Efficient Privacy Protection
in Full-Text Search Engines

Eirini C. Micheh

Master Thesis

Ioannina, October 2013

TMHMA MHXANIKQN H/Y & [TAHPO®OPIKHE
[TANENIETHMIO IQANNINQN

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF [OANNINA

e o BIBAIOGHKN
N MANENIZTHMOY INANNINAN

i

A

6000336862

o i

: 1
'
- . -

.
3

AIIOAOTIKH [TPOYXTAXIA IAIQTIKOTHTAY
YE MHXANEY ANAZHTHYXH> KEIMENOY

H METAIITYXIAKH EPT'AYIA EZEIAIKEYYHY

UTOBAAAETOL OTNY

optobetoa and v I'evon} Xuvédevon Ewdumc Xivbeonc

Tou Tunuatoc Mnyavixadv H/Y o ITAnpogopuciic
Eéetaotoa) Emtpony

omo TNV

Muéhn Eprjvn

0¢ MEPOC TV YTOXPEDOEWY Yl TN Afdn Tou

METAIITYXIAKOY AIITAQMATOY. XTHN IIAHPO®OPIKH
ME EZEIAIKEYXH
L TA YIIOAOTIXTIKA £¥YXTHMATA

Oxtdfprog 2013

DEDICATION

To the person who taught me well and believed in me the most...,

my grandmother Efthimia

ACKNOWLEDGEMENTS

I would never have been able to finish this thesis on my own. That is why I feel the deep
need to express my gratitude to all those who helped me, even if I haven’t noticed it.

First, I am sincerely grateful to Professor Stergios Anastasiadis for his constant guid-
ance, patience, and encouragement. Under his supervision, he soon made me realize his
deep knowledge in the field of computer science. With his insight, he managed to turn
every hesitation of mine into inspiration and creativity, which was a core point to go the
full distance.

Completing this thesis would have been more difficult if I didn’t have the support and
friendship provided by the other members of the System Research Group. I am mostly
grateful to George Kappes, who was there whenever I was in need. He also helped me to
continue my studies when I stayed away from Ioannina. His offer was valuable. Special
thanks should be given to George Margaritis for introducing me to the topic as well for the
support on the way. Also, I am thankful to Andromachi Hatzieleftheriou for answering
to my questions and advising me every time I was in need.

No words to express my gratitude to my family for their support and immense love,
which was the one that gave me the courage to keep on. My sister Anna was the person
who listened to my thoughts and aspirations, even though she lives miles away. Further-
more, I am grateful to my beloved uncle Ioannis and his wife Maria for their support since
the early stages of my high school years.

I am also thankful to my childhood friends Ilianna and George Chiotis, as well as my
cousins Anastasia and Kyriakos Savvidis. The summer night conversations, the books
borrowed from them and the radio broadcast in which George participated in, were some
of the activities that helped me to deal with stress.

At last but not least, I would like to thank Professors Aristidis Likas and Panayiotis

Tsaparas for their precious remarks and review of this thesis.

TABLE OF CONTENTS

1 Introduction 1
1.1 ThesisScope. v v i i it e e e e e e e e e e e e 1
1.2 Outline. e e e e e e e e e e e 3

2 Background 5
21 TextIndexing i e e 5

2.1.1 Index Structure it 6
2.1.2 Inverted Index Construction and Maintenance 6
2.1.3 Search Queries i i it e 8
214 ResultRanking, 9
22 Clustering i e e e e e e 11
2.2.1 Similarity And Distance Measures 12
2.2.2 ClusteringMethods 14
2.3 Access Control it e 16
2.4 Search Privacy B 17
25 SUMMATY o o e e e e e e e e e 18

3 Privacy Threats in Full-Text Search 19
3.1 Attacking Privacy Through Relevance Scores 20
3.2 Attacking Privacy Through Ranking Results 22
3.3 Revealing the Content of Documents 24
3.4 Towards a Secure and Efficient Search System 24
35 SUMMALY . .+ o o v v oo e oo m oo et it oot D 24

SRS S ST Sl L S A

RS S A

4 Design
A1 GOAlS . it
4.2 Overview of Indexing Workflow
43 Crawler i i e e e e
44 Planner e e e e e e e e

45 Indexer. i i i e e e e
4.6 Incremental Indexing e e e e e e
46.1 Updates @ i i e
46.2 Search
47 SUMMMATY . « v o v v v e

5 Implementation

51 Planner i e e e
5.1.1 Clusterer. v i i e e e e e
51.2 Mapper i e e e

52 Indexer. o i i i e e e e e e

53 SearchEngine e e

5.4 DISCUSSION . . . v v v v v v e e e e e e e e e e e e e e e e e e e

5.5 SUMIMATY . . . v v v v v v v e e v e e et e ettt e e

6 Experimental Results

6.1 Experimental Methodology,
6.2 Experimental Setup e e e e e e e e e e e e e e
6.3 Planner Results« o o v v i ot e e e e e e e e e e
6.3.1 IndicesPerUser. iy
6.3.2 Indices Per Document
6.3.3 Query/Update Trade-off
6.3.4 Total Number of Indices e
6.4 Search EngineResults
6.4.1 IndexingTime. vttty
6.4.2 Disk SpaceOverhead

26
26
28
28
29
29
33
37
38
38
38
39

40
40
41
42
44
45
46
46

i gt oo mppedt 25 23S B RO ES I

L TR,

B L SRARA Sy 11 Sl

TRUIE A RO RN

6.4.3 Search Performance 62
6.5 Exploring Different ACL Synthetic Datasets 67
6.6 SUMMATY v it e 74
Related Work 76
7.1 Desktop and Enterprise Search. L T7

711 PerUserIndices. 77

712 SharedIndex-. 78

7.1.3 Secure Approaches, 79
7.2 MetadataSearch e 81
7.3 Full-Text Search in Social Networks 81
7.4 Secure Data Storage v, 83
7.5 SUMMATY o ot e 85
Conclusions and Future Work 86
81 Conclusions ittt it e e e e e e e 86
82 Future Work e e e 87

iii

LIST OF FIGURES

2.1 The lexicon maps each distinct term to the position of its corresponding
postinglistonthedisk.. 6

4.1 Overview of our indexing workflow. 28
- 4.2 Document Families include a set of document paths and their corresponding
ACL bitmap. ACL bitmaps are created from the ACLs and represent

whether each user is included in a document’s ACLormot. 30
4.3 We illustrate an example of Document Family clustering. We assume a
similarity value higher than 0 and smaller than 100. The formated clusters
contain either one or more Document Families. In particular, a cluster

with more than one Document Families includes multiple sets of document

paths, and each set has a single ACL bitmap. 32
E ' 4.4 Clusters with more than one Document Families contain documents with
g different ACLs. For these clusters, we find the intersection and the differ-
, ences between the ACLs they contain. The intersection is the set of users

3 included in every Document Family in the cluster, while each difference

is the set of users of each ACL in the cluster that is not included in the

intersection. e e e e e e e e 33
4.5 Users U;...U; belong to the ACL intersection, while users Uya, Ups and Uyg

belong to the ACL differences. The Mapper maps three indices. The first

index corresponds to the users of the ACL intersection and includes all

documents in the cluster. Each of the remaining indices corresponds to the

users of each ACL difference. Also, the set of documents that correspond

to each ACL difference is duplicated in each mapped index (difference and

private index). 0 .. i e e e e e e e 36

iv

9.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

We illustrate how the Clusterer operates. It receives pairs of document
IDs and ACLs and then creates the Document Families using a hash ta-
ble (document-grouping step). Then, it clusters the Document Families
(clustering step) and the created clusters are given as input to the Mapper.
We depict how the Mapper operates. It receives the clusters from the
Clusterer and then maps the Document Families within each cluster to one
or more indices. Also, the Mapper creates a description for each index and

stores it in the index container file. This file is then given as input to the

Indexer. e

We depict how the Indexer operates. It parses each line of the index con-
tainer file and gets the content of each document from the collection file by
using the offset array. For each document, the Indexer creates one index
request and stores it in the bulk request array. When a predefined number

of request are accumulated, the Indexer sends a bulk index request to the

searchengine. e e e

We depict an example of a four node Elasticsearch cluster. One index with

four primary shards and one replica per shard is stored across the multiple

ROAES. . . . ot s e

Average number of indices that a user needs to search every time he issues

a query for varying values of Threshold and Similarity.

We examine the total number of clusters and the number of documents
per cluster across different Similarity values. The total number of clusters
decreases and the total number of documents per cluster increases as the
Similarity drops from 100% to 0%. The results are the same across different

Threshold values as Threshold only affects the partitioning and not the

clustering phase. o e

Average number of indices that each document is indexed for varying values

of Threshold and Similarity.

We depict the trade-off between the query performance and the update

cost for a given Similarity value and across different Threshold values. . . .

42

56

58

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

We examine the total number of indices across different Similarity and
Threshold values. The total number of indices created decreases as Thresh-
old value increases. The total indices is the sum of the indices due to the
intra-cluster ACLs intersections (inter indices), the single indices that are
created from each difference of each intra-cluster intersection (diff indices),
and the private indices plus the indices which are created from Document
Families that are treated as differences (other indices).
We measure the indexing time for different Similarity and Threshold val-
ues. As Threshold increases, each document is indexed to more and more
indices, and hence, the total indexing time increases.
We compare the disk space overhead across different Similarity and Thresh-
oldvalues. e e e e e e
We depict the median query response times across different Planner con-
figurations and number of clients.,
We depict the 90th percentile query response times across different Planner
configurations and number of clients.
Histogram of query response times across different Planner configurations.
CDF of query response times.ot i i ittt
We compare the search throughput across different Planner configurations
and number ofclients. L
We depict the distribution of members per group when using different
probalitity distributions for the size of each group. When using the Uni-
form distribution, the groups tend to have many members. For the Zipfian
distribution, only a small fraction of the groups has a large number of
members, and this fraction decreases as the value of parameter a increases.
We depict how the size of the ACLs is affected by the different probalitity
distributions used for the size of each user group in two different cases. The
ACLs of the public documents are not affected by the group sizes. Thus,
we present the results for two different cases to give a clearer view of how
the ACL sizes change. In the first case, we take into account the ACLs of

the public documents (a), while in the second we omit them.

63

68

6.15 We depict how the average number of indices per user is affected by the
different probaiitity distributions used for the group sizes. The average
number of indices per user is higher for the Uniform distribution. As the
value of parameter a of the Zipfian distribution increases, the average num-
ber of indices per user decreases. oo

6.16 We depict how the average number of indices per document is affected by
the different probalitity distributions used for the group sizes. The average
number of indices per document is higher for the Uniform distribution. As
the value of parameter a of the Zipfian distribution increases, the average

number of indices per document decreases.

vii

LIST OF TABLES

2.1

5.1

6.1

6.2

Access Control Matrix i i i i i i i e e e 16
Planner Parameters.t ueino.. 41
Basic configuration parameters of the ACL Generator. We create 200 user

IDs, 131 group IDs, and 50000 document IDs. 49
Effect of different combinations of Similarity and Threshold values. 51

viii

ABSTRACT

Eirini C. Micheli, MS¢, Computer Science and Engineering Department, University of
Toannina, Greece. October, 2013. Efficient Privacy Protection in Full-Text Search En-

gines.
Thesis Supervisor: Stergios V. Anastasiadis

Personal and enterprise environments store and manage an increasing volume of data as
their storage capacity improves exponentially. This trend drives the demand for full-text
search engines that help to automatically locate relevant information. Privacy refers to
the ability or right of individuals to control what information is collected about them,
who uses it, and for what purpose. In multi-user environments, access control has to be
enforced to protect privacy during search. Accordingly, search engines often build one
index per user, or they create a system-wide index and filter the results by access rights.
In order to protect privacy at improved efficiency, the search engine creates one index for
each set of documents accessed by the same set of users. However, this approach lacks
tunable parameters to meet different performance needs.

In this thesis, we investigate how to provide a tunable solution for privacy protection
in search engines over multi-user environments. Thus, we introduce a novel strategy to
organize user documents into indices. The key insight is to cluster documents based on
the similarity of their access permissions using a Similarity parameter, and then map
the documents and users into indices using a Threshold parameter. The experimental
study of our solution shows that a trade-off arises between the query performance and the
maintenance cost across different similarity and threshold values. Over a prototype imple-
mentation, we experimentally identify those parameter values that achieve a substantial

reduction of query response time, while slightly raising the maintenance cost.

ix

EKTETAMENH IIEPIAHVH STA EAAHNIKA

Eipfivy Miyéin tou Xpfotou xat tng Evotablag. MSc, Tufua Mnyavixdv H/Y xat ITAnpo-
popwxfic, Maverotiuo Inavvivwv, OxtdBpiog 2013. Arodotixd Ilpootacia IdwtixdTnrag

oe Mnyavéc Avalftnone Kewévou.
Eniénwv: Ltépyioc B. Avaotaciddng

Luothuata avalftnone ta orola dwatnpolv apyela moAamAdv ypnotdv épyoviat ouyvd
avTétwna Ye To TpdBAnua Tne tpoatacias TG LW TLXGTHTAS TOU REPLEYOUEVOU TwWY apXEl-
wv. Ot mpoowmxol xau etarpixol urohoytotés xabdg xou Ta mepBdAlovta xoivewvixhg
ductdwang, urootnpifouv) ouvinapEy TOAATAGY YENOTAV, EVE TAUTEYPOVA TOUS Tapé-
xouv unyaviouols eAéyyou npbafaocrc. Ou unyaviouol tpbéofacnc yenowworoodvial Kgo-
xewévou va oploet xdmoLog TG EMTPERGUEVES EVEPYELES TWV UNGAOLTWV YPNOTOV TdVW oTa
apyela mou Tou avixouv. Ernouévwe, to clotnua avaliftnorne, epdoov diayepiletar ta
apyela xewwévou GAWY TV YpNaTdy, Tpénet Ue xdmoto tpémo va datnpeel Tig TANPOPopicg
eAéyyou mpbafaors mpootatevovtag v Wiwtudtra. ‘Etot, unopel va eZaopahioet 6t
1 andvinoy oto epdtnua x&be xpfotn nepthaufdver ubévo xelueva yia ta omola €xet to
dexadlwua avéyvoong.

IToAAég epevvnTixég epyaoleg éxouv yiver mdvw otnv npootacia g Wiwtxdtnrag o
unyavée avalitnong xewwévou étav dratnpodv apyela Tohharhdv ypnotdv. Kdroweg anéd
avtég mpotelvouv 1) dnurovpyla evég Eexwplatol eupetnplou Yo xdbe xpfioty, elodyovtag
xd0e apyelo ata eupetiipla GAwV TV XPNOTOV oL €xouv 7 duvatdTnta va Souv To tepteyd-
uevé tou. H Adon auth npoatatedel tny hwtixdtnta xou napéyet ypriyopn andvinorn twv
gpwTNUdTLY, agob n avalitnoy xdfe xpriotn tepoplletat ubvo oto WiwTid Tou evpeTiiplo.
To xé0t0¢ buws piag Tétolag TposéyyLorng elvan arayopeutixd xabde x&be apyelo elodyetan
o€ tolanhd gupeThpta, He anotéleoua va daravdta HeYdhog arobnxevtixde xdpog. Ent-

TAéov, 1) eviuépwor xdbe apyelou nupodotel pia aepd evruepdoewy oe ToOAaTAd eupeThpLa.

Muwx &M mpoaéyyiar; mou axolouBeitar eivan i xprion evég ewaiov evpetnpiou, To orolo
replhauPdvel 6ha ta apyela Twv SagopeTixdv xenotdv. 'Etol, anogebyetar v eloaywyr
evég apyelov oe molharmAd eupethipla, pe TV mpoUndlBeon bduws étt xatd TNy extéheoy,
evée epwTiUATOG Ta artoteAéauata Qhtpdpovtal, GoTe TEMXA 0 XprioTtng va AauPdvel uévo
xelyeva TV orolwv to mepeyduevo elvar e€ovatodotnuévoc va det. Tlap’ Ao mov v Aoy
avth @aivetat 6Tt e€aooahiler TRV WL TXETNTA, TO TPWTS Tne onueio Bploxeta oTo Yeyovdg
6T, orooadirote yprotrc uropel éuueca va e€dyet ouurepdouata yia To RAKBOC TV
XEWEVWY TOU TEPLEYOUY Evary GUYXEXPLUEVO 6p0, AARE XAl YIX TO TEPLEYOUEVO TWV XEWEVWY
yio T onoba dev €yel Ta xatdAAnAa duxanduata tpdaBaonc.

O mopandve mpooeyyioelg aroterolv 0o axpalec Avoelg, xdbe uo and T oroleg
Buoidlel eite v anodotixbtnrta, eite v mpootacla e WwTXdTTAC TOU CUCTAUATOS
avalitong. Yrdpyouv véeg Aioeig mou axohoubolv Stagopetixy| Tpocéyylon tpootatebo-
VTag TV WLOTXOTNTA TeV XEWEVeY xat BEATLdvovTag Tny anodoTixdTnta Tou cuoTRUATOS
avalimorne. ‘Ouwg, 1 arodomixdtntd Toug sivar un ragauetporotfiown.

L1y napoloa epyaocia, e€etdlouue Tov TpéNO UE TOV OTOlO UTOPOUUE VOl ETLTUYOUUE
arodotxh npootacia T WtwTxéTnTag ot ouoTiuata avalftrons ue toAhanhols yphoTeg.
Baouxdg wag atdyog elvar va Sdoouue U hiom, 1 onola emtpénet tn pUButan Tou ypdvou
EXTENEONG TWV EPWTNUATWY XAt TOV x60T0G dlathipnang Twv evpetnplwy e) xpfior oploué-
vov Tapauétpwy, evd Tautéypova efacpaliler v WBiwtixdtnra. Ilpog v exnhhpwon
Tou 0TOY0V UAC ELOAYOUUE Uta VEX OTPATNYIXY 0pYdvwong Twv apyelwv Twv xpnotdv ot
gupethipta mou aflomotel To Babud ouotdtnrag, o omolog elodyeTal we mapduetpos, YeTagy
TV Aotdv eréyyou npbofaong Twv apyelwy xat ta ouadornotel. ‘Ernetta, draywpllovue ta
apyela x&be ouddag xat xabopilovue to nAflog xat to mepeyduevo Twv eupetnplwy oY
dnutovpyolue Bdon wac emmiéov rapauétpov. Ot MELpaUATIXEC UETPHOELS Qavep@dVouY 6TL
emituyydvetat ad€nom 1 pelwan Tou Xpdvou EXTEAEDTE TWY EPWTNUATOV XAl TOU X6GTOUS
drathpnone twv evpetnplwy, avéhoya e Ti¢ TWES TwV TapaUETpwy Tov etodyouue. Tehuxd,
ME OUYXEXPLUEVY TapaueTponolnoT EMTUYYAVOUUE TNV Helwan Tou Ypbdvou exTéreong TwY
EpWTNUATOY UE Uixpr av&non Tou xéotoug dlatipnong Twv evpetnplwy, evd Tautéypova

napéyouue Tapéyouue npoatacia tTng WwtixdTnTag.

xi

TETTRLCY

CHAPTER 1

INTRODUCTION

1.1 Thesis Scope

1.2 Outline

1.1 Thesis Scope

Over the last years, the improvements in storage capacity enable users to store and manage
a large amount of data. File systems organize files into a hierarchical namespace and a file
access requires explicit knowledge of the file’s name and location. Even though hierarchical
namespace is an appropriate way for users to organize their files, its limitations become
obvious when the number of files within a system significantly grows. The increasing
amount of data in desktop and enterprise environments complicates the management of
files as it is not easy to remember where each file is stored.

In order to effectively find and manage text files (documents), a full-tezt search engine
(or simply search engine) builds indices on a collection of documents and enables users to
search for information within the documents’ content. Information search is expressed by
submitting search queries with terms to the search engine. The search engine evaluates a
query and returns a list of the documents whose content is relevant to the query terms.
Each document in this list is associated with a relevance score which indicates how relevant

the document is to the query. The highest the relevance score the more relevant the

1

document is. Then, the search engine ranks the document list based on the relevance
scores of the documents and finally returns it to the user who submitted the query.

Desktop and enterprise environments support multiple users. In multi-user environ-
ments, users usually define through an access control mechanism who can access their files
and how. A type of access control is the Access Control List (ACL). An ACL contains
users and/or groups along with their respective rights on a particular file. Each file or
folder has its own ACL. Hence, a search engine that operates in such an environment
needs to index the documents respecting their access rights, protecting privacy, and en-
suring that each user only obtains information concerning documents that he is allowed
to read.

In order to protect privacy, many search engines create one index per user. The index
of each user contains all documents that he is allowed to read. This approach offers high
query performance because each user has his private index and the search engine accesses
only that index to answer his queries. While privacy is provided, it is implied that each
document resides in the indices of all users that can read it. Hence, this approach is too
costly due to the large disk space consumption and the high index maintenance cost.

Instead, search engines can use a system-wide index which contains the documents of
all users. The search engine can then filter each search result to only include documents
readable by the user who issued the query. This approach eliminates the multiple docu-
ment insertions in indices and limits the disk space consumption, but it does not protect
privacy under some circumstances [6]. In particular, it is possible for an arbitrary user
to infer the number of documents containing a particular term or the entire content of a
document that he is not allowed to read. These privacy threats can be avoided but at the
expense of query performance [6].

The above approaches sacrifice either the efficiency or the privacy of the search engine
in order to provide full-text search in multi-user environments. A different approach,
that provides privacy and improves efficiency, creates one index for each set of documents
accessed by the same set of users [37]. Documents accessed by a single user are indexed
by a private index, while documents shared between the same set of users are indexed by
shared indices. A user’s query is answered by combining the results of his private index
with the shared indices that he can access. Even though this approach provides privacy

and is more efficient than the previous one, it does not provide any tunable parameters

to trade query performance for index maintenance cost and meet different performance
needs.

Motivated by the privacy threats that arise in full-text search and the lack of a tunable
solution that achieves a trade-off between query performance and index maintenance
cost, we provide a solution that addresses both of them. Our approach introduces a novel
strategy to organize users’ documents into indices. We group documents into clusters, each
containing documents with similar ACLs. The similarity between the ACLs of documents
within a cluster is determined by a Similarity parameter. Then, we map documents and
users to indices based on the common users of the ACLs within a cluster. In addition, we
use a Threshold parameter which determines in which indices the documents and the users
are mapped. We perform several measurements for different Similarity and Threshold
values and show that our solution introduces a trade-off between query performance and
index maintenance cost. By choosing the appropriate Similarity and Threshold values, we
substantially reduce the query response time in comparison to an approach that creates
one index for each set of documents with the same ACL, while slightly increase the index
maintenance cost. Overall, our approach provides privacy and offers a tunable solution
that trades maintenance cost for query performance and vice versa, depending on the

performance needs.

1.2 Outline

The subsequent chapters are organized as follows:

In chapter 2 we present essential background knowledge about text indexing, text
search, and clustering. Then, we describe the basic access control models and discuss
privacy.

In chapter 3 we focus on how an arbitrary user can compromise the search engine
results to obtain information that he is not allowed to access.

In chapter 4 we introduce our design goals. Then, we give an overview of our indexing
workflow scheme and analyze its individual components. Furthermore, we explain the
important decisions made before implementation.

In chapter 5 we provide the details of our implementation.

e N e I A

In chapter 6 we define our experimental environment and methodology, and present
the experimental results. We present results from both our indexing workflow scheme and
a full-text search engine.

In chapter 7 we review prior related research that focuses on full-text search and
privacy protection in multi-user desktop and enterprise environments as well as in social
networks. In addition, we review approaches that provide secure data storage.

In chapter 8 we present the conclusions regarding this thesis and discuss possible future

research directions.

TR RIS T T L U L T A

RTINS AT

T rnter van G e

o

CHAPTER. 2

BACKGROUND

2.1 Text Indexing
2.2 Clustering

2.3 Access Control
2.4 Search Privacy

2.5 Summary

In this chapter, we briefly present essential background knowledge on full-text index-
ing, full-text search, and clustering. Then, we describe the basic access control model and
discuss privacy in full-text search engines.

2.1 Text Indexing

When dealing with a small number of documents, it is possible for the search engine to
directly scan the content of the documents in order to satisfy a search query. However,
when the number of documents is large, the best solution is to divide the search process
into two steps: indexing and search. In the indexing step, the content of all documents
is parsed and one or more indices are built. In the search step, users submit queries
consisting of terms and the search engine returns the documents that are relevant to the

query using the indices built in the previous step.

5

ITiem. [term: | [femw],
T
I_D'ik___% ______ g_d'
= Posting

B3 Posting List

Figure 2.1: The lexicon maps each distinct term to the position of its corresponding

posting list on the disk.

2.1.1 Index Structure

In general, several data structures have been proposed for the construction of a full-text
search index, such as signature files {13], bitmaps {42], and suffix-arrays [29]. However,
the most effective and widely used data structure is the inverted indez [17], which consists
of an inverted file and a lexicon.

The inverted file stores for each term ¢ a list of pointers to all documents that contain
the term. Each pointer in this list is called posting and specifies the exact position in the
document where the term occurs, while each list of pointers is called posting list. The
lexicon maps each distinct term ¢ that appears in the documents to the position of its
corresponding posting list on the disk (Figure 2.1). It is usually implemented as a hash
table or a sorted structure for efficient look up.

Although the inverted index is the preferred and most prominent index structure, the
actual choice of an appropriate index construction and maintenance method is important

to the search engine performance.

2.1.2 Inverted Index Construction and Maintenance

The main reason that makes index construction challenging is the fact that the volume of
data involved cannot be held in main memory. The most commonly used index construc-
tion algorithm is the merge-based inversion [42]. In merge-based inversion, documents are
parsed in batches and their postings are accumulated in memory, constructing the corre-
sponding posting lists. When memory is full, the posting lists are flushed to disk creating

a sub-index and then are deleted from memory. Finally, all sub-indices are merged into

one on-disk index.

While the previous index construction method is useful for static collections, it is
not appropriate for dynamic collections. In dynamic collections, existing documents are
deleted or modified, and new documents are created. Therefore, the search engine needs
to keep the indices in sync with the document collection that constantly changes. This
task is referred to as indez maintenance. When a new document is added in the collection,
its postings must be added to the posting lists of the existing index. In case of a document
deletion, all postings referring to the deleted document must be removed from the posting
lists. Document modifications usually are handled as a deletion and re-insertion of the
document, ensuring that the search engine returns the new version of the document in
search results.

In principle, inserting a single document into an existing index requires the update
of every posting list corresponding to a term in the document. For fast insertion, it is
necessary to avoid accessing the corresponding disk-resident posting lists every time a
new document is added. Therefore, several index maintenance techniques amortize the
update cost over a sequence of document insertions.

The rebuilding strategy periodically reconstructs the entire index, including the docu-
ments added in the collection since the last rebuild. Although the cost of the rebuilding
method is prohibitive for large collections, its use is appropriate in some cases. Indeed,
many search services use this model, re-crawling documents every day or week and re-
indexing them.

A completely different approach, called Remerge, has been proposed by Lester et al.
[26]. This approach uses one on-disk and one in-memory index which accumulates the
postings of new documents. When there is no available memory, the in-memory index is
merged with the existing on-disk index, creating a new on-disk index. The drawback of
this approach is that it requires the entire on-disk index to be read and written again to
disk every time the system runs out of memory.

On the other hand, the Nomerge strategy does not perform any merge operations.
When memory is full, postings are written to disk, creating a new on-disk sub-index. The
on-disk sub-indices are never merged. Thus, when the posting list for a given term needs
to be retrieved, its sub-lists must be fetched from all sub-indices. Nomerge is known for

its high indexing performance, as each posting is only written once to disk and never

7

read during indexing. However, this approach requires many disk seeks in order to fetch
a term’s posting list, as each posting list may be split in many sub-indices. Hence, it
is impractical for large document collections because a great number of sub-indices is
created degrading the query performance.

The two strategies mentioned above represent two extreme cases: Remerge always
merges the in-memory index with the on-disk index, while Nomerge never merges two
successive in-memory indices. The LogarithmicMerge strategy [25] is a compromise be-
tween the previous two. Every time memory is full, the in-memory postings are stored
as an on-disk sub-index. When the number of sub-indices with similar sizes reaches a
predefined threshold (mergefactor), these sub-indices are merged into a larger one. For
instance, suppose that the mergefactor is 10 and the buffer size used for the indexing pro-
cess is 32 MB. When the tenth sub-index is about to be written to disk, all the sub-indices
are merged into a single index of 320 MB. In the same context, when the number of 320
MB sized indices reaches ten, they are merged into a 3200 MB index. The advantage
of this strategy is that the mergefactor provides a trade-off between indexing and query

processing performance.

2.1.3 Search Queries

A search engine allows users to submit search queries to find the information they need
using the index. Each query consists of terms that describe the information that a user
needs to find. A widely used type of queries is the Boolean query. A conventional Boolean
query consists of a list of terms combined using operators, such as AND, OR, and NOT.

The most commonly used Boolean operator is the AND operator. Supposing the
following conjunctive query of r terms:

term; AND terms AND ... AND term,,

all terms must occur somewhere in a document in order to be included in the query
response. The simplest way to answer such a query is to look up each term in the lexicon
and retrieve its corresponding posting lists. Then, the intersection of the posting lists is
calculated. The procedure begins by picking the posting list of the least frequent term.
This list contains a set of candidate documents that might be answers to the query. All

remaining posting lists are processed based on this candidate set, in increasing order of

term frequency. If a document in the candidate set is not present in any subsequent
posting list, it is discarded. This means that the size of the set of candidate documents
does not increase. At the end, all documents that exist in the candidate list are those
which contain all query terms, and they are returned to the user.

Another commonly used Boolean operator is the OR operator. The documents that
are included in the result of such a query are derived from the union of the posting lists

of the query terms. Thus, these documents may contain one, two, or all the query terms.

2.1.4 Result Ranking

Merely returning the results of a query is not very useful as a search answer. Some of the
documents included in the result are relevant to the query terms, while some others are
less relevant or even irrelevant. Therefore, the user is forced to make an extra effort in
order to identify the documents that are most relevant to his query. The more documents
included in the result list, the more difficult and time-consuming the identification process
becomes.

One way to help users to easily find the relevant documents is to rank the documents in
the returned list. The documents that have a higher probability to be considered relevant
by the user are ranked higher. For this purpose, we need a metric that characterizes each
document with a relevance score, and gives a good indication of which documents are
more relevant to a given query. Using such a metric, the full-text search engine can only
return the top-k ranked documents, and the user can restrict the result inspection only
to them.

Usually, web ranking algorithms leverage the links between pages in order to infer the
importance of a page. Google’s PageRank [32] is an algorithm that uses this approach
and assigns a numerical value (referred as PageRank) to each page, with the purpose
of measuring its relative importance to the query. The PageRank of a page is defined
recursively and depends on the number and PageRank of all pages that link to it. Hence,
a page that is linked to by many pages with high PageRank receives a high rank itself.

This approach is not appropriate for a file system ranking algorithm as there are no
links between files. In order to apply this approach on file systems some approaches

attempt to extract semantic information from files. Connections [40] extracts temporal

relationships from files based on file usage patterns and builds a graph. Each node of
the graph represents a file and each edge represents a link. Two files are linked if they
are opened at the same time window. However, this approach can link two files that are
opened in the same time window even though they might not be relevant to each other.

In order to improve the ranking results, most relevance ranking functions use a simi-
larity measure to measure the closeness of each document to the query. The underlying
principle is that the higher the similarity score awarded to a document, the greater the
estimated likelihood that a human would judge it to be relevant. Most similarity measures

use some composition of fundamental statistical values:

® fa:, the frequency of term ¢ in the document d.

e fq.t , the frequency of term ¢ in the query.

fi , the number of documents containing one or more occurrences of term ¢.

F;, the number of occurrences of term ¢ in the collection.

N , the number of documents in the collection.

n, the number of indexed terms in the collection.

These basic values are combined in a way that follows three observations:

1. Less weight is given to terms that appear in many documents.
2. More weight is given to terms that appear many times in a document.

3. Less weight is given to documents that contain many terms.

A typical formulation, which is quite effective in practice, calculates the cosine of the

angle in the n-dimensional space between a query term wg,, and a document wg:

N
wee = In(1+ — way = 1+ Infq,

t
W = \/Zw.iz W, = E"’g.t

Z ¢
D Wa,t Wt
g, = 2 WdiWas 2.1
q,d Wqu ()

10

The similarity between the query g and the document d is expressed by the term S;4. In
this equation, the term W, can be neglected as it is a constant for a given query and does
not affect the ordering of documents. The quantity w,, typically captures the property
often described as the inverse document frequency of the term (I DF'), while wq; captures
the term frequency (TF). A greater TF value means that a document is more relevant
if it contains more occurrences of a query term; a greater /DF value means that a query
term is more important if it occurs in fewer documents.

One of the most prominent and most sophisticated TF/IDF scoring functions is Okapi
BM25 (35]:

. N—=f+05 (k3 +1)f, (kv +1)fae
wae = In(ft+05) ks + fo. e = Kq+ fap
W,
Ka=k((1-0)+ bT/_Vj‘; Sqa = Z Wa,tWd,t (2:2)
teq

in which the values k; and b are parameters, set to 1.2 and 0.75 respectively; k3 is a
parameter that is set to oo, so that, the expression (k3 + 1);3—{3327 is assumed to be
equivalent to f,;. Wy and W, are the document length and average document length,
counted in words or bytes.

In order to evaluate the accuracy of a ranking method, we need some metrics to
calculate the portion of the actual relevant documents included in the result and quality
of ranking. Two basic metrics are the precision and the recall. The precision of a ranking
method is the fraction of the top-k ranked documents that are relevant to the query,
while the recall of a method is the fraction of the total number of relevant documents
included in the top-k£ documents. More to the point, high recall means that an algorithm
returns most of the relevant results, while high precision means that an algorithm returns

substantially more relevant results than irrelevant.

2.2 Clustering

Clustering is an important and useful technique used in a wide variety of fields, such as
pattern recognition, information retrieval, and data mining. Clustering methods group a

large number of objects into a small number of meaningful clusters for further processing

11

[21]. Objects within a cluster are similar to each other and different from objects in
other clusters. Therefore, a good clustering method is the one that achieves the greater
similarity within a cluster and the greater difference between clusters.

Usually, every single object x, which is used as input to a clustering method, consists
of a vector of d dimensions z = (x,,%2,...z4). The individual components z; are called
features or attributes and describe the objects. Attributes are used by clustering methods
to group the objects.

The basic steps that a typical clustering activity involves are: a) the representation of
the objects; b) the definition of an appropriate proximity measure; and c¢) the clustering
process [22]. Object representation refers to the number of available objects, and the
number and type of the attributes available to the clustering algorithm. Object proximity
is usually measured by a distance or similarity measure defined on pairs of objects and is
stored in a matrix whose rows and columns correspond to objects. The clustering process

groups the objects by consulting the proximity matrix. The output can be:
o ezclusive, where each object belongs to exactly one cluster,

e overlapping, where an object can simultaneously belong to more than one cluster,

or

o fuzzy, where each object has a certain degree of membership in each of the output

clusters.

Finally, some objects may be considered as outliers or noise and may not be part of any
formed cluster. Outliers are either objects that have different characteristics from most
of the objects in the data set, or values of an attribute that are unusual with respect to
the typical values for that attribute. On the other hand, the concept of noise is slightly
different as it refers to a random component of a measurement error and may involve the

distortion of a value or the addition of spurious objects.

2.2.1 Similarity And Distance Measures

Clustering requires a definition of the “closeness” of two objects. Closeness is defined in
terms of the similarity measure between two objects. Similarity or Distance measures map

the similarity or distance between two objects into a single numeric value. The similarity

12

expresses how similar are two objects. Similarity is higher for pairs of objects that are
more alike and lower for pairs that are less alike. On the other hand, distance expresses
how different are two objects. When similarity values range from zero (no similarity) to
one (complete similarity), then for a given similarity value s, we can compute the distance
d =1 — s and vice verca.

A standard distance measure which is widely used in clustering problems is the
Euclidean Distance. The Euclidean Distance d between two objects z and y in a n-

dimensional space is given by the following equation:

d(l’, y) = Z(zk - yk)z, (23)

k=1

where 7 is the number of dimensions and zx, yx the k** attributes of z and y respectively.
Jaccard Similarity Coefficient is a measure which is used to compute the similarity of
objects with asymmetric binary attributes. In this case only ”1” matters. For instance,
suppose two objects £ = (1,0,0,0,0,0,0) and y = (0,0,0,0,0,1,1) each one represented

by a binary vector of attributes. The Jaccard Coefficient is given by the equation:

_ fu
= for + fio+ fu’ (24)

where:

e f1; is the number of attributes in which both z and y are "1,
e fo1 is the number of attributes in which z is 0" and y is ”1”, and

e fio is the number of attributes in which z is ”1” and y is ”0".

The number of attributes in which both z and y are "0” does not contribute to the
estimation of the similarity value as the presence of an attribute is more important than
its absence.

One of the most popular similarity measures is the Cosine Similarity. Assuming two
objects z and y represented as vectors of attributes, the cosine similarity is given by the
following formula:

T

IS
R FTy (25)

13

where the numerator of the fraction indicates the vector dot product

n
Z:Bkyk (26)
k=1
and ||z|| reflects the vector length:
Izl = | 22 =vz-=. (2.7)
k=1

Cosine similarity ignores zero matches like the Jaccard Similarity Coefficient, but it can
also be used to compute the similarity of objects with non-binary attributes. For instance,
it is an appropriate measure for computing the similarity of text documents. In such a
case, documents are represented as vectors of attributes and each attribute corresponds
to the frequency of a term’s occurrence in the document.

Finally, not all similarity or distance measures are suitable for a given situation. In
addition, choosing the appropriate measure is crucial for clustering, and hence, it is of
high importance to understand the effectiveness of different measures in order to choose

the best for each case.

2.2.2 Clustering Methods

Several clustering algorithms exist but none of them is universally applicable and appro-
priate for each kind of dataset or clustering problem.

Partitional Clustering. The most common type of clustering methods can be char-
acterized as partitional clustering, which is an exclusive division of the set of objects into
clusters.

One of the simplest and most popular clustering algorithms is K-means {28]. K-means
represents a cluster by the mean value of all objects contained in it. Initially, it randomly
selects k cluster centers. Then, in each iteration, K-means assigns each object to its
closest cluster center based on the similarity function and recomputes the center of each
cluster. This process is repeated until a convergence criterion is met, for instance there is
no possible reassignment of any object from one cluster to another. K-means is popular
because it is easy to implement and its time complexity is O(n), where n is the number

of objects. A drawback of this algorithm is its sensitivity to the selection of the initial

14

cluster centers and that the number of clusters needs to be defined in advance.

A density-based clustering algorithm called DBSCAN [11] is also a partitional clus-
tering algorithm. DBSCAN overcomes the shortcoming of the K-means algorithm, as the
number of clusters is automatically detected, and locates regions of high density that are
separated from each other by regions of low-density. DBSCAN’s definition of a cluster
is based on the notion of density reachability. Basically, an object g is directly density-
reachable from an object p if it is closer than a given distance Eps (hence part of its
Eps — neighborhood) and if is surrounded by a number of objects such that one may
consider p and ¢ to be part of a cluster. The q is called density-reachable from p if there is
a sequence of py, ..., p, objects with p; = p and p, = q where each p;4, is directly density-
reachable from p;. There is a case where an object ¢ might lie on the edge of a cluster,
having fewer neighbors than a given number to count as dense itself. This would halt the
process of finding a path ending at the first non-dense object. By contrast, starting the
process with p would lead to ¢. In this case, the process would halt there and ¢ would
be the first non-dense object. Due to this asymmetry, the notion of density-connected is
introduced: two objects p and ¢ are density-connected if there is an object o such that
both p and q are density-reachable from o. A cluster satisfies two properties: a) all objects
within the cluster are mutually density-connected, and b) if an object is density-connected
to any object of the cluster, it is part of the cluster as well.

DBSCAN requires two parameters: a) Eps, which is the radius that delimits the
neighborhood area of an object, and b) MinObjs, which is the minimum number of
objects required to form a cluster. It starts with an unvisited object and retrieves its
Eps-neighborhood. If the size of its Eps-neighborhood is larger than MinObjs, then a
cluster is formed. Otherwise, the object is labeled as noise. However, this object might
later be part of another cluster. If an object is found to be a dense part of a cluster,
then its Eps-neighborhood is also part of that cluster. This process is repeated until
the density-connected cluster is completely found and then, a new unvisited object is
processed.

Hierarchical Clustering. Another well-known type of clustering method is charac-

terized as hierarchical clustering and includes two basic approaches [31}):

e The agglomerative approach starts the clustering process with each object as an

15

Subject22iect || File, | Files | ... | Filey
User, rwx | T r'wx
Users r rw rwx
GT oup, X I'wWX

Table 2.1: Access Control Matrix

individual cluster. Each step of this approach merges two clusters that are the most
similar. Thus the total number of clusters decreases after each step. This is repeated

until the desired number of clusters is obtained or only one cluster remains.

e The divisive approach reverses the clustering process and starts with just one cluster
that contains all the objects. Afterwards, the single cluster is split into two or more
clusters until the number of clusters becomes equal to the number of objects, or

equal to a number specified by the user.

Generally, hierarchical clustering is preferred when a hierarchy is required and is displayed
using a tree-like diagram. Although the number of clusters does not need to be specified
in advance, a termination condition has to be defined. However, the major drawback of

hierarchical algorithms is the high computational and storage cost they involve.

2.3 Access Control

In multi-user environments many users are allowed to coexist and interact with each
other. Generally, such systems distinguish individual users through authentication at
login time and associate an identity with each file or folder. One challenge in multi-user
environments stems from the fact that all files are stored in a shared storage space. With
no measures taken, it is possible for users to have access to any file. Therefore, there is
an imperative need to use an access control mechanism.

Access control matrices can be used to implement access control mechanisms (Table
2.1). These matrices store for each subject (user or group) its access rights (Read, Write,

eXecute) on distinct objects. An object can be a file, folder, or another system resource.

16

The columns of the matrix refer to objects and the rows refer to subjects. One way to
simplify the management of access rights is to store the access control matrix by columns
along with the object to which the column refers. This is called an Access Control List
(ACL) and contains subjects as well as their access rights on the object to which the ACL
refers. Another way to manage the access control matrix is to store it by rows. Each row
is called capability and refers to the access rights of a subject on each object.

Generally, when a user makes a request to access a file, a check is made to ensure that
he has the appropriate access rights, otherwise the access is denied. This mechanism is

known as authorization.

2.4 Search Privacy

As full-text search is an indispensable tool for finding information, search engines need to
protect privacy when operating in a multi-user environment. Privacy protection in search
engines is considered a non trivial problem to solve, especially when there is a need to
retain the search engine’s performance.

In order to protect privacy in search engines, the primary goal is to ensure that the
search engine respects the access control restrictions applied on the documents. This
means that whenever a user issues a query, the search engine must only return documents
that the user is allowed to read. However, in some cases this is not enough to preserve
privacy.

In the case where the search engine uses a system-wide index, a user can infer in-
formation about documents that is not allowed to read. When a system-wide index is
used, it is necessary to filter the results of a query before returning them to the user. In
particular, the search engine computes the list of all documents matching the query, ranks
them depending on their relevance scores, and then it filters this list. Filtering removes
from the list all documents that the user who issued the query is not allowed to read.
This postprocessing approach along with a TF/IDF ranking algorithm permits a user to
leverage the ranking results in order to infer information about documents that he is not
allowed to read [6].

This is the case where privacy in a search engine is not preserved and the impacts of

17

information leakage could become disastrous if sensitive information is disclosed. Under
these considerations, in order to protect privacy, a search engine needs to ensure that a
result list returned to a user only contains documents that he is allowed to read and that

a user cannot infer any information about documents that he is not allowed to read.

2.5 Summary

Full-text search is separated into two stages: the indexing, and the search stage. In
the indexing stage, the search engine parses and indexes the documents in one or more
indices. The most popular index structure is the inverted index and possible techniques
that can be used to keep the indices in sync with the document collection are: a) Rebuild,
b) Remerge, ¢) Nomerge, and d) LogarithmicMerge. In the search stage, users issue
queries to the search engine. The search engine computes and ranks the list of documents
matching the query, and then returns the ranked list to the user.

Clustering methods are used to group objects into a small number of meaningful
clusters. Clustering is based on the similarity or distance between two objects, and two
basic types of clustering methods can be characterized as partitional and hierarchical.

In multi-user environments, users enforce access control over their files defining who
can access them and how. Hence, search engines that operate in such environments need
to protect privacy ensuring that a result returned to a user only contains documents that
he is allowed to read, and there is no possibility for a user to infer any information about

documents that he is not allowed to read.

18

CHAPTER 3

PRIVACY THREATS IN FULL-TEXT SEARCH

3.1 Attacking Through Relevance Scores
3.2 Attacking Through Ranking Results
3.3 Revealing the Content of Files

3.4 Towards a Secure Solution

3.5 Summary

When using a single system-wide index, all existing files are indexed regardless of
access control privileges. Thus, whenever a search query is issued, the results are filtered
in order to exclude documents for which the user may not have the appropriate access
privileges. However, the filtering takes place after ranking all matching documents.

In this chapter, we focus on the methods that an arbitrary user can apply to compro-
mise the search results in a multi-user environment. All of the methods we describe are
discussed in a previous work by Biittcher and Clarke [6]. The lack of per-user relevance
scores in conjunction with the above post-processing approach and a TF/IDF scoring
function can be exploited by an arbitrary user to calculate the number of documents that
contain a given term T. The calculation includes those documents that the user is not al-
lowed to search. Extracting the exact number of documents or an approximation depends
on whether the full-text search engine returns the document relevance scores or simply

the ranked list of documents. Also, it is possible to reveal the content of a document if the

19

full-text search engine supports complex queries. However, TF/IDF scoring functions
are the most prominent scoring functions and should be used in a search engine while

retaining privacy.

3.1 Attacking Privacy Through Relevance Scores

We assume a full-text search engine that uses a system-wide index and a TF/IDF scoring
function (Okapi BM25) to perform relevance ranking on documents matching a search
query. The execution of the following steps lead to the exact calculation of the number
of documents containing a term 7.

A possible starting point is the equation that calculates the relevance score of a doc-

ument d:

score(d) = Y gr -wr -dr - (1 + ki) (3.1)

Toye 4T R - (1 - b)+b- ;43)’
where dr is the number of occurrences of the term T within d, ¢r is the weight of T in
the query count by the number of its occurrences, and wr = log(ll—DDT‘-') is the IDF weight
of the query term T. |D] is the total number of documents and |Dr| is the total number
of documents containing 7. dl is the length of the document d (number of terms), and
avgdl is the average document length in the system. Parameters k; and b are usually
chosen as 1.2 and 0.75 respectively.

For the given term T that an arbitrary user User, is interested in, he needs to obtain
the number of documents that contain it by solving equation (3.1) for |Dr|. However, the
value of |D| and avgd! is unknown. User4 creates documents containing specified terms
and issues customized queries to the search engine. By leveraging the relevance scores
of the returned documents and the above equation, he can determine the value of the
unknown parameters, and finally the value of |D7|.

Initially, Users generates two random terms 7 and T3 that do not appear in any

document in the collection, and then creates three documents D;, D, and Dj3 such that

e D, contains only the term T3,

e D, consists of two occurrences of the term T3,

20

e D3 contains only the term T3 .

The next step is to issue two queries, one only containing the term T, and another the
term 7T3. For the first query, D, and D, are returned as matching documents, while
document Dj is returned for the second query. Their relevance scores are revealed by the
search engine using the equation (3.1). Note that only the term T contributes to the
relevance score of D; and only the term T3 contributes to the relevance score of D3. Also,
the weight of T3 in the query and its number of occurrences within D; are equal to 1.
This also holds for the term T3 and the document D3. Hence, the relevance scores of the

documents are:

log(2)(1 + k1)

score(Dy) = 3.2
(D1) 1+ k(1 - b) + 225) (32
and
(1 + k1)log(121)

score(D3) = . 3.3

Then, dividing equations (3.2), (3.3) results in

score(D,) log(Lp-l)

= (3.4)

score(Ds) ~ log(!2ly’

1
and thus

score(D
IDI — 2(m0_3m'3-?ﬁ$), (35)

Now, the only unknown value is the average document length (avgd!) in the system, which
can be obtained by using equation (3.3) and solving for avgdl.

Once all parameters of the BM25 scoring function are known, the attacker creates a
new document D4 which contains the term T', and submits a query including only the term
T. Consequently, the search engine returns the document D4 accompanied by score(D,).

Finally, this information is used to construct the equation:

(1 + k)log(7i2k)
1+ k((1-b)+ 3kg)’

where Dy is the only unknown value. Hence, solving for Dy, the User4 knows the exact

score(Dy) = (3.6)

number of documents containing the term T'.

21

3.2 Attacking Privacy Through Ranking Results

Returning the relevance scores of the matching documents is an essential prerequisite to
achieve the above exploitation. Nonetheless, following a barely different approach, it is
possible to compute an approximation of the number of documents containing a term
T, even if the relevance scores of matching documents are omitted. Indeed, this can be
accomplished by simply leveraging the order in which matching documents are returned
by the full-text search engine and the observation that the most interesting terms are
infrequent.

Suppose that User, intends to reveal the number of documents containing the term
T (IDr|)- Usera creates documents containing specified terms and issues customized
queries to the search engine. Then, he leverages the order in which matching documents
are returned and the equation (3.1).

Initially, he creates a single file Dy which contains only the term 7". Then, he generates
a unique random term 75, and creates 1000 documents D;... Djgg0, each of which contains
this term. Afterwards, by submitting a Boolean OR query comprising terms 7' and
T, the search engine returns the matching documents ranked by their BM25 relevance
score. If Dy appears before any of the documents D,...Djgg0, Users can deduce that
score(Dg) > score(Dio) holds. Hence, solving the inequality for |Dr|, he knows that
|Dr| < 1000. Instead, if Dy appears after the documents D,...Djggo, then he knows that
| Dz| > 1000.

Furthermore, a better approximation of |Dr| can be achieved by using the following
strategy. At the beginning, the arbitrary User, generates a second random term T3 and
creates 1000 documents (D;...Dig00), €ach containing the two terms T; and T3. Also, a
third random term Tj is generated and 999 documents (Digo1...D1ggg) are created, each
of which contains Ty. Lastly, one more document Dy which contains the two terms T and
T, is needed.

After creating all these documents, User4 submits a query consisting of terms T', T3,
T3, and T;. The returning relevance scores for the matching documents Dy and D;...Diggo

are computed using the equation (3.1):

score(Dyp) = C'(log(—"T—l) + log(DI) (3.7

and

score(D;) = C(log(l| |)+ 1o (|IDl), (3.8)

Dy,] Dy
for 1 < i < 1000 respectively. The constant C is the same for all documents and is given

by the equation:

S+ R((1-b)+ 2y

Then, User, begins deleting the documents Djgo1 to Djggg, one at a time. In the early

(3.9)

stages, score(Do) is lower than score(D,), but as soon as the number of documents
containing the term T} is reduced, Tj acquires a greater IDF weight and document Dy

- acquires a greater score. After d document deletions, User, knows that:

D
score(Dg) > score(D:) =>C(109|—|—+l DI —Z1) > C(log ID| + log ID|)
ID l |D I !DTzI |DT3|
(3.10)
= on£Dl +log b 2zog——|D |
D71 91000 —d = “*?1000°

since |Dr,| = |Dz| = 1000 and |Dr,| = 1000 — d. Right before this point, say at d — 1

deletions, score(Dp) is still lower than score(D,), and hence the equation

|D| |D] |D|
long | -l~log1000 =1 S < 2l091000 (3.11)

holds. Ultimately, combining the inequalities (3.10), (3.11) gives:

~log(|Dr|) — log(1000 — d + 1) < 2l0g(1000) < —log(|Dr|) — log(1000 —d) (3.12)
which implies

10002 <|Drl < 10002
1000-d+1=""T"=1000—-d

Hence, the attacker is capable of obtaining a range of possible values, one of which cor-

(3.13)

responds to the actual number of documents containing the term 7. However, if the
approximation gained is not good enough, the process can be repeated by adding more

than two terms per document.

23

3.3 Revealing the Content of Documents

The methods described above can be used to obtain the number of documents that contain
a particular term. While this is already harmful, it can be much worse if the full-text
search engine allows queries of arbitrary length. For instance, it is possible to obtain the
entire content of a document by guessing its words. In particular, knowing that a certain
document contains the phrase “A B C”, an arbitrary user can try all possible terms D
and calculate the number of documents which contain “A B C D” until he finds a D that

gives a non-zero result. Afterwards, he can continue with the next term E and so on.

-3.4 Towards a Secure and Efficient Search System

" It is shown that a post-processing approach combined with an TF/IDF scoring function
permits to an arbitrary user to infer file contents without actually reading any files.
However, TF/IDF scoring functions are the most popular and the most prominent scoring
functions. A search engine that uses a TF/IDF scoring function can achieve accurate
query results, and hence, we could benefit from using a TF/IDF scoring function in such
a way that privacy is retained. Nevertheless, there is a need of approaches that combine
privacy and accurate results with search performance and reasonable index maintenance

cost, leading to a secure and efficient search engine.

3.5 Summary

Search engines that use a single system-wide index along with the post-processing ranking
approach and a TF/IDF scoring function can pose a severe privacy threat. More pre-
cisely, an arbitrary user can compromise the search results in a multi-user environment.
He can calculate the number of documents that contain a given term T by leveraging
either the relevance scores or the position of the documents in the ranking list. Further-
more, it is possible to reveal the content of documents that he is not authorized to access
when the search engine supports Boolean queries and phrases. However, TF/IDF scor-

ing functions are widely used as they are the most prominent scoring functions. A search

24

engine needs them in order to provide accurate query results, and hence they should be
used in such a way that also retains the privacy.

25&

T TR I AT T e L -

ST TR T TSy Y LI T U T L T

CHAPTER 4

DESIGN

4.1 Goals

4.2 Overview of Indexing Workflow
4.3 Crawler

4.4 Planner

4.5 Indexer

4.6 Incremental Indexing

4.7 Summary

This chapter is devoted to the design goals and the overview of our work. Furthermore,
we describe its major components in more detail and explain any decisions made before

proceeding with the implementation.

4.1 Goals

Much of the research work on preserving privacy in desktop and enterprise multi-user
environments follows two basic approaches. These approaches maintain either one index

per user or a single system-wide index.

26

Retaining one index per user ensures privacy and achieves high query performance,
as each user only accesses his private index and the query processing is restricted to that
index. Unfortunately, these significant benefits come with great disk space consumption
and increased maintenance cost because each document is indexed by every index whose
owner has access to it. Hence, multiple copies of the same document exist in several
indices at any given time. Furthermore, the problem gets worse when many users share
many documents.

On the contrary, retaining a system-wide index means that all existing documents are
indexed regardless of access control restrictions [6]. This approach provides efficient index
updates and low storage usage because each document is indexed only once. However, it
poses severe privacy issues which can be eliminated in the expense of query performance
due to the need of result filtering in order to ensure that each search result only contains
documents that the respective user is allowed to search.

A different approach that improves efficiency while ensuring privacy creates one index
for each set of documents with the same ACL [37]. In particular, documents accessed by
a single user are indexed by his private index. Instead, shared documents with identical
ACLs are indexed by a single index, which is accessed by the users of the specified ACL.
Even though this approach offers privacy and lower maintenance cost, it does not provide
any parameters to tune the query performance and the maintenance cost.

The main purpose of our solution is to protect privacy in multi-user environments
and provide a more flexible solution. We introduce a novel strategy to organize users’
documents into indices by leveraging the similarity of their ACLs. We group documents
into clusters, each containing documents with similar ACLs to some extent. The similarity
between the ACLs of documents within a cluster is determined by a Similarity parameter.
Then, we map the documents and the users to indices based on the intersection and
differences of the ACLs within a cluster. In addition, we use a Threshold parameter
which determines how a difference is treated, and limits or raises the duplicate documents.
Therefore, we provide a trade-off between query performance and maintenance cost and
ensure that the indices accessed by a user only contain documents that the user is allowed

to search.

27

@E I Pianner 1[
EID Crawler [[Clusterer Mapper | | Indexer
!

Indexes

Figure 4.1: Overview of our indexing workflow.
4.2 Overview of Indexing Workflow

Our design is based on a planning scheme that groups users’ documents before the indexing

process. Figure 4.1 gives an overview of our indexing workflow:

e A Crawler gathers the access control information of the documents in the system.

e The Planner utilizes this information to separate the documents. The Planner
consists of two components: a) the Clusterer, which clusters the documents based
on the similarity of their ACLs; and b) the Mapper, which maps documents and
users within a cluster to indices. Note that each document may be indexed by more

than one index.

e The Indezer indexes the documents in the full-text search engine based on informa-

tion obtained from the Planner.

The details about the distinct components and the algorithms used to implement our

solution are given in the following subsections.

4.3 Crawler

Crawling is an important and essential part of a search engine and typically refers to the
process of discovering the content to index. However, its operation is more general as it
is used to express the process of collecting information within a system.

In our case, crawling refers to the discovery of new or updated documents, the extrac-
tion of the document ACLs, and the extraction of the information about their location
on disk. The content of the documents is not used in the next phase, so there is no

need to get it in such an early stage: the Planner only needs the ACL and the path of

28

the documents. Therefore, the crawler is used to extract only this information from the

documents and fuel the Planner with them.

4.4 Planner

The Planner executes the main bulk of the work, and receives a pair of path and ACL
for each document in the system. Then, the Clusterer uses this information to group the
documents into clusters, and the Mapper maps the documents and the allowed users to

indices.

-4.4.1 Clusterer

- The Clusterer is responsible to cluster the documents based on the similarity between their
ACLs. Before starting the clustering process, a number of important decisions should be
made in order to cluster the documents in an efficient way.

Object Representation. Once the Clusterer obtains the document paths along with
their ACL, the clustering process starts by representing the objects. The next step is to
construct the similarity matrix by computing the similarity of each pair of objects and
storing it in the appropriate matrix slot. Normally, each object would be represented as
a pair of a document path and its corresponding ACL. However, in the case where the
number N of documents is high, the similarity matrix would considerably grow in size
with N x N slots. For instance, assuming N = 50000 is the number of documents and
b = 4 Bytes is the size of each matrix slot, then the total memory consumption becomes
C = Nx N x b= 9GB. Even when using only half of the similarity matrix, it still
occupies a lot of memory.

In order to avoid this cost, we represent the objects in a more suitable way. To achieve
this, we add an extra document-grouping step before the actual clustering process. In
particular, we gather in the same group all documents with identical ACLs, and this group
represents the actual object for the clustering process.

We denote each object as a Document Family. Each Document Family consists of a
set of document paths (rather than a single document path) and a binary ACL bitmap
generated by the ACL of the corresponding document set (Figure 4.2(a)). The dimensions

29

User N: ————

User 2:

<ACL bitmap> User 1:—;
= Y VY
[&) {File Path Set} | <0,1, .., 1> |

(a) Document Family. (b) ACL bitmap.

Figure 4.2: Document Families include a set of document paths and their corresponding
ACL bitmap. ACL bitmaps are created from the ACLs and represent whether each user

is included in a document’s ACL or not.

of the ACL bitmap are equal to the number of the users in the system and its components

are either one or zero depending on whether the corresponding user appears in the ACL
" of the Document Family or not (Figure 4.2(b)).

The importance of such an object representation is demonstrated by the dramatic
reduction of memory consumption. The size of the similarity matrix depends on the
number of different ACLs in the system rather than the total number of documents.
Moreover, the number of different ACLs is expected to be small compared to the total
number of documents as many documents have common sharing attributes [23].

Choosing the Clustering Algorithm. Several clustering algorithms exist in order
to meet different needs as none of them is universally applicable and appropriate for every
kind of dataset and clustering problem. However, two of them captured our interest.

One algorithm that we initially considered was K-means. After examining its prop-
erties and prerequisites, we realized that it eventually might not be such a good choice.
The main reason that made us disregard K-Means is the demand to specify in advance
the number of clusters to which the clustering method will end up. In our approach, this
is an obstacle because we do not know the number of the final clusters. Moreover, the dis-
tance measure used by default to compute the distance from a data object to each cluster
center is the Euclidean distance. As highlighted previously [10], Euclidean distance does
not work well in high dimensions and its performance may not be optimal when dealing
with binary data.

Taking into account these considerations, we decided to use another algorithm: the

30

DBSCAN algorithm. Unlike K-means, DBSCAN does not require to predefine the number
of the clusters. Instead, the final number of clusters is revealed after the algorithm has
been executed. Furthermore, one can choose an arbitrary distance function rather than
the Euclidean distance.

Choosing the Similarity Measure. Given the number and diversity of similarity
and distance measures that are available, choosing one is also a challenging process.
Taking into account that each Document Family is represented by an ACL bitmap and
that the presence of an attribute is more important than its absence, we decided to use
the Jaccard Coefficient. Although DBSCAN works with distance functions, we prefer to
use the notion of similarity because we want to focus on the similarity between the ACLs
rather than their dissimilarity.

Choosing the Algorithm Parameters. As already discussed in subsection 2.2.1,
the DBSCAN algorithm requires two parameters: a) the Eps radius, which defines the
maximum distance between two objects in order to be considered as neighbors and is
computed by the Similarity parameter; and b) the MinQObjs value, which defines the
minimum size of the neighborhood that a particular object must have in order to be
included in a cluster.

Our goal is to cluster all the Document Families and avoid characterizing any of them
as noise. Thus, we permit the creation of clusters that contain a single Document Family.
For this reason, we set the MinObjs value to one. We do not set the radius to a fixed
value as our target is to monitor the behavior of our solution under different values of
similarity. Hence, the tunable Similarity parameter defines its value.

The Clustering Process. So far, we explained several important decisions concern-
ing the algorithms of our solution; now we move to the description of the actual clustering
process.

The algorithm starts with an arbitrary Document Family F' which is not yet member
of any cluster. It marks F as visited and retrieves its Neighborhood which is the Document
Families whose similarity to F is equal or greater than the Similarity value. The Document
Families belonging to the Neighborhood are added in the Neighbors List. If the size of
this list is equal or greater than one, a new cluster is formed containing F. Then, the
algorithm examines every Document Family F’ in this list. If F” is not visited, it is first

marked as visited and its Neighborhood is retrieved. If the Neighborhood size is > 1,

31

s e

o) odh)

N N
A
1 o) @R T

- - N S

Ve 4) (DEI

|\D/) (\l:l g

O Document-Family

;

\)Cluster

Figure 4.3: We illustrate an example of Document Family clustering. We assume a
similarity value higher than 0 and smaller than 100. The formated clusters contain either
one or more Document Families. In particular, a cluster with more than one Document

Families includes multiple sets of document paths, and each set has a single ACL bitmap.

then the neighbor Document Families are added in a temporary list which is joined with
the Neighbors List. This process is repeated until no more Document Families are left in
the Neighbors List. Subsequently, another Document Family of the dataset is visited.

After all Document Families have been visited and assigned to a cluster, each cluster
ends up with one or more Document Families. The number of documents included in
clusters with more than one Document Families is at least equal to the number of different
Document Families in the cluster. Some of these documents have different ACLs but
similar to some extent. This similarity refers to the common users between their ACLs
and depends on the Similarity value. Note that even clusters with a single Document
Family contain more than one documents, but these documents have exactly the same
ACL.

Figure 4.3 depicts an example of clustering output. Each cluster contains either one or
more Document Families, and each Document Family represents a set of documents with
identical ACL. Clusters with more than one Document Families include multiple sets of
documents each of which has its own ACL bitmap. The ACL bitmaps of the Document
Families included in the same cluster are similar to each other.

At this point, the Clusterer job is done and the generated clusters are given as input

to the Mapper.

32

N ~
P
\ (o)
{_/ \E/
(")Cluster @Document Family COACL
i: intersection d: difference

Figure 4.4: Clusters with more than one Document Families contain documents with
different ACLs. For these clusters, we find the intersection and the differences between
the ACLs they contain. The intersection is the set of users included in every Document
Family in the cluster, while each difference is the set of users of each ACL in the cluster

that is not included in the intersection.

4.4.2 Mapper

Mapping is a stage of high importance because it determines how the indices are formed.
The output of this step is the number of indices and a description for each index. The
information that describes each index is: a) its name; b) the set of users that have access
to it; and c¢) the paths of documents that are going to be indexed by it. This information
will be later used by the Indexer, which performs the actual indexing process.

The underlying idea of our Mapper is based on the observation that a cluster may
contain documents with similar ACLs to some extent. For each cluster, the Mapper creates
an intersection and multiple difference ACL parts (Figure 4.4). The intersection ACL part
is formed by the intersection of the ACLs (ACL intersection or simply intersection) in a
cluster. An intersection contains the set of users that are included in the ACL of every
Document Family in a cluster. Each difference ACL part is formed by the remaining
portion of each ACL (ACL difference or simply difference) in a cluster and contains the
set of users of this ACL that are not included in the intersection. The users and the
documents that correspond to these ACL parts are then mapped to indices.

Algorithm 1 provides a high-level description of how the Mapper works. For each
cluster, it performs three major tasks: 1) it finds the intersection between its ACLs; 2)
for the ACL of each Document Family, it computes the set of users that do not belong
to the intersection; and 3) decides whether a difference part maps to one or more indices

according to a threshold. The inputs to the algorithm are the created clusters and the

33

Algorithm 1: Index Mapping

Input: Clusters of Document Families and Threshold value

Output: Information about each index (name, user IDs, and documents IDs)

for each ¢ € Clusters do

1
2 // Compute the intersection in cluster ¢
3 findIntersetion(c)
4 if (lintersection.empty() AND
3Document Familyl, Document Family2 € ¢ : DocumentFamilyl # DocumentFamily2) then
5 // Map one indez to the users of the intersection and all documents of cluster c
6 maplndex(intersection|c].users, c.Documents)
7 // Compute the differences and map to indices based on the Threashold
8 for each DocumentFamily € ¢ do
9 findDifference(DocumentFamily.users, intersection[c])
10 indexWithTreshold(difference.users, DocumentFamily.Documents)
11 end
12 else
13 // Map the indices based on the Threshold value
14 for each DocumentFamily € ¢ do
15 indexWithTreshold(DocumentFamily.users, DocumentFamily.Documents)
16 end
17 end
18 end

value of the threshold.

Initially, for each cluster ¢, we check whether a non-empty intersection exists. If a non-
empty intersection exists, the Mapper maps a single index to the users of the intersection
and indexes all documents of the cluster in that index (line 6). Then, we compute the
difference with the intersection for each individual Document Family in the cluster ¢
and map one or more indices depending on the threshold value (lines 8 — 11). When
intra-cluster intersection is empty, it means that either the cluster has a single Document
Family or the cluster has more than one Document Families but there are no common
users between their ACLs. In both cases, each Document Family is mapped to indices
based on the threshold value (lines 14 — 16). In particular, if the product of the number of
users that belong to a difference part with the number of its corresponding documents is
higher than the threshold value, then one index is mapped to these users and documents.
Otherwise, the documents are duplicated to the private index of each user in the difference
part (Algorithm 2).

Intra-Cluster Intersection and Differences. The fact that the ACLs within a

cluster may share common users is leveraged to create an index. This index contains

34

Algorithm 2: Procedure indexWithTreshold(users, documents)

1 if (users.size() x documents > Threshold) then
2 I mapIndex(users, documents)

3 else

4 ' cplnPrivatelndexes(users, documents)

5 end

all documents included in the cluster (regardless of their ACL) and is accessed only by
users that belong to the intra-cluster intersection. Non-empty intersections only exist in
clusters that have more than one Document Families. In order to find an intersection, we
retrieve the ACLs by using the corresponding ACL bitmaps. We are certain that each
intersection is mapped to a single index either by using an existing index with the same
set of users accessing it, or by creating a new one. However, if an empty intersection
exists, then each ACL is treated as a difference.

Except for the intersections, we also have to take care of the differences. The default
case maps each difference and its corresponding documents to a single index. This index
is only accessed by the users that belong to the difference. The index of a difference only
includes documents that correspond to the specified ACL rather than the total documents
held by the cluster. Unavoidably, this leads to document duplication as these documents
are indexed both in the index mapped to the intersection of the cluster and in the index
mapped to the difference. In addition, we observe that there might be common users
between two or more differences, but we do not consider them for the moment because
the solution would become more complicated.

Privacy, our most important goal, is achieved as each mapped index is only accessed
by users that are allowed to search the indexed documents. While this is a good solution
and keeps the number of document duplicates at low levels, it does not bring the best
search performance. Even though the number of indices that a user needs to search is
reduced, especially for the users that belong to intersections, a more intuitive mapping
can further improve the query performance.

Map to One or Multiple Indices. To further improve the query performance while
still meeting the privacy, we introduce a threshold denoted as Threshold. Threshold limits
or raises the document duplicates and this translates to the increase or the decrease of

the indices that each user has access to.

35

ACL:: {users, userz, users, users , Useriz, usens@
ACLa: {user, userz, users, usemﬂ@
ACLz: {users, userz, users, users, usenoia

E?@

Intersection Difference Private Index
Index Index

Figure 4.5: Users U;...U; belong to the ACL intersection, while users Uya, Uis and Ujg
belong to the ACL differences. The Mapper maps three indices. The first index corre-
sponds to the users of the ACL intersection and includes all documents in the cluster.
Each of the remaining indices corresponds to the users of each ACL difference. Also, the
set of documents that correspond to each ACL difference is duplicated in each mapped

index (difference and private index).

Using this threshold, the Mapper decides whether to map a difference to a single or
multiple indices. Therefore, every time a difference is computed, the algorithm checks
whether the number of the corresponding documents multiplied with the number of users
in the difference is lower than the predefined Threshold or not. If this product is lower
than Threshold, then each of these documents is indexed by the private index of each user
that is included in the difference. Otherwise, we treat the difference as in the default case
by mapping it to a single index.

Figure 4.5 illustrates an example of the mapping process. Considering the cluster of
Figure 4.3, we show the ACLs and the documents corresponding to each ACL bitmap. The
Mapper computes the intersection and maps it to an intersection indez. The intersection
index contains all the documents included in the cluster. Moreover, only users Uy, ..., U,
that belong to the intersection have access to it. Also, the Mapper maps each difference to
a difference index where the corresponding documents are duplicated. Thus, a difference
index is mapped for users U)2 and U5, while a private index is mapped for user Ujp as he
is the only user that belongs to the third difference.

Mapping the users and documents of each difference to a single index is not always

appropriate. In the case where differences include few users and documents, we need to

36

maintain many indices that include a small number of documents and each is accessed by
a small number of users. Moreover, if a user belongs to many such differences, then the
number of indices that he accesses is large. On the other hand, mapping the documents of
each difference in the private index of each user would lead to many document duplicates
in the case where the number of users and/or documents in the difference is high. Thus, we
decide whether to map a difference to a single or multiple indices by checking the product
of the number of documents and users in the difference. This product shows the number
of document duplicates that are going to be created per ACL. We can limit the number
of document duplicates by creating a single index for a difference if the above product
is higher than the predefined Threshold, or raise it by duplicating the corresponding
documents in the private index of each user in the difference if the product is lower than
the Threshold.

Indeed, this approach tends to further reduce the number of indices in which a user
has to search when some of the shared documents are duplicated in his private index.
However, the higher the Threshold value, the fewer the indices that a user has access to

and the more documents are duplicated into multiple indices.

4.5 Indexer

The last remaining phase is to index the documents by leveraging the information gen-
erated by the Mapper. To that end, the Indexer gets one by one the index names and
their corresponding document paths. The documents are indexed by the specified index
in bulks of 500 documents or less if not enough. Through bulk indexing the time spent
in indexing phase can be substantially reduced.

The Indexer gets the document paths that belong to each index rather than the indices
in which each document is indexed. We choose this approach because it incurs less
overhead compared to the second one. This happens due to the fact that in the first case,
the writes included in the bulk index request occur in the same file (corresponding to a
single index). On the contrary, in the second case, each bulk consists of requests, each
of which involves the same document but corresponds to different index. Therefore, this

translates into many small writes in multiple indices (each corresponding to at least one

37

on-disk file) and degrades the indexing performance.

4.6 Incremental Indexing

The procedure described above deals with the construction of the indices. However, in
general we want the indices to handle incoming updates and queries in such a way that

the privacy level already achieved remains intact.

4.6.1 Updates

When new documents are added into a document collection, the search engine needs to
update the existing index data-structure. Existing index-maintenance strategies accumu-
late postings from incoming documents in main memory and add them to the existing
on-disk inverted lists when a pre-defined memory utilization threshold is exceeded.

In our solution, things are slightly different as we maintain more than one indices.
Hence, we have to find the appropriate index to insert a new document with respect to
its corresponding ACL. Therefore, each new document is indexed by the index which is
accessed by the same set of users that are included in the document’s ACL. In the case
where such an index does not exist, we create a new one.

This approach raises two issues: a) the number of the total indices might be increased
if documents, whose ACLs does not match to any of the existing indices, appear very
often; and b) the new indices may retain a small number of documents. However, a
possible solution is to periodically re-cluster the documents and re-create the indices.

Apart from the forthcoming documents, one such system needs to deal with changes
made to the ACLs of already indexed documents. This implies that these documents are

deleted and reinserted in accordance with the preceding procedure.

4.6.2 Search

A user should be informed of the indices in which he has access to before he starts submit-
ting search queries. Thus, we assume that each user is authenticated to an authentication

server in order to ensure that a user is the person he claims to be. Then, he receives the

38

corresponding list of the indices and he is able to search the indexed document collection.
Consequently, his queries are only directed to the indices included in that list.

In order to achieve this, the authentication server needs to maintain information re-
garding the users and the indices that each user has access to. In addition, the authenti-
cation server needs to be aware of any changes concerning this information and constantly

being kept up with them.

4.7 Summary

Much of the previous research on full-text search in multi-user environments presents
solutions that offer either high query performance but increased maintenance cost, or
low maintenance cost at the expense of slow queries and privacy issues. New approaches
protect privacy and improve efficiency, but lack a tunable solution that trades the cost of
index maintenance and query performance while ensuring privacy.

With this in mind, we propose an indexing workflow scheme that organizes documents
into indices by leveraging the similarity of their ACLs. Our main idea is to create clusters
of documents with similar ACLs to some extent and then create indices based on the
intersections and differences of the ACLs of each cluster. We ensure privacy in multi-user
environments while introducing a trade-off between index maintenance cost and query

performance.

39

CHAPTER b5

IMPLEMENTATION

5.1 Planner

5.2 Indexer

5.3 Search Engine
5.4 Discussion

5.5 Summary

In this chapter we provide details of our implementation, which involves the Indexer
and the Planner with its two main components: a) the Clusterer; and b) the Mapper.
The Planner implementation involves the C/C++ programming language and the STL
library as well. The Indexer is implemented in Perl v5.10.1. Additionally, we present a
brief discussion of why we use document IDs and not document paths in each Document

Family.

5.1 Planner

The Planner uses two parameters, the Similarity and the Threshold used by the Clusterer
and the Mapper respectively (Table 5.1). The Clusterer uses the Similarity parameter

to cluster documents with similar ACLs to some extent and defines how similar are the

40

"Planner Parameter || Description

Similarity Defines how similar are the ACLs of the Doc-
ument Families within a cluster. It is used by

the Clusterer.

Threshold Defines how each Document Family differ-
ence within a cluster is treated. It is used by

the Mapper.

Table 5.1: Planner Parameters.

ACLs within a cluster. The Mapper computes the intersection and the differences of
the ACLs within a cluster and then uses the Threshold parameter to map the users and
~the documents of each cluster to one or more indices. The Threshold defines how each

- difference is treated.

5.1.1 Clusterer

Figure 5.1 illustrates the Clusterer operation. The Clusterer operates in two steps: the
document-grouping and the clustering step. It receives pairs of document IDs and ACLs,
which are inserted in a hash table creating the Document Families. Then, it groups the
Document Families into clusters and gives them as input to the Mapper.
Document-Grouping Step. Before proceeding to the clustering process, we create
the Document Families. As each Document Family contains a set of documents with
identical ACLs, is described by: 1) a set of the unique identification number (ID) of each
document that belongs to the specified Document Family; and 2) a binary ACL bitmap.
In order to build the Document Families, we use a chained hash table. The hash table
entries consist of three fields, each of which is used to store: 1) a set of document IDs,
2) the documents’ ACL, which consists of a set of user IDs, and 3) the pointer to the
next entry. The ACL of a document is used as key to the hash function. Every time a
new document is encountered, we check whether a document with an identical ACL has
already been inserted in the hash table or not. If yes, then we simply add the ID of the
new document in the document IDs set of the corresponding entry. Otherwise the ID and

its ACL are inserted in a new entry according to the hash function. Therefore, each hash

41

lusters _ |
Clusterer —C——ii Mapper

| |
i H

Pairs of Doc
and ACL Document
Families
FoA0
ool |

l {User 1D3)}

| {Doc 1Ds} I

Document-Grouping Step Clustering step

Figure 5.1: We illustrate how the Clusterer operates. It receives pairs of document IDs
and ACLs and then creates the Document Families using a hash table (document-grouping
_step). Then, it clusters the Document Families (clustering step) and the created clusters

are given as input to the Mapper.

table entry contains all document IDs with the same ACL.

Once all documents with identical ACLs are in the same entry, a further step is needed
to obtain the Document Families: the construction of each ACL bitmap. Each ACL
bitmap is constructed by using the ACL of the corresponding hash table entry. Finally,
each set of document IDs along with their ACL bitmap form a Document Family.

Clustering Step. As the clustering process proceeds, it forms clusters of Document
Families. Each cluster is represented as a vector of Document Family IDs and is stored in
the Cluster Vector. Thus, at the end of the clustering process, the Cluster Vector contains
all the formatted clusters.

Finally, after the clustering process finishes, the Cluster Vector is given as input to

the Mapper.

5.1.2 Mapper

The Mapper receives the created clusters from the Clusterer and maps their Document

Families to indices (Figure 5.2). For each index the Mapper creates a description, which

is finally stored in a file. This file is then used by the Indexer for the indexing process.
During the mapping phase, the ACLs of the Document Families included in each clus-

ter are split in ACL parts. The basic ACL part consists of the intra cluster intersections,

42

Container
Clusteres chses, Mapper e, Indexer
/\
Index Name LDoclDs,
User IDs R :ndexlr : 225
DoclbDs Indexy 600 ...
index Index Container File

Custers Descriptions

Figure 5.2: We depict how the Mapper operates. It receives the clusters from the Clusterer
and then maps the Document Families within each cluster to one or more indices. Also,
the Mapper creates a description for each index and stores it in the index container file.

" This file is then given as input to the Indexer.

while the other parts arise from each difference. As the ACLs are represented as sets of
user IDs, both the intersections and the differences are found by using the corresponding
functions provided by the STL library.

Once the intersection of each cluster is found, the Mapper maps the users that belong
to the intersection along with all documents in the cluster to a single intersection index.
On the contrary, each difference along with its corresponding documents is mapped to
a single difference index or many private indices depending on the Threshold value. All
index descriptions are stored in an Indez Vector and each of them is described by: 1) the
index name; 2) the set of users that have access to it; and 3) the document IDs that are
included in it.

Finally, two files are created that store information about the indices. The first file,
denoted as access control file, contains one entry for each index. This entry includes the
set of the users that have access to the specified index. It is used before a user starts
submitting queries in order to acquire the list of indices in which he can search. The
second file, denoted as inder container file, also contains one entry for each index, and

each entry includes the document IDs that are going to be indexed by that index.

43

requesti
requeste

request3
Index
)] Cmtalr)er Bulk '~“ YT s s e
Mapper |—File Indexer | Request Zigﬁz
I | Enome

Indext 1325.. 1)
Index2 T{z’ N) 10000
Indexy 600 ... 3 15_'0_00 ‘
Index Container File dffsetArray

requesti o5 Ca

request? | o

request3 | | Dogz Conten?® <«

Docn Content
Bulk Request Collection File
Array

Figure 5.3: We depict how the Indexer operates. It parses each line of the index container
“file and gets the content of each document from the collection file by using the offset
array. For each document, the Indexer creates one index request and stores it in the bulk
request array. When a predefined number of request are accumulated, the Indexer sends

a bulk index request to the search engine.
5.2 Indexer

The Indexer leverages the information stored in the index container file and creates the
indices by indexing its corresponding documents.

Figure 5.3 depicts how the Indexer combines the information generated by the Mapper
with the real documents, each stored in a single line of the collection file. The Indexer
parses each line of the index container file and obtains an index name along with its
corresponding document IDs. Each document ID denotes the line at which each real
document is stored in the collection file. Then, for each document ID, the Indexer gets
the corresponding real document using an offset array.

The offset array contains, for each document ID, the offset at which the corresponding
real document begins. Consequently, the Indexer creates an index request that includes
the index name along with the document content and stores it in the bulk request array.

Every time either this array contains MazBulk requests (MaxBulk = 500) or there are
no more documents left for a specified index, the Indexer sends a bulk request containing

these documents to the search engine. Then, the Indexer processes the next line of the

\

44

I

AL

o W SRR RIS el -: . AT T 2t | TR

S TS IR AR A el s R 4

(Elasticsearch Cluster h
Shard Shard2
Node 1 Node 2
! Shards Shards
iBerlcais aBGpias
L L Node 3 Node 4 1)

Figure 5.4: We depict an example of a four node Elasticsearch cluster. One index with

four primary shards and one replica per shard is stored across the multiple nodes.

index container file. Once all index lines have been processed, the indexing process finishes

and the search engine is ready to handle incoming queries.

5.3 Search Engine

The search engine we use is the Elasticsearch [16]. Elasticsearch is a distributed, free/open
source search server written in java and based on the Apache Lucene library [14)]. It runs
on a single search server or on multiple cooperating servers when dealing with large data
sets or needing fault tolerance. These multiple servers are called cluster and each of them
is called node.

The nodes are used to store the indexes and serve the incoming queries. When the
indexes contain a large amount of documents, each index may be split into smaller indi-
vidual parts called shards. Each shard is a separate index and can be placed on a different
node in order to achieve better performance. When a query is addressed to an index that
is built from multiple shards, Elasticsearch sends the query to each relevant shard and
merges the individual results.

In order to achieve higher query performance and availability, each shard (primary
shard) may have one or more replicas. The primary shard is the place where the index
update operations are initially applied. The primary shard, as well as the replicas, are
used to answer the queries. When the primary shard is lost, the Elasticsearch cluster
chooses a replica to be the new primary shard.

Figure 5.4 depicts an example of a four node Elasticsearch cluster. One index with

=
45 &
=

)

. BBy
RS g IQ,:{'.”

four shards and one replica per shard is stored in the cluster. Primary shards 1 to 4 are
each stored in Nodes 1 to 4 respectively. Each replica is stored in a different node from

the one that holds its corresponding primary shard.

5.4 Discussion

The implementation details refer to document IDs rather than document paths as de-
scribed in the design description. In a real system, documents can be identified by their
paths. However, in our case, each document exists through a document ID and it is not
mapped to a real document until the indexing phase. This is a conscious choice consid-
- ering that we do not use documents that exist on a real system but we build our own
synthetic system (including users, groups and document ACL) based on observations of
a real system. Moreover, this option gives us the ability to capture the behavior of our

solution under different scenarios.

5.5 Summary

The implementation of our solution includes the Indexer and the two components of
the Planner: the Clusterer and the Mapper. In order to build the Document Families
before the clustering process, we use a chained hash table whose entries contain: a set
of document IDs and the set of users that have access to them. We use vectors to store
the Document Families of the created clusters. Also, the Mapper uses a vector to store
the mapped indexes. Each index contains its name, the IDs of the users that have access
to the index, and the IDs of the documents to be indexed. The Indexer then leverages
the information about each index, gets the content of the real documents, creates index

requests, and sends them in bulk to the search engine.

46

CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Experimental Methodology

6.2 Experimental Setup

6.3 Planner Results

6.4 Search Engine Results

6.5 Exploring Different ACL Synthetic Datasets

6.6 Summary

In this chapter we present an extensive study of the behavior of our solution under
different scenarios. Initially, we describe the methodology of our evaluation and the
experimental setup. Next, we focus on the results retrieved by the Planner and a search

engine.

6.1 Experimental Methodology

Due to the lack of a real-world document ACL dataset, we implemented an ACL Gener-
ator. The ACL generator creates a synthetic ACL dataset based on observations from a

real one. We verified that the generated data comply with the statistics of the real-world

47

dataset and performed several measurements to study and evaluate the behavior of our
solution.

ACL Generator. In order to implement the ACL Generator, we use the observations
on the access control usage presented in [38]. The authors collected a snapshot of available
documents, along with their access control lists, from a corporation ’s Docushare server
[20]. The documents were either publicly available or an ACL was specified for them. For
the later case, we use the distribution of the sizes of user groups, as well as the distribution
of the ACL entries (number of users and groups that are included in each ACL). However,
we have no information about which users and groups belong to a specified ACL, or how
many documents share a common ACL.

Based on the above observations, the ACL Generator works in two steps:

e The first step refers to the creation of the user groups. We assume a predefined
number of users and groups, each of which is represented by an ID. For each group,
we pick the number of its members (maximum 50) following the distribution acquired
from the above study. Also, we uniformly choose a set of user IDs as members of

the specified group.

e The second step refers to the creation of the ACLs and their mapping to document
IDs. We assign a number of individual users and groups to each ACL according to
the corresponding distribution of the survey. Since users organize and store their
documents under directories, documents under the same directory tend to inherit
the same ACL [38]. Thus, we map each ACL to a random number of documents

(maximum 50) rather than to a single document.

After completing the steps above, each document ID has been associated with an ACL.
Although the entries of each Generated ACL are both individual user and group IDs, we
end up with each ACL being a set of user IDs because we replace each group ID with its
members’ IDs. Moreover, we can change the group size distribution in order to study the
behavior of our solution on different ACL datasets beyond those that are found in the
above study.

ACL Generator Configuration. The basic parameters of the ACL Generator are

the number of users, the number of groups, and the number of documents in the system

48

: Parameter Default Value :

Users 200
Groups 131
Documents 50000

Table 6.1: Basic configuration parameters of the ACL Generator. We create 200 user IDs,
131 group IDs, and 50000 document IDs.

(Table 6.1). Moreover, the documents are separated in three categories: a) private, when
only accessed by their owner; b) shared, when a set of users and groups have access to
them; and c) public, when all the users of the system can access them. In particular,
22.7% of the documents are public, 0.56% are private, and 76.74% are shared. These
" values were selected based on the observations from the previous study.

Examined Cases. We use three different ACL Generator cases to study the behavior
of our solution. In each case, we keep the basic configuration parameters as shown in Table
6.1 and use different distributions for the group sizes. In particular, we examine: a) the
Doc Server case, where we use the distribution of the survey; b) the Zipfian case, where we
use the zipfian distribution with a parameter set to 0.7, 1.7, and 2.2; and c) the Uniform
case, where the uniform distribution is used.

Experiment Parameters. First, we study the results retrieved by the Planner. The
MinObjs parameter of the clustering algorithm is fixed at 1 during all experiments, while
Similarity and Threshold parameters are tunable. Therefore, we examine our solution for
varying values of Similarity and Threshold in order to capture their effect on performance.

Then, we study the behavior of our solution in a search engine.

6.2 Experimental Setup

For the overall evaluation of our solution we use a search engine, three nodes of a cluster
of servers, and a standard collection of documents.
Search engine. Our search engine consists of a two-node Elasticsearch (ES) cluster.

Moreover, we used a separate node to issue the search queries to the ES servers using

49

up to 8 ES clients. One node is enough to accommodate 8 clients because each client
just issues queries sequentially and waits for each query response before sending the next
query.

Node Configuration. The experiments are conducted on three nodes of a cluster
running Debian GNU-Linux v6.0 squeeze, with the Linux kernel 2.6.32. Two of them
are used as ES servers; Each server is equipped with two quad-core 2.33 GHz Intel Xeon
E5345 processors, 4 GB RAM, an active gigabit Ethernet port, and two 7200 RPM SATA
disks (one 500 GB and the other 1 TB). In each ES server node, the 2 GB of RAM are
pinned to the ES server, while the other 2 GB are left for the system. Also, each ES server
uses the 1 TB disk to store the indices. The third node includes one quad-core 2.33 GHz
Intel Xeon E'5345 processor, 2 GB RAM, an active gigabit Ethernet port, and two 250
GB 7200 RPM SATA disks. This node is initially used to index the documents and then
- acts as the ES client.

Dataset. In order to evaluate our solution in a real search engine we use the GOV2
dataset from the TREC Terabyte track [19], but we only index a part of it. Specifically,
we use the first 50000 documents which are approximately 820 M B. We choose to index
50000 documents because we want our dataset to be in compliance with the observations
of the study. Our query set consists of 5000 standard queries [19] and the average number

of terms per query is 2.8.

6.3 Planner Results

The main goal of this section is to find the range for Similarity and Threshold parameters
that strike a good balance between query performance and update cost. We also analyze
and explain the behavior of our solution across different Similarity and Threshold values.
In particular, we focus on the following different combinations of Similarity and Threshold

values (Table 6.2):

o Similarity at 100% and Threshold set to 0, means that a large number of clusters is
created each containing a single Document Family. For each Document Family, we

create a single index.

50

FSimilarity | Threshold || Effect
100% 0 each cluster contains one Document Family
= 1 index per Document Family
60% 0 some clusters contain multiple Document Families
= 1 index for non-empty intersections
= difference documents in a single index
60% >0 some clusters contain multiple Document Families
= 1 index for non-empty intersections
=> difference documents in a single index or private indices
0% 00 1 cluster includes all Document Families
= difference documents in private indices

Table 6.2: Effect of different combinations of Similarity and Threshold values.

e Similarity at 60% and Threshold set to 0, means that fewer clusters are created

and some of them include multiple Document Families. These clusters may have a

non-empty intersection. Hence, we create one intersection index for all Document

Families in the cluster and one difference index for each Document Family difference.

e Similarity at 60% and non-zero Threshold, means that clusters may have a non-

empty intersection as in the previous case. However, the documents of each Docu-

ment Family difference may be duplicated to one or more indices.

e Similarity at 0% and infinite Threshold, means that a single cluster is created includ-

ing all Document Families. The documents of each Document Family are indexed

by the private indices of each user that belongs to the particular Document Family.

The basic information obtained from the Mapper refers to the average number of

indices that a user has access to, the average number of indices in which a document is

indexed, and the total number of indices. In order to explain these results, we leverage

the information about the number and the size (measured by count of documents) of the

clusters.

The results of the Clusterer are affected by the chosen Similarity value, while the

results of the Mapper are affected by both the Similarity and the Threshold value. Also,

51

Average Number of Indices

Per User
160
140 AN
120
—e— Thr
- Thrgoo
100t |--%-- Thr1
2 L+ ThrIN
[+
=S 0m--w-a-u, .
60 " 7
'Y 4
40 -
20‘...A.-.‘..,"_“‘. “'__.‘...-b--.
-
1

_— Y
0 20 30 40 50 60 70 80 90 100
Simitarity (%)
Figure 6.1: Average number of indices that a user needs to search every time he issues a

query for varying values of Threshold and Similarity.

_three different types of indices are created: a) private, which is only accessed by one user;
_ b) shared, which is accessed by a specific set of users; and c) public, which is accessed by

all users.

6.3.1 Indices Per User

First, we examine the average number of indices that a user needs to access when he
issues a query. The average number of indices per user affects the query response time
and gives an explanation for the results obtained from a search engine in the following
section. In general, the lower the number of indices accessed, the better query response
time we expect on the search engine.

In Figure 6.1, we depict how this number changes across different values of Threshold
and Similarity. The first observation is that for non-zero Threshold the average number of
indices accessed per user drastically decreases. In particular, increasing Threshold from
0 to 500 almost halves the average number of indices accessed per user. This is because
higher values of Threshold lead to the duplication of more and more documents in the
private index of each user. Hence, each user tends to only access his private index as
Threshold increases.

Another observation is that the average number of indices accessed per user is mini-
mized for the same Similarity value across several Threshold values (0, 500, and 1500).
The question that arises is why we observe this decrease for Similarity values close to 60%,

and why the average number of indices accessed per user increases again when moving to

52

lower Similarity values.

To answer the initial question, it is necessary to examine how the Clusterer and the
Mapper work under different Similarity values (focusing on 100% and 0%). Figure 6.2
depicts the Clusterer results across different Similarity values: a) the number of created
clusters, and b) the average number of documents included in each cluster. As Similarity
decreases from 100% to 0%, the Clusterer creates fewer and fewer clusters, while the
average number of documents included in each cluster increases. Similarity at 100% means
that all documents in a cluster have the same ACL. Hence, each cluster only contains one
Document Family and has an empty intersection. On the other hand, a Similarity value
close to 0% means that documents with dissimilar ACLs can be part of the same cluster,
and hence, only one cluster containing all the documents is created. Thus, with a high
‘probability, this cluster has an empty intersection.

The absence of intra-cluster intersection for 0% and 100% Similarity leads the Mapper
to treat each Document Family as a difference. This means that we index the documents
of each Document Family based on the Threshold value. Therefore, for Threshold set
to 0, we create a single index for the documents of each Document Family in a cluster.
For infinite Threshold, the same documents of each Document Family in a cluster are
indexed by the private index of each user in the ACL of the Document Family. For
intermediate Threshold values, the Mapper indexes the same documents of each Document
Family either in a single index, or in the private indices of each user in the ACL of the
Document Family. This depends on whether the number of documents in a Document
Family multiplied with the number of users in its ACL is higher than the Threshold value
or not.

Despite the different clustering output, the Mapper gives the same results for the
two extreme Similarity values (0% and 100%) across different Threshold values. This
is because each Document Family is treated as difference for both Similarity values and
produces the same index mapping results. However, both the Clusterer and the Mapper
results differ for Similarity values between 0% and 100% leading to the reduction of the
average number of indices per user.

Consequently, in order to answer the first part of our initial question, which is why we
observe the average decrease for Similarity close to 60%, we compare the content of the

clusters between the 100% and 60% Similarity. When Similarity is 100% and Threshold

93

Documents VS Clusters

& 100000 1600
3 1400
O
O 10000 {1200 &
[[32]
2 1000 1000 &
5] (&)
c 800 o
E 100 60 2
400 =2
§ 10 (&
o 200
z 1 x 0
< 0 1020 30 40 50 60 70 80 90100

Similarity (%)

@ Oocuments Per Ciuster @ Clusters

Figure 6.2: We examine the total number of clusters and the number of documents per
cluster across different Similarity values. The total number of clusters decreases and the
total number of documents per cluster increases as the Similarity drops from 100% to 0%.
"The results are the same across different Threshold values as Threshold only affects the

" partitioning and not the clustering phase.

is 0, the number of clusters is large and each cluster contains a single Document Family.
As we create one index for each Document Family, the number of indices is equal to the
number of clusters. For this reason, each user needs to access a large number of indices as
the documents are spread in many indices. On the contrary, as Similarity gets values lower
than 100%, the Clusterer creates fewer and fewer clusters, while more and more Document
Families (and documents) are included in each cluster (Figure 6.2). Also, many clusters
contain Document Families whose ACLs have a non-empty intersection. As the Mapper
creates a single index for each intersection, all the documents of a cluster are indexed by
that index. Hence, the users that belong to intersections only access one index in order
to find the documents included in a cluster and the average number of indices per user
decreases. Also, the intersections are responsible for the decrease of the average number
of indices per user at 60% Similarity for Threshold at 500 and 1500.

However, the average decrease at 60% Similarity does not hold for Threshold values
close to infinity. For these values, the average number of indices per user is higher for 60%
Similarity than for 100%. An 100% Similarity value combined with an infinite Threshold
means that each each cluster contains a single Document Family. Due to the infinite
Threshold value, each document is duplicated to the private index of each user in the

ACL of the Document Family. Therefore, the total number of indices is limited to the

54

number of the users in the system and each user only accesses his private index (Figure
6.5(d)). On the contrary, when the Similarity value is 60%, some of the clusters have a
non-empty intersection. Moreover, each document of each difference is indexed by the
private index of each user in that difference. Hence, the total number of indices is the
sum of the private indices plus the indices that are created due to the intersections, and
each user accesses not only his private index but also some of the intersection indices.

The second part of our question, which is why the average number of indices per user
increases for Similarity values lower than 60%, is answered if we understand how the
Similarity value affects the homogeneity of the ACLs within each cluster. Low Similarity
values mean that the likelihood of a non-empty intersection in a cluster is small. Hence,
the users cannot benefit from the indices of intersections and the average number of indices
per user increases again.

In general, as we decrease Similarity from 100% to 60%, the average number of in-
dices per user decreases for Threshold in range 0-1500. This holds because documents
of different Document Families are indexed by a single index due to the intra-cluster in-
tersections. Hence, the users that belong to the intersections access fewer indices than
in the case where Similarity is 100% and one index is created for the documents of each
Document Family. Moreover, when the Threshold value increases, the users that belong
to the differences or to Document Families that are treated as differences access fewer
indices because many documents are indexed by the private index of each user. Thus, for
Threshold in range 0-1500, the average number of indices per user decreases as Similarity

drops from 100% to 60%.

6.3.2 Indices Per Document

In Figure 6.3, we depict how the various Threshold values affect the average number of
indices in which a document is indexed (document duplication). We observe that when
the Threshold is set to 0, the document duplication is limited as each document is indexed
by at most two indices. For a cluster with a non-empty intersection, each document is
indexed by the intersection index and in the index of the difference. For a cluster with
an empty intersection, each document of the cluster is indexed by a single index. On the

contrary, for infinite Threshold value, the document duplication significantly increases as

55

Average Number of Indices
Per Document

Similarity (%)

Figure 6.3: Average number of indices that each document is indexed for varying values

of Threshold and Similarity.

the documents of each Document Family are indexed by the private index of each user in
_its corresponding ACL. However, for low Threshold values, the average number of indices
containing a document does not exceed the 15 indices.

Another observation is that the document duplication decreases as Similarity decreases
from 100% to 60%, where it gets its minimum value. Then, the average starts increasing
again for Similarity values lower than 60%. For high Threshold values (1500 and infinite)
and Similarity value at 60%, the majority of the clusters have a non-empty intersection.
The number of users in each intersection is large and the number of users in each differ-
ence is small. Thus, each document appears in a small number of private indices, each
corresponding to a user of the difference. This means that the number of duplicates is
limited. On the contrary, the number of indices in which each document is indexed is
higher when the Similarity value is different from 60%. In these cases, either all or the
most of the documents of a cluster are indexed by private indices. Hence, the document
duplication decreases for Similarity values close to 60%.

For low Threshold values (0 and 500), the results are different from those described
above. More precisely, the average number of indices per document slightly increases as
Similarity drops from 100 down to 60%. In case where Similarity is 100% and Threshold
is set to 0, the documents of each Document Family are indexed by a single index. Thus,
we have no duplicates. On the contrary, the number of duplicates raises when Similarity
reaches 60%, as each document of each Document Family is indexed by at least two

indices. In particular, it is indexed by the index of the intersection and by the index of

56

the difference. In the case where Threshold is set to 500 the average number of indices per
document does not significantly change across different Similarity values. Nevertheless,
the increase of the duplicate documents is insignificant for these low Threshold values.
In general, the average number of indices per document increases as the Threshold
value increases. For infinite Threshold, we get the highest average number of indices per
document because each document is indexed by the private index of each user that is
allowed to read it. On the contrary, for Threshold set to 0, we get the lowest average
number of indices per document because each document is indexed by at most two indices
(difference index and/or intersection index). For the other Threshold values, the aver-
age number of indices per document increases insignificantly in comparison to the latter
case. Also, as Similarity decreases from 100% to 60% the average number of indices per
"document decreases for Threshold values over 500, while for lower Threshold values it

- insignificantly increases.

6.3.3 Query/Update Trade-off

So far, we studied the average number of indices per user and per document, each of
which is related to the query performance and the update cost respectively.

The previous figures indicate that a 60% Similarity value approximately gives the best
results regarding the average number of indices per user and per document. Whenever
this is not the case, the increase in the average number of indices per user and the average
number of indices per document is insignificant. Hence, we keep the Similarity fixed at
60% and change the Threshold.

Figure 6.4 depicts the trade-off between query performance and update cost across
different Threshold values. While the Threshold value grows, we observe that the average
number of indices per user decreases and the average number of indices in which each
document is indexed increases. For Threshold set to 0, we get the highest average number
of indices per user, as each user has access in many indices, and the lowest average number
of indices per document, as each document is indexed by a single index. On the contrary,
for Threshold set to oo, we get the lowest average number of indices per user because
each user only accesses his private index. However, in this case we get the highest average

number of indices per document because each document is indexed by the private index

57

Query/Update Performance Trade-off
(Similarity 60%)
100
[Thr@
80r

60

40
W Thr 500

20

Avaerage Indices Per User

A Thr 1500
¥ ThriNF|

0 10 20 30 40 S0 60 70
Average Indices Per Document

[

Figure 6.4: We depict the trade-off between the query performance and the update cost
for a given Similarity value and across different Threshold values.

_of each user that has access to it. Hence, in the first case (Threshold is 0), we expect to

_ get the worst search performance and the lowest maintenance cost, while in the second
case (infinite Threshold), we expect to get the best search performance and the highest
maintenance cost.

It is worthwhile to note that there is a point between 1500 and infinite Threshold value
where even though we increase the Threshold value, the average number of indices per
user and per document does not change. At this point, every shared document (except
the public ones) is indexed by the private index of each user that can read it. Hence, each
user only accesses his private and the public index. Public documents are only indexed by
the private index of each user after the Threshold value becomes higher than the product
users X number of public documents.

Overall, Threshold values in the range between 500 and 1500 seem to strike a good

balance between the number of indices per user and the number of indices per document.

6.3.4 Total Number of Indices

Figure 6.5 illustrates the total number of indices, which is affected by the way we treat
each difference, for various Threshold values. As Threshold increases, the total number
of indices decreases because the documents of the most differences are indexed by private
indices, and hence, fewer and fewer indices are created due to the differences indexed
by a separate single index. Moreover, we observe that the number of indices due to the

intra-cluster intersections increases for a given Threshold and Similarity values around

58

TR ceth SR ST e

oA A

Threshold 0 Threshold 500

1600 -
Bl‘OO-::' ‘B
31200- g
© 1000} ©
8 soot 33 8
©° :! °
£ 600} g £
© ©
T 4001 : 5
e e

200 |

0

0 10 20 30 40 S0 60 70 80 SO0 100

Similarity Similarity
W inler incices w dif indices other incices B inter indices - it ndces ~ other incices
(a) (b)
Threshold 1500 Threshold infinite
1600 |- 1600 |
© 1400} O 1400 }
3] 2
3 1200 S 12001
O 1000} O 1000}
[73 (72}
8 soo} 8 soof
kel =]
£ 600} £ 600
= s |
S 400f S 400}
L A . |
2oo%§yzg,;. ;i 200
4y U
0 =010 20 30 40 50 60 70 80 80100 0
Similarity Similarity
- inter Indices = gff indices - olher INCes = inter indices - dft ndces w other indices
(c) (d)

Figure 6.5: We examine the total number of indices across different Similarity and Thresh-
old values. The total number of indices created decreases as Threshold value increases.
The total indices is the sum of the indices due to the intra-cluster ACLs intersections (in-
ter indices), the single indices that are created from each difference of each intra-cluster
intersection (diff indices), and the private indices plus the indices which are created from

Document Families that are treated as differences (other indices).

60% because many clusters contain Document Families with similar ACLs.

-

59

ty
l//.
g)

RS RIS

A

Oy A
b '-,3"‘4.‘

« wiisy "'Or,

e

,\4«

REIUNSIG

.
SRS i Rt A

Indexing Elapsed Time

305.7

7;}
Similarity - Threshold

Figure 6.6: We measure the indexing time for different Similarity and Threshold values.
As Threshold increases, each document is indexed to more and more indices, and hence,

the total indexing time increases.

6.4 Search Engine Results

In this section, we compare the overall search engine performance for different Planner
configurations from three different perspectives: a) indexing time; b) disk space overhead;
and c) query response time. Our measurements show that different Planner configurations
lead the search engine to different levels of query performance and update cost. Therefore,
different performance needs are met by using the appropriate Similarity and Threshold

values.

6.4.1 Indexing Time

Indexing time refers to the total delay to index the documents. Although our document
set is composed of a standard number of documents (50000), the total indexing time differs
across the various Planner configurations. Different Planner configurations indicate that
some documents are indexed by more than one index, depending on the Similarity and
the Threshold value. Thus, the more documents indexed multiple times, the more time
is needed to complete the indexing process.

In Figure 6.6, we depict how the various Planner configurations affect indexing time.
As we move towards higher Threshold values, the indexing time increases. However, for
Threshold set to 0, the indexing time is comparable between 100% and 60% Similarity

due to the limited document duplication across different indices (13.36 min and 16.2 min

60

Space Consumed by Indexes

8

5

24

Disk Space (GB)
5 o

(3]

(-]

Sirnilarity - Threshold

Figure 6.7: We compare the disk space overhead across different Similarity and Threshold

values.

_respectively). On the contrary, for infinite Threshold, we observe a remarkable increase

in the indexing time at 305.75 min. In this case, each document is indexed by the private

' index of each user that has access to it, and hence, the indexing time significantly increases
due to the large number of duplicate documents.

Consequently, the value of Threshold is an important factor that affects the indexing

time: higher values mean more duplicates across multiple indices, and hence higher in-

dexing time. However, the Threshold value not only affects the indexing time but the

disk space overhead as well.

6.4.2 Disk Space Overhead

In general, it is important to keep the disk space consumption as low as possible. The
disk space consumption is related to the number of indices in which each document is
indexed, and hence, it grows as the Threshold value increases.

In Figure 6.7, we present the disk space consumption across different Planner config-
urations. As expected, for higher Threshold values the disk consumption grows, as the
same document is indexed by more than one index. The infinite Threshold value leads
to the highest disk space consumption, as each document is indexed by the private index
of each user that can read it. However, setting the Threshold to a non-infinite value
does not considerably affect the disk space consumption in comparison to a value of 0.
In particular, when the Threshold is set to 0, the disk space consumption is comparable

between the cases where Similarity is 100% and 60%. It is close to the size of the original

61

size of documents, which is 820 MB. When Threshold is 500 and 1500, the disk space
consumption grows by a factor of 2.5 and 4.2 respectively. Finally, for infinite Threshold,
the disk space consumption increases by a factor of 29.2.

The disk space consumption can also affect query performance, as the size of the
indices is closely related to the resident set during query execution. For instance, if the
total size of indices is small enough to fit in memory, then the search engine serves queries
without performing costly disk accesses. On the contrary, if the total size of indices is
larger than available memory, then only a part of it is kept in memory. Hence, the search
engine will access the disk with high probability in order to retrieve all the indices that

are needed to serve a query.

-6.4.3 Search Performance

" After examining the indexing time and the disk space consumption, we investigate the
search performance across different Planner configurations and number of clients. The
search performance is evaluated by measuring the query latency at the search engine,
from the time it receives a query to the time it sends the answer to the client.

Initially, we present the median of query response times. We prefer the median and not
the average because the median more accurately reflects the most representative value of a
set of observations (query response times in our case). In general, the average is computed
by adding all the observations and dividing by the number of the observations. On the
contrary, the median is computed by arranging all the observations from lowest to highest
value and picking the middle one. This means that the median is the value for which 50%
of the observation are higher, and 50% smaller than this value. Hence, in cases where the
set of observations contains an extreme value that differs greatly from the other values,
the median is a better indicator of the most representative value of the set of observations.

When evaluating the search performance, we also present the 90th percentile of query
response times, which reflects the value for which 90% of the observation are smaller and
10% are higher than this value. Moreover, we present both the median and the 90th
percentile response times across different number of clients for two different cases. In the
first case, ES servers use the cache when serving the incoming queries, while in the second

case, they do not use the cache.

62

Without Cache With Caches

900 100

2 800 ’g‘

— e 80

2 g

i= 600 el o

[o 1

«é» 500 g

G 400 2 ol

[}]

C 300} o

g x i Wocreenneienenay -’-——s 5

S100f R - =

0 4 8 0= 4 8

Clients Clients
(a) (b)

-Figure 6.8: We depict the median query response times across different Planner configu-

" rations and number of clients.

The rationale of this strategy becomes clear by examining the size of the working set
(Figure 6.7). In most Planner configurations, the largest part of the working set fits in
memory. Thus, we experimented with both cases (with and without cache) in order to give
a clearer view of the search performance. In addition, when the indexing process finishes
and before the search engine starts serving queries, we optimize the indices in such a way
that each index is stored in a single file on disk (Lucene uses Logarithmic-Merge {25] and
a single index may be more than one file on the disk).

The first observation from the experiments is that the median query response time,
across different Planner configuration parameters, is as one might expected: the query
response time increases in the cases where a large number of indices is accessed per
user, and hence per query (Figure 6.8(a)). For instance, for 100% Similarity and infinite
Threshold, we get the lowest query response time because only one index is accessed
per user. According to Planner results, as Threshold decreases each user accesses more
indices. Thus, we observe that query response time increases for low Threshold values.

Not using the cache implies that a query is served from the disk. After the execution
of each query, we flush the cache. Hence, the query performance degrades due to the
large number of disk seeks that is needed in order to fetch the corresponding indices. For

Threshold set to 0 and 100% Similarity, the number of indices per user is high enough

63

to substantially increase the query response time over 700 ms. For higher Threshold
values and 60% Similarity, the query response time is reduced because the number of
indices per user decreases. In particular, the query response time is about 200 ms for
60% Similarity and Threshold 500. However, the best search performance is achieved for
infinite Threshold as each user needs only to access his private index.

On the other side, using the cache implies that there is a possibility to serve a query
from the cache rather than the disk. This is the case where the indices required to serve
the query are already in memory because the search engine used them to serve a previous
query. However, this possibility depends on the size of the working set. In Figure 6.8(b),
we present the corresponding response times in the case we use the cache. As expected,
the search engine performs better than the case without the cache. In particular, the

~response time decreases from hundreds to tens of milliseconds. However, for non infinite
Threshold, the trend between different Planner configuration remains almost the same as
in the case without the cache.

Contrary to what one might expect, we observe that the median response time for
infinite Threshold value is higher than that of lower Threshold values when we use the
cache. A reasonable explanation is that the working set does not fit in memory and the
search engine satisfies the majority of the queries from the disk. Even though the number
of indices is limited to the number of users and each query involves a single index, the
working set size is significantly higher than that of lower Threshold values. Hence, the
query response times are similar to those without the cache (Figure 6.8(a), 6.8(b)).

Figure 6.8 also visualizes the sensitivity of various number of clients to the median
query response time. The median response time is comparable across different number of
clients (1 to 8). When we use the cache, the median response time ranges between 18 ms
and 82 ms and without cache it ranges between 95 ms and 800 ms.

The 90th percentile of query response times are also comparable across different num-
ber of clients (Figure 6.9(a), 6.9(b)). In particular, when we activate cache, the 90th
percentile ranges between 50 ms and 120 ms while without the cache it ranges between
100 ms and 1400 ms.

Figure 6.10(a) illustrates the histogram of the query response times without the cache.
More precisely, we observe that Similarity values set to 60% or 100% combined with

Threshold set to 0, the response times for the majority of the queries exceed 300 ms.

64

Without Cache With Caches

1600 200
® > —a— sim100-ThrNF|
g 1400 g ":' 35%8-0-1%:0
Sl "~ [mmeeme || 2 3 Rt
E 1200 T SimB0-Thrs0 E 150 ! d
Lt @ SImeQ-Thr g
@ 1000 . -&=- sim100-ThriN| o
@ Ml ! @
=4 x* B bbbt ettt o X [=
g 800 8 100
]]
o 600 o
[4] (44
Q — e
S 4wof : ,/,/S S w0
£ - £
= m =3
8 e . =]

012 4 8 0= 4)
Clients Clients
(a) (b)

" Figure 6.9: We depict the 90th percentile query response times across different Planner

configurations and number of clients.

Without Cache With Cache
5000 5000
— sim100-Thr0 wm sim100-ThrO
= A SE
&3 sim60- =23 sim60-

4000 = sim60-Thr1500 o 3000 =1 sim60-Thr1500
§] = sim100-ThriNF 8 = sim100-ThriNF
S 000 2 2000
o o
3 3
S 2000 S 2000
; ;

4 -4
1000 1000
0

-]

50 150 250 350 450 550 650 750
Response Time (ms)

(a)

|
25 75 125 175 225 275 325 375
Response Time (ms)

(b)

Figure 6.10: Histogram of query response times across different Planner configurations.

However, for higher Threshold values, the response time for the majority of the queries
ranges between 50 ms and 300 ms. When we use the cache, the results show that most
queries have a response time around 25 ms (Figure 6.10(b)). However, for infinite Thresh-
old, the response time for the majority of the queries ranges between 75 ms and 125 ms.

An alternative view of the above information is depicted in Figure 6.11. A cumulative

distribution function of query response times gives an estimation of the fraction of queries

65

Without Cache With caches

| ——————— ——=—cw———
o ’/ /’
o'a '_'_,»'/ G :" ,.'
-g .‘é i
[-
& ol 2
G 961} G
k] i k-]
S o4} &
g | 3
g i ——— Sim100-ThrINF E0F 7 [Sim60-Thr1500
o2k 7 5 | sim60-Thr1500 —— sim60-Thr500
" —— sim60-Th sim60-Thro
o R sim60-ThrQ - §im100-ThrQ
A —— sim100-Thr0 P e sim100-ThriNF
00200 200 600 800 1000 1200 1400 1600 0150 100 150 200 250 300
Response Time (ms}) Response Time (ms)
(a) (b)

Figure 6.11: CDF of query response times.

executed in less than a certain amount of time. If we use the cache, the 89% of the queries
take less than 50 ms when the Similarity and the Threshold value is set to 60% and 500 (or
1500) respectively (Figure 6.11(b)). For Threshold set to 0 and 60% Similarity, we observe
that 74% of queries take less than 50 ms. For Threshold set to 0 and 100% Similarity, the
63% of queries take less than 50 ms. On the contrary, for infinite Threshold, this fraction
hardly reaches the 16% as most of the queries are satisfied from the disk rather than the
cache.

Figure 6.11(a), illustrates the fraction of queries executed in less than a certain amount
of time without the cache. The fraction of the queries that take less than 200 ms is 42.6%
when the Threshold is 500 and the Similarity is 60%. For higher Threshold values, the
96% of queries is completed in less than 200 ms, while for Threshold set to 0 combined
with 60% or 100% Similarity, the fraction of queries that take less than 200 ms is barely
1.96% and 0.3% respectively. These queries take longer because the average number of
indices per user is high, and hence more indices are fetched from the disk.

Finally, we examine the search engine throughput for different Planner configurations.
Rather than measuring throughput for both cases (with and without cache), we focus on
the case with cache. We assume that in general, the search engine makes extensive use of

the cache and uses the disk when needed.

Figure 6.12 shows the effect on throughput of various Similarity and Threshold values

66

With Caches

%+ SiMBQ-Thi
—a— sim100-ThrQ
— --#- sim100-ThriNF
o 150
s
2
LXK
5, 1001
3
<
£
-
50 -

Clients

Figure 6.12: We compare the search throughput across different Planner configurations

and number of clients.

_across different number of clients. In each case, we observe that increasing the number
of clients from 1 to 8 leads to higher throughput. For infinite Threshold, the sequential
throughput is 11 q/s but it increases by a factor of 7.5 for up to 8 clients. When Threshold
is either 500 or 1500, the throughput is 30 q/s and increases by about a factor of 6, as we
increase the number of clients from 1 to 8. When the Threshold is set to 0 and Similarity
is 100%, the throughput is 15 q/s and increases by about a factor of 5.5. At last, when
the Threshold is set to 0 and Similarity is 60%, the throughput is 18 q/s and increases
by about a factor of 5.7.

In general, the throughput increases linearly as the number of clients increases. How-
ever, the highest throughput is achieved for Threshold values around 500 and 1500 and
the lowest for infinite Threshold.

6.5 Exploring Different ACL Synthetic Datasets

The ACL Generator uses the observations on access control usage presented in a study
to create the synthetic ACLs. Given a number of users, groups and document IDs, it
creates user groups by picking the number of their members (maximum 50) following
the distribution acquired from the study (Doc Server distribution). Then, the Generator
uniformly chooses a set of user IDs as members of a specified group. Finally, it assigns

a number of individual user and group IDs to each ACL according to the corresponding

67

Members Per Group
(Max 50 members)

o e 00
o N B b -

e
S

&

Fraction of Groups
&

oz2}f’

6 10 20 30 40 50
Number of Members

Figure 6.13: We depict the distribution of members per group when using different probal-
itity distributions for the size of each group. When using the Uniform distribution, the
groups tend to have many members. For the Zipfian distribution, only a small fraction
of the groups has a large number of members, and this fraction decreases as the value of

parameter a increases.

distribution of the survey.

To experiment with different synthetic ACL datasets, we repeat the same procedure,
but this time we use different probability distributions for the size of each group. In
particular, we use the Zipfian distribution for different values of parameter a (0.7, 1.7,
and 2.2) as well as the Uniform distribution. The maximum size of a group is 50 members,
and the basic ACL Generator parameters are 200 users, 131 groups, and 50000 documents.
Both the maximum size of a group and the basic ACL Generator parameters are the same
during the experiments with different probability distributions.

Group Membership and ACLs. Figure 6.13 depicts the distribution of members
per group across the usage of different probability distributions for the size of each group.
When using the Uniform distribution, groups contain more members than in the case we
use the Zipfian or the distribution of the study (Doc Server). For the Zipfian distribution
as the value of parameter a increases, groups tend to contain fewer members and only
a small fraction of groups contains a large number of users. In comparison to the Doc
Server case, the Zipfian distribution with parameter a set to 1.7 and 2.2 decreases group
sizes, while group sizes increase with parameter a set to 0.7.

Using different probability distributions for the group sizes, we indirectly change the
size of the ACLs (count by number of users included). Figure 6.14 depicts how the average

68

Users Per ACL Users Per ACL
(wlith public documents) (without public documents)
90

3 8

78.54
==

~
o
2
]

Avg Number of Users
S 8883

-
o

Avg Number of Users
o358 8888438

o

0/;,- < 9, < <
. L7 G Y 2y,
°f,,; fe\\o S, 18, 1o,

’1'9, *’.)} ?@/
Distribution Distribution

(a) (b)

Figure 6.14: We depict how the size of the ACLs is affected by the different probalitity
distributions used for the size of each user group in two different cases. The ACLs of the
public documents are not affected by the group sizes. Thus, we present the results for
two different cases to give a clearer view of how the ACL sizes change. In the first case,

we take into account the ACLs of the public documents (a), while in the second we omit

them.

number of users included in ACLs changes across different probability distributions in two
different cases. In the first case, we take into account the ACLs of the public documents
even though they are not affected by the group sizes (Figure 6.14(a)). The size of the
ACLs of the public documents is fixed to 200 users, which is the number of all users. In
the second case, we exclude the ACLs of the public documents and only keep those that
are affected by the group size in order to give a clearer estimation of how the ACL sizes
change (Figure 6.14(b)). The results in both cases follow the same trend: a) Uniform
distribution creates ACLs that include many users because in this case groups included in
ACLs also have many members, b) when using the Zipfian distribution, the ACLs include
fewer users as parameter a increases from 0.7 to 2.2, and c¢) in comparison to the Doc
Server distribution, the Zipfian distribution with parameter a set to 1.7 and 2.2 decreases
the average number of users in the ACLs, while the Zipfian distribution with parameter

a set to 0.7 increases the average.

Average Number of Indices Per User. As already explained, the different proba-

69

Avg Number of indices Per User Avg Number of Indices Per User

Uniform Zipfian (a = 0.7)
350 350
‘ ——To
300 300 g 114
—»— Thrl
250 (et at? 252 T3 N P 250
"‘
@ g 2 200
g 200 \ -‘8
POV e, '..,: J Y e
100 } S A 100 " '/
s ::Thr > 50. aeena p»‘-.'-',"..‘... 4|
..... %gol o
10102030405060705090100 V8 70 20 30 40 50 60 70 80 80 100
Similarity (%) Similarity (%)
(a) (b)
Avg Number of Indices Per User Avg Number of indices Per User
Zipfian (a=1.7) Ziptian (a = 2.2)
350 350
—e— Thr 0 r
300 e E{, 300 -y E{%‘?’gg
—»— Thr |
250 250
2 200
8 200 g
2 1s0} £ 150
100 100
0--:—--:- -:,_' ’”_.-".__‘. e8] { 22R TR B u:--_‘“’” .- .__‘_ por 22l)
V1020 %0 26750 50 70 80 80 100 0 10 20 30 40 50 60 70 60 90 100
Similarity (%) Similarity (%)
(c) (d)

Figure 6.15: We depict how the average number of indices per user is affected by the
different probalitity distributions used for the group sizes. The average number of indices
per user is higher for the Uniform distribution. As the value of parameter a of the Zipfian

distribution increases, the average number of indices per user decreases.

bility distributions affect the group sizes. Group sizes in their turn affect the probability
for a user to belong in multiple ACLs, and hence the average number of indices that a
user needs to access when he issues a query.

In Figure 6.15, we examine the average number of indices per user across different
values of Similarity and Threshold when using different probability distributions for the

group sizes. The first observation is that the results follow the same trend as in the case

70

]
i

we use the distribution of the survey for the group sizes (subsection 6.3.1):

e Similarity 0% and 100% give the same results across different Threshold values
despite the different clustering output. Similarity 100% creates many clusters each of
which contains a single Document Family, while Similarity 0% creates a single cluster
which contains all Document Families. However, in both cases each Document
Family is treated with the same way (as difference) and the Mapper produces the

same results.

e The average number of indices per user is minimized for a Similarity value lower
than 100% across several Threshold values (0, 500, and 1500). For Similarity values
lower than 100%, clusters may contain Document Families whose ACLs have a non-
empty intersection. As the Mapper creates a single index for each intersection, all
the documents of a cluster are indexed by that index. Hence, the users that belong
to intersections only access one index in order to find the documents included in a

cluster and the average number of indices per user decreases.

e As Threshold value increases, the average number of indices per user decreases
because many documents are indexed by the private index of each user. Hence the
users that belong to the differences or to Document Families that are treated as

differences access their private index and fewer shared indices.

However, the average number of indices per user is higher for the Uniform and the Zipfian
distribution with parameter a at 0.7 than for the distribution of the survey. On the
contrary, for the Zipfian distribution with parameter a at 1.7 and 2.2, the average number
of indices per user is lower than that of the distribution of the survey, which reaches the
148 indices for 100% Similarity and zero Threshold.

We observe that the Uniform distribution achieves the highest average number of
indices per user, which reaches the 334 indices for 100% Similarity and zero Threshold,
while the Zipfian with a parameter set to 2.2 achieves the lowest, which reaches the 34
indices. When we increase the value of parameter a, the average number of indices per
user decreases because the probability of a user to belong in many groups, and hence in
many ACLs, is lower . This is because most groups have a small number of members and

the members are chosen uniformly.

71

Another important observation is that the Similarity value which minimizes the aver-
age number of indices per user decreases from 60% to 40% as the value of parameter a
increases. Moreover, the higher the value of parameter a, the lower the contribution of
the Similarity parameter to the decrease of the average number of indices per user, for a
given Threshold value.

Average Number of Indices Per Document. In Figure 6.16, we examine the
average number of indices per document. The results follow the same trend as in the case

we use the distribution of the survey for the group sizes (subsection 6.3.2):

e The average number of indices per document increases as the Threshold value in-
creases. For infinite Threshold, we get the highest average number of indices per
document because each document is indexed by the private index of each user that
he is allowed to read it. On the contrary, for Threshold set to 0, we get the lowest
average number of indices per document because each document is indexed by at
most two indices (difference index and/or intersection index). For the other Thresh-
old values, the average number of indices per document increases insignificantly in

comparison to the latter case.

e At the Similarity value which minimizes the average number of indices per user, the
average number of indices per document decreases for Threshold values over 500,

while for lower Threshold values it insignificantly increases.

However, we observe that the average number of indices per document is higher for the
Uniform and the Zipfian distribution with parameter a at 0.7 than for the distribution
of the survey. This is because each document can be read by large number of users (as
we have large ACLs), and hence for a high Threshold value each document is indexed
by a large number of private indices. On the contrary, for the Zipfian distribution with
parameter a at 1.7 and 2.2, the average number of indices per document is lower than
that of the distribution of the survey, which reaches the 60.04 indices for 100% Similarity
and infinite Threshold. In this case, the ACLs are smaller and fewer document duplicates
are created.

We observe that the Uniform distribution achieves the highest average number of
indices per document, which reaches the 78.94 indices for 100% Similarity and infinite

Threshold, while the Zipfian with a parameter set to 2.2 achieves the lowest, which reaches

72

Avg Number of indices Per Document Avg Number of Indices Per Document

Uniform Zipfian (a = 0.7)
80 = 80
~
70 70 P
60 v)
v 3
T
8" \ / 2% \
o
=40 \l S %
£ / £
s ﬂif e 30 v Thr INF
P rgggo - r1
20 }|—— Thr 20 ::: :8380
‘“"b'"""-0"~4...,~ ‘,.-" Socodocodroccbronen s
10 Py 10 T acearee e
T Lr *--@o-SBeg :L 9 I---o----c--—l-——t—--l—-:t-.-------o---c
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Similarity (%) Similarity (%)
() (b)
Avg Number of Indices Per Document Avg Number of Indices Per Document
Zipfian (a = 1.7) Zipfian (a = 2.2)
80 80
70 70
60 60
50 '-_'_—'_—-"\~- e Saa 50 A i o VU S s A, S
g —v— 1E;INF 2 v Thr INF
] e O . r 1
i L =2
30 w0}
20 20L
WVhisrcanrsn, . edeensheses 10
. : . ":r*-: -y o . lE.‘;’.’.‘.i:r.t:-.;-g;-_-‘.-;-..;.-:r::;*:::.::’:ﬁl
0 10 20 30 40 50 60 70 80 80 100 0 10 20 30 40 50 60 70 80 90 100
Simitarity (%) Similarity (%)
(c) (d)

Figure 6.16: We depict how the average number of indices per document is affected by the
different probalitity distributions used for the group sizes. The average number of indices
per document is higher for the Uniform distribution. As the value of parameter a of the

Zipfian distribution increases, the average number of indices per document decreases.

the 51.78 indices. Also, as the value of parameter a increases, the average number of
indices per document decreases for high Threshold values because the ACLs include fewer
number of users, and hence each document is indexed by fewer private indices.

Another important observation is that the reduction of the average number of indices
per document is more acute for the Uniform and Zipfian distribution with low values of

parameter a. This holds for the Similarity value that minimizes the average number of

73

indices per user and infinite Threshold. A reasonable explanation is that at this Simi-
larity value, the differences in each cluster contain few users, and hence the documents
corresponding to differences are indexed by few private indices. On the contrary, for
Similarity 100% and infinite Threshold, each document is indexed by a large number of

private indices as each ACL in the cluster includes many users.

6.6 Summary

In order to evaluate our solution, we implemented an ACL Generator that creates syn-
thetic ACLs taking into account the observations on the access control usage presented in
a previous study. The experimental results show the trade-off arising between the query
performance and the maintenance cost across different Similarity and Threshold values.

For Threshold set to 0 and 100% Similarity, we get the highest query response time
because in this case the number of indices accessed per user is high. However, the indexing
time and the disk space consumption are the lowest of all other cases. When Similarity
is 60% and Threshold is set to 0 or higher, we get better query response time because
the number of indices per user decreases due to the intersection of the ACLs within the
clusters. On the contrary, the indexing time and the disk space consumption slightly
increase because documents are duplicated across a small number of indices. For infinite
Threshold, one might expect to get the lowest query response time, as each user only
accesses one index. However, the query response time is higher than in the other cases
when we leverage the cache. In this case, the working set is larger than in the other cases
and does not fit in memory. Hence, the search engine satisfies the majority of the queries
from the disk. Moreover, for infinite Threshold we get the highest indexing time and disk
space consumption due to the high number of duplicates across multiple indexes.

To examine more synthetic ACL datasets, we conducted additional measurements
using different distributions for the size of user groups in the ACL Generator. The Planner
results follow the same trend as in the case we use the distribution from the previous study.
However, the average number of indices per user and per document is higher or lower than
that of the distribution from the study for the different examined distributions.

Taking into account the presented results, this chapter gives many insights on how to

74

tune such an indexing workflow scheme depending on the performance needs and keep a

balance between maintenance cost and query performance.

75

CHAPTER 7

RELATED WORK

7.1 Desktop and Enterprise Search

7.2 Metadata Search

7.3 Full-Text Search in Social Networks
7.4 Secure Data Storage

7.5 Summary

Full-text search has been a topic of great interest for the last few years. However,
researchers turned their attention to the privacy issues arising when the full-text search
engine operates in a multi-user environment. Therefore, a notable amount of research has
been devoted also in this area.

This chapter revisits prior research focused primarily on desktop and enterprise search
engines by capturing their benefits as well as their limitations. Furthermore, we present
existing research on secure full-text search in social networks as they support multiple
users and the privacy issues referred in the previous chapter still hold. Finally, we review

approaches that provide secure data storage.

76

o <okl adont

7.1 Desktop and Enterprise Search

Much of the focus of recent research at the concern of full-text search has been on providing
privacy, keeping low the maintenance cost and increasing the query performance. While
privacy protection is necessary, the performance of a full-text search engine is also very

important. However, these are two opposing principles, and it is difficult to achieve both.

7.1.1 Per User Indices

Google 's Desktop Search tool [1] is one of the most popular desktop search engines. It
was designed in order to bridge the gap between the increasing amount of stored data
and real-time searching on a single-user machine. When used in multi-user environments
it creates either one index per user or a system-wide index. In the first case, each index
includes all the documents that a particular user is allowed to read. Hence, when a user
submits a query, it is addressed to his private index. In the later case, all users’ documents
are indexed by a system-wide index taking no account of their owner. However, this index
needs to be created and accessed only by users with administrative rights, posing severe
privacy threats. Therefore, the above limitation makes this case unsuitable for multi-user
environments [41].

Soon after Google Desktop Search, other desktop search tools appeared as well, such
as Yahoo! Desktop Search [9] and Copernic [8]. Both of them bear a strong resemblance
to Google Desktop Search in the way they operate in multi-user environments. More
particularly, they integrate access control during indexing time by ensuring that each
user has a distinct index. Thus, in each user’s index are only indexed documents that he
is allowed to read.

Creating one index per user implies that we have a completely safe way of organizing
the user’s documents into indices. Since each user only searches among documents that
he is allowed to read, each query result is restricted to those documents. Hence, users
cannot infer the content of documents that they are not allowed to read. In this approach,
the query performance is high as only one index has to be searched per query and there
is no additional cost to apply any access control.

Despite the privacy protection provided by the above approach, some performance

issues arise. The fact that a single document can be readable by multiple users and

77

all documents readable by a user are indexed by his private index leads to document
duplication across two or more indices. Document duplication makes the full-text search
engine suffer not only from disk consumption, but also from costly maintenance. The
number of indices for a document is equal to the number of users that are allowed to
read it. This also holds for updates. Whenever a document is updated, the changes are
also applied to all indices in which this document has been indexed. Furthermore, this
issue becomes more acute as the rate of documents that are readable by many or all users

increases.

7.1.2 Shared Index

The need for overcoming the limitations derived from the one index per user approach led
to the use of a single system-wide index. In this approach, all documents are indexed by
the same index and the access control information is taken into account before handing
in the results of a query. Hence, the extra indexing and updating cost are avoided since
each document is indexed only once.

Apple’s Spotlight 2, 39], the Mac OS indexing and retrieval facility, uses such an ap-
proach. It provides full-text search for separate user accounts by extracting and indexing
metadata in a single system-wide index, while respecting the ownership of the documents.
Whenever a search query arrives, Spotlight computes the list of documents matching the
query and then it filters this list. Filtering is performed by checking the document per-
missions and removing from the result any documents that the user is not allowed to
read. A possible drawback of Spotlight is that it returns results in lexicographic order
and does not employ any relevance ranking algorithm. This, eliminates privacy threats
based on TF/IDF ranking algorithms, but also hampers users to find fast the most rel-
evant matching documents. Indeed, a non ranking approach is not always appropriate,
especially when the number of documents is large (6].

A similar approach is implemented by Microsoft [7]. In particular, the search engine
identifies users and groups that are granted or denied access to each document by adding
authorization information (Access Control List) to each document. Thus, whenever a user
submits a query, the list of matching documents is computed and filtered by taking into

account the documents’ Access Control Lists. Accordingly, the query results are restricted

78

to the documents that a user is allowed to read. In addition, regarding its ranking model,
the Microsoft’s search engine offers several ranking models. However, the default model
is based on a TF/IDF scoring function.

Google supports enterprise search with the Google Search Appliance [12]. Its main
purpose is to provide fast, relevant search results. Google Search Appliance creates access
credentials provided by the system administrator in order to index users’ documents. At
query execution time the index is searched and a list of all matching results is retrieved.
Prior to returning the final result list to the user it removes the documents that do not
comply with the corresponding credentials. The result ranking is based on a TF/IDF
style ranking algorithm [30]. However, it can be influenced by some features provided,
such as self-learning scorer’.

While a single system-wide index reduces the disk space consumption and the update
cost, it adds an extra cost at query execution in order to satisfy the access control re-
strictions. In addition, it can pose serious privacy threats; Ranking algorithms, based on
TF/IDF scoring function in conjunction with result filtering after computing the rele-
vance score of matching documents, permit to a user to infer information about documents
that he is not allowed to read [6]. However, following different approaches is possible to
eliminate privacy threats.

7.1.3 Secure Approaches

In an effort to eliminate privacy threats in full-text search engines when operating in
a multi-user environment, Biittcher and Clarke [6] designed the Wumpus search engine.
Although Wumpus uses a system-wide index, the result ranking is only performed on
documents that a user is allowed to read. Whenever a query is received, the posting lists
of its terms are computed. Then, the access control restrictions are applied by removing
any occurrences of the query term within documents that are not readable by the user
who submitted the query. Finally, the ranking step follows based on the final form of the
posting lists. Since the ranking step is only applied on documents readable by a user,

the user cannot infer any information about documents that he is not allowed to read.

!'This feature automatically analyzes user behavior and the specific links that users click on for specific
queries in order to fine tune relevance and scoring

However, a possible drawback of this approach is that it requires the information (e.g.
owner, permissions) about every indexed i-node to be kept in memory. This could become
a problem when the indexed documents reach the limit of a few million.

Singh et al. [37] proposed a distributed approach that couples search and access-control
into a unified framework, while protecting privacy in multi-user environments. The main
idea is to build indices, each of which maintains documents that have exactly the same
access control privileges. Towards that direction, they build a graph whose edges reflect
the documents that a user or a user group has access to and then they divide documents
into independent access-privileges based chunks, which they call access-control barrels
(ACB). However, documents readable by a user may be spread in many ACBs. Thus,
in a user’s subsequent search the results are derived from all the ACBs which contain
documents that the user is allowed to read. Unfortunately, there is no upper bound for
the number of different ACBs that potentially can be created and for the number of
ACBs that a user has access to. Moreover, it is shown that it is impossible to reduce the
number of ACBs without either duplicating documents in barrels or violating the security
restrictions. Hence, in order to reduce the number of ACBs, all ACBs in which few users
have access are removed and the documents contained in them are moved to each user’s
private ACB.

LI et al. [15] present a different approach to protect privacy in search engines when
operating in multi-user environments. The core idea is to assign multiple IDF values
(one for each user) to each term. In addition, these term J/DF values are computed by
only taking into account documents that the specified user is allowed to read. In order
to do this, a personalized index is build for each user in an early stage and then these
indices are merged into a global index. Thus, when a user submits a query, the relevance
scores of the matching documents are calculated by the user’s personalized information
of the previous step. Hence, a user cannot infer any information about documents that
he is not allowed to read. However, while this approach protects privacy, nothing is said
about the index maintenance cost and how efficiently the privacy protection lines with

incoming document updates.

80

7.2 Metadata Search

Beyond the research on full-text search, some remarkable approaches that deal with meta-
data search have been presented. Leung et al. [27] designed Spyglass, a metadata search
engine which is focused on how to exploit metadata properties in order to improve search
performance and scalability in large-scale storage systems. This is possible through hi-
erarchical partitioning which partitions the file system based on the namespace. Each
partition corresponds to a separate index. Hence, each index contains documents that
belong to a unique partition of the namespace. In addition, each partition is stored se-
quentially on disk; Bloom Filters [5] are used to restrict the search only to partitions that
may contain documents relative to a query. However, this solution only refers to metadata
search and without reference to privacy protection in multi-user environments.
Parker-Wood et al. [33] introduced a security aware index partitioning algorithm and
a series of metrics which can be used to evaluate the expected performance of different
partitioning algorithms. Security-aware partitioning partitions the file system according
to group and user security permissions while walking over it in a breadth first search. The
access permissions of a document or directory are determined by examining all permissions
in the directories above. If the permissions on the current document or directory are more
restrictive than that of the current partition, then a new partition is created. Then, all
documents in each partition are accessed by the same set of users, and each user can
only search in partitions that include documents that he is allowed to read. Even though
security is ensured, this solution generates many small partitions. However, one possible
way to reduce the number of created partitions, is to merge those that are accessed by

the same set of users.

7.3 Full-Text Search in Social Networks

Social networks, such as Facebook?, Twitter®, and Google+*, are popular online commu-

nities that provide interaction, communication and information sharing between users by

2https:/ /www.facebook.com/
3https://twitter.com/
4https://plus.google.com/

81

https://www.facebook.com/
https://plus.googIe.com/

using the notion of friendship. As the functionality of social networks is primarily based
on data generated by users, data handling and privacy are important issues to them.
Thus, in order to keep data away from undesirable viewers, social networks introduce
some access control mechanisms that enable users to restrict their data visibility to a
desirable subset of users.

Although these data may be of different types, we focus on the text content exchanged
between users. Usually, this text context is referred to as post. As the social network
population grows, the amount of shared data among users also grows. This mandates the
use of full-text search engines in order to help users to easily find the content they are
looking for. However, while not all data is accessible to everyone, the search engine must
adhere to the privacy settings enforced on each users’ content.

As a matter of fact, the problem of enforcing access control at desktop and enterprise
search is also inherited in social networks. Bjgrklund et al. [3], first integrated access
control of social network content in a full-text search engine. More particular, they
investigated several ways of index designs, but they concluded to the use of a single index
containing all users’ documents along with user or friend lists. In the case of user lists,
each user has his author list which contains the document IDs posted by him. In the case
of friend lists , each user also has an author list, but this list contains all documents posted
by him and all of his friends as well. Therefore, in order to enforce access control, the
results from the index are intersected with the set of author lists that correspond to the
user and all his friends. In the case of friend lists, the set of the author lists is calculated
by the users’ single author list, as it contains the document IDs posted by him and his
friends. In the case of user lists, the set of the author lists is calculated by the union
of the author lists for each individual friend of the particular user. However, the friend
lists approach introduces an update cost as each document posted by a user is inserted
in the author lists of all of his friends, while the user lists approach degrades the search
performance as multiple author lists must be processed to answer a single query.

In (4], Bjorklund et al. extended their previous work by introducing a new hybrid
approach. Initially, each user has one author list that contains the document IDs only
posted by him. Also, each user has an additional author list that contains all documents
authored by a selected set of users L, which is a subset of the corresponding user’s friends.

Thus, there is no need to access the specific author lists for users in L, whenever a user

82

u issues a query. The search engine computes the intersection of a query term posting
list with the union of author lists; then it returns the query result. As more and more
users are represented in L,, queries become more efficient at the expense of update cost.
Hence, the workload characteristics and the use of cost models in optimization algorithms
contribute to the selection of an appropriate content for each L,.

Finally, Facebook offers Inbox Search which is a feature that enables users to search
through their Facebook Inbox. Inbox messages also have restrictive visibility, and thus
their access control restrains must be retained through the search process. For this pur-
pose, Facebook maintains a per-user index of all messages that have been exchanged
between the sender and the recipients of the message. Also, it uses Cassandra as its back-
end storage system [24]. When messages are exchanged between a small set of users, the
per-user index is an affordable solution. However, when talking about posts, which are
visible from an extensively larger user set, issues arise from the content redundancy. This
is caused due to the duplication of a single post to the index of each user that is allowed
to read it. Furthermore, this can be worse, as generally in social networks, the number of

a users’ posts tends to increases as the number of his friends grows [18].

7.4 Secure Data Storage

Data handling to protect privacy is a more general problem and also concerns many online
applications and storage systems. Online applications are vulnerable to the disclosure of
private information due to software bugs that permit arbitrary users to gain access to
private data.

Popa et al. [34] introduced a new system called CryptDB for securing database-backed
applications. They address two basic threats: a) a user that gains complete control of
application and database management system (DBMS) server including the CryptDB
proxy server, and b) a database administrator (DBA) that has the ability to capture and
leak private data by snooping the DBMS sever. The main idea is to encrypt all data
stored in the database and execute queries over the encrypted data. CryptDB works as
a middle layer, that receives all queries (including search on encrypted text), encrypts

data and sends it to the DBMS server. Then, it receives the encrypted data from the

83

database, decrypts and sends it to the authorized user. Different keys are used to encrypt
different columns and users’ data. Also, data may be encrypted in one or more onions of
encryption (different encryption types) depending on the queries applied over them. All
keys are stored in the CryptDB proxy server and keys that decrypt the data accessible
to a single user are chained to his password. CryptDB allows only authorized users to
gain access to encrypted data and minimizes the amount of revealed private data. In
particular, it restricts the leakage to the data of currently active users for the duration of
the compromise. In addition, the DBMS server never receives decryption keys needed to
decrypt data, ensuring that a DBA cannot gain access to private data.

Schultz et al. [36] secure databases that handle data of multiple users through a
decentralized information flow control system called IFDB. The system tracks information
as it flows in the database and controls what can be revealed. To achieve this, it is based on
three basic concepts: principals, tags, and labels. Principals are entities in the system such
as users that are interested in controlling the sensitivity of their data. Tags are identifiers
attached to data to denote their sensitivity, and labels are sets of tags summarizing the
sensitivity of all data contained in a data object. Each process that runs with the authority
of a particular principal has a label, which reflects the tags of all the data this process
reads. The basic rule is that information can flow from a source S to a destination D
if the labels of S are a subset of the labels of D. However, in some cases tags can be
removed from labels in order to send sensitive information to an authorized user. Overall,
IFDB controls the information flow and enforces a security policy preventing sensitive
information leakage.

Cryptographic storage systems that store and manage files of multiple users also pro-
vide mechanisms that enable file sharing and encryption of the stored files. In order to
share encrypted files in such systems one has to manage and share keys among users
sharing a file with an efficient and scalable manner.

Plutus [23] is a cryptographic storage system that provides secure file sharing over an
untrusted file server by encrypting files. Its main idea is to group all files with identical
sharing attributes into the same group called file group and protect them with the same
key. This reduces the number of keys that users need to manage and exchange because the
number of keys is detached from the growth of the number of files and is restricted to the

number of groups of files with different sharing attributes. Every file group is associated

84

with a symmetric key called file-lockboz key and is the same for all files within that file
group. Hence, whenever a user wants to share a number of files with other users, he
creates a file group and generates a file-lockbox key. Then, he distributes the file-lockbox
key to the users with whom he shares the files of the particular file group, enabling them
to access these files. The way that Plutus operates makes it a secure storage system that
protects and shares data over an untrusted server, while enables individual data owners

to control who gets access to their files.

7.5 Summary

In this chapter, we presented prior research in the area of full-text search in multi-user
environments. Initially, we presented the two basic approaches. The first approach builds
one index per user in order to protect privacy and high query performance. However, it
is characterized by great disk space consumption and update cost. The second approach
indexes all users’ documents in a single system-wide index, and uses filtering algorithms
before returning the query results. Despite the low disk space consumption and update
cost offered by this approach, the result filtering impacts the query performance and poses
privacy threats in some cases. Then, we presented some different solutions that eliminate
the privacy threats, and outlined some remarkable approaches on metadata search and
social network full-text search. Finally, we presented approaches that provide secure data

storage.

85

CHAPTER &

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

8.2 Future Work

8.1 Conclusions

Privacy protection in full-text search engines over multi-user environments is an important
issue. In order to protect privacy, existing solutions utilize different approaches to organize
users’ documents into indices. A simple approach is to create one index per user. This
approach offers high query performance, but at the cost of great space consumption as
each document is indexed by the private index of each user that he is allowed to read
it. On the contrary, when retaining a system-wide index, all existing documents are
indexed regardless of access control restrictions. This approach provides efficient index
updates and low storage usage because each document is indexed only once. Moreover,
this approach poses severe privacy issues, which can be eliminated in the expense of
query performance. A different approach that improves efficiency while protecting privacy
creates one index for each set of documents that have the same ACL. Even though this
approach protects privacy and has lower maintenance cost than the previous one, it does

not provide any parameters to tune the query performance and the maintenance cost.

86

Motivated from the need to protect privacy and the lack of a tunable solution that
trades query performance and maintenance cost, we introduced a novel strategy to orga-
nize users’ documents in indices. We group documents into clusters based on the similarity
of their ACLs. The similarity between the ACL of documents within a cluster is deter-
mined by a Similarity parameter. Then, we map documents and users to indices based
on the intersection and differences of the ACLs within a cluster. In addition, we use a
Threshold parameter which determines in which indices the documents and the users are
mapped. Performing several measurements across different Similarity and Threshold val-
ues, we show that our strategy introduces a trade-off between the query performance and
the maintenance cost. By choosing the appropriate Similarity and Threshold values, we
substantially reduce the query response time, while slightly raising the maintenance cost.
For a given threshold value, the query response time decreases when Similarity is 60%.
Moreover, high Threshold values can further achieve better query performance. Overall,
our strategy protects privacy and provides a tunable solution that trades maintenance

cost and query performance depending on the needs.

8.2 Future Work

The main direction of our future work is to further investigate the behavior of our solution
in the context of a real ACL dataset. Even though the evaluation of our solution is
based on observations retrieved from a real ACL dataset, it is of primary importance
to experiment with a real ACL dataset in order to further validate the benefits of our
strategy.

Moreover, we target to support full-text search over content generated in social net-
works. Privacy protection is of major importance in such environments, as users enforce
access control in the generated content. Hence, we need to examine how our approach
performs in a social network dataset and validate its applicability in social networks.

Further exploration of other types of clustering algorithms and similarity measures is
also worthwhile.

Another interesting direction for future work is to integrate our solution into a full-text
search engine. Furthermore, we intend to investigate the potential of tuning the Similarity

87

and Threshold parameters by inspecting the ACLs as well as the number of documents

associated with each of them.

88

BIBLIOGRAPHY

[1] http://googledesktop.blogspot.gr/.

[2] Spotlight overview. http://developer.apple.com/library/mac/documentation/
Carbon/Conceptual/Metadatalntro/Metadatalntro.pdf, Apple Inc. 2004, 2007.

[3] Truls A. Bjgrklund, Michaela Gotz, and Johannes Gehrke. Search in social networks
with access control. In Proceedings of the 2nd International Workshop on Keyword
Search on Structured Data, KEYS ’10, pages 4:1-4:6, New York, NY, USA, 2010.
ACM.

[4] Truls A. Bjgrklund, Michaela Gotz, Johannes Gehrke, and Nils Grimsmo. Workload-
aware indexing for keyword search in social networks. In Proceedings of the 20th

ACM international conference on Information and knowledge management, CIKM

'11, pages 535-544, New York, NY, USA, 2011. ACM.

(5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

mun. ACM, 13(7):422-426, July 1970.

[6] Stefan Biittcher and Charles L. A. Clarke. A security model for full-text file system
search in multi-user environments. In Proceedings of the Jth conference on USENIX
Conference on File and Storage Technologies - Volume 4, FAST’05, pages 13-13,
Berkeley, CA, USA, 2005. USENIX Association.

(7] http://technet.microsoft.com/en-us/library/jj219738.aspx.
(8] http://www.copernic.com/.

[9] http://www.x1.com/.

89

http://developer.apple.com/library/mac/documentation/
http://technet.microsoft.com/en-us/library/jj219738.aspx
http://www.copernic.com/
http://www.xl.com/

[10] Levent Ertoz, Michael Steinbach, and Vipin Kumar. A new shared nearest neighbor
clustering algorithm and its applications. In Workshop on Clustering High Dimen-
sional Data and its Applications at 2nd SIAM International Conference on Data

Mining, 2002.

[11] Martin Ester, Hans-Peter Kriegel, J?rg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Evangelos
Simoudis, Jiawei Han, and Usama M. Fayyad, editors, KDD, pages 226-231. AAAI
Press, 1996.

[12] nttp://www.google.com/enterprise/search/.

[13] Christos Faloutsos. Signature-based text retrieval methods: A survey. IEEE Data
Eng. Bull., 13(1):25-32, 1990.

(14] http://lucene.apache.org/.

[15] LI Guilin, GAO Xing, HUANG Huiying, and Minghong LIAO. A bloom filter based
security index for enterprise search engines. Computational Information Systems,

8(12):4931-4938, 15 June 2012.
[16] http://www.elasticsearch.org/.

[17] D. Harman, E. Fox, R. Baeza-Yates, and W. LEE. Inverted files. In W.B. Frakes
and R. Baeza-Yates, editors, IR, chapter 3, pages 28-43. Prentice-Hall, 1992.

[18] Bernardo A. Huberman, Daniel M. Romero, and Fang Wu. Social networks that

matter: Twitter under the microscope, 2008. cite arxiv:0812.1045.
[19] http://trec.nist.gov/data/terabyte.html.
[20] http://docushare.xerox.com/.

[21] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput.
Surv., 31(3):264-323, September 1999.

[22] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

90

http://lucene.apache.org/
http://www.elasticsearch.org/
http://tree.nist.gov/data/terabyte.html
http://docushare.xerox.com/

[23] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu.

[24]

[25]

[26]

[27]

28]

[29]

30

Plutus: Scalable secure file sharing on untrusted storage. In Proceedings of the 2nd
USENIX Conference on File and Storage Technologies, FAST 03, pages 29-42, Berke-
ley, CA, USA, 2003. USENIX Association.

Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured stor-

age system. SIGOPS Oper. Syst. Rev., 44(2):35-40, April 2010.

Nicholas Lester, Alistair Moffat, and Justin Zobel. Fast on-line index construction
by geometric partitioning. In Proceedings of the 14th ACM international conference
on Information and knowledge management, CIKM ’05, pages 776-783, New York,
NY, USA, 2005. ACM.

Nicholas Lester, Justin Zobel, and Hugh E. Williams. In-place versus re-build versus
re-merge: index maintenance strategies for text retrieval systems. In Proceedings of
the 27th Australasian conference on Computer science - Volume 26, ACSC 04, pages

15-23, Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.

Andrew W. Leung, Minglong Shao, Timothy Bisson, Shankar Pasupathy, and
Ethan L. Miller. Spyglass: fast, scalable metadata search for large-scale storage
systems. In Proccedings of the 7th conference on File and storage technologies, FAST

’09, pages 153-166, Berkeley, CA, USA, 2009. USENIX Association.

J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In L. M. Le Cam and J. Neyman, editors, Proceedings of the 5th Berkeley
Symposium on Mathematical Statistics and Probability - Vol. 1, pages 281-297. Uni-
versity of California Press, Berkeley, CA, USA, 1967.

Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.
In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms,
SODA ’90, pages 319-327, Philadelphia, PA, USA, 1990. Society for Industrial and
Applied Mathematics.

M. Eng (Huy Le) Nguyen, Huy. Improving search quality of the google search appli-

ance. Master’s thesis, Dept. of Electrical Engineering and Computer Science, 2009.

91

[31] N.Rajalingam and K.Ranjini. Article: Hierarchical clustering algorithm - a compara-

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

tive study. International Journal of Computer Applications, 19(3):42-46, April 2011.
Published by Foundation of Computer Science.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

Aleatha Parker-Wood, Christina Strong, Ethan L. Miller, and Darrell D. E. Long.
Security aware partitioning for efficient file system search. In Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), MSST
’10, pages 1-14, Washington, DC, USA, 2010. IEEE Computer Society.

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. Cryptdb: protecting confidentiality with encrypted query processing. In

Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP 11, pages 85-100, New York, NY, USA, 2011. ACM.

Stephen E. Robertson, Steve Walker, and Micheline Hancock-Beaulieu. Okapi at
trec-7: Automatic ad hoc, filtering, vic and interactive. In TREC, pages 199-210,
1998.

David Schultz and Barbara Liskov. IFDB: Decentralized information flow control
for databases. In Proceedings of the 8th ACM European Conference on Computer
Systems, Prague, Czech Republic, April 2013.

Srivatsa Mudhakar Singh Aameek and Liu Ling. Efficient and secure search of en-

terprise file systems. In ICWS, pages 18-25. IEEE Computer Society, 2007.

D. K. Smetters and Nathan Good. How users use access control. In Proceedings of
the 5th Sympositum on Usable Privacy and Security, SOUPS 09, pages 15:1-15:12,
New York, NY, USA, 2009. ACM.

Carol Smith. Spotlight on spotlight. Info 624 information retrieval systems, Summer
2005.

92

YL T

LR e d

[40] Craig A. N. Soules and Gregory R. Ganger. Connections: using context to enhance
file search. In Proceedings of the twentieth ACM symposium on Operating systems
principles, SOSP ’05, pages 119-132, New York, NY, USA, 2005. ACM.

[41] Benjamin Turnbull, Detective Sergeant, and Barry Blundell. Abstract googling foren-

sics: An analysis of the google desktop search. International Journal of Digital Evi-

dence, 5(1), Fall 2006.

[42] Ian H. Witten, Alistair Moffat, ahd Timothy C. Bell. Managing gigabytes (2nd ed.):
compressing and indezxing documents and images. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1999.

93

SHORT VITA

Micheli Eirini was born in 1986 in Arta. She was accepted at the Department of Computer
Science of the University of Ioannina in 2005. She received her B.Sc. degree in 2011. Then,
she continued her studies as a M.Sc. student at the same department under the supervision
of Professor Stergios Anastasiadis. Currently, she is a postgraduate student and a member
of the Systems Research Group (SRG). Her research interests lie in the fields of full-text

search privacy as well as file and storage systems.

