
Analysis o f Schema Evolution for Databases
in Open-Source Software

Ioannis Skoulis

Master Thesis

Ioannina, September 2013

Τ μήμα Μηχανικών H /Y & Πληροφορικής

Πανεπιστήμιο Ιωαννινων

Departm ent of Com puter Science & E ngineering

University of Ioannina

•ι
ΒΙΒΛΙΟΘΗΚΗ
ΠΑΝΕΠΕΤΗΜΟΪ Κ1ΑΝΗΗΟΜ

026000336879

*;

·': ■ --

Λ'·.*·

ΑΝΑΛΥΣΗ ΤΗΣ ΕΞΕΛΙΞΗΣ ΣΧΗΜΑΤΟΣ ΓΙΑ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΣΕ ΛΟΓΙΣΜΙΚΟ
ΑΝΟΙΧΤΟΥ ΚΩΔΙΚΑ

Η
ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

Υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης
του Τμήματος Πληροφορικής

Εξεταστική Επιτροπή

από τον

Ιωάννη Σκουλή

ως μέρος των Υποχρεώσεων

για τη λήψη

του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ

Σεπτέμβριος 2013

TABLE OF CONTENTS

Σελ
T A B L E O F C O N TE N TS i
L IS T OF TA B LES Hi
L IS T OF FIG URES iv
A B S TR A C T vi
Π Ε Ρ ΙΛ Η Ψ Η Σ Τ Α Ε Λ Λ Η Ν ΙΚ Α vii
C H A PTER 1. IN T R O D U C T IO N 1
C H A PTE R 2. R E LA TE D W O R K 5
C H A PTE R 3. D A TA SETS A N D C H A R A C T E R IS T IC FACTS 7

3.1. Experimental Method 7
3.1.1. Hecate SQL Model and Mapping 8
3.1.2. Differentiating D DLs 8

3.2. Terminology, Definitions and Notations 9
3.2.1. Definitions o f main concepts 9
3.2.2. Definitions o f measured properties for transitions and datasets,
quantifying change 10

3.3. Presentation o f Measures 13
3.4. A TLA S Trigger 17
3.5. BioSQL 21
3.6. Coppermine Photo Gallery 26
3.7. Ensembl 30
3.8. MediaW iki 37
3.9. OpenCart 44
3.10. phpBB 48
3.11. T Y P 0 3 52

C H A PTE R 4. ASSESING L E H M A N LA W S O N T H E E V O L U T IO N OF
D ATA BASES IN O PEN-SO URCE SO FTW A R E 57

4.1. Laws o f evolution for software systems with a view to schema evolution 59
4.1.1. Continuing Change 60
4.1.2. Increasing complexity 60
4.1.3. S elf Regulation 64
4.1.4. Conservation o f Organizational Stability 66
4.1.5. Conservation o f Familiarity 67
4.1.6. Continuing Growth 68
4.1.7. Declining Quality 69
4.1.8. Feedback System 1 71
4.1.9. Putting it all together for schema evolution 72

4.2. Measures o f change and effort for Schema Evolution 76
4.2.1. Heartbeat o f Schema Changes over Tim e and Version Id 76

4.2.2. Schema Size (both in terms o f relations and Attributes) 80
4.2.3. Growth o f the Number o f Relations and Attributes 85
4.2.4. Growth ratio 91
4.2.5. Complexity 92

4.3. Is There a Feedback-based System for Schema Evolution? 93
4.3.1. Discussion o f our findings for the first law o f continuing change. 93
4.3.2. Discussion o f our findings for the eighth law o f feedback system 94
4.3.3. Discussion o f our findings for the third law o f self-regulation. 98

4.4. Properties o f Growth for Schema Evolution 101
4.4.1. Discussion o f our findings for the sixth law o f continuing growth. 101
4.4.2. Discussion o f our findings for the fifth law o f conservation o f
familiarity. 102
4.4.3. Discussion o f our findings for the fourth law o f conservation o f
organizational stability. 105

4.5. Perfective Maintenance for Schema Evolution 108
4.5.1. Discussion o f our findings for the second law o f increasing complexity. 108
4.5.2. Discussion o f our findings for the seventh law o f declining quality 109

4.6. Treats to Validity 110
4.6.1. Construct Validity 110
4.6.2. Internal Validity 112
4.6.3. External Validity 113

4.7. Putting it All Together 113
CHAPTER 5. DISCUSSION 117

5.1. Summary o f our findings 117
5.1.1. Observations com ing with high degree o f certainty 118
5.1.2. Observations requiring further investigation 119

5.2. Open issues for future work 120
REFERENCES 122
SHORT VITA 124

LIST OF TABLES

Table 3.1 Collected Datasets 16
Table 4.1 Laws o f Software Evolution as stated in [Leh+97] (left) and [LeRa06]

(right) 58
Table 4.2 Lehman laws adapted for the case o f schema evolution and the metrics

we used to access each law. 75
Table 4.3 A summary on the results o f our study 116

LIST OF FIGURES

Figure 3.1 Events over time for ATLAS Trigger 18
Figure 3.2 Analysis o f Changes over Time for ATLAS Trigger 19
Figure 3.3 Further Insights on ATLAS Trigger 20
Figure 3.4 Events over Time for BioSQL 23
Figure 3.5 Analysis o f Changes over Time for BioSQL 24
Figure 3.6 Further insights for BioSQL 25
Figure 3.7 Events over time for Coppermine 27
Figure 3.8 Analysis o f Changes over Time for Coppermine 28
Figure 3.9 Further insights for Coppermine 29
Figure 3.10 Events over time for Ensembl 32
Figure 3.11 Analysis o f Changes over Time for Ensembl 34
Figure 3.12 Further insights for Ensembl 36
Figure 3.13 Events over time for MediaWiki 39
Figure 3.14 Analysis o f Changes over Time for MediaWiki 41
Figure 3.15 Further insights for MediaWiki 43
Figure 3.16 Events over time for OpenCart 45
Figure 3.17 Analysis o f Changes over Time for OpenCart 46
Figure 3.18 Further insights for OpenCart 47
Figure 3.19 Events over time for phpBB 49
Figure 3.20 Analysis o f Changes over Time for phpBB 50
Figure 3.21 Further insights for phpBB 51
Figure 3.22 Events over time for TYP03 53
Figure 3.23 Analysis o f Changes over Time for TYP03 54
Figure 3.24 Further insights for TYP03 55
Figure 4.1 A comparative presentation o f change breakdown -heartbeat- over time

for the studied database schemata. 77
Figure 4.2 A comparative presentation o f change breakdown -heartbeat- over

version id for the studied database schemata 79
Figure 4.3 A comparative presentation o f schema size per version over time,

expressed as the number o f relations, for the studied database schemata 80
Figure 4.4 A comparative presentation o f schema size per version over time,

expressed as the number o f attributes, for the studied database schemata 81
Figure 4.5 A comparative presentation o f schema size per version, expressed as

the number o f relations, for the studied database schemata 82
Figure 4.6 A comparative presentation o f schema size per version, expressed as

the number o f attributes, for the studied database schemata 83
Figure 4.7 A comparative presentation o f estimated size via regression analysis

for the studied database schemata 84

Figure 4.8 A comparative presentation o f the growth (in number o f relations) for
the studied database schemata 85

Figure 4.9 Zoomed growth (in number o f relations) for Ensambl over version ID 86
Figure 4.10 Zoomed growth (in number o f relations) for Media W iki over version

ID 87
Figure 4.11 A comparative presentation o f the growth (in number o f attributes)

for the studied database schemata 88
Figure 4.12 Zoomed growth (in number o f attributes) for Ensembl over version

ID 89
Figure 4.13 Zoomed growth (in number o f attributes) for M ediaW iki over version

ID 90
Figure 4.14 A comparative presentation o f growth ratio for the studied database

schemata 91
Figure 4.16 A comparative presentation o f complexity for the studied database

schemata 92
Figure 4.17 Actual and estimated schema sizes via a total average o f individual Ei 96
Figure 4.18 Actual and estimated schema sizes via a running average o f

individual Ei 96
Figure 4.19 Actual and estimated schema sizes via a bounded average o f

individual Ei, also computed as bounded averages 98
Figure 4.20 Ensembl’s combined heartbeat and schema size: age results in a

decline o f both activity and growth 103
Figure 4.21 Different patterns o f change in the heartbeat o f M ediaW iki 104
Figure 4.22 Frequency o f growth size for Ensemble 107

I

f

v

iia
pr

PH
W

Tt
f.v

 ...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
..

w
 j*

,‘t**
n

r
x**

.‘>*f
f* n

w
o

tw
T

ir
ii

r
»i

ABSTRACT

Ioannis Skoulis
MSc, Department o f Computer Science and Engineering
University o f Ioannina, Greece
September 2013
Analysis o f Schema Evolution for Databases in Open-Source Software.
Supervisor: Panos Vassiliadis

Like all software systems, databases are subject to evolution as time passes. The impact o f
this evolution is tremendous as every change to the schema o f a database affects the syntactic
correctness and the semantic validity o f all the surrounding applications and de facto
necessitates their maintenance in order to remove errors from their source code. In this MSc
Thesis, we perform a large-scale study for the schema evolution o f databases that are part o f
larger open source projects, publicly available through open source repositories. The goal o f
our study is to assess the applicability o f Lehman's laws o f software evolution to databases in
open-source software. This set o f eight laws o f evolution is a well-established set o f
observations (matured during the last forty years) on how the typical software systems evolve.
However, the applicability o f these laws on databases has not been studied so far. To this end,
we have performed a thorough study on the evolution o f several properties o f a database
(including size, growth, and amount o f change per version, in terms o f both relations and
attributes) and report on the validity o f each law on the grounds o f these observations.

vi

ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Ιωάννης Σκουλης του Αντωνίου και της Ειρήνης
ΜΔΕ, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων
Σεπτέμβριος 2013
Ανάλυση της εξέλιξης σχήματος για βάσεις δεδομένων σε λογισμικό ανοιχτού κώδικα.
Επιβλέποντας: Παναγιώτης Βασιλειάδης

Όπως σε όλα τα συστήματα λογισμικού, έτσι και οι βάσεις δεδομένων εξελίσσονται στο
πέρασμα του χρόνου. Ο αντίκτυπος αυτής της εξέλιξης είναι εξαιρετικής σημασίας καθώς
κάθε αλλαγή στο σχήμα μίας βάσης δεδομένων επηρεάζει την συντακτική ορθότητα καθώς
και τη σημασιολογική εγκυρότητα όλων τον εφαρμογών που την περιβάλουν και απαιτεί εκ
των πραγμάτων τη συντήρησή τους, προκειμένου να αρθούν τα λάθη από τον πηγαίο τους
κώδικα. Σε αυτήν την μεταπτυχιακή εργασία εξειδίκευσης, διεξάγουμε μια μεγάλης κλίμακας
μελέτη όσον αφορά την εξέλιξη σχήματος βάσεων δεδομένων που αποτελούν μέρος
μεγαλύτερων προγραμμάτων ανοικτού κώδικα, διαθέσιμων στο κοινό μέσω ανοικτών
αποθετηρίων. Ο στόχος της μελέτης μας είναι να εκτιμήσει τη δυνατότητα εφαρμογής των
νόμων του Lehman για την εξέλιξη λογισμικού, σε βάσεις δεδομένων λογισμικού ανοιχτού
κώδικα. Αυτό το σύνολο των οκτώ νόμων της εξέλιξης είναι ένα καλά εδραιωμένο σύνολο
παρατηρήσεων (που έχει ωριμάσει κατά τη διάρκεια των τελευταίων σαράντα ετών) σχετικά
με το πώς τα συστήματα λογισμικού εξελίσσονται. Ωστόσο, η ισχύς των νόμων αυτών όσον
αφορά τις βάσεις δεδομένων δεν έχει μελετηθεί μέχρι σήμερα. Για το σκοπό αυτό, έχουμε
πραγματοποιήσει μια εμπεριστατωμένη μελέτη σχετικά με την εξέλιξη των διαφόρων
ιδιοτήτων της βάσης δεδομένων (όπως μέγεθος, ανάπτυξη, και το ύψος των αλλαγών ανά
έκδοση, τόσο όσον αφορά τις σχέσεις όσο και τα γνωρίσματα αυτών) και αναφέρουμε τα
αποτελέσματα σχετικά με την εγκυρότητα του κάθε νόμου με βάση τις εν λόγω
παρατηρήσεις.

!

I

VII

CHAPTER 1. INTRODUCTION

An elemental characteristic o f all software projects is their need to evolve. Such behavior

occurs due to several reasons. Firstly, people do not know in advance or are unable to express

the exact functionality o f a large-scale system, which can only be systematically specified

only after significant use o f the system at hand. Moreover, the application world is continually

changing with new programming styles and techniques added to the developer’s portfolio.

Therefore, continuous modifications are necessary to ensure that the system complies with its

requirements. Software evolution, a phenomenon that appeared since the introduction o f

computer programming, is the change o f a software system, over the years and releases, from

its initial formation to the point it is withdrawn (is no longer used or surpassed by competitive

software). This process requires ongoing maintenance that is remarkably difficult,

complicated and time consuming. Software maintenance amounts up to 60% o f the resources

spent on building an operating a software system [PresOO] and thus, it is o f utmost importance

for a system’s life-cycle. To minimize this effort, developers must comprehend the factors

that make software evolve and take active measures to prevent software decay.

In the late seventies, Lehman and his colleagues introduced [BeLe76], a set o f rules, also

known as the Laws on Software Evolution, that govern software evolution. Their findings, that

were reviewed and enhanced for nearly 40 years [Lehm96, Leh+97, LeRP98, RaLeOO,

LeRaOl, LeRa06], have been based on their observations upon proprietary and closed source

software, not accessible to the public. Those considerations have, since then, given an insight

to managers, software developers and software evolution scholars, as to what and why evolve

in the lifetime o f a software system.

Being at the very core o f most software, databases are also subject to evolution. Every change

in the schema o f a database implies a severe impact on the surrounding applications. A

removal o f a relation might cause a complete failure to a query that uses this relation, thus

1

leading to a syntactic correctness issue. On the other hand, an addition o f an attribute that

contains important information may be ignored by applications that are not aware o f the

change, therefore causing a semantic validity problem. Hence, every modification, regardless

o f its size or type, in the "logical” schema o f the database leads to several side effects that

affect to both application developers (syntactic) and end users (semantic).

In a similar way to software evolution, we need a set o f “ laws” or leads as to how evolution

takes place in the world o f databases. Such rules might give a better insight to database

administrators and developers in data-centric applications as to what and how changes in the

lifetime o f a database schema. Some studies have been previously conducted on the evolution

o f database schema [Sjob93, P aV al2 and C M D Z 13]. Those studies, however, focus on the

statistical properties o f the evolution o f the studied databases and fail to provide detailed data

on the actual events o f evolution, and do not provide any insight in terms o f patterns on the

validity o f the Lehman laws. To address this gap in literature, we perform a large scale study

for the schema evolution o f databases that are parts o f larger open source projects that are

publicly available through open source repositories. Previous studies have given indications

on whether Lehman laws apply on open source software [R LW C 08, X iC N 09] - however not

for databases.

The goal o f our study is to assess the applicability o f Lehman's laws o f software evolution to

databases in open-source software. The applicability o f these laws on databases has not been

studied so far, thus making this thesis the first attempt towards a better understanding o f the

evolution process o f the database schema along with the evolution o f its accompanied

software. We have performed a thorough study on the evolution o f several properties o f eight

databases that we have extracted using our homebrew software tool, Hecate [SkoulO]. Such

properties include size, growth, and amount o f change per version, in terms o f both relations

and attributes. On the grounds o f these observations, we report on the validity o f each law.

Our contributions can be listed as follows:

• We perform the first large -scale study o f schema evolution in the related literature.

We study the evolution o f the logical schema o f eight databases, publicly available in

open-source software.

2

• W e have completed the collection, cleansing and processing o f the versions o f the

database schema for the eight cases that we have studied. We have extracted both the

schemata and the differences o f database versions and we have come up with the

respective datasets that can serve as a foundation for future analyses by the research

community.

• We report on measures like the schema size (in terms o f relations and attributes), the

growth, the growth rate, the breakdown o f changes in several categories (additions,

removals and updates o f attributes, relations and constraints) over both time and

version o f the eight schemata.

• We study the laws o f software evolution in depth, concerning their applicability to the

case o f databases in open-source software. Due to the high level o f abstraction in the

wording o f the laws and their (meta-) evolution over time, we indulge in a thorough

presentation o f the intuition behind the wording o f the laws. We study how the laws

are translated” for the case o f databases. Moreover, we restructure the laws in order

to clearly demonstrate their essence.

• We use concrete metrics to assess each law and report on its applicability for the case

o f schema evolution. W e avoid overgeneralizing our findings and present our

observations with a focus on measurable properties o f the studies databases.

Roadmap. The structure o f this thesis is as follows. In Chapter 2, we present related work on

software evolution in general, a more specific approach on open source software and three

case studies associated with database schema evolution. In Chapter 3, we introduce eight

databases that are part o f open source software along with sets o f measures that illustrate their

evolution. In Chapter 4, we dive in Lehman laws on software evolution, and present their

definition, the associated metrics needed to evaluate each law and our findings on the

applicability those laws to open source software. Chapter 5 summarizes our findings on

schema evolution for open source software and concludes with issues that need further

research.

3

CHAPTER 2. RELATED WORK

One o f the first thorough investigations on measuring schema evolution and its impact on

surrounding applications was made by Sjoberg D. The author o f this work has created a tool

[Sjob91] that stood on top o f a health management system (H M S) that used a relational

database and monitored its evolution for a time frame o f 18 months. The results o f this study

were introduced in [Sj0b93], The structure, o f the one database schema that was examined,

had more than doubled its elements during its lifetime (139% for relations and 274% for

attributes). The consequences o f this evolution, was significantly large (a cumulative 45% o f

all the names that were used in the queries had to be deleted or inserted). Such great impact,

as the author suggests, confirms the need o f change management tools that can propagate the

change o f the schema to the affected queries without making the system unavailable.

Another case study, on a real life open source web information system, is [C M TZ08]. The

authors made an analysis on the database backend o f M ediaW iki, the software that powers

Wikipedia. A similar analysis was also made on MediaW iki in [SkoulO] with a different tool

(Hecate) but having the same results and is again investigated and presented in this Thesis.

[C M H Z08] introduces the tool that was used in [C M TZ08], the PRISM workbench. PRISM , a

change management tool, provides a language o f Schema Modification Operations (SM O) to

express schema changes. An SM O is a function that takes as input an initial schema o f a

database and produces as output a modified version o f that schema. The set o f those functions

is as follows:

• C R E A TE TA B L E

• DROP TA B L E

• R E N A M E TA B L E

• C O PY TA B L E

• M ER G E TA B LE

5

• P A R T IT IO N T A B L E

• DECO M PO SE T A B L E

• JOIN T A B L E

• A D D C O L U M N

• DROP C O L U M N

• R E N A M E C O L U M N

Those SMOs are then used to represent the evolution o f the schema. Moreover, their nature

allows the definition o f a sequence o f statements implementing the operation semantics in

SQL, thus automating query rewriting for the queries that were affected by the schema

evolution. PR ISM , which was written in Java, was recently reengineered to P R ISM ++

[C M D Z13], with a faster rewriting engine that can handle updates, integrity constrains and

queries with functions. P R ISM /PR IS M ++, that was used to study the evolution o f numerous

database schemas (most o f them are also presented in this Thesis), is a rather forward

approach on schema evolution in contrast to the work by Sjoberg, who attempted a “reverse

engineering” on schema evolution.

Finally, recent work in [P VSV12] has been made in terms o f data warehouses, rather than

traditional databases. The evolution o f data warehouses has immediate impact on the Extract-

Transform-Load (E T L) flows that are attached to them. The experimental analysis o f the

authors is based in a six-month monitoring o f seven real-world E TL scenarios that process

data for statistical surveys. They asses the quality o f different E TL designs with respect to

their maintainability and resilience to changes in the data warehouse. Their findings indicate

schema size and module complexity (the number o f internal edges in the graph representation

o f an ETL) as important factors for the vulnerability i f a system.

6

FACTS

CHAPTER 3. DATASETS AND CHARACTERISTIC

In this chapter we introduce eight datasets from Open-Source software that we collected,

sanitized, and studied using our open source SQL d iff tool, Hecate [SkoulO]. Those datasets

come from a wide range o f applications such as Content Management Systems (CMS's), Web

Forums, Web Stores, Image Galleries as well as Medical and Scientific storages. Opening our

discussion, we present (a) our experimental method, (b) the data model for the database

schema versions and their differences and (c) algorithm and the differentiate algorithm, based

on Sort-Merge Join algorithm, that our tool, Hecate, uses to identify changes between schema

versions. Then we present each dataset with its measures. The original collection o f the

datasets was made by Carlo Curino.1.

3.1. Experimental Method
For each dataset we gathered as many schema versions (D D L files) as we could from their

public source code repositories (cvs, svn, git). The links o f those repositories can be found in

Table 3.1. W e have targeted main development branches and trunks to maximize the validity

o f the gathered resources. We are interested only on changes o f the database part o f the

project as they are integrated in the trunk o f the project. Hence:

• W e collected all commits o f the database at the time o f the trunk or master branch.

• W e ignored all other branches o f the project.

• W e ignore commits o f other modules o f the project that did not affect the database. 1

1 http://data.schernaevolution.org

7

http://data.schernaevolution.org

The files were collected during June 2013. For all o f the projects, except A T L A S Trigger, we

focused on their release for M ySQ L R D B M S. For the A TLA S Trigger database we have the

Oracle version as no M yS Q L version was developed Those files where then renamed with

their filenames matching to the date (in standard U N IX time) the commit was made. The files

were then processed by sequential pairs from our tool, Hecate, to give us (a) the differences

between two subsequent commits and (b) the measures we needed to conduct this study.

Hecate, which is written in Java, parses the D D L files and creates the appropriate objects that

represent the schema structure o f the database. Those objects are then compared and a list o f

measures is extracted about the change that took place between them.

3.1.1. Hecate SQL Model and Mapping

Hecate parses the D D L files and identifies C R E A TE and A L T E R commands with the help o f

A N TL R v4'. The parser is quite error resilient as all o f the datasets contained syntactic and

typing errors and almost none o f them followed the naming restrictions o f M yS Q L or the

general SQL query specifications. Such behavior is most likely due to the high activity o f the

main development branch, that we targeted, which, in many cases, contained some erratic

commits that were later corrected. We are interested in the logical schema, thus we ignore

changes to the physical schema (indexes, storage engines, locales and other D B M S options).

After parsing the files, Hecate creates sorted lists o f relations and the attributes they contain as

well as foreign key constrains for the relations.

3.1.2. Differentiating DDLs

For the items to be sorted, we compare the alphanumeric strings o f the names o f the items to

indicate their ranking on the list. This means that all schema elements are defined by their

name and, because no renaming detection was implemented, a possible rename is processed

as a deletion and an insertion. Exploiting the sorted lists o f Relations and Attributes, Hecate

uses a Sort-Merge Join algorithm to determine whether the two items in question are

matching or something was inserted or deleted from the schema and marks them

appropriately. Attributes are marked as altered i f they exist in both versions and their type or

participation in theirs relation primary key changed. Relations are marked as altered i f they 1

1 hltp^ /w w w . anllr.org/

8

exist in both versions and their contents had a change (attributes inserted/deleted/altered).

Summarizing, the changes that we detect are the following:

- Attributes inserted

- Attributes deleted

- Relations inserted

Relations deleted.

- Attribute type change

- Attribute participation in a Relations Primary key change

Those changes can be massively detected in an automated way. There is no ambiguous or

estimation to what has happened compared, for example, detecting renames where we

estimate the existence o f a renaming based on name similarity and data type. Thus, the

reported facts are accurate deltas, automatically extracted from the repositories.

Before proceeding, however, we need to establish a clear terminology, along with a set o f

definitions for the measured properties o f the datasets that we have analyzed. This is the topic

o f the following subsection.

3.2. Terminology, Definitions and Notations
In this subsection, we start by giving the definitions and terminology for the concepts o f

dataset, version, transition, and revision. Then, we move on to define the measurable

properties, or measures, that pertain to each o f them.

3.2.1. Definitions o f main concepts

Schema Version, or simply, Version: A snapshot o f the database schema, committed to the

public repository that hosts the different versions o f the system. To facilitate our

deliberations, we assign an artificial version id to each version, in the form o f an auto­

incrementing integer with step one. Thus, version ID ’s are isomorphic to a contiguous subset

o f the set o f positive integers. Whenever possible, we also assign a timestamp to the version,

which is the commit time to the public repository.

Synonymous term: Commit, Revision.

9

Dataset: A sequence o f versions, respecting the order by which they appear in the repository

that hosts the project to which the database belongs. In our case, we have monitored only the

versions committed to the trunk (master development branch) o f the project to which the

database belongs.

Transition: The fact that the database schema has been migrated from version \ , to version Vj,

i <j. We refer to Vj as the source version o f the transition and to Vj as the target version o f the

transition. We denote such a transition by an arrow from the source towards the target o f the

transition, e.g., v,-> V |. Throughout all our deliberations, w e em ploy the te rm old to refer

to properties o f the source version and the term new to re fer to properties o f the target

version o f a transition.

Revision: A transition between two sequential versions, i.e., from version Vj to version vi+|.

Each transition incurs a set o f differences to the database schema. W e measure the alteration

o f tables and attributes in a manner that w ill be clearly defined right away. To simplify

expressions, we frequently use the term “version” instead o f “transition to leads to this

version” . So, for example, i f we say the “new number o f relations for version v “, we refer to

the number o f tables o f v,, after a transition has taken place. Unless otherwise specified, such

a transition is a revision, i.e., a transition Vj.i-»Vj.

3.2.2. Definitions o f measured properties fo r transitions and datasets, quantifying change

We classify the measured properties o f the evolution o f a database schema - to which we

refer as measures - into three categories.

A. Properties o f a single transition.

We remind the reader that, unless otherwise specified, in the rest o f our deliberations, the

studied transitions are revisions. However, in the current discussion, the definitions are given

for transitions in the general case.

10

i. Measures pertaining to relations.

Num Old Tables: The number o f Tables o f the first (oldest) schema version o f a transition.

Num New Tables: The number o f Tables o f the second (newest) schema version o f a

transition.

Table Insertions: The number o f Tables inserted during a transition.

Table Deletions: The number o f Tables removed during a transition.

Table Modifications: The number o f Tables that coexist between two schema versions o f the

transition and have changes such as attributes inserted, attributes removed, attributes having

changed type, and attributes becoming primary keys for the Table.

ii. Measures pertaining to attributes.

Num Old Attributes: The number o f Attributes o f the first (oldest) schema version o f a

transition.

Num New Attributes: The number o f Attributes o f the second (newest) schema version o f a

transition.

Attribute Insertions: The number o f Attributes inserted in Tables that exist in the source

(oldest) version o f a transition.

Attribute Inserted at Table Formation: The cumulative number o f Attributes o f all the new

Tables inserted in the database schema during a transition.

Attribute Deletions: The number o f Attributes removed from Tables that reside in both

versions o f the transition.

Attribute Deletions at Table Removal: The cumulative number o f Attributes o f all the Tables

that were removed from the database schema during a transition (i.e., cease to exist in the new

version o f the transition, although present in the old version).

II

Attribute Type Alternations: The number o f Attributes that changed type during a transition.

Attribute Key Alternations: The number o f Attributes that reversed their status concerning

their participation to the primary key o f a relation - specifically, the number o f attributes that

either became primary keys in the new version (while they were not in the old version) or

stopped being primary keys in the new version while being primary keys in the old version.

Attribute Alternations'. The sum o f Attribute Type Alterations and Attribute Key Alterations.

Schema Growth: The difference between the new and old Tables o f a transition, i.e., New

Tables - Old Tables (attn: not the absolute, but the actual value o f the subtraction).

Schema growth ratio: Growth divided by the size o f the older version, (i.e., the formula is

Schema Growth / Num Old Tables)

iii. Cumulative measures for a transition

Transition Change Breakdown: a tuple o f measures for the transition under discussion,

including Table Insertions, Table Deletions, Attribute Insertions, Attribute Deletions,

Attribute Inserted at Table Formation, Attribute Deletions at Table Removal, Attribute

Alternations.

Transition Changes: The sum o f Table Insertions + Table Deletions + Attribute Insertions +

Attribute Deletions + Attribute Inserted at Table Formation + Attribute Deletions at Table

Removal + Attribute Alternations for a transition.

B. Timeline measures for entire datasets

Once we have reviewed the measures for individual transitions, we can extend them to

timeline measures - i.e., the monitoring o f these measures for a sequence o f schema versions.

Whenever we append the term “timeline” to the aforementioned measures, we refer to a

sequence o f such measurements, sorted by their version id, assessing the investigated measure

12

for each version id. Unless otherwise specified, we refer to entire datasets as sequences o f

schema versions; again, transitions are revisions. To give a few examples:

Num New Tables Timeline·, a sequence o f measurements, each measuring the tables o f the new

version o f a revision. The timeline practically gives the schema size for each version.

Attribute Deletions Timeline: a sequence o f measurements, each measuring the number o f

attributes deleted from surviving tables o f a transition.

Change Breakdown Timeline: a sequence o f tuples, one per transition, with its change

breakdown.

C. Cumulative properties o f a dataset.

Num Versions: The total number o f versions for a dataset.

Lifetime: The time interval (in standard U N IX time) between the first and last commit for a

dataset.

Total Num Changes: The sum o f Changes o f all revisions.

Complexity Maintenance Rate: The number o f evolution-affected Tables over the number o f

Tables o f the original database schema during a transition. The exact formula is (Tables

Inserted + Tables Modified) / Old Tables. Observe that maintenance rate is different from

growth ratio, as it includes the modified tables in its formula (as opposed to the growth ratio).

Changes per Day: The number o f all revisions divided by the schemas lifetime.

3.3. Presentation of Measures
Following we provide a brief description o f each dataset (in alphabetical order) and some

macroscopic figures for an insight about those measures. Those figures are presented in three

groups:

13

Events over time: We start with a set o f figures that depict the evolution o f events over time

and specifically, the number o f events over time, the schema size (no. o f tables and no. o f

attributes). The first figure o f this group shows the accumulative changes made on the

database schema over time. Due to the restricted size o f the figures, in order to fit in those

pages, compared to large lifetimes o f the databases, some changes overlap on the figure.

Moreover, there are occasions where too many commits are applied within a short period o f

time. For a more detailed (with each type o f change) figure look at the next group o f figures.

The two following figures show the number o f relations and attributes over time. Areas where

changes seem to be large but the schema size remains the same indicate that same number o f

schema elements where added and deleted (maybe some o f them renamed) or the changes are

alterations o f the schema (attributes change type or relations change primary keys). A

combined figure o f those figures can be found on the third group.

Analysis o f Changes over Time: Once we have presented the evolution o f events over time,

we are now ready to drill in this information and study the breakdown o f these events. We

repeat the first figure with more detail on the type o f change over time. W e use three colors to

indicate changes in this figure. Red is for deletions, blue for insertions and orange for

alterations. This approach also suffers from overlapped commits. For this reason we present a

zoomed out figure with the changes breakdown over version ID . This second figures uses the

same palette o f colors as the previous with lighter tone for attributes and even more light tone

for attributes born with newly inserted relations. Versions that seem to have no changes

indicate that something was changed to the database irrelative to the schema structure (i.e.

database management system parameter change). Transitions that have dominance o f blue or

red indicate growth or diminish on schema size respectively.

Further insights: To further probe into this information, we also provide some extra analyses.

The first figure is a combination o f the relations and changes figures from the first group but

with the x axis representing the version ID o f the schema. The second one is an intuitive way

to represent the schema evolution regarding its size. The x axis holds the total number o f

relations for the schema while the y axis holds the total number o f attributes. Each point

represents a version o f the schema and the lines connecting those dots, the change between

two subsequent schema versions. Because o f the general increasing behavior the datasets have

most o f them (except phpBB) has their initial version on the bottom left o f the figure and the

14

last on top right. Vertical lines indicate that attributes were added while the total number o f

relations remained the same. Horizontal lines (rare) indicate the reverse. Those assumptions

should not be considered with absolute confidence, but rather as indications, because relations

or attributes might be inserted or removed thus leaving the schema size the same.

15

Ta
bl

e
3.

1
C

ol
le

ct
ed

 D
at

as
et

s

*
}

SO

3
j
-i
\
\

i
I

1

i

■ i

ij

2

Λ

3.4. A T L A S Trigger

A T L A S 1 is a particle physics experiment at the Large Hadron Collider at CERN, the

European Organization for Nuclear Research based on Geneva, Switzerland. A TLA S goal is

to learn about the basic forces that have shaped our universe since the beginning o f time and

that w ill determine its fate. Among the possible unknowns are the origin o f mass, extra

dimensions o f space, microscopic black holes, and evidence for dark matter candidates in the

universe. Trigger is one o f the software in the ATLA S project responsible o f filtering the

immense (40 terabytes per second2) data collected by the Collider and storing them in its

database. As mentioned before, this database uses the Oracle RDBM S. The database schema

started with 56 relations and after two and a half years grew to the size o f 73 relations.

Despite the projects short lifetime, this schema had very active evolution with 82% o f changes

affecting its design.

The database schema structure had two major reconstructions, in the two summers o f 2007

and 2008 (Figure 3.1). Generally, it looks like summers are high activity areas for the

development o f this database. The great change around March 2008 has no structure impact

which means that the database had some non structural change such as type or key alterations.

After a closer look at Figure 3.2, we can now confirm that large bars from the previous set o f

figures were alterations on the database schema rather than direct structural change. After a

closer look on the above figures, we can see that the database schema has a steady growth

with one big drop in relations and attributes just after revision 22. In revisions 19, 32, 33, and

49 we have a large number o f relation alterations that affect almost the entire schema.

After the major drop in relations after revision 22, as shown in Figure 3.3 the database schema

seems to have a more stable grow with a big leap ahead in revision 69. We can see a quite

large drop in relations and attributes in the early life o f the schema and an almost steady

growth afterwards.

1 hup://allas.web.cern.ch/Allas/Collahoralion/
2 hUp://\vw\v.atlas.ch/pdf/atlas_faclsheet_4.pdf

17

180

160

140

120

100

80

20

Changes

1 j ;]
----!---- ----- i---r—Li---- ,---^ --■------

! . |—)---- Ll-,,-------- ,------- L
Aug-06 Dec-06 Apr-07 Aug-07 Dec-07 Apr-08 Aug-08 Dec-08

a. Change Heartbeat over Time for ATLAS Trigger

Figure 3.1 Events over time for ATLAS Trigger

{

18

160

140

120

100

80

60

40

20

180

l.l '
Aug-06 Dec-06 Apr-07 Aug-07 D ec0 7 A pr0 8 Aug-08 Dec-08

s Alterations ■ Insertions ■ Deletions

a) Changes Breakdown over Time for ATLAS Trigger

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

I Table Insertions ■ Attribute Insertions Attribute Insertions w /Table

■ Table Deletions ■ Attribute Deletions Attribute Deletions w /Table

I Table Alteration Attribute Key Alterations Attribute Type Alterations

b) Changes Breakdown over Version ID for ATLAS Trigger

Figure 3.2 Analysis of Changes over Time for ATLAS Trigger

19

b) Timeline for A TLA S Trigger

Figure 3.3 Further Insights on A T L A S Trigger

20

3.5. BioSQL
BioSQ L1 is a generic relational model covering sequences, features, sequence and feature

annotation, a reference taxonomy, and ontologies (or controlled vocabularies) from various

sources such as GenBank2 or Swissport3. While in its original incarnation (back in 2001) it

was conceived by Ewan Bimey as a local relational store for GenBank, the project has since

become a collaboration between the Open Bioinformatics Foundation (O BF)4 projects (those

include BioPerl, BioPython, BioJava, and BioRuby). The goal is to build a sufficiently

generic schema for persistent storage o f sequences, features, and annotation in a way that is

interoperable between the Bio* projects. Each B io* project has a language binding (object-

relational mapping, O R M) to BioSQL. Thus Entries stored through an application written in,

say, Bioperl could be retrieved by another written in Biojava. The currently supported

Relation Database Management Systems (RDBM Ss) are M ySQL, PostgreSQL, Oracle and

most recently SQLite. A t the time that this thesis was composed the SQLite solution was only

supported by Biopython.

For some reason, currently not known to us, this project was frozen sometime around mid

2005 as we can clearly see in Figure 3.4.a. This happened to be the time that OBF became an

organization with formal members and bylaws. In 2012, the board decided to give up their our

own incorporation to associate themselves with Software In The Public Interest, Inc.5, a fiscal

sponsorship organization that they felt aligned well with their values and culture. The bylaws

underwent a series o f changes to pave the way for joining SPI. The changes were approved on

Sep 11, 2012, which happens to be the last update to the schema version (Figure 3.4.a). Most

recent changes (after 2005) did not affect the schema structure. Most o f the activity for this

project is concentrated in early 2003, where the schema had a major growth. Especially the

number o f attributes had a more than 50% increase in their number.

Figure 3.5.a does not give us clear information due to the large gap between the main

development period o f the database and the last revision in 2012. A more clear view o f the

activity can be seen on Figure 3.5.b. Revision 3, 10 and 27 have almost the same insertions

1 http://www.biosql.org/wiki/Main_Page
2 http://wmv.ncbi.nlm.nih.gov/genbank/
3 http://wmv.uniprot.org/
4 http://www.open-bio.org/wiki/Main_Page
5 http://spi-inc.org/

21

http://www.biosql.org/wiki/Main_Page
http://wmv.ncbi.nlm.nih.gov/genbank/
http://wmv.uniprot.org/
http://www.open-bio.org/wiki/Main_Page
http://spi-inc.org/

and deletions indicating a massive renaming and restructuring in the components o f the

schema. Apart from those periods the schema had minor changes in its structure with a m ix o f

different types o f changes, with attribute type alterations occurring only in version 10.

Supporting the previous intuition about revisions 3, 10, and 27 we observe in Figure 3.6 that

the schema did not change much in size on those revisions. W e also observe the great increase

in the number o f tables at revision 21. The timeline o f BioSQL shows an uneasy first period

with the number o f both relations and attributes falling until a point where, after a great leap

forward, the growth becomes steady for the rest o f the schemas lifetime.

22

Tables

b) Number o f Tables for BioSQL

c) Number o f Attributes for BioSQL

Figure 3.4 Events over Time for BioSQL

o

23

140 -

120 -

100 -

80 -

60 -

40

20

0 J---
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

■ Alterations ■ Insertions ■ Deletions

a) Changes Breakdown over Tim e for BioSQL

160 λ

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

■ Table Insertions ■ Attribute Insertions a Attribute Insertions w/Table

■ Table Deletions a Attribute Deletions a Attribute Deletions w/Table

■ Table Alteration v Attribute Key Alterations Attribute Type Alterations

b) Changes Breakdown over Version ID for BioSQL

Figure 3.5 Analysis o f Changes over T im e for BioSQL

24

29 160

* - « Γ θ ΐ Λ Γ ^ σ > < - ΐ Γ θ ΐ Λ Γ ^ σ > < - ΐ Γ θ ΐ Λ Γ ' - σ > τ Η Γ θ ΐ Λ Γ ^ σ > < - ! Γ θ ΐ η

b) Timeline for BioSQL

Figure 3.6 Further insights for BioSQL

25

3.6. Copperm ine Photo G allery

Coppermine1 is a photo gallery web application. Its features include the arranging pictures in

categories and albums, full multimedia support, option for private galleries, automatic

thumbnail creation, multi-language interface with automatic detection o f language

preferences. Installation requires PHP, M ySQ L, and ImageMagick or the G D Graphics

Library, and works with most web server software such as Apache. Coppermine is free

software and is being released under the G N U GPL license.

The evolution o f this database schema looks front-loaded with many changes early on and

fewer and smaller in effect changes later both for relations and attributes (Figure 3.7). From

mid 2004 and until early 2006, the schema size remains stable in terms o f relations and a

minor growth in attributes, with the same behavior from mid 2008 an later on. W e observe

two periods with a drop in the number o f relations as well as with attributes in early 2004 and

mid 2008 with attributes following with a drop in their numbers as well. A third drop in

attributes in mid 2004 does not seem to affect the number o f tables which remain stable while

some attributes are inserted until mid 2006.

In contrast with the two previous databases we fail to see equal insertions and deletions on the

same revision (Figure 3.8). Another interesting point is the fact that, except revision 38, all

modifications on the schema affected only one table at a time, which is indicated by the small

dark orange bar on top o f each column. Moreover, there are almost no alterations on the

schemas attributes.

In Figure 3.9.a, we observe in more detail the fact that changes were becoming more frequent

until the point (version 30) where the schema doubles in size since its beginning. Figure 3.9.b

shows an almost linear growth in schema when both relations and attributes are taken into

account, with the exception o f the two drops in the number o f relations, as mentioned before,

from 19 to 17 (with attributes also diminishing in size) and from 32 to 22 (again with

attributes dropping). The activity o f the schema when relations reach 20 is due to the drop in

the number o f attributes and their slow and steady recovery that we stated previously.

1 hUp://coppcrminc-gallcry.nel/

26

25

20 -

15 -

10 -

5 -

ο 1 iiU τ--------- -------------1-------------1------------ j-------------1------------ 1------------ j------------ 1---
2003 2004 2005 2006 2007 2008 2009 2010 2011

c) Number o f Attributes for Coppermine

Figure 3.7 Events over time for Coppermine

27

25 η

20 -

15 -

10 ■

0 -I----- ----- ■ ν ' ------ 1----------- 1----— —i—■ —»------ ------ r——-------1--------— i
2003 2004 2005 2006 2007 2008 2009 2010 2011

a Alterations ■ Insertions ■ Deletions

a) Changes Breakdown over Tim e for Coppermine

«-« in m r** «-*r·** «-t ιλ <n co tvΗ Ν Ν Ν W ΓΟ O O C O O O O ^ O i O O O H H

β Table Insertions a Attribute Insertions « Attribute Insertions w/Table

B Table Deletions a Attribute Deletions * Attribute Deletions w/Table

B Table Alteration Attribute Key Alterations Attribute Type Alterations

b) Changes Breakdown over Version ID for Coppermine

Figure 3.8 Analysis o f Changes over Tim e for Coppermine

25 -t r 25

23

21

19

17

\
20

- 15

t - » u n o ,» f o r v t ^ u n o ,> m r s . f - » t n c t c n p ,s . « - « u f t a i m r ,̂ r - * i n o > m p v r - » i f t o > c o r ,v
H H f s i N i N f O f n ' f ' f ^ i n i n i O ' f l i O N N e o c o c o c n Q O O O H H

a) Changes compared w ith schema size for Coppermine

b) Timeline for Coppermine

Figure 3.9 Further insights for Coppermine

3.7. EnsembI

Ensembl is a joint scientific project between the European Bioinformatics Institute (E B I)* 1 * and

the Wellcome Trust Sanger Institute (W T S I)2, which was launched in 1999 in response to the

imminent completion o f the Human Genome Project3. Even at that early stage it was clear that

manual annotation o f three billion base pairs o f sequence would not be able to offer

researchers timely access to the latest data. The goal o f Ensembl was therefore to

automatically annotate the genome, integrate this annotation with other available biological

data and make all this publicly available via the web. Since the launch o f the website, many

more genomes have been added to Ensembl and the range o f available data has also expanded

to include comparative genomics, variation and regulatory data. Ensembl provides a genome

browser that acts as a single point o f access to annotated genomes for mainly vertebrate

species. Information such as gene sequence, splice variants and further annotation can be

retrieved at the genome, gene and protein level. This includes information on protein

domains, genetic variation, homology, syntenic regions and regulatory elements. Coupled

with analyses such as whole genome alignments and effects o f sequence variation on protein,

this powerful tool aims to describe a gene or genomic region in detail.

Due to the large number o f revisions and changes in the Ensembl database we present the two

last groups o f figures in landscape. The y axis in the changes figures has been abridged to 200

changes for a better view o f the small bars at the bottom o f the figures. Numbers at the top o f

the bars indicate that those values exceed the 200 restriction and are the actual size o f the

change.

The time data from this project (Figure 3.10) resemble those o f Copermine with more

intensive periods early on but with much more activity and for a longer period o f time. Just

like Coppermine we can see a small drop in 2007 in both relations and attributes just before a

long "quite” period with few changes. Another remarkable observation is the fact that the

schema grew more than triple in size since its beginning, until 2006, when the activity seems

to drop with more scarce changes having less impact in the schema size.

1 htips://w\w\ .chi.ae.uk/
1 https://www .sanger.ac.uk/
5 http://wch.oml.gov/sci/lechre.sources/Human_Cienome/indcx.shtml

30

https://www
http://wch.oml.gov/sci/lechre.sources/Human_Cienome/indcx.shtml

Again, in Figure 3.11, we can see changes with almost equal insertions and deletion that lead

to the indication o f a renaming on the schemas elements and major restructuring o f the

schema. Those changes occur in mid 2001 and 2003, but probably in many more revisions

which are difficult to detect due to the density o f the figures and the limited space o f this

page. W e also observe a massive alteration in the schemas elements from version 326 until

version 329 that affects almost all the relations.

What is clearly visible about the number o f the relations in Figure 3.12 is that it keeps

growing with a diminishing rate as the schema gets more mature. Changes also diminish in

both frequency and number. Comparing the number o f relations with that o f the attributes we

see an almost linear growth but with many spikes and a generally a rough evolution.

31

b) Number o f Tables for Ensembl

c) Number o f Attributes for Ensembl

Figure 3.10 Events over time for Ensembl

32

r

'

-Ο
E&>
CO
COJ

«2
O
E
P
3-<υ>
o

5
o-o
Aa>t-CQ
CO<υfcOr “
55j=
U
cd

coco

.

• ϊ

Hi .
. ·'**:'«*’-V-·

36
2

32
6

34
9

j

)ί

Ο Ο ο Ο Ο Οο 00 ΚΩ CM ο Ο ο ο ο
CM Η Η Η Η Η 00 ΙΟ ' ί ΓΜ ο

-Ο
εα>
C/3
cUJ

-ο
ι_cs
Q-
ε
οοC/J
&0
C03
Ο
C3

toro

ι
ί

ί1

ν'ιϊ· // ,.\-'s ·'· * ν<-

Λ—

<A
'J

V

3.8 . M ediaW ik i

MediaWiki1 was first introduced in early 2002 by the Wikimedia Foundation2 along with the

famous Wikipedia3, the free online collaboration encyclopedia and hosts Wikipedia’s content

since then. As an open source system (licensed under the GNU GPL) written in PHP, it was

adopted by many companies and is used in thousands of websites. The software is optimized

to efficiently handle large projects, which can have terabytes of content and hundreds of

thousands o f hits per second. It has also been deployed by some companies as an internal

knowledge management system, and some educators have assigned students to use

MediaWiki for collaborative group projects.

Once again, we used landscape pages for the change figures as we did for the Ensembl

database. The numbers on the bars indicate the size of the change that was unable to fit in the

figure

MediaWiki has a relatively smooth growth in size over time with many and frequent changes.

The three highlights on Figure 3.13.a (noted with numbers on top) do not seem to affect the

schema size and are most likely alteration or matched in number deletions and insertions. We

also observe that every time the size of the relations drop is either after a previously inserted

relation or followed by an insertion of a relation or relations. The only exception is at early

2005, when the project has very high activity and the relations number drops significantly, to

recover after a year after. The attributes have a more steady growth with no major deletions.

In Figure 3.14 we observe that the previously mentioned highlights are actually four. The first

one is a major restructure/renaming of the schema. The following one, is a massive alteration

to the schema elements that affects almost all the relations (32of 34 at that time). The last two,

subsequent in order, are again alteration to the schema but with a smaller impact.

1 https://wwAv.med iawiki.org/wiki/Mediu Wiki
2 https://wikimediaroundation.org/wiki/Home
3 https://www.wikipedia.org/

37

https://wwAv.med
https://wikimediaroundation.org/wiki/Home
https://www.wikipedia.org/

The size o f the schema in terms o f relations has a noteworthy drop closely alter the great

growth that follows the databases birth. In Figure 3.15 we observe small steps in the evolution

o f M ediaW iki’s database with no abrupt changes.

c) Number of Attributes for MediaWiki

Figure 3.13 Events over time for MediaWiki

39

«A
lte

ra
tio

n
s

■
 In

se
rt

io
ns

«D

el
et

io
n

s

* i

r

i

.2‘-3<υ

«s
Q
co
o
>
<υ>o
c
£oΌ

cn
w»ca
U
X)

#

Fi
gu

re
 3

.1
4

A
na

ly
sis

 o
f C

ha
ng

es
 o

ve
r T

im
e

fo
r M

ed
ia

W
ik

i

a)

C
ha

ng
es

 c
om

pa
re

d
w

ith
 s

ch
em

a
si

ze
 fo

r M
ed

ia
W

ik
i

If

Fi
gu

re
 3

.1
5

Fu
rth

er
 in

si
gh

ts
 fo

r M
ed

ia
W

ik
i

3.9. O penC art

OpenCart1 is an open source shopping cart system. It can be used on any web server with PHP

and M ySQ L running on it. OpenCart is available as free software under the G N U General

Public License. It is highly rated and used by many online sites.

From a first view o f Figure 3.16 we see that the schema size has an almost strictly increasing

growth, especially in terms o f attributes. We notice three major increases is size; in early

2010, Q2 2011 and early 2012, generally at the start o f each year. The three biggest changes

(until March 2010) seem to affect the entire schema. A more detailed analysis is presented to

the reader in the next set o f figures.

Figure 3.17 shows that the schema had mainly small changes. The tall bars on the figures

have almost equal insertions and deletions thus leading to a conclusion o f a major renaming o f

almost all the elements o f the schema. The close to 350 insertions an deletions on revisions 17

and 18 as well as the more than 400 insertions an deletions on revision 23 match the size o f

the entire database schema. The majority o f the rest o f the changes are rather small compared

to the size o f the schema.

Again we confirm, in Figure 3.18, that the first two big changes had a very small impact to the

schema size for the reason that they are renames to the schema elements. W e also see more

clearly the smooth almost strictly increasing o f the schema size.

1 hup://wwvv .opcncart .com

44

c) Number o f Attributes for OpenCart

Figure 3.16 Events over time for OpenCart

45

■ Table Insertions ■ Attribute Insertions » Attribute Insertions w/Table
■ T a b le Deletions * Attribute Deletions h Attribute Deletions w/Table
■ Table Alteration Attribute Key Alterations Attribute Type Alterations

b) Changes Breakdown over Version ID for OpenCart

Figure 3.17 Analysis o f Changes over Tim e for OpenCart

46

a) Changes compared with schema size for OpenCart

b) Timeline for OpenCart

Figure 3.18 Further insights for OpenCart

47

)

3.10. phpBB

PhpBB1 is an Internet forum package written in PHP. The name "phpBB" is an abbreviation

o f PHP Bulletin Board. It is available as free software under the G N U General Public License.

PhpBB supports multiple database engines such as PostgreSQL, SQLite, M ySQ L, Oracle

Database, and Microsoft SQL Server. It has a flat message structure (as opposed to threaded),

hierarchical sub forums, topic split/merge/lock, user groups, multiple attachments per post,

full-text search, plugins and various notification options (e-mail, Jabber instant messaging,

A T O M feeds). It has a large community with an extensive number o f user created

modifications and styles and is one o f the most commonly used open source forum software

on the Internet. It was first released on December 16,2000.

We consider the phpBB database an outlier to our study because o f its peculiar behavior we

can examine in Figure 3.19, Figure 3.20 and Figure 3.21. It ’s the only case from those we

researched that the schema had an overall drop on the number o f its elements with a quite

intensive period the last two years. The number o f the attributes suffers a big drop in mid

2006 that was never recovered in its six years o f life accompanied with a growth in relations.

The first ha lf o f its life (Figure 3.20), the schema had, apart from one major decrement in

attributes, many alterations without affecting the schema size. From late 2009 (revision 65)

the project had an increasing activity with subsequent insertions and deletion that kept the

schema size almost stable.

In Figure 3.21 .b the first version o f this database schema, in contrast with what we observe in

the timeline figures o f the rest o f the databases, has its first version not at the left bottom side

o f the figure but at the top (approximately 610 attributes and 61 relations). Again, we can see

the rough change in the schema size that keeps going back and forth without major changes

especially in terms o f relations. The changes we observe are most o f the time insertions and

deletions o f a single relation, but greater in number for attributes.

1 http*,://\v\vw.phpbbxom/

48

·%«*
'

b) Number of Tables for phpBB

c) Number o f Attributes for phpBB

Figure 3.19 Events over time for phpBB

5

t1e

ί

l
i

49

1

180 -,

160

140 -

120

100 ■

80

60

40 ■

20

0
2006 2007 2008 2009 2010 2011 2012

ft Alterations ■ Insertions ■ Deletions

a) Changes Breakdown over Tim e for phpBB

ft Table Insertions ■ Attribute Insertions a Attribute Insertions w/Table

■ Table Deletions ■ Attribute Deletions » Attribute Deletions w/Table

■ Table Alteration Attribute Key Alterations Attribute Type Alterations

b) Changes Breakdown over Version ID for phpBB

Figure 3*20 Analysis o f Changes over Tim e for phpBB

i*
s

50-. ·· Λ '."fi Ή
J
i■

160

140

120

100

80

60

40

20

0

180

H ID H ID tH ID rH i d rH ID rH ID rH KD rH ID rH ID rH ΚΩ rH ID rH ID rH ID rH
rH H (N ΓΜ r o ΓΟ LO t n ID ID 00 00 σ \ c n O O rH rH ΓΜ ΓΜ CO

rH rH rH rH rH rH tH

a) Changes compared with schema size for phpBB

b) Timeline for phpBB

Figure 3.21 Further insights for phpBB

►

51

3.11. Τ Υ Ρ 0 3

Τ Υ Ρ 0 3 1 is a free and open source web content management framework based on PHP. It is

released under the G N U General Public License and can run on several web servers, such as

Apache or IIS , on top o f many operating systems, among them Linux, M icrosoft Windows,

FreeBSD, M ac OS X and O S/2. T Y P 0 3 is, along w ith Drupal, Joomla and Wordpress, among

the most popular content management systems worldwide, however it is more widespread in

Europe than in other regions. T Y P 0 3 was in itially authored by Kasper SkSrhoj in 1997.

Having a unique, to the datasets that we have seen so far, strict growth in both relations and

attributes, T Y P 0 3 had a three year respite w ith no change in relations size and some minor

insertions in attributes. The generally continuous growing number o f relations was interrupted

in 2010 with a considerable drop that almost halved their number just to rise again along with

a great increase in the number o f attributes.

T Y P 03 's activity, as observed in Figure 3.22, is quite low compared to our previous datasets.

The scarce changes that we see in Figure 3.22.a are, most likely, additions until late 2009 as

we fail to observe drops in the number o f relations and attributes (Figure 3.22.b, Figure

3.22.c). A fter 2009 we observe an increase in the activity o f the project w ith the number o f

relation having a significant drop, something that does not happen in the number o f the

attributes. A fter the first quarter o f 2011, T Y P 03 's database recovers the relations that were

previously lost along w ith a tremendous increase in attributes that until the end are almost

doubled.

In Figure 3.23.a we can clearly see the dominance o f blue (additions). Deletions appear only

after 2008 (revision 21).

In Figure 3.24 we can again see the great drop in the number o f tables.

1 http://typo3.org/

52

http://typo3.org/

120 -

100 -

80 -

60 -

40 -

20 -

ο -1---------— --- ^ -------------------------
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

1 4 0 -|

b) Number o f Tables for T Y P 03

c) No. o f Attributes for T Y P 03

Figure 3.22 Events over tim e for T Y P 03

53

140 -]

120 -

100

80 ·

60

40

20 *

0 J--- ------------------------
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

■ Alterations ■ Insertions ■ Deletions

b) Changes Breakdown over Version ID for ΊΓΥΡ03

Figure 3.23 Analysis o f Changes over Time for TYP03

β

54

a) Changes compared with schema size for TYP03

b) Timeline for TYP03

Figure 3.24 Further insights for TYP03

55

- ί7 ϊΛ ν £ '· «
. .· -.y .· ? ·. ί f t' ’ V-' -

r *Γ<
•-'Ϊ^ΚκΜ ίϊ

CHAPTER 4. ASSESING LEHMAN LAWS ON THE

EVOLUTION OF DATABASES IN OPEN-SOURCE

SOFTWARE

Lehman, in the seventies introduced a set of rules, or laws, on the behavior of software as it

evolves over time. The laws of software evolution were amended, enriched and corrected by

Lehman and his colleagues in the next thirty years [BeLe76, Lehm96, Leh+97, LeRP98,

RaLeOO, LeRaOl, LeRa06] to form a body of eight rules known both as laws o f software

evolution, and, as Lehman's laws o f software evolution. The first three laws were published in

1974, the next 3 six years later, and the final two laws in 1996.

In Table 4.1, we repeat the definitions of the laws: on the left column, we give the laws as

they are presented in [Leh+97] (slightly adapted with respect to [Lehm96]) - in a publication

has absorbed the evolution o f the laws themselves and summarized them in a concise form for

the first time, around thirty years after the initiation of this research line and with a the benefit

of retrospect. On the right column, we give the laws as they appear in [LeRa06]; in this case,

the effect of ten more years of research is apparent, as the laws appear in a more abstract

form, including corrections and updated intuition.

57

Table 4.1 Laws o f Software Evolution as stated in [Leh+97] (le ft) and [LeRa06] (right)

/ -- Continuing.£hange
(1996) E-type systems must be continually
adapted else they become progressively
less satisfactory.

II- - Increasing Complexity
(1996) As an E-type system evolves its
complexity increases unless work is done
to maintain or reduce i t

I I I -- Self Regulation

(1996) E-type system evolution process is
self regulating with distribution of product
and process measures close to normal.

(2006) An E-type system must be
continually adapted or else it becomes
progressively less satisfactory in use.

(2006) As an E-type system is changed its
complexity increases and becomes more
difficult to evolve unless work is done to
maintain or reduce the complexity.

(2006) Global E-type system evolution is
feedback regulated.

IV - Conservation o f Organisational Stability finvariant work rate1
(1996) The average effective global activity
rate in an evolving E-type system is
invariant over product lifetime.

V - Conservation o f Familiarity
(1996) As an E-type system evolves all
associated with it. developers, sales
personnel, users, for example, must
maintain mastery of its content and
behaviour to achieve satisfactory evolution.
Excessive growth diminishes that mastery.
Hence the average incremental growth
remains invariant as the system evolves.

VI -- Continuing Growth

(1996) The functional content of E-type
systems must be continually increased to
maintain user satisfaction over their
lifetime.

(2006) The work rate of an organisation
evolving an E-type software system tends to
be constant over the operational lifetime of
that system or phases of that lifetime.

(2006) In general, the incremental growth
(growth ratio trend) of E-type systems is
constrained by the need to maintain
familiarity.

(2006) The functional capability of E-type
systems must be continually enhanced to
maintain user satisfaction over system
lifetime.

VII -- Declining Quality
(1996) The quality of E-type systems will
appear to be declining unless they are
rigorously maintained and adapted to
operational environment changes.

VIII - Feedback System
(1996) E-type evolution processes
constitute multi-level, multi-loop, multi­
agent feedback systems and must be
treated as such to achieve significant
improvement over any reasonable base.

(2006) Unless rigorously adapted and
evolved to take into account changes in the
operational environment, the quality of an
E-type system will appear to be declining.

(2006) E-type evolution processes are
multi-level, multi-loop, multi-agent
feedback systems.

58

4.1. Law s o f evolution fo r software systems w ith a view to schema evolution

The term inology o f the laws involves a classification o f software systems in categories, out o f

which the single most important one is the class o f E-type systems, which involve “software

solving a problem or addressing an application in the real-world" [Leh+97]. The main idea

behind the laws o f evolution for E-type software systems is that the evolution is a process that

follows the behavior o f a feedback-based system. Being a feedback-based system, the

evolution processes has to balance (a) positive feedback, or else the need to adapt to a

changing environment and grow to address the need for more functionality, and, (b) negative

feedback, or else the need to control, constrain and direct change in ways that prevent the

deterioration o f the m aintainability and manageability o f the software.

Before proceeding, we present a first apodosis o f the laws, in our understanding, taking into

consideration both the wording o f the laws, but most importantly their accompanying

explanations. W e w ill revisit this apodosis later in this chapter, where we also discuss how we

w ill measure it for the study o f schema evolution.

An E-Type software system continuously changes over time (I) obeying a complex feedback-

based evolution process (VIII). On the one hand' due to the need fo r growth and adaptation

that acts as positive feedback. this process results in an increasing functional capacity o f the

system (VI), produced by a growth ratio that is slowly declining in the long term (V). The

process is typically guided by a pattern o f growth that demonstrates its self-regulating nature:

growth advances smoothly; still, whenever there are excessive deviations from the typical,

baseline rate o f growth (either in a single release, or accumulated over time), the evolution

process obeys the need fo r calibrating releases o f perfective maintenance (expressed via

minor growth and demonstrating negative feedback) to stop the unordered growth o f the

system *s complexity (III). On the other hand, to regulate the ever-increasing growth, there is

negative feedback in the system controlling both the overall quality o f the system (VII). with

particular emphasis to its internal quality (II). The effort consumed for the above process is

typically constant over phases, with the phases disrupted with burst o f effort from time to time

(IV).

59

N ow , we can visit each law on its own and discuss both its original intuition and its

measurement concerning software systems as w ell as how we address the law in the context

o f schema evolution.

4.1.1. Continuing Change

The first law o f software evolution is known as the law o f “continuing change".

Definition. An E-type system must be continually adapted or else it becomes progressively

less satisfactory in use.

The main idea behind this law is simple: as the environment evolves, the software that is

intended to operate in the real world and address its problems has to evolve too. I f this does

not happen, the system becomes less satisfactory.

Metrics fo r the assessment o f the law ’s validity. To establish the law , one needs to show that

the software shows signs o f evolution as tim e passes. Possible metrics from the field o f

software engineering [X iC N 09] include (a) the cumulative number o f changes and (b) the

breakdown o f changes over tim e.

In our case, we assess the law o f continuing change via the heartbeat o f changes over time

and version as our prim ary means o f evaluation (secondarily, one can also study its

breakdown to the type o f changes).

4.1.2. Increasing complexity

The second law o f software evolution is known as the law o f “ increasing com plexity” .

Definition. As an E-type system is changed its com plexity increases and becomes more

difficu lt to evolve unless work is done to maintain or reduce the com plexity.

Lehman says that “this law may be an analogue o f the second law o f thermodynamics, or an

instance o f it” [Lehm 96], Remember that the second law o f thermodynamics states (in one o f

60

its many wordings) that “the entropy o f an isolated system not in equilibrium will tend to

increase over time, approaching a maximum value at equilibrium” - or in other words, an

isolated system will tend to reach thermodynamic equilibrium (i.e., a state that experiences no

change when isolated from its environment), and during this process, differences in

temperature, pressure and density tend to even out (and this results in the halting of changes

and the maximization of entropy)1.

So, the main idea behind this law is that the evolution of software systems tends to increase

their entropy (here: complexity), and therefore, in successful projects, effort to confront this

increase, must be devoted. Moreover, when discussing the law, Lehman indicates the battle

between two antagonizing processes over a fixed amount of resources for the maintenance of

software [Lehm96]: on the one hand, the need to evolve the system (“system growth”) and on

the other the “anti-regressive” effort to attack the growing complexity of the system. To

achieve this, perfective maintenance must be performed from time to time, in order to remove

redundant code, to restructure code for better maintainability and comprehension, to

document the code, etc. As [LeRa06] puts it: “these activities have minor or no impact in

functionality, performance or other properties of the software in execution”. Here, we adopt

the [SWBK] definition of perfective maintenance (emphasis is ours): “modification o f a

software product after delivery to provide enhancements for users, improvement o f program

documentation, and recoding to improve software performance, maintainability or other software

attributes”.

A short discussion on complexity and its measurement. Since we will ultimately resort to

measurements for verifying the law, before proceeding further, we need to confront a more

fundamental problem: the law *s definition -as it stands- requires a more precise definition o f

complexity. Unfortunately, complexity is a meta-property, practically involving a wide

spectrum of specific measureable properties o f software. To give an example, Fenton and

Pfleegler [FePf96] mention four kinds of complexity: (i) problem complexity (computational

complexity of the underlying problem), (ii) algorithmic complexity (of the algorithm

eventually implemented to solve the problem), (iii) structural complexity (typically measured

1 See hup://simple.uikipedia.org/\\iki/Secondla\v_ol'thcrmod\ namies
http://cn.vikipedia.Org/v ikiArhermodvnamicequilibrium
http://plato.stanford.edu/cntrics/statph> s-statmech/

61

http://cn.vikipedia.Org/v
http://plato.stanford.edu/cntrics/statph

as the control flow or class hierarchy or modularity structure) and (iv) cognitive complexity

(measuring the effort required to understand the software). Lehman and Ramil [LeRa06] take

a more process-oriented approach and refer to application and functional complexity,

specification and requirements complexity, architectural complexity, design and

implementation complexity and structural complexity.

Unfortunately, all the above are very hard to define and measure, especially if measurement is

to be performed on evidence coming from electronic logs or version management systems.

Therefore, approximations have to make. [ICMS09] lists a vast number o f possible metrics to

assess the validity o f the law o f increasing complexity that gives emphasis to structural

complexity. The list includes metrics on programmer productivity, Lines-Of-Code, function

complexity, cyclomatic complexity, coupling, etc. Lehman and Ramil [LeRaOl], on the other

hand, approximate complexity as the fraction o f the increase in cumulative effort over the

functional power o f a system, with the latter approximated as the system’s size. This fraction

is a non-decreasing function over time, according to the second law. Simply speaking, under

this interpretation o f the law, complexity can be approximated as the ratio of (a) the effort

spent between two versions over (b) the increment in the size o f the system. Again, the

problem is dereferenced on how to define metrics for these two entities, and most importantly,

effort. Whenever data on person time are not available, effort can be approximated via the

work-rate, which can in turn be approximated by the number of modules handled, i.e., the

number of modules modified, removed or added to a system [LeRP98] or, the number of

modules modified or added to a system [RaLeOO].

Requirements and metrics fo r the assessment o f the law's validity. Clearly, the levels o f

indirection and approximation to validate the law are too many. This has been recognized

already in the literature. Interestingly, in [LeRaOl] Lehman and Ramil state that the law can

only be indirectly verified. In fact, in [LeRP98] the law is mostly verified by rationalization

along with the existence of a regressive formula for the size of the system (law VIII). In

[LeRa06] the validity of the law is further supported by the fact that the growth ratio declines

over time (laws V and VI); this is attributed to the inevitable complexity increase that age

brings to a system. So, overall, the law is actually indirectly verified in the literature.

62

On top o f this, if we consider the intuition on perfective maintenance, we have to face the

problem that it is very hard to isolate the actions that correspond to perfective maintenance

only (either as entire releases or as part o f the effort for a release). Only a precise

documentation of activities can reveal this kind of information.

To surpass all these difficulties, we will try to assess the validity of the law based on the

combination o f the following observations:

First, we will focus on the essence of the law: ultimately, the law requires identifying releases

or versions where perfective maintenance is performed. To actually achieve with 100%

certainty would require some project management documentation that this is performed. Thus,

we resort to the closest possible approximation and try to detect versions with drops in the

size and the growth o f the system. Assuming that the overall trend of the system is to grow,

the existence o f such points from time to time will give a strong indication of the law.

A second indication for the validity of the law is the respect o f the VIII law offeedback, i.e.,

the existence of a regressive formula to which the size of the system conforms. The validity of

this law would strongly insinuate the existence of a feedback-based system and therefore, the

existence of negative feedback as the once discussed in this second law of evolution.

Third, we will attempt to approximate the measurement o f complexity as the fraction o f the

evolution-affected relations (i.e., the number o f relations modified, deleted or added to the

schema) between two subsequent versions o f the schema over the difference in the number o f

relations o f the involved versions. The main concept behind this formula is that, because we

do not have a method to measure the internal complexity of the database schema, we try to

estimate its complexity. For each transition, we approximate the complexity of the original

schema by dividing the extent o f the involved changes over the actual increment of the

schema size. Assume we compare two transitions with the same denominator (i.e., difference

in number of relations); if one transition had more relations updated than the other, it means

we paid more effort for this transition, and thus, we assume that the starting complexity is

higher. More precisely, we divide the effort (number of relations that we modified in any way

in a revision), by the growth (size of the result in that revision). In case the denominator is

zero, we have no escape than to define complexity as zero (which is another approximation

63

we cannot avoid). The minimum value we expect to see is one, when the relations that we

handled had the same amount o f change in the database schema. As long as the effort in close

to the growth of the schema, the complexity o f the schema is low.

r e la t io n s h a n d le d
c o m p l e x i t y ,--------- ^ _ 5 | i |

In the above setting, we opt to include the removed tables in the formula; removing a table

from a database is a major modification (all code that refers to it crashes if anything) and such

actions give a significant hint on maintenance actions. We should expect to see increasing

complexity in “expansion versions” and drops in complexity (in perfective maintenance

versions) from time to time. Again, we stress that this is simply a corroborative indication o f

the law’s validity due to the several levels o f approximation involved.

4.1.3. S e lf Regulation

The third law of software evolution is known as the law of “self regulation” .

Definition. Global E-type system evolution is feedback regulated.

The main idea behind this law is that the system under development is actually a feedback-

regulated system: development and maintenance take place and there is positive and negative

feedback to the system. As the clients o f the system request more functionality, the system

grows in size to address this demand; at the same time, as the system grows, corrective and

perfective maintenance has to take place to remove bugs and improve the internal quality of

the software (reduced complexity, increased understandability) [Lehm97].

Thus, the system’s growth cannot continually evolve with the same rate; on the contrary, what

one expects is to see a typical “baseline” growth, interrupted with releases o f perfective

maintenance. This trend is so strong, that, in the long run, the system’s size demonstrates what

[Lehm97] calls “cyclic effects” and [LeRa06] calls patterns o f growth.

64

Already in [Lehm97], experimental data suggested that the wording of the law was probably

subject to amendments. In this previous form, the law stated: “The evolution process o f E-

type systems is self regulating with close to normal distribution of measures o f product and

process attributes.” In its redefinition, the discussion on the normal distribution is removed

and the authors generalize the notion of pattern growth to affect different kinds of properties

like size, age, application area, team size, organizational experience or behavioral patterns.

[XiCN09] also reports that small ripples do exist in the systems that the authors study,

although the ripples are not equally distributed and positive adjustments (increase in growth)

are more frequent than negative adjustments.

Metrics fo r the assessment o f the law's validity. Typically the third law of evolution is

measured via the measurement of system growth and the observation of ripples (peaks and

valleys in the plot) [ICMS09]. For each transition, growth is defined as the difference between

the new, target value and the old, source value of the transition. These ripples are assumed to

indicate the existence and effect of feedback in the system: positive feedback results in the

system’s expansion and negative feedback involves perfective maintenance coming with

reduced rate of growth (which is not due to functional growth but re-engineering towards

better code quality) — if not with system shrinking (due to removal of unnecessary parts or

their merging with other parts).

To assess the law for the database schemata that we study, we measure the size o f the system

over versions and time as well as the growth o f the schema in terms o f number o f relations

and attributes. We believe that the following criteria should hold for assuming the law as

valid:

- Patterns in the size (number of relations) or growth (the difference in size between

subsequent versions) of the system that indicate a ‘mechanism’ that produces a

reoccurring phenomenon over and over in the lifetime of the database schema

- Some evidence of negative feedback; i.e., versions, or even periods, of perfective

maintenance, mainly demonstrated by (i) the reduction of size, or, in a more loose

requirement, (ii) growth lower than the “local” (last 5 or 10 versions) average growth

- Oscillations around the average growth - typically, in the literature, the observation

that generated the birth of the third law was that growth oscillates around an average

65

value, and typically within a band o f 2 standard deviations (practically resulting in a

normal distribution o f size alterations). Since new data indicate that growth declines

with system age, we should expect to see the respective phenomenon with a declining

band of values.

4.1.4. Conservation o f Organizational Stability

The fourth law o f software evolution is known as the law o f “Conservation o f Organizational

Stability” also known as law o f the “invariant work rate”.

Definition. The work rate o f an organization evolving an E-type software system tends to be

constant over the operational lifetime o f that system or phases o f that lifetime.

This is the only law with a fundamental change between the two editions o f 1996 and 2006.

The previous form of the law did not recognize phases in the lifetime o f a project (“The

average effective global activity rate in an evolving E-type system is invariant over product

lifetime”).

Plainly put, the law states that the impact of any managerial decisions or actions to improve

productivity is balanced by the increasing complexity of software as time passes as well as the

role of forces external to the software (availability of resources, personnel, etc). Thus, in its

original form, the law stated that all taken into account, the rate of production is constant

throughout the entire lifetime of a system. In its updated form, the law is refined to recognize

the practical observation that the typical, predictable growth can be disrupted by abrupt

changes that might be triggered by emergent external forces (e.g., mergers, downsizing,

situations like the Y2K problem, etc).

Metrics fo r the assessment o f the law's validity. As [XiCN09] excellently states, it is very

hard to assess effort from the data that we can typical acquire from a project, as “effort does

not equate progress”. Therefore, we can only approximate effort by observing the published

versions o f a system. To this end, possible metrics [XiCN09] include (i) the number of

changes per version, (ii) the average number o f changes per day (by taking the amount of

66

changes between two versions and dividing by the time period) and (iii) the change and

growth ratios.

In the case of the studied database schemata we will employ the following metrics:

- Schema Growth: As discussed in the previous law, growth is the difference between

the size of the database schema in relations between the newest and the oldest

database schema. More precisely growth = size{vx+\) - size(vj) where size is the

number o f relations and v the version.

- Heartbeat o f Changes per Version: The number of all changes between subsequent

schema versions.

The goal is twofold: on the one hand, we need to detect whether there are phases with

constant growth within them. On the other hand, we need to show that the phases are

connected with each other via abrupt changes in this growth.

4.1.5. Conservation o f Familiarity

The fifth law o f software evolution is known as the law of “Conservation of Familiarity”.

Definition. In general, the incremental growth (growth ratio trend) of E-type systems is

constrained by the need to maintain familiarity.

In its previous form, the law stated: “During the active life of an evolving system, the content

of successive versions is statistically invariant”.

As the system evolves, all the stakeholders that are associated to it (developers, users,

managers, etc) must spend effort to understand and actually, master its content and

functionality. Whenever there is excessive growth in a version, the feedback mechanism tends

to diminish the growth in subsequent versions, so that the change’s contents are absorbed by

people. Interestingly, whereas the original form of the law refers to a constant rate, the new

version o f the law is accompanied by explanations strongly indicating a "long term decline in

incremental growth and growth ratio ... o f all release-based systems studiedM [LeRa06]. This

67

result came as experimental evidence from the observation o f several systems, accompanied

by the anecdotal evidence o f a growing imbalance in volume in favor o f corrective versus

adaptive maintenance.

[XiCN09, LeRP98] also give a corollary o f the law stating that versions with high volume o f

changes are followed by versions performing corrective or perfective maintenance.

Metrics fo r the assessment o f the law ’s validity. [LeRa06] gives a large list o f possible

metrics: objects, lines o f code, modules, inputs and outputs, interconnections, subsystems,

features, requirements, and so on. [XiCN09] propose metrics that include: (i) the growth o f

the system, (ii) the growth ratio of the system, and (iii) the number o f changes performed in

each version. We adopt the same metrics for our studied database schemata and will also

measure the system’s growth via the following metrics:

- Schema growth: the net difference in schema elements o f two subsequent elements,

measured over (1.1) relations and (1.2) attributes.

- Schema growth ratio: schema growth divided by the size o f the older version.

To validate the law we need to establish the following facts:

- The growth of the schema is not increasing over time; in fact, it is -a t best- constant

or, more realistically, it declines over time/version. Primarily, we will produce a linear

interpolation of the displayed metrics and see what the overall trend is.

- The second, side-effect pattern we can try to establish is that abrupt changes are

followed by versions where developers absorb the impact of the change and produce

minor modifications/corrections, thus resulting in versions with small growth

following the version with significant difference in size.

4.1.6. Continuing Growth

The sixth law of software evolution is known as the law of “Continuing Growth”.

68

Definition. The functional capability of E-type systems must be continually enhanced to

maintain user satisfaction over system lifetime.

The sixth law resembles the first law (continuing change) at a fist glance; however, as

Lehman explains in [Lehm97] these two laws cover different phenomena. The first law refers

to the necessity of a software system to adapt to a changing world. The sixth law refers to the

fact that a system cannot include all the needed functionality in a single version; thus, due to

non-elastic time and resource constraints, several desired functionalities of the system are

excluded from a version. As time passes, these functionalities are progressively blended in the

system, along with the new requirements stemming from the first law’s context of an evolving

world. As [LeRa06] eloquently states “the former is primarily concerned with functional and

behavioural change, whereas the latter leads, in general, directly to additions to the existing

system and therefore to its growth”.

Metrics fo r the assessment o f the law's validity. Possible metrics for the sixth law that come

from the software engineering community [XiCN09] include: LOC, number of definitions (of

types, functions and global variables) and number of modules. We express again a point of

concern here: it is impossible to discern, from this kind of ‘black-box’ measurements, the

percentage of change that pertains to the context of the law of continuing growth. Ideally, one

should count the number of recorded ‘ToDo” functionalities blended within each version.

However, we do recognize that this task is extremely hard to perform, as it appears impossible

to automate it.

Thus, we resort to the approximation offered by (i) the number o f relations and (ii) the

number o f attributes per version of each schema. Observe that we utilize the version id rather

than time, as we are primarily interested to see growth between versions and not over time. If

this numbers show an overall expansion trend over time (regardless of versions with

maintenance that introduce occasional shrinking in size) then the information capacity of the

database expands and the law holds.

4.1.7. Declining Quality

The seventh law of software evolution is known as the law of “Declining Quality”.

69

Definition. Unless rigorously adapted and evolved to take into account changes in the

operational environment, the quality of an E-type system will appear to be declining.

The main idea behind this law concerns the fact that the software will each time be based on

assumptions on the user requirements or the real world environment that will progressively be

invalid. As assumptions are invalidated, action must be undertaken to maintain the affected

software parts in order to reflect the actual user needs. Thus, the ageing of the system, along

with the increase in complexity, also calls for a reestablishment o f assumptions and

functionalities to serve the users’ needs. [Lehm96] specifically refers to the external quality o f

a software system, practically expressing a system’s quality as ‘user satisfaction’. However,

this point of view is drastically different in [LeRa06], where the viewpoint on quality is

generalized to all possible kinds of quality an organization might deem necessary: “The

bottom line is that quality is a function of many factors whose relative significance will vary

with circumstances. Users in the field will think of it in terms such as performance, reliability,

functionality and adaptability. A CEO, at the other extreme, will be concerned with the

contribution the system is making to corporate profitability, its market share, the corporate

image, resources required to support it, the support provided to the organization in pursuing

its business, and so on.” Thus, since quality depends upon the viewpoint o f users, managers,

developers, each carrying his own interpretation and measures, it is only appropriate to let the

involved stakeholders identify the aspects o f quality that concern them and measure them

accordingly. Under this interpretation, the law is general enough to subsume the second law,

in our opinion. Quality involves both internal and external quality and in fact, any kind of

quality aspect, as well as its assessment is left to be determined on a case-by case basis.

[XiCN09] complement this viewpoint with a look upon internal quality o f a system, referring

again to all the metrics characterizing the complexity o f a system.

Metrics fo r the assessment o f the law ’s validity. Possible metrics [XiCN09] for the internal

quality of typical software systems include: (i) the number of known defects associated with

each version, (ii) defect density for each version, (iii) percentage o f modules whose bodies

have been changed.

70

Much like the authors of [XiCN09] we are not really in a position to accurately measure

external quality as perceived by the end users, the management, etc. This would require

access to a detailed record of requests for corrections/additions of functionality and planned

expansions that -to the best of our knowledge- is simply not possible to obtain from the

repositories. We can approximate the internal quality via metrics that have been discussed in

the second law, so this part is covered in law II. Overall, we will follow [LeRaOl, LeRa06]

and presume that the law holds by logical induction, i f it is strongly established that the laws

o f feedback (III, VIII) and the second law holds.

4.1.8. Feedback System

The eighth law of software evolution is known as the law of “Feedback System”.

Definition. E-type evolution processes are multi-level, multi-loop, multi-agent feedback

systems.

The main idea around this law refers to the fact that original “observation has shown that the

system behaves as self-stabilizing feedback system” [Lehm96], There is a big discussion in

the literature on various components and actors that via their interaction limit and guide the

possible ways via which the system can evolve. We refer the interested reader to [LeRa06] for

this. From our part, we do not presume to accurately know the mechanics that constraint the

growth of a database schema. However, we can focus to the part that there is indeed a

mechanism that stabilizes the tendency for uninterrupted growth of the schema - and in fact

we can try to assess whether this is a regressive mechanism whose behavior can be generally

estimated.

Metrics fo r the assessment o f the law's validity. We will perform regression analysis to

estimate the size of the database schemata. Thus we need a formula that estimates the number

of relations for each version of the schema. We adopt the formulas found at [Leh+97] and

[LePr98] on the relationship of the new size of the system as a function of the previous size of

it, adapted via an “inverse square” feedback effect

71

$1 - $ t ~ 1 + * 2 ~
*1-1

where § refers to the estimated system size and £ is a model parameter simulating effort

(actually obtained as the average value o f a set o f past assessments o f assessments o f E). We

discuss the different approaches that we have used for the validation o f the law in the

assessment part.

To assume the law as valid we need to establish that it is possible to simulate the evolution o f

the schema size via a formula that accurately follows the actual evolution o f the schema size.

4.1.9. Putting it all together fo r schema evolution

Coming back to the problem under investigation, we need

(a) To deeply consider the fundamental philosophy of what the Lehman laws signify for

the case o f database schemata and schema evolution, and, consequently, how the laws

are “translated” for the case of databases,

(b) to assess the applicability o f Lehman laws to schema evolution, and,

(c) to perform this assessment it in a quantitative way with clear, measurable properties.

There are similarities and differences between the E-type systems that Lehman and his

colleagues study compared to schema evolution, as studied here. Starting with the differences,

we can observe the following fundamental differences:

- E-type systems export functionality to their users; on the contrary databases export

information capacity, i.e., the ability to store data and answer queries. Thus, we believe

that when it comes to schema evolution, all references to functionality or functional

capacity should be restated with a view to information capacity.

- E-type systems are complete software systems that provide overall solutions to

problems in the real world; databases, on the other hand, are typically parts of a larger

information system, serving the purpose of accurately answering queries that populate

the surrounding information systems with the necessary data. In other words, whereas

72

there is a holistic view of systems in the former case, we have a specific component of

a larger ecosystem in the latter.

Having said that, however, we can counter this last difference by the following observation

(that brings us in the area o f similarities):

- Databases come with users having requirements from them (in terms o f information

capacity), developers and administrators that deal with them and the code that

surrounds them, and thus, resemble typical software systems with a large degree of

independence and a stand-alone character.

- Databases are fairly independent from the rest of the software modules and, thus, from

changes to them. Typically, database evolution comes directly from requirements

coming from the real world and not from the chain effect of changes within an

information system. In fact, we can fairly say that whereas the rest of the software

modules are typically dependent upon the database layer and impacted from its

evolution, the inverse does not hold (or, at least, it holds very rarely). This practically

presents the database with a peculiarity that simultaneously gives a similarity with E-

type systems on the one hand and a difference on the other: a database is a fairly

independent module o f an information system that is more or less insulated from

changes to the other modules; at the same time, its evolution can potentially affect

every other module.

In the sequel, we restate Lehman laws adapted for the case of schema evolution, following the

discussion of the previous subsections. We have grouped the laws in three categories

according to their essence. The main concept of the laws is that the evolution of a software (in

our case the database schema) is regulated by a multi-level, multi-loop, multi-agent feedback

system {VIII). The positive and negative feedback loops and other control mechanisms (multi­

loop) involve activities in many domains such as organizational, marketing, business, usage

and so on (multi-agent, multi-level). This process drives forward (positive feedback) but also

constrains (negative feedback) the evolution. A fundamental property of software systems

(again, in our case, database schema) is that, as implied by the law of continuing change (/)

the bounds of the feedback system governing their evolution change along with the system’s

73

effort to adapt to environmental change but with a self-regulating manner {III). Thus, the first

group, concerns the existence o f a feedback system, and encapsulates the VIII, I and III laws.

In terms of the properties o f growth, i.e. the system’s positive feedback, the need of the

evolution to be driven forward is expressed by the law of continuing change (VI), which is

regulated by the laws of conservation o f familiarity (V) and organizational stability (IV),

forming the second group. Finally, the negative feedback is expressed with the laws of

increasing complexity (II) and declining quality (VII), which both imply the need o f

perfective maintenance. Considering the previous, we list the following hypotheses.

- A database schem a continuously changes over tim e (f b) dem onstrating a behavior

that appears to obey a com plex feed b a ck -b a sed evolution p ro cess (VIlIdb) that can

estim ate its grow th via a regressive form ula. A s with softw are system s in general, this

is due to antagonism o f p o sitive feedback , requesting adaption an d grow th and

negative feed b a ck requesting con tro l o ver change a n d code quality. The p ro cess is

typ ica lly gu id ed b y a p a ttern o f grow th that dem onstrates its self-regulating nature,

including a sm ooth grow th in terrupted w ith versions d ed ica ted to perfective

m aintenance (negative feedback) to ca libra te the tendency f o r uncontrolled grow th o f

the sy s te m ’s size a n d com plexity (IIldb).

- In the long term, w e observe an increasing size (information ca pacity)— in term s o f

relations a n d a ttribu tes— o f the da tabase schem a (V f b), p ro d u ced b y a grow th ratio

that is s lo w ly declin ing (Vdb). The effort consum ed f o r the above p ro cess is typ ica lly

constant o ver phases, w ith the ph ases d isru p ted w ith burst o f effort fro m tim e to tim e

(IVdh).

To regulate the ever-increasing grow th, there is negative feed b a ck in the system

controlling both the overa ll q u a lity o f the schem a (V l f b), w ith p a r ticu la r em phasis to

its internal quality (l f b).

74

Table 4 .2 Lehman laws adapted for the case o f schema evolution and the metrics we used to
access each law.

LAW

/

VIII

III

' VI

V

IV

II

VII

STATEMENT MEASURES

Continuing change
The database schema is continually
adapted

Feedback System
W e can estimate the growth of the
schema size via regressive formula

Self-regulation
The schema growth comes in phases, each
w ith smooth growth; each phase of the
schema lifetim e includes shrinking
versions that calibrate expansive ones.

Continuing growth
The database schema size is increasing in
the long run

Conservation o f familiarity
The average growth between versions is
slowly declining

Invariant work rate
The average activity rate is constant
w ithin phases of smooth growth that
connect w ith bursts of effort

Increasing complexity
Efforts to maintain internal quality must
be made

Declining Quality
Efforts to maintain internal and external
quality must be made

We can accurately measure the law via
heartbeat over time and version id

We can assess the regressive formula of
Lehman for size estimation w ith different
alternatives for effort estimation

We can accurately measure the law via
the schema growth and size for relations
and attributes

We can accurately measure the law via
the schema size in terms of relations and
attributes over version id

We can accurately measure the law via its
heartbeat
the schema growth
the schema growth ratio

We can approximate activity by output
and measure the law via:
heartbeat over version id
schema growth
the schema growth ratio

We can approximate the perfective
maintenance activity via
the schema size
schema complexity

We can conjecture the laws validity by
logical proof.

75

4.2 . M easures o f ch an ge and effort fo r Schem a E volu tion

In this section, we present the results for several measures that we monitored, assessed over

the eight studied databases.

4.2. L H ea r tb ea t o f S chem a C h an ges o v e r Tim e a n d Version I d

BioSQL

20

15
10
5

0 -I----------------------- 1-------------- — 1------------------------ 1 I----------------------- 1 — I " — I " 1' I

2003 2004 2005 2006 2007 2008 2009 2010 2011

Coppermine

4s

76

■ Deletions ■ Insertions * Alterations

Figure 4.1 A comparative presentation o f change breakdown -heartbeat- over tim e for the
studied database schemata.

,1 77

150 -

100 -

50 ·

0 -

I ,

»i .■ 1 . i 1 gJ Μ -.·_«-ι j d ______ I i L l - J I - J -

ATLAS Trigger

BioSQL

Z D -

20 ■

15 ■

10 *

::

IT-
« ■

I .
! 1

9 1
1 fc π I* s |

h j e l a i i .Ι ιΙ ΙΕ ίΙ ί ΐ H ___ 1 1 1 1 j A U i l J J h ____I__ i_______

Coppermine

_______ L , i __________________

1
1

: r y — r

: I !
n l . j i ,-j . ., IkL·. j j J l . - ^ l 1 ■ .*■ .,, .„ i.- ti . ,—

Ensembl

78

- r‘ :·>=: ·.'· .· *
■L·

.3 :V e

OpenCart

phpBB

TYP03

■ Table Insertions
■ Table Deletions
■ Table Alteration

MediaWiki

■ Attribute Insertions
■ Attribute Deletions
- Attribute Key Alterations

■ Attribute Insertions w/Table
■ Attribute Deletions w/Table

Attribute Type Alterations

Figure 4 .2 A com parative presentation o f change breakdown -heartbeat- over version id for
the studied database schem ata

79

4.2 .2 . S chem a S ize (bo th in term s o f re la tio n s a n d A ttrib u tes)

Ensem bl

TYP03

phpB B

Media Wiki

Figure 4.3 A comparative presentation o f schema size per version over tim e, expressed as the
number o f relations, for the studied database schemata

80

I

ATLAS Trigger BioSQL

Coppermine Ensembl

OpenCart phpBB

TYP03

Figure 4.4 A comparative presentation of schema size per version over time, expressed as the
number of attributes, for the studied database schemata

81

OpenCart

BioSQL

70

50

30

10
ψ

jK
i

A 42

83

12
4

16
5

20
6

24
7

2 8
8

32
9

37
0

41
1

45
2

49
3

Ensembl

66

64

62

60

C Q

- 1~ % a
D O

1 12 23 34
1

45 56 67 78 89 10
0

11
1

12
2

13
3

phpBB

50

40

30

20

10
1 1 26 51 76 10

1
12

6

i
15

1
17

6
20

1
22

6
25

1
27

6
30

1

MediaWiki

Figure 4.5 A comparative presentation of schema size per version, expressed as the number of
relations, for the studied database schemata

82

900

850

800

750

700

650 r

145

125

105

85

65 tH r v m c u r t H r ^ r o o m H N f f i Q JL 5 9 13 17 21 25 29 33 37 41 45

ATLAS Trigger BioSQL

185
170
155
140
125
110
95
80 r

600
500
400
300
200
100

Λ

X 11 21 31 41 51 61 71 81 91 10
1

11
1

c
1 45 89 13
3

17
7

22
1

26
5

30
9

35
3

39
7

44
1

48
5

Coppermine Ensembl

850
750
650
550
450
350
250

r

650

600

550

500
<JL 17 31 45 59 73 87 10

1
11

5
12

9
14

3
15

7 1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

OpenCart phpBB

500

400

300

200

100
\

350
300
250
200
150
100
50 11

-
9 17 25 33 41 49 57 65 73 81 89

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

ΤΥΡ03 Media Wiki

Figure 4 .6 A com parative presentation o f schem a size per version, expressed as the num ber o f
attributes, for the studied database schem ata

83

ATLAS Trigger

Coppermine

OpenCart

TYPOS

29

27

25

23

21

19
Λ *7

~ j r
1 5 9 13 17 21 25 29 33 37 41 45

BioSQL

70

50

30

10
Γ

1
A

42

i
83

| 1
24

| 1
65

20

6
24

7
28

8
32

9
37

0
41

1
45

2
49

3

Ensembl

66

64

62

60

58
1 1 12

23

!

34

i
45

56

67

78

89

10
0

11
1

12
2

'
13

3
1

phpBB

50

40

30

20

10
1 1 26

51

76

10

1
12

6
15

1
17

6
20

1
22

6
25

1
!

27
6

30
1

MediaWiki

Actual size -------Est - last 5 last 1 -------Est - last 10 last 1

Figure 4 .7 A com parative presentation o f estim ated s ize v ia regression an alysis for the studied
database schem ata

84

4.2.3. Growth o f the Number o f Relations and Attributes

10

-10

ATLAS Trigger BioSQL

6

4 I

2
π k 1 1 iJL u U Jku

-2

-4 I

-6

OpenCart phpBB

TYP03

Figure 4 .8 A com parative presentation o f the grow th (in num ber o f relations) for the studied
database schem ata

85

SC
00

Fi
gu

re
 4

.9
 Z

oo
m

ed
 g

ro
wt

h
(in

 n
um

be
r o

f r
ela

tio
ns

) f
or

 E
ns

am
bl

 o
ve

r v
er

sio
n

ID

r-*oo
1

Fi
gu

re
 4

.1
0

Zo
om

ed
 g

ro
w

th
 (i

n
nu

m
be

r o
f r

el
at

io
ns

)
fo

r M
ed

ia
W

ik
i o

ve
r v

er
si

on
 ID

25

20

15

10
5

0
-5

BioSQL

40

Coppermine Ensembl

OpenCari phpBB

ΊΎΡ03

Figure 4.11 A com parative presentation o f the grow th (in num ber o f attributes) for the studied
database schem ata

88

ON
00

Fi
gu

re
 4

.1
2

Zo
om

ed
 g

ro
w

th
 (i

n
nu

m
be

r o
f a

ttr
ib

ut
es

) f
or

 E
ns

em
bl

 o
ve

r v
er

si
on

 I
D

i

8

.w

' t

gf . Φ* J

Fi
gu

re
 4.

13
 Z

oo
m

ed
 g

ro
wt

h
(in

 n
um

be
r o

f a
ttr

ib
ut

es
) f

or
 M

ed
ia

W
ik

i o
ve

r v
er

sio
n

ID

4J2A. Growth ratio

0,15 0,3

0,1

0,05
0,2

0

-0,05

-0,1

-0,15 rr^ 0,1

0

-0,1

ATLAS Trigger BioSQL

Coppermine Ensembl

0,1

0*05

0

-0,05

- 0,1

phpBB

MediaWiki

Figure 4.14 A comparative presentation of growth ratio for the studied database schemata

91

4.2.5. Complexity

30

25 -

20

15 -

10 -

5 -

20 -]

: : :

0 -«L·̂ κΛAMAJL·A—.
0 A* w h n W H iH iw -n m u m w -b J

ATLAS Trigger BioSQL

2,5 ,

j :

i .

-0,5

i L l l ,

io -|

8 -

6 ■

4 -

2 -

o -1

Coppermine Ensembl

60
50 -
40 -
30
20 -
10
0 -

-10

10 -1

8 -

6 -

4 -

2 -

0 - 1 - LiU c—

1
OpenCart

ik J L u J lL

4 Ί

; !

phpBB

1 JIM 11111111
ΊΎΡ03 MediaWiki

Figure 4.15 A comparative presentation of complexity for the studied database schemata

92

Having assessed the necessary measures of change for the eight schemata that we study, we

are now ready to comment on our findings concerning the validity of Lehman’s laws for the

evolution of database schemata. We will construct our discussion around the three pillars of

Lehman’s argument: the feedback-based system, the positive feedback (the properties of the

system’s growth) and the negative feedback (the properties of the contraction of the growth).

4.3. Is There a Feedback-based System fo r Schema Evolution?

4.3.1. Discussion o f our findings fo r the first law o f continuing change.

The main argument of the first law is that the schema continuously changes over time. To

validate the hypothesis that the law of continuing change holds, we need to study the

heartbeat o f the schema’s life (over version id and time) and detect whether this is true.

We believe that the law of continuing changes partially holds for the case of databases for

open-source software. In all cases (Figure 4.1) we see modifications (sometimes moderate,

sometimes even excessive) over the entire lifetime of the database schema. Interestingly, there

is also the exceptional case of BioSQL that appeared to be “sleeping” for some years and was

later re-activated. But, for the vast majority of the studied schemata, the existence of changes

throughout their lifetime is evident.

An important observation stemming from the visual inspection of our change-over-time data,

is that the term “continually” in the laws’ definition and name is challenged: we observe

(especially when the x-axis is time) that database evolution happens in bursts, in grouped

periods o f evolutionary activity, and not as a continuous process'. Specifically, the

observation of the heartbeat over time heavily supports this statement; on the other hand, the

inspection of the heartbeat over version id, comes also with stillness periods (or almost-

stillness), but to a lesser degree. It is interesting to see that even if we study heartbeat over

version id, we can still find versions with zero changes. As already mentioned, the versions

with zero changes are versions where either commenting and beautification takes place, or the

changes do not refer to the information capacity of the schema (relations attributes and

93

constraints) but rather, they concern the physical level properties (indexes, storage engines,

etc) that pertain to performance aspects of the database.

Can we state that this stillness makes the schema “unsatisfactory” (referring back to the

wording of the first law by Lehman)? We believe that the answer to the question is negative:

since the system hosting the database continues to be in use, user dissatisfaction would

actually call for continuous growth o f the database, or eventual rejection o f the system. This

does not happen. On the other hand, our explanation refers to the reference nature o f the

database in terms of software architecture: if the database evolves, the rest o f the code, which

is basically using the database (and not vice versa), breaks! Thus, evolution in databases is

done with caution and care1.

Overall, i f we observe the exact w ording o f the law, w e believe that the law p a rtia lly holds.

H owever, we shou ld be cautious not to fo cu s the evolution to the inform ation capacity o f the

schem a. We find the following wording appropriate (observe the removal o f ‘continuously’).

From time to time, the database schema must be adapted to the users'
information (logical schemaJ and performance (physical schema) needs
or else it becomes unsatisfactoiy.

4.3.2. D iscu ssion o f our f in d in g s f o r the e igh th law o f fee d b a c k system

To validate the eighth law, we need to establish that the following formula can estimate the

size of the schema (here: in terms of number o f relations) accurately - i.e., with small error

compared to the actual values. The formula is of the form:

+ 4 -
1

1 On the other hand, there arc cases like phpBB where this is not apparent.

94

where S refers to the estimated system size and E is a model parameter approximating effort

(actually obtained as the average value of a set of past assessments o f assessments of E). Once

the formula has been introduced, the problem is now how to estimate E.

Related literature [Leh+97, LeRP98] suggest computing E as the average value o f individual

E\, one per transition. Then, we need to estimate these individual effort approximations.

[Leh+97] suggests two formulae that we generalize here as follows:

Ei =

ai

where s\ refers to the actual size o f the schema at version i and a refers to version from which

counting starts. Specifically, [Leh+97] suggests two values for a, specifically (i) 1 (the first

version) and (ii) jm (the previous version, that is).

We now move on to discuss what seems to work and what not for the case o f schema

evolution. We will use the OpenCart data set as a reference example; however, all datasets

demonstrate exactly the same behavior, as also depicted in Figure 4.7.

First, we start by trying to apply the formulae of [Leh+97]. In this case, we compute the

average E of the individual E, over the entire dataset. We employ four different values for a,

specifically 1,5, 10, and n, with n being the entire data set size, and depict the result in Figure

4.16, where the actual size is represented by the blue solid line. The results depicted in Figure

4.16, indicate that the approximation modestly succeeds in predicting an overall increasing

trend for all four cases, and, in fact, all four approximations targeted towards predicting an

increasing tendency that the actual schema does not demonstrate. At the same time, all four

approximations fail to capture the individual fluctuations within the schema lifetime.

Then, we tried to improve on this result, and instead of computing E as the total average over

all the values o f the dataset, we compute it as the running average. This attempt was supposed

to simulate the case where we do predictions and thus the running average is a good indicator.

Again, the results are unsatisfactory.

95

Figure 4.16 Actual and estimated schema sizes via a total average o f individual E,

Actual and estimated schema sizes
(avg effort, E, computed as running average)

20 -I

1 Actual size
— · - Est · last size
— — Est-full avg
— Est - last 5
— — Est last 10

C is the running avg of E„
E, is computed over the last
1/5/10/allv.

0
1 13 23 33 43 S3 63 73 83 93

t . .· 1 . . · I .1 I ! | . i · · tf I·· li t <Mif t l i l t f l ■»»!«'» 1 **1l ■

103 113 123 133 143 153 163

Figure 4.17 Actual and estimated schema sizes via a running average o f individual Ej

After these attempts, we decided to alter the computation of E again. Our drive now was the

observation that back in 1997-8 people considered that the parameter E was constant over the

entire lifetime o f the project; however, later observations (see [LeRa06]) led to the revelation

that the project was split in phases. So, for every version /, we compute E as an average over

the last r values, with small values for τ (1/5/10) - contrast this to the previous two attempts

where E was computed as a total average over the entire dataset (i.e., constant for all versions)

or a running average from the beginning of the versions till the current one.

We also decided to use the last 5 or 10 versions in the formula for computing E\, i.e., a is 5 or

10. This has already been used in the past experiments too.

As we can see in Figure 4.18, the idea o f computing the average £ with a very short memory

o f 5 or 10 versions produced extremely accurate results. This holds for all data sets, as

depicted in Figure 4.7. This observation also suggests that, if the phases that [LeRa06]

mentioned actually exist for the case of database schema, they are really small and a memory

of 5-10 versions is enough to produce very accurate results. The fact that this works with τ= /,

and in fact, better than the other approximations is puzzling and counters the existence of

phases. In Figure 4.7, where all datasets are displayed, we depict only the two winner

approaches, where the feedback’s memory is very short, just one version back (here depicted

as the blue and red solid lines “last 5 last 1” and “last 10 last 1”).

97

Figure 4 . 1 8 Actual and estimated schema sizes via a bounded average o f individual E j , also
computed as bounded averages

We do not have a convincing theory as to why the formula works. We understand that there

are no constants in the feedback system and in fact, the feedback mechanism needs a second

feedback loop, with a short memory for estimating the model parameter E. In plain words,

this signifies that both size and effort approximation are intertwined in a multi-level feedback

mechanism.

The evolution o f the database schema appears to obey the behavior o f a
feedback-based system, as the schema size o f a certain version o f the
database can be accurately estimated via a regressive formula that
exploits the amount of changes in recent, previous versions.

4.3.3. Discussion o f our findings for the third law o f self-regulation.

To validate the hypothesis that the law o f self-regulation holds, one expects to see the

following phenomena: (a) recurring patterns in the schema size (in the area o f software

systems this is typically some form of a smooth expansion pattern) that produce a typical

98

“baseline” growth, (b) interrupted with releases of perfective maintenance with size

reductions and/or growth, and, (c) with the growth demonstrating oscillations around the

average value.

After observing the heartbeat of the schema both over time and over versions, for both

relations and attributes (Figure 4.3, Figure 4.4, Figure 4.5 and Figure 4.6), we can make some

interesting statements around each of the three studied phenomena.

Concerning the issue o f a repeated, basic, fundamental pattern of smooth growth, interrupted

with abrupt changes or, more generally, versions of perfective maintenance, we have to say

that we simply cannot detect it in the studied database schemata. In sharp contrast to the

respective figures of [BeLe76] and [Leh+97], the overall landscape of the size of the system

provides a timeline with large variety o f behaviors.

In all schemas, there are versions with drops in schema size. Those drops are typically

sudden and shift; usually they take place in short periods of time.

In all schemas, we can see periods o f increase, especially at the beginning of their

lifetime or after a large drop in the schema size. This is an indication o f positive

feedback, i.e. the need to expand the schema to cover the information needs o f the

users - especially since the overall trend in almost all of the studied databases is to see

an increase in the schema size as time passes.

- In all schemas, there are periods of stability (i.e., size stays still, or -near-still). If we

observe the behavior of the relations and attributes over time, we frequently see

stillness; in some schemas the stability remains for long periods of time. At the same

time, the stillness is evident even if we observe the timelines having the version id as

the x-axis. For relations, stillness is frequently evident in all datasets; for attributes we

cannot really speak for stillness, but for stability or near-stillness, as the amount of

change is typically small but not zero. However, if one observes the heartbeats over

version id, for all schemata, one will always identify periods of non-modification to

the logical structure of the schema.

99

Moving on to the second phenomenon, i.e., the existence o f perfective maintenance, we can

safely say that the existence of (large) drops in the schema size indicate the result o f negative

feedback, i.e. perfective maintenance. In fact, versions of perfective maintenance can be

hidden in other versions, too, where we have renamings or restructurings o f tables. As already

mentioned, the automated identification o f these phenomena comes with a degree o f

uncertainty that we have excluded from this study. Even without this information, however,

there is still plenty of evidence to see that the schema is restructured from time to time

resulting in (sometimes large) drops in its size.

Growth (i.e., the difference in the size between two subsequent versions) in all datasets has

the following characteristics (Figure 4.8, Figure 4.11 and Figure 4.14):

- In terms of tables, growth is always very small (typicaLly ranging within 0 and 1), and

moderately small when it comes to attributes

In terms of tables, we have too many occurrences o f zero growth, typically iterating

between small non-zero growth and zero growth. We do not have a constant flow o f

versions where the schema size is continuously changing; rather, we have small spikes

between one and zero. Thus, we have to state that the growth comes with a pattern o f

spikes. Due to this characteristic, the average value is typically very close to zero (on

the positive side) in all datasets, both fo r tables and attributes.

- We also observe other patterns too: it is quite frequent, especially at the attribute level,

to see sequences o f oscillations o f large size: i.e., an excessive positive delta followed

immediately by an excessive negative growth.

- We do, however, observe the oscillations between positive and negative values

(remember, the average value is very close to zero), much more on the positive side,

however, with several occasions o f excessive negative growth (clearly demonstrating

perfective maintenance).

- The growth ratio (i.e. the difference o f sizes in a transition normalized over the old

schema size) also comes with spikes and small values (typically ranging between 0%

and 5%).

Overall, we can say that the essence o f the law holds, despite the fact that we cannot confirm

the pattern of smooth growth interrupted with releases o f perfective maintenance based on our

observations.

100

Schema evolution is feedback regulated as the existence of perfective
maintenance is evident in the overall process. The growth comes with
oscillations around the average value o f growth which is close to zero (on
the positive side) due (a) to the small size of delta's, (b) to the spike
pattern (small change followed by no change) o f growth, and, (c) the
existence o f several maintenance actions that balance the expansion of
the system.

Thus, although the essence o f the law, concerning the existence o f a feedback mechanism, is

still present in the case o f schema evolution (making the law to hold, due to its very general

definition), the mechanics o f this system are clearly different than in the case o f software

systems.

4.4. Properties of Growth for Schema Evolution

4.4.1. Discussion o f our findings for the sixth law o f continuing growth.

The sixth law o f continuing growth requires us to verify whether the information capacity of

the system continuously grows. To this end, we study the size o f the schema (over version id)

both for relations and attributes (Figure 4.3). In all occasions, the schema size increases in the

long run. We frequently observe some shrinking events in the timeline of schema growth in

all data sets. However, all data sets demonstrate the tendency to grow over time. Concerning

the number o f attributes, this is also confirmed in all but one case (phpBB, which is clearly an

outlier with respect to the rest of the datasets, starts with a high number of attributes, quickly

drops sharply and then grows with ups and downs).

In both charts for the number of relations and the number of attributes, we see the schema

growth to pass from three kinds of phases:

- Stability, which is the term we use to refer to absolute stillness or near-stillness (small

changes)

- Smooth expansion, which refers to sequences of version where the size grows

monotonically

101

Abrupt change, where the size changes significantly (either positively or negatively)

The above observation holds both for relations and attributes. In contrast with observations

made by Lehman regarding this law, in addition to the two phases that Lehman has discussed

(smooth growth and abrupt change); we also observe the stability periods that appear to be

unique in the case of database schema evolution. This acquires extra importance if one also

considers that in our study we have isolated only the commits to the files with the database

schema and not the commits to the entire information system that uses it: this means that there

are versions of the system, for which the schema remained stable while the surrounding code

changed.

Therefore we can conclude that the law holds, albeit modified to accommodate the

particularities o f database schemata.

As an overall trend, the information capacity of the database schema is
enhanced

4.4.2. Discussion of our findings for the fifth law o f conservation o f familiarity.

The fundamental question around the fifth law is: “What is the effect o f age over the growth

and the growth ratio of the schema?” Is it slowly declining, constant or oblivious to age? A

second question, also of interest for the fifth law’s intuition is: “What happens after excessive

changes? Do we observe small ripples of change, showing the absorbing of the change’s

impact in terms of corrective maintenance and developer acquaintance with the new version

of the schema?” To answer these questions we observe the charts depicting the growth and the

growth ratio of the schema, also with the aid o f the heartbeat charts.

Again, we would like to remind the reader on the properties o f growth, discussed in law III of

self-regulation: the changes are small, come with spike patterns between zero and non-zero

deltas and the average value of growth is very close to zero (from the positive side).

Overall, we do not see a diminishing in the values of growth; what we observe, however, is a

reduction in the density o f changes and the frequency o f non-zero values in the spikes. This

102

explains the drop o f the average value in almost all the studied data sets (see Figure 4.8 and

Figure 4.11: the linear interpolation drops; however, this is not due to the decrease o f the

height o f the spikes, but due to the decrease o f their density).

Figure 4.19 Ensembl’s combined heartbeat and schema size: age results in a decline o f both
activity and growth

The heartbeat o f the systems tells a similar story: typically, change is quite more frequent in

the beginning, despite the fact that existence o f large changes and dense periods o f activities

can occur in any period o f the lifetime. Figure 4.19 clearly demonstrates this by combining

schema size and activity. This trend is typical for almost all of the studied databases, possibly

with the exception o f TYP03 and phpBB (as usual). phpBB demonstrates some increased

activity in its last versions - we attribute this to the fact that apparently there was an

expansive effort in this time period (around 2012) and will probably return to lower rates in

the future versions. phpBB which is almost always an outlier, shows also some consistent

activity at its later versions; still this involves a small amount of change that oscillates

between 60 and 62-63 tables which is a very small difference actually (as the figures of

phpBB are fitted to show the lines as clearly as possibly, they can be deceiving as to the

amount o f change -- the growth ratio is typically around 2%).

103

Concerning the validity of the law, we are not in position to verify the explanation of the

growth. The law states that the growth is constrained by the need to maintain familiarity.

Although this seems reasonable, we believe that the peculiarity of databases, compared to

typical software systems is that there are other good reasons to constrain growth: (a) a high

degree of dependence of other modules from the database and (b) an intense effort to make

the database clean and organized. Therefore, conservation of familiarity, although important

cannot solely justify the limited growth. The extent of the contribution of each reason is

unclear.

Figure 4.20 Different patterns o f change in the heartbeat o f MediaWiki

A second reason to question the importance o f conservation o f familiarity is the existence of

several patterns around large changes in the growth diagram o f the studied databases. Observe

Figure 4.20, depicting attribute growth for the MediaWiki dataset. Reading from right to left,

we can see that there are indeed cases where a large spike is followed by small or no changes

(case O). However, it is quite frequent to see sequences o f large oscillations one after the

other, and quite frequently being performed around zero too (case Θ). In some occurrences,

we see both (case ©).

104

Thus, we believe that the law is possible but not confirmed·, at the same time, we deem that

the following wording o f the law is appropriate:

Age results in a reduction of the density of changes to the database
schema

Clearly, more work has to be done to better understand and justify the patterns of growth that

are evident.

4.4.3. Discussion o f our findings for the fourth law o f conservation o f organizational

stability.

-To validate the hypothesis that the law o f conservation o f organizational stability holds, we

need to establish that the project’s lifetime is divided in phases, each o f which (a)

demonstrates a constant growth, and, (b) is connected to the next phase with an abrupt

change. Moreover, abrupt changes should occur from time to time and not all the time

(resulting in extremely short phases).

I f we stick to exact wording o f the law, we can safely say that it does not hold. The multitude

of spikes returning to zero after any change is such that it is impossible to speak about

constant growth, even in phases. This concerns both tables and attributes.

Change is small:

- In terms of tables, growth is mostly bounded in small values. This is not directly

obvious in the charts, because its shows the ripples; however, almost all numbers are

in the range of [-2..2] - in fact, mostly in the range [0..2]. Few abrupt changes occur.

In terms of attributes, the numbers are higher, of course, and depend on the dataset.

Typically those values are bounded within [-20,20] However, the deviations from this

range are not many.

Observe Figure 4.21. Figure 4.21 has two parts, both depicting how often a growth value

appears in the attributes o f Ensemble. The x-axis keeps the delta size and the y-axis the

105

number o f occurrences of this delta. In the upper part we include zeros in the counting (343

occurrences out o f 528 data points) and in the lower part we exclude them. In the first case,

there is a small range o f deltas, between -2 and 4 that takes up 450 changes out of the 528.

This means that, despite the large outliers, change is strongly biased towards small values

close to zero. The role o f the lower figure is to indicate a pattern observed in all datasets: it

appears that there is a Zipfian model in the distribution of frequencies.

In fact, both phenomena observed here, i.e., the bounded small change around zero, following

a Zipfian distribution of frequencies is one of the few patterns that is global to all datasets,

without exceptions whatsoever.

Overall, we believe that the law does not hold·, moreover, we can replace the wording o f the

law as follows:

In the case of schema evolution, change follows spikes oscillating between
zero and non-zero values, which are typically strongly biased towards
small values close to zero.

106

400

350

Ensemble: frequencies of attribute change
(x-axis: size of delta, y-axis: no of occurences) 2so

200

150

100

50

Φ ΦΦ
-SO -60 -40

l l l l I Mi l» #
-20 0

-50

Φ» Φ Φ t
20 40

107

4.5. Perfective Maintenance for Schema Evolution

4.5.1. Discussion o f our findings fo r the second law o f increasing complexity.

To validate the hypothesis that the law of increasing complexity holds, we need to establish

the following observations: (a) there is a perfective maintenance activity that attempts to

reduce complexity (demonstrated by drops in the schema size and rate o f expansion), (b)

similar to software systems, complexity rises (with complexity being approximated by the

number of modules handled divided by growth per transition) and (c) the perfective

maintenance is the negative feedback in a feedback mechanism that guides the schema

evolution process.

If we take these criteria into consideration, we see that the feedback-related criteria hold. We

frequently observe negative growth in the size of the schema, both in terms of attributes and

relations. Any kind of schema shrinking is part of perfective maintenance (either because

dead parts are dropped, or because redundant parts are merged, etc). At the same time, as

depicted in Figure 4.7, we further observe that the evolution of the schema in terms of its

actual size is in line with Lehman’s regressive formula. As detailed in the discussion o f the

eighth law of Lehman, this strongly suggests the existence o f a feedback system, which

accounts for negative feedback which leads to perfective maintenance actions that aim at

decreasing the complexity.

Much to our surprise, we have detected a sharp contrast between our observations and the

current intuition around complexity and its evolution over time. In all datasets, except for

phpBB, complexity is either stable or declines!

The above is corroborated also by the declining density o f changes over time (law V): as the

database ages, and as we speculate here, complexity declines, maintenance becomes easier

and results in less maintenance activity.

How confident can we be on our observation? For one, we have to state that although the

approximate assessment of complexity as modules handled over growth follows the literature,

we cannot be certain that it accurately evaluates the complexity o f a database design in the

108

context of its evolution. It is however, quite reassuring that this formula, is also backed up by

a more concrete assessment of maintenance rate and frequency of change. The combination of

the above gives a strong indication (although not certainty) for our statement on the declining

complexity o f database schemata.

Therefore, based on these observations we have indications that the second law holds fo r the

examined database schemata, however with completely different connotations than the ones

reported by Lehman fo r typical software systems: complexity drops, probably as a result o f

too much and too successful perfective maintenance over schemata that evolve with a

relatively small evolution rate anyway.

' 4.5.2. Discussion o f our findings fo r the seventh law o f declining quality

The seventh law postulates that quality declines with age unless the system is rigorously

adapted to its external environment. As already mentioned, the seventh law is typically

supported by logical induction, as the exact measurement of quality with certainty guarantees

as to what exactly we measure is not easy (if not practically impossible). So, even Lehman

[LeRa06, LeRP98] suffice at making a logical proof for the law. In our case, we have

assumed that the seventh law can be validated over the existence of a feedback-based system

and the validity of the second law.

We are really hesitant to declare the law as valid: the feedback-system seems to exist (albeit

with different characteristics than the rest of the software systems) and the second law seems

to offer a case for supporting the seventh law, but only because we observe an improvement

in internal quality (!). Therefore, being unsure on the internal quality already, we are even

more reluctant towards declaring external quality too as improving. We have some

testimonies on this: the density of schema alterations typically decreases with time (law V)

which can be an indication that user requirements are gradually satisfied more and more.

However, this is only an indication and can only serve as a starting point for future research.

109

4.6. Treats to Validity

In this subsection, we discuss threats to the validity of our conclusions. We structure our

deliberations around three kinds of validity threats, specifically, construct validity, assessing

the appropriateness of our measures, internal validity, assessing the possibility that cause-

effect relationships are produced on an erroneous interpretation o f causality, and external

validity, assessing the extent to which our results can be generalized.

4.6.1, Construct Validity

To assess construct validity, we will review the metrics used for each law and state our

concerns about their analogy with the metrics used in the studies o f software evolution.

I. Continuing change

The metrics involved in this law are the changes between two schema versions over time and

version ID. The information that we have in the changes of the schema is accurate and the

usage of the heartbeat raises no concern about its appropriateness and the validity o f our

results.

II. Increasing complexity

The main metric to assess this law is the schema complexity. As we mentioned before, we do

not have a way to accurately measure the complexity o f a database schema as similar studies

have done with software’s complexity. We approximate the complexity with the effort spent

between two schema versions and the increment in size between those versions. The later can

be accurately measured but this is not the case with the effort. Effort cannot be measured from

the data that we have extracted for the databases that we studied. The only accurate way to

measure effort would be to have the actual man-hours that every developer have spent in the

development of the database. Moreover, the fact that databases are often found as part o f other

software, such a measure would not be that useful because we don’t have a way to

differentiate the work done on the database and the rest o f the software system. On the other

hand, the reasoning behind the formula used makes sense and it is consistent with the

bibliography. Overall, the complexity, as we approximate it, poses a threat to our construct

validity that we cannot ignore; to a large extent, this is also due to the abstract wording o f the

110

law. Future work needs to be invested in the area for a more solid grounding o f automated

complexity assessment.

III. Self regulation

To assess this law, we used the growth measure. The metric itself can be accurately measured

as the incremental difference between two versions. The usage of the measure is consistent

with the bibliography and the intuition behind the law.

IV. Conservation o f organizational stability

The involved metric in order to assess this law is the effort. As we previously mentioned the

effort cannot be easily measured because effort does not always equate progress. To this end,

- we use the schema growth, which is accurate as we indicated before, and the changes over

version which is accurately measured. Overall, we are satisfied with the approximation of

effort, as it appears that this is the best possible approximation we can get from automatically

extracted data; at the same time, we have to acknowledge that it is an approximation and not

an undisputed measurement of effort.

V. Conservation of familiarity

The metrics used for the assessment of this law is growth and growth rate, both accurately

measured. On the other hand, we have no way to undisputedly know the exact mechanics

behind the observations. Therefore, although certain for our observations, the mechanics of

the law require further elaboration.

VI. Continuing growth

For this law, we employed the number of relations and attributes for each version. Those

measures were accurately extracted by our tools and are exactly fit for assessing the law.

VII. Declining quality

All measures available for the assessment of the validity of this law are good approximations.

To a large extent, this is also due to the abstract wording of the law. A possible measure might

be the number of defects associated with each version that we could extract via the bug-

o

111

tracking system of the software if such a system exists. Again, we emphasize the difficulty to

differentiate a bug related to the database from a bug affecting the rest of the software.

VIII. Feedback system

The main measure we used for assessing this law, is the estimated size o f the database

schema. This measure has previously been used in the case o f software evolution, again with

an approximation for the measurement o f effort. However, the regression formula used is

consistent with its usage in the bibliography (albeit with novelty in terms o f the memory of

the feedback) and all the results in all data sets are surprisingly consistent. Therefore, we

believe the specific formulae used pose no threat to validity, although a better understanding

of the mechanics behind the feedback mechanism have to be part of future studies.

4.6.2. Internal Validity

Internal validity refers to the case where a conclusion on the behavior o f a dependent variable

is made as a cause-effect relationship with an independent variable. We have the following

cases of observations, where one might be tempted to introduce a cause-effect relationship:

- Density of changes drops with age

- Complexity drops with age

- Size grows with age (in the long run)

We are very careful to treat our observations only as such and avoid relating the cause o f the

observed phenomena with age. In fact, due to the consistence o f the observed phenomena

throughout all the studied datasets, we believe that a cause-effect relationship does exist,

albeit hidden, and not directly relating age with the observations. We attribute the behavior of

density and complexity to the existence o f a confounding variable: schema quality, which we

anticipate to be closely related to age and causes the observed behavior. Still, this remains to

be proved with undisputed data. For size, the confounding variable is user requirements for

more information capacity; although reasonable enough (in our minds, practically certain),

this is also a topic to be proved undisputedly by dedicated studies.

112

4.6.3. External Validity

This study comes within a well defined context, practically based on two pillars: (a) we

restrained our study only to the core of the logical schema of the involved databases without

accounting physical properties, views and constraints and (b) we only targeted databases in

open source software systems.

Concerning the validity of our study within this context, we believe we have provided a safe,

representative experiment. In this study, we have targeted a significant number o f database

schemas that serve different purposes in the real world. The schemas collected had an

adequate number of versions from rather few (40) to quite many (500+) and our findings are

consistent in practically all of them. Thus we believe that the case of logical database schema

in open source software is well represented.

On the other hand, we would be hesitant to generalize our findings in databases in closed

software or outside the scope of the logical schema. Open-source software comes with a

larger development community, and less control on the development effort. This is not the

case for closed software, especially when dealing with mission critical components like

databases. At the same time, we have not worked with the information concerning the

physical schema or the extension of the studied databases and thus, we would take the

opportunity to warn the reader not to generalize the results outside the scope of a schema's

information capacity as expressed by the logical-level schema.

4.7. Putting it All Together
Now we are ready to revisit the original hypotheses around the mechanics o f schema

evolution for databases and discuss their validity and particularities.

A. Hypothesis of the feedback-based process. Is the process of schema behaving like a

feed-back based system?
We believe that we can indeed claim that the overall process is guided by a feedback based

mechanism, albeit with a strong negative feedback part. On the positive side of a feedback-

based system, there is indeed need to incorporate more and more data in the database,

resulting in expansion of the number of relations and attributes over time. At the same time,

113

there is negative feedback too from the need to do some house-cleaning o f the schema for

redundant attributes or restructuring to enhance schema quality. We also have very strong

indications that the law of inverse square holds, as it applies to all eight schemata under the

same two alternative formulae. However, we do not come with a good explanation as to why

this holds.

B. Properties of growth

The size o f the schema expands over time, albeit with versions o f perfective maintenance due

to the negative feedback. The expansion is mainly characterized by three kinds o f phases,

including abrupt change (positive and negative), smooth growth and stability (meaning large

periods of no change, or very small changes).

At the same time, in contrast to the case o f software systems, we observe a very strong

inclination to avoid changes to the database schema. Change in the database impacts

surrounding code, so the change is constrained by the need to minimize this impact. So, we

frequently see versions with no change to the information capacity o f the schema and large

time periods where the schema is still (or almost still). Bear in mind that we monitor only the

subset of versions that pertain to the database schema and ignored any versions where the

information system surrounding the database changed while the schema remained the same.

This enforces our argument for the tendency towards stillness.

The growth of the database schema does not follow a pattern o f smooth growth - even

considering the amendment where phases o f constant growth are assumed. We observe that in

the case of schema evolution, the schema's growth (i.e., its change from one version to the

following) mainly occurs with spikes oscillating between zero and non-zero values. The

changes are typically small, following a Zipfian distribution of occurrences, with high

frequencies in deltas that involved small values of change, close to zero.

Although we do not believe conservation of familiarity to be a main motive, we see that the

feedback mechanism of the evolution demonstrates a reduction in the density o f changes as

the schema ages. This also affects the frequency o f non-zero values in the spikes. We also

observe not common patterns of changes with sequences of high spikes, sometimes oscillating

around zero. The average growth is close to zero, and with the tendency to drop as time

1 1 4

passes, not due to the diminishing of the (already small) deltas, whenever they occur, but

mainly due to the diminishing of their density.

C. Hypothesis of perfective maintenance to fight complexity and user dissatisfaction
We also believe that there is sufficient evidence to support the claim that perfective

maintenance is part of the process. This has been demonstrated in several of our studies for

the different laws, and is mainly demonstrated by the drops in the schema size as well as the

drops in activity rate and growth with age. Thus, based on simple reasoning, one can accept

the wording of Lehman’s laws on negative feedback, as they both state that quality (internal

and external) declines unless confronted.

However, we are negative to adopt the corroborating observations around software systems

that accompany the two laws of negative feedback (II and VII) of Lehman, despite the

adoption of the hypothesis for a feedback-based mechanism. We know that the measurement

of complexity is an approximation; moreover, in sharp contrast to typical software systems,

perfective maintenance seems to do a really good job and complexity drops with age (in sharp

contrast to what is observed in the related literature for software systems where more and

more effort is devoted to battle complexity). Also, in the case of database schema evolution,

activity is typically less frequent with age. Although one can attribute this to the inefficacy of

the approximating measure, we anticipate that it should mainly be attributed to the truth lying

in the essence of law II: ‘complexity increases unless work is done to reduce it'. Apparently,

due to the criticality o f the database layer in the overall information system, this process is

done with care and achieves the reduction o f complexity over time, coming hand in hand with

the strong tendency towards minimum or no changes to the schema.

As for law VII, as already mentioned, we are even more hesitant to adopt it, as we are already

in doubt towards internal quality and have no actual evidence as to what happens with

external quality.

Overall: although our research seems to keep the negative feedback laws in place in the case

o f schema evolution, this is done with (a) a degree o f uncertainty and (b) with the strong

indication o f fundamental differences with E-type program evolution. We would not be

115

surprised if future research establishes with more certainty that the feedback mechanism for

schema evolution improves the quality and complexity of a database as time passes.

Table 4.3 A summary of the results of our study.

O riginal law as o f 2006
Holds for
Database
Schemata

O u r findings

I
An E-type system must be continually
adapted or else it becomes progressively
less satisfactory in use.

Partially holds The change is present but not
continuous.

11

As an E-type system is changed its
complexity increases and becomes more
difficult to evolve unless work is done to
maintain or reduce the complexity.

Seems to hold

Our approximation of
complexity drops with age
possibly as a result of successful
maintenance.

III Global E-type system evolution is
feedback regulated.

The essence
holds Change is small.

IV

The work rate of an organization evolving
an E-type software system tends to be
constant over the operational lifetime of
that system or phases of that lifetime.

Does not hold

Growth is not constant but
comes with spikes, oscillating
around zero with age slightly
higher than zero.

V

In genera], the incremental growth (growth
ratio trend) of E-type systems is
constrained by the need to maintain
familiarity.

Possible but
not confirmed

Age reduces the change
frequency in a database schema

VI

The functional capability of E-type
systems must be continually enhanced to
maintain user satisfaction over system
lifetime.

Holds Database schema grows with
age in the long run.

VII

Unless rigorously adapted and evolved to
take into account changes in the
operational environment, the quality of an
E-type system will appear to be declining.

Unknown We lack actual measures of
external quality.

VIII E-type evolution processes are multi-level,
multi-loop, multi-agent feedback systems. Seems to hold

The regression formula holds;
still feedback comes with a short
memory and its mechanism is
not clear.

116

CHAPTER 5. DISCUSSION

In this final chapter, we will start with a summary of our findings. Then, we proceed discuss

issues of future work.

5.1. Summary of our findings

- In this subsection, we discuss fundamental observations, conjectures and patterns that have

been detected in our study. We intentionally avoid the term law, as we do not have

unshakeable evidence for their existence, from any of the two possible ways to obtain it, i.e.,

(a) the empirical grounding, due a very large amount o f datasets that obey them, or (b) the

rationalized grounding, that can be obtained via a clear explanation of the underlying

mechanism that guides them, established on non-disputed facts. In fact, we could argue that

we need both pillars before we establish the term ‘law’. Having said that, believe that we can

divide our findings in (a) evidence that we deem coming with high degree of certainty, and,

(b) evidence that requires further exploration by future studies. We organize our following

discussion in these two categories. We also annotate each o f our observations with reference

to the law where we discuss it in detail.

Before proceeding, we remind the reader that the context under which our observations are

made concerns the study o f the evolution o f the logical schema o f databases in open-source

software. We avoid generalizing our findings on databases operating in closed environments

and we stress that our study has focused only on the logical structure of databases, avoiding

physical properties (let alone instance-level observations). In all our subsequent deliberations,

we take the above context as granted and avoid repeating it for reasons of better presentation

of our results.

117

5.1.1. Observations coming with high degree o f certainty

Conjecture o f Feedback-based Behavior fo r Schema Evolution

Schema evolution demonstrates the behavior o f a feedback-regulated system, as it obeys the

antagonism between the need fo r expanding its information capacity to address user needs

and the need to control the unordered expansion, with perfective maintenance.

Supporting observations:

- As an overall trend, the information capacity o f the database schema is enhanced -

i.e., the size grows in the long term. (VI)

- The existence o f perfective maintenance is evident in almost all datasets with the

existence o f relations and attributes removals, as well as observable drops in growth

and size o f the schema (sometimes large ones).In fact, growth frequently oscillates

between positive and negative values. (Ill)

- The schema size o f a certain version o f the database can be accurately estimated via a

regressive formula that exploits the amount o f changes in recent, previous versions.

(VIII)

Observations concerning the heartbeat o f change

- The database is not continuously adapted, but rather, alterations occur from time to

time, both in terms o f versions and in terms o f time. (I)

- Age results in a reduction o f the density o f changes to the database schema in most

cases. (V)

Observations concerning the size o f the schema

- As an overall trend, the information capacity o f the database schema is enhanced -

i.e., the size grows in the long term (VI)

- The schema size o f a certain version o f the database can be accurately estimated via a

regressive formula that exploits the amount o f changes in recent, previous versions.

(VIII)

lie

Schema growth is small (observations)

— Growth is small in the evolution o f database schemata; compared to typical software

systems. (Ill)

— The distribution o f occurrences o f the amount o f schema change follows a Zipfian

distribution, with a predominant amount o f zero growth in all data sets. Plainly put,

there is a very large amount o f versions with zero growth, both in the case o f

attributes and in the case o f tables. The rest o f the frequently occurring values are

close to zero, too - i.e.9 change is typically small. (IV)

— The average value o f growth is typically close to zero (although positive) (III) and

drops with time, mainly due to the drop in change density (V)

5.1.2. Observations requiring further investigation

Conjecture on the existence o f change patterns

- Change frequently follows a spike pattern (small change followed by no change) (III)

- Change comes with patterns o f (a) stillness (large sequences o f versions with small or

zero change), (b) abrupt change (positive or negative) and (c) smooth growth (VI)

- Frequently, we observe patterns o f large changes closely sequenced one after another

aw

We would like to stress here that these patterns concerning growth require extensive study

and verification over a large number of datasets before adopted as undisputed patterns.

Conjecture o f Success o f Perfective Maintenance

- Age results in a reduction o f the complexity to the database schema (U)

We take extra care to note that the above conjecture comes with a certain degree of

uncertainty around the efficacy of the approximation measure used to assess complexity.

119

5.2. Open issues fo r fu tu re w o rk

Our results constitute a first step towards understanding the mechanics o f schema evolution in

databases. In the sequel, we give an indicative list o f issues to be explored in some depth.

In the context o f the fourth law , where the desideratum is to demonstrate that effort is

constant throughout phases, we could approximate the devoted effort v ia measures related to

tim e. An interesting thought, based on the original observation o f the law that the effort is

constant throughout the entire lifetim e would be to introduce a measure o f changes per day,

which refers to the average o f changes per day for the entire lifetim e o f the database schema

(practically, we assess the amount o f changes w ithin tw o versions and we divide it by the tim e

distance between them - originally, this should be constant in a ll tim e points o f the system's

lifetim e). However, since we have several occasions where effort is highly dense in several

periods (sometimes w ith several commits in the same day) and loose in others (sometimes

w ith several years o f stillness), we know a-priori that this does not hold. M ore sophisticated

measures have to be thought, however, to dig out the patterns o f change over tim e.

O f course, another open issue is how to define what an abrupt change is and how to detect the

phases that the law mentions. The splitting o f a lifetim e in phases can allow the measurement

or computing running averages over fixed number o f versions and facilitate the better

understanding o f other laws, like for example, the fifth law (where we need to show that

growth drops).

W e need to do better in the correct identification o f perfective maintenance. W e do not have

clear rules on what pattern o f changes accurately represents the presence o f perfective

maintenance. W e can be definitely sure in the case o f large reductions in schema size,

indicating the removal o f dead attribute placeholders or their move in other relations; however

this is not the only case. As already mentioned in this study, we work only with the exact

changes that can be automatically determined; thus several actions o f perfective maintenance,

like attribute renaming are not captured by our method. Unfortunately, an automated method

like our own can only speculate on this problem. S till, even with a (sm all) degree o f

uncertainty, such improvements would make the picture much clearer and would allow us to

detect the amount and rate o f perfective maintenance w ith better precision.

120

Concerning the issue of increasing complexity, we would like to point out that a major

concern that must be addressed by the database community, in order to be able drive stronger

conclusions on the topic is the establishment of a representative set o f metrics that measure

the complexity o f a database schema. If we focus on the structural complexity only, we can

identify a short list of candidates. As naive approximations of complexity, we can use (i) the

number o f foreign keys (or the number of functional dependencies if a designer takes care to

store them electronically) of the relational schema or (ii) the number of relationships of the

conceptual schema, if such information is available. More advanced and sophisticated

algorithms can be devoted to computing the number of schema components, with schema

component defined as the set of relations that are semantically related to each other with a

high degree of coupling. Unfortunately, measuring even the naive approximations of

complexity in the kind of experiments we conduct is typically impossible: ER models or

functional dependencies are simply not available and, to a very large extent, the databases

supporting CMS’s or web sites are deployed without foreign keys in order to increase

efficiency (and with the hope that the application will guarantee data integrity). Hence, a

systematic study of database complexity, given the above practical constraints presents an

interesting topic for future research. Finally assessing the laws of evolution over more

datasets and extracting new patterns are two possible ways for strengthening our

understanding of the mechanics o f schema evolution in databases.

o

121

REFERENCES

[BeLe76] Laszlo A. Belady, Μ. M. Lehman. A Model o f Large Program Development.

IBM Systems Journal 15(3), pp: 225-252, 1976.

[CMDZ13] Carlo A. Curino, Hyun J. Moon, Alin Deutsch and Carlo Zaniolo. Automating the

database schema evolution process. The VLDB Journal - The International

Journal on Very Large Data Bases 22, no. 1 (2013): 73-98.

[CMTZ08] Carlo A. Curino, Hyun J. Moon, Letizia Tanca, Carlo Zaniolo. Schema evolution

in Wikipedia: toward a web information system benchmark. In International

Conference on Enterprise Information Systems (ICEIS 2008)

[CuMZ08] Carlo A. Curino, Hyun J. Moon, Carlo Zaniolo. Graceful database schema

evolution: the PRISM workbench. Proceedings of the VLDB Endowment 1.1

(2008): p. 761-772.

[FePf96] Norman E. Fenton, Shari Lawrence Pfleeger: Software metrics - a practical and

rigorous approach. International Thomson 1996, ISBN 978-1-85032-275-7.

[Leh+97] Meir M. Lehman, Juan F. Ramil, Paul Wemick, Dewayne E. Perry, Wladyslaw

M. Turski. Metrics and Laws o f Software Evolution - The Nineties View. 4th

IEEE International Software Metrics Symposium (METRICS 1997), November

5-7, 1997, Albuquerque, NM, USA, pp: 20.

[Lehm96] Μ. M. Lehman. Laws o f Software Evolution Revisited. 5th European Workshop

on Software Process Technology (EWSPT ’96), Nancy, France, October 9-11,

1996, pp: 108-124.

[LeRaOl] Meir M. Lehman and J F Ramil. Software Evolution, STRL Annual

Distinguished Lecture, De Montfort Univ., Leicester, 20 Dec. 2001.

Available at:

http://www.eis.mdx.ac.uk/staflpages/mml/feast2/papers.html

http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers/pdf/690c.pdf

http://www.eis.mdx.ac.uk/stafTpages/mml/feast2/papers/pdf/jfrl03c.pdf

122

http://www.eis.mdx.ac.uk/staflpages/mml/feast2/papers.html
http://www.eis.mdx.ac.uk/staffpages/mml/feast2/papers/pdf/690c.pdf
http://www.eis.mdx.ac.uk/stafTpages/mml/feast2/papers/pdf/jfrl03c.pdf

[LeRa06]

[LeRP98]

[PressOO]

[PVSV12]

[RaLeOO]

[Sj0b91]

[Sj0b93]

[SkoulO]

[SEBK]

Meir M. Lehman and Juan C. Femandez-Ramil. Rules and Tools for Software

Evolution Planning and Management. In: Software Evolution and Feedback:

Theory and Practice. Edited by Nazim H. Madhavji, Juan C. Femandez-Ramil,

and Dewayne E. Perry, John Wiley & Sons Ltd, 2006. ISBN-13: 978-0-470-

87180-5.

Meir M. Lehman, Juan F. Ramil, Dewayne E. Perry. On Evidence Supporting the

FEAST Hypothesis and the Laws of Software Evolution. 5th IEEE International

Software Metrics Symposium (METRICS 1998), March 20-21, 1998, Bethesda,

Maryland, USA, pp: 84-88.

Roger Pressman. Software Engineering: A Practitioner’s Approach: European

Adaption. McGraw-Hill, 5th edition, April 2000

George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou.

"Metrics for the prediction of evolution impact in ETL ecosystems: A case

study." Journal on Data Semantics 1, no. 2 (2012): 75-97.

Juan F. Ramil, Μ. M. Lehman. Effort estimation from change records of evolving

software (poster). Proceedings of the 22nd International Conference on Software

Engineering (ICSE 2000) Limerick Ireland, June 4-11, 2000, pp: 777

Dag Sjoberg, The Thesaurus - A Tool for Meta Data Management, Technical

Report FIDE/91/6, ESPRIT Basic Research Action, Project Number 3070—

FIDE, February 1991.

Dag Sjoberg. "Quantifying schema evolution." Information and Software

Technology 35.1 (1993): 35-44.

Ioannis Skoulis, Hecate: SQL schema diff viewer. Bachelor Thesis, Department

o f Computer Science, University o f Ioannina, 2010

IEEE. Software Engineering Body of Knowledge. IEEE - 2012 SWEBOK Guide

V3 - Alpha Version. Available at http://www.computer.org/portal/web/swebok

Retrieved at 13 September 2013.

123

http://www.computer.org/portal/web/swebok

SHORT VITA

Ioannis Skoulis was bom in Thessaloniki in 1985 and moved to Volos at the age o f five He
received his BSc degree from the Computer Science Department o f University of Ioannina at
2010 had his Military Service right after that. In 2011 he became an MSc student in the same
institution under the supervision o f Panos Vassiliadis. As a member o f the DAINTINESS
group, his academic interests include Software Engineering and Relational Database
Evolution.

