
ΑΥΤΟΜΑΤΗ ΚΑΤΑΣΚΕΥΗ ΣΕΙΡΩΝ OLAP ΕΡΩΤΗΣΕΩΝ ΜΕ ΣΧΟΛΙΑΣΜΟ ΣΕ ΚΕΙΜΕΝΟ ΚΑΙ
ΗΧΟ

Η
ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

Υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης
του Τμήματος Μηχανικών Η/Υ και Πληροφορικής

Εξεταστική Επιτροπή

από τον

Δημήτριο Γκεσούλη

ως μέρος των Υποχρεώσεων

για τη λήψη

του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ

Ιούνιος 2013

A®. e u r

■*&■*mk
?<i&i:tx.-:

ΒΙΒΛΙΟΘΗΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΑΝ

0 2 6 0 0 0 3 3 6 6 9 3

r r. * · · · . ■

·.' X · · . . · . .

■ i

• * t; ' V. · ..fi*. ·.

',; " *y: *·'*»■,· . :* /Λ ■; .’■ 7, ~ *>

' \ y · X :: . ,;■> " ,:.V o ' V ' "

ΑΥΤΟΜΑΤΗ ΚΑΤΑΣΚΕΥΉ ΣΕΙΡΩΝ OLAP ΕΡΩΤΗΣΕΩΝ ΜΕ ΣΧΟΛΙΑΣΜΟ ΣΕ ΚΕΙΜΕΝΟ ΚΑΙ
ΗΧΟ

Η
ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

Υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης
του Τμήματος Μηχανικών Η/Υ και Πληροφορικής

Εξεταστική Επιτροπή

από τον

Δημήτριο Γκεσούλη

ως μέρος των Υποχρεώσεων

για τη λήψη

του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ

Ιούνιος 2013

DEDICATION

This thesis is dedicated to my family for supporting me all the way since the

beginning of my studies.

11

ACKNOWLEDGMENTS

I am thankful to my supervisor Dr. Panos Vassiliadis for guiding, encouraging and

motivating me throughout this research work.

I also would like to thank all my friends and colleagues for their help and

encouragement throughout this work.

CONTENTS

Pag
DEDICATION.. i
ACKNOWLEDGMENTS... ii
CONTENTS... iii
LIST OF TABLES... v
LIST OF FIGURES..vi
ΠΕΡΙΛΗΨΗ.. vii
EXTENDED ABSTRACT IN ENGLISH... ix
CHAPTER 1. INTRODUCTION... 1

1.1. Constructing a CineCube Story 4
1.2. Running Example 5
1.3. List of Contributions 7
1.4. Roadmap 8

CHAPTER 2. AUTOMATING CINECUBE CONSTRUCTION...............................9
2.1. Internal Structure of the CineCube Movie 9
2.2. Formal Background 11
2.3. Act I: Putting Things in Context - or “How good is the original cube compared
to its siblings?” 15
2.4. Act II: Explaining Variation - or “Drilling into the breakdown of the original
result” 17
2.5. Highlights and Text 18
2.6. Employed Technologies 18
2.7. Creation of CineCubes 20

CHAPTER 3. CINECUBE SOFTWARE ARCHITECTURE.................................. 27
3.1. Software Architecture 27

3.1.1. Package Structure 27
3.1.2. The package CubeMgr 28
3.1.3. The package TaskMgr 30
3.1.4. The package StoryMgr 31
3.1.5. The package HighlightMgr 32
3.1.6. The package TextMgr 33
3.1.7. The package AudioMgr 33
3.1.8. The package WrapUpMgr 35
3.1.9. Core Classes of CineCubes Framework 35

3.2. Extending the set of Acts 35
3.3. Extending the set of Highlight Extraction Methods 36
3.4. Assessing the Extensibility of our framework 36

CHAPTER 4. EXPERIMENTS... 37
4.1. Experimental Setup 37

4.2. Detailed Findings 41
4.3. Analysis of Results per Task 47
4.4. Analysis of Results per Act 48

CHAPTER 5. RELATED WORK.. 51
5.1. Query Recommendations 51
5.2. Database-related efforts 52
5.3. OLAP-related methods 53
5.4. Advanced OLAP operators 54
5.5. Text synthesis from query results 55
5.6. Relationship of our work with the state of the art 55

CHAPTER 6. CONCLUSIONS... 57
6.1. Summary 57
6.2. Open Issues 57

REFERENCES...59
SHORT CV.. 61

iv

V

LIST OF TABLES

Table pag
Table 2.1 Result Slideshow for Example Query 22
Table 3.1 Assessment of the Extensibility Effort for CineCubes 36
Table 4.1 Time Breakdown (msec) for the Method’s Parts when we Have 2 Atomic

Selection in Where Clause 43
Table 4.2 Time Breakdown (msec) for the Method’s Parts when we Have 3 Atomic

Selection in Where Clause 44
Table 4.3 Time Breakdown (msec) for the Method’s Parts When we Have 4 Atomic

Selection in Where Clause 45
Table 4.4 Time Breakdown (msec) for the Method’s Parts When we Have 5 Atomic

Selection in Where Clause 46
Table 4.5 Time breakdown (msec) for the method’s parts 47
Table 4.6 Time breakdown (msec) per Act 48
Table 4.7 Count words on Act I and Summary Act 49

VI
1

LIST OF FIGURES

Figure pag
Figure 1.1. An excerpt of a CineCube story over the Adult data set 3
Figure 1.2. Dimensions Workclass and Education 6
Figure 1.3. A snapshot of the internal structure of the CineCube movie 7
Figure 2.1. Extensibility mechanism for CineCubes 10
Figure 2.2. Constructing an Operational Act 20
Figure 3.1 Structure of CineCube Packages 28
Figure 3.2 Class Diagram for Package CubeMgr 29
Figure 3.3 Class Diagram for Package TaskMgr 30
Figure 3.4 Class Diagram for Package StoryMgr 31
Figure 3.5 Class Diagram for Package HighlightMgr 32
Figure 3.6 Class Diagram for Package TextMgr 33
Figure 3.7 Class Diagram for Package AudioMgr 34
Figure 3.8 Class Diagram for Package WrapUpMgr 34
Figure 3.9 Core Classes of CineCube Framework 35
Figure 4.1 The hierarchy for the QI dimension Marital Status 40
Figure 4.2 The hierarchy for the QI dimension Race 38
Figure 4.3 The hierarchy for the QI dimension Work class 38
Figure 4.4 The hierarchy for the QI dimension Occupations 39
Figure 4.5 The hierarchy for the QI dimension Education 39
Figure 4.6 The hierarchy for the QI dimension Native Country 40
Figure 4.7 Bar chart of Time breakdown (msec) per Act 49

Vll

ΠΕΡΙΛΗΨΗ

Γκεσούλης Δημήτριος του Γεωργίου και της Μαρίνας. MSc, Τμήμα Μηχανικών Η/Υ
και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Ελλάδα. Ιούνιος, 2013. Αυτόματη
κατασκευή σειρών OLAP ερωτήσεων με σχολιασμό σε κείμενο και ήχο.

Στην παρούσα διατριβή, εξετάζουμε πώς μπορούμε να εκμεταλλευτούμε την ύπαρξη

ενός σχήματος αστέρα (star schema), προκειμένου να απαντηθούν OLAP ερωτήματα

των χρηστών με CineCube movies. Η μέθοδος μας, που υλοποιήθηκε σε ένα

πραγματικό σύστημα, περιλαμβάνει τα παρακάτω βήματα. Ο χρήστης υποβάλλει ένα

OLAP ερώτημα σε ένα ύπαρχον σχήμα αστέρα. Λαμβάνοντας αυτό το ερώτημα ως

είσοδο, το σύστημα παράγει ένα σύνολο από ερωτήματα που συμπληρώνουν το

περιεχόμενο των πληροφοριών του αρχικού ερωτήματος, και τα εκτελεί. Στη

συνέχεια, το σύστημα οπτικοποιεί τα αποτελέσματα του κάθε ερωτήματος και

συνοδεύει την παρουσίαση τους με κείμενο το οποίο σχολιάζει τα σημαντικά μέρη
των αποτελεσμάτων. Επιπλέον, μέσω ενός συστήματος μετατροπής κειμένου σε ήχο,

το σύστημα μας παράγει αυτόματα ήχο για το κείμενο που δημιουργούμε. Κάθε

συνδυασμός της απεικόνισης, του κειμένου και του ήχου αποτελεί ουσιαστικά μία

CineCube movie, η οποία υλοποιείται ως μια παρουσίαση του PowerPoint και

επιστρέφεται στον χρήστη.

Επιβλέπων Καθηγητής: Πάνος Βασιλειάδης

IX

EXTENDED ABSTRACT IN ENGLISH

Gkesoulis, Dimitrios. MSc, Department of Computer Science and Engineering,
University of loannina, Greece. June, 2013. Automatic construction of OLAP query
sequences with text and audio commentaries.

In this thesis, we investigate how we can exploit the existence of a star schema in

order to answer user OLAP queries with CineCube movies. Our method, implemented

in an actual system, includes the following steps. The user submits a query over an

underlying star schema. Taking this query as input, the system comes up with a set of

queries complementing the information content of the original query, and executes

them. Then, the system visualizes the query results and accompanies this presentation

with a text commenting on the result highlights. Moreover, via a text-to-speech

conversion the system automatically produces audio for the constructed text. Each
combination of visualization, text and audio practically constitutes a cube movie,

which is wrapped as a PowerPoint presentation and returned to the user.

Thesis Supervisor: Panos Vassiliadis

1

CHAPTER 1. INTRODUCTION

1.1. Constructing a CineCube Story

1.2. Running Example

1.3. Roadmap

Can we answer user queries with movies? Why should query results be treated simply

as sets of tuples returned by the DBMS as if they would be visualized in an orange

CRT of the 70’s? So far, database systems assume their work is done once results are

produced, effectively prohibiting even well-educated end-users to work with them.
Can we do something better?

In this paper, we make a first attempt towards showing that it is possible to produce

query results that are (a) properly visualized, (b) textually exploitable, i.e., enriched

with an automatically extracted text that comments on the result, (c) vocally enriched,

i.e., enriched with audio that allows the user not only to see, but also hear. Moreover,

we provide an extensible method to accompany a query result with results o f

complementary queries that allow the qualitative assessment o f its information

content. Interestingly, a meaningful sequence o f related queries that provide context
and depth to the original query, “dressed” with the appropriate visualization and
sound, ends up to be nothing else but a movie where cubes star.
Assumptions. In this paper we make a realistic assumption that empowers us with the

ability to address the challenge in a clear setting. We assume the existence of a star

schema with clean, reconciled hierarchies of reference data; we also assume that the
end users are interested in working with OLAP queries over these data. We exploit
the star schema in order to generate complementary queries automatically.
The movie’s parts and their extension. Much like movies, we organize our stories
in acts, with each act including several episodes all serving the same purpose. Our
method involves two extensibility mechanisms, (i) one concerning the generation o f

2

complementary queries that contextualize the original result and give insight and (it)

another concerning the automatic identification o f interesting information within the
results o f each query. We are further exploit the outcome of the latter mechanism, as

it is the main means via which we accompany results with automatically generated

text (which in turn, is then fed to text-to-speech conversion in order to generate

audio).
Low technical barrier. An important goal of this paper is to demonstrate that the

technical barrier for someone who would be interested to conduct research on this

problem is low. Existing API’s for the construction of PowerPoint presentations

[APOI] and for text to speech conversion [MARY] allow us to produce a pptx

programmatically: each query can have a slide where its result is neatly visualized;

the slide’s notes can contain the text explaining the result and the slide’s audio can be

produced via text-to-speech conversion.

Contribution & call to arms. The individual parts of the method are not the core

contribution of the paper; however, it is their principled and extensible bundling in a

single, extensible tool that creates a research opportunity and an actual contribution.

The fundamental message carried from this paper is that it is feasible (and we have

done it) to drastically change the way users interact with business intelligence tools

via simple programmatic APIs. Moreover, we can systematically expand this research

ground by plugging in more and more techniques both from existing and foreseeable

research results in the areas of text commenting, query recommendation and data

visualization.

3

Figure 1.1. An excerpt of a CineCube story over the Adult data set

4

1.1. Constructing a CineCube Story

A really useful characteristic of cubes is that dimensions provide a context for facts

[JePTIO]. This is especially important if combined with the fact that dimension values

come in hierarchies·, therefore, every single fact can be simultaneously placed in

multiple hierarchically structured contexts, providing thus the ability to analyze sets

of cats from multiple perspectives. At the same time, hierarchies allow the

comparison of their members with (a) ancestors, (b) descendants and (c) siblings

(children of the same parent). Assume a basic, detailed cube C defined (a) over a set

of dimensions D = {Dij.-.jDn} and (b) over a measure M. A query Q in our context

exploits the multidimensionality of the cube space and can be considered as a

quintupleQ=(C,D,Z,Γ,γ(Μ)) where:

Σ is a conjunction of dimensional restrictions of the form Di. Lj = valuer - i.e.,

constraints that focus the context of the query to certain dimensional values.

Γ is a set of grouper dimensional level (practically comprising the GROUP BY

attribute set in a SQL query), over which the information will ultimately be grouped.

γ(Μ) is an aggregate function applied to the measure of the cube; again, we restrict

ourselves to a single measure.

Given a query Q and its result Q.RS, we can make a short story by seeking for

answers to the following questions:
0. A f ir s t assessm en t o f th e current s ta te o f affa irs. Practically, this requirement refers to

the execution of the original query.
1. P u t th e s ta te in C o n tex t. Are the results o f γ(Μ) good? What does “good” mean in

this case? Typically, we would expect to compare the result o f the query Q to the
results of similar queries over siblings of the values that appear in the filter list Σ.

2. A n a ly s is o f wkry th ings are th is w ay. Given a certain cuboid that is the result o f a
query, we would like to provide some more insight on the presented results; one
way to achieve this is to show the breakdown of the contributions o f the detailed
values to the overall, aggregate value. Practically speaking, this involves drilling-
down for each of the involved groupers and presenting the analysis o f the
internal breakdown for each of the groupers.

Clearly, this set of complementary queries that a story comprises is extensible;

existing and novel results in query recommendation (see Section S) can be

progressively plugged in our method in order to produce more informative CineCube

movies.

5

1.2. Running Example

To demonstrate our approach we use an example from the well known Adult (a.k.a
census income) dataset referring to data from 1994 USA census. There are 7

dimensions {Age, Native Country, Education, Occupation, Marital status, Work class,

and Race) in the data set and a single measure, Hours per Week. We will use a

uniform terminology to refer to the dimensions’ levels, (L0, Li, Also, the ragged

dimensions are complemented with values identical to their parent, to make them

balanced and fit to the model of [VaSkOO].

We start with an original query where the user has fixed Education to 'Post-

Secondary' (at level L3), and Work to 'With-Pay* (at level L2) and requests the Avg of

HrsPerWeek grouped by Education at level 2, and Work at level 1. We arrange the

presentation of the result in columns {Education) and rows {Work). In Fig. 1, in slide

with the indication®, one can also see the actual presentation as a 2D matrix, the

visualization interventions (highlighting high and low values with color) and the text

accompanying the visual presentation. The text is (a) part of the slide’s notes (so that

the user can reuse it) and (b) orally voiced as an audio file accompanying the slide.
The slide’s text is delivered via a set of highlight extraction methods that search the

2D matrix for prominent features (high and low values, rows or columns dominating

some of these indicatory values, etc).

Once the originally query has been answered, we move on to put it in context. Act I of

the CineCube movie, including slides Θ and © (dressed in blue color), performs the

following analysis: since there is a selection condition with two atoms
(£^wcfl//o/7.ZJ-Post-Secondary' and With-Pay'), we compare each o f the

defining values with its sibling. So, slide Θ presents a comparison between the

siblings of ‘Post-Secondary’ at level L3 of Education (specifically, the single value

‘W/O post-secondary’). The analysis shows that in 3 out of 3 cases people with Post-
Secondary education work more (see Fig. 1 at top right for the respective text).
Similarly, in slide ©, we relax the constraint on Work and compare the value ‘With-

Pay’ with its siblings at level L2 of Work (again the single value ‘W/O Pay). The

results are inconclusive; for lack of space we omit the respective text from Fig. 1. In

both these cases, we did two things: (a) we took a single atomic formula from the
selection condition of the original query and replaced it by fixing the defining value to

6

the parent of the original value, and (b) we put the grouping level to the level of the
replaced value.

u

12

U

LO

14

u

u

II

10

Figure 1.2. Dimensions Workclass and Education

Then, we detail the results of the original query in Act II of the CineCube movie. In

slides © and Θ (dressed in red color) we present the results of drilling-down one

level per grouper value. Observe slide © as an example (slide © is similar): for each

of the values in the rows of the original query (at level Li of dimension Work) we

drill-down one level (at level Le that is) and group-by accordingly. For each

aggregated cell of the result we also show the number of detailed tuples that

correspond to it, in parentheses. The text is constructed similarly with the previous act

and includes a discussion of trends for high and low values along columns and rows.

7

In the actual presentation that we generate, the set of information-carrying slides is

also enriched with transition slides among the acts, explaining the intuition behind

them as well as with a summary of the key highlights in the end (see Fig. 3).

1.3. List of Contributions

In this paper we provide the following contributions:

- Our main result is the introduction of a method that allows the generation of a

CineCube movie, over an OLAP database, with a simple user query as starting

point. Specifically, we can detail the individual contributions of our method as

follows.

- We demonstrate how to complement the original query with additional queries
that allow the contextualization and analysis of the original result. Moreover,

we demonstrate an extensible method for searching for interesting findings in

their results. Both these tasks are fully automated, by taking into advantage the

value hierarchies of OLAP cubes. At the same time, they provide two points

of extensibility of our method, both with respect to the complementary results

and with respect to the highlight detection within these results.

- We demonstrate how to automate the generation of text describing the
aforementioned highlight findings (by accompanying each type of highlight

with a template text) and how to convert this text to audio (via publicly

available text-to-speech conversion software).

- Finally, we show that all the above can be packaged with small programming

effort in a PowerPoint presentation, practically presenting a small movie to the

user.

1.4. Roadmap
In Chapter 2 we explain the low technical barrier of the method and we discuss our

method’s internals. In Chapter 3 we show the architecture of CineCube software. In

Chapter 4 we show experimental results. In Chapter 5 we discuss related work. We

conclude with a presentation of open issues in Chapter 6.

9

CHAPTER 2. AUTOMATING CINECUBE

CONSTRUCTION

2.1. Internal Structure of the CineCube Movie

2.2. Formal Background

2.3. Act I: Putting Things in Context - or “How good is the original cube compared to
its siblings?”

2.4. Act II: Explaining Variation - or “Drilling into the breakdown of the original

result”

2.5. Highlights and Text
2.6. Employed Technologies

2.7. Creation of CineCubes

2.1. Internal Structure of the CineCube Movie

A typical movie story is structured in approximately 3 acts: the first providing

contextualization for the characters as well as the incident that sets the story on the
move, the second where the protagonists and the rest of the roles build up their actions

and reactions and the third where the resolution of the film is taking place. Each act is

composed of sequences of scenes: each scene involves a change in the status of the

plot (typically oscillating this status in order to keep viewers interested) and a

sequence drives a subset of the plot to a major status update [McKe97].

We follow this traditional structure of a movie in our effort. We are clearly avoiding

the temptation to automate a 90’ movie; on the contrary, we wish to keep the story

short and limited, as we anticipate users will explore several CineCube stories before

gathering their results and discoveries from exploring the data. We organize Acts in

Episodes: each episode practically corresponds to a pptx slide (although, we can

i

envision extensions to other formats — e.g., it could be a section in a document). This

result-based structure of the CineCube movie is accompanied by a procedural-based

structure, with a set of classes that actually get the job done. Here, we introduce the

two extensibility mechanisms that allow our method to be extensible to all sorts of

algorithms for extra results and discoveries. There are two “dimensions" o f

extensibility: (i) what kind o f query results (episodes) we collect from the database,
and, (ii) how we automatically discover important findings within these results.

Figure 2.1. Extensibility mechanism for CineCubes

The first extensibility mechanism concerns the generation of queries (and slides)

within each Act. The abstract class Task is the generator of the queries of each Act:

therefore, we materialize it differently for each kind of Act (here we have two such

materializations, for Act I and Act II). The crux of the approach is that each episode

comes with (typically one, but sometimes more) queries in its background; therefore,

each Act generates SubTasks, with each Subtask carrying and being responsible for

the execution of a query that gathers the data (that are ultimately visualized in the
main part of the slide). An Episode can have several SubTasks to compute its

contents. Since each SubTask carries its own query depending on the ActITask, the

above mechanism is extensible by appropriately constructing the method
generateSubTasksQ and the method construct A ctEpidosesQ for each materialization
of Act.

11

The second extensibility mechanism concerns the determination of key findings, or
Highlights within each Episode. We fundamentally consider the presentation of

results as a 2D matrix on the screen1; to this end, we have structured several methods

that scan a 2D matrix and isolate interesting cells (top-k max or top-k min values,

domination of a class of values by a column or row, etc). Class Highlight is a point of

extensibility where methods for result extraction can be added to search for more

results within the answer of a query.

There are several other classes that accompany the above core of the method which

are omitted from this discussion for lack of space. These classes concern the

management of cubes and their relationship with a relational database, the

construction of the text, the derivation of the audio for the constructed text and so on.

2.2. Formal Background

Our method operates on top of a simple hypercube model for OLAP, expressed via a

star schema in terms of relational representation. Hypercubes, commonly referred to

as cubes - a term that we will adopt henceforth — are very popular with end-users due

to their simplicity and usability. A cube is a structured group of cells, each defined

with respect to fixed set of dimensions and containing measurable quantities, or

measures. The dimensions act as coordinates for the cell and the measures as

contents; for example, a cell must state that with the respect to the coordinates

[City=Athens> Year=20l3] we have data for the following measured quantities

[AmtSales=l0, Revenue=100]. A cube organizes its cells along specific dimensions
(here: Geography and Time) offering thus a multidimensional view of the data to the

user. Then, the user can perform statistical analyses of the data by focusing on

specific subsets of the cube and aggregating data at various level of detail. Each

1 Of course, other forms of visualization can accompany the result; however, it is our

conviction that the actual data should definitely be part o f the answer [Tuft97],

12

dimension offers a hierarchy of aggregation levels, or levels, constructed via

relationships which we call ancestor relationships. Each level is more detailed than its

ancestors (here: the dimension Time has a hierarchy Year, Month, Day, with Year

being an ancestor of both Month and Day and Month being an ancestor of Day). The

representation of a cube along with its dimensions in a relational database is typically

performed via a star schema that include (a) fact tables, referring to cubes at the

lowest level of detail and (b) dimension tables, storing the hierarchies of the

dimension values and levels.

In a nutshell, the logical layer involves (a) dimensions defined as lattices of dimension

levels, (b) ancestor functions (in the form of anc^) mapping values between related

levels of a dimension, (c) detailed data sets, practically modeling fact tables at the

lowest granule of information for all their dimensions and (d) cubes, defined as

aggregations over detailed data sets.

Formally, we strictly follow the logical cube model of [VaSkOO], accurately

summarized in [Man+05] as follows:

Four countable pairwise disjoint infinite sets exist: a set of level names (or simply

levels) U*, a set of measure names (or simply measures) U*, a set of dimension names

(or simply dimensions) U„ and a set of cube names (or simply cubes) Û . The set of

attributes U is defined as 11=11̂ 11*. For each AeU,, we define a countable totally

ordered set dom(A), the domain of A, which is isomorphic to the integers. Similarly,

for each AeU^ we define an infinite set dora(A), the domain of A, which is

isomorphic to the real numbers. We can impose the usual comparison operators to all

the values participating to totally ordered domains {<, >, <,, £}.

A dimension D is a lattice (L ,-0 such that:

- L=(Li,..., L„), is a finite subset o f UL.

- dom(Li)ndom(Lj)= 0 for every i* j.

-< is a partial order defined among the levels o f L.

- The highest level of the hierarchy is the level D.ALL with a domain of a single

value, namely 'D .a l l '.

13

Each path in the dimension lattice, beginning from its upper bound and ending in its

lower bound is called a dimension path.

A family of functions anc^ is defined, satisfying the following conditions:

1. For each pair of levels Li and l_ 2 such that L-i -<L2 the function anc[^ maps each

element of dom(Li) to an element of dom(L2) .
2. Given levels Lu L2 and L3 such that Ι_ι-<Ι_2-<1-3, the function anc^ equals to the

composition anc^anc^. This implies that:

- anc^(x)=x.

- if y= anc^ (x) and z= anc^ (y), then z= anc^(x).

- for each pair of levels LI and L2 such that L1-<L2 the function

L2
ancL1 is monotone (preserves the ordering of values). In other

words:

Vx^yedomCLi): x<y => anc^(x)<anc^ (y) ,L i^L2

A schema S is a finite subset of U. Normally, we will represent a schema as divided in

two parts: S=[Di. Li, Dn. Ln, Αχ, Am], where:

- L n) are levels from a dimension set D=(DiJM.jDn) and level L i comes

from dimension Di, for l<i<n.

- are attributes, i.e. measures and levels.

A detailed schema S° is a schema whose levels are the lowest in the respective

dimensions. When we refer to a level L as the lowest in the dimension, it means that

there does not exist any other level L', such that L.

A tuple t over a schema s=[L1>...,Ln,A1,...,Am] is a total and injective mapping from S

to dom(L1)x...xdom(Ln)xdom(A1)x...xdom(A„), such that t[X]edom(X) for each X€S.

A data set DS over a schema 5 = [Ι ι,...,ίη,Αι2...,Α„,] is a finite set of tuples over S

such that:

— V t i ^ e D S , t i [L i j_ , ,L f t]= t2 [L i j~ jL n] => t j = t 2.

— for no strict subset X c{L 1J...i Ln}, the previous also holds.

In other words, Ai/ ...JAa are functionally dependent (in the relational sense) on levels

(Li,.», Ln)of schema S. A detailed data set OS6 is a data set over a detailed schema S.

14

A star schema (D,S0) is a couple comprising a finite set of dimensions D and a

detailed schema S0 defined over (a subset of) these dimensions.

An atom is tru e , f a ls e (with obvious semantics) or an expression of the form x 3

y, where x and y can be one of the following: (a) a level Li (i.e. not a measure); (b) a

value 1; (c) an expression of the form anc£ (Li) where Lr<L2; (d) an expression of the

form anc£(l) where Li-<L2 and ledom(Li). If x and y are levels then they should

belong to isomorphic dimensions. 3 is an operator from the set (>, <, =, k, <, *).

A selection condition φ is a formula involving atoms and the logical connectives a , v

and A selection condition is always applied to a data set such that all the level

names occurring in the selection condition - either in the form (a) or (c) - belong to

the schema of the data set. Let DS be a data set over schema S. The expression φ(ϋ5)

is a set of tuples X belonging to DS such that when, for all the occurrences of level

names in φ, we substitute the respective level values of every xeX, the formula φ

becomes true. A detailed selection condition φ0 is a selection condition where all

participating levels are the detailed levels of their dimensions.

A primary cube c (over the schema [Li,..., Ln, Mi,...,Mm]), is an expression of the
form:

c=(DSe^j [Li,...,L„,Mi,...,Mm], [aggiiMllĴ aggBiMlj!)]), where:

- DS® is a detailed data set over the schema S=[LJ , L®, M®, MJ] , m<k.

- φ is a detailed selection condition.

~ Mi, are measures.

- L® and Li are levels such that L®-<Li, l<iSn.

~ aggie(sum,min,max,count,average), lsism.

The semantics of a primary cube in terms of SQL over a star schema are:

SELECT Li,...,L„, aggi(M?),...,aggB(M®)

FROM DS® INNER DOIN Dt ... INNER 30IN D„

WHERE φ

GROUP BY

15

The user can submit cube queries to the system. A cube query specifies (a) the (basic)

cube over which it is imposed, (b) the selection condition that isolates the records that

qualify for further processing, (c) the aggregator levels, that determine the level of

coarseness for the result, and (d) a list of aggregations over the measures of the

underlying cube that accompany the aggregator levels in the final result.

Clearly, there is a variety of choices for the expressiveness of each of these

constituents, and thus, the query class of a method is determined by the combination

of these choices. In our approach, we make the following assumptions for the query

class of the supported cube queries :

- We work with cube queries that involve a single measure.

- We assume strictly two aggregator levels for the result; this allows a
straightforward tabular representation of the result in a 2D screen.

- We assume that the selection condition is defined as the conjunction of a set of

atomic formulae, one per dimension, each of which is of the form L = v, with

L being a dimension level and v being a value in the domain of this level.

In the rest of our deliberations, we will assume that the users submit to the system

Cube Queries that we denote as:
q = (D S e^ i λ λ φκ, [L0JLs],agg(M))

The results of a cube query of this form can be visualized in tabular format with the

values of La as rows and the values of Lb as columns. Expanding the method for more

than two dimensions (via the typical nesting of dimensions in rows and columns) is

part of future work. Also, although, there are several other ways that we can employ

to visualize results, like for example scatter plots on a 2D space or bar charts with
multiple data series, we would like to stress once again that any such visualization

methods are complementary to the actual data.

2.3. Act I: Putting Things in Context - or “How good is the original cube

compared to its siblings?”
In this subsection, we deal with the first of the acts. The main purpose of the first act

is to provide a context for the original query. So, we compare the marginal aggregate
results of the original query to the results of “sibling” queries that use “similar” values

in their selection conditions (to be explained right next).

16

Method. We assume an original query and we want to compare its results with

similar queries. We define a sibling query as a query with a single difference to the

original: instead of an atomic selection formula L^Vi, the sibling query contains a

formula of the form Li € childen(parent(vi)).

Formally, given an original query
q * (DS0j4>i λ ... φχ λ ... λ φχ, [l-a*Lp]>agg(M))j ΦιΜ^ν^ 1=1, . . . ,k

a new query qs is a sibling query if is of the form

Naturally, if q originally has k atomic selections, it also has k sibling queries.

To compare the results of the original query to the ones of its siblings, one would

need to lay out all the k sibling queries on the same screen and visually inspect their

differences. This becomes too hard to exploit as k increases - in fact, even with a very

small k (e.g., k=2) it can be too hard to be able to visually compare the results. So we,

need to resort to auxiliary comparisons that provide the context needed. To this end,

we introduce two marginal sibling queries, one for each aggregator. Each time, we

keep one of the two aggregators, and the other becomes Lx. If we combine this with

the fact that the new selection condition φ' restricts Lx to the siblings of the original

value v, then the resulting 2D matrix has one of the original aggregators in one of its

two dimensions and the siblings of v on the other. This way, the marginal values of

the original query on one of the two aggregators are compared to the respective

marginal values of the siblings.

Formally, given an original query
q = (DS ,φι a ... φχ a ... a φχ,[La,L|j], agg(M)) , φι:1.ι=νι, 1=1 , . . . ,k

its two marginal sibling queries are

q5 = (DS®^ Λ ...φ*Λ ... Λ φχ, [L0,Ls],agg(M)),

Φι:1ι=νι, 1=1, . . . ,x - l ,x + l , . . . ,k , φ ', ί ί ,^ η ο ^ ’ίν)» · · · »

q* = (DS*^j Λ ...φ*Λ ... Λ φχ,[Lo,*-x],agg(M)),

φι:Li=vi, 1=1,.. .,χ-1,χ+1,.. .,k^*:Lxrt=anc£’(ν)

q* = (05*,φ! Λ ...φ*Λ ... Λ φχ,[L,,Lp],agg(M)),

Ι · * · Ι

φ!:11*νί,1=1 χ·1,χ+1

Example. The original query is expressed as:

qn^.W.Lj-'With-Pay' a E.Lj-'Post-Sec', [W.Li,E.L2], avg(Hrs)),

1

17

In the reference example, slides Θ and © involve the two marginal subqueries - see

for example the former with the selection set to parent(Jwith-Pay’) and the grouping

to the level of Jwith-Pay' (i.e., l3):
qz=(DS0,W. l ^ ’With-Pay* λ E.U='ALL, > [W.L^E.Lj], avg(Hrs))

2.4. Act II: Explaining Variation - or “Drilling into the breakdown of the

original result”

The purpose of Act II is to help the user understand why the situation is as observed

in the original query. In order to shed some more light to what is happening, we drill

in the details of the cells of the original result in order to inspect the internals of the

aggregated measures of the original query.

Assume a cube query
q = (DS0,<t>i λ _. λ φκ,[LajLuLagg(M)), φ^ί^ν*, i=l,....,k

and its result, visualized as a 2D matrix. Then, each cell c of this result is

characterized by the following cube query:

qC = (Ο50,φ ! Λ ... A φ(ς Λ Φ ο [L o A p L a g g W) , Φΐ· Li=Vi,

Φ θΦ α Λ Φρ = L0=V^ Λ Lp=Vp

For each of the aggregator dimensions, we can generate a set of explanatory drill in

queries, one per value in the original result:

q°i = (DS0, φ! a ... λ φκ λ Φ°ί , [La.i,Lp],agg(M)),

qh = (DS®, φι A ... Λ φ|< A Φ ι̂ ^ L ^ L p . J j a g g iM))

Then, for each of the two grouper dimensions we create a slide. In each of these slides

we have one query for each of the values that appear in the original result for this

dimension.

Example. Observe slide O where we drill-down for values Gov, P riv a te and

Self-emp via the explanatory drill in queries for dimension Work.
qe°''=(DSeJW.L2='With-Pay' a W . L ^ 'G o v ’ a E^'Pcst-Sec’, [W.L0,E.L2],

avg(Hrs))

qpr''=(DS0,w.L2='with-Pay' a w .Li='Private'A E.L3='Post-Sec’, [W.L0JE.L2],

avg(Hrs))

qs'*=(DS®,W.L2=,With-Pay’ a W.L^’s-e* a E.L^'Post-Sec', [W.L0,E.L2],

avg(Hrs))

18

Observe that due to the fact that this is the special case where selection conditions

involve grouper values at finer levels of detail, we have completely removed the

atomic formula of the dimension that we drill-down (W. I^*’W ith-Pay').

2.5. Highlights and Text

As already mentioned, the extraction of highlights is orthogonal to the query that

creates the results of a slide. Once the results of the query are computed and organized

in a 2D matrix, we utilize a palette of highlight extraction methods that take a 2D

matrix as input and produce important fmdings as output. This way, (a) we can reuse

highlight extraction methods to all the query results, independently of the Act or the

query that has been executed, and, (b) we can gracefully extend the palette of

highlight extraction methods with more results. We have implemented a small number

of highlight extraction methods for the moment that include the highlighting of the

top and bottom quartile of values in a matrix, the absence of values from a row or

column, the domination of a quartile by a row or a column (i.e., when all the values of

a quartile appear in a certain row or column), the identification of min and max

values, etc. Clearly, there is a vast area of enriching this palette (trend analysis,

correlations, relative relationships of rows and columns, to name just a few); however,

implementing the full spectrum of such techniques can be done with diligence as part

of future work. We utilize a dedicated Highlight Manager class to extract Highlights.

Text is constructed by a Text Manager that customizes the text per Act, by plugging

values to a template that comes with each act. Compare the following excerpt with the
text of slide 0 in Fig. 1.

In this slide, we drill-down one level for all values o f dimension «ttm> at level <i>. For

each cell we show both the <agg> o f <measure> and the number o f tuples that correspond
to it.

2.6. Employed Technologies

One of the major goals of this paper is to highlight how we can automatically

construct a CineCube presentation that includes result visualization, text and audio. In

19

this subsection, we explain the main technologies via which our PowerPoint

presentations are programmatically constructed.

Apache POI [APOI] is a Java API that provides several libraries to create and modify

Microsoft Word, PowerPoint and Excel files. MS Office files obey the Office Open

XML standards (OOXML) and Microsoft's OLE 2 Compound Document format

(OLE2). More specifically, XSLF is the Java implementation of the PowerPoint 2007

OOXML (.pptx) file format in POL

The automatic manipulation of .pptx files is relatively simple for simple tasks. See the

following excerpt for creating a file and a slide:

XMLSlideShow ss = new XMLSlideShow();
XSLFSlideMaster sm = ss.getSlideMasters()[Θ];
XSLFSlide sl= ss.createSlide

(sm.getLayout(SlideLayout.TITLE_AND_CONTENT));
XSLFTable t = sl.createTableQ;
t.addRow() .addCell() .setText("added a cell”); ...

As we will discuss later, we automate the construction of text that characterizes each

slide. We add the text for each slide that we create as a slide’s note. At the same time,

the existence of text can help us create a narrative as audio. We use the API provided

by MARY [MARY], which is an open-source, multilingual Text-to-Speech Synthesis

(TTS) platform written in Java and allows to generate one audio file per slide, simply

by providing the notes of the slide as input to a method call.

Marylnterface m = new LocalMarylnterfaceQ;

m.setVoice("crnu-slt-hsmm”);

AudioInputStream audio = m.generateAudio("Hello”);

File audifile = new File("myWav.wav”);

AudioSystem.write(audio, audioFileFormat.Type.WAVE,audiofile);

Naturally, there are several nuts and bolts to fine tune. However, the main lesson

learned here is that the packaging o f the results o f our method, one by one as slides in

2 0

a presentation is attainable with neat programming facilities, already available in the

Web.

2.7. Creation of CineCubes

Having explained all the individual steps, we now move on to discuss the overall

process for creating a CineCube movie. In its current configuration, a CineCube

movie includes three kinds of acts: the Introductory Act (including the introductory

slide), three Operational Acts including the act involving the original query and the

two acts for the management of complementary queries, and a Summary Act with a

summary slide with all the important highlights of the previous three acts.

Algorithm Construct Operational Act

Input: the original queiy over the appropriate database

Output: a set of an act’s episodes fully computed

1. Create the necessary objects (act, episodes, tasks, subtasks) appropriately

linked to each other

2. Construct the necessary queries for all the subtasks of the Act, execute

them, and organize the result as a set of aggregated cells (each including

its coordinates, its measure and the number of its generating detailed

tuples)

3. For each episode

- Calculate the visual presentation of cells

- Calculate the cells’ highlights

- Produce the text based on the highlights

- Produce the audio based on the text

Figure 2.2. Constructing an Operational Act

Overall the method includes the following steps:

1. Construct Introductory Act

21

2. For all the Operational Acts, execute the Construct Operational Act algorithm

that calculates the Act’s contents (result visualization, highlights, text and

audio)

3. Construct Summary Act in the end

4. Wrap-up the Acts in a PowerPoint movie

The computation of the contents and presentation of the Operational Acts is outlined

in the Algorithm of Figure 5. Here, we would like to stress the extensibility aspect

again: depending on the Act (and more specifically, on its operational Task

counterpart), the queries of the subtasks are specialized per slide. Moreover,

highlights, text and audio are produced via dedicated manager classes (not shown in

Fig. 4 for lack of space).

The Summary Act is simply a slide with the text of the highlights copied to it,

organized per act. However, the Wrapping-up Act introduces a few programmatic

tasks worth mentioning here. Basically, for every episode we create a slide, with its

title and contents (i.e., the 2D tables or the text, depending on the type of slide). This

can be done straightforwardly with the programming facilities provided by the

Apache POI. Unfortunately, though, POI does not support the management of notes,

where we actually store the text of each slide and audio. To deliver a presentation in

the form that we wish to have it, we proceed as follows: (i) we unzip the pptx in a

temporary folder (remember: each MS Office file is actually a zipped folder with a

rigid structure, within which, XML and media files are located in a principled

fashion); (ii) create appropriate files for the notes in the ppt/notes/ folder, along with

the necessary links that link them to their slide, (iii) do the same for audio at the

ppt/media folder and (iv) zip the folder again to a .pptx file.

On the following pages we depict the result of our method of the query we use as

example in this chapter. The result is given as a table where the left column is the

produced slide and the right column has the notes of this slide.

2 2

Table 2.1 Result Slideshow for Example Query

m

Act I: Putting results in context

' ol ιι,ύΜ Mr (►! t** <̂·< n*> Λ* ' ■****> '■'i ip* i4 *'4 3*4·***■* »***". »>*K l*P

This is a report one Avg of work hours per
week when education is fixed to Tost-
Secondary' and work is fixed to 'With-Pay\
We will start by answering the original query
and we complement the result with
contextualization and detailed analyses.

Here, you can see the answer of the original
query. You have specified education to be
equal to 'Post-Secondary', and work to be
equal to *With-Pay\ We report on Avg of work
hours per week grouped by education at level
2, and work at level 1.
You can observe the results in this table. We
highlight the largest values with red and the
lowest values with blue color.
Column Some-college has 2 of the 3 lowest
values. Row Self-emp has 3 of the 3 highest
values.
Row Gov has 2 of the 3 lowest values.

Act I: Putting results in context
In this series of slides we put the original
result in context, by comparing the behavior of
its defining values with the behavior of values
that are similar to them.

23

In this graphic, we put the original request in
context by comparing the value Tost-
Secondary1 for education at level 3 with its
sibling values. We highlight the reference cells
with bold, the highest value with red and the
lowest value with blue color. We calculate the
Avg of work hours per week while fixing
education at level 4 to be equal to
"ALL", and work at level 2 to be equal to
"With-Pay".
Compared to its sibling we observe that in 3
out of 3 cases Post-Secondary has higher value
than Without-Post-Secondary.

In this graphic, we put the original request in
context by comparing the value 'With-Pay' for
work at level 2 with its sibling values. We
highlight the reference cells with bold, the
highest value with red and the lowest value
with blue color. We calculate the Avg of work
hours per week while fixing education at level
3 to be equal to "Post-Secondary", and work at
level 3 to be equal to "ALL".
Compared to its sibling we observe that in 1
out of 4 cases With-Pay has a higher value
than Without-pay.
In 1 out of 4 cases With-Pay has a lower value
than Without-pay. In 2 out of 4 cases Without-
pay has null value.

Act II: Explaining results

trvi y t n n cA VKfrt ** jt r t 4 o'
<1» yi t*·* e* tf* To iM*

y «Λ* itoMKtb, cf («>,{* Γ* im H of the
nr** to one Irvrt <λ to**. n

Act II: Explaining results
In this series of slides we will present a
detailed analysis of the values involved in the
result of the original query. To this end, we
drill-down the hierarchy of grouping levels of
the result to one level of aggregation lower,
whenever this is possible.

24

In this slide we remind you the result of the
original query. Now we are going to explain
the internal breakdown of this result by
drilling down its grouper dimensions. In the
first of the following two slides we will drill-
in dimension work at level 1. Then we will
drill-in dimension education at level 2.

In this slide, we expand dimension work by
drilling down from level 1 to level 0. For
each cell we show both the Avg of work
hours per week and the number of tuples that
correspond to it in parentheses. We highlight
the 6 lowest values in blue and the 6 largest
in red color.
Some interesting findings include:
Column Post-grad has 4 of the 6 highest
values.
Column Some-college has 4 of the 6 lowest
values.

In this slide, we expand dimension education
by drilling down from level 2 to level 1. For
each cell we show both the Avg of work
hours per week and the number of tuples that
correspond to it in parentheses. We highlight
the 3 lowest values in blue and the 3 largest
in red color.
Some interesting findings include:
Column Gov has 3 of the 3 lowest values.

II

i

Λ

25

In this slide we summarize our findings.
Concerning the original query, some
interesting findings include:
Column Some-college has 2 of the 3 lowest
values.
Row Self-emp has 3 of the 3 highest values.
Row Gov has 2 of the 3 lowest values.
First, we tried to put the original result in
context, by comparing its defining values
with similar ones.
When we compared Post-Secondary to its
siblings, grouped by education and work, we
observed the following:
In 3 out of 3 cases Post-Secondary has higher
value than Without-Post-Secondary. When
we compared With-Pay to its siblings,
grouped by education and work, we observed
the following:
In 1 out of 4 cases With-Pay has a higher
value than Without-pay. In 1 out of 4 cases
With-Pay has a lower value than Without-
pay. In 2 out of 4 cases Without-pay has null
value.
Then we analyzed the results by drilling
down one level in the hierarchy. When we
drilled down work, we observed the
following facts:
Column Post-grad has 4 of the 6 highest
values. Column Some-college has 4 of the 6
lowest values.
When we drilled down education, we
observed the following facts:
Column Gov has 3 of the 3 lowest values.

27

CHAPTER 3. CINECUBE SOFTWARE

ARCHITECTURE

3.1. Software Architecture

3.2. Extending the set of Acts

3.3. Extending the set of Highlight Extraction Methods

3.4. Assessing the Extensibility of our framework

3.1. Software Architecture

3.1.1. Package Structure

In Figure 3.1, we present the package structure of our implementation along with

dependencies between packages. The packages that constitute the current state of the
CineCubes implementation are:

• CubeMgr, consists of two subpackages as shown in Figure 3.1, which are:

o CubeBase has classes that we use to construct the objects needed to

implement the cube model.

o StarSchema has classes that we use to map the tables of the database to

the proper objects.

• TaskMgr has the classes which we use in our algorithm Construct Operational
Act for constructing the necessary Tasks and Subtasks.

• StorMgr has the classes which we use to construct the main objects of a Story.

• HighlightMgr has the classes to construct the different highlights for each

episode of a Story.

• TextMgr has the classes which construct the text for each episode of a Story.

28

• AudioMgr has the classes which convert the text to audio.

• WrapUpMgr has the classes which create the final result for the user.

In the next sections, we provide more information for the classes of the above

packages.

Figure 3.1 Structure of CineCube Packages

3.1.2. The package Cube Mgr

In Figure 3.2, we present the class diagram for package CubeMgr and its subpackages

CubeBase and StarSchema. For package CubeMgr, we have created a class also

named CubeMgr which helps us to manage the rest of the classes of the CubeBase

and StarSchema subpackages. In subpackage CubeBase, we construct the classes of

the cube model. The names of the classes refer to the constructs of the cube model of

Chapter 2, e.g., the CubeQuery class implements the CubeQuery of Chapter 2, the

Dimension class implement the dimensions of the cube model and so on. The

subpackage StarSchema provides the proper classes so that we can communicate with

the relational database that stores the data of the cube model.

29

Figure 3.2 Class Diagram for Package CubeMgr

30

3.1.3. The package TaskMgr

Package TaskMgr contains the necessary classes which help us to create a new kind of

Act. Here we have a TaskMgr class to manage the tasks. The Task class is abstract to

facilitate the creation of a different type of task for each new kind of Act via the

appropriate materialization. In our method, we create two subclasses of its kind for

Act I and Act II, which we described in Chapter 2, and one subclass to implement the

original request. Also, we have the abstract class ExtractionMethod to choose

between different ways to get the result. In our approach, we materialize this class as

SqlQuery as shown in Figure 3.2 to get the result from relational database. In addition,

we implement the ExtractionMethod as abstract class such that in future we can get

data from different source e.g. xml files. To keep the result which returned from class

Extraction Method we have created a class Result. This class in our current approach

keeps the result in a 2d matrix and implements a set of function to manipulate this

table. In the future we think to do the class Result abstract such that to keep more and

different data types.

]_______________
STaikMgr

Figure 3.3 Class Diagram for Package TaskMgr

31

3.1.4. The package Story Mgr

In the package StoryMgr, we host the main classes needed to create a Story. This

package has the class StoryMgr to manage the story and the Story class. Also, it has

the classes which implement the acts, the episodes of each act and the visualization of

an episode. Moreover, the Episode class is an abstract class such that can we create

difference type of episode (e.g. frame in wmv file).

Figure 3.4 Class Diagram for Package StoryMgr

In Figure 3.4, we present the connections between the classes of StoryMgr. Observe

that the Story class has an object FinalResult which is an abstract class and

materialized as PptxSlideshow in our method. The FinalResult is abstract so that we

can use more kinds of final results (such as a wmv file), in the future. Also, the

implementation of the episodes of Act is performed via an abstract class Episode,

which in our approach is materialized as PptxSlide. In addition, the Episode class is

associated with the Highlight class, the Audio class, the Visual class and the Subtask

32

class of package. The classes Highlight and Audio are to be discussed in the following

subsections with the packages that contain them. The Visual class is an abstract class,

so in the future to have the ability to create a new kind of visualization of our result

(such as a graph). In our method, we materialize a Tabular class which visualizes the

result as a pivot table. Finally, to create a new Act we must materialize a Task class as

we shown in Figure 3.4.

Figure 3.5 Class Diagram for Package HighlightMgr

3.1.5. The package HighlightMgr

In Figure 3.5, we present the class diagram for package HighlightMgr. In this

package, we host one abstract class, with name Highlight. This class can be extended

for finding highlight in episodes. In our current method, we have created the six

following subclasses:

• HighlightCompareRow, to compare one row with the other rows

• HighlightCompareColumn, to compare one column with the other columns

• HighlightMax, to find the top quartile of values in a matrix

• HighlightMin, to find the bottom quartile of values in a matrix

• HighlightDominationRow, to test the domination of a quartile (top or bottom)

by a row

• HighlightDominationColumn, to test the domination of a quartile (top or

bottom) by a column

33

The method that is implemented by the materializations of Highlight is the method

executeQ- This method takes a 2D matrix of values as input and creates lists of values

where the findings are stored. Also, it creates the highlight color for each finding

(which we use at episodes).

3.1.6. The package TextMgr

In Figure 3.6, we present the class diagram for package TextMgr. In this package, we

create the abstract class TextExtration to extract text for episodes. In our method, we

create the subclass TextExtractionPPTX which produces the necessary text for every

pptx slide we create.

STextMgr

Figure 3.6 Class Diagram for Package TextMgr

3.1.7. The package AudioMgr

In Figure 3.7, we present the class diagram for package AudioMgr. In this package,

we utilize one abstract class, with name AudioEngine, which initializes the TTS

engine and create the Audio element for each episode. In our approach, we have

created the two following subclasses:

• MaryTTS AudioEgnine, for the Mary TTS API, and

• FreeTTSSAudioEgnine, for the FreeTTS API.

BArtMIgr

Figure 3.7 Class Diagram for Package AudioMgr

ewrapUpMgr

GwnpUpMgr
ŴrapUoUgrt}

4<>OWr*pUpO

Q PptsW npU pM qr

^PptxWrapUpMgro
BdoWrapupo
• XSLf crtraftttroSttaO
• XSi/crefteSufm arySCM O
• XStfcrvafeSM tO
A MtRMliorwAfcFertMMO

■ CreateTabMnSWMJ
■ CrnttSW avnnxuM udioo
A ##®«fcrowwfTbS«et<>
■ SountfHotfeStnngf)

■ AubSitoSiwffO
• gctfmMesutO
A M tN w fiM U ll)

■ B*n*m*mXJoZlcO
■ Banamt2ptoPPTXO

■ AddAuawePPTXo
■ Matncvnuftnyp^i
b ApewdCentenffypeo
B ApptrwlContenCTVM*o*»tO
B wrftCoKMnnyptO
BUnZlpFlMO
b Zc h » o

B OtflW M tf BUBO
• OtfcttFoitern
a «·ρΒβ·_ρ·ρ·υα
BM ITIBO

Figure 3.8 Class Diagram for Package WrapUpMgr

35

3,1.8. The package WrapUpMgr
In Figure 3.8, we present the class diagram for package WrapUpMgr. In this package,

we introduce the abstract class WrapUpMgr which, then, has to be materialized by a

subclass in order to construct the proper format for a stoiy. In our case, we create the

subclass PPTXWrapUpMgr which returns to the user a Microsoft PowerPoint

presentation. The reason we create the class WrapUpMgr as abstract is to provide the

ability to create a new format of a story (e.g., like a wmv file) in the future.

3.1.9. Core Classes o f CineCubes Framework

The core classes of the CineCube framework are located in the above packages

(TaskMgr, StoryMgr and HighlightMgr) and their relationship is depicted in Figure

3.9.

Figure 3.9 Core Classes of CineCube Framework

3.2. Extending the set of Acts

In this subsection, we present the sequence of steps needed in order to extend the

system with a new Act, along with its constituents. We will use the existing acts that

we have already implemented as reference cases for this discussion. To create a new

act for our current method we must implemented one new class which materializes

the class Task. Moreover, the new class must implement the two abstract functions of

36

class Task (a) the generateSubTaskQ and (b) conctructActEpisodes(). Also, we must

add a new method in class TextExtractionPPTX such that to extract the proper

contextual description added at each slide of new act. For example, for Act I of our

approach we had materialized the TaskActl which implements the two abstract

functions ((a) and (b)) and the function createTextForActlQ. Similarly, for Act II we

had materialized the TaskActll which implements the two abstract functions ((a) and

(b)) and the function createTextForAct2().

3.3. Extending the set of Highlight Extraction Methods

To have the ability to create different highlights we create an abstract class Highlight

which has an abstract function with name execution. In our method we have created

six subclasses which help us to create the different highlights for our episodes. In

Figure 3.5, we can observe that all the subclasses of Hightlight implement the abstract

function executeQ. In addition, every time we want to add a new kind of Highlight we

must add a new method in class TextExtractionPPTX such that to extract the proper

text for new highlight. We conclude that in order to enter a new highlight we must

create a new class (which materializes the Highlight), to implement the abstract

function executeQ, and to add a new method to class TextExtractionPPTX.

3.4. Assessing the Extensibility of our framework
In Table 4.1, we present the programming effort which needed to extend the current

approach of our method for. As we described in section 1.2, for create a new kind of

act which is to create one new class and to implement three functions. Also, we can

observe in Table 3.1 that to create a new kind of highlight must create one new class

and to implement two functions. Summarized, the programming effort to extend our

method in each flavor of extensibility is too low.

Table 3.1 Assessment of the Extensibility Effort for CineCubes
new classes # modified classes # new methods

new Act
new Highlight

1

1

1

1

2 (e new) + 1 (£ modified)
1 ($new)+ 1 (g modified)

37

CHAPTER 4. EXPERIMENTS

4.1 Experimental Setup
4.2 Detailed Findings
4.3 Analysis of Results per Task
4.4 Analysis of Results per Act

4.1. Experimental Setup

We have experimented with the Adult (a.k.a census income) dataset referring to data

from 1994 USA census. The dataset in its cleansed version (after uncertain and NULL

values are removed) comprises 30162 tuples of the 1994 USA census. There are 8

dimensions (Age, Native Country, Education, Occupation, Marital status, Work class,

Gender, and Race) in the data set and a single measure, Hours per Week. The

hierarchies for the fields Education, Occupation, Marital status, Work class, and Race

are depicted in Figure 4.1-Figure 4.5. Attribute Age is organized in years, 5-year

intervals, 10-years intervals, 20-year intervals and *. Attributes Gender and Salary

were not used due to their very small domain of values (Salary has only two values,

higher or lower than 50K). The levels of hierarchy Native Country, except the level 0,

are depicted in Figure 4.6.

We have experimented with the Adult data set by assessing the time needed for

generating a presentation for different kinds of original queries. All experiments have

taken place in a conventional PC running Windows 7 over an Intel Core Duo CPU at

2.50GHz, and with 3GB main memory.

Ma
ri
ta
l

oo

O
cc

up
at

io
n.

- 4 - 4

§Ο

§·
ο
aο

σο-C
<2
>>43
2
2ο
2ω43Η

23ω)

>*· ·**. ο>•*4 *0 *nJ

ΟνΓΛ

Fi
gu

re
 4

.5
 T

he
 h

ie
ra

rc
hy

 fo
r t

he
 Q

I d
im

en
sio

n
Ed

uc
at

io
n

3 a

a

a $ <\·:* iwja'AifcV· ·-- .L·}·. x V ^ iy ia - t .

41

4.2. Detailed Findings

We have measured the time needed to perform each part of the method. For each

slide, we have measured the time spent to perform the following tasks:

i. Produce Cube Query: in this part we count the time we needed to produce a
Cube Query from the original query.

ii. Produce SQL Query: in this part we count the time needed to convert a Cube

Query to SQL query.

iii. Execute SQL Query: in this part we measure the time to perform the query to

the database and take the result back.

iv. Tabular Creation, in this part we measure the time needed to format the result
of (iii) to a pivot table.

v. Highlight Creation, in this part we count the time needed to calculate the

highlights on pivot table (such as row domination, largest values etc).

vi. Color Table Creation: in this part we count the time needed to add color to

each cell of pivot table.

vii. Combine Slide: this action is performed only on Act II. It helps us to put in

one slide more than one pivot table. We measure the time which took this

action to complete.

viii. Text Creation: in this part we calculate the time needed to produce the slide’s

text from the calculated highlights.

ix. Audio Creation: in this part we calculate the time needed the MARYTTS to
create the audio file from text which we had produce at previous step.

x. Put in PPTX: in this part we count the time needed to wrap up the above to a

slideshow presentation.

In our analysis, we can group the three first parts to Result Generation and the four

next grouped to Highlight Generation & Visualization as shown in the Tables 3.1-3.4.

In these tables we can observe the time in milliseconds which takes to construct each

part per slide when we have two, three, four or five atomic selection conditions in the

WHERE clause of original query. Also, observe that the number of slides in Act I is

increasing as the number of atomic selections in the WHERE clause increases.

42

Instead, the slides of Act II remain in all cases constant, which is consistent to that we

described in Chapter 2.

• .'1 > .‘ .V·'.·'; ,·■■ ■

λ yr.h

·££.

r

if V- !·'
: . j i‘ ■ * V
; · . · · · ·

•vV*

V·: ^
• , -'-V

■: / '· *

s >< CM Os -̂4 VO r-* Os Os 00 O v s
« P Γ"* c - 00 00 r - vs c - CM
3 04 Os CM Os 06 Os VO CO 00

cl, eu VO CM 1—1 CM CO CO CM
CO

o c vs SO V, 0 vs vs O
T3 - 2 —1 7* SO CM O 0 0 Ό vs SO CM

o 5 "S sd 0 O'" vs* ^j· 'd* sd sO CM COC/3 — — r - vs r - oc r - CM O ' SO3 ^ c c - oc — 0 so — cO 7* sO CO tJ*cd U co Γ- ro oc 0 ■'d- sC vs oc
U r -
o> ΪΓ7
o ££·

t ? S CO 1—4 v s 4—1 O CO O 00 CMX5 f* -· - o .2 O 4—t y—i O r4 y—l CO CO
i·· H S O 0 O 0 O 0 O d d d

C ■ 2
·"■ oc
_o *-.
+-»
u ο o

C Ό zn CO
0

Os

D
O) c s 00

d d d

υ

εο

#o
cd

_N

o
U

< 3
O g 0 VS r - r - v s so Os

x .2 O 0 0 v s
CM
<υ>

CO

>
cdt_ cd

“ <υ
v-< *-·

0 O 0 d d d d

Cd
κ

<$ - 2 <->
©

<υ C
o V

£ *03
cdC

ο
t-4d> £ S 00 VO r - 0 CM

•C C w> .2 <0 CM 4—1 CM so v s
£
CA

o
o
4-·

·*·« +->
75 cdΛ βι GO 22

0 O O d d d CM

U.
c3

Oh
x:
ω s υ

C/3 x:
01 b g CM VS Os v*H v s 00 OS

O
4= X

J2 O
0 0

O
O

CM
d

CO
d

CM
d

o cd <L>
s H ΰ
<υ

x :4-· S b SO so CO v s 00 CO
u- .2 o CM v s vs v s CM O rj-

c2 2 3 0 0 so 0 d «-η 00
o O ' VO co VO

' o o . 4—*
o XCO

£ ao
W O

c/3
C
*

*£3
2&> 2 i-3 0 Tl“ 0 CM COo

•o ε
U ΈΖ.
3 O ' 0 O CM VO

JX a>
O

T3 CO 0 0 O 0 O d d
cd O4>u 4-» £

CQ 3
COD

ε
0)

0 έ 8 & 3 1) 0
Ψ-*
0 O 0

Os
O

0
CM

H Ό 3 0 0 O 0 d d d
S o

T t O4 υ -o
O 3

rO u
CO

H
0

Γ2 CM <0 v s so r~- 00 Os 0 2
DCO

=tt
__/

C/D

V

co HU<
HU
<

β<υ43

fi
Ο·*«<·*-*ΟjQJ

C/D
Ο •«
εο

cp
<υ>C0
κο
£
αα>

43

α.
00

-ο
Ο

(D
2
οΛ
U,
£
?

οΌ
■S
aCQ
ο
Η
Η
ΡΙ

*aΙο
£

.9 Κ ip <P o 00 o *o P 58 IP a OnmH m Oj P co ρ VO rs Π 53
1 k On o

P I
00 p»-* TP

m Π
r i
P I

ON VO ρ '
ΓΛ 5? a 8

W

•ο=3
<

C
Ο

•

Λ<λ>
υ

C3
Ο

8Xω

rv &θ ' ο
w §

o o c i o O 00 — r i 00 _

—- ip rp p ON r i o o 00 rp 00
o <N d -it r i p **P d ri p Ip

ip *P cp o ON p o p 00 o
p i rp o ρ »P NO o rp rf Pi 00

00 rp O vO o — p NO p
—* — — r i

ο ο

P
O

ip
o s 3

o o o o

^ νο ^ ρο ο *- —
ο ο ο ο

ΓΟ
P I

rp1«*4 Os
O

VO

o o o o

p i On
O 3 p

o
d o o o

5 ip
ip

ON
ON

00
ON s

p i
p

o p i
VO T?

rp
On*■■4

IP
o s s s
o o d d

o o © ©
o o o o

Tf
P I

Τ ’
<N

ON
ΓΡ

o o o o

■̂4 P I ON 00«■•4
o o d o

o
P I

«Ρ
Ip 3 P I00 P I

so
VP

o p i
p

P
P I

00
2

«Ρ
o

Ip
o © S

d o o o

s o
p
o

o

o o o o

SU
M

:

0.
24

0.

35

88
0.

82

0.
93

1.

98

0.
60

0.

09
 W

m
m

m
 1

04
63

4.
27

.S X "d“ <N X CN <N o X CN CN t*** o r-
4- H 00 © t-- Os in 00 Os X ΡΟ 00 «η »n in »n r-
3 fX © 00 vi in rn d ro 00 o d <NOh Gh CN 00 ■̂4 ’—I »-H <N m o CO »n »η

O G <N o ro r-- ΓΛ in ΓΜ oc <N
-5 .2 ’—; r*- IO —. *n ri O oc X — <N rg
5 eS © r- o ri r-' 00 r**»* X •n OC »n m<

ϋCO < o — cO X r··*· co — Γ- CnI r- o- m ΛΛ ir,J-H o © s_̂ UO X — oc X r- n — Tf3 u O' ro © © o Γ- r̂ , rn r** X O tn,C3 —■" — — — CO
ο
οl-Γ “(U £ 1—< o co CO tM m o OS CN o«g
£ 4> .2H 3 © © d d d d d d

O
d

o
d d

o
d

»n
d

00
_c a
c U

_o
o o o

G Ό <no Tfo r-oϋCO G 1 -
d d d

o

'e
o4-rf
cd

o
U

o _N
< _$> G «η co <N (N m X o o

x .2 o o o O O o o o in3̂-
0>>

CO
>

cd ■£* t_, cd Μ ωl-l W
o d d d d d d d d d d

cd*r •d -2 Uoο O U
£ 4-4
c(L> s0) £ S rj- <N o r- 00 in Os CN

G ω> .2 (N 1—H —* o — * CN ■'Cf CO O
£ o

a •Ε Έ d d d d d d d d d d <N
CO 60 £s-
cd

X61 2 u(X
61

M §
M ’■§

(N o X «η Os rj- Os 00 00ΌO
X 5 o d

o
d

o
d

o
d

O
d o d d d

o

0)
s

cd p
^ u

a>
j:

£ b in X CO »n o »n ĵ- Os ON »n CN <N in
u .2 o CO in 00 »n o o 00 «η CO

<2 G 5 X d CO o τί 00 o d X d o CO
o O ' Os in in X Os Os Os <N »n X

'o '
o

o , co »n Cs|
X hJ CN

CO ω O '
£ CO

c
£ a « 1-3 in ro co ro m PO m in 00 Os
o

"O
•3

o
*x
e
o

3 O '
Ό 00
ε

O
o

o
d

O
d

O
d

o
d

o
d

o
d

o
d

o
d d

Ĵ-
d

OW C ex
CQ o

Oo
ε
H

4-*

1
1 £

(N <N 000
01

O o O o o o O o o <N
c o

° o 0) w o
d d d d d d d d d d d

o
X 3
cd T3
H P

£

#s
lid

e

- (N c o •n X r- 00 os o - CN CO "3·

SU
M

V \ J

±-

1

3

SU
M

03

1
0.

60

19
62

.7
7

U
1

2M

05

4
n

<
V

7

16
92

08
.5

9
46

0.
55

47

4.3. Analysis of Results per Task
We have measured the time needed to perform each part of the method. We varied the

number of atomic selection conditions within the WHERE clause and measure the

time needed per step of the method (measured in millisecond). As the number of

selection conditions rises, each time we have two extra slides at Act I (the number of

slides of each try is depicted in parentheses at the header of Table 4.5). Clearly, the

audio generation dominates the entire process, being several orders of magnitude

larger than anything else and presenting a clear case for improvement. As the number

of slides slowly increases, the number of texts generated slowly increases too.

Concerning every other part of the process, we see that query generation and

execution takes up two orders of magnitude more than the other two tasks; therefore,

being prudent with the number of slides (and thus, executed queries) is also necessary

- esp., if someone would decide to exclude audio generation from the process. A very

interesting observation is also that, so far, both text creation and highlight extraction

are extremely fast, and thus, provide the potential for enrichment with more

algorithms that try to find interesting highlights and create representative textual

descriptions for them.

Table 4.5 Time breakdown (msec) for the method’s parts

atomic selections in WHERE clause
2 (10 si.) 3 (12 si.) 4 (14 si.) 5 (16 si.)

Result Generation 1169,00 881,40 2263,91 1963,68

Highlight Extraction
4,41 3,60 3,67 3,74

& Visualization
Text Creation 1,32 1,42 1,80 2,35

Audio Creation 71463,21 104634,27 145004.20 169208.59

Put in PPTX 378.24 285.89 452.74 460.55

48

4.4. Analysis of Results per Act
We have measured the time needed to produce each Act of the story (measured in

milliseconds). The detailed data for (a) the number of slides in each Act and (b) the

times per slide are listed in Tables 4.1-4.4. As the number of selection conditions
rises, each time we have two extra slides at Act I (the number of slides of each try is

depicted in parentheses at the header of Table 4.6). Clearly, we can observe that the

time of each Act is increasing as the number of atomic selection conditions increases.

Also, the construction of Act I in three of four cases takes more time than the

construction of the others. In the case when we have two atomic selection conditions

the construction of Act II takes about 90 msec more. In addition, the time of creation

of Act II practically stable independently of the number of atomic selection condition

in WHERE clause.

Table 4.6 Time breakdown (msec) per Act

atomic selections in WHERE clause
2 (10 si.) 3 (12 si.) 4 (14 si.) 5 (16 si.)

Intro Act 3865.97 4259.30 4940.47 5592.18

Original Act 8014.64 8445.46 9321.13 9598.11

Act I 21216.65 42666.49 70764.83 90580.31

Act II 21502.25 22599.71 23192.88 23079.76

Summary Act 18416.67 27835.61 39507.01 42788.55

In Figure 4.7, observe that as the number of slides increases (2 extra slides each time)

Act I increases with significant rate; and the Summary Act behaves similarly yet with

a lower increase. Both these effects are due to the text and audio generation.

Moreover, the increasing time of Act I can be explain better from the details data in
Tables 3.1-3.4 where we can observe that the increase for Act I is quite close to the

cost of the extra slides that are added each time to the Act.

49

100000.00
90000.00
80000.00
70000.00

S' 60000.00(Λ
£ 50000.00
E 40000.00

30000.00
20000.00

10000.00
0.00

10 12 14 16
#slides

■ Intro Act

s? Original Act

■ Act I

y Act ii

■ Summary Act

Figure 4.7 Bar chart of Time breakdown (msec) per Act

Also in Figure 3.7, we can observe that the Summary Act needed more time than the

Act II in three of four cases. This happens because the Summary Act, as described in

Chapter 2, has all the highlights of the story (i.e., all the text for these highlights)

which must be also converted to sound. Once again the text to speech API dominates
the time of our result.

It would also be expected for the Summary Act to have the same increase on time

breakdown such as Act I, but this doesn't happen because the Summary Act has only

the highlights of all episodes. Moreover, we can observe in Table 4.7 that the Act I
has always more words to be sound from Summary Act. Specifically, the differences
of words which they have in each case are:

1. In the case of two selection conditions are 44 words
2. In the case of three selection conditions are 201 words
3. In the case of four selection conditions are 407 words
4. In the case of five selection conditions are 645 words

Table 4.7 Count words on Act I and Summary Act

atomic selections in WHERE clause
2 (10 si.) 3 (12 si.) 4 (14 si.) 5 (16 si.)

Act! 244 499 764 1069

Summary Act 200 298 357 424

50

The rate of increase for the Summary Act is consistent with the rate of increase of its
text depicted in Table 4.7. The results of Table 4.7 also explain the differences

increase for Act I and the Summary Act. In both cases, it is the audio generation that

dominates the total time; however, due the contextual description added at each slide

of Act I, the text (and thus the corresponding audio) of the Act increases rapidly.

51

CHAPTER 5. RELATED WORK

5.1. Query Recommendations

5.2. Database related efforts

5.3. OLAP related methods

5.4. Advanced OLAP operators

5.5. Text synthesis from query results

5.6. Relationship of our work with the state of the art

In this Chapter, we discuss related work around the topic of our discourse.

Specifically, research pertaining to our work can be identified in the fields of query

recommendation, advanced OLAP operators and text synthesis from query results.

We present each of these categories in the following.

5.1. Query Recommendations
The first that relates to our work is the area of query recommendation. Roughly

speaking, the general theme of this area revolves around the situation where the user

has submitted a query to the system and the system suggests one or more related

queries to the user as a guide that helps him continue his search. The suggestion can
be based on the user’s profile, history of queries, history of other users’ queries, or

other information. There is an excellent survey on the topic by [MaNel 1]; thus, here
he restrict ourselves to a handful of characteristic approaches and refer the interested

reader to [MaNel 1] for a broader discussion.
The query recommendations that are related to our work can be classified in two

orthogonal taxonomies, already found in [MaNel 1]. In terms of the data management
environment within which query recommendation takes place, we can distinguish

between works in the general field of databases and works in the specific field of

o

52

OLAP. In terms of the means employed for the recommendation of queries, we can

discern methods exploiting profiles, methods exploiting query logs and hybrid

methods.

5.2. Database-related efforts
In [SDP09], the authors propose the enrichment of the results of a query with extra

tuples that maybe have potential interest to the user. The method is entitled YMAL

(“You May Also Like”), and tries to find tuples in the underlying relational database

on the grounds of a principled tuple-recommendation approach. One of the

contribution of [SPD09] is that the authors suggest a classification of methods for

recommendation: (a) current state based, (b) history based, and (c) based on external

sources.
The current-state approach makes use of the current query result and schema in

conjunction to data of database to produce the YMAL result. To implement this

approach the authors suggest three kinds of analysis: (i) local, (ii) global and (Hi)

hybrid analysis. Local analysis involves finding patterns in the results of a query and

searching the rest of the database in order to add to the original result extra tuples that

abide by the discovered patterns. The Global approach searches the database to find

values that are correlated to the values involved in the selection condition of the

submitted query; the k most correlated of these values are selected and tuples that

contain them are recommended to the user. To calculate relevant tuples, the history-

based approach uses (i) the previously submitted queries of the user, and, (ii) similar

sessions of other users that have similar behavior of the current user. The last of these

approaches, involves external sources and does not search the local database for

relevant tuples, but the web or another schema.

In [Cha+11], the authors propose a recommender system called QueRlE (Query
Recommendations for Interactive data Exploration). The main goal of this
recommender system is to help the common user, who is not familiar with SQL and

database schemata, to find parts of database with useful or interesting information. To
this end, the authors have implemented a system with the ability of tracking the

querying behavior of user and generating personalized query recommendation. Their

o

53

system is built on a simple premise inspired by Web recommender systems: if a user
A has similar querying behavior to user B, then they are likely interested in the same

data. Hence, the queries of user B can serve as a guide for user A.

5.3. OLAP-related methods

In [Car+08], the authors describe a method to help user to explore OLAP data. The

proposed method combines OLAP and data mining techniques to facilitate the process

of the exploration of a data cube by identifying the most relevant dimensions to

expand. The implementation of this task is performed in a step by step approach. In

each step the most relevant dimensions from the current session of the user are

identified and then, the system suggests to the user which one to explore first. The

dimensions are of relatively simple structure with two levels only (ALL and detailed).

The main idea behind the method is that each dimension takes a degree of interest.

Each time the degree of interest is calculated by the amount of information revealed

when including the details of this dimension in the grouping of the detailed data

(remember that each dimension has only two levels; thus including it in the group by

practically means that the dimension’s detailed values split the grouping space with a

factor equal to their number).

A different approach for suggesting an OLAP query to user is introduced in

[GMNS11]. Unlike [Car+08], the authors of [GMNS11] use the query log of previous

users to find similar queries which can give information to user that he may not know

it is available. The main idea is to recommend to the user the discoveries detected in

former sessions of other users that investigated the same unexpected data as the

current session. To this end, the proposed method analyzes the query log to discover

pairs of cells at various levels of detail for which the measure values differ

significantly. In addition, the method analyzes the current query such that to detect if
a particular pair of cells for which the measure values differ significantly can be

related to what is discovered in the log.

o

54

5.4. Advanced OLAP operators
Apart from recommending queries to the users, related research has explored the

possibility of providing users with explanations for the results they observe in an

OLAP report. We distinguish the work of Sarawagi in a series of papers in VLDB and

briefly summarize the results.

In [Sar99], the DIFF operator is described with the aim to help the analyst get a

concise set of tuples explaining the reasons for drops or increases observed at an

aggregated level. As input the operator receives two cells of a report that are different.

As output the operator returns a set of tuples that best describe this difference. To

achieve this result, the paper proposes a greedy and a dynamic-programming

algorithm. The idea is that the operator keeps as fixed the common selections that

characterize the originally selected cells (so, it is important that they do have some

common selection conditions for the computation to make sense) and drills-down the

levels of aggregation for the involved hierarchy that is produced by the combination

of these common dimensions. The crux of the approach is that it computed the

respective difference when the data are aggregated for any of the tuples in this

multidimensional space. Every tuple in this multi-level space is compared to its

“parent” tuple (in one level of aggregation higher) and, if selected, it is placed in the

top-N results that will ultimately be displayed to the user. For a tuple to make it in the

top-N it has to contribute a significant percentage of the difference of the original

cells compared to the contribution of its father.

In [SarOO] a tool that helps users explore the multidimensional OLAP data using their

prior knowledge of the data is described. This tool uses a profile that tracks down the
areas of the cube that the user has visited in the past, and thus, it is aware of what the

user already knows about the data. Then, the tool guides the user to unexplored data
that he will find most informative. The author in [SarOO] describes a method that uses

the classical Maximum Entropy principle and a profile per user to recommend to the

user the parts of the cube which contain the most surprising values compared to what
the user has already seen

In [SaSaOl], the authors introduce the operator RELAX which helps the user of OLAP

data to go from a detailed level of information to a more general one, in order to
verify whether a pattern observed at the detailed level is also present at a more

55

summarized level. The operator reports in a single step a summary of all possible

maximal generalizations along various roll-up paths of the observed sub-cube. Their

goal is to report all possible consistent and maximal generalizations. The term

consistent is meaning that all subset of dimensions that are examined also abide by the

pattern. On the other hand, the term maximal means that there is no superset of

dimensions that investigated can yield consistent generalizations. For the

implementation of this operator the authors develop a two stage algorithm. In the first

stage, their algorithm finds all possible maximal generalizations using aggregation

queries. In the second stage, the algorithm uses the results of the first stage and finds

summarized exceptions of the generalizations.

5.5. Text synthesis from query results

In [SKAI08], the authors propose a method to synthesize a textual answer in response

to a query over a relational database. The authors employ a graph model with nodes

being attributes and relations, edges being part-of relationships and join relationships

and labels for relations, attributes and edges (labels are used to produce a text for a

query’s result). The method takes a query as input, computes its result and tries to

produce a sentence for each of the tuples that appear in the result. This is derived by

following specific graph navigation patterns, each of which produces a different type

of text.

5.6. Relationship of our work with the state of the art

Concerning all the above works, our method comes with an extensible architecture

that is especially constructed with a mindset of plugging more and more of them, both

at the part where new queries can be added and in the part where new analyses can be

performed over their results. Our Act II resembles the DIFF operator to a certain

extent, in the sense that it tries to explain the reasons of the originally observed result.

DIFF goes one step further, in providing maximal explanations by picking the most

profitable rows. Although DIFF can be integrated in our tool, the emphasis so far has

been in coming up with a prototype that can provide a reasonable CineCube movie;

research results like DIFF can be integrated in the tool in subsequent tool extensions

56

and revisions. The same applies for all the other advanced OLAP operators.
Concerning text synthesis, we avoid describing the result of a query row-by-row, as

[SKAI08] does. On the contrary, we provide an extensible architecture where each

highlight extraction method comes with a generic text to describe the detected

highlights. Of course, improvements on the produced text are clearly part of future
work.

57

CHAPTER 6. CONCLUSIONS

6.1 Summary

6.2 Open Issues

6.1. Summary

In this paper we introduced a method that allows the generation of a CineCube movie,

over an OLAP database, with a simple user query as starting point. We have shown

how to complement the original query with additional queries and we search for

interesting findings in their results. We have also discussed how to automate the

generation of text describing these findings and how to convert this text to audio.

Moreover, we have shown that all the above can be packaged in a PowerPoint

presentation, practically presenting a small movie to the user. Our experiments have

shown that the audio generation is several orders of magnitude over the other tasks;

within these tasks, query execution takes again the lion’s share of the execution time.

6.2. Open Issues

Extensibility. Extensibility comes in two flavors in our method: (a) extensibility of

generated results and (b) extensibility of highlight detection within these results and

for each episode to calculate all the available highlights. There are plenty of works in

query recommendation (see discussion in Ch. “Related Work”), pattern verification

[SaSaOl], trend analysis, future prediction, to name only a few, that can be added to

the tasks included in a tool. Of course, a journey starts with a first step, and we

believe this first step is the main contribution for this article.

58

Be compendious; i f not, at least be concisel The single most important challenge that

the research problem of answer-with-a-movie faces is the identification o f what to

exclude. The problem is not to add more and more recommendations or findings (at

the price of time expenses): this can be done both effectively (too many algorithms to

consider) and efficiently (or, at least, tolerably in terms of user time). The main

problem is that it is very hard to keep the story both interesting and informative and,

at the same time, automate the discovery of highlights and findings. To address this

task, a clearly important topic of research involves the automatic ranking and pruning

of highlights.

Can / be the director? Interactively maybe? Personalization and interactivity are

two clear paths for extending the approach mentioned here. The enrichment of the

architecture with extra knowledge -e.g., user profiles or crowd-wisdom (via user

logs)- and the possibility of intervening and semi-automatically guiding the query

generation are topics with clear potential.

Efficiency. Scaling with data size and complexity, let along with user needs, in user

time, is also necessary for an effort like this to succeed. Techniques like multi-query

optimization have a good chance to succeed, esp., since we operate with a known

workload of queries as well as under the divine simplicity of OLAP.

59

REFERENCES

[Ali+12] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, E. Turricchia. Similarity

Measures for OLAP Sessions. Accepted in Knowledge And Information

Systems (KAIS), available at http://www.julien.aligon.fr/wp-

content/uploads/2012/09/kais.pdf

[APOI]

[Car+08]

The Apache POI Project. See https://poi.apache.org/

V. Cariou, J. Cubille, C. Derquenne, S. Goutier, F.Guisnel, H. Klajnmic,

2008. Built-In Indicators to Discover Interesting Drill Paths in a Cube.

DaWaK (Turin, Italy, 2008), pp. 33-44,

DOI=http://dx.doi.org/10.1007/978-3-540-85836-2_4

[Cha+11] G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, N. Polyzotis, J.

Varman, 2011. The QueRIE system for Personalized Query

Recommendations. IEEE Data Eng. Bull. 34,2 (2011), pp. 55-60

[GMNS11] A. Giacometti, P. Marcel, E. Negre, A. Soulet, 2011. Query

Recommendations for OLAP Discovery-Driven Analysis. 1JDWM 7,2

(2011), 1-25 DOI= http://dx.doi.org/10.4018/jdwm.2011040101

[JePTIO] C. S. Jensen, T. B. Pedersen, C. Thomsen, 2010. Multidimensional

Databases and Data Warehousing. Synthesis Lectures on Data

Management, Morgan & Claypool Publishers

[Man+05] A. Maniatis, P. Vassiliadis, S. Skiadopoulos, Y. Vassiliou, G.

Mavrogonatos, I. Michalarias, 2005. A presentation model and non-

traditional visualization for OLAP. 1JDWM, 1,1 (2005), 1-36. DOI=

http://dx.doi.org/10.4018/jdwm.2005010101

[MaNell] P. Marcel, E. Negre, 2011, A survey of query recommendation techniques

for data warehouse exploration. EDA (Clermont-Ferrand, France, 2011),
pp. 119-134

http://www.julien.aligon.fr/wp-content/uploads/2012/09/kais.pdf
http://www.julien.aligon.fr/wp-content/uploads/2012/09/kais.pdf
https://poi.apache.org/
http://dx.doi.org/10.1007/978-3-540-85836-2_4
http://dx.doi.org/10.4018/jdwm.2011040101
http://dx.doi.org/10.4018/jdwm.2005010101

60

[MARY]

[McKe97]

[Sap99]

[SarOO]

[Sar99]

[SaSaOl]

[SDP09]

[SKAI08]

[Tuft97]

[VaSkOO]

DFKI. The MARY Text-to-Speech System. See http://mary.dfki.de/

R. McKee, Story: substance, structure, style and the principles of

screenwriting. HarperKollins pubs. 1997.
Carsten Sapia: On Modeling and Predicting Query Behavior in OLAP

Systems. DMDW 1999:2

Sunita Sarawagi: User-Adaptive Exploration of Multidimensional Data.

VLDB 2000:307-316

S. Sarawagi, 1999. Explaining Differences in Multidimensional

Aggregates. VLDB (Edinburgh, Scotland, 1999), pp. 42-53
G. Sathe, S. Sarawagi, 2001. Intelligent Rollups in Multidimensional

OLAP Data. VLDB (Roma, Italy 2001), pp.531-540

K. Stefanidis, M. Drosou, E. Pitoura, 2009. "You May Also Like" Results

in Relational Databases. PersDB (Lyon, France, 2009).

A. Simitsis, G. Koutrika, Y. Alexandrakis, Y.E. Ioannidis, 2008.

Synthesizing structured text from logical database subsets. EDBT (Nantes,

France, 2008) pp. 428-439, DOI=http://doi.acm.org/10.1145/

1353343.1353396

E.R. Tufte, 1997. Visual Explanations. Graphics Press

P. Vassiliadis, S. Skiadopoulos, 2000. Modelling and Optimization Issues

for Multidimensional Databases. CAiSE (Stokholm, Sweden, 2000), pp.

482-497, DOI=http://dx.doi.org/l0.1007/3-540-45140-4_32

http://mary.dfki.de/
http://doi.acm.org/10.1145/
http://dx.doi.org/l0.1007/3-540-45140-4_32

SHORT CV

Dimitrios Gkesoulis was bom in 1987 and finished high school in 2004. He obtained

his B.Sc. in Computer Science in 2009 from the computer Science Department of the

University of Ioannina. He entered the Graduate Program of the same institution at

2010 under the supervisor of Panos Vassiliadis. His research interests lie in the area

of database systems, with particular emphasis on query recommendation.

