
ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΠΑΝΝΙΝΩΝ

■dr'

Μεταπτυχιακή Εργασία Ειδίκευσης

Ουρές Διαδικασιών Εξαγωγής Μετασχηματισμού Φόρτωσης για
Ενεργές Αποθήκες Δεδομένων

(Extract-TYansform-Load Queues for Active Data Warehousing)

Αλέξανδρος Καρακασίδης

Επιβλέπων: Παναγιώτης Βασιλειάδης

ΙΩΑΝΝΙΝΑ, ΙΑΝΟΥΑΡΙΟΣ 2005

Ευχαριστίες

Θα ήθελα να ευχαριστήσω τον επιβλέποντά μου Καθηγητή κ. Παναγιώτη Βασιλειάδη για

τη βοήθεια και την υποστήριξή του, χωρίς την οποία η εργασία αυτή θα ήταν αδύνατο να
» 4

υλοποιηθεί Επίσης, θα ήθελα να τον ευχαριστήσω για την υπομονή που επέδειξε μέχρι την

ολοκλήρωση της εργασίας αυτής. Τέλος θα ήθελα να ευχαριστήσω τους κ.κ. Καθηγητές

Ευαγγελία Πίτουρά και Ευάγγελο Παπαπέτρου για τη βοήθειά τους.

3

ΕΙΣΑΓΩΓΗ

Παραδοσιακά, η ενημέρωση των Αποθηκών Δεδομένων γίνεται ασύγχρονα. Ο όρος

«Ενεργή Αποθήκευση Δεδομένων» αναφέρεται σε μία νέα τάση, κατά την οποία οι

Αποθήκες Δεδομένων ενημερώνονται όσο το δυνατόν συχνότερα, λόγω των υψηλών

απαιτήσεων των χρηστών για πρόσφατα δεδομένα. Σε αυτή την εργασία, προτείνουμε ένα

πλαίσιο για την υλοποίηση μίας Ενεργής Αποθήκης Δεδομένων έχοντας ως στόχους τα

εξής: (α) Ελάχιστες τροποποιήσεις στο ήδη υπάρχον λογισμικό, (β) ελάχιστη επιβάρυνση

στο πρόγραμμα που παράγει τα δεδομένα, λόγω του ενεργού χαρακτήρα της μεταφοράς

των δεδομένων και (γ) τη δυνατότητα ομαλού καθορισμού των ρυθμίσεων του

περιβάλλοντος που θα δημιουργήσουμε. Στο σύστημά μας, έχουμε υλοποιήσει διαδικασίες

Εξαγωγής, Μετασχηματισμού και Φόρτωσης χρησιμοποιώντας δίκτυα ουρών.

Χρησιμοποιήσαμε επίσης στοιχεία απο τη Θεωρία Αναμονής τόσο για να προβλέψουμε

την επίδοση του συστήματος, όσο και για να ρυθμίσουμε τη λειτουργία του. Λόγω των

επιβαρύνσεων στην επίδοση του συστήματος, οι οποίες προέκυψαν κατά τη δημιουργία

του, διερευνούμε διάφορες αρχιτεκτονικές προσεγγίσεις και σχολιάζουμε τα ζητήματα που

προκύπτουν από κάθε μία από αυτές.

\\ \ι.

5

/

ABSTRACT

Traditionally, the refreshment o f data warehouses has been perform ed in an off-line

fashion. A ctive Data W arehousing refers to a new trend w here data warehouses are updated

as frequently as possible, due to the high demands o f users for fresh data. In this thesis, w e

propose a fram ework for the implementation o f active data warehousing, keeping in mind

the following goals: (a) minimal changes in the software configuration o f the source, (b)

minimal overhead for the source due to the "active" nature o f data propagation, (c) the

possibility o f smoothly regulating the overall configuration o f the environm ent in a

principled way. In our fram ework, w e have im plemented E T L activities over queue

networks and em ploy queue theory for the prediction o f the perform ance and the tuning o f

the operation o f the overall refreshment process. D ue to the perform ance overheads

incurred, we explore different architectural choices for this task and discuss the issues that

arise for each o f them.

7

Contents

1. Introduction 11

2. R elated W o rk 21
2.1. M aterialized V iew s 21
2 2 . W eb Services 23

2.3. Streams 24

2.4. E T L 25
2.5. Com parison o f Related W ork to our Contribution 27

3. F ram ew o rk and Issues R aised 29
3.1. System Architecture 29
3.2. Issues Raised 31

3.2.1. Choices Concerning the T opology 32
3.2.2. Choices Concerning the Source 35
3.2.3. Choices Concerning the Staging A rea 35
3.2.4. Choices Concerning the W arehouse 37

4. T h eoretical A n alysis o f E T L W o rk flo w s fo r
A ctive W areh o u sin g using Q u eu e T h e o ry 39
4.1. Definition o f a Queuing M odel 40
4.2. Statistical Distribution o f Interarrival and Processing Tim es 41
4.3. M arkov Process and M arkov Chains 42
4.4. K endall’ s Notation and L it t le ’ s L aw 43
4.5. Measures o f Effectiveness 44
4.6. TheM /M /1 Queuing System 45
4.7. Networks o f Queues and the Jackson Theorem 46
4.8. Multi C lass Jackson Networks 49
4.9. A pplying Queue Theory to E T L W orkflow s 50

4.9.1. Filters 51
4.9.2. Transform ers 52
4.9.3. Binary Operators 53
4.9.4. G eneric M odel 55

4.10. M ethodology for Solving E T L Scenarios 56

5. E xperim ents on A rc h ite c tu re w ith ou t E T L P ro cessin g 59
5.1. Smooth U pgrade 61
5.2. U D P vs. T C P 63
5.3. Overhead at Source 64
5.4. Number o f Queues 67
5.5. Data Freshness 68

9

5.6. Topology and Source Overhead 75

6. Operational Evaluation 79
6.1. Overhead at Source 80
6 .2 . Throughput C apability o f E T L Operations 81
6.3. D ata Freshness 83
6.4. Theoretical vs. Experim ental Evaluation 90

7 . Conclusions and Future W ork 97

References 99

10

1 INTRODUCTION

Database M anagement System s are used by organizations to support everyday operations.

Such applications incur small changes to data. This type o f applications is called Online

Transaction Processing (O LTP) Applications and focus on processing efficien tly and

reliably large number o f transactions.

Large organizations however, apart from using D B M S ’ s for covering runtime operations,

also use them as tools for strategic decisions. Current and historic data are analyzed

resulting in trends available for taking decisions. Such applications are called decision

support systems (D SS ’ s).

To extract information based on historic data, trends and cum ulative results, the D S S ’ s

should be able to use efficiently grouping operators and aggregation functions over data

that are highly volum inous. Applications carrying out such tasks are characterized as On

Line Analytical Processing (O L A P) applications.

To be able to deal with an environment having such dem anding conditions, specialized

D B M S ’ s are used called Data W arehouses. The aim o f Data W arehouses is tw ofold:

a) T o integrate heterogeneous data sources, w hich is achieved by gathering all

information in a single location, and

b) T o avoid conflicts between O L T P and O L A P applications, resulting in high system

performance and availability.

Data W arehouses are usually concluded by Data M arts, w hich are specialized subject

subsets, to further enhance O L A P applications. T he relation between O L T P , Data

Warehouses and O L A P is illustrated in Figure 1.1.

Fig. 1.1. Coarse Architecture Overview

A ccording to [RaGe02], a D ata W arehouse is defined as a database that collects and stores

data from several databases. In [Inmo02], a Data W arehouse is defined as a subject

oriented, integrated, non-volatile, and time variant collection o f data in support o f

managem ent decisions.

T he benefits o f a data warehouse are coarsely sketched by the follow ing properties:

Sem antic reconciliation, perform ance, data quality, and availability. The term “ semantic

reconciliation” refers to the data warehouse property o f modeling the same entities,

m odelled in different w ays at the sources, under a unique database schema. Additionally,

the history o f the loaded data is kept. Performance is an important issue, since the answers

to the posed queries should be available in acceptable time, without affecting the operation

o f the O L T P application. M oreover, performance is boosted by avoiding normalized

schemas for storing data. Data quality is an important issue since data arriving at the

warehouse is in most cases inconsistent. Finally, availability is another important factor.

T he architecture o f a Data W arehouse is illustrated in Figure 1.2.

12

Source

End User
Administrator Administrator Designer

F ig . 1 .2 . A rc h ite c tu r e O v e rv ie w

The Sources are the actual O L T P applications from w hich the D ata W arehouse retrieves

operational data. The Data Staging A rea (D S A) is an interm ediate database where data are

cleaned and transformed before their loading to the D ata W arehouse. T h e D ata W arehouse

(D W) and the Data M arts (D M) store data provided to the users. T he M etadata Repository

is the subsystem w hich stores information concerning the structure and the operation o f the

system. E T L (Extract - Transform ation - Loading) applications extract the data from the

sources, transform and clean them before loading them to the W arehouse. Reporting and

O L A P tools are reporting applications that perform O L A P , D S S and D ata M ining tasks.

E T L , which is an acronym for Extraction-Transform ation-Loading, is a category o f tools

for managing data warehouse operational processes. T heir basic tasks, as summarized in

[VaSS02] are:

• the identification o f relevant information at the source side

• the extraction o f this information

13

• the custom ization and integration o f the information coming from multiple sources

into a com m on form at

• the cleaning o f the resulting data set, on the basis o f database and business rules

• the propagation o f the data to the data warehouse and/or data marts.

In this thesis, w e are interested in E T L applications implementing the refreshment o f D W

contents. T he transformations useful for our case are filters, transformers and binary

operators. These represent common data cleaning tasks used in Data Warehousing

environments.

Traditionally, the refreshment o f data warehouses has been performed in an off-line

fashion. A s already mentioned, in a traditional data warehouse setting, data are extracted

from the sources, transformed, cleaned and eventually loaded to the warehouse through

E T L applications. This set o f activities takes place during a ‘loading w indow’ , usually

during the night, in order to avoid overloading the source production systems with the extra

workload o f this w orkflow .

A c t i v e D a t a W a r e h o u s i n g refers to a new trend where data warehouses are updated as

frequently as possible, due to the high demands o f users for fresh data. The term is also

encountered as ‘real tim e w arehousing’ for that reason [Whit02]. T o give a concrete

exam ple, w e mention [AdFi03], where a case study for m obile network traffic data is

discussed, involving around 30 data flow s, 10 sources, and around 2TB o f data, with 3

billion rows. T he throughput o f the (traditional) population system is 80M rows/hour,

100M rows/day, with a loading window o f only 4 hours. The authors report that user

requests indicated a need for data with freshness at most 2 hours.

This kind o f request is technically challenging for various reasons. First, the source systems

cannot be overloaded with the extra task o f propagating data towards the warehouse.

Second, it is not obvious how the active propagation o f data can be implemented, especially

14

in the presence o f legacy production systems. T he problem becom es w orse since it is rather

improbable that the software configuration o f the source system s can be significantly

modified to cope with the new task (both due to the down-tim e for deploym ent and testing

and the cost to administrate, maintain and monitor the execution o f the new environment).

So far, research has dealt with the problem o f maintaining the warehouse in its traditional

setup [GuMu95, ZG H W 05, ZhRu02]. In this case, m aterialized view s are refreshed in the

presence o f updates, but the general idea is that the refreshment is perform ed off-line. In a

different line o f research, data streams [Aba+03, B aW iO l, LoG e03] could possibly appear

as a potential solution. N evertheless, at least until now, research in data streaming does not

appear to fit naturally within a data warehousing context - on the contrary, it appears to be

a com petitive paradigm to warehousing. Research in data streams has focused on topics

concerning the front-end, such as on-the-fly computation o f queries, without a system atic

treatment o f the issues raised at the back-end o f a data warehouse. For exam ple, to our

knowledge, there is no work related to how streaming data are produced or extracted from

data producers; not to mention the extra problems incurred w hen the data producers are

operational systems.

T o this end, in this thesis w e attempt to approach the problem from a clean sheet o f paper.

W e investigate the case where the source o f the warehouse is a le g a cy system . T h e specific

problem involves the identification o f a software architecture along w ith appropriate design

guidelines for the implementation o f active warehousing. W e are m otivated by the

following r e q u i r e m e n t s in achieving this goal.

1. M a x i m u m f r e s h n e s s o f d a t a . W e want to implement an active data warehousing

environment to obtain as fresh data as possible in the warehouse

2. S m o o t h u p g r a d e o f t h e s o f t w a r e a t t h e s o u r c e . W e w ish to im plem ent a fram ew ork

where the m odification o f the software configuration at the source side is minimal

15

3. M i n i m a l o v e r h e a d o f t h e s o u r c e s y s t e m . It is imperative to impose the minimum

additional w orkload to the source

4. S t a b l e i n t e r f a c e a t t h e w a r e h o u s e s i d e . It would be convenient i f the warehouse would

export a stable interface for its refreshment to all its source sites.

T he grand view o f our environmental setup is depicted in Figure 1.3. A set o f sources

com prise source data and possibly source applications that manage them (for the case of

legacy sources) or D B M S ’ s for the case o f conventional environments. The updates that

take p lace at the sources have to be propagated towards the warehouse. D ue to reasons of

semantic or structural incom patibilities, an intermediate processing stage has to take place,

in order to transform and clean the data. Once ready for loading, the data from the

intermediate layer are loaded at the warehouse, through a set o f on-line loaders.

16

Mapping this grand view to concrete technical choices requires the tuning o f several

components o f the architecture. Follow ing, w e briefly sum m arize our findings that affected

our architectural choices.

Starting with the sources, in this thesis, w e have focused on legacy system s. Apart from the

requirement o f minimal changes at the source side, legacy sources pose the interesting

problem o f having an application (instead o f a D B M S) m anaging the data. W e m odify a

library o f routines for the management o f data to allow the interception o f the calls without

affecting the applications. The m odification involves (a) inserting no more than 100 lines o f

code to a library o f routines for source management and (b) recom piling the application

(which was not affected), over this library. A lso, as far as the com m unication between

stages is concerned, w e transmit blocks o f records for reasons o f perform ance and minimal

overhead o f the source system.

The internal architecture o f the intermediate layer is not obvious, either. For each E T L

activity, we em ploy a queue to store incom ing records before they are processed. Each

activity processes the incom ing data on-line and then passes its output to the next queue for

further processing. A gain , for reasons o f perform ance, blocks o f records are the unit o f

exchange and not individual records.

W e do not assume a fixed set o f E T L operators, but rather w e provide a taxonom y o f such

operations, based on their operational semantics. N ew operators can be added to the

taxonomy as they are defined. Specifically , the taxonom y o f activities consists o f the

follow ing categories: (a) Filters, (b) Transformers and (c) B inary Operations.

Filters exam ine each incom ing tuple to determine whether it m eets certain criteria. I f these

criteria are fulfilled, then a tuple is accepted and propagated tow ards an acceptance output.

If not, it is rejected and possibly propagated towards a rejection output.

17

Considering the case o f Transformers, tuples entering a transformer undergo changes to

their value and/or their schema. W e can distinguish two subclasses o f Transformers taking

into account the relationship between the number o f tuples entering and the number o f

tuples exiting the transformation. In the first case the two quantities are equal. In the second

case, the number o f tuples entering the system is different compared to the number of

tuples exiting. This occurs because some o f the tuples entering service are aggregated or

merged.

The third class o f E T L activities deals with Binary operators. This is the case where data

from m ultiple sources are com bined and a single outgoing stream is produced. Examples o f

such operations involve variants o f the jo in operation, including the jo in o f data from

different tables, as w ell as difference and update detection operations among different

snapshots o f the same table.

T o predict the perform ance o f the system, w e em ploy queue theory for networks o f queues.

Our experimental results indicate that the assumption o f a M/M/l queue for each o f the

E T L activities provides an accurate estimation.

A t the same time, to implement the requirement for stable interface at the side o f the

warehouse, the data are further propagated towards the warehouse through an interface

involving W eb Services [A C K M 03]. The need for w eb services as the technical solution

for populating the warehouse with fresh data is not self-evident and requires justification.

In fact, web services are known to be rather heavy middleware in terms o f resource

consumption [Duqu03], which potentially jeopardizes the requirement o f fresh data and

minimal overhead. T he main advantages o f w eb services compared to other middleware

solutions (R PC , O R B ’ s, m essage queues, etc) are two: (a) interoperability, meaning that

they can be deployed in all platforms and configurations and (b) possibility o f exporting

them outside the intranet o f an organization. W e emphasize the interoperability property: in

a large organization, there is a wide variety o f data sources, involving several platforms and

18

configurations. W eb services can provide a common, stable interface for the warehouse to

all these sources without requiring major design and integration effort. A lso , this loose

coupling o f sources and the warehouse results in minimal im pact in the case o f changes,

either at the source or at the warehouse. O bviously, perform ance has been a concern too.

Still, as we discuss in Section 4, our experiments indicate that the overall delay, incurred by

the adaptation o f a solution based on w eb services is rather sm all, especially i f one is

w illing to trade resource (m ainly main m em ory) for freshness.

In a nutshell, our contributions can be listed as follow s:

• W e set up the architectural fram ework and the issues that arise fo r the case o f

active data warehousing.

• W e set up the theoretical fram ework for the problem , b y em ploying queue theory

for the prediction o f the perform ance o f the system.

• W e provide technical solutions for the im plem entation o f our reference

architecture, achieving (a) minimal source overhead, (b) sm ooth evolution o f the

software configuration at the source side and (c) fine-tuning guidelines for the

technical issues that appear.

• W e substantiate our results through extensive experim entation.

The rest o f this thesis is organized as follow s. In Chapter 2, w e present w ork related to our

approach. In Chapter 3, w e detail the different architectural ch oices and the technical

challenges each o f them incurs. Chapter 4 contains elements o f queue theory and the model

used to describe our architecture. Chapter 5 and 6 contain our experim ental evaluation for

defining our architectural setup and measuring our system perform ance respectively.

Finally, in Chapter 7 w e sum up the lessons learned and present som e thoughts fo r future

work.

19

2 RELATED WORK

In this Chapter, w e present w ork related to our approach. W e structure related work as

follows: first, we discuss the area o f materialized view s. N ext, w e make a reference to W eb

Services. The third section o f our related work presents the area o f streams. Finally, we

conclude with work in the area o f E T L.

W ork in materialized view s refreshment is quite related to our setting. This is because a

materialized instance o f the relations stored at the Source side resides at the warehouse. For

the non expert reader, we make a quick reference to W eb Services. T he W eb Services A P I

is an important part o f our architecture, since they are used to transfer data to the

warehouse. W ork concerning streams is related to our system , too. Both streams and our

system focus on managing continuous flow s o f data. H ow ever, w h ile in the case o f streams,

data losses are acceptable, the sam e does not happen in our case. F in ally, w e present w ork

concerning E T L transformations. O ur architecture uses E T L transform ations in the Staging

Area, thus, work in this field is related to our approach.

2.1 Materialized Views

In [ZhRu02J, the authors propose the Schem a change and D ata update Concurrency

Control system for checking the concurrency o f schem a changes and data updates

performed by distributed Information Sources.

[GuM u95] describes materialized view s and proposed techniques for their maintenance. A

taxonom y is also presented over four different dim ensions. A m aterialized view is like a

cache: a copy o f the data that can be accessed quickly. T h e d ifference between the

materialized and non m aterialized view s is that the tuples are stored in the database.

2 1

Incremental maintenance o f a materialized view means that only changes in the database

are used to compute changes in the materialized view.

There is no algorithm to solve the view maintenance problem for deletions using only the

m aterialized view . The counting algorithm which is described, works by storing the number

o f alternative derivations o f each tuple in the materialized view, in order to handle

deletions. For recursive view s the DRed algorithm is mainly outlined. This algorithm

deletes from the view an overestimation o f affected tuples, calculates then the alternative

derivations and inserts the new and those that exist again into the view. Three variations of

this algorithm are also presented. A lso, altered variations o f counting algorithms to handle

recursive view s are presented. Next, algorithms using partial information for view

maintenance are presented. These focus on checking whether the view can be maintained

using the available information, and then how to maintain the view. Some algorithms only

test whether a view remains unaffected by an update. If this test fails then another view

update algorithm is used. Self-maintainable views are those that can be maintained using

only the materialized v iew and key constraints.

In [ChCR02] the usage o f a transaction model for data warehouse maintenance is proposed.

This model assumes autonomous data sources, which means sources that can alter their

data autonom ously without accepting external locks. It is also assumed that concurrency

control, which is achieved by means o f versions, is sequential, i.e. only one transaction can

be processed. T w o types o f transactions are distinguished: the first is source update

transactions, which trigger the second type, DW maintenance transactions. A wrapper is

responsible for m anaging the versioning system. Initially, it creates versions whenever data

are updated.

In [ZGH W 95] the authors propose the eager compensation algorithm (E C A) and some

variations o f it for dealing with view maintenance anomalies in a warehousing

environment. The model assumed is the following: a legacy source is assumed, incapable o f

2 2

handling view s. Every update that occurs is sent to the D W w h ich maintains a materialized

view . W hen the D W receives the update (insertion or deletion) issues a query towards the

source. The source calculates the result which is then stored in the m aterialized view .

W ith this setup, anom alies occur when more than one updates occur, one after the other and

the warehouse sends queries to the source without w aiting the answ er from the source to

the previous query. T o deal with issue the authors propose the E ager Com pensating

Algorithm. W hen the D W detects an inconsistent state, i.e. a new update received, without

an answer to a previous query has been received, a com pensating query is issued to the

Source resulting to a consistent result in the W arehouse. M oreover tw o im provem ents o f

the algorithm are presented: the first, the E C A - key algorithm , w hich reduces the

communication load between the Source and the D W when the v iew includes a key. The

second, the E C A - local algorithm determines which update can be handled locally at the

warehouse.

2.2 Web Services

• W eb services appear to be the latest developm ent in the field o f m iddlew are, crafted

towards enabling the integration o f software at an Internet scale. W eb services evangelize

universal interoperability by exploiting Internet technologies, X M L m essaging, w idely

accepted standards, and loose coupling o f applications. A n excellen t reference book for the

field o f W eb services is [A C K M 0 3]. W eb services assum e a softw are stack ranging from

the low H T T P transfer protocol, to the execution part (S O A P), the service description part

(W SD L) that exports the public interface o f services [W SD L0 3] and service com position

[W SFL01]. In the context o f this thesis, the main protocol o f interest is the Sim ple O bject

A ccess Protocol (S O A P) [SO A PO I]. S O A P specifies a m essage form at for the

com m unication o f W eb services along with the bindings to H T T P and S M T P protocols for

the delivery o f m essages. T he m essages are X M L docum ents, or e n v e l o p e s com prising a

23

h e a d e r , with meta-information for the processing o f the message and a b o d y with the actual

contents o f the message.

2.3 Streams

Aurora [A C C C + 0 3] is a data flo w system designed to support monitoring applications. Its

basic jo b is to process incom ing streams. Aurora has an extended query model supporting

real time processing, view s, m aterialized views and ad hoc queries. A ll these operations can

be com bined with each other and form a network. This network also includes caches, called

connection points, w hich allow applications joining the system to have access to data o f the

recent past. A connection point can also be materialized through a D B M S.

M oreover an optim ization method for the operations’ network at run-time is presented.

A ccording to A urora’ s approach, the user provides the system with 2d graphs designating

critical areas for Q uality o f Service. I f some o f these variables is not fulfilled during

operation, Aurora sheds some o f its load. The data operations communicate with each other

with LIFO queues. In order to store them, Aurora uses predefined blocks o f space, which

either doubles or reduces by half. Finally, a scheduler brings in memory the queues with

higher priority.

In [BBDM +02] fundamental models and issues are considered for the development o f a

general purpose Data Stream Management System Model. Differences are outlined

between the data stream model and the conventional relational model. For instance,

concerning the type o f queries each fam ily o f systems can answer. The authors also outline

the bad behavior o f triggers i f used in such systems and the need o f high performance

techniques in order to answer queries in such data intensive systems.

The authors also exam ine in detail issues concerning queries over streams, such as

unbounded m em ory requirements, approximate query answering, sliding windows and

24

other. There also is an extensive reference to approaches o f m any stream ing system s and

the system they have developed called S T R E A M . F inally algorithm ic issues concerning

streams are discussed such as histograms, sampling, etc.

The most relative w ork to our approach is the one presented in [JiCh03]. In this paper, the

authors model single S E L E C T operations as M/D/I or M /M /l queuing system s, depending

on th e,typ e o f condition used and PR O JE C T operations as M /D/l queuing systems.

M oreover they develop a form ula using queue theory, in order to m odel the hash jo in o f

two incoming streams as an M /(D 1, D2)/l queuing system.

2.4 ETL

Potter’ s wheel [RaHeOl] is an interactive data cleaning system . U sers gradually build

transformations by com posing and debugging transforms on a spreadsheet like interface.

Discrepancy detection is done in the background on the latest transformed v ie w o f the data.

The desired results can be specified as exam ple values. T h e m ain com ponents o f Potter’ s

wheel are the follow ing: a D ata Source (O D B C data source or text file), w hich provides the

data to be cleaned. A Transform ation Engine where transform ations can be ordered via

exam ples or patterns. T h e Online Reorderer, where the desired transformations are

declared. The Autom atic D iscrepancy Detector runs in the background data the cleaning

algorithms. M oreover, an accum ulated state is maintained, in order to detect multi-row

anomalies where a set o f values is individually correct, but together violate som e integrity

constraint.

The Evaluation o f pattern suitability is made upon three characteristics: R ecall meaning

that the structure should match as many column values as possible, Precision where the

structure should match as less other values as possible and finally the structure should have

minimal length in order to be as generic as possible. The minim um description length

principle offers a w ay to m ake a trade-off between overfitting and underfitting, m inim izing

25

the total length required to encode data using a structure. Better structures result in smaller

Description Lengths. The Description Lengths are computed using specific formulas and

taking into account the three aforementioned characteristics.

A ja x [GFSSOO] is a data cleaning tool. It is based on user interaction and on automatic

procedures defined in A J A X scripting language, which as an S Q L extension. It aims at

cleaning data with quality problems o f the follow ing classes: object identity problems,

errors and inconsistencies. A ja x distinguishes four types o f transformations: mapping,

which standardizes data format, matching, which finds data referring possibly to the same

object, clustering which groups similar objects, and finally merging which eliminates

duplicates. These operations can be performed combining the follow ing alternatives: using

stored system procedures, using additional procedures defined by a human expert, or

interacting directly w ith the human expert.

In [VaSS02] A general fram ework is presented for modeling the internal structure o f E TL

activities. E T L activities and their consistent parts are initially modeled and reduced to a

graph called the “ Architecture Graph” , in order to treat the E T L scenario as a skeleton of

the overall environment. In this graph, data and functions are represented as nodes, while

the edges o f the graph depict relationships between data. The authors also provide two

zoom ing algorithms for transforming the graphs. The first, the “ In and Out Zooming”

algorithm aims at the elimination o f the information overflow produced by the modeling o f

the E T L activity. The second, the “ M ajor F low ” algorithm focuses on following the data

flo w from sources to targets.

In [V SG T02] the authors describe a fram ework for specifying E T L scenarios aiming

m ainly to achieve genericity and customization. The main focus is on the data-centric part

o f the E T L activities. A generic metamodel is presented, which covers all the types o f

entities that com prise such an activity. These are generic classes in which the ETL entities

belong. M oreover, a specialized form o f the metamodel is introduced which contains

26

models o f frequently used E T L tasks. In specific, this specialization, called template layer,

consists o f subclasses o f the more generic metamodel layer. T h e m aterialization o f these

subclasses are the actual E T L entities.

Genericity and custom ization is achieved by introducing new tem plates, w hich w ill be

specializations o f the m etamodel layer, and w ill also be abstractions o f the entities used in

the E T L scenario. The authors also present A R K T O S Π a graphical tool, for the design o f

E T L scenarios based on their approach.

2.S Comparison of Related W ork to our Contribution

A s an overall evaluation o f the related work and a com parison to our contributions, w e can

mention the follow ing. First, w ork on materialized view s has sp ecifica lly focused on the

issue o f relational view s. Transform ations that lie outside the realm o f relational algebra

have not been taken into consideration by the related w ork. A t the same tim e, E T L

w orkflows frequently com prise o f transformations that em p loy external functions to

compute tuples and values in w ays more or less far from the expressive pow er o f relational

algebra. A s far as the existing w ork on E T L is concerned, this has m ainly to do (a) with

classes o f transformations executed either interactively, or off-lin e, and (b) w ith the design

aspects o f E T L w orkflow s. O ur w ork covers a topic that has not been tackled so far by

related w ork in E T L . Research efforts on the management streams constitute the most

relevant area to our w ork. Still, to our know ledge, stream w orkflo w s have not been studied

in a principled manner, whereas in our w ork w e em ploy queue theory for that purpose.

M oreover, typ ically, the problem studied in the area o f streams concerns continuous

relational queries rather than the propagation o f data from one data store to another. A gain ,

queries (standing fo r transformations in our case) outside relational algebra have not been

studied yet.

27

3 FRAMEWORK AND ISSUES RAISED

There are several issues concerning the implementation o f a fram ew ork fo r active data

warehouse. Therefore, in this Chapter w e w ill start by presenting the general architecture o f

such a system. In section 3 .1, w e present the grand view for active warehousing and its

specific" instantiation that w e have investigated. Then, in section 3.2, w e proceed to a

detailed presentation o f the issues raised within this fram ework.

3.1 System Architecture

In our architecture w e assume w e have a single source o f data. W e consider this limitation

in order to evaluate architectural alternatives which w ill o ffer the best behavior to our

framework. Hence, our architecture consists o f the fo llow in g elem ents: a Data Source

generating data, an intermediate data staging area that w ill be referred to as the A c tiv e Data

Staging A rea (A D S A) where the processing o f data takes p lace and the D ata W arehouse.

The architecture is illustrated in F igure 3.1.

DW

Fig. 3 .1. Architecture Overview

The Source com prises o f a data store (legacy or conventional) and an operational data

management system (e.g ., a D B M S or an application, respectively). Changes that take place

29

at the source side have to be propagated towards the warehouse, which typically resides in

a different host computer. The communication between hosts employs a network protocol

(e.g., T C P or U D P). T o avoid the extra overhead o f overloading the network with half-full

packets and, as our experiments indicate, to avoid overloading the source with the extra

task o f perform ing this task, w e em ploy a Source Flow Regulator (SFlowR) module that

com piles changes in blocks and propagates them towards the warehouse.

O nce record blocks leave the source, an E T L workflow receives them at the intermediate

staging area. The role o f the E T L w orkflow is to cleanse and transform the data in the

format o f the data warehouse. The E T L w orkflow comprises a set o f E T L activities, also

called E T L queues, each pipelining blocks o f tuples to its subsequent activities, once its

filtering or transformation processing is completed. T o perform this task, each E T L activity

checks its queue (e.g., in a periodic fashion) to see whether data are waiting to be

processed. Then, it picks a specified number o f records, performs the processing and

forwards them to the next stage. If less than the specified records exist in the queue, then

they are all retrieved. I f the queue is empty, then the invocation is postponed, until there

exist data to be processed.

The role o f the active data staging area is versatile: (a) it performs all the necessary

cleansings and transformations, (b) it relieves the Source from having to perform these

tasks, (c) it can act as a regulator for the data warehouse, too (in case, the warehouse cannot

handle the online traffic generated by the source) and (d) it can perform various tasks such

as checkpointing, sum mary preparation, and quality o f service management.

Once all E T L processing is over, data are ready to be loaded to the warehouse. A s already

explained, we chose to perform this task through a heavy but reliable (syntactically and

operationally) middleware, W eb Services. For each target table or materialized view at the

warehouse, w e define a receiving web service. To be able to invoke the web service, a

client needs to be constructed. The client, in order to regulate the traffic between the

o
30

staging area and the warehouse, com piles the data in blocks, too. T h e w eb service at the

warehouse side then populates the target table it serves. Load-balancing mechanisms at the

warehouse side and physical warehouse maintenance (e.g., index maintenance) can also be

part o f this architecture. Still, for the moment, w e do not consider these possibilities.

In the particular implementation that w e have used in our experim ents, w e have studied the

problem as it appears over legacy sources. In our configuration, the Source includes tw o

software modules: (a) an IS A M file and (b) an application used to m odify data in the legacy

data source. For m anipulating IS A M files, there is a library o f IS A M routines that are

invoked from the application at the source side. W e have m odified these library routines in

order to replicate the data manipulation commands and send updates towards the staging

area. Several E T L queues reside at the staging area perform ing cleanings transformations

and aggregations. Each E T L activity retrieves data from its queue w ith a constant rate,

retrieving a given number o f elements in constant timeouts. E T L activities com m unicate

both with each other and with the W eb service clients via Java thread safe queues. T he

transfer from the staging area towards the Data W arehouse is done over H T T P (im plying

T C P as the underlying netw ork protocol). For our experim ents, w e have assum ed that the

warehouse sim ply stores the data perform ing no other task.

3.2 Issues Raised

To fulfill all the goals mentioned in Section 1, using the architectural elem ents described

above, there are som e issues raised which m ainly concern the tuning and configuration o f

the system. T he key issues that affect system perform ance and need to be resolved are

discussed in this section and classified with respect to their locality at the source or the

staging area, as w ell as the overall setup o f the environment. A ll the technical choices and

their alternatives are sum m arized in Table 3.1.

31

Having described our architectural elements, the next step is to decide their topology. Our

architecture offers the ability o f selecting different number o f tiers. Several choices exist:

One-tier architecture. U sing the one-tier architecture is the simplest solution, overloading

how ever the single host. In any case, data warehouses were introduced exactly for the

purpose o f separating the source production systems from decision support applications for

perform ance reasons (practically due to transactional deadlocks and system overload).

Under these considerations, a single tier approach is not recommended. This solution is

illustrated in Figure 3.2.

3.2.1 Choices concerning the Topology

Fig. 3 .2. One tier topology: The Source, the Staging Area and the Data Warehouse reside on the

same host

A s the single-tier alternative is not the most realistic case, we proceed to a two-tier

architecture, where the source and the W arehouse are found on different machines.

Two-tier architecture. The source and the Warehouse are found on different machines.

Regarding the two-tier architecture, the main issue that arises is related to the placement o f

the staging area. There are tw o alternatives concerning this choice: the first is to place the

staging area together with the source, putting the data warehouse on a separate machine

32

(Figure 3.3). T he second alternative is to place the staging area at the host w here the data

warehouse resides (Figure 3.4).

Fig. 3.3. Two-tier topology: The Source and the Staging Area reside on the same host, while the

Data Warehouse resides on another machine.

In the case o f the staging area placed at the Source, data w arehousing operations do not

burden the Source, but still the resources used by the w eb services A P I to perform the

invocation remain considerable. A w ay for dealing with this is to m ove the staging area to

the warehouse host (Figure 3.4), which can be expected to be m ore pow erful from the

source host.

This w ay, the source is com pletely detached from the A c tiv e D ata W arehousing process.

Naturally, i f the w arehouse server is too loaded or its configuration too com plex fo r the

extra software setup o f a w eb service server, a three-tier architecture can also be em ployed.

33

Fig. 3.4. Two tier topology: The Data Warehouse and the Staging Area reside on the same host,

while the Source resides on a separate machine.

T h re e -tie r a rch ite c tu re . F inally, there is always the alternative to use a separate dedicated

machine for the staging area, leading to a three-tier topology. Using the three-tier

architecture (Figure 3.5) solves all the abovementioned problems, but increases the setup

and maintenance cost, since an extra server, apart from the one used from the warehouse,

has to be engaged and administered.

1 1
i ± d a

Host 1 —
u Host 2

[y
F *

Host 3

Fig. 3.5. Three tier topology: The Source, the Data Warehouse and the Staging Area reside on three

separate machines.

H aving discussed the architectural alternatives for our topology, we proceed to discuss the

technical issues raised for each o f the main components and their overall setup.

34

3.2.2 Choices concerning the Source

Concerning the source side, the first consideration that arises has to do with the

interconnection type between the Source and the staging area. S in ce our goals are to impose

as little impact as possible to the Source and to make on ly m inor changes, w e have chosen

the solution o f sockets both due to its footprint characteristics and the easiness o f

programming such a solution.

The next choice is between T C P and U D P protocols for the transm ission o f data between

the source and the staging area. O n the one hand, T C P offers reliability. On the other hand,

U D P offers speed through non blocking calls follow ed by a concern on the server side for

the socket buffer size, in case o f extended datagram bursts and no reliability.

A third architectural ch oice that has to be made concerns the w ay changes to the source file

are written to the socket, i.e., whether data are organized in blocks before being further

propagated to the staging area. There are tw o w ays to deal with this issue: either to write

each m odification to the socket, or to write bulks o f m odification com m ands. In the first

case, whenever a data m anipulation command is issued, it is im m ediately written to the

socket along with the respective data. In the second case, nothing is written, until a number

o f records is com pleted. Then, all records together are sent to the staging area. Sending one

record at a time, w h ile being a straightforward solution burdens the system with additional

communication cost. O n the other hand, using a b lock has the draw back o f determ ining the

block size, but reduces com m unication cost significantly.

3.2.3 Choices concerning the Staging Area

The internal structure o f the data staging area and the tuning o f its operation are the major

issues concerning the perform ance o f our architecture. T he staging area is a multithreaded

environment with shared com ponents, thus having to be set up properly to avoid race

35

conditions and ensure consistency. Each transformation is implemented as an independent

thread. The part o f the Staging A rea listening for connections from the Source and the Web

Service C lient are implemented as Threads as well. A ll o f these components communicate

with each other with shared queues, making locking necessary to ensure consistency and

avoid race conditions.

Issue Alternatives
General Architecture

T opology
- 2-tier, Staging Area at the source side
- 2-tier, Staging Area at the D W side
- 3 tier

Source

Connection T yp e
- U D P
-T C P

Propagation T yp e
- One at a time
- Block-based

A ctive Data Staging Area

Interface betw een the tw o APIs
- None
- Synchronized Queue

W eb Service invocation type
- Blocking
- Non Blocking

Propagation T ype
- One at a time
- Block-based

Data. W arehouse

- Single W S
Session management - Instance per session

- Instance per request

Table 3 .1. Architectural choices

The problem o f locking raises the issue o f the queue emptying rate. Assuming that the input

to the staging area is determined by the workload o f the source (i.e., it cannot be

constrained by the warehouse administrator), a proper emptying rate for the E T L queues

has to be determined. A high arrival rate compared to the configured service rate will result

in instability and queue length explosion. On the contrary, a very high service rate

potentially results in too many locks o f the queue (resulting again in delay, contrary to what

36

would normally be expected). It is obvious that the service rate should be close to the

arrival rater in order to have both efficient service times, and as less locks as possible.

Another dilemm a is related to the interconnection type betw een the Staging A rea and the

Data W arehouse. A s already mentioned, the Staging A rea invokes a W eb S ervice residing

at the warehouse side. There are tw o different alternatives for invoking the W eb Service,

namely -(a) blocking and (b) non-blocking. B lo ck in g invocation involves an

acknowledgm ent m essage to be sent from the w eb service, before its client can continue. In

our case, this means that a response from the warehouse is required, delaying how ever the

queue em ptying rate. N on-blocking invocation does not delay the queue em ptying process

o f the w eb Service client, since no response is returned from the invocation.

Finally, the issue o f sending data as tuple-at-a-time or b locks is raised again for the

communication between the Staging A rea and the warehouse. In this case, apart from the

network overhead, the cost o f parsing the incom ing w eb service m essages at the warehouse

plays a role for this choice.

*3.2.4 Choices concerning the Warehouse

The data warehouse side is characterized by a W eb Service per target table, receiving the

cleansed data from the Staging A rea, The w eb services A P I o ffers three w ays o f handling

the remote invocations o f the client that resides in the data Staging A rea. T h e first w ay is to

create a single w eb service instance that handles all incom ing requests. T his is a good

solution for configurations where a small number o f clients creates a lot o f invocation

requests, but is not recom m ended in cases where a large number o f clients w ish to invoke

the same W eb S ervice, since it w ill result in high latency times. In this case, the second

way for handling rem ote invocations is recommended. That is to create an instance for each

invocation request. H ow ever, in cases o f high frequency invocation requests, this solution

behaves poorly in terms o f perform ance, since it creates a new instance o f an invocation

object. T h e third alternative is a solution com bining the functionality o f the previous tw o

37

cases: an instance is created fo r every session. The only issue that has to be resolved in this

case is the duration o f the session time.

In our configurations, w e use the first o f these alternatives, namely a single web service

instance that handles all incom ing requests. The reason is that in our experiments, we have

em ployed one client for the service, which stops its operation after inserting a specific

amount o f records into the IS A M file. This makes the case o f using an instance per session

the same as using a single instance. U sing an object per request is prohibitive, since we

assum e high frequency invocations.

38

4 THEORETICAL ANALYSIS OF ETL WORKFLOWS FOR

ACTIVE WAREHOUSING USING QUEUE THEORY
• 4

In our architecture, data flow s from the source to the Staging A rea, where data sustain

various types o f processing: filtering, transformation and binary operations. T o establish a

cost model for our system and to calculate interesting perform ance measures such as the

delay o f extracting results to the warehouse, we use queue theory as the means o f acquiring

estimations for each case o f operation.

The roadmap o f this chapter is summarized as follow s: in Section 4.1 the definition o f the

generic queuing m odel is presented. In Section 4.2 lays the p ro o f o f the m em oryless

property o f the exponential distribution. Section 4.3 provides a b rie f introduction to

M arkov chains. Section 4.4 displays K endall’ s Notation and L ittle ’ s L aw . K endall’ s

notation is a standard w ay to describe a queuing system in term s o f its input, output and

internal architecture. L ittle ‘ s law is the fundamental law governing all queuing system s and

• relates the input and the output rate o f the system with the average queue size. Section 4.5

presents measures o f effectiveness valid for all types o f queuing system s. Section 4.6

describes the sim plest queuing system o f all, M/M/I. Section 4 .7 presents the M /M ,K,/1

system which is an extension o f the M/M/l system to model custom ers serviced in batches.

This w ill be used to describe the function o f the source’ s flo w regulator. Section 4.8

presents the case o f constant service times, i.e., the M /D/l system . In Section 4.9, w e

present methods for dealing with networks o f queues and in Section 4 .10 w e describe how

this method is extended for the case o f multiple classes o f custom ers. In Section 4 .11 , we

distinguish data operations occurring in the Staging A rea in categories and argue about the

type o f queuing m odel that can be used to describe each o f them.

39

4.1 Definition of a Queuing Model

The simplest queuing m odel is depicted in Figure 4 .1. It can be used to model machines or

operators processing orders or communication equipment processing information.

A ccording to this m odel, a sequence o f customers arrives at a server. If a customer arriving

at the server finds the server occupied, it waits in the queue until its turn comes to be

served. A fter the custom er is served, it leaves the system [Magi].

I f λ customers arrive at the system per time unit, then the mean inter-arrival time is equal to

l / λ . Sim ilarly, i f μ custom ers are served at the system per time unit, then the mean service

time is equal to l / μ . Based on these parameters, w e also define ρ = λ / μ as the traffic intensity

which denotes the server utilization. W e require that p < l or the queue length w ill explode.

In figure 4 .1 , a basic queuing model is depicted.

* ---------►

Fig. 4.1. Basic queuing model

A m ong others, a queuing model is characterized by [AdReOl]:

- T h e a r r i v a l p r o c e s s o f c u s t o m e r s . Usually·, we assume that the interarrival times are

independent and have a common distribution. In many practical situations, customers

arrive according to a Poisson stream (i.e. exponential interarrival times). Customers may

arrive one by one, or in batches. A n exam ple o f batch arrivals is the customs office at the

border where travel docum ents o f bus passengers have to be checked.

- T h e s e r v i c e t i m e s . U sually w e assume that the service times are independent and

identically distributed, and that they are independent o f the interarrival times. For

exam ple, the service tim es can be deterministic or exponentially distributed. It can also

occur that service tim es are dependent on the queue length. For example, the processing

40

rates o f the machines in a production system can be increased once the number o f jobs

w aiting to be processed becomes too large.

- T h e s e r v i c e d i s c i p l i n e . Custom ers can be served one by one or in batches. There are

many alternatives for the order in which they enter service. A com m on discipline that

w ill be used henceforth is the First C om e First Served discipline (F C F S), i.e. customers

are served in order o f arrival.

- T h e s e r v i c e c a p a c i t y . There may be a single server or a group o f servers helping the

customers.

- T h e w a i t i n g r o o m . There can be limitations with respect to the num ber o f customers in

the system. For exam ple, in a data communication network, on ly fin itely m any cells can

be buffered in a switch. The determination o f good buffer sizes is an important issue in

the design o f these networks.

4,2 Statistical Distribution of Interarrival and Processing Times

In this section the p ro of o f the mem oryless property o f the exponential distribution is

presented. This property is very important because it denotes that t h e a r r i v a l t i m e o f a n

e v e n t i n a s y s t e m i s n o t d e p e n d a n t o n t h e a r r i v a l s o f p r e v i o u s e v e n t s a n d d o e s n o t a f f e c t

f u t u r e a r r i v a l s .

A poisson random variable X has the follow ing distribution:

P(X = ή)-^--β~μ,η = 0,1....
n\

The time between successive arrivals follow ing a Poisson distribution fo llow s an

exponential distribution. T h e formula for the distribution function is:

41

F(t) = 1-β~β , t > 0

T he density o f an exponential distribution with parameter μ is given by

f (t) = μβ'μ , t > 0

T he exponential distribution is the only distribution which has the memoryless property

[WilI04, p. 66-68]. A real-valued non-negative random variable X is called m e m o r y l e s s i f

for a l l s , t e R 0 + ·.

P [X > s + t \ X > s] = P[X>t]

Intuitively, this means that the tim e remaining for the next future event is independent o f

the time the last event occurred [M agi]. It is easy to prove that the exponential distribution

has the m em oryless property:

P[X > s + t \ X > s] =
P [X > s + t , X > s]

P[X > s]
P[X > s + t]

P[X > s]
e ~ M (s + t)

e - S t
= P[X > t]

4.3 M arkov Process and M arkov Chains

A M arkov chain is a discrete-tim e process for which the future behavior, given the past and

the present, depends only on the present and not on the past. Figure 4.2 shows a M arkov

chain. A M arkov process is the continuous-time version o f a M arkov chain.

A M arkov chain, studied at the discrete time points 0 ,1,2 ,... is characterized by a set o f

states S and the transition probabilities P y between the states. Here, P y is the probability that

the M arkov chain is in state j at the next time point, given that it is at state i at the present

4 2

time point. The matrix P with elements p y is called the t r a n s i t i o n p r o b a b i l i t y m a t r i x o f the

M arkov chain. The row sums o f P are equal to 1.

λ λ λ

Ο ' ο ο

Fig. 4.2. A Markov chain

In a M arkov process there is also a discrete set o f states S . In each state there are a number

o f possible events that can cause a transition. T he event that causes a transition from state i

to 7, where j ·*■ /, takes p lace after an exponential amount o f tim e, with probability q y . A s a

result, in this m odel, transitions take place at random points in time.

A special case o f a M arkov process is a b i r t h - d e a t h p r o c e s s . In a birth-death process the

only allowed transitions are between neighboring states. T h e transition from state n to n + 1

is identified with a b i r t h event, and the transition from n to n - 1 is a d e a t h event. M any

* queuing systems can be described as birth-death processes. T he M arkov process o f Figure 2

is a birth-death process, since there are only transitions between neighboring states.

4.4 Kendall’s Notation and Little’s Law

T o characterize different queuing models Kendall introduced a shorthand notation [Magi]

using a code o f the form A / B / m / K J M . Each o f these sym bols has the fo llow in g meaning:

• A : Distribution o f the inter-arrival times. T he fo llow in g sym bols are used to indicate

some com m on distributions: M (exponential / m em oryless distribution), G (general

distribution), D (Deterministic), E k (Erlangian distribution with k stages).

43

• B : Distribution o f the service times. T he aforementioned sym bols are also used in this

case.

• m: N um ber o f servers.

• K : size o f the queue’ s w aiting room (only used in the case o f finite waiting room)

• M : S ize o f population to be served. I f not used, infinite population is implied.

L itt le (s L a w gives a very important relation between the mean number o f customers in the

system N , the custom er mean arrival rate in the system λ , and the mean time a customer

remains in the system T . This relation is formulated as:

Ν = λ Τ

T he im portance o f L ittle ‘ s L a w resides in the fact that this equation holds for every type o f

queuing system irrespectively o f the arrival and service distributions.

4.5 M e a su re s o f E ffectiven ess

M easures o f effectiveness are measures valid for all types o f queuing systems, no matter o f

the arrival or service rates. In brief, these measures are the following:

• M ean num ber o f custom ers in the system in steady state:

L = E[n) = Ynp„
ns 0

• M ean num ber o f custom ers in the queue:

£ , = Σ > - 1) Λn*l

44

In these form ulas L q represents the mean number o f customers w aiting in the queue to be

processed, while L represents the total customers in the system : the custom ers currently

being processed and the customers waiting in the queue.

U sing L ittle ’ s form ula it is easy to obtain the expected w aiting tim es fo r the system , and the

waiting queue.

4.6 The M /M /l Queuing System

MZM/1 is the sim plest queuing system and it can be described as follow s: F IF O service,

single server, infinite w aiting line, the customer inter-arrival times are independent,

identically and exponentially distributed with som e param eter λ . T h e custom er service

times are also independent, identically and exponentially distributed with som e parameter

μ . T he assumption o f independent and identically distributed variables means that each

random variable has the same distribution with the others and they are m utually

independent. W e can describe this type o f queuing system through the fo llow in g equations

[Will04]:

M ean number o f custom ers in the system:

L = E[n] = =
1- p μ - λ

M ean number o f custom ers in the queue, or the queue length:

_ P ‘
1 - P μ { μ - λ)

M ean delay time fo r a custom er in the system:

45

Mean delay time for a customer in the queue:

λ
Probability o f n custom ers in the system:

p n = (l - p) p n

A method for obtaining steady state flo w equations for a birth - death process is the

stochastic balance procedure [GrHa]. This type o f analysis looks at a g iven state and

requires that the flo w into a state equals to the flo w out o f the state.

Consider a state n (n > l) in an M /M /l queue. A s shown in figure 2, the system goes from

state n (m eaning n custom ers in the system) to state n - 1 when a service completes, or to

state n + 1 w hen an arrival occurs. Sim ilarly, the system goes from state

n - 1 to state n when a new arrival occurs, and from n + l to n when a service is completed.

T h e mean flo w into state n equals to μ ρ η + ι + λ ρ η. / and the flo w out o f state n is μ ρ η + λ ρ η .

Equating incom ing flo w to outgoing flo w results in:

P P n + \ + λ Ρ η ~ 1 = U + P) P n > (* * 1)

In the case that n = 0 , since n is non negative the follow ing equation is obtained:

λΡο

4.7 Networks of Queues and the Jackson Theorem

M any queuing system s consist o f a network o f queues. In a q u e u i n g n e t w o r k (QN), a

custom er finishing service in a service facility is either immediately proceeding to another

service facility or leaves the system. For our purposes we assume that each node o f this

netw ork consists o f a single server with exponential arrival and exponential service times.

46

One basic classification o f queuing networks is the distinction between o p e n and c l o s e d

queuing networks. In an open network new custom ers m ay arrive from outside (com ing

from a conceptually infinite population) and later on leave the system . In a closed queuing

network the number o f customers is fixed and no custom er enters or leaves the system . In

our case we are exclu sively interested in open networks. W e w ill consider only the case o f

a single class network where all customers belong to the same class, for exam ple share the

same service times.

In the follow ing analysis w e w ill use the follow ing notation:

N \ number o f nodes (single service centers)

k i \ the number o f jo b s at the i-th node. The nodes are num bered from 1 to N. T he k i are

grouped into the vector (£ / , . . . , k N) .

m e the number o f parallel servers at node i . A ll servers have the same service rate.

- p e service rate o f all the servers at node i . T he overall service rate o f this node is

m j * P i . The mean service time o f a single custom er is l / p t

- P i j : the routing probability that a customer leaving node / proceeds to node j . These

probabilities rem ain fixed over time. Clearly, when there is no direct path from i to j

w e have p,y = 0. In our case w e assume that the occurring transitions fo llo w a birth -

death process, i.e, they occur only between neighboring states.

- p o / . the probability that a new jo b entering the system from outside enters the system at

node j . In an open network the follow ing holds:

- P i # , the probability that a jo b leaves the system im m ediately after getting service at

node i .

- λ ο χ . the arrival rate o f jo b s from outside to node /.

- λ 0χ . the total arrival rate to node i . This includes arrivals both outside the system and

from other nodes (including feedback).

47

A: the total arrival rate to all nodes in the network from outside.

e t = A/A i s t h e v i s i t r a t i o o f node i, i.e. how often the node is visited by a single job.

I f an open queuing netw ork is in steady state then for each node, its arrival rate A,· equals its

departure rate. T h e arrival rate A,· to node i is clearly the sum o f all arrivals from the outside

to i and f r o m a ll nodes to i (including i itself), thus w e have:

N

Λ· = Ah + Σ p j j ^j
;=i

or in vector - m atrix form :

A = A0 +ΑΛ

T hese equations are called traffic equations and they can be transformed into a set o f N

sim ultaneous linear equations. I f w e d ivide these equations by λ w e arrive at:

N

e, = Poj + H P u e j
y=i

In order to calculate the perform ance measures in queuing networks the steady state

probabilities have to be found:

π (k/,... , kN) = P r [kj custom ers in queue 1,.... kn custom ers in queue NJ

T h e term π(ki,..., kn) denotes the probability o f kj customers in queue 1, k2 customers in

queue 2 and so on. T he overall throughput o f an open queuing network is the rate by which

jo b s leave the network. If the network is in the steady state, then this rate equals the arrival

rate A from outside to the network.

48

J a c k s o n *s T h e o r e m specifies the conditions, under which a product form solution in open

queuing networks exist:

The number o f custom ers in the network is not limited.

Every node in the network has Poisson arrivals from outside the network.

A customer can leave the system from any node (or a subset o f them).

- A ll service times are exponentially distributed.

In every node the service discipline is FIFO.

The ι-th service facility consists o f mi identical servers, each w ith service rate μ, (as a

generalization the service rate μ, may depend on the number o f custom ers in system /).

J a c k so n ’ s T heorem : If in an open network the condition λ (< μ (· · holds for every

/ e f l , . . , N J then the steady state probability o f the network can be expressed as the product

o f the state probabilities o f the individual nodes:

n (k h . . . t k N) = n I (k]) n 2 (k 2) . . . π ^ Ν)

Therefore, w e can solve this class o f networks in three steps:

S o lve the traffic equations to find for each queuing system i .

- For each queuing system t, determine separately its steady-state probabilities π ^) .

Determ ine the global steady-state probabilities π (k h . . . , k N) from the above formula.

D erive the desired global performance m easures.

Jackson ’ s theorem offers a very important result since it allow s us to calculate, in a

straightforward w ay, the steady state probabilities o f the w h ole netw ork by calculating the

probabilities by treating each node separately.

4.8 M u lti C la ss J a ck so n N etw orks

A generalization to Jackson networks is a Jackson netw ork with different classes o f

customers [GrHa], In specific, customers o f different classes have different routing

49

probabilities, depending on the class they belong. T o solve such networks, we assume a

separate routing m atrix R (t) for each customer class, where the superscript (t) represents the

class o f the custom ers. T he routing equations are solved separately for each class o f

custom ers. T h e form ula describing the arrival rate in a node for class t in vector - matrix

form:

λ (,) = λ 0< ο + λ <οΚ (,>

T he overall input rate λ in the network equals to the sum o f the input rate o f the network for

each class o f custom ers. This can be form ulated as:

λ = Σ λ (,)

T o obtain individually the average number o f customers o f class t in node i, denoted as L, (,),

the fo llo w in g equation holds:

4 <1,+ ; P + . . . + ; l0,>

A gain L t ’s are com puted by the M /M /l formulas, since w e can treat each node separately.

4.9 Applying Queue Theory to ETL Workflows

E ach E T L queue can direct custom ers to more than one subsequent queue, depending on

the type o f operation it perform s. The com position o f queues in queue theory is treated by

queue networks and the com putation o f the interesting properties o f such networks depends

on the nature o f the in volved individual queues. The question that arises is what kind o f

individual queues do the E T L activities produce. One possible way to answer this question

is to define an extension o f the relational algebra, specifically tailored for E T L purposes,

containing for instance, operators for answering continuous queries and study the properties

o f each operator from the view point o f queue theory. Since this would probably produce

quite com plex queues, w e adopt a different, black-box, approach and define a taxonomy o f

50

E T L transformations, based on the relationship o f their input and output. T his w ay, w e

practically categorize E T L tasks in fam ilies without delving in the particularities o f their

internal functionality. Specifically , the taxonom y o f activities consists o f the fo llow in g

categories: (a) Filters, (b) Transformers and (c) Binary Operations.

accented

rejected

Fig. 4.3. Queuing model for Multi-output activities

4 .9.1 Filters

Filters exam ine each incom ing tuple to determine whether it m eets certain criteria. I f these

criteria are fulfilled, then a tuple is accepted and propagated towards an acceptance output.

If not, it is rejected and possibly propagated towards a rejection output. W e assum e that

tuple arrivals occur due to a Poisson process and service tim es fo llo w an exponential

distribution. W e define the probability that som e tuple i is accepted as P a and the

probability that som e tuple i is rejected by the system as P r . T his is illustrated in Figure 4.3.

It is obvious that P fl+ P r - 1 .

The filtering operations do not im pose a change in the overall num ber o f tuples m aking the

follow ing equation valid:

| t u p l e s e n t e r i n g s e r v i c e | = | t u p l e s a c c e p t e d |+| t u p l e s r e j e c t e d |

A lso, these operations do not incur changes to the schem a o f the tuples entering the service

facility com pared to the schema o f the tuples exiting. T yp ical operations o f this category

are not null, dom ain and foreign key checks, selections and in general, any type o f

operation, operating lo cally on a tuple and determ ining w hether it w ill be further

51

propagated or not. D u e to their m ultiple outputs, filters can also act as routers for tuples

w hose destination depends on their value.

4 .9.2 Transform ers

Considering the case o f Transform ers, tuples entering a transformer undergo changes to

their value and/or their schema. W e can distinguish two subclasses o f Transformers taking

into account the relationship between the number o f tuples entering and the number o f

tuples exiting the transformation. In the first case, the two quantities are equal which

means:

| t u p l e s e n t e r i n g s e r v i c e \ = \ t u p l e s a c c e p t e d |

W e assum e that tuple arrivals occur due to a Poisson process and service times fo llow an

exponential distribution, in other words, w e have the same case with filters transformations.

A gain , w e define the probability that som e tuple i is accepted as P a and the probability that

som e tuple i is rejected by the system as P r . Since all tuples are accepted, w e have: P a - 1

and P r = 0 (Figure 4.4). A n exam ple o f such a transformation is the surrogate key

transformation, the usage o f functions for the derivation o f new values and, in general, any

transformation that derives an output tuple solely on the basis o f the value o f a single input

tuple.

Fig. 4.4. Queuing model for Single-output activities

In the second case, the number o f tuples entering the system is different com pared to the

number o f tuples exiting and in specific:

| t u p l e s e n t e r i n g s e r v i c e | > | t u p l e s a c c e p t e d |

52

This occurs because som e o f the tuples entering service are aggregated or merged. W e

assume that tuple arrivals occur due to a Poisson process and service times fo llo w an

exponential distribution. The problem with this kind o f transformations is that practically

queue customers disappear and new custom ers are produced by each transformation. T o

model this property in terms o f queue theory, w e make the assum ption that depending on

the aggregation or m erging factor, some o f the incom ing custom ers continue and som e exit

the system. In other words, we assume that some o f the tuples after being transformed

continue through the system as accepted. The number o f these tuples equals the number o f

tuples produced as a result by the transformation. The rest o f the tuples are assum ed to be

rejected by the system after their service and exit the system . T h e fo llo w in g obvious

equation holds:

| t u p l e s r e j e c t e d | = | t u p l e s e n t e r i n g s e r v i c e | - | t u p l e s a c c e p t e d |

Again, we define as P a the probability that some tuple i is accepted and P r the probability

that some tuple i is rejected by the system: P a + P r - 1 . G iven the aggregation factor o f an

incom ing set o f data, w e can easily compute the output and rejection rate as w ell as the

respective routing probabilities on the basis o f the number o f tuples w e w ish to aggregate

each time, or more generally, to impose a transformation o f this category. Thus, the routing

probabilities are:

| r e s u l t _ t u p l e s \ ^ ^ | i n p u t _ t u p l e s \ - 1r e s u l t _ t u p l e s \

\ i n p u t _ t u p l e s \ r \ i n p u t _ t u p l e s \

4,9.3 Binary Operators

The third class o f E T L activities deals with Binary Operators. T h is is the case where data

from multiple sources are com bined and a single outgoing stream is produced. E xam ples o f

such operations in vo lve variants o f the jo in operation, including the jo in o f data from

different tables, as w ell as difference and update detection operations am ong different

snapshots o f the sam e table. [JiCh03] describes a w indow -based hash jo in algorithm for

53

continuous streams. In the context o f E T L , w e make the follow ing assumptions and

observations:

• O ne o f the tw o inputs is consider as the p r i m a r y i n p u t f l o w . Tuples o f this flow are

checked over filters or transformed according to the values o f some other relation and

ultim ately, either propagated towards the W arehouse or rejected.

• T he second input o f the operator is acting as a r e g u l a t o r o f t h e p r i m a r y f l o w . In other

words, its values are only needed in order to determine the processing and routing o f

the tuples o f the primary flo w . For all practical purposes, where active E T L

functionality is needed (update detection, difference, facts joined with dimension

values), a static snapshot o f the regulator flow can even be assumed.

• Adopting the m odel o f [JiCh03], both inputs arrive at the same queue - they simply

undergo processing with different distributions o f processing times.

In principle, a binary operator has to be dealt with as a multi-class queuing system, with

one class for each flo w (input or output) - see Figure 4.5. W e refer the interested reader to

[JiCh03] for such a treatment. S till,'b a sed on the aforementioned assumptions, we can

avoid m odeling the system as a m ulti-class queue and deal only with the primary flow o f

the operator. In the rest o f the thesis, w e w ill consider single-class queues, the tuples o f

w hich (a) either continue in the system or (b) are ultimately rejected. A n interesting

observation here is that no matter how many different categories o f tuples enter the node

for service, the output tuples can be assumed to belong in one o f the two aforementioned

categories.

W e consider Poisson arrivals and exponential service times. A s stated earlier the two

routing classes are accepted with probability P „ and rejected with probability P r and as

before P „ + P r - l . This type o f operations does not impose a change in the overall number

o f tuples existing m aking the fo llow in g equation valid (Figure 4.5):

54

I tu p les en terin g serv ice | = | tu p les a c c e p te d |+ | tu p les r e je c te d |

H owever, differently from Filters, the schema o f the tuples possibly changes.

4.9.4 Generic Model

It is easy to observe, that a Generic M odel can generalize the three aforem entioned classes,

in a single case where a node consisting o f a single server serves possibly m ore than one

class o f customers. A ll custom ers arrive according to a Poisson process and are serviced

with exponential service times. T he general case is depicted in F igu re 4.5 and involves a

M/M/l queuing node.

accepted

p (u ^ra -----—————

rejected

Fig. 4.5. Generic Model for ETL Queues

In the general case, w e can assume that tuples o f custom ers, after their E T L transformation

at the node, leave the system with probability P r0) and continue in the queue netw ork with

probability P j ° . C oncerning the number o f tuples in the system the fo llo w in g equation is

still valid:

| t u p l e s e n t e r i n g s e r v i c e | = | t u p l e s a c c e p t e d |+| t u p l e s r e j e c t e d |
·.

Concerning the schem a o f the tuples before and after service, w e observe that the schem a

changes in the general case, apart from the case o f filters.

55

In the rest o f this thesis, w e w ill fo llo w the assumption o f a primary input flow . This

obviously results in form ing an M /M /l queuing node as the constructing element o f our

E T L queue network.

4.10 Methodology for Solving ETL Scenarios

In this section w e illustrate the solution o f a queue network o f E T L operations. W e use

Q ueue Theory to predict a perform ance metric o f our system based on the values o f the

other m etrics. M oreover, w e provide an exam ple to illustrate the usage o f Queue Theory in

order to predict the number o f packets in the system, know ing the arrival and service rates.

S p ecifically , g iven a netw ork o f E T L queues, there are three inter-related metrics for each

queue: a r r i v a l r a t e , s e r v i c e r a t e and the n u m b e r o f p a c k e t s i n t h e q u e u e . The overall

number o f packets in the system can easily be determined as the sum o f the individual

queues. T he problem form ulation is simple: given the two o f the three metric, determine the

third one. T he m ethodology for solving such a problem is quite simple. W e work on open

queuing networks, since tuples arrive from outside (com ing from a conceptually infinite

population) and later on leave the system. Each node o f the network is assumed to be a

M /M /l system . In order to so lve this network·we fo llow these steps:

1. W e determ ine the routing probabilities for each node.

2. W e solve the traffic equations system to calculate the arrival rate for each node.

3. W e solve for each node separately the M /M/l equations to calculate performance metrics

T o demonstrate the usage o f this technique, which com es from queue theory, we assume

the fo llo w in g scenario, as illustrated in figure 4.6. In brief, the scenario is as follows:

a. F ilter 10% o f incom ing data.

b. A surrogate key operation to the first column o f the filtered data.

c. G roup by sum.

d. D ata are then fed to the warehouse.

56

We assign the following identifiers, for reasons of ease, to each node of the network thus

F Filter 10%

S K Surrogate K ey
G B Group B y Sum

W S W eb Service C lient

0 Outside the network
Table 4.1. Assigned identifiers

SFlow R
Filter
10% SK

GB :
Sum WS ClienC

[Source]— ^ ^

Source A D S A D W

Fig. 4.6. The scenario we solve

The routing probabilities for each node o f the Staging A rea are the fo llow in g:

*n O It p -o T1 *Tl II o Pf.sk = 0.9 Pf.gb = 0 p F.WS — 0
Psk.o= 0 PsK.F= 0 Psk,sk= 0 Psk.g b= 1 P SK.WS = 0
Pgb.o= 0 Pgb.f = 0 Pgb.sk= 0 Pgb.gb = 0 P GBtWS = 1
Pws.o= 1 PwS.F= 0 Pws.sk = 0 PwS.GB= 0 P ws.ws = 0

N ext w e solve the traffic equations, which are the follow ing:

λρ = Xo,F+ λρΡ p,F + λ^κΡ SK,F + <̂;bP gB,F + λwsPwS,F

λ$κ = ^o.sk + λρΡ f.sk + ^skP sk.sk + ĝbPgb.sk + λwsPws,sκ

λ<3Β = λο,ΰΒ Ί" λρΡρ,ϋΒ + λ8κΡ$Κ,σΒ + ^O bP g B.GB + λwsPwS,GB

λws = λο/ws + λρΡ f.ws + ^skP sk.ws + XgbP gb.ws + λwsPws.ws

The solution results in the fo llow ing equations:

λβ = λο,β

57

λ$κ = λρΡF.SK

λσΒ = ^skP SK.GB

λ-WS = ^gbPgb.ws

T h e m easured arrival rate from the Source is:

λο = λοιΡ= 22.252 packets / sec

Substituting w e get:

λ Ρ = 22.252 packets / sec

X$k = 22.252 x 0.9 = 20.0268 packets / sec

λ<3Β = XSkPsk.gb = 20.0268 packets / sec

X w s = ^ bPgb.ws = 20.0268 packets / sec

N o w w e can so lve fo r each node separately the M /M /l equations to obtain the performance

m etrics. T o do this w e also need the service rates for each node. W e get the follow ing

values from our experim ents:

μΡ = 26.403

Psk = 25.648

Pg b = 27.194

Pws = 28.595

Thus, for each case, the average number o f packets in the system is the follow ing:

L f = 5 .36 0

L sk = 3.960

L g b = 4.502

L w s = 2.60

Sim ilarly, w e can easily calculate the rest o f the performance rates using the equations that

hold for the M /M /l queuing system .

58

5 EXPERIMENTS ON ARCHITECTURE WITHOUT ETL

PROCESSING

In this Chapter, w e present the experiments w e conducted to determ ine the best

configuration for our architecture.

SFlow R WS Client WS

O ► D C 3

Source A D S A D W

Fig. 5.1. Experimental setup for set (a)

W e present tw o sets o f experiments: (a) and (b). Set (a) presented in this chapter, deals with

the general behavior o f the system. The purpose o f this set o f experim ents is to figure out

the behavior o f each system com ponent separately, and to establish guidelines for building

the system. In this case, data are ju st transferred to the w arehouse and no E T L operations

are involved. In set (b), presented in Chapter 6, w e evaluate the behavior o f a system in a

realistic setup, based on the conclusions derived from the first set. N aturally, in this case,

we also transform out data using E T L operations.

Our experimental setup is as follow s: In our configuration, the Source includes tw o

software modules: (a) an IS A M file and (b) an application used to m odify data in the legacy

data source. T o m anipulate IS A M files, there is a library o f IS A M routines that are invoked

from the application at the source side. W e have m odified these library routines in order to

59

replicate the data manipulation commands and send updates towards the Staging Area. The
ISAM library that we altered is the PBL/ISAM suite [PBL04] available under GPL license.
We have used a sample program distributed within the suite as the legacy application. We
use two different data sets for our purposes. The first consists of 100,000 records and the
second of 1,000,000 records. The ETL queues of the Staging Area have been implemented

using the Sun JDK 1.4 , whose runtime engine has also been used. As a Web Services
platform we have used Apache Axis 1.1 [AXIS04] with Xerces XML parser running over
Apache Tomcat 1.3 .29 . Our Data Warehouse is implemented as a MySQL 4.1 database.

= =
Source

SFlowR

+ D -

Source

ws

ws

DW

Fig. 5.1. Experimental setup for set (b)

The host we used for the Source was a ΡΙΙΓ 700MHz with 256MB of physical memory
running SuSE Linux 8 .1. The host used as the data warehouse a Pentium 4 2 .8GHz with

1GB of physical memory running Mandrake Linux. This server also hosted the Staging
Area. The hosts are interconnected via the switched Fast Ethernet LAN of our department.
Our data were created from the TPC-H data generation tool. For set (a) each row of data
has fixed size equal to 20 bytes. For set (b), where we evaluate the system behavior under
real data warehousing conditions, we used data of variable size. In this case, each row has

an average size of 140 bytes.

In our experiments, we evaluate the cost in marginal conditions. Thus in order to evaluate
the worst case, the Source generates data at its peak capability. Moreover, since our

60

warehouse host is a much faster computer than the source host, w e w ould not be able to

make safe conclusions i f w e alw ays let it operate at its full capability. Thus, w e simulate

slower server perform ance by em ploying time outs betw een operations. This w ill be

explained in more detail later.

5.1 Sm ooth U p grad e

One o f the goals o f our architecture is to pose minimal m odifications to code o f the source

system. In our approach, w e do not alter the L ega cy A pplication itself, but the library

which manipulates the IS A M files by adding a few lines o f code to the routines that are o f

interest to the purpose o f active warehousing. These routines are: the file opening routine,

the record insertion routine and the file closing routine. T he alterations are located only in 4

points o f the library’ s source code:

1. The first m odification is to include our library w hich contains the so cket’ s client

and the Source F lo w Regulator.

2. The second m odification is to add a call to the routine o f our library that opens a

socket to the Staging A rea at the IS A M file opening routine. T h is call is perform ed

only i f the opening o f the IS A M file is successful.

3. The third m odification is to also add the call to our library’ s function that writes to

the socket at the routine o f the IS A M file library that w rites the record to the file.

This routine stores the specific record to the Source F lo w R egulator’ s buffer and

when the defined number o f records is com pleted, it delivers them to the Staging

A rea. A gain , this routine is called only after a successful insertion.

4. The fourth m odification is to add a call to the routine o f our library that closes the

opened socket to the Staging Area, at the IS A M file closin g routine. T his call is

perform ed on ly i f the closing o f the IS A M file is successful.

61

T able 3 shows the alterations that w e have performed to the library in pseudo-code. The

overall length o f code that had to be written for this part o f the implementation, including

the additions at the IS A M library, is approxim ately 100 lines.

T a b le 3. C od e alterations at the routine that opens the IS A M file.

O riginal Routine A ltered Routine

O pen isam File()

{

Open isam File()

{

opening_isam_file_commands
opening_isam _file_com m ands

if(open==success)

} A D S A socket open()

}

W rite record to File()

{

W rite record to File()

{

insert_record_commands
insert_record_commands

if(w rite= su ccess)

} write to Source F low RegulatorR()

• }

C lo se isam File()

{

C lose isam File()

{

closing_isam_file_commands
cl o s in g j sam _file_com m ands

if(c lo se = su cce ss)

} A D S A socket close()

}

T he routine that opens the socket to the Staging A rea reads configuration information from

a plain text file , before the opening o f the socket. This file contains the follow ing three

pieces o f information:

62

1 . The number o f records the Source F low Regulator w ill gather

2. The address o f the Staging Area

3. The port o f the Staging Area

A s an overall assessment o f the impact o f our changes, w e can say that (a) minim al code

had to written to achieve the replication o f incom ing updates to the warehouse in an

active fashion, (b) sim ple configuration parameters are required, (c) no changes were

required to the code, rather than a simple recom pilation under the new library.

5.2 U D P vs. T C P

The first parameter that needed to be tested involved the netw ork protocol between the

source and the Staging Area. The goal o f our first experim ent is to determ ine the system ’ s

behavior using U D P and sp ecifically if there are any datagram losses. In the graph shown

in Figure 5.3, the results o f sending 100,000 records from the Source to the Staging A rea

using U D P are shown. The Staging A rea uses a queue and perform s asynchronous

invocation.

The results show a 3 5 % packet loss o f data, most probably due to the o verflow in g o f data.

Such losses are prohibitive for normal operation o f an on-line environm ent. Therefore, for

the rest o f the thesis, w e have fixed T C P as the interconnection protocol between the

Source and the Staging A rea.

63

Fig. 5.3. Data loss using UDP as the interconnection protocol between the Source and the Staging

Area

5.3 Overhead a t Source

T h e m ain requirem ent fo r the architecture at the source side involves minimal overhead

during regular operation. Therefore, the goal o f the next experiment is to measure the

overhead that our configuration incurs at the Source side. W e measure the time to complete

the insertion o f (a) 100 thousand records and (b) 1 m illion records to the IS A M file. W e

experim ent on the im pact o f the fo llow in g two parameters:

First, w e m easure the e ffect o f using the Source F low Regulator. W e try three values:

1, 100, and 1000 records for each packet that the Source F low Regulator sends to the

Stagin g A rea (see the x-axis for Figures 5.4 and 5.5). W hen using one record at a

package, w e have in fact the case o f not using a Source F lo w Regulator.

Second, w e experim ent with the behavior o f the source in terms o f com pletion time. In

experim ent set (a) that w e call “ plain” , the source performs its regular operation during

normal time. In this case, no records are propagated to the Staging Area.

*·'■; A64

Another issue worth investigating is the potential im pact that the tuning o f the Staging A rea

has over the source. Therefore, except for the tw o parameters that w e have already

described (both o f which concern choices at the source side), w e em ploy tw o m odes for the
« *

operation o f the Staging Area, for assessing its impact. Each test case is exam ined with

blocking and non-blocking invocation for the com m unication betw een the Staging A rea

and the- W eb Service. W e assume that the Staging A rea uses a synchronized queue. The

input rate at the queue is equal to the output rate o f the L e g a cy A pplication . T he queue’ s

output rate is fixed to one thousand records per second.

The y-axis o f the diagram s m easures the throughput o f inserting the records to the IS A M

file. Figure 5.2 depicts the results o f the experim ent for 100,000 records, w h ile Figure 5.3

the results for 1,000,000 records.

Time to insert 100 000 records

1 100 1000

Number of records sent
simultaneously

Fig. 5.4. Time to insert 100,000 records using a two-tier topology

65

Time to insert 1 000 000 records

Number of records sent
simultaneously

Fig. 5.5. Time to insert 1,000,000 records using a two-tier topology

B ased on our experim ental results the follow ing observations are made:

(a) T he Source F lo w Regulator plays a very important role, since without it, the

throughput deteriorates by 34 % , while using a Source F low Regulator incurs an

im pact o f 1 .7% .

(b) T he w ay that the Staging A rea is tuned does not affect the source. Regardless o f using

blocking or non-blocking W eb Service invocation at the Staging Area, the Source’ s

throughput is the same in both cases. This is a key observation for our architecture,

since it proves that the operations o f each tier are independent. Thus, we can examine

each tier separately.

(c) Sending sm aller packets o f records performs slightly better, since in the case o f 1000

records, netw ork propagation time decreases throughput. M oreover, choosing a packet

size o f 100 instead o f 1000 records saves buffer size at the Source F lo w Regulator.

6 6

5.4 Number of Queues

In this experiment, w e exam ine how the number o f queues im pacts the Source’ s

performance. Our measurements concern the time to com plete the insertion o f 100,000

records‘to the IS A M file. W e experiment to determine the necessary num ber o f queues both

at the Source and at the Staging Area, as indicated on the x-axis o f F igure 5.6. W e have

conducted experiments with the follow ing four settings.

1. Initially w e have used no queues at all, which im plies the absence o f the Source F lo w

Regulator at the source and the absence o f the queue at the Staging A rea.

2. In the second setting w e have used only the Source F lo w R egulator at the Source

without the queue at the Staging Area.

3. Our third experim ent’ s setting involves the absence o f the Source F lo w R egulator and

the presence o f the Staging A re a ’ s queue.

4. Finally, in our fourth experiment, w e have used our architecture in full deploym ent:

The Source F lo w R egulator at the queue and the queue at the Stagin g A rea.

Relation between the number of
queues in the system and the

impact at the Source

600

Configuration

Ξ plain

■ no packager at the
source, no queue at the
mediator

□ packager at the source,
no queue at the
mediator

□ no packager at the
source, queue at the
mediator

■ packager at the source,
queue at the mediator

Fig. 5.6. Time to insert 100 000 records using two-tier topology

67

Figure 5.4 depicts the results o f the experim ent for 100 000 records. The y-axis measures

the throughput o f inserting the records to the IS A M file. Plain depicts the case where no

propagation towards the warehouse w as performed (standing again for the stand-alone

behavior o f the source).

B ased on our experim ental results the fo llow ing observations are made:

(a) N ot using a queue in the Staging A rea poses the greatest impact in the system, no

matter whether Source F low Regulator is used or not. This impact is 553.40% o f

the time the L e g a cy A pplication requires to insert 100 000 records, in the case o f

not using any kind o f queue in the system and 553.76% using only a Source Flow

Regulator.

(b) U sing on ly a queue at the Staging A rea increases system perform ance with respect

to the previous configurations, but the overhead at the Source is still considerable

and m easured at 36 .19 % .

(c) U sin g both a Source F lo w R egulator at the Source and a queue at the Staging Area

provides the best system perform ance adding the sm allest overhead to the Source.

This overhead is m easured at 1.78% o f the plain Source time.

5.5 Data Freshness

A m ajor requirem ent in our setting is to achieve the m axim um data freshness possible,

through our fram ew ork. W ith a 1.78 % delay at the source, as derived from the experiments

o f Section 5.4, the focus o f interest is isolated at the side o f the Staging Area. The goal o f

the next set o f experim ents is to measure the data freshness time provided by our

application w ith respect to the queue em ptying rate and the block retrieved from the queue.

W e consider as d a t a f r e s h n e s s t i m e the time required for a record that w as inserted in the

IS A M file to be transferred to the warehouse.

68

Specifically, we measure the overall throughput, i.e., the time needed to em pty the Staging

A rea ’ s queue after the first record is sent to the warehouse. The freshness is then measured

as the time needed to em pty the queue, which practically stands for the response time for

the last record. T o perform these measurements, w e assum e that the L e g a cy A pplication

sends 100,000 records to the Staging A rea in packs o f 100 records over T C P . A lso , w e

measure the queue length as an indicator o f resource consum ption at the Staging A rea site.

A major parameter affecting the overall perform ance o f our environm ent is the im pact o f

the block size o f records w e deliver to the warehouse. Thus w e present three sets o f

experiments em ptying the Staging A rea ’ s queue with three different w ays using the

aforementioned rates:

(a) W e empty the queue as soon as possible and then propagate the records to the w eb

service.

(b) W e empty the queue retrieving the records from the queue using tim eouts o f 0.1

seconds retrieving 50, 100, 150, 200, 250 and 300 records each time and then invoking the

W eb Service.

(c) W e empty the queue retrieving the records from the queue using tim eouts o f 1 second

retrieving 500, 1000, 1500, 2000 and 2500 records each time and then invoking the W eb

Service.

T w o other parameters p lay a m ajor role. The first parameter, as indicated on the x-axis o f

Figure 5.7, is the time required to empty the queue. T he second param eter as shown on y-

axis o f Figure 5.7, is the number o f elements in the Staging A rea ’ s queue. T he queue’ s

input rate is equal to the Source’ s output rate, i.e. 1250 records per second approxim ately.

W e experim ented using the follow ing queue em ptying rates: 500, 1000, 1500, 2000, 2500

and 3000 records per second. These are the maximal em ptying rates, w hich m eans that, i f

the queue contains few er records, then all the records from the queue are retrieved.

69

Fig 5.7 Queue size at the Staging Area emptying the queue as soon as possible

T h e results o f em ptying the queue im m ediately are depicted in Figure 5.7. Figures 5.8 and

5.9 show the queue sizes using em ptying strategy (b) and (c) respectively. Figures 5.10 and

5 .1 1 show the overall queue em ptying time which represents the time required for all the

records inserted in the IS A M file to be stored in the Data W arehouse.

In Figure 5.7 x-axis depicts the time elapsed since the first record reached the Staging Area.

Y -a x is measures the num ber o f records in the queue o f the Staging A rea at each time point.

W e observe that practically no queue is ever formed. The mean queue size is 100 records,

w hich is the rate o f the Source F lo w Regulator. In other words, the Staging A rea is one step

later than the Source in terms o f performance.

In order to further exam ine the behavior o f our architecture, since the host o f the Staging

A rea is a faster com puter, com pared to the machine where the Source is hosted, we will

sim ulate slow er service rates for the Staging Area. In specific, w e w ill simulate slower

70

service rates by using timeouts between successive services, and by adjusting the number

o f records served each time.

In Figure 5.8, we can see six diagrams. In all six diagrams w e introduce a frequency rate o f

1 sec to the service o f the Staging Area. X -axis represents the time in seconds. T he y-axis

stands for the number o f records in the queue. The difference lies at the queue em ptying

rates, starting with an em ptying rate resem bling 500 records per second at the top left

diagram, up to 3,000 records per second at the low er right diagram .

W e observe that in all but a small number o f occasions (practically the ones where the

processing rate is slightly higher than the input rate) the queue size is grow ing. The

mountain size shape is easy to explain: the peak is reached when the 100,000 records have

been inserted, no other records are produced and consequently the queue size drops. Figure

5.8 shows the impact o f em ptying rate clearly: higher em ptying rates lo ck the queue too

often and the overall perform ance drops. Sm all em ptying rates are ob viou sly insufficient,

since they empty the queue too slow ly.

Figure 5.9 also contains six diagrams. This time, in all six diagram s w e introduce a

frequency rate o f 0.1 sec to the service o f the Staging A rea. X -a x is represents the time in

seconds. The y-axis stands for the number o f records in the queue. T h e d ifference lies at the

queue em ptying rates, starting with an emptying rate resem bling 500 records per second at

the top left diagram, up to 3000 records per second at the low er right diagram .

This time w e have a quite better picture, being in the m iddle betw een im m ediate em ptying

and rather slow em ptying. A s the number o f rem oved records increases each time, the

situation starts to approach the behavior o f immediate em ptying. A n interesting lesson here

is that it pays o f f to pay the price o f frequent dequeuing rather than rem ove b ig chunks o f

data from the queue. Im m ediate dequeuing appears to provide the best perform ance among

all alternatives.

71

Queue size over time.
Emptying rate 500 nodes/sec

5i =
Z Io 3
i :

70000
60000
50000
40000
30000
20000
100000

. .. ·

______X
yy

— U s
& s sΟ Λ Ο Λ Ο

Tim· (tec·)

Queue size over time.
Emptying rate 1500 nodes/sec

i , . 1 . *

u
£■ E

/ /v \
/ . \o 3

S i y ■ \

0 rp & <&' ^ ' <&
Tim· (sec·)

Queue size over time.
Emptying rate 2500 nodes/sec

; . ■ *
I Ϊ \.

\
Z J τ — — X " ---------------------X t “ “

η 1 nnnn y x . ·.
s * . \ · ·wOOO

o

Tim· (····)

Queue size overtime.
Emptying rate: 1000 nodes/sec

Tim· (tec·)

Queue size overtime.
Emptying rate 2000 nodes/sec

Tim· (β· μ)

Queue size over time.
Emptying rate 3000 nodes/sec

Z E V :. \
* ·

4 4 4 4 4 4 4 4? 4 J -
■ f - r ** <?■ & #■ # <? 4

Tim· (····)

Fig. 5.8. Queue size at the Staging Area using time outs of 1 sec

72

Queue size over time. Emptying rate 50 records
per 0.1 sec

mono

^ - · / \ * / ,Ά* , Λ "
| f 40000
ο I. 30000

» - ·- / ^ ·' - ■ ' - . s a i t f e :

S : · . \
ψ Τ . · · \ .. z&T:.

0 -Kii . . .
C

1 S f : ? ; ! j § ϋ π π ^ ΐ

Tim· (wca)

Queue size over time. Emptying rate 100 records
per 0.1 sec

i fv 1
• iw

3S000
30000
25000
20000
15000
10000

5000
0

'r"~. ■

' • V
____ \ c:-:

t' ·'!■■:: .·:ν··■··■,■: "' -' .·' ····■-·' ;v : \
Ν Ο Ι Ν Ν > - Ν ® (ί Ν Ι ί Ι ι Λ Ί Ν Ν 5

Tim· (· ο ή

Queue size over time. Emptying rate 150 records
per 0.1 sec

2000

> 1500 ·| ,600

Ξ c 1000 ·fc |WW O 9
~ l 5oo . ; Ί ,w

o ■
*·11_) ι·“Ί ■ ■ - v ζ& τ

o o) a « r > « D t r > (Mc n t n (\ i < v < o n o) (0 (M

Tim· (mcs)

Queue size over time. Emptying rate 250 records
per 0.1 sec

1600 γ
1400 ■

f ^ 1200 ·5 ·Γ l<w f € soon .
ϋ eoo.
® 5 Am .
a s- 4oo ■

200 ■
0 -

O

Tim· (hci)

Queue size over time. Emptying rate 200 records
per 0.1 sec

oom

• _ 1V^ . «:> τ Λ „ > ? * >

1 f W**· ' , ·' ' ■· ' '
' r V

o S
5 I 5oo ■

0 ·
C

AfirW,.? ■■ . .· ■ ■ ·

»C# ^ - c o o > « > t o c o o > < ©« * > o > « » c s t o o ^ ·

Time (a*ca)

Queue size over time. Emptying rate 300 records
per 0.1 sec

9TW1

• ^ 1500 ·
·.

I t
iT 1 <̂yyi . ·:
ο ϊ 1UW
| 1 5 0 0 -(ft w

0-
c> » ν ^ * - · - < ο ^ Ν τ ι ν ι ί β ο ί ν < ο σ) ΐ ο * - κ

»- »- c5 σι w co if m to to «5 r̂ . r̂ ·
T i m · (m c i)

Fig. 5.9. Queue size at the Staging Area using time outs o f 0.1 sec

In Figures 5.10 and 5 .11 w e show the time required to com plete the transfer o f our entire

dataset from the Stagin g A rea to the Warehouse. In both F igures, the x-axis represents the

various service rates o f the Staging Area and the y-axis the tim e tin seconds required to

complete the transfer. T he difference between the tw o figures is that in F igure 5 .10 w e

em ploy timeout o f 1 betw een successive services and in F igure 5 .11 w e use tim eouts o f 0.1

seconds.

73

Time to complete transfer from ADSA to DW

500 1000 1500 2000 2500 3000
Queue emptying rate

ilTime to
complete
transfer from
ADSA to
DW

Fig. 5.10. Queue emptying time at the Staging Area using time outs o f 1 second.

Fig. 5.11. Queue emptying time at the Staging Area using time outs o f 0.1 sec

O bserving the results o f this set o f experiments, w e are led to the follow ing conclusions:

74

a) W e can achieve data freshness time equal to data insertion time when w e continuously

empty a small size queue.

b) In this case, the size o f queue is equal to the service rate o f the Source F lo w Regulator,

i.e.,.there is practically no delay at the queue.

c) The number o f records retrieved from the queue plays a significant role. Even i f the

actual data rates are the same, (e.g., 150 records per 0.1 second vs. 1500 records per

sec), retrieving big chunks o f records requires extended locking times and propagation

times to the web service.

5.6 Topology and Source Overhead

The aim o f this experim ent is to exam ine how the topology o f our architecture im pacts the

Source’ s perform ance, i.e., the induced overhead to the Source. W e consider the fo llow in g

cases:

a) U sing 1-tier architecture.

b) U sing 2-tier architecture having the Staging A rea p laced at the S ou rce ’ s host and the

W arehouse on a separate host.

c) U sing 2-tier architecture having the Source on a dedicated host and the Staging A rea

together with the W arehouse on a separate host and

d) having the Source, the Staging A rea and the W arehouse on a separate host each.

Each bar in the fo llo w in g figures represents the respective topology, w h ile the y-axis

indicates the time required by the Source in Figure 5 .12 to insert 100,000 records and in

Figure 5.13 to insert 1,000,000 records to the IS A M file. W e regard as plain the original

source without our alterations.

75

Time to insert 100 000 records to the Source in
relation to topology used

Configuration

Fig. 5.12 Time to insert 100,000 records using one-tier, two cases of two-tier and a three-tier
topology

Time to insert 1 000 000 records to the Source in
relation to topology used

920

a 2-tier (Mediator at
Source Host)

□ 2-tier (Mediator at DW
Host)

13-tier

Configuration

Fig 5.13. Time to insert 1,000,000 records using one-tier, two cases of two-tier and a three-tier
topology

O bserving these graphs the fo llow in g conclusions can be made:

(a) T h e position o f the Staging A rea is the factor that poses the most overhead to the

system ’ s perform ance. In specific, when the Staging A rea is placed at the same host

76

with the Source, no matter where the W eb Service is located, the overhead to the

system ’ s perform ance is near 9.5% . On the contrary, when the Staging A rea is detached

from the Source’ s host, the overhead fluctuates between 1 .5% and 2% .

(b) U sing .three hosts and placing the W arehouse and the Staging A rea separately does not

actually reduce the source’ s overhead, so that the W arehouse can be located on the

same host, without this affecting the Source. This observation is very important, since

w e can save the setup, maintenance and configuration cost o f a third com puter.

T o sum up, the main conclusions derived from the experim ents o f this chapter are the

follow ing:

a) A s derived from Section 5.2, T C P is the most suitable protocol for interconnecting the

Source with the Staging Area.

b) A s shown in Section 5.3, operations o f each tier are independent. R egardless o f using

blocking or non-blocking W eb Service invocation at the Stagin g A rea, the Source’ s

throughput is the sam e in both cases.

c) U sing queues both at the Source Flow Regulator and at the Staging A rea, as described

in Section 5.4, provides the best system perform ance adding the m inim al overhead to

the Source.

d) A s observed in Section 5.5, the Staging A rea service rate should be higher than the

Source ‘ s service rate. M oreover, i f w e want to sim ulate slow er service rates for the

Staging A rea, sm all timeouts should be used since they o ffer stable behavior to the

system.

e) Finally, ju dgin g from the results o f Section 5.6, the m ost preferable topology for our

architecture, is the one o f using two tiers and placing the Stagin g A rea at the same host

with the W arehouse.

These observations w ill be used as a guideline for the next chapter. In Chapter 6, w e w ill

conduct our experim ents under real life data warehousing conditions, w here w e w ill assume

that the aforem entioned parameters are fixed.

77

6 OPERATIONAL EVALUATION

In this chapter, w e w ill use the architectural guidelines derived from the first set o f

experiments presented in Chapter 5 to build an active data warehouse where w e w ill also

deployjour online E T L operations. The aim o f this section is to evaluate the behavior o f this

fully deployed system and com pare its behavior to the theoretical m odel w e have

developed.

The difference from the previous chapter is that here w e w ill evaluate our system ‘s

perform ance under real life conditions using as a guideline the results o f Chapter 5. T o

achieve this, we em ploy four configurations: one configuration with the Staging A rea

playing a simple interm ediate role, where data are just forw arded through a W eb Service to

the W arehouse and 3 different scenarios with various E T L operations at the Staging A rea

before delivering our data to the warehouse.

Follow ing the guidelines o f Chapter 5 our experimental setup is as fo llow s:

a) W e em ployed a tw o-tier architecture, placing the Source on one host and the Staging

A rea with the W arehouse on another host.

b) W e used at the Source a F low Regulator to achieve better perform ance.

c) The interconnection protocol between the Source and the Stagin g A rea is T C P .

d) W e send data from the Staging A rea to the W arehouse using non-blocking invocation.

In our configuration, the Source includes two software m odules: (a) an IS A M file and (b)

an application used to m odify data in the legacy data source. In order to m anipulate IS A M

files, there is a library o f IS A M routines that are invoked from the application at the source

side. W e have m odified these library routines to replicate the data m anipulation commands

and send updates towards the Staging Area. The IS A M library that w e altered is the

79

P B L /ISA M suite [PBL04] available under G P L license. W e have used a sample program

distributed within the suite as the legacy application. W e use two different data sets for our

purposes. T he first consists o f 100,000 records and the second o f 1,000,000 records. The

E T L queues o f the Staging A rea have been implemented using the Sun JD K 1.4, whose

runtime engine has also been used. A s a W eb Services platform w e have used Apache A xis

1.1 [AX IS04] w ith X erces X M L parser running over Apache Tom cat 1.3.29. Our Data

W arehouse is im plem ented as a M y S Q L 4.1 database.

T h e host w e used for the Source w as a ΡΙΠ 700M Hz with 256M B o f physical memory

running S u S E L in ux 8.1. T he host used as the data warehouse is a Pentium 4 2.8GHz with

1G B o f physical m em ory running M andrake Linux. This server also hosted the Staging

A rea. The hosts are interconnected via the switched Fast Ethernet L A N o f our department.

O ur data w ere created from the T P C -H data generation tool. W e used data o f variable size.

In this case each row has an average size o f 140 bytes.

T h e roadmap o f this chapter is as follow s: in Section 6.1 w e establish the fact o f minimal

im pact at the Source. In Section 6.2, w e measure the throughput o f each E T L operation. In

Section 6.3, w e measure data freshness for four different scenarios, while in Section 6.4, we

com pare the behavior o f our system against our prediction.

6.1 Overhead a t Source

T he aim o f this experim ent is to assure that the overhead at the source remains small even

though the size o f each row is alm ost 10 times bigger than the previous case.

First, w e measure the effect o f using the Source F low Regulator (Source Flow

Regulator) at the Source. W e try four values: 1, 10, 25, 50 and 75 records for each

packet that the Source F low Regulator sends to the Staging Area (see the x-axis).

80

W hen using one record at a package, w e have in fact the case o f not using a Source

F low Regulator.

Second, we experim ent with the behavior o f the source in terms o f transmission rate.

In the first case that w e call “ plain” , the source perform s its regular operation during

normal time. In this case no records are propagated to the Stagin g A rea.

□ Plain Operation

■ Packet size at source:
1 row/packet

□ Packet size at source:
10 rows/packet

□ Packet size at source:
25 rows/packet

■ Packet size at source:
50 rows/packet

□ Packet size at source:
75 rows/packet

Fig. 6.1. Time to insert 100 000 records in the warehouse.

In Figure 6.1, the x-axis represents the size o f the packet sent from the Source F low

regulator to the Staging A rea, apart from the first colum n, w here the operation o f the

Source without our additions is measured. The y-axis o f Figure 6.1 represents time. In

general, packet sizes o f over 25 records offer the least burden to the source. T he sm allest

delay was achieved with a packet size equal to 50, where the source delay w as m easured to

be at 5.8% .

6.2 Throughput Capability of ETL Operations

The goal o f this set o f experim ents is to determine the average throughput o f the E T L

operations w e have im plem ented. The outcome o f this part o f our evaluation w ill be used

81

both to interpret the results o f our experiments and to use the measurements for our

theoretical analysis.

O ur experim ental setup w as the fo llow in g for the evaluation o f all the operations: The

source w as hosted separately from the Staging A rea and the W arehouse w hich were hosted

together. T h e Source F lo w R egulator size was 50 rows per packet. A t the Staging Area only

the evaluated E T L operation w as executing each time. The measured E T L operations are

the follow ing:

a) Filtering o f 2% o f incom ing packets to the Staging Area.

b) Filtering o f 6% o f incom ing packets to the Staging Area.

c) Filtering o f 10% o f incom ing packets to the Staging Area.

d) A ggregate G roup by sum.

e) Surrogate K e y Transform ation.

f) R eplacem ent Transform ation

T h e results were sent and stored to the W arehouse. T he em ptying (service) rate o f each

queue w as fixed to 1500 row s per second, which is a rate slightly higher than the arrival

rate from the Source. In Figure 6.2 our experimental results are displayed. In specific, the

x-axis represents the number o f packets each E T L operation can process. The y-axis

represents each E T L operation.

Concerning the filter transformation, the percentage displayed refers to the percentage o f

row s rejected from the total number o f rows injected into the Staging Area. In this case,

since w e use a dataset consisting o f 100 000 rows, a filter equal to 10% w ill reject 10 000

row s, m eaning that 90 000 row s w ill be stored in the warehouse.

T h e throughput capability o f each E T L operation, showing the maximum service rate each

operation can achieve, is depicted in Figure 6.2.

82

Throughput Capability of ETL Operations

500
450

pa 400
ck 350
et 300
s*/ 250
se 200
« 150

100
50

0
ETL Operations

0 Filter - 2%

■ Filter -6%

□ Filter - 10%

□ Aggregate - group
sum

■Transform -
Key

□Transform -

Fig. 6.2. Throughput Capability of ETL Operations.

Based on Figure 6.2 the fo llo w in g conclusions can be made:

(a) H igher number o f rejected row s leads to higher throughput.

(b) The aggregate group by sum is surprisingly the operation w ith the highest throughput.

This is because all operations occur in m em ory and in contrast with the other

operations, sm aller size o f data is produced as the output.

(c) The Replace and Surrogate K ey operations have alm ost the sam e throughput, w hich is

significantly low er than that o f all other operations. T his is m ainly because both o f

these operations seek and replace values having to parse the entire row . On the

contrary, Filter operations sim ply check a field.

6.3 Data Freshness

H aving established the requirem ent o f minimal source im pact, our focu s m oves towards the

data freshness issue. W e want to achieve high freshness o f data delivered from the Source

83

to the Warehouse through the Staging Area. The goal of the next set of experiments is to

measure the data freshness time provided by our application with respect to the Staging

Area service rates. We consider the following scenarios:

(b) For scenario (a) as illustrated in Figure 6.3:

a. Simply transferring data inserted into the legacy application to the warehouse.

SFlowR

Source ;

Fig. 6.3. Illustration o f Scenario (a)

WS Client

ADSA

WS

o
DW

DW

(c) For scenario (b):

a. Filter 10% of incoming data.

b. A surrogate key operation to the first column of the filtered data

c. Group by sum.

d. Data are then fed to the warehouse.

Filter GB

Source :

Fig. 6.4. Illustration o f Scenario (b)

ADSA
DW

84

(d) For scenario (c):

a. Filter 10% o f incom ing data.

* b , A dditionally Filter 2% o f the rem aining data.

^ c . A surrogate key operation to the first colum n o f the data. Then the stream is

replicated along tw o branches:

d. For the first branch:

i. A group by sum operation is perform ed

ii. D ata are fed to the warehouse.

e. For the second branch:

i. D ata are fed to the warehouse.

DW

(e) For scenario (d):

a. Filter 10% o f incom ing data.

b. R eplacem ent o f the values o f the first field.

c. A surrogate key operation to the first colum n o f the data. Then the stream is

replicated along tw o branches:

d. For the first branch:

i. A group by sum operation is perform ed.

ii. A F ilter rejecting 6% o f input data

85

iii. Data are fed to the warehouse.

e. For the second branch:

i. A replacem ent o f the values o f the first field is performed.

ii. A Filter rejecting 2 % o f input data is applied.

iii. D ata are fed to the warehouse.

DW

A t this point, it has to be clarified that when the data flow splits, data are fed separately in

the tw o different data flo w s and separately sent to the warehouse.

S pecifically , w e trace the queue size as time passes. W e do this for each operation

separately and for the entire system as a whole. A t the same time, at the end o f the

experim ent w e have a m easure o f the overall throughput, i.e., the time needed to empty the

Stagin g A rea ’ s queue after the first record is sent to the warehouse. The freshness is then

m easured as the time needed to em pty the queue, which practically stands for the response

time for the last record.

T o perform these m easurements, w e have the follow ing setting: the L egacy Application

sends 100,000 records to the Staging A rea in packs o f 50 records over T C P at a rate o f 22

packets per second. A lso , we measure the queue length as an indicator o f resource

8 6

consumption at the Staging A rea site. W e count the queue length each tim e the queue is not

em pty and before w e retrieve the row s from the queue.

Scenario a - Average Number of Packets in Queue
with Various Service Rates

—♦— 20 packets / sec
—■— 23 packets / sec

-27 packets / sec
—x— 33 packets / sec

o o) oo n Φ in ^ η n w ή rf m (O n

Time (seconds)
00 8

Fig. 6 . 7 . Cumulative results of queue sizes for scenario (a) with service rate close to 23 packets per
second.

T he results o f scenario (a) for various service rates o f the S tagin g A re a near the arrival rates

from the Source are show n in F igure 6.7. For scenarios (b), (c) and (d), w e w ill exam ine the

behavior o f the Stagin g A rea at a simulated service rate o f 23 packets per second, in order

to study its behavior at m arginal conditions. W e rem ind that the arrival rate o f the

warehouse is at 22 packets per second. Figure 6.8 depicts in a cu m ulative fashion the

average queue lengths for scenario (b). Sim ilarly, the sam e valu es fo r scenario (c) are

illustrated in F igure 6.9, and for scenario (d) in 6.10. For all figu res, x -axis represents time,

w hile the y-axis stands for the number o f packets in each queue before service.

A-\>
y.'.'r '

\

87 /-X
‘Ψ
Ί

Fig. 6.8. Cumulative results of queue sizes for scenario (b) with service rate close to 23 packets per
second.

Scenario c - Average Number of Packets in Queue
@ -23 packets/sec

— FILTER_10_01
- m - FILTER_2J)1

GBSUMJH

SK_01
WS_GB_01
WS_GB_01

r 01 ί S S Ϊ ? fc S P δ §
Time (seconds)

Fig. 6.9. Cumulative results of queue sizes for scenario (c) with service rate close to 23 packets per
second.

8 8

Scenario d - Average Number of Packets in Queue
@ -23 packets / sec

Time (seconds)

FILTEFM 0_01

- ·— FILTER_2_01

FILTER_6_01

-x— GBSUM_01

-*—· REP_01

REP_02

-*— SK_01

-----WS_GB_01

-----WS_UPD2_01

Fig. 6.10. Cumulative results o f queue sizes for scenario (d) with service rate close to 23 packets per
second.

Finally, Figure 6 .11 sum m arizes the total times needed for the Stagin g A re a to transfer all

data to the warehouse, for each scenario o f E T L queues. X -a x is o f F igu re 6.8 stands for

each scenario exam ined. Y -a x is represents the time needed to com plete each scenario.

93
9 2 .5

92
8 9 1 .5
8 91
« 90.5
| 90

8 9 .5
89

88 .5

'Ml

'H.
Vr - ,w t 111 ..

_ _ _ _ _ _ _ _ _

‘ A*,

V i

w . -

— « ?ν :
- . V j

-■4&L

J P * "

v

' • ' . f e :

1 #
R e r >

r 7

scenario scenario scenario scenario scenario scenario
(a) (b) (c) (c) (d) (d)

STORE GROUP STORE GROUP
BY BY

Fig. 6.11. Data freshness for each scenario

Observing the figures, w e derive the follow ing conclusions:

89

1. T he source capability is approxim ately 1100 rows/sec. Since we are using packets o f 50

rows, this amount is translated into approximately 22 packets per second. In scenario

(a) w e are led to queue explosion, when w e employ service rate smaller than the

Source’ s arrival rate. U sing a service rate o f 23 packets / sec, which is a setting close to

the arrival rate, w e can see that transient effects tend to appear, but the queue converges

to steady state. T his occurs because the service rate is very close to the arrival rate, thus

needing som e time to reach a steady state, where the service rate exceeds arrival rate.

B y using higher service rates, 27 and 33 packets / sec respectively, the queue maintains

its steady state.

2. In scenarios (b), (c) and (d) w e observe that the entire system, as w ell as the queue o f

each operation, maintains a steady state. The number o f packets in the queue is less or

equal to the m axim um number o f packets polled simultaneously from the queue. This

practically m eans that after each poll the queue empties and that the Staging A rea is

on ly one step behind the Source.

3. In Figure 6 .11 , the total time needed for the entire dataset to be transferred from the

Staging A rea to the W arehouse is dependent on the number o f the intermediate E T L

operations. A s the number o f intermediate E T L operations that a packet has to visit

increases, the total delay increases as well. Nevertheless, in our exem plary scenarios,

the increase is rather small, due to the pipelining o f data. The average delay per row is

around 0.9 m illiseconds for all scenarios.

6.4 . Theoretical vs. Experimental Evaluation

In Figures 6.9 - 6.30 w e present the comparison o f our theoretical evaluation o f queue

length against the observed values. W e show the results o f scenarios (b), (c) and (d). In all

experim ents, w e sim ulate various service rates at the Staging Area by using predefined

w aiting times between successive services. In specific, we em ploy timeouts equal to 100,

80, 60, 20 and 1 m illisecond each time respectively.

90

In this set o f experiments» w e w ill not use as a metric the service rate but the tim eout value

between successive services. W e prefer this approach due to the d ifferences o f the service

times for each E T L operation (as discussed in Section 6.2). B ecause o f these differences

and due to the exponential nature o f arrival and service tim es w e cannot fix standard

service times. Moreover» the number o f E T L operations» i.e., independent threads o f the

Staging Area for each scenario varies from four in scenario (b), to nine in scenario (d). T his

w ay we are led to different C P U scheduling properties» an issue w hich is beyond our scope.

Thus» in order to have a unified view o f our experim ents, w e w ill use the tim eout value as

an indirect reference to the service rates.

Filter 10%

I D MEASURED ■ PREDICTION |

Timeout (m.ec.)

Surrogate Key

| P M-ASUREP ■ PREDICTION |

Group By Sum

| P MEASURED ■ PREDICTION [

Timeout (m .*ct)

WS Client

| O MEASURED ■ PREDICTION |

F ig . 6 .12 -6 .15 . Q ueue size vs. prediction for each operation o f scenario b

In all Figures 6 .12 - 6.30, the x-axis stands for the w aiting tim e in m illiseconds between

consecutive services. T h e y-axis represents the number o f packets in the queue o f each

operation. T he first colum n represents the measured value, w h ile the second row represents

the predicted value.

91

Fig. 6.16-6.21. Queue size vs. prediction for each operation of scenario c

92

Filter 10%

□ M EASU RE) ■ PREDICTED

100 80 60 40 20 1

Delay (msecs)

Surrogate Key

□ MEASURED ■ PREDICTED

100 80 60 40 20 1

Delay (m secs)

Group By Sum

□ MEASURED ■ PREDICTED

4

100 80 60 40 20 1

Delay (msecs)

Replacement 1

□ M EASU RE) ■ PREDICTED

Filter 6%

□ MEASURED ■ PREDICTED

100 80 60 40 20 1

Delay (msecs)

Web Service Client 1

□ MEASURED ■ PREDICTED

100 80 60 40 20 1

Delay (msecs)

Fig. 6.22-6.27. Queue size vs. prediction for each operation of scenario d

93

Fig. 6.28-6.30. Queue size vs. prediction for each operation of scenario d (continued)

In these m easurements one can easily see that in all cases our prediction underestimates the

size o f the queue by h alf a packet in each case. For exam ple in scenario (b) estimations

using a delay o f 80 m illiseconds between successive services leads to underestimation only

o f h alf a packet. T he same holds for a delay o f 60 seconds in scenarios (c) and (d). This

observation is very important for our architecture, since our prediction misses only half a

packet. M oreover this error remains the same for all operations.

T h e only discrepancies o f this rule are in tw o cases. The first case is when we utilize high

delay times i.e. 100 m illiseconds between successive services, meaning at the same time

low er service rates. T he second case is in scenario d, where we impose a delay time equal

to 80 m illiseconds. This case is sim ilar to the previous; because i f w e consider the

o

94

additional context sw itch time for the high number o f E T L operation, w e are led to the

conclusion that again is a case o f low service rate.

H ow ever, in these cases w e have overestim ates o f the queue sizes. T h is leads as to the

conclusion that high server utilization rates result in overestim ation o f the queue sizes,

w hile low server utilization rates leads to underestimation o f the queue size. T his

underestimation is fixed and no more than half a packet.

These differences between the measured and estimated values for the queue sizes occur due

to the fo llow in g reasons:

a) W e sim ulate low er service rates at the Staging A rea by in vo kin g tim eouts between

successive services. Queue theory is not designed taking care o f such issues, so

differences betw een the m easured and expected value are expected.

b) In our sim ulation o f slow er staging areas, w e serve up to three packets

sim ultaneously. Q ueue Theory end especially Q ueue N etw o rk T heory, w ere

designed assum ing service o f single packets. H ence, in these cases, differences

between the m easured and expected value are expected as w ell.

M E A SU R E D PRED ICTIO N D IF F E R E N C E (P A C K E T S)

FILTER_10_01 0.160 0.056 0.104
FILTER_2_01 0.134 0.047 0.087

SK_01 0.154 0.054 0.100
GBSUM_01 0.137 0.048 0.089
WS_GB_01 0.091 0.031 0.059

WS_UPD2_01 0.100 0.035 0.066

Table 6.1. Queue size vs. prediction for each operation of scenario (c) operating at its full capability.

On the contrary, w hen w e do not use sleep times between su ccessive services leading to the

m aximum service rates, the difference in terms o f queue size is sign ificantly sm all. This is

because w e both do not use a tim eout and due to the high service rates, each time a single

95

packet is served. Thus, our implementation is closer to the theoretical models of Queue

Networks and the difference between the measured and predicted values are very small.

In Table 6.1 we present as a reference the comparison of our theoretical evaluation of queue

length against the observed values for scenario (c) with the Staging Area operating at its

full capability. It is easy for someone to see that the difference in queue lengths between the

theoretical prediction and the measured evaluation is small for all operations.

9 6

7 CONCLUSIONS AND FUTURE WORK

A ctive Data W arehousing refers to a new trend where data warehouses are updated as

frequently as possible, due to the high demands o f users for fresh data. In this thesis, w e

have proposed a fram ework for the implementation o f active data warehousing, keeping in

mind the fo llow in g goals: (a) minimal changes in the softw are configuration o f the source,

(b) minimal overhead for the source due to the "active" nature o f data propagation, (c) the

possibility o f sm oothly regulating the overall configuration o f the environm ent in a

principled w ay. In our fram ework, we have im plemented E T L activities over queue

networks and em ployed queue theory for the prediction o f the perform ance and the tuning

o f the operation o f the overall refreshment process. In terms o f data freshness, source

overhead and minimal impact o f software configuration the results seem satisfactory. A

summary o f the lessons learned is as follow s:

• Queue theory can be successfully em ployed as the theoretical background for the

estimation o f the response o f the active warehouse. T he system reaches a steady state

quite close to the predicted behavior. Freshness is quite satisfactory too.

• T C P should and can be used instead o f U D P, due to the packet loss o f the latter.

Organization o f tuples in blocks, both at the source and the Staging A rea side increases

perform ance.

• The overall overhead at the source side remains sm all despite the size o f data

transferred to the Staging Area, and the amount o f code m odification is around 100

lines, without affecting applications.

• The Source F lo w Regulator plays a very important role, since its utilization increases

perform ance.

• The w ay that the Staging A rea is tuned does not affect the source. R egardless o f using

blocking or non-blocking W eb Service invocation at the Stagin g A rea, the Source’ s

throughput is the same in both cases. This is a key observation for our architecture,

nn"»»-V<V

,-tr i s
t ! , 3 \

97 Γ“
Ί7 -χ·

•.... ·Α ~ · . ·

since it show s that the operations o f each tier are independent. Thus, w e can examine

each tier separately.

• U sing both a Source F lo w R egulator at the Source and a queue at the Staging Area

provides the best system perform ance adding the small overhead to the Source.

• The position o f the Staging A rea is the factor that poses the m ost overhead to the

system ’ s perform ance. T he best layout is to use a 2-tier architecture placing the Staging

A re a together w ith the W arehouse but separated from the Source.

• In the case o f em ploying E T L transformations at the Staging A rea, high server

utilization rates result in overestim ation o f the queue sizes, w hile lo w server utilization

rates leads to underestim ation o f the queue size. This underestimation is fixed and no

m ore than h a lf a packet.

Future w ork includes several directions. A key direction o f research w ould have to do with

the failure m anagem ent o f the com ponents o f the environment, in order to determine

safeguarding techniques and fast resumption algorithms for the event o f a failure. Further

tuning can be m ade, by testing m ultiple concurrent loading sources for the warehouse. In

this case, an interesting issue is to determine the required number o f flo w regulators,

together with the num ber o f separate required Staging Areas. A lso , the case o f materialized

aggregate v iew s and schem a evolution (as mentioned in the Related W ork section) poses

interesting challenges in this context. Finally, further experimentation can be made over the

interconnection o f the Source and the Staging A rea by em ploying a U D P with built-in flow

control.

98

REFERENCES

[Aba+03]

[A C C C + 0 3]

[A C K M 03]

[AdFi03]

[AdReOl]

[AXIS04]
[BaW iO l]

[BBDM +02]

[ChCR02]

[Duqu03]

[GFSSOO]

[GrHa85]

[GuM u95]

[Inmo02]
[JiCh03]

[LoGe03]

Daniel J. Abadi, Don Carney, Ugur Qetintem el, et al. Aurora: a new model
and architecture for data stream m anagement. The V L D B Journal,
12(2): 120-139, 2003.
Daniel J. Abadi, Donald Carney, U gur Q etintem el, M itch C hem iack,
Christian C onvey, Sangdon Lee, M ichael Stonebraker, N esim e Tatbul,
Stanley B. Zdonik: Aurora: a new model and architecture for data stream
management. V L D B J.12(2): 120-139 (2003)
G. A lon so, F. Casati, H. Kuno, V . M achiraju. W eb Services: Concepts,
Architectures and Applications. Springer-Verlag, 2003.
J. A d zic , V . Fiore. Data W arehouse Population Platform . In Proc. 5th Inti.
W orkshop on the Design and M anagem ent o f D ata W arehouses
(D M D W ’03), Berlin, Germ any, 2003.
Ivo A dan and Jacques Resing, Department o f M athem atics and Com puting
Science, Eindhoven U niversity o f T echn ology, 2001. Q ueueing Theory
notes available at http://www.cs.duke.edu/~fishhai/misc/queue.pdf
A p ach e Softw are Foundation. A xis. A vailab le at http://ws.apache.org/axis/
S. Babu, J. W idom . Continuous Queries over D ata Stream s. S IG M O D
R ecord 30(3): 109-120, 2001.
Brian B abcock, Shivnath Babu, M ayur Datar, R ajeev M otw ani, Jennifer
W idom : M odels and Issues in Data Stream System s. P O D S 2002: 1-16
Jun Chen, Songting Chen, Elke A . Rundensteiner: A Transactional M odel
for Data W arehouse Maintenance. ER 2002: 247-262
W . Duquaine W eb Services Ruminations. Presentation at High
Perform ance Transaction Systems W orkshop (H P T S ’ 03). A silom ar
Conference Center, California, October 12 -15 , 2003. A vailab le at
http://research. sun .com/hpts2003/
H. Galhardas, D. Florescu, D. Shasha and E. Sim on. A jax: A n Extensible
Data C leaning T ool. In P r o c . A C M S I G M O D I n t e r n a t i o n a l C o n f e r e n c e o n
t h e M a n a g e m e n t o f D a t a , pp. 590, Dallas, T exas, (2000).
D.Gross, C.H arris, Fundamentals o f Queuing T heory, W ile y series in
probability and statistics. (1985)
Ashish Gupta, Inderpal Singh Mumick: M aintenance o f M aterialized
V iew s: Problem s, Techniques, and Applications. Data Engineering
Bulletin 18(2): 3-18 (1995)
Inmon W . H., Building the data warehouse. John W iley & Sons, Inc. 2002
Qingchun Jiang, Sharma Chakravarthy: Q ueueing analysis o f relational
operators for continuous data streams. C IK M 2003: 271-278
D. Lom et, J. Gehrke. Special Issue on Data Stream Processing. Bulletin o f

99

http://www.cs.duke.edu/~fishhai/misc/queue.pdf
http://ws.apache.org/axis/
http://research

[PBL04]

[RaGe02]

[RaH eOl]

[SO A P03]

[VaSS02]

[V SG T02]

[Whit02]

[W ill04]

[W SD L03]

[W SF L O l]

[ZG H W 95]

[ZhRu02]

[Magl04]
the T echn ical Com m ittee on Data Engineering, 26(1), 2003.
V . M aglaris, online lecture notes on queue theory, available at
http://www.netmode.ntua.gr/courses/undergraduate/queues
P. G raf. T h e Program B ase Library. Publicly available through
http://mission.base.com/peter/source/
D atabase M anagem ent System s, Raghu Ramakrishnan, Johannes Gehrke.
M cG raw -H ill S cien ce 2nd Edition. Greek Translation - V olum e 2, 2002
V . Ram an, J. Hellerstein. Potter’s W heel: A n Interactive Data Cleaning
System . In P r o c e e d i n g s o f 2 7 th I n t e r n a t i o n a l C o n f e r e n c e o n V e r y L a r g e
D a t a B a s e s (V L D B) , pp. 381-390, Roma, Italy, (2001).
W 3 C . S O A P V ersion 1.2. June 2003. W 3 C Recommendation.
http://www.w3.org/TR/soapl2-partO/
Panos V assiliad is, A lk is Sim itsis, Spiros Skiadopoulos: M odeling E T L
activities as graphs. D M D W 2002: 52-61
Panos V assiliad is, A lk is Sim itsis, Panos Georgantas, M anolis Terrovitis:
A Fram ew ork for the D esign o f E T L Scenarios. C A iS E 2003: 520-535
C . W hite. Intelligent Business Strategies: R eal-Tim e Data W arehousing
H eats U p. D M review , A ugust 2002. A vailab le at
http://www.dm review.com /article_sub.cfm ?articleld=5570
Andreas W illig , Lecture notes on Performance Evaluation. A vailable at
http://www-ks.hpi.uni-potsdam.de/docs/engl/teaching/pet/ss2004/skript.pdf
W 3 C . W eb Services Description Language (W SD L) Version 2.0. W 3C
W orking Draft. N ovem ber 2003. http://www.w3.org/TR/wsdl20/
Frank Leym ann. W eb Services F low Language (W SF L 1.0), M ay 2001.
A v a ilab le at
http://www-306.ibm.co'm/software/solutions/webservices/pdf/WSFL.pdf
Y u e Zhuge, H ector Garcia-M olina, Joachim Hammer, Jennifer Widom:
V ie w M aintenance in a W arehousing Environment. SIG M O D Conference
19 9 5 :3 16 -3 2 7
X in Zhang, E lke A . Rundensteiner: Integrating the maintenance and
synchronization o f data warehouses using a cooperative framework. Inf.
Syst. 27(4): 219-243 (2002)

http://www.netmode.ntua.gr/courses/undergraduate/queues
http://mission.base.com/peter/source/
http://www.w3.org/TR/soapl2-partO/
http://www.dmreview.com/article_sub.cfm?articleld=5570
http://www-ks.hpi.uni-potsdam.de/docs/engl/teaching/pet/ss2004/skript.pdf
http://www.w3.org/TR/wsdl20/
http://www-306.ibm.co'm/software/solutions/webservices/pdf/WSFL.pdf

