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Thesis Supervisor: Stergios V. Anastasiadis.

In a virtualization environment that serves multiple customers (or tenants), storage con

solidation at the filesystem level is desirable because it enables data sharing, adminis

tration efficiency, and performance improvements. However, accessing storage at the file 

level leads to a reconsideration of the access control techniques used to isolate different 

tenants. Existing solutions require intermediate translation layers for purposes of net

worked file access or identity management. Nevertheless, such translations hinder the file 

sharing between different tenants, complicate manageability, and degrade performance.

In the present study we emphasize the need for a new access control architecture 

in collaborative multitenant virtualization environments to achieve (i) fine-granularity 

access control, (ii) storage efficiency, (iii) data sharing, and (iv) administration flexibility. 

In this context, we analyze the security requirements of multitenant filesystems. Then we 

introduce a system architecture that is backwards compatible to object-based filesystems, 

and combines native access control with namespace isolation. Our architecture securely 

isolates different tenants, and enables flexible file sharing both within and among tenants. 

It also offers more manageability opportunities with respect to the existing solutions.

Based on our design, we developed a system prototype over a mature distributed 

filesystem. We experimentally evaluate our software implementation with synthetic bench

marks and application-level workloads using a local cluster and the Amazon public cloud. 

Thus, we show that our approach incurs limited performance overhead in comparison to 

traditional single-tenant filesystems, achieves better performance than existing solutions
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based on intermediate translation layers, and also we provide be tter scalability for a  large 

number of tenants.
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Εκτεταμένη Περίληψη στα Ελληνικά

Γεώργιος Καππές του Ελευθερίου και της Αρετής. MSc, Τμήμα Μηχανικών Η /Υ  και 

Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Οκτώβριος, 2013. Κλιμακώσιμος έλεγχος πρόσβα

σης για ασφαλή πολυμισθωτικά συστήματα αρχείων.

Επιβλέποντας: Στέργιος Β. Αναστασιάδης.

Σε ένα περιβάλλον εικονικοποίησης που εξυπηρετεί πολλαπλούς πελάτες (ή μισθωτές), η 

ενοποίηση των αποθηκευτικών πόρων ανεξάρτητων μισθωτών στο επίπεδο του συστήματος 

αρχείων μπορεί να αποτελέσει τη βάση για την ανάπτυξη ενός αποδοτικού και ασφαλούς 

περιβάλλοντος συνεργασίας. Μια τέτοια ενοποίηση προϋποθέτει τη χρήση μιας διεπαφής 

πρόσβασης σε επίπεδο αρχείων, η οποία καθιστά εφικτή την κοινή χρήση αρχείων, επιτρέπει 

την αποτελεσματικότερη διαχείριση του συνολικού συστήματος και βελτιώνει την απόδοση. 

Ωστόσο, η πρόσβαση στους αποθηκευτικούς πόρους με χρήση μιας διεπαφής επιπέδου 

αρχείων καθιστά αναγκαία την επανεξέταση των τεχνικών ελέγχου πρόσβασης που χρησιμο

ποιούνται από το σύστημα αποθήκευσης ώστε να παρέχει ασφάλεια και απομόνωση στους 

μισθωτές. Οι υπάρχουσες λύσεις απαιτούν ενδιάμεσα επίπεδα μετάφρασης για να παρέχουν 

ασφαλή πρόσβαση σε ένα δικτυακό σύστημα αρχείων και να διαχειρίζονται τις ταυτότητες 

των χρηστών που έχουν πρόσβαση στο σύστημα. Εντούτοις, η χρήση πολλαπλών επιπέδων 

μετάφρασης δυσχεραίνει την κοινή χρήση αρχείων μεταξύ χρηστών που ανήκουν σε διαφορε

τικούς μισθωτές, δυσκολεύει τη διαχείριση του συστήματος και μειώνει τη συνολική του 

απόδοση.

Στην παρούσα εργασία τονίζουμε την ανάγκη για μια νέα αρχιτεκτονική ελέγχου πρόσβα

σης σε συνεργατικά πολυμισθωτικά περιβάλλοντα για λόγους (1) ελέγχου πρόσβασης με 

υψηλότερο βαθμό ανδρομέρειας, (2) αποδοτικότερης αποθήκευσης, (3) κοινής χρήσης αρχεί

ων, (4) καλύτερης και ευκολότερης διαχείρισης. Στο πλαίσιο αυτό, αναλύουμε τις απαιτήσεις 

σε ασφάλεια των πολυμισθωτικών συστημάτων αρχείων και εισάγουμε μια νέα αρχιτεκτονική



ελέγχου πρόσβασης. Η αρχιτεκτονική που προτείνουμε συνδυάζει τον εγγενή έλεγχο 

πρόσβασης με την ασφαλή απομόνωση του χώρου ονομάτων κάθε μισθωτή και είναι συμβατή 

με οποιοδήποτε σύστημα αρχείων που βασίζεται στα αντικείμενα. Επιπλέον, διαχωρίζει 

αποτελεσματικά τους χώρους ονομάτων διαφορετικών μισθωτών, και ταυτόχρονα καθιστά 

εφικτή την κοινή χρήση αρχείων μεταξύ χρηστών που ανήκουν στον ίδιο ή σε διαφορετικούς 

μισθωτές. Τέλος, παρέχει ευκολότερη και αποτελεσματικότερη διαχείριση του συστήματος.

Με αναλυτικά αποτελέσματα και πειράματα σε πρωτότυπη υλοποίηση δείχνουμε ότι η 

λύση μας εισάγει περιορισμένη επιβάρυνση σε σχέση με παραδοσιακά συστήματα αποθήκευ

σης ενός μισθωτή. Επιπλέον, δείχνουμε ότι η λύση μας εισάγει χαμηλότερη επιβάρυνση σε 

σχέση με υπάρχουσες λύσεις που απαιτούν ενδιάμεσα επίπεδα μετάφρασης, και παρέχει 

■καλύτερη κλιμακωσιμότητα για μεγάλο αριθμό από μισθωτές.
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C h a p t e r  1

In t r o d u c t io n

- 1.1 Motivation

1.2 Research objectives

1.3 Contributions

1.4 Roadmap

In recent years, the cloud computing paradigm has enabled enterprises to  dramatically 

improve how they organize their infrastructure and operate their business, taking advan

tage of the scalability and flexibility of a cloud environment. The increasing popularity 

of cloud environments poses ever greater demands on the scalability, and security of the 

underlying storage systems.

W hether providing services to  the public or serving internal customers, cloud plat

forms typically allow multiple customers to share the same physical server and network 

infrastructure, as well as to use common platform services. Cloud customers could be 

independent organizations or business groups and they are known as tenants [6, 9]. The 

consolidation of resources into a shared resource pool is a prominent feature of cloud 

computing in order to improve efficiency, scalability, and reduce costs.

While multitenancy on cloud environments provides seemingly limitless scalability, it 

raises new security and privacy issues, because it hands the processing and storage tasks 

over to third parties and involves an enormous number of tenants tha t share the same 

resources. In fact, access control over the resources of a m ultitenant environment is a
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challenging problem due to  the enormous number of end users involved and the required 

isolation of the security administration across different organizations. D istributed autho

rization has already been extensively studied in the context of networked services, e.g., 

distributed filesystems [40]. However, a cloud environment introduces unique character

istics tha t warrant reconsideration of the assumptions and solution properties.

1.1 Motivation

In the present study we are particularly interested to take advantage of service co-location 

in the datacenter to better consolidate the storage infrastructure used by common data 

files at the application (e.g. collaboration documents) or system level (e.g. root im

ages). Secure storage consolidation at the filesystem level is increasingly advocated as the 

preferred multitenancy paradigm for cloud environments [43, 36, 21, 11, 64], Although 

virtual disks are attractive for their versioning, isolation, and migration properties, a 

file-based interface can additionally support fine-grained controlled sharing, easy resource 

administration, and file-level performance optimizations. Below, we examine scenaria of 

virtualization environments in which file based storage consolidation makes sense for rea

sons of (i) fine-granularity access control, (ii) storage efficiency, (iii) data  sharing, and (iv) 

administration flexibility.

S cien tific  d a ta :  Collaborative research groups require to share scientific da ta  across 

teams th a t span multiple institutions. D ata owners should be able to easily share their 

da ta  with users th a t belong to different institutions w ithout requiring them to have ac

counts on the storage servers where the data resides. In addition, a tenan t’s identity 

should be verified before making shared data  available and only users tha t belong to this 

tenant should be able to access the data. D ata providers must have full control over both 

the data th a t may be shared and the permissions tha t may be granted to external users.

V ir tu a l D e sk to p s : An enterprise stores the desktop filesystems of personal thin 

clients. Each desktop root filesystem is stored as a separate folder with access limited 

to a single client. As an optimization, there is a shared folder tha t is branched into the 

private folder of each client. Hence, clients can use the shared folder to collaborate on a 

project. A similar approach can also be applied to manage the home folders of users. In
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this scenario, the root folder of each client is branched into a shared but read-only folder. 

In addition, each user is given its own private home folder, where she can store private 

hies.

S o ftw are-as-a -se rv ice : A software-as-a-service provider supports different business 

customers with separate end users. The filesystem treats each business customer as a 

tenant with separate application files in writable mode (e.g. databases), but possibly 

shared system files in read-only mode (e.g. configuration scripts).

S o ftw are  R e p o s ito ry : A public provider offers a shared software repository th a t 

different groups of developers can fork into separate branches. The members of a  group 

obtain writable access to  their own branch, and read-only access to  the branches of other 

groups. A simpler scheme without branches could be used for sharing scientific datasets.

1.2 Research objectives

Accessing shared storage through a block-level interface completely hides file-level access 

control. Read from or writing to  storage devices happens a t the granularity of blocks 

and hence file semantics are completely hidden. On the other hand, when a file-level 

interface is employed to  access shared storage, the fileserver is ultim ately in charge of 

access control. The adoption of a file-based solution in a m ultitenant environment, where 

multiple customers share a single filesystem namespace, raises the need to reconsider the 

access control techniques used in order to  effectively isolate the principals of different 

tenants.

Existing file-based solutions face scalability lim itations because they either lack sup

port for multiple guest tenants, rely on global-to-local identity mapping to  manage the 

users of different tenants [11], or have the guests and a centralized filesystem (or proxy) 

running at the same host [43, 21, 12]. In addition, they hinder support for file sharing 

among principals tha t belong to different tenants and complicate administrative tasks.

In the present study we set as our prim ary goal to securely manage the shared filesys

tem namespace, in order to provide each tenant with an isolated private view. However, 

in contrast to previous approaches, our solution should perm it principals of the same or 

different tenants to share files and collaborate on a shared project. In addition, it shall

3



provide system administrators with more manageability opportunities, and finally, it shall 

maintain high performance and scalability by natively supporting multitenancy.

1.3 Contributions

Secure access control is a challenging problem th a t organizations face in collaborative 

virtual environments, which has prevented many of them  from migrating critical da ta  or 

applications into such environments. In our research we examine approaches for efficient 

and effective support of m ultitenancy in filesystems used by virtual machines. We require 

th a t each client directly mounts the filesystem instead of having the filesystem mounted 

by an intermediate proxy. Trusted computing techniques are used to  certify the integrity 

of tenants th a t wish to  access the shared filesystem. Tenants are then responsible for 

authenticating and authorizing principals operating on their behalf to provide access to 

the filesystem. The filesystem natively manages the access control m etadata of each 

tenant, and ensures th a t each tenant can only access its own namespace. Controlled 

file sharing is relatively straightforward as a result of the file-level access to a common 

filesystem with file-granularity access control.

We provide prototype implementation of the above approach in the Ceph production- 

grade, distributed filesystem. W ith microbenchmarks and application-level experiments 

we quantitatively dem onstrate the limited performance overhead of our design.

We can summarize our contributions as follows:

•  Analysis of access control requirements in file-level consolidated storage for virtual

ization.

•  Architectural design of native access control in a m ultitenant filesystem with back

wards compatibility to  object-based storage.

•  Prototype implementation over a production-grade distributed filesystem.

•  Experimental performance evaluation of multitenancy overheads.
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1.4 Roadmap

In chapter 2 initially we present the basic features of cloud environments and virtualiza

tion, and the core security primitives for securing d a ta  in large-scale distributed storage 

systems. Then, we delve deeper into storage management in virtualized environments 

and we summarize the different m ultitenancy architectures for filesystem storage clouds 

tha t have been proposed until now. Finally, we discuss why a file-level storage interface 

makes multitenancy challenging.

In chapter 3 we first analyze the security requirements in m ultitenant filesystems. 

Then, we list the goals th a t we have set for our proposed access control architecture. 

Furthermore, we provide details about our trust and th reat model.

In chapter 4 we introduce a new access control architecture for m ultitenant shared 

storage at the file level. Our architecture combines tenant isolation with native access 

control and is backwards compatible to object-based filesystems.

In chapter 5 we describe our implementation of the proposed m ultitenant access control 

over a distributed, object-based filesystem. In addition, we explain im portant implemen

tation decisions.

In chapter 6 we experimentally evaluate our prototype implementation and give rea

sons for the limited added performance overhead of our solution. Furthermore, we compare 

it with existing techniques th a t aim to enable multitenancy.

In chapter 7 we review the state-of-the-art multitenancy architectures for filesystem 

storage clouds, and we outline recent works th a t aim to provide trusted cloud storage. 

Furthermore, we present an overview of the related literature in the field of access control 

in distributed filesystems.

Finally, in chapter 8 we summarize the conclusions of our work and highlight oppor

tunities for future research.
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C h a p t e r  2

B a c k g r o u n d

'  2.1 Cloud environments

2.2 Virtualization

2.3 Core security mechanisms

2.4 Storage management

2.5 Storage interfaces

2.6 Secure storage multitenancy

2.7 Access control on m ultitenant storage systems

2.8 Summary

In this chapter we first present an introduction to the basic concepts of cloud environ

ments and virtualization. We also present the core security primitives for securing data 

in large-scale distributed storage systems. Then, we concentrate on storage management 

and we briefly introduce the architecture of object-based distributed filesystems and its 

advantages over traditional distributed filesystems. Furthermore, we compare the block- 

level interface with the file-level interface in term s of sharing and manageability efficiency, 

as well as performance. Finally, we summarize the different multitenancy architectures 

for filesystem storage clouds tha t have been proposed until now and we highlight why a 

file-level storage interface makes m ultitenancy challenging.
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2 -1 Cloud environments

Cloud infrastructures are increasingly used for a broad range of computational needs 

in private and public organizations- Cloud computing aims a t allowing access to  large 

amounts of computing power in a fully virtualized manner, by aggregating resources and 

offering a single system view. The deployment of cloud infrastructures can be performed 

in different ways, depending on the organizational structure and the provisioning location 

[35].

Four deployment models are usually distinguished, public, private, community, and 

hybrid. The deployment of a public cloud infrastructure is characterized by the public 

availability of the cloud service offering. It may be owned, managed, and operated by 

a business, academic, or government organization, or some combination of them and is 

offered to the public through a public network. On the other hand, in a private cloud de

ployment, the cloud infrastructure is provisioned for exclusive use by a single organization 

comprising of multiple customers. It is owned, managed, and operated by the organiza

tion, a trusted third party, or a combination of them. The main advantage of this kind 

of deployment is tha t the organization retains full control over corporate data, security 

guidelines and system performance. While a private cloud is only accessible by a single 

organization, a variant of this deployment, which is known as a community cloud, enables 

organizations with similar requirements (projects, security requirements, policies) to  share 

a cloud infrastructure in order to  collaborate. The infrastructure could be managed and 

hosted by one or more of the organizations in the community, or by a third-party. Finally, 

in a hybrid cloud deployment the cloud infrastructure is a composition of two or more 

distinct cloud infrastructures (public, private, or community) th a t remain unique entities. 

A hybrid deployment allows an organization to maintain sensitive data  behind its firewall, 

while taking advantage of the lower cost and flexibility of a public cloud.

The main idea behind cloud computing is to deliver a huge amount of computing re

sources as services through a public network such as the Internet. Cloud services can be 

divided into three categories according to the abstraction level of the resource provided, 

namely: (1) Software as a Service, (2) Platform as a Service, and (3) Infrastructure as 

a Service. In the first model, Software as a Service, one or more applications and the 

computational resources to run them are provided for use on demand as a service. On

7



the other hand, Platform as a Service is a model of service delivery whereby the com

puting platform (typically including operating system, programming language, execution 

environment, database, and web server) is provided as a service to  software developers. 

Finally, Infrastructure as a Service is a service model where the cloud provider offers 

virtualized resources (computation, storage, and network) on demand. To deploy their 

applications and services, customers install operating system images and their applications 

on the cloud infrastructure. The focus of this study lies in this final model.

Cloud computing services are usually backed by large-scale datacenters. Modern dat

acenters are heavily virtualized, thereby, computing, storage, and network resources of 

each physical server are multiplexed across a large number of different applications and 

tenants. Thus, cloud platforms allow multiple tenants to  share the same resources. This 

leads to  multiple benefits. On the one hand, higher resource utilizations are achieved and 

on the other, resource sharing can lead to  a great reduction of energy consumption and 

cut costs. In fact, most datacenters often utilize virtualization and distributed services to  

manage resources and provide a scalable computing platform [31], making virtualization 

a fundamental component of cloud computing.

2.2 Virtualization

Virtualization is a broad term  of computer systems th a t refers to an abstraction mecha

nism which hides the physical characteristics of certain com putational resources in order 

to  simplify the way in which other systems, applications or end users interact with them. 

Thus, virtualization enables sharing the resources of a computer system in multiple exe

cution environments.

The concept of virtualization has its roots in the mid 1960’s, when it was used by 

IBM as a method for logical partitioning of large centralized systems (mainframes) into 

separate virtual machines. The virtual computers were distributed to  users of the system, 

allowing each user to  work in an isolated environment without affecting other users. To 

make this sharing possible, IBM introduced a new feature called Virtual Machine Monitor 

(VMM).

The V irtual Machine M onitor [46] is a software layer th a t is placed on top of the hard
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ware layer and has direct access to  hardware resources. Its main objective is to manage 

and allocate system resources to  one or more virtual machines in order to  make virtu

alization possible. Virtualization follows various approaches th a t are directly related to 

the architecture of the V irtual Machine Monitor. In the hosted architecture the VMM 

runs as an application on the host operating system and relies on it for resource manage

ment, system memory, and device drivers. In the autonomous architecture the VMM is 

placed directly above the hardware. Thus, it is responsible for managing system resources 

and their allocation to different virtual machines. This last architecture is more efficient 

because the VMM has direct access to  system resources.

Guest operating systems run with limited privileges and they don’t  have direct access 

to hardware. Thus, it is difficult to  virtualize some critical operating system instructions 

because their implementation requires higher privileges. Two approaches were followed 

to  solve this problem: full virtualization and paravirtualization.

Full virtualization provides a virtual environment th a t simulates the real hardware. 

Specifically, each virtual machine is provided with all the services of the real system, 

such as full command set of the real processor, virtual appliances, and virtual memory 

management. The m ajor difference from other virtualization techniques lies in operating 

system’s awareness th a t it runs under a virtualized environment. Thus, any software th a t 

is capable to  run in the real system can run without changes in the virtualized environ

ment. In order to make the execution of critical instructions possible, a technique known 

as binary translation was introduced. According to  this approach, the software is patched 

at runtime. The critical instructions tha t cannot run in the virtual environment are re

placed by different instructions tha t can run safely. However, the continuous scanning 

and emulation of critical instructions reduces performance. VMware’s W orkstation [63] 

follows the above approach.

On the other hand, paravirtualization provides to the virtual machines a software 

interface th a t is similar but not identical to tha t of the real system. The main purpose of 

paravirtualization is to reduce the proportion of time spent in performing critical patches 

on the guest’s unsafe instructions. Instead of using the binary translation technique, the 

client software is modified and communicates directly with the VMM, when it needs to 

execute a critical instruction. Then, the VMM undertakes responsibility to execute the 

instruction. As a consequence, the guest operating system must be altered slightly in order
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to  run in a paravirtualized environment. A system th a t follows the paravirtualization 

approach is Xen [7].

As the benefits of virtualization are tremendous, manufacturers of processors have 

reviewed the instruction set of their products by making them  virtualization-friendly. 

Thus, virtualization of critical operating system instructions can be solved directly using 

the new instruction set.

2.3 Core security mechanisms

In a distributed filesystem, client is typically a process th a t provides local filesystem access 

to  a node and servers the processes th a t implement filesystem action across the network. 

Principal is an entity th a t accesses the filesystem through the client. This entity can be 

a process, a person, or a role. A principal can also be a  compound of other principals, for 

example a group of users [40].

Reliability and security in a large-scale storage system can be enforced with a  combi

nation of four different techniques, including Encryption , Identification, Authentication , 

and Authorization.

Encryption is the process of encoding information in such a  way th a t eavesdroppers 

cannot read it, while authorized parties can. A secure cloud storage system requires two 

kinds of encryption: For da ta  th a t is being transferred over the network and for d a ta  “at 

rest” on disk. Usually, when cloud tenants don’t  entrust the cloud provider with their 

data, they can provide confidentiality to  themselves by encrypting the da ta  they store on 

the cloud.

Identification is the process in which an entity supplies information to  identify itself 

to an authentication service. Some examples of identification mechanisms are usernames, 

memory cards, and public keys.

Authentication is the activity of verification of an entity’s identity. It can be performed 

using passphrases, passwords, cryptographic keys, and tokens. I t  confirms the identity 

of an individual, but says nothing about its access rights. Authentication often involves 

verifying the validity of a t least one form of identification.

Authorization is the process of determining access rights: W hat an identified entity
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can actually access and what operations it can carry on this information. Authorization 

is normally preceded by authentication for user identity verification.

Most access control systems need also to limit the actions of application processes. 

In particular, they must prevent a process from reading or overwriting memory th a t it 

may not access. One solution to this problem is to use sandboxing techniques. A sandbox 

is a security mechanism for separating running programs (e.g. SELinux [30]). However, 

sandboxing techniques are often too restrictive for general computing environments. An

other solution to  the above problem is to  use mechanisms like segment addressing, which 

integrate hardware access control with the memory management functions [5].

A secure environment must also ensure the integrity of computing platforms. In fact, 

users must be sure th a t a  given program runs on a machine with a given specification; 

th a t  is, the software has not been modified and the hardware configuration has not been 

changed. A typical mechanism th a t provides such assurances is the Trusted Platform  

Module or TPM . The TPM  is actually a secure co-processor which monitors a system at 

boot time and reports its s ta te  to the operating system. In fact, it generates a crypto

graphic key tha t depends on the current system’s state, as well as a fingerprint (hash) of 

the software stack th a t booted on the system and provides them  to the operating system. 

Thus, if a modification is made to the system’s configuration, the TPM  chip will generate 

a different cryptographic key and the previously encrypted material will not be made 

available. A system can also use the TPM  to certify the identity of a remote system. 

This process is called remote attestation. Furthermore, TPM  can also be used for disk 

encryption. It offers two primitives, seal and unseal to  encrypt and decrypt information 

respectively. Seal encrypts da ta  and specifies a state  in which the TPM  must be in order 

for the data  to be decrypted (unsealed) [5, 52],

2.4 Storage management

File and storage systems used in virtualization environments have proved critical to  the 

overall performance of an exceedingly broad class of applications. Storage systems can be 

distinguished in three different categories depending on how data  is stored on the underly

ing system: block-based storage, file-based storage, and object-based storage. The storage
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in the block-based approach is conceptually modeled as a long stream  of bytes divided 

into equally sized blocks. All accesses to the storage devices are performed by reading 

or writing blocks. Examples of this type of storage include Amazon Elastic Block Store 

(EBS) [1], Ceph RBD [20], and iSCSI [53]. In the second form of storage a filesystem is 

layered on top of a block storage device. The filesystem is a a higher-level logical structure 

tha t maps higher-level objects, which are typically called files (such as documents, pic

tures, and videos), onto disk blocks. Some exam ples of file-based storage systems include 

NFS [55] and CIFS [38]. In the la tte r form of storage, which is known as object storage, 

the storage system uses objects to store information. Object-based distributed storage 

systems emphasize the scalability of secure da ta  and m etadata management. Some typ- 

ieal examples of object-based storage systems include Amazon S3 [3], Rackspace Cloud 

.files [49], and Ceph Storage [67].

2.4.1 Object-based distributed filesystems

An object-based distributed file system separates the management of file m etad a ta1 from 

file data. File m etadata is managed by m etadata servers, while a  different form of servers, 

which are known as object storage servers, manage file data. Both d a ta  and m etadata 

are split into objects which are stored on object storage servers. The filesystem client 

employs m etadata and object storage servers to  present a  full filesystem abstraction to 

the users [67].

A significant advantage of the object-based file system architecture is the elimination 

of the potential bottleneck of the m etadata server and the parallelization of all file I /O . In 

fact, a client needs to  contact the m etadata server only once, for example when it opens a 

new file. Another benefit of this architecture is th a t by grouping d a ta  into objects allows 

the object storage server to  optimize access to  related blocks, because da ta  th a t resides 

in the same object is related and potentially different from d a ta  in a  different object. 

W hat is more, da ta  can be split to multiple objects in order to  keep the size of an object 

under a specific limit. These objects are then stored to different object storage servers 

(idata striping). This allows the stripe width to be adapted to the access properties of an 

individual file.

*Such as the filename, the file size, and access control information.
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2.4.2 An outline of Ceph

Ceph is a distributed object-based filesystem developed by Weil et al [67]. It consists 

of four components: The clients provide access to  the filesystem, the m etadata servers 

(MDSs) manage the namespace hierarchy, the object-storage devices (OSDs) reliably store 

data in the form of objects, and the monitors (MONs) manage the server cluster map. 

Both data  and m etadata are stored on OSDs, but they are separately managed for greater 

scalability. The m etadata is dynamically partitioned across the MDSs to  preserve locality 

and achieve load balancing.

M etad ata  m anagem ent

The MDS is responsible to manage m etadata for files and folders. A Ceph folder is stored 

as a single object, or as a collection of fragments, with each fragment on a different 

object. W hen a folder is divided into multiple fragments, the Ceph client is responsible 

to request the correct fragments from the MDS. If the client needs the whole folder, it 

iteratively requests the next folder fragment from the MDS, until it forms up the whole 

folder. A folder entry includes the name, the inode, and the extended attributes of a file. 

Every MDS maintains a journal [47] of recently-updated m etadata. Incoming m etadata 

updates are labeled as projected while w ritten to  the journal but not yet to  the in-memory 

cache, committing while queued to  disk, and committed when w ritten in stable storage. 

M etadata journaling allows the MDS to serve recent m etadata back to  clients. In addition, 

the journal is also useful for failure recovery.

D a ta  and m etad ata  storage

Ceph stores file da ta  and m etadata as objects. Each object is stored as a file in the 

underlying filesystem of an OSD. An object has an identifier, binary data, and object 

m etadata consisting of a set of key/value pairs. Note th a t the actual file m etadata (the 

file inode) is stored in a different object.

Objects are mapped into Placement Groups (PGs). Grouping objects to PGs helps 

ensure performance and scalability, as tracking m etadata for each individual object would 

be too costly. The PGs are then mapped to one or more OSDs. Replication is done at the 

PG  layer. However, the degree of replication is specified higher, a t the pool level, and all
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PGs in a pool will replicate stored objects into multiple OSDs. A pool is a  collection of 

PGs and thus a collection of objects. Objects are mapped to  PGs and PGs to OSDs with 

the help of a pseudo-random da ta  distribution function [68]. This function allows Ceph to 

re-balance dynamically when the OSD map changes. Furthermore, it ensures th a t object 

replicas do not end up on the same disk or host.

2.5 Storage interfaces

Storage systems can be accessed through different types of storage interfaces which can be 

distinguished in three different categories: a block-level interface, an object-level interface 

and a file-level interface. A block-level interfaces exposes a block device to  the user and 

allows the writing and reading of fixed-size blocks. On the other hand, with an object- 

level interface users can access objects typically through a REST API [13]. Finally, a 

file-level interface exposes the file and folder structure to  clients. Then, clients ask the 

server to read or write a consecutive range of bytes within a  particular file in each request 

and the server maps this request to  the storage devices.

Existing virtualization environments primarily apply storage consolidation at the block 

level [37, 18, 54, 62]. Guests access virtual disk images which are typically stored in a 

central location. They are offered to  guests as direct attached disks through a block I/O  

interface, or as volumes through a storage area network mounted by the host. This ap

proach incurs im portant benefits, such as high availability of data, easier administration, 

and optimal usage of storage capacity. The block-level interface provides a narrow inter

face to  storage and yields an agnostic and simple implementation. Furthermore, it offers 

the system compatibility of a standalone machine. Moreover, a block-level interface is 

useful for supporting heterogeneous clients and client applications.

An alternative approach is the design of a virtualization-a\vare distributed filesystem 

[43, 21, 12]. This architectural design goes one step further beyond virtual disks and 

attem pts to provide storage virtualization at the file level. In fact, it combines the sharing 

opportunities offered from distributed systems with the intrinsic features of virtual disks 

such as isolation, versioning, and mobility.

14



Environment (IDE) and prefers the Debian Linux distribution. W ith composable storage 

enabled she has the flexibility to synthesize her filesystem by choosing the Debian file tree 

from the operating systems collection and combine it with probably a shared file tree th a t 

contains the Eclipse IDE and a private file tree for storing personal files.

The above discussion makes it clear th a t a file-level interface offers significant manage

ability benefits in comparison to a block-level interface. A recent study [4] tries to mitigate 

these limitations of block-level storage by storing images in a format th a t indexes their 

storage structure, instead of as opaque disk images. Thus, by providing a file-aware for

mat this approach allows administrative operations such as searching, patching, and virus 

scanning to execute online.

2.5.2 Performance

File-level access of consolidated storage may improve performance because of its potential 

to reduce the number of levels to a storage stack traversed by an I/O  request. On the 

other hand, when a VM guest operating system accesses storage through a virtualized 

block device, file access traverses the guest operating system ’s filesystem and its block 

device stack, and then it traverses a similar block device stack in the VMM. Even if the 

guest operating system accesses storage through a pass-through block device, the file I/O  

request needs to be translated to  a block request and then back to a file request. However, 

such translations can reduce performance (21).

Hildebrand et al. [19] study the effects of having multiple layers in the storage stack 

of a virtualization environment. They are particularly interested to investigate the effects 

of layering a virtual disk on top of a  NAS store. In this scenario, a VM’s file request is 

translated to a block request by the hypervisor’s storage controller emulator, which in 

turn  translates the block request back to a file request and sends it to the disk image via 

the NAS client. This large number of layers in the storage stack increases the amount 

of processing th a t each request needs and hence increases the I/O  latency. In addition, 

the caching of entire blocks by the block-layer causes read-modify-write operations over 

the NAS protocol which degrades performance. Having these observations in mind and 

conducting several experiments the authors state th a t the layering of the guest block-layer 

on top of a file-level layer can dramatically reduce performance. As a possible solution,
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2.5.1 Sharing and manageability

The semantic gap introduced by virtualizing the system a t a low level obscures higher-level 

information tha t could aid in identifying opportunities for sharing among different VMs, 

complicating the efficiency of storage management, and making collaboration tasks im

possible. Furthermore, it hides the storage structure and thus complicates administrative 

tasks.

File level access of consolidated storage offers more manageability opportunities than 

block level access. Stored data  is directly accessible through a standard file-level interface 

at the server without requiring shutting down the virtual machines which access the 

storage.

A block-level interface offers no opportunities to share read and write access between 

multiple parties, which complicates virtual machine management. Concurrent access can 

only be enabled with the help of a secondary protocol, or the usage of a traditional 

network or distributed filesystem to export specific parts of the filesystem. However, such 

solutions incur extra manageability effort because they involve either the design of extra 

protocols, or the maintenance of multiple administrative domains.

In addition, filesystem administrative tasks, such as da ta  searching and software in

stallations or updates, can be performed more efficiently and globally through a file-level 

interface. W ith a block-level interface instead, the adm inistrator would be forced to shut

down all the affected virtual machines in order to mount their images and perform the 

required task in one image at a time. In fact, a file-level interface increases adm inistration 

flexibility and efficiency because it enforces a granularity of individual files rather than  

entire disk or blocks.

Another potential manageability benefit from using a file-level interface lies to  its 

ability to provide an ephemeral and highly composable storage. A filesystem can be 

synthesized from a set of file trees, each of which contains related files. In addition, 

a file tree can be shared among multiple users or can be private. For example, there 

might be a collection of file trees, each of which may contain the root filesystem of a 

different operating system. Another collection may contain file trees tha t hold each user’s 

home folder. A last one would have file trees th a t have specialized applications installed. 

Let’s suppose tha t Alice is a developer who uses the Eclipse Integrated Development
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they suggest the guest VMs to consolidate storage directly a t the file level by mounting 

a network-based filesystem.

The performance implications of nested filesystems in a virtualized environment are 

investigated by Le et al. [27]. They focus on the scenario in which a guest VM accesses a 

local virtual disk image. Their main observation is th a t the choice of nested filesystems 

on both hypervisor and guest levels has a significant performance impact on guest’s I/O  

performance. In addition, they realize th a t system adm inistrators should carefully choose 

a combination of guest-hypervisor filesystems according to the type of the anticipated 

workload. W hat is more, they dem onstrate tha t there are cases where nested filesystems 

should be completely avoided.

2.6 Secure storage multitenancy

Secure multitenancy in cloud storage supports multiple customers a t low cost [25]. How

ever, maintaining security and access control in cloud environments is a challenging prob

lem and has prevented many organizations from moving critical da ta  or applications to 

such environments.

Cloud storage systems must address challenges th a t are not addressed by traditional 

distributed filesystems. These challenges mostly revolve around isolation, identity man

agement, and privacy. Cloud tenants do not trust each other, and in the case of a public 

cloud they even do not tru s t the cloud provider. A cloud storage system must ensure 

th a t tenants are isolated from each other, while it offers them  opportunities for a secure 

and collaborative file sharing. Tenant isolation in a filesystem storage cloud can generally 

be performed in four different levels: hardware level, hypervisor level, operating-system 

level, and application level.

Tenant isolation can be performed at the hardware level by using a dedicated server 

per tenant. However, this solution does not scale well, wastes hardware resources, and 

dramatically increases operating costs.

A second approach is to isolate a tenant a t the hypervisor level by using a shared 

hypervisor and separate virtual machines to host each tenan t’s fileservers [41, 44, 25]. In 

this case, the hypervisor enforces isolation by ensuring th a t the data from one tenant is not
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propagated to untrusted locations outside the tenant. Although this architecture securely 

isolates tenants, it hinders the benefits of a shared filesystem, such as da ta  sharing, group 

collaboration, and data  processing scalability.

In contrast to the above approach, the operating-system m ultitenancy architecture 

uses shared server hardware and operating system, and relies on the fileserver kernel to 

isolate the resources of different tenants leading to lower execution overhead [48, 25]. 

However, this architecture shares the same disadvantages with the previous one regarding 

the inability for file sharing and collaboration, as well as the poor scalability, because each 

client has its own dedicated file-service.

Finally, tenant isolation can be performed a t the application level, by using shared 

server hardware, operating system, and fileserver among tenants. This form of m ultite

nancy is also referred as native multitenancy and is considered as the cleanest way to 

isolate multiple tenants [25]. Despite the fact th a t achieving multitenancy a t this level is 

a challenging task, this architecture enables all the benefits of the deployment of a shared 

filesystem, including da ta  sharing, group collaboration, and high scalability.

2.7 Access control on multitenant storage systems

When a storage system is shared across multiple customers, it is critical to control how 

the access is differentiated so tha t only the perm itted principals to be able to access the 

data of each tenant. Below, we initially discuss how access control is handled in block- 

level m ultitenant storage systems. Then, we highlight the multitenancy challenges tha t 

are introduced by storage consolidation at the file level.

2.7.1 Access control on block-level storage systems

Existing cloud environments primarily apply storage consolidation at the block level. 

Guests access virtual disk images either directly as volumes of a storage-area network 

(SAN), or indirectly as files of network-attached storage (NAS) mounted by the host. In 

fact, virtual disk images provide the same block-level interface as physical disks and they 

have no access control responsibility. Therefore, if a tenant accesses its own collection 

of virtual disk images, its namespace is strongly isolated from others. While file-level
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access control is completely hidden by the block-level interface, tenants instead of sharing 

individual files with each other can share the whole virtual disk image.

The secure sharing of virtual machine images in a cloud environment has been re

searched by Wei et al. [66]. They propose a virtual disk image management system tha t 

controls secure access to images by different tenants, tracks the provenance of images, and 

provides tenants and adm inistrators with efficient image management tools th a t detect 

and prevent security violations. However, a finer-grained sharing a t the level of files is 

more desirable, but a block-level interface can not support it.

2.7.2 Multitenancy challenges of a file-level storage interface

File-based access of consolidated storage has been advocated to improve d a ta  sharing, 

manageability, and performance. Unfortunately, the access control model th a t is used 

when a virtual machine accesses storage through a block-level interface cannot be used 

when the filesystem must be deployed as a shared service and tenants access it through a 

file-level interface. The main problem in such a shared deployment is th a t the namespaces 

of different tenants are no longer isolated from each other. Thus, the filesystem needs to 

securely support and isolate different administrative domains.

An interesting example is how the isolation of principals is affected in such a deploy

ment. In fact, each tenant contains its own pool of users (see Figure 2.1). Each user is 

represented by an identity which is called the User ID (UID). The UID is a projection 

of an actual individual or service into the system. Establishing a unique UID for each 

individual who will access resources in a shared deployment is critical for security. How

ever, the use of a shared filesystem introduces a possibility of conflict involving the use 

of the same UID by users belonging to different tenants. As a result, a user who belongs 

to  a particular tenant can access the files of a user with the same UID who belongs to a 

different tenant. To make the situation worse, the storage server contains its own identity 

space. As a consequence, a tenant user can gain extra privileges on the fileserver with 

catastrophic results.

At the same time, other problems related to file permissions and special files are 

arising when a shared filesystem deployment is used. File permissions assigned to a file 

by a tenan t’s user not only affect other users of the same tenant, but they also mistakenly
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Figure 2.1: The ID collision problem when a  single namesapace is shared between different 

tenants and the provider.

affect the users of different tenants. This situation is unacceptable and is driven by the 

fact tha t the different namespaces are not properly isolated from each other. A similar 

situation arises when a user creates a new special file (e.g. symlink or device file). This 

file is also presented as a special file on the fileserver. However, a special file has a specific 

meaning only in the space where it is created. When such files are presented as special 

files on outer spaces, they may impose a serious impact on system’s security. For example, 

an intruder can use them as backdoor to read or even modify kernel memory, files, disk 

drives, and other critical devices. Thus, it is critical for a m ultitenant filesystem to prevent 

identity collisions and isolate the different tenant namespaces.

2.8 Summary

Cloud computing is a new computing paradigm tha t provides software, platform, and 

infrastructure services on demand to  customers around the world. A cloud environment 

may be public, private, community, or hybrid, each with its own distinct constraints. In 

order to  efficiently support an enormous number of customers a t low cost, cloud environ-
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ments rely on sharing of computing resources. A key technology th a t enables resource 

sharing is virtualization. The Virtual Machine Monitor is a critical component of virtu

alization. It may run directly as an application on the host, or it may be placed directly 

above hardware. A challenge th a t virtualization faces is how to  virtualize critical oper

ating system instructions. This challenge can be solved either with full virtualization or 

with paravirtualization.

File and storage systems used in virtualization environments are a critical component 

for the overall performance of hosted applications. Storage systems are distinguished into 

different categories depending on how d a ta  is stored and accessed. Existing virtualization 

environments apply storage consolidation a t the block level. Although the block-level 

aecess provides many benefits, such as support for versioning, isolation, and migration, 

it precludes file sharing, hinders manageability, complicates resource administration, and 

reduces performance. For these reasons, a file-level interface is more desirable in envi

ronments th a t target collaboration, easy resource adm inistration, and high performance. 

However, a file-level interface leads to  a  reconsideration of the access control mechanisms 

used to securely isolate different customers.
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C h a p t e r  3

D e s ig n  r e q u ir e m e n t s

3.1 Security requirements of m ultitenant storage systems

3.2 Architectural goals

3.3 Trust and threat model

3.4 Summary

In this chapter we explain the security requirements in m ultitenant storage systems 

and we list the goals th a t we have set for our proposed access control architecture. We 

also give details about our tru s t and threat model. In the next chapter, we propose a 

design to meet the specified requirements and goals.

3.1 Security requirements of multitenant storage systems

The idea of m ultitenancy is fundamental to cloud computing. Especially in a storage 

cloud, service providers are able to build storage architectures tha t are very efficient and 

highly scalable to serve the needs of the large numbers of customers tha t share them. 

However, in a m ultitenant storage system, da ta  of different tenants is stored in the same 

underlying storage devices. Thus, the prim ary requirement for m ultitenant storage is to 

ensure the security of tenant data.
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Figure 3.1: A ttributes of a shared m ultitenant filesystem.

When the storage system offers a block-level interface, each tenant accesses its own 

virtual disks and hence it is hard for a particular tenant to  access the data of another 

tenant. On the other hand, when tenants access the shared storage with a file-level 

interface, they share a single filesystem namespace. In this case, the risks of m ultitenancy 

become more severe.

As shown in Figure 3.1, the filesystem itself must securely separate, protect, and 

isolate a tenant’s da ta  from other tenants. This separation must be complete and secure.

However, it must not affect the management, sharing, and flexibility benefits of a shared 

filesystem. As we have explained earlier in subsection 2.7.2, the access control mechanism 

must take into account the fact tha t a single namespace is shared between multiple parties 

and properly prevent namespace collisions. All in all, if an attacker manage to gain access 

to a tenan t’s local account, then his attack must be confined within th a t tenant and he 

should be unable to access da ta  of another tenant.

In a m ultitenant storage system, the tenant ID is what distinguishes one tenant from 

the others. Authentication mechanisms must ensure tha t no other tenant can assume a 

tenan t’s identity to gain data  access. Furthermore, the filesystem must take into account 

how the access is authorized and differentiated, so th a t only the right principals can view 

and manage a tenan t’s data.

In addition, care must be taken to protect tenant data at rest and obstruct deletion or 

corruption (accidental or malicious) of it. In the present work we assume that the storage o
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provider and the filesystem servers are trusted. However, there are known techniques, like 

encryption of data  a t rest, th a t can provide an option to  meet the security concerns of 

the most sensitive tenants.

Finally, tenant da ta  access must not be disrupted by denial of service attacks against 

the filesystem servers and by the normal or abnormal activities of other tenants. However, 

in this thesis we do not a ttem pt to  provide solutions for these kinds of attacks.

3.2 Architectural goals

The following goals guided the design of the proposed scheme of filesystem access control:

•  Iso la tio n : Securely isolate different tenants and prevent namespace collisions.

•  S h a rin g : Enable collaboration by providing flexible file sharing among the princi

pals of the same and different tenants.

•  E fficiency: Provide fast da ta  access with native support of m ultitenant access 

control for filesystem performance and scalability.

•  C o m p a tib ility : Ensure architectural compatibility with existing scalable and re

liable filesystems.

•  M a n a g e ab ility : Provide more manageability opportunities to facilitate adminis

trative tasks.

3.2.1 Isolation

We assume th a t each tenant has its own identity space and operates a group of virtual 

machines with an identical pool of principals and with identical access rights to a set of 

files. We further assume th a t two identity spaces of different tenants can collide. In fact, 

a tenant should not be aware of how other tenants manage their identities. The filesystem 

should properly isolate the identity space and access control of principals from different 

tenants.
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Figure 3.2: The architecture of an object-based, distributed filesystem and its access 

control mechanism.

3.2.2 Sharing

In addition to tenant isolation, our architecture must provide opportunities for fine granu

larity intra-tenant and inter-tenant file sharing. For this reason, we use a file-level storage 

interface th a t enables sharing, in contrast to a block-level interface. Furthermore, we 

rely on access control lists and tenant-issued credentials in order to  natively authorize file 

access and we avoid techniques th a t complicate file sharing.

3.2.3 Efficiency

Our architecture must also be scalable and maintain high performance standards. Thus, 

we rely on an object-based distributed filesystem to handle the storage requirements of 

clients (e.g. virtual machines) belonging to different tenants.

As shown in Figure 3.2(a), a collection of object storage servers (OSDs) are respon

sible to  redundantly store the data  and m etadata in object form. In order to provide 

scalability to m etadata operations, m etadata management is separated from the storage 

of data. Multiple m etadata servers (MDSs) manage m etadata, and achieve locality and 

load balancing by partitioning over the object servers the name, data index, and access 

permissions of different files. Each m etadata server can manage a different portion of the 

namespace for better scalability. Namespace portions can also overlap to the same MDS 

for better redundancy. Finally, multiple monitors (MONs) are used to manage the whole
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system, identify component failures, and authenticate the different system components. 

The system can flexible manage secure access to  stored objects w ith help of the  operating 

system at each object server [67, 70].

Access control decisions happen a t the MDS. Object storage servers have no implicit 

knowledge of access privileges or authorizations. Thus, the MDS authorizes a client 

request and provides the client with a capability [29]. A capability is a token of authority 

th a t specifies the access rights th a t a  particular principal has over a particular system 

resource (e.g. a file). The client presents the capability to  the OSD, which according 

to  the policy th a t is specified on the received capability replies to  the client with the 

appropriate da ta  (see Figure 3.2(b)).

- Existing security solutions th a t rely on capabilities for access control have been crit

icized for their limited scalability: the number of security operations is strongly tied to  

the number of users, files, and requests. However, a recent work from Leung et al. [28] 

solves this problem with the M aat protocol. More specifically, for a single tenant, the 

extended capability of the M aat protocol authorizes I/O  for any number of users and files 

in petabyte filesystems, is cryptographically secure, and m aintains fixed size capabilities 

through Merkle hash trees. O ur proposed architecture is compatible w ith such extended 

capabilities.

3.2.4 Compatibility

O ur architecture must be compatible with existing scalable and reliable filesystems. For 

this reason, we use traditional structures and mechanisms th a t are made available in the 

most of the current widely used distributed filesystems.

3.2.5 Manageability

Finally, our architecture should perm it system adm inistrators to  efficiently manage the 

filesystem in terms of performing adm inistrative tasks, managing tenants, and specifying 

access control policies for different tenants. Thus, we rely on a file-level interface, which 

provides more manageability opportunities in comparison to a block-level interface. In 

addition, we avoid techniques tha t complicate manageability tasks.
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3.3 Trust and threat model

The clients and servers of the filesystem all run in one datacenter th a t is physically 

protected and operated by an independent provider. A secure co-processor certifies the 

software stack on each physical host1. A central monitor establishes the trust of the in

frastructure from the integrity of the participating nodes. Public keys (or hashes thereof) 

uniquely identify tenants, principals, and services. The nodes securely communicate over 

tem porary symmetric keys dynamically agreed upon via public-key cryptography. The 

private keys of principals and services are permanently stored in encrypted form and only 

appear in dear-tex t form at the volatile memory of authorized nodes. Before the realloca

tion of host memory across different nodes, the memory contents are scrubbed to  prevent 

information leakage.

The filesystem protects the confidentiality and integrity of stored da ta  and m etadata by 

restricting access to  authorized principals. We assume th a t the provider has no malicious 

intent to  compromise the system security. However, there may be other reasons (e.g. poor 

security practices) for which the provider is not trusted  for particular applications. In 

th a t case, the tenant may externally apply known techniques of encryption, hashing, and 

auditing to  achieve end-to-end confidentiality, integrity, and freshness [42]. Our present 

study targets filesystem access control without any explicit attem pt to  provide solutions 

for public-key distribution, denial of service, and traffic analysis. Finally, we do not 

address general distributed processing, which involves m ultitenant sharing of resources 

other than storage (e.g. computation).

3.4 Summary

In the present study we are particularly interested to  design a more efficient access control 

architecture for m ultitenant shared storage at the file level. On the one hand, our proposed 

architecture must securely isolate the identity space and access control of principals from 

different tenants, while on the other should provide opportunities for flexible file sharing, 

more efficient manageability, and high scalability. In addition, our proposed architecture 

‘For example, hash chain generated by a TYusted Platform Module [42].
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must be compatible with existing scalable filesystems. For performance reasons we rely 

on an object-based distributed filesystem. In the next chapter we introduce an access 

control architecture for multitenant filesystems that meets the specified criteria.
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C h a p t e r  4

S y s t e m  d e s ig n

'4.1 Secure multitenancy

4.2 Architectural overview

4.3 Authentication

4.4 Authorization

4.5 Optimizations

4.6 Security analysis

4.7 Summary

In this chapter we introduce a more efficient architecture for multitenant shared storage 

at the file level that combines tenant isolation with native access control. Our architecture 

is backwards compatible to object-based filesystems and meets the goals that we set in 

the previous chapter.

4.1 Secure multitenancy

A primary objective in a multitenant environment is to securely isolate the namespaces 

of different tenants. Tenant isolation is explicitly associated with the mechanisms used to
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Figure 4.1: The centralized approach: All principals are registered to a central directory.

identify tenants and principals. Identification is the process in which an entity establishes 

its identity and is securely identified by an authentication server. Identification names

paces can be local or global in scope and each identity has a valid meaning only in the 

namespace where it is defined. In addition, depending on their scope, identities must be 

locally or globally unique. In traditional decentralized, distributed filesystems principals 

are identified by their corresponding public keys. However, a principal’s public key needs 

to be certified1. A common approach to certifying a principal’s public key is for a certifi

cation authority (CA) to issue a certificate th a t contains the principal’s name, its public 

key, and other attributes, such as the certificate’s starting date and time, a signature 

verification key, and the issuer. The CA might be run by a local system adm inistrator; 

or it might be a remote trusted service.

First, in the following three subsections, we describe possible approaches to add sup

port for secure multitenancy in a file-level storage system. Then, in subsection 4.1.4 we 

present an outline of our approach.

4.1.1 Tenant isolation with centralized identification

Identity collisions th a t described in subsection 2.7.2 can be prevented by delegating the 

identity management to a shared service like Kerberos [59], establishing a new centrally 

administered ID space which can be shared between clients and services. Thus, instead of 

relying to their local identification services, tenants are required to register their principals 

to the provider’s identity service, as shown in Figure 4.1.

Inter-tenant file sharing is straightforward when a central directory is used. The 

*That is a key must be securely binded to a particular principal.
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Figure 4.2: Decentralized authentication with local authentication servers (LAS).

central directory is trusted  by all the involved parties, while the user and group identifier 

assignments are kept consistent, because the task of identity management is outsourced 

to  the central directory. Thus, a tenan t’s principal could use existing techniques to share 

files with principals of different tenants.

However, such an approach is unrealistic for the tenants of a cloud provider due to 

scalability and security challenges incurred by the enormous number of users involved. 

Furthermore, tenants may prefer to  run their own identity management systems and 

would thus be forced to  support two such systems simultaneously. W hat is more, this 

solution is unrealistic for a  cloud environment, where tenants do not tru st the cloud 

provider and other tenants.

4.1.2 Tenant isolation with public-key identification

Another possible approach to prevent identity collisions is to  rely on a  Public Key Infras

tructure (PKI) for principal identification and authentication [40, 24]. In this approach 

principals could be identified directly by their public keys and a trusted authority can 

associate a public key with a particular principal.

As shown in Figure 4.2, each administrative domain could operate a local authenti

cation server and trust remote authentication servers of different domains [40, 22]. Each 

local authentication server may establish a list of identities for local users and groups, and 

upon request, might return them to the fileserver as credentials. Then, the fileserver can 

issue these credentials for access control decisions. Inter-tenant file sharing is straight

forward. Users can directly list remote users on each file in order to grant them access
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permissions. The user’s local authentication server might prefetch and cache users and 

group definitions of remote authentication servers belonging to  different domains. Thus, 

during file access, the authentication server can establish identities for principals based 

on local information.

The above approach enables da ta  sharing across organizational boundaries. However, 

a  cloud environment introduces unique characteristics th a t make this solution inapplicable 

to  such an environment. First, in order to  properly isolate each tenant, there must be 

a second mechanism th a t associates each principal’s public key w ith a specific tenant. 

Second, for manageability reasons, tenants might prefer to  use their own identity schemes. 

Third, this approach alone does not take into account th a t a single namespace is shared 

between different tenants. Hence, it does not deal with namespace limitation. Fourth, 

a. tenan t’s local authentication server needs to  trust the remote authentication servers of 

other tenants. This is unrealistic for an environment such as the cloud where tenants 

possibly don’t trust each other.

4.1.3 Tenant isolation with identity mapping techniques

Identity mapping, a well-known technique from the area of grid computing [14, 58, 65] 

can be used to solve the identity collision problem th a t arises when a  namespace is shared 

between multiple parties. Identity mapping allows a fileserver to map incoming UIDs or 

GIDs from any tenant to  the server’s own known UIDs and GIDs. In addition, different 

ranges of server IDs can be assigned to  different tenants, in order to  provide tenant 

isolation.

Figure 4.3 shows an example of several local-to-global mappings. First, tenan t’s A 

UIDs 100-500 are mapped to  fileserver UIDs 2000-2500. Second, tenan t’s B UIDs 100- 

200 are mapped to fileserver UIDs 5000-5100 preventing a possible collision with tenant’s 

A identities. Third, tenan t’s C UIDs 0-100 are mapped to fileserver UIDs 6000-6100. 

Note th a t identity mapping enables root-squashing: Any incoming UID (or GID) 0 is 

mapped to another number th a t does not have superuser privileges. In our example, the 

UID 0 of tenant C is mapped to  the fileserver UID 6000.

Identity mapping is performed bidirectionally. Forward mapping is performed when 

a client sends a  request to  the fileserver. In this case, the fileserver maps the user’s local
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Figure 4.3: The identity mapping technique: The local identity space of each tenant is 

mapped to a different range of the provider’s identity space.

UID and GID to the assigned global UID and GID. Reverse mapping is performed when 

the fileserver replies to the client. The server maps the user’s global UID and GID to the 

corresponding local UID and GID.

Identity mapping solutions successfully isolate the identity spaces of different tenants 

and thus they have been recently applied to cloud filesystems [11]. However, such identity 

mapping techniques have been recently criticized as cause for limited scalability [32, 16]. 

In addition, the mapping of remote users to existing local user classes also poses the 

threat of implicit rights amplification, where users requiring only limited rights are given 

stronger than necessary. Moreover, the specification and the enforcement of the access 

control policies could become a cumbersome task, because each server maintains its own 

separate mappings. Even if the mappings are coordinated across different servers, access 

control policies could not be specified in the granularity of users, because each tenant 

maintains a variable list of users. In fact, users can not express access control policies 

that refer to identities that the fileservers have not yet encountered [60]. Thus, identity 

mapping techniques complicate or disable inter-tenant file sharing completely.

Furthermore, the common practice of mapping remote users to existing local user ac

counts in order to isolate different namespaces poses extra manageability difficulties. The 

global-to-local mappings are either created manually by administrators [65], or the admin
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istrators only specify the remote lower and higher bounds of ID values. In this case, the 

mappings themselves are updated at runtime [11]. In the first approach, when thousands 

of tenant users must be mapped, manually creating the mappings can be a daunting task. 

In the latter, users can not express access control th a t refers to identities th a t the fileserver 

has not yet encountered and as a result the global-to-local mappings for these identities 

do not exist. In both of the above approaches it is not possible to maintain automatically 

common user accounts and global-to-local mappings between multiple fileservers. This 

leaves maintenance and synchronization of global-to-local mappings as a manual process, 

or leads to the development of new tools to  autom ate this task. Finally, the UID space 

of the fileservers can possibly run out of numbers, because a cloud filesystem involves an 

enormous number of end users.

4.1.4 An outline of our approach

Instead of registering tenant principals into a centralized directory service, or using iden

tity  mapping, which faces scalability issues and complicates file sharing as well as man

ageability tasks, we rely on local authentication servers where each tenant certifies local 

clients and principals. The local authentication server of each tenant in turn  is certified 

by a global authentication service. Tenants can use their own identity mechanism to 

name principals locally. However, local identities can be associated with global identities 

in order to perm it inter-tenant file sharing. In addition, we differentiate our solution 

from previous approaches in th a t we combine local authentication servers with native ac

cess control by carefully storing identities and access control information directly on the 

filesystem. In order to preserve tenant isolation, identities tha t refer to principals that 

belong to different tenants are stored on separate places. Then, each of these places is 

pinned to a distinct tenant and thus the namespace of each tenant is properly isolated.

4.2 Architectural overview

Our proposed architecture consists of five core components, as shown in Figure 4.4: the 

Clients, the Tenant Authentication Servers (TAS), the M etadata Servers (MDS), the 

Object Storage Servers (OSD), and the Filesystem Authentication Servers (FAS). Next,
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Figure 4.4: An architectural overview of our proposed system, 

we provide details for each of the above components.

4.2.1 Tenant Authentication Server

Every tenant certifies the identity of local clients and principals with its own authentica

tion server, th a t is securely registered to the filesystem authentication servers. Tenants, 

as well as principals and groups maintain their own public/private key pairs. The tenant 

authentication server securely maintains the tenan t’s private key, as well as the private 

keys of each principal. Tenants, as well as clients and principals are uniquely identified 

by their public ID. This public ID might be a hash of their public key.

Tenant adm inistrators, for reasons of privacy or adm inistration complexity, have the 

flexibility to use their own identification mechanism to locally identify principals. How

ever, in order for cross-domain file sharing to be possible, there must be a mechanism 

which certifies th a t a particular principal belongs to  a particular tenant. For this reason, 

the tenant authentication server issues a credential to prove th a t a public principal ID 

belongs to a particular tenant. Specifically, this credential binds the principal’s public ID 

with the tenan t’s ID and other local identity attributes, such as the principal’s local ID. 

Credentials contain only signed identity attributes of the principals rather than policy 

statem ents with perm itted actions over the requested file resources.

The TAS is a critical component of the overall system to maintain security, operation,
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and scalability. Hence, it needs to be distributed and replicated. Having multiple authen

tication servers per tenant, not only guarantees redundancy of the stored information in 

case one of them suffers an outage, but also guarantees availability and scalability to  a 

large number of users.

For the above reasons, it is possible to build the TAS on top of a  distributed key-value- 

store (e.g. Cassandra), which supports replication for fault-tolerance, is decentralized (no 

single point of failure), and scalable. Each stored entry is a key/value pair and corresponds 

to  a tenant, client, principal, or group. The key is the public ID of the particular entry, 

while the value is the quintet:

<  type,publickey,privatekey, localidentity, m etadata >

The “type” element specifies the type of the entity and can be one of: tenant, client, user, 

or group. The “publickey” and the “privatekey” elements correspond to  the public and 

the private keys of the entity respectively. The “localidentity” entry is used only for user 

and group entities, and corresponds to  a local identity th a t is assigned to th a t entity by 

the tenan t’s local identification mechanism. Finally, the “m etadata” entry can be used 

by the tenant to store additional information for an entity.

4.2.2 Client

The client component represents the interface between user processes and the filesystem, 

and provides a POSIX-like interface to the users. In addition to  the POSIX-like interface, 

the client provides tools for managing the tenan t’s namespace and granting or revoking 

access to other tenants. Each client has a public/private key pair and is registered to 

a tenant authentication server of a single tenant. A trusted monitor a t the datacenter 

certifies the integrity of the software stack running a t the client, in order to harden a 

potential compromise of the client component.

4.2.3 Object Storage Server

Object storage servers (OSDs) are responsible for storing file da ta  and m etadata. The 

content of a single file is represented by one or more objects. Object storage servers are 

responsible to perform the mapping of these objects to blocks on their local filesytems.
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For security reasons, each OSD maintains its own public/private key pair and is identified 

by a hash of its public key. In addition, object storage servers are securely registered to 

the filesystem authentication servers.

Object storage servers are also responsible for da ta  migration, replication, failure de

tection, and failure recovery. Every object is written to the prim ary OSD first, and then 

the prim ary replicates it to one or several replicas to ensure redundancy. This replication 

can be synchronous in order to guarantee the availability of a new or updated object, be

fore the client is notified th a t a write operation has completed. An object storage server 

writes the new or updated object to its local journal before replicating it to  a replica 

object storage server.

4.2.4 M etadata Server

The M etadata server (MDS) is responsible to manage the filesystem namespace and pro

vide POSIX semantics to  clients. For availability and performance reasons, there may 

be multiple m etadata servers running on different hosts. Each MDS stores m etadata on 

object storage servers in the form of objects. In fact, the MDS itself does not provide 

m etadata storage, but works as an intelligent m etadata cache.

Each MDS maintains its own public/private key pair and is identified by a hash of its 

public key. In addition, it is securely registered to the filesystem authentication servers. 

M etadata servers manage the location of m etadata and also decide where to store new 

data. Furthermore, the filesystem namespace is split into different portions. For scalability 

reasons it is possible to assign each portion to a different MDS. Namespace portions can 

also overlap for redundancy reasons. This mapping of namespace portions to m etadata 

servers can be performed using dynamic subtree partitioning algorithms [69].

4.2.5 Filesystem Authentication Server

The Filesystem Authentication Server (FAS) certifies the identity of m etadata servers, 

object storage servers, and tenant authentication servers. It is also responsible to  manage 

the operation of the whole system and identify component failures. For this task, the 

FAS keeps information in the form of maps. For instance, to manage the cluster of object 

storage servers it maintains an OSD map th a t stores information about the location of
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the object storage servers and their current state.

Having multiple filesystem authentication servers is essential to  guarantee redundancy 

of the stored information and high availability. However, this means th a t the stored 

information must be kept consistent across all of them. For this reason, it is possible 

for each server to use a distributed consensus algorithm, like Paxos [26], in combination 

with a local key-value-store (like the architecture of Ceph’s m onitor2). Each time a map 

is modified, a new version is created and run through a quorum of servers. Only when 

a majority acknowledge the change, the prim ary server will store the new version to its 

local key-value-store and the new version will be considered committed.

4.3 Authentication

Authentication is the process of verification th a t an individual or an entity  is who it 

claims to  be. In a traditional distributed filesystem, all principals are registered to  a 

central directory service by utilizing an existing security infrastructure, such as Kerberos 

[59]. If a principal is securely identified by the directory, it receives a  ticket to  contact the 

filesystem. A ticket is a cryptographically secure, time stam ped data  structure th a t con

tains authentication and other information about a specific proposed interaction between 

a client and a server. On the other hand, decentralized distributed filesystems avoid the 

requirement of a central directory tha t knows all principals and group definitions. Differ

ent administrative domains maintain their own principals and policies in a local directory. 

Hence, local directories issue credentials for registered principals.

As mentioned in subsection 4.2.1, tenants certify the identity of local clients and prin

cipals with their own authentication servers, which are securely registered to the filesystem 

authentication servers. W hen a TAS authenticates to the filesystem authentication server, 

it receives a ticket tha t grants access to the m etadata servers.

A client talks with the TAS and receives a secret key to decrypt its private key. Then, 

it uses public-key cryptography to establish secure connection with the TAS. A principal 

connects to a particular client and provides a secret password for authentication by a 

tenant authentication server tha t also stores the password in encrypted form. After the

2http://ceph.com/docs/master/rados/configuration/mon-config-ref/. Accessed: 2013-08-19.
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Figure 4.5: The authentication architecture.

successful authentication, the principal receives a secret key to  decrypt a respective private 

key tha t is made accessible a t the client.

Upon authentication, the TAS delegates to  the principal the ticket th a t grants access 

to the m etadata servers (steps 1 and 2 in Figure 4.5). Then, the principal has everything 

it needs to perform m etadata operations. For example, lets assume th a t a principal needs 

to access a particular file. Using the client, the principal issues a m etadata request to  a 

m etadata server (step 3 in Figure 4.5). The request carries the MDS ticket, as well as a 

credential tha t proves the identity of the principal. The MDS verifies the ticket and the 

principal’s credential and upon correct verification responds with a map th a t contains the 

object storage servers and the specific locations of the file’s fragments. In addition, the 

MDS embeds to its reply the necessary OSD tickets. Finally, the principal receives the 

m etadata server’s reply and issues file operations to  the OSDs using the received OSD 

tickets (steps 4 and 5 in Figure 4.5). Request freshness is ensured with a client-provided 

nonce th a t the server returns modified according to  a known function (e.g. increment by 

one).

4.4 A uthorization

Authorization is a security mechanism used to  determine principal’s access rights related 

to system resources. Access rights are organized as a large m atrix called Access Control 

Matrix. Each row of the matrix refers to a subject (e.g. a user or a group) and each column



Figure 4.6: The authorization architecture.

refers to  an object (a resource, e.g. a file). Each cell lists the rights th a t a particular 

subject has over a particular object. A column of this m atrix is a list containing all the 

subjects th a t can access the object, and how. This list is called the Access Control List 

or ACL. In fact, an ACL is associated with each file and lists all principals authorized to 

access it along with their permissions. A principal’s identity must be known before access 

rights can be looked up in the ACL. Thus, authorization depends on prior authentication. 

On the other hand, a row of this m atrix is a list th a t associates with each subject a list 

of objects tha t may be accessed, along with the perm itted permissions on each object. 

This list is called a capability. In contrast to ACLs, capabilities do not require explicit 

authentication.

The filesystem grants to a principal a perm itted file access according to the tenant- 

issued credential. The authorization policy is specified in ACLs maintained by the filesys

tem. The rules of principals th a t belong to different tenants and the provider are respec

tively maintained across separate ACLs (Figure 4.6). Thus, our architecture successfully 

isolates the namespaces of different tenants and the provider’s w ithout the need of identity 

mapping tables. Each file is associated with a list of ACLs, one for each tenant th a t can 

access the file. The ACL of a tenant for a particular file is a list of entries; each entry 

consists of a principal’s identity and a representation of the perm itted actions. There is a 

separate ACL where the filesystem maintains the permissions of its native principals (the 

provider’s principals). A file can be configured as private or shared across the principals 

of a single or multiple tenants.

For adm inistration purposes the system provides selective access to m etadata in the 

form of views. We call this technique namespace filtering. Namespace filtering allows each 

tenant to access a filtered view of the shared namespace. The filesystem adm inistrator

40



C l·
-Ο τι

h Q  bob
4 0  alice

-O T2
41 I bob
4 0  nick 

->ΓΊ Share
4 0  Images 
...

■ Ο τι 
f^Obob 

I alice
■►ΓΊ Share

Images

<----->*
a >
hO T 2

hH 1 bob 
i I nick 

Share
Ό  mages

ADMIN VIEW TENANTi VIEW TENANT2 VIEW

Figure 4.7: Namespace fitlering: admin and tenant view of the filesystem m etadata.

has access to the admin view, which allows specification of permissions at the granularity 

of entire tenants or principals. In fact, the adm inistrator can use policies to provide 

namespace limits to tenants. Instead, the tenant view allows a tenant adm inistrator 

to configure m etadata made accessible to the tenant by the provider’s administrator. 

Depending on whether it belongs to the provider or tenant, respectively, a principal can 

only access a subset of the admin or tenant view filtered according to  the applicable 

permissions. Thus, by preventing a principal to name an object through namespace 

filtering, the system can prevent access to  the object (Figure 4.7).

4.5 O ptim izations

The number of files tha t large-scale storage systems need to store is increasing rapidly 

due to the growing number of end-users involved. Associating an ACL to each file leads 

to an enormous number of ACLs th a t the system needs to store and manage, and can 

cost considerable storage space and performance overheads.

According to a recent study from Smetters et al. [57] users rarely change the access 

rights of single files. They prefer to add new files to an existing folder with its permis

sions already set. Hence, new added files inherit the permissions of the parent folder.

The authors also state  tha t permission inheritance is consistent with “best practice” rec

ommendations for using access control settings, which recommends setting permissions 

rarely and rely on inheritance to  manage most controls. We exploit this observation in o
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Figure 4.8: ACL sharing with tree ACLs.

order to reduce the size of each file’s m etadata stored on the object storage servers and 

managed by m etadata servers.

More specifically, we associate with each folder two ACLs per tenant, a folder ACL  

and a tree AC L . The folder ACL controls access to  the folder as before. On the other 

hand, the tree ACL controls access to the folder’s contents. Newly created files share 

their parent’s tree ACL, as shown in Figure 4.8. However, when a user explicitly sets 

permissions on a particular file, then a new private ACL  is created for this file, and the 

file no longer shares the tree ACL with its parent folder (for example see the last file in 

Figure 4.8). A child folder inherits its parent’s tree ACL.

The tree ACLs can be set by users with the help of a special tool, or they can be set 

automatically. In the second case, they can be updated either statically or dynamically. 

In the static updating scheme, when a new file is created in an empty folder its private 

ACL is promoted to a tree ACL. From th a t point, the tree ACL does not change, unless 

a user explicitly change it. However, if the majority of files in the same folder contain 

private ACLs, then the benefits of ACL sharing are being lost. To mitigate this problem, 

in the dynamic updating scheme it is possible to update the tree ACL taking into account 

the m ajority of private ACLs. In this manner, the most frequent occurring private ACL 

is first promoted to a tree ACL and then is removed from all the files th a t contain it. Our 

current prototype implementation only supports the static updating scheme, however, it 

is straightforward to implement the dynamic scheme in a future version.

Associating a tree ACL with each folder allows us to  take advantage of the collocation
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of file m etadata from a range of files th a t reside under the same folder. W hen the MDS 

needs to authorize access to a given file, it fetches the whole object th a t contains the 

m etadata of all the parent folder’s contents (if there isn’t already in its cache). This 

object also contains the tree ACL th a t controls access to the file. Thus, the MDS does 

not need to  fetch extra objects from the object storage servers.

4.6 Security analysis

In this section we review the security model presented in this work. Below, we list the

security players of our architecture along with their perm itted actions:

ay  P r in c ip a ls . They can be distinguished to  native filesystem principals or tenant prin

cipals. We consider native principals as trusted adm inistrators who can create and 

destroy data, and specify access policies by delegating read and write access to other 

principals, or revoke another principal’s privilege to  access data. On the other hand, 

tenant principals are untrusted users (or groups of them  therefore) who belong to 

a particular tenant. They can read and write da ta  once they have the appropriate 

permissions. They can also delegate access to other users of the same tenant.

b) C lien ts . They are trusted entities used by principals to access the filesystem.

c) S to ra g e  se rv e rs . They are trusted storage devices which store and return data  and 

m etadata upon request.

d) M e ta d a ta  se rv e rs . They are trusted servers which manage filesystem m etadata and 

access control policies. They also allow traversal of the filesystem namespace. Meta

data servers are responsible to securely separate the namespaces of different tenants 

from each other, as well as from the native filesystem namespace.

e) A u th e n tic a t io n  se rv e rs . They are trusted servers which certify other players. There 

are two kinds of authentication servers: Tenant authentication servers which certify 

local clients and principals and a global filesystem authentication service which certifies 

tenant authentication servers, as well as the filesystem’s storage and m etadata servers.

f) W ire . It transfers da ta  between players.
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We define an attacker to be an entity who tries to  perform operations other than  those 

th a t is authorized to. The security model presented in this work considers two types of 

attacks: intra-tenant and cross-tenant attacks. Below, we name a number of possible 

attacks th a t may be mounted on the data  or the m etadata:

A tta c k  o n  th e  w ire . An attacker may manage to  intercept a ticket th a t allows 

access to  a  m etadata or storage server. However, tickets are encrypted and therefore 

cannot be forged. An attacker may also manage to  capture an authorization credential. 

Credentials are signed bindings of public keys with specific identity attributes. If such a 

credential is intercepted, the only information th a t may be obtained is th a t a particular 

principal with public key A belongs to  the tenant with public key B. In addition, the 

attacker can not forge the credential because it is signed. Thus, the specification of 

the authorized tenant and principal in a signed credential along with a secure exchange 

among nodes prevent an attacker principal from getting unapproved access to  the data  and 

m etadata of other principals from the same or different tenant. The attacker might also 

tam per with network traffic and launch a denial-of-service attack. Freshness of network 

communications to  protect against replay attacks or injection of non-authentic da ta  is 

achieved through message nonces and timestamps.

A tta c k  o n  a  c lien t o r  te n a n t  p rin c ip a l. An attacker may manage to  penetrate 

a client and guess the password of a tenan t’s principal. He may also mount a man-in- 

the-middle attack against a principal in order to learn her password. In both cases, the 

attacker can access the principal’s data. Yet, the attack is either limited to  the principal’s 

data, or if the principal’s account has local administrative rights, it will affect all principals 

of the victim’s tenant. However, the attack is confined within the tenant. In fact, the 

attacker is still unable to modify the system wide access policy, which affects the native 

principals of the filesystem or the principals of other tenants.

A tta c k  b y  a  rev o k ed  te n a n t .  W hen a filesystem adm inistrator revokes access of 

a tenant to  a collection of files, the tenan t’s principals are not able to access these files 

anymore. In fact, the filesystem keeps a separate ACL for each tenant, and when a 

tenan t’s access to a particular file is revoked, the corresponding ACL is removed from this 

file. Hence, future access to this file by principals belonging to the revoked tenant can 

not be authorized.
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A tta c k  o n  a  n a tiv e  file sy stem  p rin c ip a l. While native filesystem principals are 

considered trusted, an attacker may manage to gain access to  a native principal’s ac

count. In this case, the attacker will be able to  gain complete access to  the data  of all 

tenants. Special protection measures make harder to  forge the identity of adm inistrators, 

for example by disabling access to  the respective accounts from outside the datacenter.

A tta c k  o n  te n a n ts ’ d a ta . D ata is stored as cleartext on the storage servers, which 

implies th a t tenants trust the servers and their administrators. However, there may be 

reasons, such as poor adm inistration practices or poor disposal policies of defective storage 

devices, for which the provider is not trusted for critical data. In this case, a tenant 

may externally apply data-protection techniques, such as encryption, to  strengthen the 

confidentiality of their data.

4.7  Sum m ary

In the present study we design a  more efficient access control architecture for m ultitenant 

shared storage at the file level. On the one hand, our proposed architecture must securely 

isolate the identity space and access control of principals from different tenants, while 

on the other should provide opportunities for flexible file sharing, more efficient man

ageability, and high performance. For performance reasons we rely on an object-based 

distributed filesystem.

Instead of relying on a centralized authentication service where each tenant user is 

registered, or using mapping techniques for identity translation which face scalability 

issues, in the proposed architecture each tenant has a local tenant authentication server 

which certifies local clients and principals. The tenant authentication server in turn 

is certified by the global filesystem authentication service. For authorization purposes 

each file maintains different ACLs for each tenant. By combining per-tenant ACLs and 

namespace management, we avoid extensive explicit access control infrastructure and 

mapping layers, because each tenant sees a masked view of the shared namespace through 

namespace filtering.

Finally, as an optimization instead of assigning a separate ACL to each file, we assign 

a tree ACL to the parent folder which controls access to all the folder’s contents. However,
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it is still possible to explicitly set permissions on a particular file. In this case, the file’s 

private ACL controls access to this file which in turn is different from the tree ACL.

46



Chapter 5

Implementation details

5.1 Implementation overview

5.2 Key structures of Ceph

5.3 Multitenant access control

5.4 Optimizations

5.5 Summary

In the present chapter we describe our implementation of the proposed multitenant 

access control architecture over a distributed, object-based filesystem. The prototype im

plementation is based on Ceph, a flexible prototyping platform with scalable management 

of metadata and extended attributes.

5.1 Im plem entation overview

We base our implementation on Ceph, an open source distributed object-based filesystem 

written in C++ and C. We call our prototype Dike1. We developed two versions of 

Dike: One that does not support ACL sharing and another one that supports it. For

'In ancient Greek culture, Dike was the spirit of moral order and fair judgment based on immemorial 
custom, in the sense of socially enforced norms and conventional rules [72].
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M DS C lient - M essages O therf.’· t e l

Dike w ithout ACL sharing

Com m ents 191 128 0 139

Code 534 274 24 415

Total 725 402 24 554

Dike w ith  ACL sharing

Com m ents 239 128 0 139

Code 803 274 24 416

Total 1402 402 24 555

Table 5.1: Number of added and modified lines of source code in different parts of Ceph.

the needs of our implementation, we mainly modified the MDS component, as well as 

the user space client which utilizes Filesystems in User SpacE (FUSE) [15] in order to 

provide filesystem access to users. We also modified some additional parts of Ceph like 

the message structures. Finally, we developed administrative tools for creating tenants 

and assigning tenant permissions.

As the Table 5.1 shows, the source code size of the Dike prototype without ACL sharing 

is roughly 1705 lines (C++ code and comments), from which the added or modified lines 

in the MDS component are 725, in the client component are 402, in the message structures 

are 24, and in other parts of Ceph, including newly developed administrative tools, are 

554. On the other hand, the source code size of the Dike prototype with ACL sharing is 

roughly 2023 lines, from which the added or modified lines in the MDS component are 

1042, in the client component are 402, and in the message structures are 24. Finally, 

we added or modified 555 lines of code in other parts of Ceph, including newly created 

administrative tools.

5.2 K ey structures o f Ceph

A key structure of Ceph is called buffer and is used to process data in memory. The actual 

data is stored in buffer: :raw opaque objects. They are allocated with malloc, new, or 

reusing a pointer provided by the caller. A variant of the malloc constructor provides an
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(a) buffer::ptr (b) buffer::list

Figure 5.1: Key structures of Ceph tha t are used to process da ta  in memory.

area that is page aligned on CEPH_PAGE_SIZE, which is equal to the system’s page size.

The b u f f e r :  :raw area can only be accessed through a b u f f e r :  : p t r  pointer. As the 

Figure 5.1(a) shows, it addresses the b u f f e r :  :raw bytes in the range [of f set ,  o f f s e t  +  

length]. Bytes can be copied in or out within the [of f set ,  o f f s e t  +  length] range. In 

case the underlying b u f f e r :  :raw extends beyond o f f s e t  +  length, more bytes can be 

appended.

The b u f f e r :  : p t r  methods are very flexible and can be used to implement more com

plex data structures such as lists (see Figure 5.1(b)). In particular, the b u f f e r :  : l i s t  

structure th a t Ceph provides is a list of b u f f e r :  : p t r  pointers.

The extended attributes are managed as key/value pairs stored in a C + +  map struc

ture (red-black tree). Each entry of the map corresponds to a key/value pair, where the 

key is a name and the value is a b u f f e r :  : p t r  da ta  structure which keeps the data.

Another im portant structure of Ceph is the map structure (implemented as a C + +  

STL map) th a t is used to maintain information about the fragments of each cached folder 

inode. Each entry of the map is a set of key/value pairs, where the key corresponds to 

the fragment ID and the value corresponds to  the actual fragment data. In addition, the 

folder inode contains a folder fragment tree which is always consistent with the folder 

fragment map. This tree represents an entire namespace and its partitions. It essentially 

informs the MDS where fragments are split into other fragments and by how much. The 

goal is to use a binary split strategy to partition the namespace. The MDS caches a 

pre-configured number of inodes. This cache size provides a limit on how many files can 

be in use simultaneously with good performance, but not on total number of files in the 

system. Furthermore, whenever a folder is read off disk, the MDS needs to be able to
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hold the whole folder in memory, and if the folder holds more entries than  the MDS cache 

can hold, then the overall performance degrades.

5.3 M ultitenant access control

Into Ceph we added native support for m ultitenant access control according to  the pro

posed design. We deliberately avoid global-to-local identity translations because they 

introduce performance bottlenecks, replica inconsistencies, and impersonation risks.

A registered client shares a secret key with the monitor. W hen a user requests from the 

client to mount a filesystem, the client authenticates to  the monitor and receives a session 

key encrypted with the secret key. The session key is used by the client to  securely request 

from the monitor a ticket th a t authenticates the client to the MDSs and OSDs. The ticket 

is encrypted with a  secret key th a t the monitor shares with the MDSs and OSDs. The 

client uses this ticket to  initiate a new session with the MDS. The MDS receives from 

the client a message of type MClientSession and sends back the capability (i.e. ticket) 

th a t enables access to the root folder a t the OSDs. The returned capability contains the 

inode number, the perm itted operations, the replication factor, and the striping method 

of a file. From the capability the client derives an object identifier, which is hashed to 

the placement group of OSDs th a t contain the object replicas.

The session between a client and the filesystem is limited to only serve the perm itted 

actions of the requesting principal. In a filesystem mount request to an MDS, a client has 

to securely identify the respective tenant. We derive a unique tenant identifier (TID) by 

applying the RIPEMD-160 cryptographic hash function on the public key of the tenant. 

Then, we include the TID into an expanded MClientSession request and send it to the 

MDS over a secure session. For authorization purposes the request should additionally 

carry a tenant-issued credential tha t we do not yet support in our prototype.

The MDS extracts the TID from the MClientSession message and stores it as a field 

of the session state. Our current implementation only supports Unix-like permissions of 

individual users and groups, but makes it straightforward to  add access-control lists in 

a future version. We facilitate the system administration with the support of multiple 

filesystem views. Based on the supplied TID, a client obtains tenant view of the filesystem
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M e th o d D e sc rip tio n

boo l check_tenant_perm () Check tenant permission

v o id  g ra n t_ ten an t_ p en n () G rant tenant permission

v o id  se t_ u n ix _ u id () Set user ID

vo id  se t_ u n ix _ g id () Set group ID

vo id  set_unix_m ode() Set file permissions

u id _ t  g e t_ u n ix _ u id () Return user ID

g id _ t  g e t_ u n ix _ g id () Return group ID

mode_t get_unix_m ode() Return file permissions

Table 5.2: The methods th a t we added into the class CInode to  manage the tenant 

permissions of an Inode.

for access by a principal of the tenant.

For global configuration needs, we also provide the admin view th a t enables full access 

permissions to the filesystem. We extended the CInode class of Ceph with eight new 

operations to  set and retrieve the permissions of tenants and individual principals as 

shown in Table 5.2. W hen the tenant view is used, the permission attributes are stored 

in the extended attributes of the filesystem; otherwise the regular fields of the inode are 

used (see Figure 5.2). We use as key the string “T ID \\perm type” where TID  is the tenant 

identifier and perm type is set to  "UNIX11 for Unix permissions or "ACL" for the ACL model. 

In the Unix model the value of the pair can be set to  "UIDiGIDimode": LTD and GID refer 

to  the user and group ID, while mode represents the Unix file permissions. We modified 

all the filesystem functions of the original Ceph related to  permissions handling, including 

the constructor of a new inode. If the client uses the admin view, then we directly update 

the regular inode of the filesystem. Otherwise we save the user/group IDs and the file 

permissions into extended attributes keyed under TID; we also update the regular inode 

of the filesystem according to  the user/group IDs and file mode of the parent inode. Thus, 

special files (e.g. block device files) are stored as regular files at the filesever and they are 

presented as special files only in the particular tenant view.

A capability is only sent to  a client whose tenant has access to the file. In order to 

allow or deny a file access to  a client, we modified the returned capability to  include
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Figure 5.2: Prototype implementation of the proposed m ultitenant access control archi

tecture.

the tenant identifier and the respective file ownership m etadata. A client cannot directly 

access the extended attributes th a t contain access control information; instead only the 

filesystem is allowed to read and update extended attributes on behalf of authorized client 

requests.

5.4 O ptim izations

Instead of assigning tenant permissions to each file separately we perm it a collection of 

files to inherit the access control information stored in their parent folder. As we explained 

in section 4.5, we store a tree ACL to each folder which controls access to the folder’s 

contents, in order to reduce the number of ACLs tha t the system needs to store and 

manage.

Hence, a folder’s extended attributes contain two types of permission attributes for 

each tenant: (a) the folder permission attributes which control access to the folder, and 

(b) the tree permission attributes which control access to the folder’s contents. We dif

ferentiate between folder and tree permissions by extending the value of each a ttribute  

in order to contain the attribu te  type. For example, in the Unix model the value of an 

attribute can be set to "TYPE:UID:GID:mode", where TYPE can be either " fo ld e r"  or 

" tre e " .
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Access to  every newly created file is controlled by the tree permissions stored in its 

parent folder. However, if a user explicitly set permissions on a particular file, then a new 

entry will be stored in the file’s extended attributes for the user’s tenant.

In order to authorize a request to a particular file, the MDS initially checks the file’s 

local extended attributes to find a permission attribute. If a private permission attribu te  

exists, then the MDS authorizes the request according to  this attribute. Otherwise, it 

checks the tree permissions stored in its parent folder’s extended attributes.

5.5 Sum m ary

We base our prototype of the proposed architecture on Ceph, an open source, object- 

based, distributed filesystem. For the needs of our prototype we mainly modify the client 

and the MDS components of Ceph.

The MDS stores per tenant ACLs in the extended attributes of each file and folder. In 

a filesystem mount request to  an MDS, a client securely identifies the respective tenant. 

Then, every time th a t the MDS needs to authorize access to  files or folders, it checks 

the permission attributes of the given tenant. The filesystem’s native users, however, 

are handled separately. For these users, the user/group IDs and the access permissions 

are stored directly in the regular inode fields. Thus, the filesystem’s native users have a 

complete view of the shared namespace (i.e. the admin view), in contrast to tenant users 

who have a filtered view (i.e. the tenant view).

As an optimization, we perm it files to share a single ACL per tenant which is stored 

in their parent’s extended attributes. This optimization decreases the number of ACLs 

th a t the system needs to store and manage.
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Chapter 6

Experimental evaluation

6.1 Experim entation environment

6.2 Methology

6.3 Microbenchmarks

6.4 Application-oriented benchmarks

6.5 Summary

We experimentally evaluate our prototype implementation with microbenchmarks and 

application-level benchmarks to  answer the following questions: (a) how much overhead 

does our m ultitenant prototype introduce to  a single-tenant filesystem, (b) how well does 

our prototype compare w ith a  cloud filesystem which uses identity mapping techniques, 

and (c) how much do long ACLs affect system performance and how ACL sharing comes 

up with this problem.

6.1 E xperim entation  environm ent

We developed a prototype of the proposed architecture (which we call Dike) over Ceph 

version 0.61.4 (Cuttlefish) and we evaluated it on two environments: (a) a local cluster 

and (b) a cloud computing platform. In each figure we state  whether we use the local or 

the cloud environment for experimentation.
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M DS

1 Intel E5345 6 GB 2x250 GB, 7200 RPM Linux 3.9.3 1 Gbps -

OSD

3 Intel E5345 3 GB 2x250 GB, 7200 RPM Linux 3.9.3 1 Gbps -

M O N

1 Intel E534-5 3 GB 2x250 GB, 7200 RPM Linux 3.9.3 1 Gbps -

H O ST DOMO

6 Intel E5345 4 GB 2x500 GB, 7200 RPM Linux 3.5.5 1 Gbps Xen 4.2.1

C LIEN T D O M U

36 1 VCPU 512 MB 15 GB root, 2 GB swap Linux 3.9.3 bridged -

Table 6.1: Local experimentation environment.

6.1.1 Local testb ed

Table 6.1 summarizes the local experimentation environment. It consists of HP ProLiant 

DL140 G3 server nodes running Debian 6.0 GNU-Linux. We used up to  five nodes as 

filesystem servers and up to six nodes as client hosts. Each filesystem server node is 

equipped with one quad-core 64-bit Intel Xeon E5345 processor a t 2.33 GHz, 3-6 GB 

RAM, two SATA 250 GB 7.2 KRPM  HDs, and runs Linux kernel 3.9.3. The server with 

the 6 GB of RAM is used as MDS, while the other three are used as OSDs with 2-way 

replication, and the last one as the cluster monitor. The OSD nodes have their second 

hard disk form atted with the XFS filesystem and use it to  store objects. For journaling 

purposes they have a  1 GB journal file stored on the first hard disk. On the other hand, 

client host nodes are equipped with two quad-core 64-bit Intel Xeon E5345 processors 

a t 2.33 GHz, 4 GB RAM, two SATA 500 GB 7.2 KRPM HDs, and run Xen hypervisor 

(version 4.2.1) and Linux kernel 3.5.5. Each node has one activated gigabit network link.

We use paravirtualized VMs as clients each one set up with a single dedicated CPU 

core and 512 MB of RAM. The guest OS is Debian 6.0 GNU-Linux with Linux kernel

3.9.3. Each VM has two virtual disks connected to  the host through a bIktap-2 device: 

one with a root filesystem (15 GB) and another used as swap space (2 GB). The machines 

are connected using bridged networking on each host.
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T ype C P U R A M D isk K ernel N E T  '

FILESY STEM  SERVERS

ml.xlarge 4 VCPU 15 GB 4x420 GB, Root on EBS Linux 3.9.3 high

M IC R O B E N C H M A R K  CLIEN TS

tl.micro 1 VCPU 615 MB Root on EBS Linux 3.9.3 Very low

A PP L IC A T IO N  LEVEL CLIEN TS

cl.medium 2 VCPU 1.7 GB 1 x 350 GB, Root on EBS Linux 3.9.3 Moderate

Table 6.2: Cloud computing environment (Amazon Web Services).

6 .1 .2  C lou d  c o m p u tin g  p la tfo rm

We used resources from Amazon EC2 [2] in order to compare our prototype with existing 

solutions. Our EC2 experiments use “m l.xlarge” virtual machine instances for fileservers 

(having four 64-bit cores, 15 GB of memory, 4x420 GB ephemeral storage, and high 

network performance). For clients, we use two types of instances. For microbenchmarks, 

we use “t l .  micro” virtual machine instances with one 64-bit core and 615 MB of memory. 

On the other hand, for application-level benchmarks, which are more computationally 

intensive, we use “cl.m edium ” instances (having two 64-bit cores, 1.7 GB of memory, and 

moderate network performance). All instances run the Red Hat Enterprise Linux Server 

release 6.4 (Santiago) with the Linux kernel 3.9.3. In addition, all instances run in the 

US East region (Table 6.2).

Each time, we have one of G lusterFS1 (version 3.2.7), HekaFS2 (version 0.7), Ceph 

(version 0.61.4), or Dike installed on three fileserver VMs. As the Table 6.3 shows, in 

the case of Ceph (or Dike) all VMs are OSDs, however, one of the VMs is also the MDS, 

while another one is both an OSD and the cluster monitor. In the case of GlusterFS (or 

HekaFS) all VMs are fileservers who manage both data  and m etadata. At this point, it 

should be noted tha t a more fair configuration for Ceph and Dike would be to use three 

active MDSs, one per VM, because the fileservers of GlusterFS manage both data and 

m etadata. However, the feature of having multiple active MDSs in Ceph is considered

GlusterFS is an open source, distributed file system developed by RedHat. It consists of layers, where

features (also known as translators) can be added or removed as per the requirement [10].
2HekaFS provides a set of translators to make GlusterFS more suitable as a cloud filesystem. It uses

identity mapping techniques to isolate the namespaces of different tenants [11].
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OSD+MDS 1 ml.xlarge

Ceph/Dike OSD+MON 1 ml.xlarge

OSD 1 ml.xlarge

GlusterFS/HekaFS File server 3 ml.xlarge

Table 6.3: Different filesystem configurations on AWS.

unstable3 in the version we are using. Hence, we use only one active MDS in the cases of 

Ceph and Dike. Finally, all VMs have their first local disk (ephemeral) form atted with the 

XFS filesystem and use it to store files or objects. In the case of Ceph, the OSD journal 

is stored on the second local disk of each VM. In all configurations we use a replication 

factor of three.

6 .2  M e th o d o lo g y

Here we explain the experimental methodology used to  evaluate Dike. Our analysis con

centrates on m etadata performance and is performed in three steps. First, we evaluate 

the overhead imposed by the Dike prototype of m ultitenant access control in comparison 

to the single-tenant Ceph. Second, we analyze both the overhead of Dike in comparison 

to Ceph, as well as the overhead of HekaFS in comparison to GlusterFS on which it is 

based. Then, we compare these overheads with each other in order to understand which 

m ultitenant access control architecture introduces the lowest performance overhead. Fi

nally, in the last step, we measure the impact of long ACLs. For this reason, we use an 

administrative tool th a t we developed in order to assign permissions for multiple tenants 

in a collection of files and folders. We also evaluate the performance improvements of 

ACL sharing.

We first conduct microbenchmark experiments to measure the performance of basic 

m etadata operations. In a next step, we experiment with application-oriented benchmarks 

for applications in distributed environments in order to explore the performance of the 

proposed architecture in real world applications.

3 As discussed here: http://ceph.com/dev-notes/cephfs-mds-status-discussion/. Accessed: 2013-09-10.
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We repeat each experiment to  constrain the 95% confidence-interval half-length within 

5% of a selected parameter. Before each repetition of every experiment we flush the buffer 

cache of all clients and servers. We also format the storage device used for experimentation 

of every fileserver. Furthermore, we set the size of the internal MDS cache to  a large 

enough value in order to  make sure th a t entries were not flushed from the caches by the 

time they were needed again.

6 .3  M icro b en ch m a rk s

First, we measure the system performance with the m dtest vl.9 .1  [34] from LLNL. This 

is a microbenchmark running in the M PI environment over a parallel filesystem. Each 

spawned MPI task iteratively creates, stats, and removes a  specified number of files and 

folders. We repeat each experiment to constrain the 95% confidence-interval half-length 

within 5% of the average file-stat throughput.

6 .3 .1  O p tim a l n u m b er  o f  p r o c esses  p er  c lien t

Theoretically, with the given hardware resources we could launch a large number of client 

processes to emulate the behavior of a medium size supercomputing environment, but 

the excessive loading of local client resources could result in much lower than  expected 

performance. In this manner, we measure the performance of a single client while we 

change the number of client processes. The goal of this experiment is to  find the optimal 

number of processes for forthcoming experiments. We have Dike installed on the fileservers 

of the local testbed. Dike is configured to  support a single tenant. A to tal number of 

31104 created files/folders are equally divided among the tasks of the experiment. We 

notice th a t 12 processes per client give the highest throughput for the m ajority of the 

examined operations. For example, increasing the number of processes from 1 to  12 leads 

to  higher throughput for file create by about a factor of 4. The only exception is the 

folder sta t operation, where a single client process gives 1237 ops/s and lies 0.9% higher 

th a t 12 client processes. Finally, as shown in Figure 6.1 the overall throughput of all the 

examined operations drops slightly, when we increase the number of processes to  24.

Thus, with our existing setup, experiments with 12 processes per client yield the
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Figure 6.1: Finding the optimal number of processes per client for the m dtest microbench

mark on the local tesdbed.

optimal client side IOPS rate. Therefore, in the subsequent experiments with the m dtest 

microbenchmark on the local testbed all results are presented with 12 client processes.

In addition, we conduct the same type of experiment on the cloud testbed (see Figure 

6.2). Again, we measure the performance of a single client while we change the number 

of processes. We repeat the experiment for two cases: Firstly, we have Ceph installed 

on the fileservers, while secondly we have GlusterFS installed. We would like to find the 

optimal number of client processes for both baseline filesystems. A to tal number of 1000 

created files/folders are equally divided among the tasks of the experiment.

In the case of Ceph (Figure 6.2(a)) we notice th a t 5 processes per client give the 

highest throughput for the m ajority of the examined operations. For example, increasing 

the number of processes from 1 to 5 leads to 38% higher throughput for the file create 

operation. However, when we further increase the number of processes from 5 to 10, the 

throughput of file create drops nearly 4.5%. The only exception is the file s ta t operation, 

where 1 client process gives 1332 ops/s and lies 6% higher than the throughput of 1257 

ops/s which is achieved with 5 client processes.

In the case of GlusterFS (Figure 6.2(b)) we reach the same conclusion: 5 processes per 

client give the highest throughput for all the examined operations. However, this time the 

benefits of 5 client processes are more clear. W hen we increase the number of processes 

from 1 to 5, the throughput of the folder s ta t operation increases by about a factor of 5 

and reaches 3115 ops/s. However, when we further increase the number of processes from 

5 to 10, it drops to 104 ops/s.
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Figure 6.2: Finding the optimal number of processes per client for the m dtest microbench

mark on AWS.

In conclusion, with 5 processes per client we get the best client side IOPS rate for both 

Ceph and GlusterFS. Thus, in the subsequent experiments with the m dtest microbench

mark on the cloud testbed all results are presented with 5 client processes.

6 .3 ,2  S c a la b ility  w ith  n u m b er  o f  files

In Figures 6.3(a) and 6.3(b) we measure the m etadata performance of Ceph and Dike 

for different numbers of to tal files and folders on the local testbed. We create a file tree 

with depth 1 and 10 folder leafs. In each case, wre equally divide the total number of 

files/folders to leafs. We use one client with 12 client processes. Dike is configured to 

support 36 tenants.

The measured performance is comparable between Ceph and Dike. The overhead 

of Dike on all the examined operations lies between 0.4-11%. The file and folder stat 

operations seem to be less affected by Dike in comparison to the respective creations. 

For example, the throughput of file sta t with 30000 files reaches 1683 ops/s wrhen Dike 

is used. It lies only 2.2% lower than the maximum throughput of 1721 ops/s which is 

reached w'hen Ceph is used. On the other hand, the throughput of file create, when 30000 

files are created, reaches 250 ops/s with Dike and lies 11% knver than Ceph with 282

60



mdtest / Local
1 Client

mdtest / Local 
1 Client

File ops & number of files Folder ops & number of folders

(a) File operations performance with 

Ceph and Dike.

(b) Folder operations performance 

with Ceph and Dike.

Figure 6.3: Ceph vs Dike with different number of to ta l files and folders. Dike supports 

36 tenants.

ops/s. We also notice th a t in both Ceph and Dike the throughput of file/folder s ta t and 

folder create operations drops as the number of to ta l files and folders increases. However, 

the throughput of the file create operation increases slightly as the to ta l number of files 

increases from 30000 to 120000 and finally drops when the to tal number of files reaches 

300000.

6.3.3 Scalability with number of clients

In Figure 6.4 we measure the scaling of m etadata operations with the number of MPI 

processes that are launched on available clients. We use the local testbed for experimen

tation. We examine the cases th a t either every client creates files in a private folder of the 

filesystem or all clients use a shared folder. Each time, a total number of 31104 created 

files and folders are equally divided among the tasks of the experiment. Dike supports 36 

tenants and has each client accessing the filesystem through a dedicated tenant.

Figure 6.4(a) shows the performance scaling of Dike with number of clients. In the 

case of the private folder tests, the throughput of the majority of the examined operations 

continues to increase as we increase the number of clients from 1 to 36. In particular,
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Figure 6.4: Performance comparison of Ceph and Dike across different number of clients. 

Dike supports 36 tenants.

the throughput of the create operation increases by a factor of 5.5, while the throughput 

of sta t increases by a factor of 37. However, the throughput of remove drops beyond 24 

clients. This behavior is reasonable given the different intensity of contention caused by 

shared (e.g. stat) or exclusive (e.g. remove) locks respectively involved in the operations. 

On the other hand, in the case of the shared folder tests, only the throughput of stat 

increases from 1134 ops/s to 4948 ops/s, as we increase the number of clients from 1 to 

36. The throughput of create remains stable a t around 40 ops/s, while the throughput 

of remove drops from 59 ops/s to 43 ops/s. Again, this behavior is reasonable because 

the sta t operation involves shared read locks, while the create and remove operations 

need exclusive write locks. Overall, the throughput of all the examined operations on 

the shared folder tests is lower than the respective throughput on the private folder tests 

because of higher lock contention.

In Figure 6.4(b) we compare the throughput of m dtest running on 36 clients. The 

measured performance is comparable between Ceph and Dike. The overhead of Dike lies 

between 0-20%. Dike has no negative effect on file s ta t operation. Instead, file sta t is 

improved by 1% when Dike is used. The operation tha t is mostly affected by Dike is file 

create over a private folder, where Dike with 1022 ops/s lies 20% lower than Ceph with
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1287 ops/s. This is likely the result of the added code within the inode creation process, 

which updates both the inode and its extended attributes.

6 .3 .4  C o m p a riso n  w ith  o th e r  m u lt ite n a n c y  so lu tio n s

In Figure 6.5 we measure the multitenancy overheads incurred by Dike and HekaFS over 

their baseline equivalents. The goal of this experiment is to  understand how existing 

solutions th a t use identity mapping techniques to support multitenancy scale to a large 

number of tenants, and how they compare with our prototype of the proposed access 

control architecture. This time we use the Amazon Web Services for experimentation.

Before presenting the results, we mention some of the key features of HekaFS. HekaFS 

is a translation layer tha t adds multitenancy functionality to GlusterFS. In order to 

isolate the identity space of each tenant it uses identity mapping to map local tenant IDs 

to globally-unique IDs. It stores these mappings in a map file. During the initialization 

phase, the translator reads the ID mappings from the map file and loads them into an 

in-memory table structure. Each time th a t the translator needs to  perform a mapping 

from a local tenant ID to a global ID or the opposite, it locks the whole in-memory 

mapping table, and then performs a linear search to find the requested entry on the table. 

When the translator encounters a new local tenant ID, it first adds a new mapping to the 

in-memory table, and in a next step it writes the whole table to the mapping file in order 

to make the change persistent.

In Figures 6.5(a) and 6.5(b) we compare Ceph and Dike with m dtest across different 

number of clients4. In the case of Dike, a client accesses the filesystem through a dedicated 

tenant. Each time, a to tal number of 48000 created files and folders are equally divided 

among the tasks of the experiment. We configure Dike to support either 1000 tenants 

(denoted as Dike-lk) or 5000 tenants (denoted as Dike-5k). The scalability of both file 

and folder m etadata operations is comparable between Ceph and Dike. The throughput 

of all the examined operations continues to increase as we increase the number of clients 

from 1 to 32. W ith 32 clients we get the best IOPS rate. The only exception is the remove 

operation whose maximum throughput drops slightly beyond 16 clients. However, this is 

reasonable due to lock contention, since the remove operation involves exclusive locks.

4 We use tl.micro EC2 instances for clients.
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Figure 6.5: Performance comparison of Dike and HekaFS across different number of clients 

and supported tenants with mdtest.

Figure 6.5(a) compares the performance of different file m etadata operations between 

Ceph and Dike. W ith 1 client, the throughput of the file create operation is 81 ops/s with 

Ceph, while it reaches 78 ops/sec with Dike and 1000 supported tenants. Increasing the 

number of supported tenants to 5000 seems not to affect throughput, which reaches 80 

ops/s and remains slightly below 81 ops/s. Similarly, Dike incurs a limited overhead on
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the file remove and file s ta t operations. The overhead of Dike on file remove lies between 

4-5%, while its overhead on file s ta t lies between 0-2%. W ith 16 clients, the throughput 

is nearly identical between Ceph and Dike. Only a limited overhead of 1% on the file sta t 

operation is incurred by Dike when it supports 5000 tenants. The most interesting case, 

however, is when 32 clients run the m dtest microbenchmark in parallel. In this case we 

get the best client-side IOPS rate for both Ceph and Dike. The overhead incurred by Dike 

when it is configured to  support 1000 tenants lies between 0-12%. W hen we increase the 

number of supported tenants to 5000, the performance is comparable with the previous 

case with only a 2% overhead on the file create operation.

Figure 6.5(b) compares the performance of different folder m etadata operations be

tween Ceph and Dike. W hen 1 client runs the m dtest microbenchmark, Dike does not 

affect the throughput of folder create operation. In addition, the throughput of folder 

remove is only reduced by 4%, when Dike with 5000 tenants is used. Finally, Dike incurs 

an overhead of 11% on the file s ta t operation when it either supports 1000 or 5000 ten

ants. W ith 16 clients, we observe a noticeable decrease of 50% in throughput of the folder 

create operation when we use Dike with either 1000 or 5000 tenants. On the other hand, 

the throughput of folder remove decreases slightly by 5% with Dike, while the throughput 

of folder sta t is nearly identical between Ceph and Dike. As in the case of file m etadata 

operations, the best client-side IOPS rate is achieved with 32 clients for both Ceph and 

Dike. The overhead incurred by Dike when it is configured to support 1000 tenants, lies 

between 0-16%. The folder create is the only operation th a t is affected by Dike. In partic

ular, its throughput reaches 1655 ops/s when we use Ceph. However, when we use Dike 

with 1000 tenants, it reaches 1390 ops/s, which implies a reduction of 16%. Increasing 

the number of supported tenants on Dike to 5000 seems not to affect throughput which 

reaches 1401 ops/s. This indicates that Dike scales well to a large number of tenants.

In Figures 6.5(c) and 6.5(d) we compare HekaFS and GlusterFS with m dtest across 

different number of clients. In the case of HekaFS, a client accesses the filesystem through 

a dedicated tenant. Again, a to tal number of 48000 created files and folders are equally 

divided among the tasks of the experiment. We configure HekaFS to support either 1000 

tenants (denoted as HekaFS-lk) or 5000 tenants (denoted as HekaFS-5k). When we use 

GlusterFS, the throughput of all the examined operations continues to increase as we 

increase the number of clients from 1 to 32. W ith 32 clients we get the best IOPS rate.
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In HekaFS with 1000 tenants the throughput of all the examined operations, except the 

folder stat, continues to increase as we increase the number of clients from 1 to  32, but 

with a lower rate in comparison to GlusterFS. However, the scalability of HekaFS is 

dramatically affected when the number of supported tenants reaches 5000. For example, 

the throughput of the file s ta t operation reaches 2576 ops/s when 16 clients run the 

m dtest microbenchmark. Nevertheless, when we increase the number of clients to 32, the 

throughput of file s ta t drops to  2290 ops/s.

Figure 6.5(c) compares the performance of different file m etadata operations between 

GlusterFS and HekaFS. W ith 1 client, the throughput of the file create and file remove 

operations is not affected by HekaFS. However, the throughput of file sta t is reduced by 

15% when we use HekaFS with 5000 tenants. Similarly, when 16 clients run the m dtest 

microbenchmark, the performance of all the examined operations is nearly identical be

tween GlusterFS and HekaFS. Only the throughput of file s ta t is reduced by 3% when we 

use HekaFS with 5000 tenants. However, in the case of 32 clients, the overhead incurred 

by HekaFS when it is configured to support 1000 tenants is considerable and lies between 

10-49%. The most affected operation is the file sta t whose throughput is reduced by 49% 

when we use HekaFS. Additionally, the throughput of file create reaches 1690 ops/s with 

GlusterFS, but with HekaFS it only reaches 1158 ops/s. This implies a 31% reduction 

of its throughput. On the other hand, file remove is less affected and its throughput is 

reduced by nearly 10% with HekaFS. W hen we increase the number of supported ten

ants to 5000, the system performance degrades even further and the incurred overhead 

of HekaFS over GlusterFS lies between 38-83%. Again, the file s ta t is the operation th a t 

is mostly affected by HekaFS. Its throughput reaches 689 ops/s and lies 83% below its 

corresponding throughput when GlusterFS is used. The other two examined m etadata 

operations are also affected by HekaFS. In particular, the throughput of file create is 

reduced by 59%, while the throughput of file remove is reduced by 38%.

Figure 6.5(d) compares the performance of different folder m etadata operations be

tween GlusterFS and HekaFS. When 1 client runs the m dtest microbenchmark, the perfor

mance of all the examined operations is nearly identical between GlusterFS and HekaFS. 

However, with 16 clients HekaFS begins to  adversely affect their throughput. In partic

ular, the throughput of folder create is reduced by 24% when HekaFS with 1000 tenants 

is used, and when HekaFS supports 5000 tenants, it is reduced by 47%. The throughput
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Figure 6.6: M ultitenancy overhead comparison between HekaFS and Dike.

of folder sta t, however, is more seriously affected by HekaFS. W hen 1000 tenants are 

supported, its throughput reaches 3224 ops/s and is 56% below the throughput of 7428 

ops/s, which is achieved with GlusterFS. Adding 5000 tenants to  HekaFS impacts the 

performance of folder s ta t further. In this case, its throughput only reaches 2574 ops/s 

and lies 65% below the baseline throughput performance. W ith 32 clients, the overhead 

incurred by HekaFS is more considerable. As in the previous case of 16 clients, the folder 

sta t is the operation th a t is mostly affected by HekaFS. Its throughput reaches 7114 ops/s 

when HekaFS with 1000 tenants is used, and lies 49% below 13858 ops/s which is achieved 

with GlusterFS. Increasing the number of tenants to 5000 in HekaFS leads to a further 

reduction of the folder sta t throughput. In this case, its throughput only reaches 2245 

ops/s and is 84% below the baseline throughput performance.

Finally, in Figure 6.6 we summarize the overheads incurred by Dike and HekaFS over 

the filesystems th a t they are based in the case of 32 clients. As the figure shows, Dike with 

1000 supported tenants incurs an overhead of up to 12% to the file m etadata operations. 

This overhead is comparable with the maximum incurred overhead of 14% when the 

system supports 5000 tenants. In addition, Dike with 1000 tenants incurs a maximum 

overhead of 16% to the folder m etadata operations, while with 5000 tenants the overhead 

is up to 15%. On the other hand, HekaFS with 1000 supported tenants incurs an overhead 

of up to 49% to the file and folder m etadata operations. However, the maximum incurred 

overhead reaches 84% when the number of supported tenants is further increased to 5000.

In conclusion, Dike incurs a limited overhead and scales well to a large number of
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tenants. The operation th a t is mostly affected by Dike is file/folder create. This is in 

par with the experiments conducted in the  local cluster (see subsection 6.3.3). O n the  

other hand, the mapping layer of HekaFS can be a  performance bottleneck for scalability 

when the number of tenants increases. The operation th a t is m ostly affected by HekaFS 

is file and folder s ta t. This is reasonable because on each s ta t operation HekaFS needs 

to  perform a reverse identity mapping in order to  m ap a  global ID to  th e  corresponding 

tenant local ID. Thus, when the  mapping table gets too  large, th e  tim e needed to  search 

the table or to  write the table to  disk increases, and  as a  consequence th e  overall system 

performance is being reduced.

6.4  A pplication-oriented  benchm arks

We conduct application-level experiments in  order to  evaluate th e  performance of Dike in 

real life collaborative use cases.

6.4.1 M apR educe application

The first application th a t we use is Stanford’s Phoenix verson  2 |50j shared-memory 

implementation of Google’s MapReduce. O ur MapReduce application is called reverse 

index: it receives a collection of HTML files and generates the tex t index with links to  

the files. O ur dataset5 contains 78,355 files in 14,025 folders and occupies 1.01 GB. We 

measure the to ta l running time, as well as the latency breakdown of several m etadata 

operations during the index building. We repeated each experiment to  constrain th e  95% 

confidence-interval half-length within 5% of the average to ta l running time.

6.4.2 Com parison o f C eph and D ike w ith  M apR educe

In Figure 6.7 we compare Ceph and Dike with MapReduce across different num ber of 

clients on the local testbed. Dike is configured with 36 tenants. Each client on Dike 

accesses the filesystem through a dedicated tenant. The to ta l running tim e (Figure 6.7(a))

Stanford’s reverse index dataset: h ttp ://mapreduce-stanford.edu/datafiIes/ reverse _index.tar.gr. Ac

cessed: 2013-08-19.
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Figure 6.7: Comparison of Ceph and Dike with MapReduce across different number of 

clients. Dike supports 36 tenants.

increases as we increase the number of clients th a t run the reverse index in parallel. 

However, it is comparable between Ceph and Dike. The overhead imposed by Dike is 

negligible and it lies between 0-3.8%. The 3.8% overhead occurs when a single client runs 

the reverse index application. In this case, when we use the original Ceph, the to tal time 

spent to build the index reaches 423.61 seconds, which is the lowest measured time, while 

it reaches 439.75 seconds when we use Dike.

Figure 6.7(b) shows the latency breakdown of m etadata operations. In the case of 

Dike, the most of them are completed in latency comparable to th a t of the original Ceph. 

One exception is readdir whose latency lies 7% higher when Dike is used in comparison to 

Ceph. This is due to the extra access control information tha t is stored in the extended 

attributes of each file/folder.

6 .4 .3  Im p a ct o f  A C L  size

In real-life collaborative environments where an enormous number of end users is involved, 

situations where files are shared by a large number of users are common. For this reason, 

we emulate a real-life file sharing scenario in order to understand how file sharing and in 

particular the size of ACLs impacts the overall system performance.
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Figure 6.8: Impact of long ACLs on the overall system performance. Dike supports 100 

tenants.

In Figure 6.8 we measure the system performance impact when the size of the file and 

folder ACLs increases. In order to increase the size of ACLs, we perm it multiple tenants to 

access the dataset. To accomplish this we developed a tool which grants a specific tenant 

access to files and folders. Thus, the size of the extended attributes of each file and folder 

is being increased, because an extra entry is being added for each tenant. We consider 

three different sharing scenarios: (a) only 1 tenant can access the dataset, (b) 10 tenants 

have read access to the shared dataset, and (c) 100 tenants have read access to the shared 

dataset. We use the local testbed for experimentation. Each time, Dike is configured with 

100 tenants and a client on Dike accesses the filesystem through a dedicated tenant.

In all the examined cases, the total running time (Figure 6.8(a)) increases as we 

increase the number of clients tha t run the reverse index application. The running time 

of the application is comparable in both cases where the dataset is shared by 1 and 10 

tenants. Only a slight 2.6% increase of the application’s total running time is observed 

when 36 clients run the reverse index in parallel. However, long ACLs (100 tenants/file) 

impose a significant increase on the total time spent to build the index. When a single 

client runs the reverse index application and the dataset is shared by 100 tenants, the 

total running time reaches 1437 seconds. This implies an increase of about a factor of 3
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when compared to the scenario where only one tenant has access to  the dataset.

In Figure 6.8(b) we measure the latency breakdown of different m etadata operations 

in order to  better understand which operation is mostly affected by long ACLs and is 

responsible for the largest proportion of time spent to  build the index. We observe th a t 

the latency of the majority of operations is comparable. However, when ACLs become too 

long (100 tenants/file), then the latency of the readdir operation increases by a  factor of 

10. In particular, when a single client runs the reverse index application, the  latency of the 

readdir operation reaches 4 ms in the case where the index is shared by only one tenant. 

Instead, when the index is shared by 100 tenants, the measured latency of the readdir 

operation reaches 40 ms. This latency increase is high because in a readdir operation the 

MDS fetches the entire directory from the OSDs (if it isn’t  already in its cache), including 

inode contents. As we explained in subsection 2.4.2, Ceph (and Dike therefore) stores 

the contents of a folder (including the extended attributes of each file) in a single object. 

If this object exceeds an upper limit, it is also possible to  split the folder contents into 

multiple objects. However, in the conducted experiments we have disabled fragmentation, 

because it is still considered an unstable feature6 of the Ceph version we are using. Hence, 

when the size of extended attributes of each file gets large, the MDS has to  fetch a lot of 

information from the OSDs which leads to higher latencies.

W hen ACLs tend to become too long, associating an ACL to each file leads to  an 

enormous number of long ACLs tha t the system needs to  store and manage, and can 

cost considerable performance overheads. As we discussed in section 4.5, users prefer to 

add new files to an existing folder with its permissions already set instead of setting the 

access rights on newly created files. Thus, it is common for files under the same folder to 

have identical access rights. Hence, we permit files with identical access rights to  share 

their folder’s global ACL, which we call tree ACL, in order to improve scalability and 

performance in the cases where ACLs tend to increase in number and size.

In Figure 6.9 we measure the system performance impact of Dike with ACL sharing 

(denoted as Dike-S) in the local testbed and compare it with the case where we have 

ACL sharing turned off. Again, the total running time (Figure 6.9(a)) increases as we 

increase the number of clients th a t run the reverse index. However, when ACLs are long 

(100 tenants/file) and a single client runs the reverse index application, we notice a 91%

8 As discussed here: http://ceph.com/dev-notes/cephfs-mds-status-discussion/. Accessed: 2013-09-10.
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Figure 6.9: The benefits of ACL sharing when ACLs tend to  become very long. Dike 

supports 100 tenants.

increase to the to tal running time of the application which implies an improvement of 

39% when compared with the case where ACL sharing is disabled (see Figure 6.9(c)).

In Figure 6.9(b) we measure the latency breakdown of m etadata operations during 

the experiment. Again, the latency of the majority of operations is comparable. Only 

when ACLs become long, the latency of readdir increases by a factor of 3, when a single 

client runs the application. In particular, when the index is shared by only one tenant, 

the latency of the readdir operation reaches 4 ms. Instead, when the index is shared by
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Figure 6.10: CPU and disk utilization of fileserver nodes.

100 tenants, the measured latency of the readdir operation reaches 13 ms. However, it is 

3 times lower than the measured readdir latency of 40 ms when ACL sharing is turned 

off and the dataset is shared by 100 tenants (see Figure 6.9(d)).

A possible overhead of multiple long ACLs is the CPU cost tha t is needed so th a t the 

MDS to be able to manage them in order to enforce access control. In addition, multiple 

long ACLs may impose high I/O  loads on the OSDs.

In Figure 6.10 we evaluate the impact of multiple long ACLs to the total CPU utiliza

tion of the MDS and OSDs, as well as its impact to the disk utilization of the OSDs. In
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the case where ACL sharing is disabled, we observe th a t the to ta l CPU utilization of the 

MDS remains below 6%, when the ACLs are small. However, it reaches 23%, when the 

ACLs become long. Instead, as Figure 6.10(a) shows, when we enable ACL sharing, the 

average CPU utilization only reaches 11%.

In addition, Figure 6.10(b) shows th a t in both cases where ACL sharing is turned off 

or on, the CPU of the OSDs remains idle, whether doing nothing or waiting for the I/O  

operations to finish. However, when ACLs are long and the ACL sharing mechanism is 

disabled, the disk utilization reaches 67% in comparison to  the 9% average utilization 

when the ACLs are small. Instead, as Figure 6.10(c) shows, ACL sharing reduces disk 

utilization in the case of long ACLs to 28%.

6.4.4 Comparison with other multitenancy solutions

In this subsection we study the comparative m ultitenancy overhead incurred by Dike 

over Ceph with the corresponding overhead incurred by HekaFS over GlusterFS using an 

application-oriented experiment (Figure 6.11). For this purpose we use the reverse index 

application on AWS with one client7.

In Figure 6.11(a) we compare Ceph and Dike with the reverse index application. We 

configure Dike to support either 100 tenants (denoted as Dike-100) or 1000 tenants (de

noted as Dike-lk). We notice th a t the total running time of the reverse index application 

is 328 seconds when we use Ceph. On the other hand, it reaches 346 seconds when we use 

Dike with 100 tenants. Thus, Dike with 100 tenants adds an extra latency of 5% to the 

total application’s running time. Then, we increase the number of supported tenants on 

Dike to 1000 and repeat the same experiment. This time, the application’s total running 

time reaches 394 seconds, which implies a 20% of extra latency.

In Figure 6.11(b) we repeat the same experiments as above, but this time we compare 

GlusterFS and HekaFS. We configure HekaFS to support either 100 tenants (denoted 

as HekaFS-100) or 1000 tenants (denoted as HekaFS-lk). The total running time of the 

reverse index is 375 seconds when we use GlusterFS. However, it reaches 545 seconds when 

we use HekaFS with 100 tenants, which implies an increase of 31%. Increasing the number 

of supported tenants in HekaFS leads to a higher added latency. In particular, when we

7We use a cl.medium instance for the client.
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Figure 6.11: Performance comparison of Dike and HekaFS across different number of 

supported tenants with MapReduce. We use a single client (cl.m edium  EC2 instance).

use HekaFS with 1000 tenants, the to tal running time of the reverse index reaches 656 

seconds. This implies a 75% of extra latency.

In Figure 6.11(c) we can see the added overheads of HekaFS and Dike. The overhead 

incurred by Dike lies between 5-20% and is lower than the corresponding overhead of
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HekaFS, which lies between 31-75%. These results verify our previous conclusion that 

multitenancy solutions which perform identity mappings can adversely affect the overall 

system performance when the number of tenants increases.

6.4.5 Linux compilation

In a different application-oriented experiment we store the source of the Linux kernel 

(version 3.5.5) in a shared folder of the filesystem. Then we make the code accessible to 

private folders of the tenants through soft links. We measure the average times to  create 

the soft links and to  build the system image. We repeated the experiment to constrain 

the 95% confidence-interval half-length within 5% of the average time to build the system 

image.

In Figure 6.12 we compare Ceph and Dike with Linux compilation across different 

number of clients on the local testbed. We have ACL sharing disabled on Dike. We 

measure the average time to create soft links on the shared Linux tree and the average 

time to build the system image by up to 12 clients assuming dedicated tenant per client 

in the Dike case. The extra latency added by Dike to soft link creation time is 4.5% with 

one client and 2% with 12 clients. In addition, the image building times are comparable 

between Ceph and Dike. The overhead imposed by Dike is negligible and it lies between 

0-0.7%. The 0.7% overhead occurs when a single client runs the experiment. In this case, 

the image building time is 983 seconds in the case of Dike, where in the case of Ceph it 

lies 0.7% lower a t 976 seconds.

Figure 6.12(b) evaluates the impact of long ACLs on the Linux kernel compilation 

experiment. For this experiment we have turned off ACL sharing. The extra latency 

added to soft link creation time when ACLs are long (100 tenants/file) is 14.5% with 1 

client and 1.7% with 12 clients. In addition, the image building time for a single client 

lies 13% higher when ACLs are long, and for 12 clients lies 9% higher.

We also repeat the same experiment with ACL sharing turned on. Figure 6.12(c) 

shows the results. For long ACLs (100 tenants/file), the link creation time is nearly 

similar to the respective time when only a single tenant has access to the Linux kernel 

source. Regarding the image building time, with a single client the results are comparative 

with the case in which ACL sharing is turned off. However, with 12 clients, ACL sharing
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Figure 6.12: Linux compilation. Dike supports 100 tenants.

improves the to tal time by 5% in comparison to the case where Dike does not use ACL 

sharing.

6.5 Summary

We experimentally evaluate a prototype implementation of the proposed architecture us

ing microbenchmarks and application-level benchmarks. For experimentation we use two
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environments: (a) a local cluster and (b) a cloud platform. In summary, we demon

stra te  th a t our prototype adds a  limited performance overhead, while it enables secure 

multitenancy. Additionally, our prototype scales well to  a large number of tenants with

out affecting the overall system performance. Furthermore, we notice th a t long ACLs, 

which are common in real life collaborative environments can adversely affect system 

performance. However, the technique of ACL sharing th a t we introduced mitigates this 

problem.

In conclusion, our prototype adds a limited performance overhead and scales well to  a 

large number of clients and tenants, in contrast to  existing solutions th a t require an extra 

layer to  map a local tenant ID to a globally-unique ID. This 

be a performance bottleneck for scalability and the proposed

identity mapping layer can 

architecture eliminates it.
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C h a p t e r  7

R e l a t e d  r e s e a r c h

'7 .1  M ultitenancy in filesystem storage clouds

7.2 Access control in m ultitenant filesystems

7.3 Access control in distributed filesystems

7.4 Summary

In this chapter we review comparative studies th a t a ttem pt to  enable secure multite

nancy in filesystem storage clouds. We also outline the most im portant studies th a t aim 

to provide trusted cloud storage. Finally, we survey previous works for access control in 

distributed filesystems.

7.1 Multitenancy in filesystem storage clouds

In this section we present recent studies th a t a ttem pt to  provide secure m ultitenancy in 

filesystem storage clouds.

7.1.1 Hypervisor-level multitenancy

In hypervisor-level multitenancy, the hypervisor itself is responsible to  track information 

flow between virtual machines and enforce access control. A system th a t follows this
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approach is presented by M undata et al. [41]. Their system, which is called SilverLine, 

implements two types of isolation at the hypervisor level: (1) da ta  isolation and (2) 

network isolation. To enforce data isolation, SilverLine uses labels to control information 

flow between files and processes within a single machine or across the network. In fact, 

tenants are allowed to label da ta  with security labels; trusted enforcers at the hypervisor 

level then use these labels to  ensure th a t da ta  from one tenant is not propagated to 

untrusted server instances belonging to other tenants, or to locations outside the cloud.

A similar study is presented by Popa et al. [44], CloudPolice implements access con

trol a t the end-hosts within hypervisors. It provides various access control policies, such 

as complete tenant isolation, selective inter-tenant communication, fair-sharing among 

tenants, rate-lim iting tenants, and allowance of locally initiated connections. Hypervisors 

know the policies of their hosted virtual machines and communicate w ith other hypervi

sors a t runtime in order to  learn external policies and control information flows. W hen 

a new information flow is being initiated by a  virtual machine, the source hypervisor 

communicates with the destination hypervisor and the la tte r checks the policy for the 

destination virtual machine. If the policy forbids the traffic, then the destination hyper

visor blocks it and appropriately informs the source hypervisor. Otherwise, if the traffic 

is allowed, the destination hypervisor initiates the state  for this flow.

Kurmus et al. [25] implement a virtualization-based m ultitenancy architecture using 

KVM by running multiple virtual interface nodes as guests on the same physical node. 

V irtual machine guests th a t belong to the same tenant maintain a distributed filesystem 

with the tenan t’s data. Each virtual machine runs one instance of the file-service and 

exports the filesystem through a network filesystem protocol such as NFS. Tenant isola

tion is generally applied at the hypervisor who is in charge to block inter-tenant traffic 

according to  tenant-specific policies.

All the above studies successfully isolate tenants at the hypervisor level. However, this 

approach is not suitable for a collaborative filesystem storage cloud because it hinders 

group collaboration and leads to  performance scalability problems. The main reason 

behind this, is the fact th a t the filesystem is not deployed as a shared service but a 

separate file-service instance runs for each tenant in a tenant-dedicated virtual machine. 

Furthermore, it is observed [25] th a t the addition of multiple isolation layers and policy 

enforcers a t the hypervisors incurs a  significant performance overhead.
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7 . 1 . 2  Operating system-level multitenancy

Isolating tenants at the operating system-level can lead to lower execution overheads. 

Tenant isolation is performed by mechanisms which are called containers [23, 48]. Con

tainers create isolated namespaces for resources such as filesystems, network interfaces, 

and processes inside the same operating system. Each tenant gets its own namespace 

which is isolated from namespaces of different tenants.

Kurmus et al. [25] present an implementation of this approach. Their implementation 

uses SELinux multi-category-security (MCS) policies for isolating the fileserver processes 

th a t serve a particular tenant. Fileserver processes belong to different categories according 

to tenant-specific policies. This ensures th a t a tenant can not access the resources of a 

different tenant because they belong to a different category. In fact, multiple domains 

■(or containers) exist on the same operating system and each domain consists of a chroot 

folder in the root filesystem of the physical host.

This approach leads to lower execution overhead in comparison with the hypervisor- 

level access control approach. However, both approaches share the same disadvantages 

regarding the inability for file sharing and collaboration. This is due to  the fact tha t 

each tenant runs its own file service which is completely isolated from the file services of 

different tenants.

7.1.3 Trusted multitenant storage

The two biggest concerns about storage systems used in virtualization and cloud environ

ments, beyond high performance and scalability, are reliability and security. Secure cloud 

storage involves four desirable properties, including data and m etadata confidentiality, in

tegrity, write-serializability, and read freshness [45]. Organizations will not entrust their 

da ta  to an external storage system without a guarantee tha t they’ll be able to access the 

latest version of their da ta  whenever they want and no one else will be able to access or 

modify it without their permission.

In recent years, there has been considerable work on trusted cloud storage. Popa et al. 

introduce CloudProof, a system th a t allows customers of cloud storage to securely detect 

and prove violations of integrity, write-serializability, and freshness [45]. Assuming tha t 

the cloud infrastructure is entirely untrusted, access control over read and write requests is
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enforced through data encryption with secret keys and update verification with public-key 

signatures.

The work of Santos et al. [52] is motivated by the observation that current trusted 

computer technology can not be used on the cloud as it exposes internal details of the 

cloud infrastructure, hinders performance and scalability, and has several manageability 

limitations. Their system, which is called Excalibur uses a trusted computing abstraction 

(policy-sealead data) to encrypt and decrypt data according to a specified node policy. 

Excalibur combines current trusted computing technology, such as TPMs, with a set of as

sociated protocols and attribute-based encryption to offer developers two new primitives, 

seal and unseal, for constructing more trusted cloud services.

- In contrast to the above works, in the current study we target secure storage access 

within the datacenter and aim to provide native multitenancy support at the file level by 

directly storing access control metadata in trusted object-based fileservers.

7.2  A c c e ss  co n tro l in  m u lt ite n a n t f ile sy s te m s

Next, we review comparative studies for secure access control in filesystems that need to 

support multiple tenants, such as cloud, grid, and virtualization-aware filesystems.

7 .2 .1  A c c e ss  c o n tro l in  f ile sy s tem s for c lou d  an d  grid  e n v iro n m en ts

HekaFS [11] enables a tenant to assign identities to local principals through hierarchical 

delegation. A user’s identity consists of the user ID plus the ID of the tenant, to which 

the user belongs. Tenants have complete freedom to manage their own identity space 

on their own machines. However, a tenant user identity needs to be mapped to a global 

server identity. This mapping is done by the cloud translator which sits at the top of 

each per-tenant translator stack on the server. In fact, each server keeps a mapping table 

which maps a tenant ID plus a user ID to a unique server ID. The server adds a new 

mapping to the mapping table every time it encounters a unique combination of a tenant 

ID plus a user ID. Fortunately, this mapping is not coordinated across servers. Each 

server uses its own separate mapping table. However, file sharing between users that 

belong to different tenants becomes a cumbersome task because each server maintains
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its own separate mapping [60]. W hat is more, users may wish to express access control 

tha t refers to identities th a t a given system has not yet encountered [61]. Finally, as 

discussed in subsection 4.1.3, such identity translations may lead to scalability limitations 

and introduce security risks.

Support of storage access from different institutions requires consistent ownership 

and permission data  across multiple client mounts [65], Lustre, a parallel distributed 

filesystem designed to provide storage to high performance computing systems uses a 

similar approach based on credential mapping to solve the identity collision problem. 

Because each Lustre client contains its own UID space, it is necessary th a t the Lustre 

m etadata server be given the ability to  map from client UIDs and GIDs to an authoritative 

list of server UIDs and GIDs. Furthermore, Lustre can organize client sets as clusters in 

order to make mapping of nodes th a t share the same U ID / GID namespace easier. In 

this manner, the UID maps th a t are maintained by the MDS are indexed by ranges. 

W hen a client connects to a server, part of the process categorizes her into a cluster, and 

hence gives her a pointer into the maps for forward and reverse U ID / GID mapping. To 

facilitate fast lookups, the mapping module is implemented as a forest of binary trees. 

The UID map itself can be created either manually or with the help of a map creation 

tool. The approach of Lustre for solving the identity collision problem shares the same 

drawbacks with HekaFS. In the present work, we aim to natively support multitenancy 

by directly storing access-control m etadata a t the fileserver without the need for identity 

translations from one tenant to another.

7.2.2 Access control in filesystems for virtualization environments

Pfaff et al. [43] propose and design a virtualization-aware filesystem. Their system, which 

is called Ventana, resembles a conventional distributed filesystem in tha t it provides cen

tralized storage for a collection of file trees, allowing transparency and collaborative shar

ing among users. Ventana’s distinction from other distributed filesystems is its versioning, 

isolation, and mobility features to support virtualization. Ventana [43] offers a secure ac

cess control across multiple client guests through a combination of multiple ACLs and 

branching. More specifically, client guests can use private branches to isolate their files, 

or shared branches to share their files with other clients. Furthermore, they can use
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branch ACLs to control access to all of the files in a particular branch. In addition, some 

other types of ACLs are provided, such as file ACLs which control access to  particular 

files, or version ACLs which control access to a particular version of a file. However, deep 

chains of branches along with multiple ACLs can adversely affect system performance.

A slightly different proposal is presented by Jujjury et al. [21]. VirtFS introduces a 

paravirtualized filesystem driver based on the V irtl/O  framework. Their paravirtualized 

filesystem can be used to connect a host-based fileserver to multiple guests. Furthermore, 

it can also be used to provide guest-to-guest filesystem access. The mixing of different 

namespaces in VirtFS triggers some serious security issues th a t need to be resolved. To 

resolve these issues it offers two types of security models: the mapped security model 

and the passthrough security model. The mapped security completely isolates the guest 

.user domain from th a t of the host’s. In particular, the VirtFS server intercepts and maps 

the file create operations and all the get/set a ttribute  requests. Files on the fileserver 

are created with VirtFS server’s credentials, while the guests’ user credentials are stored 

in extended attributes. W hen a guest performs a file or folder sta t operation, the server 

extracts the guest’s user credentials from extended attributes and sends them to the client. 

In contrast, the passthrough security model shares the host’s and guest’s user domains. 

In this model, the VirtFS server passes down all requests to the underlying filesystem. 

Files on the fileserver are created with guests’ user credentials. Both security models have 

some limitations. Specifically, the mapped security model successfully isolates the guests’ 

principals from the host’s, however, it fails to isolate the principals from different guests. 

On the other hand, the passthrough security model passes all the requests to the fileserver 

and does not guarantee any isolation.

HumFS [12] is a similar approach to VirtFS in tha t it provides access to filesystems 

on the host for UML guests. However, it is a virtual filesystem, in the sense tha t it is not 

stored within the UML block device. In many cases, the data  is simply stored in kernel 

structures. HumFS is conceptually similar to a network filesystem such as NFS. HumFS 

separates the guest’s identity space from tha t of the host’s by associating a m etadata 

file to each file and folder. The m etadata file keeps identity and permissions related 

information and lies in a parallel folder hierarchy with the exported hierarchy. The main 

issue with this approach is th a t it induces additional disk seeks during file stat and create 

operations. These additional seeks can severely hurt system performance. In addition,
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although HumFS successfully separates the guest’s namespace from the host’s namespace, 

no measure is taken in order to  isolate the namespaces of different guests.

7.2.3 Cloud collaboration and data sharing

Storage consolidation offers new opportunities for da ta  sharing and collaboration in the 

cloud. Geambasu et al. present CloudViews [17], a system th a t attem pts to  enable 

data  sharing among different services in a single cloud. CloudViews attem pts to enable 

flexible sharing between different services a t any granularity and to  design an efficient and 

scalable access control mechanism th a t protects private data. To achieve its first goal, 

the system allows different services th a t run in the same cloud to  create and share shared 

and restrictive views of their da ta  with other co-located services. To come up with its 

second goal, CloudViews uses cryptographic signatures to  sign the different offered views. 

It combines the signed views with resource allocation and update notification mechanisms 

to  enable high performance data  sharing.

The S4 framework presented by Walfield et al. extends Amazon’s S3 cloud storage to  

provide d a ta  sharing across different web services [64]. I t supports access delegation over 

the objects of different users via hierarchical, filtered views of the applicable policy. The 

S4 framework is similar with CloudViews in the sense th a t both of them are distributed 

filesystems th a t use the view-based access control technique to  enable da ta  sharing among 

services. However, it extends CloudViews by enabling interaction-free modification of 

existing views and by considering cross-cloud sharing scenarios. The S4 framework allows 

users to  create new principals and to  associate views w ith each of them. A view is a 

subset of the namespace and consists of access rights and a  set of filters (e.g. regular 

expressions, UNIX permissions). Access control is based on hierarchical evaluation of 

each view’s access rights.

Both solutions presented above target scenarios where a user authorizes different Web 

services to  access their da ta  which is centralized with a  storage provider. Instead, we 

target secure collocation of multiple tenants and their da ta  on a  shared filesystem and 

aim to  isolate each tenant from other tenants, while perm itting their users to  collaborate 

by sharing files.
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Access control has been comprehensively examined across known distributed filesystems. 

Next, we highlight some of the previous work on th is area.

7.3.1 Centralized access control

Steiner e t al. present Kerberos [59], a  centralized authentication system based on symmet

ric key cryptography which allows for strong authentication in distributed environments. 

An administrative domain in Kerberos is known as a realm. A realm contains nodes 

th a t use tickets to  communicate over a  non-secure network and to  prove their identity 

to  one another in a  secure manner. A main service of Kerberos is the Key Distribution 

Center (KDC). The KDC maintains a database of local principals and their secret keys. 

W hen a  user logins to  the system the KDC issues a  time stam ped Ticket G ranting Ticket 

(TG T), encrypts it using the user’s password, and returns the encrypted result to the 

user’s workstation. W hen the user wishes to  communicate with another node, he sends 

the T G T  to the Ticket G ranting Service (TGS). The TGS verifies the validity of the  re

ceived TG T. If the user is perm itted to  access the requested service, the TGS grants him 

a  ticket encrypted with the TG S’s secret key and a  session key encrypted with the user’s 

secret key. The ticket enables access to specific services on specific nodes in the realm. 

Thus, the user can present the ticket to  the desired service along with its service request. 

The communication with the service is secured with the obtained session key. Cross- 

realm authentication is not straightforward, because Kerberos relies on symmetric key 

cryptography. Realm adm inistrators have to set up trust relationships and exchange keys 

for principals to access services in a different realm. Efforts have been made to extend 

the Kerberos protocol with public-key cryptography support [56] and with cross-realm 

authentication [71].

Centralized access control solutions tha t have the users registered on a central location 

are inapplicable to  a cloud environment. A centralized solution can not adapt and scale 

to  a  large number of users. W hat is more, tenant adm inistrators prefer to manage their 

users locally.

7.3 A ccess control in  d istrib uted  filesystem s
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7.3.2 D ecentralized  access control

The work of Reiher et al. [51] is one of the first studies th a t recognize the need for 

cross-domain authorization and secure file sharing. Their system, which is called Truffles, 

is build on the replication services provided by the Ficus filesystem and adds a mecha

nism for secure file sharing between different administrative domains. Sharing in Truffles 

happens a t the granularity of volumes. User authentication in Truffles relies on a hier

archy of certification authorities and users are identified by public keys bound to  X.500 

distinguished names in X.509 certificates. Authorization in Truffles is based on standard 

UNIX and Ficus access control mechanisms. The authors recognize the problem of iden

tity  collisions between principals of different administrative domains. Their solution is to 

map a principal’s ID to a globally unique identifier and to store this global identifier as 

one of the file’s attributes. Furthermore, Truffles does not perm it a local root user to be 

mapped to the root user on a remote domain. However, as discussed in subsection 4.1.3, 

identity mapping techniques can be the source of scalability problems and can complicate 

file sharing and manageability.

Belani et al. introduce CRISIS [8] as a wide-area authentication and access control 

system which forms the security subsystem of WebOS. Authentication in CRISIS is based 

on X.509 certificates which are signed by a trusted CA. CAs are organized hierarchically, 

thus principals in different adm inistrative domains need to have a common root CA to 

securely share files. Authorization in CRISIS uses a hybrid model of ACLs and capa

bilities and relies on certificates to specify group memberships. However, the reliance to 

certificates for cross-domain access control has been criticized for high complexity [22].

Miltchev et al. [39] follow a different approach and present the Distributed Credential 

FileSystem (DisCFS) which uses trust management credentials to identify files, principals, 

and access rights. Principals in DisCFS are identified by public keys. These public keys are 

directly binded to any set of authorizations. When a principal wishes to access a remote 

file, a trust-m anagem ent credential is being generated which contains the principal’s public 

key, as well as the authorizer’s public key which is trusted by the remote domain. Access 

control policies are specified by the administrators and either accept or reject actions. 

Actions are also specified by the adm inistrators as a set of name-value pairs. Polices can 

be distributed to principals as credentials. It is clear tha t this credential-based design
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incurs a high performance overhead when the chains of credentials get very long, or when 

the number of active users is high. This is because credentials can become long as they 

contain both signed identity attributes and the policy statements. Credential caching and 

hardware acceleration for cryptographic operations in conjunction with data  replication 

across servers m itigate this problem. However, this solution is unrealistic for a cloud 

environment, where an enormous number of users is involved.

Secure file sharing between principals in different administrative domains is enabled 

by GSFS [22], a further development of SFS [33]. Authentication in GSFS is based on 

public keys. Each principal and server have a  public/private key pair. The adm inistration 

server of an adm inistrative domain prefetches and caches users and group definitions of 

-remote authentication servers belonging to  different domains. Thus, during file access, the 

. authentication server can establish identities for users based on local information. Users 

name remote authentication servers, users, and groups using self-certifying hostnames. 

Authorization in GSFS relies on access control lists (ACLs) th a t contain local and remote 

users. Remote users can only be listed on the ACL with their public keys. However 

remote groups can not be listed directly on the ACL, bu t they can be listed indirectly 

as members of local groups. GSFS has been recently criticized for limited autonomous 

delegation support [40]. Moreover, a GSFS authentication server needs to trust the remote 

authentication servers of any remote domains. This is unrealistic for an environment such 

as the cloud where tenants don’t trust each other.

Margaritis et al. propose Nephele, an architecture for hierarchical access control in 

federated file services across different administrative domains [32]. Their goal is to im

prove application portability and identity management, and to  reduce transfer costs in 

collaborative environments th a t require da ta  sharing among principals of different do

mains. In such a large federated environment there are several large groups consisting of 

multiple subgroup layers across the different domains. The authors introduce the hyper

group as an heterogeneous two-layer construct. The upper layer contains administrative 

domains of a federation and the lower layer contains user groups from each participating 

domain. Domains and principals are both identified by public keys and they are binded 

to hypergroups with credentials. Access control is applied without central management 

of the principals or their access rights. Each domain manages its users, groups, and their 

access rights locally. Access rights over local storage resources are specified using access
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control lists. As a result, the network traffic th a t is needed to propagate group mem

berships specified in terms of users is avoided. However, Nephele does not deal with the 

namespace collision problem tha t arises in a m ultitenant environment.

The above discussion makes it clear tha t existing access control solutions can not 

be used in a cloud environment without a reconsideration of their security model and 

mechanisms. In contrast to the above works, in the present work we study the problem of 

storage multitenancy over virtualization environments, which introduces new challenges 

as a result of the system consolidation involved in the same datacenter.

“7.4 Summary

Secure multitenancy in cloud storage supports multiple customers a t low cost. The 

hypervisor-level multitenancy architecture runs separate virtual machines for each cus

tomer over a distributed filesystem. Instead, the OS-level multitenancy architecture relies 

on the fileserver kernel to isolate the resources of different customers leading to lower 

execution overhead. Considerable work has also been done on the field of trusted cloud 

storage in order for the cloud providers to  be able to  provide security guarantees to their 

customers about their data.

Several works in the field of cloud and virtualization-aware filesystems have identi

fied the namespace collision problem, however they focus on the separation of the host’s 

namespace from th a t of the guests’, w ithout isolating the principals of different guests. 

O ther works depend on identity mapping techniques to solve the identity collision prob

lem th a t stems from the file-based access. However, the addition of layers tha t perform 

identity mappings introduce manageability inefficiencies, performance degradation, and 

complicate file sharing.

Traditional file-based access presumes th a t principals are registered into a central au

thentication service. Due to identity management challenges from the large number of 

the involved users, this is unrealistic for the tenants of a cloud provider. O ther solutions 

rely on trust management certificates for direct authorization, or presume that each ad

ministrative domain has its principals registered to a local authentication server. Then, 

the local authentication server trusts remote authentication servers in order to support
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cross-domain file sharing. In a cloud environment, however, it is unrealistic for a tenant 

to trust other tenants.
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Chapter 8

Conclusions and future work

8.1 Conclusions

8.2 Future work

In th is chapter we conclude this work by summarizing our contributions and discussing 

opportunities for future research.

8.1 Conclusions

Cloud collaboration is a  newly emerging way of file sharing and coworking on shared 

projects, whereby collaboration documents, shared source code, or scientific da ta  are up

loaded to a central shared storage, and can be accessed by multiple parties. Consolidating 

storage a t the filesystem level enables such sharing scenarios. Furthermore, it offers signif

icant manageability benefits to  system administrators. The file-level interface exposes the 

file structure of a filesystem, while it enables shared read/w rite access. Furthermore, it 

can provide an ephemeral and highly composable storage. However, it does not properly 

isolate the namespaces of different customers who access the shared storage. Thus, it is 

im portant to reconsider the access control techniques used in order to  effectively isolate 

the principals of different tenants.

We have pointed out th a t a solution which depends on an identity mapping mechanism 

should be avoided because it complicates file sharing and manageability, and reduces
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performance. Furthermore, traditional solutions th a t have the principals registered on 

a centralized directory face scalability limitations, because they are not designed for an 

environment with an enormous number of end users. Moreover, their trust assumptions 

do not apply to a cloud environment.

Accordingly, we have proposed an architecture tha t eliminates the need of a global 

directory service which maintains all filesystem principals, by allowing tenants to operate 

their own tenant authentication servers. Tenant authentication servers are securely regis

tered to  a globally trusted filesystem authentication server and certify local principals. In 

addition, our architecture natively supports multitenancy in virtualization environments 

th a t use file-based storage consolidation. We have achieved this by carefully storing access 

- control m etadata directly a t the fileservers without the need for identity translations. In 

, fact, the filesystem maintains per-tenant dedicated ACLs, where it stores tenants’ local 

principals and access control policies. Thus, it successfully isolates each tenan t’s names

pace. Furthermore, we perm it files with identical access rights to  share their parent’s 

global ACL in order to keep the number and size of ACLs small.

W ith a prototype implementation of the proposed access control architecture over a 

production-grade filesystem we have experimentally dem onstrated a limited performance 

overhead using microbenchmarks and application-level benchmarks. Furthermore, we 

have compared our solution with existing approaches th a t use the identity mapping tech

nique and shown tha t our prototype scales well to a large number of tenants without 

affecting the overall system performance. In contrast, multitenancy solutions tha t per

form identity mappings can adversely affect performance when the number of tenants 

tends to be high. Also, by emulating situations of real collaborative environments where 

long ACLs are common, we have dem onstrated th a t numerous of long ACLs can adversely 

affect system performance. However, the ACL sharing technique th a t we introduced can 

mitigate this problem.

8.2 Future work

There are several directions of future work related to this thesis. In this section we list a 

number of interesting topics th a t need further research.
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In this thesis we have proposed an access control architecture to enable secure mul

titenancy in a  private cloud environment. However, the consideration of weaker trust 

assumptions would be an interesting future research topic which could provide a way for 

strengthen the security of the proposed solution in order to  make it applicable to  a  public 

cloud.

O ur experimental results indicated th a t multiple long ACLs can adversely affect sys

tem  performance and the ACL sharing technique could be an initial solution to  this 

problem. However, this area needs further research in order to  improve the structure and 

the scalability of ACLs. Direct authorization through trust management certificates [39] 

has been suggested to  be tter meet the requirements for autonomous delegation across 

- organization boundaries. Furthermore, a method was proposed recently for hierarchical 

, access control in federated file services across different administrative domains [32].

An implementation of the complete proposed architecture is also a  plan for future 

work, as well as its integration into a  trusted  virtualization platform in the datacenter.

Finally, it is necessary for further experimentation with I/O-intensive applications a t 

large scale over different object-based filesystems.
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