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ΕΙΣΑΓΩΓΗ

Παραδοσιακά, η ενημέρωση των Αποθηκών Δεδομένων γίνεται ασύγχρονα. Ο όρος 

«Ενεργή Αποθήκευση Δεδομένων» αναφέρεται σε μία νέα τάση, κατά την οποία οι 

Αποθήκες Δεδομένων ενημερώνονται όσο το δυνατόν συχνότερα, λόγω των υψηλών 

απαιτήσεων των χρηστών για πρόσφατα δεδομένα. Σε αυτή την εργασία, προτείνουμε ένα 

πλαίσιο για την υλοποίηση μίας Ενεργής Αποθήκης Δεδομένων έχοντας ως στόχους τα 

εξής: (α) Ελάχιστες τροποποιήσεις στο ήδη υπάρχον λογισμικό, (β) ελάχιστη επιβάρυνση 

στο πρόγραμμα που παράγει τα δεδομένα, λόγω του ενεργού χαρακτήρα της μεταφοράς 

των δεδομένων και (γ) τη δυνατότητα ομαλού καθορισμού των ρυθμίσεων του 

περιβάλλοντος που θα δημιουργήσουμε. Στο σύστημά μας, έχουμε υλοποιήσει διαδικασίες 

Εξαγωγής, Μετασχηματισμού και Φόρτωσης χρησιμοποιώντας δίκτυα ουρών. 

Χρησιμοποιήσαμε επίσης στοιχεία απο τη Θεωρία Αναμονής τόσο για να προβλέψουμε 

την επίδοση του συστήματος, όσο και για να ρυθμίσουμε τη λειτουργία του. Λόγω των 

επιβαρύνσεων στην επίδοση του συστήματος, οι οποίες προέκυψαν κατά τη δημιουργία 

του, διερευνούμε διάφορες αρχιτεκτονικές προσεγγίσεις και σχολιάζουμε τα ζητήματα που 

προκύπτουν από κάθε μία από αυτές.

\\ \ι.
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ABSTRACT

Traditionally, the refreshment o f  data warehouses has been perform ed in an off-line 

fashion. A ctive Data W arehousing refers to a new trend w here data warehouses are updated 

as frequently as possible, due to the high demands o f  users for fresh data. In this thesis, w e 

propose a fram ework for the implementation o f  active data warehousing, keeping in mind 

the following goals: (a) minimal changes in the software configuration o f  the source, (b) 

minimal overhead for the source due to the "active" nature o f  data propagation, (c) the 

possibility o f  smoothly regulating the overall configuration o f  the environm ent in a 

principled way. In our fram ework, w e have im plemented E T L  activities over queue 

networks and em ploy queue theory for the prediction o f  the perform ance and the tuning o f  

the operation o f  the overall refreshment process. D ue to the perform ance overheads 

incurred, we explore different architectural choices for this task and discuss the issues that 

arise for each o f  them.
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1 INTRODUCTION

Database M anagement System s are used by organizations to support everyday operations. 

Such applications incur small changes to data. This type o f applications is called Online 

Transaction Processing (O LTP) Applications and focus on processing efficien tly  and 

reliably large number o f  transactions.

Large organizations however, apart from using D B M S  ’ s for covering runtime operations, 

also use them as tools for strategic decisions. Current and historic data are analyzed 

resulting in trends available for taking decisions. Such applications are called decision 

support systems (D SS ’ s).

To extract information based on historic data, trends and cum ulative results, the D S S  ’ s 

should be able to use efficiently grouping operators and aggregation functions over data 

that are highly volum inous. Applications carrying out such tasks are characterized as On 

Line Analytical Processing (O L A P ) applications.

To be able to deal with an environment having such dem anding conditions, specialized 

D B M  S ’ s are used called Data W arehouses. The aim o f  Data W arehouses is tw ofold:

a) T o  integrate heterogeneous data sources, w hich is achieved by gathering all 

information in a single location, and

b) T o avoid conflicts between O L T P  and O L A P  applications, resulting in high system  

performance and availability.

Data W arehouses are usually concluded by Data M arts, w hich are specialized subject 

subsets, to further enhance O L A P  applications. T he relation between O L T P , Data 

Warehouses and O L A P  is illustrated in Figure 1.1.



Fig. 1.1. Coarse Architecture Overview

A ccording to [RaGe02], a D ata W arehouse is defined as a database that collects and stores 

data from  several databases. In [Inmo02], a Data W arehouse is defined as a subject 

oriented, integrated, non-volatile, and time variant collection o f  data in support o f 

managem ent decisions.

T he benefits o f  a data warehouse are coarsely sketched by the follow ing properties: 

Sem antic reconciliation, perform ance, data quality, and availability. The term “ semantic 

reconciliation”  refers to the data warehouse property o f  modeling the same entities, 

m odelled in different w ays at the sources, under a unique database schema. Additionally, 

the history o f  the loaded data is kept. Performance is an important issue, since the answers 

to the posed queries should be available in acceptable time, without affecting the operation 

o f  the O L T P  application. M oreover, performance is boosted by avoiding normalized 

schemas for storing data. Data quality is an important issue since data arriving at the 

warehouse is in most cases inconsistent. Finally, availability is another important factor. 

T he architecture o f  a Data W arehouse is illustrated in Figure 1.2.
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F ig . 1 .2 . A rc h ite c tu r e  O v e rv ie w

The Sources are the actual O L T P  applications from  w hich  the D ata W arehouse retrieves 

operational data. The Data Staging A rea (D S A ) is an interm ediate database where data are 

cleaned and transformed before their loading to the D ata W arehouse. T h e  D ata W arehouse 

(D W ) and the Data M arts (D M ) store data provided to the users. T he M etadata Repository 

is the subsystem w hich stores information concerning the structure and the operation o f  the 

system. E T L  (Extract - Transform ation - Loading) applications extract the data from  the 

sources, transform and clean them before loading them to the W arehouse. Reporting and 

O L A P  tools are reporting applications that perform  O L A P , D S S  and D ata M ining tasks.

E T L , which is an acronym  for Extraction-Transform ation-Loading, is a category o f  tools 

for managing data warehouse operational processes. T heir basic tasks, as summarized in 

[VaSS02] are:

•  the identification o f  relevant information at the source side

•  the extraction o f  this information
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•  the custom ization and integration o f  the information coming from multiple sources 

into a com m on form at

• the cleaning o f  the resulting data set, on the basis o f database and business rules

•  the propagation o f  the data to the data warehouse and/or data marts.

In this thesis, w e  are interested in E T L  applications implementing the refreshment o f  D W  

contents. T he transformations useful for our case are filters, transformers and binary 

operators. These represent common data cleaning tasks used in Data Warehousing 

environments.

Traditionally, the refreshment o f  data warehouses has been performed in an off-line 

fashion. A s  already mentioned, in a traditional data warehouse setting, data are extracted 

from  the sources, transformed, cleaned and eventually loaded to the warehouse through 

E T L  applications. This set o f  activities takes place during a ‘loading w indow’ , usually 

during the night, in order to avoid overloading the source production systems with the extra 

workload o f  this w orkflow .

A c t i v e  D a t a  W a r e h o u s i n g  refers to a new  trend where data warehouses are updated as 

frequently as possible, due to the high demands o f  users for fresh data. The term is also 

encountered as ‘real tim e w arehousing’ for that reason [Whit02]. T o give a concrete 

exam ple, w e mention [AdFi03], where a case study for m obile network traffic data is 

discussed, involving around 30 data flow s, 10 sources, and around 2TB o f  data, with 3 

billion rows. T he throughput o f  the (traditional) population system is 80M rows/hour, 

100M rows/day, with a loading window o f only 4 hours. The authors report that user 

requests indicated a need for data with freshness at most 2 hours.

This kind o f  request is technically challenging for various reasons. First, the source systems 

cannot be overloaded with the extra task o f propagating data towards the warehouse. 

Second, it is not obvious how the active propagation o f  data can be implemented, especially
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in the presence o f  legacy production systems. T he problem  becom es w orse since it is rather 

improbable that the software configuration o f  the source system s can be significantly 

modified to cope with the new  task (both due to the down-tim e for deploym ent and testing 

and the cost to administrate, maintain and monitor the execution o f  the new  environment).

So far, research has dealt with the problem o f  maintaining the warehouse in its traditional 

setup [GuMu95, ZG H W 05, ZhRu02]. In this case, m aterialized view s are refreshed in the 

presence o f  updates, but the general idea is that the refreshment is perform ed off-line. In a 

different line o f  research, data streams [Aba+03, B aW iO l, LoG e03] could possibly appear 

as a potential solution. N evertheless, at least until now, research in data streaming does not 

appear to fit naturally within a data warehousing context -  on the contrary, it appears to be 

a com petitive paradigm to warehousing. Research in data streams has focused on topics 

concerning the front-end, such as on-the-fly computation o f  queries, without a system atic 

treatment o f  the issues raised at the back-end o f  a data warehouse. For exam ple, to our 

knowledge, there is no work related to how streaming data are produced or extracted from  

data producers; not to mention the extra problems incurred w hen the data producers are 

operational systems.

T o  this end, in this thesis w e attempt to approach the problem  from  a clean sheet o f  paper. 

W e investigate the case where the source o f  the warehouse is a  le g a cy  system . T h e specific 

problem involves the identification o f  a software architecture along w ith appropriate design 

guidelines for the implementation o f  active warehousing. W e  are m otivated by the 

following r e q u i r e m e n t s  in achieving this goal.

1. M a x i m u m  f r e s h n e s s  o f  d a t a .  W e want to implement an active data warehousing 

environment to obtain as fresh data as possible in the warehouse

2. S m o o t h  u p g r a d e  o f  t h e  s o f t w a r e  a t  t h e  s o u r c e .  W e  w ish  to  im plem ent a fram ew ork 

where the m odification o f  the software configuration at the source side is minimal
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3. M i n i m a l  o v e r h e a d  o f  t h e  s o u r c e  s y s t e m .  It is imperative to impose the minimum 

additional w orkload to the source

4. S t a b l e  i n t e r f a c e  a t  t h e  w a r e h o u s e  s i d e .  It would be convenient i f  the warehouse would 

export a stable interface for its refreshment to all its source sites.

T he grand view  o f  our environmental setup is depicted in Figure 1.3. A  set o f sources 

com prise source data and possibly source applications that manage them (for the case of 

legacy sources) or D B M S ’ s for the case o f  conventional environments. The updates that 

take p lace at the sources have to be propagated towards the warehouse. D ue to reasons of 

semantic or structural incom patibilities, an intermediate processing stage has to take place, 

in order to transform and clean the data. Once ready for loading, the data from the 

intermediate layer are loaded at the warehouse, through a set o f  on-line loaders.
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Mapping this grand view  to concrete technical choices requires the tuning o f  several 

components o f  the architecture. Follow ing, w e briefly sum m arize our findings that affected 

our architectural choices.

Starting with the sources, in this thesis, w e have focused on legacy system s. Apart from  the 

requirement o f  minimal changes at the source side, legacy sources pose the interesting 

problem o f having an application (instead o f  a D B M S ) m anaging the data. W e m odify a 

library o f  routines for the management o f  data to allow  the interception o f  the calls without 

affecting the applications. The m odification involves (a) inserting no more than 100 lines o f  

code to a library o f  routines for source management and (b) recom piling the application 

(which was not affected), over this library. A lso, as far as the com m unication between 

stages is concerned, w e transmit blocks o f  records for reasons o f  perform ance and minimal 

overhead o f  the source system.

The internal architecture o f  the intermediate layer is not obvious, either. For each E T L  

activity, we em ploy a queue to store incom ing records before they are processed. Each 

activity processes the incom ing data on-line and then passes its output to the next queue for 

further processing. A gain , for reasons o f  perform ance, blocks o f  records are the unit o f  

exchange and not individual records.

W e do not assume a fixed  set o f  E T L  operators, but rather w e  provide a taxonom y o f  such 

operations, based on their operational semantics. N ew  operators can be added to the 

taxonomy as they are defined. Specifically , the taxonom y o f  activities consists o f  the 

follow ing categories: (a) Filters, (b) Transformers and (c) B inary Operations.

Filters exam ine each incom ing tuple to determine whether it m eets certain criteria. I f  these 

criteria are fulfilled, then a tuple is accepted and propagated tow ards an acceptance output. 

If not, it is rejected and possibly propagated towards a rejection output.
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Considering the case o f  Transformers, tuples entering a transformer undergo changes to 

their value and/or their schema. W e can distinguish two subclasses o f  Transformers taking 

into account the relationship between the number o f tuples entering and the number o f 

tuples exiting the transformation. In the first case the two quantities are equal. In the second 

case, the number o f  tuples entering the system is different compared to the number of 

tuples exiting. This occurs because some o f the tuples entering service are aggregated or 

merged.

The third class o f  E T L  activities deals with Binary operators. This is the case where data 

from  m ultiple sources are com bined and a single outgoing stream is produced. Examples o f 

such operations involve variants o f  the jo in  operation, including the jo in  o f data from 

different tables, as w ell as difference and update detection operations among different 

snapshots o f  the same table.

T o  predict the perform ance o f  the system, w e em ploy queue theory for networks o f  queues. 

Our experimental results indicate that the assumption o f a M/M/l queue for each o f  the 

E T L  activities provides an accurate estimation.

A t the same time, to implement the requirement for stable interface at the side o f the 

warehouse, the data are further propagated towards the warehouse through an interface 

involving W eb Services [A C K M 03]. The need for w eb services as the technical solution 

for populating the warehouse with fresh data is not self-evident and requires justification. 

In fact, web services are known to be rather heavy middleware in terms o f resource 

consumption [Duqu03], which potentially jeopardizes the requirement o f fresh data and 

minimal overhead. T he main advantages o f  w eb services compared to other middleware 

solutions (R PC , O R B ’ s, m essage queues, etc) are two: (a) interoperability, meaning that 

they can be deployed in all platforms and configurations and (b) possibility o f exporting 

them outside the intranet o f  an organization. W e emphasize the interoperability property: in 

a large organization, there is a wide variety o f  data sources, involving several platforms and
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configurations. W eb services can provide a common, stable interface for the warehouse to 

all these sources without requiring major design and integration effort. A lso , this loose 

coupling o f  sources and the warehouse results in minimal im pact in the case  o f  changes, 

either at the source or at the warehouse. O bviously, perform ance has been a concern too. 

Still, as we discuss in Section 4, our experiments indicate that the overall delay, incurred by 

the adaptation o f  a solution based on w eb services is rather sm all, especially  i f  one is 

w illing to trade resource (m ainly main m em ory) for freshness.

In a nutshell, our contributions can be listed as follow s:

•  W e set up the architectural fram ework and the issues that arise fo r the case o f  

active data warehousing.

• W e set up the theoretical fram ework for the problem , b y  em ploying queue theory 

for the prediction o f  the perform ance o f  the system.

• W e provide technical solutions for the im plem entation o f  our reference 

architecture, achieving (a) minimal source overhead, (b) sm ooth evolution o f  the 

software configuration at the source side and (c) fine-tuning guidelines for the 

technical issues that appear.

• W e substantiate our results through extensive experim entation.

The rest o f  this thesis is organized as follow s. In Chapter 2, w e present w ork related to our 

approach. In Chapter 3, w e detail the different architectural ch oices and the technical 

challenges each o f  them incurs. Chapter 4 contains elements o f  queue theory and the model 

used to describe our architecture. Chapter 5 and 6 contain our experim ental evaluation for 

defining our architectural setup and measuring our system  perform ance respectively. 

Finally, in Chapter 7 w e sum up the lessons learned and present som e thoughts fo r future 

work.
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2 RELATED WORK

In this Chapter, w e present w ork related to our approach. W e structure related work as 

follows: first, we discuss the area o f  materialized view s. N ext, w e make a reference to W eb 

Services. The third section o f  our related work presents the area o f  streams. Finally, we 

conclude with work in the area o f  E T L.

W ork in materialized view s refreshment is quite related to our setting. This is because a 

materialized instance o f  the relations stored at the Source side resides at the warehouse. For 

the non expert reader, we make a quick reference to W eb Services. T he W eb Services A P I 

is an important part o f  our architecture, since they are used to transfer data to the 

warehouse. W ork concerning streams is related to our system , too. Both streams and our 

system focus on managing continuous flow s o f  data. H ow ever, w h ile  in the case o f  streams, 

data losses are acceptable, the sam e does not happen in our case. F in ally, w e  present w ork 

concerning E T L  transformations. O ur architecture uses E T L  transform ations in the Staging 

Area, thus, work in this field is related to our approach.

2.1 Materialized Views

In [ZhRu02J, the authors propose the Schem a change and D ata update Concurrency 

Control system  for checking the concurrency o f  schem a changes and data updates 

performed by distributed Information Sources.

[GuM u95] describes materialized view s and proposed techniques for their maintenance. A  

taxonom y is also presented over four different dim ensions. A  m aterialized view  is like a 

cache: a copy o f  the data that can be accessed quickly. T h e  d ifference between the 

materialized and non m aterialized view s is that the tuples are stored in the database.
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Incremental maintenance o f  a materialized view means that only changes in the database 

are used to compute changes in the materialized view.

There is no algorithm to solve the view  maintenance problem for deletions using only the 

m aterialized view . The counting algorithm which is described, works by storing the number 

o f alternative derivations o f  each tuple in the materialized view, in order to handle 

deletions. For recursive view s the DRed algorithm is mainly outlined. This algorithm 

deletes from  the view  an overestimation o f  affected tuples, calculates then the alternative 

derivations and inserts the new  and those that exist again into the view. Three variations of 

this algorithm are also presented. A lso, altered variations o f  counting algorithms to handle 

recursive view s are presented. Next, algorithms using partial information for view 

maintenance are presented. These focus on checking whether the view can be maintained 

using the available information, and then how to maintain the view. Some algorithms only 

test whether a view  remains unaffected by an update. If this test fails then another view 

update algorithm is used. Self-maintainable views are those that can be maintained using 

only the materialized v iew  and key constraints.

In [ChCR02] the usage o f  a transaction model for data warehouse maintenance is proposed. 

This model assumes autonomous data sources, which means sources that can alter their 

data autonom ously without accepting external locks. It is also assumed that concurrency 

control, which is achieved by means o f versions, is sequential, i.e. only one transaction can 

be processed. T w o  types o f  transactions are distinguished: the first is source update 

transactions, which trigger the second type, DW  maintenance transactions. A  wrapper is 

responsible for m anaging the versioning system. Initially, it creates versions whenever data 

are updated.

In [ZGH W 95] the authors propose the eager compensation algorithm (E C A ) and some 

variations o f it for dealing with view  maintenance anomalies in a warehousing 

environment. The model assumed is the following: a legacy source is assumed, incapable o f
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handling view s. Every update that occurs is sent to the D W  w h ich  maintains a materialized 

view . W hen the D W  receives the update (insertion or deletion) issues a query towards the 

source. The source calculates the result which is then stored in the m aterialized view .

W ith this setup, anom alies occur when more than one updates occur, one after the other and 

the warehouse sends queries to the source without w aiting the answ er from  the source to 

the previous query. T o  deal with issue the authors propose the E ager Com pensating 

Algorithm. W hen the D W  detects an inconsistent state, i.e. a new  update received, without 

an answer to a previous query has been received, a com pensating query is issued to the 

Source resulting to a consistent result in the W arehouse. M oreover tw o im provem ents o f  

the algorithm are presented: the first, the E C A  - key algorithm , w hich reduces the 

communication load between the Source and the D W  when the v iew  includes a key. The 

second, the E C A  -  local algorithm  determines which update can be handled locally  at the 

warehouse.

2.2 Web Services

• W eb services appear to be the latest developm ent in the field  o f  m iddlew are, crafted 

towards enabling the integration o f  software at an Internet scale. W eb  services evangelize 

universal interoperability by  exploiting Internet technologies, X M L  m essaging, w idely 

accepted standards, and loose coupling o f  applications. A n  excellen t reference book for the 

field o f  W eb  services is [A C K M 0 3]. W eb  services assum e a softw are stack ranging from  

the low  H T T P  transfer protocol, to the execution part (S O A P ), the service description part 

(W SD L ) that exports the public interface o f  services [W SD L0 3] and service com position 

[W SFL01]. In the context o f  this thesis, the main protocol o f  interest is the Sim ple O bject 

A ccess Protocol (S O A P ) [SO A PO I]. S O A P  specifies a m essage form at for the 

com m unication o f  W eb  services along with the bindings to H T T P  and S M T P  protocols for 

the delivery o f  m essages. T he m essages are X M L  docum ents, or e n v e l o p e s  com prising a
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h e a d e r ,  with meta-information for the processing o f the message and a b o d y  with the actual 

contents o f  the message.

2.3 Streams

Aurora [A C C C + 0 3] is a data flo w  system designed to support monitoring applications. Its 

basic jo b  is to process incom ing streams. Aurora has an extended query model supporting 

real time processing, view s, m aterialized views and ad hoc queries. A ll these operations can 

be com bined with each other and form  a network. This network also includes caches, called 

connection points, w hich allow  applications joining the system to have access to data o f the 

recent past. A  connection point can also be materialized through a D B M S.

M oreover an optim ization method for the operations’ network at run-time is presented. 

A ccording to A urora’ s approach, the user provides the system with 2d graphs designating 

critical areas for Q uality o f  Service. I f  some o f  these variables is not fulfilled during 

operation, Aurora sheds some o f  its load. The data operations communicate with each other 

with LIFO  queues. In order to store them, Aurora uses predefined blocks o f space, which 

either doubles or reduces by half. Finally, a scheduler brings in memory the queues with 

higher priority.

In [BBDM +02] fundamental models and issues are considered for the development o f a 

general purpose Data Stream Management System Model. Differences are outlined 

between the data stream model and the conventional relational model. For instance, 

concerning the type o f  queries each fam ily o f systems can answer. The authors also outline 

the bad behavior o f triggers i f  used in such systems and the need o f high performance 

techniques in order to answer queries in such data intensive systems.

The authors also exam ine in detail issues concerning queries over streams, such as 

unbounded m em ory requirements, approximate query answering, sliding windows and
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other. There also is an extensive reference to approaches o f  m any stream ing system s and 

the system they have developed called S T R E A M . F inally algorithm ic issues concerning 

streams are discussed such as histograms, sampling, etc.

The most relative w ork to our approach is the one presented in [JiCh03]. In this paper, the 

authors model single S E L E C T  operations as M/D/I or M /M /l queuing system s, depending 

on th e,typ e o f  condition used and PR O JE C T operations as M /D/l queuing systems. 

M oreover they develop a form ula using queue theory, in order to m odel the hash jo in  o f 

two incoming streams as an M /(D 1, D2)/l queuing system.

2.4 ETL

Potter’ s wheel [RaHeOl] is an interactive data cleaning system . U sers gradually build 

transformations by com posing and debugging transforms on a spreadsheet like interface. 

Discrepancy detection is done in the background on the latest transformed v ie w  o f  the data. 

The desired results can be specified as exam ple values. T h e m ain com ponents o f  Potter’ s 

wheel are the follow ing: a D ata Source (O D B C  data source or text file), w hich provides the 

data to be cleaned. A  Transform ation Engine where transform ations can be ordered via 

exam ples or patterns. T h e Online Reorderer, where the desired transformations are 

declared. The Autom atic D iscrepancy Detector runs in the background data the cleaning 

algorithms. M oreover, an accum ulated state is maintained, in order to detect multi-row 

anomalies where a  set o f  values is individually correct, but together violate som e integrity 

constraint.

The Evaluation o f  pattern suitability is made upon three characteristics: R ecall meaning 

that the structure should match as many column values as possible, Precision where the 

structure should match as less other values as possible and finally  the structure should have 

minimal length in order to be as generic as possible. The minim um  description length 

principle offers a w ay to m ake a trade-off between overfitting and underfitting, m inim izing

25



the total length required to encode data using a structure. Better structures result in smaller 

Description Lengths. The Description Lengths are computed using specific formulas and 

taking into account the three aforementioned characteristics.

A ja x  [GFSSOO] is a data cleaning tool. It is based on user interaction and on automatic 

procedures defined in A J A X  scripting language, which as an S Q L  extension. It aims at 

cleaning data with quality problems o f the follow ing classes: object identity problems, 

errors and inconsistencies. A ja x  distinguishes four types o f transformations: mapping, 

which standardizes data format, matching, which finds data referring possibly to the same 

object, clustering which groups similar objects, and finally merging which eliminates 

duplicates. These operations can be performed combining the follow ing alternatives: using 

stored system  procedures, using additional procedures defined by a human expert, or 

interacting directly w ith the human expert.

In [VaSS02] A  general fram ework is presented for modeling the internal structure o f E TL 

activities. E T L  activities and their consistent parts are initially modeled and reduced to a 

graph called the “ Architecture Graph” , in order to treat the E T L  scenario as a skeleton of 

the overall environment. In this graph, data and functions are represented as nodes, while 

the edges o f the graph depict relationships between data. The authors also provide two 

zoom ing algorithms for transforming the graphs. The first, the “ In and Out Zooming” 

algorithm  aims at the elimination o f  the information overflow  produced by the modeling o f 

the E T L  activity. The second, the “ M ajor F low ”  algorithm focuses on following the data 

flo w  from sources to targets.

In [V SG T02] the authors describe a fram ework for specifying E T L  scenarios aiming 

m ainly to achieve genericity and customization. The main focus is on the data-centric part 

o f  the E T L  activities. A  generic metamodel is presented, which covers all the types o f 

entities that com prise such an activity. These are generic classes in which the ETL entities 

belong. M oreover, a specialized form o f  the metamodel is introduced which contains
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models o f  frequently used E T L  tasks. In specific, this specialization, called  template layer, 

consists o f  subclasses o f  the more generic metamodel layer. T h e m aterialization o f  these 

subclasses are the actual E T L  entities.

Genericity and custom ization is achieved by introducing new  tem plates, w hich w ill be 

specializations o f  the m etamodel layer, and w ill also be abstractions o f  the entities used in 

the E T L  scenario. The authors also present A R K T O S  Π a graphical tool, for the design o f  

E T L  scenarios based on their approach.

2.S Comparison of Related W ork to our Contribution

A s an overall evaluation o f  the related work and a com parison to our contributions, w e can 

mention the follow ing. First, w ork on materialized view s has sp ecifica lly  focused on the 

issue o f  relational view s. Transform ations that lie outside the realm  o f  relational algebra 

have not been taken into consideration by the related w ork. A t  the same tim e, E T L  

w orkflows frequently com prise o f  transformations that em p loy external functions to 

compute tuples and values in w ays more or less far from  the expressive  pow er o f  relational 

algebra. A s far as the existing w ork on E T L  is concerned, this has m ainly to do (a) with 

classes o f  transformations executed either interactively, or off-lin e, and (b) w ith the design 

aspects o f  E T L  w orkflow s. O ur w ork  covers a topic that has not been tackled so far by 

related w ork in E T L . Research efforts on the management streams constitute the most 

relevant area to our w ork. Still, to our know ledge, stream w orkflo w s have not been studied 

in a principled manner, whereas in our w ork w e em ploy queue theory for that purpose. 

M oreover, typ ically, the problem  studied in the area o f  streams concerns continuous 

relational queries rather than the propagation o f  data from  one data store to another. A gain , 

queries (standing fo r  transformations in our case) outside relational algebra have not been 

studied yet.
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3 FRAMEWORK AND ISSUES RAISED

There are several issues concerning the implementation o f  a fram ew ork fo r active data 

warehouse. Therefore, in this Chapter w e w ill start by presenting the general architecture o f  

such a system. In section 3 .1, w e present the grand view  for active warehousing and its 

specific" instantiation that w e have investigated. Then, in section 3.2, w e proceed to a 

detailed presentation o f the issues raised within this fram ework.

3.1 System Architecture

In our architecture w e assume w e have a single source o f  data. W e  consider this limitation 

in order to evaluate architectural alternatives which w ill o ffer the best behavior to our 

framework. Hence, our architecture consists o f  the fo llow in g  elem ents: a Data Source 

generating data, an intermediate data staging area that w ill be referred to as the A c tiv e  Data 

Staging A rea (A D S A ) where the processing o f  data takes p lace and the D ata W arehouse. 

The architecture is illustrated in F igure 3.1.

DW

Fig. 3 .1. Architecture Overview

The Source com prises o f  a  data store (legacy or conventional) and an operational data 

management system  (e.g ., a D B M S  or an application, respectively). Changes that take place
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at the source side have to be propagated towards the warehouse, which typically resides in 

a different host computer. The communication between hosts employs a network protocol 

(e.g., T C P  or U D P). T o  avoid the extra overhead o f overloading the network with half-full 

packets and, as our experiments indicate, to avoid overloading the source with the extra 

task o f  perform ing this task, w e em ploy a Source Flow  Regulator (SFlowR) module that 

com piles changes in blocks and propagates them towards the warehouse.

O nce record blocks leave the source, an E T L  workflow  receives them at the intermediate 

staging area. The role o f  the E T L  w orkflow  is to cleanse and transform the data in the 

format o f  the data warehouse. The E T L  w orkflow comprises a set o f E T L  activities, also 

called E T L  queues, each pipelining blocks o f  tuples to its subsequent activities, once its 

filtering or transformation processing is completed. T o  perform this task, each E T L  activity 

checks its queue (e.g., in a periodic fashion) to see whether data are waiting to be 

processed. Then, it picks a specified number o f records, performs the processing and 

forwards them to the next stage. If less than the specified records exist in the queue, then 

they are all retrieved. I f  the queue is empty, then the invocation is postponed, until there 

exist data to be processed.

The role o f  the active data staging area is versatile: (a) it performs all the necessary 

cleansings and transformations, (b) it relieves the Source from  having to perform these 

tasks, (c) it can act as a regulator for the data warehouse, too (in case, the warehouse cannot 

handle the online traffic generated by the source) and (d) it can perform various tasks such 

as checkpointing, sum mary preparation, and quality o f  service management.

Once all E T L  processing is over, data are ready to be loaded to the warehouse. A s already 

explained, we chose to perform this task through a heavy but reliable (syntactically and 

operationally) middleware, W eb Services. For each target table or materialized view at the 

warehouse, w e define a receiving web service. To be able to invoke the web service, a 

client needs to be constructed. The client, in order to regulate the traffic between the
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staging area and the warehouse, com piles the data in blocks, too. T h e w eb  service at the 

warehouse side then populates the target table it serves. Load-balancing mechanisms at the 

warehouse side and physical warehouse maintenance (e.g., index maintenance) can also be 

part o f this architecture. Still, for the moment, w e do not consider these possibilities.

In the particular implementation that w e have used in our experim ents, w e  have studied the 

problem as it appears over legacy sources. In our configuration, the Source includes tw o 

software modules: (a) an IS A M  file  and (b) an application used to m odify data in the legacy 

data source. For m anipulating IS A M  files, there is a library o f  IS A M  routines that are 

invoked from the application at the source side. W e have m odified these library routines in 

order to replicate the data manipulation commands and send updates towards the staging 

area. Several E T L  queues reside at the staging area perform ing cleanings transformations 

and aggregations. Each E T L  activity retrieves data from  its queue w ith a constant rate, 

retrieving a given number o f  elements in constant timeouts. E T L  activities com m unicate 

both with each other and with the W eb  service clients via Java thread safe queues. T he 

transfer from  the staging area towards the Data W arehouse is done over H T T P  (im plying 

T C P  as the underlying netw ork protocol). For our experim ents, w e  have assum ed that the 

warehouse sim ply stores the data perform ing no other task.

3.2 Issues Raised

To fulfill all the goals mentioned in Section 1, using the architectural elem ents described 

above, there are som e issues raised which m ainly concern the tuning and configuration o f  

the system. T he key  issues that affect system  perform ance and need to be resolved are 

discussed in this section and classified  with respect to their locality  at the source or the 

staging area, as w ell as the overall setup o f  the environment. A ll the technical choices and 

their alternatives are sum m arized in Table 3.1.
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Having described our architectural elements, the next step is to decide their topology. Our 

architecture offers the ability o f  selecting different number o f  tiers. Several choices exist:

One-tier architecture. U sing the one-tier architecture is the simplest solution, overloading 

how ever the single host. In any case, data warehouses were introduced exactly for the 

purpose o f  separating the source production systems from decision support applications for 

perform ance reasons (practically due to transactional deadlocks and system overload). 

Under these considerations, a single tier approach is not recommended. This solution is 

illustrated in Figure 3.2.

3.2.1 Choices concerning the Topology

Fig. 3 .2. One tier topology: The Source, the Staging Area and the Data Warehouse reside on the 

same host

A s the single-tier alternative is not the most realistic case, we proceed to a two-tier 

architecture, where the source and the W arehouse are found on different machines.

Two-tier architecture. The source and the Warehouse are found on different machines. 

Regarding the two-tier architecture, the main issue that arises is related to the placement o f  

the staging area. There are tw o alternatives concerning this choice: the first is to place the 

staging area together with the source, putting the data warehouse on a separate machine
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(Figure 3.3). T he second alternative is to place the staging area at the host w here the data 

warehouse resides (Figure 3.4).

Fig. 3.3. Two-tier topology: The Source and the Staging Area reside on the same host, while the 

Data Warehouse resides on another machine.

In the case o f  the staging area placed at the Source, data w arehousing operations do not 

burden the Source, but still the resources used by the w eb services A P I to perform  the 

invocation remain considerable. A  w ay for dealing with this is to m ove the staging area to 

the warehouse host (Figure 3.4), which can be expected to be m ore pow erful from  the 

source host.

This w ay, the source is com pletely  detached from  the A c tiv e  D ata W arehousing process. 

Naturally, i f  the w arehouse server is too loaded or its configuration too com plex fo r the 

extra software setup o f  a  w eb service server, a  three-tier architecture can  also be em ployed.
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Fig. 3.4. Two tier topology: The Data Warehouse and the Staging Area reside on the same host, 

while the Source resides on a separate machine.

T h re e -tie r  a rch ite c tu re . F inally, there is always the alternative to use a separate dedicated 

machine for the staging area, leading to a three-tier topology. Using the three-tier 

architecture (Figure 3.5) solves all the abovementioned problems, but increases the setup 

and maintenance cost, since an extra server, apart from the one used from the warehouse, 

has to be engaged and administered.

1 1 
i ± d a

Host 1 —
u Host 2

[y
F *

Host 3

Fig. 3.5. Three tier topology: The Source, the Data Warehouse and the Staging Area reside on three 

separate machines.

H aving discussed the architectural alternatives for our topology, we proceed to discuss the 

technical issues raised for each o f  the main components and their overall setup.
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3.2.2 Choices concerning the Source

Concerning the source side, the first consideration that arises has to do with the 

interconnection type between the Source and the staging area. S in ce our goals are to impose 

as little impact as possible to the Source and to make on ly m inor changes, w e have chosen 

the solution o f  sockets both due to its footprint characteristics and the easiness o f  

programming such a  solution.

The next choice is between T C P  and U D P  protocols for the transm ission o f  data between 

the source and the staging area. O n the one hand, T C P  offers reliability. On the other hand, 

U D P offers speed through non blocking calls follow ed  by  a concern on the server side for 

the socket buffer size, in case o f  extended datagram  bursts and no reliability.

A  third architectural ch oice that has to be made concerns the w ay changes to  the source file  

are written to the socket, i.e., whether data are organized in blocks before being further 

propagated to the staging area. There are tw o w ays to deal with this issue: either to write 

each m odification to the socket, or to write bulks o f  m odification com m ands. In the first 

case, whenever a data m anipulation command is issued, it is im m ediately written to the 

socket along with the respective data. In the second case, nothing is written, until a number 

o f records is com pleted. Then, all records together are sent to the staging area. Sending one 

record at a time, w h ile  being a straightforward solution burdens the system  with additional 

communication cost. O n the other hand, using a b lock  has the draw back o f  determ ining the 

block size, but reduces com m unication cost significantly.

3.2.3 Choices concerning the Staging Area

The internal structure o f  the data staging area and the tuning o f  its operation are the major 

issues concerning the perform ance o f  our architecture. T he staging area is a multithreaded 

environment with shared com ponents, thus having to be set up properly to avoid race
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conditions and ensure consistency. Each transformation is implemented as an independent 

thread. The part o f  the Staging A rea listening for connections from the Source and the Web 

Service C lient are implemented as Threads as well. A ll o f  these components communicate 

with each other with shared queues, making locking necessary to ensure consistency and 

avoid race conditions.

Issue Alternatives
General Architecture

T opology
- 2-tier, Staging Area at the source side
- 2-tier, Staging Area at the D W  side
- 3 tier

Source

Connection T yp e
- U D P 
-T C P

Propagation T yp e
- One at a time
- Block-based

A ctive  Data Staging Area

Interface betw een the tw o APIs
- None
- Synchronized Queue

W eb Service invocation type
- Blocking
- Non Blocking

Propagation T ype
- One at a time
- Block-based

Data. W arehouse

- Single W S
Session management - Instance per session

- Instance per request

Table 3 .1. Architectural choices

The problem o f  locking raises the issue o f  the queue emptying rate. Assuming that the input 

to the staging area is determined by the workload o f the source (i.e., it cannot be 

constrained by the warehouse administrator), a proper emptying rate for the E T L  queues 

has to be determined. A  high arrival rate compared to the configured service rate will result 

in instability and queue length explosion. On the contrary, a very high service rate 

potentially results in too many locks o f the queue (resulting again in delay, contrary to what
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would normally be expected). It is obvious that the service rate should be close to the 

arrival rater in order to have both efficient service times, and as less locks as possible.

Another dilemm a is related to the interconnection type betw een the Staging A rea and the 

Data W arehouse. A s already mentioned, the Staging A rea invokes a W eb  S ervice  residing 

at the warehouse side. There are tw o different alternatives for invoking the W eb Service, 

namely -(a) blocking and (b) non-blocking. B lo ck in g  invocation involves an 

acknowledgm ent m essage to be sent from  the w eb service, before its client can continue. In 

our case, this means that a response from  the warehouse is required, delaying how ever the 

queue em ptying rate. N on-blocking invocation does not delay the queue em ptying process 

o f the w eb Service client, since no response is returned from  the invocation.

Finally, the issue o f  sending data as tuple-at-a-time or b locks is raised again for the 

communication between the Staging A rea and the warehouse. In this case, apart from  the 

network overhead, the cost o f  parsing the incom ing w eb service m essages at the warehouse 

plays a role for this choice.

*3.2.4 Choices concerning the Warehouse

The data warehouse side is characterized by a W eb Service per target table, receiving the 

cleansed data from  the Staging A rea, The w eb services A P I o ffers three w ays o f  handling 

the remote invocations o f  the client that resides in the data Staging A rea. T h e  first w ay is to 

create a single w eb  service instance that handles all incom ing requests. T his is a good 

solution for configurations where a small number o f  clients creates a lot o f  invocation 

requests, but is not recom m ended in cases where a large number o f  clients w ish to invoke 

the same W eb S ervice, since it w ill result in high latency times. In this case, the second 

way for handling rem ote invocations is recommended. That is to create an instance for each 

invocation request. H ow ever, in cases o f  high frequency invocation requests, this solution 

behaves poorly in terms o f  perform ance, since it creates a new  instance o f  an invocation 

object. T h e third alternative is a solution com bining the functionality o f  the previous tw o
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cases: an instance is created fo r every session. The only issue that has to be resolved in this 

case is the duration o f  the session time.

In our configurations, w e use the first o f  these alternatives, namely a single web service 

instance that handles all incom ing requests. The reason is that in our experiments, we have 

em ployed one client for the service, which stops its operation after inserting a specific 

amount o f  records into the IS A M  file. This makes the case o f using an instance per session 

the same as using a single instance. U sing an object per request is prohibitive, since we 

assum e high frequency invocations.
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4 THEORETICAL ANALYSIS OF ETL WORKFLOWS FOR 

ACTIVE WAREHOUSING USING QUEUE THEORY
• 4

In our architecture, data flow s from  the source to the Staging A rea, where data sustain 

various types o f  processing: filtering, transformation and binary operations. T o  establish a 

cost model for our system  and to calculate interesting perform ance measures such as the 

delay o f  extracting results to the warehouse, we use queue theory as the means o f  acquiring 

estimations for each case o f  operation.

The roadmap o f  this chapter is summarized as follow s: in Section  4.1 the definition o f  the 

generic queuing m odel is presented. In Section 4.2 lays the p ro o f o f  the m em oryless 

property o f  the exponential distribution. Section 4.3 provides a b rie f introduction to 

M arkov chains. Section 4.4 displays K endall’ s Notation and L ittle ’ s L aw . K endall’ s 

notation is a standard w ay  to describe a queuing system  in term s o f  its input, output and 

internal architecture. L ittle ‘ s law  is the fundamental law governing all queuing system s and 

• relates the input and the output rate o f  the system with the average queue size. Section 4.5 

presents measures o f  effectiveness valid for all types o f  queuing system s. Section 4.6 

describes the sim plest queuing system  o f all, M/M/I. Section 4 .7  presents the M /M ,K,/1 

system which is an extension o f  the M/M/l system to model custom ers serviced in batches. 

This w ill be used to describe the function o f  the source’ s flo w  regulator. Section 4.8 

presents the case o f  constant service times, i.e., the M /D/l system . In Section 4.9, w e 

present methods for dealing with networks o f  queues and in Section 4 .10  w e describe how 

this method is extended for the case o f  multiple classes o f  custom ers. In Section 4 .11 , we 

distinguish data operations occurring in the Staging A rea in categories and argue about the 

type o f  queuing m odel that can be used to describe each o f  them.

39



4.1 Definition of a Queuing Model

The simplest queuing m odel is depicted in Figure 4 .1. It can be used to model machines or 

operators processing orders or communication equipment processing information. 

A ccording to this m odel, a sequence o f  customers arrives at a server. If a customer arriving 

at the server finds the server occupied, it waits in the queue until its turn comes to be 

served. A fter the custom er is served, it leaves the system [Magi].

I f  λ  customers arrive at the system  per time unit, then the mean inter-arrival time is equal to 

l / λ .  Sim ilarly, i f  μ  custom ers are served at the system per time unit, then the mean service 

time is equal to l / μ .  Based on these parameters, w e also define ρ = λ / μ  as the traffic intensity 

which denotes the server utilization. W e require that p < l  or the queue length w ill explode. 

In figure 4 .1 , a basic queuing model is depicted.

* ---------►

Fig. 4.1. Basic queuing model 

A m ong others, a queuing model is characterized by [AdReOl]:

-  T h e  a r r i v a l  p r o c e s s  o f  c u s t o m e r s .  Usually·, we assume that the interarrival times are 

independent and have a common distribution. In many practical situations, customers 

arrive according to a Poisson stream (i.e. exponential interarrival times). Customers may 

arrive one by one, or in batches. A n  exam ple o f  batch arrivals is the customs office at the 

border where travel docum ents o f  bus passengers have to be checked.

-  T h e  s e r v i c e  t i m e s .  U sually w e assume that the service times are independent and 

identically distributed, and that they are independent o f the interarrival times. For 

exam ple, the service tim es can be deterministic or exponentially distributed. It can also 

occur that service tim es are dependent on the queue length. For example, the processing
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rates o f  the machines in a production system  can be increased once the number o f  jobs 

w aiting to be processed becomes too large.

-  T h e  s e r v i c e  d i s c i p l i n e .  Custom ers can be served one by one or in batches. There are 

many alternatives for the order in which they enter service. A  com m on discipline that 

w ill be used henceforth is the First C om e First Served discipline (F C F S ), i.e. customers 

are served in order o f  arrival.

-  T h e  s e r v i c e  c a p a c i t y .  There may be a single server or a group o f  servers helping the 

customers.

-  T h e  w a i t i n g  r o o m .  There can be limitations with respect to the num ber o f  customers in 

the system. For exam ple, in a data communication network, on ly fin itely m any cells can 

be buffered in a switch. The determination o f  good buffer sizes is an important issue in 

the design o f  these networks.

4,2 Statistical Distribution of Interarrival and Processing Times

In this section the p ro of o f  the mem oryless property o f  the exponential distribution is 

presented. This property is very important because it denotes that t h e  a r r i v a l  t i m e  o f  a n  

e v e n t  i n  a  s y s t e m  i s  n o t  d e p e n d a n t  o n  t h e  a r r i v a l s  o f  p r e v i o u s  e v e n t s  a n d  d o e s  n o t  a f f e c t  

f u t u r e  a r r i v a l s .

A  poisson random variable X  has the follow ing distribution:

P(X  = ή)-^--β~μ,η = 0,1....
n\

The time between successive arrivals follow ing a Poisson distribution fo llow s an 

exponential distribution. T h e formula for the distribution function is:
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F(t )  =  1-β~β , t > 0

T he density o f  an exponential distribution with parameter μ  is given by

f ( t )  = μβ'μ , t >  0

T he exponential distribution is the only distribution which has the memoryless property 

[WilI04, p. 66-68]. A  real-valued non-negative random variable X  is called m e m o r y l e s s  i f  

for a l l s ,  t  e R 0 + ·.

P [ X > s  + t \ X > s ]  = P[ X>t ]

Intuitively, this means that the tim e remaining for the next future event is independent o f  

the time the last event occurred [M agi]. It is easy to prove that the exponential distribution 

has the m em oryless property:

P[X > s  + t \ X > s ]  =
P [ X > s  + t , X > s ]  

P[X > s]
P[X > s  + t] 

P[X > s]
e ~ M ( s + t )

e - S t
= P[X > t]

4.3 M arkov Process and M arkov Chains

A  M arkov chain is a discrete-tim e process for which the future behavior, given the past and 

the present, depends only on the present and not on the past. Figure 4.2 shows a M arkov 

chain. A  M arkov process is the continuous-time version o f  a M arkov chain.

A  M arkov chain, studied at the discrete time points 0 ,1,2 ,... is characterized by a set o f  

states S  and the transition probabilities P y  between the states. Here, P y  is the probability that 

the M arkov chain is in state j  at the next time point, given that it is at state i at the present
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time point. The matrix P  with elements p y  is called the t r a n s i t i o n  p r o b a b i l i t y  m a t r i x  o f  the 

M arkov chain. The row  sums o f  P  are equal to 1.

λ λ λ

Ο '  ο  ο

Fig. 4.2. A Markov chain

In a M arkov process there is also a discrete set o f  states S .  In each state there are a number 

o f  possible events that can cause a transition. T he event that causes a transition from  state i  

to 7, where j  ·*■ /, takes p lace after an exponential amount o f  tim e, with probability q y .  A s  a 

result, in this m odel, transitions take place at random points in time.

A  special case o f  a M arkov process is a b i r t h - d e a t h  p r o c e s s .  In a birth-death process the 

only allowed transitions are between neighboring states. T h e transition from  state n  to n + 1  

is identified with a b i r t h  event, and the transition from  n  to n - 1  is a d e a t h  event. M any 

* queuing systems can be described as birth-death processes. T he M arkov process o f  Figure 2 

is a birth-death process, since there are only transitions between neighboring states.

4.4 Kendall’s Notation and Little’s Law

T o characterize different queuing models Kendall introduced a shorthand notation [Magi] 

using a code o f  the form  A / B / m / K J M . Each o f  these sym bols has the fo llow in g  meaning:

• A :  Distribution o f  the inter-arrival times. T he fo llow in g  sym bols are used to indicate 

some com m on distributions: M  (exponential / m em oryless distribution), G  (general 

distribution), D  (Deterministic), E k (Erlangian distribution with k stages).
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•  B :  Distribution o f  the service times. T he aforementioned sym bols are also used in this 

case.

•  m: N um ber o f  servers.

•  K :  size o f  the queue’ s w aiting room  (only used in the case o f  finite waiting room)

• M :  S ize  o f  population to be served. I f not used, infinite population is implied.

L itt le (s L a w  gives a very important relation between the mean number o f  customers in the 

system  N ,  the custom er mean arrival rate in the system λ ,  and the mean time a customer 

remains in the system  T .  This relation is formulated as:

Ν  =  λ Τ

T he im portance o f  L ittle  ‘ s L a w  resides in the fact that this equation holds for every type o f 

queuing system  irrespectively o f  the arrival and service distributions.

4.5 M e a su re s  o f  E ffectiven ess

M easures o f  effectiveness are measures valid for all types o f  queuing systems, no matter o f 

the arrival or service rates. In brief, these measures are the following:

•  M ean num ber o f  custom ers in the system  in steady state:

L = E[n) = Ynp„
ns 0

•  M ean num ber o f  custom ers in the queue:

£ , = Σ > - 1 ) Λn*l
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In these form ulas L q  represents the mean number o f  customers w aiting in the queue to be 

processed, while L  represents the total customers in the system : the custom ers currently 

being processed and the customers waiting in the queue.

U sing L ittle ’ s form ula it is easy to obtain the expected w aiting tim es fo r the system , and the 

waiting queue.

4.6 The M /M /l Queuing System

MZM/1 is the sim plest queuing system and it can be described as follow s: F IF O  service, 

single server, infinite w aiting line, the customer inter-arrival times are independent, 

identically and exponentially distributed with som e param eter λ .  T h e  custom er service 

times are also independent, identically and exponentially distributed with som e parameter 

μ .  T he assumption o f  independent and identically distributed variables means that each 

random variable has the same distribution with the others and they are m utually 

independent. W e can describe this type o f queuing system  through the fo llow in g  equations 

[Will04]:

M ean number o f  custom ers in the system:

L  = E[n] = =
1- p  μ - λ

M ean number o f  custom ers in the queue, or the queue length:

_ P ‘
1 - P  μ { μ - λ )

M ean delay time fo r a custom er in the system:
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Mean delay time for a customer in the queue:

λ
Probability o f  n custom ers in the system:

p n = ( l - p ) p n

A  method for obtaining steady state flo w  equations for a birth - death process is the 

stochastic balance procedure [GrHa]. This type o f  analysis looks at a g iven  state and 

requires that the flo w  into a state equals to the flo w  out o f  the state.

Consider a state n  ( n > l )  in an M /M /l queue. A s  shown in figure 2, the system  goes from 

state n  (m eaning n  custom ers in the system ) to state n - 1  when a service completes, or to 

state n + 1  w hen an arrival occurs. Sim ilarly, the system goes from state 

n - 1  to state n  when a new  arrival occurs, and from n + l  to n  when a service is completed. 

T h e mean flo w  into state n  equals to μ ρ η + ι  + λ ρ η. /  and the flo w  out o f  state n  is μ ρ η +  λ ρ η . 

Equating incom ing flo w  to outgoing flo w  results in:

P P n + \ +  λ Ρ η ~ 1  =  U  +  P ) P n  > (*  *  1)

In the case that n = 0 ,  since n  is non negative the follow ing equation is obtained:

λΡο

4.7 Networks of Queues and the Jackson Theorem

M any queuing system s consist o f  a  network o f  queues. In a q u e u i n g  n e t w o r k  (QN), a 

custom er finishing service in a service facility is either immediately proceeding to another 

service facility  or leaves the system. For our purposes we assume that each node o f  this 

netw ork consists o f  a single server with exponential arrival and exponential service times.
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One basic classification o f  queuing networks is the distinction between o p e n  and c l o s e d  

queuing networks. In an open network new custom ers m ay arrive from  outside (com ing 

from  a conceptually infinite population) and later on leave the system . In a  closed  queuing 

network the number o f  customers is fixed and no custom er enters or leaves the system . In 

our case we are exclu sively  interested in open networks. W e w ill consider only the case o f 

a single class network where all customers belong to the same class, for exam ple share the 

same service times.

In the follow ing analysis w e w ill use the follow ing notation:

N \  number o f  nodes (single service centers)

k i \  the number o f  jo b s  at the i-th node. The nodes are num bered from  1 to N. T he k i  are 

grouped into the vector ( £ / , . . . ,  k N) .

m e  the number o f  parallel servers at node i .  A ll servers have the same service rate.

- p e  service rate o f  all the servers at node i .  T he overall service  rate o f  this node is 

m j  * P i .  The mean service time o f  a single custom er is l / p t

-  P i j : the routing probability that a customer leaving node / proceeds to node j .  These 

probabilities rem ain fixed  over time. Clearly, when there is no direct path from  i  to j  

w e have p,y =  0. In our case w e assume that the occurring transitions fo llo w  a birth -  

death process, i.e, they occur only between neighboring states.

- p o / .  the probability that a new  jo b  entering the system  from  outside enters the system  at 

node j .  In an open network the follow ing holds:

- P i # ,  the probability that a  jo b  leaves the system  im m ediately after getting service at 

node i .

- λ ο χ .  the arrival rate o f  jo b s from outside to node /.

- λ 0χ .  the total arrival rate to node i .  This includes arrivals both outside the system  and 

from  other nodes (including feedback).
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A: the total arrival rate to all nodes in the network from outside.

e t = A/A i s  t h e  v i s i t  r a t i o  o f  node i, i.e. how  often the node is visited by a single job.

I f  an open queuing netw ork is in steady state then for each node, its arrival rate A,· equals its 

departure rate. T h e arrival rate A,· to node i  is  clearly the sum o f  all arrivals from  the outside 

to i  and f r o m  a ll nodes to i  (including i  itself), thus w e have:

N

Λ· = Ah + Σ  p  j j ^j
;=i

or in  vector -  m atrix form :

A = A0 +ΑΛ

T hese equations are called  traffic equations and they can be transformed into a set o f N  

sim ultaneous linear equations. I f  w e  d ivide these equations by  λ  w e arrive at:

N

e, = Poj  + H P u e j
y=i

In order to calculate the perform ance measures in queuing networks the steady state 

probabilities have to be found:

π  (k/,... ,  kN) = P r  [kj  custom ers in queue 1,.... kn custom ers in queue NJ

T h e term π(ki,..., kn) denotes the probability o f  kj customers in queue 1, k2 customers in 

queue 2 and so on. T he overall throughput o f  an open queuing network is the rate by which 

jo b s  leave the network. If the network is in the steady state, then this rate equals the arrival 

rate A from  outside to the network.
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J a c k s o n  *s T h e o r e m  specifies the conditions, under which a product form  solution in open 

queuing networks exist:

The number o f  custom ers in the network is not limited.

Every node in the network has Poisson arrivals from outside the network.

A  customer can leave the system  from any node (or a subset o f  them).

- A ll service times are exponentially distributed.

In every  node the service discipline is FIFO.

The ι-th service facility consists o f  mi identical servers, each w ith service rate μ, (as a 

generalization the service rate μ, may depend on the number o f  custom ers in system  /).

J a c k so n ’ s T heorem : If in an open network the condition λ ( < μ (· · holds for every 

/ e f l ,  . . , N J  then the steady state probability o f  the network can be expressed as the product 

o f  the state probabilities o f  the individual nodes:

n ( k h . . . t k N)  = n I ( k ] ) n 2 ( k 2 ) . . .  π ^ Ν)

Therefore, w e can solve this class o f  networks in three steps:

S o lve  the traffic equations to find for each queuing system  i .

- For each queuing system  t, determine separately its steady-state probabilities π ^ ) .  

Determ ine the global steady-state probabilities π  ( k h . . . ,  k N )  from  the above formula. 

D erive the desired global performance m easures.

Jackson ’ s theorem offers a very important result since it allow s us to calculate, in a 

straightforward w ay, the steady state probabilities o f  the w h ole netw ork by calculating the 

probabilities by treating each node separately.

4.8 M u lti C la ss  J a ck so n  N etw orks

A  generalization to Jackson networks is a Jackson netw ork with different classes o f  

customers [GrHa], In specific, customers o f  different classes have different routing
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probabilities, depending on the class they belong. T o  solve such networks, we assume a 

separate routing m atrix R (t) for each customer class, where the superscript (t) represents the 

class o f  the custom ers. T he routing equations are solved separately for each class o f 

custom ers. T h e form ula describing the arrival rate in a node for class t in vector -  matrix 

form:

λ ( , ) = λ 0< ο + λ <οΚ (,>

T he overall input rate λ  in the network equals to the sum o f the input rate o f  the network for 

each class o f  custom ers. This can be form ulated as:

λ  =  Σ λ (,)

T o  obtain individually the average number o f  customers o f  class t  in node i, denoted as L, (,), 

the fo llo w in g  equation holds:

4 <1,+ ; P + . . . + ; l0,>

A gain  L t ’s  are com puted by  the M /M /l formulas, since w e can treat each node separately.

4.9 Applying Queue Theory to ETL Workflows

E ach E T L  queue can direct custom ers to more than one subsequent queue, depending on 

the type o f  operation it perform s. The com position o f  queues in queue theory is treated by 

queue networks and the com putation o f  the interesting properties o f  such networks depends 

on the nature o f  the in volved  individual queues. The question that arises is what kind o f 

individual queues do the E T L  activities produce. One possible way to answer this question 

is to define an extension o f  the relational algebra, specifically tailored for E T L  purposes, 

containing for instance, operators for answering continuous queries and study the properties 

o f  each operator from  the view point o f  queue theory. Since this would probably produce 

quite com plex queues, w e adopt a different, black-box, approach and define a taxonomy o f

50



E T L  transformations, based on the relationship o f  their input and output. T his w ay, w e 

practically categorize E T L  tasks in fam ilies without delving in the particularities o f  their 

internal functionality. Specifically , the taxonom y o f  activities consists o f  the fo llow in g  

categories: (a) Filters, (b) Transformers and (c) Binary Operations.

accented

rejected

Fig. 4.3. Queuing model for Multi-output activities

4 .9.1 Filters

Filters exam ine each incom ing tuple to determine whether it m eets certain criteria. I f  these 

criteria are fulfilled, then a tuple is accepted and propagated towards an acceptance output. 

If not, it is rejected and possibly propagated towards a rejection output. W e  assum e that 

tuple arrivals occur due to a Poisson process and service tim es fo llo w  an exponential 

distribution. W e define the probability that som e tuple i  is accepted as P a  and the 

probability that som e tuple i  is rejected by the system  as P r . T his is illustrated in Figure 4.3. 

It is obvious that P fl+ P r - 1 .

The filtering operations do not im pose a change in the overall num ber o f  tuples m aking the 

follow ing equation valid:

| t u p l e s  e n t e r i n g  s e r v i c e  | = | t u p l e s  a c c e p t e d  |+| t u p l e s  r e j e c t e d  |

A lso, these operations do not incur changes to the schem a o f  the tuples entering the service 

facility com pared to the schema o f  the tuples exiting. T yp ical operations o f  this category 

are not null, dom ain and foreign key checks, selections and in general, any type o f  

operation, operating lo cally  on a tuple and determ ining w hether it w ill be further
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propagated or not. D u e to their m ultiple outputs, filters can also act as routers for tuples 

w hose destination depends on their value.

4 .9.2 Transform ers

Considering the case o f  Transform ers, tuples entering a transformer undergo changes to 

their value and/or their schema. W e can distinguish two subclasses o f  Transformers taking 

into account the relationship between the number o f  tuples entering and the number o f 

tuples exiting the transformation. In the first case, the two quantities are equal which 

means:

| t u p l e s  e n t e r i n g  s e r v i c e  \ =  \ t u p l e s  a c c e p t e d  |

W e  assum e that tuple arrivals occur due to a Poisson process and service times fo llow  an 

exponential distribution, in other words, w e have the same case with filters transformations. 

A gain , w e define the probability that som e tuple i  is accepted as P a  and the probability that 

som e tuple i  is rejected by  the system  as P r . Since all tuples are accepted, w e have: P a -  1  

and P r = 0  (Figure 4.4). A n  exam ple o f  such a transformation is the surrogate key 

transformation, the usage o f  functions for the derivation o f  new  values and, in general, any 

transformation that derives an output tuple solely on the basis o f  the value o f  a single input 

tuple.

Fig. 4.4. Queuing model for Single-output activities

In the second case, the number o f  tuples entering the system  is different com pared to the 

number o f  tuples exiting and in specific:

| t u p l e s  e n t e r i n g  s e r v i c e  | > | t u p l e s  a c c e p t e d  |
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This occurs because som e o f  the tuples entering service are aggregated or merged. W e 

assume that tuple arrivals occur due to a Poisson process and service times fo llo w  an 

exponential distribution. The problem with this kind o f  transformations is that practically 

queue customers disappear and new custom ers are produced by each transformation. T o  

model this property in terms o f  queue theory, w e make the assum ption that depending on 

the aggregation or m erging factor, some o f  the incom ing custom ers continue and som e exit 

the system. In other words, we assume that some o f  the tuples after being transformed 

continue through the system  as accepted. The number o f  these tuples equals the number o f  

tuples produced as a result by the transformation. The rest o f  the tuples are assum ed to be 

rejected by the system  after their service and exit the system . T h e fo llo w in g  obvious 

equation holds:

| t u p l e s  r e j e c t e d  | = | t u p l e s  e n t e r i n g  s e r v i c e  | - | t u p l e s  a c c e p t e d  |

Again, we define as P a  the probability that some tuple i  is accepted and P r  the probability 

that some tuple i  is rejected by the system: P a +  P r - 1 .  G iven  the aggregation factor o f  an 

incom ing set o f  data, w e can easily compute the output and rejection rate as w ell as the 

respective routing probabilities on the basis o f  the number o f  tuples w e w ish to aggregate 

each time, or more generally, to impose a transformation o f  this category. Thus, the routing 

probabilities are:

| r e s u l t  _ t u p l e s \  ^ ^  | i n p u t  _  t u p l e s \  - 1r e s u l t  _  t u p l e s \

\ i n p u t  _  t u p l e  s \  r  \ i n p u t  _  t u p l e s \

4,9.3 Binary Operators

The third class o f  E T L  activities deals with Binary Operators. T h is is the case where data 

from multiple sources are com bined and a single outgoing stream is produced. E xam ples o f  

such operations in vo lve  variants o f the jo in  operation, including the jo in  o f  data from 

different tables, as w ell as difference and update detection operations am ong different 

snapshots o f  the sam e table. [JiCh03] describes a w indow -based hash jo in  algorithm  for
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continuous streams. In the context o f E T L , w e make the follow ing assumptions and 

observations:

•  O ne o f  the tw o inputs is consider as the p r i m a r y  i n p u t  f l o w .  Tuples o f  this flow  are 

checked over filters or transformed according to the values o f  some other relation and 

ultim ately, either propagated towards the W arehouse or rejected.

•  T he second input o f  the operator is acting as a r e g u l a t o r  o f  t h e  p r i m a r y  f l o w .  In other 

words, its values are only needed in order to determine the processing and routing o f 

the tuples o f  the primary flo w . For all practical purposes, where active E T L  

functionality is needed (update detection, difference, facts joined with dimension 

values), a static snapshot o f  the regulator flow  can even be assumed.

• Adopting the m odel o f  [JiCh03], both inputs arrive at the same queue -  they simply 

undergo processing with different distributions o f  processing times.

In principle, a binary operator has to be dealt with as a multi-class queuing system, with 

one class for each flo w  (input or output) -  see Figure 4.5. W e refer the interested reader to 

[JiCh03] for such a treatment. S till,'b a sed  on the aforementioned assumptions, we can 

avoid  m odeling the system  as a m ulti-class queue and deal only with the primary flow  o f 

the operator. In the rest o f  the thesis, w e w ill consider single-class queues, the tuples o f 

w hich  (a) either continue in the system  or (b) are ultimately rejected. A n interesting 

observation here is that no matter how  many different categories o f  tuples enter the node 

for service, the output tuples can be assumed to belong in one o f  the two aforementioned 

categories.

W e consider Poisson arrivals and exponential service times. A s stated earlier the two 

routing classes are accepted with probability P „  and rejected with probability P r and as 

before P „ +  P r - l .  This type o f  operations does not impose a change in the overall number 

o f  tuples existing m aking the fo llow in g  equation valid (Figure 4.5):
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I tu p les  en terin g  serv ice  | = | tu p les  a c c e p te d  |+ | tu p les  r e je c te d  |

H owever, differently from  Filters, the schema o f  the tuples possibly  changes.

4.9.4 Generic Model

It is easy to observe, that a Generic M odel can generalize the three aforem entioned classes, 

in a single case where a node consisting o f  a single server serves possibly  m ore than one 

class o f  customers. A ll custom ers arrive according to a Poisson process and are serviced 

with exponential service times. T he general case is depicted in F igu re 4.5 and involves a 

M/M/l queuing node.

accepted

p  (u ^ra -----—————

rejected

Fig. 4.5. Generic Model for ETL Queues

In the general case, w e can assume that tuples o f  custom ers, after their E T L  transformation 

at the node, leave the system  with probability P r0 )  and continue in the queue netw ork with 

probability P j ° .  C oncerning the number o f  tuples in the system  the fo llo w in g  equation is 

still valid:

| t u p l e s  e n t e r i n g  s e r v i c e  | = | t u p l e s  a c c e p t e d  |+| t u p l e s  r e j e c t e d  |
·.

Concerning the schem a o f  the tuples before and after service, w e observe that the schem a 

changes in the general case, apart from the case o f filters.
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In the rest o f  this thesis, w e  w ill fo llo w  the assumption o f  a primary input flow . This 

obviously  results in form ing an M /M /l queuing node as the constructing element o f our 

E T L  queue network.

4.10 Methodology for Solving ETL Scenarios

In this section w e illustrate the solution o f  a queue network o f  E T L  operations. W e use 

Q ueue Theory to predict a perform ance metric o f  our system  based on the values o f  the 

other m etrics. M oreover, w e provide an exam ple to illustrate the usage o f  Queue Theory in 

order to predict the number o f  packets in the system, know ing the arrival and service rates.

S p ecifically , g iven  a netw ork o f  E T L  queues, there are three inter-related metrics for each 

queue: a r r i v a l  r a t e ,  s e r v i c e  r a t e  and the n u m b e r  o f  p a c k e t s  i n  t h e  q u e u e .  The overall 

number o f  packets in the system  can easily be determined as the sum o f  the individual 

queues. T he problem  form ulation is simple: given the two o f  the three metric, determine the 

third one. T he m ethodology for solving such a problem is quite simple. W e work on open 

queuing networks, since tuples arrive from  outside (com ing from  a conceptually infinite 

population) and later on leave the system. Each node o f  the network is assumed to be a 

M /M /l system . In order to so lve this network·we fo llow  these steps:

1. W e determ ine the routing probabilities for each node.

2. W e solve the traffic equations system  to calculate the arrival rate for each node.

3. W e solve for each node separately the M /M/l equations to calculate performance metrics

T o  demonstrate the usage o f  this technique, which com es from  queue theory, we assume 

the fo llo w in g  scenario, as illustrated in figure 4.6. In brief, the scenario is as follows:

a. F ilter 10%  o f  incom ing data.

b. A  surrogate key operation to the first column o f the filtered data.

c. G roup by sum.

d. D ata are then fed to the warehouse.
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We assign the following identifiers, for reasons of ease, to each node of the network thus

F Filter 10%

S K Surrogate K ey
G B Group B y  Sum

W S W eb Service C lient

0 Outside the network
Table 4.1. Assigned identifiers

SFlow R
Filter
10% SK

GB :
Sum WS ClienC

[Source]— ^  ^

Source A D S A D W

Fig. 4.6. The scenario we solve

The routing probabilities for each node o f  the Staging A rea  are the fo llow in g:

*n O It p -o T1 *Tl II o Pf.sk =  0.9 Pf.gb = 0 p F.WS — 0
Psk.o= 0 PsK.F= 0 Psk,sk= 0 Psk.g b= 1 P SK.WS =  0
Pgb.o= 0 Pgb.f = 0 Pgb.sk= 0 Pgb.gb = 0 P GBtWS =  1
Pws.o= 1 PwS.F= 0 Pws.sk =  0 PwS.GB= 0 P ws.ws = 0

N ext w e solve the traffic equations, which are the follow ing:

λρ =  Xo,F+ λρΡ p,F + λ^κΡ SK,F + <̂;bP gB,F + λwsPwS,F 

λ$κ = ^o.sk + λρΡ f.sk + ^skP sk.sk + ĝbPgb.sk + λwsPws,sκ 

λ<3Β =  λο,ΰΒ  Ί" λρΡρ,ϋΒ +  λ8κΡ$Κ,σΒ +  ^O bP g B.GB +  λwsPwS,GB 

λws = λο/ws + λρΡ f.ws + ^skP sk.ws + XgbP gb.ws + λwsPws.ws 

The solution results in the fo llow ing equations:

λβ = λο,β
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λ$κ =  λρΡF.SK 

λσΒ =  ^skP  SK.GB

λ-WS =  ^gbPgb.ws

T h e m easured arrival rate from  the Source is:

λο = λοιΡ=  22.252 packets / sec

Substituting w e get:

λ Ρ = 22.252 packets / sec 

X$k = 22.252 x  0.9 = 20.0268 packets / sec 

λ<3Β =  XSkPsk.gb = 20.0268 packets / sec 

X w s  = ^ bPgb.ws =  20.0268 packets / sec

N o w  w e can so lve  fo r  each node separately the M /M /l equations to obtain the performance 

m etrics. T o  do this w e  also need the service rates for each node. W e get the follow ing 

values from  our experim ents:

μΡ = 26.403 

Psk = 25.648 

Pg b  = 27.194 

Pws = 28.595

Thus, for each case, the average number o f  packets in the system  is the follow ing:

L f = 5 .36 0  

L sk = 3.960 

L g b  = 4.502 

L w s = 2.60

Sim ilarly, w e can easily  calculate the rest o f  the performance rates using the equations that 

hold  for the M /M /l queuing system .
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5 EXPERIMENTS ON ARCHITECTURE WITHOUT ETL 

PROCESSING

In this Chapter, w e present the experiments w e conducted to determ ine the best 

configuration for our architecture.

SFlow R WS Client WS

O ► D C 3

Source A D S A D W

Fig. 5.1. Experimental setup for set (a)

# W e present tw o sets o f  experiments: (a) and (b). Set (a) presented in this chapter, deals with 

the general behavior o f  the system. The purpose o f  this set o f  experim ents is to figure out 

the behavior o f  each system  com ponent separately, and to establish guidelines for building 

the system. In this case, data are ju st transferred to the w arehouse and no E T L  operations 

are involved. In set (b), presented in Chapter 6, w e evaluate the behavior o f  a system  in a 

realistic setup, based on the conclusions derived from the first set. N aturally, in this case, 

we also transform out data using E T L  operations.

Our experimental setup is as follow s: In our configuration, the Source includes tw o 

software modules: (a) an IS A M  file  and (b) an application used to m odify  data in the legacy 

data source. T o  m anipulate IS A M  files, there is a library o f  IS A M  routines that are invoked 

from the application at the source side. W e have m odified these library routines in order to
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replicate the data manipulation commands and send updates towards the Staging Area. The 
ISAM library that we altered is the PBL/ISAM suite [PBL04] available under GPL license. 
We have used a sample program distributed within the suite as the legacy application. We 
use two different data sets for our purposes. The first consists of 100,000 records and the 
second of 1,000,000 records. The ETL queues of the Staging Area have been implemented 

using the Sun JDK 1.4 , whose runtime engine has also been used. As a Web Services 
platform we have used Apache Axis 1.1 [AXIS04] with Xerces XML parser running over 
Apache Tomcat 1.3 .29 . Our Data Warehouse is implemented as a MySQL 4.1 database.

= =
Source

SFlowR

+ D -

Source

ws

ws

DW

Fig. 5.1. Experimental setup for set (b)

The host we used for the Source was a ΡΙΙΓ 700MHz with 256MB of physical memory 
running SuSE Linux 8 .1. The host used as the data warehouse a Pentium 4 2 .8GHz with 

1GB of physical memory running Mandrake Linux. This server also hosted the Staging 
Area. The hosts are interconnected via the switched Fast Ethernet LAN of our department. 
Our data were created from the TPC-H data generation tool. For set (a) each row of data 
has fixed size equal to 20 bytes. For set (b), where we evaluate the system behavior under 
real data warehousing conditions, we used data of variable size. In this case, each row has 

an average size of 140 bytes.

In our experiments, we evaluate the cost in marginal conditions. Thus in order to evaluate 
the worst case, the Source generates data at its peak capability. Moreover, since our
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warehouse host is a much faster computer than the source host, w e  w ould  not be able to 

make safe conclusions i f  w e alw ays let it operate at its full capability. Thus, w e simulate 

slower server perform ance by em ploying time outs betw een operations. This w ill be 

explained in more detail later.

5.1 Sm ooth U p grad e

One o f  the goals o f  our architecture is to pose minimal m odifications to code o f  the source 

system. In our approach, w e do not alter the L ega cy  A pplication  itself, but the library 

which manipulates the IS A M  files by adding a few  lines o f  code to the routines that are o f  

interest to the purpose o f  active warehousing. These routines are: the file  opening routine, 

the record insertion routine and the file closing routine. T he alterations are located only in 4 

points o f  the library’ s source code:

1. The first m odification is to include our library w hich contains the so cket’ s client 

and the Source F lo w  Regulator.

2. The second m odification is to add a call to the routine o f  our library that opens a 

socket to the Staging A rea at the IS A M  file  opening routine. T h is call is perform ed 

only i f  the opening o f  the IS A M  file  is successful.

3. The third m odification is to also add the call to our library’ s function that writes to 

the socket at the routine o f  the IS A M  file  library that w rites the record to the file. 

This routine stores the specific record to the Source F lo w  R egulator’ s buffer and 

when the defined number o f  records is com pleted, it delivers them to the Staging 

A rea. A gain , this routine is called only after a successful insertion.

4. The fourth m odification is to add a call to the routine o f  our library that closes the 

opened socket to the Staging Area, at the IS A M  file  closin g  routine. T his call is 

perform ed on ly i f  the closing o f  the IS A M  file  is successful.

61



T able 3 shows the alterations that w e have performed to the library in pseudo-code. The 

overall length o f  code that had to be written for this part o f  the implementation, including 

the additions at the IS A M  library, is approxim ately 100 lines.

T a b le  3. C od e alterations at the routine that opens the IS A M  file.

O riginal Routine A ltered Routine

O pen isam  File() 

{

Open isam File() 

{

opening_isam_file_commands
opening_isam _file_com m ands

if(open==success)

} A D S A  socket open() 

}

W rite record to File() 

{

W rite record to File() 

{

insert_record_commands
insert_record_commands

if(w rite= su ccess)

} write to Source F low  RegulatorR() 

• }

C lo se  isam  File() 

{

C lose isam File() 

{

closing_isam_file_commands
cl o s in g j  sam _file_com m ands

if(c lo se = su cce ss)

} A D S A  socket close() 

}

T he routine that opens the socket to the Staging A rea reads configuration information from 

a plain text file , before the opening o f  the socket. This file  contains the follow ing three 

pieces o f  information:
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1 . The number o f  records the Source F low  Regulator w ill gather

2. The address o f  the Staging Area

3. The port o f  the Staging Area

A s an overall assessment o f  the impact o f  our changes, w e can say that (a) minim al code 

had to written to achieve the replication o f  incom ing updates to the warehouse in an 

active fashion, (b) sim ple configuration parameters are required, (c) no changes were 

required to the code, rather than a simple recom pilation under the new  library.

5.2 U D P  vs. T C P

The first parameter that needed to be tested involved the netw ork protocol between the 

source and the Staging Area. The goal o f  our first experim ent is to determ ine the system ’ s 

behavior using U D P  and sp ecifically  if  there are any datagram  losses. In the graph shown 

in Figure 5.3, the results o f  sending 100,000 records from  the Source to the Staging A rea 

using U D P are shown. The Staging A rea uses a queue and perform s asynchronous 

invocation.

The results show a 3 5 %  packet loss o f data, most probably due to the o verflow in g  o f  data. 

Such losses are prohibitive for normal operation o f  an on-line environm ent. Therefore, for 

the rest o f  the thesis, w e  have fixed  T C P  as the interconnection protocol between the 

Source and the Staging A rea.
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Fig. 5.3. Data loss using UDP as the interconnection protocol between the Source and the Staging 

Area

5.3 Overhead a t Source

T h e m ain requirem ent fo r  the architecture at the source side involves minimal overhead 

during regular operation. Therefore, the goal o f  the next experiment is to measure the 

overhead that our configuration incurs at the Source side. W e measure the time to complete 

the insertion o f  (a) 100 thousand records and (b) 1 m illion records to the IS A M  file. W e 

experim ent on the im pact o f  the fo llow in g  two parameters:

First, w e m easure the e ffect o f  using the Source F low  Regulator. W e try three values: 

1, 100, and 1000 records for each packet that the Source F low  Regulator sends to the 

Stagin g A rea  (see the x-axis for Figures 5.4 and 5.5). W hen using one record at a 

package, w e have in fact the case o f  not using a Source F lo w  Regulator.

Second, w e experim ent with the behavior o f  the source in terms o f  com pletion time. In 

experim ent set (a) that w e call “ plain” , the source performs its regular operation during 

normal time. In this case, no records are propagated to the Staging Area.
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Another issue worth investigating is the potential im pact that the tuning o f  the Staging A rea

has over the source. Therefore, except for the tw o parameters that w e have already

described (both o f  which concern choices at the source side), w e em ploy tw o m odes for the 
« *

operation o f  the Staging Area, for assessing its impact. Each test case is exam ined with 

blocking and non-blocking invocation for the com m unication betw een the Staging A rea 

and the- W eb Service. W e assume that the Staging A rea uses a synchronized queue. The 

input rate at the queue is equal to the output rate o f  the L e g a cy  A pplication . T he queue’ s 

output rate is fixed  to one thousand records per second.

The y-axis o f  the diagram s m easures the throughput o f  inserting the records to the IS A M  

file. Figure 5.2 depicts the results o f  the experim ent for 100,000 records, w h ile  Figure 5.3 

the results for 1,000,000 records.

Time to insert 100 000 records

1 100 1000

Number of records sent 
simultaneously

Fig. 5.4. Time to insert 100,000 records using a two-tier topology
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Time to insert 1 000 000 records

Number of records sent 
simultaneously

Fig. 5.5. Time to insert 1,000,000 records using a two-tier topology

B ased  on our experim ental results the follow ing observations are made:

(a) T he Source F lo w  Regulator plays a very important role, since without it, the 

throughput deteriorates by 34 % , while using a Source F low  Regulator incurs an 

im pact o f  1 .7% .

(b) T he w ay that the Staging A rea  is tuned does not affect the source. Regardless o f  using 

blocking or non-blocking W eb  Service invocation at the Staging Area, the Source’ s 

throughput is the same in both cases. This is a key observation for our architecture, 

since it proves that the operations o f  each tier are independent. Thus, we can examine 

each tier separately.

(c) Sending sm aller packets o f  records performs slightly better, since in the case o f  1000 

records, netw ork propagation time decreases throughput. M oreover, choosing a packet 

size o f  100 instead o f  1000 records saves buffer size at the Source F lo w  Regulator.
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5.4 Number of Queues

In this experiment, w e exam ine how the number o f  queues im pacts the Source’ s 

performance. Our measurements concern the time to com plete the insertion o f  100,000 

records‘to the IS A M  file. W e experiment to determine the necessary num ber o f  queues both 

at the Source and at the Staging Area, as indicated on the x-axis o f  F igure 5.6. W e have 

conducted experiments with the follow ing four settings.

1. Initially w e have used no queues at all, which im plies the absence o f  the Source F lo w  

Regulator at the source and the absence o f  the queue at the Staging A rea.

2. In the second setting w e have used only the Source F lo w  R egulator at the Source 

without the queue at the Staging Area.

3. Our third experim ent’ s setting involves the absence o f  the Source F lo w  R egulator and 

the presence o f  the Staging A re a ’ s queue.

4. Finally, in our fourth experiment, w e have used our architecture in full deploym ent: 

The Source F lo w  R egulator at the queue and the queue at the Stagin g A rea.

Relation between the number of 
queues in the system and the 

impact at the Source

600

Configuration

Ξ plain

■  no packager at the 
source, no queue at the 
mediator

□  packager at the source, 
no queue at the 
mediator

□  no packager at the 
source, queue at the 
mediator

■  packager at the source, 
queue at the mediator

Fig. 5.6. Time to insert 100 000 records using two-tier topology
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Figure 5.4 depicts the results o f  the experim ent for 100 000 records. The y-axis measures 

the throughput o f  inserting the records to the IS A M  file. Plain depicts the case where no 

propagation towards the warehouse w as performed (standing again for the stand-alone 

behavior o f  the source).

B ased  on our experim ental results the fo llow ing observations are made:

(a) N ot using a queue in the Staging A rea poses the greatest impact in  the system, no 

matter whether Source F low  Regulator is used or not. This impact is 553.40% o f 

the time the L e g a cy  A pplication requires to insert 100 000 records, in the case o f 

not using any kind o f  queue in the system and 553.76%  using only a Source Flow 

Regulator.

(b) U sing on ly a queue at the Staging A rea increases system  perform ance with respect 

to the previous configurations, but the overhead at the Source is still considerable 

and m easured at 36 .19 % .

(c) U sin g both a Source F lo w  R egulator at the Source and a queue at the Staging Area 

provides the best system  perform ance adding the sm allest overhead to the Source. 

This overhead is m easured at 1.78%  o f the plain Source time.

5.5 Data Freshness

A  m ajor requirem ent in our setting is to achieve the m axim um  data freshness possible, 

through our fram ew ork. W ith a 1.78 %  delay at the source, as derived from  the experiments 

o f  Section 5.4, the focus o f  interest is isolated at the side o f  the Staging Area. The goal o f 

the next set o f  experim ents is to measure the data freshness time provided by our 

application w ith respect to the queue em ptying rate and the block retrieved from the queue. 

W e consider as d a t a  f r e s h n e s s  t i m e  the time required for a record that w as inserted in the 

IS A M  file  to be transferred to the warehouse.
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Specifically, we measure the overall throughput, i.e., the time needed to em pty the Staging 

A rea ’ s queue after the first record is sent to the warehouse. The freshness is then measured 

as the time needed to em pty the queue, which practically stands for the response time for 

the last record. T o  perform these measurements, w e assum e that the L e g a cy  A pplication 

sends 100,000 records to the Staging A rea in packs o f  100 records over T C P . A lso , w e 

measure the queue length as an indicator o f  resource consum ption at the Staging A rea  site.

A  major parameter affecting the overall perform ance o f  our environm ent is the im pact o f  

the block size o f  records w e deliver to the warehouse. Thus w e present three sets o f  

experiments em ptying the Staging A rea ’ s queue with three different w ays using the 

aforementioned rates:

(a) W e empty the queue as soon as possible and then propagate the records to the w eb 

service.

(b) W e empty the queue retrieving the records from  the queue using tim eouts o f  0.1 

seconds retrieving 50, 100, 150, 200, 250 and 300 records each time and then invoking the 

W eb Service.

(c) W e empty the queue retrieving the records from  the queue using tim eouts o f  1 second 

retrieving 500, 1000, 1500, 2000 and 2500 records each time and then invoking the W eb 

Service.

T w o other parameters p lay a m ajor role. The first parameter, as indicated on the x-axis o f  

Figure 5.7, is the time required to empty the queue. T he second param eter as shown on y- 

axis o f  Figure 5.7, is the number o f  elements in the Staging A rea  ’ s queue. T he queue’ s 

input rate is equal to the Source’ s output rate, i.e. 1250 records per second approxim ately. 

W e experim ented using the follow ing queue em ptying rates: 500, 1000, 1500, 2000, 2500 

and 3000 records per second. These are the maximal em ptying rates, w hich m eans that, i f  

the queue contains few er records, then all the records from  the queue are retrieved.
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Fig 5.7 Queue size at the Staging Area emptying the queue as soon as possible

T h e results o f  em ptying the queue im m ediately are depicted in Figure 5.7. Figures 5.8 and 

5.9 show the queue sizes using em ptying strategy (b) and (c) respectively. Figures 5.10 and

5 .1 1  show  the overall queue em ptying time which represents the time required for all the 

records inserted in the IS A M  file  to be stored in the Data W arehouse.

In Figure 5.7 x-axis depicts the time elapsed since the first record reached the Staging Area. 

Y -a x is  measures the num ber o f  records in the queue o f  the Staging A rea at each time point. 

W e observe that practically no queue is ever formed. The mean queue size is 100 records, 

w hich is the rate o f  the Source F lo w  Regulator. In other words, the Staging A rea is one step 

later than the Source in terms o f  performance.

In order to further exam ine the behavior o f  our architecture, since the host o f  the Staging 

A rea  is a faster com puter, com pared to the machine where the Source is hosted, we will 

sim ulate slow er service rates for the Staging Area. In specific, w e w ill simulate slower
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service rates by using timeouts between successive services, and by adjusting the number 

o f  records served each time.

In Figure 5.8, we can see six diagrams. In all six diagrams w e introduce a frequency rate o f  

1 sec to the service o f  the Staging Area. X -axis represents the time in seconds. T he y-axis 

stands for the number o f  records in the queue. The difference lies at the queue em ptying 

rates, starting with an em ptying rate resem bling 500 records per second at the top left 

diagram, up to 3,000 records per second at the low er right diagram .

W e observe that in all but a small number o f  occasions (practically the ones where the 

processing rate is slightly higher than the input rate) the queue size is grow ing. The 

mountain size shape is easy to explain: the peak is reached when the 100,000 records have 

been inserted, no other records are produced and consequently the queue size drops. Figure 

5.8 shows the impact o f  em ptying rate clearly: higher em ptying rates lo ck  the queue too 

often and the overall perform ance drops. Sm all em ptying rates are ob viou sly  insufficient, 

since they empty the queue too slow ly.

Figure 5.9 also contains six diagrams. This time, in all six  diagram s w e introduce a 

frequency rate o f  0.1 sec to the service o f  the Staging A rea. X -a x is  represents the time in 

seconds. The y-axis stands for the number o f  records in the queue. T h e d ifference lies at the 

queue em ptying rates, starting with an emptying rate resem bling 500 records per second at 

the top left diagram, up to 3000 records per second at the low er right diagram .

This time w e have a quite better picture, being in the m iddle betw een im m ediate em ptying 

and rather slow  em ptying. A s  the number o f  rem oved records increases each time, the 

situation starts to approach the behavior o f immediate em ptying. A n  interesting lesson here 

is that it pays o f f  to pay the price o f  frequent dequeuing rather than rem ove b ig  chunks o f 

data from the queue. Im m ediate dequeuing appears to provide the best perform ance among 

all alternatives.
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Fig. 5.8. Queue size at the Staging Area using time outs of 1 sec
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Queue size over time. Emptying rate 50 records 
per 0.1 sec
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Fig. 5.9. Queue size at the Staging Area using time outs o f 0.1 sec

In Figures 5.10  and 5 .11  w e show the time required to com plete the transfer o f  our entire 

dataset from the Stagin g A rea  to the Warehouse. In both F igures, the x-axis represents the 

various service rates o f  the Staging Area and the y-axis the tim e tin seconds required to 

complete the transfer. T he difference between the tw o figures is that in F igure 5 .10  w e 

em ploy timeout o f  1 betw een successive services and in F igure 5 .11  w e use tim eouts o f  0.1 

seconds.
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Time to complete transfer from ADSA to DW

500 1000 1500 2000 2500 3000 
Queue emptying rate

ilTime to 
complete 
transfer from 
ADSA to 
DW

Fig. 5.10. Queue emptying time at the Staging Area using time outs o f 1 second.

Fig. 5.11. Queue emptying time at the Staging Area using time outs o f 0.1 sec

O bserving the results o f  this set o f  experiments, w e are led to the follow ing conclusions:
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a) W e can achieve data freshness time equal to data insertion time when w e continuously 

empty a small size queue.

b) In this case, the size o f  queue is equal to the service rate o f  the Source F lo w  Regulator, 

i.e.,.there is practically no delay at the queue.

c) The number o f  records retrieved from the queue plays a significant role. Even i f  the 

actual data rates are the same, (e.g., 150 records per 0.1 second vs. 1500 records per 

sec), retrieving big chunks o f  records requires extended locking times and propagation 

times to the web service.

5.6 Topology and Source Overhead

The aim  o f  this experim ent is to exam ine how  the topology o f  our architecture im pacts the 

Source’ s perform ance, i.e., the induced overhead to the Source. W e  consider the fo llow in g  

cases:

a) U sing 1-tier architecture.

b) U sing 2-tier architecture having the Staging A rea p laced  at the S ou rce ’ s host and the 

W arehouse on a separate host.

c) U sing 2-tier architecture having the Source on a dedicated host and the Staging A rea 

together with the W arehouse on a separate host and

d) having the Source, the Staging A rea and the W arehouse on a separate host each.

Each bar in the fo llo w in g  figures represents the respective topology, w h ile  the y-axis 

indicates the time required by the Source in Figure 5 .12  to insert 100,000 records and in 

Figure 5.13  to insert 1,000,000 records to the IS A M  file. W e  regard as plain the original 

source without our alterations.
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Time to insert 100 000 records to the Source in 
relation to topology used

Configuration

Fig. 5.12 Time to insert 100,000 records using one-tier, two cases of two-tier and a three-tier 
topology

Time to insert 1 000 000 records to the Source in 
relation to topology used

920

a  2-tier (Mediator at 
Source Host)

□  2-tier (Mediator at DW 
Host)

13-tier

Configuration

Fig 5.13. Time to insert 1,000,000 records using one-tier, two cases of two-tier and a three-tier 
topology

O bserving these graphs the fo llow in g  conclusions can be made:

(a) T h e position o f  the Staging A rea is the factor that poses the most overhead to the 

system ’ s perform ance. In specific, when the Staging A rea is placed at the same host
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with the Source, no matter where the W eb Service is located, the overhead to the 

system ’ s perform ance is near 9.5% . On the contrary, when the Staging A rea  is detached 

from the Source’ s host, the overhead fluctuates between 1 .5%  and 2% .

(b) U sing .three hosts and placing the W arehouse and the Staging A rea  separately does not 

actually reduce the source’ s overhead, so that the W arehouse can be located on the 

same host, without this affecting the Source. This observation is very important, since 

w e can save the setup, maintenance and configuration cost o f  a third com puter.

T o  sum up, the main conclusions derived from the experim ents o f  this chapter are the 

follow ing:

a) A s  derived from Section 5.2, T C P  is the most suitable protocol for interconnecting the 

Source with the Staging Area.

b) A s shown in Section 5.3, operations o f  each tier are independent. R egardless o f  using 

blocking or non-blocking W eb Service invocation at the Stagin g A rea, the Source’ s 

throughput is the sam e in both cases.

c) U sing queues both at the Source Flow  Regulator and at the Staging A rea, as described 

in Section 5.4, provides the best system perform ance adding the m inim al overhead to 

the Source.

d) A s  observed in Section 5.5, the Staging A rea service rate should be higher than the 

Source ‘ s service rate. M oreover, i f  w e want to sim ulate slow er service rates for the 

Staging A rea, sm all timeouts should be used since they o ffer stable behavior to the 

system.

e) Finally, ju dgin g from  the results o f  Section 5.6, the m ost preferable topology for our 

architecture, is the one o f  using two tiers and placing the Stagin g A rea  at the same host 

with the W arehouse.

These observations w ill be used as a guideline for the next chapter. In Chapter 6, w e w ill 

conduct our experim ents under real life data warehousing conditions, w here w e w ill assume 

that the aforem entioned parameters are fixed.
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6 OPERATIONAL EVALUATION

In this chapter, w e w ill use the architectural guidelines derived from  the first set o f  

experiments presented in Chapter 5 to build an active data warehouse where w e w ill also 

deployjour online E T L  operations. The aim o f  this section is to evaluate the behavior o f  this 

fully deployed system  and com pare its behavior to the theoretical m odel w e have 

developed.

The difference from  the previous chapter is that here w e w ill evaluate our system ‘s 

perform ance under real life  conditions using as a guideline the results o f  Chapter 5. T o  

achieve this, we em ploy four configurations: one configuration with the Staging A rea 

playing a simple interm ediate role, where data are just forw arded through a W eb  Service to 

the W arehouse and 3 different scenarios with various E T L  operations at the Staging A rea 

before delivering our data to the warehouse.

Follow ing the guidelines o f  Chapter 5 our experimental setup is as fo llow s:

a) W e em ployed a tw o-tier architecture, placing the Source on one host and the Staging 

A rea with the W arehouse on another host.

b) W e used at the Source a F low  Regulator to achieve better perform ance.

c) The interconnection protocol between the Source and the Stagin g A rea  is T C P .

d) W e send data from  the Staging A rea to the W arehouse using non-blocking invocation.

In our configuration, the Source includes two software m odules: (a) an IS A M  file  and (b) 

an application used to m odify data in the legacy data source. In order to m anipulate IS A M  

files, there is a library o f  IS A M  routines that are invoked from  the application at the source 

side. W e have m odified these library routines to replicate the data m anipulation commands 

and send updates towards the Staging Area. The IS A M  library that w e altered is the
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P B L /ISA M  suite [PBL04] available under G P L  license. W e have used a sample program 

distributed within the suite as the legacy application. W e use two different data sets for our 

purposes. T he first consists o f  100,000 records and the second o f 1,000,000 records. The 

E T L  queues o f  the Staging A rea  have been implemented using the Sun JD K  1.4, whose 

runtime engine has also been used. A s  a W eb Services platform w e have used Apache A xis

1.1  [AX IS04] w ith X erces X M L  parser running over Apache Tom cat 1.3.29. Our Data 

W arehouse is im plem ented as a M y S Q L  4.1 database.

T h e host w e used for the Source w as a ΡΙΠ 700M Hz with 256M B o f physical memory 

running S u S E  L in ux 8.1. T he host used as the data warehouse is a Pentium 4 2.8GHz with 

1G B  o f  physical m em ory running M andrake Linux. This server also hosted the Staging 

A rea. The hosts are interconnected via  the switched Fast Ethernet L A N  o f  our department.

O ur data w ere created from  the T P C -H  data generation tool. W e used data o f  variable size. 

In this case each row  has an average size o f  140 bytes.

T h e roadmap o f  this chapter is as follow s: in Section 6.1 w e establish the fact o f  minimal 

im pact at the Source. In Section 6.2, w e measure the throughput o f  each E T L  operation. In 

Section 6.3, w e measure data freshness for four different scenarios, while in Section 6.4, we 

com pare the behavior o f  our system  against our prediction.

6.1 Overhead a t Source

T he aim  o f  this experim ent is to assure that the overhead at the source remains small even 

though the size o f  each row  is alm ost 10 times bigger than the previous case.

First, w e measure the effect o f  using the Source F low  Regulator (Source Flow  

Regulator) at the Source. W e try four values: 1, 10, 25, 50 and 75 records for each 

packet that the Source F low  Regulator sends to the Staging Area (see the x-axis).
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W hen using one record at a package, w e have in fact the case o f  not using a Source 

F low  Regulator.

Second, we experim ent with the behavior o f  the source in terms o f  transmission rate. 

In the first case that w e call “ plain” , the source perform s its regular operation during 

normal time. In this case no records are propagated to the Stagin g A rea.

□  Plain Operation

■  Packet size at source: 
1 row/packet

□  Packet size at source: 
10 rows/packet

□  Packet size at source: 
25 rows/packet

■  Packet size at source: 
50 rows/packet

□  Packet size at source: 
75 rows/packet

Fig. 6.1. Time to insert 100 000 records in the warehouse.

In Figure 6.1, the x-axis represents the size o f  the packet sent from  the Source F low  

regulator to the Staging A rea, apart from the first colum n, w here the operation o f  the 

Source without our additions is measured. The y-axis o f  Figure 6.1 represents time. In 

general, packet sizes o f  over 25 records offer the least burden to the source. T he sm allest 

delay was achieved with a packet size equal to 50, where the source delay w as m easured to 

be at 5.8% .

6.2 Throughput Capability of ETL Operations

The goal o f  this set o f  experim ents is to determine the average throughput o f  the E T L  

operations w e have im plem ented. The outcome o f this part o f  our evaluation w ill be used
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both to interpret the results o f  our experiments and to use the measurements for our 

theoretical analysis.

O ur experim ental setup w as the fo llow in g for the evaluation o f  all the operations: The 

source w as hosted separately from  the Staging A rea and the W arehouse w hich were hosted 

together. T h e Source F lo w  R egulator size was 50 rows per packet. A t the Staging Area only 

the evaluated E T L  operation w as executing each time. The measured E T L  operations are 

the follow ing:

a) Filtering o f  2%  o f  incom ing packets to the Staging Area.

b) Filtering o f  6%  o f  incom ing packets to the Staging Area.

c) Filtering o f  10%  o f incom ing packets to the Staging Area.

d) A ggregate  G roup by sum.

e) Surrogate K e y  Transform ation.

f) R eplacem ent Transform ation

T h e results were sent and stored to the W arehouse. T he em ptying (service) rate o f  each 

queue w as fixed  to 1500 row s per second, which is a rate slightly higher than the arrival 

rate from  the Source. In Figure 6.2 our experimental results are displayed. In specific, the 

x-axis represents the number o f  packets each E T L  operation can process. The y-axis 

represents each E T L  operation.

Concerning the filter transformation, the percentage displayed refers to the percentage o f 

row s rejected from  the total number o f  rows injected into the Staging Area. In this case, 

since w e use a dataset consisting o f  100 000 rows, a filter equal to 10% w ill reject 10 000 

row s, m eaning that 90 000 row s w ill be stored in the warehouse.

T h e throughput capability o f  each E T L  operation, showing the maximum service rate each 

operation can achieve, is depicted in Figure 6.2.
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Throughput Capability of ETL Operations
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pa 400
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50 

0
ETL Operations

0  Filter - 2%

■ Filter -6%

□ Filter - 10%

□ Aggregate - group 
sum

■Transform - 
Key

□Transform -

Fig. 6.2. Throughput Capability of ETL Operations.

Based on Figure 6.2 the fo llo w in g  conclusions can be made:

(a) H igher number o f  rejected row s leads to higher throughput.

(b) The aggregate group by sum is surprisingly the operation w ith the highest throughput. 

This is because all operations occur in m em ory and in contrast with the other 

operations, sm aller size o f  data is produced as the output.

(c) The Replace and Surrogate K ey  operations have alm ost the sam e throughput, w hich is 

significantly low er than that o f  all other operations. T his is m ainly because both o f  

these operations seek and replace values having to parse the entire row . On the 

contrary, Filter operations sim ply check a field.

6.3 Data Freshness

H aving established the requirem ent o f  minimal source im pact, our focu s m oves towards the 

data freshness issue. W e  want to achieve high freshness o f  data delivered  from  the Source
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to the Warehouse through the Staging Area. The goal of the next set of experiments is to 

measure the data freshness time provided by our application with respect to the Staging 

Area service rates. We consider the following scenarios:

(b) For scenario (a) as illustrated in Figure 6.3:

a. Simply transferring data inserted into the legacy application to the warehouse.

SFlowR

Source ;

Fig. 6.3. Illustration o f Scenario (a)

WS Client

ADSA

WS

o
DW

DW

(c) For scenario (b):

a. Filter 10% of incoming data.

b. A  surrogate key operation to the first column of the filtered data

c. Group by sum.

d. Data are then fed to the warehouse.

Filter GB

Source :

Fig. 6.4. Illustration o f Scenario (b)

ADSA
DW
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(d) For scenario (c):

a. Filter 10%  o f  incom ing data.

* b , A dditionally Filter 2%  o f  the rem aining data.

^ c . A  surrogate key operation to the first colum n o f  the data. Then the stream is 

replicated along tw o branches:

d. For the first branch:

i. A  group by sum operation is perform ed

ii. D ata are fed  to the warehouse.

e. For the second branch:

i. D ata are fed  to the warehouse.

DW

(e) For scenario (d):

a. Filter 10%  o f  incom ing data.

b. R eplacem ent o f  the values o f  the first field.

c. A  surrogate key operation to the first colum n o f  the data. Then the stream is 

replicated along tw o branches:

d. For the first branch:

i. A  group by sum operation is perform ed.

ii. A  F ilter rejecting 6%  o f input data
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iii. Data are fed to the warehouse.

e. For the second branch:

i. A  replacem ent o f  the values o f  the first field  is performed.

ii. A  Filter rejecting 2 %  o f  input data is applied.

iii. D ata are fed to the warehouse.

DW

A t this point, it has to be clarified  that when the data flow  splits, data are fed  separately in 

the tw o different data flo w s and separately sent to the warehouse.

S pecifically , w e trace the queue size as time passes. W e do this for each operation 

separately and for the entire system  as a whole. A t the same time, at the end o f  the 

experim ent w e have a m easure o f  the overall throughput, i.e., the time needed to empty the 

Stagin g A rea  ’ s queue after the first record is sent to the warehouse. The freshness is then 

m easured as the time needed to em pty the queue, which practically stands for the response 

time for the last record.

T o  perform  these m easurements, w e have the follow ing setting: the L egacy Application 

sends 100,000 records to the Staging A rea  in packs o f  50 records over T C P  at a rate o f  22 

packets per second. A lso , we measure the queue length as an indicator o f  resource
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consumption at the Staging A rea  site. W e count the queue length each  tim e the queue is not 

em pty and before w e retrieve the row s from  the queue.

Scenario a - Average Number of Packets in Queue 
with Various Service Rates

—♦— 20 packets /  sec 
—■— 23 packets /  sec 

-27 packets / sec 
—x— 33 packets / sec

o o) oo n  Φ in ^  η  n  w ή  rf m (O n

Time (seconds)
00 8

Fig. 6 . 7 .  Cumulative results of queue sizes for scenario (a) with service rate close to 23 packets per 
second.

T he results o f  scenario (a) for various service rates o f  the S tagin g A re a  near the arrival rates 

from the Source are show n in F igure 6.7. For scenarios (b), (c) and (d), w e  w ill exam ine the 

behavior o f  the Stagin g A rea  at a simulated service rate o f  23 packets per second, in order 

to study its behavior at m arginal conditions. W e rem ind that the arrival rate o f  the 

warehouse is at 22 packets per second. Figure 6.8 depicts in a cu m ulative fashion the 

average queue lengths for scenario (b). Sim ilarly, the sam e valu es fo r  scenario (c) are 

illustrated in F igure 6.9, and for scenario (d) in 6.10. For all figu res, x -axis represents time, 

w hile the y-axis stands for the number o f  packets in each queue before service.
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Fig. 6.8. Cumulative results of queue sizes for scenario (b) with service rate close to 23 packets per 
second.

Scenario c - Average Number of Packets in Queue 
@ -23 packets/sec

— FILTER_10_01 
- m -  FILTER_2J)1 

GBSUMJH 

SK_01 
WS_GB_01 
WS_GB_01

r 01 ί  S S Ϊ ? fc S P δ §
Time (seconds)

Fig. 6.9. Cumulative results of queue sizes for scenario (c) with service rate close to 23 packets per 
second.
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Scenario d - Average Number of Packets in Queue 
@ -23 packets / sec

Time (seconds)

FILTEFM 0_01 

- ·— FILTER_2_01 

FILTER_6_01 

-x— GBSUM_01 

-*—· REP_01 

REP_02 

-*— SK_01

-----WS_GB_01

-----WS_UPD2_01

Fig. 6.10. Cumulative results o f queue sizes for scenario (d) with service rate close to 23 packets per 
second.

Finally, Figure 6 .11  sum m arizes the total times needed for the Stagin g A re a  to transfer all 

data to the warehouse, for each scenario o f  E T L  queues. X -a x is  o f  F igu re 6.8 stands for 

each scenario exam ined. Y -a x is  represents the time needed to com plete each  scenario.
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Fig. 6.11. Data freshness for each scenario 

Observing the figures, w e derive the follow ing conclusions:
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1. T he source capability is approxim ately 1100 rows/sec. Since we are using packets o f 50 

rows, this amount is translated into approximately 22 packets per second. In scenario 

(a) w e are led to queue explosion, when w e employ service rate smaller than the 

Source’ s arrival rate. U sing a service rate o f  23 packets / sec, which is a setting close to 

the arrival rate, w e can see that transient effects tend to appear, but the queue converges 

to steady state. T his occurs because the service rate is very close to the arrival rate, thus 

needing som e time to reach a steady state, where the service rate exceeds arrival rate. 

B y  using higher service rates, 27 and 33 packets / sec respectively, the queue maintains 

its steady state.

2. In scenarios (b), (c) and (d) w e observe that the entire system, as w ell as the queue o f 

each operation, maintains a steady state. The number o f  packets in the queue is less or 

equal to the m axim um  number o f  packets polled simultaneously from  the queue. This 

practically m eans that after each poll the queue empties and that the Staging A rea is 

on ly one step behind the Source.

3. In Figure 6 .11 , the total time needed for the entire dataset to be transferred from the 

Staging A rea to the W arehouse is dependent on the number o f  the intermediate E T L  

operations. A s  the number o f  intermediate E T L  operations that a packet has to visit 

increases, the total delay increases as well. Nevertheless, in our exem plary scenarios, 

the increase is rather small, due to the pipelining o f  data. The average delay per row is 

around 0.9 m illiseconds for all scenarios.

6.4 . Theoretical vs. Experimental Evaluation

In Figures 6.9 -  6.30 w e present the comparison o f  our theoretical evaluation o f queue 

length against the observed values. W e show  the results o f  scenarios (b), (c) and (d). In all 

experim ents, w e sim ulate various service rates at the Staging Area by using predefined 

w aiting times between successive services. In specific, we em ploy timeouts equal to 100, 

80, 60, 20 and 1 m illisecond each time respectively.
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In this set o f experiments» w e w ill not use as a metric the service rate but the tim eout value 

between successive services. W e prefer this approach due to the d ifferences o f  the service 

times for each E T L  operation (as discussed in Section 6.2). B ecause o f  these differences 

and due to the exponential nature o f  arrival and service tim es w e cannot fix  standard 

service times. Moreover» the number o f E T L  operations» i.e., independent threads o f  the 

Staging Area for each scenario varies from four in scenario (b), to nine in scenario (d). T his 

w ay we are led to different C P U  scheduling properties» an issue w hich is beyond our scope. 

Thus» in order to have a unified view  o f  our experim ents, w e w ill use the tim eout value as 

an indirect reference to the service rates.

Filter 10%

I D MEASURED ■  PREDICTION |

Timeout (m.ec.)

Surrogate Key

| P M-ASUREP ■  PREDICTION |

Group By Sum

| P MEASURED ■  PREDICTION [

Timeout (m .*ct)

WS Client

| O MEASURED ■  PREDICTION |

F ig . 6 .12 -6 .15 . Q ueue size vs. prediction for each operation o f  scenario b

In all Figures 6 .12  -  6.30, the x-axis stands for the w aiting tim e in m illiseconds between 

consecutive services. T h e  y-axis represents the number o f  packets in the queue o f  each 

operation. T he first colum n represents the measured value, w h ile  the second row  represents 

the predicted value.
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Fig. 6.16-6.21. Queue size vs. prediction for each operation of scenario c
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Filter 10%

□  M EASU RE) ■  PREDICTED

100 80 60  40 20 1

Delay (msecs)

Surrogate Key

□  MEASURED ■  PREDICTED

100 80 60 40  20 1

Delay (m secs)

Group By Sum

□  MEASURED ■  PREDICTED

4

100 80 60 40 20 1

Delay (msecs)

Replacement 1

□  M EASU RE) ■  PREDICTED

Filter 6%

□  MEASURED ■  PREDICTED

100 80 60 40 20 1

Delay (msecs)

Web Service Client 1

□  MEASURED ■  PREDICTED

100 80 60 40 20 1

Delay (msecs)

Fig. 6.22-6.27. Queue size vs. prediction for each operation of scenario d
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Fig. 6.28-6.30. Queue size vs. prediction for each operation of scenario d (continued)

In these m easurements one can easily see that in all cases our prediction underestimates the 

size o f  the queue by h alf a packet in each case. For exam ple in scenario (b) estimations 

using a delay o f  80 m illiseconds between successive services leads to underestimation only 

o f  h alf a packet. T he same holds for a delay o f  60 seconds in scenarios (c) and (d). This 

observation is very  important for our architecture, since our prediction misses only half a 

packet. M oreover this error remains the same for all operations.

T h e only discrepancies o f  this rule are in tw o cases. The first case is when we utilize high 

delay times i.e. 100 m illiseconds between successive services, meaning at the same time 

low er service rates. T he second case is in scenario d, where we impose a delay time equal 

to 80 m illiseconds. This case is sim ilar to the previous; because i f  w e consider the

o
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additional context sw itch time for the high number o f  E T L  operation, w e  are led  to the 

conclusion that again is a case o f  low  service rate.

H ow ever, in these cases w e have overestim ates o f the queue sizes. T h is leads as to the 

conclusion that high server utilization rates result in overestim ation o f  the queue sizes, 

w hile low  server utilization rates leads to underestimation o f  the queue size. T his 

underestimation is fixed  and no more than half a packet.

These differences between the measured and estimated values for the queue sizes occur due 

to the fo llow in g  reasons:

a) W e sim ulate low er service rates at the Staging A rea  by  in vo kin g  tim eouts between 

successive services. Queue theory is not designed taking care o f  such issues, so 

differences betw een the m easured and expected value are expected.

b) In our sim ulation o f  slow er staging areas, w e serve up to three packets 

sim ultaneously. Q ueue Theory end especially Q ueue N etw o rk  T heory, w ere 

designed assum ing service o f  single packets. H ence, in these cases, differences 

between the m easured and expected value are expected  as w ell.

M E A SU R E D  PRED ICTIO N  D IF F E R E N C E  (P A C K E T S )

FILTER_10_01 0.160 0.056 0.104
FILTER_2_01 0.134 0.047 0.087

SK_01 0.154 0.054 0.100
GBSUM_01 0.137 0.048 0.089
WS_GB_01 0.091 0.031 0.059

WS_UPD2_01 0.100 0.035 0.066

Table 6.1. Queue size vs. prediction for each operation of scenario (c) operating at its full capability.

On the contrary, w hen w e do not use sleep times between su ccessive  services leading to the 

m aximum service rates, the difference in terms o f  queue size is sign ificantly  sm all. This is 

because w e both do not use a tim eout and due to the high service rates, each time a single
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packet is served. Thus, our implementation is closer to the theoretical models of Queue 

Networks and the difference between the measured and predicted values are very small.

In Table 6.1 we present as a reference the comparison of our theoretical evaluation of queue 

length against the observed values for scenario (c) with the Staging Area operating at its 

full capability. It is easy for someone to see that the difference in queue lengths between the 

theoretical prediction and the measured evaluation is small for all operations.

9 6



7 CONCLUSIONS AND FUTURE WORK

A ctive  Data W arehousing refers to a new trend where data warehouses are updated as 

frequently as possible, due to the high demands o f  users for fresh data. In this thesis, w e 

have proposed a fram ework for the implementation o f active data warehousing, keeping in 

mind the fo llow in g  goals: (a) minimal changes in the softw are configuration o f  the source, 

(b) minimal overhead for the source due to the "active" nature o f  data propagation, (c) the 

possibility o f  sm oothly regulating the overall configuration o f  the environm ent in a 

principled w ay. In our fram ework, we have im plemented E T L  activities over queue 

networks and em ployed queue theory for the prediction o f  the perform ance and the tuning 

o f  the operation o f  the overall refreshment process. In terms o f  data freshness, source 

overhead and minimal impact o f software configuration the results seem  satisfactory. A  

summary o f  the lessons learned is as follow s:

• Queue theory can be successfully em ployed as the theoretical background for the 

estimation o f  the response o f  the active warehouse. T he system  reaches a steady state 

quite close to the predicted behavior. Freshness is quite satisfactory too.

• T C P  should and can be used instead o f  U D P, due to the packet loss o f  the latter. 

Organization o f  tuples in blocks, both at the source and the Staging A rea  side increases 

perform ance.

• The overall overhead at the source side remains sm all despite the size o f  data 

transferred to the Staging Area, and the amount o f  code m odification is around 100 

lines, without affecting applications.

• The Source F lo w  Regulator plays a very important role, since its utilization increases 

perform ance.

•  The w ay that the Staging A rea is tuned does not affect the source. R egardless o f  using 

blocking or non-blocking W eb Service invocation at the Stagin g A rea, the Source’ s 

throughput is the same in both cases. This is a key observation for our architecture,
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since it show s that the operations o f each tier are independent. Thus, w e can examine 

each tier separately.

•  U sing both a Source F lo w  R egulator at the Source and a queue at the Staging Area 

provides the best system  perform ance adding the small overhead to the Source.

•  The position o f  the Staging A rea  is the factor that poses the m ost overhead to the 

system ’ s perform ance. T he best layout is to use a 2-tier architecture placing the Staging 

A re a  together w ith  the W arehouse but separated from  the Source.

•  In the case  o f  em ploying E T L  transformations at the Staging A rea, high server 

utilization rates result in overestim ation o f  the queue sizes, w hile lo w  server utilization 

rates leads to underestim ation o f  the queue size. This underestimation is fixed  and no 

m ore than h a lf a  packet.

Future w ork includes several directions. A  key direction o f  research w ould have to do with 

the failure m anagem ent o f  the com ponents o f  the environment, in order to determine 

safeguarding techniques and fast resumption algorithms for the event o f  a  failure. Further 

tuning can be m ade, by testing m ultiple concurrent loading sources for the warehouse. In 

this case, an interesting issue is to determine the required number o f  flo w  regulators, 

together with the num ber o f  separate required Staging Areas. A lso , the case o f  materialized 

aggregate v iew s and schem a evolution (as mentioned in the Related W ork section) poses 

interesting challenges in this context. Finally, further experimentation can be made over the 

interconnection o f  the Source and the Staging A rea by em ploying a U D P with built-in flow  

control.
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