e |
i

BBBBBBBBBB

666666666666

Ao 69’9 &

- _K\!\&

Merantooxn Epyacio Ewdikevong

Ovpéc Awndikacrov EEaymyig Meraoynpatiopov ®éproong ywo
Evepyég AroOikeg Acdopévarv

(Extract-Transform-Load Queues for Active Data Warehousing)

A)éEavdpog Kapakacidng

EmBAénov: [Tavayidmg Baowheddng

IQANNINA, JANOYAPIOZX 2005

Evyapworicg

©o. 116eha va evxapioticn tov emBAénovtd pov Kabnynt . ITavayubm Bactetdn yw
™ Porifew kan TV vOCTHPEN TOV, XWPiG TNV omoia 1) epyasio avti Oa frtav adbvato va
vlonoﬁlezai. Emiong, 60, 110ela va TOV EVXAPICTAC® YW TV VIOUOWVI) TOL £nédeie péypr Thv
ololc};']'pmcn g epyaciog avtig Téhog Ba 10eda va evyapioTiion Tovg k.k. Kabnymrés
Evoyyshio ITirovpd ko Evdyyeho Manramérpov yo) BorBerd Tove.

v

EIZAT'QI'H

Hapaao'maxd, n evuépwon tov Amobnkdv Asdopévav yivetar acvyypova. O épog
«Evepyn AmoBikevon Agdopévov» avapépetar oe pio véa Tdon, katd v omoio ot
Amobnikeg Agdopévwv evmuepdvovtar 660 to SuvaToév cuyvitEPE, AGY® TV VYNADY
ATOTIICEQV TOV YPNOTOV Yt Tpdcata dedopéva. Ze avth TV Epyasia, TPoTeivovpe éva
mAaiclo yw ™V vioroinon piag Evepyng Amobiimg Aedopévav £xoviag wg otdyovg ta
eEng: (o) EAdyioteg tpomomomioelg oto o vadpyov Aoyiopukd, (B) erdyiomy emPapovon
0T0 TPOYypappue Tov Tapdyel o dedopéva, AGyw TOv EVEPYOD YUPAKTNPO TNG UETOPOPAS
tov Sedopévev kar (y) T dvvardtnra oparod kabopiopod TV pubuicewv TOVL
nep1PaAdovrog ov O dnpovpy|covpE. LTO CVOTHNG HOgG, £XOVHE VAOTOW|OEL StdiKaoieg
Efayowyis, Metaoynpotiopod kar Pdproong xpnoonoudviag Siktve ovp@v.
Xpncmonou']capz emiong otoyeio ano ™ Oewpio Avapoviig 1660 Y va TpoPAéyovpe
NV €nidoon Tov CVOTHPOTOS, 660 KAt Y va pvBpicovpe ™) Aswrovpyia tov. Adyw twv
emPapivoewy otV enidoon TOV CLOTNRATOG, Ol OTOiEG TPOEKVLYAV KaTd T Snpovpyin
Tov, diepevvoipe S1APOPES BPYITEKTOVIKEG TPOSEYYIOELS Kau GxoAdlovpe To {ntipata wov

TPOKVTLTOVV and k&be pio omd avtég.

ABSTRACT

Traditionally, the refreshment of data warehouses has been performed in an off-line
fashion. Active Data Warehousing refers to a new trend where data warehouses are updated
as frequently as possible, due to the high demands of users for fresh data. In this thesis, we
propose a framework for the implementation of active data warehousing, keeping in mind
the following goals: (a) minimal changes in the software configuration of the source, (b)
minimal overhead for the source due to the "active" nature of data propagation, (c) the
possibility of smoothly regulating the overall configuration of the environment in a
principled way. In our framework, we have implemented ETL activities over queue
networks and employ queue theory for the prediction of the performance and the tuning of
the operation of the overall refreshment process. Due to the performance overheads
incurred, we explore different architectural choices for this task and discuss the issues that

arise for each of them.

Contents

ll

2,

Introduction

Related Work

2.1. Materialized Views

2.2. Web Services

2.3. Streams

24. ETL

2.5. Comparison of Related Work to our Contribution

Framework and Issues Raised

3.1. System Architecture

3.2. Issues Raised
3.2.1. Choices Concerning the Topology
3.2.2. Choices Concerning the Source
3.2.3. Choices Concerning the Staging Area
3.2.4. Choices Concerning the Warehouse

Theoretical Analysis of ETL. Workflows for
Active Warehousing using Queue Theory
4.1. Definition of a Queuing Model

4.2. Statistical Distribution of Interarrival and Processing Times

4.3. Markov Process and Markov Chains
4.4. Kendall’s Notation and Little ’s Law
4.5. Measures of Effectiveness
4.6. The M/M/1 Queuing System
4.7. Networks of Queues and the Jackson Theorem
4.8. Multi Class Jackson Networks
4.9. Applying Queue Theory to ETL Workflows
4.9.1. Filters
4.9.2. Transformers
4.9.3. Binary Operators
4.9.4. Generic Model
4.10. Methodology for Solving ETL Scenarios

Experiments on Architecture without ETL Processing

5.1. Smooth Upgrade
5.2. UDP vs. TCP

5.3. Overhead at Source
5.4. Number of Queues
5.5. Data Freshness

11

21
21
23
24
25
27

29
29
31
32
35
35
37

39
40
41
42
43
44
45
46
49
50
51
52
53
55
56

59
61
63
64
67
68

5.6. Topology and Source Overhead
6. Operational Evaluation

6.1. Overhead at Source
6.2. Throughput Capability of ETL Operations

6.3. Data Freshness
6.4. Theoretical vs. Experimental Evaluation
7. Conclusions and Future Work

References

10

75

79
80
81
83
90

99

1 INTRODUCTION

Database Management Systems are used by organizations to support everyday operations.
Such applications incur small changes to data. This type of applications is called Online
Transaction Processing (OLTP) Applications and focus on processing efficiently and

reliably large number of transactions.

Large organizations however, apart from using DBMS ’s for covering runtime operations,
also use them as tools for strategic decisions. Current and historic data are analyzed
resulting in trends available for taking decisions. Such applications are called decision

support systems (DSS ’s).

To extract information based on historic data, trends and cumulative results, the DSS ’s
should be able to use efficiently grouping operators and aggregation functions over data
that are highly voluminous. Applications carrying out such tasks are characterized as On

Line Analytical Processing (OLAP) applications.

To be able to deal with an environment having such demanding conditions, specialized
DBM S’s are used called Data Warehouses. The aim of Data Warehouses is twofold:
a) To integrate heterogeneous data sources, which is achieved by gathering all
information in a single location, and
b) To avoid conflicts between OLTP and OLAP applications, resulting in high system

performance and availability.
Data Warehouses are usually concluded by Data Marts, which are specialized subject

subsets, to further enhance OLAP applications. The relation between OLTP, Data
Warehouses and OLAP is illustrated in Figure 1.1.

11

Sources
[i
Systems

Fig. 1.1. Coarse Architecture Overview

OLAP Tools

According to [RaGe02], a Data Warehouse is defined as a database that collects and stores
data from several databases. In [Inmo02], a Data Warehouse is defined as a subject
oriented, integrated, non-volatile, and time variant collection of data in support of

management decisions.

The benefits of a data warehouse are coarsely sketched by the following properties:
Semantic reconciliation, performance, data quality, and availability. The term “semantic
reconciliation” refers to the data warehouse property of modeling the same entities,
modelled in different ways at the sources, under a unique database schema. Additionally,
the history of the loaded data is kept. Performance is an important issue, since the answers
to the posed queries should be available in acceptable time, without affecting the operation
of the OLTP application. Moreover, performance is boosted by avoiding normalized
schemas for storing data. Data quality is an important issue since data arriving at the
warehouse is in most cases inconsistent. Finally, availability is another important factor.

The architecture of a Data Warehouse is illustrated in Figure 1.2.

12

| >
Sources u :
S0 fE K)
— End User

Fig. 1.2, Architecture Qverview

The Sources are the actual OLTP applications from which the Data Warehouse retrieves
operational data. The Data Staging Area (DSA) is an intermediate database where data are
cleaned and transformed before their loading to the Data Warehouse. The Data Warehouse
(DW) and the Data Marts (DM) store data provided to the users. The Metadata Repository
is the subsystem which stores information concerning the structure and the operation of the
system. ETL (Extract - Transformation - Loading) applications extract the data from the
sources, transform and clean them before loading them to the Warehouse. Reporting and

OLAP tools are reporting applications that perform OLAP, DSS and Data Mining tasks.

ETL, which is an acronym for Extraction-Transformation-Loading, is a category of tools
for managing data warehouse operational processes. Their basic tasks, as summarized in
[VaSS02] are:

¢ the identification of relevant information at the source side

¢ the extraction of this information

¢ the customization and integration of the information coming from multiple sources
into a common format
o the cleaning of the resulting data set, on the basis of database and business rules

o the propagation of the data to the data warehouse and/or data marts.

In this thesis, we are interested in ETL applications implementing the refreshment of DW
contents. The transformations useful for our case are filters, transformers and binary

operators. These represent common data cleaning tasks used in Data Warehousing

environments.

Traditionally, the refreshment of data warehouses has been performed in an off-line
fashion. As already mentioned, in a traditional data warehouse setting, data are extracted
from the sources, transformed, cleaned and eventually loaded to the warehouse through
ETL applications. This set of activities takes place during a ‘loading window’, usually
during the night, in order to avoid overloading the source production systems with the extra

workload of this workflow.

Active Data Warehousing refers to a new trend where data warehouses are updated as
frequently as possible, due to the high demands of users for fresh data. The term is also
encountered as ‘real time warehousing’ for that reason [Whit02]. To give a concrete
example, we mention [AdFi03], where a case study for mobile network traffic data is
discussed, involving around 30 data flows, 10 sources, and around 2TB of data, with 3
billion rows. The throughput of the (traditional) population system is 80M rows/hour,
100M rows/day, with a loading window of only 4 hours. The authors report that user

requests indicated a need for data with freshness at most 2 hours.
This kind of request is technically challenging for various reasons. First, the source systems

cannot be overloaded with the extra task of propagating data towards the warehouse.

Second, it is not obvious how the active propagation of data can be implemented, especially

14

in the presence of legacy production systems. The problem becomes worse since it is rather
improbable that the software configuration of the source systems can be significantly
modified to cope with the new task (both due to the down-time for deployment and testing

and the cost to administrate, maintain and monitor the execution of the new environment).

So far, research has dealt with the problem of maintaining the warehouse in its traditional
setup [GuMu95, ZGHWOS5, ZhRu02]. In this case, materialized views are refreshed in the
presence of updates, but the general idea is that the refreshment is performed off-line. In a
different line of research, data streams [Aba+03, BaWi01, LoGe03] could possibly appear
as a potential solution. Nevertheless, at least until now, research in data streaming does not
appear to fit naturally within a data warehousing context — on the contrary, it appears to be
a competitive paradigm to warehousing. Research in data streams has focused on topics
concerning the front-end, such as on-the-fly computation of queries, without a systematic
treatment of the issues raised at the back-end of a data warehouse. For example, to our
knowledge, there is no work related to how streaming data are produced or extracted from
data producers; not to mention the extra problems incurred when the data producers are

operational systems.

To this end, in this thesis we attempt to approach the problem from a clean sheet of paper.
We investigate the case where the source of the warehouse is a legacy system. The specific
problem involves the identification of a software architecture along with appropriate design
guidelines for the implementation of active warehousing. We are motivated by the

following requirements in achieving this goal.

1. Maximum freshness of data. We want to implement an active data warehousing
environment to obtain as fresh data as possible in the warehouse
2. Smooth upgrade of the software at the source. We wish to implement a framework

where the modification of the software configuration at the source side is minimal

15

3. Minimal overhead of the source system. It is imperative to impose the minimum

additional workload to the source

4. Stable interface at the warehouse side. It would be convenient if the warehouse would

export a stable interface for its refreshment to all its source sites.

The grand view of our environmental setup is depicted in Figure 1.3. A set of sources
comprise source data and possibly source applications that manage them (for the case of
legacy sources) or DBMS’s for the case of conventional environments. The updates that
take place at the sources have to be propagated towards the warehouse. Due to reasons of
semantic or structural incompatibilities, an intermediate processing stage has to take place,
in order to transform and clean the data. Once ready for loading, the data from the

intermediate layer are loaded at the warehouse, through a set of on-line loaders.

Y c SK
Plain Data
/7 o GROUP
o Y3) >
Source]
Applicap- ﬂ ADSA

Source]

Applic

Source

by Clean, reconciled,
Application

possibly aggregated
data to be loaded in
the DW

DW

Fig. 1.3. Active Warehouse Architecture Overview (y represents aggregations and 6 selections).

16

Mapping this grand view to concrete technical choices requires the tuning of several
components of the architecture. Following, we briefly summarize our findings that affected

our architectural choices.

Starting with the sources, in this thesis, we have focused on legacy systems. Apart from the
requirément of minimal changes at the source side, legacy sources pose the interesting
problem of having an application (instead of a DBMS) managing the data. We modify a
library of routines for the management of data to allow the interception of the calls without
affecting the applications. The modification involves (a) inserting no more than 100 lines of
code to a library of routines for source management and (b) recompiling the application
(which was not affected), over this library. Also, as far as the communication between
stages is concerned, we transmit blocks of records for reasons of performance and minimal

overhead of the source system.

The internal architecture of the intermediate layer is not obvious, either. For each ETL
activity, we employ a queue to store incoming records before they are processed. Each
activity processes the incoming data on-line and then passes its output to the next queue for
further processing. Again, for reasons of performance, blocks of records are the unit of

exchange and not individual records.

We do not assume a fixed set of ETL operators, but rather we provide a taxonomy of such
operations, based on their operational semantics. New operators can be added to the
taxonomy as they are defined. Specifically, the taxonomy of activities consists of the

following categories: (a) Filters, (b) Transformers and (c) Binary Operations.
Filters examine each incoming tuple to determine whether it meets certain criteria. If these

criteria are fulfilled, then a tuple is accepted and propagated towards an acceptance output.

If not, it is rejected and possibly propagated towards a rejection output.

17

Considering the case of Transformers, tuples entering a transformer undergo changes to
their value and/or their schema. We can distinguish two subclasses of Transformers taking
into account the relationship between the number of tuples entering and the number of
tuples exiting the transformation. In the first case the two quantities are equal. In the second
case, the number of tuples entering the system is different compared to the number of
tuples exiting. This occurs because some of the tuples entering service are aggregated or

merged.

The third class of ETL activities deals with Binary operators. This is the case where data
from multiple sources are combined and a single outgoing stream is produced. Examples of
such operations involve variants of the join operation, including the join of data from
different tables, as well as difference and update detection operations among different

snapshots of the same table.

To predict the performance of the system, we employ queue theory for networks of queues.
Our experimental results indicate that the assumption of a M/M/1 queue for each of the

ETL activities provides an accurate estimation.

At the same time, to implement the requirement for stable interface at the side of the
warehouse, the data are further propagated towards the warehouse through an interface
involving Web Services [ACKMO3]. The need for web services as the technical solution
for populating the warehouse with fresh data is not self-evident and requires justification.
In fact, web services are known to be rather heavy middleware in terms of resource
consumption [Duqu03], which potentially jeopardizes the requirement of fresh data and
minimal overhead. The main advantages of web services compared to other middleware
solutions (RPC, ORB’s, message queues, etc) are two: (a) interoperability, meaning that
they can be deployed in all platforms and configurations and (b) possibility of exporting
them outside the intranet of an organization. We emphasize the interoperability property: in

a large organization, there is a wide variety of data sources, involving several platforms and

18

configurations. Web services can provide a common, stable interface for the warehouse to
all these sources without requiring major design and integration effort. Also, this loose
coupling of sources and the warehouse results in minimal impact in the case of changes,
either at the source or at the warehouse. Obviously, performance has been a concern too.
Still, as we discuss in Section 4, our experiments indicate that the overall delay, incurred by
the adaptation of a solution based on web services is rather small, especially if one is

willing to trade resource (mainly main memory) for freshness.

In a nutshell, our contributions can be listed as follows:

¢ We set up the architectural framework and the issues that arise for the case of
active data warehousing.

e We set up the theoretical framework for the problem, by employing queue theory
for the prediction of the performance of the system.

e We provide technical solutions for the implementation of our reference
architecture, achieving (a) minimal source overhead, (b) smooth evolution of the
software configuration at the source side and (c) fine-tuning guidelines for the
technical issues that appear.

e We substantiate our resuits through extensive experimentation.

The rest of this thesis is organized as follows. In Chapter 2, we present work related to our
approach. In Chapter 3, we detail the different architectural choices and the technical
challenges each of them incurs. Chapter 4 contains elements of queue theory and the model
used to describe our architecture. Chapter 5 and 6 contain our experimental evaluation for
defining our architectural setup and measuring our system performance respectively.
Finally, in Chapter 7 we sum up the lessons learned and present some thoughts for future

work.

19

2 RELATED WORK

In this Chapter, we present work related to our approach. We structure related work as
follows: first, we discuss the area of materialized views. Next, we make a reference to Web
Services. The third section of our related work presents the area of streams. Finally, we

conclude with work in the area of ETL.

Work in materialized views refreshment is quite related to our setting. This is because a
materialized instance of the relations stored at the Source side resides at the warechouse. For
the non expert reader, we make a quick reference to Web Services. The Web Services API
is an important part of our architecture, since they are used to transfer data to the
warehouse. Work concerning streams is related to our system, too. Both streams and our
system focus on managing continuous flows of data. However, while in the case of streams,
data losses are acceptable, the same does not happen in our case. Finally, we present work
concerning ETL transformations. Our architecture uses ETL transformations in the Staging

Area, thus, work in this field is related to our approach.

2.1 Materialized Views

In [ZhRu02], the authors propose the Schema change and Data update Concurrency
Control system for checking the concurrency of schema changes and data updates

performed by distributed Information Sources.

[GuMu95] describes materialized views and proposed techniques for their maintenance. A
taxonomy is also presented over four different dimensions. A materialized view is like a
cache: a copy of the data that can be accessed quickly. The difference between the

materialized and non materialized views is that the tuples are stored in the database.

21

Incremental maintenance of a materialized view means that only changes in the database

are used to compute changes in the materialized view.

There is no algorithm to solve the view maintenance problem for deletions using only the
materialized view. The counting algorithm which is described, works by storing the number
of alternative derivations of each tuple in the materialized view, in order to handle
deletions. For recursive views the DRed algorithm is mainly outlined. This algorithm
deletes from the view an overestimation of affected tuples, calculates then the alternative
derivations and inserts the new and those that exist again into the view. Three variations of
this algorithm are also presented. Also, altered variations of counting algorithms to handle
recursive views are presented. Next, algorithms using partial information for view
maintenance are presented. These focus on checking whether the view can be maintained
using the available information, and then how to maintain the view. Some algorithms only
test whether a view remains unaffected by an update. If this test fails then another view
update algorithm is used. Self-maintainable views are those that can be maintained using

only the materialized view and key constraints.

In [ChCRO2] the usage of a transaction model for data warehouse maintenance is proposed.
This model assumes autonomous data sources, which means sources that can alter their
data autonomously without accepting e’xtemal locks. It is also assumed that concurrency
control, which is achieved by means of versions, is sequential, i.e. only one transaction can
be processed. Two types of transactions are distinguished: the first is source update
transactions, which trigger the second type, DW maintenance transactions. A wrapper is
responsible for managing the versioning system. Initially, it creates versions whenever data

are updated.
In [ZGHW95] the authors propose the eager compensation algorithm (ECA) and some

variations of it for dealing with view maintenance anomalies in a warehousing

environment. The model assumed is the following: a legacy source is assumed, incapable of

22

handling views. Every update that occurs is sent to the DW which maintains a materialized
view. When the DW receives the update (insertion or deletion) issues a query towards the

source. The source calculates the result which is then stored in the materialized view.

With this setup, anomalies occur when more than one updates occur, one after the other and
the warehouse sends queries to the source without waiting the answer from the source to
the previous query. To deal with issue the authors propose the Eager Compensating
Algorithm. When the DW detects an inconsistent state, i.e. a new update received, without
an answer to a previous query has been received, a compensating query is issued to the
Source resulting to a consistent result in the Warehouse. Moreover two improvements of
the algorithm are presented: the first, the ECA - key algorithm, which reduces the
communication load between the Source and the DW when the view includes a key. The
second, the ECA - local algorithm determines which update can be handled locally at the

warehouse.

2.2 Web Services

Web services appear to be the latest development in the field of middleware, crafted
towards enabling the integration of software at an Internet scale. Web services evangelize
universal interoperability by exploiting Internet technologies, XML messaging, widely
accepted standards, and loose coupling of applications. An excellent reference book for the
field of Web services is [ACKMO03]. Web services assume a software stack ranging from
the low HTTP transfer protocol, to the execution part (SOAP), the service description part
(WSDL) that exports the public interface of services [WSDLO03] and service composition
[WSFLO1]. In the context of this thesis, the main protocol of interest is the Simple Object
Access Protocol (SOAP) [SOAPO1]. SOAP specifies a message format for the
communication of Web services along with the bindings to HTTP and SMTP protocols for

the delivery of messages. The messages are XML documents, or envelopes comprising a

23

header, with meta-information for the processing of the message and a body with the actual

contents of the message.

2.3 Streams

Aurora [ACCC+03] is a data flow system designed to support monitoring applications. Its
basic job is to process incoming streams. Aurora has an extended query model supporting
real time processing, views, materialized views and ad hoc queries. All these operations can
be combined with each other and form a network. This network also includes caches, called
connection points, which allow applications joining the system to have access to data of the

recent past. A connection point can also be materialized through a DBMS.

Moreover an optimization method for the operations’ network at run-time is presented.
According to Aurora’s approach, the user provides the system with 2d graphs designating
critical areas for Quality of Service. If some of these variables is not fulfilled during
operation, Aurora sheds some of its load. The data operations communicate with each other
with LIFO queues. In order to store them, Aurora uses predefined blocks of space, which
either doubles or reduces by half. Finally, a scheduler brings in memory the queues with

higher priority.

In [BBDM+02] fundamental models and issues are considered for the development of a
general purpose Data Stream Management System Model. Differences are outlined
between the data stream model and the conventional relational model. For instance,
concerning the type of queries each family of systems can answer. The authors also outline
the bad behavior of triggers if used in such systems and the need of high performance

techniques in order to answer queries in such data intensive systems.

The authors also examine in detail issues concerning queries over streams, such as

unbounded memory requirements, approximate query answering, sliding windows and

24

other. There also is an extensive reference to approaches of many streaming systems and
the system they have developed called STREAM. Finally algorithmic issues concerning

streams are discussed such as histograms, sampling, etc.

The most relative work to our approach is the one presented in [JiCh03]. In this paper, the
authors model single SELECT operations as M/D/1 or M/M/1 queuing systems, depending
on the_type of condition used and PROJECT operations as M/D/1 queuing systems.
Moreover they develop a formula using queue theory, in order to model the hash join of

two incoming streams as an M/(D1, D2)/1 queuing system.

24 ETL

Potter’s wheel [RaHeO1] is an interactive data cleaning system. Users gradually build
transformations by composing and debugging transforms on a spreadsheet like interface.
Discrepancy detection is done in the background on the latest transformed view of the data.
The desired results can be specified as example values. The main components of Potter’s
wheel are the following: a Data Source (ODBC data source or text file), which provides the
data to be cleaned. A Transformation Engine where transformations can be ordered via
examples or patterns. The Online Reorderer, where the desired transformations are
declared. The Automatic Discrepancy Detector runs in the background data the cleaning
algorithms. Moreover, an accumulated state is maintained, in order to detect multi-row
anomalies where a set of values is individually correct, but together violate some integrity

constraint.

The Evaluation of pattern suitability is made upon three characteristics: Recall meaning
that the structure should match as many column values as possible, Precision where the
structure should match as less other values as possible and finally the structure should have
minimal length in order to be as generic as possible. The minimum description length

principle offers a way to make a trade-off between overfitting and underfitting, minimizing

25

the total Jength required to encode data using a structure. Better structures result in smaller
Description Lengths. The Description Lengths are computed using specific formulas and

taking into account the three aforementioned characteristics.

Ajax [GFSSO00] is a data cleaning tool. It is based on user interaction and on automatic
procedures defined in AJAX scripting language, which as an SQL extension. It aims at
cleaning data with quality problems of the following classes: object identity problems,
errors and inconsistencies. Ajax distinguishes four types of transformations: mapping,
which standardizes data format, matching, which finds data referring possibly to the same
object, clustering which groups similar objects, and finally merging which eliminates
duplicates. These operations can be performed combining the following alternatives: using
stored system procedures, using additional procedures defined by a human expert, or

interacting directly with the human expert.

In [VaSS02] A general framework is presented for modeling the internal structure of ETL
activities. ETL activities and their consistent parts are initially modeled and reduced to a
graph called the “Architecture Graph”, in order to treat the ETL scenario as a skeleton of
the overall environment. In this graph, data and functions are represented as nodes, while
the edges of the graph depict rélationships between data. The authors also provide two
zooming algorithms for transforming the graphs. The first, the “In and OQut Zooming”
algorithm aims at the elimination of the information overflow produced by the modeling of
the ETL activity. The second, the “Major Flow” algorithm focuses on following the data

flow from sources to targets.

In [VSGTO02] the authors describe a framework for specifying ETL scenarios aiming
mainly to achieve genericity and customization. The main focus is on the data-centric part
of the ETL activities. A generic metamodel is presented, which covers all the types of
entities that comprise such an activity. These are generic classes in which the ETL entities

belong. Moreover, a specialized form of the metamodel is introduced which contains

26

models of frequently used ETL tasks. In specific, this specialization, called template layer,
consists of subclasses of the more generic metamodel layer. The materialization of these

subclasses are the actual ETL entities.

Genericity and customization is achieved by introducing new templates, which will be
special;zations of the metamodel layer, and will also be abstractions of the entities used in
the ETL scenario. The authors also present ARKTOS II a graphical tool, for the design of

ETL scenarios based on their approach.

2.5 Comparison of Related Work to our Contribution

As an overall evaluation of the related work and a comparison to our contributions, we can
mention the following. First, work on materialized views has specifically focused on the
issue of relational views. Transformations that lie outside the realm of relational algebra
have not been taken into consideration by the related work. At the same time, ETL
workflows frequently comprise of transformations that employ external functions to
compute tuples and values in ways more or less far from the expressive power of relational
algebra. As far as the existing work on ETL is concerned, this has mainly to do (a) with
classes of transformations executed either interactively, or off-line, and (b) with the design
aspects of ETL workflows. Our work covers a topic that has not been tackled so far by
related work in ETL. Research efforts on the management streams constitute the most
relevant area to our work. Still, to our knowledge, stream workflows have not been studied
in a principled manner, whereas in our work we employ queue theory for that purpose.
Moreover, typically, the problem studied in the area of streams concerns continuous
relational queries rather than the propagation of data from one data store to another. Again,
queries (standing for transformations in our case) outside relational algebra have not been

studied yet.

27

3 FRAMEWORK AND ISSUES RAISED

There are several issues concerning the implementation of a framework for active data
warehouse. Therefore, in this Chapter we will start by presenting the general architecture of
such a system. In section 3.1, we present the grand view for active warehousing and its
specific’ instantiation that we have investigated. Then, in section 3.2, we proceed to a

detailed presentation of the issues raised within this framework.

3.1 System Architecture

In our architecture we assume we have a single source of data. We consider this limitation
in order to evaluate architectural alternatives which will offer the best behavior to our
framework. Hence, our architecture consists of the following elements: a Data Source
generating data, an intermediate data staging area that will be referred to as the Active Data
Staging Area (ADSA) where the processing of data takes place and the Data Warehouse.

The architecture is illustrated in Figure 3.1.
ETL WS Client

))%

)))
ETL WS Client

SHFowR

G0

v

Ty)

Z
vi

2|

Source ADSA DW

Fig. 3.1. Architecture Overview

The Source comprises of a data store (legacy or conventional) and an operational data

management system (e.g., a DBMS or an application, respectively). Changes that take place

29

at the source side have to be propagated towards the warehouse, which typically resides in
a different host computer. The communication between hosts employs a network protocol
(e.g., TCP or UDP). To avoid the extra overhead of overloading the network with half-full
packets and, as our experiments indicate, to avoid overloading the source with the extra
task of performing this task, we employ a Source Flow Regulator (SFlowR) module that

compiles changes in blocks and propagates them towards the warehouse.

Once record blocks leave the source, an ETL workflow receives them at the intermediate
staging area. The role of the ETL workflow is to cleanse and transform the data in the
format of the data warehouse. The ETL workflow comprises a set of ETL activities, also
called ETL queues, each pipelining blocks of tuples to its subsequent activities, once its
filtering or transformation processing is completed. To perform this task, each ETL activity
checks its queue (e.g., in a periodic fashion) to see whether data are waiting to be
processed. Then, it picks a specified number of records, performs the processing and
forwards them to the next stage. If less than the specified records exist in the queue, then
they are all retrieved. If the queue is empty, then the invocation is postponed, until there

exist data to be processed.

The role of the active data staéing area is versatile: (a) it performs all the necessary
cleansings and transformations, (b) it relieves the Source from having to perform these
tasks, (c) it can act as a regulator for the data warehouse, too (in case, the warehouse cannot
handle the online traffic generated by the source) and (d) it can perform various tasks such

as checkpointing, summary preparation, and quality of service management.

Once all ETL processing is over, data are ready to be loaded to the warehouse. As already
explained, we chose to perform this task through a heavy but reliable (syntactically and
operationally) middleware, Web Services. For each target table or materialized view at the
warehouse, we define a receiving web service. To be able to invoke the web service, a

client needs to be constructed. The client, in order to regulate the traffic between the

30

staging area and the warehouse, compiles the data in blocks, too. The web service at the
warehouse side then populates the target table it serves. Load-balancing mechanisms at the
warehouse side and physical warehouse maintenance (e.g., index maintenance) can also be

part of this architecture. Still, for the moment, we do not consider these possibilities.

In the barticular implementation that we have used in our experiments, we have studied the
problem as it appears over legacy sources. In our configuration, the Source includes two
software modules: (a) an ISAM file and (b) an application used to modify data in the legacy
data source. For manipulating ISAM files, there is a library of ISAM routines that are
invoked from the application at the source side. We have modified these library routines in
order to replicate the data manipulation commands and send updates towards the staging
area. Several ETL queues reside at the staging area performing cleanings transformations
and aggregations. Each ETL activity retrieves data from its queue with a constant rate,
retrieving a given number of elements in constant timeouts. ETL activities communicate
both with each other and with the Web service clients via Java thread safe queues. The
transfer from the staging area towards the Data Warehouse is done over HTTP (implying
TCP as the underlying network protocol). For our experiments, we have assumed that the

warehouse simply stores the data performing no other task.

3.2 Issues Raised

To fulfill all the goals mentioned in Section 1, using the architectural elements described
above, there are some issues raised which mainly concern the tuning and configuration of
the system. The key issues that affect syster performance and need to be resolved are
discussed in this section and classified with respect to their locality at the source or the
staging area, as well as the overall setup of the environment. All the technical choices and

their alternatives are summarized in Table 3.1.

31

3.2.1 Choices concerning the Topology

Having described our architectural elements, the next step is to decide their topology. Our

architecture offers the ability of selecting different number of tiers. Several choices exist:

One-tier architecture. Using the one-tier architecture is the simplest solution, overloading
however the single host. In any case, data warehouses were introduced exactly for the
purpose of separating the source production systems from decision support applications for
performance reasons (practically due to transactional deadlocks and system overload).
Under these considerations, a single tier approach is not recommended. This solution is

illustrated in Figure 3.2.

P N
~ —_

Application ETL —>| ws |

ﬂ Workflow
-~ —_—— A

Fig. 3.2. One tier topology: The Source, the Staging Area and the Data Warehouse reside on the

same host

As the single-tier alternative is not the most realistic case, we proceed to a two-tier

architecture, where the source and the Warehouse are found on different machines.

Two-tier architecture. The source and the Warehouse are found on different machines.
Regarding the two-tier architecture, the main issue that arises is related to the placement of
the staging area. There are two alternatives concerning this choice: the first is to place the

staging area together with the source, putting the data warehouse on a separate machine

32

(Figure 3.3). The second alternative is to place the staging area at the host where the data

warehouse resides (Figure 3.4).

I— | Host 1 Host 2 E:

-, Application|==>| ETL I
H Workflow
————) ﬂ

Fig. 3.3. Two-tier topology: The Source and the Staging Area reside on the same host, while the

Data Warehouse resides on another machine.

In the case of the staging area placed at the Source, data warehousing operations do not

burden the Source, but still the resources used by the web services API to perform the

invocation remain considerable. A way for dealing with this is to move the staging area to

the warehouse host (Figure 3.4), which can be expected to be more powerful from the
_ source host.

This way, the source is completely detached from the Active Data Warehousing process.

Naturally, if the warehouse server is too loaded or its configuration too complex for the

extra software setup of a web service server, a three-tier architecture can also be employed.

33

f--_I | Host 2 I
Application ETL L:-D
Workflow

g={]im

Fig. 3.4. Two tier topology: The Data Warehouse and the Staging Area reside on the same host,

while the Source resides on a separate machine.

Three-tier architecture. Finally, there is always the alternative to use a separate dedicated
machine for the staging area, leading to a three-tier topology. Using the three-tier
architecture (Figure 3.5) solves all the abovementioned problems, but increases the setup
and maintenance cost, since an extra server, apart from the one used from the warehouse,

has to be engaged and administered.

Host 1 l: Host 2 gl Host 3

Application v |ETL :

Workflow

]
;

(ow) ow)

Fig. 3.5. Three tier topology: The Source, the Data Warehouse and the Staging Area reside on three

separate machines.

Having discussed the architectural alternatives for our topology, we proceed to discuss the

technical issues raised for each of the main components and their overall setup.

34

3.2.2 Choices concerning the Source

Concerning the source side, the first consideration that arises has to do with the
interconnection type between the Source and the staging area. Since our goals are to impose
as little impact as possible to the Source and to make only minor changes, we have chosen
the solition of sockets both due to its footprint characteristics and the easiness of

programming such a solution.

The next choice is between TCP and UDP protocols for the transmission of data between
the source and the staging area. On the one hand, TCP offers reliability. On the other hand,
UDP offers speed through non blocking calls followed by a concern on the server side for

the socket buffer size, in case of extended datagram bursts and no reliability.

A third architectural choice that has to be made concerns the way changes to the source file
are written to the socket, i.e., whether data are organized in blocks before being further
propagated to the staging area. There are two ways to deal with this issue: either to write
each modification to the socket, or to write bulks of modification commands. In the first
-case, whenever a data manipulation command is issued, it is immediately written to the
socket along with the respective data. In the second case, nothing is written, until a number
of records is completed. Then, all records together are sent to the staging area. Sending one
record at a time, while being a straightforward solution burdens the system with additional
communication cost. On the other hand, using a block has the drawback of determining the

block size, but reduces communication cost significantly.

3.2.3 Choices concerning the Staging Area

The internal structure of the data staging area and the tuning of its operation are the major
issues concerning the performance of our architecture. The staging area is a multithreaded

environment with shared components, thus having to be set up properly to avoid race

35

conditions and ensure consistency. Each transformation is implemented as an independent
thread. The part of the Staging Area listening for connections from the Source and the Web
Service Client are implemented as Threads as well. All of these components communicate
with each other with shared queues, making locking necessary to ensure consistency and

avoid race conditions,

Issue [Alternatives
General Architecture

- 2-tier, Staging Area at the source side
Topology - 2-tier, Staging Area at the DW side
- 3 tier

Source
- UDP
- TCP
- One at a time
- Block-based
Active Data Staging Area
- None
- Synchronized Queue
- Blocking
- Non Blocking
- One at a time
- Block-based
Data Warehouse
- Single WS
Session management - Instance per session
- Instance per request

Connection Type

Propagation Type

Interface between the two APIs

Web Service invocation type

Propagation Type

Table 3.1. Architectural choices

The problem of locking raises the issue of the queue emptying rate. Assuming that the input
to the staging area is determined by the workload of the source (i.e., it cannot be
constrained by the warehouse administrator), a proper emptying rate for the ETL queues
has to be determined. A high arrival rate compared to the configured service rate will result
in instability and queue length explosion. On the contrary, a very high service rate

potentially results in too many locks of the queue (resulting again in delay, contrary to what

would normally be expected). It is obvious that the service rate should be close to the

arrival rate’in order to have both efficient service times, and as less locks as possible.

Another dilemma is related to the interconnection type between the Staging Area and the
Data Warehouse. As already mentioned, the Staging Area invokes a Web Service residing
at the w;'rehouse side. There are two different alternatives for invoking the Web Service,
namely ~(a) blocking and (b) non-blocking. Blocking invocation involves an
acknowledgment message to be sent from the web service, before its client can continue. In
our case, this means that a response from the warehouse is required, delaying however the
queue emptying rate. Non-blocking invocation does not delay the queue emptying process

of the web Service client, since no response is returned from the invocation.

Finally, the issue of sending data as tuple-at-a-time or blocks is raised again for the
communication between the Staging Area and the warehouse. In this case, apart from the
network overhead, the cost of parsing the incoming web service messages at the warehouse

plays a role for this choice.

"3.2.4 Choices concerning the Warehouse

The data warehouse side is characterized by a Web Service per target table, receiving the
cleansed data from the Staging Area. The web services API offers three ways of handling
the remote invocations of the client that resides in the data Staging Area. The first way is to
create a single web service instance that handles all incoming requests. This is a good
solution for configurations where a small number of clients creates a lot of invocation
requests, but is not recommended in cases where a large number of clients wish to invoke
the same Web Service, since it will result in high latency times. In this case, the second
way for handling remote invocations is recommended. That is to create an instance for each
invocation request. However, in cases of high frequency invocation requests, this solution
behaves poorly in terms of performance, since it creates a new instance of an invocation

object. The third alternative is a solution combining the functionality of the previous two

37

cases: an instance is created for every session. The only issue that has to be resolved in this
case is the duration of the session time.

In our configurations, we use the first of these alternatives, namely a single web service
instance that handles all incoming requests. The reason is that in our experiments, we have
employed one client for the service, which stops its operation after inserting a specific
amount of records into the ISAM file. This makes the case of using an instance per session

the same as using a single instance. Using an object per request is prohibitive, since we

assume high frequency invocations.

38

4 THEORETICAL ANALYSIS OF ETL WORKFLOWS FOR
ACTIVE WAREHOUSING USING QUEUE THEORY

In our architecture, data flows from the source to the Staging Area, where data sustain
various types of processing: filtering, transformation and binary operations. To establish a
cost mo&el for our system and to calculate interesting performance measures such as the
delay of extracting results to the warehouse, we use queue theory as the means of acquiring

estimations for each case of operation.

The roadmap of this chapter is summarized as follows: in Section 4.1 the definition of the
generic queuing model is presented. In Section 4.2 lays the proof of the memoryless
property of the exponential distribution. Section 4.3 provides a brief introduction to
Markov. chains. Section 4.4 displays Kendall’s Notation and Little’s Law. Kendall’s
notation is a standard way to describe a queuing system in terms of its input, output and
internal architecture. Little‘s law is the fundamental law governing all queuing systems and
-relates the input and the output rate of the system with the average queue size. Section 4.5
presents measures of effectiveness valid for all types of queuing systems. Section 4.6
describes the simplest queuing system of all, M/M/1. Section 4.7 presents the M/M'*)/1
system which is an extension of the M/M/1 system to model customers serviced in batches.
This will be used to describe the function of the source’s flow regulator. Section 4.8
presents the case of constant service times, i.e., the M/D/1 system. In Section 4.9, we
present methods for dealing with networks of queues and in Section 4.10 we describe how
this method is extended for the case of multiple classes of customers. In Section 4.11, we
distinguish data operations occurring in the Staging Area in categories and argue about the

type of queuing model that can be used to describe each of them.

39

4.1 Definition of a Queuing Model

The simplest queuing model is depicted in Figure 4.1. It can be used to model machines or
operators processing orders or communication equipment processing information.
According to this model, a sequence of customers arrives at a server. If a customer arriving
at the server finds the server occupied, it waits in the queue until its turn comes to be

served. After the customer is served, it leaves the system [Magl].

If A customers arrive at the system per time unit, then the mean inter-arrival time is equal to
1/A. Similarly, if u customers are served at the system per time unit, then the mean service
time is equal to //u. Based on these parameters, we also define p=A/u as the traffic intensity
which denotes the server utilization. We require that p<I or the queue length will explode.

In figure 4.1, a basic queuing model is depicted.

] > L o

Fig. 4.1. Basic queuing model

Among others, a queuing model is characterized by [AdRe01]:

— The arrival process of customers. Usually, we assume that the interarrival times are
independent and have a common distribution. In many practical situations, customers
arrive according to a Poisson stream (i.e. exponential interarrival times). Customers may
arrive one by one, or in batches. An example of batch arrivals is the customs office at the

border where travel documents of bus passengers have to be checked.

— The service times. Usually we assume that the service times are independent and
identically distributed, and that they are independent of the interarrival times. For
example, the service times can be deterministic or exponentially distributed. It can also

occur that service times are dependent on the queue length. For example, the processing

40

rates of the machines in a production system can be increased once the number of jobs

waiting to be processed becomes too large.

The service discipline. Customers can be served one by one or in batches. There are
many alternatives for the order in which they enter service. A common discipline that
will be used henceforth is the First Come First Served discipline (FCFS), i.e. customers

are served in order of arrival.

The service capacity. There may be a single server or a group of servers helping the

customers.

The waiting room. There can be limitations with respect to the number of customers in
the system. For example, in a data communication network, only finitely many cells can
be buffered in a switch. The determination of good buffer sizes is an important issue in

the design of these networks.

4.2 Statistical Distribution of Interarrival and Processing Times

In this section the proof of the memoryless property of the exponential distribution is
presented. This property is very important because it denotes that the arrival time of an
event in a system is not dependant on the arrivals of previous events and does not affect

future arrivals.

A poisson random variable X has the following distribution:

n

PX=m)=H_c* n=01,..
n

The time between successive arrivals following a Poisson distribution follows an

exponential distribution. The formula for the distribution function is:

41

F)=1-e",t20

The density of an exponential distribution with parameter y is given by

f@O)=pe”,1>0

The exponential distribution is the only distribution which has the memoryless property
[Will04, p. 66-68]. A real-valued non-negative random variable X is called memoryless if

for all s,t € Ry":

P[X >s+1t| X >s]=P[X >1]

Intuitively, this means that the time remaining for the next future event is independent of
the time the last event occurred [Magl]. It is easy to prove that the exponential distribution
has the memoryless property:

P[X >s+1,X >s5s] P[X>s+t] _

PIX >s+t| X >s]= X o] e

e—ﬂ(s"“) e_lne"/‘ _
= =e” =P[X >1t]

-st ~st

e e

-

4.3 Markov Process and Markov Chains

A Markov chain is a discrete-time process for which the future behavior, given the past and
the present, depends only on the present and not on the past. Figure 4.2 shows a Markov

chain. A Markov process is the continuous-time version of a Markov chain.
A Markov chain, studied at the discrete time points 0,1,2,... is characterized by a set of

states S and the transition probabilities p; between the states. Here, p; is the probability that

the Markov chain is in state j at the next time point, given that it is at state i at the present

42

time point. The matrix P with elements p; is called the transition probability matrix of the

Markov chain. The row sums of P are equal to 1.

AAA

‘OOO @@@..

/,/k/‘\/

—

Fig. 4.2, A Markov chain

In a Markov process there is also a discrete set of states S. In each state there are a number
of possible events that can cause a transition. The event that causes a transition from state i
to j, where j # I, takes place after an exponential amount of time, with probability g;. As a

result, in this model, transitions take place at random points in time.

A special case of a Markov process is a birth-death process. In a birth-death process the
only allowed transitions are between neighboring states. The transition from state n to n+1
is identified with a birth event, and the transition from n to n-1 is a death event. Many
queuing systems can be described as birth-death processes. The Markov process of Figure 2

is a birth-death process, since there are only transitions between neighboring states,

4.4 Kendall’s Notation and Little’s Law

To characterize different queuing models Kendall introduced a shorthand notation [Magl]

using a code of the form A/B/m/K/M. Each of these symbols has the following meaning:

e A: Distribution of the inter-arrival times. The following symbols are used to indicate
some common distributions: M (exponential / memoryless distribution), G (general

distribution), D (Deterministic), E; (Erlangian distribution with k stages).

43

B: Distribution of the service times. The aforementioned symbols are also used in this

case.

m: Number of servers.

K: size of the queue’s waiting room (only used in the case of finite waiting room)

M: Size of population to be served. If not used, infinite population is implied.

Little‘s Law gives a very important relation between the mean number of customers in the
system N, the customer mean arrival rate in the system A, and the mean time a customer
remains in the system 7. This relation is formulated as:

N=AT
The importance of Little ‘s Law resides in the fact that this equation holds for every type of

queuing system irrespectively of the arrival and service distributions.

4.5 Measures of Effectiveness

Measures of effectiveness are measures valid for all types of queuing systems, no matter of

the arrival or service rates. In brief, these measures are the following:

e Mean number of customers in the system in steady state:

L=E[n]= inp,l

n=0

e Mean number of customers in the queue:

L, =3 (n-Dp,

n=l

44

In these formulas L, represents the mean number of customers waiting in the queue to be
processed, while L represents the total customers in the system: the customers currently

being processed and the customers waiting in the queue.

Using Little’s formula it is easy to obtain the expected waiting times for the system, and the
waiting queue.

4.6 The M/M/1 Queuing System

M/M/1 is the simplest queuing system and it can be described as follows: FIFO service,
single server, infinite waiting line, the customer inter-arrival times are independent,
identically and exponentially distributed with some parameter A. The customer service
times are also independent, identically and exponentially distributed with some parameter
p. The assumption of independent and identically distributed variables means that each
random variable has the same distribution with the others and they are mutually
independent. We can describe this type of queuing system through the following equations
[Will04]:

Mean number of customers in the system:

-p H-A

Mean number of customers in the queue, or the queue length:

2 /12
L,=L-(-p)=-L—=
I-p w(u-4)
Mean delay time for a customer in the system:
)
A

45

Mean delay time for a customer in the queue:

r-k
A
Probability of n customers in the system:
p,=(1-p)p"

A method for obtaining steady state flow equations for a birth - death process is the
stochastic balance procedure [GrHa]. This type of analysis looks at a given state and
requires that the flow into a state equals to the flow out of the state.

Consider a state n (n21) in an M/M/1 queue. As shown in figure 2, the system goes from
state n (meaning » customers in the system) to state n-/ when a service completes, or to
state n+/ when an arrival occurs. Similarly, the system goes from state
n-1 to state n when a new arrival occurs, and from n+/ to n when a service is completed.
The mean flow into state n equals to up,.; + Ap,.; and the flow out of state n is up, + Ap,.

Equating incoming flow to outgoing flow results in:

Wnﬂ +ﬂ’pnll = (ﬂ,:l-y)p", (l‘l 21)

In the case that n=0, since n is non negative the following equation is obtained:

APy = tp,

4.7 Networks of Queues and the Jackson Theorem

Many queuing systems consist of a network of queues. In a queuing network (QN), a
customer finishing service in a service facility is either immediately proceeding to another
service facility or leaves the system. For our purposes we assume that each node of this

network consists of a single server with exponential arrival and exponential service times.

46

One basi¢ classification of queuing networks is the distinction between open and closed
queuing networks. In an open network new customers may arrive from outside (coming
from a conceptually infinite population) and later on leave the system. In a closed queuing
network the number of customers is fixed and no customer enters or leaves the system. In
our case we are exclusively interested in open networks. We will consider only the case of
a single class network where all customers belong to the same class, for example share the

same service times.

In the following analysis we will use the following notation:

- N:number of nodes (single service centers)

- k;: the number of jobs at the i-th node. The nodes are numbered from 1 to N. The %; are
grouped into the vector (kj, . . . , ky).

- m; the number of parallel servers at node i. All servers have the same service rate.

- p;: service rate of all the servers at node i. The overall service rate of this node is
m; - p;. The mean service time of a single customer is //u;

- pij- the routing probability that a customer leaving node i proceeds to node j. These
probabilities remain fixed over time. Clearly, when there is no direct path from i to j
we have p; = 0. In our case we assume that the occurring transitions follow a birth —
death process, i.e, they occur only between neighboring states.

- po; the probability that a new job entering the system from outside enters the system at

node j. In an open network the following holds:

Z;’:l Po; = 1

- pio: the probability that a job leaves the system immediately after getting service at
node i.

- Ag;: the arrival rate of jobs from outside to node i.

- Ao the total arrival rate to node i. This includes arrivals both outside the system and

from other nodes (including feedback).

47

- A: the total arrival rate to all nodes in the network from outside.
N

A= }”o,i

i=1

- e = A/Ais the visit ratio of node i, i.e. how often the node is visited by a single job.

If an open queuing network is in steady state then for each node, its arrival rate A; equals its
departure rate. The arrival rate 4; to node i is clearly the sum of all arrivals from the outside

to and from all nodes to i (including i itself), thus we have:

N
'1’1' = Ao + Z pj,i'q’j
j=1

or in vector — matrix form:

},=lo+m

These equations are called traffic equations and they can be transformed into a set of N
simultaneous linear equations. If we divide these equations by A we arrive at:

N
€; = Do, +ij,iej

j=l

In order to calculate the performance measures in queuing networks the steady state
probabilities have to be found:

% (ky,..., kn) = Pr [k; customers in queue 1, ..., ky customers in queue N]

The term n(k,,..., ky) denotes the probability of k; customers in queue 1, k; customers in
queue 2 and so on. The overall throughput of an open queuing network is the rate by which
jobs leave the network. If the network is in the steady state, then this rate equals the arrival

rate A from outside to the network.

48

Jackson’s Theorem specifies the conditions, under which a product form solution in open

queuing networks exist:

The number of customers in the network is not limited.

Every node in the network has Poisson arrivals from outside the network.

A Customer can leave the system from any node (or a subset of them).

All service times are exponentially distributed.

In every node the service discipline is FIFO.

The i-th service facility consists of mi identical servers, each with service rate g, (as a

generalization the service rate y; may depend on the number of customers in system i).

Jackson’s Theorem: If in an open network the condition 4; < u; - m; holds for every

i /1, ..,N) then the steady state probability of the network can be expressed as the product

of the state probabilities of the individual nodes:

w (k... kn) = milk)mo(kz)... mu(kn)

Therefore, we can solve this class of networks in three steps:

-

Solve the traffic equations to find 4; for each queuing system i.
For each queuing system i, determine separately its steady-state probabilities m(k;).
Determine the global steady-state probabilities 7 (k,,..., ky) from the above formula.

Derive the desired global performance measures.

Jackson ’s theorem offers a very important result since it allows us to calculate, in a

straightforward way, the steady state probabilities of the whole network by calculating the

probabilities by treating each node separately.

4,8 Multi Class Jackson Networks

A generalization to Jackson networks is a Jackson network with different classes of

customers [GrHal. In specific, customers of different classes have different routing

49

probabilities, depending on the class they belong. To solve such networks, we assume a
separate routing matrix R for each customer class, where the superscript (t) represents the
class of the customers. The routing equations are solved separately for each class of
customers. The formula describing the arrival rate in a node for class t in vector —~ matrix
form:

A0 = 2,0 4 J9RY

The overall input rate 4 in the network equals to the sum of the input rate of the network for
each class of customers. This can be formulated as:
A=30

To obtain individually the average number of customers of class ¢ in node i, denoted as L;*,

the following equation holds:

@®
I = 4 L
i (O] (2)) ¢
A 4 AP 4+ I

Again L;’s are computed by the M/M/1 formulas, since we can treat each node separately.

4.9 Applying Queue Theory to ETL Workflows

Each ETL queue can direct customers to more than one subsequent queue, depending on
the type of operation it performs. The composition of queues in queue theory is treated by
queue networks and the computation of the interesting properties of such networks depends
on the nature of the involved individual queues. The question that arises is what kind of
individual queues do the ETL activities produce. One possible way to answer this question
is to define an extension of the relational algebra, specifically tailored for ETL purposes,
containing for instance, operators for answering continuous queries and study the properties
of each operator from the viewpoint of queue theory. Since this would probably produce

quite complex queues, we adopt a different, black-box, approach and define a taxonomy of

50

ETL transformations, based on the relationship of their input and output. This way, we
practically categorize ETL tasks in families without delving in the particularities of their
internal functionality. Specifically, the taxonomy of activities consists of the following

categories: (a) Filters, (b) Transformers and (c) Binary Operations.

.

accepted

- T — (&) —» T

Aour
P, l Ares

Fig. 4.3. Queuing model for Multi-output activities

49.1 Filters

Filters examine each incoming tuple to determine whether it meets certain criteria. If these
criteria are fulfilled, then a tuple is accepted and propagated towards an acceptance output.
If not, it is rejected and possibly propagated towards a rejection output. We assume that
tuple arrivals occur due to a Poisson process and service times follow an exponential
distribution. We define the probability that some tuple i is accepted as P, and the
probability that some tuple i is rejected by the system as P,. This is illustrated in Figure 4.3.

It is obvious that P,+ P,=1.

The filtering operations do not impose a change in the overall number of tuples making the
following equation valid:

| tuples entering service | = | tuples accepted |+| tuples rejected |

Also, these operations do not incur changes to the schema of the tuples entering the service
facility compared to the schema of the tuples exiting. Typical operations of this category
are not null, domain and foreign key checks, selections and in general, any type of

operation, operating locally on a tuple and determining whether it will be further

51

propagated or not. Due to their multiple outputs, filters can also act as routers for tuples

whose destination depends on their value.

4.9.2 Transformers

Considering the case of Transformers, tuples entering a transformer undergo changes to
their value and/or their schema. We can distinguish two subclasses of Transformers taking
into account the relationship between the number of tuples entering and the number of
tuples exiting the transformation. In the first case, the two quantities are equal which

means:

| tuples entering service | = | tuples accepted |

We assume that tuple arrivals occur due to a Poisson process and service times follow an
exponential distribution, in other words, we have the same case with filters transformations.
Again, we define the probability that some tuple i is accepted as P, and the probability that
some tuple i is rejected by the system as P,. Since all tuples are accepted, we have: P, =]
and P, =0 (Figure 4.4). An example of such a transformation is the surrogate key
transformation, the usage of functions for the derivation of new values and, in general, any

transformation that derives an output tuple solely on the basis of the value of a single input

—~ @

AN Aout

tuple.

Fig. 4.4. Queuing model for Single-output activities
In the second case, the number of tuples entering the system is different compared to the

number of tuples exiting and in specific:

| tuples entering service | > | tuples accepted |

52

This occurs because some of the tuples entering service are aggregated or merged. We
assume that tuple arrivals occur due to a Poisson process and service times follow an
exponential distribution. The problem with this kind of transformations is that practically
queue customers disappear and new customers are produced by each transformation. To
model [hlS property in terms of queue theory, we make the assumption that depending on
the aggregation or merging factor, some of the incoming customers continue and some exit
the system. In other words, we assume that some of the tuples after being transformed
continue through the system as accepted. The number of these tuples equals the number of
tuples produced as a result by the transformation. The rest of the tuples are assumed to be
rejected by the system after their service and exit the system. The following obvious
equation holds:

| tuples rejected | = | tuples entering service | - | tuples accepted |

Again, we define as P, the probability that some tuple i is accepted and P, the probability
that some tuple i is rejected by the system: P,+ P,=I. Given the aggregation factor of an
incoming set of data, we can easily compute the output and rejection rate as well as the
respective routing probabilities on the basis of the number of tuples we wish to aggregate
each time, or more generally, to impose a transformation of this category. Thus, the routing

probabilities are:

_ |resulz _ tuples| _ Iinput - tuplesl - |result - tuplesl

- Iinput _ tuplesl Iinput - tuplesl

4.9.3 Binary Operators

The third class of ETL activities deals with Binary Operators. This is the case where data
from multiple sources are combined and a single outgoing stream is produced. Examples of
such operations involve variants of the join operation, including the join of data from
different tables, as well as difference and update detection operations among different

snapshots of the same table. [JiCh03] describes a window-based hash join algorithm for

53

continuous streams. In the context of ETL, we make the following assumptions and

observations:

e One of the two inputs is consider as the primary input flow. Tuples of this flow are
checked over filters or transformed according to the values of some other relation and

ultimately, either propagated towards the Warehouse or rejected.

o The second input of the operator is acting as a regulator of the primary flow. In other
words, its values are only needed in order to determine the processing and routing of
the tuples of the primary flow. For all practical purposes, where active ETL
functionality is needed (update detection, difference, facts joined with dimension

values), a static snapshot of the regulator flow can even be assumed.

e Adopting the model of [JiCh03], both inputs arrive at the same queue — they simply

undergo processing with different distributions of processing times.

In principle, a binary operator has to be dealt with as a multi-class queuing system, with
one class for each flow (input or output) — see Figure 4.5. We refer the interested reader to
[JiCh03] for such a treatment. Still,” based on the aforementioned assumptions, we can
avoid modeling the system as a multi-class queue and deal only with the primary flow of
the operator. In the rest of the thesis, we will consider single-class queues, the tuples of
which (a) either continue in the system or (b) are ultimately rejected. An interesting
observation here is that no matter how many different categories of tuples enter the node
for service, the output tuples can be assumed to belong in one of the two aforementioned

categories.

We consider Poisson arrivals and exponential service times. As stated earlier the two
routing classes are accepted with probability P, and rejected with probability P, and as
before P,+ P,=1. This type of operations does not impose a change in the overall number

of tuples existing making the following equation valid (Figure 4.5):

54

| tuples entering service | = | tuples accepted |+| tuples rejected |

However, differently from Filters, the schema of the tuples possibly changes.

494 ‘Generic Model

—

It is easy to observe, that a Generic Model can generalize the three aforementioned classes,
in a single case where a node consisting of a single server serves possibly more than one
class of customers. All customers arrive according to a Poisson process and are serviced
with exponential service times. The general case is depicted in Figure 4.5 and involves a

M/M/1 queuing node.

accepted

rejected

Fig. 4.5. Generic Model for ETL Queues

In the general case, we can assume that tuples of customers, after their ETL transformation
at the node, leave the system with probability P, and continue in the queue network with
probability P,”. Concerning the number of tuples in the system the following equation is
still valid:

| tuples entering service | = | tuples accepted |+| tuples rejected |

Concerning the schema of the tuples before and after service, we observe that the schema

changes in the general case, apart from the case of filters.

55

In the rest of this thesis, we will follow the assumption of a primary input flow. This
obviously results in forming an M/M/1 queuing node as the constructing element of our

ETL queue network.

4.10 Methodology for Solving ETL Scenarios

In this section we illustrate the solution of a queue network of ETL operations. We use
Queue Theory to predict a performance metric of our system based on the values of the
other metrics. Moreover, we provide an example to illustrate the usage of Queue Theory in

order to predict the number of packets in the system, knowing the arrival and service rates.

Specifically, given a network of ETL queues, there are three inter-related metrics for each
queue: arrival rate, service rate and the number of packets in the queue. The overall
number of packets in the system can easily be determined as the sum of the individual
queues. The problem formulation is simple: given the two of the three metric, determine the
third one. The methodology for solving such a problem is quite simple. We work on open
queuing networks, since tuples arrive from outside (coming from a conceptually infinite
population) and later on leave the system. Each node of the network is assumed to be a
M/M/1 system. In order to solve this network-we follow these steps:

1. We determine the routing probabilities for each node.

2. We solve the traffic equations system to calculate the arrival rate for each node.

3. We solve for each node separately the M/M/1 equations to calculate performance metrics
To demonstrate the usage of this technique, which comes from queue theory, we assume
the following scenario, as illustrated in figure 4.6. In brief, the scenario is as follows:

Filter 10% of incoming data.

a
b. A surrogate key operation to the first column of the filtered data.
¢. Group by sum.

d

Data are then fed to the warehouse.

56

We assign the following identifiers, for reasons of ease, to each node of he network, thu
, thus:

F Filter 10%
SK Surrogate Key
. e GB Group By Sum
o WS Web Service Client
O QOutside the network
Table 4.1. Assigned identifiers
SFlowR: Fxher Sum WS Client

SN SRS DD S

-....-.o...o-..’. essoveccses

.‘l...........‘.l [X]

Source ADSA DW
Fig. 4.6. The scenario we solve
" The routing probabilities for each node of the Staging Area are the following:
Pro=0.1 Prr=0 Prsk=0.9 Prop=0 Prws=0
Psx o= 0 Pskp=0 Psksk=0 Pskge=1 Pskws=0
Pgpo=0 PGB,F =0 Popsk=0 Pgpcp= 0 PGB,WS =1
Pwso=1 Pwsr=0 Pwssxk=0 Pwsgp=0 Pysws=0

Next we solve the traffic equations, which are the following:
Ae = hor+ MPrr + AskPsk r + AosPopF + AwsPws.F
Ask = hosk + APEsk + AskPsk sk + AgePoB.sk + AwsPws,sk
Ae = Ao+ APrce + AskPsk.s + AasPaB .o + AwsPws.gs
Aws = Aows + AePrws + AskPskws + AoePoews + AwsPws,ws
The solution results in the following equations:

Ap= %,F

57

Ask = AP sk
Ace = AskPsk GB
Aws = AcePopws
The measured arrival rate from the Source is:
Ao = Ao= 22.252 packets / sec
Substituting we get:
Ar = 22.252 packets / sec
Ask =22.252 x 0.9 = 20.0268 packets / sec
Ace = AskPsk gs = 20.0268 packets / sec
Aws = AgePonws = 20.0268 packets / sec

Now we can solve for each node separately the M/M/1 equations to obtain the performance
metrics. To do this we also need the service rates for each node. We get the following
values from our experiments:

ne =26.403

Usk = 25.648

Kes = 27.194

uws = 28.595

Thus, for each case, the average number of packets in the system is the following:
Lr =5.360
Lsk = 3.960
Lgs =4.502
Lws =2.60

Similarly, we can easily calculate the rest of the performance rates using the equations that

hold for the M/M/1 queuing system.

58

5 EXPERIMENTS ON ARCHITECTURE WITHOUT ETL
PROCESSING

In this Chapter, we present the experiments we conducted to determine the best

configuration for our architecture.

%2
e
9)
£
&

WS Client

Z
%

)

DW

Gord)

Source ADSA

\
N

Fig. 5.1. Experimental setup for set (a)

We present two sets of experiments: (a) and (b). Set (a) presented in this chapter, deals with
the general behavior of the system. The purpose of this set of experiments is to figure out
the behavior of each system component separately, and to establish guidelines for building
the system. In this case, data are just transferred to the warehouse and no ETL operations
are involved. In set (b), presented in Chapter 6, we evaluate the behavior of a system in a
realistic setup, based on the conclusions derived from the first set. Naturally, in this case,

we also transform out data using ETL operations.

Our experimental setup is as follows: In our configuration, the Source includes two
software modules: (a) an ISAM file and (b) an application used to modify data in the legacy
data source. To manipulate ISAM files, there is a library of ISAM routines that are invoked

from the application at the source side. We have modified these library routines in order to

59

replicate the data manipulation commands and send updates towards the Staging Area. The
ISAM library that we altered is the PBL/ISAM suite [PBL04] available under GPL license.
We have used a sample program distributed within the suite as the legacy application. We
use two different data sets for our purposes. The first consists of 100,000 records and the
second of 1,000,000 records. The ETL queues of the Staging Area have been implemented
using the Sun JDK 1.4, whose runtime engine has also been used. As a Web Services
platform we have used Apache Axis 1.1 [AXIS04] with Xerces XML parser running over
Apache Tomcat 1.3.29. Our Data Warehouse is implemented as a MySQL 4.1 database.

§ ETL WS Chent: WS
SFlowR; D_'D i -
D
»m-»%
: ETL WS Client s WS
Source . ADSA . DW

Fig. 5.1. Experimental setup for set (b)

The host we used for the Source was a PIII- 700MHz with 256MB of physical memory
running SuSE Linux 8.1. The host used as the data warehouse a Pentium 4 2.8GHz with
1GB of physical memory running Mandrake Linux. This server also hosted the Staging
Area. The hosts are interconnected via the switched Fast Ethernet LAN of our department.

Our data were created from the TPC-H data generation tool. For set (a) each row of data
has fixed size equal to 20 bytes. For set (b), where we evaluate the system behavior under
real data warehousing conditions, we used data of variable size. In this case, each row has

an average size of 140 bytes.

In our experiments, we evaluate the cost in marginal conditions. Thus in order to evaluate

the worst case, the Source generates data at its peak capability. Moreover, since our

60

warehouse host is a much faster computer than the source host, we would not be able to
make safe conclusions if we always let it operate at its full capability. Thus, we simulate
slower server performance by employing time outs between operations. This will be

explained in more detail later.

-

5.1 Smooth Upgrade

One of the goals of our architecture is to pose minimal modifications to code of the source
system. In our approach, we do not alter the Legacy Application itself, but the library
which manipulates the ISAM files by adding a few lines of code to the routines that are of
interest to the purpose of active warehousing. These routines are: the file opening routine,
the record insertion routine and the file closing routine. The alterations are located only in 4

points of the library’s source code:

1. The first modification is to include our library which contains the socket’s client
and the Source Flow Regulator.

2. The second modification is to add a call to the routine of our library that opens a
socket to the Staging Area at the ISAM file opening routine. This call is performed
only if the opening of the ISAM file is successful.

3. The third modification is to also add the call to our library’s function that writes to
the socket at the routine of the ISAM file library that writes the record to the file.
This routine stores the specific record to the Source Flow Regulator’s buffer and
when the defined number of records is completed, it delivers them to the Staging
Area. Again, this routine is called only after a successful insertion.

4. The fourth modification is to add a call to the routine of our library that closes the
opened socket to the Staging Area, at the ISAM file closing routine. This call is
performed only if the closing of the ISAM file is successful.

61

Table 3 shows the alterations that we have performed to the library in pseudo-code. The

overall length of code that had to be written for this part of the implementation, including

the additions at the ISAM library, is approximately 100 lines.

Table 3. Code alterations at the routine that opens the ISAM file.

Original Routine

Altered Routine

Open_isam_File()
{

opening_isam_file_commands

}...

Write_record_to_File()

{

insert_record_commands

}...

Close_isam_File()

{

closing_isam_file_commands

}...

Open_isam_File()
{

opening_isam_file_commands

ii’i;)pen==success)
ADSA _socket_open()
}

Write_record_to_File()

insert_record_commands

if(write==success)
write_to_Source Flow RegulatorR()

}

Close_isam_File()

{
closing_isam_file_commands
if(close==success)

ADSA _socket_close()
}

The routine that opens the socket to the Staging Area reads configuration information from

a plain text file, before the opening of the socket. This file contains the following three

pieces of information:

1. The number of records the Source Flow Regulator will gather
2. The address of the Staging Area
3. The port of the Staging Area

As an overall assessment of the impact of our changes, we can say that (a) minimal code
had to be written to achieve the replication of incoming updates to the warehouse in an
active fashion, (b) simple configuration parameters are required, (c) no changes were

required to the code, rather than a simple recompilation under the new library.

5.2 UDP vs. TCP

The first parameter that needed to be tested involved the network protocol between the
source and the Staging Area. The goal of our first experiment is to determine the system’s
behavior using UDP and specifically if there are any datagram losses. In the graph shown
in Figure 5.3, the results of sending 100,000 records from the Source to the Staging Area
using UDP are shown. The Staging Area uses a queue and performs asynchronous

invocation.

The results show a 35% packet loss of data, most probably due to the overflowing of data.
Such losses are prohibitive for normal operation of an on-line environment. Therefore, for
the rest of the thesis, we have fixed TCP as the interconnection protocol between the

Source and the Staging Area.

63

m 349176

@ 650824

Records Received s Records Lost

Fig. 5.3. Data loss using UDP as the interconnection protocol between the Source and the Staging

Area

5.3 Overhead at Source

The main requirement for the architecture at the source side involves minimal overhead
during regular operation. Therefore, the goal of the next experiment is to measure the
overhead that our configuration incurs at the Source side. We measure the time to complete
the insertion of (a) 100 thousand records ami (b) 1 million records to the ISAM file. We

experiment on the impact of the following two parameters:

First, we measure the effect of using the Source Flow Regulator. We try three values:
1, 100, and 1000 records for each packet that the Source Flow Regulator sends to the
Staging Area (see the x-axis for Figures 5.4 and 5.5). When using one record at a

package, we have in fact the case of not using a Source Flow Regulator.

Second, we experiment with the behavior of the source in terms of completion time. In
experiment set (a) that we call “plain”, the source performs its regular operation during

normal time. In this case, no records are propagated to the Staging Area.

64

RN

Another issue worth investigating is the potential impact that the tuning of the Staging Area
has over the source. Therefore, except for the two parameters that we have already
described (both of which concern choices at the source side), we employ two modes for the
operatién 'of the Staging Area, for assessing its impact. Each test case is examined with
blocking and non-blocking invocation for the communication between the Staging Area
and the- Web Service. We assume that the Staging Area uses a synchronized queue. The
input rate at the queue is equal to the output rate of the Legacy Application. The queue’s

output rate is fixed to one thousand records per second.

The y-axis of the diagrams measures the throughput of inserting the records to the ISAM
file. Figure 5.2 depicts the results of the experiment for 100,000 records, while Figure 5.3
the results for 1,000,000 records.

Time to insert 100 000 records

w EE
[2]
Q
&
g = plain
e N m non blocking invocation
5 .
3 , p 0O blocking invocation
o. a
:
o Sl i)

1 100 1000

Number of records sent

simultaneously

Fig. 5.4, Time to insert 100,000 records using a two-tier topology

65

Time to insert 1 000 000 records

& plain
| non blocking invocation
O blocking invocation

Completion time (secs)

1 100 1000

Number of records sent
simultaneously

Fig. 5.5. Time to insert 1,000,000 records using a two-tier topology

Based on our experimental results the following observations are made:

(a) The Source Flow Regulator plays a very important role, since without it, the
throughput deteriorates by 34 %, while using a Source Flow Regulator incurs an
impact of 1.7%.

(b) The way that the Staging Area is tuned dpes not affect the source. Regardless of using
blocking or non-blocking Web Service invocation at the Staging Area, the Source’s
throughput is the same in both cases. This is a key observation for our architecture,
since it proves that the operations of each tier are independent. Thus, we can examine
each tier separately.

(c) Sending smaller packets of records performs slightly better, since in the case of 1000
records, network propagation time decreases throughput. Moreover, choosing a packet

size of 100 instead of 1000 records saves buffer size at the Source Flow Regulator.

66

5.4 Number of Queues

In this experiment, we examine how the number of queues impacts the Source’s

performance. Our measurements concern the time to complete the insertion of 100,000

records to the ISAM file. We experiment to determine the necessary number of queues both

at the Source and at the Staging Area, as indicated on the x-axis of Figure 5.6. We have

conducted experiments with the following four settings.

1. Initially we have used no queues at all, which implies the absence of the Source Flow
Regulator at the source and the absence of the queue at the Staging Area.

2. In the second setting we have used only the Source Flow Regulator at the Source
without the queue at the Staging Area.

3. Our third experiment’s setting involves the absence of the Source Flow Regulator and
the presence of the Staging Area’s queue.

4. Finally, in our fourth experiment, we have used our architecture in full deployment:

The Source Flow Regulator at the queue and the queue at the Staging Area.

Relation between the number of a plain
queues in the system and the
impact at the Source
@ no packager at the
source, no queue at the
mediator

O packager at the source,
no queue at the
mediator

0 no packager at the
source, queue at the

j-—— mediator
| packager at the source,

Configuration queue at the mediator

Completion (secs)

Fig. 5.6. Time to insert 100 000 records using two-tier topology

67

Figure 5.4 depicts the results of the experiment for 100 000 records. The y-axis measures
the throughput of inserting the records to the ISAM file. Plain depicts the case where no

propagation towards the warehouse was performed (standing again for the stand-alone

behavior of the source).

Based on our experimental results the following observations are made:

(a) Not using a queue in the Staging Area poses the greatest impact in the system, no
matter whether Source Flow Regulator is used or not. This impact is 553.40% of
the time the Legacy Application requires to insert 100 000 records, in the case of
not using any kind of queue in the system and 553.76% using only a Source Flow
Regulator.

(b) Using only a queue at the Staging Area increases system performance with respect
to the previous configurations, but the overhead at the Source is still considerable
and measured at 36.19%.

(c) Using both a Source Flow Regulator at the Source and a queue at the Staging Area
provides the best system performance adding the smallest overhead to the Source.

This overhead is measured at 1.78% of the plain Source time.

5.5 Data Freshness

A major requirement in our setting is to achieve the maximum data freshness possible,
through our framework. With a 1.78% delay at the source, as derived from the experiments
of Section 5.4, the focus of interest is isolated at the side of the Staging Area. The goal of
the next set of experiments is to measure the data freshness time provided by our
application with respect to the queue emptying rate and the block retrieved from the queue.
We consider as data freshness time the time required for a record that was inserted in the

ISAM file to be transferred to the warehouse.

68

Specifically, we measure the overall throughput, i.e., the time needed to empty the Staging
Area’s ql;eue after the first record is sent to the warehouse. The freshness is then measured
as the time needed to empty the queue, which practically stands for the response time for
the last record. To perform these measurements, we assume that the Legacy Application
sends 100,000 records to the Staging Area in packs of 100 records over TCP. Also, we
measure the queue length as an indicator of resource consumption at the Staging Area site.

A major parameter affecting the overall performance of our environment is the impact of
the block size of records we deliver to the warehouse. Thus we present three sets of
experiments emptying the Staging Area ’s queue with three different ways using the

aforementioned rates:

(a) We empty the queue as soon as possible and then propagate the records to the web
service.

(b) We empty the queue retrieving the records from the queue using timeouts of 0.1
seconds retrieving 50, 100, 150, 200, 250 and 300 records each time and then invoking the
Web Service.

(c) We empty the queue retrieving the records from the queue using timeouts of 1 second
retrieving 500, 1000, 1500, 2000 and 2500 records each time and then invoking the Web

Service.

Two other parameters play a major role. The first parameter, as indicated on the x-axis of
Figure 5.7, is the time required to empty the queue. The second parameter as shown on y-
axis of Figure 5.7, is the number of elements in the Staging Area ’s queue. The queue’s
input rate is equal to the Source’s output rate, i.e. 1250 records per second approximately.
We experimented using the following queue emptying rates: 500, 1000, 1500, 2000, 2500
and 3000 records per second. These are the maximal emptying rates, which means that, if

the queue contains fewer records, then all the records from the queue are retrieved.

69

Queue size over time. Emptying the queue as
soon as possible

1600 — . e
1400 - :
1200

1000
800
600
400

Size of queue
(#elements)

4.85
9.84
14.6
19.2
23.8
28.3

5'3365

© 382§
428 §
47.3
51.8
56.4
61.1
65.9 [H
70.5

75

(secs)

Fig 5.7 Queue size at the Staging Area emptying the queue as soon as possible

The results of emptying the queue immediately are depicted in Figure 5.7. Figures 5.8 and
5.9 show the queue sizes using emptying strategy (b) and (c) respectively. Figures 5.10 and
5.11 show the overall queue emptying time which represents the time required for all the
records inserted in the ISAM file to be stored in the Data Warehouse.

In Figure 5.7 x-axis depicts the time elapsed since the first record reached the Staging Area.
Y-axis measures the number of records in the queue of the Staging Area at each time point.
We observe that practically no queue is ever formed. The mean queue size is 100 records,
which is the rate of the Source Flow Regulator. In other words, the Staging Area is one step

later than the Source in terms of performance.
In order to further examine the behavior of our architecture, since the host of the Staging

Area is a faster computer, compared to the machine where the Source is hosted, we will

simulate slower service rates for the Staging Area. In specific, we will simulate slower

70

service rates by using timeouts between successive services, and by adjusting the number

of records served each time.

In Figure 5.8, we can see six diagrams. In all six diagrams we introduce a frequency rate of
1 sec to the service of the Staging Area. X-axis represents the time in seconds. The y-axis
stands for the number of records in the queue. The difference lies at the queue emptying
rates, starting with an emptying rate resembling 500 records per second at the top left

diagram, up to 3,000 records per second at the lower right diagram.

We observe that in all but a small number of occasions (practically the ones where the
processing rate is slightly higher than the input rate) the queue size is growing. The
mountain size shape is easy to explain: the peak is reached when the 100,000 records have
been inserted, no other records are produced and consequently the queue size drops. Figure
5.8 shows the impact of emptying rate clearly: higher emptying rates lock the queue too
often and the overall performance drops. Small emptying rates are obviously insufficient,

since they empty the queue too slowly.

Figure 5.9 also contains six diagrams. This time, in all six diagrams we introduce a
frequency rate of 0.1 sec to the service of the Staging Area. X-axis represents the time in
seconds. The y-axis stands for the number of records in the queue. The difference lies at the
queue emptying rates, starting with an emptying rate resembling 500 records per second at

the top left diagram, up to 3000 records per second at the lower right diagram.

This time we have a quite better picture, being in the middle between immediate emptying
and rather slow emptying. As the number of removed records increases each time, the
situation starts to approach the behavior of immediate emptying. An interesting lesson here
is that it pays off to pay the price of frequent dequeuing rather than remove big chunks of
data from the queue. Immediate dequeuing appears to provide the best performance among

all alternatives.

71

Quedue size over time.
Emptying rate 500 nodes/sec
70000 -
60000
2 2 s0000 TN
S$E 2
& g 40000 —
T $ 30000 |-
8 & 20000 f+- Z
2 7
@~ 10000
o .
0 0 0 Q0 O 0 Q0 O O O 0 O 0 O Q
8o 8B BBIBEEETIcC-FRE
S W - W oWwoST om0 n
°.“283$2£§§§§8§8§
Time (secs)
Queue size over time.
Emptying rate 1500 nodes/sec
18000 7 .
16000 4 o i
g 7 14000 o\ D
£ 12000 —~ A== -
£ 10000
5§ 8000 L N
© 6000 7/ A
w & 4000 —
2000 Cos

&

© P50 P PP P O
R IR

Time (zsecs)

Queue size over time.
Emptying rate: 1000 nodes /sec

35000
30000
$ 5 25000 o T\ :
§.'§20000 7 N -
’GE / \
%15000 "
3 & 10000 fr A"_/ AN
5000 - / -
0 Horriiresirrerrs \
8828822 2R
E2gcez¥sgeEggcect
NP 38f983er 888
Time (secs)
Queue size over time.
Emptying rate 2000 nodes/sec
D
i‘é 5000
33 too0t
d=
5000 1=
0 .
P L 0L PP B '90-9'9
O O 6 AN
&P o 5 57 07 @& «"‘” Py

Time (secs)

Queue size over time.
Emptying rate 2500 nodes/sec

40000 e

35000 S -
£ = 30000 N :
$ £ 25000 — AN 3
s Pl N N
¢ E 20000 — ~—
2 15000 - <
& & 10000 '/_,/ —GE
“ = 5000 . NE

0 -.“‘ﬁf".r.'...‘........u.'....'.......'.'..

o °p P o .(\
mﬂv 97, e@,y« EACA P
Time (secs)

Queue size over time.
E fing rate 3000 nodes/:

ey

Stze of queue
(# elements)

o J N

oV 0

q?‘ g\ ‘be‘@ & &15’\6,
Time {secs)

Fig. 5.8. Queue size at the Staging Area using time outs of 1 sec

72

‘Queue size over time. Emptying rate 50 records
per 0.1 sec

Size of queve
(Selements)

Iy

Queue size over time. Emptying rate 100 records
per 0.1 sec

Queue size over time. Emptying rate 150 records
per0.1 sec

Size of queue
(Selements)

- 5 88 B

Size of queue
(#elements)

Queue size over time. Emptying rate 200 records
per0.1 sec

Queue slze over time. Emptying rate 250 records
per 0.1 sec

1600

-

Size of queus
(Selements)

5588883

|

[

488
981
163
21
57
03
349

® 396
4“2
488
535
581
628
67.4

72
767

Size of queue
{delaments)

Queue size over time. Emptying rate 300 records

per 0.1 sec
2000
%

1500
1000
500
0 4

euv.——mvauvgunmm-s

w"eeRIR BY AL 8rE

Time (sacs)

Fig. 5.9. Queue size at the Staging Area using time outs of 0.1 sec

In Figures 5.10 and 5.11 we show the time required to complete the transfer of our entire
dataset from the Staging Area to the Warehouse. In both Figures, the x-axis represents the
various service rates of the Staging Area and the y-axis the time tin seconds required to
complete the transfer. The difference between the two figures is that in Figure 5.10 we

employ timeout of 1 between successive services and in Figure 5.11 we use timeouts of 0.1

seconds.

73

Time to complete transfer from ADSA to DW

250Tz=

2007 18§
Time 15071 ? ‘ g _
(SECS) e 5 _ R Tlme to

10038 { | complete

B E- 4 I R R4 IR i I transfer from
50— —1E 3 ADSA to
0 i) Zidn . 4.

500 1000 1500 2000 2500 3000
Queue emptying rate

Fig. 5.10. Queue emptying time at the Staging Area using time outs of 1 second.

Time to complete transfer from ADSA to DW
250

2001

(secs) | | - | | @Time to
100 ———— 1| Fantier rom
501~ i e ADSAto
ok lwl el s

500 100 150 200 250 300
Queue emptying

Fig. 5.11. Queue emptying time at the Staging Area using time outs of 0.1 sec

Observing the results of this set of experiments, we are led to the following conclusions:

74

a)

b)

c)

We can achieve data freshness time equal to data insertion time when we continuously
empt;/ a small size queue.

In this case, the size of queue is equal to the service rate of the Source Flow Regulator,
i.e...there is practically no delay at the queue.

The number of records retrieved from the queue plays a significant role. Even if the
actual data rates are the same, (e.g., 150 records per 0.1 second vs. 1500 records per
sec), retrieving big chunks of records requires extended locking times and propagation

times to the web service.

5.6 Topology and Source Overhead

The aim of this experiment is to examine how the topology of our architecture impacts the

Source’s performance, i.e., the induced overhead to the Source. We consider the following

cases:

a)
b)

c)

d)

Using 1-tier architecture.

Using 2-tier architecture having the Staging Area placed at the Source’s host and the
Warehouse on a separate host.

Using 2-tier architecture having the Source on a dedicated host and the Staging Area
together with the Warehouse on a separate host and

having the Source, the Staging Area and the Warehouse on a separate host each.

Each bar in the following figures represents the respective topology, while the y-axis

indicates the time required by the Source in Figure 5.12 to insert 100,000 records and in

Figure 5.13 to insert 1,000,000 records to the ISAM file. We regard as plain the original

source without our alterations.

75

Time to insert 100 000 records to the Source in
relation to topology used

@ plain

m 1-tier

0 2-tier (Mediator at
Source Host)

0 2-tier (Mediator at DW
Host)

m 3-tier

Configuration

Fig. 5.12 Time to insert 100,000 records using one-tier, two cases of two-tier and a three-tier
topology

Time to insert 1 000 000 records to the Source in
relation to topology used

920
' @ plain
900
g 880 - m 1-tier
2 860 .
° 840 |-——- | {;o2-tier (Mediator at
E Source Host)
820 0O 2-tier (Mediator at DW
800 . Host)
780 bR m 3-tier

Configuration

Fig 5.13. Time to insert 1,000,000 records using one-tier, two cases of two-tier and a three-tier
topology

Observing these graphs the following conclusions can be made:
(a) The position of the Staging Area is the factor that poses the most overhead to the

system’s performance. In specific, when the Staging Area is placed at the same host

76

with the Source, no matter where the Web Service is located, the overhead to the
system’s performance is near 9.5%. On the contrary, when the Staging Area is detached

from the Source’s host, the overhead fluctuates between 1.5% and 2%.

(b) Using three hosts and placing the Warehouse and the Staging Area separately does not

actually reduce the source’s overhead, so that the Warehouse can be located on the
same host, without this affecting the Source. This observation is very important, since

we can save the setup, maintenance and configuration cost of a third computer.

To sum up, the main conclusions derived from the experiments of this chapter are the

following:

a) As derived from Section 5.2, TCP is the most suitable protocol for interconnecting the
Source with the Staging Area.

b) As shown in Section 5.3, operations of each tier are independent. Regardless of using
blocking or non-blocking Web Service invocation at the Staging Area, the Source’s
thfoughput is the same in both cases.

Using queues both at the Source Flow Regulator and at the Staging Area, as described

d)

e)

in Section 5.4, provides the best system performance adding the minimal overhead to
the Source.

As observed in Section 5.5, the Staging Area service rate should be higher than the
Source ‘s service rate. Moreover, if we want to simulate slower service rates for the
Staging Area, small timeouts should be used since they offer stable behavior to the
system.

Finally, judging from the results of Section 5.6, the most preferable topology for our
architecture, is the one of using two tiers and placing the Staging Area at the same host

with the Warehouse.

These observations will be used as a guideline for the next chapter. In Chapter 6, we will

conduct our experiments under real life data warehousing conditions, where we will assume

that the aforementioned parameters are fixed.

77

6 OPERATIONAL EVALUATION

In this ‘chapter, we will use the architectural guidelines derived from the first set of
experiments presented in Chapter 5 to build an active data warehouse where we will also
deploy_our online ETL operations. The aim of this section is to evaluate the behavior of this
fully deployed system and compare its behavior to the theoretical model we have

developed.

The difference from the previous chapter is that here we will evaluate our system‘s
performance under real life conditions using as a guideline the results of Chapter 5. To
achieve this, we employ four configurations: one configuration with the Staging Area
playing a simple intermediate role, where data are just forwarded through a Web Service to
the Warehouse and 3 different scenarios with various ETL operations at the Staging Area

before delivering our data to the warehouse.

Following the guidelines of Chapter 5 our experimental setup is as follows:

a) We employed a two-tier architecture, placing the Source on one host and the Staging
Area with the Warehouse on another host.

b) We used at the Source a Flow Regulator to achieve better performance.

c) The interconnection protocol between the Source and the Staging Area is TCP.

d) We send data from the Staging Area to the Warehouse using non-blocking invocation.

In our configuration, the Source includes two software modules: (a) an ISAM file and (b)
an application used to modify data in the legacy data source. In order to manipulate ISAM
files, there is a library of ISAM routines that are invoked from the application at the source
side. We have modified these library routines to replicate the data manipulation commands

and send updates towards the Staging Area. The ISAM library that we altered is the

79

PBL/ISAM suite [PBL04] available under GPL license. We have used a sample program
distributed within the suite as the legacy application. We use two different data sets for our
purposes. The first consists of 100,000 records and the second of 1,000,000 records. The
ETL queues of the Stéging Area have been implemented using the Sun JDK 1.4, whose
runtime engine has also been used. As a Web Services platform we have used Apache Axis
1.1 [AXIS04] with Xerces XML parser running over Apache Tomcat 1.3.29. Our Data
Warehouse is implemented as a MySQL 4.1 database.

The host we used for the Source was a PIII 700MHz with 256MB of physical memory
running SuSE Linux 8.1. The host used as the data warehouse is a Pentium 4 2.8GHz with
1GB of physical memory running Mandrake Linux. This server also hosted the Staging

Area. The hosts are interconnected via the switched Fast Ethernet LAN of our department.

Our data were created from the TPC-H data generation tool. We used data of variable size.

In this case each row has an average size of 140 bytes.

The roadmap of this chapter is as follows: in Section 6.1 we establish the fact of minimal
impact at the Source. In Section 6.2, we measure the throughput of each ETL operation. In
Section 6.3, we measure data freshness for four different scenarios, while in Section 6.4, we

compare the behavior of our system against our prediction.

6.1 Overhead at Source

The aim of this experiment is to assure that the overhead at the source remains small even

though the size of each row is almost 10 times bigger than the previous case.

- First, we measure the effect of using the Source Flow Regulator (Source Flow
Regulator) at the Source. We try four values: 1, 10, 25, 50 and 75 records for each

packet that the Source Flow Regulator sends to the Staging Area (see the x-axis).

80

When using one record at a package, we have in fact the case of not using a Source
Flow Regulator.

- Second, we experiment with the behavior of the source in terms of transmission rate.
In the first case that we call “plain”, the source performs its regular operation during

normal time. In this case no records are propagated to the Staging Area.

- 140

120 @Plain Operation

m Packet size at source:
times1 00 1 row/packet
OPacket size at source:
secs

(Jeo 10 rows/packet
60 aPacket size at source:

25 rows/packet
40 ® Packet size at source:

, 50 rows/packet
20 4+ B Packet size at source:

: 75 rows/packet

0

Fig. 6.1. Time to insert 100 000 records in the warehouse.

In Figure 6.1, the x-axis represents the size of the packet sent from the Source Flow
regulator to the Staging Area, apart from the first column, where the operation of the
Source without our additions is measured. The y-axis of Figure 6.1 represents time. In
general, packet sizes of over 25 records offer the least burden to the source. The smallest
delay was achieved with a packet size equal to 50, where the source delay was measured to
be at 5.8%.

6.2 Throughput Capability of ETL Operations

The goal of this set of experiments is to determine the average throughput of the ETL

operations we have implemented. The outcome of this part of our evaluation will be used

81

both to interpret the results of our experiments and to use the measurements for our

theoretical analysis.

Our experimental setup was the following for the evaluation of all the operations: The
source was hosted separately from the Staging Area and the Warehouse which were hosted
together. The Source Flow Regulator size was 50 rows per packet. At the Staging Area only
the evaluated ETL operation was executing each time. The measured ETL operations are
the following:

a) Filtering of 2% of incoming packets to the Staging Area.

b) Filtering of 6% of incoming packets to the Staging Area.

¢) Filtering of 10% of incoming packets to the Staging Area.

d) Aggregate Group by sum.

e) Surrogate Key Transformation.

f) Replacement Transformation

The results were sent and stored to the Warehouse. The emptying (service) rate of each
queue was fixed to 1500 rows per second, which is a rate slightly higher than the arrival
rate from the Source. In Figure 6.2 our experimental results are displayed. In specific, the
x-axis represents the number of packets eac;h ETL operation can process. The y-axis

represents each ETL operation.

Concerning the filter transformation, the percentage displayed refers to the percentage of
rows rejected from the total number of rows injected into the Staging Area. In this case,
since we use a dataset consisting of 100 000 rows, a filter equal to 10% will reject 10 000

rows, meaning that 90 000 rows will be stored in the warehouse.

The throughput capability of each ETL operation, showing the maximum service rate each

operation can achieve, is depicted in Figure 6.2.

82

Throughput Capability of ETL Operations
500 , —— 7] |BFilter - 2%
4501 &
pa'400 mFilter - 6%
ck 350
et 3001 OFilter - 10%
s /250
se 200 OAggregate - group
~ 150 sum
100 B Transform -
507 Key
0 @ Transform -
ETL Operations

Fig. 6.2. Throughput Capability of ETL Operations.

Based on Figure 6.2 the following conclusions can be made:

(a) Higher number of rejected rows leads to higher throughput.

(b) The aggregate group by sum is surprisingly the operation with the highest throughput.
This is because all operations occur in memory and in contrast with the other
operations, smaller size of data is produced as the output.

(c) The Replace and Surrogate Key operations have almost the same throughput, which is
significantly lower than that of all other operations. This is mainly because both of
these operations seek and replace values having to parse the entire row. On the

contrary, Filter operations simply check a field.

6.3 Data Freshness

Having established the requirement of minimal source impact, our focus moves towards the

data freshness issue. We want to achieve high freshness of data delivered from the Source

83

to the Warehouse through the Staging Area. The goal of the next set of experiments is to
measure the data freshness time provided by our application with respect to the Staging

Area service rates. We consider the following scenarios:

(b) For scenario (a) as illustrated in Figure 6.3:

a. Simply transferring data inserted into the legacy application to the warehouse.

>
CI-{>]

DW

2]
o3|
2)
£
w

WS Client

sessOOOPOISES

G)

v
)

Source ADSA

Fig. 6.3. Illustration of Scenario (a)

(c) For scenario (b):
a. Filter 10% of incoming data.
b. A surrogate key operation to the first column of the filtered dag,_
¢. Group by sum.

d. Data are then fed to the warehouse.

Flltcr

fhs000000

SFlowR

B Wi

Sum WS Clien

S

I..'......'QI..'I o9 PSOBONeS

Source ADSA

DW
Fig. 6.4. Illustration of Scenario (b)

84

(d) For scenario (c):
a. Filter 10% of incoming data.
.b. Additionally Filter 2% of the remaining data.
- -.c. A surrogate key operation to the first column of the data. Then the stream is
replicated along two branches:
d. For the first branch:
i. A group by sum operation is performed
ii. Data are fed to the warehouse.
e. For the second branch:

i. Data are fed to the warehouse.

: GB :
M Sum WS Client
¢ Filter Filter = . WS
SElowR? 0% 2% S{D‘—’ :—>
Sowe %)))%) s o
Source : ADSA E DW

Fig. 6.5. llustration of Scenario (c)

(e) For scenario (d):
Filter 10% of incoming data.
b. Replacement of the values of the first field.
é. A surrogate key operation to the first column of the data. Then the stream is
replicated along two branches:
d. For the first branch:
i. A group by sum operation is performed.

ii. A Filter rejecting 6% of input data

85

iii. Data are fed to the warehouse.
e. For the second branch:
i. A replacement of the values of the first field is performed.
ii. A Filter rejecting 2% of input data is applied.

iii. Data are fed to the warehouse.

GB Filter WS E

Sum 6% Client WS

+ Filter
SFlowR: 10% Replace sk —
o))4
. Replace ter WS @ ws
: 2% Client:
Source : ADSA DW

Fig. 6.6. Illustration of Scenario (d)

At this point, it has to be clarified that when the data flow splits, data are fed separately in

the two different data flows and separately sent to the warehouse.

Specifically, we trace the queue size as time passes. We do this for each operation
separately and for the entire system as a whole. At the same time, at the end of the
experiment we have a measure of the overall throughput, i.e., the time needed to empty the
Staging Area ’s queue after the first record is sent to the warehouse. The freshness is then
measured as the time needed to empty the queue, which practically stands for the response

time for the last record.
To perform these measurements, we have the following setting: the Legacy Application

sends 100,000 records to the Staging Area in packs of 50 records over TCP at a rate of 22

packets per second. Also, we measure the queue length as an indicator of resource

86

e ——— e ——— v —

consumption at the Staging Area site. We count the queue length each time the queue is not

empty and before we retrieve the rows from the queue.

Scenario a - Average Number of Packets in Queue
. with Various Service Rates

—e— ~20 packets / sec
—u— ~23 packets / sec

~27 packets / sec
—»— ~33 packets / sec

Packets

Time (seconds)

Fig. 6.7. Cumulative results of queue sizes for scenario (a) with service rate close to 23 packets per
second.

The results of scenario (a) for various service rates of the Staging Area near the arrival rates
from the Source are shown in Figure 6.7. For scenarios (b), (c) and (d), we will examine the
behavior of the Staging Area at a simulated service rate of 23 packets per second, in order
to study its behavior at marginal conditions. We remind that the arrival rate of the
warehouse is at 22 packets per second. Figure 6.8 depicts in a cumulative fashion the
average queue lengths for scenario (b). Similarly, the same values for scenario (c) are
illustrated in Figure 6.9, and for scenario (d) in 6.10. For all figures, x-axis represents time,

while the y-axis stands for the number of packets in each queue before service.

I

87

AN

Scenario b - Average Number of Packets in Queue
@ ~23 packets / sec

—e—FILTER_10_01

—a—GBSUM_01
SK_01

——WS_01

Packets

82BBIRRBS

Time (seconds)

Fig. 6.8. Cumulative results of queue sizes for scenario (b) with service rate close to 23 packets per
second.

Scenario ¢ - Average Number of Packets in Queue
@ ~23 packets / sec

—e—FILTER_10_01
—a— FILTER_2_01
GBSUM_01
—— SK_01
—x—WS_GB_01
—e—WS_GB_01

Packets

Time (seconds)

Fig. 6.9. Cumulative results of queue sizes for scenario (c) with service rate close to 23 packets per
second.

88

- Scenario d - Average Number of Packets in Queue
@ ~23 packets / sec

. 20 %}; : e FILTER_10_01
P 7] | —=—FILTER_2_01
N g 1 N FILTER_6_01
E 10 42— 3 ° GBSUM_O1
~ a —»— REP_01
5 —e—REP_02
o Ry = | ——SK_01
"er88FeL8RE S | SO

Time (seconds)

Fig. 6.10. Cumulative results of queue sizes for scenario (d) with service rate close to 23 packets per
second.

Finally, Figure 6.11 summarizes the total times needed for the Staging Area to transfer all
data to the warehouse, for each scenario of ETL queues. X-axis of Figure 6.8 stands for

each scenario examined. Y-axis represents the time needed to complete each scenario.

93
92.5
92
91.5
N
90.5
90
89.5

89 e =
88.5 — T — T —iid o
scenario scenario scenario scenario scenario scenario

(a) (b) (c) (c) (d) (d)
STORE GROUP STORE GROUP

BY BY

) \‘ 0

Time (secs)

Fig. 6.11, Data freshness for each scenario

Observing the figures, we derive the following conclusions:

89

1. The source capability is approximately 1100 rows/sec. Since we are using packets of 50
rows, this amount is translated into approximately 22 packets per second. In scenario
(a) we are led to queue explosion, when we employ service rate smaller than the
Source’s arrival rate. Using a service rate of 23 packets / sec, which is a setting close to
the arrival rate, we can see that transient effects tend to appear, but the queue converges
to steady state. This occurs because the service rate is very close to the arrival rate, thus
needing some time to reach a steady state, where the service rate exceeds arrival rate.
By using higher service rates, 27 and 33 packets / sec respectively, the queue maintains
its steady state.

2. In scenarios (b), (c) and (d) we observe that the entire system, as well as the queue of
each operation, maintains a steady state. The number of packets in the queue is less or
equal to the maximum number of packets polled simultaneously from the queue. This
practically means that after each poll the queue empties and that the Staging Area is
only one step behind the Source.

3. In Figure 6.11, the total time needed for the entire dataset to be transferred from the
Staging Area to the Warechouse is dependent on the number of the intermediate ETL
operations. As the number of intermediate ETL operations that a packet has to visit
increases, the total delay increases ‘as well. Nevertheless, in our exemplary scenarios,
the increase is rather small, due to the pipelining of data. The average delay per row is

around 0.9 milliseconds for all scenarios.

6.4. Theoretical vs. Experimental Evaluation

In Figures 6.9 — 6.30 we present the comparison of our theoretical evaluation of queue
length against the observed values. We show the results of scenarios (b), (c) and (d). In all
experiments, we simulate various service rates at the Staging Area by using predefined
waiting times between successive services. In specific, we employ timeouts equal to 100,

80, 60, 20 and 1 millisecond each time respectively.

90

In this set of experiments, we will not use as a metric the service rate but the timeout value
between successive services. We prefer this approach due to the differences of the service
times for each ETL operation (as discussed in Section 6.2). Because of these differences
and due to the exponential nature of arrival and service times we cannot fix standard
service times. Moreover, the number of ETL operations, i.e., independent threads of the
Staging Area for each scenario varies from four in scenario (b), to nine in scenario (d). This
way we are led to different CPU scheduling properties, an issue which is beyond our scope.
Thus, in order to have a unified view of our experiments, we will use the timeout value as

an indirect reference to the service rates.

Filter 10% Surrogate Key

[mEASURED B PREDIGTION [areAsureD B PREDICTION |

Packets

Packets

Timeout {meeos) Detay (msecs)
Group By Sum WS Client
[0 veAsuRED ® PREDICTION [rEasureD @ preDiCTION |

28 7~

€ Packets

0 Peckets

°
OB - N

Delay (msecs)

Fig. 6.12-6.15. Queue size vs. prediction for each operation of scenario b

In all Figures 6.12 — 6.30, the x-axis stands for the waiting time in milliseconds between
consecutive services. The y-axis represents the number of packets in the queue of each
operation. The first column represents the measured value, while the second row represents

the predicted value.

91

Filter 10%

|n MEASURED m PHEDlCTlo—Nl

Filter 2%

|E NEASURED m PRED!CTIO‘N‘

8 _
2 6 &
Q
s &
* #*
0 .
100 80 60 40 20
Delay (msecs) Delay (msecs)
Surrogate Key Group By Sum
@ MEASURED m PREchncﬂ |0 MEASURED m PREDICTIOﬂ
6
a o
[v}
o o
* *
Delay (msecs) Delay (msecs)
WS Client 1 WS Client 2
‘D MEASURED m PREDICTION 1 In MEASURED m PREDICTION
g %]
3 3
S — :
o o
*] Bl *

60 40 20
Delay (msecs)

Delay (msecs)

Fig. 6.16-6.21. Queue size vs. prediction for each operation of scenario ¢

92

Filter 10% Replacement 1

IE MEASURED m PREDICTED

[O MEASURED ® PREDICTED

-y

Packets
ONDODODO

Packets

100 80 60 40 20 1

Delay (msecs) Delay (msecs)

Surrogate Key Fllter 6%
[u MEASURED m PREDICTED Lu_NEASURaJ " PREDiCTED]
2).}
£ £
Ky a
* E:3
100 80 60 40 20 1
Delay (msecs) Defay (msecs)
Group By Sum Web Service Client 1
|0 MEASURED m PREDICTED | [0 MEASURED W PREDCTED
2 »
& &
* ®
Delay (msecs) Delay (msecs)

Fig. 6.22-6.27. Queue size vs. prediction for each operation of scenario d

93

Replacement 2 Filter 2%

lm MEASURED m PREDICTED [MEASURED @ maucmﬂ

Packets
Packets

Delay (msecs) Delay (msecs)

WS Client 2

Lm MEASURED @ ma:ucm)|

Packets

Delay (msecs)

Fig. 6.28-6.30. Queue size vs. prediction for each operation of scenario d (continued)

In these measurements one can easily sée that in all cases our prediction underestimates the
size of the queue by half a packet in each case. For example in scenario (b) estimations
using a delay of 80 milliseconds between successive services leads to underestimation only
of half a packet. The same holds for a delay of 60 seconds in scenarios (c) and (d). This
observation is very important for our architecture, since our prediction misses only half a

packet. Moreover this error remains the same for all operations.

The only discrepancies of this rule are in two cases. The first case is when we utilize high
delay times i.e. 100 milliseconds between successive services, meaning at the same time
lower service rates. The second case is in scenario d, where we impose a delay time equal

to 80 milliseconds. This case is similar to the previous; because if we consider the

94

additional context switch time for the high number of ETL operation, we are led to the

conclusion that again is a case of low service rate.

However, in these cases we have overestimates of the queue sizes. This leads as to the
conclusion that high server utilization rates result in overestimation of the queue sizes,
while low server utilization rates leads to underestimation of the queue size. This

underestimation is fixed and no more than half a packet.

These differences between the measured and estimated values for the queue sizes occur due
to the following reasons:

a) We simulate lower service rates at the Staging Area by invoking timeouts between
successive services. Queue theory is not designed taking care of such issues, so
differences between the measured and expected value are expected.

b) In our simulation of slower staging areas, we serve up to three packets
simultaneously. Queue Theory end especially Queue Network Theory, were
designed assuming service of single packets. Hence, in these cases, differences

between the measured and expected value are expected as well.

MEASURED PREDICTION DIFFERENCE (PACKETS)

FILTER_10_01 0.160 0.056 0.104
FILTER_2_0l 0.134 0.047 0.087
SK_01 0.154 0.054 0.100
GBSUM_01 0.137 0.048 0.089
WS_GB_01 0.091 0.031 0.059
WS_UPD2_01 0.100 0.035 0.066

Table 6.1. Queue size vs. prediction for each operation of scenario (c) operating at its full capability.

On the contrary, when we do not use sleep times between successive services leading to the
maximum service rates, the difference in terms of queue size is significantly small. This is

because we both do not use a timeout and due to the high service rates, each time a single

95

packet is served. Thus, our implementation is closer to the theoretical models of Queue

Networks and the difference between the measured and predicted values are very small.

In Table 6.1 we present as a reference the comparison of our theoretical evaluation of queue
length against the observed values for scenario (c) with the Staging Area operating at its
full capability. It is easy for someone to see that the difference in queue lengths between the

theoretical prediction and the measured evaluation is small for all operations.

96

7 CONCLUSIONS AND FUTURE WORK

Active Data Warehousing refers to a new trend where data warechouses are updated as

freque;itly as possible, due to the high demands of users for fresh data. In this thesis, we

have proposed a framework for the implementation of active data warehousing, keeping in
mind the following goals: (a) minimal changes in the software configuration of the source,

(b) minimal overhead for the source due to the "active" nature of data propagation, (c) the

possibility of smoothly regulating the overall configuration of the environment in a

principled way. In our framework, we have implemented ETL activities over queue

networks and employed queue theory for the prediction of the performance and the tuning
of the operation of the overall refreshment process. In terms of data freshness, source

overhead and minimal impact of software configuration the results seem satisfactory. A

summary of the lessons learned is as follows:

e Queue theory can be successfully employed as the theoretical background for the
estimation of the response of the active warehouse. The system reaches a steady state
quite close to the predicted behavior. Freshness is quite satisfactory too.

e TCP should and can be used instead of UDP, due to the packet loss of the latter.
Organization of tuples in blocks, both at the source and the Staging Area side increases
performance.

e The overall overhead at the source side remains small despite the size of data
transferred to the Staging Area, and the amount of code modification is around 100
lines, without affecting applications.

o The Source Flow Regulator plays a very important role, since its utilization increases
performance.

* The way that the Staging Area is tuned does not affect the source. Regardless of using
blocking or non-blocking Web Service invocation at the Staging Area, the Source’s

throughput is the same in both cases. This is a key observation for our architecture,

=
=
o
97 =
7
s
g
-

o

\"()‘.\‘) \\\v"(“)\ X

since it shows that the operations of each tier are independent. Thus, we can examine
each tier separately.

e Using both a Source Flow Regulator at the Source and a queue at the Staging Area
provides the best system performance adding the small overhead to the Source.

e The position of the Staging Area is the factor that poses the most overhead to the
system’s performance. The best layout is to use a 2-tier architecture placing the Staging
Area together with the Warehouse but separated from the Source.

e In the case of employing ETL transformations at the Staging Area, high server
utilization rates result in overestimation of the queue sizes, while low server utilization
rates leads to underestimation of the queue size. This underestimation is fixed and no

more than half a packet.

Future work includes several directions. A key direction of research would have to do with
the failure management of the components of the environment, in order to determine
safeguarding techniques and fast resumption algorithms for the event of a failure. Further
tuning can be made, by testing multiple concurrent loading sources for the warehouse. In
this case, an interesting issue is to determine the required number of flow regulators,
together with the number of separate required Staging Areas. Also, the case of materialized
aggregate views and schema evolution (as mentioned in the Related Work section) poses
interesting challenges in this context. Finally, further experimentation can be made over the
interconnection of the Source and the Staging Area by employing a UDP with built-in flow

control,

98

REFERENCES

[Aba+03]

[ACCC+03]

[ACKMO03]
[AdFi03]
[AdRe01]
[AXIS04]
[BaWiO1}
[BBDM+02]

[ChCRO2]

[Duqu03]

[GFSS00]

[GrHa85]
[GuMu95]
[Inmo02]
[JiCh03]

[LoGe03]

Daniel J. Abadi, Don Carney, Ugur Cetintemel, et al. Aurora: a new model
and architecture for data stream management. The VLDB Journal,
12(2):120-139, 2003.

Daniel J. Abadi, Donald Carney, Ugur Cetintemel, Mitch Chemiack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul,
Stanley B. Zdonik: Aurora: a new model and architecture for data stream
management. VLDB J.12(2): 120-139 (2003)

G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services: Concepts,
Architectures and Applications. Springer-Verlag, 2003.

J. Adzic, V. Fiore. Data Warehouse Population Platform. In Proc. Sth Intl.
Workshop on the Design and Management of Data Warehouses
(DMDW’03), Berlin, Germany, 2003.

Ivo Adan and Jacques Resing, Department of Mathematics and Computing
Science, Eindhoven University of Technology, 2001. Queueing Theory
notes available at http://www.cs.duke.edu/~fishhai/misc/queue.pdf

Apache Software Foundation. Axis. Available at http://ws.apache.org/axis/
S. Babu, J. Widom. Continuous Queries over Data Streams. SIGMOD
Record 30(3): 109-120, 2001.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, Jennifer
Widom: Models and Issues in Data Stream Systems. PODS 2002: 1-16

Jun Chen, Songting Chen, Elke A. Rundensteiner: A Transactional Model
for Data Warehouse Maintenance. ER 2002: 247-262

W. Duquaine Web Services Ruminations. Presentation at High
Performance Transaction Systems Workshop (HPTS’03). Asilomar
Conference Center, California, October 12-15, 2003. Available at
http://research.sun.com/hpts2003/

H. Galhardas, D. Florescu, D. Shasha and E. Simon. Ajax: An Extensible
Data Cleaning Tool. In Proc. ACM SIGMOD International Conference on
the Management of Data, pp. 590, Dallas, Texas, (2000).

D.Gross, C.Harris, Fundamentals of Queuing Theory, Wiley series in
probability and statistics. (1985)

Ashish Gupta, Inderpal Singh Mumick: Maintenance of Materialized
Views: Problems, Techniques, and Applications. Data Engineering
Bulletin 18(2): 3-18 (1995)

Inmon W. H., Building the data warehouse. John Wiley & Sons, Inc. 2002

Qingchun Jiang, Sharma Chakravarthy: Queueing analysis of relational
operators for continuous data streams. CIKM 2003: 271-278

D. Lomet, J. Gehrke. Special Issue on Data Stream Processing. Bulletin of

99

http://www.cs.duke.edu/~fishhai/misc/queue.pdf
http://ws.apache.org/axis/
http://research

[Magl04]
[PBLO4]
[RaGe02]

[RaHe01]}

[SOAPO3]
[VaSS02]
[VSGT02]

[Whit02]

[Will04]
[WSDLO3]

[WSFLO1]
[ZGHW935]

[ZhRu02]

the Technical Committee on Data Engineering, 26(1), 2003.

V. Maglaris, online lecture notes on queue theory, available at
http://www.netmode.ntua.gr/courses/undergraduate/queues

P. Graf. The Program Base Library. Publicly available through
http://mission.base.com/peter/source/

Database Management Systems, Raghu Ramakrishnan, Johannes Gehrke.
McGraw-Hill Science 2™ Edition. Greek Translation — Volume 2, 2002

V. Raman, J. Hellerstein. Potter's Wheel: An Interactive Data Cleaning
System. In Proceedings of 27" International Conference on Very Large
Data Bases (VLDB), pp. 381-390, Roma, Italy, (2001).

W3C. SOAP Version 1.2. June 2003. W3C Recommendation.
http://www.w3.org/TR/soap12-part(/

Panos Vassiliadis, Alkis Simitsis, Spiros Skiadopoulos: Modeling ETL
activities as graphs. DMDW 2002: 52-61

Panos Vassiliadis, Alkis Simitsis, Panos Georgantas, Manolis Terrovitis:
A Framework for the Design of ETL Scenarios. CAiSE 2003: 520-535

C. White. Intelligent Business Strategies: Real-Time Data Warehousing
Heats Up. DM review, August 2002. Available at
http://www.dmreview.com/article_sub.cfm?articleld=5570

Andreas Willig, Lecture notes on Performance Evaluation. Available at
http://www-ks.hpi.uni-potsdam.de/docs/engl/teaching/pet/ss2004/skript.pdf
W3C. Web Services Description Language (WSDL) Version 2.0. W3C
Working Draft. November 2003. http://www.w3.org/TR/wsdl20/

Frank Leymann. Web Services Flow Language (WSFL 1.0), May 2001.
Available at
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, Jennifer Widom:
View Maintenance in a Warehousing Environment. SIGMOD Conference
1995: 316-327

Xin Zhang, Elke A. Rundensteiner: Integrating the maintenance and
synchronization of data warehouses using a cooperative framework. Inf.
Syst. 27(4): 219-243 (2002)

100

http://www.netmode.ntua.gr/courses/undergraduate/queues
http://mission.base.com/peter/source/
http://www.w3.org/TR/soapl2-partO/
http://www.dmreview.com/article_sub.cfm?articleld=5570
http://www-ks.hpi.uni-potsdam.de/docs/engl/teaching/pet/ss2004/skript.pdf
http://www.w3.org/TR/wsdl20/
http://www-306.ibm.co'm/software/solutions/webservices/pdf/WSFL.pdf

