices in terms of storage and 

speed. Speed is measured in terms of the number of operations, namely Multiplications (M) and 

Additions (A).

A few notes on how these numbers emerged are necessary. First of all, the quaternion product 

operation and thus the composition of transfoimations, in the general case require 16M+12A 

operations. However, if the product is between a quaternion and a 3-D point representation as 

quaternion, then the number of operations is reduced to 12M+8A, since the real part of the 3-D
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point is 0. Dual Quaternions require 3(16M+12A)+4A=48M+40A operations for composition. 

However only a rotation or only a translation, requires the same amount (i.e. 16M+12A) with 

quaternions since in the first case qe =0 and in the second^ =1. Thus the operation is reduced

in a quaternion product instead of a dual quaternion product. Additionally, the product of a dual 

quaternion with a 3-D point requires 2(12M+8A) = 24M+16A operations.

Finally, although quaternions require more operations than matrices to apply a 

transformation, if this transformation is a composition of several transformations then, as seen in 

Figure 2.6, the operations gained by composition speed, earn quaternions enough time to be 

expressed as matrices and then apply the transformation. This is not the case with dual 

quaternions since even in composition time are outperformed by matrices.

Table 2.1: Comparison between matrices and quaternions in terms of storage and operations

'
Matrix representation Quaternion Representation Dual Quaternion 

Representation

Rotation Storage 

(in numbers)
9 4 4

Rigid Body 

Storage 

(in numbers)

12 7

Quaternion To 

Matrix 

Operations

Mult. Add. Mult. Add. Mult. Add.
18 21 30 33

Composition
Operations

16 12 48 40

Rotation Only 

Composition 

Operations

27 18 16 12 16 12

Rigid Body 

Composition 

Operations

36 24 48 40
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Rotation Only 

Transformation 
Operations

M ult. A dd. M ult. A dd. M ult. A dd.

9 6 32 20 32 20

Rigid Body 
Transformation 

Operations

M ult. A dd. M ult. A dd. M ult. A dd.

12 9 100 64

n Rotation 
Compositions 

followed 
Transformation

M ult. A dd. M ult.* A dd.* M ult. A dd .

27n+12 18n+9 16n+18+12 12n+21+9

N Rigid Body 

Compositions 
followed 

Transformation

M ult. A dd . M ult. A dd . M u lt.* A d d .*

36n+12 24n+9 48n+30+12 4011+33+9

♦Quaternions and dual quaternions transformec to matrices before transformation occurred

2.3 Plane Theory Elements

2.3.1 Quadratic Plane Representation

A plane can be represented by a point v = [vx vy vz]T, and a vector n = [a b c]T, which is

perpendicular to that plane and defines it (Figure 2.7). Any point x = [xx xy xz]Tlies on that 

plane if the following equation holds [2]:

( x -  ν)Γ·η = 0<=>

*(x* -  v*) + b(xy -  vy) + c(x7 -  v t ) = 0 <=> (lt 52)

axx + bxy + cxz -  (a \x + b \y + c\ z) = 0

which is an equation of the form ax + by + cz + d = 0.



Figure 2.6: A plane defined by a point and a normal vector

In this paper, planes are specialized in the context of triangles, the building blocks of 

triangulated meshes. In the following sections all plane equations will be in reference to a triangle 

whose vertices artT  = [7, t2 f3], t, e R 3. Point vcan be any of the triangles vertices. Under this

context, in the plane equation (2. 52) part d is the triple product of the coordinates of the edges 

of the triangle [3]:

d  (7,,t2,t^\ — ((/, x t2 ) (2. 53)

Equation (2. 52) states that any point x lies on the triangle if the vector connecting x and vis 

perpendicular to the normal vector n (Figure 2.7). Also, since the distance from a plane is given 

by:

D =
\ax + by + cz + d\ 

\la2 +b2 +c2
(2. 54)

for a unit normal vector n (i.e. Vtf2 + b2 + c2 = 1), (x -  ν )Γ·η is the distance of any point x from 

the triangle’s plane. Intuitively, a point x lies on the triangle if its distance from it, is zero.
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Combining (2. 52) and (2. 53) we can deduce that a plane can be represented by a vector 

p = [a b c d f  so :

(ρΓ·χ) = 0  b c d]‘[x y  z i f

is the distance of any vector x from plane p .

The squared distance then, denoted by Qp(x) , is given by:

Qp(x) = (pTx)2

* (pTx)(pTx)
= (xTp)(pTx)

= xT(ppT)x 

= xTK px

where K p is the matrix:

- a2 ab ac ad
_ 00 b2 be bd 

p ac be c1 cd 
ad bd cd d 2

(2. 55)

(2. 56)

(2. 57)

K p is called fundamental error quadric and can be used to find the squared distance of any 

vertex from a plane p = [a b c d].

2.3.2 Plane Deformation Quantities

When triangulation is used for 3D Mesh segmentation, triangles become the building blocks of 

the mesh. If a triangulated mesh is animated, almost all of its triangles undergo series o f affine 

transformations throughout the animation sequence. Figure 2.8 shows how a facet of a 

triangulated mesh can deform within an animation sequence.
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Ί

Figure 2.7: Facet Deformations in a triangulated mesh animation sequence

There are various means to quantify this deformation. In the following sections we present three 

of them. In each method we are referring to a mesh animation P  consisting of n poses P0, ..., Pn, 

one of these poses is chosen as a reference pose (say P0).

Triangle Area Deformation

One way is to measure how the area of the triangle changes between the triangle at some 

reference pose P0 and the examining pose/J . The area of a triangle T = (/, t2 t2], t, e R 3 in 3D 

is given by:

Λ x, x,^” ^
Area = — 

2
det

 ̂ V

y  i v2 y3
1 1 1

+

(

det

J )  V

v. y2 >;3

1 1 1

Λ2 (

+ det

JJ

X1
1 J)

(2. 58)

This way the shape deformation of the triangle can be measured.

•I

ί

Dihedral Angle

j,. To measure the change in orientation, dihedral angle can be used, i.e. the angle between the

i triangle at some reference pose P0 and the examining pose/J. To measure this angle the normal
\
I vectors of both faces are used. The angle between these vectors, acquired by the dot product, is

; the Dihedral Angle of the planes:
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(η0·η,) = ||no|||ni||cos(0) <=> 

θ -  a cos ( Κ ,ηι ) Λ
Vllno|lllnUI7

(2.59)

Figure 2.8: Dihedral angle between the same triangle at two different poses

Deformation Gradient

Deformation Gradient is a quantity that encloses both shape and orientation of the deformation. 

Assume that we have an animation sequence of a triangulated model with each triangle 

T = {v]fv2,v3} performing series of affine transformations throughout the animation. The affine 

transformation O;.of the j  -th triangle that contains some vertex v is given by [5]:

Φ7·(ν) = CjV + tj  (2. 60)

where C} is a 3x3 transformation matrix which contains the rotation, scaling and skew 

components of the deformation and t ;. the translation component. The deformation gradient of the 

triangle between its status in a pose Pt and a reference pose PQ is enclosed in the Jacobian matrix:

DpOj{y) = Cj (2. 61)
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Note that the three vertices o f the triangle are not enough to describe the deformation towards 

the direction perpendicular to the triangle. To alleviate this, a fourth vertex is introduced in the 

direction of the triangle’s normal vector, with length proportional to the edges o f the triangle [4]:

, =v , 0V-Vi)*(v3--Vi)· 

VK V2 -  V1) X (V3 “  V1 )|
(2. 62)

The affine transformation of each vertex is then described by:

Cjv[ + tj = vj, 1 < / < «, \ < k< 4

and in matrix form it is given by:

c[v' -vl v '- v ;  v ;-v ;]  = [v2°-v ;.0 ..0
" V1

0 ..o - v “] o

C = [v2° - v 1° v '-v ,0 v4° - v ° ] [ v '- v ;  v' -v j  v '-v ,']( 1-1

(2. 63)

(2. 64)

Both rotation and stretch information can be extracted from C by applying polar 

decomposition [6] [7]. Performing thin SVD upon C  we get:

C = UHVT =(UVT)(V1VT) = RS (2.65)

where R e R 3*3 is the orthogonal matrix representing the rotational component, and S e R 3x3 is a 

symmetric matrix that applies stretching to the triangle before the rotation [8]. S can be further 

dissected into a scale ( Sc ) and a shear ( Sh) matrix by extracting the associated matrix elements:

Sc = diag(S)
Sh = S-diag(S) (2. 66)
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2.4 Barycentric Coordinate System

A Barycentric coordinate system is a system in which the coordinates of a point are defined with 

reference to the centre of mass of an object. The point may be located within the area of the 

object, including its boundary. Due to this notion Barycentric Coordinates are also called Area 

Coordinates. Barycentric coordinates where introduced by August Ferdinand Mobius in 1827.

2.4.1 Triangle Barycentric Coordinates

Given a triangle T with vertices [t, t2 t3 ], t;. e M3*3, any point t within the area of this triangle 

can be described by the weighted sum of these vertices:

t  = ^1t 1+ ^2t 2+ ^ 3t 3 (2.67)

0

The λ coefficients have the property Λ, = 1 -  Λ, -  and are called Barycentric coordinates. Figure 

2.10 shows how triangle areas can be described using this coordinate system.

Figure 2.9: Barycentric Coordinate representation in the context of a triangle



30
i

i £

Having the Cartesian coordinates of point t ,  specifying the corresponding Barycentric one is 

a matter of solving the following system:

x = + (1 “ \  - ^ ) * 3

y  = \ y \  +  + (l -  Λ -  ̂ ).v3

What (2. 68) describes is a linear transformation that in matrix notation is given by :

(2. 68)

U  ~ X, y 2 - y 3J

r X ] - X i  x2 - x } Y

l K )
-1

x - x .

\ y - y i )
o

(2. 69)

Τλ = ί ^ 3 ο λ  = Γ ( ί - ί 3)

and shows that specifying the Barycentric coordinates is a matter of inverting the 2x2 matrix T .

2.4.2 Tetrahedron Barycentric Coordinates

Barycentric coordinates can be extended to 3D allowing to specify areas within a 3D simplex (i.e. 

a tetrahedron). In this context four coordinates X!,A7>A3,A4 must be specified. Extending (2. 69) 

the resulting system becomes:

^  =t ~t4 (2.70)

whose solution is a matter of inverting the 3x3 matrix:

T =
Xx-* 4 xt - x 4 x3 -“ *4

y\ -  v4 y 2 - y 4 ■ 3V - v 4
2 - 2. Z, - Z a 2, -- ζ Λ

(2.71)



CHAPTER 3

LIN E A R  BLEN D  SKIN N IN G

3.1 Approximating Models With Skeletal Hierarchy

3.2 Approximating Highly Deformable Models

3.3 Transformation Matrix Fitting

3.4 Bones and Weight Fitting

In the following section we will present methods for the acquisition of the bone transformation 

matrices and then elaborate on methods of weight-influences computation.

3.1 Skinning with Skeletal Hierarchy

Approximating an animation sequence to produce a more succinct representation is common in 

the case of articulated models and is earned out through a process called Skinning. The idea is to 

approximate the trajectories of vertices based on the trajectories of the bones that influence them. 

This means that bone-vertex relations need to be established, meaning, which bones affect each 

vertex and what is the amount of their influence. Figure 3.1 shows an example of a vertex v. 

being affected by 2 bones bj, b: on an articulated model part in two different poses {p , p  + k) .

Figure 3.1: Bone-Vertex influence on articulated model part
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Using the linear blend skinning technique, the location of v, can be approximated by the 

transformation matrices T} and T2 that describe the movement of bi and b? weighted by the 

amount of influence each transformation should have on the vertex. These transformation 

matrices represent the movement of the bones compared to their location in a reference pose (rest 

pose) of the animation sequence. Usually this rest pose is chosen thus, that the model is depicted 

in a neutral state. In the case of the elbow example in Figure 3.1 a neutral position suitable for 

rest pose would be with the elbow straightened. In general, knowing the transformation that each 

bone undergoes in each pose and the amount of influence of each bone to the vertices of the 

model, we can approximate the whole animation sequence using only the rest pose.

More formally, we assume that we have an animation sequence of P poses of an articulated 

model consisting of B bones. The model has TV vertices. It is important to state that the 

connectivity of the vertices throughout the animation sequence is not affected. Neither vertices 

nor edges are added or removed. We also assume that a skeletal hierarchy has been established on 

a selected rest pose of the animation sequence and each vertex has been assigned to one or more 

bones. We denote by Γ/ th e  transformation matrix that describes the transformation that bone

b e {1,..., B} undergoes from the rest pose to pose p e {Ι,.,.,Ρ}. With wib we denote the amount of 

influence of bone b t0 the vertex with index / e {1 ,...,A} . In the rest of this thesis we shall refer to 

this quantity as weight-influence or simply weight, of a bone to a vertex. Finally we denote by 

v'p e R3 the approximation of vertex / in pose p  and by v, e R 3 the coordinates of vertex / in the

rest pose. Using linear blend skinning the approximation of vp is given by:

f  b

V'fl —
\b =1

In the formula above if a bone does not affect a vertex, wib is zero.

(3.1)

Weight influences are established in the rest pose and remain the same throughout the 

animation regardless of the pose we are approximating. Additionally, for each vertex the sum of 

the weights of the influencing bones is 1 and each weight-influence is non-negative, i.e.:
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ί > ,  = >
b=I

and

wib > 0

(3. 2)

(3 .3 )

Finally, it has been proved in practice that 4 bone influences per vertex are adequate for a 

good approximation. More than 4 weight-influences definitely add more detail but not enough to 

compensate for the increased complexity of weight acquisition.

In its entirety the approximation procedure is described by the following algorithm:

Algorithm 3.1 Approximate_SequencePerPose(AnimationSequence[])

1. Bone_L := GetBoneList(AnimationSequence[]);
2. WeightInfluences_L :=GetWeightInfluenceList(AnimationSequence[],Bone_L);

3. for each pose in AnimationSequence do

4. T[pose]:=ComputeTMatrices(AnimationSequence[Pose], Bone_L, WeightInfluences_L);
5. ' ApproximatedSequence[pose]=PerformLBS(T[Pose],AnimationSequence[Pose],Bone_L,

WeightInfluences_L);
Algorithm 3.1: Animation Sequence Approximation Procedure

Lines 1, 2 and 4 comprise the part of the process called fitting. Determining the bone number 

and location is referred to as bone-fitting, while determining the weight-influences is referred to 

as weight-fitting. Line 5 is the application of (3. 1) to produce the approximation.

3.2 Skinning Highly Deformable Models

The existence of a skeleton defines degrees of freedom on the vertex movement. For example in 

the case of the ami in Figure 3.1, although high deformation is expected in the area of the elbow, 

the majority of the vertices between the elbow and the wrist will follow the movement of the 

bone. Normally a bone is not supposed to change its shape and thus its movement is that of rigid 

body and so is the movement of the affected bone. This is not the case in highly deformable 

objects, i.e. models with no skeletal hierarchy established. There are no directives under which a 

vertex may move. Figure 3.2 shows selected frames from an animation sequence of a highly
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deformable object. Notice that all areas, except from the rightmost which is the area of the flag 

that adheres to the pole, are subject to random deformation.

Figure 3. 2: Highly deformable animation of a flag under the influence of wind

Nevertheless, following certain adaptations, the concept of skinning can be extended to 

highly deformable models. In fact in the following sections, when talking about highly 

deformable models, we shall regularly transform the problem to articulated model simply to 

reinforce our intuition. One of the adaptations mentioned, is to consider affine transformation 

matrices instead of rigid, to facilitate capturing of possible scaling and shearing deformations. 

Adaptations must also be made to the methods of the weight-influences specification, a task quite 

elaborate and less well established than transformation theory.

3.3 Transformation Matrix Fitting

We will assume for now that bone structure and weight-influences have been established in some 

way. The next step in the LBS algorithm is to compute the transformation matrices that describe 

the transformations that bones undergo throughout the animation. As stated before, describing the 

movement of highly deformable objects requires the use of affine transformation matrices, to 

capture deformations other than rotation and translation. Rigid body motion can be used but not 

without penalty in the quality of the approximation, since there is no guarantee that the 

deformation of a vertex is purely rigid.
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3.3.1 Fitting with Affme Transformation Matrices

To formulate the problem of approximation, if vf is the actual vertex coordinates in pose p  (i.e. 

the value we are trying to approximate) and v'p is the approximation produced by implementing 

the LBS algorithm, we are trying to minimize the quantity:

namely the error of each vertex approximation.

(3 .4 )

As Algorithm 3. 1 states this operation is performed in a per pose basis. With reference to

[9], this is equivalent to the least squares solution of the system:

V;>P (3. 5)

/=!

The above is a linear system of 3N equations, the unknowns of which are the (3x4) elements 

of the transformation matrices of each bone. This sums to 12B unknowns. The system can be 

expressed in a Ax = b form, where A is a 3Nxl2B known matrix constructed by combining the 

rest-pose vertex positions and the corresponding vertex weights. More specifically the first 3 

rows of matrix A which refer to the first vertex to be approximated are as follows:

b=1 b-B- ---------------------*—f------------------- --------^ r------------------- -a. ------------ \

* i , V „ W l l V l v W I l V l z W 11 V' ;i 5 V l.v W l 5 V , v W 1 * V 1 = ' W IB

Λ ( 1 : 3 , : )  =
W l l V l v W 1 1 V 12 w n · ^ B

W l l V l x W 1 1 V 1.V W 1 1 V U W 11 H ’i 5 V Ly W l * V l.v W \B V \z ™ IB

(3. 6)

b is a 3N known vector where the actual vertex coordinates are stacked:
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b

Kx
<y

(3.7)

Transformation matrices are of the form:

*11 «1 2 «13 «14
«21 @22 «23 «24 (3. 8)

ai\ ail an «34
0 0 0 1

Since the last row is not needed in solving the system, x  is a 12B vector of unknowns of the 

form:

---
--

1 1

A
«12 II

A
«34

«12 II

ϊ0
» 

■

Recall that each vertex is not influenced by all bones, in which case the weight is 0 along 

with the corresponding 12 elements of matrix Λ . Also recall that to each vertex usually 

correspond no more than 4 bones. This means matrix A can be highly sparse. To exploit this 

sparsity for the solution of the system we utilize the LSQR [10] algorithm. Figure 3.3 depicts the 

results of the method.
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a) b) c)

Figure 3. 3 : Results of Linear Blend Skinning using Affine Fitting, PF=1.6, a) Original 
animation, b) Approximation using Affine, P-Center based fitting, c) Approximation error 

distribution. Red areas denote high error of approximation

3.3.2 Fitting with Dual Quaternions

Even with the boost gained by LSQR algorithm, the transformation matrix computation is very 

time consuming and acts as a bottleneck to the algorithm of LBS as a whole. As shown in Figure 

3.4, meddling with the convergence tolerance error or the number of iterations LSQR is to 

perform, has significant effect upon the quality of the approximation. Solving time could be 

improved if there was a way to reduce the number of unknowns. Kavan et.al [9] suggested the 

use of dual quaternions to describe the motion of bones. Recall from (2. 37) that a 3D point can 

be represented by a dual quaternion. To the existing formulation we add the use of “Λ” to denote 

a quantity expressed as a dual quaternion. Thus v,. is a rest pose vertex expressed as a dual

quaternion, vp is the actual coordinates of a vertex in a pose and v'p is the approximation 

coordinates of that vertex. We denote by ^ th e  dual quaternion that represents the transformation 

of bone b . Recall from (2. 48) that given a transformation described by a dual quaternion q , 

applying this transformation on a vertex, also expressed as a dual quaternion p , is done by 

multiplying p  from the right q and from the left with the conjugate inverse of q . Using this 

notation (3.5) becomes:

( N  \ ( N \A
V,·

V ί=ι ) \ M )

-1
(3.10)
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Multiplying with
 ̂'=■ ;

 ̂ ,v ^
from the left to remove the inverse we obtain:

( N 1 ( N  λ
ν'* ' Y , wA -  Σ > λ

KM J v μ  y
v , = 0

The resulting dual quaternions however must be invertible for

(3 .11)

Z W.A

.-i
to exist which

means that at least one element must be non-zero, otherwise (2. 42) does not hold. To ensure this 

we force the real component of the non-dual part qw of the quaternion to 1. This rule does not

affect the range of transformations this method can describe since any dual quaternion represents 

exactly the same transformation with its real multiple

Thus we transform the problem of finding 12 element transformation matrices to finding 7 (8 

minus the one set to 1) element Dual quaternions. Following a series of substitutions and 

calculations, (3. 11) can be simplified in the form ofAx = b. Matrix A is a 4Nx7B one whose 

first 4 rows and 7 columns (i.e. the coefficients of the influence of the first vertex by the first 

bone) are described as follows:

6-1

» ί ι ( ' ΐ - ν ι.-) 2 w n 0 0 0

0 ^ Ι ΐ Ο ΐ  + V l J - Wn ( <  + V l,v) 0 2 w n 0 0

- w „ ( v i + v , ; ) 0 « i i K + V u ) 0 0 2 w n 0

« i l K  +  V,,,)

+"V
“

ΒΓ1 0 0 0 0 2w n

(3 .12 )

The rest of the matrix is filled in a similar fashion. Vector b is a 4Nxl comprising of the rest 

pose vertices, the actual vertex positions and the sum of all the weights applied on each vertex. 

The first 4 rows of b , i.e the right part of the system for the first vertex, are:

-,τ
b = 0 Σ * « « - ο  Σ Χ « - ν ι, )  i X K - v . , ) ·

6=1 6=1 6=1

(3 .13 )
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and the rest of the matrix is filled in the same fashion.

Finally matrix is a 7Bxl matrix of unknown dual quaternion elements stacked:

τ
(3. 14)

Dual Quaternions are capable of describing rigid body motion. This means that an error in the 

approximation is to be expected. However as shown in Figure 3.4 the reduction in the time 

required for transformation matrix calculation, due to the reduction of unknowns in the system, is 

significant. We also see that dual quaternion fitting can be slower than affine if we don’t set a 

limit to the number of iterations the LSQR must perform in the process of achieving the required 

tolerance.

b=1

X  =
Λ1
4 0.v 4o V 4<L ■"4ο* 4ov 4o*

b=BΛ .
B

Qew 4*
„ B
4«v 9sz

Average Solving Time

—̂r—Affine Avg Time

Rigid_AffineDep Avg Time 

—• —Rigid Avg Time

Solving Tolerance

(a)
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(b)
Figure 3 .4 :  a) The Average solving time and b) Approximation error o f  i) Affine Fitting, ii) Rigid Fitting with the 
number o f LSQR Iterations Equal to that o f Affine, iii) Rigid fitting with unlimited number o f  iterations. Horizontal 
axis is L$QR error Tolerance.

V

I

;
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(a) (b) (c)
Figure 3. 5: a) Affine Fitting, b) Rigid Fitting, c) Error Distribution

3.4 Bone and Weight Fitting

Bone and weight-influences specification is fundamental to the skinning process. The choices 

made in this stage will greatly define the final result. We describe this process first by defining 

the transition from skeleton bones for articulated models to proxy bones for highly deformable 

ones. Then we elaborate on the principles of efficient bone and weight-influences fitting. Finally 

we mention the existing policy and the one we propose for bone and weight fitting.

S

If.
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3.4.1 Moving from Bones to Proxy Joints

One major difference when comparing articulated and highly deformable objects is that in a 

highly deformable object, not only it is difficult to specify a skeletal hierarchy but doing so may 

also impose undesired limitations. Consider for example the case of clothing an articulated 

model. It is desirable for the cloth to present with a deformable behavior and not be constrained 

by the rigidity of the movement of the bone it covers. Kavan et.al [9] suggested that selected 

vertices on the rest pose can act as bones {proxy joints). Each proxy joint will create an area of 

influence and each vertex within this area is assigned a weight according to some criterion. This 

criterion is usually based on the distance of the vertex from the influencing proxy joint. Figure

3.3 depicts this idea. The red dots underline the vertices that act as proxy joints and the contrast 

of the color denotes areas of different influence.

Figure 3. 6: Proxy joints instead of bones, and weight influences per proxy joint. The brightness 

of the color denotes the intensity of the influence.

The replacement of a bone structure by proxy joint vertices, distributed according to some 

pattern upon the model, appears to offer the flexibility and the control over the surface required 

for describing a highly deformable animation. The distribution pattern, along with a weight 

assignment policy will define the areas of influence and ultimately the quality of the 

approximation, thus both must be chosen carefully.
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3.4.2 Principles of Efficient Proxy Joint and Weight Specification

Understanding how proxy bones and weight influences affect the approximation process is 

essential for establishing a specification that will lead to a quality result. Intuitively, proxy bones 

act as attractors and the weights represent the intensity of their attraction. Each vertex can be 

attracted by different bones and each bone attracts each vertex in its area of influence with 

different intensity. This presents several caveats when distributing proxy bones and assigning 

weight-influences.

Misfitting

The first is the possibility of assigning a vertex to a proxy bone whose movement is different. 

Figure 3.4 demonstrates this scenario. Vertex v( is assigned to proxy bones whose movement is 

not representative to that of the vertex. The proxy bone movement affects (by some weight) the 

movement of the vertex and the result is a spike where it shouldn’t be.

Figure 3.7: Approximation error by assigning a vertex to irrelevant proxy bones, a) Rest pose, b) 
Actual pose p, c) Approximated pose p. Vertex v\p is elevated due to elevation of its proxy bones.
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The above scenario exhibits the importance both of the proxy joint placement and weight 

assignment policy. Placing another proxy bone in the vicinity of the vertex and enforcing a 

proximity criterion for the intensity of the other two bone influences could alleviate the error. It 

would introduce a stronger attractor whose deformation would also be more representative of the 

defonnation around the vertex. That would diminish the influence of the other joints (recall that 

weight influences are convex).

Over-Fitting

Excess of influences, may lead to the second caveat, that of over-fitting. Too many attractions 

will result in area averaging and ultimately to extreme loss of detail. Figure 3. 6(b) shows the 

effects of over-fitting, where the model appears rounded. Notice the bumps on the surface that 

imply the location of proxy joints. The influence each joint inflicts upon its immediate area is 

stronger and it forces this area to follow its movement. Another implication of over-fitting is the 

increase of the solving time for the transformation matrices, since more non -zero entries are 

introduced in the A matrix (3. 6).

Under-fitting

Lack of influence is the third caveat with the worst scenario being a vertex to be influenced by 

one proxy joint only. This will force the vertices to follow the movement of the proxy joint as if 

performing rigid body motion. The result is indeed rigidity in the areas of influence of each proxy 

joint as is demonstrated in Figure 3. 6(c).

For and efficient bone and weight fitting, these limitations need to be compromised. Even so 

there are no exact rules on how fitting is to be carried out. It mostly depends on the nature of the 

deformations throughout the animation sequence. Intuitively the more proxy joints present, with 

limited areas of influence to avoid over-fitting, the better the representation of deformations and 

thus the approximation. However the number of proxy bones directly affects the size of the 

system producing the transformation matrices (3. 6). Adding more bones means increase in the 

approximation time.
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b) c)

Figure 3. 8: Tablecloth animation sequence. Bone and weight fitting caveats, a) Actual animation 
b) Over-fitted approximation, c) Under-fitted (rigid) approximation.
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One way to ensure that the surface gets enough coverage from proxy joints is to distribute them 

uniformly and adjust the influence areas accordingly. This can be done utilizing the p-center 

algorithm [12]. In brief, this algorithm assigns a new proxy joint on the model by creating a new 

cluster in each step whose center is the vertex with the largest among the distances, of the 

vertices furthest from the center of their clusters. Upon creation each cluster claims from the 

existing clusters all vertices closest to its center. The algorithm repeats until the required number 

of proxy joints has been assigned. The distance metric used is the Euclidian.

3.4.3 Uniform Proxy Joint Distribution using P-Center Clustering

Algorithm 3.2 P-CenterClustering(AnimationSequence[0],/v)

1. Vertexhidex:= PickRandomVertexhidex(AnimationSequence[0]);

2. while ProxyJointsSet != k

3. NewClusterCenter = FindMostDistantVertex(ClusterList);

4. NewCluster = AssignVerticesToNewCluster(NewClusterCenter);

5. 'ClusterList.AddfNewCluster);

6. ProxyJointsSet= ProxyJointsSet+1;

Algorithm 3.2: P-Center Clustering

Note that, since in each step the furthest vertex is extracted, in the very first steps the 

algorithm tends to assign centers to the borders of the model and gradually moves to the interior. 

This behavior will come of use in a later section during the initialization of the Variation Region 

Growing algorithm.

The influence of each cluster is not limited only to the vertices it contains. That would lead to 

under-fitting. Instead each cluster defines a cyclic area of influence with radius rpj equal to the

distance D pj of its furthest from the joint vertex. These influence areas are further enhanced by a

factorP>l.  Figure 3. 11 depicts a scenario of proxy joint placement using P-Center clustering. 

The dotted circle around each proxy joint is its area of influence without the P-Factor and the 

green dashed line is the area of influence including the P-Factor.
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Figure 3. 9: Proxy joint influence areas and the effect of P factor in P-Center clustering

Recall that each time a new cluster center (proxy joint) is defined it assimilates all vertices 

around it which are closer than they are from the other cluster centers. Intuitively a line is drawn 

perpendicular to the middle of the line that connects the new center with each old one. Vertices 

are assigned according to which side of that line they are. Thus each cluster ends up being a 

polygon with a number of edges equal to the number of surrounding clusters. The weight 

influence on a vertex depends on its distance dib from the proxy joint b that influences it:

Wib =  1 -0
d ,ib , rb =  m ax (d ib) · P F actor (3 .15 )

The result needs to be convex so we normalize it by dividing by the sum of all weight 

influences on this vertex. If only one proxy joint affects the vertex, then its weight becomes 1.

In the case of vertex vy in Figure 3.11 which is affected by three proxy joints the weights are:

d nd n1 .0— £ d n
1 .0— 1 .0 -

wn  =
wn>

wft = r2

,wjb
wp  = '

y'3

r3

I

(3 .1 6 )
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The penetration of the area of influence of one cluster to another depends on where its most 

distance vertex is. The addition of P-Factor increases this penetration so P-Factor must be chosen 

carefully to avoid overfitting. Figure 3.8 shows that as the P-Factor increases so does the 

execution time. The approximation error reduces but from a certain point and after it is stabilized 

or even increases. Thus there is no point in setting very high P-Factor values.

u01ΙΛ
0)
E
ooe
'5

Average Solving Time

—A—Affine Avg Time 

- »  Rigid Avg Time

P-Factor

(a)

Approximation Error(dE)

‘Affine Error 

Rigid Error

P-Factor



50

(b)
Figure 3.10: a) How transformation fitting execution time progresses as P-Factor changes, b) How the change 
in P-Factor affects the approximation error. Tests were run on Tablecloth sequence with TOL=0.00005.

a) b) c)

Figure 3.11: Proxy joint and weight fitting using P-Center clustering, a) Proxy joints uniformly

distributed over the area of the model, b) Areas of influence with P-Factor=1.6, c) Areas of
1

influence with P-Factor=l .0

P-Center based distribution yields satisfactory results with low approximation error. However 

the effect (bumps on the surface) of the spherical influence area upon the model is evident. 

Furthermore this distribution is bound to assign proxy joints to areas with low deformation where 

they will be of no actual use and could possibly be approximated by smaller amount of proxy 

bones. On the other hand it may assign less proxy joints than necessary in areas with high 

deformation. For example in our tablecloth model we would like less proxy joints on the area that 

adheres to the table and has low deformation and more proxy joints on the rest of the areas that 

present with higher deformation.

3.4.4 Deformation Gradient Based Bone and Weight Fitting

We propose a method of bone and weight fitting based on the deformation of the model 

throughout the animation. Our goal is to identify areas of characteristic deformation and 

distribute the proxy joints accordingly. A mean is required to quantify the deformation and we 

have chosen that mean to be Deformation Gradient. Deformation gradient is computed per facet
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and encloses the quantity of the facets rotation, scaling and shearing. In section 2.3.2 we saw that 

deformation gradient is embedded in three matrices, each describing a different type of 

deformation. To extract the exact magnitude of each deformation type from their containing 

matrices, we use the Frobenius norm, i.e. we compute the magnitude of each matrix.

Deformation Quantification and Decomposition

In an animation sequence of a triangulated mesh the deformation gradient at each pose can be 

computed by comparing the deformation of a pose with that of its preceding or with that of a 

specified reference pose. Then the deformation gradient of each pose is averaged to produce the 

defonnation gradient of the sequence. We have chosen to perform comparison with a reference 

pose, and in particular with the rest pose of the animation sequence. The reason is that we want to 

capture all deformations throughout the animation, hi per pose basis the majority of the 

deformations have very small values and averaging them at the end results in loss of information. 

For example a facet at some point may have presented with a high defonnation and remained idle 

for the rest of the sequence. That would dominate over continuous but smaller deformations of 

other facets.

More formally, we denote by dpRj the rotational defonnation of facet / in pose p  of the

mesh, by d^c . the scaling defonnation, by d^h j the shearing defonnation and by d pti the sum of 

these defonnation values. Each defonnation component is given by:

d p = R! J P  _  Cr p d  P _
> U Sc,i “  p  > u Sh,i ~ S h p

The sum of the defonnation is then given by:

(3.17)

d p =  d p +  d p +  d pu l , i  u R ,i ^  a Sc,i ^  u Sh,i
(3.18)

This quantity contains all three deformation types and actually is the Deformation Gradient of 

the facet

By D{R,sc,sh,i},i we denote the average defonnation of facet/, for each type, throughout the

sequence
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Drj = avg(dpRi), DSc .=avg{dpSc .), DShi = avg(dphi), DXi=avg(dp.) (3.19)
P P P P

Figure 3. 12 depicts each deformation component the tablecloth animation sequence. The rest 

pose contains no deformation data since it is the reference pose (deformation is zero). Thus rest 

pose is used to contain the mean of each facets deformation throughout the animation. The 

visualization shows which areas are close the global maximum value of the according 

deformation component. Red areas are those with deformation close to the maximum for that 

type and green are those close to minimum. There is no common maximum and minimum since 

each deformation component has its own domain of values and even normalization would make 

no difference.

In the following sections deformation gradient will always refer to Ζ)Σ .. This will be

considered the deformation gradient of a facet for all the animation sequence. All deformation 

gradient calculations we use as input this quantity
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a) b) c) d)

Figure 3. 12: a) Rotational deformation component, b) Scaling deformation component, c)

Shearing deformation component, d) Deformation Gradient(sum of a),b),c)).

I
I

Deformation Based Clustering Ij

It is now possible divide the surface into areas with similar deformation gradient. To carry out !

this division, a clustering method must be utilized. 3 properties must be satisfied:

1) The clusters must present with deformational coherency, to be possible to distribute proxy

joints based on how much deformation an area presents. i
;:i

2) The clusters must be connected (spatial coherency), to be possible to apply a weight B

fitting scheme on the cluster as a whole.
j

3) The method must be able to return at most the requested by the user number of clusters, to

be possible to specify the number of distributed proxy bones. <

We have tested three possible clustering techniques: 

a) K-Means

a. Regular

b. Hierarchical
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b) Variational Region Growing

of which, Variational Region Growing yielded the best results. It should be noted that 

deformation gradient is a quantity closely related to the mesh’s facets. For that, all clustering 

techniques are applied with reference to facets and not vertices and the distances used are the 

Euclidean among the centroids of the facets.

K -M e a n s  C lu s te r in g

K-Means is a widely used heuristic algorithm for partitioning a data set into k subsets. More 

formally, the algorithm attempts to partition a set of observations ( j | ,x2,...,x„)into k < n sets

S = {S],S2,...>Sk} where sum of squared distances of each point of the partition from the center of 

the partition is minimized:

argmin
/=1 x , gS,

(3. 20)

where μ, is the center produced by the mean of values (centroid) of S,.

Σ ν

M
The k-means algorithm is outlined in the following pseudo code:

v.eS,
μ,=—

(3.21)

Algorithm 3.3 Perfomi_K_Means(MeanDeformationSequence[0])

1. Prev_K_Cen terL i s t: = 0 ;

2. K_CenterList := Pick_K_RandomFacets(MeanDeformationSequence[0]);

3. while Prev_K_CenterList != 0  and objfun() > TOL do

4. Prev_K_CenterList:= K_CenterList;

5. [KCenterMapping,K_CenterList]:==AttractNearestPoints(Prev_K__CenterList, 

eanDeformationSequence[0]);

Algorithm 3.3: K_Means Clustering

We start by picking k-random facets as initial cluster centers. Then each cluster attracts the 

facets closer to it. Upon insertion of new vertices, the centroids, i.e. the new cluster centers are
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being and the process repeats until some stopping criterion is reached. The algorithm returns the 

coordinates of the cluster centers and a mapping to these centers for each vertex.

Since k-means is a heuristic, there is no guarantee that it will converge and even if it does, the 

solution is not a global minimum. The result of the method will always depend on the initial 

choice of centers. Even so, in the context of our research, it can adequately recognize areas of 

similar deformation. However, if fed only with deformation data it presents with a serious 

disadvantage. The areas yielded are disjoint. Figure 3. 13 (a) depicts the result of applying K- 

Means clustering on purely deformation data. Apparently it is not possible to enforce some 

weighting behavior if the proxy joint of the same cluster are scattered all over the model.
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(c)

Figure 3. 13: a) K-Means clustering based purely on deformation data (17 clusters), b) 

Hierarchical K-Means clustering (59 clusters) with equally weight deformation and spatial data c) 

Hierarchical K-Means clustering with highly weight deformation data (37 cluster, 947 disjoint 

clusters). Colors are randomly chosen and depict no information other than spatial.

To insert topology in the clustering result and reduce disjoint sets, we implemented 

Hierarchical K-Means clustering, a two stage application of k-means. At the first level regular k- 

means is applied on a dataset that contains the deformation data of «facets and a first 

partitioning of k',k' <n clusters is created. Then, at the second level, we apply k-means to the 

centers of the clusters created by the first level, based on their coordinates and a second
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partitioning of k , k < k' < n clusters. Finally based on the Level2 cluster mapping we map the 

Level 1 results to those of Level2. Algorithm 3. 4 describes this procedure.

Algorithm 3.4 Hierarchical_K_Means(DatasetWeight, MeanDefonnationSequence[0])

DaiaselWeighl

1. Dataset = U  MeanDeformationSequencefO];
/=!

2. [Ll_K_ClusterMapping, Ll_K_ClusterCenters] := Perfomi_K_Means(Dataset);

3. [L2_K_ClusterMapping,L2_K_ClusterCenters]= Perfomi_K_Means(Ll_K_ClusterCenters);

4. L2_K_Clusters:= MapLlToL2(Ll_K_ClusterMapping, Ll_K_ClusterCenters,L2_K_ClusterMapping

);
Algorithm 3. 4; Hierarchical K-Means Clustering

The mapping notion is depicted in Figure 3.14

LI Clustering

c\

f, c\

A 4

:

f .

L2 Clustering

c!
0

C2 4

4
n

C5

Figure 3. 14: Hierarchical k-mean clustering mapping. Facets are assigned to the clusters of Level

2 via the mapping to the clusters of Level 1

In terms of functions if C1 (*) maps facets to the clusters of the first level of clustering and

C2(x) maps first level cluster centers to second level clusters then each facet’s cluster is given 

by:
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C (/)  = C2(C1( / ) )  (3.22)

As shown in Algorithm 3. 4, to avoid clustering being dominated by spatial (center 

coordinates) information in the second level, the deformation domain can be enhanced by 

repetitions of the deformation data set. Figure 3. 13 (b) contains the result of hierarchical 

clustering with no deformation enhancement. It is apparent that clustering is dominated by spatial 

data. Results of enhancing the clustering domain with the defonnation data appear in Figure 3.13 

(c).

Hierarchical k-means achieves better capturing of defonnation data but does not avoid 

disjoint sets. Figure 3.13 (c) only 37 clusters are returned, however if we apply an algorithm to 

identify disjoint clusters parts the number soars to 947. It appears that the number of returned 

clusters cannot be controlled if spatial coherency is enforced. Furthennore if each cluster is to be 

assigned at least one proxy bone, it is not practical to hold on to this partitioning scheme. In 

general k-means appears inadequate to satisfy the 3 properties mentioned in (0) and another 

partitioning method must be used to identify the required areas.

Variational Region Growing Clustering

A region growing algorithm appears to be a suitable solution for identifying areas of spatial 

coherency. Setting the upper limit of returned clusters is also a matter of specifying the required 

number of initial seeds and start the region growing algorithm from each.

A naive region growing scheme would be to grow seed facets until a certain criterion is met. 

Specifying this criterion is not a trivial task. It must ensure that facets with the right deformation 

are added to the appropriate region. If the threshold is not carefully chosen, a region may claim a 

facet that shouldn’t, simply because it reached at it first. Also a special care must be taken for the 

possibility of orphaned facets. Apparently it is cumbersome to satisfy all these limitations and 

cannot be done without compromises that will render the result suboptimal.

Steiner et.al [13] presented a clustering technique which attempts to perform a partitioning of a 

mesh in a way that preserves anisotropy by globally minimizing the following distance for each 

region R j :
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Ζ:’1(7;,Ρ) = |η/ -Ν.|Γ|7;|
(3. 23)

where ]Γ is the mangle of facet i which belongs in Rj ,|7]| is the triangle area, P is the centroid of

the area , n; is the normal vector of that facet, N; is the area weighted average normal vector of 

region R j :

Ν / = Σ | Τ ’ |η,. (3.24)
7]eRj

This method attempts to identify areas based on the similarity of each facet normal vectors 

with a normal vector that is considered characteristic for each area. There is an analogy with the 

objective of our research since we have to identify areas based on the similarity of the 

deformation gradient of a facet and a deformation gradient quantity, characteristic of the area. To 

the existing nomenclature we add R f f )  which is the facet of the region with index i, Rj(v.)

which is the vertex of the region with index /, and \R.\ 
f  I j \

which are the number of facets and

vertices in the region respectively.

We employ the same clustering algorithm as in [13], attempting to minimize the following 

distance for each region R j :

D(Tn Fj) = dXj Dy
(3. 25)

where D is the mean deformation gradient of region R j :

Σ
D ; =

f,e*j (3. 26)

R.

Note that all these operations take place on the rest pose. That is why the inter-pose mean 

defonnation gradient DZ I of facet / ,  is employed.

Steiner et.al name (3. 23) distortion error, so to preserve the analogy we name D(Tn Fj)

deformation error. Notice that defonnation error is not area weighted. There is no need for 

inserting the area in the metric since it is defonnation we seek to capture upon the surface. Any 

area differentiation in the course of the animation sequence is captured by scaling and shearing
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deformation quantities, embedded in deformation gradient. The clustering algorithm is divided in 

three steps

1. In it ia liz a t io n :  A number of k facets are picked at random, equal to the maximum 

number of clusters we require. These facets will serve as the first seeds for the growing 

algorithm. In a sense each seed is a region in this phase, and its deformation gradient is 

the D ; quantity of the deformation error. It must be noted here that this algorithm too is

heuristic and greatly dependent on the initial seed choice. In an animation sequence the 

parts of a highly deformable model that are subject to most deformation are usually the 

boundaries. Recall that the P-Center algorithm has the tendency to assign centers at the 

boundaries in its first steps. Since k is small, this appears as a useful property and P- 

Center is used for initial seed selection instead of random selection.

2, D e fo r m a t io n -M in im iz in g  F lo o d in g :  Each seed facet registers its immediately adjacent 

facets (one edge in common) to a global priority queue, sorted by their deformation error 

against Dt of the region they belong. Along with the facet, an index is stored indicating

' the region it has been tested against. So a facet may appear in the priority queue at most 3 

times. Once all seeds have registered their adjacent facets, the first facet is exported from 

the priority queue and a check is made if it has already been assigned to some region. If 

not, it is assigned to the region that the corresponding index indicates and the facet is 

marked as claimed by that region. If the facet has been assigned to some region it is 

ignored and the next facet is exported from the priority queue. Prior to its assignment to 

the indicated region, each facet registers it’s immediately (up to two) adjacent facets into 

the queue. The procedure continues in the same fashion until the priority queue is empty 

upon which point each facet has been assigned to a region. Note that seed facets don’t 

enter the priority queue. This way we ensure that the requested number of regions is 

returned even if a region consists of one facet.

3. Seed Fitting: Upon emptying of the priority queue, the value Dy of each new region is 

calculated and a new seed is selected in each region. The seed is the facet whose 

deformation gradient is closer toD y. Notice that we do not replace D ; with D lseed. The 

seed facet is simply used to initiate the growing process.
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The process repeats from 2 to 3 until sum criterion is met or until a specified number of 

iterations is performed. The criterion we have used was the deformation error, at each step, of the 

newly appointed seed facet Dl seeJ as described in Seed Fitting part of the algorithm. Algorithm

3,5 gives the partitioning algorithm in pseudo code. We denote as RjtSeed the seed facet of region 

R j , and as Dj Seed the deformation gradient of the seed facet.

Algorithm 3.5 VariationalRegionGrowing(AnimationSequence[0], k ,maxIterations,TOL)

1. newC:=P-CenterClustering(AnimationSequence[0], k );

2. Priori tyQueue:=0;

3. AssignedFacets:= 0 ;

4. C :=newC;

f >
5. while avg Σ | K w  “

2
<TOL or maxIterations>iterations do

. - iq l*,eC J
6. for each R. in C do

7. PriorityQueue := PriorityQueueU ImmediatelyAdjacentFacets( RJiSee(/ );

8. while PriorityQueue !=0do

9. Facet:= PopFromQueue();

10. if !AssignedFacets.Contains(Facet.ID)

11. PriorityQueue:^ PriorityQueue U Immediately AdjacentFacets(Facet);

12. AssignedFacets.Add(Facel.ID);

13. newC [Facet. Regi onID]. A dd(F ace t);

14. for each Rj in C do

15. Dy :=ComputeMeanDeformationgradient( R j );

16. RjMed :=GetNearestFacetToMean( D; );

17. C := newC;

18. newC:= 0 ;

19. iterations:= iterations* 1;

Algorithm 3.5: Variational region growing
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Variational region growing ensures spatial and deformation coherency returns the required 

number of clusters. Initialization process is performed in P-Centers 0{kri) complexity. 

Deformation-minimizing flooding is performed rapidly ( n log(«) complexity), while seed fitting 

is performed in 0(n) since all facet deformation gradients are to be compared with the mean 

deformation gradient of the region. Figure 3.12 depicts the results when applying this algorithm.

a) b)

Figure 3. 15: a) Mean deformation gradient distribution of animation sequence, b) Variational

region growing

Deformation Based Proxy Joint Distribution

With the model partitioned according to the distribution of deformation gradient, it is now 

possible to distribute the proxy joints using this information. The idea is to distribute more proxy 

joints in region that enclose high deformation, while also considering the size of each area. It is 

pointless to assign a big number of proxy joints in a very small cluster because it presents with 

very high deformation and undermine larger clusters with slightly lower deformation. The area 

calculations are with respect to the rest pose of the animation. No assumptions or calculations are 

made about variations in the model’s area through the animation sequence. The procedure is 

completed in two steps:

1) Specification of the number of proxy joints per region.

2) Distribution of proxy joints over the region.
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Specification of the number of proxy joints per region

By default, all regions will be assigned with at least one proxy joint. We then need to distribute 

the rest of the proxy joints based on the participation of each region to the overall deformation 

and the overall area. One way to compute this participation would be to compute the deformation 

gradient of an area compared to that of the rest pose. However the deformation of a region has the 

area information embedded. As a result, large areas have high percentage of participation even if 

they present with small deformation and vice versa. It is essential that the deformation gradient 

amount of a region be separated by that of the area.

We achieve that by sorting each region according to the maximum value of deformation 

present in it. To avoid be misguided by outliers, we average a very small portion (e.g. 1%) of its 

maximum deformation gradients. The result is then linearly interpolated between the minimum 

and maximum defonnation gradient values of the rest pose as a whole, to produce a value in 

[0,1]. We call the resulting quantity, Deformation Indicator,

To maintain balance between region size and defonnation we then compute the percentage of 

participation of each region to the area of the model. We denote by d f  the defonnation indicator

of region Λ . and a} the area percentage of the region with respect to the area of the model. Their 

product gives the Participation Factor of the region:

this sum. If n proxy joints are to be distributed then the share of each region is given by:

dlj = lerp{avg _ max j) (3. 27)

where

lerp(x) : [min(D ), max(D,)] -> [0,1]
i J i J

(3. 28)

(3. 29)

To transfonn this factor into a percentage we sum up all participation factors and divide it by

FP,

j

(3.30)
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Assignment is performed with regions sorted by the deformation indicator. Thus regions with 

high defonnation have higher priority. This formulation results in residuals due to truncation. The 

remaining proxy joints are sequentially assigned one per region, according to the priority 

bestowed by their defonnation indicator. Only in this case the area percentage is not taken into 

account.

Distribution of proxy joints over the region

Knowing how many proxy joints each region has, what is left is to distribute the proxy joints 

upon this region. To facilitate our weight fitting policy we need the proxy joints unifonnly 

distributed over each area. For this reason we employ the regular k-means clustering algorithm. 

Recall that proxy joints are vertices. So this time clustering is done using vertex coordinates. In 

case a region has only one proxy joint we assign it to the vertex closer to the centroid of the 

region. The centroid of the region is trivially computed by:

Σ ν ,
C, = -r—i— (3. 31)

Kl

Figure 3. 13shows the results of our method on the tablecloth animation sequence and on a 

flapping flag. Notice how red areas are overpopulated with proxy joints.
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(c) (d)

Figure 3.16: a) Deformation gradient blueprint, b) Proxy joints distribution against deformation 

gradient, c) Variational region growing partition, d) Proxy joints distribution against region

partitioning

Deformation Based Weight Fitting

Deformation based partitioning and proxy joint distribution can now be used to facilitate the 

weight fitting process. It must be noted that, as with proxy joint fitting, weight fitting is vertex 

and not facet oriented. In the course of our research three weighting schemes were tested:

a. Distance based influence

b. Convolution propagated influence

on which we elaborate in the following sections. Weight initialization in both schemes is based 

on the distance of a vertex from the proxy joint. The further a vertex is from a proxy joint, the 

less influence it receives from it.

Distance based influence

This scheme employs purely distance based inter-cluster influence from proxy joints. Each proxy 

joint creates a spherical influence area around it affecting all vertices in it. Recall that k-means 

clustering has been used to distribute the proxy joints upon each region. The results of this 

clustering can also be used to define the influence regions of proxy joints. The radius of each 

influence area is set equal to the distance of the proxy joint from the furthest vertex of the cluster 

k-means returned and had as center that proxy joint. This scheme is similar to the one used of 

uniform proxy joint distribution (section 3.5.3). Figure 3. 17 depicts this notion.

c
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Figure 3. 17: Distance based inter-cluster influence

Proxy joint 6, has v(.as its furthest vertex in its cluster. This produces a region of radius equal 

to their distance and outlined by the red dashed circle. The continuous red line marks the within- 

region borders between the clusters returned by applying k-means. There is also a P-Factor 

present to facilitate the enhancement of the influence area. Equations (3. 15) and (3. 16) give how 

weight influence is computed. Figure 3.18 shows the results of the approximation process when 

using this scheme for weight fitting.
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(c) (d) (e)

Figure 3.18: Approximation with distance based weight influence. a)Deformation based region 

specification, b) Deformation based proxy joint distribution, c) Approximation d) Approximation 

with proxy joints, e) Approximation error distribution.

As in uniform proxy joint distribution, over-fitting effect is obvious. The result is the 

presence of bumps in the approximation. Especially in the event of small isolated regions with 

one proxy joint (Figure 3. 19).

Figure 3.19: Bumps on isolated regions due to over-fitting

It appears that in some way the amount of inter-cluster influence must be regulated. We also 

need to take advantage of our deformation based region specification. For example in areas where 

there is little deformation (such as the middle of the tablecloth), a certain degree of rigidity may 

be acceptable and more inter-cluster influence should be added as we approach the borders of the 

regions.
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Convolution Propagated Influence

In this scheme, during the initialization stage, we use the borders of the region to block inter­

cluster penetration. All vertices within a region are influenced only be its proxy joints. 

Additionally each proxy joint affects all vertices within a region. Only the vertices on the borders, 

receive inter-cluster influence. Weight assignment is still distance based. Recall that only 

Euclidian distances are being used.

Kim et.al [14], proposed to perform Laplacian smoothing to smooth the weight influences 

from various bones of quasi articulated animation sequences. We adapt this idea to highly 

deformable animations sequences and change Laplacian smoothing, which is liable to produce 

negative weights, to mean smoothing. The process is analogous to the convolution process, 

applied for smoothing 2D images. Instead of pixels we have vertices and instead of color 

components (i.e. RGBA) we have influences from bones.

We denote by:

5,tor(v/.) = {5v,,5v2,...,5Vw} (3' 32

the set of vertices neighboring to v(..

Figure 3. 20: Star of a vertex

The convolution kernel is not based on the pixels neighborhood but of the vertex’s star. Thus 

each weight component (influence) is given by:
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w« =
1 f

wm +
\

λ

)

(3.33)

Upon completion of the initialization process, the convolution phase initiates, during which 

each vertex convolves its weight influences with the influences of its neighboring vertices. Figure

3. 21 visualizes the effects of various levels of smoothing while Figure 3.22 depicts the 

approximation results when Convolution Propagated Weight fitting is used.

(c) (d)

Figure 3. 21: a) Initial region specification, b) 1-pass Smoothing, c) 5-pass Smoothing, d) 10-pass

Smoothing
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Figure 3. 22: Approximation with Convolution propagated weight fitting.

We see that the bumps on the surface have disappeared. This is a result o f uniformly 

distributed weight influences over the surface due to weight smoothing. However the error is still 

close to that of the Uniform proxy joint distribution. This is because our method also suffers from 

over-fitting. We do not have a limitation over the number o f influences a vertex may have. So 

even with regulated influences the result is an overall rounding of the model. Execution time has 

also increased due to over-fitting as expected.
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CHAPTER 4

IMPROVING EFFICIENCY BY DECIMATION

4.1 Introduction

4.2 Simplification Process Overview

4.3 Contraction Priority Specification

4.4 Contraction Location Algorithms

4.1 Introduction

Transformation matrix fitting is the most time consuming phase of the approximation process. 

Using Dual quaternions instead of affine matrices can boost execution but with a tradeoff in 

quality. Another way would be to reduce the number of proxy joints but rationally this would 

also lead to increase of error. Another way to speedup execution of transformation fitting is to 

reduce the number of vertices of the model by applying some decimation {simplification) method 

on it. Depending on the level of simplification we expect some increase in the approximation 

error due to reduction of available samples for the approximation of transformations and to 

possible misplacements of the contracting vertices. However we show that the reduction in 

execution time is significant enough to render the approximation error acceptable.

The idea is to simplify the animation sequence to any level of detail we desire and then use 

the remaining vertices to specify the transformation matrices of the proxy joints.

In the following sections we present methods of achieving simplifications of animated 

sequences in a manner that produces quality approximations. We present an error metric that is 

used to decide the order in which the edge contractions must occur and then present various 

methods of deciding the vertex position of the contracting edge.
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Equation (3. 32) and Figure 3. 20 present the definition of the star of a vertex. Simplification is 

the process of iteratively merging the stars of adjacent vertices. This merging is called 

contraction. Figure 4.1 gives an example of a single iteration of simplification process.

V/4 V/>5 Vj6 V/+l,4 VM.6

4.2 Simplification Process Overview

'  Figure 4. 1: Vertex contraction in simplification process

Index /indicates the level of detail the mesh currently is.

Generally for two vertices v,, v2 to contract, any of the following must hold:

1. (v,,v2)is an edge

2. ||vi -  v2|| < / , where t is some threshold.

In our context however it is not desirable for unconnected vertices to contract due to 

proximity, because mesh connectivity preservation is a major prerequisite. Additionally we make 

no distinction between edges (v,.,v;.)and(v.,v.)since the methods we use do not require such.

Also, as seen in Figure 4. l, when two vertices contract the resulting one takes the index of the 

second vertex of the edge. Finally the triangles that contain both contracting vertices disappear 

after contraction and with them any unused vertex indices.

It is also desirable to delay simplification of areas that undergo high deformation because we 

need as much vertices as possible to better approximate them. This means that a priority must be
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kept in the order of vertex contractions. Finally we must make sure that simplification does not 

leave a proxy joint without vertices dependent on it because it will not be possible to compute its 

transformation matrix and thus approximate the area it covers in the original model.

4.3 Contraction Priority Specification

To enforce a priority in the order of contractions it is necessary to introduce a metric that 

describes their cost. All contractions can then be sorted and executed according to this cost. Upon 

each contraction an algorithm is employed to decide the optimal position of the vertex produced 

by merging the contracting ones. No matter how accurate this positioning is, an error is always 

propagated with respect to how the shape of the model is preserved after each contraction. The 

amount of this error can be the cost criterion of the contraction. For now we assume that a 

method which decides on the merge vertex location after the contraction already exists. We shall 

present such methods later.

To quantify this error [15] introduce a method of approximating it using quadrics (2. 56) (2. 

57). Each vertex in a triangulated mesh is the solution of the system of equations that describe the 

plane of the facets that contain it. Thus each facet has an error quadric (2. 57) associated with it, 

If we moved this vertex to some other location v' then the sum of the squared distances from all 

its fonner planes would be:

This gives the distance of any vertex from a set of facets that belong to the star of a vertex v . 

Potentially what happens when a contraction takes place is that two vertices are moved from their

Δ(ν') = Σ (v'tp)(pTv')
p e planes ( v)

= Σ v'T(PPT)v'
p e planes ( v ) 

( (4.1)

=  V
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original position and, merged, are positioned somewhere else, in a distance from the set of facets 

(planes) they belonged. This means that both vertices propagate an error dictated by their 

fundamental error quadrics. For two contracting vertices v, and v2, we denote by Q  and Q2 the 

error quadrics of each one respectively and the accumulated error quadric o f their contraction 

(movement) is:

of squared distances of these coordinates from all of the facets from the stars of the contracting 

vertices.

The formulation above applies to static meshes, but it can be extended to animated sequences 

[17]. Assume that we have defined the new merge vertex coordinates for all contractions

after contracting edges i , j  in pose p  . For each contraction pair (i, j)  on an animated sequence 

of P poses the contraction error of an edge is:

This formulation presents with an interesting property. The higher the deformation a facet 

undergoes the higher the contraction cost it produces for its vertices. This information can be 

used to form a priority queue for contractions and perform the contractions with high quadric 

error as late in the process as possible.

4.3.1 Proxy Joint Validity Preservation

Recall that proxy joint locations in the original model are associated with vertex locations. 

During the decimation process proxy joints maintain their original coordinates. That means that 

their base vertices may freely contract. We ensure that these contractions will not leave a proxy 

joint without vertices dependent on it by allowing contractions only between vertices that share

2(1,2) Q  02
(4.2)

Depending on the coordinates of the merge vertex after the contraction, 2 (12) gives the sum

throughout the animation sequence. We denote by v£,·) the vertex coordinates of the new vertex

p (4.3)
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exactly the same proxy joint influences, in the case of uniform proxy joint distribution (P- 

Center). In the case of deformation based region specification the rule is augmented by 

prohibiting contractions which contain vertices that are positioned on the border of a region. The 

reason is that we want to preserve the locality offered by this method even in the simplification 

phase.

4.3.2 Contraction Validity

One caveat of the simplification process is the possibility of change in the orientation of a facet. 

Figure 4. 2 demonstrates this behavior. If we assume that all facets are co-planar then contraction 

of vertices v2 and v3 from the mesh to the left results in what was facet [v3v,v6]to change its

orientation (flip) and also overlap with [v6v5v2]. This leads to not valid tessellation and 

potentially degenerate mesh. To avoid this effect, upon contraction cost computation we check 

the normal vectors of all facets in the star of contracting vertices. If the contraction results in a 

facet rotating its normal by 180° then this contraction is canceled and ignored.

Figure 4. 2: Facet flipping after contraction
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4.3.3 Priority Queue Schemes

The two different proxy joint distributions we presented employ different strategies in enforcing 

priority in the order of contractions.

In the case of proxy joint uniform distribution the priority queue is global. Contractions are 

viable to occur on any location upon the model, subject to the rules we have mentioned. 

Deformation based proxy joint fitting can also implement decimation using global priority queue. 

Figure 4. 3 shows the results of applying global priority queue decimation. Notice how dense the 

areas with high deformation remain and how the boundaries of the clusters are beginning to show 

after a certain level of decimation.

(a)

(d)
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Figure 4. 3: Global priority queue decimation, a) Deformation footprint and clustering, b) 20%

Decimation, c)40% decimation, d) 60% decimation. The boundaries of the clusters clearly

visible.

In the case of Deformation based proxy joint fitting however, it is possible to deploy a more 

convoluted strategy. The reason is that our method has the notion of deformation embedded. We 

do make use of the quadric error but merely to order the contractions within each cluster. 

Globally, we want to use the information of deformation we have associated with the various 

regions, and allow regions with less deformation to be decimated to a higher degree while 

preserving regions with more deformation as much as possible. Another advantage that 

deformation clustering offers is the possibility to have multiple priority queues, each associated 

with a region. With the isolation provided by the proxy joint validity scheme we have the ability 

to perform the decimation process in parallel.

Deformation gradient data is utilized to decide how many contractions each region will 

perform on its vertices, compared the overall amount requested. This is done in a maimer similar 

to the proxy joint distribution scheme. The size of the regions which in this context is interpreted 

as the size of the priority queue of each region (i.e. the vertex pairs viable for contractions) is also 

taken into account. The less deformation gradient enclosed within it and the largest its priority 

queue, the more contractions a region performs. In general we want all regions to participate in 

the simplification process and not have any exhaustively decimated.

To represent the deformation amount of a region, a quantity similar to deformation indicator 

(see 0) dlj is utilized. However its use is slightly different. In the case of proxy joint distribution

the higher the indicator was, the bigger the amount of data (proxy joints) to be distributed was. In 

the context of decimation the opposite holds. Big deformation indication means small amount of 

distributed data (contractions). Again we average only of a small portion of the maximum 

deformation values of each region (say 1%). Only this time the deformation returned is inverted 

and interpolated between the inverse maximum and minimum deformation values of the rest 

pose:

id I . = inv _ lerp{------ --------) 4̂‘ ^
a v g _ m a X j

where
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inv _lerp(x) : [ 1 1
max(D ) ’ min(D ) (4. 5)

Each time the simplification process is performed, each region is obliged to perform a fixed 

percent of contractions from its priority queue. We call this percentage shuffling ratio Adi}

(inverse deformation indicator) is used to regulate shuffling ratio. If we denote by PQj the set of 

contractions currently available in the priority queue of region Rj, the amount of contractions 

each region contributes is given by:

id f  · shuffling _ ratio ■ \PQ\ (4.6)

If a region manages to cover the amount of requested contractions, the process stops. This 

means that the larger the shuffling ratio, the less regions contribute in the decimation process. In 

general a large shuffling ratio is not preferable because it causes regions with small deformation 

to be exhaustively decimated while others remain imtouched.

Algorithm 4. 1 provides a description of the decimation algorithm when using a global priority 

queue. For the priority queue to be populated, virtually all contractions in all poses must be 

calculated (function ComputeContractionCosts). This is done once during initialization and after 

each contraction only for those edges that where affected (function ContractGlobal, line5).

Algorithm 4.1 DecimationGlobalPQ(AnimationScquence,amount)

1. DummySequence:= AnimationSequence.Clone();

2. EdgeList := GetConnectivity(AnimationSequence);

3. GPQ :=ComputeContractionCosts(EdgeList);

4. ContractionsList:=0 ;

5. while ContractionsList.Count != amount && GPQ != 0  do

6. Contraction := Pop(GPQ);

7. if IsValid(Contraction) then



8. ContraclGlobal (Contraction);

9. ContractionsLisl.Add(Contraction);

1. function CoraputeContractionCosts (EdgeList)
2. foreach Edge in EdgeList do

3. SumCost :=0;

4. foreach Pose in AnimationSequence

5. MergeV :=NewVertexCoordinates(Edge,Pose);

6. SumCost := SumCost + Merge VT · EdgeQ  · Edge.Q1 · Merge V

7. PQ.Push(SumCost,Edge);

1. function ContractGlobal(Contraction);

3. Dummy Sequence .Delete(Contraction. V1);
4. GPQ.DeleteRelated(Contraction.V1);

5. GPQ.UpdateRelated(Contraction.V2);

Algorithm 4. 1: Description of the decimation process using a global priority queue

Algorithm 4. 2 describes the decimation process using one priority queue per deformation region.

Algorithm 4.2 DecimationLocalPQ(AnimationSequence,amount)

1. DummySequence := AnimationSequence.Clone();

2. ContractionsPerRegion := 0 ;

3. ContractionsList := 0 ;

4. foreach Region in AnimationSequence.DeformationRegions do
4. EdgeList := GetConnectivity(Region);

5. LPQfRegion] := ComputeContractionCosts(EdgeList);

6. ContractionsPerRegion := idlj · shuffling _ ratio · \LPQ[Region^

7. while ContractionsList.Count != amount && LPQ != 0do

8. foreach Region in AnimationSequence.DeformationRegions do
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ContractionsDone:=0;

9 while ContractionsPerRegion [Region] > ConlractionsDone
Contraction := Pop(LPQ[Region]);

10. if IsValid(Contraction) then

11. ContractLocal(Contraction, LPQ[Region]); 

ContractionsDone:= ContractionsDone +1;

1. function ContractLocal(Contraction,PQ)

2. DummySequence.Delete(Contraction.V1);

3. PQ.DeleteRelated(Contraction.Vl);

4. PQ.UpdateRelated(Contraction.V2);

Algorithm 4. 2: Description of the decimation process using Local priority queues

4.4 Merge Vertex coordinates Specification Methods

To perform a contraction, the coordinates of the merge vertex must be specified. Various 

schemes can be implemented for this decision. However it must be taken into account that this 

operation takes place at the heart of the simplification process and is repeated frequently. This 

means that the more complex the scheme the more time consuming the simplification process 

will be.

Second Edge Selection

Simple schemes can be used to for this selection such as selecting the location of the second 

vertex of the contracting edge. Figure 4. 1 gives an example of such a contraction. This is the 

simplest scheme, the fastest and presents with good approximation results. The reason is that it 

retains the existing coordinates of the meshes vertices and thus the transformations of the real 

mesh. Some more sophisticated positioning might have been optimal with respect to the visual 

quality, but it would introduce deviations from the original geometry and thus error in the 

approximation. However a strong representation from the whole surface is still necessary and this 

method does not guarantee this prerequisite.
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Optimal-Error Minimizing Selection

From equations (4. 1) and (4. 2) comes that merging the two contracting vertices to a new 

location V results in an error of:

r  (4· 7)Δ(ν) = ν 'ρ ν

If we denote the unknown quadric matrix by :

011 012 0.3 014

02. 022 023 024 (4. 8)

031 032 033 034
0 0 0 1

then it holds th a t:

Δ(ν) = \ r Q v

-  q1 {x 2 +  2 qn xy  +  2 q13xz  +  2 qu x  +  q ^ y 1 +  2# 23>’z

-t"2q,24.y 4* ^33  ̂ "f 2^34^ + #44

which is a quadratic equation and to find the vertex v = [x y z]r that minimizes it is simply am 

matter of finding the roots of partial derivatives:

dA _ d A  _ dA 

dx dy dz

This is equivalent to solving :

"0.1 012 0.3 014 " "0‘

021 022 023 024 V =
0

031 032 033 034 0

_ 0 0 0 1 _ \ m

which is a matter of inverting Q :

(4.10)

(4.11)
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~9xx 9x2 9x3 9x4
-1

Ύ

9l\ 9 22 9 23 9 24 0

fcl 932 933 934 0
_ 0 0 0 1 _ _1_

It is possible that matrix Q is not invertible. For each vertex, before the contraction, the 3x3 

upper left part of its error quadric matrix is symmetric and positive semi definite:

Ίa~ ab ac
ab b2 be
ac be ■>c~

(4.13)

The eigen-values and eigen-vectors of this matrix define the principal axes of an ellipsoid 

whose centroid is the vertex. That ellipsoid is an iso-surface that contains all the possible 

locations around the vertex that have error Δ(v) = ε . During contraction, the optimal location of 

the merge vertex is searched in the union of the two iso-surfaces of the contracting vertices.

In the event that the stars of these vertices are completely co-planar, then the iso-surfaces are 

planes, and the possible optimal locations are infinite. The same holds when the contracting 

vertices lie on a sharp edge, where the iso-surfaces are cylinders extending to infinite.

In these two cases, matrix £?is singular, an optimal location cannot be specified using (4. 12) and 

as such we rollback to selecting the second vertex of the contracting pair.

4.5 Weight Influences Propagation

The main puipose of decimating the object is to perform transformation fitting using smaller 

versions of the original model. As the decimation process removes and relocates vertices, vertex 

weights need to be updated. Depending on the fitting scheme different strategies may be 

followed.

In the case of Uniform Fitting, because weight fitting is purely distance based, the weights of 

the remaining vertices can be recalculated upon completion of the decimation process.



In deformation based fitting due to convolution propagated influences the weights need to be 

assigned during the contraction process. This is done in the same way that weights propagate 

during the weight fitting procedure.
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CHAPTER 5

5.1 Introduction

5.2 Eigen-Skin

5.3 Rest Pose Corrections

5.4 Weigh Corrections

REFINEMENTS

5.1 Introduction

Matrix palette skinning is an approximation technique and has not enough information to 

approximate sufficiently all the fine details of an animation sequence. It is simply not possible to 

contain all the degrees of freedom required around a bone within a transformation matrix. There 

exist techniques that can be used to improve the visual fidelity of the model, however each one 

presents with a cost in complexity. In the following section we shall describe one such, popular 

technique along with two optimization techniques that we introduce and add to the overall result 

of our methods.

5.2 Eigen-Skin

In [9] a variation of the Eigen Skin corrections presented in [18], is suggested. The basic idea of 

Eigen Skin is to compute the error produced by the approximation process at each vertex and 

after adding this error to the rest pose, repeat the Linear Blend Skinning Process. This results in 

correction of the approximation errors. To specify the correction vector the difference between 

the approximation and the actual pose is used:

< = v;-r/vf <5-1)
j

Correction vector is then transformed back to the rest pose using the inverse of the 

transformation matrix:
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ef =(r/)~V

=(r/)_1v;-vf
Figure 5.1 describes this notion.

All correction vectors for each pose are computed and stacked in a 3NxP matrix E. Thin SVD 

is then performed upon E to decompose it in:

(5.3)
E = DK

where D is a 3NxP matrix containing the so called eigen-displacement vectors while K = SVT is a 

PxP containing the eigen-displacement coefficients. To store these matrices so to have all the 

range of the corrections available would cancel the compression effect of matrix palette skinning. 

After all, not all of matrix D is required but a small number of its first columns which institute the 

eigenvectors that best describe the correction that must be applied per vertex so to be corrected 

throughout the animation. Thus instead of storing P columns only some f  <^P requires to be 

stored. The rest of the unused columns are set to zero.

The resulting matrices are:
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E '^ D 'K '
(5.4)

where

and

D' =

f  P - f
. .11 ■■■ "A" ' ' ' t ' ' III,A"1—1 I—

dn -  dlf  0 -  0

i/2i ^2 f  ® 0

d(iN)i "· d(lN)f0 ■·· 0

(5.5)

f  P - f
“ T

*11 ■" * / i 0 0

*12 k f  2 0 0 (5.6)

k \  p O
 

·

0

Correcting the approximation is then only a matter of adding the corresponding eigen- 

correction to the approximation:

yP,correct __ T P(y1, + (< if )) ^  ^

Note that Eigen-Corrections need to be stored along with the rest of the matrices of the 

approximation. This reduces the compression achieved.

5.3 Rest Pose and Weight Corrections

Following the same philosophy we present two methods of applying corrections to the rest pose 

and the weights of the fitting process. These corrections are embedded in the final result and need 

not be stored separately as is the case with Eigen-Skin.
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Rest Pose Corrections

Having computed transformation matrices r fo r  all poses and proxy joints, we seek a vector e, 

that is added to each vertex of the rest pose and minimizes the sum of the squared errors of the 

approximation in each pose:

f ( B  \ 2>

min Σ ( v / + e i) - v / ’
l p U =1 y1 J

The solution of this problem is equal to finding the least squares solution to:

B B

n , r / e 1= v /’ - £ n ,T /v i o
M  (5.9)

b =1

for each vertex i and pose p  . The above can be expressed as a linear system of the form Ax = b 

where A is a block vector of N blocks. Each of these blocks of size 3Px3 contains the weighted 

transformation matrices, without the translation component, of the proxy joints that affects each 

vertex for all poses. The 4th column, that of the translation component, is removed because we 

want e,to lie on the plane W=0 in homogenous coordinates. This is because it is added to v, 

which already is on plane W=1 of.the homogenous coordinates. If we denote by:

Ι ζ = Τ ( : , 1 : 3 ) ζ  <5·10)

to be the linear part o f the affine transformation matrix T then:

X W<A
' A1' b

A2 T , WA
: > Λ — b

A" _
_  b

(5.Π)
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From the right, b is a block vector of N blocks. Each block is of size 3Pxl that contains the 

difference of the actual pose from the approximation pose for all poses:

rest pose. The rest pose is thus altered and all subsequent operations must take place on this rest 

pose. This is also the rest pose that is stored by the algorithm as a result of the compression 

process.

Weight Corrections

Another correction process can be applied on the weight influences. Again having performed the 

fitting process we are searching for a weight w'bi that is added to each corresponding weight 

influence to a vertex / ? such the sum of the squared errors of the approximation in each pose is 

minimized: r

(5.12)

Solving this set on N systems A'x = b' results in one correction vector for each vertex in the

(5.13)

Again this is equivalent to the least squares solution o f :

(  B \

B B

b - l

B

(5. 14)
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for each vertex i and pose p  . This can also be expressed as a system of linear equations of the 

form A x -b  where A is a vector of blocks. Each block is of size 3PxB and contains the

transformed rest pose vertex for each of the influencing proxy joints. Overall A & R 3 NPxB

‘ A ' ' Qy, ■ ·· Γ*ν1 B y i

A =
A2 11 T2\l B v i

1J T fv, Γ /ν ,  ·
------1

(5.15)

Matrix b is constructed from the differences of the actual from the approximation location of 

each vertex in each pose and is the same as (5. 12):

(5.16)

1JO 
1__

'v ! - v ; 1 '
b2 IIJO V.1 - v ?l

1·
. 

^
J 1

1__
__

Recall from (3. 2) and (3. 3) that weight need to satisfy certain properties. The addition of 

the correction weight must not disturb these conditions. Thus certain constrains need to be added 

in the optimization process.

Convex Weight Requirement

Constraining all weights, after the addition of the correction weight, to sum up to 1 can be 

achieved if the sum of the first B-l weights of the correction set is constrained to be equal to the 

negative of the Bth weight. This is because the sum of the fitted weights is already 1. The 

following equation describes this notion:
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Σ < Α · + Μ θ = ! < ΐ >
6=1

Σ η ί =1
Β Β Μ

Σ η , ·+ Σ < = 1  °
6=1 6=1

ί χ - ο
6=1 
5-1

(5.17)

Σ ί t
Wbi =

6=1

Substituting in (5. 14) we get:

wl iT 'V i+WiiTfv ,  + ... +  w „ ,r /v , =

ν ;'ν,+"*Λ'ν,+...+ -Σ
Bi B Ύΐ 

5-1 Λ
W,bi

6=1 /
r ^ v  =J 5 vi

(5.18)

η ,Ο Ι ' - r / ) v ,  + W2i( f /  - r / ) v ,  + ... + w(W,(7 7 ., - 7 / ) v ,  =  vf - v l'5

From the above holds that this constrained can be added implicitly by subtracting the last 

column of matrix A from each of the other. Thus A becomes :

5-1

~ Qlr TI’v, Τ ϊν , - • Γ 1 vJB- 1 v

=
Ql1 t f v ,

.
.

.

T 2 vi 5-l V

β \ T f v , r /v ,.  ·· . T p V^5-1 V

and weight w'Bj is removed from the unknowns vector since it can be computed once all other 

weights have been specified.
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Non-negativity Constraint

Each weight must be non negative. For that we must ensure that after the addition of the 

corrections the corrected weight remains positive. This means:

“  K f  -  0  ^  (5.20)

This produces a problem because we have removed the last correction weight from the list of 

unknowns to satisfy the convexity requirement. Thus we cannot add the w'Bj > -w Bj constraint 

explicitly. The walk-around for this was to request explicitly that:

W'b, Ϊ  ~ WBi « ■
B - 1

(5.21)
6=1 

B- 1

b=1

Solving this set on N systems A'x = b‘ results in a correction for each weight influence of 

each vertex.

Both correction processes can be applied independently or in conjunction with the order o f 

application presenting with no actual difference.
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CHAPTER 6

IMPLEMENTATION AND RESULTS

6.1 Implementation Details
6.2 Test-bed Animation Sequences
6.3 Error Metrics
6.4 Decimated Approximation Results

6.1 Implementation Details

Our implementation was build using C# programming language. OpenTK, an OpenGL and 
GLSL shading language wrapper for C#, and was used for 3D visualization. Mircosoft .NET 
libraries where utilized for the creation of user interface and Matlab for complex scientific 
calculations. Interoperability between matlab and .NET was established via Matlab.NET builder 
which creates dlls containing matlab code that can be executed by .NET applications. The whole 
application was developed using Microsoft Visual Studio Development Environment, versions 
2008 and 2010. Matlab Development environment was also utilized. For the dockable windows, 
the open source DockPanel Suite [24] was used.

The application has the ability to load multiple mesh files of Wavefront .obj format, to render 
an animation sequence. Multiple animation sequences can be loaded and processed 
simultaneously. It utilizes all the techniques that were mentioned in this report to approximate the 
animation and can render the result of the approximation, as well as visualize error distribution 
upon the surface. We also use GLSL shading language to create visualizations for clustering and 
proxy joints. The approximation results can be saved in xml files and again be reloaded. Our 
application can also execute decimation of a mesh at variable levels and apply approximation 
techniques one the decimated model. Figure 6. 1 shows a snapshot of our application.

All experiments were run on a Intel Core i7 880 3.06Gliz 6GB RAM, NVidia GForece 480 
GTX, under Windows7 64-bit operating System. All animation sequences where created using 
Blender.
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Figure 6. 1: Application User Interface screenshot

6.2 Test-bed Animation Sequences

We present four of the models that were used to test the results of our approximation techniques. 
Each model was picked to represent a specific type o f deformation.

Tablecloth

Figure 6.2:  Tablecloth animation sequence snapshots
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Tablecloth is an animation sequence of a piece of cloth falling upon a table and starting to 
deform. Tablecloth is a characteristic example of moderately highly deformable animation in 
which large areas remain virtually un-deformed. Of the tablecloth animation, 70 poses where 
used.

Flapping Flag

Figure 6. 3: Flapping Flag animation sequence snapshot

Flapping flag is a model of a flag deforming against a wind field. Flag presents with extreme 
deformation to the right part and moderate to the left, which is the part adjacent to the pole. 70 
poses of the flag animation were also used

Collapsing Camel

Figure 6. 4: Collapsing Camel animation sequence snapshot

Collapsing camel is an animation sequence of a camel cloth model that collapses under is own 
weight. This animation sequence is an example of extreme deformation. Collapsing camel is a 35 
pose sequence.
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Balloon

Figure 6. 5: Deforming Balloon

Balloon animation sequence depicts a cloth sphere that falls upon a pole and is deformed. 
Balloon generally presents with overall moderate deformation. 60 poses of the balloon sequence 
where used.

6.3 Error Metrics 
0

For the evaluation of the approximation process three metrics where used. Two of them provide a 
percentage of deviation. They have been used in [9] and [20], so we used them for comparison. 
The first is called Distortion Percentage [8] and is given by:

d £  =  100*
A  ■ - Aong WPr F

A  . - Aong avg F

(6. l)

where Aorig is a 3PxN matrix that contains the original coordinates of each vertex throughout the 

animation sequence. A  is structured similar to A appr and contains the approximation

coordinates. 4.avg contains in its first 3 rows the average coordinates of each vertex and repeats

for each pose. Because this metric is sensitive to global motion applied to the entire mesh, 
another metric which is translation invariant is used. It is similar to the first, only it divides by the

scalar \I?>NP to get the average deformation throughout the sequence:

E  = 1 0 0 *^  RMS LKJKJ

A —Aorig_____ app r\\F

S n p
( 6. 2)
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The third metric is a variation of Hausdorff metric, only we average the average of the 
minimum distances:

*L· (A\ Y )  = a v g  I M g  ( in f d (*, \y. (6. 3)

6.4 Decimated Approximation Results

We have conducted experiments with the purpose of presenting the results of Defonnation Based 

Fitting and the implications of approximating a decimated animation sequence. Uniform Fitting 

(P-Center based) is used as a benchmark for our method. The two fitting methods are applied and 

compared on various levels of decimation from 0% (no decimation) to 60%. The legend of the 

following figures is read as follows:

i) OS(PC): Optimal-Error Minimizing Decimation on P-Center based fitting

ii) OS(Defonn):Optimal-Error Minimizing Decimation on Deformation Based Fitting

iij) SE(PC): Second Edge Decimation on P-Center based Fitting

iv) SE(Deform): Second Edge Decimation on Deformation based Fitting

v) OS(Corr): Optimal-Error Minimizing Decimation on P-Center based fitting with 

corrections applied

vi) OS(CoiT_Defonn): Optimal-Error Minimizing Decimation on Deformation Based 

Fitting with corrections applied

vii) SE(Corr): Second Edge Decimation on P-Center based Fitting with corrections 

applied

viii) SE(CorrJDefonn): Second Edge Decimation on Defonnation Based Fitting with 

conections applied
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Tablecloth Results

Figure 6. 6: Tablecloth decimation average solving times on various decimation levels
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Figure 6. 7: Tablecloth approximation error dE progression due to decimation.
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Translation Invariant Error (ERMS)
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Figure 6. 8: Tablecloth approximation error ERMS progression due to decimation.
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Figure 6. 9: Tablecloth approximation error progression due to decimation.
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Flag Results

Average Solve Time
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Figure 6. 10: Flag decimation average solving times on various decimation levels

Translation Aware Error(dE)

— OS(PC)

— * —  OS(Deform)

— * — SE(PC)

— * —  SE(Deform)

— (— OS(Corr)

OS(CorrDeform)

SE(Corr)

— *k— - SE(CorrDeform)

Figure 6. 11: Flag approximation error dE progression due to decimation.
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Translation Invariant Error (fRMs)
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Figure 6. 12: Flag approximation error progression due to decimation.
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Figure 6. 13: Flag approximation enordavg(X ,Y )progression due to decimation.
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Camel Collapse Results

Average Solve Time
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Figure 6. 14: Camel collapse decimation average solving times on various decimation levels

Translation Aware Error ( d E)

— ♦ —  OS(PC)

— m—  OS( Deform)

— A—  SE(PC)

— * — SE(Deform) 

·— ■»— " OS(Corr)

— · —  OS(CorrDeform) 

**it**wu!'‘ SE(Corr)

— K- - SE(CorrDeform)

Figure 6. 15: Camel collapse approximation error dE progression due to decimation.
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Figure 6. 16: Camel collapse approximation errorERMS progression due to decimation.
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Figure 6. 17: Camel collapse approximation errord (X, Y) progression due to decimation.
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Balloon Results

Figure 6. 18: Balloon decimation average solving times on various decimation levels
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Figure 6. 19: Balloon approximation error dE progression due to decimation.
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Figure 6. 20: Balloon approximation quoxErms progression due to decimation.
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Results show that P-Center based fitting and deformation based fitting are close to each other. 

Execution times may vary according to the initial clustering which is random in both methods, 

and according to different values for P-Factor and weight smoothing for P-Center and 

Deformation based fitting respectively.

Also, experiments show that the improvement in execution time is not followed by an 

analogous increase in the approximation error. Reduction can reach up to 4 times the original 

execution time while error increase is rarely more than 10%. These results also depict that our 

method is very close the uniform distribution results.

Finally it should be noted that when applying the corrections we proposed to the Uniform 

Fitting the approximation quality tents to be lower of that, using Deformation Based Fitting. The 

difference may seem small but at this low level of approximation error, it is notable.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

We have presented a method that uses the deformation gradient information of an animated 

sequence to partition the model into areas of similar deformation. These areas can be used to 

distribute the proxy bones of the matrix palette skinning process in a deformation based manner 

that results in more proxy bones being positioned at areas of higher deformation. We evaluated 

certain possible methods that can be used to identify these areas and presented a region growing 

variation of k-means clustering algorithm that accomplishes this task. A weight fitting technique 

has also been suggested. It is based on the notion of convolution and used to smoothly propagate 

inter-cluster influence. To accelerate the matrix palette skinning process we performed mesh 

decimation.

Results show that deformation based fitting produces slightly higher approximation error than 

the P-Center based one. Visual results however show that the approximation is free of the bumps 

that denote the presence of cyclic regions around proxy joints. Although a certain amount of 

rounding due to over-fitting is evident it is also possible that the model is scaled to a certain 

degree throughout the process and thus this error is propagated. Recall that we allow more than 

four weight influences to be applied to a vertex. This increases considerably the preprocessing 

time. Multiple weight influences have been efficiently substituted by less in the case of 

articulated objects but whether it is suitable to perform this on highly deformable ones has yet to 

be studied. Uniform propagation of influences may also be sub-optimal. Distance is probably not 

the only criterion for weight assignment and another scheme, probably deformation based, may 

need to be considered. Our decimation scheme with our deformation based clustering can also be 

extended. The potential of storing only the decimated pose along with the weights and the 

clustering and reconstruct the model using this information only is worth investigating.
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