
Efficient Privacy Protection 
in Full-Text Search Engines

Eirini C. Micheli

Master Thesis

Ioannina, October 2013

Τ μήμα Μ ηχανικών H /Y  & Πλ ηροφορική ς  

Πανεπιστή μ ιο  Ιωαννινων

D epartm ent  of Co m pu ter  Science & E ngineering  

U niversity of Ioannina



ΒΙΒΛΙΟΘΗΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΑΝ

026000336ΘΘ2

Μ

ί
<

1

; ν;'

ν /·>.·->.·' ■··
·*

. .· V* ^ *

?^β(,ν..·£ν·* ■·'. · · , < · ’ · *. *·;·£·:\ >;

,* _ Λ·' ■ ·

%

ΐ



ΑΠΟΔΟΤΙΚΗ ΠΡΟΣΤΑΣΙΑ ΙΔΙΩΤΙΚΟΤΗΤΑΣ 
ΣΕ ΜΗΧΑΝΕΣ ΑΝΑΖΗΤΗΣΗΣ ΚΕΙΜΕΝΟΥ

Η Μ ΕΤΑ Π ΤΥ Χ ΙΑ Κ Η  Ε Ρ Γ Α Σ ΙΑ  Ε Ξ Ε ΙΔ ΙΚ Ε Υ Σ Η Σ

υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Μ ηχανικών Η /Υ  και Πληροφορικής 
Εξεταστική Επιτροπή

από την

Μιχέλη Ειρήνη

ως μέρος των Υποχρεώσεων για τη λήψη του

Μ ΕΤΑ Π ΤΥ Χ ΙΑ Κ Ο Υ  Δ ΙΠ Λ Ω Μ Α Τ Ο Σ Σ Τ Η Ν  Π Λ Η ΡΟ Φ Ο ΡΙΚ Η

Μ Ε Ε Ξ Ε ΙΔ ΙΚ Ε Υ Σ Η  

Σ Τ Α  Υ Π Ο Λ Ο ΓΙΣΤ ΙΚ Α  Σ Υ Σ Τ Η Μ Α Τ Α

Οκτώβριος 2013



Dedication

To the person who taught me well and believed in me the most...,

my grandm other Efthim ia



Acknowledgements

I would never have been able to  finish this thesis on my own. T hat is why I feel the deep 

need to  express my gratitude to  all those who helped me, even if I haven’t  noticed it.

First, I am sincerely grateful to  Professor Stergios Anastasiadis for his constant guid

ance, patience, and encouragement. Under his supervision, he soon made me realize his 

deep knowledge in the field of computer science. W ith his insight, he managed to  tu rn  

every hesitation of mine into inspiration and creativity, which was a  core point to  go the 

full distance.

Completing this thesis would have been more difficult if I didn’t  have the support and 

friendship provided by the other members of the System Research Group. I am mostly 

grateful to  George Kappes, who was there whenever I  was in need. He also helped me to 

continue my studies when I stayed away from Ioannina. His offer was valuable. Special 

thanks should be given to George Margaritis for introducing me to the topic as well for the 

support on the way. Also, I am thankful to Andromachi Hatzieleftheriou for answering 

to  my questions and advising me every time I was in need.

No words to  express my gratitude to  my family for their support and immense love, 

which was the one tha t gave me the courage to  keep on. My sister Anna was the person 

who listened to my thoughts and aspirations, even though she lives miles away. Further

more, I am grateful to  my beloved uncle Ioannis and his wife Maria for their support since 

the early stages of my high school years.

I am also thankful to my childhood friends Ilianna and George Chiotis, as well as my 

cousins Anastasia and Kyriakos Sawidis. The summer night conversations, the books 

borrowed from them  and the radio broadcast in which George participated in, were some 

of the activities th a t helped me to deal with stress.

At last but not least, I would like to thank Professors Aristidis Likas and Panayiotis 

Tsaparas for their precious remarks and review of this thesis.



Table of Contents

1 In trodu ction  1

1.1 Thesis S cope..................................................................................................................  1

1.2 O u tlin e ............................................................................................................................  3

2 B ackground 5

2.1 Text In d e x in g ............................................................................................................... 5

2.1.1 Index S tr u c tu re ..............................................................................................  6

2.1.2 Inverted Index Construction and M ain ten an ce ....................................... 6

2.1.3 Search Queries ..............................................................................................  8

2.1.4 Result R a n k in g ..............................................................................................  9

2.2 C lu s te r in g .....................................................................................................................  11

2.2.1 Similarity And Distance M easures..............................................................  12

2.2.2 Clustering M eth o d s .......................................................................................  14

2.3 Access Control ............................................................................................................  16

2.4 Search Privacy ............................................................................................................ 17

2.5 S u m m a r y .....................................................................................................................  18

3 P rivacy T h reats in Pull-T ext Search 19

3.1 Attacking Privacy Through Relevance S co res .......................................................  20

3.2 Attacking Privacy Through Ranking R e s u l ts .....................................................  22

3.3 Revealing the Content of D o c u m e n ts ...................................................................  24

3.4 Towards a Secure and Efficient Search S y s te m .................................................... 24

3.5 S u m m a r y .....................................................................................................................  24



264 D esign

4.1 Goals ............................................................................................................................  26

4.2 Overview of Indexing W o rk flo w .......................   28

4.3 C r a w le r ........................................................................................................................  28

4.4 P l a n n e r ......................................................................................................................... 29

4.4.1 C lu sterer...........................................................................................................  29

4.4.2 M a p p e r ...........................................................................................................  33

4.5 Indexer............................................................................................................................  37

4.6 Incremental In d e x in g ......................................................................  38

4.6.1 U p d a te s ...........................................................................................................  38

4.6.2 S e a r c h ............................................................................................................... 38

4.7 S u m m a r y .....................................................................................................................  39

5 Im p lem en tation  40

5.1 P l a n n e r ......................................................................................................................... 40

5.1.1 C lu ste re r...........................................................................................................  41

5.1.2 M a p p e r ...........................................................................................................  42

5.2 In d ex er............................................................................................................................  44

5.3 Search E n g in e ............................................................................................................... 45

5.4 D iscu ssio n .....................................................................................................................  46

5.5 Summary ...................................................................................................................... 46 6

6 E xperim en ta l R esu lts  47

6.1 Experimental M ethodology.......................................................................................  47

6.2 Experimental Setup .................................................................................................  49

6.3 Planner R e s u l ts ............................................................................................................. 50

6.3.1 Indices Per U se r.........................................................................................  52

6.3.2 Indices Per D o c u m e n t .................................................................................. 55

6.3.3 Q uery/U pdate T rad e -o ff .............................................................................  57

6.3.4 Total Number of I n d ic e s ..................................................   58

6.4 Search Engine R e s u l t s .............................................................................................  60

6.4.1 Indexing T im e ................................................................................................. 60

6.4.2 Disk Space O v e rh ea d ....................................................................................  61

ii



6.4.3 Search Perform ance.......................................................................................  62

6.5 Exploring Different ACL Synthetic D a ta s e t s ...................................................... 67

6.6 S u m m a r y .....................................................................................................................  74

7 R ela ted  W ork 76

7.1 Desktop and Enterprise S earch ................................................................................  77

7.1.1 Per User Ind ices..............................................................................................  77

7.1.2 Shared Index . . .   78

7.1.3 Secure A p p ro a c h e s .......................................................................................  79

7.2 M etadata S e a r c h ........................................................................................................  81

7.3 Full-Text Search in Social N etw orks....................................................................... 81

7.4 Secure D ata S t o r a g e .................................................................................................  83

7.5 S u m m a r y ...................................................................................................................... 85

8 C onclusions and Future W ork 86

8.1 C o n c lu sio n s ..................................................................................................................  86

8.2 Future W o rk ..................................................................................................................  87

iii



List of Figures

2.1 The lexicon maps each distinct term  to  the position of its  corresponding

posting list on the disk................................................................................................  6

4.1 Overview of our indexing workflow........................................................................... 28

4.2 Document Families include a  set of document paths and their corresponding

ACL bitm ap. ACL bitm aps are created from the ACLs and represent 

whether each user is included in a document’s ACL or not...............................30

4.3 We illustrate an example of Document Family clustering. We assume a

similarity value higher than 0 and smaller than 100. The formated clusters 

contain either one or more Document Families. In particular, a  cluster 

w ith more than one Document Families includes multiple sets of document 

paths, and each set has a single ACL bitm ap........................................................32

4.4 Clusters with more than  one Document Families contain documents with

different ACLs. For these clusters, we find the intersection and the  differ

ences between the ACLs they contain. The intersection is the set of users 

included in every Document Family in the cluster, while each difference 

is the set of users of each ACL in the cluster th a t is not included in the 

intersection...................................................................................................................... 33

4.5 Users U1...U4 belong to the ACL intersection, while users U12, U15 and Uva

belong to  the ACL differences. The M apper maps three indices. The first 

index corresponds to  the users of the ACL intersection and includes all 

documents in the cluster. Each of the remaining indices corresponds to  the 

users of each ACL difference. Also, the set of documents th a t correspond 

to  each ACL difference is duplicated in each mapped index (difference and 

private index)................................................................................................................. 36

IV



5.1 We illustrate how the Clusterer operates. It receives pairs of document 

IDs and ACLs and then creates the Document Families using a hash ta 

ble (document-grouping step). Then, it clusters the Document Families 

(clustering step) and the created clusters are given as input to the Mapper. 42

5.2 We depict how the M apper operates. It receives the clusters from the

Clusterer and then maps the Document Families within each cluster to  one 

or more indices. Also, the M apper creates a description for each index and 

stores it in the index container file. This file is then given as input to the 

Indexer.............................................................................................................................  43

5.3 We depict how the Indexer operates. It parses each line of the index con

tainer file and gets the content of each document from the collection file by 

using the offset array. For each document, the Indexer creates one index 

request and stores it in the bulk request array. W hen a predefined number 

of request are accumulated, the Indexer sends a bulk index request to  the 

search engine........................................................................................................  44

5.4 We depict an example of a four node Elasticsearch cluster. One index with

four prim ary shards and one replica per shard is stored across the multiple 

nodes..................................................................................................................................... 45

6.1 Average number of indices th a t a user needs to search every tim e he issues

a query for varying values of Threshold and S im ila r i ty ....................................  52

6.2 We examine the to ta l number of clusters and the number of documents

per cluster across different Similarity values. The to tal number of clusters 

decreases and the to ta l number of documents per cluster increases as the 

Similarity drops from 100% to 0%. The results are the same across different 

Threshold values as Threshold only affects the partitioning and not the 

clustering phase.............................................................................................................  54

6.3 Average number of indices tha t each document is indexed for varying values

of Threshold and S im ila r ity ..................................................................................... 56

6.4 We depict the trade-off between the query performance and the update

cost for a given Similarity value and across different Threshold values. . . .  58

o

v



6.5 We examine the to ta l number of indices across different Similarity and

Threshold values. The to tal number of indices created decreases as Thresh

old value increases. The to tal indices is the sum of the indices due to  the 

intra-cluster ACLs intersections (inter indices), the single indices th a t are 

created from each difference of each intra-cluster intersection (diff indices), 

and the private indices plus the indices which are created from Document 

Families th a t are treated as differences (other indices).......................................  59

6.6 We measure the indexing tim e for different Similarity and Threshold val

ues. As Threshold increases, each document is indexed to  more and more

indices, and hence, the to ta l indexing time increases.......................................... 60

6.7 We compare the disk space overhead across different Similarity and Thresh

old values......................................................................................................................... 61

6.8 We depict the median query response times across different Planner con

figurations and number of clients.............................................................................. 63

6.9 We depict the 90th percentile query response times across different Planner

configurations and number of clients.......................................................................  65

6.10 Histogram of query response times across different Planner configurations. 65

6.11 CDF of query response times.....................................................................................  66

6.12 We compare the search throughput across different Planner configurations

and number of clients................................................................................................... 67

6.13 We depict the distribution of members per group when using different 

probalitity distributions for the size of each group. W hen using the Uni

form distribution, the groups tend to have many members. For the Zipfian

distribution, only a small fraction of the groups has a large number of 

members, and this fraction decreases as the value of param eter a increases. 68

6.14 We depict how the size of the ACLs is affected by the different probalitity 

distributions used for the size of each user group in two different cases. The 

ACLs of the public documents are not affected by the group sizes. Thus, 

we present the results for two different cases to  give a clearer view of how 

the ACL sizes change. In the first case, we take into account the ACLs of 

the public documents (a), while in the second we omit them ...........................  69

vi



6.15 We depict how the average number of indices per user is affected by the

different probalitity distributions used for the group sizes. The average 

number of indices per user is higher for the Uniform distribution. As the 

value of param eter a of the Zipfian distribution increases, the average num

ber of indices per user decreases...............................................................................  70

6.16 We depict how the average number of indices per document is affected by

the different probalitity distributions used for the group sizes. The average 

number of indices per document is higher for the Uniform distribution. As 

the value of param eter a of the Zipfian distribution increases, the average 

number of indices per document decreases.............................................................  73

vfi



List of Tables

2.1 Access Control M a t r i x .............................................................................................. 16

5.1 Planner Param eters......................................................................................................  41

6.1 Basic configuration param eters of the ACL Generator. We create 200 user

IDs, 131 group IDs, and 50000 document IDs....................................................... 49

6.2 Effect of different combinations of Similarity and Threshold values............... 51

vm



A bstract

Eirini C. Micheli, MSc, Computer Science and Engineering Departm ent, University of 

Ioannina, Greece. October, 2013. Efficient Privacy Protection in Full-Text Search En

gines.

Thesis Supervisor: Stergios V. Anastasiadis

Personal and enterprise environments store and manage an increasing volume of da ta  as 

their storage capacity improves exponentially. This trend drives the demand for full-text 

search engines th a t help to automatically locate relevant information. Privacy refers to 

the ability or right of individuals to control what information is collected about them, 

who uses it, and for what purpose. In multi-user environments, access control has to be 

enforced to protect privacy during search. Accordingly, search engines often build one 

index per user, or they create a system-wide index and filter the results by access rights. 

In order to  protect privacy a t improved efficiency, the search engine creates one index for 

each set of documents accessed by the same set of users. However, this approach lacks 

tunable parameters to meet different performance needs.

In this thesis, we investigate how to provide a tunable solution for privacy protection 

in search engines over multi-user environments. Thus, we introduce a novel strategy to 

organize user documents into indices. The key insight is to cluster documents based on 

the similarity of their access permissions using a Similarity parameter, and then map 

the documents and users into indices using a Threshold parameter. The experimental 

study of our solution shows th a t a trade-off arises between the query performance and the 

maintenance cost across different similarity and threshold values. Over a prototype imple

mentation, we experimentally identify those param eter values th a t achieve a substantial 

reduction of query response time, while slightly raising the maintenance cost.
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ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Ειρήνη Μιχέλη του Χρήστου και της Ευσταθίας. MSc, Τμήμα Μηχανικών Η /Υ  και Πληρο

φορικής, Πανεπιστήμιο Ιωαννίνων, Οκτώβριος 2013. Αποδοτική Προστασία Ιδιωτικότητας 

σε Μηχανές Αναζήτησης Κειμένου.

Επιβλέπων; Στέργιος Β. Αναστασιάδης

Συστήματα αναζήτησης τα οποία διατηρούν αρχεία πολλαπλών χρηστών έρχονται συχνά 

αντιμέτωπα με το πρόβλημα της προστασίας της ιδιωτικότητας του περιεχομένου των αρχεί

ων. Οι προσωπικοί και εταιρικοί υπολογιστές καθώς και τα περιβάλλοντα κοινωνικής 

δικτύωσης, υποστηρίζουν τη συνύπαρξη πολλαπλών χρηστών, ενώ ταυτόχρονα τους παρέ

χουν μηχανισμούς ελέγχου πρόσβασης. Οι μηχανισμοί πρόσβασης χρησιμοποιούνται προ- 

κειμένου να ορίσει κάποιος τις επιτρεπόμενες ενέργειες των υπόλοιπων χρηστών πάνω στα 

αρχεία που του ανήκουν. Επομένως, το σύστημα αναζήτησης, εφόσον διαχειρίζεται τα 

αρχεία κειμένου όλων των χρηστών, πρέπει με κάποιο τρόπο να διατηρεί τις πληροφορίες 

ελέγχου πρόσβασης προστατεύοντας την ιδιωτικότητα. Έ τσ ι, μπορεί να εξασφαλίσει ότι 

η απάντηση στο ερώτημα κάθε χρήστη περιλαμβάνει μόνο κείμενα για τα οποία έχει το 

δικαίωμα ανάγνωσης.

Πολλές ερευνητικές εργασίες έχουν γίνει πάνω στην προστασία της ιδιωτικότητας σε 

μηχανές αναζήτησης κειμένου όταν διατηρούν αρχεία πολλαπλών χρηστών. Κάποιες από 

αυτές προτείνουν τη δημιουργία ενός ξεχωριστού ευρετηρίου για κάθε χρήστη, εισάγοντας 

κάθε αρχείο στα ευρετήρια όλων των χρηστών που έχουν τη δυνατότητα να δουν το περιεχό

μενό του. Η λύση αυτή προστατεύει την ιδιωτικότητα και παρέχει γρήγορη απάντηση των 

ερωτημάτων, αφού η αναζήτηση κάθε χρήστη περιορίζεται μόνο στο ιδιωτικό του ευρετήριο. 

Το κόστος όμως μιας τέτοιας προσέγγισης είναι απαγορευτικό καθώς κάθε αρχείο εισάγεται 

σε πολλαπλά ευρετήρια, με αποτέλεσμα να δαπανάται μεγάλος αποθηκευτικός χώρος. Επι

πλέον, η ενημέρωση κάθε αρχείου πυροδοτεί μια σειρά ενημερώσεων σε πολλαπλά ευρετήρια.
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Μια άλλη προσέγγιση που ακολουθείται είναι η χρήση ενός ενιαίου ευρετηρίου, το οποίο 

περιλαμβάνει όλα τα αρχεία των διαφορετικών χρηστών. Έ τσι, αποφεύγεται η εισαγωγή 

ενός αρχείου σε πολλαπλά ευρετήρια, με την προϋπόθεση όμως ότι κατά την εκτέλεση 

ενός ερωτήματος τα αποτελέσματα φιλτράρονται, ώστε τελικά ο χρήστης να λαμβάνει μόνο 

κείμενα των οποίων το περιεχόμενο είναι εξουσιοδοτημένος να δει. Παρ’ όλο που η λύση 

αυτή φαίνεται ότι εξασφαλίζει την ιδιωτικότητα, το τρωτό της σημείο βρίσκεται στο γεγονός 

ότι, οποιοσδήποτε χρήστης μπορεί έμμεσα να εξάγει συμπεράσματα για το πλήθος των 

κειμένων που περιέχουν έναν συγκεκριμένο όρο, αλλά και για το περιεχόμενο των κειμένων 

για τα οποία δεν έχει τα κατάλληλα δικαιώματα πρόσβασης.

Οι παραπάνω προσεγγίσεις αποτελούν δύο ακραίες λύσεις, κάθε μια από τις οποίες 

θυσιάζει είτε την αποδοτικότητα, είτε την προστασία της ιδιωτικότητας του συστήματος 

αναζήτησης. Υπάρχουν νέες λύσεις που ακολουθούν διαφορετική προσέγγιση προστατεύο

ντας την ιδιωτικότητα των κειμένων και βελτιώνοντας την αποδοτικότητα του συστήματος 

αναζήτησης. Ό μω ς, η αποδοτικότητά τους είναι μη παραμετροποιήσιμη.

Στην παρούσα εργασία, εξετάζουμε τον τρόπο με τον οποίο μπορούμε να επιτύχουμε 

αποδοτική προστασία της ιδιωτικότητας σε συστήματα αναζήτησης με πολλαπλούς χρήστες. 

Βασικός μας στόχος είναι να δώσουμε μια λύση, η οποία επιτρέπει τη ρύθμιση του χρόνου 

εκτέλεσης των ερωτημάτων και του κόστος διατήρησης των ευρετηρίων με τη χρήση ορισμέ

νων παραμέτρων, ενώ ταυτόχρονα εξασφαλίζει την ιδιωτικότητα. Προς την εκπλήρωση 

του στόχου μας εισάγουμε μια νέα στρατηγική οργάνωσης των αρχείων των χρηστών σε 

ευρετήρια που αξιοποιεί το βαθμό ομοιότητας, ο οποίος εισάγεται ως παράμετρος, μεταξύ 

των λιστών ελέγχου πρόσβασης των αρχείων και τα ομαδοποιεί. Έπειτα, διαχωρίζουμε τα 

αρχεία κάθε ομάδας και καθορίζουμε το πλήθος και το περιεχόμενο των ευρετηρίων που 

δημιουργούμε βάση μιας επιπλέον παραμέτρου. Οι πειραματικές μετρήσεις φανερώνουν ότι 

επιτυγχάνεται αύξηση ή μείωση του χρόνου εκτέλεσης των ερωτημάτων και του κόστους 

διατήρησης των ευρετηρίων, ανάλογα με τις τιμές των παραμέτρων που εισάγουμε. Τελικά, 

με συγκεκριμένη παραμετροποίηση επιτυγχάνουμε την μείωση του χρόνου εκτέλεσης των 

ερωτημάτων με μικρή αύξηση του κόστους διατήρησης των ευρετηρίων, ενώ ταυτόχρονα 

παρέχουμε παρέχουμε προστασία της ιδιωτικότητας.
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Chapter 1

Introduction

1.1 Thesis Scope

1.2 Outline

1.1 T hesis Scope

Over the last years, the improvements in storage capacity enable users to store and manage 

a large amount of data. File systems organize files into a hierarchical namespace and a file 

access requires explicit knowledge of the file’s name and location. Even though hierarchical 

namespace is an appropriate way for users to organize their files, its limitations become 

obvious when the number of files within a system significantly grows. The increasing 

amount of data in desktop and enterprise environments complicates the management of 

files as it is not easy to remember where each file is stored.

In order to effectively find and manage text files (documents), a fall-text search engine 

(or simply search engine) builds indices on a collection of documents and enables users to 

search for information within the documents’ content. Information search is expressed by 

submitting search queries with terms to the search engine. The search engine evaluates a 

query and returns a list of the documents whose content is relevant to the query terms. 

Each document in this list is associated with a relevance score which indicates how relevant 

the document is to the query. The highest the relevance score the more relevant the
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document is. Then, the search engine ranks the document list based on the relevance 

scores of the documents and finally returns it to the user who subm itted the query.

Desktop and enterprise environments support multiple users. In multi-user environ

ments, users usually define through an access control mechanism who can access their files 

and how. A type of access control is the Access Control List (ACL). An ACL contains 

users and /or groups along with their respective rights on a particular file. Each file or 

folder has its own ACL. Hence, a search engine tha t operates in such an environment 

needs to index the documents respecting their access rights, protecting privacy, and en

suring tha t each user only obtains information concerning documents th a t he is allowed 

to read.

In order to protect privacy, many search engines create one index per user. The index 

of each user contains all documents tha t he is allowed to read. This approach offers high 

query performance because each user has his private index and the search engine accesses 

only tha t index to answer his queries. While privacy is provided, it is implied tha t each 

document resides in the indices of all users that can read it. Hence, this approach is too 

costly due to the large disk space consumption and the high index maintenance cost.

Instead, search engines can use a system-wide index which contains the documents of 

all users. The search engine can then filter each search result to only include documents 

readable by the user who issued the query. This approach eliminates the multiple docu

ment insertions in indices and limits the disk space consumption, but it does not protect 

privacy under some circumstances [6]. In particular, it is possible for an arbitrary user 

to infer the number of documents containing a particular term  or the entire content of a 

document th a t he is not allowed to read. These privacy threats can be avoided but at the 

expense of query performance [6].

The above approaches sacrifice either the efficiency or the privacy of the search engine 

in order to provide full-text search in multi-user environments. A different approach, 

th a t provides privacy and improves efficiency, creates one index for each set of documents 

accessed by the same set of users [37]. Documents accessed by a single user are indexed 

by a private index, while documents shared between the same set of users are indexed by 

shared indices. A user’s query is answered by combining the results of his private index 

with the shared indices tha t he can access. Even though this approach provides privacy 

and is more efficient than the previous one, it does not provide any tunable parameters
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to  trade query performance for index maintenance cost and meet different performance 

needs.

Motivated by the privacy threats th a t arise in full-text search and the lack of a tunable 

solution th a t achieves a  trade-off between query performance and index maintenance 

cost, we provide a  solution th a t addresses both of them. Our approach introduces a novel 

strategy to organize users’ documents into indices. We group documents into clusters, each 

containing documents with similar ACLs. The similarity between the ACLs of documents 

within a cluster is determined by a Similarity parameter. Then, we map documents and 

users to indices based on the common users of the ACLs within a  cluster. In addition, we 

use a Threshold param eter which determines in which indices the documents and the users 

are mapped. We perform several measurements for different Similarity and Threshold 

values and show th a t our solution introduces a trade-off between query performance and 

index maintenance cost. By choosing the appropriate Similarity and Threshold values, we 

substantially reduce the query response time in comparison to an approach tha t creates 

one index for each set of documents with the same ACL, while slightly increase the index 

maintenance cost. Overall, our approach provides privacy and offers a tunable solution 

tha t trades maintenance cost for query performance and vice versa, depending on the 

performance needs.

1.2 Outline

The subsequent chapters are organized as follows:

In chapter 2 we present essential background knowledge about text indexing, text 

search, and clustering. Then, we describe the basic access control models and discuss 

privacy.

In chapter 3 we focus on how an arbitrary user can compromise the search engine 

results to obtain information tha t he is not allowed to access.

In chapter 4 we introduce our design goals. Then, we give an overview of our indexing 

workflow scheme and analyze its individual components. Furthermore, we explain the 

im portant decisions made before implementation.

In chapter 5 we provide the details of our implementation.
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In chapter 6 we define our experimental environment and methodology, and present 

the experimental results. We present results from both our indexing workflow scheme and 

a full-text search engine.

In chapter 7 we review prior related research that focuses on full-text search and 

privacy protection in multi-user desktop and enterprise environments as well as in social 

networks. In addition, we review approaches that provide secure data storage.

In chapter 8 we present the conclusions regarding this thesis and discuss possible future 

research directions.
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Chapter 2

Background

2.1 Text Indexing

2.2 Clustering

2.3 Access Control

2.4 Search Privacy

2.5 Summary

In this chapter, we briefly present essential background knowledge on hill-text index

ing, full-text search, and clustering. Then, we describe the basic access control model and 

discuss privacy in hill-text search engines.

2.1 T ext Indexing

When dealing with a small number of documents, it is possible for the search engine to 

directly scan the content of the documents in order to satisfy a search query. However, 

when the number of documents is large, the best solution is to divide the search process 

into two steps: indexing and search. In the indexing step, the content of all documents 

is parsed and one or more indices are built. In the search step, users submit queries 

consisting of terms and the search engine returns the documents that are relevant to the 

query using the indices built in the previous step.
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Figure 2.1: The lexicon maps each distinct term  to the position of its corresponding 

posting list on the disk.

2.1.1 Index Structure

In general, several da ta  structures have been proposed for the construction of a full-text 

search index, such as signature files [13], bitmaps [42], and suffix-arrays [29]. However, 

the most effective and widely used data  structure is the inverted index [17], which consists 

of an inverted file and a lexicon.

The inverted file stores for each term  t a list of pointers to  all documents th a t contain 

the term. Each pointer in this list is called posting and specifies the exact position in the 

document where the term  occurs, while each list of pointers is called posting list. The 

lexicon maps each distinct term  t th a t appears in the documents to the position of its 

corresponding posting list on the disk (Figure 2.1). It is usually implemented as a hash 

table or a sorted structure for efficient look up.

Although the inverted index is the preferred and most prominent index structure, the 

actual choice of an appropriate index construction and maintenance method is im portant 

to the search engine performance.

2.1.2 Inverted Index Construction and Maintenance

The main reason tha t makes index construction challenging is the fact tha t the volume of 

data  involved cannot be held in main memory. The most commonly used index construc

tion algorithm is the merge-based inversion [42]. In merge-based inversion, documents are 

parsed in batches and their postings are accumulated in memory, constructing the corre

sponding posting lists. When memory is full, the posting lists are flushed to disk creating 

a sub-index and then are deleted from memory. Finally, all sub-indices are merged into
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one on-disk index.

While the previous index construction method is useful for static collections, it is 

not appropriate for dynamic collections. In dynamic collections, existing documents are 

deleted or modified, and new documents are created. Therefore, the search engine needs 

to keep the indices in sync with the document collection tha t constantly changes. This 

task is referred to as index maintenance. When a new document is added in the collection, 

its postings must be added to the posting lists of the existing index. In case of a document 

deletion, all postings referring to the deleted document must be removed from the posting 

lists. Document modifications usually are handled as a deletion and re-insertion of the 

document, ensuring th a t the search engine returns the new version of the document in 

search results.

In principle, inserting a single document into an existing index requires the update 

of every posting list corresponding to a term  in the document. For fast insertion, it is 

necessary to avoid accessing the corresponding disk-resident posting lists every time a 

new document is added. Therefore, several index maintenance techniques amortize the 

update cost over a sequence of document insertions.

The rebuilding strategy periodically reconstructs the entire index, including the docu

ments added in the collection since the last rebuild. Although the cost of the rebuilding 

method is prohibitive for large collections, its use is appropriate in some cases. Indeed, 

many search services use this model, re-crawling documents every day or week and re

indexing them.

A completely different approach, called Remerge, has been proposed by Lester et al.

[26]. This approach uses one on-disk and one in-memory index which accumulates the 

postings of new documents. When there is no available memory, the in-memory index is 

merged with the existing on-disk index, creating a new on-disk index. The drawback of 

this approach is th a t it requires the entire on-disk index to  be read and written again to 

disk every time the system runs out of memory.

On the other hand, the Nomerge strategy does not perform any merge operations. 

When memory is full, postings are written to  disk, creating a new on-disk sub-index. The 

on-disk sub-indices are never merged. Thus, when the posting list for a given term  needs 

to be retrieved, its sub-lists must be fetched from all sub-indices. Nomerge is known for 

its high indexing performance, as each posting is only written once to disk and never
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read during indexing. However, this approach requires many disk seeks in order to fetch 

a term ’s posting list, as each posting list may be split in many sub-indices. Hence, it 

is impractical for large document collections because a great number of sub-indices is 

created degrading the query performance.

The two strategies mentioned above represent two extreme cases: Remerge always 

merges the in-memory index with the on-disk index, while Nomerge never merges two 

successive in-memory indices. The LogarithmicMerge strategy [25] is a compromise be

tween the previous two. Every time memory is full, the in-memory postings are stored 

as an on-disk sub-index. W hen the number of sub-indices with similar sizes reaches a 

predefined threshold (mergefactor), these sub-indices are merged into a larger one. For 

instance, suppose th a t the mergefactor is 10 and the buffer size used for the indexing pro

cess is 32 MB. W hen the tenth sub-index is about to be w ritten to  disk, all the sub-indices 

are merged into a single index of 320 MB. In the same context, when the number of 320 

MB sized indices reaches ten, they are merged into a 3200 MB index. The advantage 

of this strategy is th a t the mergefactor provides a trade-off between indexing and query 

processing performance.

2.1.3 Search Queries

A search engine allows users to submit search queries to find the information they need 

using the index. Each query consists of terms tha t describe the information th a t a user 

needs to find. A widely used type of queries is the Boolean query. A conventional Boolean 

query consists of a list of terms combined using operators, such as AND, OR, and N O T .

The most commonly used Boolean operator is the AND operator. Supposing the 

following conjunctive query of r terms:

term \ AND terrri2 AND ... AND te rm T,

all terms must occur somewhere in a document in order to  be included in the query 

response. The simplest way to answer such a query is to look up each term  in the lexicon 

and retrieve its corresponding posting lists. Then, the intersection of the posting lists is 

calculated. The procedure begins by picking the posting list of the least frequent term. 

This list contains a set of candidate documents th a t might be answers to the query. All 

remaining posting lists are processed based on this candidate set, in increasing order of
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term frequency. If a document in the candidate set is not present in any subsequent 

posting list, it is discarded. This means that the size of the set of candidate documents 

does not increase. At the end, all documents that exist in the candidate list are those 

which contain all query terms, and they are returned to the user.

Another commonly used Boolean operator is the OR operator. The documents that 

are included in the result of such a query are derived from the union of the posting lists 

of the query terms. Thus, these documents may contain one, two, or all the query terms.

2.1.4 Result Ranking

Merely returning the results of a query is not very useful as a search answer. Some of the 

documents included in the result are relevant to the query terms, while some others are 

less relevant or even irrelevant. Therefore, the user is forced to make an extra effort in 

order to identify the documents that are most relevant to his query. The more documents 

included in the result list, the more difficult and time-consuming the identification process 

becomes.

One way to help users to easily find the relevant documents is to rank the documents in 

the returned list. The documents that have a higher probability to be considered relevant 

by the user are ranked higher. For this purpose, we need a metric that characterizes each 

document with a relevance score, and gives a good indication of which documents are 

more relevant to a given query. Using such a metric, the full-text search engine can only 

return the top-k ranked documents, and the user can restrict the result inspection only 

to them.

Usually, web ranking algorithms leverage the links between pages in order to infer the 

importance of a page. Google’s PageRank [32] is an algorithm that uses this approach 

and assigns a numerical value (referred as PageRank) to each page, with the purpose 

of measuring its relative importance to the query. The PageRank of a page is defined 

recursively and depends on the number and PageRank of all pages that link to it. Hence, 

a page that is linked to by many pages with high PageRank receives a high rank itself.

This approach is not appropriate for a file system ranking algorithm as there are no 

links between files. In order to apply this approach on file systems some approaches 

attempt to extract semantic information from files. Connections [40] extracts temporal
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relationships from files based on file usage patterns and builds a graph. Each node of 

the graph represents a file and each edge represents a link. Two files are linked if they 

are opened at the same time window. However, this approach can link two files that are 

opened in the same time window even though they might not be relevant to each other.

In order to improve the ranking results, most relevance ranking functions use a simi

larity measure to measure the closeness of each document to the query. The underlying 

principle is that the higher the similarity score awarded to a document, the greater the 

estimated likelihood that a human would judge it to be relevant. Most similarity measures 

use some composition of fundamental statistical values:

• fdtu the frequency of term t in the document d.

• f qtt , the frequency of term t in the query.

• ft  , the number of documents containing one or more occurrences of term t.

• Fu the number of occurrences of term t in the collection.

• N  , the number of documents in the collection.

• n, the number of indexed terms in the collection.

These basic values are combined in a way that follows three observations:

1. Less weight is given to terms that appear in many documents.

2. More weight is given to terms that appear many times in a document.

3. Less weight is given to documents that contain many terms.

A typical formulation, which is quite effective in practice, calculates the cosine of the 

angle in the n-dimensional space between a query term wq%i and a document w ^:

Wq,t =  ln {  1 +  γ )

a _
q4 wdwq

w<i,t = 1 + l n f d,t

(2.1)
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The similarity between the query q and the document d is expressed by the term  Sqj .  In 

this equation, the term  W q can be neglected as it is a constant for a given query and does 

not affect the ordering of documents. The quantity wqft typically captures the property 

often described as the inverse document frequency of the term  ( ID F ),  while w ^t captures 

the term  frequency (T F ). A greater T F  value means th a t a document is more relevant 

if it contains more occurrences of a query term; a greater I D F  value means th a t a  query 

term  is more im portant if it occurs in fewer documents.

One of the most prominent and most sophisticated T F /I D F  scoring functions is Okapi 

BM25 [35]:

wt — !n (^  ~  ^  +  +  1)Λ«*
M [ / , +  0.5 } k* + f qJt Wd,t =

(kx + 1 ) / *

K d =  k , { { \ - b )  + b ^ )  
W A

K d  +  / d , t

S q td  ~  ^  ̂̂ q , tW d yt (2 -2 )
teq

in which the values k i and b are parameters, set to  1.2 and 0.75 respectively; k3 is a 

param eter th a t is set to  oo, so th a t, the expression (k3 +  1)^ + /  t is assumed to  be 

equivalent to  f qft. and W a are the document length and average document length, 

counted in words or bytes.

In order to evaluate the accuracy of a ranking method, we need some metrics to 

calculate the portion of the actual relevant documents included in the result and quality 

of ranking. Two basic metrics are the precision and the recall The precision of a ranking 

method is the fraction of the top-Λ; ranked documents tha t are relevant to the query, 

while the recall of a method is the fraction of the to tal number of relevant documents 

included in the top-Λ; documents. More to the point, high recall means that an algorithm 

returns most of the relevant results, while high precision means tha t an algorithm returns 

substantially more relevant results than  irrelevant.

2.2 Clustering

Clustering is an im portant and useful technique used in a wide variety of fields, such as 

pattern  recognition, information retrieval, and d a ta  mining. Clustering methods group a 

large number of objects into a small number of meaningful clusters for further processing
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[21]. Objects within a cluster are similar to each other and different from objects in 

other clusters. Therefore, a good clustering method is the one th a t achieves the greater 

similarity within a cluster and the greater difference between clusters.

Usually, every single object x, which is used as input to a clustering method, consists 

of a vector of d dimensions x  =  (xi,X 2, ...Xd). The individual components X{ are called 

features or attributes and describe the objects. A ttributes are used by clustering methods 

to group the objects.

The basic steps th a t a typical clustering activity involves are: a) the representation of 

the objects; b) the definition of an appropriate proximity measure; and c) the clustering 

process [22]. Object representation refers to the number of available objects, and the 

number and type of the attributes available to the clustering algorithm. Object proximity 

is usually measured by a distance or similarity measure defined on pairs of objects and is 

stored in a m atrix whose rows and columns correspond to  objects. The clustering process 

groups the objects by consulting the proximity matrix. The output can be:

•  exclusive, where each object belongs to exactly one cluster,

•  overlapping, where an object can simultaneously belong to more than one cluster, 

or

•  fuzzy, where each object has a certain degree of membership in each of the output 

clusters.

Finally, some objects may be considered as outliers or noise and may not be part of any 

formed cluster. Outliers are either objects th a t have different characteristics from most 

of the objects in the data  set, or values of an a ttribute  th a t are unusual with respect to 

the typical values for th a t attribute. On the other hand, the concept of noise is slightly 

different as it refers to a random component of a measurement error and may involve the 

distortion of a value or the addition of spurious objects.

2.2.1 Similarity And Distance Measures

Clustering requires a definition of the “closeness” of two objects. Closeness is defined in 

terms of the similarity measure between two objects. Similarity or Distance measures map 

the similarity or distance between two objects into a single numeric value. The similarity
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expresses how similar are two objects. Similarity is higher for pairs of objects th a t are 

more alike and lower for pairs tha t are less alike. On the other hand, distance expresses 

how different are two objects. W hen similarity values range from zero (no similarity) to 

one (complete similarity), then for a given similarity value s, we can compute the distance 

d — 1 — s  and vice verca.

A standard  distance measure which is widely used in clustering problems is the 

Euclidean Distance. The Euclidean Distance d  between two objects x  and y i n a n -  

dimensional space is given by the following equation:

n
d{x, y) =  Y ^ (x k  -  Vk)2, (2.3)

Jfc=l

where n is the number of dimensions and Xk,  y* the k th a ttributes of x  and y respectively.

Jaccard Similarity Coefficient is a measure which is used to  compute the similarity of 

objects with asymmetric binary attributes. In this case only ” 1” m atters. For instance, 

suppose two objects x  =  (1 ,0 ,0 ,0 ,0 ,0 ,0)  and y =  (0 ,0 ,0 ,0 ,0 ,1 ,1 )  each one represented 

by a binary vector of attributes. The Jaccard Coefficient is given by the equation:

where:

J  = in
/οι +  /io  +  f n

(2.4)

•  f n  is the number of attributes in which both x  and y are ” 1” ,

•  foi is the number of attributes in which x  is ”0” and y is ” 1” , and

•  fio  is the number of attributes in which x  is ” 1” and y is ”0” .

The number of a ttributes in which both x  and y are ”0” does not contribute to the

estimation of the similarity value as the presence of an a ttribute  is more im portant than 

its absence.

One of the most popular similarity measures is the Cosine Similarity. Assuming two 

objects x  and y represented as vectors of attributes, the cosine similarity is given by the 

following formula:

co s(x ,y )
x  · y

W M ’
(2.5)

13



where the num erator of the fraction indicates the vector dot product

and ||x || reflects the vector length:

n

k—1
(2 .6)

11*11
n

N Σ χΐ yjx  ■ X . (2.7)

Cosine similarity ignores zero matches like the Jaccard Similarity Coefficient, bu t it can 

also be used to compute the similarity of objects with non-binary attributes. For instance, 

it is an appropriate measure for computing the similarity of text documents. In such a 

case, documents are represented as vectors of attributes and each a ttribute  corresponds 

to the frequency of a term ’s occurrence in the document.

Finally, not all similarity or distance measures are suitable for a given situation. In 

addition, choosing the appropriate measure is crucial for clustering, and hence, it is of 

high importance to  understand the effectiveness of different measures in order to  choose 

the best for each case.

2.2.2 Clustering Methods

Several clustering algorithms exist bu t none of them  is universally applicable and appro

priate for each kind of dataset or clustering problem.

P a r t i t io n a l  C lu s te r in g . The most common type of clustering methods can be char

acterized as partitional clustering, which is an exclusive division of the set of objects into 

clusters.

One of the simplest and most popular clustering algorithms is K-means [28]. K-means 

represents a cluster by the mean value of all objects contained in it. Initially, it randomly 

selects k  cluster centers. Then, in each iteration, K-means assigns each object to  its 

closest cluster center based on the similarity function and recomputes the center of each 

cluster. This process is repeated until a convergence criterion is met, for instance there is 

no possible reassignment of any object from one cluster to another. K-means is popular 

because it is easy to implement and its time complexity is 0 (n ) , where n is the number 

of objects. A drawback of this algorithm is its sensitivity to the selection of the initial
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cluster centers and th a t the number of clusters needs to  be defined in advance.

A density-based clustering algorithm called DBSCAN [11] is also a partitional clus

tering algorithm. DBSCAN overcomes the shortcoming of the K-means algorithm, as the 

number of clusters is automatically detected, and locates regions of high density th a t are 

separated from each other by regions of low-density. DBSCAN’s definition of a cluster 

is based on the notion of density reachability. Basically, an object q is directly density- 

reachable from an object p if it is closer than a given distance E ps  (hence part of its 

Eps — neighborhood) and if is surrounded by a number of objects such th a t one may 

consider p and q to be part of a cluster. The q is called density-reachable from p  if there is 

a sequence of p i, ...,pn objects with pi = p  and pn = q where each pz-+1 is directly density- 

reachable from pi. There is a case where an object q might lie on the edge of a cluster, 

having fewer neighbors than a given number to count as dense itself. This would halt the 

process of finding a path ending at the first non-dense object. By contrast, starting the 

process with p  would lead to q. In this case, the process would halt there and q would 

be the first non-dense object. Due to this asymmetry, the notion of density-connected is 

introduced: two objects p and q are density-connected if there is an object o such tha t 

both p and q are density-reachable from o. A cluster satisfies two properties: a) all objects 

within the cluster are mutually density-connected, and b) if an object is density-connected 

to any object of the cluster, it is part of the cluster as well.

DBSCAN requires two parameters: a) Eps, which is the radius th a t delimits the 

neighborhood area of an object, and b) M in O b js , which is the minimum number of 

objects required to form a cluster. It s tarts with an unvisited object and retrieves its 

Eps-neighborhood. If the size of its Eps-neighborhood is larger than MinObjs, then a 

cluster is formed. Otherwise, the object is labeled as noise. However, this object might 

later be part of another cluster. If an object is found to be a dense part of a cluster, 

then its Eps-neighborhood is also part of th a t cluster. This process is repeated until 

the density-connected cluster is completely found and then, a new unvisited object is 

processed.

H ie ra rc h ic a l C lu s te r in g . Another well-known type of clustering method is charac

terized as hierarchical clustering and includes two basic approaches [31]: •

•  The agglomerative approach starts the clustering process with each object as an
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Filei File 2 Filepf

User i rwx r rwx

User 2 r rw rwx

Groupi X rwx

Table 2.1: Access Control Matrix

individual cluster. Each step of this approach merges two clusters th a t are the most 

similar. Thus the total number of clusters decreases after each step. This is repeated 

until the desired number of clusters is obtained or only one cluster remains.

•  The divisive approach reverses the clustering process and starts with just one cluster 

th a t contains all the objects. Afterwards, the single cluster is split into two or more 

clusters until the number of clusters becomes equal to the number of objects, or 

equal to a number specified by the user.

Generally, hierarchical clustering is preferred when a hierarchy is required and is displayed 

using a tree-like diagram. Although the number of clusters does not need to be specified 

in advance, a term ination condition has to be defined. However, the m ajor drawback of 

hierarchical algorithms is the high computational and storage cost they involve.

2.3 Access Control

In multi-user environments many users are allowed to coexist and interact with each 

other. Generally, such systems distinguish individual users through authentication at 

login time and associate an identity with each file or folder. One challenge in multi-user 

environments stems from the fact tha t all files are stored in a shared storage space. W ith 

no measures taken, it is possible for users to have access to any file. Therefore, there is 

an imperative need to use an access control mechanism.

Access control matrices can be used to implement access control mechanisms (Table 

2.1). These matrices store for each subject (user or group) its access rights (Read, Write, 

eXecute) on distinct objects. An object can be a file, folder, or another system resource.

16



The columns of the m atrix refer to  objects and the rows refer to  subjects. One way to  

simplify the management of access rights is to  store the access control m atrix by columns 

along with the object to  which the column refers. This is called an Access Control List 

(ACL) and contains subjects as well as their access rights on the object to  which the ACL 

refers. Another way to  manage the access control m atrix is to  store it by rows. Each row 

is called capability and refers to  the access rights of a subject on each object.

Generally, when a  user makes a request to  access a file, a check is made to ensure th a t 

he has the appropriate access rights, otherwise the access is denied. This mechanism is 

known as authorization.

2.4 Search Privacy

As full-text search is an indispensable tool for finding information, search engines need to 

protect privacy when operating in a multi-user environment. Privacy protection in search 

engines is considered a non trivial problem to  solve, especially when there is a need to  

retain the search engine’s performance.

In order to  protect privacy in search engines, the prim ary goal is to  ensure th a t the 

search engine respects the access control restrictions applied on the documents. This 

means th a t whenever a user issues a query, the search engine must only return documents 

th a t the user is allowed to  read. However, in some cases this is not enough to  preserve 

privacy.

In the case where the search engine uses a  system-wide index, a user can infer in

formation about documents th a t is not allowed to  read. W hen a system-wide index is 

used, it is necessary to filter the results of a query before returning them to the user. In 

particular, the search engine computes the list of all documents matching the query, ranks 

them  depending on their relevance scores, and then it filters this list. Filtering removes 

from the list all documents tha t the user who issued the query is not allowed to  read. 

This postprocessing approach along with a T F /I D F  ranking algorithm permits a user to 

leverage the ranking results in order to  infer information about documents tha t he is not 

allowed to  read [6].

This is the case where privacy in a search engine is not preserved and the impacts of
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information leakage could become disastrous if sensitive information is disclosed. Under 

these considerations, in order to  protect privacy, a search engine needs to  ensure th a t a 

result list returned to a user only contains documents th a t he is allowed to read and th a t 

a user cannot infer any information about documents th a t he is not allowed to read.

2.5 Summary

Full-text search is separated into two stages: the indexing, and the search stage. In 

the indexing stage, the search engine parses and indexes the documents in one or more 

indices. The most popular index structure is the inverted index and possible techniques 

- th a t can be used to  keep the indices in sync with the document collection are: a) Rebuild, 

b) Remerge, c) Nomerge, and d) LogarithmicMerge. In the search stage, users issue 

queries to  the search engine. The search engine computes and ranks the list of documents 

matching the query, and then returns the ranked list to the user.

Clustering methods are used to group objects into a small number of meaningful 

clusters. Clustering is based on the similarity or distance between two objects, and two 

basic types of clustering methods can be characterized as partitional and hierarchical.

In multi-user environments, users enforce access control over their files defining who 

can access them  and how. Hence, search engines th a t operate in such environments need 

to  protect privacy ensuring th a t a result returned to  a user only contains documents tha t 

he is allowed to read, and there is no possibility for a  user to  infer any information about 

documents th a t he is not allowed to read.

o
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Chapter 3

P rivacy T hreats in Full-T ext Search

3.1 Attacking Through Relevance Scores

3.2 Attacking Through Ranking Results

3.3 Revealing the Content of Files

3.4 Towards a Secure Solution

3.5 Summary

W hen using a single system-wide index, all existing files are indexed regardless of 

access control privileges. Thus, whenever a search query is issued, the results are filtered 

in order to exclude documents for which the user may not have the appropriate access 

privileges. However, the filtering takes place after ranking all matching documents.

In this chapter, we focus on the methods tha t an arbitrary user can apply to compro

mise the search results in a multi-user environment. All of the methods we describe are 

discussed in a previous work by Biittcher and Clarke [6]. The lack of per-user relevance 

scores in conjunction with the above post-processing approach and a T F /I D F  scoring 

function can be exploited by an arbitrary user to calculate the number of documents that 

contain a given term  T. The calculation includes those documents that the user is not al

lowed to search. Extracting the exact number of documents or an approximation depends 

on whether the full-text search engine returns the document relevance scores or simply 

the ranked list of documents. Also, it is possible to reveal the content of a document if the
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full-text search engine supports complex queries. However, T F /I D F  scoring functions 

are the most prominent scoring functions and should be used in a search engine while 

retaining privacy.

3.1 Attacking Privacy Through Relevance Scores

We assume a full-text search engine th a t uses a system-wide index and a T F /I D F  scoring 

function (Okapi BM25) to perform relevance ranking on documents matching a search 

query. The execution of the following steps lead to the exact calculation of the number 

of documents containing a term  T.

A possible starting  point is the equation th a t calculates the relevance score of a doc

ument d:

f j \  Or ' wt  · · (1  +  h )
Σ  > t t , l ( 1 - t ) + ) . x ) ' < 3 1 >

(T,qr)eQ 1 1 vv } avgdl'

where d r  is the number of occurrences of the term  T  within d, qr  is the weight of T  in 

the query count by the number of its occurrences, and w r  =  is the ID F  weight

of the query term  T . |jD| is the total number of documents and \DT \ is the to tal number 

of documents containing T. dl is the length of the document d (number of terms), and 

avgdl is the average document length in the system. Param eters k\ and 6 are usually 

chosen as 1.2 and 0.75 respectively.

For the given term  T  th a t an arbitrary user U ser a is interested in, he needs to obtain 

the number of documents th a t contain it by solving equation (3.1) for \DT \. However, the 

value of \D\ and avgdl is unknown. U ser a creates documents containing specified terms 

and issues customized queries to the search engine. By leveraging the relevance scores 

of the returned documents and the above equation, he can determine the value of the 

unknown parameters, and finally the value of \D t \*

Initially, U ser a generates two random terms T2 and T3 th a t do not appear in any 

document in the collection, and then creates three documents D u D 2 and D$ such that

•  D\ contains only the term  T2,

•  D 2 consists of two occurrences of the term  T2,
o
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•  Dz contains only the term  T3 .

The next step is to issue two queries, one only containing the term  T2 and another the 

term  T3 . For the first query, D i and Z)2 are returned as matching documents, while 

document Dz is returned for the second query. Their relevance scores are revealed by the 

search engine using the equation (3.1). Note th a t only the term  T2 contributes to  the 

relevance score of D \ and only the term  T3  contributes to  the relevance score of £>3 . Also, 

the weight of T2 in the query and its number of occurrences within D \ are equal to 1. 

This also holds for the term  T3  and the document Dz. Hence, the relevance scores of the 

documents are:

score(D \) — f o g ( ^ ) ( l  +  fci)
l  +  / c i ( ( l - 6 )  +  ^ j )

and

t r\ \ ( l  +  /ci)log(^Y·)

Then, dividing equations (3.2), (3.3) results in

score(D i) _  log( ^ )  
score(Dz) Ιο ρ (ψ ) '

and thus

(3.2)

(3.3)

(3.4)

/ acore(Da) \
\ D \  =  2 îCore(°3)-*core(£)1) ̂  (3.5)

Now, the only unknown value is the average document length (avgdl) in the system, which 

can be obtained by using equation (3.3) and solving for avgdl.

Once all parameters of the BM25 scoring function are known, the attacker creates a 

new document D 4 which contains the term T, and submits a query including only the term 

T . Consequently, the search engine returns the document D 4 accompanied by score{Di). 

Finally, this information is used to construct the equation:

score(D i) —
(1 +  ki)log( j^ |j)

! +  *>((! ~ b ) +
(3.6)

where D t  is the only unknown value. Hence, solving for DT, the User a knows the exact 

number of documents containing the term  T.
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3.2 Attacking Privacy Through Ranking Results

Returning the relevance scores of the matching documents is an essential prerequisite to 

achieve the above exploitation. Nonetheless, following a barely different approach, it is 

possible to  compute an approximation of the number of documents containing a term  

T , even if the relevance scores of matching documents are omitted. Indeed, this can be 

accomplished by simply leveraging the order in which matching documents are returned 

by the full-text search engine and the observation th a t the most interesting term s are 

infrequent.

Suppose th a t UserA intends to  reveal the number of documents containing the term  

T  (|Z>r|). User a creates documents containing specified term s and issues customized 

queries to the search engine. Then, he leverages the order in which matching documents 

are returned and the equation (3.1).

Initially, he creates a single file Do which contains only the term  T . Then, he generates 

a unique random term  T2, and creates 1000 documents -Di ...D iooo5 each of which contains 

this term. Afterwards, by subm itting a Boolean OR query comprising terms T  and 

T2, the search engine returns the matching documents ranked by their BM25 relevance 

score. If Do appears before any of the documents D\...Diooo, User a can deduce th a t 

score(Do) > score(Diooo) holds. Hence, solving the inequality for \Dt \, he knows tha t 

\Dt \ <  1000. Instead, if Do appears after the documents D\...D\ooOi then he knows tha t

\Dt \ > 1000.

Furthermore, a better approximation of \ D t \ can be achieved by using the following 

strategy. At the beginning, the arbitrary UserA generates a second random term T3 and 

creates 1000 documents ( D \ . . . D i o o q ) ,  each containing the two terms T2 and T3. Also, a 

third random term  T4 is generated and 999 documents (D 1001. . .A 999) are created, each 

of which contains T4. Lastly, one more document Do which contains the two terms T  and 

T4 is needed.

After creating all these documents, User a submits a query consisting of terms T, T2, 

T3, and T4. The returning relevance scores for the matching documents D 0 and £>ι···£>ιοοο 

are computed using the equation (3.1):

score(Do) =  C ( l o g ( ^ )  + l o g ( ^ j - j) )  (3.7)
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and

score (£),·) =  C ( l o g ( ^ )  + log{ j M . ) ) , (3.8)

for 1 <  i  < 1000 respectively. The constant C  is the same for all documents and is given 

by the equation:

(1 +  fci)
1 +  fci((l -  b) +

(3.9)

Then, U ser a begins deleting the documents .Diooi to D i^g , one a t a  time. In the early 

stages, score(Do) is lower than  score(D i), bu t as soon as the number of documents 

containing the term  T4 is reduced, T4 acquires a  greater ID F  weight and document D0 

- acquires a  greater score. After d  document deletions, U ser a knows tha t:

score(Do) >  score(D i) => C { l o g ^ j +  log  j ^ j )  >  c ( lo g j M .  +  / o s ^ j )

101 >  2log \ D  |
(3.10)

|DT \ 1000 — d ~  *1000’

since \D t2 \ — \D t3\ =  1000 and \D t4 \ =  1000 — d. Right before this point, say a t d — 1 

deletions, score(Do) is still lower than score{D\), and hence the equation

i j a + i *  |D | <  2log \D\
\Dr\ * 1000 -  {d -  1) ~  ~'~J 1000 

holds. Ultimately, combining the inequalities (3.10), (3.11) gives:

(3.11)

-lo g (\D T|) -  log(1000 -  d +  1) <  2/op(1000) <  -lo g {\D T\) -  /o</(1000 -  d) (3.12) 

which implies

iooo2 ^ ^ 10002
1000- d + 1  ~  1 rl -  1000 - d '

(3.13)

Hence, the attacker is capable of obtaining a range of possible values, one of which cor

responds to  the actual number of documents containing the term T. However, if the 

approximation gained is not good enough, the process can be repeated by adding more 

than  two terms per document.
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3 .3  R e v ea lin g  th e  C o n ten t o f  D o c u m e n ts

The methods described above can be used to  obtain the number of documents tha t contain 

a particular term. While this is already harmful, it can be much worse if the full-text 

search engine allows queries of arbitrary length. For instance, it is possible to  obtain the 

entire content of a document by guessing its words. In particular, knowing th a t a certain 

document contains the phrase “A B C” , an arbitrary user can try  all possible term s D 

and calculate the number of documents which contain “A B C D” until he finds a D tha t 

gives a non-zero result. Afterwards, he can continue with the next term  E and so on.

- 3 .4  T ow ards a  S ecu re  a n d  E ffic ien t S earch  S y s te m

It is shown tha t a post-processing approach combined with an T F /I D F  scoring function 

permits to  an arbitrary user to infer file contents w ithout actually reading any files. 

However, T F /I D F  scoring functions are the most popular and the most prominent scoring 

functions. A search engine th a t uses a T F /I D F  scoring function can achieve accurate 

query results, and hence, we could benefit from using a T F /I D F  scoring function in such 

a way tha t privacy is retained. Nevertheless, there is a need of approaches tha t combine 

privacy and accurate results with search performance and reasonable index maintenance 

cost, leading to a secure and efficient search engine.

3 .5  S u m m a ry

Search engines that use a single system-wide index along with the post-processing ranking 

approach and a T F /I D F  scoring function can pose a severe privacy threat. More pre

cisely, an arbitrary user can compromise the search results in a multi-user environment. 

He can calculate the number of documents th a t contain a given term T  by leveraging 

either the relevance scores or the position of the documents in the ranking list. Further

more, it is possible to  reveal the content of documents th a t he is not authorized to access 

when the search engine supports Boolean queries and phrases. However, T F /I D F  scor

ing functions are widely used as they are the most prominent scoring functions. A search
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engine needs them in order to provide accurate query results, and hence they should be 

used in such a way that also retains the privacy.



Chapter 4

Design

4.1 Goals

4.2 Overview of Indexing Workflow

4.3 Crawler

4.4 Planner

4.5 Indexer

4.6 Incremental Indexing

4.7 Summary

This chapter is devoted to the design goals and the overview of our work. Furthermore, 

we describe its major components in more detail and explain any decisions made before 

proceeding with the implementation.

4 .1  G o a ls

Much of the research work on preserving privacy in desktop and enterprise multi-user 

environments follows two basic approaches. These approaches maintain either one index 

per user or a single system-wide index.
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Retaining one index per user ensures privacy and achieves high query performance, 

as each user only accesses his private index and the query processing is restricted to tha t 

index. Unfortunately, these significant benefits come with great disk space consumption 

and increased maintenance cost because each document is indexed by every index whose 

owner has access to  it. Hence, multiple copies of the same document exist in several 

indices a t any given time. Furthermore, the problem gets worse when many users share 

many documents.

On the contrary, retaining a system-wide index means tha t all existing documents are 

indexed regardless of access control restrictions [6]. This approach provides efficient index 

updates and low storage usage because each document is indexed only once. However, it 

poses severe privacy issues which can be eliminated in the expense of query performance 

due to  the need of result filtering in order to  ensure th a t each search result only contains 

documents th a t the respective user is allowed to search.

A different approach th a t improves efficiency while ensuring privacy creates one index 

for each set of documents with the same ACL [37]. In particular, documents accessed by 

a single user are indexed by his private index. Instead, shared documents with identical 

ACLs are indexed by a single index, which is accessed by the users of the specified ACL. 

Even though this approach offers privacy and lower maintenance cost, it does not provide 

any parameters to tune the query performance and the maintenance cost.

The main purpose of our solution is to protect privacy in multi-user environments 

and provide a more flexible solution. We introduce a novel strategy to organize users’ 

documents into indices by leveraging the similarity of their ACLs. We group documents 

into clusters, each containing documents with similar ACLs to some extent. The similarity 

between the ACLs of documents within a cluster is determined by a Similarity parameter. 

Then, we map the documents and the users to indices based on the intersection and 

differences of the ACLs within a cluster. In addition, we use a Threshold parameter 

which determines how a difference is treated, and limits or raises the duplicate documents. 

Therefore, we provide a trade-off between query performance and maintenance cost and 

ensure th a t the indices accessed by a user only contain documents th a t the user is allowed 

to  search.

o
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Planner 1
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Crawler Γ *Ί Clusterer Mapper Indexer

Indexes

Figure 4.1: Overview of our indexing workflow.

4 .2  O v erv iew  o f  In d e x in g  W orkflow

Our design is based on a planning scheme tha t groups users’ documents before the indexing 

process. Figure 4.1 gives an overview of our indexing workflow:

•  A Crawler gathers the access control information of the documents in the system.

•  The Planner utilizes this information to separate the documents. The Planner 

consists of two components: a) the Clusterer, which clusters the documents based 

on the similarity of their ACLs; and b) the Mapper, which maps documents and 

users within a cluster to indices. Note tha t each document may be indexed by more 

than one index.

•  The Indexer indexes the documents in the full-text search engine based on informa

tion obtained from the Planner.

The details about the distinct components and the algorithms used to  implement our 

solution are given in the following subsections.

4 .3  C raw ler

Crawling is an im portant and essential part of a search engine and typically refers to the 

process of discovering the content to index. However, its operation is more general as it 

is used to express the process of collecting information within a system.

In our case, crawling refers to the discovery of new or updated documents, the extrac

tion of the document ACLs, and the extraction of the information about their location 

on disk. The content of the documents is not used in the next phase, so there is no 

need to get it in such an early stage: the Planner only needs the ACL and the path of
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the documents. Therefore, the crawler is used to extract only this information from the 

documents and fuel the Planner with them.

4.4 Planner

The Planner executes the main bulk of the work, and receives a pair of path  and ACL 

for each document in the system. Then, the Clusterer uses this information to group the 

documents into clusters, and the M apper maps the documents and the allowed users to 

indices.

- 4.4.1 C lusterer

The Clusterer is responsible to  cluster the documents based on the similarity between their 

ACLs. Before starting  the clustering process, a number of im portant decisions should be 

made in order to  cluster the documents in an efficient way.

O b je c t R e p re s e n ta tio n . Once the Clusterer obtains the document paths along with 

their ACL, the clustering process starts by representing the objects. The next step is to 

construct the similarity m atrix by computing the similarity of each pair of objects and 

storing it in the appropriate m atrix slot. Normally, each object would be represented as 

a pair of a document path  and its corresponding ACL. However, in the case where the 

number N  of documents is high, the similarity m atrix would considerably grow in size 

with N  x  N  slots. For instance, assuming N  =  50000 is the number of documents and 

b = A B y tes  is the size of each m atrix slot, then the total memory consumption becomes 

C  = N x N x b  = 9 G B . Even when using only half of the similarity matrix, it still 

occupies a lot of memory.

In order to  avoid this cost, we represent the objects in a more suitable way. To achieve 

this, we add an extra document-grouping step before the actual clustering process. In 

particular, we gather in the same group all documents with identical ACLs, and this group 

represents the actual object for the clustering process.

We denote each object as a Document Family. Each Document Family consists of a 

set of document paths (rather than a single document path) and a binary ACL bitmap 

generated by the ACL of the corresponding document set (Figure 4.2(a)). The dimensions
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User N:

(a) Document Family. (b) ACL bitmap.

Figure 4.2: Document Families include a set of document paths and their corresponding 

ACL bitmap. ACL bitm aps are created from the ACLs and represent whether each user 

is included in a docum ent’s ACL or not.

of the ACL bitm ap are equal to  the number of the users in the system and its components 

are either one or zero depending on whether the corresponding user appears in the ACL 

of the Document Family or not (Figure 4.2(b)).

The importance of such an object representation is dem onstrated by the dram atic 

reduction of memory consumption. The size of the similarity m atrix depends on the 

number of different ACLs in the system rather than  the to tal number of documents. 

Moreover, the number of different ACLs is expected to be small compared to  the total 

number of documents as many documents have common sharing attributes [23].

C h o o sin g  th e  C lu s te r in g  A lg o rith m . Several clustering algorithms exist in order 

to meet different needs as none of them is universally applicable and appropriate for every 

kind of dataset and clustering problem. However, two of them captured our interest.

One algorithm tha t we initially considered was K-means. After examining its prop

erties and prerequisites, we realized tha t it eventually might not be such a good choice. 

The main reason tha t made us disregard K-Means is the demand to specify in advance 

the number of clusters to which the clustering method will end up. In our approach, this 

is an obstacle because we do not know the number of the final clusters. Moreover, the dis

tance measure used by default to compute the distance from a data object to each cluster 

center is the Euclidean distance. As highlighted previously [10], Euclidean distance does 

not work well in high dimensions and its performance may not be optimal when dealing 

with binary data.

Taking into account these considerations, we decided to  use another algorithm: the
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DBSCAN algorithm. Unlike K-means, DBSCAN does not require to predefine the number 

of the clusters. Instead, the final number of clusters is revealed after the algorithm has 

been executed. Furthermore, one can choose an arbitrary distance function rather than 

the Euclidean distance.

C h o o sin g  th e  S im ila r ity  M ea su re . Given the number and diversity of similarity 

and distance measures th a t are available, choosing one is also a challenging process. 

Taking into account tha t each Document Family is represented by an ACL bitm ap and 

tha t the presence of an a ttribute  is more im portant than its absence, we decided to use 

the Jaccard Coefficient. Although DBSCAN works with distance functions, we prefer to 

use the notion of similarity because we want to focus on the similarity between the ACLs 

rather than their dissimilarity.

C h o o sin g  th e  A lg o rith m  P a ra m e te r s .  As already discussed in subsection 2.2.1, 

the DBSCAN algorithm requires two parameters: a) the Eps radius, which defines the 

maximum distance between two objects in order to be considered as neighbors and is 

computed by the Similarity parameter; and b) the MinObjs value, which defines the 

minimum size of the neighborhood th a t a particular object must have in order to be 

included in a cluster.

Our goal is to cluster all the Document Families and avoid characterizing any of them 

as noise. Thus, we perm it the creation of clusters th a t contain a single Document Family. 

For this reason, we set the MinObjs value to one. We do not set the radius to a fixed 

value as our target is to  monitor the behavior of our solution under different values of 

similarity. Hence, the tunable Similarity param eter defines its value.

T h e  C lu s te r in g  P ro c e ss . So far, we explained several im portant decisions concern

ing the algorithms of our solution; now we move to  the description of the actual clustering 

process.

The algorithm starts  with an arbitrary Document Family F  which is not yet member 

of any cluster. It marks F  as visited and retrieves its Neighborhood which is the Document 

Families whose similarity to F  is equal or greater than the Similarity value. The Document 

Families belonging to the Neighborhood are added in the Neighbors List. If the size of 

this list is equal or greater than one, a new cluster is formed containing F. Then, the 

algorithm examines every Document Family F ' in this list. If F ' is not visited, it is first 

marked as visited and its Neighborhood is retrieved. If the Neighborhood size is >  1,
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Figure 4.3: We illustrate an example of Document Family clustering. We assume a 

similarity value higher than 0 and smaller than 100. The formated clusters contain either 

one or more Document Families. In particular, a cluster with more than one Document 

Families includes multiple sets of document paths, and each set has a single ACL bitmap.

'  then the neighbor Document Families are added in a tem porary list which is joined with 

the Neighbors List. This process is repeated until no more Document Families are left in 

the Neighbors List. Subsequently, another Document Family of the dataset is visited.

After all Document Families have been visited and assigned to a cluster, each cluster 

ends up with one or more Document Families. The number of documents included in 

clusters with more than one Document Families is at least equal to the number of different 

Document Families in the cluster. Some of these documents have different ACLs but 

similar to some extent. This similarity refers to the common users between their ACLs 

and depends on the Similarity value. Note th a t even clusters with a single Document 

Family contain more than one documents, but these documents have exactly the same 

ACL.

Figure 4.3 depicts an example of clustering output. Each cluster contains either one or 

more Document Families, and each Document Family represents a set of documents with 

identical ACL. Clusters with more than one Document Families include multiple sets of 

documents each of which has its own ACL bitmap. The ACL bitmaps of the Document 

Families included in the same cluster are similar to each other.

At this point, the Clusterer job is done and the generated clusters are given as input 

to the Mapper.
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I )Cluster □ Document Family CI^ACL

i: intersection d: difference

Figure 4.4: Clusters with more than one Document Families contain documents with 

different ACLs. For these clusters, we find the intersection and the differences between 

the ACLs they contain. The intersection is the set of users included in every Document 

Family in the cluster, while each difference is the set of users of each ACL in the cluster 

tha t is not included in the intersection.

' 4.4.2 M apper

Mapping is a stage of high importance because it determines how the indices are formed. 

The output of this step is the number of indices and a description for each index. The 

information tha t describes each index is: a) its name; b) the set of users tha t have access 

to it; and c) the paths of documents that are going to be indexed by it. This information 

will be later used by the Indexer, which performs the actual indexing process.

The underlying idea of our Mapper is based on the observation th a t a cluster may 

contain documents with similar ACLs to some extent. For each cluster, the M apper creates 

an intersection and multiple difference ACL parts (Figure 4.4). The intersection ACL part 

is formed by the intersection of the ACLs (ACL intersection or simply intersection) in a 

cluster. An intersection contains the set of users th a t are included in the ACL of every 

Document Family in a cluster. Each difference ACL part is formed by the remaining 

portion of each ACL (ACL difference or simply difference) in a cluster and contains the 

set of users of this ACL tha t are not included in the intersection. The users and the 

documents tha t correspond to these ACL parts are then mapped to indices.

Algorithm 1 provides a high-level description of how the Mapper works. For each 

cluster, it performs three major tasks: 1) it finds the intersection between its ACLs; 2) 

for the ACL of each Document Family, it computes the set of users that do not belong 

to the intersection; and 3) decides whether a difference part maps to one or more indices 

according to a threshold. The inputs to the algorithm are the created clusters and the

o
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A l g o r i t h m  1: In d e x  M a p p in g

1
2
3

4

5
6
7

8 
9
10 

11 

12 

-  13 

14 

'  15

16

17

18

In p u t: Clusters of Document Families and Threshold value

O u tp u t:  Information about each index (name, user IDs, and documents IDs)

fo r each c 6  C lu s te rs  do

/ /  C om pute  the in te rs e c tio n  in  c lu s te r c 

findlntersetion(c)

If (H n te rs e c tio n .e m p ty ()  A N D

S D o c u m e n tF a m ily l , D o c u m e n tF a m ily 2  € c  : D o c u m e n tF a m ily l  Φ  D o c u m e n tF a m ily 2 )  th e n  

/ /  M a p  one in d e x  to  the users o f  the in te rs e c tio n  a n d  a l l  docum ents o f  c lu s te r c 

mapIndex(intersection[c].users, c.Documents)

/ /  C om p ute  the  d iffe rences an d  m a p  to  indices based on  the  Th reasho ld  

fo r  each D o c u m e n tF a m ily  €  c do

findDifFerence(DocumentFamily.users, intersection^]) 

index\VithTVeshold(difference.users, DocumentFamily.Documents)

en d

else

/ /  M a p  the in d ice s  based on  the T h resh o ld  value  

fo r each D o c u m e n tF a m ily  €  c do

| indexWithTVeshold(DocumentFamily.users, DocumentFamily.Documents) 

en d

en d

en d

value of the threshold.

Initially, for each cluster c, we check whether a non-empty intersection exists. If a non

empty intersection exists, the M apper maps a single index to  the users of the intersection 

and indexes all documents of the cluster in th a t index (line 6). Then, we compute the 

difference with the intersection for each individual Document Family in the cluster c 

and map one or more indices depending on the threshold value (lines 8 — 11). When 

intra-cluster intersection is empty, it means tha t either the cluster has a single Document 

Family or the cluster has more than one Document Families but there are no common 

users between their ACLs. In both cases, each Document Family is mapped to  indices 

based on the threshold value (lines 14 — 16). In particular, if the product of the number of 

users th a t belong to a difference part with the number of its corresponding documents is 

higher than the threshold value, then one index is mapped to these users and documents. 

Otherwise, the documents are duplicated to the private index of each user in the difference 

part (Algorithm 2).

In tr a - C lu s te r  In te rs e c tio n  a n d  D ifferences. The fact th a t the ACLs within a 

cluster may share common users is leveraged to create an index. This index contains
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1 if  (u a e rs .s ize Q  x d o cu m e n ts  >  T h re s h o ld )  th e n

2 | maplndex(users, documents)
3 else

4 | cpInPrivateIndexes(users, documents)
5 en d

A l g o r i t h m  2: P ro c ed u r e  in d e x W ith T r e sh o ld (u se r s , d o c u m e n ts)

all documents included in the cluster (regardless of their ACL) and is accessed only by 

users th a t belong to the intra-cluster intersection. Non-empty intersections only exist in 

clusters th a t have more than one Document Families. In order to find an intersection, we 

retrieve the ACLs by using the corresponding ACL bitmaps. We are certain tha t each 

intersection is mapped to a single index either by using an existing index with the same 

set of users accessing it, or by creating a new one. However, if an empty intersection 

exists, then each ACL is treated as a difference.

Except for the intersections, we also have to take care of the differences. The default 

case maps each difference and its corresponding documents to a single index. This index 

is only accessed by the users th a t belong to the difference. The index of a difference only 

includes documents tha t correspond to the specified ACL rather than the total documents 

held by the cluster. Unavoidably, this leads to document duplication as these documents 

are indexed both in the index mapped to the intersection of the cluster and in the index 

mapped to the difference. In addition, we observe th a t there might be common users 

between two or more differences, but we do not consider them  for the moment because 

the solution would become more complicated.

Privacy, our most im portant goal, is achieved as each mapped index is only accessed 

by users th a t are allowed to search the indexed documents. While this is a good solution 

and keeps the number of document duplicates a t low levels, it does not bring the best 

search performance. Even though the number of indices th a t a user needs to  search is 

reduced, especially for the users tha t belong to  intersections, a more intuitive mapping 

can further improve the query performance.

M ap  to  O ne  o r M u ltip le  In d ices. To further improve the query performance while 

still meeting the privacy, we introduce a threshold denoted as Threshold. Threshold limits 

or raises the document duplicates and this translates to the increase or the decrease of 

the indices th a t each user has access to.
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Figure 4.5: Users U1...U4 belong to the ACL intersection, while users U12, U15 and U\q 

belong to the ACL differences. The M apper maps three indices. The first index corre

sponds to the users of the ACL intersection and includes all documents in the cluster. 

Each of the remaining indices corresponds to the users of each ACL difference. Also, the 

set of documents tha t correspond to each ACL difference is duplicated in each mapped 

index (difference and private index).

Using this threshold, the Mapper decides whether to map a difference to a single or 

multiple indices. Therefore, every time a difference is computed, the algorithm checks 

whether the number of the corresponding documents multiplied with the number of users 

in the difference is lower than the predefined Threshold or not. If this product is lower 

than Threshold, then each of these documents is indexed by the private index of each user 

tha t is included in the difference. Otherwise, we trea t the difference as in the default case 

by mapping it to a single index.

Figure 4.5 illustrates an example of the mapping process. Considering the cluster of 

Figure 4.3, we show the ACLs and the documents corresponding to each ACL bitmap. The 

Mapper computes the intersection and maps it to an intersection index. The intersection 

index contains all the documents included in the cluster. Moreover, only users t/i, i /4 

tha t belong to the intersection have access to it. Also, the M apper maps each difference to 

a difference index where the corresponding documents are duplicated. Thus, a difference 

index is mapped for users U12 and U15, while a private index is mapped for user U\0 as he 

is the only user th a t belongs to the third difference.

Mapping the users and documents of each difference to a single index is not always 

appropriate. In the case where differences include few users and documents, we need to
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maintain many indices tha t include a small number of documents and each is accessed by 

a small number of users. Moreover, if a user belongs to many such differences, then the 

number of indices tha t he accesses is large. On the other hand, mapping the documents of 

each difference in the private index of each user would lead to many document duplicates 

in the case where the number of users and /o r documents in the difference is high. Thus, we 

decide whether to map a difference to a single or multiple indices by checking the product 

of the number of documents and users in the difference. This product shows the number 

of document duplicates th a t are going to be created per ACL. We can limit the number 

of document duplicates by creating a single index for a difference if the above product 

is higher than the predefined Threshold, or raise it by duplicating the corresponding 

documents in the private index of each user in the difference if the product is lower than 

the Threshold.

Indeed, this approach tends to further reduce the number of indices in which a user 

has to search when some of the shared documents are duplicated in his private index. 

However, the higher the Threshold value, the fewer the indices th a t a user has access to 

and the more documents are duplicated into multiple indices.

4.5 Indexer

The last remaining phase is to index the documents by leveraging the information gen

erated by the Mapper. To th a t end, the Indexer gets one by one the index names and 

their corresponding document paths. The documents are indexed by the specified index 

in bulks of 500 documents or less if not enough. Through bulk indexing the time spent 

in indexing phase can be substantially reduced.

The Indexer gets the document paths th a t belong to each index rather than the indices 

in which each document is indexed. We choose this approach because it incurs less 

overhead compared to the second one. This happens due to the fact th a t in the first case, 

the writes included in the bulk index request occur in the same file (corresponding to a 

single index). On the contrary, in the second case, each bulk consists of requests, each 

of which involves the same document but corresponds to different index. Therefore, this 

translates into many small writes in multiple indices (each corresponding to a t least one
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on-disk file) and degrades the indexing performance.

4.6 Incremental Indexing

The procedure described above deals with the construction of the indices. However, in 

general we want the indices to  handle incoming updates and queries in such a way th a t 

the privacy level already achieved remains intact.

4.6.1 Updates

W hen new documents are added into a document collection, the search engine needs to 

update the existing index data-structure. Existing index-maintenance strategies accumu

late postings from incoming documents in main memory and add them  to  the existing 

on-disk inverted lists when a pre-defined memory utilization threshold is exceeded.

In our solution, things are slightly different as we maintain more than  one indices. 

Hence, we have to find the appropriate index to  insert a new document with respect to 

its corresponding ACL. Therefore, each new document is indexed by the index which is 

accessed by the same set of users th a t are included in the docum ent’s ACL. In the case 

where such an index does not exist, we create a new one.

This approach raises two issues: a) the number of the to tal indices might be increased 

if documents, whose ACLs does not match to any of the existing indices, appear very 

often; and b) the new indices may retain a small number of documents. However, a 

possible solution is to periodically re-cluster the documents and re-create the indices.

Apart from the forthcoming documents, one such system needs to deal with changes 

made to the ACLs of already indexed documents. This implies tha t these documents are 

deleted and reinserted in accordance with the preceding procedure.

4.6.2 Search

A user should be informed of the indices in which he has access to before he starts submit

ting search queries. Thus, we assume tha t each user is authenticated to an authentication 

server in order to ensure th a t a user is the person he claims to be. Then, he receives the
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corresponding list of the indices and he is able to search the indexed document collection. 

Consequently, his queries are only directed to  the indices included in th a t list.

In order to  achieve this, the authentication server needs to maintain information re

garding the users and the indices th a t each user has access to. In addition, the authenti

cation server needs to be aware of any changes concerning this information and constantly 

being kept up with them.

4.7 Summary

Much of the previous research on full-text search in multi-user environments presents 

- solutions th a t offer either high query performance but increased maintenance cost, or 

, low maintenance cost a t the expense of slow queries and privacy issues. New approaches 

protect privacy and improve efficiency, bu t lack a tunable solution th a t trades the cost of 

index maintenance and query performance while ensuring privacy.

W ith this in mind, we propose an indexing workflow scheme th a t organizes documents 

into indices by leveraging the similarity of their ACLs. Our main idea is to  create clusters 

of documents with similar ACLs to some extent and then create indices based on the 

intersections and differences of the ACLs of each cluster. We ensure privacy in multi-user 

environments while introducing a trade-off between index maintenance cost and query 

performance.

o
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Chapter 5

Implementation

5.1 Planner

5.2 Indexer

5.3 Search Engine

5.4 Discussion

5.5 Summary

In this chapter we provide details of our implementation, which involves the Indexer 

and the Planner with its two main components: a) the Clusterer; and b) the Mapper. 

The Planner implementation involves the C /C + +  programming language and the STL 

library as well. The Indexer is implemented in Perl v5.10.1. Additionally, we present a 

brief discussion of why we use document IDs and not document paths in each Document 

Family.

5.1 Planner

The Planner uses two parameters, the Similarity and the Threshold used by the Clusterer 

and the M apper respectively (Table 5.1). The Clusterer uses the Similarity param eter 

to  cluster documents with similar ACLs to some extent and defines how similar are the
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P la n n e r  P a ra m e te r D e sc rip tio n

Similarity Defines how similar are the ACLs of the Doc

ument Families within a cluster. It is used by 

the Clusterer.

Threshold Defines how each Document Family differ

ence within a cluster is treated. It is used by 

the Mapper.

Table 5.1: Planner Parameters.

ACLs within a cluster. The M apper computes the intersection and the differences of 

the ACLs within a cluster and then uses the Threshold param eter to map the users and 

" the documents of each cluster to one or more indices. The Threshold defines how each 

difference is treated.

5.1.1 Clusterer

Figure 5.1 illustrates the Clusterer operation. The Clusterer operates in two steps: the 

document-grouping and the clustering step. It receives pairs of document IDs and ACLs, 

which are inserted in a hash table creating the Document Families. Then, it groups the 

Document Families into clusters and gives them as input to the Mapper.

D o c u m e n t-G ro u p in g  S tep . Before proceeding to the clustering process, we create 

the Document Families. As each Document Family contains a set of documents with 

identical ACLs, is described by: 1) a set of the unique identification number (ID) of each 

document th a t belongs to the specified Document Family; and 2) a binary ACL bitmap.

In order to build the Document Families, we use a chained hash table. The hash table 

entries consist of three fields, each of which is used to store: 1) a set of document IDs, 

2) the documents’ ACL, which consists of a set of user IDs, and 3) the pointer to the 

next entry. The ACL of a document is used as key to the hash function. Every time a 

new document is encountered, we check whether a document with an identical ACL has 

already been inserted in the hash table or not. If yes, then we simply add the ID of the 

new document in the document IDs set of the corresponding entry. Otherwise the ID and 

its ACL are inserted in a new entry according to the hash function. Therefore, each hash

o
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Document-Grouping Step Clustering step

Figure 5.1: We illustrate how the Clusterer operates. It receives pairs of document IDs 

and ACLs and then creates the Document Families using a hash table (document-grouping 

step). Then, it clusters the Document Families (clustering step) and the created clusters 

are given as input to the Mapper.

table entry contains all document IDs with the same ACL.

Once all documents with identical ACLs are in the same entry, a further step is needed 

to obtain the Document Families: the construction of each ACL bitmap. Each ACL 

bitmap is constructed by using the ACL of the corresponding hash table entry. Finally, 

each set of document IDs along with their ACL bitm ap form a Document Family.

C lu s te r in g  S te p . As the clustering process proceeds, it forms clusters of Document 

Families. Each cluster is represented as a vector of Document Family IDs and is stored in 

the Cluster Vector. Thus, at the end of the clustering process, the Cluster Vector contains 

all the form atted clusters.

Finally, after the clustering process finishes, the Cluster Vector is given as input to 

the Mapper.

5.1.2 Mapper

The Mapper receives the created clusters from the Clusterer and maps their Document 

Families to indices (Figure 5.2). For each index the Mapper creates a description, which 

is finally stored in a file. This file is then used by the Indexer for the indexing process.

During the mapping phase, the ACLs of the Document Families included in each clus

ter are split in ACL parts. The basic ACL part consists of the intra cluster intersections,
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Figure 5.2: We depict how the M apper operates. It receives the clusters from the Clusterer 

and then maps the Document Families within each cluster to  one or more indices. Also, 

the Mapper creates a  description for each index and stores it in the index container file. 

This file is then given as input to  the Indexer.

while the other parts arise from each difference. As the ACLs are represented as sets of 

user IDs, both the intersections and the differences are found by using the corresponding 

functions provided by the STL library.

Once the intersection of each cluster is found, the M apper maps the users th a t belong 

to the intersection along with all documents in the cluster to  a single intersection index. 

On the contrary, each difference along with its corresponding documents is mapped to 

a single difference index or many private indices depending on the Threshold value. All 

index descriptions are stored in an Index Vector and each of them is described by: 1) the 

index name; 2) the set of users th a t have access to it; and 3) the document IDs th a t are 

included in it.

Finally, two files are created tha t store information about the indices. The first file, 

denoted as access control file , contains one entry for each index. This entry includes the 

set of the users th a t have access to the specified index. It is used before a user starts 

subm itting queries in order to acquire the list of indices in which he can search. The 

second file, denoted as index container file , also contains one entry for each index, and 

each entry includes the document IDs th a t are going to  be indexed by th a t index.
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Figure 5.3: We depict how the Indexer operates. It parses each line of the index container 

file and gets the content of each document from the collection file by using the offset 

array. For each document, the Indexer creates one index request and stores it in the bulk 

request array. W hen a predefined number of request are accumulated, the Indexer sends 

a bulk index request to the search engine.

5.2 Indexer

The Indexer leverages the information stored in the index container file and creates the 

indices by indexing its corresponding documents.

Figure 5.3 depicts how the Indexer combines the information generated by the M apper 

with the real documents, each stored in a single line of the collection file. The Indexer 

parses each line of the index container file and obtains an index name along with its 

corresponding document IDs. Each document ID denotes the line a t which each real 

document is stored in the collection file. Then, for each document ID, the Indexer gets 

the corresponding real document using an offset array.

The offset array contains, for each document ID, the offset at which the corresponding 

real document begins. Consequently, the Indexer creates an index request tha t includes 

the index name along with the document content and stores it in the bulk request array.

Every time either this array contains M a xB u lk  requests (MaxBulk =  500) or there are 

no more documents left for a specified index, the Indexer sends a bulk request containing 

these documents to the search engine. Then, the Indexer processes the next line of the

44



Elasticsearch Cluster
Shard i Sharcfc

iB e b ica aa iiR e o ica d l

Node 1 I Node 2

Sharcfe
I

Shard*

* R erilca& ■ B o o le a n

Node 3 Node 4

Figure 5.4: We depict an example of a four node Elasticsearch cluster. One index with 

four primary shards and one replica per shard is stored across the multiple nodes.

index container file. Once all index lines have been processed, the indexing process finishes 

and the search engine is ready to handle incoming queries.

5.3 Search Engine

The search engine we use is the Elasticsearch [16]. Elasticsearch is a distributed, free/open 

source search server written in java and based on the Apache Lucene library [14]. It runs 

on a single search server or on multiple cooperating servers when dealing with large data  

sets or needing fault tolerance. These multiple servers are called cluster and each of them 

is called node.

The nodes are used to store the indexes and serve the incoming queries. W hen the 

indexes contain a large amount of documents, each index may be split into smaller indi

vidual parts called shards. Each shard is a separate index and can be placed on a different 

node in order to achieve better performance. When a query is addressed to an index that 

is built from multiple shards, Elasticsearch sends the query to each relevant shard and 

merges the individual results.

In order to achieve higher query performance and availability, each shard {primary 

shard) may have one or more replicas. The primary shard is the place where the index 

update operations are initially applied. The primary shard, as well as the replicas, are 

used to answer the queries. When the primary shard is lost, the Elasticsearch cluster 

chooses a replica to be the new primary shard.

Figure 5.4 depicts an example of a four node Elasticsearch cluster. One index with

4 5

kV̂
V/

\M
VT

'A



four shards and one replica per shard is stored in the cluster. Prim ary shards 1 to 4 are 

each stored in Nodes 1 to 4 respectively. Each replica is stored in a different node from 

the one th a t holds its corresponding primary shard.

5.4 Discussion

The implementation details refer to  document IDs rather than document paths as de

scribed in the design description. In a real system, documents can be identified by their 

paths. However, in our case, each document exists through a document ID and it is not 

mapped to a real document until the indexing phase. This is a conscious choice consid- 

- ering th a t we do not use documents th a t exist on a real system but we build our own 

synthetic system (including users, groups and document ACL) based on observations of 

a real system. Moreover, this option gives us the ability to capture the behavior of our 

solution under different scenarios.

5.5 Summary

The implementation of our solution includes the Indexer and the two components of 

the Planner: the Clusterer and the Mapper. In order to build the Document Families 

before the clustering process, we use a chained hash table whose entries contain: a set 

of document IDs and the set of users th a t have access to  them. We use vectors to store 

the Document Families of the created clusters. Also, the M apper uses a vector to store 

the mapped indexes. Each index contains its name, the IDs of the users th a t have access 

to the index, and the IDs of the documents to be indexed. The Indexer then leverages 

the information about each index, gets the content of the real documents, creates index 

requests, and sends them  in bulk to  the search engine.

o
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C h a p t e r  6

E x p e r im e n t a l  R e s u l t s

6.1 Experimental Methodology

6.2 Experimental Setup

6.3 Planner Results

6.4 Search Engine Results

6.5 Exploring Different ACL Synthetic Datasets

6.6 Summary

In this chapter we present an extensive study of the behavior of our solution under 

different scenarios. Initially, we describe the methodology of our evaluation and the 

experimental setup. Next, we focus on the results retrieved by the Planner and a  search 

engine.

6.1 Experimental Methodology

Due to the lack of a real-world document ACL dataset, we implemented an ACL Gener

ator. The ACL generator creates a synthetic ACL dataset based on observations from a 

real one. We verified th a t the generated d a ta  comply with the statistics of the real-world

o
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dataset and performed several measurements to study and evaluate the behavior of our 

solution.

A C L G e n e ra to r . In order to implement the ACL Generator, we use the observations 

on the access control usage presented in [38]. The authors collected a snapshot of available 

documents, along with their access control lists, from a co rpo ra tion ’s Docushare server 

[20]. The documents were either publicly available or an ACL was specified for them. For 

the later case, we use the distribution of the sizes of user groups, as well as the distribution 

of the ACL entries (number of users and groups th a t are included in each ACL). However, 

we have no information about which users and groups belong to a specified ACL, or how 

many documents share a common ACL.

Based on the above observations, the ACL Generator works in two steps:

•  The first step refers to the creation of the user groups. We assume a predefined 

number of users and groups, each of which is represented by an ID. For each group, 

we pick the number of its members (maximum 50) following the distribution acquired 

from the above study. Also, we uniformly choose a set of user IDs as members of 

the specified group.

•  The second step refers to the creation of the ACLs and their mapping to document 

IDs. We assign a number of individual users and groups to each ACL according to 

the corresponding distribution of the survey. Since users organize and store their 

documents under directories, documents under the same directory tend to inherit 

the same ACL [38]. Thus, we map each ACL to a random number of documents 

(maximum 50) rather than to a single document.

After completing the steps above, each document ID has been associated with an ACL. 

Although the entries of each Generated ACL are both individual user and group IDs, we 

end up with each ACL being a set of user IDs because we replace each group ID with its 

members’ IDs. Moreover, we can change the group size distribution in order to study the 

behavior of our solution on different ACL datasets beyond those tha t are found in the 

above study.

A C L  G e n e ra to r  C o n fig u ra tio n . The basic parameters of the ACL Generator are 

the number of users, the number of groups, and the number of documents in the system
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• P aram eter D efau lt V a lu e ..

Users 200

Groups 131

Documents 50000

Table 6.1: Basic configuration parameters of the ACL Generator. We create 200 user IDs, 

131 group IDs, and 50000 document IDs.

(Table 6.1). Moreover, the documents are separated in three categories: a) private, when 

only accessed by their owner; b) shared, when a set of users and groups have access to 

them; and c) public, when all the users of the system can access them. In particular, 

22.7% of the documents are public, 0.56% are private, and 76.74% are shared. These 

values were selected based on the observations from the previous study.

E x a m in e d  C ases. We use three different ACL Generator cases to study the behavior 

of our solution. In each case, we keep the basic configuration parameters as shown in Table

6.1 and use different distributions for the group sizes. In particular, we examine: a) the 

Doc Server case, where we use the distribution of the survey; b) the Zipfian case, where we 

use the zipfian distribution with a param eter set to 0.7, 1.7, and 2.2; and c) the Uniform 

casey where the uniform distribution is used.

E x p e r im e n t P a ra m e te r s .  First, we study the results retrieved by the Planner. The 

MinObjs param eter of the clustering algorithm is fixed at 1 during all experiments, while 

Similarity and Threshold parameters are tunable. Therefore, we examine our solution for 

varying values of Similarity and Threshold in order to capture their effect on performance. 

Then, we study the behavior of our solution in a search engine.

6.2 Experimental Setup

For the overall evaluation of our solution we use a search engine, three nodes of a cluster 

of servers, and a standard collection of documents.

S ea rch  eng ine . Our search engine consists of a two-node Elasticsearch (ES) cluster. 

Moreover, we used a separate node to issue the search queries to the ES servers using
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up to 8 ES clients. One node is enough to accommodate 8 clients because each client 

just issues queries sequentially and waits for each query response before sending the next 

query.

N o d e  C o n fig u ra tio n . The experiments are conducted on three nodes of a  cluster 

running Debian GNU-Linux u6.0 squeeze, with the Linux kernel 2.6.32. Two of them 

are used as ES servers; Each server is equipped with two quad-core 2.33 GHz Intel Xeon 

£5345 processors, 4 GB RAM, an active gigabit E thernet port, and two 7200 RPM  SATA 

disks (one 500 GB and the other 1 TB). In each ES server node, the 2 GB of RAM are 

pinned to the ES server, while the other 2 GB are left for the system. Also, each ES server 

uses the 1 TB disk to store the indices. The third node includes one quad-core 2.33 GHz 

Intel Xeon £5345 processor, 2 GB RAM, an active gigabit E thernet port, and two 250 

Ό Β  7200 RPM SATA disks. This node is initially used to index the documents and then 

acts as the ES client.

D a ta s e t. In order to evaluate our solution in a real search engine we use the GOV2 

dataset from the TREC Terabyte track [19], but we only index a part of it. Specifically, 

we use the first 50000 documents which are approximately 820 M B . We choose to  index 

50000 documents because we want our dataset to be in compliance with the observations 

of the study. Our query set consists of 5000 standard queries [19] and the average number 

of terms per query is 2.8.

6.3 Planner Results

The main goal of this section is to  find the range for Similarity and Threshold parameters 

th a t strike a good balance between query performance and update cost. We also analyze 

and explain the behavior of our solution across different Similarity and Threshold values. 

In particular, we focus on the following different combinations of Similarity and Threshold 

values (Table 6.2):

•  Similarity a t 100% and Threshold set to 0, means th a t a large number of clusters is 

created each containing a single Document Family. For each Document Family, we 

create a single index.
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:S im ila rity T h re sh o ld E ffect

100% 0 each cluster contains one Document Family 

^  1 index per Document Family

60% 0 some clusters contain multiple Document Families 

1 index for non-empty intersections 

==> difference documents in a single index

60% > 0 some clusters contain multiple Document Families

=» 1 index for non-empty intersections

=> difference documents in a single index or private indices

0% O O 1 cluster includes all Document Families 

=>■ difference documents in private indices

Table 6.2: Effect of different combinations of Similarity and Threshold values.

•  Similarity a t 60% and Threshold set to 0, means th a t fewer clusters are created 

and some of them include multiple Document Families. These clusters may have a 

non-empty intersection. Hence, we create one intersection index for all Document 

Families in the cluster and one difference index for each Document Family difference.

•  Similarity a t 60% and non-zero Threshold, means th a t clusters may have a non

empty intersection as in the previous case. However, the documents of each Docu

ment Family difference may be duplicated to one or more indices.

•  Similarity a t 0% and infinite Threshold, means th a t a single cluster is created includ

ing all Document Families. The documents of each Document Family are indexed 

by the private indices of each user tha t belongs to the particular Document Family.

The basic information obtained from the M apper refers to the average number of 

indices that a user has access to, the average number of indices in which a document is 

indexed, and the total number of indices. In order to explain these results, we leverage 

the information about the number and the size (measured by count of documents) of the 

clusters.

The results of the Clusterer are affected by the chosen Similarity value, while the 

results of the M apper are affected by both the Similarity and the Threshold value. Also,
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Average Number of Indices
Per User

Figure 6.1: Average number of indices th a t a user needs to  search every time he issues a 

query for varying values of Threshold and Similarity.

.three different types of indices are created: a) private, which is only accessed by one user; 

b) shared, which is accessed by a specific set of users; and c) public, which is accessed by 

all users.

6.3.1 Indices Per User

First, we examine the average number of indices th a t a user needs to access when he 

issues a query. The average number of indices per user affects the query response time 

and gives an explanation for the results obtained from a search engine in the following 

section. In general, the lower the number of indices accessed, the better query response 

time we expect on the search engine.

In Figure 6.1, we depict how this number changes across different values of Threshold 

and Similarity. The first observation is th a t for non-zero Threshold the average number of 

indices accessed per user drastically decreases. In particular, increasing Threshold from 

0 to 500 almost halves the average number of indices accessed per user. This is because 

higher values of Threshold lead to the duplication of more and more documents in the 

private index of each user. Hence, each user tends to  only access his private index as 

Threshold increases.

Another observation is th a t the average number of indices accessed per user is mini

mized for the same Similarity value across several Threshold values (0, 500, and 1500). 

The question th a t arises is why we observe this decrease for Similarity values close to 60%, 

and why the average number of indices accessed per user increases again when moving to
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lower Similarity values.

To answer the initial question, it is necessary to examine how the Clusterer and the 

Mapper work under different Similarity values (focusing on 100% and 0%). Figure 6.2 

depicts the Clusterer results across different Similarity values: a) the number of created 

clusters, and b) the average number of documents included in each cluster. As Similarity 

decreases from 100% to 0%, the Clusterer creates fewer and fewer clusters, while the 

average number of documents included in each cluster increases. Similarity a t 100% means 

tha t all documents in a cluster have the same ACL. Hence, each cluster only contains one 

Document Family and has an empty intersection. On the other hand, a Similarity value 

close to 0% means th a t documents with dissimilar ACLs can be part of the same cluster, 

and hence, only one cluster containing all the documents is created. Thus, with a high 

"probability, this cluster has an empty intersection.

The absence of intra-cluster intersection for 0% and 100% Similarity leads the M apper 

to treat each Document Family as a difference. This means th a t we index the documents 

of each Document Family based on the Threshold value. Therefore, for Threshold set 

to 0, we create a single index for the documents of each Document Family in a cluster. 

For infinite Threshold, the same documents of each Document Family in a cluster are 

indexed by the private index of each user in the ACL of the Document Family. For 

intermediate Threshold values, the M apper indexes the same documents of each Document 

Family either in a single index, or in the private indices of each user in the ACL of the 

Document Family. This depends on whether the number of documents in a Document 

Family multiplied with the number of users in its ACL is higher than the Threshold value 

or not.

Despite the different clustering output, the M apper gives the same results for the 

two extreme Similarity values (0% and 100%) across different Threshold values. This 

is because each Document Family is treated as difference for both Similarity values and 

produces the same index mapping results. However, both the Clusterer and the Mapper 

results differ for Similarity values between 0% and 100% leading to the reduction of the 

average number of indices per user.

Consequently, in order to answer the first part of our initial question, which is why we 

observe the average decrease for Similarity close to 60%, we compare the content of the 

clusters between the 100% and 60% Similarity. When Similarity is 100% and Threshold
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Figure 6.2: We examine the to tal number of clusters and the number of documents per 

cluster across different Similarity values. The total number of clusters decreases and the 

to tal number of documents per cluster increases as the Similarity drops from 100% to 0%. 

"The results are the same across different Threshold values as Threshold only affects the 

partitioning and not the clustering phase.

is 0, the number of clusters is large and each cluster contains a single Document Family. 

As we create one index for each Document Family, the number of indices is equal to the 

number of clusters. For this reason, each user needs to access a large number of indices as 

the documents are spread in many indices. On the contrary, as Similarity gets values lower 

than 100%, the Clusterer creates fewer and fewer clusters, while more and more Document 

Families (and documents) are included in each cluster (Figure 6.2). Also, many clusters 

contain Document Families whose ACLs have a non-empty intersection. As the Mapper 

creates a single index for each intersection, all the documents of a cluster are indexed by 

tha t index. Hence, the users tha t belong to intersections only access one index in order 

to find the documents included in a cluster and the average number of indices per user 

decreases. Also, the intersections are responsible for the decrease of the average number 

of indices per user a t 60% Similarity for Threshold a t 500 and 1500.

However, the average decrease a t 60% Similarity does not hold for Threshold values 

close to infinity. For these values, the average number of indices per user is higher for 60% 

Similarity than for 100%. An 100% Similarity value combined with an infinite Threshold 

means tha t each each cluster contains a single Document Family. Due to the infinite 

Threshold value, each document is duplicated to the private index of each user in the 

ACL of the Document Family. Therefore, the total number of indices is limited to the

54



number of the users in the system and each user only accesses his private index (Figure 

6.5(d)). On the contrary, when the Similarity value is 60%, some of the clusters have a 

non-empty intersection. Moreover, each document of each difference is indexed by the 

private index of each user in th a t difference. Hence, the to tal number of indices is the 

sum of the private indices plus the indices th a t are created due to the intersections, and 

each user accesses not only his private index but also some of the intersection indices.

The second part of our question, which is why the average number of indices per user 

increases for Similarity values lower than 60%, is answered if we understand how the 

Similarity value affects the homogeneity of the ACLs within each cluster. Low Similarity 

values mean th a t the likelihood of a non-empty intersection in a cluster is small. Hence, 

the users cannot benefit from the indices of intersections and the average number of indices 

"per user increases again.

In general, as we decrease Similarity from 100% to 60%, the average number of in

dices per user decreases for Threshold in range 0-1500. This holds because documents 

of different Document Families are indexed by a single index due to  the intra-cluster in

tersections. Hence, the users th a t belong to the intersections access fewer indices than 

in the case where Similarity is 100% and one index is created for the documents of each 

Document Family. Moreover, when the Threshold value increases, the users tha t belong 

to the differences or to Document Families th a t are treated as differences access fewer 

indices because many documents are indexed by the private index of each user. Thus, for 

Threshold in range 0-1500, the average number of indices per user decreases as Similarity 

drops from 100% to 60%.

6 .3 .2  In d ices P er  D o c u m e n t

In Figure 6.3, we depict how the various Threshold values affect the average number of 

indices in which a document is indexed (document duplication). We observe tha t when 

the Threshold is set to 0, the document duplication is limited as each document is indexed 

by at most two indices. For a cluster with a non-empty intersection, each document is 

indexed by the intersection index and in the index of the difference. For a cluster with 

an empty intersection, each document of the cluster is indexed by a single index. On the 

contrary, for infinite Threshold value, the document duplication significantly increases as
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Average Number of Indices
Per Document

Figure 6.3: Average number of indices th a t each document is indexed for varying values 

of Threshold and Similarity.

_lhe documents of each Document Family are indexed by the private index of each user in 

its corresponding ACL. However, for low Threshold values, the average number of indices 

containing a document does not exceed the 15 indices.

Another observation is th a t the document duplication decreases as Similarity decreases 

from 100% to 60%, where it gets its minimum value. Then, the average starts increasing 

again for Similarity values lower than 60%. For high Threshold values (1500 and infinite) 

and Similarity value a t 60%, the m ajority of the clusters have a non-empty intersection. 

The number of users in each intersection is large and the number of users in each differ

ence is small. Thus, each document appears in a small number of private indices, each 

corresponding to a user of the difference. This means th a t the number of duplicates is 

limited. On the contrary, the number of indices in which each document is indexed is 

higher when the Similarity value is different from 60%. In these cases, either all or the 

most of the documents of a cluster are indexed by private indices. Hence, the document 

duplication decreases for Similarity values close to 60%.

For low Threshold values (0 and 500), the results are different from those described 

above. More precisely, the average number of indices per document slightly increases as 

Similarity drops from 100 down to 60%. In case where Similarity is 100% and Threshold 

is set to 0, the documents of each Document Family are indexed by a single index. Thus, 

we have no duplicates. On the contrary, the number of duplicates raises when Similarity 

reaches 60%, as each document of each Document Family is indexed by at least two 

indices. In particular, it is indexed by the index of the intersection and by the index of
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the difference. In the case where Threshold is set to 500 the average number of indices per 

document does not significantly change across different Similarity values. Nevertheless, 

the increase of the duplicate documents is insignificant for these low Threshold values.

In general, the average number of indices per document increases as the Threshold 

value increases. For infinite Threshold, we get the highest average number of indices per 

document because each document is indexed by the private index of each user th a t is 

allowed to read it. On the contrary, for Threshold set to 0, we get the lowest average 

number of indices per document because each document is indexed by at most two indices 

(difference index and /or intersection index). For the other Threshold values, the aver

age number of indices per document increases insignificantly in comparison to the latter 

case. Also, as Similarity decreases from 100% to 60% the average number of indices per 

'document decreases for Threshold values over 500, while for lower Threshold values it 

insignificantly increases.

6 .3 .3  Q u e r y /U p d a te  T rad e-o ff

So far, we studied the average number of indices per user and per document, each of 

which is related to the query performance and the update cost respectively.

The previous figures indicate tha t a 60% Similarity value approximately gives the best 

results regarding the average number of indices per user and per document. Whenever 

this is not the case, the increase in the average number of indices per user and the average 

number of indices per document is insignificant. Hence, we keep the Similarity fixed at 

60% and change the Threshold.

Figure 6.4 depicts the trade-off between query performance and update cost across 

different Threshold values. While the Threshold value grows, we observe th a t the average 

number of indices per user decreases and the average number of indices in which each 

document is indexed increases. For Threshold set to 0, we get the highest average number 

of indices per user, as each user has access in many indices, and the lowest average number 

of indices per document, as each document is indexed by a single index. On the contrary, 

for Threshold set to oo, we get the lowest average number of indices per user because 

each user only accesses his private index. However, in this case we get the highest average 

number of indices per document because each document is indexed by the private index

o
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Figure 6-4: We depict the trade-off between the query performance and the update cost 

for a given Similarity value and across different Threshold values.

^of each user tha t has access to  it. Hence, in the first case (Threshold is 0), we expect to 

get the worst search performance and the lowest maintenance cost, while in the second 

case (infinite Threshold), we expect to  get the best search performance and the highest 

maintenance cost.

It is worthwhile to  note th a t there is a point between 1500 and infinite Threshold value 

where even though we increase the Threshold value, the average number of indices per 

user and per document does not change. At this point, every shared document (except 

the public ones) is indexed by the private index of each user th a t can read it. Hence, each 

user only accesses his private and the public index. Public documents are only indexed by 

the private index of each user after the Threshold value becomes higher than  the product 

users  x  number o f  public documents.

Overall, Threshold values in the range between 500 and 1500 seem to strike a good 

balance between the number of indices per user and the number of indices per document.

6.3.4 Total N um ber o f Indices

Figure 6.5 illustrates the to ta l number of indices, which is affected by the way we treat 

each difference, for various Threshold values. As Threshold increases, the to tal number 

of indices decreases because the documents of the most differences are indexed by private 

indices, and hence, fewer and fewer indices are created due to the differences indexed 

by a  separate single index. Moreover, we observe th a t the number of indices due to  the 

intra-cluster intersections increases for a given Threshold and Similarity values around
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Figure 6.5: We examine the total number of indices across different Similarity and Thresh

old values. The total number of indices created decreases as Threshold value increases. 

The total indices is the sum of the indices due to  the intra-cluster ACLs intersections (in

ter indices), the single indices th a t are created from each difference of each intra-cluster 

intersection (diff indices), and the private indices plus the indices which are created from 

Document Families th a t are treated as differences (other indices).

60% because many clusters contain Document Families with similar ACLs.
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Indexing Elapsed Time

Figure 6.6: We measure the indexing time for different Similarity and Threshold values. 

As Threshold increases, each document is indexed to more and more indices, and hence, 

the total indexing time increases.

6.4 Search Engine Results

In this section, we compare the overall search engine performance for different Planner 

configurations from three different perspectives: a) indexing time; b) disk space overhead; 

and c) query response time. Our measurements show th a t different Planner configurations 

lead the search engine to different levels of query performance and update cost. Therefore, 

different performance needs are met by using the appropriate Similarity and Threshold 

values.

6.4.1 Indexing Time

Indexing time refers to the total delay to index the documents. Although our document 

set is composed of a standard number of documents (50000), the total indexing time differs 

across the various Planner configurations. Different Planner configurations indicate th a t 

some documents are indexed by more than one index, depending on the Similarity and 

the Threshold value. Thus, the more documents indexed multiple times, the more time 

is needed to complete the indexing process.

In Figure 6.6, we depict how the various Planner configurations affect indexing time. 

As we move towards higher Threshold values, the indexing time increases. However, for 

Threshold set to  0, the indexing time is comparable between 100% and 60% Similarity 

due to  the limited document duplication across different indices (13.36 min and 16.2 min
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Space Consumed by Indexes

Figure 6.7: We compare the disk space overhead across different Similarity and Threshold 

values.

respectively). On the contrary, for infinite Threshold, we observe a remarkable increase 

in the indexing time a t 305.75 min. In this case, each document is indexed by the private 

index of each user th a t has access to it, and hence, the indexing time significantly increases 

due to  the large number of duplicate documents.

Consequently, the value of Threshold is an im portant factor th a t affects the indexing 

time: higher values mean more duplicates across multiple indices, and hence higher in

dexing time. However, the Threshold value not only affects the indexing time but the 

disk space overhead as well.

6.4.2 Disk Space Overhead

In general, it is im portant to keep the disk space consumption as low as possible. The 

disk space consumption is related to the number of indices in which each document is 

indexed, and hence, it grows as the Threshold value increases.

In Figure 6.7, we present the disk space consumption across different Planner config

urations. As expected, for higher Threshold values the disk consumption grows, as the 

same document is indexed by more than one index. The infinite Threshold value leads 

to the highest disk space consumption, as each document is indexed by the private index 

of each user th a t can read it. However, setting the Threshold to a non-infinite value 

does not considerably affect the disk space consumption in comparison to a value of 0. 

In particular, when the Threshold is set to 0, the disk space consumption is comparable 

between the cases where Similarity is 100% and 60%. It is close to the size of the original
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size of documents, which is 820 MB. When Threshold is 500 and 1500, the disk space 

consumption grows by a factor of 2.5 and 4.2 respectively. Finally, for infinite Threshold, 

the disk space consumption increases by a factor of 29.2.

The disk space consumption can also aifect query performance, as the size of the 

indices is closely related to the resident set during query execution. For instance, if the 

to tal size of indices is small enough to  fit in memory, then the search engine serves queries 

w ithout performing costly disk accesses. On the contrary, if the to ta l size of indices is 

larger than a\failable memory, then only a part of it is kept in memory. Hence, the search 

engine will access the disk with high probability in order to retrieve all the indices tha t 

are needed to  serve a query.

"6.4.3 S earch Performance

After examining the indexing time and the disk space consumption, we investigate the 

search performance across different Planner configurations and number of clients. The 

search performance is evaluated by measuring the query latency a t the search engine, 

from the time it receives a query to  the time it sends the answer to the client.

Initially, we present the median of query response times. We prefer the median and not 

the average because the median more accurately reflects the most representative value of a 

set of observations (query response times in our case). In general, the average is computed 

by adding all the observations and dividing by the number of the observations. On the 

contrary, the median is computed by arranging all the observations from lowest to highest 

value and picking the middle one. This means th a t the median is the value for which 50% 

of the observation are higher, and 50% smaller than this value. Hence, in cases where the 

set of observations contains an extreme value tha t differs greatly from the other values, 

the median is a better indicator of the most representative value of the set of observations.

When evaluating the search performance, we also present the 90th  percentile of query 

response times, which reflects the value for which 90% of the observation are smaller and 

10% are higher than this value. Moreover, we present both the median and the 90th  

percentile response times across different number of clients for two different cases. In the 

first case, ES servers use the cache when serving the incoming queries, while in the second 

case, they do not use the cache.
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Figure 6.8: We depict the median query response times across different Planner configu

rations and number of clients.

The rationale of this strategy becomes clear by examining the size of the working set 

(Figure 6.7). In most Planner configurations, the largest part of the working set fits in 

memory. Thus, we experimented with both cases (with and without cache) in order to give 

a clearer view of the search performance. In addition, when the indexing process finishes 

and before the search engine starts serving queries, we optimize the indices in such a way 

tha t each index is stored in a single file on disk (Lucene uses Logarithmic-Merge [25] and 

a single index may be more than one file on the disk).

The first observation from the experiments is tha t the median query response time, 

across different Planner configuration parameters, is as one might expected: the query 

response time increases in the cases where a large number of indices is accessed per 

user, and hence per query (Figure 6.8(a)). For instance, for 100% Similarity and infinite 

Threshold, we get the lowest query response time because only one index is accessed 

per user. According to  Planner results, as Threshold decreases each user accesses more 

indices. Thus, we observe tha t query response time increases for low Threshold values.

Not using the cache implies tha t a query is served from the disk. After the execution 

of each query, we flush the cache. Hence, the query performance degrades due to  the 

large number of disk seeks th a t is needed in order to  fetch the corresponding indices. For 

Threshold set to  0 and 100% Similarity, the number of indices per user is high enough
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to substantially increase the query response time over 700 ms. For higher Threshold 

values and 60% Similarity, the query response time is reduced because the number of 

indices per user decreases. In particular, the query response time is about 200 ms for 

60% Similarity and Threshold 500. However, the best search performance is achieved for 

infinite Threshold as each user needs only to access his private index.

On the other side, using the cache implies th a t there is a possibility to serve a query 

from the cache rather than the disk. This is the case where the indices required to serve 

the query are already in memory because the search engine used them  to serve a previous 

query. However, this possibility depends on the size of the working set. In Figure 6.8(b), 

we present the corresponding response times in the case we use the cache. As expected, 

the search engine performs better than the case without the cache. In particular, the 

" response time decreases from hundreds to tens of milliseconds. However, for non infinite 

- Threshold, the trend between different Planner configuration remains almost the same as 

in the case w ithout the cache.

Contrary to what one might expect, we observe th a t the median response time for 

infinite Threshold value is higher than tha t of lower Threshold values when we use the 

cache. A reasonable explanation is th a t the working set does not fit in memory and the 

search engine satisfies the majority of the queries from the disk. Even though the number 

of indices is limited to the number of users and each query involves a single index, the 

working set size is significantly higher than th a t of lower Threshold values. Hence, the 

query response times are similar to those without the cache (Figure 6.8(a), 6.8(b)).

Figure 6.8 also visualizes the sensitivity of various number of clients to the median 

query response time. The median response time is comparable across different number of 

clients (1 to 8). When we use the cache, the median response time ranges between 18 ms 

and 82 ms and without cache it ranges between 95 ms and 800 ms.

The 90th percentile of query response times are also comparable across different num

ber of clients (Figure 6.9(a), 6.9(b)). In particular, when we activate cache, the 90th  

percentile ranges between 50 ms and 120 ms while without the cache it ranges between 

100 ms and 1400 ms.

Figure 6.10(a) illustrates the histogram of the query response times without the cache. 

More precisely, we observe tha t Similarity values set to 60% or 100% combined with 

Threshold set to 0, the response times for the majority of the queries exceed 300 ms.
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Figure 6.9: We depict the 90th percentile query response times across different Planner 

configurations and number of clients.
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Figure 6.10: Histogram of query response times across different Planner configurations.

However, for higher Threshold values, the response time for the m ajority of the queries 

ranges between 50 ms and 300 ms. When we use the cache, the results show tha t most 

queries have a response time around 25 ms (Figure 6.10(b)). However, for infinite Thresh

old, the response time for the majority of the queries ranges between 75 ms and 125 ms.

An alternative view of the above information is depicted in Figure 6.11. A cumulative 

distribution function of query response times gives an estimation of the fraction of queries
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Figure 6.11: CDF of query response times.

executed in less than a certain amount of time. If we use the cache, the 89% of the queries 

take less than 50 ms when the Similarity and the Threshold value is set to 60% and 500 (or 

1500) respectively (Figure 6.11(b)). For Threshold set to  0 and 60% Similarity, we observe 

th a t 74% of queries take less than 50 ms. For Threshold set to  0 and 100% Similarity, the 

63% of queries take less than 50 ms. On the contrary, for infinite Threshold, this fraction 

hardly reaches the 16% as most of the queries are satisfied from the disk rather than the 

cache.

Figure 6.11(a), illustrates the fraction of queries executed in less than a certain amount 

of time without the cache. The fraction of the queries th a t take less than 200 ms is 42.6% 

when the Threshold is 500 and the Similarity is 60%. For higher Threshold values, the 

96% of queries is completed in less than 200 ms, while for Threshold set to 0 combined 

with 60% or 100% Similarity, the fraction of queries th a t take less than 200 ms is barely 

1.96% and 0.3% respectively. These queries take longer because the average number of 

indices per user is high, and hence more indices are fetched from the disk.

Finally, we examine the search engine throughput for different Planner configurations. 

R ather than measuring throughput for both cases (with and without cache), we focus on 

the case with cache. We assume th a t in general, the search engine makes extensive use of 

the cache and uses the disk when needed.

Figure 6.12 shows the effect on throughput of various Similarity and Threshold values
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With Caches

Figure 6.12: We compare the search throughput across different Planner configurations 

and number of clients.

across different number of clients. In each case, we observe th a t increasing the number 

of clients from 1 to 8 leads to  higher throughput. For infinite Threshold, the sequential 

throughput is 11 q /s  but it increases by a factor of 7.5 for up to 8 clients. W hen Threshold 

is either 500 or 1500, the throughput is 30 q /s  and increases by about a factor of 6, as we 

increase the number of clients from 1 to 8. W hen the Threshold is set to 0 and Similarity 

is 100%, the throughput is 15 q /s  and increases by about a factor of 5.5. At last, when 

the Threshold is set to 0 and Similarity is 60%, the throughput is 18 q /s  and increases 

by about a factor of 5.7.

In general, the throughput increases linearly as the number of clients increases. How

ever, the highest throughput is achieved for Threshold values around 500 and 1500 and 

the lowest for infinite Threshold.

6.5 Exploring Different ACL Synthetic Datasets

The ACL Generator uses the observations on access control usage presented in a study 

to  create the synthetic ACLs. Given a number of users, groups and document IDs, it 

creates user groups by picking the number of their members (maximum 50) following 

the distribution acquired from the study (Doc Server distribution). Then, the Generator 

uniformly chooses a set of user IDs as members of a specified group. Finally, it assigns 

a number of individual user and group IDs to each ACL according to the corresponding

6 7



Members Per Group 
(Max 50 members)

Figure 6.13: We depict the distribution of members per group when using different probal- 

itity  distributions for the size of each group. W hen using the Uniform distribution, the 

groups tend to have many members. For the Zipfian distribution, only a small fraction 

of the groups has a large number of members, and this fraction decreases as the value of 

param eter a increases.

distribution of the survey.

To experiment with different synthetic ACL datasets, we repeat the same procedure, 

but this time we use different probability distributions for the size of each group. In 

particular, we use the Zipfian distribution for different values of param eter a (0.7, 1.7, 

and 2.2) as well as the Uniform distribution. The maximum size of a group is 50 members, 

and the basic ACL Generator parameters are 200 users, 131 groups, and 50000 documents. 

Both the maximum size of a  group and the basic ACL Generator parameters are the same 

during the experiments with different probability distributions.

G ro u p  M e m b e rsh ip  a n d  A C L s. Figure 6.13 depicts the distribution of members 

per group across the usage of different probability distributions for the size of each group. 

W hen using the Uniform distribution, groups contain more members than in the case we 

use the Zipfian or the distribution of the study (Doc Server). For the Zipfian distribution 

as the value of param eter a increases, groups tend to contain fewer members and only 

a  small fraction of groups contains a large number of users. In comparison to the Doc 

Server case, the Zipfian distribution with param eter a set to  1.7 and 2.2 decreases group 

sizes, while group sizes increase with param eter a set to  0.7.

Using different probability distributions for the group sizes, we indirectly change the 

size of the ACLs (count by number of users included). Figure 6.14 depicts how the average
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Figure 6.14: We depict how the size of the ACLs is affected by the different probalitity 

distributions used for the size of each user group in two different cases. The ACLs of the 

public documents are not affected by the group sizes. Thus, we present the results for 

two different cases to give a clearer view of how the ACL sizes change. In the first case, 

we take into account the ACLs of the public documents (a), while in the second we omit 

them.

number of users included in ACLs changes across different probability distributions in two 

different cases. In the first case, we take into account the ACLs of the public documents 

even though they are not affected by the group sizes (Figure 6.14(a)). The size of the 

ACLs of the public documents is fixed to 200 users, which is the number of all users. In 

the second case, we exclude the ACLs of the public documents and only keep those th a t 

are affected by the group size in order to give a clearer estimation of how the ACL sizes 

change (Figure 6.14(b)). The results in both cases follow the same trend: a) Uniform 

distribution creates ACLs tha t include many users because in this case groups included in 

ACLs also have many members, b) when using the Zipfian distribution, the ACLs include 

fewer users as param eter a increases from 0.7 to 2.2, and c) in comparison to the Doc 

Server distribution, the Zipfian distribution with parameter a set to 1.7 and 2.2 decreases 

the average number of users in the ACLs, while the Zipfian distribution with parameter 

a set to 0.7 increases the average.

A v erag e  N u m b e r  o f  In d ice s  P e r  U se r. As already explained, the different proba-
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Figure 6.15: We depict how the average number of indices per user is affected by the 

different probalitity distributions used for the group sizes. The average number of indices 

per user is higher for the Uniform distribution. As the value of param eter a of the Zipfian 

distribution increases, the average number of indices per user decreases.

bility distributions affect the group sizes. Group sizes in their tu rn  affect the probability 

for a user to  belong in multiple ACLs, and hence the average number of indices th a t a 

user needs to access when he issues a query.

In Figure 6.15, we examine the average number of indices per user across different 

values of Similarity and Threshold when using different probability distributions for the 

group sizes. The first observation is th a t the results follow the same trend as in the case
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we use the distribution of the survey for the group sizes (subsection 6.3.1):

•  Similarity 0% and 100% give the same results across different Threshold values 

despite the different clustering output. Similarity 100% creates many clusters each of 

which contains a single Document Family, while Similarity 0% creates a single cluster 

which contains all Document Families. However, in both cases each Document 

Fam ily  is treated with the same way (as difference) and the M apper produces the 

same results.

•  The average number of indices per user is minimized for a Similarity value lower 

than 100% across several Threshold values (0, 500, and 1500). For Similarity values 

lower than 100%, clusters may contain Document Families whose ACLs have a non

empty intersection. As the M apper creates a single index for each intersection, all 

the documents of a cluster are indexed by th a t index. Hence, the users th a t belong 

to intersections only access one index in order to  find the documents included in a 

cluster and the average number of indices per user decreases.

•  As Threshold value increases, the average number of indices per user decreases 

because many documents are indexed by the private index of each user. Hence the 

users tha t belong to the differences or to Document Families th a t are treated as 

differences access their private index and fewer shared indices.

However, the average number of indices per user is higher for the Uniform and the Zipfian 

distribution with param eter a at 0.7 than for the distribution of the survey. On the 

contrary, for the Zipfian distribution with param eter a a t 1.7 and 2.2, the average number 

of indices per user is lower than th a t of the distribution of the survey, which reaches the 

148 indices for 100% Similarity and zero Threshold.

We observe tha t the Uniform distribution achieves the highest average number of 

indices per user, which reaches the 334 indices for 100% Similarity and zero Threshold, 

while the Zipfian with a param eter set to 2.2 achieves the lowest, which reaches the 34 

indices. When we increase the value of param eter a, the average number of indices per 

user decreases because the probability of a user to belong in many groups, and hence in 

many ACLs, is lower . This is because most groups have a small number of members and 

the members are chosen uniformly.
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Another im portant observation is tha t the Similarity value which minimizes the aver

age number of indices per user decreases from 60% to 40% as the value of param eter a 

increases. Moreover, the higher the value of parameter a, the lower the contribution of 

the Similarity param eter to the decrease of the average number of indices per user, for a 

given Threshold value.

A v erag e  N u m b e r  o f In d ices  P e r  D o c u m en t. In Figure 6.16, we examine the 

average number of indices per document. The results follow the same trend as in the case 

we use the distribution of the survey for the group sizes (subsection 6.3.2):

•  The average number of indices per document increases as the Threshold value in

creases. For infinite Threshold, we get the highest average number of indices per 

document because each document is indexed by the private index of each user th a t 

he is allowed to read it. On the contrary, for Threshold set to 0, we get the lowest 

average number of indices per document because each document is indexed by at 

most two indices (difference index and /or intersection index). For the other Thresh

old values, the average number of indices per document increases insignificantly in 

comparison to the la tter case.

•  At the Similarity value which minimizes the average number of indices per user, the 

average number of indices per document decreases for Threshold values over 500, 

while for lower Threshold values it insignificantly increases.

However, we observe tha t the average number of indices per document is higher for the 

Uniform and the Zipfian distribution with parameter a a t 0.7 than for the distribution 

of the survey. This is because each document can be read by large number of users (as 

we have large ACLs), and hence for a high Threshold value each document is indexed 

by a large number of private indices. On the contrary, for the Zipfian distribution with 

parameter a a t 1.7 and 2.2, the average number of indices per document is lower than 

tha t of the distribution of the survey, which reaches the 60.04 indices for 100% Similarity 

and infinite Threshold. In this case, the ACLs are smaller and fewer document duplicates 

are created.

We observe tha t the Uniform distribution achieves the highest average number of 

indices per document, which reaches the 78.94 indices for 100% Similarity and infinite 

Threshold, while the Zipfian with a parameter set to 2.2 achieves the lowest, which reaches
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Figure 6.16: We depict how the average number of indices per document is affected by the 

different probalitity distributions used for the group sizes. The average number of indices 

per document is higher for the Uniform distribution. As the value of param eter a of the 

Zipfian distribution increases, the average number of indices per document decreases.

the 51.78 indices. Also, as the value of param eter a increases, the average number of 

indices per document decreases for high Threshold values because the ACLs include fewer 

number of users, and hence each document is indexed by fewer private indices.

Another im portant observation is th a t the reduction of the average number of indices 

per document is more acute for the Uniform and Zipfian distribution with low values of 

param eter a. This holds for the Similarity value tha t minimizes the average number of
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indices per user and infinite Threshold. A reasonable explanation is th a t a t this Simi

larity value, the differences in each cluster contain few users, and hence the documents 

corresponding to differences are indexed by few private indices. On the contrary, for 

Similarity 100% and infinite Threshold, each document is indexed by a large number of 

private indices as each ACL in the cluster includes many users.

6.6 Summary

In order to evaluate our solution, we implemented an ACL Generator th a t creates syn

thetic ACLs taking into account the observations on the access control usage presented in 

a previous study. The experimental results show the trade-off arising between the query 

performance and the maintenance cost across different Similarity and Threshold values.

For Threshold set to  0 and 100% Similarity, we get the highest query response time 

because in this case the number of indices accessed per user is high. However, the indexing 

time and the disk space consumption are the lowest of all other cases. W hen Similarity 

is 60% and Threshold is set to  0 or higher, we get better query response time because 

the number of indices per user decreases due to the intersection of the ACLs within the 

clusters. On the contrary, the indexing time and the disk space consumption slightly 

increase because documents are duplicated across a small number of indices. For infinite 

Threshold, one might expect to get the lowest query response time, as each user only 

accesses one index. However, the query response time is higher than in the other cases 

when we leverage the cache. In this case, the working set is larger than in the other cases 

and does not fit in memory. Hence, the search engine satisfies the majority of the queries 

from the disk. Moreover, for infinite Threshold we get the highest indexing time and disk 

space consumption due to the high number of duplicates across multiple indexes.

To examine more synthetic ACL datasets, we conducted additional measurements 

using different distributions for the size of user groups in the ACL Generator. The Planner 

results follow the same trend as in the case we use the distribution from the previous study. 

However, the average number of indices per user and per document is higher or lower than 

th a t of the distribution from the study for the different examined distributions.

Taking into account the presented results, this chapter gives many insights on how to
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tune such an indexing workflow scheme depending on the performance needs and keep 

balance between maintenance cost and query performance.
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C h a p t e r  7

R e l a t e d  W o r k

7.1 Desktop and Enterprise Search

7.2 M etadata Search

7.3 Full-Text Search in Social Networks

7.4 Secure D ata Storage

7.5 Summary

Full-text search has been a topic of great interest for the last few years. However, 

researchers turned their attention to the privacy issues arising when the full-text search 

engine operates in a multi-user environment. Therefore, a notable amount of research has 

been devoted also in this area.

This chapter revisits prior research focused primarily on desktop and enterprise search 

engines by capturing their benefits as well as their limitations. Furthermore, we present 

existing research on secure full-text search in social networks as they support multiple 

users and the privacy issues referred in the previous chapter still hold. Finally, we review 

approaches th a t provide secure data  storage.
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Much of the focus of recent research at the concern of full-text search has been on providing 

privacy, keeping low the maintenance cost and increasing the query performance. While 

privacy protection is necessary, the performance of a full-text search engine is also very 

im portant. However, these are two opposing principles, and it is difficult to achieve both.

7.1.1 Per User Indices

Google ’s Desktop Search tool [1] is one of the most popular desktop search engines. It 

was designed in order to bridge the gap between the increasing amount of stored data  

and real-time searching on a single-user machine. When used in multi-user environments 

it creates either one index per user or a system-wide index. In the first case, each index 

includes all the documents th a t a particular user is allowed to read. Hence, when a user 

submits a query, it is addressed to his private index. In the later case, all users’ documents 

are indexed by a system-wide index taking no account of their owner. However, this index 

needs to be created and accessed only by users with administrative rights, posing severe 

privacy threats. Therefore, the above limitation makes this case unsuitable for multi-user 

environments [41].

Soon after Google Desktop Search, other desktop search tools appeared as well, such 

as Yahoo! Desktop Search [9] and Copernic [8]. Both of them bear a strong resemblance 

to Google Desktop Search in the way they operate in multi-user environments. More 

particularly, they integrate access control during indexing time by ensuring tha t each 

user has a distinct index. Thus, in each user’s index are only indexed documents th a t he 

is allowed to  read.

Creating one index per user implies th a t we have a completely safe way of organizing 

the user’s documents into indices. Since each user only searches among documents tha t 

he is allowed to read, each query result is restricted to those documents. Hence, users 

cannot infer the content of documents th a t they are not allowed to read. In this approach, 

the query performance is high as only one index has to be searched per query and there 

is no additional cost to apply any access control.

Despite the privacy protection provided by the above approach, some performance 

issues arise. The fact th a t a single document can be readable by multiple users and

7-1 D esktop and Enterprise Search

77



all documents readable by a user are indexed by his private index leads to  document 

duplication across two or more indices. Document duplication makes the full-text search 

engine suffer not only from disk consumption, but also from costly maintenance. The 

number of indices for a document is equal to the number of users th a t are allowed to 

read it. This also holds for updates. Whenever a document is updated, the changes are 

also applied to all indices in which this document has been indexed. Furthermore, this 

issue becomes more acute as the rate of documents th a t are readable by many or all users 

increases.

7.1.2 Shared Index

The need for overcoming the limitations derived from the one index per user approach led 

to  the  use of a single system-wide index. In this approach, all documents are indexed by 

the same index and the access control information is taken into account before handing 

in the results of a query. Hence, the extra indexing and updating cost are avoided since 

each document is indexed only once.

Apple’s Spotlight [2, 39], the Mac OS indexing and retrieval facility, uses such an ap

proach. It provides full-text search for separate user accounts by extracting and indexing 

m etadata in a single system-wide index, while respecting the ownership of the documents. 

Whenever a search query arrives, Spotlight computes the list of documents matching the 

query and then it filters this list. Filtering is performed by checking the document per

missions and removing from the result any documents tha t the user is not allowed to 

read. A possible drawback of Spotlight is tha t it returns results in lexicographic order 

and does not employ any relevance ranking algorithm. This, eliminates privacy threats 

based on T F / I D F  ranking algorithms, but also hampers users to find fast the most rel

evant matching documents. Indeed, a non ranking approach is not always appropriate, 

especially when the number of documents is large [6].

A similar approach is implemented by Microsoft [7]. In particular, the search engine 

identifies users and groups th a t are granted or denied access to each document by adding 

authorization information (Access Control List) to each document. Thus, whenever a user 

submits a query, the list of matching documents is computed and filtered by taking into 

account the documents’ Access Control Lists. Accordingly, the query results are restricted
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to the documents that a user is allowed to read. In addition, regarding its ranking model, 

the Microsoft's search engine offers several ranking models. However, the default model 

is based on a T F / I D F  scoring function.

Google supports enterprise search with the Google Search Appliance [12]. Its main 

purpose is to provide fast, relevant search results. Google Search Appliance creates access 

credentials provided by the system administrator in order to index users7 documents. At 

query execution time the index is searched and a list of ail matching results is retrieved. 

Prior to returning the final result list to the user it removes the documents that do not 

comply with the corresponding credentials. The result ranking is based on a T F / I D F  

style ranking algorithm [30]. However, it can be influenced by some features provided, 

such as self-learning scorer1.

While a single system-wide index reduces the disk space consumption and the update 

cost, it adds an extra cost at query execution in order to satisfy the access control re

strictions. In addition, it can pose serious privacy threats; Ranking algorithms, based on 

T F / I D F  scoring function in conjunction with result filtering after computing the rele

vance score of matching documents, permit to a user to infer information about documents 

that he is not allowed to read [6]. However, following different approaches is possible to  

eliminate privacy threats.

7.1.3 Secure Approaches

In an effort to eliminate privacy threats in full-text search engines when operating in 

a multi-user environment, Buttcher and Clarke [6] designed the Wumpus search engine. 

Although Wumpus uses a system-wide index, the result ranking is only performed on 

documents that a user is allowed to read. Whenever a query is received, the posting lists 

of its terms are computed. Then, the access control restrictions are applied by removing 

any occurrences of the query term within documents that are not readable by the user 

who submitted the query. Finally, the ranking step follows based on the final form of the 

posting lists. Since the ranking step is only applied on documents readable by a user, 

the user cannot infer any information about documents that he is not allowed to read.

1This feature automatically analyzes user behavior and the specific links that users click on for specific 

queries in order to fine tune relevance and scoring
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However, a  possible drawback of this approach is th a t it requires the information (e.g. 

owner, permissions) about every indexed i-node to be kept in memory. This could become 

a  problem when the indexed documents reach the limit of a few million.

Singh et al. [37] proposed a distributed approach th a t couples search and access-control 

into a unified framework, while protecting privacy in multi-user environments. The main 

idea is to build indices, each of which maintains documents th a t have exactly the same 

access control privileges. Towards th a t direction, they build a graph whose edges reflect 

the documents th a t a user or a user group has access to  and then they divide documents 

into independent access-privileges based chunks, which they call access-control barrels 

(ACB). However, documents readable by a  user may be spread in many ACBs. Thus, 

in a user’s subsequent search the results are derived from all the ACBs which contain 

documents tha t the user is allowed to read. Unfortunately, there is no upper bound for 

the number of different ACBs tha t potentially can be created and for the number of 

ACBs th a t a user has access to. Moreover, it is shown th a t it is impossible to reduce the 

number of ACBs without either duplicating documents in barrels or violating the security 

restrictions. Hence, in order to reduce the number of ACBs, all ACBs in which few users 

have access are removed and the documents contained in them  are moved to  each user’s 

private ACB.

LI et al. [15] present a different approach to protect privacy in search engines when 

operating in multi-user environments. The core idea is to assign multiple I D F  values 

(one for each user) to each term. In addition, these term  I D F  values are computed by 

only taking into account documents th a t the specified user is allowed to  read. In order 

to do this, a personalized index is build for each user in an early stage and then these 

indices are merged into a global index. Thus, when a user submits a query, the relevance 

scores of the matching documents are calculated by the user’s personalized information 

of the previous step. Hence, a user cannot infer any information about documents tha t 

he is not allowed to read. However, while this approach protects privacy, nothing is said 

about the index maintenance cost and how efficiently the privacy protection lines with 

incoming document updates.
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7.2 M etadata  Search

Beyond the research on full-text search, some remarkable approaches th a t deal with meta

data search have been presented. Leung et al. [27] designed Spyglass, a m etadata search 

engine which is focused on how to exploit m etadata properties in order to  improve search 

performance and scalability in large-scale storage systems. This is possible through hi

erarchical partitioning which partitions the file system based on the namespace. Each 

partition corresponds to a separate index. Hence, each index contains documents tha t 

belong to a unique partition of the namespace. In addition, each partition is stored se

quentially on disk; Bloom Filters [5] are used to restrict the search only to  partitions tha t 

may contain documents relative to a query. However, this solution only refers to m etadata 

search and without reference to privacy protection in multi-user environments.

Parker-Wood et al. [33] introduced a security aware index partitioning algorithm and 

a series of metrics which can be used to evaluate the expected performance of different 

partitioning algorithms. Security-aware partitioning partitions the file system according 

to group and user security permissions while walking over it in a breadth first search. The 

access permissions of a document or directory are determined by examining all permissions 

in the directories above. If the permissions on the current document or directory are more 

restrictive than tha t of the current partition, then a new partition is created. Then, all 

documents in each partition are accessed by the same set of users, and each user can 

only search in partitions th a t include documents th a t he is allowed to  read. Even though 

security is ensured, this solution generates many small partitions. However, one possible 

way to  reduce the number of created partitions, is to  merge those th a t are accessed by 

the same set of users.

7.3 Full-Text Search in Social Networks

Social networks, such as Facebook2, T w itter3, and Google+4, are popular online commu

nities th a t provide interaction, communication and information sharing between users by

2https://www.facebook.com /
3https: / /tw itter .com /
4https://plus.googIe.com /
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using the notion of friendship. As the functionality of social networks is primarily based 

on d a ta  generated by users, data  handling and privacy are im portant issues to them. 

Thus, in order to keep da ta  away from undesirable viewers, social networks introduce 

some access control mechanisms tha t enable users to restrict their da ta  visibility to  a 

desirable subset of users.

Although these da ta  may be of different types, we focus on the text content exchanged 

between users. Usually, this text context is referred to as post As the social network 

population grows, the amount of shared data  among users also grows. This m andates the 

use of full-text search engines in order to help users to easily find the content they are 

looking for. However, while not all da ta  is accessible to everyone, the search engine must 

adhere to  the privacy settings enforced on each users’ content.

As a m atter of fact, the problem of enforcing access control a t desktop and enterprise 

search is also inherited in social networks. Bj0rklund et al. [3], first integrated access 

control of social network content in a full-text search engine. More particular, they 

investigated several ways of index designs, but they concluded to the use of a single index 

containing all users’ documents along with user or friend lists. In the case of user lists, 

each user has his author list which contains the document IDs posted by him. In the case 

of friend lists , each user also has an author list, bu t this list contains all documents posted 

by him and all of his friends as well. Therefore, in order to enforce access control, the 

results from the index are intersected with the set of author lists th a t correspond to the 

user and all his friends. In the case of friend lists, the set of the author lists is calculated 

by the users’ single author list, as it contains the document IDs posted by him and his 

friends. In the case of user lists, the set of the author lists is calculated by the union 

of the author lists for each individual friend of the particular user. However, the friend 

lists approach introduces an update cost as each document posted by a user is inserted 

in the author lists of all of his friends, while the user lists approach degrades the search 

performance as multiple author lists must be processed to answer a single query.

In [4], Bj0rklund et al. extended their previous work by introducing a new hybrid 

approach. Initially, each user has one author list tha t contains the document IDs only 

posted by him. Also, each user has an additional author list tha t contains all documents 

authored by a  selected set of users Lu which is a subset of the corresponding user’s friends. 

Thus, there is no need to access the specific author lists for users in Lu whenever a user
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u issues a query. The search engine computes the intersection of a query term  posting 

list w ith the union of author lists; then it returns the query result. As more and more 

users are represented in L u, queries become more efficient a t the expense of update cost. 

Hence, the workload characteristics and the use of cost models in optimization algorithms 

contribute to  the selection of an appropriate content for each L u.

Finally, Facebook offers Inbox Search which is a feature tha t enables users to search 

through their Facebook Inbox. Inbox messages also have restrictive visibility, and thus 

their access control restrains must be retained through the search process. For this pur

pose, Facebook maintains a per-user index of all messages th a t have been exchanged 

between the sender and the recipients of the message. Also, it uses Cassandra as its back

end storage system [24]. W hen messages cure exchanged between a small set of users, the 

per-user index is an affordable solution. However, when talking about posts, which are 

visible from an extensively larger user set, issues arise from the content redundancy. This 

is caused due to  the duplication of a  single post to the index of each user th a t is allowed 

to read it. Furthermore, this can be worse, as generally in social networks, the number of 

a users’ posts tends to increases as the number of his friends grows [18].

7.4 Secure Data Storage

Data handling to protect privacy is a more general problem and also concerns many online 

applications and storage systems. Online applications are vulnerable to the disclosure of 

private information due to software bugs tha t permit arbitrary users to  gain access to 

private data.

Popa et al. [34] introduced a new system called CryptDB for securing database-backed 

applications. They address two basic threats: a) a user that gains complete control of 

application and database management system (DBMS) server including the CryptDB 

proxy server, and b) a database adm inistrator (DBA) tha t has the ability to capture and 

leak private da ta  by snooping the DBMS sever. The main idea is to encrypt all data 

stored in the database and execute queries over the encrypted data. CryptDB works as 

a middle layer, tha t receives all queries (including search on encrypted text), encrypts 

data and sends it to the DBMS server. Then, it receives the encrypted data from the
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database, decrypts and sends it to the authorized user. Different keys are used to encrypt 

different columns and users’ data. Also, data may be encrypted in one or more onions o f  

encryp tion  (different encryption types) depending on the queries applied over them. All 

keys are stored in the CryptDB proxy server and keys that decrypt the data accessible 

to a single user are chained to his password. CryptDB allows only authorized users to 

gain access to encrypted data and minimizes the amount of revealed private data. In 

particular, it restricts the leakage to the data of currently active users for the duration of 

the compromise. In addition, the DBMS server never receives decryption keys needed to 

decrypt data, ensuring that a DBA cannot gain access to private data.

Schultz et al. [36] secure databases that handle data of multiple users through a 

decentralized information flow control system called IFDB. The system tracks information 

as it flows in the database and controls what can be revealed. To achieve this, it is based on 

three basic concepts: principals, tags, and labels. Principals are entities in the system such 

as users that are interested in controlling the sensitivity of their data. Tags are identifiers 

attached to data to denote their sensitivity, and labels are sets of tags summarizing the 

sensitivity of all data contained in a data object. Each process that runs with the authority 

of a particular principal has a label, which reflects the tags of all the data this process 

reads. The basic rule is that information can flow from a source S to a destination D 

if the labels of S are a subset of the labels of D. However, in some cases tags can be 

removed from labels in order to send sensitive information to an authorized user. Overall, 

IFDB controls the information flow and enforces a security policy preventing sensitive 

information leakage.

Cryptographic storage systems that store and manage files of multiple users also pro

vide mechanisms that enable file sharing and encryption of the stored files. In order to 

share encrypted files in such systems one has to manage and share keys among users 

sharing a file with an efficient and scalable manner.

Plutus [23] is a cryptographic storage system that provides secure file sharing over an 

untrusted file server by encrypting files. Its main idea is to group all files with identical 

sharing attributes into the same group called file  group  and protect them with the same 

key. This reduces the number of keys that users need to manage and exchange because the 

number of keys is detached from the growth of the number of files and is restricted to the 

number of groups of files with different sharing attributes. Every file group is associated
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with a symmetric key called file-lockbox key and is the same for all files within th a t file 

group. Hence, whenever a user wants to share a number of files with other users, he 

creates a file group and generates a file-lockbox key. Then, he distributes the file-lockbox 

key to  the users with whom he shares the files of the particular file group, enabling them 

to access these files. The way th a t Plutus operates makes it a secure storage system tha t 

protects and shares da ta  over an untrusted server, while enables individual data owners 

to control who gets access to their files.

7.5 Summary

In this chapter, we presented prior research in the area of full-text search in multi-user 

environments. Initially, we presented the two basic approaches. The first approach builds 

one index per user in order to protect privacy and high query performance. However, it 

is characterized by great disk space consumption and update cost. The second approach 

indexes all users’ documents in a single system-wide index, and uses filtering algorithms 

before returning the query results. Despite the low disk space consumption and update 

cost offered by this approach, the result filtering impacts the query performance and poses 

privacy threats in some cases. Then, we presented some different solutions th a t eliminate 

the privacy threats, and outlined some remarkable approaches on m etadata search and 

social network full-text search. Finally, we presented approaches th a t provide secure data  

storage.
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Chapter 8

Conclusions and Future W ork

8.1 Conclusions

8.2 Future Work

8.1 Conclusions

Privacy protection in full-text search engines over multi-user environments is an important 

issue. In order to protect privacy, existing solutions utilize different approaches to organize 

users’ documents into indices. A simple approach is to create one index per user. This 

approach offers high query performance, but at the cost of great space consumption as 

each document is indexed by the private index of each user that he is allowed to read 

it. On the contrary, when retaining a system-wide index, all existing documents are 

indexed regardless of access control restrictions. This approach provides efficient index 

updates and low storage usage because each document is indexed only once. Moreover, 

this approach poses severe privacy issues, which can be eliminated in the expense of 

query performance. A different approach that improves efficiency while protecting privacy 

creates one index for each set of documents that have the same ACL. Even though this 

approach protects privacy and has lower maintenance cost than the previous one, it does 

not provide any parameters to tune the query performance and the maintenance cost.
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Motivated from the need to  protect privacy and the lack of a tunable solution that 

trades query performance and maintenance costT we introduced a novel strategy to orga

nize users' documents in indices. We group documents into clusters based on the similarity 

of their ACLs. The similarity between the ACL of documents within a cluster is deter

mined by a Similarity' parameter. Then, we map documents and users to indices based 

on the intersection and differences of the ACLs within a cluster. In addition, we use a 

Threshold parameter which determines in which indices the documents and the users are 

mapped. Performing several measurements across different Similarity and Threshold val

ues, we show that our strategy introduces a trade-off between the query performance and 

the maintenance cost. By choosing the appropriate Similarity and Threshold values, we 

substantially reduce the query response time, while slightly raising the maintenance cost. 

For a given threshold value, the query response time decreases when Similarity is 60%. 

Moreover, high Threshold values can further achieve better query performance. Overall, 

our strategy protects privacy and provides a tunable solution that trades maintenance 

cost and query performance depending on the needs.

8.2 Future Work

The main direction of our future work is to further investigate the behavior of our solution 

in the context of a real ACL dataset. Even though the evaluation of our solution is 

based on observations retrieved from a real ACL dataset, it is of primary importance 

to experiment with a real ACL dataset in order to further validate the benefits of our 

strategy.

Moreover, we target to support full-text search over content generated in social net

works. Privacy protection is of major importance in such environments, as users enforce 

access control in the generated content. Hence, we need to examine how our approach 

performs in a social network dataset and validate its applicability in social networks.

Further exploration of other types of clustering algorithms and similarity measures is 

also worthwhile.

Another interesting direction for future work is to integrate our solution into a full-text 

search engine. Furthermore, we intend to investigate the potential of tuning the Similarity
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and Threshold parameters by inspecting the ACLs as well as the number of documents 

associated with each of them.
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