
Scalable Access Control for Secure
Multi-Tenant Filesystems

Georgios Kappes

Master Thesis

Ioannina, O ctober 2013

Τ μήμα Μ ηχανικών H /Y & Πλ η ρο φ ο ρικ ή ς

Πανεπιστή μ ιο Ιωαννινων

Departm ent of Com puter Science & Engineering

University of Ioannina

ΒΙΒΛΙΟΘΗΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΑΝ

026000336872

ΚΛΙΜΑΚΩΣΙΜΟΣ ΕΛΕΓΧΟΣ ΠΡΟΣΒΑΣΗΣ ΓΙΑ
ΑΣΦΑΛΗ ΠΟΛΥΜΙΣΘΩΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΡΧΕΙΩΝ

Η Μ ΕΤΑ Π ΤΥ Χ ΙΑ Κ Η Ε Ρ Γ Α Σ ΙΑ Ε Ξ Ε ΙΔ ΪΚ Ε Υ Σ Η Σ

υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Μ ηχανικών Η /Υ και Πληροφορικής
Εξεταστική Επιτροπή

από τον

Γεώργιο Καππέ

ως μέρος των Υποχρεώσεων για τη λήψη του

Μ ΕΤΑ Π ΤΥ Χ ΙΑ Κ Ο Υ Δ ΙΠ Λ Ω Μ Α ΤΟ Σ Σ Τ Η Ν ΠΛ Η ΡΟ Φ Ο ΡΙΚ Η

Μ Ε Ε Ξ Ε ΙΔ ΙΚ Ε Υ Σ Η

Σ Τ Α Υ Π Λ Ο ΓΙΣΤΙΚ Α Σ Υ Σ Τ Η Μ Α Τ Α

Ί
λ .

Οκτώβριος 2013

ΔΩΡΕΑ:.

ΑΡ. »Σ .:

D e d ic a t io n

To m y parents Lefteris and Areti,
and m y beloved sister Antonia.

A c k n o w l e d g e m e n t s

I would like to express my deepest gratitude to all those people th a t I have been fortunate

to be with, and offered me advice, support, encouragement, and friendship.

First and foremost, I would like to express my sincere gratitude to my advisor Prof.

Stergios Anastasiadis for his invaluable assistance and guidance a t every stage of my

graduate career. From the early stages of this thesis to the last ones, he was always

willing to help with any problem I was facing. W ith his deep knowledge on the field

of computer systems, he not only guided me through this project, bu t taught me the

invaluable process of conducting computer systems research.

I am also grateful to all my friends who each in his way helped me to complete this

thesis. Especially, Andromachi Hatzieleftheriou, through endless hours of brainstorming

sessions, provided me with precious feedback at several points of my thesis. Not to

mention the delicious meals she offered us. Giorgos M argaritis provided tea, bread-sticks,

and jokes. The multiple laps we had together around the Zosimades stadium helped me

to mentally relax after a full day of work. Nikolaos Papanikos was always coming at the

office on the right moment to break the routine. Finally, Eirini Micheli suggested me

the “LyX” text-editor in which I wrote this thesis. But more importantly, she provided

me with warmness, help, and encouragement throughout my studies at the University of

Ioannina. She was listening with patience every kind of problem I was facing, and it was

her who encouraged me to begin my graduate studies. Eirini was always there for me.

Above all, however, I would like to express my deepest love and gratitude to my family

for the support they provided me through my entire life. Their love and warmness give

me courage to pursue my interests and satisfy my curiosities.

Finally, it should be noted tha t this work was in part supported by an “AWS in

Education Research grant” award.

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17

18

18

19

20

22

22

24

T a b l e o f C o n t e n t s

1 In trodu ction

1.1 M otivation ..

1.2 Research o b je c tiv e s ..

1.3 C o n trib u tio n s ..

1.4 Roadmap ..

2 B ackground

2.1 Cloud environm ents..

2.2 V irtu a liz a tio n ..

2.3 Core security m e c h a n ism s ..

2.4 Storage m a n a g e m e n t..

2.4.1 Object-based distributed filesystem s..............................

2.4.2 An outline of C e p h ..

2.5 Storage in te rfa c e s ...

2.5.1 Sharing and m anageab ility ...

2.5.2 P erform ance...

2.6 Secure storage m u ltite n a n c y ...

2.7 Access control on m ultitenant storage s y s te m s

2.7.1 Access control on block-level storage sy stem s..............

2.7.2 M ultitenancy challenges of a file-level storage interface

2.8 Summary ..

3 D esign requirem ents

3.1 Security requirements of m ultitenant storage systems

3.2 Architectural g o a l s ...

1

24

25

25

26

26

27

27

29

29

30

31

32

34

34

35

36

36

37

37

38

39

41

43

45

47

47

48

50

52

53

3.2.1 Isolation ..

3.2.2 S h arin g ...

3.2.3 E fficiency..

3.2.4 Compatibility..

3.2.5 Manageability..

3.3 Trust and threat m odel...

3.4 Sum m ary..

4 S y stem design

4.1 Secure m ultitenancy..

4.1.1 Tenant isolation with centralized identification . .

4.1.2 Tenant isolation with public-key identification . .

4.1.3 Tenant isolation with identity mapping techniques

4.1.4 An outline of our approach.....................................

4.2 Architectural overview ...

4.2.1 Tenant Authentication Server...............................

4.2.2 C lie n t...

4.2.3 Object Storage S erv er ...

4.2.4 Metadata Server ..

4.2.5 Filesystem Authentication Server.........................

4.3 A uthentication..

4.4 Authorization...

4.5 Optimizations...

4.6 Security analysis ..

4.7 Sum m ary...

5 Im p lem en tation deta ils

5.1 Implementation overview..

5.2 Key structures of C eph...

5.3 Multitenant access control...

5.4 Optimizations..

5.5 Sum m ary...

n

5 46 Experim ental evaluation

6.1 Experimentation environm ent.. 54

6.1.1 Local te s tb e d ... 55

6.1.2 Cloud computing p latform .. 56

6.2 Methodology ... 57

6.3 Microbenchmarks... 58

6.3.1 Optimal number of processes per c lien t.. 58

6.3.2 Scalability with number of f i l e s ...60

6.3.3 Scalability with number of c lien ts ... 61

6.3.4 Comparison with other multitenancy solutions......................................63

6.4 Application-oriented benchm arks..68

6.4.1 MapReduce application..68

6.4.2 Comparison of Ceph and Dike with M apReduce...................................68

6.4.3 Impact of ACL s iz e .. 69

6.4.4 Comparison with other multitenancy solutions.................................. 74

6.4.5 Linux compilation... 76

6.5 S u m m a ry ..77

7 R elated research 79

7.1 Multitenancy in filesystem storage clouds... 79

7.1.1 Hypervisor-level m ultitenancy.. 79

7.1.2 Operating system-level m ultitenancy ... 81

7.1.3 Trusted multitenant s to ra g e ...81

7.2 Access control in multitenant filesystem s... 82

7.2.1 Access control in filesystems for cloud and grid environments 82

7.2.2 Access control in filesystems for virtualization environments 83

7.2.3 Cloud collaboration and data sharing ... 85

7.3 Access control in distributed filesystems ... 86

7.3.1 Centralized access c o n tro l ... 86

7.3.2 Decentralized access c o n tro l .. 87

7.4 S u m m a ry ... 89

111

8 C onclusions and fu ture work 91

8.1 Conclusions.. 91

8.2 Future w ork... 92

r
iv

L is t o f F ig u r e s

2.1 The ID collision problem when a single namesapace is shared between dif

ferent tenants and the provider... 20

3.1 Attributes of a shared multitenant filesystem. - ..23

3.2 The architecture of an object-based, distributed filesystem and its access

control mechanism.. 25

4.1 The centralized approach: All principals are registered to a central directory. 30

4.2 Decentralized authentication with local authentication servers (LAS). . . . 31

4.3 The identity mapping technique: The local identity space of each tenant is

mapped to a different range of the provider’s identity space.......................... 33

4.4 An architectural overview of our proposed system.. 35

4.5 The authentication architecture... 39

4.6 The authorization architecture...40

4.7 Namespace fitlering: admin and tenant view of the filesystem metadata. . . 41

4.8 ACL sharing with tree ACLs.. 42

5.1 Key structures of Ceph that are used to process data in memory.............. 49

5.2 Prototype implementation of the proposed multitenant access control ar

chitecture... 52

6.1 Finding the optimal number of processes per client for the mdtest mi

crobenchmark on the local tesdbed.. 59

6.2 Finding the optimal number of processes per client for the mdtest mi

crobenchmark on AWS.. 60

6.3 Ceph vs Dike with different number of total files and folders. Dike supports

36 tenants..61

v

6.4 Performance comparison of Ceph and Dike across different number of clients.

Dike supports 36 tenants... 62

6.5 Performance comparison of Dike and HekaFS across different number of

clients and supported tenants with mdtest.. 64

6.6 Multitenancy overhead comparison between HekaFS and Dike..........................67

6.7 Comparison of Ceph and Dike with MapReduce across different number of

clients. Dike supports 36 tenants.. 69

6.8 Impact of long ACLs on the overall system performance. Dike supports

100 tenants.. 70

6.9 The benefits of ACL sharing when ACLs tend to become very long. Dike

supports 100 tenants.. 72

6.10 CPU and disk utilization of fileserver nodes... 73

6.11 Performance comparison of Dike and HekaFS across different number of

supported tenants with MapReduce. We use a single client (cl.medium

EC2 instance)..75

6.12 Linux compilation. Dike supports 100 tenants... 77

vi

L is t o f T a b l e s

5.1 Number of added and modified lines of source code in different parts of Ceph. 48

5.2 The methods that we added into the class CInode to manage the tenant

permissions of an Inode... 51

6.1 Local experimentation environment... 55

6.2 Cloud computing environment (Amazon Web Services)..................................56

6.3 Different filesystem configurations on AWS...57

vn

A b s t r a c t

Georgios E. Kappes, MSc, Computer Science and Engineering Department, University

of Ioannina, Greece. October, 2013. Scalable Access Control for Secure Multi-Tenant

Filesystems.

Thesis Supervisor: Stergios V. Anastasiadis.

In a virtualization environment that serves multiple customers (or tenants), storage con

solidation at the filesystem level is desirable because it enables data sharing, adminis

tration efficiency, and performance improvements. However, accessing storage at the file

level leads to a reconsideration of the access control techniques used to isolate different

tenants. Existing solutions require intermediate translation layers for purposes of net

worked file access or identity management. Nevertheless, such translations hinder the file

sharing between different tenants, complicate manageability, and degrade performance.

In the present study we emphasize the need for a new access control architecture

in collaborative multitenant virtualization environments to achieve (i) fine-granularity

access control, (ii) storage efficiency, (iii) data sharing, and (iv) administration flexibility.

In this context, we analyze the security requirements of multitenant filesystems. Then we

introduce a system architecture that is backwards compatible to object-based filesystems,

and combines native access control with namespace isolation. Our architecture securely

isolates different tenants, and enables flexible file sharing both within and among tenants.

It also offers more manageability opportunities with respect to the existing solutions.

Based on our design, we developed a system prototype over a mature distributed

filesystem. We experimentally evaluate our software implementation with synthetic bench

marks and application-level workloads using a local cluster and the Amazon public cloud.

Thus, we show that our approach incurs limited performance overhead in comparison to

traditional single-tenant filesystems, achieves better performance than existing solutions

viii

based on intermediate translation layers, and also we provide be tter scalability for a large

number of tenants.

%

ix I

Εκτεταμένη Περίληψη στα Ελληνικά

Γεώργιος Καππές του Ελευθερίου και της Αρετής. MSc, Τμήμα Μηχανικών Η /Υ και

Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Οκτώβριος, 2013. Κλιμακώσιμος έλεγχος πρόσβα

σης για ασφαλή πολυμισθωτικά συστήματα αρχείων.

Επιβλέποντας: Στέργιος Β. Αναστασιάδης.

Σε ένα περιβάλλον εικονικοποίησης που εξυπηρετεί πολλαπλούς πελάτες (ή μισθωτές), η

ενοποίηση των αποθηκευτικών πόρων ανεξάρτητων μισθωτών στο επίπεδο του συστήματος

αρχείων μπορεί να αποτελέσει τη βάση για την ανάπτυξη ενός αποδοτικού και ασφαλούς

περιβάλλοντος συνεργασίας. Μια τέτοια ενοποίηση προϋποθέτει τη χρήση μιας διεπαφής

πρόσβασης σε επίπεδο αρχείων, η οποία καθιστά εφικτή την κοινή χρήση αρχείων, επιτρέπει

την αποτελεσματικότερη διαχείριση του συνολικού συστήματος και βελτιώνει την απόδοση.

Ωστόσο, η πρόσβαση στους αποθηκευτικούς πόρους με χρήση μιας διεπαφής επιπέδου

αρχείων καθιστά αναγκαία την επανεξέταση των τεχνικών ελέγχου πρόσβασης που χρησιμο

ποιούνται από το σύστημα αποθήκευσης ώστε να παρέχει ασφάλεια και απομόνωση στους

μισθωτές. Οι υπάρχουσες λύσεις απαιτούν ενδιάμεσα επίπεδα μετάφρασης για να παρέχουν

ασφαλή πρόσβαση σε ένα δικτυακό σύστημα αρχείων και να διαχειρίζονται τις ταυτότητες

των χρηστών που έχουν πρόσβαση στο σύστημα. Εντούτοις, η χρήση πολλαπλών επιπέδων

μετάφρασης δυσχεραίνει την κοινή χρήση αρχείων μεταξύ χρηστών που ανήκουν σε διαφορε

τικούς μισθωτές, δυσκολεύει τη διαχείριση του συστήματος και μειώνει τη συνολική του

απόδοση.

Στην παρούσα εργασία τονίζουμε την ανάγκη για μια νέα αρχιτεκτονική ελέγχου πρόσβα

σης σε συνεργατικά πολυμισθωτικά περιβάλλοντα για λόγους (1) ελέγχου πρόσβασης με

υψηλότερο βαθμό ανδρομέρειας, (2) αποδοτικότερης αποθήκευσης, (3) κοινής χρήσης αρχεί

ων, (4) καλύτερης και ευκολότερης διαχείρισης. Στο πλαίσιο αυτό, αναλύουμε τις απαιτήσεις

σε ασφάλεια των πολυμισθωτικών συστημάτων αρχείων και εισάγουμε μια νέα αρχιτεκτονική

ελέγχου πρόσβασης. Η αρχιτεκτονική που προτείνουμε συνδυάζει τον εγγενή έλεγχο

πρόσβασης με την ασφαλή απομόνωση του χώρου ονομάτων κάθε μισθωτή και είναι συμβατή

με οποιοδήποτε σύστημα αρχείων που βασίζεται στα αντικείμενα. Επιπλέον, διαχωρίζει

αποτελεσματικά τους χώρους ονομάτων διαφορετικών μισθωτών, και ταυτόχρονα καθιστά

εφικτή την κοινή χρήση αρχείων μεταξύ χρηστών που ανήκουν στον ίδιο ή σε διαφορετικούς

μισθωτές. Τέλος, παρέχει ευκολότερη και αποτελεσματικότερη διαχείριση του συστήματος.

Με αναλυτικά αποτελέσματα και πειράματα σε πρωτότυπη υλοποίηση δείχνουμε ότι η

λύση μας εισάγει περιορισμένη επιβάρυνση σε σχέση με παραδοσιακά συστήματα αποθήκευ

σης ενός μισθωτή. Επιπλέον, δείχνουμε ότι η λύση μας εισάγει χαμηλότερη επιβάρυνση σε

σχέση με υπάρχουσες λύσεις που απαιτούν ενδιάμεσα επίπεδα μετάφρασης, και παρέχει

■καλύτερη κλιμακωσιμότητα για μεγάλο αριθμό από μισθωτές.

χι

C h a p t e r 1

In t r o d u c t io n

- 1.1 Motivation

1.2 Research objectives

1.3 Contributions

1.4 Roadmap

In recent years, the cloud computing paradigm has enabled enterprises to dramatically

improve how they organize their infrastructure and operate their business, taking advan

tage of the scalability and flexibility of a cloud environment. The increasing popularity

of cloud environments poses ever greater demands on the scalability, and security of the

underlying storage systems.

W hether providing services to the public or serving internal customers, cloud plat

forms typically allow multiple customers to share the same physical server and network

infrastructure, as well as to use common platform services. Cloud customers could be

independent organizations or business groups and they are known as tenants [6, 9]. The

consolidation of resources into a shared resource pool is a prominent feature of cloud

computing in order to improve efficiency, scalability, and reduce costs.

While multitenancy on cloud environments provides seemingly limitless scalability, it

raises new security and privacy issues, because it hands the processing and storage tasks

over to third parties and involves an enormous number of tenants tha t share the same

resources. In fact, access control over the resources of a m ultitenant environment is a

1

challenging problem due to the enormous number of end users involved and the required

isolation of the security administration across different organizations. D istributed autho

rization has already been extensively studied in the context of networked services, e.g.,

distributed filesystems [40]. However, a cloud environment introduces unique character

istics tha t warrant reconsideration of the assumptions and solution properties.

1.1 Motivation

In the present study we are particularly interested to take advantage of service co-location

in the datacenter to better consolidate the storage infrastructure used by common data

files at the application (e.g. collaboration documents) or system level (e.g. root im

ages). Secure storage consolidation at the filesystem level is increasingly advocated as the

preferred multitenancy paradigm for cloud environments [43, 36, 21, 11, 64], Although

virtual disks are attractive for their versioning, isolation, and migration properties, a

file-based interface can additionally support fine-grained controlled sharing, easy resource

administration, and file-level performance optimizations. Below, we examine scenaria of

virtualization environments in which file based storage consolidation makes sense for rea

sons of (i) fine-granularity access control, (ii) storage efficiency, (iii) data sharing, and (iv)

administration flexibility.

S cien tific d a ta : Collaborative research groups require to share scientific da ta across

teams th a t span multiple institutions. D ata owners should be able to easily share their

da ta with users th a t belong to different institutions w ithout requiring them to have ac

counts on the storage servers where the data resides. In addition, a tenan t’s identity

should be verified before making shared data available and only users tha t belong to this

tenant should be able to access the data. D ata providers must have full control over both

the data th a t may be shared and the permissions tha t may be granted to external users.

V ir tu a l D e sk to p s : An enterprise stores the desktop filesystems of personal thin

clients. Each desktop root filesystem is stored as a separate folder with access limited

to a single client. As an optimization, there is a shared folder tha t is branched into the

private folder of each client. Hence, clients can use the shared folder to collaborate on a

project. A similar approach can also be applied to manage the home folders of users. In

2

this scenario, the root folder of each client is branched into a shared but read-only folder.

In addition, each user is given its own private home folder, where she can store private

hies.

S o ftw are-as-a -se rv ice : A software-as-a-service provider supports different business

customers with separate end users. The filesystem treats each business customer as a

tenant with separate application files in writable mode (e.g. databases), but possibly

shared system files in read-only mode (e.g. configuration scripts).

S o ftw are R e p o s ito ry : A public provider offers a shared software repository th a t

different groups of developers can fork into separate branches. The members of a group

obtain writable access to their own branch, and read-only access to the branches of other

groups. A simpler scheme without branches could be used for sharing scientific datasets.

1.2 Research objectives

Accessing shared storage through a block-level interface completely hides file-level access

control. Read from or writing to storage devices happens a t the granularity of blocks

and hence file semantics are completely hidden. On the other hand, when a file-level

interface is employed to access shared storage, the fileserver is ultim ately in charge of

access control. The adoption of a file-based solution in a m ultitenant environment, where

multiple customers share a single filesystem namespace, raises the need to reconsider the

access control techniques used in order to effectively isolate the principals of different

tenants.

Existing file-based solutions face scalability lim itations because they either lack sup

port for multiple guest tenants, rely on global-to-local identity mapping to manage the

users of different tenants [11], or have the guests and a centralized filesystem (or proxy)

running at the same host [43, 21, 12]. In addition, they hinder support for file sharing

among principals tha t belong to different tenants and complicate administrative tasks.

In the present study we set as our prim ary goal to securely manage the shared filesys

tem namespace, in order to provide each tenant with an isolated private view. However,

in contrast to previous approaches, our solution should perm it principals of the same or

different tenants to share files and collaborate on a shared project. In addition, it shall

3

provide system administrators with more manageability opportunities, and finally, it shall

maintain high performance and scalability by natively supporting multitenancy.

1.3 Contributions

Secure access control is a challenging problem th a t organizations face in collaborative

virtual environments, which has prevented many of them from migrating critical da ta or

applications into such environments. In our research we examine approaches for efficient

and effective support of m ultitenancy in filesystems used by virtual machines. We require

th a t each client directly mounts the filesystem instead of having the filesystem mounted

by an intermediate proxy. Trusted computing techniques are used to certify the integrity

of tenants th a t wish to access the shared filesystem. Tenants are then responsible for

authenticating and authorizing principals operating on their behalf to provide access to

the filesystem. The filesystem natively manages the access control m etadata of each

tenant, and ensures th a t each tenant can only access its own namespace. Controlled

file sharing is relatively straightforward as a result of the file-level access to a common

filesystem with file-granularity access control.

We provide prototype implementation of the above approach in the Ceph production-

grade, distributed filesystem. W ith microbenchmarks and application-level experiments

we quantitatively dem onstrate the limited performance overhead of our design.

We can summarize our contributions as follows:

• Analysis of access control requirements in file-level consolidated storage for virtual

ization.

• Architectural design of native access control in a m ultitenant filesystem with back

wards compatibility to object-based storage.

• Prototype implementation over a production-grade distributed filesystem.

• Experimental performance evaluation of multitenancy overheads.

4

1.4 Roadmap

In chapter 2 initially we present the basic features of cloud environments and virtualiza

tion, and the core security primitives for securing d a ta in large-scale distributed storage

systems. Then, we delve deeper into storage management in virtualized environments

and we summarize the different m ultitenancy architectures for filesystem storage clouds

tha t have been proposed until now. Finally, we discuss why a file-level storage interface

makes multitenancy challenging.

In chapter 3 we first analyze the security requirements in m ultitenant filesystems.

Then, we list the goals th a t we have set for our proposed access control architecture.

Furthermore, we provide details about our trust and th reat model.

In chapter 4 we introduce a new access control architecture for m ultitenant shared

storage at the file level. Our architecture combines tenant isolation with native access

control and is backwards compatible to object-based filesystems.

In chapter 5 we describe our implementation of the proposed m ultitenant access control

over a distributed, object-based filesystem. In addition, we explain im portant implemen

tation decisions.

In chapter 6 we experimentally evaluate our prototype implementation and give rea

sons for the limited added performance overhead of our solution. Furthermore, we compare

it with existing techniques th a t aim to enable multitenancy.

In chapter 7 we review the state-of-the-art multitenancy architectures for filesystem

storage clouds, and we outline recent works th a t aim to provide trusted cloud storage.

Furthermore, we present an overview of the related literature in the field of access control

in distributed filesystems.

Finally, in chapter 8 we summarize the conclusions of our work and highlight oppor

tunities for future research.

5

C h a p t e r 2

B a c k g r o u n d

' 2.1 Cloud environments

2.2 Virtualization

2.3 Core security mechanisms

2.4 Storage management

2.5 Storage interfaces

2.6 Secure storage multitenancy

2.7 Access control on m ultitenant storage systems

2.8 Summary

In this chapter we first present an introduction to the basic concepts of cloud environ

ments and virtualization. We also present the core security primitives for securing data

in large-scale distributed storage systems. Then, we concentrate on storage management

and we briefly introduce the architecture of object-based distributed filesystems and its

advantages over traditional distributed filesystems. Furthermore, we compare the block-

level interface with the file-level interface in term s of sharing and manageability efficiency,

as well as performance. Finally, we summarize the different multitenancy architectures

for filesystem storage clouds tha t have been proposed until now and we highlight why a

file-level storage interface makes m ultitenancy challenging.

6

2 -1 Cloud environments

Cloud infrastructures are increasingly used for a broad range of computational needs

in private and public organizations- Cloud computing aims a t allowing access to large

amounts of computing power in a fully virtualized manner, by aggregating resources and

offering a single system view. The deployment of cloud infrastructures can be performed

in different ways, depending on the organizational structure and the provisioning location

[35].

Four deployment models are usually distinguished, public, private, community, and

hybrid. The deployment of a public cloud infrastructure is characterized by the public

availability of the cloud service offering. It may be owned, managed, and operated by

a business, academic, or government organization, or some combination of them and is

offered to the public through a public network. On the other hand, in a private cloud de

ployment, the cloud infrastructure is provisioned for exclusive use by a single organization

comprising of multiple customers. It is owned, managed, and operated by the organiza

tion, a trusted third party, or a combination of them. The main advantage of this kind

of deployment is tha t the organization retains full control over corporate data, security

guidelines and system performance. While a private cloud is only accessible by a single

organization, a variant of this deployment, which is known as a community cloud, enables

organizations with similar requirements (projects, security requirements, policies) to share

a cloud infrastructure in order to collaborate. The infrastructure could be managed and

hosted by one or more of the organizations in the community, or by a third-party. Finally,

in a hybrid cloud deployment the cloud infrastructure is a composition of two or more

distinct cloud infrastructures (public, private, or community) th a t remain unique entities.

A hybrid deployment allows an organization to maintain sensitive data behind its firewall,

while taking advantage of the lower cost and flexibility of a public cloud.

The main idea behind cloud computing is to deliver a huge amount of computing re

sources as services through a public network such as the Internet. Cloud services can be

divided into three categories according to the abstraction level of the resource provided,

namely: (1) Software as a Service, (2) Platform as a Service, and (3) Infrastructure as

a Service. In the first model, Software as a Service, one or more applications and the

computational resources to run them are provided for use on demand as a service. On

7

the other hand, Platform as a Service is a model of service delivery whereby the com

puting platform (typically including operating system, programming language, execution

environment, database, and web server) is provided as a service to software developers.

Finally, Infrastructure as a Service is a service model where the cloud provider offers

virtualized resources (computation, storage, and network) on demand. To deploy their

applications and services, customers install operating system images and their applications

on the cloud infrastructure. The focus of this study lies in this final model.

Cloud computing services are usually backed by large-scale datacenters. Modern dat

acenters are heavily virtualized, thereby, computing, storage, and network resources of

each physical server are multiplexed across a large number of different applications and

tenants. Thus, cloud platforms allow multiple tenants to share the same resources. This

leads to multiple benefits. On the one hand, higher resource utilizations are achieved and

on the other, resource sharing can lead to a great reduction of energy consumption and

cut costs. In fact, most datacenters often utilize virtualization and distributed services to

manage resources and provide a scalable computing platform [31], making virtualization

a fundamental component of cloud computing.

2.2 Virtualization

Virtualization is a broad term of computer systems th a t refers to an abstraction mecha

nism which hides the physical characteristics of certain com putational resources in order

to simplify the way in which other systems, applications or end users interact with them.

Thus, virtualization enables sharing the resources of a computer system in multiple exe

cution environments.

The concept of virtualization has its roots in the mid 1960’s, when it was used by

IBM as a method for logical partitioning of large centralized systems (mainframes) into

separate virtual machines. The virtual computers were distributed to users of the system,

allowing each user to work in an isolated environment without affecting other users. To

make this sharing possible, IBM introduced a new feature called Virtual Machine Monitor

(VMM).

The V irtual Machine M onitor [46] is a software layer th a t is placed on top of the hard

8

ware layer and has direct access to hardware resources. Its main objective is to manage

and allocate system resources to one or more virtual machines in order to make virtu

alization possible. Virtualization follows various approaches th a t are directly related to

the architecture of the V irtual Machine Monitor. In the hosted architecture the VMM

runs as an application on the host operating system and relies on it for resource manage

ment, system memory, and device drivers. In the autonomous architecture the VMM is

placed directly above the hardware. Thus, it is responsible for managing system resources

and their allocation to different virtual machines. This last architecture is more efficient

because the VMM has direct access to system resources.

Guest operating systems run with limited privileges and they don’t have direct access

to hardware. Thus, it is difficult to virtualize some critical operating system instructions

because their implementation requires higher privileges. Two approaches were followed

to solve this problem: full virtualization and paravirtualization.

Full virtualization provides a virtual environment th a t simulates the real hardware.

Specifically, each virtual machine is provided with all the services of the real system,

such as full command set of the real processor, virtual appliances, and virtual memory

management. The m ajor difference from other virtualization techniques lies in operating

system’s awareness th a t it runs under a virtualized environment. Thus, any software th a t

is capable to run in the real system can run without changes in the virtualized environ

ment. In order to make the execution of critical instructions possible, a technique known

as binary translation was introduced. According to this approach, the software is patched

at runtime. The critical instructions tha t cannot run in the virtual environment are re

placed by different instructions tha t can run safely. However, the continuous scanning

and emulation of critical instructions reduces performance. VMware’s W orkstation [63]

follows the above approach.

On the other hand, paravirtualization provides to the virtual machines a software

interface th a t is similar but not identical to tha t of the real system. The main purpose of

paravirtualization is to reduce the proportion of time spent in performing critical patches

on the guest’s unsafe instructions. Instead of using the binary translation technique, the

client software is modified and communicates directly with the VMM, when it needs to

execute a critical instruction. Then, the VMM undertakes responsibility to execute the

instruction. As a consequence, the guest operating system must be altered slightly in order

9

to run in a paravirtualized environment. A system th a t follows the paravirtualization

approach is Xen [7].

As the benefits of virtualization are tremendous, manufacturers of processors have

reviewed the instruction set of their products by making them virtualization-friendly.

Thus, virtualization of critical operating system instructions can be solved directly using

the new instruction set.

2.3 Core security mechanisms

In a distributed filesystem, client is typically a process th a t provides local filesystem access

to a node and servers the processes th a t implement filesystem action across the network.

Principal is an entity th a t accesses the filesystem through the client. This entity can be

a process, a person, or a role. A principal can also be a compound of other principals, for

example a group of users [40].

Reliability and security in a large-scale storage system can be enforced with a combi

nation of four different techniques, including Encryption , Identification, Authentication ,

and Authorization.

Encryption is the process of encoding information in such a way th a t eavesdroppers

cannot read it, while authorized parties can. A secure cloud storage system requires two

kinds of encryption: For da ta th a t is being transferred over the network and for d a ta “at

rest” on disk. Usually, when cloud tenants don’t entrust the cloud provider with their

data, they can provide confidentiality to themselves by encrypting the da ta they store on

the cloud.

Identification is the process in which an entity supplies information to identify itself

to an authentication service. Some examples of identification mechanisms are usernames,

memory cards, and public keys.

Authentication is the activity of verification of an entity’s identity. It can be performed

using passphrases, passwords, cryptographic keys, and tokens. I t confirms the identity

of an individual, but says nothing about its access rights. Authentication often involves

verifying the validity of a t least one form of identification.

Authorization is the process of determining access rights: W hat an identified entity

10

can actually access and what operations it can carry on this information. Authorization

is normally preceded by authentication for user identity verification.

Most access control systems need also to limit the actions of application processes.

In particular, they must prevent a process from reading or overwriting memory th a t it

may not access. One solution to this problem is to use sandboxing techniques. A sandbox

is a security mechanism for separating running programs (e.g. SELinux [30]). However,

sandboxing techniques are often too restrictive for general computing environments. An

other solution to the above problem is to use mechanisms like segment addressing, which

integrate hardware access control with the memory management functions [5].

A secure environment must also ensure the integrity of computing platforms. In fact,

users must be sure th a t a given program runs on a machine with a given specification;

th a t is, the software has not been modified and the hardware configuration has not been

changed. A typical mechanism th a t provides such assurances is the Trusted Platform

Module or TPM . The TPM is actually a secure co-processor which monitors a system at

boot time and reports its s ta te to the operating system. In fact, it generates a crypto

graphic key tha t depends on the current system’s state, as well as a fingerprint (hash) of

the software stack th a t booted on the system and provides them to the operating system.

Thus, if a modification is made to the system’s configuration, the TPM chip will generate

a different cryptographic key and the previously encrypted material will not be made

available. A system can also use the TPM to certify the identity of a remote system.

This process is called remote attestation. Furthermore, TPM can also be used for disk

encryption. It offers two primitives, seal and unseal to encrypt and decrypt information

respectively. Seal encrypts da ta and specifies a state in which the TPM must be in order

for the data to be decrypted (unsealed) [5, 52],

2.4 Storage management

File and storage systems used in virtualization environments have proved critical to the

overall performance of an exceedingly broad class of applications. Storage systems can be

distinguished in three different categories depending on how data is stored on the underly

ing system: block-based storage, file-based storage, and object-based storage. The storage

11

in the block-based approach is conceptually modeled as a long stream of bytes divided

into equally sized blocks. All accesses to the storage devices are performed by reading

or writing blocks. Examples of this type of storage include Amazon Elastic Block Store

(EBS) [1], Ceph RBD [20], and iSCSI [53]. In the second form of storage a filesystem is

layered on top of a block storage device. The filesystem is a a higher-level logical structure

tha t maps higher-level objects, which are typically called files (such as documents, pic

tures, and videos), onto disk blocks. Some exam ples of file-based storage systems include

NFS [55] and CIFS [38]. In the la tte r form of storage, which is known as object storage,

the storage system uses objects to store information. Object-based distributed storage

systems emphasize the scalability of secure da ta and m etadata management. Some typ-

ieal examples of object-based storage systems include Amazon S3 [3], Rackspace Cloud

.files [49], and Ceph Storage [67].

2.4.1 Object-based distributed filesystems

An object-based distributed file system separates the management of file m etad a ta1 from

file data. File m etadata is managed by m etadata servers, while a different form of servers,

which are known as object storage servers, manage file data. Both d a ta and m etadata

are split into objects which are stored on object storage servers. The filesystem client

employs m etadata and object storage servers to present a full filesystem abstraction to

the users [67].

A significant advantage of the object-based file system architecture is the elimination

of the potential bottleneck of the m etadata server and the parallelization of all file I /O . In

fact, a client needs to contact the m etadata server only once, for example when it opens a

new file. Another benefit of this architecture is th a t by grouping d a ta into objects allows

the object storage server to optimize access to related blocks, because da ta th a t resides

in the same object is related and potentially different from d a ta in a different object.

W hat is more, da ta can be split to multiple objects in order to keep the size of an object

under a specific limit. These objects are then stored to different object storage servers

(idata striping). This allows the stripe width to be adapted to the access properties of an

individual file.

*Such as the filename, the file size, and access control information.

12

2.4.2 An outline of Ceph

Ceph is a distributed object-based filesystem developed by Weil et al [67]. It consists

of four components: The clients provide access to the filesystem, the m etadata servers

(MDSs) manage the namespace hierarchy, the object-storage devices (OSDs) reliably store

data in the form of objects, and the monitors (MONs) manage the server cluster map.

Both data and m etadata are stored on OSDs, but they are separately managed for greater

scalability. The m etadata is dynamically partitioned across the MDSs to preserve locality

and achieve load balancing.

M etad ata m anagem ent

The MDS is responsible to manage m etadata for files and folders. A Ceph folder is stored

as a single object, or as a collection of fragments, with each fragment on a different

object. W hen a folder is divided into multiple fragments, the Ceph client is responsible

to request the correct fragments from the MDS. If the client needs the whole folder, it

iteratively requests the next folder fragment from the MDS, until it forms up the whole

folder. A folder entry includes the name, the inode, and the extended attributes of a file.

Every MDS maintains a journal [47] of recently-updated m etadata. Incoming m etadata

updates are labeled as projected while w ritten to the journal but not yet to the in-memory

cache, committing while queued to disk, and committed when w ritten in stable storage.

M etadata journaling allows the MDS to serve recent m etadata back to clients. In addition,

the journal is also useful for failure recovery.

D a ta and m etad ata storage

Ceph stores file da ta and m etadata as objects. Each object is stored as a file in the

underlying filesystem of an OSD. An object has an identifier, binary data, and object

m etadata consisting of a set of key/value pairs. Note th a t the actual file m etadata (the

file inode) is stored in a different object.

Objects are mapped into Placement Groups (PGs). Grouping objects to PGs helps

ensure performance and scalability, as tracking m etadata for each individual object would

be too costly. The PGs are then mapped to one or more OSDs. Replication is done at the

PG layer. However, the degree of replication is specified higher, a t the pool level, and all

13

PGs in a pool will replicate stored objects into multiple OSDs. A pool is a collection of

PGs and thus a collection of objects. Objects are mapped to PGs and PGs to OSDs with

the help of a pseudo-random da ta distribution function [68]. This function allows Ceph to

re-balance dynamically when the OSD map changes. Furthermore, it ensures th a t object

replicas do not end up on the same disk or host.

2.5 Storage interfaces

Storage systems can be accessed through different types of storage interfaces which can be

distinguished in three different categories: a block-level interface, an object-level interface

and a file-level interface. A block-level interfaces exposes a block device to the user and

allows the writing and reading of fixed-size blocks. On the other hand, with an object-

level interface users can access objects typically through a REST API [13]. Finally, a

file-level interface exposes the file and folder structure to clients. Then, clients ask the

server to read or write a consecutive range of bytes within a particular file in each request

and the server maps this request to the storage devices.

Existing virtualization environments primarily apply storage consolidation at the block

level [37, 18, 54, 62]. Guests access virtual disk images which are typically stored in a

central location. They are offered to guests as direct attached disks through a block I/O

interface, or as volumes through a storage area network mounted by the host. This ap

proach incurs im portant benefits, such as high availability of data, easier administration,

and optimal usage of storage capacity. The block-level interface provides a narrow inter

face to storage and yields an agnostic and simple implementation. Furthermore, it offers

the system compatibility of a standalone machine. Moreover, a block-level interface is

useful for supporting heterogeneous clients and client applications.

An alternative approach is the design of a virtualization-a\vare distributed filesystem

[43, 21, 12]. This architectural design goes one step further beyond virtual disks and

attem pts to provide storage virtualization at the file level. In fact, it combines the sharing

opportunities offered from distributed systems with the intrinsic features of virtual disks

such as isolation, versioning, and mobility.

14

Environment (IDE) and prefers the Debian Linux distribution. W ith composable storage

enabled she has the flexibility to synthesize her filesystem by choosing the Debian file tree

from the operating systems collection and combine it with probably a shared file tree th a t

contains the Eclipse IDE and a private file tree for storing personal files.

The above discussion makes it clear th a t a file-level interface offers significant manage

ability benefits in comparison to a block-level interface. A recent study [4] tries to mitigate

these limitations of block-level storage by storing images in a format th a t indexes their

storage structure, instead of as opaque disk images. Thus, by providing a file-aware for

mat this approach allows administrative operations such as searching, patching, and virus

scanning to execute online.

2.5.2 Performance

File-level access of consolidated storage may improve performance because of its potential

to reduce the number of levels to a storage stack traversed by an I/O request. On the

other hand, when a VM guest operating system accesses storage through a virtualized

block device, file access traverses the guest operating system ’s filesystem and its block

device stack, and then it traverses a similar block device stack in the VMM. Even if the

guest operating system accesses storage through a pass-through block device, the file I/O

request needs to be translated to a block request and then back to a file request. However,

such translations can reduce performance (21).

Hildebrand et al. [19] study the effects of having multiple layers in the storage stack

of a virtualization environment. They are particularly interested to investigate the effects

of layering a virtual disk on top of a NAS store. In this scenario, a VM’s file request is

translated to a block request by the hypervisor’s storage controller emulator, which in

turn translates the block request back to a file request and sends it to the disk image via

the NAS client. This large number of layers in the storage stack increases the amount

of processing th a t each request needs and hence increases the I/O latency. In addition,

the caching of entire blocks by the block-layer causes read-modify-write operations over

the NAS protocol which degrades performance. Having these observations in mind and

conducting several experiments the authors state th a t the layering of the guest block-layer

on top of a file-level layer can dramatically reduce performance. As a possible solution,

16

2.5.1 Sharing and manageability

The semantic gap introduced by virtualizing the system a t a low level obscures higher-level

information tha t could aid in identifying opportunities for sharing among different VMs,

complicating the efficiency of storage management, and making collaboration tasks im

possible. Furthermore, it hides the storage structure and thus complicates administrative

tasks.

File level access of consolidated storage offers more manageability opportunities than

block level access. Stored data is directly accessible through a standard file-level interface

at the server without requiring shutting down the virtual machines which access the

storage.

A block-level interface offers no opportunities to share read and write access between

multiple parties, which complicates virtual machine management. Concurrent access can

only be enabled with the help of a secondary protocol, or the usage of a traditional

network or distributed filesystem to export specific parts of the filesystem. However, such

solutions incur extra manageability effort because they involve either the design of extra

protocols, or the maintenance of multiple administrative domains.

In addition, filesystem administrative tasks, such as da ta searching and software in

stallations or updates, can be performed more efficiently and globally through a file-level

interface. W ith a block-level interface instead, the adm inistrator would be forced to shut

down all the affected virtual machines in order to mount their images and perform the

required task in one image at a time. In fact, a file-level interface increases adm inistration

flexibility and efficiency because it enforces a granularity of individual files rather than

entire disk or blocks.

Another potential manageability benefit from using a file-level interface lies to its

ability to provide an ephemeral and highly composable storage. A filesystem can be

synthesized from a set of file trees, each of which contains related files. In addition,

a file tree can be shared among multiple users or can be private. For example, there

might be a collection of file trees, each of which may contain the root filesystem of a

different operating system. Another collection may contain file trees tha t hold each user’s

home folder. A last one would have file trees th a t have specialized applications installed.

Let’s suppose tha t Alice is a developer who uses the Eclipse Integrated Development

15

they suggest the guest VMs to consolidate storage directly a t the file level by mounting

a network-based filesystem.

The performance implications of nested filesystems in a virtualized environment are

investigated by Le et al. [27]. They focus on the scenario in which a guest VM accesses a

local virtual disk image. Their main observation is th a t the choice of nested filesystems

on both hypervisor and guest levels has a significant performance impact on guest’s I/O

performance. In addition, they realize th a t system adm inistrators should carefully choose

a combination of guest-hypervisor filesystems according to the type of the anticipated

workload. W hat is more, they dem onstrate tha t there are cases where nested filesystems

should be completely avoided.

2.6 Secure storage multitenancy

Secure multitenancy in cloud storage supports multiple customers a t low cost [25]. How

ever, maintaining security and access control in cloud environments is a challenging prob

lem and has prevented many organizations from moving critical da ta or applications to

such environments.

Cloud storage systems must address challenges th a t are not addressed by traditional

distributed filesystems. These challenges mostly revolve around isolation, identity man

agement, and privacy. Cloud tenants do not trust each other, and in the case of a public

cloud they even do not tru s t the cloud provider. A cloud storage system must ensure

th a t tenants are isolated from each other, while it offers them opportunities for a secure

and collaborative file sharing. Tenant isolation in a filesystem storage cloud can generally

be performed in four different levels: hardware level, hypervisor level, operating-system

level, and application level.

Tenant isolation can be performed at the hardware level by using a dedicated server

per tenant. However, this solution does not scale well, wastes hardware resources, and

dramatically increases operating costs.

A second approach is to isolate a tenant a t the hypervisor level by using a shared

hypervisor and separate virtual machines to host each tenan t’s fileservers [41, 44, 25]. In

this case, the hypervisor enforces isolation by ensuring th a t the data from one tenant is not

17

propagated to untrusted locations outside the tenant. Although this architecture securely

isolates tenants, it hinders the benefits of a shared filesystem, such as da ta sharing, group

collaboration, and data processing scalability.

In contrast to the above approach, the operating-system m ultitenancy architecture

uses shared server hardware and operating system, and relies on the fileserver kernel to

isolate the resources of different tenants leading to lower execution overhead [48, 25].

However, this architecture shares the same disadvantages with the previous one regarding

the inability for file sharing and collaboration, as well as the poor scalability, because each

client has its own dedicated file-service.

Finally, tenant isolation can be performed a t the application level, by using shared

server hardware, operating system, and fileserver among tenants. This form of m ultite

nancy is also referred as native multitenancy and is considered as the cleanest way to

isolate multiple tenants [25]. Despite the fact th a t achieving multitenancy a t this level is

a challenging task, this architecture enables all the benefits of the deployment of a shared

filesystem, including da ta sharing, group collaboration, and high scalability.

2.7 Access control on multitenant storage systems

When a storage system is shared across multiple customers, it is critical to control how

the access is differentiated so tha t only the perm itted principals to be able to access the

data of each tenant. Below, we initially discuss how access control is handled in block-

level m ultitenant storage systems. Then, we highlight the multitenancy challenges tha t

are introduced by storage consolidation at the file level.

2.7.1 Access control on block-level storage systems

Existing cloud environments primarily apply storage consolidation at the block level.

Guests access virtual disk images either directly as volumes of a storage-area network

(SAN), or indirectly as files of network-attached storage (NAS) mounted by the host. In

fact, virtual disk images provide the same block-level interface as physical disks and they

have no access control responsibility. Therefore, if a tenant accesses its own collection

of virtual disk images, its namespace is strongly isolated from others. While file-level

18

access control is completely hidden by the block-level interface, tenants instead of sharing

individual files with each other can share the whole virtual disk image.

The secure sharing of virtual machine images in a cloud environment has been re

searched by Wei et al. [66]. They propose a virtual disk image management system tha t

controls secure access to images by different tenants, tracks the provenance of images, and

provides tenants and adm inistrators with efficient image management tools th a t detect

and prevent security violations. However, a finer-grained sharing a t the level of files is

more desirable, but a block-level interface can not support it.

2.7.2 Multitenancy challenges of a file-level storage interface

File-based access of consolidated storage has been advocated to improve d a ta sharing,

manageability, and performance. Unfortunately, the access control model th a t is used

when a virtual machine accesses storage through a block-level interface cannot be used

when the filesystem must be deployed as a shared service and tenants access it through a

file-level interface. The main problem in such a shared deployment is th a t the namespaces

of different tenants are no longer isolated from each other. Thus, the filesystem needs to

securely support and isolate different administrative domains.

An interesting example is how the isolation of principals is affected in such a deploy

ment. In fact, each tenant contains its own pool of users (see Figure 2.1). Each user is

represented by an identity which is called the User ID (UID). The UID is a projection

of an actual individual or service into the system. Establishing a unique UID for each

individual who will access resources in a shared deployment is critical for security. How

ever, the use of a shared filesystem introduces a possibility of conflict involving the use

of the same UID by users belonging to different tenants. As a result, a user who belongs

to a particular tenant can access the files of a user with the same UID who belongs to a

different tenant. To make the situation worse, the storage server contains its own identity

space. As a consequence, a tenant user can gain extra privileges on the fileserver with

catastrophic results.

At the same time, other problems related to file permissions and special files are

arising when a shared filesystem deployment is used. File permissions assigned to a file

by a tenan t’s user not only affect other users of the same tenant, but they also mistakenly

19

TENANT, TENANTn

Shared Rle System

Figure 2.1: The ID collision problem when a single namesapace is shared between different

tenants and the provider.

affect the users of different tenants. This situation is unacceptable and is driven by the

fact tha t the different namespaces are not properly isolated from each other. A similar

situation arises when a user creates a new special file (e.g. symlink or device file). This

file is also presented as a special file on the fileserver. However, a special file has a specific

meaning only in the space where it is created. When such files are presented as special

files on outer spaces, they may impose a serious impact on system’s security. For example,

an intruder can use them as backdoor to read or even modify kernel memory, files, disk

drives, and other critical devices. Thus, it is critical for a m ultitenant filesystem to prevent

identity collisions and isolate the different tenant namespaces.

2.8 Summary

Cloud computing is a new computing paradigm tha t provides software, platform, and

infrastructure services on demand to customers around the world. A cloud environment

may be public, private, community, or hybrid, each with its own distinct constraints. In

order to efficiently support an enormous number of customers a t low cost, cloud environ-

20

ments rely on sharing of computing resources. A key technology th a t enables resource

sharing is virtualization. The Virtual Machine Monitor is a critical component of virtu

alization. It may run directly as an application on the host, or it may be placed directly

above hardware. A challenge th a t virtualization faces is how to virtualize critical oper

ating system instructions. This challenge can be solved either with full virtualization or

with paravirtualization.

File and storage systems used in virtualization environments are a critical component

for the overall performance of hosted applications. Storage systems are distinguished into

different categories depending on how d a ta is stored and accessed. Existing virtualization

environments apply storage consolidation a t the block level. Although the block-level

aecess provides many benefits, such as support for versioning, isolation, and migration,

it precludes file sharing, hinders manageability, complicates resource administration, and

reduces performance. For these reasons, a file-level interface is more desirable in envi

ronments th a t target collaboration, easy resource adm inistration, and high performance.

However, a file-level interface leads to a reconsideration of the access control mechanisms

used to securely isolate different customers.

21

C h a p t e r 3

D e s ig n r e q u ir e m e n t s

3.1 Security requirements of m ultitenant storage systems

3.2 Architectural goals

3.3 Trust and threat model

3.4 Summary

In this chapter we explain the security requirements in m ultitenant storage systems

and we list the goals th a t we have set for our proposed access control architecture. We

also give details about our tru s t and threat model. In the next chapter, we propose a

design to meet the specified requirements and goals.

3.1 Security requirements of multitenant storage systems

The idea of m ultitenancy is fundamental to cloud computing. Especially in a storage

cloud, service providers are able to build storage architectures tha t are very efficient and

highly scalable to serve the needs of the large numbers of customers tha t share them.

However, in a m ultitenant storage system, da ta of different tenants is stored in the same

underlying storage devices. Thus, the prim ary requirement for m ultitenant storage is to

ensure the security of tenant data.

22

TENANT, TENANT2
r r \

Unique Tenant ID B P S iP i i i i iB i i

Γ ^ —

VM - Γ Local
[Users J

= π δ &
VM - Γ Local

l Users J
Shared Rle System

Tenanti ID space

Identity space

5 Π 2 0 ------

Rle name space

Q
ώώ

TENANTt

Data

Figure 3.1: A ttributes of a shared m ultitenant filesystem.

When the storage system offers a block-level interface, each tenant accesses its own

virtual disks and hence it is hard for a particular tenant to access the data of another

tenant. On the other hand, when tenants access the shared storage with a file-level

interface, they share a single filesystem namespace. In this case, the risks of m ultitenancy

become more severe.

As shown in Figure 3.1, the filesystem itself must securely separate, protect, and

isolate a tenant’s da ta from other tenants. This separation must be complete and secure.

However, it must not affect the management, sharing, and flexibility benefits of a shared

filesystem. As we have explained earlier in subsection 2.7.2, the access control mechanism

must take into account the fact tha t a single namespace is shared between multiple parties

and properly prevent namespace collisions. All in all, if an attacker manage to gain access

to a tenan t’s local account, then his attack must be confined within th a t tenant and he

should be unable to access da ta of another tenant.

In a m ultitenant storage system, the tenant ID is what distinguishes one tenant from

the others. Authentication mechanisms must ensure tha t no other tenant can assume a

tenan t’s identity to gain data access. Furthermore, the filesystem must take into account

how the access is authorized and differentiated, so th a t only the right principals can view

and manage a tenan t’s data.

In addition, care must be taken to protect tenant data at rest and obstruct deletion or

corruption (accidental or malicious) of it. In the present work we assume that the storage o

23

provider and the filesystem servers are trusted. However, there are known techniques, like

encryption of data a t rest, th a t can provide an option to meet the security concerns of

the most sensitive tenants.

Finally, tenant da ta access must not be disrupted by denial of service attacks against

the filesystem servers and by the normal or abnormal activities of other tenants. However,

in this thesis we do not a ttem pt to provide solutions for these kinds of attacks.

3.2 Architectural goals

The following goals guided the design of the proposed scheme of filesystem access control:

• Iso la tio n : Securely isolate different tenants and prevent namespace collisions.

• S h a rin g : Enable collaboration by providing flexible file sharing among the princi

pals of the same and different tenants.

• E fficiency: Provide fast da ta access with native support of m ultitenant access

control for filesystem performance and scalability.

• C o m p a tib ility : Ensure architectural compatibility with existing scalable and re

liable filesystems.

• M a n a g e ab ility : Provide more manageability opportunities to facilitate adminis

trative tasks.

3.2.1 Isolation

We assume th a t each tenant has its own identity space and operates a group of virtual

machines with an identical pool of principals and with identical access rights to a set of

files. We further assume th a t two identity spaces of different tenants can collide. In fact,

a tenant should not be aware of how other tenants manage their identities. The filesystem

should properly isolate the identity space and access control of principals from different

tenants.

24

(1) Authorization
Request

Figure 3.2: The architecture of an object-based, distributed filesystem and its access

control mechanism.

3.2.2 Sharing

In addition to tenant isolation, our architecture must provide opportunities for fine granu

larity intra-tenant and inter-tenant file sharing. For this reason, we use a file-level storage

interface th a t enables sharing, in contrast to a block-level interface. Furthermore, we

rely on access control lists and tenant-issued credentials in order to natively authorize file

access and we avoid techniques th a t complicate file sharing.

3.2.3 Efficiency

Our architecture must also be scalable and maintain high performance standards. Thus,

we rely on an object-based distributed filesystem to handle the storage requirements of

clients (e.g. virtual machines) belonging to different tenants.

As shown in Figure 3.2(a), a collection of object storage servers (OSDs) are respon

sible to redundantly store the data and m etadata in object form. In order to provide

scalability to m etadata operations, m etadata management is separated from the storage

of data. Multiple m etadata servers (MDSs) manage m etadata, and achieve locality and

load balancing by partitioning over the object servers the name, data index, and access

permissions of different files. Each m etadata server can manage a different portion of the

namespace for better scalability. Namespace portions can also overlap to the same MDS

for better redundancy. Finally, multiple monitors (MONs) are used to manage the whole

25

system, identify component failures, and authenticate the different system components.

The system can flexible manage secure access to stored objects w ith help of the operating

system at each object server [67, 70].

Access control decisions happen a t the MDS. Object storage servers have no implicit

knowledge of access privileges or authorizations. Thus, the MDS authorizes a client

request and provides the client with a capability [29]. A capability is a token of authority

th a t specifies the access rights th a t a particular principal has over a particular system

resource (e.g. a file). The client presents the capability to the OSD, which according

to the policy th a t is specified on the received capability replies to the client with the

appropriate da ta (see Figure 3.2(b)).

- Existing security solutions th a t rely on capabilities for access control have been crit

icized for their limited scalability: the number of security operations is strongly tied to

the number of users, files, and requests. However, a recent work from Leung et al. [28]

solves this problem with the M aat protocol. More specifically, for a single tenant, the

extended capability of the M aat protocol authorizes I/O for any number of users and files

in petabyte filesystems, is cryptographically secure, and m aintains fixed size capabilities

through Merkle hash trees. O ur proposed architecture is compatible w ith such extended

capabilities.

3.2.4 Compatibility

O ur architecture must be compatible with existing scalable and reliable filesystems. For

this reason, we use traditional structures and mechanisms th a t are made available in the

most of the current widely used distributed filesystems.

3.2.5 Manageability

Finally, our architecture should perm it system adm inistrators to efficiently manage the

filesystem in terms of performing adm inistrative tasks, managing tenants, and specifying

access control policies for different tenants. Thus, we rely on a file-level interface, which

provides more manageability opportunities in comparison to a block-level interface. In

addition, we avoid techniques tha t complicate manageability tasks.

26

3.3 Trust and threat model

The clients and servers of the filesystem all run in one datacenter th a t is physically

protected and operated by an independent provider. A secure co-processor certifies the

software stack on each physical host1. A central monitor establishes the trust of the in

frastructure from the integrity of the participating nodes. Public keys (or hashes thereof)

uniquely identify tenants, principals, and services. The nodes securely communicate over

tem porary symmetric keys dynamically agreed upon via public-key cryptography. The

private keys of principals and services are permanently stored in encrypted form and only

appear in dear-tex t form at the volatile memory of authorized nodes. Before the realloca

tion of host memory across different nodes, the memory contents are scrubbed to prevent

information leakage.

The filesystem protects the confidentiality and integrity of stored da ta and m etadata by

restricting access to authorized principals. We assume th a t the provider has no malicious

intent to compromise the system security. However, there may be other reasons (e.g. poor

security practices) for which the provider is not trusted for particular applications. In

th a t case, the tenant may externally apply known techniques of encryption, hashing, and

auditing to achieve end-to-end confidentiality, integrity, and freshness [42]. Our present

study targets filesystem access control without any explicit attem pt to provide solutions

for public-key distribution, denial of service, and traffic analysis. Finally, we do not

address general distributed processing, which involves m ultitenant sharing of resources

other than storage (e.g. computation).

3.4 Summary

In the present study we are particularly interested to design a more efficient access control

architecture for m ultitenant shared storage at the file level. On the one hand, our proposed

architecture must securely isolate the identity space and access control of principals from

different tenants, while on the other should provide opportunities for flexible file sharing,

more efficient manageability, and high scalability. In addition, our proposed architecture

‘For example, hash chain generated by a TYusted Platform Module [42].

2 7

must be compatible with existing scalable filesystems. For performance reasons we rely

on an object-based distributed filesystem. In the next chapter we introduce an access

control architecture for multitenant filesystems that meets the specified criteria.

28
n

C h a p t e r 4

S y s t e m d e s ig n

'4.1 Secure multitenancy

4.2 Architectural overview

4.3 Authentication

4.4 Authorization

4.5 Optimizations

4.6 Security analysis

4.7 Summary

In this chapter we introduce a more efficient architecture for multitenant shared storage

at the file level that combines tenant isolation with native access control. Our architecture

is backwards compatible to object-based filesystems and meets the goals that we set in

the previous chapter.

4.1 Secure multitenancy

A primary objective in a multitenant environment is to securely isolate the namespaces

of different tenants. Tenant isolation is explicitly associated with the mechanisms used to

29

Figure 4.1: The centralized approach: All principals are registered to a central directory.

identify tenants and principals. Identification is the process in which an entity establishes

its identity and is securely identified by an authentication server. Identification names

paces can be local or global in scope and each identity has a valid meaning only in the

namespace where it is defined. In addition, depending on their scope, identities must be

locally or globally unique. In traditional decentralized, distributed filesystems principals

are identified by their corresponding public keys. However, a principal’s public key needs

to be certified1. A common approach to certifying a principal’s public key is for a certifi

cation authority (CA) to issue a certificate th a t contains the principal’s name, its public

key, and other attributes, such as the certificate’s starting date and time, a signature

verification key, and the issuer. The CA might be run by a local system adm inistrator;

or it might be a remote trusted service.

First, in the following three subsections, we describe possible approaches to add sup

port for secure multitenancy in a file-level storage system. Then, in subsection 4.1.4 we

present an outline of our approach.

4.1.1 Tenant isolation with centralized identification

Identity collisions th a t described in subsection 2.7.2 can be prevented by delegating the

identity management to a shared service like Kerberos [59], establishing a new centrally

administered ID space which can be shared between clients and services. Thus, instead of

relying to their local identification services, tenants are required to register their principals

to the provider’s identity service, as shown in Figure 4.1.

Inter-tenant file sharing is straightforward when a central directory is used. The

*That is a key must be securely binded to a particular principal.

30

Figure 4.2: Decentralized authentication with local authentication servers (LAS).

central directory is trusted by all the involved parties, while the user and group identifier

assignments are kept consistent, because the task of identity management is outsourced

to the central directory. Thus, a tenan t’s principal could use existing techniques to share

files with principals of different tenants.

However, such an approach is unrealistic for the tenants of a cloud provider due to

scalability and security challenges incurred by the enormous number of users involved.

Furthermore, tenants may prefer to run their own identity management systems and

would thus be forced to support two such systems simultaneously. W hat is more, this

solution is unrealistic for a cloud environment, where tenants do not tru st the cloud

provider and other tenants.

4.1.2 Tenant isolation with public-key identification

Another possible approach to prevent identity collisions is to rely on a Public Key Infras

tructure (PKI) for principal identification and authentication [40, 24]. In this approach

principals could be identified directly by their public keys and a trusted authority can

associate a public key with a particular principal.

As shown in Figure 4.2, each administrative domain could operate a local authenti

cation server and trust remote authentication servers of different domains [40, 22]. Each

local authentication server may establish a list of identities for local users and groups, and

upon request, might return them to the fileserver as credentials. Then, the fileserver can

issue these credentials for access control decisions. Inter-tenant file sharing is straight

forward. Users can directly list remote users on each file in order to grant them access

31

permissions. The user’s local authentication server might prefetch and cache users and

group definitions of remote authentication servers belonging to different domains. Thus,

during file access, the authentication server can establish identities for principals based

on local information.

The above approach enables da ta sharing across organizational boundaries. However,

a cloud environment introduces unique characteristics th a t make this solution inapplicable

to such an environment. First, in order to properly isolate each tenant, there must be

a second mechanism th a t associates each principal’s public key w ith a specific tenant.

Second, for manageability reasons, tenants might prefer to use their own identity schemes.

Third, this approach alone does not take into account th a t a single namespace is shared

between different tenants. Hence, it does not deal with namespace limitation. Fourth,

a. tenan t’s local authentication server needs to trust the remote authentication servers of

other tenants. This is unrealistic for an environment such as the cloud where tenants

possibly don’t trust each other.

4.1.3 Tenant isolation with identity mapping techniques

Identity mapping, a well-known technique from the area of grid computing [14, 58, 65]

can be used to solve the identity collision problem th a t arises when a namespace is shared

between multiple parties. Identity mapping allows a fileserver to map incoming UIDs or

GIDs from any tenant to the server’s own known UIDs and GIDs. In addition, different

ranges of server IDs can be assigned to different tenants, in order to provide tenant

isolation.

Figure 4.3 shows an example of several local-to-global mappings. First, tenan t’s A

UIDs 100-500 are mapped to fileserver UIDs 2000-2500. Second, tenan t’s B UIDs 100-

200 are mapped to fileserver UIDs 5000-5100 preventing a possible collision with tenant’s

A identities. Third, tenan t’s C UIDs 0-100 are mapped to fileserver UIDs 6000-6100.

Note th a t identity mapping enables root-squashing: Any incoming UID (or GID) 0 is

mapped to another number th a t does not have superuser privileges. In our example, the

UID 0 of tenant C is mapped to the fileserver UID 6000.

Identity mapping is performed bidirectionally. Forward mapping is performed when

a client sends a request to the fileserver. In this case, the fileserver maps the user’s local

32

TENANT* PROVIDER

Figure 4.3: The identity mapping technique: The local identity space of each tenant is

mapped to a different range of the provider’s identity space.

UID and GID to the assigned global UID and GID. Reverse mapping is performed when

the fileserver replies to the client. The server maps the user’s global UID and GID to the

corresponding local UID and GID.

Identity mapping solutions successfully isolate the identity spaces of different tenants

and thus they have been recently applied to cloud filesystems [11]. However, such identity

mapping techniques have been recently criticized as cause for limited scalability [32, 16].

In addition, the mapping of remote users to existing local user classes also poses the

threat of implicit rights amplification, where users requiring only limited rights are given

stronger than necessary. Moreover, the specification and the enforcement of the access

control policies could become a cumbersome task, because each server maintains its own

separate mappings. Even if the mappings are coordinated across different servers, access

control policies could not be specified in the granularity of users, because each tenant

maintains a variable list of users. In fact, users can not express access control policies

that refer to identities that the fileservers have not yet encountered [60]. Thus, identity

mapping techniques complicate or disable inter-tenant file sharing completely.

Furthermore, the common practice of mapping remote users to existing local user ac

counts in order to isolate different namespaces poses extra manageability difficulties. The

global-to-local mappings are either created manually by administrators [65], or the admin

3 3

istrators only specify the remote lower and higher bounds of ID values. In this case, the

mappings themselves are updated at runtime [11]. In the first approach, when thousands

of tenant users must be mapped, manually creating the mappings can be a daunting task.

In the latter, users can not express access control th a t refers to identities th a t the fileserver

has not yet encountered and as a result the global-to-local mappings for these identities

do not exist. In both of the above approaches it is not possible to maintain automatically

common user accounts and global-to-local mappings between multiple fileservers. This

leaves maintenance and synchronization of global-to-local mappings as a manual process,

or leads to the development of new tools to autom ate this task. Finally, the UID space

of the fileservers can possibly run out of numbers, because a cloud filesystem involves an

enormous number of end users.

4.1.4 An outline of our approach

Instead of registering tenant principals into a centralized directory service, or using iden

tity mapping, which faces scalability issues and complicates file sharing as well as man

ageability tasks, we rely on local authentication servers where each tenant certifies local

clients and principals. The local authentication server of each tenant in turn is certified

by a global authentication service. Tenants can use their own identity mechanism to

name principals locally. However, local identities can be associated with global identities

in order to perm it inter-tenant file sharing. In addition, we differentiate our solution

from previous approaches in th a t we combine local authentication servers with native ac

cess control by carefully storing identities and access control information directly on the

filesystem. In order to preserve tenant isolation, identities tha t refer to principals that

belong to different tenants are stored on separate places. Then, each of these places is

pinned to a distinct tenant and thus the namespace of each tenant is properly isolated.

4.2 Architectural overview

Our proposed architecture consists of five core components, as shown in Figure 4.4: the

Clients, the Tenant Authentication Servers (TAS), the M etadata Servers (MDS), the

Object Storage Servers (OSD), and the Filesystem Authentication Servers (FAS). Next,

34

S E R V E R S

Figure 4.4: An architectural overview of our proposed system,

we provide details for each of the above components.

4.2.1 Tenant Authentication Server

Every tenant certifies the identity of local clients and principals with its own authentica

tion server, th a t is securely registered to the filesystem authentication servers. Tenants,

as well as principals and groups maintain their own public/private key pairs. The tenant

authentication server securely maintains the tenan t’s private key, as well as the private

keys of each principal. Tenants, as well as clients and principals are uniquely identified

by their public ID. This public ID might be a hash of their public key.

Tenant adm inistrators, for reasons of privacy or adm inistration complexity, have the

flexibility to use their own identification mechanism to locally identify principals. How

ever, in order for cross-domain file sharing to be possible, there must be a mechanism

which certifies th a t a particular principal belongs to a particular tenant. For this reason,

the tenant authentication server issues a credential to prove th a t a public principal ID

belongs to a particular tenant. Specifically, this credential binds the principal’s public ID

with the tenan t’s ID and other local identity attributes, such as the principal’s local ID.

Credentials contain only signed identity attributes of the principals rather than policy

statem ents with perm itted actions over the requested file resources.

The TAS is a critical component of the overall system to maintain security, operation,

35

and scalability. Hence, it needs to be distributed and replicated. Having multiple authen

tication servers per tenant, not only guarantees redundancy of the stored information in

case one of them suffers an outage, but also guarantees availability and scalability to a

large number of users.

For the above reasons, it is possible to build the TAS on top of a distributed key-value-

store (e.g. Cassandra), which supports replication for fault-tolerance, is decentralized (no

single point of failure), and scalable. Each stored entry is a key/value pair and corresponds

to a tenant, client, principal, or group. The key is the public ID of the particular entry,

while the value is the quintet:

< type,publickey,privatekey, localidentity, m etadata >

The “type” element specifies the type of the entity and can be one of: tenant, client, user,

or group. The “publickey” and the “privatekey” elements correspond to the public and

the private keys of the entity respectively. The “localidentity” entry is used only for user

and group entities, and corresponds to a local identity th a t is assigned to th a t entity by

the tenan t’s local identification mechanism. Finally, the “m etadata” entry can be used

by the tenant to store additional information for an entity.

4.2.2 Client

The client component represents the interface between user processes and the filesystem,

and provides a POSIX-like interface to the users. In addition to the POSIX-like interface,

the client provides tools for managing the tenan t’s namespace and granting or revoking

access to other tenants. Each client has a public/private key pair and is registered to

a tenant authentication server of a single tenant. A trusted monitor a t the datacenter

certifies the integrity of the software stack running a t the client, in order to harden a

potential compromise of the client component.

4.2.3 Object Storage Server

Object storage servers (OSDs) are responsible for storing file da ta and m etadata. The

content of a single file is represented by one or more objects. Object storage servers are

responsible to perform the mapping of these objects to blocks on their local filesytems.

36

For security reasons, each OSD maintains its own public/private key pair and is identified

by a hash of its public key. In addition, object storage servers are securely registered to

the filesystem authentication servers.

Object storage servers are also responsible for da ta migration, replication, failure de

tection, and failure recovery. Every object is written to the prim ary OSD first, and then

the prim ary replicates it to one or several replicas to ensure redundancy. This replication

can be synchronous in order to guarantee the availability of a new or updated object, be

fore the client is notified th a t a write operation has completed. An object storage server

writes the new or updated object to its local journal before replicating it to a replica

object storage server.

4.2.4 M etadata Server

The M etadata server (MDS) is responsible to manage the filesystem namespace and pro

vide POSIX semantics to clients. For availability and performance reasons, there may

be multiple m etadata servers running on different hosts. Each MDS stores m etadata on

object storage servers in the form of objects. In fact, the MDS itself does not provide

m etadata storage, but works as an intelligent m etadata cache.

Each MDS maintains its own public/private key pair and is identified by a hash of its

public key. In addition, it is securely registered to the filesystem authentication servers.

M etadata servers manage the location of m etadata and also decide where to store new

data. Furthermore, the filesystem namespace is split into different portions. For scalability

reasons it is possible to assign each portion to a different MDS. Namespace portions can

also overlap for redundancy reasons. This mapping of namespace portions to m etadata

servers can be performed using dynamic subtree partitioning algorithms [69].

4.2.5 Filesystem Authentication Server

The Filesystem Authentication Server (FAS) certifies the identity of m etadata servers,

object storage servers, and tenant authentication servers. It is also responsible to manage

the operation of the whole system and identify component failures. For this task, the

FAS keeps information in the form of maps. For instance, to manage the cluster of object

storage servers it maintains an OSD map th a t stores information about the location of

3 7

the object storage servers and their current state.

Having multiple filesystem authentication servers is essential to guarantee redundancy

of the stored information and high availability. However, this means th a t the stored

information must be kept consistent across all of them. For this reason, it is possible

for each server to use a distributed consensus algorithm, like Paxos [26], in combination

with a local key-value-store (like the architecture of Ceph’s m onitor2). Each time a map

is modified, a new version is created and run through a quorum of servers. Only when

a majority acknowledge the change, the prim ary server will store the new version to its

local key-value-store and the new version will be considered committed.

4.3 Authentication

Authentication is the process of verification th a t an individual or an entity is who it

claims to be. In a traditional distributed filesystem, all principals are registered to a

central directory service by utilizing an existing security infrastructure, such as Kerberos

[59]. If a principal is securely identified by the directory, it receives a ticket to contact the

filesystem. A ticket is a cryptographically secure, time stam ped data structure th a t con

tains authentication and other information about a specific proposed interaction between

a client and a server. On the other hand, decentralized distributed filesystems avoid the

requirement of a central directory tha t knows all principals and group definitions. Differ

ent administrative domains maintain their own principals and policies in a local directory.

Hence, local directories issue credentials for registered principals.

As mentioned in subsection 4.2.1, tenants certify the identity of local clients and prin

cipals with their own authentication servers, which are securely registered to the filesystem

authentication servers. W hen a TAS authenticates to the filesystem authentication server,

it receives a ticket tha t grants access to the m etadata servers.

A client talks with the TAS and receives a secret key to decrypt its private key. Then,

it uses public-key cryptography to establish secure connection with the TAS. A principal

connects to a particular client and provides a secret password for authentication by a

tenant authentication server tha t also stores the password in encrypted form. After the

2http://ceph.com/docs/master/rados/configuration/mon-config-ref/. Accessed: 2013-08-19.

38

http://ceph.com/docs/master/rados/configuration/mon-config-ref/

Figure 4.5: The authentication architecture.

successful authentication, the principal receives a secret key to decrypt a respective private

key tha t is made accessible a t the client.

Upon authentication, the TAS delegates to the principal the ticket th a t grants access

to the m etadata servers (steps 1 and 2 in Figure 4.5). Then, the principal has everything

it needs to perform m etadata operations. For example, lets assume th a t a principal needs

to access a particular file. Using the client, the principal issues a m etadata request to a

m etadata server (step 3 in Figure 4.5). The request carries the MDS ticket, as well as a

credential tha t proves the identity of the principal. The MDS verifies the ticket and the

principal’s credential and upon correct verification responds with a map th a t contains the

object storage servers and the specific locations of the file’s fragments. In addition, the

MDS embeds to its reply the necessary OSD tickets. Finally, the principal receives the

m etadata server’s reply and issues file operations to the OSDs using the received OSD

tickets (steps 4 and 5 in Figure 4.5). Request freshness is ensured with a client-provided

nonce th a t the server returns modified according to a known function (e.g. increment by

one).

4.4 A uthorization

Authorization is a security mechanism used to determine principal’s access rights related

to system resources. Access rights are organized as a large m atrix called Access Control

Matrix. Each row of the matrix refers to a subject (e.g. a user or a group) and each column

Figure 4.6: The authorization architecture.

refers to an object (a resource, e.g. a file). Each cell lists the rights th a t a particular

subject has over a particular object. A column of this m atrix is a list containing all the

subjects th a t can access the object, and how. This list is called the Access Control List

or ACL. In fact, an ACL is associated with each file and lists all principals authorized to

access it along with their permissions. A principal’s identity must be known before access

rights can be looked up in the ACL. Thus, authorization depends on prior authentication.

On the other hand, a row of this m atrix is a list th a t associates with each subject a list

of objects tha t may be accessed, along with the perm itted permissions on each object.

This list is called a capability. In contrast to ACLs, capabilities do not require explicit

authentication.

The filesystem grants to a principal a perm itted file access according to the tenant-

issued credential. The authorization policy is specified in ACLs maintained by the filesys

tem. The rules of principals th a t belong to different tenants and the provider are respec

tively maintained across separate ACLs (Figure 4.6). Thus, our architecture successfully

isolates the namespaces of different tenants and the provider’s w ithout the need of identity

mapping tables. Each file is associated with a list of ACLs, one for each tenant th a t can

access the file. The ACL of a tenant for a particular file is a list of entries; each entry

consists of a principal’s identity and a representation of the perm itted actions. There is a

separate ACL where the filesystem maintains the permissions of its native principals (the

provider’s principals). A file can be configured as private or shared across the principals

of a single or multiple tenants.

For adm inistration purposes the system provides selective access to m etadata in the

form of views. We call this technique namespace filtering. Namespace filtering allows each

tenant to access a filtered view of the shared namespace. The filesystem adm inistrator

40

C l·
-Ο τι

h Q bob
4 0 alice

-O T2
41 I bob
4 0 nick

->ΓΊ Share
4 0 Images
...

■ Ο τι
f^Obob

I alice
■►ΓΊ Share

Images

<----->*
a >
hO T 2

hH 1 bob
i I nick

Share
Ό mages

ADMIN VIEW TENANTi VIEW TENANT2 VIEW

Figure 4.7: Namespace fitlering: admin and tenant view of the filesystem m etadata.

has access to the admin view, which allows specification of permissions at the granularity

of entire tenants or principals. In fact, the adm inistrator can use policies to provide

namespace limits to tenants. Instead, the tenant view allows a tenant adm inistrator

to configure m etadata made accessible to the tenant by the provider’s administrator.

Depending on whether it belongs to the provider or tenant, respectively, a principal can

only access a subset of the admin or tenant view filtered according to the applicable

permissions. Thus, by preventing a principal to name an object through namespace

filtering, the system can prevent access to the object (Figure 4.7).

4.5 O ptim izations

The number of files tha t large-scale storage systems need to store is increasing rapidly

due to the growing number of end-users involved. Associating an ACL to each file leads

to an enormous number of ACLs th a t the system needs to store and manage, and can

cost considerable storage space and performance overheads.

According to a recent study from Smetters et al. [57] users rarely change the access

rights of single files. They prefer to add new files to an existing folder with its permis

sions already set. Hence, new added files inherit the permissions of the parent folder.

The authors also state tha t permission inheritance is consistent with “best practice” rec

ommendations for using access control settings, which recommends setting permissions

rarely and rely on inheritance to manage most controls. We exploit this observation in o

41

Figure 4.8: ACL sharing with tree ACLs.

order to reduce the size of each file’s m etadata stored on the object storage servers and

managed by m etadata servers.

More specifically, we associate with each folder two ACLs per tenant, a folder ACL

and a tree AC L . The folder ACL controls access to the folder as before. On the other

hand, the tree ACL controls access to the folder’s contents. Newly created files share

their parent’s tree ACL, as shown in Figure 4.8. However, when a user explicitly sets

permissions on a particular file, then a new private ACL is created for this file, and the

file no longer shares the tree ACL with its parent folder (for example see the last file in

Figure 4.8). A child folder inherits its parent’s tree ACL.

The tree ACLs can be set by users with the help of a special tool, or they can be set

automatically. In the second case, they can be updated either statically or dynamically.

In the static updating scheme, when a new file is created in an empty folder its private

ACL is promoted to a tree ACL. From th a t point, the tree ACL does not change, unless

a user explicitly change it. However, if the majority of files in the same folder contain

private ACLs, then the benefits of ACL sharing are being lost. To mitigate this problem,

in the dynamic updating scheme it is possible to update the tree ACL taking into account

the m ajority of private ACLs. In this manner, the most frequent occurring private ACL

is first promoted to a tree ACL and then is removed from all the files th a t contain it. Our

current prototype implementation only supports the static updating scheme, however, it

is straightforward to implement the dynamic scheme in a future version.

Associating a tree ACL with each folder allows us to take advantage of the collocation

4 2

of file m etadata from a range of files th a t reside under the same folder. W hen the MDS

needs to authorize access to a given file, it fetches the whole object th a t contains the

m etadata of all the parent folder’s contents (if there isn’t already in its cache). This

object also contains the tree ACL th a t controls access to the file. Thus, the MDS does

not need to fetch extra objects from the object storage servers.

4.6 Security analysis

In this section we review the security model presented in this work. Below, we list the

security players of our architecture along with their perm itted actions:

ay P r in c ip a ls . They can be distinguished to native filesystem principals or tenant prin

cipals. We consider native principals as trusted adm inistrators who can create and

destroy data, and specify access policies by delegating read and write access to other

principals, or revoke another principal’s privilege to access data. On the other hand,

tenant principals are untrusted users (or groups of them therefore) who belong to

a particular tenant. They can read and write da ta once they have the appropriate

permissions. They can also delegate access to other users of the same tenant.

b) C lien ts . They are trusted entities used by principals to access the filesystem.

c) S to ra g e se rv e rs . They are trusted storage devices which store and return data and

m etadata upon request.

d) M e ta d a ta se rv e rs . They are trusted servers which manage filesystem m etadata and

access control policies. They also allow traversal of the filesystem namespace. Meta

data servers are responsible to securely separate the namespaces of different tenants

from each other, as well as from the native filesystem namespace.

e) A u th e n tic a t io n se rv e rs . They are trusted servers which certify other players. There

are two kinds of authentication servers: Tenant authentication servers which certify

local clients and principals and a global filesystem authentication service which certifies

tenant authentication servers, as well as the filesystem’s storage and m etadata servers.

f) W ire . It transfers da ta between players.

4 3

We define an attacker to be an entity who tries to perform operations other than those

th a t is authorized to. The security model presented in this work considers two types of

attacks: intra-tenant and cross-tenant attacks. Below, we name a number of possible

attacks th a t may be mounted on the data or the m etadata:

A tta c k o n th e w ire . An attacker may manage to intercept a ticket th a t allows

access to a m etadata or storage server. However, tickets are encrypted and therefore

cannot be forged. An attacker may also manage to capture an authorization credential.

Credentials are signed bindings of public keys with specific identity attributes. If such a

credential is intercepted, the only information th a t may be obtained is th a t a particular

principal with public key A belongs to the tenant with public key B. In addition, the

attacker can not forge the credential because it is signed. Thus, the specification of

the authorized tenant and principal in a signed credential along with a secure exchange

among nodes prevent an attacker principal from getting unapproved access to the data and

m etadata of other principals from the same or different tenant. The attacker might also

tam per with network traffic and launch a denial-of-service attack. Freshness of network

communications to protect against replay attacks or injection of non-authentic da ta is

achieved through message nonces and timestamps.

A tta c k o n a c lien t o r te n a n t p rin c ip a l. An attacker may manage to penetrate

a client and guess the password of a tenan t’s principal. He may also mount a man-in-

the-middle attack against a principal in order to learn her password. In both cases, the

attacker can access the principal’s data. Yet, the attack is either limited to the principal’s

data, or if the principal’s account has local administrative rights, it will affect all principals

of the victim’s tenant. However, the attack is confined within the tenant. In fact, the

attacker is still unable to modify the system wide access policy, which affects the native

principals of the filesystem or the principals of other tenants.

A tta c k b y a rev o k ed te n a n t . W hen a filesystem adm inistrator revokes access of

a tenant to a collection of files, the tenan t’s principals are not able to access these files

anymore. In fact, the filesystem keeps a separate ACL for each tenant, and when a

tenan t’s access to a particular file is revoked, the corresponding ACL is removed from this

file. Hence, future access to this file by principals belonging to the revoked tenant can

not be authorized.

44

A tta c k o n a n a tiv e file sy stem p rin c ip a l. While native filesystem principals are

considered trusted, an attacker may manage to gain access to a native principal’s ac

count. In this case, the attacker will be able to gain complete access to the data of all

tenants. Special protection measures make harder to forge the identity of adm inistrators,

for example by disabling access to the respective accounts from outside the datacenter.

A tta c k o n te n a n ts ’ d a ta . D ata is stored as cleartext on the storage servers, which

implies th a t tenants trust the servers and their administrators. However, there may be

reasons, such as poor adm inistration practices or poor disposal policies of defective storage

devices, for which the provider is not trusted for critical data. In this case, a tenant

may externally apply data-protection techniques, such as encryption, to strengthen the

confidentiality of their data.

4.7 Sum m ary

In the present study we design a more efficient access control architecture for m ultitenant

shared storage at the file level. On the one hand, our proposed architecture must securely

isolate the identity space and access control of principals from different tenants, while

on the other should provide opportunities for flexible file sharing, more efficient man

ageability, and high performance. For performance reasons we rely on an object-based

distributed filesystem.

Instead of relying on a centralized authentication service where each tenant user is

registered, or using mapping techniques for identity translation which face scalability

issues, in the proposed architecture each tenant has a local tenant authentication server

which certifies local clients and principals. The tenant authentication server in turn

is certified by the global filesystem authentication service. For authorization purposes

each file maintains different ACLs for each tenant. By combining per-tenant ACLs and

namespace management, we avoid extensive explicit access control infrastructure and

mapping layers, because each tenant sees a masked view of the shared namespace through

namespace filtering.

Finally, as an optimization instead of assigning a separate ACL to each file, we assign

a tree ACL to the parent folder which controls access to all the folder’s contents. However,

45

it is still possible to explicitly set permissions on a particular file. In this case, the file’s

private ACL controls access to this file which in turn is different from the tree ACL.

46

Chapter 5

Implementation details

5.1 Implementation overview

5.2 Key structures of Ceph

5.3 Multitenant access control

5.4 Optimizations

5.5 Summary

In the present chapter we describe our implementation of the proposed multitenant

access control architecture over a distributed, object-based filesystem. The prototype im

plementation is based on Ceph, a flexible prototyping platform with scalable management

of metadata and extended attributes.

5.1 Im plem entation overview

We base our implementation on Ceph, an open source distributed object-based filesystem

written in C++ and C. We call our prototype Dike1. We developed two versions of

Dike: One that does not support ACL sharing and another one that supports it. For

'In ancient Greek culture, Dike was the spirit of moral order and fair judgment based on immemorial
custom, in the sense of socially enforced norms and conventional rules [72].

47

M DS C lient - M essages O therf.’· t e l

Dike w ithout ACL sharing

Com m ents 191 128 0 139

Code 534 274 24 415

Total 725 402 24 554

Dike w ith ACL sharing

Com m ents 239 128 0 139

Code 803 274 24 416

Total 1402 402 24 555

Table 5.1: Number of added and modified lines of source code in different parts of Ceph.

the needs of our implementation, we mainly modified the MDS component, as well as

the user space client which utilizes Filesystems in User SpacE (FUSE) [15] in order to

provide filesystem access to users. We also modified some additional parts of Ceph like

the message structures. Finally, we developed administrative tools for creating tenants

and assigning tenant permissions.

As the Table 5.1 shows, the source code size of the Dike prototype without ACL sharing

is roughly 1705 lines (C++ code and comments), from which the added or modified lines

in the MDS component are 725, in the client component are 402, in the message structures

are 24, and in other parts of Ceph, including newly developed administrative tools, are

554. On the other hand, the source code size of the Dike prototype with ACL sharing is

roughly 2023 lines, from which the added or modified lines in the MDS component are

1042, in the client component are 402, and in the message structures are 24. Finally,

we added or modified 555 lines of code in other parts of Ceph, including newly created

administrative tools.

5.2 K ey structures o f Ceph

A key structure of Ceph is called buffer and is used to process data in memory. The actual

data is stored in buffer: :raw opaque objects. They are allocated with malloc, new, or

reusing a pointer provided by the caller. A variant of the malloc constructor provides an

4 8

c —Q)

(a) buffer::ptr (b) buffer::list

Figure 5.1: Key structures of Ceph tha t are used to process da ta in memory.

area that is page aligned on CEPH_PAGE_SIZE, which is equal to the system’s page size.

The b u f f e r : :raw area can only be accessed through a b u f f e r : : p t r pointer. As the

Figure 5.1(a) shows, it addresses the b u f f e r : :raw bytes in the range [of f set , o f f s e t +

length]. Bytes can be copied in or out within the [of f set , o f f s e t + length] range. In

case the underlying b u f f e r : :raw extends beyond o f f s e t + length, more bytes can be

appended.

The b u f f e r : : p t r methods are very flexible and can be used to implement more com

plex data structures such as lists (see Figure 5.1(b)). In particular, the b u f f e r : : l i s t

structure th a t Ceph provides is a list of b u f f e r : : p t r pointers.

The extended attributes are managed as key/value pairs stored in a C + + map struc

ture (red-black tree). Each entry of the map corresponds to a key/value pair, where the

key is a name and the value is a b u f f e r : : p t r da ta structure which keeps the data.

Another im portant structure of Ceph is the map structure (implemented as a C + +

STL map) th a t is used to maintain information about the fragments of each cached folder

inode. Each entry of the map is a set of key/value pairs, where the key corresponds to

the fragment ID and the value corresponds to the actual fragment data. In addition, the

folder inode contains a folder fragment tree which is always consistent with the folder

fragment map. This tree represents an entire namespace and its partitions. It essentially

informs the MDS where fragments are split into other fragments and by how much. The

goal is to use a binary split strategy to partition the namespace. The MDS caches a

pre-configured number of inodes. This cache size provides a limit on how many files can

be in use simultaneously with good performance, but not on total number of files in the

system. Furthermore, whenever a folder is read off disk, the MDS needs to be able to

49

hold the whole folder in memory, and if the folder holds more entries than the MDS cache

can hold, then the overall performance degrades.

5.3 M ultitenant access control

Into Ceph we added native support for m ultitenant access control according to the pro

posed design. We deliberately avoid global-to-local identity translations because they

introduce performance bottlenecks, replica inconsistencies, and impersonation risks.

A registered client shares a secret key with the monitor. W hen a user requests from the

client to mount a filesystem, the client authenticates to the monitor and receives a session

key encrypted with the secret key. The session key is used by the client to securely request

from the monitor a ticket th a t authenticates the client to the MDSs and OSDs. The ticket

is encrypted with a secret key th a t the monitor shares with the MDSs and OSDs. The

client uses this ticket to initiate a new session with the MDS. The MDS receives from

the client a message of type MClientSession and sends back the capability (i.e. ticket)

th a t enables access to the root folder a t the OSDs. The returned capability contains the

inode number, the perm itted operations, the replication factor, and the striping method

of a file. From the capability the client derives an object identifier, which is hashed to

the placement group of OSDs th a t contain the object replicas.

The session between a client and the filesystem is limited to only serve the perm itted

actions of the requesting principal. In a filesystem mount request to an MDS, a client has

to securely identify the respective tenant. We derive a unique tenant identifier (TID) by

applying the RIPEMD-160 cryptographic hash function on the public key of the tenant.

Then, we include the TID into an expanded MClientSession request and send it to the

MDS over a secure session. For authorization purposes the request should additionally

carry a tenant-issued credential tha t we do not yet support in our prototype.

The MDS extracts the TID from the MClientSession message and stores it as a field

of the session state. Our current implementation only supports Unix-like permissions of

individual users and groups, but makes it straightforward to add access-control lists in

a future version. We facilitate the system administration with the support of multiple

filesystem views. Based on the supplied TID, a client obtains tenant view of the filesystem

50

M e th o d D e sc rip tio n

boo l check_tenant_perm () Check tenant permission

v o id g ra n t_ ten an t_ p en n () G rant tenant permission

v o id se t_ u n ix _ u id () Set user ID

vo id se t_ u n ix _ g id () Set group ID

vo id set_unix_m ode() Set file permissions

u id _ t g e t_ u n ix _ u id () Return user ID

g id _ t g e t_ u n ix _ g id () Return group ID

mode_t get_unix_m ode() Return file permissions

Table 5.2: The methods th a t we added into the class CInode to manage the tenant

permissions of an Inode.

for access by a principal of the tenant.

For global configuration needs, we also provide the admin view th a t enables full access

permissions to the filesystem. We extended the CInode class of Ceph with eight new

operations to set and retrieve the permissions of tenants and individual principals as

shown in Table 5.2. W hen the tenant view is used, the permission attributes are stored

in the extended attributes of the filesystem; otherwise the regular fields of the inode are

used (see Figure 5.2). We use as key the string “T ID \\perm type” where TID is the tenant

identifier and perm type is set to "UNIX11 for Unix permissions or "ACL" for the ACL model.

In the Unix model the value of the pair can be set to "UIDiGIDimode": LTD and GID refer

to the user and group ID, while mode represents the Unix file permissions. We modified

all the filesystem functions of the original Ceph related to permissions handling, including

the constructor of a new inode. If the client uses the admin view, then we directly update

the regular inode of the filesystem. Otherwise we save the user/group IDs and the file

permissions into extended attributes keyed under TID; we also update the regular inode

of the filesystem according to the user/group IDs and file mode of the parent inode. Thus,

special files (e.g. block device files) are stored as regular files at the filesever and they are

presented as special files only in the particular tenant view.

A capability is only sent to a client whose tenant has access to the file. In order to

allow or deny a file access to a client, we modified the returned capability to include

51

INODES

OBJECT
PO O LS

Figure 5.2: Prototype implementation of the proposed m ultitenant access control archi

tecture.

the tenant identifier and the respective file ownership m etadata. A client cannot directly

access the extended attributes th a t contain access control information; instead only the

filesystem is allowed to read and update extended attributes on behalf of authorized client

requests.

5.4 O ptim izations

Instead of assigning tenant permissions to each file separately we perm it a collection of

files to inherit the access control information stored in their parent folder. As we explained

in section 4.5, we store a tree ACL to each folder which controls access to the folder’s

contents, in order to reduce the number of ACLs tha t the system needs to store and

manage.

Hence, a folder’s extended attributes contain two types of permission attributes for

each tenant: (a) the folder permission attributes which control access to the folder, and

(b) the tree permission attributes which control access to the folder’s contents. We dif

ferentiate between folder and tree permissions by extending the value of each a ttribute

in order to contain the attribu te type. For example, in the Unix model the value of an

attribute can be set to "TYPE:UID:GID:mode", where TYPE can be either " fo ld e r" or

" tre e " .

52

Access to every newly created file is controlled by the tree permissions stored in its

parent folder. However, if a user explicitly set permissions on a particular file, then a new

entry will be stored in the file’s extended attributes for the user’s tenant.

In order to authorize a request to a particular file, the MDS initially checks the file’s

local extended attributes to find a permission attribute. If a private permission attribu te

exists, then the MDS authorizes the request according to this attribute. Otherwise, it

checks the tree permissions stored in its parent folder’s extended attributes.

5.5 Sum m ary

We base our prototype of the proposed architecture on Ceph, an open source, object-

based, distributed filesystem. For the needs of our prototype we mainly modify the client

and the MDS components of Ceph.

The MDS stores per tenant ACLs in the extended attributes of each file and folder. In

a filesystem mount request to an MDS, a client securely identifies the respective tenant.

Then, every time th a t the MDS needs to authorize access to files or folders, it checks

the permission attributes of the given tenant. The filesystem’s native users, however,

are handled separately. For these users, the user/group IDs and the access permissions

are stored directly in the regular inode fields. Thus, the filesystem’s native users have a

complete view of the shared namespace (i.e. the admin view), in contrast to tenant users

who have a filtered view (i.e. the tenant view).

As an optimization, we perm it files to share a single ACL per tenant which is stored

in their parent’s extended attributes. This optimization decreases the number of ACLs

th a t the system needs to store and manage.

53

Chapter 6

Experimental evaluation

6.1 Experim entation environment

6.2 Methology

6.3 Microbenchmarks

6.4 Application-oriented benchmarks

6.5 Summary

We experimentally evaluate our prototype implementation with microbenchmarks and

application-level benchmarks to answer the following questions: (a) how much overhead

does our m ultitenant prototype introduce to a single-tenant filesystem, (b) how well does

our prototype compare w ith a cloud filesystem which uses identity mapping techniques,

and (c) how much do long ACLs affect system performance and how ACL sharing comes

up with this problem.

6.1 E xperim entation environm ent

We developed a prototype of the proposed architecture (which we call Dike) over Ceph

version 0.61.4 (Cuttlefish) and we evaluated it on two environments: (a) a local cluster

and (b) a cloud computing platform. In each figure we state whether we use the local or

the cloud environment for experimentation.

54

O c p u■ » ■. . r*- .* 'v**· ·. ^ - h a m '
.·■·...· '-1* ‘rf"■

-Disk
. . : . . . - ,· » ■ N E T

, . * .. , / „ ^ V M ^ I

M DS

1 Intel E5345 6 GB 2x250 GB, 7200 RPM Linux 3.9.3 1 Gbps -

OSD

3 Intel E5345 3 GB 2x250 GB, 7200 RPM Linux 3.9.3 1 Gbps -

M O N

1 Intel E534-5 3 GB 2x250 GB, 7200 RPM Linux 3.9.3 1 Gbps -

H O ST DOMO

6 Intel E5345 4 GB 2x500 GB, 7200 RPM Linux 3.5.5 1 Gbps Xen 4.2.1

C LIEN T D O M U

36 1 VCPU 512 MB 15 GB root, 2 GB swap Linux 3.9.3 bridged -

Table 6.1: Local experimentation environment.

6.1.1 Local testb ed

Table 6.1 summarizes the local experimentation environment. It consists of HP ProLiant

DL140 G3 server nodes running Debian 6.0 GNU-Linux. We used up to five nodes as

filesystem servers and up to six nodes as client hosts. Each filesystem server node is

equipped with one quad-core 64-bit Intel Xeon E5345 processor a t 2.33 GHz, 3-6 GB

RAM, two SATA 250 GB 7.2 KRPM HDs, and runs Linux kernel 3.9.3. The server with

the 6 GB of RAM is used as MDS, while the other three are used as OSDs with 2-way

replication, and the last one as the cluster monitor. The OSD nodes have their second

hard disk form atted with the XFS filesystem and use it to store objects. For journaling

purposes they have a 1 GB journal file stored on the first hard disk. On the other hand,

client host nodes are equipped with two quad-core 64-bit Intel Xeon E5345 processors

a t 2.33 GHz, 4 GB RAM, two SATA 500 GB 7.2 KRPM HDs, and run Xen hypervisor

(version 4.2.1) and Linux kernel 3.5.5. Each node has one activated gigabit network link.

We use paravirtualized VMs as clients each one set up with a single dedicated CPU

core and 512 MB of RAM. The guest OS is Debian 6.0 GNU-Linux with Linux kernel

3.9.3. Each VM has two virtual disks connected to the host through a bIktap-2 device:

one with a root filesystem (15 GB) and another used as swap space (2 GB). The machines

are connected using bridged networking on each host.

55

T ype C P U R A M D isk K ernel N E T '

FILESY STEM SERVERS

ml.xlarge 4 VCPU 15 GB 4x420 GB, Root on EBS Linux 3.9.3 high

M IC R O B E N C H M A R K CLIEN TS

tl.micro 1 VCPU 615 MB Root on EBS Linux 3.9.3 Very low

A PP L IC A T IO N LEVEL CLIEN TS

cl.medium 2 VCPU 1.7 GB 1 x 350 GB, Root on EBS Linux 3.9.3 Moderate

Table 6.2: Cloud computing environment (Amazon Web Services).

6 .1 .2 C lou d c o m p u tin g p la tfo rm

We used resources from Amazon EC2 [2] in order to compare our prototype with existing

solutions. Our EC2 experiments use “m l.xlarge” virtual machine instances for fileservers

(having four 64-bit cores, 15 GB of memory, 4x420 GB ephemeral storage, and high

network performance). For clients, we use two types of instances. For microbenchmarks,

we use “t l . micro” virtual machine instances with one 64-bit core and 615 MB of memory.

On the other hand, for application-level benchmarks, which are more computationally

intensive, we use “cl.m edium ” instances (having two 64-bit cores, 1.7 GB of memory, and

moderate network performance). All instances run the Red Hat Enterprise Linux Server

release 6.4 (Santiago) with the Linux kernel 3.9.3. In addition, all instances run in the

US East region (Table 6.2).

Each time, we have one of G lusterFS1 (version 3.2.7), HekaFS2 (version 0.7), Ceph

(version 0.61.4), or Dike installed on three fileserver VMs. As the Table 6.3 shows, in

the case of Ceph (or Dike) all VMs are OSDs, however, one of the VMs is also the MDS,

while another one is both an OSD and the cluster monitor. In the case of GlusterFS (or

HekaFS) all VMs are fileservers who manage both data and m etadata. At this point, it

should be noted tha t a more fair configuration for Ceph and Dike would be to use three

active MDSs, one per VM, because the fileservers of GlusterFS manage both data and

m etadata. However, the feature of having multiple active MDSs in Ceph is considered

GlusterFS is an open source, distributed file system developed by RedHat. It consists of layers, where

features (also known as translators) can be added or removed as per the requirement [10].
2HekaFS provides a set of translators to make GlusterFS more suitable as a cloud filesystem. It uses

identity mapping techniques to isolate the namespaces of different tenants [11].

56

^y-.'FUesyStiem ·' ‘ • 'S e iw e r 'if r#:;
OSD+MDS 1 ml.xlarge

Ceph/Dike OSD+MON 1 ml.xlarge

OSD 1 ml.xlarge

GlusterFS/HekaFS File server 3 ml.xlarge

Table 6.3: Different filesystem configurations on AWS.

unstable3 in the version we are using. Hence, we use only one active MDS in the cases of

Ceph and Dike. Finally, all VMs have their first local disk (ephemeral) form atted with the

XFS filesystem and use it to store files or objects. In the case of Ceph, the OSD journal

is stored on the second local disk of each VM. In all configurations we use a replication

factor of three.

6 .2 M e th o d o lo g y

Here we explain the experimental methodology used to evaluate Dike. Our analysis con

centrates on m etadata performance and is performed in three steps. First, we evaluate

the overhead imposed by the Dike prototype of m ultitenant access control in comparison

to the single-tenant Ceph. Second, we analyze both the overhead of Dike in comparison

to Ceph, as well as the overhead of HekaFS in comparison to GlusterFS on which it is

based. Then, we compare these overheads with each other in order to understand which

m ultitenant access control architecture introduces the lowest performance overhead. Fi

nally, in the last step, we measure the impact of long ACLs. For this reason, we use an

administrative tool th a t we developed in order to assign permissions for multiple tenants

in a collection of files and folders. We also evaluate the performance improvements of

ACL sharing.

We first conduct microbenchmark experiments to measure the performance of basic

m etadata operations. In a next step, we experiment with application-oriented benchmarks

for applications in distributed environments in order to explore the performance of the

proposed architecture in real world applications.

3 As discussed here: http://ceph.com/dev-notes/cephfs-mds-status-discussion/. Accessed: 2013-09-10.

57

http://ceph.com/dev-notes/cephfs-mds-status-discussion/

We repeat each experiment to constrain the 95% confidence-interval half-length within

5% of a selected parameter. Before each repetition of every experiment we flush the buffer

cache of all clients and servers. We also format the storage device used for experimentation

of every fileserver. Furthermore, we set the size of the internal MDS cache to a large

enough value in order to make sure th a t entries were not flushed from the caches by the

time they were needed again.

6 .3 M icro b en ch m a rk s

First, we measure the system performance with the m dtest vl.9 .1 [34] from LLNL. This

is a microbenchmark running in the M PI environment over a parallel filesystem. Each

spawned MPI task iteratively creates, stats, and removes a specified number of files and

folders. We repeat each experiment to constrain the 95% confidence-interval half-length

within 5% of the average file-stat throughput.

6 .3 .1 O p tim a l n u m b er o f p r o c esses p er c lien t

Theoretically, with the given hardware resources we could launch a large number of client

processes to emulate the behavior of a medium size supercomputing environment, but

the excessive loading of local client resources could result in much lower than expected

performance. In this manner, we measure the performance of a single client while we

change the number of client processes. The goal of this experiment is to find the optimal

number of processes for forthcoming experiments. We have Dike installed on the fileservers

of the local testbed. Dike is configured to support a single tenant. A to tal number of

31104 created files/folders are equally divided among the tasks of the experiment. We

notice th a t 12 processes per client give the highest throughput for the m ajority of the

examined operations. For example, increasing the number of processes from 1 to 12 leads

to higher throughput for file create by about a factor of 4. The only exception is the

folder sta t operation, where a single client process gives 1237 ops/s and lies 0.9% higher

th a t 12 client processes. Finally, as shown in Figure 6.1 the overall throughput of all the

examined operations drops slightly, when we increase the number of processes to 24.

Thus, with our existing setup, experiments with 12 processes per client yield the

58

mdtest - Dike / Local
1 Client, 1 Tenant

1 6 12 24

Number of processes

Figure 6.1: Finding the optimal number of processes per client for the m dtest microbench

mark on the local tesdbed.

optimal client side IOPS rate. Therefore, in the subsequent experiments with the m dtest

microbenchmark on the local testbed all results are presented with 12 client processes.

In addition, we conduct the same type of experiment on the cloud testbed (see Figure

6.2). Again, we measure the performance of a single client while we change the number

of processes. We repeat the experiment for two cases: Firstly, we have Ceph installed

on the fileservers, while secondly we have GlusterFS installed. We would like to find the

optimal number of client processes for both baseline filesystems. A to tal number of 1000

created files/folders are equally divided among the tasks of the experiment.

In the case of Ceph (Figure 6.2(a)) we notice th a t 5 processes per client give the

highest throughput for the m ajority of the examined operations. For example, increasing

the number of processes from 1 to 5 leads to 38% higher throughput for the file create

operation. However, when we further increase the number of processes from 5 to 10, the

throughput of file create drops nearly 4.5%. The only exception is the file s ta t operation,

where 1 client process gives 1332 ops/s and lies 6% higher than the throughput of 1257

ops/s which is achieved with 5 client processes.

In the case of GlusterFS (Figure 6.2(b)) we reach the same conclusion: 5 processes per

client give the highest throughput for all the examined operations. However, this time the

benefits of 5 client processes are more clear. W hen we increase the number of processes

from 1 to 5, the throughput of the folder s ta t operation increases by about a factor of 5

and reaches 3115 ops/s. However, when we further increase the number of processes from

5 to 10, it drops to 104 ops/s.

59

mdtest - Ceph / AWS mdtest - GlusterFS / AWS
1 Client 1 Client

7000

^ 6000

2 . 5000

h i dir-stat
file-stat

7000

£ 6000

O. 5000
dir-create

_ ■■ file-create
&
^ 4000

j t 3000
03

O,
~ 4000

■c 3000
03 m

O 2000 O 2000 - ____ ■w
H 1000

0
- ■ ■ ■ w

H 1000

0

dir-stat
file-stat
dir-create
file-create

10 10

N um ber of processes Num ber of processes

(a) Ceph. (b) Gluster.

Figure 6.2: Finding the optimal number of processes per client for the m dtest microbench

mark on AWS.

In conclusion, with 5 processes per client we get the best client side IOPS rate for both

Ceph and GlusterFS. Thus, in the subsequent experiments with the m dtest microbench

mark on the cloud testbed all results are presented with 5 client processes.

6 .3 ,2 S c a la b ility w ith n u m b er o f files

In Figures 6.3(a) and 6.3(b) we measure the m etadata performance of Ceph and Dike

for different numbers of to tal files and folders on the local testbed. We create a file tree

with depth 1 and 10 folder leafs. In each case, wre equally divide the total number of

files/folders to leafs. We use one client with 12 client processes. Dike is configured to

support 36 tenants.

The measured performance is comparable between Ceph and Dike. The overhead

of Dike on all the examined operations lies between 0.4-11%. The file and folder stat

operations seem to be less affected by Dike in comparison to the respective creations.

For example, the throughput of file sta t with 30000 files reaches 1683 ops/s wrhen Dike

is used. It lies only 2.2% lower than the maximum throughput of 1721 ops/s which is

reached w'hen Ceph is used. On the other hand, the throughput of file create, when 30000

files are created, reaches 250 ops/s with Dike and lies 11% knver than Ceph with 282

60

mdtest / Local
1 Client

mdtest / Local
1 Client

File ops & number of files Folder ops & number of folders

(a) File operations performance with

Ceph and Dike.

(b) Folder operations performance

with Ceph and Dike.

Figure 6.3: Ceph vs Dike with different number of to ta l files and folders. Dike supports

36 tenants.

ops/s. We also notice th a t in both Ceph and Dike the throughput of file/folder s ta t and

folder create operations drops as the number of to ta l files and folders increases. However,

the throughput of the file create operation increases slightly as the to ta l number of files

increases from 30000 to 120000 and finally drops when the to tal number of files reaches

300000.

6.3.3 Scalability with number of clients

In Figure 6.4 we measure the scaling of m etadata operations with the number of MPI

processes that are launched on available clients. We use the local testbed for experimen

tation. We examine the cases th a t either every client creates files in a private folder of the

filesystem or all clients use a shared folder. Each time, a total number of 31104 created

files and folders are equally divided among the tasks of the experiment. Dike supports 36

tenants and has each client accessing the filesystem through a dedicated tenant.

Figure 6.4(a) shows the performance scaling of Dike with number of clients. In the

case of the private folder tests, the throughput of the majority of the examined operations

continues to increase as we increase the number of clients from 1 to 36. In particular,

61

mdtest / Local mdtest / Local
Scalability of Dike 36 clients

Type of operations Type of operations

(a) Scalability of Dike. (b) Ceph vs Dike.

Figure 6.4: Performance comparison of Ceph and Dike across different number of clients.

Dike supports 36 tenants.

the throughput of the create operation increases by a factor of 5.5, while the throughput

of sta t increases by a factor of 37. However, the throughput of remove drops beyond 24

clients. This behavior is reasonable given the different intensity of contention caused by

shared (e.g. stat) or exclusive (e.g. remove) locks respectively involved in the operations.

On the other hand, in the case of the shared folder tests, only the throughput of stat

increases from 1134 ops/s to 4948 ops/s, as we increase the number of clients from 1 to

36. The throughput of create remains stable a t around 40 ops/s, while the throughput

of remove drops from 59 ops/s to 43 ops/s. Again, this behavior is reasonable because

the sta t operation involves shared read locks, while the create and remove operations

need exclusive write locks. Overall, the throughput of all the examined operations on

the shared folder tests is lower than the respective throughput on the private folder tests

because of higher lock contention.

In Figure 6.4(b) we compare the throughput of m dtest running on 36 clients. The

measured performance is comparable between Ceph and Dike. The overhead of Dike lies

between 0-20%. Dike has no negative effect on file s ta t operation. Instead, file sta t is

improved by 1% when Dike is used. The operation tha t is mostly affected by Dike is file

create over a private folder, where Dike with 1022 ops/s lies 20% lower than Ceph with

62

1287 ops/s. This is likely the result of the added code within the inode creation process,

which updates both the inode and its extended attributes.

6 .3 .4 C o m p a riso n w ith o th e r m u lt ite n a n c y so lu tio n s

In Figure 6.5 we measure the multitenancy overheads incurred by Dike and HekaFS over

their baseline equivalents. The goal of this experiment is to understand how existing

solutions th a t use identity mapping techniques to support multitenancy scale to a large

number of tenants, and how they compare with our prototype of the proposed access

control architecture. This time we use the Amazon Web Services for experimentation.

Before presenting the results, we mention some of the key features of HekaFS. HekaFS

is a translation layer tha t adds multitenancy functionality to GlusterFS. In order to

isolate the identity space of each tenant it uses identity mapping to map local tenant IDs

to globally-unique IDs. It stores these mappings in a map file. During the initialization

phase, the translator reads the ID mappings from the map file and loads them into an

in-memory table structure. Each time th a t the translator needs to perform a mapping

from a local tenant ID to a global ID or the opposite, it locks the whole in-memory

mapping table, and then performs a linear search to find the requested entry on the table.

When the translator encounters a new local tenant ID, it first adds a new mapping to the

in-memory table, and in a next step it writes the whole table to the mapping file in order

to make the change persistent.

In Figures 6.5(a) and 6.5(b) we compare Ceph and Dike with m dtest across different

number of clients4. In the case of Dike, a client accesses the filesystem through a dedicated

tenant. Each time, a to tal number of 48000 created files and folders are equally divided

among the tasks of the experiment. We configure Dike to support either 1000 tenants

(denoted as Dike-lk) or 5000 tenants (denoted as Dike-5k). The scalability of both file

and folder m etadata operations is comparable between Ceph and Dike. The throughput

of all the examined operations continues to increase as we increase the number of clients

from 1 to 32. W ith 32 clients we get the best IOPS rate. The only exception is the remove

operation whose maximum throughput drops slightly beyond 16 clients. However, this is

reasonable due to lock contention, since the remove operation involves exclusive locks.

4 We use tl.micro EC2 instances for clients.

63

mdtest / AWS mdtest / AWS
Ceph vs Dike Ceph vs Dike

100000 ---------
h Ceph

10000 k* ezj Oike-1k
c n Dike-5k

1000 fc-

1 0 0 r

10 r

I I
\ \ > \ \ > \ \ %% % % \ % \
1 Client 16 Clients 32 Clients

File operations Folder operations

(a) File operations performance with (b) Folder operations performance

Ceph and Dike. with Ceph and Dike.

mdtest / AWS mdtest / AWS
GlusterFS vs HekaFS GlusterFS vs HekaFS

100000

10000

1000

m GlusterFS
^ c=3 HekaFS*1k

a HekaFS-5k

100 r

10 \r

1 i
1 Client 16 Clients 32 Clients

File operations Folder operations

(c) File operations performance with (d) Folder operations performance

GlsuterFS and HekaFS. with GlsuterFS and HekaFS.

Figure 6.5: Performance comparison of Dike and HekaFS across different number of clients

and supported tenants with mdtest.

Figure 6.5(a) compares the performance of different file m etadata operations between

Ceph and Dike. W ith 1 client, the throughput of the file create operation is 81 ops/s with

Ceph, while it reaches 78 ops/sec with Dike and 1000 supported tenants. Increasing the

number of supported tenants to 5000 seems not to affect throughput, which reaches 80

ops/s and remains slightly below 81 ops/s. Similarly, Dike incurs a limited overhead on

64

the file remove and file s ta t operations. The overhead of Dike on file remove lies between

4-5%, while its overhead on file s ta t lies between 0-2%. W ith 16 clients, the throughput

is nearly identical between Ceph and Dike. Only a limited overhead of 1% on the file sta t

operation is incurred by Dike when it supports 5000 tenants. The most interesting case,

however, is when 32 clients run the m dtest microbenchmark in parallel. In this case we

get the best client-side IOPS rate for both Ceph and Dike. The overhead incurred by Dike

when it is configured to support 1000 tenants lies between 0-12%. W hen we increase the

number of supported tenants to 5000, the performance is comparable with the previous

case with only a 2% overhead on the file create operation.

Figure 6.5(b) compares the performance of different folder m etadata operations be

tween Ceph and Dike. W hen 1 client runs the m dtest microbenchmark, Dike does not

affect the throughput of folder create operation. In addition, the throughput of folder

remove is only reduced by 4%, when Dike with 5000 tenants is used. Finally, Dike incurs

an overhead of 11% on the file s ta t operation when it either supports 1000 or 5000 ten

ants. W ith 16 clients, we observe a noticeable decrease of 50% in throughput of the folder

create operation when we use Dike with either 1000 or 5000 tenants. On the other hand,

the throughput of folder remove decreases slightly by 5% with Dike, while the throughput

of folder sta t is nearly identical between Ceph and Dike. As in the case of file m etadata

operations, the best client-side IOPS rate is achieved with 32 clients for both Ceph and

Dike. The overhead incurred by Dike when it is configured to support 1000 tenants, lies

between 0-16%. The folder create is the only operation th a t is affected by Dike. In partic

ular, its throughput reaches 1655 ops/s when we use Ceph. However, when we use Dike

with 1000 tenants, it reaches 1390 ops/s, which implies a reduction of 16%. Increasing

the number of supported tenants on Dike to 5000 seems not to affect throughput which

reaches 1401 ops/s. This indicates that Dike scales well to a large number of tenants.

In Figures 6.5(c) and 6.5(d) we compare HekaFS and GlusterFS with m dtest across

different number of clients. In the case of HekaFS, a client accesses the filesystem through

a dedicated tenant. Again, a to tal number of 48000 created files and folders are equally

divided among the tasks of the experiment. We configure HekaFS to support either 1000

tenants (denoted as HekaFS-lk) or 5000 tenants (denoted as HekaFS-5k). When we use

GlusterFS, the throughput of all the examined operations continues to increase as we

increase the number of clients from 1 to 32. W ith 32 clients we get the best IOPS rate.

65

In HekaFS with 1000 tenants the throughput of all the examined operations, except the

folder stat, continues to increase as we increase the number of clients from 1 to 32, but

with a lower rate in comparison to GlusterFS. However, the scalability of HekaFS is

dramatically affected when the number of supported tenants reaches 5000. For example,

the throughput of the file s ta t operation reaches 2576 ops/s when 16 clients run the

m dtest microbenchmark. Nevertheless, when we increase the number of clients to 32, the

throughput of file s ta t drops to 2290 ops/s.

Figure 6.5(c) compares the performance of different file m etadata operations between

GlusterFS and HekaFS. W ith 1 client, the throughput of the file create and file remove

operations is not affected by HekaFS. However, the throughput of file sta t is reduced by

15% when we use HekaFS with 5000 tenants. Similarly, when 16 clients run the m dtest

microbenchmark, the performance of all the examined operations is nearly identical be

tween GlusterFS and HekaFS. Only the throughput of file s ta t is reduced by 3% when we

use HekaFS with 5000 tenants. However, in the case of 32 clients, the overhead incurred

by HekaFS when it is configured to support 1000 tenants is considerable and lies between

10-49%. The most affected operation is the file sta t whose throughput is reduced by 49%

when we use HekaFS. Additionally, the throughput of file create reaches 1690 ops/s with

GlusterFS, but with HekaFS it only reaches 1158 ops/s. This implies a 31% reduction

of its throughput. On the other hand, file remove is less affected and its throughput is

reduced by nearly 10% with HekaFS. W hen we increase the number of supported ten

ants to 5000, the system performance degrades even further and the incurred overhead

of HekaFS over GlusterFS lies between 38-83%. Again, the file s ta t is the operation th a t

is mostly affected by HekaFS. Its throughput reaches 689 ops/s and lies 83% below its

corresponding throughput when GlusterFS is used. The other two examined m etadata

operations are also affected by HekaFS. In particular, the throughput of file create is

reduced by 59%, while the throughput of file remove is reduced by 38%.

Figure 6.5(d) compares the performance of different folder m etadata operations be

tween GlusterFS and HekaFS. When 1 client runs the m dtest microbenchmark, the perfor

mance of all the examined operations is nearly identical between GlusterFS and HekaFS.

However, with 16 clients HekaFS begins to adversely affect their throughput. In partic

ular, the throughput of folder create is reduced by 24% when HekaFS with 1000 tenants

is used, and when HekaFS supports 5000 tenants, it is reduced by 47%. The throughput

66

100

mdtest - 32 Clients / AWS
Multitenancy overhead

Φ>o

80

60

40

20

0

File operations Folder operations

Operations

Figure 6.6: M ultitenancy overhead comparison between HekaFS and Dike.

of folder sta t, however, is more seriously affected by HekaFS. W hen 1000 tenants are

supported, its throughput reaches 3224 ops/s and is 56% below the throughput of 7428

ops/s, which is achieved with GlusterFS. Adding 5000 tenants to HekaFS impacts the

performance of folder s ta t further. In this case, its throughput only reaches 2574 ops/s

and lies 65% below the baseline throughput performance. W ith 32 clients, the overhead

incurred by HekaFS is more considerable. As in the previous case of 16 clients, the folder

sta t is the operation th a t is mostly affected by HekaFS. Its throughput reaches 7114 ops/s

when HekaFS with 1000 tenants is used, and lies 49% below 13858 ops/s which is achieved

with GlusterFS. Increasing the number of tenants to 5000 in HekaFS leads to a further

reduction of the folder sta t throughput. In this case, its throughput only reaches 2245

ops/s and is 84% below the baseline throughput performance.

Finally, in Figure 6.6 we summarize the overheads incurred by Dike and HekaFS over

the filesystems th a t they are based in the case of 32 clients. As the figure shows, Dike with

1000 supported tenants incurs an overhead of up to 12% to the file m etadata operations.

This overhead is comparable with the maximum incurred overhead of 14% when the

system supports 5000 tenants. In addition, Dike with 1000 tenants incurs a maximum

overhead of 16% to the folder m etadata operations, while with 5000 tenants the overhead

is up to 15%. On the other hand, HekaFS with 1000 supported tenants incurs an overhead

of up to 49% to the file and folder m etadata operations. However, the maximum incurred

overhead reaches 84% when the number of supported tenants is further increased to 5000.

In conclusion, Dike incurs a limited overhead and scales well to a large number of

6 7

tenants. The operation th a t is mostly affected by Dike is file/folder create. This is in

par with the experiments conducted in the local cluster (see subsection 6.3.3). O n the

other hand, the mapping layer of HekaFS can be a performance bottleneck for scalability

when the number of tenants increases. The operation th a t is m ostly affected by HekaFS

is file and folder s ta t. This is reasonable because on each s ta t operation HekaFS needs

to perform a reverse identity mapping in order to m ap a global ID to th e corresponding

tenant local ID. Thus, when the mapping table gets too large, th e tim e needed to search

the table or to write the table to disk increases, and as a consequence th e overall system

performance is being reduced.

6.4 A pplication-oriented benchm arks

We conduct application-level experiments in order to evaluate th e performance of Dike in

real life collaborative use cases.

6.4.1 M apR educe application

The first application th a t we use is Stanford’s Phoenix verson 2 |50j shared-memory

implementation of Google’s MapReduce. O ur MapReduce application is called reverse

index: it receives a collection of HTML files and generates the tex t index with links to

the files. O ur dataset5 contains 78,355 files in 14,025 folders and occupies 1.01 GB. We

measure the to ta l running time, as well as the latency breakdown of several m etadata

operations during the index building. We repeated each experiment to constrain th e 95%

confidence-interval half-length within 5% of the average to ta l running time.

6.4.2 Com parison o f C eph and D ike w ith M apR educe

In Figure 6.7 we compare Ceph and Dike with MapReduce across different num ber of

clients on the local testbed. Dike is configured with 36 tenants. Each client on Dike

accesses the filesystem through a dedicated tenant. The to ta l running tim e (Figure 6.7(a))

Stanford’s reverse index dataset: h ttp ://mapreduce-stanford.edu/datafiIes/ reverse _index.tar.gr. Ac

cessed: 2013-08-19.

68

http://mapreduce-stanford.edu/datafiIes/

MapReduce / Local
Ceph vs Dike

MapReduce / Local
Ceph vs Dike

S 6
>1 5o
| 4
S 3 c
.2 2

2 1 φ 1 a
O o

1 Client 24 Clients 36 Clients

Number of clients

(a) Total time to build the index. (b) Latency of metadata operations.

Figure 6.7: Comparison of Ceph and Dike with MapReduce across different number of

clients. Dike supports 36 tenants.

increases as we increase the number of clients th a t run the reverse index in parallel.

However, it is comparable between Ceph and Dike. The overhead imposed by Dike is

negligible and it lies between 0-3.8%. The 3.8% overhead occurs when a single client runs

the reverse index application. In this case, when we use the original Ceph, the to tal time

spent to build the index reaches 423.61 seconds, which is the lowest measured time, while

it reaches 439.75 seconds when we use Dike.

Figure 6.7(b) shows the latency breakdown of m etadata operations. In the case of

Dike, the most of them are completed in latency comparable to th a t of the original Ceph.

One exception is readdir whose latency lies 7% higher when Dike is used in comparison to

Ceph. This is due to the extra access control information tha t is stored in the extended

attributes of each file/folder.

6 .4 .3 Im p a ct o f A C L size

In real-life collaborative environments where an enormous number of end users is involved,

situations where files are shared by a large number of users are common. For this reason,

we emulate a real-life file sharing scenario in order to understand how file sharing and in

particular the size of ACLs impacts the overall system performance.

69

MapReduce / Local
Dike - no ACL sharing

(a) Total time to build the index.

MapReduce / Local
Dike - no ACL sharing

1 Client 24 Clients 36 Clients

Number of tenants/fi!e and clients

(b) Latency of metadata operations.

Figure 6.8: Impact of long ACLs on the overall system performance. Dike supports 100

tenants.

In Figure 6.8 we measure the system performance impact when the size of the file and

folder ACLs increases. In order to increase the size of ACLs, we perm it multiple tenants to

access the dataset. To accomplish this we developed a tool which grants a specific tenant

access to files and folders. Thus, the size of the extended attributes of each file and folder

is being increased, because an extra entry is being added for each tenant. We consider

three different sharing scenarios: (a) only 1 tenant can access the dataset, (b) 10 tenants

have read access to the shared dataset, and (c) 100 tenants have read access to the shared

dataset. We use the local testbed for experimentation. Each time, Dike is configured with

100 tenants and a client on Dike accesses the filesystem through a dedicated tenant.

In all the examined cases, the total running time (Figure 6.8(a)) increases as we

increase the number of clients tha t run the reverse index application. The running time

of the application is comparable in both cases where the dataset is shared by 1 and 10

tenants. Only a slight 2.6% increase of the application’s total running time is observed

when 36 clients run the reverse index in parallel. However, long ACLs (100 tenants/file)

impose a significant increase on the total time spent to build the index. When a single

client runs the reverse index application and the dataset is shared by 100 tenants, the

total running time reaches 1437 seconds. This implies an increase of about a factor of 3

70

when compared to the scenario where only one tenant has access to the dataset.

In Figure 6.8(b) we measure the latency breakdown of different m etadata operations

in order to better understand which operation is mostly affected by long ACLs and is

responsible for the largest proportion of time spent to build the index. We observe th a t

the latency of the majority of operations is comparable. However, when ACLs become too

long (100 tenants/file), then the latency of the readdir operation increases by a factor of

10. In particular, when a single client runs the reverse index application, the latency of the

readdir operation reaches 4 ms in the case where the index is shared by only one tenant.

Instead, when the index is shared by 100 tenants, the measured latency of the readdir

operation reaches 40 ms. This latency increase is high because in a readdir operation the

MDS fetches the entire directory from the OSDs (if it isn’t already in its cache), including

inode contents. As we explained in subsection 2.4.2, Ceph (and Dike therefore) stores

the contents of a folder (including the extended attributes of each file) in a single object.

If this object exceeds an upper limit, it is also possible to split the folder contents into

multiple objects. However, in the conducted experiments we have disabled fragmentation,

because it is still considered an unstable feature6 of the Ceph version we are using. Hence,

when the size of extended attributes of each file gets large, the MDS has to fetch a lot of

information from the OSDs which leads to higher latencies.

W hen ACLs tend to become too long, associating an ACL to each file leads to an

enormous number of long ACLs tha t the system needs to store and manage, and can

cost considerable performance overheads. As we discussed in section 4.5, users prefer to

add new files to an existing folder with its permissions already set instead of setting the

access rights on newly created files. Thus, it is common for files under the same folder to

have identical access rights. Hence, we permit files with identical access rights to share

their folder’s global ACL, which we call tree ACL, in order to improve scalability and

performance in the cases where ACLs tend to increase in number and size.

In Figure 6.9 we measure the system performance impact of Dike with ACL sharing

(denoted as Dike-S) in the local testbed and compare it with the case where we have

ACL sharing turned off. Again, the total running time (Figure 6.9(a)) increases as we

increase the number of clients th a t run the reverse index. However, when ACLs are long

(100 tenants/file) and a single client runs the reverse index application, we notice a 91%

8 As discussed here: http://ceph.com/dev-notes/cephfs-mds-status-discussion/. Accessed: 2013-09-10.

71

http://ceph.com/dev-notes/cephfs-mds-status-discussion/

MapReduce / Local
Dike with ACL sharing

(a) Total time to build the index.

MapReduce / Local
36 Clients

(c) Total time to build the index.

MapReduce / Local
Dike with ACL sharing

m read-dir file-open m file-stat

1 Client 24 Clients 36 Clients

Number of tenants/file and clients

(b) Latency of metadata operations.

MapReduce / Local
Scalability (100 tenants/file)

1 Client 24 Clients 36 Clients

Filesystem and number of clients

(d) Latency of metadata operations.

Figure 6.9: The benefits of ACL sharing when ACLs tend to become very long. Dike

supports 100 tenants.

increase to the to tal running time of the application which implies an improvement of

39% when compared with the case where ACL sharing is disabled (see Figure 6.9(c)).

In Figure 6.9(b) we measure the latency breakdown of m etadata operations during

the experiment. Again, the latency of the majority of operations is comparable. Only

when ACLs become long, the latency of readdir increases by a factor of 3, when a single

client runs the application. In particular, when the index is shared by only one tenant,

the latency of the readdir operation reaches 4 ms. Instead, when the index is shared by

72

MapReduce / Local MapReduce / Local
MDS - Total CPU OSD - Total CPU

100 100

80 e£ 80

O 60 Io
n o> o

1 4° 5 40
£ 20 B £ 20 V ·»·<

3 D
0 0 — *■—«*—B -------- — I

1 10 100 1 10 100 1 10 100 1 10 100

Dike Dike-S Dike Dike-S

Tenants/file Tenants/file
■ User m i/O-Wait
■ System Idle

User m ί/Ό-Wart
System Idle

(a) MDS CPU utilization. (b) OSD CPU utilization.

MapReduce / Local
OSD - Total Disk

100 ----------------------------------
80 -

1 10 100 1 10 100
Dike Dike-S

Tenants/file
m Busy Idle

(c) OSD Disk utilization.

Figure 6.10: CPU and disk utilization of fileserver nodes.

100 tenants, the measured latency of the readdir operation reaches 13 ms. However, it is

3 times lower than the measured readdir latency of 40 ms when ACL sharing is turned

off and the dataset is shared by 100 tenants (see Figure 6.9(d)).

A possible overhead of multiple long ACLs is the CPU cost tha t is needed so th a t the

MDS to be able to manage them in order to enforce access control. In addition, multiple

long ACLs may impose high I/O loads on the OSDs.

In Figure 6.10 we evaluate the impact of multiple long ACLs to the total CPU utiliza

tion of the MDS and OSDs, as well as its impact to the disk utilization of the OSDs. In

73

the case where ACL sharing is disabled, we observe th a t the to ta l CPU utilization of the

MDS remains below 6%, when the ACLs are small. However, it reaches 23%, when the

ACLs become long. Instead, as Figure 6.10(a) shows, when we enable ACL sharing, the

average CPU utilization only reaches 11%.

In addition, Figure 6.10(b) shows th a t in both cases where ACL sharing is turned off

or on, the CPU of the OSDs remains idle, whether doing nothing or waiting for the I/O

operations to finish. However, when ACLs are long and the ACL sharing mechanism is

disabled, the disk utilization reaches 67% in comparison to the 9% average utilization

when the ACLs are small. Instead, as Figure 6.10(c) shows, ACL sharing reduces disk

utilization in the case of long ACLs to 28%.

6.4.4 Comparison with other multitenancy solutions

In this subsection we study the comparative m ultitenancy overhead incurred by Dike

over Ceph with the corresponding overhead incurred by HekaFS over GlusterFS using an

application-oriented experiment (Figure 6.11). For this purpose we use the reverse index

application on AWS with one client7.

In Figure 6.11(a) we compare Ceph and Dike with the reverse index application. We

configure Dike to support either 100 tenants (denoted as Dike-100) or 1000 tenants (de

noted as Dike-lk). We notice th a t the total running time of the reverse index application

is 328 seconds when we use Ceph. On the other hand, it reaches 346 seconds when we use

Dike with 100 tenants. Thus, Dike with 100 tenants adds an extra latency of 5% to the

total application’s running time. Then, we increase the number of supported tenants on

Dike to 1000 and repeat the same experiment. This time, the application’s total running

time reaches 394 seconds, which implies a 20% of extra latency.

In Figure 6.11(b) we repeat the same experiments as above, but this time we compare

GlusterFS and HekaFS. We configure HekaFS to support either 100 tenants (denoted

as HekaFS-100) or 1000 tenants (denoted as HekaFS-lk). The total running time of the

reverse index is 375 seconds when we use GlusterFS. However, it reaches 545 seconds when

we use HekaFS with 100 tenants, which implies an increase of 31%. Increasing the number

of supported tenants in HekaFS leads to a higher added latency. In particular, when we

7We use a cl.medium instance for the client.

74

MapReduce / AWS
Ceph vs Dike

700 I---

Ceph Dike~10Q Dike-1 k

Filesystem

MapReduce / AWS
GlusterFS vs HekaFS

700

GlusterFS HekaFS-100 HekaFS-1 k

Filesystem

(a) Comparison of Ceph and Dike

across different number of supported

tenants.

(b) Comparison of GlusterFS and

HekaFS across different number of

supported tenants.

100

80

60

40

20

0

MapReduce / AWS
Multitenancy overhead
» HekaFS
« a Dike

LI
100 1000

Tenants

(c) Multitenancy overhead compari

son between HekaFS and Dike.

Figure 6.11: Performance comparison of Dike and HekaFS across different number of

supported tenants with MapReduce. We use a single client (cl.m edium EC2 instance).

use HekaFS with 1000 tenants, the to tal running time of the reverse index reaches 656

seconds. This implies a 75% of extra latency.

In Figure 6.11(c) we can see the added overheads of HekaFS and Dike. The overhead

incurred by Dike lies between 5-20% and is lower than the corresponding overhead of

75

HekaFS, which lies between 31-75%. These results verify our previous conclusion that

multitenancy solutions which perform identity mappings can adversely affect the overall

system performance when the number of tenants increases.

6.4.5 Linux compilation

In a different application-oriented experiment we store the source of the Linux kernel

(version 3.5.5) in a shared folder of the filesystem. Then we make the code accessible to

private folders of the tenants through soft links. We measure the average times to create

the soft links and to build the system image. We repeated the experiment to constrain

the 95% confidence-interval half-length within 5% of the average time to build the system

image.

In Figure 6.12 we compare Ceph and Dike with Linux compilation across different

number of clients on the local testbed. We have ACL sharing disabled on Dike. We

measure the average time to create soft links on the shared Linux tree and the average

time to build the system image by up to 12 clients assuming dedicated tenant per client

in the Dike case. The extra latency added by Dike to soft link creation time is 4.5% with

one client and 2% with 12 clients. In addition, the image building times are comparable

between Ceph and Dike. The overhead imposed by Dike is negligible and it lies between

0-0.7%. The 0.7% overhead occurs when a single client runs the experiment. In this case,

the image building time is 983 seconds in the case of Dike, where in the case of Ceph it

lies 0.7% lower a t 976 seconds.

Figure 6.12(b) evaluates the impact of long ACLs on the Linux kernel compilation

experiment. For this experiment we have turned off ACL sharing. The extra latency

added to soft link creation time when ACLs are long (100 tenants/file) is 14.5% with 1

client and 1.7% with 12 clients. In addition, the image building time for a single client

lies 13% higher when ACLs are long, and for 12 clients lies 9% higher.

We also repeat the same experiment with ACL sharing turned on. Figure 6.12(c)

shows the results. For long ACLs (100 tenants/file), the link creation time is nearly

similar to the respective time when only a single tenant has access to the Linux kernel

source. Regarding the image building time, with a single client the results are comparative

with the case in which ACL sharing is turned off. However, with 12 clients, ACL sharing

76

Linux Build / Local

9000
8000
7000

^ 6000
~ 5000
£ 4000
I - 3000

2000
1000

0

Rlesystem and number of clients

Ceph vs Dike
m Create-tree Build

1 Client 6 CRents 12 Clients

(a) Ceph vs Dike.

Linux Build / Local
Dike - no A CL sharing

9000

1 Client
Ό ” '•'O

6 Clients 12 Clients

Linux Build / Local
Dike with A CL sharing

Number of tenants/file and clients
1 Client 6 Clients 12 Clients

Number of tenants/file and clients

(b) Dike with ACL sharing turned off. (c) Dike with ACL sharing turned on.

Figure 6.12: Linux compilation. Dike supports 100 tenants.

improves the to tal time by 5% in comparison to the case where Dike does not use ACL

sharing.

6.5 Summary

We experimentally evaluate a prototype implementation of the proposed architecture us

ing microbenchmarks and application-level benchmarks. For experimentation we use two

77

environments: (a) a local cluster and (b) a cloud platform. In summary, we demon

stra te th a t our prototype adds a limited performance overhead, while it enables secure

multitenancy. Additionally, our prototype scales well to a large number of tenants with

out affecting the overall system performance. Furthermore, we notice th a t long ACLs,

which are common in real life collaborative environments can adversely affect system

performance. However, the technique of ACL sharing th a t we introduced mitigates this

problem.

In conclusion, our prototype adds a limited performance overhead and scales well to a

large number of clients and tenants, in contrast to existing solutions th a t require an extra

layer to map a local tenant ID to a globally-unique ID. This

be a performance bottleneck for scalability and the proposed

identity mapping layer can

architecture eliminates it.

78

C h a p t e r 7

R e l a t e d r e s e a r c h

'7 .1 M ultitenancy in filesystem storage clouds

7.2 Access control in m ultitenant filesystems

7.3 Access control in distributed filesystems

7.4 Summary

In this chapter we review comparative studies th a t a ttem pt to enable secure multite

nancy in filesystem storage clouds. We also outline the most im portant studies th a t aim

to provide trusted cloud storage. Finally, we survey previous works for access control in

distributed filesystems.

7.1 Multitenancy in filesystem storage clouds

In this section we present recent studies th a t a ttem pt to provide secure m ultitenancy in

filesystem storage clouds.

7.1.1 Hypervisor-level multitenancy

In hypervisor-level multitenancy, the hypervisor itself is responsible to track information

flow between virtual machines and enforce access control. A system th a t follows this

79

approach is presented by M undata et al. [41]. Their system, which is called SilverLine,

implements two types of isolation at the hypervisor level: (1) da ta isolation and (2)

network isolation. To enforce data isolation, SilverLine uses labels to control information

flow between files and processes within a single machine or across the network. In fact,

tenants are allowed to label da ta with security labels; trusted enforcers at the hypervisor

level then use these labels to ensure th a t da ta from one tenant is not propagated to

untrusted server instances belonging to other tenants, or to locations outside the cloud.

A similar study is presented by Popa et al. [44], CloudPolice implements access con

trol a t the end-hosts within hypervisors. It provides various access control policies, such

as complete tenant isolation, selective inter-tenant communication, fair-sharing among

tenants, rate-lim iting tenants, and allowance of locally initiated connections. Hypervisors

know the policies of their hosted virtual machines and communicate w ith other hypervi

sors a t runtime in order to learn external policies and control information flows. W hen

a new information flow is being initiated by a virtual machine, the source hypervisor

communicates with the destination hypervisor and the la tte r checks the policy for the

destination virtual machine. If the policy forbids the traffic, then the destination hyper

visor blocks it and appropriately informs the source hypervisor. Otherwise, if the traffic

is allowed, the destination hypervisor initiates the state for this flow.

Kurmus et al. [25] implement a virtualization-based m ultitenancy architecture using

KVM by running multiple virtual interface nodes as guests on the same physical node.

V irtual machine guests th a t belong to the same tenant maintain a distributed filesystem

with the tenan t’s data. Each virtual machine runs one instance of the file-service and

exports the filesystem through a network filesystem protocol such as NFS. Tenant isola

tion is generally applied at the hypervisor who is in charge to block inter-tenant traffic

according to tenant-specific policies.

All the above studies successfully isolate tenants at the hypervisor level. However, this

approach is not suitable for a collaborative filesystem storage cloud because it hinders

group collaboration and leads to performance scalability problems. The main reason

behind this, is the fact th a t the filesystem is not deployed as a shared service but a

separate file-service instance runs for each tenant in a tenant-dedicated virtual machine.

Furthermore, it is observed [25] th a t the addition of multiple isolation layers and policy

enforcers a t the hypervisors incurs a significant performance overhead.

80

7 . 1 . 2 Operating system-level multitenancy

Isolating tenants at the operating system-level can lead to lower execution overheads.

Tenant isolation is performed by mechanisms which are called containers [23, 48]. Con

tainers create isolated namespaces for resources such as filesystems, network interfaces,

and processes inside the same operating system. Each tenant gets its own namespace

which is isolated from namespaces of different tenants.

Kurmus et al. [25] present an implementation of this approach. Their implementation

uses SELinux multi-category-security (MCS) policies for isolating the fileserver processes

th a t serve a particular tenant. Fileserver processes belong to different categories according

to tenant-specific policies. This ensures th a t a tenant can not access the resources of a

different tenant because they belong to a different category. In fact, multiple domains

■(or containers) exist on the same operating system and each domain consists of a chroot

folder in the root filesystem of the physical host.

This approach leads to lower execution overhead in comparison with the hypervisor-

level access control approach. However, both approaches share the same disadvantages

regarding the inability for file sharing and collaboration. This is due to the fact tha t

each tenant runs its own file service which is completely isolated from the file services of

different tenants.

7.1.3 Trusted multitenant storage

The two biggest concerns about storage systems used in virtualization and cloud environ

ments, beyond high performance and scalability, are reliability and security. Secure cloud

storage involves four desirable properties, including data and m etadata confidentiality, in

tegrity, write-serializability, and read freshness [45]. Organizations will not entrust their

da ta to an external storage system without a guarantee tha t they’ll be able to access the

latest version of their da ta whenever they want and no one else will be able to access or

modify it without their permission.

In recent years, there has been considerable work on trusted cloud storage. Popa et al.

introduce CloudProof, a system th a t allows customers of cloud storage to securely detect

and prove violations of integrity, write-serializability, and freshness [45]. Assuming tha t

the cloud infrastructure is entirely untrusted, access control over read and write requests is

81

enforced through data encryption with secret keys and update verification with public-key

signatures.

The work of Santos et al. [52] is motivated by the observation that current trusted

computer technology can not be used on the cloud as it exposes internal details of the

cloud infrastructure, hinders performance and scalability, and has several manageability

limitations. Their system, which is called Excalibur uses a trusted computing abstraction

(policy-sealead data) to encrypt and decrypt data according to a specified node policy.

Excalibur combines current trusted computing technology, such as TPMs, with a set of as

sociated protocols and attribute-based encryption to offer developers two new primitives,

seal and unseal, for constructing more trusted cloud services.

- In contrast to the above works, in the current study we target secure storage access

within the datacenter and aim to provide native multitenancy support at the file level by

directly storing access control metadata in trusted object-based fileservers.

7.2 A c c e ss co n tro l in m u lt ite n a n t f ile sy s te m s

Next, we review comparative studies for secure access control in filesystems that need to

support multiple tenants, such as cloud, grid, and virtualization-aware filesystems.

7 .2 .1 A c c e ss c o n tro l in f ile sy s tem s for c lou d an d grid e n v iro n m en ts

HekaFS [11] enables a tenant to assign identities to local principals through hierarchical

delegation. A user’s identity consists of the user ID plus the ID of the tenant, to which

the user belongs. Tenants have complete freedom to manage their own identity space

on their own machines. However, a tenant user identity needs to be mapped to a global

server identity. This mapping is done by the cloud translator which sits at the top of

each per-tenant translator stack on the server. In fact, each server keeps a mapping table

which maps a tenant ID plus a user ID to a unique server ID. The server adds a new

mapping to the mapping table every time it encounters a unique combination of a tenant

ID plus a user ID. Fortunately, this mapping is not coordinated across servers. Each

server uses its own separate mapping table. However, file sharing between users that

belong to different tenants becomes a cumbersome task because each server maintains

82

its own separate mapping [60]. W hat is more, users may wish to express access control

tha t refers to identities th a t a given system has not yet encountered [61]. Finally, as

discussed in subsection 4.1.3, such identity translations may lead to scalability limitations

and introduce security risks.

Support of storage access from different institutions requires consistent ownership

and permission data across multiple client mounts [65], Lustre, a parallel distributed

filesystem designed to provide storage to high performance computing systems uses a

similar approach based on credential mapping to solve the identity collision problem.

Because each Lustre client contains its own UID space, it is necessary th a t the Lustre

m etadata server be given the ability to map from client UIDs and GIDs to an authoritative

list of server UIDs and GIDs. Furthermore, Lustre can organize client sets as clusters in

order to make mapping of nodes th a t share the same U ID / GID namespace easier. In

this manner, the UID maps th a t are maintained by the MDS are indexed by ranges.

W hen a client connects to a server, part of the process categorizes her into a cluster, and

hence gives her a pointer into the maps for forward and reverse U ID / GID mapping. To

facilitate fast lookups, the mapping module is implemented as a forest of binary trees.

The UID map itself can be created either manually or with the help of a map creation

tool. The approach of Lustre for solving the identity collision problem shares the same

drawbacks with HekaFS. In the present work, we aim to natively support multitenancy

by directly storing access-control m etadata a t the fileserver without the need for identity

translations from one tenant to another.

7.2.2 Access control in filesystems for virtualization environments

Pfaff et al. [43] propose and design a virtualization-aware filesystem. Their system, which

is called Ventana, resembles a conventional distributed filesystem in tha t it provides cen

tralized storage for a collection of file trees, allowing transparency and collaborative shar

ing among users. Ventana’s distinction from other distributed filesystems is its versioning,

isolation, and mobility features to support virtualization. Ventana [43] offers a secure ac

cess control across multiple client guests through a combination of multiple ACLs and

branching. More specifically, client guests can use private branches to isolate their files,

or shared branches to share their files with other clients. Furthermore, they can use

83

branch ACLs to control access to all of the files in a particular branch. In addition, some

other types of ACLs are provided, such as file ACLs which control access to particular

files, or version ACLs which control access to a particular version of a file. However, deep

chains of branches along with multiple ACLs can adversely affect system performance.

A slightly different proposal is presented by Jujjury et al. [21]. VirtFS introduces a

paravirtualized filesystem driver based on the V irtl/O framework. Their paravirtualized

filesystem can be used to connect a host-based fileserver to multiple guests. Furthermore,

it can also be used to provide guest-to-guest filesystem access. The mixing of different

namespaces in VirtFS triggers some serious security issues th a t need to be resolved. To

resolve these issues it offers two types of security models: the mapped security model

and the passthrough security model. The mapped security completely isolates the guest

.user domain from th a t of the host’s. In particular, the VirtFS server intercepts and maps

the file create operations and all the get/set a ttribute requests. Files on the fileserver

are created with VirtFS server’s credentials, while the guests’ user credentials are stored

in extended attributes. W hen a guest performs a file or folder sta t operation, the server

extracts the guest’s user credentials from extended attributes and sends them to the client.

In contrast, the passthrough security model shares the host’s and guest’s user domains.

In this model, the VirtFS server passes down all requests to the underlying filesystem.

Files on the fileserver are created with guests’ user credentials. Both security models have

some limitations. Specifically, the mapped security model successfully isolates the guests’

principals from the host’s, however, it fails to isolate the principals from different guests.

On the other hand, the passthrough security model passes all the requests to the fileserver

and does not guarantee any isolation.

HumFS [12] is a similar approach to VirtFS in tha t it provides access to filesystems

on the host for UML guests. However, it is a virtual filesystem, in the sense tha t it is not

stored within the UML block device. In many cases, the data is simply stored in kernel

structures. HumFS is conceptually similar to a network filesystem such as NFS. HumFS

separates the guest’s identity space from tha t of the host’s by associating a m etadata

file to each file and folder. The m etadata file keeps identity and permissions related

information and lies in a parallel folder hierarchy with the exported hierarchy. The main

issue with this approach is th a t it induces additional disk seeks during file stat and create

operations. These additional seeks can severely hurt system performance. In addition,

84

although HumFS successfully separates the guest’s namespace from the host’s namespace,

no measure is taken in order to isolate the namespaces of different guests.

7.2.3 Cloud collaboration and data sharing

Storage consolidation offers new opportunities for da ta sharing and collaboration in the

cloud. Geambasu et al. present CloudViews [17], a system th a t attem pts to enable

data sharing among different services in a single cloud. CloudViews attem pts to enable

flexible sharing between different services a t any granularity and to design an efficient and

scalable access control mechanism th a t protects private data. To achieve its first goal,

the system allows different services th a t run in the same cloud to create and share shared

and restrictive views of their da ta with other co-located services. To come up with its

second goal, CloudViews uses cryptographic signatures to sign the different offered views.

It combines the signed views with resource allocation and update notification mechanisms

to enable high performance data sharing.

The S4 framework presented by Walfield et al. extends Amazon’s S3 cloud storage to

provide d a ta sharing across different web services [64]. I t supports access delegation over

the objects of different users via hierarchical, filtered views of the applicable policy. The

S4 framework is similar with CloudViews in the sense th a t both of them are distributed

filesystems th a t use the view-based access control technique to enable da ta sharing among

services. However, it extends CloudViews by enabling interaction-free modification of

existing views and by considering cross-cloud sharing scenarios. The S4 framework allows

users to create new principals and to associate views w ith each of them. A view is a

subset of the namespace and consists of access rights and a set of filters (e.g. regular

expressions, UNIX permissions). Access control is based on hierarchical evaluation of

each view’s access rights.

Both solutions presented above target scenarios where a user authorizes different Web

services to access their da ta which is centralized with a storage provider. Instead, we

target secure collocation of multiple tenants and their da ta on a shared filesystem and

aim to isolate each tenant from other tenants, while perm itting their users to collaborate

by sharing files.

85

Access control has been comprehensively examined across known distributed filesystems.

Next, we highlight some of the previous work on th is area.

7.3.1 Centralized access control

Steiner e t al. present Kerberos [59], a centralized authentication system based on symmet

ric key cryptography which allows for strong authentication in distributed environments.

An administrative domain in Kerberos is known as a realm. A realm contains nodes

th a t use tickets to communicate over a non-secure network and to prove their identity

to one another in a secure manner. A main service of Kerberos is the Key Distribution

Center (KDC). The KDC maintains a database of local principals and their secret keys.

W hen a user logins to the system the KDC issues a time stam ped Ticket G ranting Ticket

(TG T), encrypts it using the user’s password, and returns the encrypted result to the

user’s workstation. W hen the user wishes to communicate with another node, he sends

the T G T to the Ticket G ranting Service (TGS). The TGS verifies the validity of the re

ceived TG T. If the user is perm itted to access the requested service, the TGS grants him

a ticket encrypted with the TG S’s secret key and a session key encrypted with the user’s

secret key. The ticket enables access to specific services on specific nodes in the realm.

Thus, the user can present the ticket to the desired service along with its service request.

The communication with the service is secured with the obtained session key. Cross-

realm authentication is not straightforward, because Kerberos relies on symmetric key

cryptography. Realm adm inistrators have to set up trust relationships and exchange keys

for principals to access services in a different realm. Efforts have been made to extend

the Kerberos protocol with public-key cryptography support [56] and with cross-realm

authentication [71].

Centralized access control solutions tha t have the users registered on a central location

are inapplicable to a cloud environment. A centralized solution can not adapt and scale

to a large number of users. W hat is more, tenant adm inistrators prefer to manage their

users locally.

7.3 A ccess control in d istrib uted filesystem s

86

7.3.2 D ecentralized access control

The work of Reiher et al. [51] is one of the first studies th a t recognize the need for

cross-domain authorization and secure file sharing. Their system, which is called Truffles,

is build on the replication services provided by the Ficus filesystem and adds a mecha

nism for secure file sharing between different administrative domains. Sharing in Truffles

happens a t the granularity of volumes. User authentication in Truffles relies on a hier

archy of certification authorities and users are identified by public keys bound to X.500

distinguished names in X.509 certificates. Authorization in Truffles is based on standard

UNIX and Ficus access control mechanisms. The authors recognize the problem of iden

tity collisions between principals of different administrative domains. Their solution is to

map a principal’s ID to a globally unique identifier and to store this global identifier as

one of the file’s attributes. Furthermore, Truffles does not perm it a local root user to be

mapped to the root user on a remote domain. However, as discussed in subsection 4.1.3,

identity mapping techniques can be the source of scalability problems and can complicate

file sharing and manageability.

Belani et al. introduce CRISIS [8] as a wide-area authentication and access control

system which forms the security subsystem of WebOS. Authentication in CRISIS is based

on X.509 certificates which are signed by a trusted CA. CAs are organized hierarchically,

thus principals in different adm inistrative domains need to have a common root CA to

securely share files. Authorization in CRISIS uses a hybrid model of ACLs and capa

bilities and relies on certificates to specify group memberships. However, the reliance to

certificates for cross-domain access control has been criticized for high complexity [22].

Miltchev et al. [39] follow a different approach and present the Distributed Credential

FileSystem (DisCFS) which uses trust management credentials to identify files, principals,

and access rights. Principals in DisCFS are identified by public keys. These public keys are

directly binded to any set of authorizations. When a principal wishes to access a remote

file, a trust-m anagem ent credential is being generated which contains the principal’s public

key, as well as the authorizer’s public key which is trusted by the remote domain. Access

control policies are specified by the administrators and either accept or reject actions.

Actions are also specified by the adm inistrators as a set of name-value pairs. Polices can

be distributed to principals as credentials. It is clear tha t this credential-based design

8 7

incurs a high performance overhead when the chains of credentials get very long, or when

the number of active users is high. This is because credentials can become long as they

contain both signed identity attributes and the policy statements. Credential caching and

hardware acceleration for cryptographic operations in conjunction with data replication

across servers m itigate this problem. However, this solution is unrealistic for a cloud

environment, where an enormous number of users is involved.

Secure file sharing between principals in different administrative domains is enabled

by GSFS [22], a further development of SFS [33]. Authentication in GSFS is based on

public keys. Each principal and server have a public/private key pair. The adm inistration

server of an adm inistrative domain prefetches and caches users and group definitions of

-remote authentication servers belonging to different domains. Thus, during file access, the

. authentication server can establish identities for users based on local information. Users

name remote authentication servers, users, and groups using self-certifying hostnames.

Authorization in GSFS relies on access control lists (ACLs) th a t contain local and remote

users. Remote users can only be listed on the ACL with their public keys. However

remote groups can not be listed directly on the ACL, bu t they can be listed indirectly

as members of local groups. GSFS has been recently criticized for limited autonomous

delegation support [40]. Moreover, a GSFS authentication server needs to trust the remote

authentication servers of any remote domains. This is unrealistic for an environment such

as the cloud where tenants don’t trust each other.

Margaritis et al. propose Nephele, an architecture for hierarchical access control in

federated file services across different administrative domains [32]. Their goal is to im

prove application portability and identity management, and to reduce transfer costs in

collaborative environments th a t require da ta sharing among principals of different do

mains. In such a large federated environment there are several large groups consisting of

multiple subgroup layers across the different domains. The authors introduce the hyper

group as an heterogeneous two-layer construct. The upper layer contains administrative

domains of a federation and the lower layer contains user groups from each participating

domain. Domains and principals are both identified by public keys and they are binded

to hypergroups with credentials. Access control is applied without central management

of the principals or their access rights. Each domain manages its users, groups, and their

access rights locally. Access rights over local storage resources are specified using access

88

control lists. As a result, the network traffic th a t is needed to propagate group mem

berships specified in terms of users is avoided. However, Nephele does not deal with the

namespace collision problem tha t arises in a m ultitenant environment.

The above discussion makes it clear tha t existing access control solutions can not

be used in a cloud environment without a reconsideration of their security model and

mechanisms. In contrast to the above works, in the present work we study the problem of

storage multitenancy over virtualization environments, which introduces new challenges

as a result of the system consolidation involved in the same datacenter.

“7.4 Summary

Secure multitenancy in cloud storage supports multiple customers a t low cost. The

hypervisor-level multitenancy architecture runs separate virtual machines for each cus

tomer over a distributed filesystem. Instead, the OS-level multitenancy architecture relies

on the fileserver kernel to isolate the resources of different customers leading to lower

execution overhead. Considerable work has also been done on the field of trusted cloud

storage in order for the cloud providers to be able to provide security guarantees to their

customers about their data.

Several works in the field of cloud and virtualization-aware filesystems have identi

fied the namespace collision problem, however they focus on the separation of the host’s

namespace from th a t of the guests’, w ithout isolating the principals of different guests.

O ther works depend on identity mapping techniques to solve the identity collision prob

lem th a t stems from the file-based access. However, the addition of layers tha t perform

identity mappings introduce manageability inefficiencies, performance degradation, and

complicate file sharing.

Traditional file-based access presumes th a t principals are registered into a central au

thentication service. Due to identity management challenges from the large number of

the involved users, this is unrealistic for the tenants of a cloud provider. O ther solutions

rely on trust management certificates for direct authorization, or presume that each ad

ministrative domain has its principals registered to a local authentication server. Then,

the local authentication server trusts remote authentication servers in order to support

89

cross-domain file sharing. In a cloud environment, however, it is unrealistic for a tenant

to trust other tenants.

90 i

■ .. 3M «kijli'1

Chapter 8

Conclusions and future work

8.1 Conclusions

8.2 Future work

In th is chapter we conclude this work by summarizing our contributions and discussing

opportunities for future research.

8.1 Conclusions

Cloud collaboration is a newly emerging way of file sharing and coworking on shared

projects, whereby collaboration documents, shared source code, or scientific da ta are up

loaded to a central shared storage, and can be accessed by multiple parties. Consolidating

storage a t the filesystem level enables such sharing scenarios. Furthermore, it offers signif

icant manageability benefits to system administrators. The file-level interface exposes the

file structure of a filesystem, while it enables shared read/w rite access. Furthermore, it

can provide an ephemeral and highly composable storage. However, it does not properly

isolate the namespaces of different customers who access the shared storage. Thus, it is

im portant to reconsider the access control techniques used in order to effectively isolate

the principals of different tenants.

We have pointed out th a t a solution which depends on an identity mapping mechanism

should be avoided because it complicates file sharing and manageability, and reduces

91

performance. Furthermore, traditional solutions th a t have the principals registered on

a centralized directory face scalability limitations, because they are not designed for an

environment with an enormous number of end users. Moreover, their trust assumptions

do not apply to a cloud environment.

Accordingly, we have proposed an architecture tha t eliminates the need of a global

directory service which maintains all filesystem principals, by allowing tenants to operate

their own tenant authentication servers. Tenant authentication servers are securely regis

tered to a globally trusted filesystem authentication server and certify local principals. In

addition, our architecture natively supports multitenancy in virtualization environments

th a t use file-based storage consolidation. We have achieved this by carefully storing access

- control m etadata directly a t the fileservers without the need for identity translations. In

, fact, the filesystem maintains per-tenant dedicated ACLs, where it stores tenants’ local

principals and access control policies. Thus, it successfully isolates each tenan t’s names

pace. Furthermore, we perm it files with identical access rights to share their parent’s

global ACL in order to keep the number and size of ACLs small.

W ith a prototype implementation of the proposed access control architecture over a

production-grade filesystem we have experimentally dem onstrated a limited performance

overhead using microbenchmarks and application-level benchmarks. Furthermore, we

have compared our solution with existing approaches th a t use the identity mapping tech

nique and shown tha t our prototype scales well to a large number of tenants without

affecting the overall system performance. In contrast, multitenancy solutions tha t per

form identity mappings can adversely affect performance when the number of tenants

tends to be high. Also, by emulating situations of real collaborative environments where

long ACLs are common, we have dem onstrated th a t numerous of long ACLs can adversely

affect system performance. However, the ACL sharing technique th a t we introduced can

mitigate this problem.

8.2 Future work

There are several directions of future work related to this thesis. In this section we list a

number of interesting topics th a t need further research.

92

In this thesis we have proposed an access control architecture to enable secure mul

titenancy in a private cloud environment. However, the consideration of weaker trust

assumptions would be an interesting future research topic which could provide a way for

strengthen the security of the proposed solution in order to make it applicable to a public

cloud.

O ur experimental results indicated th a t multiple long ACLs can adversely affect sys

tem performance and the ACL sharing technique could be an initial solution to this

problem. However, this area needs further research in order to improve the structure and

the scalability of ACLs. Direct authorization through trust management certificates [39]

has been suggested to be tter meet the requirements for autonomous delegation across

- organization boundaries. Furthermore, a method was proposed recently for hierarchical

, access control in federated file services across different administrative domains [32].

An implementation of the complete proposed architecture is also a plan for future

work, as well as its integration into a trusted virtualization platform in the datacenter.

Finally, it is necessary for further experimentation with I/O-intensive applications a t

large scale over different object-based filesystems.

Bibliography

[1] Amazon. Amazon Elastic Block Store (EBS). h ttp ://a w s .a m a z o n .c o m /e b s /. Ac

cessed: 2013-07-23.

[2] Amazon. Amazon Elastic Compute Cloud, h ttp ://a w s .a m a z o n .c o m /e c 2 /. Ac

cessed: 2013-08-19.

[3] Amazon. Amazon Simple Storage Service (Amazon S3), h ttp ://aw s.am azo n .co m /

s3 /. Accessed: 2013-07-23.

[4] Glenn Ammons, Vasanth Bala, Todd M ummert, Darrell Reimer, and Xiaolan Zhang.

V irtual machine images as structured data: the mirage image library. In Hot Cloud

’l l : Proceedings of the 3rd USENIX Workshop on Hot Topics in Cloud Computing,

Portland, OR, June 2011.

[5] Ross J. Anderson. Security Engineering: A Guide to Building Dependable Distributed

Systems. Wiley, second edition, 2008.

[6] Lee Badger, Timothy Grance, Robert Patt-Corner, and Jeff Voas. Cloud comput

ing synopsis and recommendations. Technical Report NIST SP - 800-146, National

Institute of Standards and Technology, May 2012.

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian P ra tt, and Andrew Warfield. Xen and the a rt of virtualization.

In SO SP ’03: Proceedings o f the nineteenth AC M symposium on Operating systems

principles, pages 164-177, Bolton Landing, NY, USA, October 2003.

[8] Eshwar Belani, Amin Vahdat, Thomas Anderson, and Michael Dahlin. The CRISIS

wide area security architecture. In SS Y M ’98: Proceedings o f the 7th conference on

USENIX Security Symposium, pages 15-30, January 1998.

94

http://aws.amazon.com/ebs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/

[9] Sudip Chahal, Jay Hahn-Steichen, Das Kamhout, Rick Kraemer, Hong Li, and Chris

Peters. An enterprise private cloud architecture and implementation roadmap. Tech

nical Report IT@Intel W hite Paper, Intel Information Technology, June 2010.

[10] d u s te r Community. GlusterFS Documentation. h t tp : / /w w w .g lu s te r .o rg /

com m unity/docum entation/index.php/M ain_Page. Accessed: 2013-09-10.

[11] Jeff Darcy. Building a cloud file system. USENIX ;login:, 36(3):14-21, June 2011.

[12] Jeff Dike. User Mode Linux. Prentice Hall Computer, 2006.

[13] Roy T. Fielding and Richard N. Taylor. Principled design of the modern Web ar

chitecture. AC M Transactions on Internet Technology (T O IT), 2(2):115—150, May

2002.

[14] Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security architec

ture for computational grids. In CCS ’98: Proceedings o f the 5th A C M conference

on Computer and communications security, pages 83-92, San Francisco, CA, USA,

November 1998.

[15] FUSE. Filesystem in Userspace. h t t p : / / f u s e . s o u r c e f o r g e .n e t / . Accessed: 2013-

09-04.

[16] Vasile Gaburici, Pete Keleher, and Bobby Bhattacharjee. File system support for

collaboration in the wide area. In ICD CS ’06: Proceedings o f the 26th IE E E In

ternational Conference on Distributed Computing Systems, Lisboa, Portugal, July

2006.

[17] Roxana Geambasu, Steven D. Gribble, and Henry M. Levy. CloudViews: Communal

D ata Sharing in Public Clouds. In HotCloud’09: Proceedings o f the 2009 conference

on Hot topics in cloud computing, San Diego, CA, USA, June 2009.

[18] Jacob G. Hansen and Eric Jul. Lithium: Virtual machine storage for the cloud. In

SoCC ’10: Proceedings o f the 1st AC M symposium on Cloud computing, pages 15-26,

Indianapolis, IN, USA, June 2008.

95

http://www.gluster.org/
http://fuse.sourceforge.net/

[19] Dean Hildebrand, Anna Povzner, Renu Tewari, and Vasily Tarasov. Revisiting the

storage stack in virtualized NAS environments. In W IO V ’l l : Proceedings o f the 3rd

conference on I /O virtualization, Portland, OR, USA, June 2011.

[20] Inktank. Ceph Block Device, h t tp : / /c e p h .c o m /d o c s /n e x t / rb d /r b d / . Accessed:

2013-07-23.

[21] Venkateswararao Jujjuri, Eric V. Hensbergen, Anthony Liguori, and Badari

Pulavarty. V irtFS - a virtualization aware file system pass-through. In OLS Ί0:

Proceedings o f the 2010 Ottawa Linux Symposium, pages 109-120, Ottawa, Canada,

May 2010.

[22] Michael Kaminsky, George Savvides, David Mazieres, and M. Frans Kaashoek. De

centralized user authentication in a global file system. In SO SP Ό3: Proceedings of

the 19th AC M symposium on Operating systems principles, pages 60-73, New York,

NY, USA, October 2003.

[23] Poul-Henning Kamp and Robert N. M. Watson. Jails: Confining the omnipotent

root. In SA N E ’00: Proceedings of the 2nd International System Administration and

Network Engineering conference, Maastricht, The Netherlands, May 2000.

[24] Angelos D. Keromytis and Jonathan M. Smith. Requirements for scalable access

control and security management architectures. Communications o f the ACM , 7(2),

May 2007.

[25] Anil Kurmus, Moitrayee Gupta, Roman Pletka, and Christian Cachin. A compari

son of secure multi-tenancy architectures for filesystem storage clouds. In Middleware

’l l : Proceedings o f the 12th A C M /IF IP /U SE N IX international conference on Mid

dleware, pages 471-490, Lisboa, Portugal, December 2012.

[26] Leslie Lamport. Paxos made simple. SIG A C T News, 32(4), Decemper 2001.

[27] Duy Le, Hai Huang, and Haining Wang. Understanding performance implications of

nested file systems in a virtualized environment. In F A ST ’12: Proceedings o f the 10th

USENIX conference on File and Storage Technologies, San Jose, CA, USA, February

2012.

96

http://ceph.com/docs/next/rbd/rbd/

[28] Andrew W. Leung, E than L. Miller, and Stephanie Jones. Scalable security for petas-

cale parallel file systems. In SC *07: Proceedings o f the 2007 A C M /IE E E conference

on Supercomputing, pages 16:1-16:12, Reno, NV, USA, November 2007.

[29] Henry M. Levy. Capability-Based Computer System s . Butterworth-Heinemann New

ton, MA, USA, 1984.

[30] Peter A. Loscocco and Stephen D. Smalley. Meeting critical security objectives with

security-enhanced linux. In OLS *01: Proceedings o f the 2001 Ottawa Linux Sympo

sium , Ottawa, Canada, July 2001.

[31] Zhiqiang Ma, Zhonghua Sheng, Gu Lin, Liufei Wen, and Gong Zhang. DVM: to

wards a datacenter-scale virtual machine. In VEE Ί2 : Proceedings o f the 8th AC M

SIG P LA N /SIG O P S conference on Virtual Execution Environm ents, pages 105-120,

London, UK, March 2005.

[32] Giorgos Margaritis, Andromachi Hatzieleftheriou, and Stergios Anastasiadis.

Nephele: Scalable access control for federated file services. Journal o f Grid Com

puting, 1(1):83-102, March 2013.

[33] David Mazieres, Michael Kaminsky, M. Frans Kaashoek, and Em m ett Witchel. Sep

arating key management from file system security. In SOSP '99: Proceedings of the

17th AC M symposium on Operating systems principles, pages 124-139, Kiawah Island

Resort, SC, USA, December 1999.

[34] MDTEST. mdtest: HPC benchmark for m etadata performance. h t t p : / /

s o u r c e fo r g e .n e t /p ro je c ts /m d te s t / . Accessed: 2013-08-21.

[35] Peter Mell and Timothy Grance. The NIST definition of cloud computing. Tech

nical Report NIST SP - 800-145, National Institute of Standards and Technology,

September 2011.

[36] Dutch Meyer, Jake Wires, Norman Hutchinson, and Andrew Warfield. Namespace

management in virtual desktops. USENIX ;login.\ 36(1):6—l 1, February 2011.

[37] Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre, Mike J. Feeley,

Norman C. Hutchinson, and Andrew Warfield. Parallax: V irtual disks for virtual °

97

machines. In Eurosys ’08: Proceedings o f the 3rd A CM SIGOPS/EuroSys European

Conference on Computer Systems, pages 41-54, Glasgow, Scotland, March 2008.

[38] Microsoft. Common Internet File System (CIFS) Protocol. h t tp : / /m s d n .

m ic ro so ft.c o m /e n -u s /lib ra ry /e e 4 4 2 0 9 2 .a sp x . Accessed: 2013-07-30.

[39] Stefan Miltchev, Vassilis Prevelakis, Sotiris Ioannidis, John Ioannidis, Angelos D.

Keromytis, and Jonathan M. Smith. Secure and flexible global file sharing. In A T C

’03: Proceedings o f the USENIX 2003 Annual Technical Conference, Freenix Track,

pages 165-178, San Antonio, Texas, USA, June 2003.

[40] Stefan Miltchev, Jonathan M. Smith, Vassilis Prevelakis, Angelos Keromytis, and

Sotiris Ioannidis. Decentralized access control in distributed file systems. AC M

Computing Surveys, 40(3): 1-30, August 2008.

[41] Yogesh M undada, Anirudh Ramachandran, and Nick Feamster. SilverLine: D ata

and network isolation for cloud services. In HotCloud ’l l : Proceedings o f the 2011

USENIX HotCloud Workshop, Portland, OR, USA, June 2011.

[42] Bryan Parno, Jonathan M. McCune, and Adrian Perrig. Bootstrapping trust in

commodity computers. In SP 10: Proceedings of the 2010 IEEE Symposium on

Security and Privacy, pages 414-429, Oakland, CA, USA, May 2010.

[43] Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Virtualization aware file systems:

G etting beyond the limitations of virtual disks. In N SD I Ό6: Proceedings of the

3rd conference on Networked Systems Design & Implementation, pages 353-366, San

Jose, CA, USA, May 2006.

[44] Lucian Popa, Yu Minlan, Steven Y. Ko, Sylvia Ratnasamy, and Ion Stoica. Cloud-

Police: Taking access control out of the network. In Hotnets-IX: Proceedings of the

9th AC M SIGCOM M Workshop on Hot Topics in Networks, Monterey, CA, USA,

October 2010.

[45] Raluca A. Popa, Jacob R. Lorch, David Molnar, Helen J. Wang, and Li Zhuang.

Enabling security in cloud storage SLAs with CloudProof. In A T C ’l l : Proceedings

of the 2011 USENIX conference on USENIX annual technical conference, Portland,

OR, USA, June 2011.

98

http://msdn

[46] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third

generation architectures. Communications o f the ACM , 17(7):412-421, July 1974.

[47] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Analysis and evolution of journaling file systems. In A T E C ’05: Proceedings o f the

annual conference on USENIX Annual Technical Conferenc, Anaheim, CA, USA,

April 2005.

[48] Daniel Price and Andrew Tucker. Solaris Zones: Operating system support for con

solidating commercial workloads. In LISA ’04: Proceedings o f the 18th Conference

on Systems Administration , pages 241-254, A tlanta, USA, November 2004.

[49] Rackspace. Rackspace Cloud Files, h ttp : / /w w w .ra c k s p a c e .c o m /c lo u d /f i le s / .

Accessed: 2013-07-23.

[50] Colby Ranger, Ram anan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos

Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In

HPCA ’07: Proceedings o f the 2007 IE E E 13th International Symposium on High

Performance Computer Architecture, pages 13-24, Phoenix, AZ, USA, February 2007.

[51] Peter Reiher, Thomas Page, Jeff Cook, Stephen Crocker, and Gerald Popek. Truffles

- a secure service for widespread file sharing. In Proceedings o f the Privacy and

Security Research Group Workshop on Network and Distributed Systems Security,

San Diego, CA, USA, February 1993.

[52] Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Stefan Saroiu. Policy-

sealed data: A new abstraction for building trusted cloud services. In Security Ί2 :

Proceedings o f the 21st USENIX conference on Security symposium, pages 175-188,

Bellevue, WA, USA, August 2012.

[53] Julian Satran, Kalman Meth, Constantine Sapuntzakis, Mallikarjun Chadalapaka,

and Efri Zeidner. Internet small computer systems interface (iSCSI). IE T F Request

fo r Comments (RFC), RFC 3720, April 2004.

[54] Mohammad Shamma, Dutch T. Meyer, Jake Wires, M aria Ivanova, Norman C.

Hutchinson, and Andrew Warfield. Capo: Recapitulating storage for virtual desk-

99

http://www.rackspace.com/cloud/files/

tops. In F A ST ’l l : Proceedings o f the 9th USENIX conference on File and stroage

technologies, pages 31-45, San Jose, CA, USA, February 2011.

[55] Spencer Shepler, Brent Callagan, David Robinson, Robert Thurlow, Carl Beame,

Mike Eisler, and Dave Noveck. Network file system (NFS) version 4 protocol. IE T F

Request fo r Comments (RFC), RF C 3530, April 2003.

[56] Marvin A. Sirbu and John Chung-I Chuang. Distributed authentication in Kerberos

using public key cryptography. In SND SS '97: Proceedings o f the 1997 Symposium

on Network and Distributed System Security, pages 134-141, San Diego, CA, USA,

February 1997.

[57] Diana K. Smetters and Nathan Good. How users use access control. In SOUPS ’09:

Proceedings of the 5th Symposium on Usable Privacy and Security, Mount View, CA,

USA, July 2009.

[58] Joseph Spadavecchia and Erez Zadok. Enhancing NFS cross-administrative domain

access. In Proceedings o f the F R E E N IX Track: 2002 U SENIX Annual Technical

Conference, pages 181-194, Monterey, CA, USA, June 2002.

[59] Jennifer G. Steiner, Clifford B. Neuman, and Jeffrey I. Schiller. Kerberos: An au

thentication service for open network systems. In Proceedings o f the USENIX W inter

1988 Technical Conference, pages 191-202, Dallas, TX, USA, January 1988.

[60] Douglas Thain. Identity boxing: A new technique for consistent global identity. In

SC ’05: Proceedings o f the 2005 A C M /IE E E conference on Supercomputing, Seattle,

WA, USA, November 2005.

[61] Douglas Thain, Christopher Moretti, Paul Madrid, Philip Snowberger, and Jeffrey

Hemmes. The consequences of decentralized security in a cooperative storage sys

tem. In S IS W ’05: Proceedings o f the Third IE EE International Security in Storage

Workshop, pages 71-82, San Francisco, CA, USA, December 2005.

[62] Satyam B. Vaghani. V irtual machine file system. AC M SIGOPS: Operating Systems

Review, 44(4):57-70, December 2010.

100

[63] VMWare. VMWare W orkstation. h ttp ://w w w .vm w are.com /products/

w o rk s ta tio n /. Accessed: 2013-07-23.

[64] Neal H. Walfield, Paul T. Stanton, John L. Griffin, and Randal Burns. Practical

protection for personal storage in the cloud. In EU RO SEC Ί0 : Proceedings o f the

Third European Workshop on System Security, pages 8-14, Paris, France, April 2010.

[65] Joshua Walgenbach, Stephen C. Simms, Justin P. Miller, and Kit W estneat. Enabling

Lustre WAN for production use on the TeraGrid: A lightweight UID mapping scheme.

In OTG Ί0: Proceedings of the 2010 TeraGrid Conference, pages 1-6, Pittsburgh,

PA, USA, August 2010.

[66] Jinpeng Wei, Xiaolan Zhang, Glenn Ammons, Vasanth Bala, and Peng Ning. Man

aging security of virtual machine images in a cloud environment. In C CSW ’09:

Proceedings o f the 2009 AC M workshop on Cloud computing security, pages 91-96,

Chicago, IL, USA, November 2009.

[67] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos

Maltzahn. Ceph: A scalable, high-performance distributed file system. In F A ST ’08:

Proceedings o f the 6th USENIX Conference on File and Storage Technologies, pages

307-320, Seattle, WA, USA, November 2006.

[68] Sage A. Weil, Scott A. Brandt, E than L. Miller, and Carlos M altzahn. CRUSH: con

trolled, scalable, decentralized placement of replicated data. In SC Ό6: Proceedings

of the 2006 A C M /IE E E conference on Supercomputing, Tampa, FL, USA, November

2006.

[69] Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, and E than L. Miller. Dynamic

m etadata management for petabyte-scale file systems. In SC ’04: Proceedings o f the

2004 A C M /IE E E conference on Supercomputingy, P ittsburgh, PA, USA, November

2004.

[70] Brent Welch, Marc Unangst, Zainul Abbasi, G arth Gibson, Brian Mueller, Jason

Small, Jim Zelenka, and Bin Zhou. Scalable performance of the panasas parallel

file system. In F A ST Ό8: Proceedings o f the 6th USENIX Conference on File and

Storage Technologies, San Jose, CA, USA, February 2008.

101

http://www.vmware.com/products/

[71] Assar Westerlund and Johan Danielsson. Heimdal and Windows 2000 Kerberos -

How to Get Them to Play Together. In Proceedings o f the FR E E N IX Track: 2001

U SENIX Annual Technical Conference, pages 267-272, Boston, MA, USA, June 2001.

[72] Wikipedia. Dike (mythology), 2013. Accessed: 2013-09-10.

102

A uthor’s P ublications

Giorgos Kappes, Andromachi Hatzieleftherou, Stergios V. Anastasiadis, Dike: Virtualization-

aware Access Control for M ultitenant Filesystems, Technical R eport DCS2013-1, Depart

m ent of Com puter Science, University of Ioannina, February 2013.

t

Short V ita

Georgios E. Kappes was bom in Ioannina, Greece in 1987. He graduated the 2nd High

School of Ioannina in 2004 and obtained his B.Sc degree from the D epartm ent of Computer

Science, of the University of Ioannina in 2011. His B.Sc. thesis was entitled “Logging

file access patterns for a more efficient file search on file systems” . Currently, he is a

postgraduate student a t the same departm ent and a member of Systems Research Group

(SRG) of the University of Ioannina. His research interests lie in the fields of virtualization,

file and storage systems, as well as security and privacy.

