AYTOMATH KATAZKEYH ZEIPQN OLAP EPQTHXEQN ME ZXOAIAXMO XZE KEIMENO KAI
HXO

H
METAIITYXIAKH EPI'AYIA EZEEIAIKEYXHXZ

Yrofariietar oty
opwbcica and v F'evik} Zuvérevon Ewikig ZovOeong

tov TpRpatog Mnyavikdv H/Y kat [IAnpogopikiig
E&etactixy Emtpom

and Tov

Anpfjtpio I'kecovAn

WG PEPOG TOV Y OYPEDCERV
yio ™ Ay
TOV
METAIITYXIAKOY AHIAQMATOZ ZTHN [TAHPO®OPIKH

ME EZEIAIKEYZH ZTO AOI'EMIKO

Iovviog 2013

IBAIOBHKH
EMIZTHMOY INANNINON

([0

AYTOMATH KATAZKEYH ZEIPQN OLAP EPQTHZEQN ME ZXOAIAZMO XE KEIMENO KAI
HXO

H
METAIITYXIAKH EPI'AXZIA EZEEIAIKEYZHY

Ynofaiietar oy
opioBeica and mv I'evikn Zuvélevon Edixig LovBeomng

tov Tufpatog Mnyavikdv H/Y kar ITinpogopikig
E&etaoctikiy Emtpomi

oo Tov

Anpnjtpro I'kesodAn

WG HEPOG TOV Y TOYPEDCEDV
Yo ™ Afym
0V

METAIITYXIAKOY AIITAQMATOZ ZTHN [IAHPO®OPIKH

ME EZEJAIKEYZH XTO AOTI'IZMIKO

Iovviog 2013

DEDICATION

This thesis is dedicated to my family for supporting me all the way since the
beginning of my studies.

ii

ACKNOWLEDGMENTS

I am thankful to my supervisor Dr. Panos Vassiliadis for guiding, encouraging and
motivating me throughout this research work.

I also would like to thank all my friends and colleagues for their help and
encouragement throughout this work.

J
.
E
3

il

CONTENTS
pag
DEDICATION ...ttt ettt sttt ve st e sa s e e e ae b e s s s ae s e aa s e ssnessansan i
ACKNOWLEDGMENTSocoitiieiientninrerieste et et e sesae st e e se st ssnsasaens ii
CONTENTS ...ttt et st sae e s s e e sr e e b e s et s saenaannns 1l
LIST OF TABLES ...ttt sttt en et st st e v
LIST OF FIGURES ...ttt et ss e st e sa e aan vi
TIEPIAHWH ...ttt ettt sttt eae bbb s vii
EXTENDED ABSTRACT IN ENGLISH........oocciieeeeeeeeeeeeeeeevcre e X
CHAPTER 1. INTRODUCTIONooiiiiieeteieneece ettt nens 1
1.1. Constructing a CineCube Story 4
1.2. Running Example 5
1.3. List of Contributions 7
1.4. Roadmap 8
CHAPTER 2. AUTOMATING CINECUBE CONSTRUCTIONcccoevvvirenrrnnnnn. 9
2.1. Internal Structure of the CineCube Movie 9
2.2. Formal Background 11
2.3. Act I: Putting Things in Context — or “How good is the original cube compared
to its siblings?” 15
2.4. Act II: Explaining Variation — or “Drilling into the breakdown of the original
result” 17
2.5. Highlights and Text 18
2.6. Employed Technologies 18
2.7. Creation of CineCubes 20
CHAPTER 3. CINECUBE SOFTWARE ARCHITECTUREcccceevvrvrrnnnne. 27
3.1. Software Architecture 27
3.1.1. Package Structure 27
3.1.2. The package CubeMgr 28
3.1.3. The package TaskMgr 30
3.1.4. The package StoryMgr 31
3.1.5. The package HighlightMgr 32
3.1.6. The package TextMgr 33
3.1.7. The package AudioMgr 33
3.1.8. The package WrapUpMgr 35
3.1.9. Core Classes of CineCubes Framework 35
3.2. Extending the set of Acts 35
3.3. Extending the set of Highlight Extraction Methods 36
3.4. Assessing the Extensibility of our framework 36
CHAPTER 4. EXPERIMENTScotoiiiicictininctnsnerenerestets e ssssssssssesseessaneseses 37

4.1. Experimental Setup 37

iv

4.2. Detailed Findings
4.3. Analysis of Results per Task
4.4. Analysis of Results per Act

CHAPTER 5. RELATED WORK........cccormisminnsesnruisiesunsnssussssssssssans

5.1. Query Recommendations

5.2. Database-related efforts

5.3. OLAP-related methods

5.4. Advanced OLAP operators

5.5. Text synthesis from query results

5.6. Relationship of our work with the state of the art

CHAPTER 6. CONCLUSIONSoovrritrirnisiinssississsssssssessesssnes

6.1. Summary
6.2. Open Issues

REFERENCESooiiiiiiriinininsnsnnnnisssssssssssonsssssssssmsssssase
SHORT CV..oriricniniinisisssesisssssismsiesssessssssssssssissnens

LN = A0 S

L)

A e e - i i o

LIST OF TABLES
Table pag
Table 2.1 Result Slideshow for Example Query 22
Table 3.1 Assessment of the Extensibility Effort for CineCubes 36
Table 4.1 Time Breakdown (msec) for the Method’s Parts when we Have 2 Atomic
Selection in Where Clause 43
Table 4.2 Time Breakdown (msec) for the Method’s Parts when we Have 3 Atomic
Selection in Where Clause 44
Table 4.3 Time Breakdown (msec) for the Method’s Parts When we Have 4 Atomic
Selection in Where Clause 45
Table 4.4 Time Breakdown (msec) for the Method’s Parts When we Have 5 Atomic
Selection in Where Clause 46
Table 4.5 Time breakdown (msec) for the method’s parts 47
Table 4.6 Time breakdown (msec) per Act 48

Table 4.7 Count words on Act I and Summary Act 49

vi

LIST OF FIGURES

Figure pag
Figure 1.1. An excerpt of a CineCube story over the Adult data set 3
Figure 1.2. Dimensions Workclass and Education 6
Figure 1.3. A snapshot of the internal structure of the CineCube movie 7
Figure 2.1. Extensibility mechanism for CineCubes 10
Figure 2.2. Constructing an Operational Act 20
Figure 3.1 Structure of CineCube Packages 28
Figure 3.2 Class Diagram for Package CubeMgr 29
Figure 3.3 Class Diagram for Package TaskMgr 30
Figure 3.4 Class Diagram for Package StoryMgr 3i
Figure 3.5 Class Diagram for Package HighlightMgr 32
Figure 3.6 Class Diagram for Package TextMgr 33
Figure 3.7 Class Diagram for Package AudioMgr 34
Figure 3.8 Class Diagram for Package WrapUpMgr 34
Figure 3.9 Core Classes of CineCube Framework 35
Figure 4.1 The hierarchy for the QI dimension Marital Status 40
Figure 4.2 The hierarchy for the QI dimension Race 38
Figure 4.3 The hierarchy for the QI dimension Work class 38
Figure 4.4 The hierarchy for the QI dimension Occupations 39
Figure 4.5 The hierarchy for the QI dimension Education 39
Figure 4.6 The hierarchy for the QI dimension Native Country 40
Figure 4.7 Bar chart of Time breakdown (msec) per Act 49

vii

HEPIAHYH

IM'kecovAng Anprjtpiog Tov [ewpyiov xat ™mg Mapivag. MSc, Tuipa Mnyavikdv HY
kat [TAnpogopwkiic, IMavemompo Ioavvivov, EAAGda. lodviog, 2013. Avtépam
kataokevn osipdv OLAP epoticenv pe oyohocpd e Keipevo Kat 1x0.

Zmv napovca dwtpiPyy, eetalovpe TAG PrOPOVHE Vo EKPETOAAELTOONE TNV bItapén
gvig opatog actépa (star schema), mpoxepévov va aravinBoiv OLAP spotipata
v ypnotdv pe CineCube movies. H péBodog pag, mov viomounibnke ot éva
TPAYPaTIKG cvomua, teprapuPaver ta rapakdte Ppata. O ypiotg vrofdiiet éva
OLAP gpdmpa ot éva vaapyov oxipa actépa. Aapfdvoviag avtd 10 epOTHE @¢
€ic0do, 10 clomua mapayel £va GUVOAO amd EPATIHATA TOV CUUTANPOVOLV TO
TMEPIEOHEVO TMOV TANPOPOPIDV TOV APYIKOV EPMOTHNATOG, Kot Ta €KTEAEl. Xm
OUVEYEWD, TO GUCTNHA ONTIKOMOEl T amOTEAECHOTE TOV KGOE £pOTHHATOC Kt
GUVOJEVEL TNV TAPOVCIAGT) TOVG UE KEIPEVO TO OTOi0 GYOMALEL TO OMHAVTIKG pépn
10V anoteleopdtov. EmmAiéov, HEG® €VOG GUGTHNATOG PETATPOTNG KEHEVOD OF 1iXO,
10 cUGTMUA pag mapdyst aqutdpata HYO Y T0 Keipevo mov dnpuovpyovpe. Kade
oVVdVao UGG TNG AMEIKGVIOTS, TOV KEHEVOL KAl TOV MOV ATOTEAEL OVCIAOTIKG pio
CineCube movie, n omnoia viomoigitar g pi mapovciacn tov PowerPoint xat

EMOTPEPETAL OTOV YPNOTT.

Empiénov Kabnymnig: ITavog Basihewddng

EXTENDED ABSTRACT IN ENGLISH

Gkesoulis, Dimitrios. MSc, Department of Computer Science and Engineering,
University of loannina, Greece. June, 2013. Automatic construction of OLAP query
sequences with text and audio commentaries.

In this thesis, we investigate how we can exploit the existence of a star schema in
order to answer user OLAP queries with CineCube movies. Our method, implemented
in an actual system, includes the following steps. The user submits a query over an
underlying star schema. Taking this query as input, the system comes up with a set of
queries complementing the information content of the original query, and executes
them. Then, the system visualizes the query results and accompanies this presentation
with a text commenting on the result highlights. Moreover, via a text-to-speech
conversion the system automatically produces audio for the constructed text. Each
combination of visualization, text and audio practically constitutes a cube movie,

which is wrapped as a PowerPoint presentation and returned to the user.

Thesis Supervisor: Panos Vassiliadis

CHAPTER 1. INTRODUCTION

1.1. Constructing a CineCube Story
1.2. Running Example

1.3. Roadmap

Can we answer user queries with movies? Why should query results be treated simply
as sets of tuples returned by the DBMS as if they would be visualized in an orange
CRT of the 70’s? So far, database systems assume their work is done once results are
produced, effectively prohibiting even well-educated end-users to work with them.
Can we do something better?

In this paper, we make a first attempt towards showing that it is possible to produce
query results that are (a) properly visualized, (b) textually exploitable, i.e., enriched
with an automatically extracted text that comments on the result, (c) vocally enriched,
i.e., enriched with audio that allows the user not only to see, but also hear. Moreover,
we provide an extensible method to accompany a query result with results of
complementary queries that allow the qualitative assessment of its information
content. Interestingly, a meaningful sequence of related queries that provide context
and depth to the original query, “dressed” with the appropriate visualization and
sound, ends up to be nothing else but a movie where cubes star.

Assumptions. In this paper we make a realistic assumption that empowers us with the
ability to address the challenge in a clear setting. We assume the existence of a star
schema with clean, reconciled hierarchies of reference data; we also assume that the
end users are interested in working with OLAP queries over these data. We exploit
the star schema in order to generate complementary queries automatically.

The movie’s parts and their extension. Much like movies, we organize our stories
in acts, with each act including several episodes all serving the same purpose. Our

method involves two extensibility mechanisms, (i) one concerning the generation of

complementary queries that contextualize the original result and give insight and (ii)
another concerning the automatic identification of interesting information within the
results of each query. We are further exploit the outcome of the latter mechanism, as
it is the main means via which we accompany results with automatically generated
text (which in turn, is then fed to text-to-speech conversion in order to generate
audio).

Low technical barrier. An important goal of this paper is to demonstrate that rhe
technical barrier for someone who would be interested to conduct research on this
problem is low. Existing API’s for the construction of PowerPoint presentations
[APOI] and for text to speech conversion [MARY] allow us to produce a pptx
programmatically: each query can have a slide where its result is neatly visualized;
the slide’s notes can contain the text explaining the result and the slide’s audio can be
produced via text-to-speech conversion.

Contribution & call to arms. The individual parts of the method are not the core
contribution of the paper; however, it is their principled and extensible bundling in a
single, extensible tool that creates a research opportunity and an actual contribution.
The fundamental message carried from this paper is that it is feasible (and we have
done it) to drastically change the way users interact with business intelligence tools
via simple programmatic APIs. Moreover, we can systematically expand this research
ground by plugging in more and more techniques both from existing and foreseeable

research results in the areas of text commenting, query recommendation and data

visualization.

{crsiover (18v) covy (991) 6€°¢t (8ex)ge'sy durjou-dwa.jes eozisLey {twe)96'ey {98)ov'se (ooyds-joid
{8e€) 16°6Y (eze)tE6y (o11) S0'€S (zL) 898y Sup-dusa-yjag love)ezoy (ssveltezy (ev6)9s'iv ssopydeg
Ayssanun 283)j02-3wos pesB-ysod 3055y dwa-fjog dws-jjg ARALg A0DH Apssanun
(zoce)ooey (o10s)eLse (SE0Ul6rsy (ELT)90Ty @wwald {poctocsy (9t0s)ecse (sse)gE'ee 9Ba)00-awos
Ayssapn aB3j02-awos peas-iso4 2083y 2J0Alid dwe-j)es NeAlG 05 2B3jj03-awos
(c62)zgror (616) EL'VE [(3241:x44 (28) 60'6€ AoB-21015 {z6T)STLY {eosl zvov {L9sieezy ssasen
(66v)vE'TY (31304 %4 (z9£) 56'€Y (r)eety roBe00 ledzzey {zev)sosy (vETdes9oy @esoog
(€e2) 8E'EY (1sz)1E0w (08) 98'ev (e6)sTTY AoB-jesapay dwa-jes AeApd ~9 poibisod
Asadaun 285}(03-3w0g peiBasod 2085y ~09
°| {sp1)ss'iv {e66) 021w (691) 191 20a-2088y
M.Lom umop Bupaq (' 1s) |sovewsy (ozelesoy (zathisee wpaw-dossy °
H»oy duwis-jras NeA|g A9 2085y
qd0m aof Lipwnung
uorvonpa umop buiriq
. £6°SE . 0005 Aed-moym = "SON[OA JSIMO] £ 241 JO 7 S0y ADS) Moy
L o A g € 941 Jo
vo'ey e wey W Avdqum = sasatuadod i 3 03 puodsaitod joya sapdng -
Amianun oBap>-awos peiasog somsy Jo doquinu oy puv sagy fo Uay 241 4109 moys ‘BN)q Y3t SIN)OA 1S9MO]
3 13D YIVI 4O () [IAB] 1D J40M UOISHIUNP fO 843 puD pad y3m saN|OA 15984D] 941 Y BYYOY
SINDA [|D 40f [3A3] BUO UMOP-|[LIP B 'BPYS SIS U] 3/ °T]33] JD YIOM PUD 7 [543} 3D UO1IDINPS
AIDPUO333-1507-TN0 I A U3 Aq padnoub supf fo Bay uo rodas apy " Aod-yum,
SN[OA T5YD)Y SDY KIDPU0J93-I50g So50I L JoIN0 (z1s) 03)onba 8q 03 }40M puD ' L1DPUOIIS-150d, O
[Tqs 3 19V jonba aq 03 uoywINP3 paifirads aavy noj Kianb
ONIq Y1 BNYDA 1S3MO] JoubLio ay3 fo 1amsuv ay2 365 UDI NOL 'aI3H
8Y3 puv pos yym anyoa 1saybiy ays ‘ploq yaim uonovonpo Le.\ beEE:% \ﬁ, Lianb 6Lt
SJ182 2oua.afos 3y WONYBIY A1 | ADL-YNM,, ano ouibLo
03 jonba 8q 03 7 1343} 3D sjdom puv’, 1Y, idad ser dus-jjas 199y osy vTLy 899y dwds
03 jonba aq 03 § 1243] 10 uOIIBINP> By BIYM ra . .
v + 1A DA . " o
suf Jo Bay ay1 210jn3j0J 3 “sanpa Buyqis ovee sow i aer tLee svsy Wiy MMy
SN Y3M € 193] 1D U01IDINP?S 40f, A1DPUCIS 16'8E T ro9 vEey 88€ 14 €200 A0
-150d, anjoa ay3 Bupipdwoo £q 3xa3uoa Aiopuosag-isod
uy 3sanbau [oujbio sya and am opydoub spys uy oYUM Aiepuoasg-rog Asisaun aBaj00-swos pesSsog d0ssy

Figure 1.1. An excerpt of a CineCube story over the Adult data set

1.1. Constructing a CineCube Story

A really useful characteristic of cubes is that dimensions provide a context for facts
[JePT10]. This is especially important if combined with the fact that dimension values
come in hierarchies; therefore, every single fact can be simultaneously placed in
multiple hierarchically structured contexts, providing thus the ability to analyze sets
of cats from multiple perspectives. At the same time, hierarchies allow the
comparison of their members with (a) ancestors, (b) descendants and (c) siblings
(children of the same parent). Assume a basic, detailed cube C defined (a) over a set
of dimensions D = {Di,..,Dn} and (b) over a measure M. A query Q in our context
exploits the multidimensionality of the cube space and can be considered as a
quintuple Q=(C,D,2,T,y(M)) where:

I is a conjunction of dimensional restrictions of the form Dy.L; = value;s - ie,
constraints that focus the context of the query to certain dimensional values.

I is a set of grouper dimensional level (practically comprising the GROUP BY
attribute set in a SQL query), over which the information will ultimately be grouped.
y(M) is an aggregate function applied to the measure of the cube; again, we restrict
ourselves to a single measure.

Given a query Q and its result Q.RS, we can make a short story by seeking for
answers to the following questions:

0. A first assessment of the current state of affairs. Practically, this requirement refers to
the execution of the original query.

1. Put the state in Context. Are the results of Y(M) good? What does “good” mean in
this case? Typically, we would expect to compare the result of the query Q to the
results of similar queries over siblings of the values that appear in the filter list Z.

2. Analysis of why things are this way. Given a certain cuboid that is the result of a
query, we would like to provide some more insight on the presented results; one
way to achieve this is to show the breakdown of the contributions of the detailed
values to the overall, aggregate value. Practically speaking, this involves drilling-
down for each of the involved groupers and presenting the analysis of the
internal breakdown for each of the groupers.

Clearly, this set of complementary queries that a story comprises is extensible;

existing and novel results in query recommendation (see Section 5) can be

progressively plugged in our method in order to produce more informative CineCube

movies.

b A e AR o A el

1.2. Running Example

To demonstrate our approach we use an example from the well known Adult (a.k.a
census income) dataset referring to data from 1994 USA census. There are 7
dimensions (Age, Native Country, Education, Occupation, Marital status, Work class,
and Race) in the data set and a single measure, Hours per Week. We will use a
uniform terminology to refer to the dimensions’ levels, (Le, L,, ..). Also, the ragged
dimensions are complemented with values identical to their parent, to make them
balanced and fit to the model of [VaSk00].

We start with an original query where the user has fixed Education to 'Post-
Secondary' (at level L3), and Work to 'With-Pay' (at level L) and requests the Avg of
HrsPerWeek grouped by Education at level 2, and Work at level 1. We arrange the
presentation of the result in columns (Education) and rows (Work). In Fig. 1, in slide
with the indication®@, one can also see the actual presentation as a 2D matrix, the
visualization interventions (highlighting high and low values with color) and the text
accompanying the visual presentation. The text is (a) part of the slide’s notes (so that
the user can reuse it) and (b) orally voiced as an audio file accompanying the slide.
The slide’s text is delivered via a set of highlight extraction methods that search the
2D matrix for prominent features (high and low values, rows or columns dominating

some of these indicatory values, etc).

Once the originally query has been answered, we move on to put it in context. Act I of
the CineCube movie, including slides ® and © (dressed in blue color), performs the
following analysis: since there is a selection condition with two atoms
(Education.L3='Post-Secondary' and Work.L2='With-Pay'), we compare each of the
defining values with its sibling. So, slide @ presents a comparison between the
siblings of ‘Post-Secondary’ at level L3 of Education (specifically, the single value
‘W/O post-secondary’). The analysis shows that in 3 out of 3 cases people with Post-
Secondary education work more (see Fig. 1 at top right for the respective text).
Similarly, in slide ©®, we relax the constraint on Work and compare the value ‘With-
Pay’ with its siblings at level L, of Work (again the single value *W/O Pay). The
results are inconclusive; for lack of space we omit the respective text from Fig. 1. In
both these cases, we did two things: (a) we took a single atomic formula from the

selection condition of the original query and replaced it by fixing the defining value to

the parent of the original value, and (b) we put the grouping level to the level of the

replaced value.
Workclass.® L3
L ——).
W/O pay 12
1 1 g
Private Self-emp Gov L1
—— | — I 1
not-inc inc Federal Local State L0

Educstion.® 1

W/O post secondary l Post - secondary I 13
el s : e
o) (3] o] E
-
u::’::; oy “2:‘,‘":"” ldmi voc l 85c | Prof | |Msc| Pho u

L L 1 { {)|
| 9th IlOlhl [uml:mlns.nc’ L

Figure 1.2. Dimensions Workclass and Education

Then, we detail the results of the original query in Act II of the CineCube movie. In
slides @ and @ (dressed in red color) we present the results of drilling-down one
level per grouper value. Observe slide @ as an example (slide @ is similar): for each
of the values in the rows of the original query (at level L, of dimension Work) we
drill-down one level (at level Lo that is) and group-by accordingly. For each
aggregated cell of the result we also show the number of detailed tuples that
correspond to it, in parentheses. The text is constructed similarly with the previous act

and includes a discussion of trends for high and low values along columns and rows.

ot 6N TV IR A Tl
et

TR e
L ey R

Figure 1.3. A snapshot of the internal structure of the CineCube movie

In the actual presentation that we generate, the set of information-carrying slides is

also enriched with transition slides among the acts, explaining the intuition behind

them as well as with a summary of the key highlights in the end (see Fig. 3).

1.3. List of Contributions

In this paper we provide the following contributions:

Our main result is the introduction of a method that allows the generation of a
CineCube movie, over an OLAP database, with a simple user query as starting
point. Specifically, we can detail the individual contributions of our method as
follows.

We demonstrate how to complement the original query with additional queries
that allow the contextualization and analysis of the original result. Moreover,
we demonstrate an extensible method for searching for interesting findings in
their results. Both these tasks are fully automated, by taking into advantage the
value hierarchies of OLAP cubes. At the same time, they provide two points
of extensibility of our method, both with respect to the complementary results
and with respect to the highlight detection within these results.

We demonstrate how to automate the generation of text describing the
aforementioned highlight findings (by accompanying each type of highlight
with a template text) and how to convert this text to audio (via publicly

available text-to-speech conversion software).

— Finally, we show that all the above can be packaged with small programming
effort in a PowerPoint presentation, practically presenting a small movie to the

user.

1.4. Roadmap
In Chapter 2 we explain the low technical barrier of the method and we discuss our

method’s internals. In Chapter 3 we show the architecture of CineCube software. In
Chapter 4 we show experimental results. In Chapter 5 we discuss related work. We

conclude with a presentation of open issues in Chapter 6.

FOPIPRIE T W RS

kAl

Al

CHAPTER 2. AUTOMATING CINECUBE
CONSTRUCTION

2.1. Internal Structure of the CineCube Movie

2.2. Formal Background

2.3. Act I: Putting Things in Context — or “How good is the original cube compared to
its siblings?”

2.4. Act II: Explaining Variation — or “Drilling into the breakdown of the original
result”

2.5. Highlights and Text

2.6. Employed Technologies

2.7. Creation of CineCubes

2.1. Internal Structure of the CineCube Movie

A typical movie story is structured in approximately 3 acts: the first providing
contextualization for the characters as well as the incident that sets the story on the
move, the second where the protagonists and the rest of the roles build up their actions
and reactions and the third where the resolution of the film is taking place. Each act is
composed of sequences of scenes: each scene involves a change in the status of the
plot (typically oscillating this status in order to keep viewers interested) and a
sequence drives a subset of the plot to a major status update [McKe97].

We follow this traditional structure of a movie in our effort. We are clearly avoiding
the temptation to automate a 90’ movie; on the contrary, we wish to keep the story
short and limited, as we anticipate users will explore several CineCube stories before
gathering their results and discoveries from exploring the data. We organize Acts in

Episodes: each episode practically corresponds to a pptx slide (although, we can

10

envision extensions to other formats -- e.g., it could be a section in a document). This
result-based structure of the CineCube movie is accompanied by a procedural-based
structure, with a set of classes that actually get the job done. Here, we introduce the
two extensibility mechanisms that allow our method to be extensible to all sorts of
algorithms for extra results and discoveries. There are two ‘“dimensions” of
extensibility: (i) what kind of query results (episodes) we collect from the database,

and, (ii) how we automatically discover important findings within these results.

Story
Act | Task
~ JpenerateSubTasks()
|
T |
Episode SubTask
f
| 4 '
Act-_Task
Highlight
Act-_Task
pptxSiida

Figure 2.1. Extensibility mechanism for CineCubes

The first extensibility mechanism concerns the generation of queries (and slides)
within each Acr. The abstract class Task is the generator of the queries of each Act:
therefore, we materialize it differently for each kind of Act (here we have two such
materializations, for Act I and Act II). The crux of the approach is that each episode
comes with (typically one, but sometimes more) queries in its background; therefore,
each Act generates SubTasks, with each Subrask carrying and being responsible for
the execution of a query that gathers the data (that are ultimately visualized in the
main part of the slide). An Episode can have several SubTasks to compute its
contents. Since each SubTask carries its own query depending on the Act/Task, the
above mechanism is extensible by appropriately constructing the method

generateSubTasks() and the method constructActEpidoses() for each materialization
of Act.

PRV

11

The second extensibility mechanism concerns the determination of key findings, or
Highlights within each Episode. We fundamentally consider the presentation of
results as a 2D matrix on the screen'; to this end, we have structured several methods
that scan a 2D matrix and isolate interesting cells (top-k max or top-k min values,
domination of a class of values by a column or row, etc). Class Highlight is a point of
extensibility where methods for result extraction can be added to search for more
results within the answer of a query.

There are several other classes that accompany the above core of the method which
are omitted from this discussion for lack of space. These classes concern the
management of cubes and their relationship with a relational database, the

construction of the text, the derivation of the audio for the constructed text and so on.

2.2. Formal Background

Our method operates on top of a simple hypercube model for OLAP, expressed via a
star schema in terms of relational representation. Hypercubes, commonly referred to
as cubes — a term that we will adopt henceforth -- are very popular with end-users due
to their simplicity and usability. A cube is a structured group of cells, each defined
with respect to fixed set of dimensions and containing measurable quantities, or
measures. The dimensions act as coordinates for the cell and the measures as
contents; for example, a cell must state that with the respect to the coordinates
[City=Athens, Year=2013] we have data for the following measured quantities
[AmtSales=10, Revenue=10@]. A cube organizes its cells along specific dimensions
(here: Geography and Time) offering thus a multidimensional view of the data to the
user. Then, the user can perform statistical analyses of the data by focusing on

specific subsets of the cube and aggregating data at various level of detail. Each

' Of course, other forms of visualization can accompany the result; however, it is our

conviction that the actual data should definitely be part of the answer [Tuft97].

12

dimension offers a hierarchy of aggregation levels, or levels, constructed via
relationships which we call ancestor relationships. Each level is more detailed than its
ancestors (here: the dimension Time has a hierarchy Year, Month, Day, with Year
being an ancestor of both Month and Day and Month being an ancestor of Day). The
representation of a cube along with its dimensions in a relational database is typically
performed via a star schema that include (a) fact tables, referring to cubes at the
lowest level of detail and (b) dimension tables, storing the hierarchies of the

dimension values and levels.

In a nutshell, the logical layer involves (a) dimensions defined as lattices of dimension
levels, (b) ancestor functions (in the form of ancti) mapping values between related

levels of a dimension, (c) detailed data sets, practically modeling fact tables at the
lowest granule of information for all their dimensions and (d) cubes, defined as
aggregations over detailed data sets.

Formally, we strictly follow the logical cube model of [VaSk00], accurately

summarized in [Man+05] as follows:
Four countable pairwise disjoint infinite sets exist: a set of level names (or simply
levels) U, a set of measure names (or simply measures) U, a set of dimension names
(or simply dimensions) U, and a set of cube names (or simply cubes) U,. The set of
attributes U is defined as U=U, U, For each AeU, we define a countable totally
ordered set dom(A), the domain of A, which is isomorphic to the integers. Similarly,
for each AeU,, we define an infinite set dom(A), the domain of A, which is
isomorphic to the real numbers. We can impose the usual comparison operators to all
the values participating to totally ordered domains {<, >, <, 2}.
A dimension D is a lattice (L,<) such that:

- L=(Ly,..,Ls), Is a finite subset of v,.

~ dom(Ly)Ndom(Ls)= @ for every i=j.

< is a partial order defined among the levels of L.

- The highest level of the hierarchy is the level b.ALL with a domain of a single
value, namely ‘'D.all’.

- et e A s+

13

Each path in the dimension lattice, beginning from its upper bound and ending in its

lower bound is called a dimension path.

A family of functions anct: is defined, satisfying the following conditions:

1. For each pair of levels L and L; such that L1<L; the function anclL'i maps each
element of dom(L;) to an element of dom(L,).

2. Given levels Ly, L; and L; such that L1<L,<L3, the function anclL': equals to the

.. L L . . .
composition anc ’.ancLi . This implies that:
L

- ancti(x)=x.
N Lz L3 LS
- if y= anc, (x) and z= anc;, (y), then z= ancLI(x).
— for each pair of levels L1 and L2 such that Li1<L2 the function

ancLyl' is monotone (preserves the ordering of values). In other
words;
Vx,yedom(L;): x<y = ancti(x)sanct:(y),LﬁLz
A schema S is a finite subset of U. Normally, we will represent a schema as divided in
two parts: S=[D3.L1,..,0n.Ln,A1,..,An], Where:
— (Lis..,Ly) are levels from a dimension set D=(D,,...,D,) and level L; comes
from dimension Dj, for 1<i<n.
— (A1,..,Ap) are attributes, i.e. measures and levels.
A detailed schema S° is a schema whose levels are the lowest in the respective
dimensions. When we refer to a level L as the lowest in the dimension, it means that
there does not exist any other level L’, such that L’ < L.
A tuple t over a schema S=[L,,..,L,,A,,..,As] is a total and injective mapping from S
to dom(L,)x...xdom(L,)xdom(A,)x...xdom(A,), such that t[X]edom(X) for each xes.
A data set DS over a schema S={L,,..,Ln,A,..,An] is a finite set of tuples over S
such that:
- ¥V t3,t,eDS, ti[ly,-,La)=tz[Ly,myln] = ti=t,.
~ for no strict subset Xc{L,,..,Ln}, the previous also holds.

In other words, A,,..,As are functionally dependent (in the relational sense) on levels

(L1,..,La)of schema S. A detailed data set 0s° is a data set over a detailed schema S.

14

A star schema (D,S°) is a couple comprising a finite set of dimensions D and a
detailed schema S? defined over (a subset of) these dimensions.

An atom is true, false (with obvious semantics) or an expression of the form x 8
y, where x and y can be one of the following: (a) a level L (i.e. not a measure); (b) a

value 1; (¢) an expression of the form anc} (L1) where Li<L;; (d) an expression of the

form anc! (1) where Li<L, and ledom(L,). If X and y are levels then they should

belong to isomorphic dimensions. 0 is an operator from the set (>, <, =, 2, <, #).

A selection condition ¢ is a formula involving atoms and the logical connectives A, v
and —. A selection condition is always applied to a data set such that all the level
names occurring in the selection condition — either in the form (a) or (c) — belong to
the schema of the data set. Let DS be a data set over schema S. The expression ¢(DS)
is a set of tuples X belonging to DS such that when, for all the occurrences of level
names in ¢, we substitute the respective level values of every xeX, the formula ¢
becomes true. A detailed selection condition ¢° is a selection condition where all
participating levels are the detailed levels of their dimensions.
A primary cube c (over the schema [L;,..,Ln, My,..,M,]), is an expression of the
form:

¢=(DS®, &, [L1ywes bnsMy, s Mol , [2881(MD) .., 3BEA(ME) 1), where:

— Ds?is a detailed data set over the schema S=[L?,...,L®,M¢,..,M], m<k.

— ¢ is a detailed selection condition,

= M, ..,M,are measures.

— L?and L; are levels such that L°<L;, 1<i<n.

agg: € {sum,min,max, count,average}, 1sism.
The semantics of a primary cube in terms of SQL over a star schema are:

SELECT Lyywsbn, 28B1(MD), ..., 388n(MD)

FROM DS® INNER JOIN D, .. INNER JOIN D,
WHERE ¢

GROUP BY Ly,...,L,

15

The user can submit cube queries to the system. A cube query specifies (a) the (basic)
cube over which it is imposed, (b) the selection condition that isolates the records that
qualify for further processing, (c) the aggregator levels, that determine the level of
coarseness for the result, and (d) a list of aggregations over the measures of the
underlying cube that accompany the aggregator levels in the final result.
Clearly, there is a variety of choices for the expressiveness of each of these
constituents, and thus, the query class of a method is determined by the combination
of these choices. In our approach, we make the following assumptions for the query
class of the supported cube queries:
— We work with cube queries that involve a single measure.
— We assume strictly two aggregator levels for the result; this allows a
straightforward tabular representation of the result in a 2D screen.
— We assume that the selection condition is defined as the conjunction of a set of
atomic formulae, one per dimension, each of which is of the form L = v, with
L being a dimension level and v being a value in the domain of this level.
In the rest of our deliberations, we will assume that the users submit to the system
Cube Queries that we denote as:
a=(DS%,0: A - A du, [La,Lp], 288(M))
The results of a cube query of this form can be visualized in tabular format with the
values of L, as rows and the values of Ly as columns. Expanding the method for more
than two dimensions (via the typical nesting of dimensions in rows and columns) is
part of future work. Also, although, there are several other ways that we can employ
to visualize results, like for example scatter plots on a 2D space or bar charts with
multiple data series, we would like to stress once again that any such visualization

methods are complementary to the actual data.

2.3, Act I: Putting Things in Context — or “How good is the original cube
compared to its siblings?”

In this subsection, we deal with the first of the acts. The main purpose of the first act

is to provide a context for the original query. So, we compare the marginal aggregate

results of the original query to the results of “sibling™ queries that use “similar™ values

in their selection conditions (to be explained right next).

16

Method. We assume an original query and we want to compare its results with
similar queries. We define a sibling query as a query with a single difference to the
original: instead of an atomic selection formula L;=v,, the sibling query contains a
formula of the form L; € childen(parent(vy)).
Formally, given an original query
q = (0S%0: A o DA o A B, [LasLlpl, 3g8(M)), drili=vy, 1s1,...,k

a new query q° is a sibling query if is of the form

- 0= (DS°%01 A whA o A B, [LasLp) a88(M)),

: o on
- $iilg=vy, i=1,...,x-1,x+1,...,k , ¢,:L,.,=ancL_’(v)

Naturally, if q originally has k atomic selections, it also has k sibling queries.

To compare the results of the original query to the ones of its siblings, one would
need to lay out all the k sibling queries on the same screen and visually inspect their
differences. This becomes too hard to exploit as k increases — in fact, even with a very
small k (e.g., k=2) it can be too hard to be able to visually compare the results. So we,
need to resort to auxiliary comparisons that provide the context needed. To this end,
we introduce two marginal sibling queries, one for each aggregator. Each time, we
keep one of the two aggregators, and the other becomes Ly. If we combine this with
the fact that the new selection condition ¢, restricts Ly to the siblings of the original
value v, then the resulting 2D matrix has one of the original aggregators in one of its
two dimensions and the siblings of v on the other. This way, the marginal values of
the original query on one of the two aggregators are compared to the respective
marginal values of the siblings.

Formally, given an original query

q = (Dse)¢l A . ¢X A e A ¢‘(, [Lq’ LD]'agg(M)), @1:L5=V;, i=1, e e ‘k
its two marginal sibling queries are

a; = (DS°,01 A DA . A O, [La,Le],288(M)),
Ouili=vi, 1=1,...,%-1,%41,...,K,b ¢ Lus=anc, (V)

Gy = (DS°,01 A bAoA b, [LisLp),288(M)),
¢i:Li=vi,i=1,...,x-1,x+1,... ,k,¢;: Lx+1=anc:::+1(v)

Example. The original query is expressed as:

q=(DS°,W.Lz-’w1th-Pay’ A E.Ly=’Post-Sec’, [W.L3,E.L,], avg(Hrs)),

17

In the reference example, slides @ and © involve the two marginal subqueries — see
for example the former with the selection set to parent(’with-pPay’) and the grouping
to the level of *with-pPay”’ (i.e., Ls):

q’=(DS®,W.L,="With-Pay’ A E.L.=’ALL’, [W.L,E.L;], avg(Hrs))

2.4. Act II: Explaining Variation — or “Drilling into the breakdown of the
original result”
The purpose of Act II is to help the user understand why the situation is as observed
in the original query. In order to shed some more light to what is happening, we drill
in the details of the cells of the original result in order to inspect the internals of the
aggregated measures of the original query.
Assume a cube query
q = (0S°,01 A . A Gk, [LasLp],388(M)), diili=vy, i=1,...,k
and its result, visualized as a 2D matrix. Then, each cell ¢ of this result is
characterized by the following cube query:
Q" = (05%,01 A - A b A b, [Lasbp]ag8(M), ditlimvs, i=1,....k,
b9 ~ 9 = La=vg A Lg=vp
For each of the aggregator dimensions, we can generate a set of explanatory drill in
queries, one per value in the original result:
@ = (DS°, &1 A w A B A 0, [LeasLg),288(M)),
@b = (DS%, 1 A o A Ok A D8, (Lo, Lps],288(M))

Then, for each of the two grouper dimensions we create a slide. In each of these slides
we have one query for each of the values that appear in the original result for this
dimension.
Example. Observe slide @ where we drill-down for values Gov, Private and
Self-emp via the explanatory drill in queries for dimension Work.

q5°'=(DS°,W.L,="With-Pay’ A W.L,="Gov’ A E.Ly=’Post-Sec’, [W.Lo,E.L,],

avg(Hrs))

q°=(DS°,W.L,="With-Pay’ A W.L,=’Private’a E.ly=’Post-Sec’, [W.Lg,E.L;],

avg(Hrs))

q**=(DS%,W.L,=With-Pay’ A W.L;=’s-e’ A E.L;=’Post-Sec’, [W.Lo,E.L,],

avg(Hrs))

18

Observe that due to the fact that this is the special case where selection conditions
involve grouper values at finer levels of detail, we have completely removed the

atomic formula of the dimension that we drill-down (W.L,=’With-Pay”’).

2.5. Highlights and Text

As already mentioned, the extraction of highlights is orthogonal to the query that
creates the results of a slide. Once the results of the query are computed and organized
in a 2D matrix, we utilize a palette of highlight extraction methods that take a 2D
matrix as input and produce important findings as output. This way, (a) we can reuse
highlight extraction methods to all the query results, independently of the Act or the
query that has been executed, and, (b) we can gracefully extend the palette of
highlight extraction methods with more results. We have implemented a small number
of highlight extraction methods for the moment that include the highlighting of the
top and bottom quartile of values in a matrix, the absence of values from a row or
column, the domination of a quartile by a row or a column (i.e., when all the values of
a quartile appear in a certain row or column), the identification of min and max
values, etc. Clearly, there is a vast area of enriching this palette (trend analysis,
correlations, relative relationships of rows and columns, to name just a few); however,
implementing the full spectrum of such techniques can be done with diligence as part
of future work. We utilize a dedicated Highlight Manager class to extract Highlights,
Text is constructed by a Text Manager that customizes the text per Act, by plugging
values to a template that comes with each act. Compare the following excerpt with the
text of slide @ in Fig. 1.

In this slide, we drill-down one level for all values of dimension <an> at level <1>. For

each cell we show both the <agg> of <measure> and the number of tuples that correspond

il

2.6. Employed Technologies
One of the major goals of this paper is to highlight how we can automatically

construct a CineCube presentation that includes result visualization, text and audio. In

19

this subsection, we explain the main technologies via which our PowerPoint
presentations are programmatically constructed.

Apache POI {APOI] is a Java API that provides several libraries to create and modify
Microsoft Word, PowerPoint and Excel files. MS Office files obey the Office Open
XML standards (OOXML) and Microsoft's OLE 2 Compound Document format
(OLE2). More specifically, XSLF is the Java implementation of the PowerPoint 2007
OOXML (.pptx) file format in POL

The automatic manipulation of .pptx files is relatively simple for simple tasks. See the

following excerpt for creating a file and a slide:

XMLSlideShow ss = new XMLSlideShow();
XSLFSlideMaster sm = ss.getSlideMasters()[@];
XSLFSlide sl= ss.createSlide
(sm.getLayout(SlideLayout.TITLE_AND_CONTENT));
XSLFTable t = sl.createTable();
t.addRow().addCell().setText(“added a cell”); ..

As we will discuss later, we automate the construction of text that characterizes each
slide. We add the text for each slide that we create as a slide’s note. At the same time,
the existence of text can help us create a narrative as audio. We use the API provided
by MARY [MARY], which is an open-source, multilingual Text-to-Speech Synthesis
(TTS) platform written in Java and allows to generate one audio file per slide, simply

by providing the notes of the slide as input to a method call.

MaryInterface m = new LocalMaryInterface();
m.setVoice(“cmu-slt-hsmm”);

AudioInputStream audio = m.generateAudio("Hello”);
File audifile = new File(“myWav.wav”’’);

AudioSystem.write(audio, audioFileFormat.Type.WAVE,audiofile);

Naturally, there are several nuts and bolts to fine tune. However, the main lesson

learned here is that the packaging of the results of our method, one by one as slides in

20

a presentation is attainable with neat programming facilities, already available in the
Web.

2.7. Creation of CineCubes

Having explained all the individual steps, we now move on to discuss the overall
process for creating a CineCube movie. In its current configuration, a CineCube
movie includes three kinds of acts: the Introductory Act (including the introductory
slide), three Operational Acts including the act involving the original query and the
two acts for the management of complementary queries, and a Summary Act with a

summary slide with all the important highlights of the previous three acts.

Algorithm Construct Operational Act

Flnput: the original query over the appropriate database

Output: a set of an act’s episodes fully computed

I. Create the necessary objects (act, episodes, tasks, subtasks) appropriately
linked to each other

2. Construct the necessary queries for all the subtasks of the Act, executq
them, and organize the result as a set of aggregated cells (each including
its coordinates, its measure and the number of its generating detailed
tuples)

3. For each episode
~ Calculate the visual presentation of cells
- Calcuiate the cells’ highlights
~ Produce the text based on the highlights

— Produce the audio based on the text

Figure 2.2, Constructing an Operational Act

Overall the method includes the following steps:

1. Construct Introductory Act

21

2. For all the Operational Acts, execute the Construct Operational Act algorithm
that calculates the Act’s contents (result visualization, highlights, text and
audio)

3. Construct Summary Act in the end

4. Wrap-up the Acts in a PowerPoint movie

The computation of the contents and presentation of the Operational Acts is outlined
in the Algorithm of Figure 5. Here, we would like to stress the extensibility aspect
again: depending on the Act (and more specifically, on its operational Task
counterpart), the queries of the subtasks are specialized per slide. Moreover,
highlights, text and audio are produced via dedicated manager classes (not shown in
Fig. 4 for lack of space).

The Summary Act is simply a slide with the text of the highlights copied to it,
organized per act. However, the Wrapping-up Act introduces a few programmatic
tasks worth mentioning here. Basically, for every episode we create a slide, with its
title and contents (i.e., the 2D tables or the text, depending on the type of slide). This
can be done straightforwardly with the programming facilities provided by the
Apache POI. Unfortunately, though, POI does not support the management of notes,
where we actually store the text of each slide and audio. To deliver a presentation in
the form that we wish to have it, we proceed as follows: (1) we unzip the pptx in a
temporary folder (remember: each MS Office file is actually a zipped folder with a
rigid structure, within which, XML and media files are located in a principled
fashion); (ii) create appropriate files for the notes in the ppt/notes/ folder, along with
the necessary links that link them to their slide, (iii) do the same for audio at the

ppt/media folder and (iv) zip the folder again to a .pptx file.

On the following pages we depict the result of our method of the query we use as
example in this chapter. The result is given as a table where the left column is the

produced slide and the right column has the notes of this slide.

22

Table 2.1 Result Slideshow for Example Query

. e
® Y

T Y,
a." /’

uv ‘a {Ju / /%;

~

u t,l

i r‘u ' &
CineCube Report ’%i é
ﬁ',d. =44 iR

TEA 18 3 100 A the A of wort Roury pee weed ahen
SEw s 2 Eed 1 Post W Ordary and werh i fard o
W Py We Wil (tart By Jrawerng 1N orgwial qatry
40d ver Amphtvnent The rewt wah tonteatuslretion ang
DAt anatetrt

Aaswer 1o he erigingl question

— o ot iy Vo
-an “w - oM
“um an [1] an
~e e - -

T

Act I: Putting results in context

2000 grnps. O T8t e 1t e OV D (RIS Y LONTENT

L] rmq e Lohgpcy of 15 IMrg vIN, W (e
Lt R NI T yeg (=t 31 Tt

This is a report one Avg of work hours per
week when education is fixed to "Post-
Secondary' and work is fixed to 'With-Pay",
We will start by answering the original query
and we complement the result with
contextualization and detailed analyses.

Here, you can see the answer of the original
query. You have specified education to be
equal to 'Post-Secondary’, and work to be
equal to 'With-Pay'. We report on Avg of work
hours per week grouped by education at level
2, and work at level 1.

You can observe the results in this table. We
highlight the largest values with red and the
lowest values with blue color.

Column Some-college has 2 of the 3 lowest
values. Row Self-emp has 3 of the 3 highest
values.

Row Gov has 2 of the 3 lowest values.

Act I: Putting results in context

In this series of slides we put the original
result in context, by comparing the behavior of
its defining values with the behavior of values
that are similar to them.

23

Assessing the benavior of work

[T — oo gus [——— ——y
. a8 “n na

——rpn W& "

Act II: Explaining results

Vit penes Of 3vBrs ac % e ert 4 detated snayns O
the vabuts Mvohes n tHe toL R of the orgrai query To this
0. we drih Gown ine Mot arthy cf 10,0 ng deveds Of Ihe
1R 1 one levet Ol MLTTAON lowgr wherever s 18
Pl

In this graphic, we put the original request in
context by comparing the value 'Post-
Secondary' for education at level 3 with its
sibling values. We highlight the reference cells
with bold, the highest value with red and the
lowest value with blue color. We calculate the
Avg of work hours per week while fixing
education at level 4 to be equal to

"ALL", and work at level 2 to be equal to
"With-Pay".

Compared to its sibling we observe that in 3
out of 3 cases Post-Secondary has higher value
than Without-Post-Secondary.

In this graphic, we put the original request in
context by comparing the value 'With-Pay' for
work at level 2 with its sibling values. We
highlight the reference cells with bold, the
highest value with red and the lowest value
with blue color. We calculate the Avg of work
hours per week while fixing education at level
3 to be equal to "Post-Secondary", and work at
level 3 to be equal to "ALL".

Compared to its sibling we observe that in 1
out of 4 cases With-Pay has a higher value
than Without-pay.

In 1 out of 4 cases With-Pay has a lower value
than Without-pay. In 2 out of 4 cases Without-
pay has null value.

Act II: Explaining results

In this series of slides we will present a
detailed analysis of the values involved in the
result of the original query. To this end, we
drill-down the hierarchy of grouping levels of
the result to one level of aggregation lower,
whenever this is possible.

24

Arawer 16 B0 erigined question

“-n

Pos wer

“n
“n

tane ntage wa——
ne
un
an

Qu
ne
-

Oriing dowm the Rows of Tve Original Reault

-
ooz g

-

-

-
o

oy o

g ron

o
nueR

aunam
wonay

aspne

- on
ampm

i

.-
omom
Lreraam

CLE

LT
51 v

Yoy inge
LYY
@
Mo™

.70

“angm
unmy

uuye
T rem
ey o

aepmn

-y rnm
“admn

Ortiling doum the Codumns of the Original Resuit

e sagm,
P

o gt

[
[

e g

ony wtnge

v

S
ot ot

LY
s

sume
Gonen

LUV T
-

-
a37 10,
AWM

noary
“umn

»rTone

arnony
owan

W ewe
anom
S won,

unoe
o B

LY 5]

-
e Y Y

In this slide we remind you the result of the
original query. Now we are going to explain
the internal breakdown of this result by
drilling down its grouper dimensions. In the
first of the following two slides we will drill-
in dimension work at level 1. Then we will
drill-in dimension education at level 2.

In this slide, we expand dimension work by
drilling down from level 1 to level 0. For
each cell we show both the Avg of work
hours per week and the number of tuples that
correspond to it in parentheses. We highlight
the 6 lowest values in blue and the 6 largest
in red color.

Some interesting findings include:

Column Post-grad has 4 of the 6 highest
values.

Column Some-college has 4 of the 6 lowest
values.

In this slide, we expand dimension education
by drilling down from level 2 to level 1. For
each cell we show both the Avg of work
hours per week and the number of tuples that
correspond to it in parentheses. We highlight
the 3 lowest values in blue and the 3 largest
in red color.

Some interesting findings include:

Column Gov has 3 of the 3 lowest values.

25

&

Summary

5 Camcernang S argnes geany, wone mestag g RO
= G Lomecotede \in 10 P § ioead oo
= e et g a1 0 Tt) IngPont by
< Now G N 1 07 B et e
* Ol Tl 4l B P TR - cardrt, By ey € Brheng whan ot el gt
= WA wrperd Pw Secandery i 0 NG Eped iy rACItT nd wart, av ainerend e
ooy

* W Dot of § 0 Past Secandary s Ao roA T\an Withond Pont Secandary
= Whon me smpered AR Py 18 € Liings, ot ot aont,
tany

S WLt o 4 O WS Pay i 5 g VIR PAA WRRO 9
= W1 ent o £ s WA $2y on 0 Ve vt TN Wt e
© B let ol d i W gy S s e
o e e anavind o el by SHeg o e treed i She Mty
-~ Wwm -t
> Comwmm Pyt groé n 4 0 e § Seghedt oo
¢ Cotm Somr-cubege tes 4 of P & wwert whors.
- Whee me Silied
* Cotwnn Gov i) o Dw) lonewt satrn

o]

In this slide we summarize our findings.
Concerning the original query, some
interesting findings include:

Column Some-college has 2 of the 3 lowest
values.

Row Self-emp has 3 of the 3 highest values.
Row Gov has 2 of the 3 lowest values.

First, we tried to put the original result in
context, by comparing its defining values
with similar ones.

When we compared Post-Secondary to its
siblings, grouped by education and work, we
observed the following:

In 3 out of 3 cases Post-Secondary has higher
value than Without-Post-Secondary. When
we compared With-Pay to its siblings,
grouped by education and work, we observed
the following:

In 1 out of 4 cases With-Pay has a higher
value than Without-pay. In 1 out of 4 cases
With-Pay has a lower value than Without-
pay. In 2 out of 4 cases Without-pay has null
value.

Then we analyzed the results by drilling
down one level in the hierarchy. When we
drilled down work, we observed the
following facts:

Column Post-grad has 4 of the 6 highest
values. Column Some-college has 4 of the 6
lowest values.

When we drilled down education, we
observed the following facts:

Column Gov has 3 of the 3 lowest values.

27

CHAPTER 3. CINECUBE SOFTWARE
ARCHITECTURE

3.1. Software Architecture
3.2. Extending the set of Acts
3.3. Extending the set of Highlight Extraction Methods

3.4. Assessing the Extensibility of our framework

3.1. Software Architecture

3.1.1. Package Structure
In Figure 3.1, we present the package structure of our implementation along with
dependencies between packages. The packages that constitute the current state of the
CineCubes implementation are:
o CubeMgr, consists of two subpackages as shown in Figure 3.1, which are:
o CubeBase has classes that we use to construct the objects needed to
implement the cube model.
o StarSchema has classes that we use to map the tables of the database to
the proper objects.
o TaskMgr has the classes which we use in our algorithm Construct Operational
Act for constructing the necessary Tasks and Subtasks.
e StorMgr has the classes which we use to construct the main objects of a Story.
o HighlightMgr has the classes to construct the different highlights for each
episode of a Story.

o TextMgr has the classes which construct the text for each episode of a Story.

28

¢ AudioMgr has the classes which convert the text to audio.
o WrapUpMgr has the classes which create the final result for the user.

In the next sections, we provide more information for the classes of the above
packages.

1 4 T et e
ech-uqr.c-msm Y -
& CubeMgr.StarSchema

Figure 3.1 Structure of CineCube Packages

3.1.2. The package Cube Mgr

In Figure 3.2, we present the class diagram for package CubeMgr and its subpackages
CubeBase and StarSchema. For package CubeMgr, we have created a class also
named CubeMgr which helps us to manage the rest of the classes of the CubeBase
and StarSchema subpackages. In subpackage CubeBase, we construct the classes of
the cube model. The names of the classes refer to the constructs of the cube model of
Chapter 2, e.g., the CubeQuery class implements the CubeQuery of Chapter 2, the
Dimension class implement the dimensions of the cube model and so on. The
subpackage StarSchema provides the proper classes so that we can communicate with

the relational database that stores the data of the cube model.

29

T
£ Cubeligr @ -
Ermacuoniiehod
© Cudeligr Tasavgy
o Cubertyrr FExractonitemedr;
@ Cres=Cutesase) @' setResut;
@ raertionOmenseni v & cetesury;
@ nsermonCuber: Smsnng;
T & procucescrectontdethoct
l &' compereSrracrontdetroc?
—1
& CabeligrCabeBase
~CBase (0.1
3 N
T — = I
¢ , - : Fnd:::.-‘ i @ g=Demersans; Flewe;
. repstErCabeCese / ! Ty © gutisr(e
sccCemensian: - o setstsr; i ;
© sccCemeTzon 2, ferCube [0.1 :) © setemdiriue,
° m f @9 i unﬂ!m) 0.0 | ¢ getmesrterarchyts
. i o) ® mwkemx © seteracchy)
.“ e CabeQuery | © adcDmenscr:) © s eveiAtrtute:
o sdcCubey; .- & CuteQuery @ acdOwmensicrRe Fed) /
.' Heated ‘l_ @ aGammaExcressons ® getParentevel 7/».' “evet |1
"m':'“‘""‘j ! © accSgmatxsresson) © getSoliacieSyCanenmoniiame()
. "“"""‘“‘"“: N o oSrmgn © getSoFecEyCmenscnie. ehiame() /
a frcCimensicnicEyName: | \ sy g
® rewrnf TS0 G Daneasion r\m
® getiieasurenaianceeyNamer; ,} Lo Oteveinartwe
¢ et herarchy @1 S avelaoriute
- @ et os m-m
© semmreg (S G Heerarchy ° s
pguin \,\,..—-—-4 & rerareny A3\ §.* -
_ .i” o« 'K C - » @ seticrentcsl
_ O Messare : wcm.’cﬂ
G LiscarHierarchy Jea—— . mg’“;' '
& LneartiierarehyG
@ sameraeny)
[| ’
“cBle.t Cabedigr Siar Schema
m\,,,, =
© Database
7 - ©FactTable T o
ml
&ommcasers & Factatiec; DimTate {(Q DNmeasaTable
i PRr w—" @ geCanTable: L - ——
. st} & seCanTabie
@ SmCabietatl) \
& geConrectnStrgl) \
@ setConrectonStTg(’
: oeConrection) O tathe
" T | Frece -
® etise » - s
. , o 0] @ secaroer) o
o ® praConsmne;
@ pefaswas; N
9 sePrssword’] hd !
& mOBRame;
@ seEName
@ getDBNS))
® SeRuS;
© PDETabiinatIncs:)
® peFexCSyTae:;
® emecseSaH;

Figure 3.2 Class Diagram for Package CubeMgr

30

3.1.3. The package TaskMgr

Package TaskMgr contains the necessary classes which help us to create a new kind of
Act. Here we have a TaskMgr class to manage the tasks. The Task class is abstract to
facilitate the creation of a different type of task for each new kind of Act via the
appropriate materialization. In our method, we create two subclasses of its kind for
Act I and Aet 11, which we described in Chapter 2, and one subclass to implement the
original request. Also, we have the abstract class ExtractionMethod to choose
between different ways to get the result. In our approach, we materialize this class as
SqlQuery as shown in Figure 3.2 to get the result from relational database. In addition,
we implement the ExtractionMethod as abstract class such that in future we can get
data from different source e.g. xml files. To keep the result which returned from class
Extraction Method we have created a class Result. This class in our current approach
keeps the result in a 2d matrix and implements a set of function to manipulate this

table. In the future we think to do the class Result abstract such that to keep more and

different data types.
1
5 Taakiigr
© TaskMgr
P G Task © SubTask G Extracvonietnod
o cresteTankss $rony LET & Exvectonsiomont)
© crostehewToels s @ sdoNewSuoTaski) ® executen & serrusin)
© petTasu Tasks | © etumSunTaska(© ComputeF ngngl) T 1)
w gettiamormasisn [g+ 7] © BAISLTING fsctTaska | @ pethonights) //ﬁJ & usringn
® getLastTask(} @ getLontSudTask) T @ setongntr) " | o armauceExtracionidethon}
® geffastan) ® petSubTanka() © petExtractoniletnod() & comparetxvectonemak)
® setTasis() © setSubTasks() ® setExtractondemodi)
oo Tesks() © getDitterencesfromOngn()
& constructiciEodorest; @ petDitarenceFromOrgn()
@ setDterencesFromOngng)
@ SSgDttarencef romOngn(}
Res [0 1
OResutt
O TaskAct & oty
& asiact (3 TaskOrigined &resutn
® generateSubTasus) G TaskActl & TanrOngnan & seTendiney
@ corstructAcE pdoses!) fn.“e‘) . mmrm(' L] “wﬂy‘}
B cresieSummarzeSubTask!) SrCIACLE| © setCend Rasutarreyr)
© gecersteSubTashs) o cor plces)
® prtroexO1Sgmal: e ® gHC IO ResutAray(
B crasteSubTaskt) © corstructAcitpulosss) ® crestResutamey)
» s0eSubTasm) B gorecateSubTaske_per_rowt) @ prntStrmgaran)
& checkitSgmeExpranGamme:; 8 genersteSubTasis_per_col) getaxVane))
& JetGammePostoadtSomal: 4 doDrenRowVerson) @ setiaxVane()
& TyPasent) & SoCranCoMersion() o pedinvabes;
a copyLemtameySimg) ® petngex0fSgreToDemt) © setunveuei;
® 98oHC hran(; 8 9otChao0 NG Amme: ; ® geCoPolli
@ erBocRowi) ® 200500 Tast) ® seeCoPvor)
& CopyLmtntAmaySmng() @ grRowPwoi)
& coMomCopyAstay!) & SeRoOwWPNVO)
A CopySumghashen;

Figure 3.3 Class Diagram for Package TaskMgr

31

3.1.4. The package StoryMgr

In the package StoryMgr, we host the main classes needed to create a Story. This
package has the class StoryMgr to manage the story and the Story class. Also, it has
the classes which implement the acts, the episodes of each act and the visualization of
an episode. Moreover, the Episode class is an abstract class such that can we create

difference type of episode (e.g. frame in wmv file).

— @ Autio
£ StorySigr Actiohhy
@ Storylgr O Story QAct @ Episode :-:-;a & 20800
& & stery() FActi FEpsade() | 51 | © gECiekamer)
Soyean © crenteliew Act &' getSun Taske(@ setietiameC
® cresteStory() 0 & getEpacdesi) ' A
@ createTasks’) B addAct) @ setEpaodes() setSud Tesks() \
® MWTITSOYD | g | @ PR © sadEsioder) / :: mm et G ighohc
© sesStory) [Ty mtrOtAcs)) | ACS | ¢ getfoaodeq i Py T
® geStory() 0.1 @ petlastActy © .+ | © gettiumEssodes) é;"q:mm
® regroopg @ gmtSourdsi) © seffask) evaush 0 1 & erecuneG
© aetSeurdas @ petTaski)
Ul @ getFraResuti) © gets() G visual
@ setfraResull) @ setid() O‘Vsui':-
¢ getacnty ® toSuing?) & CreternaiTeriec
 sethety) & gerFrorTavieq)
FrRes g1 @ PptxSide & setPnvatTetiey)
@ FnaiResun o poocsioe) [
© guSubTasa()
o FraResutr) @ Pptx Sideshow | o setSutTenat @ Tabular
o set el 5 @ 238SubTask) o Tabuerr)
& getFilenames @ getFiename’) © setvisusl) @ CrestePnziTapiels
@ setffFlename:; @ getVsual) A tryParsefioay;
@ sathudiorie: @ seColorTatle()
® getiudion @ setCoiorTabier
@ gePr(lsiel)
@ seProtlabie()
sk 0.1
@ Tasx
Tasubige
& Tasu)
© sGcHewSubTasi)
@ getumSubTesksy
@ getSutTas)
@ QELASISULTaRk()
@ petSutTasiad)
© serSutTasks)
& generateSuo Tesks()
& consriciacEpvoses))

Figure 3.4 Class Diagram for Package StoryMgr

In Figure 3.4, we present the connections between the classes of StoryMgr. Observe
that the Story class has an object FinalResult which is an abstract class and
materialized as PptxSlideshow in our method. The FinalResult is abstract so that we
can use more kinds of final results (such as a wmv file), in the future. Also, the
implementation of the episodes of Act is performed via an abstract class Episode,
which in our approach is materialized as PpixSlide. In addition, the Episode class is

associated with the Highlight class, the Audio class, the Visual class and the Subtask

32

class of package. The classes Highlight and Audio are to be discussed in the following
subsections with the packages that contain them. The Visual class is an abstract class,
so in the future to have the ability to create a new kind of visualization of our result
(such as a graph). In our method, we materialize a Tabular class which visualizes the
result as a pivot table. Finally, to create a new Acf we must materialize a Task class as

we shown in Figure 3.4.

1
8 Highlighthgr
@ Hightght O HighightComparsRow
& rignignti) F<— rigng Row()
fﬂkml @ execute(d
O Highightiax
(G HighlightCompareColumn & Hoghightiaxi)
& nghigntCompareConmn() @ executel)
@ execute() & 8TableMnVane()
& returnCondtionForMmxiin()}
@ Highiightitin
(@ HighlightDominationColumn @ HightightDominationRow| | & Highightamo
& nighightDomnatonCokuma() & HighightDommstonRow() ® executel)
@ exeare) © execudeq) 'S .Tlh!llll\llli.()
@ fnaDommnation() u fnaDomnationt) & returnCondtionForMaxin()
m maxVauenTabieColumn() & maxVaenhTableCoumn()

Figure 3.5 Class Diagram for Package HighlightMgr

3.1.5. The package HighlightMgr
In Figure 3.5, we present the class diagram for package HighlightMgr. In this
package, we host one abstract class, with name Highlight. This class can be extended
for finding highlight in episodes. In our current method, we have created the six
following subclasses:

o HighlightCompareRow, to compare one row with the other rows

o HighlightCompareColumn, to compare one column with the other columns

o HighlightMax, to find the top quartile of values in a matrix

* HighlightMin, to find the bottom quartile of values in a matrix

o HighlightDominationRow, to test the domination of a quartile (top or bottom)

by a row

o HighlightDominationColumn, to test the domination of a quartile (top or
bottom) by a column

33

The method that is implemented by the materializations of Highlight is the method
execute(). This method takes a 2D matrix of values as input and creates lists of values
where the findings are stored. Also, it creates the highlight color for each finding
(which we use at episodes).

3.1.6. The package TextMgr
In Figure 3.6, we present the class diagram for package TextMgr. In this package, we
create the abstract class TextExtration to extract text for episodes. In our method, we

create the subclass TextExtractionPPTX which produces the necessary text for every
ppix slide we create.

——
8 TextMgr
© TextExoacuon @ TextExtractionPPTX
& TextExtracony) & TextExtracticnPPTX()

@ cresteTextFerOngnalict()

@ cresteTextFerOnginalAct2y)

© cresteTextFeractt()

@ creataTextForAct2)d

© createTxtForDomnatadRawCalumnsy)
@ createTxtForCoumnsDomnate)

© createTxtfFerRow sDominate)

@ createTxiFerintroSade)
 creataTxiComparngieSdmgConmng)
o createTxtComparmgTeSdmgRowy)

m getdessureTextr)

| getindexQSigmat)

Figure 3.6 Class Diagram for Package TextMgr

3.1.7. The package AudioMgr
In Figure 3.7, we present the class diagram for package AudioMgr. In this package,
we utilize one abstract class, with name AudioEngine, which initializes the TTS
engine and create the Audio element for each episode. In our approach, we have
created the two following subclasses:

o MaryTTSAudioEgnine, for the MaryTTS API, and

o FreeTTSSAudioEgnine, for the FreeTTS APL.

" B AvtioMgr
& AuvdioEngine
& AuoEngns() @ MaryTTSAudioEngine
& intielizevorceErgine) <] & NaryTTSAucoEngN)
o Cresteduaion @ nitisizeVoicel ngine()
o randormigantiher() ® CrasteAudi)
® randomidentfer)
@FreeTTSAud0ENgING
auto |0 * & FreeTTSAUGOENQINGD
© hlwkzeVorceEngna()
Ohutio ot
&Favson @ Cronteaudio()
@ getFlaame() © geVoicasme(
@ setFloHame) @ sefVoiceNsme(
@ pelVnicslansgern()
@ setvoicaVsnager))
@ petvoics()
® slvoics()
@ petStap()
@ setStapr)
® randomidentifier()

Figure 3.7 Class Diagram for Package AudioMgr

1

@& WrapUpMor

© PptxWrapUpWigr
o PotxWrapupiipr()
© doWrapUp(}
® XSLFcresentroShdel)
@ XSUFcresteSummerySiieQ)
© XSLFcraateSade()

A seiRelstionshpForNoles()
® CresteTadienS1de()
@ CresteSiaWIDUGIAUGI()

A sutBasciroundToSide(}
& SoundhodeSimng')

& Tranghoded

» AvioSEseShow()

& getfinsResul(y

& sstPnaRssull}

| RenemesPTXI0Z00
» RenameZiptoPPTX()

[Gwraptomer |
& wrapupugn)
& oetFinsiResun
& setFneiRonuity)
& dowraptp

Figure 3.8 Class Diagram for Package WrapUpMgr

35

3.1.8. The package WrapUpMgr

In Figure 3.8, we present the class diagram for package WrapUpMgr. In this package,
we introduce the abstract class WrapUpMgr which, then, has to be materialized by a
subclass in order to construct the proper format for a story. In our case, we create the
subclass PPTXWrapUpMgr which returns to the user a Microsoft PowerPoint
presentation. The reason we create the class WrapUpMgr as abstract is to provide the

ability to create a new format of a story (e.g., like a wmv file) in the future.

3.1.9. Core Classes of CineCubes Framework

The core classes of the CineCube framework are located in the above packages
(TaskMgr, StoryMgr and HighlightMgr) and their relationship is depicted in Figure
3.9.

QAndo

OAct o

S G épssode causc | & 400
ety Son gy / @ getFiekace
@ getEpmacesi) & Eooosel: @ seffherames
@ sefEcaocess) £oncdes | ¢t gerSunTasisr;
® sccEpmacei) /——-’o") & seeSuaTesksy
@ geoscder: & accsuaTazin \
® gettumEoacdess) & servisue Sriaadl
@ sefTosis g}*\ s s
: :::m e Gvisaar Fugngrn)
® e < TunAlg & executsc:

2 Veu;
L & CronemotTabien Honight 9.1
BsueTesh i€, ¢ € petPraaTadie(;
P © SubTask hsididalioad
G Task Towbdge
Trasbir & SubTasin)
Cal "] © exeaute;
@ aOMewSLtTen) & cempateFndagh)
® gettiumSubTasks) esoeTang | © FEHEMERY)
© peSubTas) ¢ Setignght)
© grLasSuTan © pefxractontiemod
® gotSubTasisls ® seExractentleiod)
© satSubTasis ® petleterencesf remOngnn
& perwrateSut Tesks)) ® petrtterenceFromOnpn: »
o commucracEpacees() © seDMerencarfromOrgne)
@ soaCiitersncefromOrgne)

Figure 3.9 Core Classes of CineCube Framework

3.2. Extending the set of Acts

In this subsection, we present the sequence of steps needed in order to extend the
system with a new Act, along with its constituents. We will use the existing acts that
we have already implemented as reference cases for this discussion. To create a new
act for our current method we must implemented one new class which materializes

the class Task. Moreover, the new class must implement the two abstract functions of

36

class Task (a) the generateSubTask() and (b) conctructActEpisodes(). Also, we must
add a new method in class TextExtractionPPTX such that to extract the proper
contextual description added at each slide of new act. For example, for Act I of our
approach we had materialized the TaskAct/ which implements the two abstract
functions ((a) and (b)) and the function createTextForActl(). Similarly, for Act II we
had materialized the TaskActlI which implements the two abstract functions ((a) and
(b)) and the function createTextForAct2().

3.3. Extending the set of Highlight Extraction Methods

To have the ability to create different highlights we create an abstract class Highlight
which has an abstract function with name execution. In our method we have created
six subclasses which help us to create the different highlights for our episodes. In
Figure 3.5, we can observe that all the subclasses of Hightlight implement the abstract
function execute(). In addition, every time we want to add a new kind of Highlight we
must add a new method in class TextExtractionPPTX such that to extract the proper
text for new highlight. We conclude that in order to enter a new highlight we must
create a new class (which materializes the Highlight), to implement the abstract

function execute(), and to add a new method to class TextExtractionPPTX.

3.4, Assessing the Extensibility of our framework

In Table 4.1, we present the programming effort which needed to extend the current
approach of our method for. As we described in section 1.2, for create a new kind of
act which is to create one new class and to implement three functions. Also, we can
observe in Table 3.1 that to create a new kind of highlight must create one new class
and to implement two functions. Summarized, the programming effort to extend our

method in each flavor of extensibility is too low.

Table 3.1 Assessment of the Extensibility Effort for CineCubes

new classes # modified classes # new methods
new Act 1 1 2 (@ new) + 1 (@ modified)
new Highlight 1 1 1 (@new) + 1 (@ modified)

e A o o cas s e e ek tariems =

37

CHAPTER 4. EXPERIMENTS

4.1 Experimental Setup

4.2 Detailed Findings

4.3 Analysis of Results per Task
4.4 Analysis of Results per Act

4.1. Experimental Setup

We have experimented with the Adult (a.k.a census income) dataset referring to data
from 1994 USA census. The dataset in its cleansed version (after uncertain and NULL
values are removed) comprises 30162 tuples of the 1994 USA census. There are 8
dimensions (Age, Native Country, Education, Occupation, Marital status, Work class,
Gender, and Race) in the data set and a single measure, Hours per Week. The
hierarchies for the fields Education, Occupation, Marital status, Work class, and Race
are depicted in Figure 4.1-Figure 4.5. Attribute Age is organized in years, 5-year
intervals, 10-years intervals, 20-year intervals and *. Attributes Gender and Salary
were not used due to their very small domain of values (Salary has only two values,
higher or lower than 50K). The levels of hierarchy Native Country, except the level 0,
are depicted in Figure 4.6.

We have experimented with the Adult data set by assessing the time needed for
generating a presentation for different kinds of original queries. All experiments have
taken place in a conventional PC running Windows 7 over an Intel Core Duo CPU at
2.50GHz, and with 3GB main memory.

SSB[O YIop\ uoisuawip Q) 3y J0jy Aysrelary 94| €' am3yg

01 aes | (oo | jesepay sy | aupou
1 — S——
17 A0D dwa-j9s kALY
1 - B | J
1 Aed /M Aed yum
. _ y
€7 +'SSEINIOM
258y uoISUSWIP [O) 3 10j AYoreIary ayJ 7'y am31g SMIDIS' [DI4DY UOISUSWIP [O) o 10 Ayoressig sy [y amSig
ow Japues wasqe asnods | asnods
01 a0 | e sy | s3pues 01 dnouy | Pesedas | pamopim | padiona g p
-JBwy | -Jed-ueisy - — . :
- T T T 1 ——
i uasqe Wasaid
I souped sauuey
1 paJ0j0) UM = . :
paureW
L =, I a1 1oAaN pajen
N«N Qos i
£1 R

8¢

07

11

T

uonponpsy uoisuawip [Y3 1oy AYoreIary oy ¢y ISy

01 pess-SH | Wizt [YTt Yot | Y6
Aepuodas Atepuodas Wwg | 9 | ¥
11 ayd [S J0id | 358 J0A | wpe JOIU3S Joung —ot] a8 | ot
pe.d 2830 s
Z7 1504 aun J0ssy aW0g Aepucdag Asejuswa)3y |jooyasald
1 | I J ! 4 J
T 1
£ Alepuodas - 1504 Asepuodas 3sod o/m
L H J
F1 s uopeanpy
suonpdnoo) uorsuswip [Q) oy} 10J AYoIeIaly sy [, ' 9In3ry
IS Buysy 582104 aojaes (I ITEe b sut-do | Jjedas | woddns | Ases uodsues [32 sajes Ajjenads | Jadevew
PYO | -8uuiey | pawldy | aataioud | | - siappuey | -auppey | -yein | -yssyr | asnop 1 - wpy . - Joid - 33x3
L 1 1] 1] | 1 !) L 1 1]
] I 1
Jejjo3 Jejjol
19
o -anig -YM
[_

«'uopednig

Anuno)) sAne)N uotsuswIp O S 10j AYOIRISNY 94 L, 9'p 3mBiy

ot]][] [e e e e e

003ng)
WHNRRPNOS
1

LE

En..,_éa_ _Ea,mﬁz_ !

-y wy
TERERAOS || GIRRPOOS |
1 I

[~

41

4.2. Detailed Findings

We have measured the time needed to perform each part of the method. For each

slide, we have measured the time spent to perform the following tasks:

i

il.

iil.

v.

Vi,

vii.

Viii.

ix.

Produce Cube Query: in this part we count the time we needed to produce a
Cube Query from the original query.

Produce SOL Query: in this part we count the time needed to convert a Cube
Query to SQL query.

Execute SQL Query: in this part we measure the time to perform the query to
the database and take the result back.

Tabular Creation, in this part we measure the time needed to format the result
of (iii) to a pivot table.

Highlight Creation, in this part we count the time needed to calculate the
highlights on pivot table (such as row domination, largest values etc).

Color Table Creation: in this part we count the time needed to add color to
each cell of pivot table.

Combine Slide: this action is performed only on Act II. It helps us to put in
one slide more than one pivot table. We measure the time which took this
action to complete.

Text Creation: in this part we calculate the time needed to produce the slide’s
text from the calculated highlights.

Audio Creation: in this part we calculate the time needed the MARYTTS to
create the audio file from text which we had produce at previous step.

Put in PPTX: in this part we count the time needed to wrap up the above to a

slideshow presentation.

In our analysis, we can group the three first parts to Result Generation and the four

next grouped to Highlight Generation & Visualization as shown in the Tables 3.1-3.4.

In these tables we can observe the time in milliseconds which takes to construct each

part per slide when we have two, three, four or five atomic selection conditions in the

WHERE clause of original query. Also, observe that the number of slides in Act I is

increasing as the number of atomic selections in the WHERE clause increases.

42

‘ Instead, the slides of Act II remain in all cases constant, which is consistent to that we
RERT I described in Chapter 2.

ST'8LE 1T°E9v1L “,,,Nm.ﬁ 6170 650 y1°C 6v'1 ¢1'8911 £9°0 14\ NS
0L €T 09°c6t81 8€0 01
14347 ?$979¢ 1010 800 910 S0 870 144 1ZA] oro 6
8L9¢ S99LYY €10 7o S1°0 090 SE0 10°1¥1 o 600 8 115V
6LVC Sov8ey O1°0 L00 LTO 170 LTOVI 010 L
6L°L1 00vLlY 100 S 100 9
L86T 166596 ST°0 L00 91’0 600 evotl ¥0°0 10°0 S
ob'81 ST6LO8 | LI'O $0°0 120 S1°0 95°L91 0°0 100 14 1LOV
18°6 99°L11E 10°0 95°0 100 €
6L°29 SY'018L €10 oro 8¢°0 o LTOoV] 010 [4
CTL'611 01'9pLE ST°0 !
: H opIS uonea) uonear) uonear) Apnd 10S 10S L1Pnd aqn)
X1dd uonealy . uoNBAI) aplsg
3 sulqwo) IJqel 10[0) WYSySIY Ie[NQE] UOMNIAXH 20npoig 9Inpord
uting opny IXeL,
Mos UOTIRZITensI 7 uonelauan) JysI[JsIH T0NeIaUaN) 1 Nnsay

asne[D AISYAN Ul UOIIII[IS IOy T SABH M UdYM SIed S POYISJA Y3 J0] (99swl) umopyealg wi] [y d]qelL

ty

v Maa o PRTTPTY T
“GR'S8T - LTE9YOI 600 090 861 €60 78088 SE0 ¥ZO0 . WnS
$E'6T 18°S08LC o
A 8€° 1879 | $0°0 L10 6£0 810 17°8p1 600 010 U § B
STLE v LLYL $0°0 #1°0 6%°0 61°0 8Ll LO0 LO" ool

¢ 00 L IOV
$9'91 T6'COEY 900 $T0 o L SO0 6
L9°6 10°9L0t $S°0 100 g -
SL'TT 8T 1911 $0°0 A\ 1o 02981 €00 200 LN
0E¥e 06°L6S01 $0°0 91°0 LOO $9°€61 200 100 9
8LYE 00T0L9 €0°0 600 $0°0 86°SY 200 200 s >ILOV
oLl ZETEIOT S0°0 £1°0 60°0 6679 200 100 v
€€'8 05°050¢ $S°0 100 £ “
$Z°0Z 61°7S€8 L00 €2°0 4N PTL SO0 4
P1°61 01°0tTt i
uonear) Land) £and
apIIS uonesr) Irenge] 108
Xldd uonea) s|qeL 108 aqn) apls#
. SUQUIOD) W3NySIH uonear) 3onpoid
u g opny 10[0) TuonnoIXY aonpold
I0neIusn) NSy

asne|D) SISYA\ Ul UOHIS[IS OIWOLY € SABH oM USYM sLed S, POYISIA Y J0J (dasw) umopealq swl] 7' 3[qel

YL'TSY 0T H00ST] 08°1 L0'0 050 ({\x4 80'1 S1°€9TC 6v'0 LT0 NNS
LS0S To'ssvor TS0 14!
£ 2 T S S 3 2 60°0 ¥0°0 7o ve0 81°0 Tross o 1o ¢l
0S'v01 6TREIL 01°0 €00 010 0 61°0 [4414* 800 800 4! 1 LoV
LS0E 8l'tocy L0°0 90°0 61°0 10 SE961 S0'0 11
8’8 TYLLOY 10°0 650 100 01
CeEC PRSTLE] 14RY ¥0°0 §T0 170 68°061 €0°0 200 6~
99'0C S0'9L9¢1 €ro £0°0 81°0 60°0 Y0161 €00 10°0 8
06'€T €CLY8L 1o 200 L00 ¥0°0 SO'8¥1 €0°0 10°0 L
8°CT LS8I101 €10 200 010 SO0 ov'¥91 €0°0 100 9 Y I LoV
¢S°LT 117L€901 P10 £0°0 1o 90°0 §S0ST €00 200 S
96'ST £57CTLSOI £1°0 ¥0°0 170 01°0 €8'¢SI €00 100 v
we SL690E 95°0 100 ¢
PO'L8 61'LE06 010 SO0 {4\ o Ge 961 S0'0 [4
¥80Z _ TS6lor 110 I
q opIIS uoneal) uoyear) uopear) Amwnd TOS 10S Knd —
X1dd - HonEio OB saulquo) 9d[qel Iojo) WIYSIH Iejnge] uOHNOAXy 9Npoid aqn) 2onpoid .
uting olpny

LIXOL

£¥Y

TUONJeZI[ensI 79 UoTjelouss) Jys oIy

GONBIaUaL) Jnsoy

ASNB[D) SIAYA\ UI UOIIID[SS JIWOY $ SABH 9m USYA\ SHBd S POYIRIA 2yl 10] (09sur) umopyealg swli] € 9[qel

97

¥s0

11 1OV

\ 110w

asne|) YA Ul UOUDI[IS JIWONY G IABH 3m UM SHed S, POYIdIA dY3 10j (03sW) umopyealg dwi] ¢ 3[qeL

$S09Y 65807691 0T 1t LLT961 090 I€0 Wns
98'LE LO0SLTE 91
A A $S16£9 o €0 L1'0 6v°6€£€ €10 010 sl
0686 TLEE0L 110 9€°0 81°0 1#'69C 010 600 vl
¥$°91 SH0SSh $0°0 81°0 Zro 9°581 $0°0 €1
016 6¢ 6t 1P 790 100 4l
StLl t+1°8L001 200 v1°0 90°0 8S Vel #0°0 200 1
A WA 00'8L001 200 10 00 0T'L91 €00 100 ot
6€°L6 1$°08011 200 (A1) 900 $6'16 $0°0 200 6
0€'91 LET8601 €0'0 600 00 06°€6 £0°0 100 8
$9'91 CErPLSIL S . 700 110 $0°0 26°601 £0°0 100 L
0v1 9T°TLI8 mv,ﬁc_ o 200 80°0 ¥0°0 €L°T6 £€0'0 100 9
L0z (8€ITTL L6107 €0°0 610 60°0 L6Vl 00 200 S
ob'81 $6'LSOTI Mﬂ..o o 00 91°0 110 91°9¥1 €00 100 v
68 196305 | 550 100 3
LoT FT1656 o 00 81°0 zro ¥9°581 S0°0 4
OT61 SRTLSS 800 _
N apIs uonear) uonear) uwomeary Awnd 108 10S A1nd 3qn)

Xlad uonE) uongai) sulquio)) Jjqel Jojo) WByYSIH JIenqe] UONNOIIXY sonpord adnpoid SPUSH
wnd opny w«auoh — uoneZiensi) 2 uonelousn) WsNYsIH UORBISUSD) J[NSaYy

47

4.3. Analysis of Results per Task

We have measured the time needed to perform each part of the method. We varied the
number of atomic selection conditions within the WHERE clause and measure the
time needed per step of the method (measured in millisecond). As the number of
selection conditions rises, each time we have two extra slides at Act I (the number of
slides of each try is depicted in parentheses at the header of Table 4.5). Clearly, the
audio generation dominates the entire process, being several orders of magnitude
larger than anything else and presenting a clear case for improvement. As the number
of slides slowly increases, the number of texts generated slowly increases too.
Concerning every other part of the process, we see that query generation and
execution takes up two orders of magnitude more than the other two tasks; therefore,
being prudent with the number of slides (and thus, executed queries) is also necessary
— esp., if someone would decide to exclude audio generation from the process. A very
interesting observation is also that, so far, both text creation and highlight extraction
are extremely fast, and thus, provide the potential for enrichment with more
algorithms that try to find interesting highlights and create representative textual

descriptions for them.

Table 4.5 Time breakdown (msec) for the method’s parts

atomic selections in WHERE clause
2(10sl.) 3(12sl) 4(14sl) 5(16sl)
Result Generation 1169,00 881,40 2263,91 1963,68

Highlight Extraction
441 3,60 3,67 3,74

& Visualization
Text Creation 1,32 1,42 1,80 2,35

Audio Creation 71463,21 104634,27 145004.20 169208.59
Put in PPTX 378.24 285.89 452.74 460.55

48

4.4, Analysis of Results per Act

We have measured the time needed to produce each Act of the story (measured in
milliseconds). The detailed data for (a) the number of slides in each Act and (b) the
times per slide are listed in Tables 4.1-4.4. As the number of selection conditions
rises, each time we have two extra slides at Act I (the number of slides of each try is
depicted in parentheses at the header of Table 4.6). Clearly, we can observe that the
time of each Act is increasing as the number of atomic selection conditions increases.
Also, the construction of Act I in three of four cases takes more time than the
construction of the others. In the case when we have two atomic selection conditions
the construction of Act II takes about 90 msec more. In addition, the time of creation
of Act Il practically stable independently of the number of atomic selection condition
in WHERE clause.

Table 4.6 Time breakdown (msec) per Act

atomic selections in WHERE clause
2(10sl) 3(12sl) 4(14sl) 5(16sl)

Intro Act 3865.97 4259.30 494047 5592.18
Original Act 8014.64 8445.46 9321.13 9598.11
Actl 21216.65 42666.49 70764.83 90580.31

Actll 2150225 22599.71 2319288 23079.76

Summary Act 18416.67 27835.61 39507.01 42788.55

In Figure 4.7, observe that as the number of slides increases (2 extra slides each time)
Act I increases with significant rate; and the Summary Act behaves similarly yet with
a lower increase. Both these effects are due to the text and audio generation.
Moreover, the increasing time of Act I can be explain better from the details data in
Tables 3.1-3.4 where we can observe that the increase for Act I is quite close to the

cost of the extra slides that are added each time to the Act.

F Y

49

100000.00

90000.00

80000.00

70000.00
—g 60000.00 N Intro Act
E.— 50000.00 * Original Act
:§: 40000.00 mACct]

30000.00 v Act i

20000.00 # Summary Act

10000.00 -

0.00 - ‘
10 12 14 16
#slides

Figure 4.7 Bar chart of Time breakdown (msec) per Act

Also in Figure 3.7, we can observe that the Summary Act needed more time than the
Act II in three of four cases. This happens because the Summary Act, as described in
Chapter 2, has all the highlights of the story (i.e., all the text for these highlights)
which must be also converted to sound. Once again the text to speech API dominates
the time of our result.

It would also be expected for the Summary Act to have the same increase on time
breakdown such as Act I, but this doesn't happen because the Summary Act has only
the highlights of all episodes. Moreover, we can observe in Table 4.7 that the Act |
has always more words to be sound from Summary Act. Specifically, the differences
of words which they have in each case are:

1. In the case of two selection conditions are 44 words
2. In the case of three selection conditions are 201 words
3. In the case of four selection conditions are 407 words
4. In the case of five selection conditions are 645 words

Table 4.7 Count words on Act | and Summary Act

atomic selections in WHERE clause
2(10sl.) 3(12sl) 4(14sl) 5(16sl)
Actl 244 499 764 1069
Summary Act 200 298 357 424

50

The rate of increase for the Summary Act is consistent with the rate of increase of its
text depicted in Table 4.7. The results of Table 4.7 also explain the differences
increase for Act I and the Summary Act. In both cases, it is the audio generation that
dominates the total time; however, due the contextual description added at each slide

of Act I, the text (and thus the corresponding audio) of the Act increases rapidly.

51

CHAPTER 5. RELATED WORK

5.1. Query Recommendations

5.2. Database related efforts

5.3. OLAP related methods

5.4. Advanced OLAP operators

5.5. Text synthesis from query results

5.6. Relationship of our work with the state of the art

In this Chapter, we discuss related work around the topic of our discourse.
Specifically, research pertaining to our work can be identified in the fields of query
recommendation, advanced OLAP operators and text synthesis from query results.

We present each of these categories in the following.

5.1. Query Recommendations

The first that relates to our work is the area of query recommendation. Roughly
speaking, the general theme of this area revolves around the situation where the user
has submitted a query to the system and the system suggests one or more related
queries to the user as a guide that helps him continue his search. The suggestion can
be based on the user’s profile, history of queries, history of other users’ queries, or
other information. There is an excellent survey on the topic by [MaNel 1]; thus, here
he restrict ourselves to a handful of characteristic approaches and refer the interested
reader to [MaNel 1] for a broader discussion.

The query recommendations that are related to our work can be classified in two
orthogonal taxonomies, already found in [MaNel 1]. In terms of the data management
environment within which query recommendation takes place, we can distinguish

between works in the general field of databases and works in the specific field of

52

OLAP. In terms of the means employed for the recommendation of queries, we can
discern methods exploiting profiles, methods exploiting query logs and hybrid

methods.

5.2. Database-related efforts

In [SDP09], the authors propose the enrichment of the results of a query with extra
tuples that maybe have potential interest to the user. The method is entitled YMAL
(“You May Also Like”), and tries to find tuples in the underlying relational database
on the grounds of a principled tuple-recommendation approach. One of the
contribution of [SPD09] is that the authors suggest a classification of methods for
recommendation: (a) current state based, (b) history based, and (c) based on external
sources.

The current-state approach makes use of the current query result and schema in
conjunction to data of database to produce the YMAL result. To implement this
approach the authors suggest three kinds of analysis: (i) local, (ii) global and (iii)
hybrid analysis. Local analysis involves finding patterns in the results of a query and
searching the rest of the database in order to add to the original result extra tuples that
abide by the discovered patterns. The Global approach searches the database to find
values that are correlated to the values involved in the selection condition of the
submitted query; the k most correlated of these values are selected and tuples that
contain them are recommended to the user. To calculate relevant tuples, the history-
based approach uses (i) the previously submitted queries of the user, and, (ii) similar
sessions of other users that have similar behavior of the current user. The last of these
approaches, involves external sources and does not search the local database for

relevant tuples, but the web or another schema.

In [Cha+11], the authors propose a recommender system called QueRIE (Query
Recommendations for Interactive data Exploration). The main goal of this
recommender system is to help the common user, who is not familiar with SQL and
database schemata, to find parts of database with useful or interesting information. To
this end, the authors have implemented a system with the ability of tracking the

querying behavior of user and generating personalized query recommendation. Their

e et o o o e e A o 8 e Ak it

53

system is built on a simple premise inspired by Web recommender systems: if a user
A has similar querying behavior to user B, then they are likely interested in the same

data. Hence, the queries of user B can serve as a guide for user A.

5.3. OLAP-related methods

In [Car+08], the authors describe a method to help user to explore OLAP data. The
proposed method combines OLAP and data mining techniques to facilitate the process
of the exploration of a data cube by identifying the most relevant dimensions to
expand. The implementation of this task is performed in a step by step approach. In
each step the most relevant dimensions from the current session of the user are
identified and then, the system suggests to the user which one to explore first. The
dimensions are of relatively simple structure with two levels only (ALL and detailed).
The main idea behind the method is that each dimension takes a degree of interest.
Each time the degree of interest is calculated by the amount of information revealed
when including the details of this dimension in the grouping of the detailed data
(remember that each dimension has only two levels; thus including it in the group by
practically means that the dimension’s detailed values split the grouping space with a

factor equal to their number).

A different approach for suggesting an OLAP query to user is introduced in
[GMNSI11]. Unlike [Car+08], the authors of [GMNS11] use the query log of previous
users to find similar queries which can give information to user that he may not know
it is available. The main idea is to recommend to the user the discoveries detected in
former sessions of other users that investigated the same unexpected data as the
current session. To this end, the proposed method analyzes the query log to discover
pairs of cells at various levels of detail for which the measure values differ
significantly. In addition, the method analyzes the current query such that to detect if
a particular pair of cells for which the measure values differ significantly can be

related to what is discovered in the log.

54

5.4. Advanced OLAP operators

Apart from recommending queries to the users, related research has explored the
possibility of providing users with explanations for the results they observe in an
OLAP report. We distinguish the work of Sarawagi in a series of papers in VLDB and

briefly summarize the results.

In [Sar99], the DIFF operator is described with the aim to help the analyst get a
concise set of tuples explaining the reasons for drops or increases observed at an
aggregated level. As input the operator receives two cells of a report that are different.
As output the operator returns a set of tuples that best describe this difference. To
achieve this result, the paper proposes a greedy and a dynamic-programming
algorithm. The idea is that the operator keeps as fixed the common selections that
characterize the originally selected cells (so, it is important that they do have some
common selection conditions for the computation to make sense) and drills-down the
levels of aggregation for the involved hierarchy that is produced by the combination
of these common dimensions. The crux of the approach is that it computed the
respective difference when the data are aggregated for any of the tuples in this
multidimensional space. Every tuple in this multi-level space is compared to its
“parent” tuple (in one level of aggregation higher) and, if selected, it is placed in the
top-N results that will ultimately be displayed to the user. For a tuple to make it in the
top-N it has to contribute a significant percentage of the difference of the original
cells compared to the contribution of its father.

In [Sar00] a tool that helps users explore the multidimensional OLAP data using their
prior knowledge of the data is described. This tool uses a profile that tracks down the
areas of the cube that the user has visited in the past, and thus, it is aware of what the
user already knows about the data. Then, the tool guides the user to unexplored data
that he will find most informative. The author in [Sar00] describes a method that uses
the classical Maximum Entropy principle and a profile per user to recommend to the
user the parts of the cube which contain the most surprising values compared to what
the user has already seen

In [SaSa01], the authors introduce the operator RELAX which helps the user of OLAP
data to go from a detailed level of information to a more general one, in order to

verify whether a pattern observed at the detailed level is also present at a more

55

summarized level. The operator reports in a single step a summary of all possible
maximal generalizations along various roll-up paths of the observed sub-cube. Their
goal is to report all possible consistent and maximal generalizations. The term
consistent is meaning that all subset of dimensions that are examined also abide by the
pattern. On the other hand, the term maximal means that there is no superset of
dimensions that investigated can yield consistent generalizations. For the
implementation of this operator the authors develop a two stage algorithm. In the first
stage, their algorithm finds all possible maximal generalizations using aggregation
queries. In the second stage, the algorithm uses the results of the first stage and finds

summmarized exceptions of the generalizations.

5.5. Text synthesis from query results

In [SKAIO08], the authors propose a method to synthesize a textual answer in response
to a query over a relational database. The authors employ a graph model with nodes
being attributes and relations, edges being part-of relationships and join relationships
and labels for relations, attributes and edges (labels are used to produce a text for a
query’s result). The method takes a query as input, computes its result and tries to
produce a sentence for each of the tuples that appear in the result. This is derived by
following specific graph navigation patterns, each of which produces a different type

of text.

5.6. Relationship of our work with the state of the art

Conceming all the above works, our method comes with an extensible architecture
that is especially constructed with a mindset of plugging more and more of them, both
at the part where new queries can be added and in the part where new analyses can be
performed over their results. Our Act II resembles the DIFF operator to a certain
extent, in the sense that it tries to explain the reasons of the originally observed result.
DIFF goes one step further, in providing maximal explanations by picking the most
profitable rows. Although DIFF can be integrated in our tool, the emphasis so far has
been in coming up with a prototype that can provide a reasonable CineCube movie;

research results like DIFF can be integrated in the tool in subsequent tool extensions

56

and revisions. The same applies for all the other advanced OLAP operators.
Concerning text synthesis, we avoid describing the result of a query row-by-row, as
[SKAIO8] does. On the contrary, we provide an extensible architecture where each
highlight extraction method comes with a generic text to describe the detected
highlights. Of course, improvements on the produced text are clearly part of future
work.

hosen cnas

57

CHAPTER 6. CONCLUSIONS

6.1 Summary
6.2 Open Issues

6.1. Summary

In this paper we introduced a method that allows the generation of a CineCube movie,
over an OLAP database, with a simple user query as starting point. We have shown
how to complement the original query with additional queries and we search for
interesting findings in their results. We have also discussed how to automate the
generation of text describing these findings and how to convert this text to audio.
Moreover, we have shown that all the above can be packaged in a PowerPoint
presentation, practically presenting a small movie to the user. Our experiments have
shown that the audio generation is several orders of magnitude over the other tasks;

within these tasks, query execution takes again the lion’s share of the execution time.

6.2. Open Issues

Extensibility. Extensibility comes in two flavors in our method: (a) extensibility of
generated results and (b) extensibility of highlight detection within these results and
for each episode to calculate all the available highlights. There are plenty of works in
query recommendation (see discussion in Ch. “Related Work™), pattern verification
[SaSa01], trend analysis, future prediction, to name only a few, that can be added to
the tasks included in a tool. Of course, a journey starts with a first step, and we

believe this first step is the main contribution for this article.

58

Be compendious; if not, at least be concise! The single most important challenge that
the research problem of answer-with-a-movie faces is the identification of what to
exclude. The problem is not to add more and more recommendations or findings (at
the price of time expenses): this can be done both effectively (too many algorithms to
consider) and efficiently (or, at least, tolerably in terms of user time). The main
problem is that it is very hard to keep the story both interesting and informative and,
at the same time, automate the discovery of highlights and findings. To address this
task, a clearly important topic of research involves the automatic ranking and pruning
of highlights.

Can I be the director? Interactively maybe? Personalization and interactivity are
two clear paths for extending the approach mentioned here. The enrichment of the
architecture with extra knowledge —e.g., user profiles or crowd-wisdom (via user
logs)- and the possibility of intervening and semi-automatically guiding the query

generation are topics with clear potential.

Efficiency. Scaling with data size and complexity, let along with user needs, in user
time, is also necessary for an effort like this to succeed. Techniques like multi-query
optimization have a good chance to succeed, esp., since we operate with a known

workload of queries as well as under the divine simplicity of OLAP.

59

REFERENCES

[Ali+12]

[APOI]
[Car+08]

[Chat11]

[GMNS11]

[JePT10]

[Man+05]

[MaNel1]

J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, E. Turricchia. Similarity
Measures for OLAP Sessions. Accepted in Knowledge And Information
Systems (KAIS), available at http://www julien.aligon.fr/wp-
content/uploads/2012/09/kais.pdf

The Apache POI Project. See https://poi.apache.org/

V. Cariou, J. Cubillé, C. Derquenne, S. Goutier, F.Guisnel, H. Klajnmic,
2008. Built-In Indicators to Discover Interesting Drill Paths in a Cube.
DaWakK (Turin, Italy, 2008), PP- 33-44,
DOI=http://dx.doi.org/10.1007/978-3-540-85836-2_4

G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, N. Polyzotis, J.
Varman, 2011. The QueRIE system for Personalized Query
Recommendations. IEEE Data Eng. Bull. 34,2 (2011), pp. 55-60

A. Giacometti, P. Marcel, E. Negre, A. Soulet, 2011. Query
Recommendations for OLAP Discovery-Driven Analysis. IDWM 7,2
(2011), 1-25 DOI= http://dx.doi.org/10.4018/jdwm.2011040101

C. S. Jensen, T. B. Pedersen, C. Thomsen, 2010. Multidimensional
Databases and Data Warehousing. Synthesis Lectures on Data
Management, Morgan & Claypool Publishers

A. Maniatis, P. Vassiliadis, S. Skiadopoulos, Y. Vassiliou, G.
Mavrogonatos, 1. Michalarias, 2005. A presentation model and non-
traditional visualization for OLAP. IJIDWM, 1,1 (2005), 1-36. DOI=
http://dx.doi.org/10.4018/jdwm.2005010101

P. Marcel, E. Negre, 2011. A survey of query recommendation techniques
for data warehouse exploration. EDA (Clermont-Ferrand, France, 2011),
pp. 119-134

http://www.julien.aligon.fr/wp-content/uploads/2012/09/kais.pdf
http://www.julien.aligon.fr/wp-content/uploads/2012/09/kais.pdf
https://poi.apache.org/
http://dx.doi.org/10.1007/978-3-540-85836-2_4
http://dx.doi.org/10.4018/jdwm.2011040101
http://dx.doi.org/10.4018/jdwm.2005010101

60

[MARY]
[McKe97]

[Sap99]

[Sar00]

[Sar99]

[SaSa01]

[SDP09]

[SKAIO08]

[Tuft97]
[VaSk00]

DFKI. The MARY Text-to-Speech System. See http://mary.dfki.de/

R. McKee, Story: substance, structure, style and the principles of
screenwriting. HarperKollins pubs. 1997.

Carsten Sapia: On Modeling and Predicting Query Behavior in OLAP
Systems. DMDW 1999:2

Sunita Sarawagi: User-Adaptive Exploration of Muitidimensional Data.
VLDB 2000:307-316

S. Sarawagi, 1999. Explaining Differences in Multidimensional
Aggregates. VLDB (Edinburgh, Scotland, 1999), pp. 42-53

G. Sathe, S. Sarawagi, 2001. Intelligent Rollups in Multidimensional
OLAP Data. VLDB (Roma, Italy 2001), pp.531-540

K. Stefanidis, M. Drosou, E. Pitoura, 2009. "You May Also Like" Resuits
in Relational Databases. PersDB (Lyon, France, 2009).

A. Simitsis, G. Koutrika, Y. Alexandrakis, Y.E. loannidis, 2008.
Synthesizing structured text from logical database subsets. EDBT (Nantes,
France, 2008) pp. 428-439, DOI=http://doi.acm.org/10.1145/
1353343.1353396

E.R. Tufte, 1997. Visual Explanations. Graphics Press

P. Vassiliadis, S. Skiadopoulos, 2000. Modelling and Optimization Issues
for Multidimensional Databases. CAiSE (Stokholm, Sweden, 2000), pp.
482-497, DOI=http://dx.doi.org/10.1007/3-540-45140-4_32

http://mary.dfki.de/
http://doi.acm.org/10.1145/
http://dx.doi.org/l0.1007/3-540-45140-4_32

61

SHORT CV

DAMRTE

Dimitrios Gkesoulis was born in 1987 and finished high school in 2004. He obtained
his B.Sc. in Computer Science in 2009 from the computer Science Department of the
University of Ioannina. He entered the Graduate Program of the same institution at
2010 under the supervisor of Panos Vassiliadis. His research interests lie in the area

of database systems, with particular emphasis on query recommendation.

