Avrtopatorrompévny Evoopdtwon
Katavepnuéveov Epappoyov Baoilop:
ot Etepoyevég Evoiudpeco Aoyropik

ldowv ToamapAiis

METATITYXIAKH EPTAXIA EEEIAIKEYZXZH

Iwdvviva, Iobviog 2009

TMHMA INMAHPOQ®OPIKHX
MANEINISTHMIO IQANNINQN

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF TOANNINA

AYTOMATOIIOIHMENH ENYOMAT(H
KATANEMHMENON EGQAPMOI'ON BAYXIZOMENQN
»E ETEPOI'ENEY ENAIAMEYO AOT'TEMIKO

H METAIITYXIAKH EPT'AYIA EZEIAIKEYYHY

unoPBdAAeToL OTNV
optofeloa and) Fevoai Luvérevorn Ewduaic XOvBeong

Tou TuAuatoc Minpogopuic E€etaotug) Emtponn
and Tov
Iédoova ToomapAn,

WC UEPOC TWV UNOYPEWMCEWY Yl T AjPn Tou

METAIITYXIAKOY AITAQMATOX STHN TAHPO®OPIKH
ME EZEIAIKEYXH ¥XTO
AOTTEMIKO

IoUviog 2009

M

RANENISTHMIOY IDANNINON
026000314172

U

x
b4
x
@
g
@
&

e pa SN SRS

Sy
e

%

T4

. ,{ 37

kv

DEDICATION

To my parents,

ACKNOWLEDCGEMENT

I would like to thank my supervisor assistant profeséor Apostolos Zarras for the oppor-
tunity he provided me to work under his supervision for carrying out the research study
reported in this thesis. His constant guidance, help and encouragement during the whole

process of this thesis were invaluable.

TABLE OF CONTENTS

1 Introduction - 1
1.1 The Issue of Heterogeneity in Distributed Systems 1
12 CaseStudy e e 4

1.2.1 Implementation of the Server Objects 4

1.2.2 Implementation of the Client Object 5

1.3 Transparent Integration of the Heterogenous Applications 6

131 Bridging e e 6

1.3.2 Implementation of the Interoperability Components 7

1.3.3 Large Scale Integration and Web Services. 8

1.4 Tllusion Maker: Automating the Integration of Heterogenous Middleware . 13

1.5 The Structure of the Thesis 15

2 Background and Related Work 16

2.1 Middleware and Distributed Systems 16

2.2 Basic Properties of Middleware 17

221 OPENDESS . & v v i e e e e e e e e e e e e e e e e e e 17

222 Scalabilityo 18

2.2.3 Performance and Fault-Tolerance 18

2.3 Distribution Transparency e e e e e e e e e e e 18

2.3.1 Access Transparency e 18

2.3.2 Location Transparency, 19

2.3.3 Concurrency Transparency v o v v v v v i v 19

23.4 Failure Transparency 19

2.3.5 Migration Transparency 20

2.3.6 Persistence Transparency and Transaction Transparency 20

2.4 Interaction between Distributed Components 20

25 Related Work 22
2.5.1 JADDA: Java Adaptive framework for Dynamic Distributed Archi-

fecture L L e e e e e 22

2.5.2 ReMMoC: Reflective Middleware for Mobile Computing 23

2.5.3 INDISS: Interoperable Discovery System for Networked Service . . 23

2.6 The Contribution of the Illusion Maker Framework 24

Wb Rl T

AR T P A, G, g 0

3 The Architecture of the Illusion Maker Framework
3.1 Basic Functionality L.
3.2 Inputandthe Useof XML e
3.3 Description of the Architecture of a Legacy Server
3.4 Platform Specific Patterns
3.4.1 Generation of Platform Specific Illusion Interfaces
3.4.2 Generation of Platform Specific Object Implementations
3.4.3 Generation of Platform Specific Illusion Capsules

3.4.4 Generation of Web Service Wrappers
3.4.5 Mapping of Data Types S
3.5 Design and Implementation of the Framework
3.5.1 Parsing XML Documents.
3.5.2 The XML Parsers of the Framework
3.5.3 Parsing the Platform Independent Information
3.5.4 Parsing the Platform Specific Pattern
3.5.5 Utilizing Interpreter Design Pattern
3.5.6 Mapping of Data Types
3.5.7 Creating the Output Source File.
3.6 Scalability Issues

3.7 The Graphical User Interface of the Framework

4 Evaluation of the Illusion Maker Framework

4.1 Implementation Effort e e e e e
’ 4.1.1 Formalization
4.1.2 Experimental Results
42 Overhead
4.2.1 Non-Heterogenous Distributed Environments

4.2.2 First Scenario: A CORBA Client invokes a Java RMI Server
4.2.3 Second Scenario: A Java RMI Client invokes a CORBA Server . . .
424 Comparison
43 Conclusion

5 Conclusion

5.1 Summary e e
5.2 Future Work

ii

25
25
26
27
34
35
37
41
43
46
47
48
49
49
52
53
56
56
60
61

65
66
66
68
72
72
73
74
76
77

LIST OF FIGURES

1.1 Heterogenous Middleware
1.2 An Interoperability Scenario L
1.3 Transparent Integration of Heterogenous Middleware
1.4 Large Scale Distributed Systems
1.5 Integration using Web Services.

3.1 The Basic Functionality of the Framework.
3.2 The Generic Architectureofa Server,
3.3 The Software Elements generated by Illusion Maker
3.4 The Subsystems of the Illusion Maker
3.5 The Classes of the Illusion Maker Design
3.6 The Architecture Class Hierarchy
3.7 Interpreter Design Pattern
3.8 List of Expression Objects for a CORBA IDL Interface
3.9 Classes for Parameter Direction Modes and Data Types Mapping
3.10 The File Utility Subsystem
3.11 Graphical User Interface - Basic Functionality
3.12 Graphical User Interface - Registration of Platform Specific Patterns . . .
3.13 Graphical User Interface - Search for a Pattern o

4.1 Implementation Effort for the Generation of CORBA Illusion Interfaces . .
4.2 Implementation Effort for the Generation of CORBA Object Implementa-

tioms -1 e e
4.3 Implementation Effort for the Generation of CORBA Object Implementa-
BlONS - 2 . L. L e e e e e

4.4 Implementation Effort for the Generation of CORBA Illusion Capsules

4.5 Implementation Effort for the Generation of Web Service Wrappers - 1

4.6 Implementation Effort for the Generation of Web Service Wrappers - 2

4.7 Total Implementation Effort for achieving Integration

4.8 First Scenario: Using Web Services

4.9 First Scenario: The CORBA-specific Illusion Object access directly the
Server Object e

4.10 Second Scenario: Using Web Services

iii

4.11 Second Scenario: The RMI-specific Illusion Object access directly the Server

ObJECE -« v v v i e e e e e e e o
4.12 Heterogenous vs Non-Heterogenous Distributed Environment
4.13 Using Web Services vs Not Using Web Services e e e e

iv

T T W S) T NI et e, T T

LIST OF TABLES

3.1

41
4.2
4.3
44
4.5
4.6
4.7

Data Types Mapping e e e e e e e e e e e e e e 47
Metrics for the Size of the Server Application 66
Implementation Effort for our Case Study 68
Average Response Times in Non-Heterogenous Environments 73
First Scenario: Average Response Times using Web Services 73
First Scenario: Average Response Times without using Web Services . .. 74
Second Scenario: Average Response Times using Web Services 75
Second Scenario: Average Response Times without using Web Services . . 75

LIST OF LISTINGS

1.1
1.2
1.3
1.4
15
1.6
1.7
1.8
1.9
3.1
3.2
3.3
3.4
3.5
3.6
5.1
5.2
5.3
5.4
5.5

5.6
5.7

5.8

A Java RMI Remote Interface e e e e e e e 4
A Java RMI Implementation of a Server Object 4
AJavaRMI Server i e e 5
ACORBAChent e 6
The CORBA IDL Interface provided by the HP Server 8
The CORBA-specific Object Implementation acting as a Java RMI Client 10
The CORBA HP Server that the Client invokes 11
The CORBA-specific Object Implementation acting as a Web Service Client 12
The Web Service Wrapper acting as a Java RMI Client 13
XML Schema for the Platform Independent Information 29
XML Document of the Platform Independent Information 33
Generation of CORBA IDL Illusion Interfaces 37
Generation of CORBA-specific Object Implementations 38
Generation of CORBA-specific Illusion Capsules 42
Generation of Web Services that serve as Java RMI Clients 43
Generation of Java RMI Illusion Interfaces 83
Generation of Java RMI-specific Object Implementations 85
Generation of Java RMI-specific Illusion Capsules 88
Generation of Web Services that serve as CORBA Clients 89
Generation of CORBA-specific Object Implementations that serve as Java

RMIClients 92
Generation of CORBA-specific Illusion Capsules that host CORBA Objects

serving as Java RMI Clients 95
Generation of Java RMI-specific Object Implementations that serve as

CORBA Clients e 97
Generation of Java RMI-specific Illusion Capsules that host Java Objects

serving as CORBA Clients R 100

vi

ABSTRACT

Iason G. Tsaparlis, MSc, Computer Science Department, University of loannina, Greece.
June 2009. '

Title of Dissertation: ”Automated Integration of Distributed, Based on Heterogenous
Middleware Applications”.

Thesis Supervisor: Apostolos Zarras

In this thesis, we propose an automated process for the interoperability and integration
of distributed applications that are based on heterogenous middleware. In particular,
for a pair of middleware platforms A and B, used by a client and a server application
respectively, the proposed framework creates the illusion that the server application relies
on platform A. To enable this illusion, the framework generates automatically: (i) Web
services that wrap the functionality of the actual server application; and (ii) an A-specific
view of the server application playing the role of the client for the Web service wrappers.

To enable the automatic code generation process, we define a set of rules that model
the descriptions of mappings (e.g. data types, interface definitions) between the different
middleware standards (e.g. CORBA and Java RMI) and WSDL. The proposed framework
implements a code generator mechanism that accepts as input the aforementioned set of
rules. This mechanism interprets the set of rules and produces the desirable source code
that brings the interoperability. In this way we attain the integration, without depending
on the middleware platforms assumed by the legacy applications and without interfering
with their source code. In addition, the integration is transparent to both client and
server applications.

We evaluate the proposed methodology both from the application developer’s and final
user’s perspective. The benefit for a developer wishing to write the source code manually
is important even in middle scale systems. On the other hand, the use of the extra software
interoperable elements introduces a substantial delay in the side-to-side communication.

vii

EKTENHY [IEPIAHUH

léowv I. ToarapAvc, MSc, Tuiua IIAnpogopuic, Mavemotiuto Inavvivev. Iodviog 2009.
Tithoc Awtpfic: ” Autopatorounuévn Evowudtwon Kataveunuévov Egapuoydyv Baoilo-
uevwy oe Etepoyevéc Evdidueco Aoyiouxd”.

Eniénwv Kabnyntic: Anéotorog Zdppog.

H eEéMEN Tov xotaveunuévey cuoTUATY EL0aYEL To mpdBAnua tne etepoyévetas oTo
evéidueoo Aoytouuxd (middleware). Kotaveunuéveg epapuoyés mou €youv ulomounBel ue
Béon Sapopetinég mAatpdpueg evLduEcOU Aoyiouxol TpErel va Stoouvdebolv, dote va
emtevyBel 0 Siadetrovpyixdtnra. Tpbogateg mpoceyyioels oto {ftnua autd netuyaivouy
UEV TOV 0TOY0 aAAd emPAANOUY OTIC UTEPYOUCES EQUEUOYES TEPLOPLOUOVS, OE OYEDT UE
v vhornolnoy touc. Edudtepa, 0 xOGIXAC TwV EQRPUOYOV TPENEL Vo TpoTOTOLElTAL (HOTE
va xoflotatar oupPBatéc Ue Toug UNYaviouols Tou TpoTelvouy ot dtdpopes peBodoroyliec.
Ly napovoa epyacto axoloubolue uia Stapopetiny pihocopla avapoptxd Ue TNV eniteudn
g Swdettoupydnrag petalld etepoyevdy mhatpopudv middleware. H mpotewvéuevy
peec;?)o)\oyicx dev emPBaAer:

® XaVEVo TEPLOPLONS OTO €80¢ TV TPOTUNWY EVBLEUECOU AOYLOMIXOU TOU XPNOLUO-
TOLOUYTOL Yia TNV UAOTO(NOY TV XA TAVEUNUEVLY EQPUOYAY,

e xoula TPOMOTOLNGN OTOV TNYUlo XOIKA TWV UTAPYOUCHY EYPAPUOYEV.

Luyxexpuueva, yLo U gapuoYi-rehdty tou €xet vhonownBel otn Baon prag TAatedpuag ev-
dLduecou Aoyiouold A xon yia e epapuoyhi-eEunnpetrt tou Baotleton ot pia Thatebpua

B, o mpotelvéuevog unyavioudes dnutoupyel Ty ” Peudaiobnon” 6t xat 1 epapuoYh-eEuntnpetntic
BaoiCetar oty mhatgbpua A. Tt T0 ox0m6 AuTs, 0 UNYAVIOUOS XATAOKEVELEL quTOUATOL:

(1) unnpeoteg Sadixtiou (Web services) mou eVowUATGVOUY TN AELTOUPYXGTNTA TNG TpaLY-
MaTLXG EQPUPUOYNG-EEUTNPETNTY, AELTOUpYDVTAC WG TEAdTES YU auThv xan (2) pia etcovixd
epapuoyh-eEunnpetnt], Bactouévn oty Thatpdpua A, mou xalel N tpayuatind epapuoyR-
nehdtne. O ewcovixde autdg eEumnpetnTic Aettoupyel Tautdypova we TEAATNS YLat TIC UTY-
peotec dtadixtiou.

viii

L1oyoc elvar o mnyalog xddixag mou uhonotel To Tapomdvew va mopdyetar avtéuata. I'a
T0 oxond autd, opiloupe éva Yewxd oGvoro xavévwy Tou Teptypdpouy Tov TPOTO WE TOV
onoto Ba napaybel o embuuntéc xddixag. O xavdvee autol anoteholv éva eldog mpoTUnov
(pattern) to omolo uovtehonotel v aviloToiylon TV TEptypapdv (r.x. Tirol dedoué-
VOV, TEPLYPOQPEG BETAPHOVY) HETAED UTaPYOUCHY TAATPOPUADY EVILAUETOL AoYLtouxol (T.X.
CORBA, Java RMI) xat WSDL. Enopévwe, yo 10 {edYog TwV €Qapuoy®dy Tou ovape-
PAME TOPATAVE®, O UNYaviouos amoutel Ty Unaplyn twv npotinwy A-to-WebServices xat
WebServices-to-B. Ta 800 autd npdtuna opilouv yewxd to nde Ba napayBel o xdduxag yia

TIG MAPAXATEL OVIHTNTEC AOYLOULXOV:

1. Tnv neptypagh tng denaghc pe Bdon v mhatebpue A mou amaitel 1 epapuoyh-
TEAATNG o mou Ou elvaw Guowa YE TNV TEPLYpopr Tng Umdpyouoas, e [Bdon Ty
TAatpbpua B, dienapric (tpdtuno A-to-WebServices).

2. To avuxelpeve tou vhorotolv v mapayBeloa, ue Bdon v Thatpbpua A, dienapy
(rpétuno A-to-WebServices).

3. T unnpeoieg dtadixtdou mou xahoby ta nopayBévta, ue Bdon Ty Thatpdpua A, ovtt-
XelUEVH XL 0L OTOLEC EVOWHATOVOUY TN AELTOURYIXOTNTA TG EQapuoYig-eEurnpeTnTh,
napéyoviag uio duota dienar| (npbéturo WebServices-to-B).

I'a Tov oplouéd Twv npotinwy, xenowonotovue XML. Xyedidlouue xar vAomotoVue €vav
unyavioud topaywyng xddixa, 0 onoiog déyeTaL w¢ El6030 TO TPOAVAPEPOUEVO GUVOAD TpO-
Tonwyv, Yetagppdlovids to otov embuuntéd tnyolo xdduxa mou Ba empépet v {ntoluevy
drakertoupyotnta. "Evog avarutigc SAX dtaBdlel toug xavdveg mou mepiéyovial oe éva
TPOTUTO XaL Tapdyel £va oUvoro amd aviixelpeva uag tepapyla xAdoewv. Auti 1 tepapyto
xA\doewv oplleTal olupwva ue To oyedlaotixnd tpdtuno Interpreter (Interpreter design pat-
tern). H yprion Tou oyxedioaotixod autol tpotinou Sieuxollvel) Sadixacia mapaywyrc
Tou x@dxa. O xdIuxag mapdyetal autduata xa elvon étowog va ypnoweonomBel v Ty
EVOWUATWOY EQapuoY®y Tou Buallovtal OE ETEPOYEVEC EVBLAUETO AOYLOULXO.

H ypfion twv mpotinwy mou 0pllouv Toug xavéveS TapaywYNe Tou xddixa Tpoodidel 6to
MTYAVLOUS T BUVATATNHTA VAL ETLTUYYAVEL TNV EVOWUETWOY), aVEZUpTATWE TOU EVOLAUECOU
AoYLouoU o YpnoLuonolel 1660 o teAdTNG 600 xau o e€utnpetnthc. Eniong, to emtbuunté
OMOTEAEGHO ETLTUYYAVETOL SLATNEPGYTAC TNV XAELOTOTNTA TOU XOIXA TWV EUTAEXCUEVWY
EQAPHOYRY, UE TPOTO BLdpavo mpog AUTEG.

AZwohoyolue try mpoteivéuevn uebodohoyia, 1660 and ™y ontixy Tou oyedlacTh epapuo-
YOV 660 %ot o THY OTTXY TOU TEALXOU XPNOTY EVOG XUTAVEUNUEVOU CUOTAUATOS. LuYXE-
xpudéva, eotdoupe: (1) oto 6gehog mov amoxouilel évog oyedlaotiic-npoypauuatioTic
EPAPMOY DY, apol dev Ypetdletar va Ypdgel tov Sadettovpyixd mnyalo xddua, xou (2)
oty emPdpuvey; T anddoorg Tov emPEpEL avardPeUXTA 1) TPooBrxY TwY SlahelToupyLxdY
OVTOTHTWY AOYLOULXOU OTO XATAVEUNUEVO CUOTNUA.

ix

;
i
j
;
H
K
4
f

SESTET Ty oSt eseTeTL Y " s

o v agbhoynon Tou oPEAOUE Yo TOV TIPOYPAUUATIOTY, METPOUUE TO TAKBOS TwY Ypou-
udv xGduxa LOC (Lines of Code) mou mapdyer autduata o unyaviouds. Turonotodje to
LOC wc¢ ouvdptnon ueyeliv mou avtavaxholy tnv xhlpoxa pag epopuoyic-eEunnpetnti
(m.y. opBuds twv mapexdueVLY SENaPGY, aplBule TWY AVTLXEWEVOY TOU UAOTOLOUY TIC
diemagée, apbuds Twv mapeyduevey. Aettoupyidv.). To dpelog. yia TOV TPOYpPoUMATLOTY
elvon adiappuaBritnto axdur xa o oxetixd peoalag xhlpaxas ovothuata. 'Etot, o mpo-
Yeaupatiothc xepdller onuavtd xpdvo, Tov onolo unopel va aplepdoeL ot Déuata oyeTIHE

WE TNV vhorolnoy NS AELTOUPYXOTNTAC TWV EPAPUOYAV.

H npocHiun twv emniéov otoiyelwv oto xataveunuévo mepBdhhov éxer w¢ anotéAeoua
wia emBdpuvon 6aov apopd TNV andBoon TwY EPapUoYdY Tou evowuatdvovtar. H yprion
TOV URNPEGLAOY dladttiov we evdidueons mhatpdpuac yia Tn SLaletTovpytebTnTa ELodYEL
g onuavTie] xaBuctépnor oto xpbvo eEUTNEETNONG TWV EQPAPUOYDOV-TEATY).

CHAPTER 1

INTRODUCTION

1.1 The Issue of Heterogeneity in Distributed Systems

1.2 Case Study

1.3 Transparent Integration of the Heterogenous Applications

1.4 Illusion Maker: Automating the Integration of Heterogenous Middleware

1.5 The Structure of the Thesis

1.1 The Issue of Heterogeneity in Distributed Systems

A distributed system is a collection of autonomous computer systems that are connected
through a network [6]. In each computer system, one or more applications are executed,
interacting with each other and with the applications of other systems. The independence
of these computer systems comes from the fact that their existence and function is inde-
pendent of the existence and the function of the whole distributed system, in which they
appear.

The inherent heterogeneity of the distributed applications can arise from differences in
device architectures, data representations, communication mechanisms and programming
languages. This heterogeneity imposes the use of a middleware platform that facilitates
the interoperability, so that the distributed system appears as a single and integrated
computing entity. The term interoperability reflects the capability of an application being
executed in a computer system to obtain access to applications being executed in other
systemns.

Middleware is the current trend in the development of open distributed systems. It is
perceived as a software layer that stands between the operating system and the applica-
tions, providing the developer with the facilities that render an application distributed
[4]. Middleware consists of a basic communication mechanism, which is often called a
broker, and a number of middleware services. The broker masks the differences in under-
lying architectures to enable the interoperation between the constituent elements of the

distributed system.

In this way, middleware makes possible the transparent integration of distributed appli-
cations. The mechanisms offered by middleware platforms encapsulate the distributed
nature of the applications. A developer does not need to care about issues regarding
the distributed execution of an application. He/she is free to consider issues, related ex-
clusively to the implementation of the functionality that the application provides. This
functionality is realized by a software entity (e.g. a class) on top of a middleware infras-
tructure (e.g. CORBA, J2EE) and is provided through a well-defined interface.

Conventional distributed systems are build upon their typical users’ requirements. All
the applications within the distributed environment are implemented on top of the same
middleware platform. However, the evolution of the distributed systems demands that
multiple middleware systems have to be combined. Legacy or off-the-shelf applications
that have been implemented on top of different middleware infrastructures have to be
integrated. Suppose, for instance, that the two departments of an organization use con-
ventional information systems that have been build on top of different middleware plat-
forms. The workload of the organization imposes the exchange of information between
these two systems. Unfortunately, this is impossible because of the different middleware
infrastructures (figure 1.1). For this reason, the question that comes up is the following:

"Is middleware still the full answer to the issue of interoperability in this kind of distributed
environments?” '

Information System 1 Information System 2
Application Application
Application Application
Application Application
V“! ‘7 \pf’j
Middleware . Middleware
Platform A Platform B

Figure 1.1: Heterogenous Middleware

In the previous case, besides heterogeneity in device architectures, communication mech-
anisms, data representations and programming languages, we further face the problem of
middleware platform heterogeneity. A typical case is pervasive computing environments,
which constitute a recent trend in the field of distributed systems [1]. In pervasive comput-
ing environments, the user can be anybody joining the environment with his/her mobile
device. The applications deployed on the user’s device can possibly assume a middleware
infrastructure that differs from the one that has been employed for the development of
the services offered by the environment.

Consequently, we have to make an attempt aiming at enabling the interoperation of
applications, developed on top of different middleware platforms. In the recent past, some
of the proposed solutions were ad-hoc, focusing on pairs of middleware platforms such as
CORBA and DCOM. Other solutions, such as the middleware platforms ReMMoC [9] and
JADDA [7], impose the development of client applications to rely on specific constraints,
arising from these platforms. In other words, the source code of a client application must
be modified. The previous is undesirable, because it contravenes the closure of the legacy
application. Our purpose is to propose a framework that enables middleware platform
interoperability, without imposing any particular constraint on the middleware platforms
used for the development of the distributed applications.

Server Object

RMI Object Reference
- HP: PrinterObject
RMI Object Implementation
HP: PrinterObjectImpl

Register referenceq

RMI Object Reference
Stulex: PrinterObject

RMI Object Implementation
Stulex: PrinterObjectImpl

==

Client Object ~ “ Obfain references | : ConNaming_|

Corba Object Reference Corba Object Reference
HP: PrinterObject Stulex: PrinterObject

Figure 1.2: An Interoperability Scenario

10

1.2 Case Study

To highlight the concept of middleware platform heterogeneity, let us consider the fol-
lowing scenario (figure 1.2). Suppose that a user, carrying a PDA enters the Computer
Science Department of the University of Ioannina. On top of his PDA, the user has a
simple application for printing documents. The application is realized using CORBA
and consists of a client object that initializes the basic CORBA broker and the CORBA
Naming Service. The application uses the CORBA Naming service to locate CORBA
object references to printers named "HP” and ”Stulex”. The expected IDL interface of
these objects is supposed to provide a print() operation that accepts as input a file. The
file is forwarded to the remote object, which serves as a front-end to the corresponding
printer that takes in charge of printing the given file. Unfortunately for the user, the
server objects that play the role of the front-end to the printers are realized on top of
J2EE. The objects are pure Java RMI objects, whose references have been registered to

the corresponding J2EE naming service.

1.2.1 Implementation of the Server Objects

Since the server objects are pure Java RMI objects, they realize a corresponding Java
interface that provides the print() operation. Listing 1.1 gives the declaration of the
interface, named HPServer_Interf, which provides the HP printing functionality. Each
server object implements the print() method. Listing 1.2 gives the implementation of the
HP server object (class HPServer_Impl).

-

Listing 1.1: A Java RMI Remote Interface

import java.rmi.*;

public interface HPServer_Interf extends Remote{
void print(String filename) throws RemoteException;

}

Listing 1.2: A Java RMI Implementation of a Server Object

import java.rmi.*;
import java.rmi.server.*;
import java.lang.*;

public class HPServer.Impl extends UnicastRemoteObject implements
HPServer.Interf{
public HPServer.Impl() throws RemoteException {}

public void print (String filename) throws RemoteException {
// method implementation

}
}

10

15

20

In order for the printing objects to be available to the clients, references of them must be
registered to the corresponding J2EE naming service. Listing 1.3 gives the class HPServer
that contains the main method of the HP server application. A reference of the object
implementation is registered with the name "HP” to the naming service (lines 10-11).

The server is now ready to accept client requests.

Listing 1.3: A Java RMI Server

import java.rmi.*;
import java.rmi.server.*;
import java.net.*;

import java.lang.x; .

public class HPServer{

public static void main(String args[]) {
try{
HPServer_.Impl hpserver = new HPServer_.Impl();
Naming.rebind ("HP" , hpserver);
InetAddress address = InetAddress.getLocalHost () ;
System.out.println ("RMI HP Server started on IP " + address.
getHostAddress () + "\nWaiting for incoming requests...");
}
catch(Exception ex){
System.err.println(ex);
ex.printStackTrace () ;

1.2.2 Implementation of the Client Object

Listing 1.4 gives the source code that implements a possible client application for our
case study scenario. In the main method of the class CorbaClient, the Object Request
Broker and the naming service are initialized (lines 16-18). Through the naming service,
the application searches for a reference, using the name "HP”, to a remote printing object
(lines 20-22). By obtaining this reference, which is expected to be a CORBA reference,
the client calls the print() method, provided by the expected CORBA remote interface
(line 23). Instead, the remote interface is a Java RMI interface, as we saw in the previous
subsection. Consequently, the client application will not work.

10

15

20

25

30

Listing 1.4: A CORBA Client

import org.omg.CosNaming. ;

import org.omg.CosNaming. NamingContextPackage . *;
import org.omg.CORBA. *;

import java.lang.x;

public class CorbaClient {
HPServer._Interf hp;

public static void main(String args[]) throws WrongUsageException {
try{

if (args.length != 6)
throw new WrongUsageException () ;

ORB orb = ORB. init (args , null);

org.omg.CORBA. Object objRef = orb.resolve.initial_references ("
NameService");

NamingContextExt ncRef = NamingContextExtHelper.narrow (objRef);

if (args[4].equals("HP")){
hp = HPServer_InterfHelper.narrow (ncRef.resolve_str (args(4]));
System.out.println ("Obtained a handle on HP server object");
hp.print (args[5]) ;

}

else
throw new WrongUsageException () ;

}

catch (Exception ex)

{
}

ex.printStackTrace () ;

}
}

1.3 Transparent Integration of the Heterogenous Applications

1.3.1 Bridging

Middleware interoperability denotes the ability of applications that have been implemented
on top of different middleware infrastructures to work together. Figure 1.3 shows how
the limitations discussed in the previous sections are overcome. The different middleware
systems participating in application requests communicate with each other via interop-
erability bridges. A bridge acts as the mediator that masks the gap arising from the
middleware heterogeneity. Generally speaking, bridges map the representation of object

Information System 1 Information System 2

Application Application
Application Application
Application Application

Middleware
Platform A

Middleware
Platform B

—4 Bridge [—

Figure 1.3: Transparent Integration of Heterogenous Middleware

references that are valid in the domain of one middleware infrastructure to references to
the same object in the representation that another infrastructure assumes. In this way,
the request is translated from the domain of one middleware implementation to another
implementation [6]. Figure 1.3 also denotes the transparent way of integration. The fact
that the server objects are connected to a different middleware, is transparent for the
client objects. Likewise, it is transparent to the server objects that provide services to
client objects based on a different middleware. Both the client and server objects com-
munricate only with their middleware, as they did before, and the bridges conceal the
remaining heterogeneity.

1.3.2 Implementation of the Interoperability Components

The mediator that brings the interoperability of the heterogenous middleware can be im-
plemented by application developers on top of an existing middleware implementation.
Regarding our example scenario, the mediator may consist of a surrogate object. This
object is a surrogate for the server that is invoked by the client using the client’s mid-
dleware. Moreover, the same object is a surrogate of the client’s representation in the
server’s middleware. Therefore, the mediator simultaneously plays the role of a server for
the actual client and the role of a client for the actual server.

Listing 1.5 gives the CORBA IDL interface that the CORBA client application of our sce-
nario requires. The HP server object is supposed to provide this interface (HPServer_Interf).
The necessary stub components for the implementation of a distributed application on
top of CORBA arise from this language-independent interface declaration. Listing 1.6
gives the realization of the previous interface (class HPServer_Impl). This is the surro-
gate object that translates the CORBA call into a corresponding Java RMI call. We can
realize easily that the print() method (lines 27-39) implements a Java RMI client. A Java
RMI reference to a server object is looked up within the J2EE naming service (line 29).

Using this reference, the actual print() operation of the Java RMI server is invoked (line
31).

Listing 1.7 gives the implementation of the HP server application (class HPServer), which
accepts the CORBA client requests. The CORBA server initializes the ORB and activates

the POA object (lines 11-13). A reference of the CORBA-specific object implementation
is registered with the name "HP” to the CORBA Naming Service (lines 14-21). The

server can now accept requests.

Listing 1.5: The CORBA IDL Interface provided by the HP Server

interface HPServer_Interf {
void print(in string filename);

}s

In this way, we can achieve the transparent integration of the heterogenous applications.
The CORBA client is unaware of the fact that invokes a server object which is based
on Java RMI. The client is serviced as if it were a CORBA server providing the actual
service. Similarly, the Java RMI server is unaware of the fact that its printing operation
is utilized by a client object based on CORBA. In addition, the closure of both the client

and server applications is maintained.

Information System 1 Information System 2 Information System 3

I Application ' Agpplication
Application l Application l
P :

Application

|

Application

Middleware

Middleware Middleware
Platform A Platform B Platform C
H i /
Bridge [<- > Bridge K————‘
. |
> Bridge l—’f

Figure 1.4: Large Scale Distributed Systems

1.3.3 Large Scale Integration and Web Services

Our scenario reflects a simple case where the extra necessary source code for a bridge can
be written easily and quickly. But what about cases of large scale distributed systems with
multiple middleware infrastructures being involved? Considering again the case of the

organization mentioned in section 1.1, suppose that a new information system is installed
whose applications have been implemented on top of a new middleware platform C. In
order for the new applications to interplay with the existing ones, we have to implement
further mediators. In a similar manner to the one described in the previous subsection, a
developer must implement mediators that bridge the gap between middleware platforms
A and C, and between platforms B and C. Figure 1.4 shows this interoperability scenario.

As the scale of the distributed system increases and as new middleware platforms are
released in the market, we realize that bridging the heterogeneity in the previous way
becomes a very complicated procedure. We always have to map the descriptions of each
existing middleware implementation to those of the new one. It would be desirable to find
a common reference base on which all the mappings should rely. Both the existing and
the possible new middleware infrastractures will be mapped according to this reference

base.

Web services! can provide us such a reference base. They were originally proposed to
wrap conventional business information systems (BISs), developed on top of different
middleware platforms. They are stateless software entities whose interface is specified
using WSDL, a commonly agreed XML-based language. Accessing Web services relies
on SOAP, a commonly agreed XML-based message format, and other widely accepted
standards such as HTTP and SMTP.

Instead of accessing directly the actual server object (see Listing 1.6), the surrogate object
can play the role of a Web service client that invokes a Web service. This Web service acts
as client for the actual server object, wrapping its functionality. The Web service wrapper
is the front-end for the server object. Figure 1.5 shows the interoperability scenario for
our casy study, in case of using Web services for the integration.

| 1
Client Object I [Surrogate Object Web Service | Server Object
: !
[poll—Ps-|
Corba Server / Web o
CORBA : Oge:Vi(?:véfient ¢ Java RMI Client : Java RMI
| [

Figure 1.5: Integration using Web Services

http://www.w3.org/ TR /ws-arch/

i0

15

20

25

30

35

40

Listing 1.6: The CORBA-specific Object Implementation acting as a Java RMI Client

import
import
import
import
import
import
import
import
import
import

public

org.omg. CosNaming . *;

org.omg. CosNaming . NamingContextPackage . *;
org.omg.CORBA. *;

org.omg. PortableServer.*;

org.omg. PortableServer .POA; "~

java.rmi.*;

java.rmi.server .*;

java.util.Properties;

java.net . *;

java.lang.*;

class HPServer_.Impl extends HPServer_InterfPOA {

private ORB orb;
private String RMIServerURL;
HPServer_Interf ref;

public HPServer_.Impl(String servURL) {
RMIServerURL = servURL;

}

public void setORB(ORB orb_val) {
this.orb = orb_val;

}
public void print(String filename) {
try {
ref = (HPServer_Interf) Naming.lookup (RMIServerURL)
System.out.println ("Obtain a handle on RMI HP
server object");
ref.print (filename);
\ .

catch (Exception ex) {
ex.printStackTrace () ;
System.out.printin ("Cannot establish connection

with RMI server!");
System . exit (0);

10

10

15

20

25

30

Listing 1.7: The CORBA HP Server that the Client invokes

import org.omg.CosNaming.*;

import org.omg.CosNaming. NamingContextPackage . *;
import org.omg.CORBA. *;

import org.omg.PortableServer.x;

import org.omg.PortableServer .POA;

import java.net.x;

public class HPServer {
public static void main(String args[]) {
try {
: ORB orb = ORB.init (args, null);
POA rootpoa = POAHelper.narrow (orb.
resolve_initial_references ("RootPOA"));
rootpoa.the_.POAManager() . activate ();
org.omg.CORBA. Object objRef = orb.
resolve_initial_references (“"NameService");
NamingContextExt ncRef = NamingContextExtHelper.
narrow (objRef) ;
HPServer_.Impl impl = new HPServer_.Impl("rmi
://192.168.0.2/HP");
impl.setORB(orb) ;
org.omg.CORBA. Object ref = rootpoa.
servant.to_reference (impl);
HPServer_Interf href = HPServer_InterfHelper.narrow
(ref);
NameComponent path[] = ncRef.to_name("HP");
ncRef.rebind (path , href);
System.out.println ("Corba HP started on IP " +
InetAddress.getLocalHost () .getHostAddress ()+"\n"
)i
orb.run();
}
catch(Exception ex) {
System.err.println ("ERROR: " + ex);
ex.printStackTrace (System.out);

In this way, the surrogate object translates the CORBA client’s request into a Web Service
call, which is then translated into a Java RMI request. If we consider the distributed
system of the organization (figure 1.3), for a client application on top of platform A and a
server application on top of platform B, we need to map the description of infrastructure A
to a Web service description (A-to-WebServices mapping) and the Web service description
to a description of infrastructure B (WebServices-to-B mapping). For the opposite case,
we need the B-to-WebServices and WebServices-to-A mappings. As the applications on
top of the new platform C become part of the whole system (figure 1.4) we will need only

11

10

15

20

25

30

the C-to-WebServices and WebServices-to-C mappings in order for them to interwork
with the existing applications, acting either as clients or servers. On the contrary, if we
do not use Web services, as a reference base middleware, we will need the A-to-C, C-to-A,

B-to-C and C-to-B extra mappings.

Listing 1.8 gives the CORBA-specific object implementation of the interface required by
the client application of our scenario, which acts as a Web service client. The print()
method constructs a dynamic call to the Web service that acts as a front-end for the
HP server object. Listing 1.9 gives this Web service wrapper, whose print() method
implements a Java RMI client, calling the print() method in the actual HP object.

Listing 1.8: The CORBA-specific Object Implementation acting as a Web Service Client

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import org.apache. axis.encoding.XMLType;
import org.apache.axis.utils.Options;
import javax.xml.rpc.ParameterMode;
import java.util.Properties;

import java.net.x;

import java.lang.=*;

public class HPServer_.Impl extends HPServer_InterfPOA {
. String endpoint;

public void print(String filename) {
try {
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress (new URL(endpoint));
call.setOperationName ("print");
call.addParameter ("argl” , XMLType.XSD_STRING,
ParameterMode.IN) ;
call .setReturnType (XMLType. AXIS_-VOID) ;
call.invoke (new java.lang.Object[] { filename });
}
catch(Exception ex) { ,
System.err.println ("ERROR: " + ex);
ex.printStackTrace (System.out);
System.out.println ("Cannot establish connection
with Web Service!");

12

10

15

20

Listing 1.9: The Web Service Wrapper acting as a Java RMI Client

import java.rmi.x;
import java.net.*;

public class WS_HP_RMIClient {
HPServer_Interf objref;

public void print(String filename) {

try
{ InetAddress address = InetAddress.getLocalHost ();
String serverURL = "rmi://" 4+ address.
getHostAddress () + "/HP";
objref = (HPServer_Interf) Naming.lookup (serverURL)
System.out.println ("Obtain a handle on RMI HP
server object");
objref.print (filename);
}

catch(Exception ex) {
ex.printStackTrace ();
System .out.println ("Cannot establish connection
with RMI Server!");
System . exit (0) ;

1.4 Illusion Maker: Automating the Integration of Heterogenous
Middleware

We have already emphasized that by using Web services, we can facilitate the interoper-
ability between different platforms, in a scalable manner. However, in a case of a large
system it will be quite demanding for the application developers to write manually the
source code that leads to the interoperability. Not only have they to specify the mappings
of the. descriptions between the heterogenous implementations each time, but also they
have always to write customary code, irrelevant to the functionality of the applications.

A promising idea is to try to model the mappings between the different middleware
standards according to a set of rules. This set of rules must define the mappings in an
abstracted and coherent form. Then, by applying these rules, the purpose is to automate
the procedure of generating the necessary source code for the integration. In this way, the
developer will obtain automatically the interoperable source code, being free to devote
more attention to issues regarding the implementation of the functionality.

13

In this thesis, we propose a framework that enables middleware platform interoperability,

without imposing:

e any requirements on the middleware platforms used for the development of either
the client or server applications;

e any code modifications.

Specifically, for every client application that relies on a middleware platform X, the pro-
posed framework creates the illusion that the server applications rely on the same plat-
form. To enable this illusion, the framework automatically generates (1) Web services
that wrap the functionality of the server objects, and (2) a X-specific view of the server
object, playing the role of the client for the Web service wrappers. For this reason, we
call the proposed framework ”The Illusion Maker Framework”. Considering our example
scenario, the Illusion Maker will automatically generate the source code, presented in
Listings 1.5, 1.7, 1.8, 1.9, creating the illusion that the Java RMI server application relies
on the CORBA platform, on which the client application actually relies.

The automatic code generation process is based on a set of rules that model the descrip-
tions of mappings between the different middleware standards, mentioned in the previous
subsection. This involves mapping the build-in types and the interface definitions of each
middleware platform (such as CORBA and J2EE) to WSDL, and vice versa. We call
this set of rules ”The platform specific patterns”, because they specify how to create the
aforementioned platform specific ”illusion”. For a pair of platforms A and B assumed by a
client and a server respectively, the [llusion Maker requires the existence of 2 correspond-
ing patterns, A-to-WebServices and WebServices-to-B. The patterns specify generically
how to generate:

1. The A-specific illusion interface, required by the client application (pattern A-to-
WebServices).

2. The A-specific implementations of the objects that serve as Web service clients
(pattern A-to-WebServices).

3. The Web services that serve as B-specific clients to the actual server objects (pattern
WebServices-to-B).

The proposed framework implements a Code Generator Mechanism that accepts as input
the platform specific pattern. The mechanism interprets the rules within the provided
pattern and produces the corresponding source code. This automatically generated source
code is ready to be utilized for the integration of the applications based on heterogenous
middleware. We can define this kind of rules for every possible pair of middleware plat-
forms assumed by a client and a server application respectively. By using the Ilusion
Maker framework, we attain the integration without depending on the assuming middle-
ware platforms and without touching the source code of the legacy applications.

14

1.5 The Structure of the Thesis

This thesis is structured as follows:

e Chapter 2 discusses the background about the middleware that facilitates the de-
sign and development of distributed systems. It presents further related work with
respect to the issue of middleware platform interoperability.

e Chapter 3 details the basic concepts of the proposed framework. It describes the
input components of the Illusion Maker framework, and elaborates the definition of
the platform specific patterns. A detailed view of the design and the implemantion
of the Code Generator mechanism is also given.

ﬂ' . e Chapter 4 presents an evaluation of our proposed methodology, both from the de-
veloper’s and from the final user’s perspective. An application developer reaps the
benefit arising from the automated code generation process. On the other hand, a
user of a distributed application may realize a decline on the performance due to
the communication overhead, which is introduced inevitably.

e Chapter 5 summarizes the contribution of the current thesis and discusses possible
future work.

e R e N A

15

CHAPTER, 2

BACKGROUND AND RELATED WORK

2.1 Middleware and Distributed Systems

2.2 Basic Properties of Middleware

2.3 Distribution Transparency

2.4 Interaction between Distributed Components
2.5 Related Work

2.6 The Contribution of the Illusion'l\/[aker Framework

This chapter starts with the fundamentals of middleware that facilitate the design and
the development of distributed systems. Afterwards, it presents a review of the related
work, in the direction of middleware platform interoperabilty. Finally, we point out again
the purpose of our proposed methodology and how its contribution is diversified from the
previous work. ’

2.1 Middleware and Distributed Systems

Middleware [4] is a software layer that stands between network operating systems and
distributed applications. It is in charge of issues concerning the execution of an application
within a distributed environment. It releases the developer from this obligation and
permits him/her to take action only about issues regarding the implementation of the
functionality provided by distributed applications. Middleware realizes the encapsulation
of the distributed nature of applications. This feature of distributed systems is called
distribution transparency [6] [16]. Thus, the developer implements the functionality of
the distributed application, as if it were for an application intended for a non-distributed
environment.

16

The communication between the distributed applications is carried out through a com-
puter network. The network is responsible for the physical transmission of data as elec-
trical signals. The data is routed to the destinations as a set of packets, composed of
byte streams or fixed-length messages. This network functionality is provided by the
operating system. If the distributed applications are build upon directly the operating
system, the developer will confront issues related to the communication between the ap-
plications. These issues arise from the heterogenous nature of the involved computing
entities (e.g. differences in data representations, incompatibilities in data types, syn-
chronization between client and server, error detection, etc.). Bridging this gap by the
application engineer is time consuming, error prone, and distracts his/her attention from
the problems related to the provided functionality.

Middleware comes to overcome this conceptual gap. It provides the application engineer
with a high level of abstraction, based on primitives that are provided by the network
operating system. In this way, it hides the complexity of using a network operating system
from application developers. Without this, the bridging of this gap would be difficult to
achieve.

2.2 Basic Properties of Middleware

The utilization of middleware for the design and development of distributed systems
gives -them some properties concerning their quality and their functionality. Because
these properties are fundamentally substantial for the distributed systems, they form an
important part of the International Standard on Open Distributed Processing (ODP)
[11]. As far as quality is concerned, a middleware platform should provide a distributed
system with openess, scalability, performance and fault-tolerance. Regarding functionality,
a middleware platform should provide a distributed system with distribution transparency
[6] [16]. In the following subsections, we discuss these basic properties.

2.2.1 Openness

Openess means that the system can easily be modified in the presence of changing func-
tional requirements, with the existing architecture remaining stable. To achieve this, the
software components of the system must have well-defined interfaces. A client component
obtains access to a server component through its interface. The implementations of the
interfaces are completely encapsulated from the components. Changes in the functional
requirements must be implemented as extensions of the existing interfaces or must be
derived from new interfaces. The existing implementations must never be touched. If
the previous happens, all the components depending on the modified implementations
will be affected. The existing middleware infrastructures enable us to declare interface
definitions, through specific descriptions called Interface Definition Languages (IDLs).

17

2.2.2 Scalability

Scalability reflects the ability of a system to handle successfully future growing loads. For
instance, if the number of requests demanding service grows rapidly, the system should be
able to accommodate the growing demands by maintaining simultaneously its behavior
stable. To achieve this, extra software components can take in charge of servicing the
increasing number of requests. The architectural design which is based on the utilization
of the interfaces facilitates such a solution. In addition, trading services can contribute to
the scalability of a system, as a load balancing mechanism.

2.2.3 Performance and Fault-Tolerance

Performance denotes the efficient execution of the applications that are built on top of
a middleware infrastructure. Fault-Tolerance demands that a system should continue to
operate, even in the occurrence of faults. It would be desirable to achieve fault-tolerance
with the limited interference of users or system administrators.

2.3 Distribution Transparency

Distribution transparency involves the encapsulation of the fact that a system is com-
posed from distributed components. This is the reason why a distributed environment is
perceived by users and developers as an integrated entity, rather than as a collection of
independent elements [6] [16]. Distribution transparency is refined to a number of more
specific transparencies, which are described in the following subsections.

2.3.1 Access Transparency

From the developer’s perspective, access transparency demands that accessing either local
or remote application components should be obtained in the same way. In other words,
the interface provided by a server component is the same for the communication between
components on the same host and components on different hosts. Middleware platforms
provide access transparency through the utilization of stubs. A stub acts as a surrogate
or a proxy of the server component to the client component, and vice versa. The stubs
hide the fact the a service request is remote. The client component makes a local call to
the stub-proxy of the server component, which in turn forwards the request to the server
component, via the network. In a similar manner, the server-side proxy of the client
component accepts the client’s request, and converts it into a local service request. An
identical procedure takes place for the transfer of the server’s response back to the client
component.

The two stubs translate the request and the response into a suitable form, for their trans-
mission through the network and then again to a perceivable form for the components. In

18

this way, the gap which is due to the heterogeneous features of the system components is
bridged. Middleware platforms employ special compilers for the automatic stub genera-
tion coming from the corresponding IDL descriptions. The stubs provide interfaces which
can be utilized in the source code of a client component, in order that access transparency

be achieved.

2.3.2 Location Transparency

Location transparency enables a client component to discover and access server compo-
nents, without knowledge of their physical location. Middleware infrastructures provide

this mechanism through naming services and trading services.

Naming services maintain a registry of service names, which are associated with a refer-
ence to the corresponding componenent that offers the service. Server components register
this kind of associations, through interfaces provided by the naming service. Client com-
ponents, through these interfaces, use the registered names to discover references to the
server components that provide a desirable service. By acquiring such a reference, the

client component can request a service.

Trading services provide interfaces through which a server component can register the
provided operations and their quality features (i.e. response time, availability of resources,
etc). A client component uses the trading service to discover server components that
provide services having particular quality features. If an appropriate component is found
within the registry, the client obtains a reference to this component, through which the

client requests the service.

2.3.3 Concurrency Transparency

Concurrency transparency means that a server component shares its functionality with
multiple client components concurrently, and the integrity of the shared component is
preserved. Neither users nor developers realize how the concurrency is achieved.

Concurrency control is typically provided by the middleware platforms through locking
mechanisms and threads. Locking mechanisms ensure that only one among all the client
components requesting the same service can obtain access to the server component that
offers the service. In case of threads, a single thread can carry out the service provision
in a serial manner or multiple threads can provide the service in parallel. In the second
case, the synchronization of threads that carry out the service provision, is required.

2.3.4 Failure Transparency

A distributed system should be tolerant to the presence of failures. It should continue to
function properly, so that both the users and the developers be unaware of how the failures

19

are resolved. Fault tolerance is attained through mechanisms that maintain replicas of the
system components. If for some reason (e.g. software or hardware failure) a component
fails to provide service, a replica of it can undertake the service provision. Middleware
platforms provide interfaces for the failure detection and recovery. The mechanism which
is responsible for the handling of replicas organizes each primary component with its
replicas into groups. In an occurrence of a failure, a notification is sent to the recovery
mechanism that takes upon to activate a replica of the failing component, so as to execute

the request.

2.3.5 Migration Transparency

Sometimes it is necessary to move a component from one location to another. This may
happen because of an overload of the initial host, or in order for an upgrade to take place;
in addition, the component may be relocated closer to its usual clients. This kind of
relocation is referred to as migration, and must be provided in a transparent way. This
means that the service provision is executed without the client component knowing that it
is being served by a component whose location has changed. The mechanisms that provide
migration transparency must be able to handle the states of the components and their
dependencies on other residing components. The interfaces of these mechanisms must offer
operations for getting the state of a component and setting it again, after its migration. If
dependencies on other components are discovered, the depending components must also
migrate to the new location.

2.3.6 Persistence Transparency and Transaction Transparency

Persistence transparency refers to the mechanisms that a middleware infrastructure should
provide for the storage of the components’ state. The provided interfaces enable the
creation of storage entities and their association with the system components. Transaction
transparency provides means for coordinating the execution of atomic transactions.

2.4 Interaction between Distributed Components

RM-ODP (Reference Model for Open Distributed Processing) [11] proposes a generic
architectural style that should be followed by middleware platforms, to enable the devel-
opment of open distributed systems. According to this style, a distributed system consists
of basic engineering elements, organized into capsules for the purpose of encapsulation of
processing, storage, and request flow. A basic engineering element provides one or more
interfaces, consisting of operations that can be invoked by other basic engineering ele-
ments. The interoperation between engineering elements that belong to different capsules
is realized through channels. A channel is a compound element consisting of pairs of stubs,
binders, and protocol elements, that realize the access transparency mechanism. As we

20

have seen already, stubs mask the differences with respect to the heterogenous features.
Binders are in charge of preserving the integrity of the channel (i.e. error detection, data
multiplexing, etc.) while protocols provide the basic communication mechanisms (i.e.
TCP/IP socket creation, broadcast of requests after a time-out, etc.).

Invoking an operation on a target element involves holding a reference to that element.
If both the requester and the requested element reside in the same address space (i.e.
elements belonging to the same capsule), the reference is a typical language-specific pointer
(e.g. a C++ pointer or a Java reference). On the other hand, if the requester and the
requested element reside in different address spaces (i.e. elements belonging to different
capsules), the reference isa pointer to a representative (i.e. a stub-proxy) of the requested
element in the requester’s address space.

The typical behavior of a capsule that plays the role of a server is summarized in the

following steps:
1. The server capsule initializes the core broker;

2. A reference to a standard middleware service that provides location transparency is
obtained.

3. The basic engineering elements that constitute the server capsule are created.
4. References to the basic engineering elements are created.

5. The references are registered to the middleware service which provides location
transparency, using a particular key, such as a name, or the interface specification
of the referenced elements.

6. Hereafter, the references can be discovered by client capsules that wish to use the
referenced elements.

The typical behavior of a capsule that plays the role of the client to basic engineering
elements, deployed on another capsule that plays the role of the server, is summarized in
the following steps:

1. The client capsule initializes the core broker and obtains a reference to a standard
middleware service that provides location transparency.

2. The aforementioned service is used to obtain references to the basic engineering
elements that should be invoked.

3. The references found in the previous step are used for invoking operations on the
target elements.

21

Several standard middleware infrastructures such as CORBA!, J2EE? and DCOM? fol-
low the generic RM-ODP style [16]. In this way, a distributed system, which is built
upon one of these infrastructures, integrates heterogenous applications and achieves the
interoperability that renders it an integrated entity.

2.5 Related Work

In this section, we return to the issue of middleware platform interoperability. We refer to
three approaches that deal with the issue under consideration, and we point out concisely
how they achieve the interoperability.

2.5.1 JADDA: Java Adaptive framework for Dynamic Distributed
Architecture

The JADDA (7] framework combines ideas from the fields of Dynamic Software Architec-
tures and of Aspect-Oriented Programming to specify and implement middleware vari-
ability at both development and run-time. All the constituent architectural elements of
a distributed system (e.g. software components, middleware platforms) are treated as
variants that can easily be changed during development or run-time.

The framework relies on architectural specifications defined with xADL (XML-based Ar-
chitecture Description Language). It constitutes XML descriptions that provide a means
of standardization for expressing architectural specifications. At the implementation level,
the JADDA class provides an API, which is used by the system components for service
requests. The DistributedConnector abstract class is the common interface for different
middleware platforms. A number of subclasses of the previous class implement the func-
tionality of the various middleware (e.g. CorbaConnector, SoapConnector). Each specific
subclass provides a call() method that transforms invocations into messages conforming
with the middleware platform used for the realization of the services. The invocation is
constructed at run-time, using Java Reflection.

The interoperability is attained as follows: A client wishing to request a service initializes
a JADDA instance and invokes the call() method. Depending on the values of the pa-
rameters provided to the method, a search takes place among the available xADL-based
architectural descriptions. This search discovers that the requested service is realized, for
instance, on top of CORBA. Therefore, a CorbaConnector object is initialized at run-time,
providing a reference to the CORBA Naming Service. After this point, the remote call is
carried out according to the CORBA communication mechanisms. If the search discovers

http://www.omg.org/technology/documents/formal/corba.iiop.htm
*http://java.sun.com/j2ee/
3http://www.microsoft.com/com/default.mspx

22

http://www.omg.org/technology/documents/formal/corbaJiop.htm
http://java.sun.com/j2ee/
http://www.microsoft.com/com

that the requested service has been implemented using Web services, a SoapConnector
instance is instantiated dynamically providing a reference to the UDDI registry.

We perceive that middleware interoperability is transparent to the server components,
but the client component must be compatible with the JADDA API. It must invoke the
call() method of the JADDA object. In this way, each client is transformed dynamically
into a client for the middleware platform, on top of which the server component is based.

2.5.2 ReMMoC: Reflective Middleware for Mobile Computing

ReMMoC [9] is a similar framework to JADDA. It provides a generic API, called Binding
Abstraction. This API is based on WSDL, and is utilized for the discovery and request of
services provided by a distributed system. The underlying Binding Framework consists of
a number of different personalities. A personality is a plug-in that transforms the generic
invocation made through the Binding Abstraction into a message, whose format conforms
with the middleware platform that was used for the realization of the invoked service. The
suitable personality is selected dynamically at run-time, through the reflection mechanism.

In addition to the Binding Framework, the Binding Abstraction provides also the Service
Discovery Framework. Its personalities implement different service discovery protocols
(SDPs). The mechanism looks up for services that can be found independently of the
assumed SDP. For every SDP that can be discovered (based on the SDP-specific per-
sonalities currently plugged in), the framework makes either a synchronous request or
monitors continuously the environment and generates an event on detection. The infor-
mation related to the requested service is retrieved by the Service Discovery Framework,
and then is utilized by the Binding Framework to make the remote call.

Currently, ReMMoc provides personalities for Java RMI, CORBA and SOAP. Concerning
the SDPs, it incorporates personalities for SLP and UPnP. Again, the middleware plat-
form interoperability is transparent for the actual server applications. However, a client
application must utilize the ReMMoC API in order to communicate with a server. Simi-
larly with JADDA, the client is automatically configured with respect to the middleware
infrastructure assumed by the server.

2.5.3 INDISS: Interoperable Discovery System for Networked Ser-
vice '

INDISS [5] is a system which provides SDP interoperability in a transparent way, both
for clients and servers. The interoperability mechanism is based on common features that
all the SDPs share. Its architecture consists of two basic subsystems, the parser and
the composer. The coordination between the two subsystems is based on an event-driven
mechanism. The parser accepts the client’s request and processes it, to retrieve the SDPs-
independent semantics that are necessary for making feasible the interoperability. These

23

semantics are exported from the parser as a series of events, which then feed the composer.
This subsystem transforms the series of events into an integrated message, based on the
server’s SDP semantics. In this way, the initial data which was suitable for the client’s
SDP is converted into a valid form for the server’s SDP.

The interaction between each couple of parser and composer is based on the event-driven
architecture, which is completely hidden from the external environment of INDISS. Both
the client and the server do not realize the fact that they interact, even if they are based
on different SDPs.

2.6 The Contribution of the Illusion Maker Framework

In the previous section, we alluded to three frameworks that try to overcome the mid-
dleware platform heterogeneity, enabling the transparent interoperability with respect to
clients and servers. While they achieve this interoperability in a transparent way, they
impose the client applications to comply to the frameworks specifications. In other words,
the implementations of the client applications must be modified according to the API that
each framework provides. In the case of JADDA, the client application has to utilize the
JADDA object, while in the case of ReMMoC the provided API must be used for the
dynamic configuration of the Binding Framework. Concerning INDISS, although the SDP
interoperability is transparent to both sides, the source code must be modified according
to INDISS requirements for accessing the remote services.

There exist cases where the modification of the client’s source code is impossible. Users
may not possess the source code of their applications, so as to make this code compatible
with mechanisms, such as the ones described above. Even if the source code is at the
user’s disposal, it will be difficult and time-consuming for a developer to modify it. For
this reason, the Nllusion Maker framework follows a different philosophy, by not imposing
any constraints on the development of client and server applications. Instead, we auto-
matically generate everything that is required to render the software parts interoperable
without interfering with their source code.

24

CHAPTER 3

THE ARCHITECTURE OF THE ILLUSION
MAKER FRAMEWORK

3.1 Basic Functionality

3.2 Input and the Use of XML

3.3 Description of the Architecture of a Legacy Server
3.4 Platform Specific Patterns

3.5 Pesign and Implementation of the Framework

3.6 Scalability Issues

3.7 The Graphical User Interface of the Framework

3.1 Basic Functionality

Figure 3.1 gives an overview of the general functionality of the Illusion Maker Framework.
The Illusion Maker can be considered as a black box whose main functionality is to
generate automatically the necessary source code for integrating applications which are
based on heterogenous middleware platforms. The input needed to be given for this
procedure consists of two components, the platform independent information and the
platform specific pattern.

The platform independent information describes the architecture of a legacy server ap-
plication, in an abstracted form (e.g. the names of the remote objects, their interface
definitions, etc.). This information is necessary in order to create illusion server cap-
sules, with respect to the client’s application middleware platform, that will wrap the
functionality of the actual remote objects.

25

Platform independent
information

.
—

Iilusion Maker Generated source

Framework ‘ —>> code for the integration

Platform specific
pattern

Figure 3.1: The Basic Functionality of the Framework.

The platform specific pattern specifies the generic rules for generating the desirable plat-
form interoperable source code. Being combined with the platform independent informa-
tion, these rules are refined into the source code, through which the integration will be
attained.

The following sections discuss explicitly the structure of the input and the design of the
architecture of the Illusion Maker framework.

3.2 'Input and the Use of XML

To specify formally the structure of both of the input components, we chose XML. XML
(eXtensible Markup Language) is a general markup language which provides a basic struc-
ture and set of rules for modelling and structuring data in a completely consistent and
customizable manner. Not only is it simple but also efficient and highly structured. This is
why it is perfectly suited for data exchange between different application infrastructures,
providing a high level of interoperability [10] [12].

In the Illusion Maker, XML has facilitated the following actions:

1. the specification of a structure which describes the platform independent informa-
tion;

2. the specification of a structure for the platform specific patterns, which provide the
rules for the code generation process;

3. the implementation of the whole functionality provided by the framework.

26

3.3 Description of the Architecture of a Legacy Server

The first input component of the framework contains information which is related to
the architecture of a legacy server application. This information is independent of the
middleware infrastructure assumed by the server application, and will be used for the
creation of illusion server capsules, as a front-end for the actual remote application. So,
it is necessary for these data to be registered in a structured manner in order to be easily
accessible and retrievable. As we mentioned in section 3.2, a XML document is a suitable
component for storing information in a fully structured way.

Before we describe explicitly the structure of this particular XML document, let us discuss
briefly what exactly piece of information should be contained in the XML document. For
this purpose, we have to consider the basic functionalities provided by the middleware
platforms for the development of distributed systems and the structure that these systems

are assumed to have.

In section 2.4 we have already alluded to the generic architectural style which RM-ODP
has proposed towards the standardization of the basic functionalities that should be pro-
vided by middleware platforms [11]. Our approach is based on the RM-ODP proposed
style, but assumes a more simple structure.

The Diagram in figure 3.2 gives an overview of our approach, concerning the architecture
of a server application. The basic component is the element which reflects the functionality
that the application offers to the distributed environment. In other words, the element
is the actual remote object, which encapsulates the implementation of its functionality.
Each element provides one or more interfaces, consisting of operations which can be
invoked by other elements. The interface is an abstract description of the functionality
of an application that provides a means of communication between distributed objects.
A client application through an interface can obtain access to the server application and
invoke an operation.

The elements are organized into capsules for the purpose of encapsulation of processing,
storage and request flow. When the elements that constitute the server capsule are cre-
ated, the corresponding references are registered to the middleware service that provides
location transparency, using a particular key such as a name. Each element must maintain
such a reference in order that other elements from client capsules be able to discover the

former and use their functionality.

According to the simplified generic architectural style described above, we create specific
XML documents containing the necessary information to be used as input to our frame-
work. Listing 3.1 declares the XML schema, on which such XML documents should rely.
As we can see, the root element, named architecture (lines 3-12), consists of a sequence

of three child elements:

27

Capsule

Element Reference

Interface

]...*

Operation

Figure 3.2: The Generic Architecture of a Server

e interfaces
o clements

e capsules

-

It also has an attribute named type, which according to its specific declaration (lines 32-
36) its value must always be equal to " architecture”. We can realize easily that each one
of the aforementioned child elements is referred to each one of the basic components of
the architectural style (figure 3.2).

The Interfaces element (lines 14-18) contains a number of child elements named interface,
each one of them represents an interface that a remote object provides. The Elements
element (lines 20-24) contains child elements named element, and each one represents an
element-object that realizes a corresponding interface. The Capsules element (lines 26-30)
includes child elements named capsule, depicting the corresponding server capsules.

For each interface, element and capsule, we have to keep some essential information which
is independent of the middleware infrastructure. To achieve this we make use of the XML
capabilities, that is, child elements and attributes. Therefore, for each interface (lines
38-45) we have to know its name (name child element) and the provided operations
(operations child element). It may also be vital to keep in mind the assuming middleware
platform. So, we use the mdw_platform element and currently we assume three possible

values: Corba, RMI and WS, representing the corresponding middleware platforms (lines
64-70).

28

10

15

20

25

30

35

40

Listing 3.1: XML Schema for the Platform Independent Information

<?xml version="1.0"7>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema'">

<xsd:element name="architecture">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="interfaces" type="interfsType" minOccurs="1"

maxQccurs="1" />
<xsd:element name="elements" type="elemsType" minOccurs="1"
maxOccurs="1" />
<xsd:element name="capsules” type="capsType" minOccurs="1"
maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="type" type="archType"/>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="interfsType">

<xsd:sequence>
<xsd:element name="interface" type="interfType" minOccurs="1"

maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name_"elems’l‘ype">

<xsd:sequence>
<xsd:element name="element" type="elemType" minOccurs="1" maxOccurs="

unbounded" />
</xsd:sequence>
</xsd:complexType>

I

<xsd:complexType name="capsType">
<xsd:sequence>
<xsd:element na.me:"capsule" type—"capsule'rype“ minOccurs="1"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="archType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value—"archltecture"/>
</xsd:restriction>
</ xsd:simpleType>

<xsd:complexType name="interfType">
<xsd:sequence>
<xsd:element name="mdw_platform" type="mdwtype" minOccurs="1"
maxOccurs="1"/>
<xsd:element name="name" type="xsd:string" minOccurs="1" maxOccurs="1
u/>

29

43

45

50

55

60

65

70

75

80

85

<xsd:element name="operations" type="opsType" minOccurs="1" maxOccurs
=n1u/> '
</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer" use="required"/>

</xsd:complexType>

<xsd:complexType name="elemType'">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="id" type="xsd:integer" use="required"/>
<xsd:attribute name="interf_id" type="xsd:integer™ use="required" />
</xsd:extension> 4
</xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="capsuleType">
<xsd:sequence>
<xsd:element name="references" type="refsType" minOccurs="1"
maxQOccurs="1" />

</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer" use="required"/>
<xsd:attribute name="IPaddress" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:simpleType name="mdwtype'">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Corba"/>
“<xsd:enumeration value="RMI"/>
<xsd:enumeration value="WS"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="opsType">
<xsd:sequence>
<xsd:element name="operation" type="opType" minOccurs="1" maxQOccurs="
unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="refsType">
<xsd:sequence>
<xsd:element name="reference" type="refType" minOccurs="1" maxOccurs=
"unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="opType">
<xsd:sequence>
<xsd:element name="args" type="argsType" minOccurs="1" maxOccurs="1"/
>

30

88

95

100

105

110

115

120

125

</xsd:sequence>

<xsd:attribute name="id" type="xsd:integer" use="required"/>

<xsd:attribute name="retType" type="xsd:string" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="refType">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="id" type="xsd:integer" use="required"/>
<xsd:attribute name="elem_id" type="xsd:integer" use="required"/>
</xsd:extension> '
</xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="argsType">
<xsd:sequence>
<xsd:element name="arg" type="argType" minOccurs="0" maxOccurs="
unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="argType">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="id" type="xsd:integer" use="required"/>
<xsd:attribute name="direction" type="dirType" use="required"/>
" <xsd:attribute name="type" type="xsd:string" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="dirType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="in"/>
<xsd:enumeration value="out"/>
<xsd:enumeration value="inout"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

For each operation provided by one interface, a corresponding operation child element
should be contained in the operations element (lines 72-76). Each operation is character-
ized by its name and its return type. Moreover, it may have or may have not parameters.
So, an operation element has two attributes, named retType and name respectively (line
84-91).

As far as the parameters of an operation are concerned, an args element must exist inside
each operation element. If one operation has parameters, then for each parameter a

31

corresponding arg element will be inside the args element (lines 102-106). Parameters are
characterized by their name, data type and direction mode. Actually, each arg element
has the direction and type attributes, while the string contained between the start and the
end tag represents the name of the parameter (lines 108-116). Concerning the direction
mode of a parameter, the direction attribute can take one of the known values (in, out,
wnout) according to the declaration in lines 118-125. On the other hand, if an operation

has no parameters, then the args element will be empty.

All the basic elements mentioned so far have an id attribute which takes a numeric value
as a unique identifier. This identifier will be used for referencing purposes during both

the parsing and code generation processes.

For each element-object which realizes an interface, we have to know its name and its
realizing interface. Therefore, the element element has an interf_id attribute whose value
refers to the value of the id of the corresponding interface element (lines 47-54). The
element element has also an id attribute, while the string between the start and the end

tag is the name of the element-object.

Each capsule element has an id attribute and an IPaddress attribute. The latter de-
picts the IP address of the server machine hosting the server capsule (lines 56-62). As
we mentioned previously, server capsules should maintain references, through a location
transparency mechanism, so as the communication between remote objects to be possible.
Consequently, we have to include information about these references.

-

A references element, including a number of reference elements, should be involved in
the capsule element (lines 78-82). Each reference element represents a reference that the
current capsule holds to the corresponding element-object. These references are char-
acterized by a name and by the object they refer to. The reference element has an id
attribute and an elem_id attribute, with the latter referring to the id of the corresponding
element-object. The string inside the tags of the element is the name of the reference
(lines 93-100).

Listing 3.2 gives a possible instance of the aforementioned XML schema. Such a XML
document can be the first input component to the framework (figure 3.1), according
to our example scenario. The XML schema file architecture.zsd, mentioned in the root
element of the document, is referred to the previously declared XML schema (listing 3.1)
and is used here for the validation of the current XML document. It is implied from
this XML document that we have a server capsule (lines 31-38), hosted in a machine
with IP address 127.0.0.1. The capsule contains two elements, named HPServer_Impl
and StulezServer_Impl (lines 27-30), realizing two interfaces named HPServer_Interf and
StulezServer_Interf respectively (lines 4-14 and 15-25), on top of Java RMI middleware
platform (lines 5, 16). The two interfaces provide an operation named print() (lines 7, 18)
which is implemented by the elements. The functionality of the operations has to do with

32

10

15

20

25

30

35

a printing application and they accept as a parameter a string with the name of the file
to be printed (lines 9, 20). The server capsule uses the names HP and Stulez respectively
(lines 33-36) as references to the corresponding element-objects that can be utilized by
other elements in order to locate them (e.g. through the Naming Service) and use their

services.

Listing 3.2: XML Document of the Platform Independent Information

<?xml version="1.0" 7>
<architecture type="architecture" xmlns:xsi="http://www.w3.o0rg/2001/
XMLSchema-instance" xsi:noNamespaceSchemalocation="architecture.xsd">

<interfaces>
<interface id="1">
<mdw_platform>RMI</mdw_platform>
<name>HPServer_Interf</name>
<operations>
<operation id="1" retType="void" name="print">
<args>
<arg id="1" direction="in" type="string">filename</arg>
</args>
</operation>
</operations>
</interface>
<interface id="2">
<mdw.platform>RMI</mdw_platform>
<name>StulexServer_Interf</name>
<operations>
* <operation id="1" retType="void" name="print">
<args>
<arg id="1" direction="in" type="string">filename</arg>
</args>
</operation>
</operations>
</interface>
</interfaces>

<elements>
<element id="1" interf_id="1">HPServer_Impli</element>

<element id="2" interf.id="2">StulexServer_Impl</element>

</elements>
<capsules>
<capsule id="1" IPaddress="127.0.0.1">
<references>

<reference id="1" elem._id="1">HP</reference>
<reference id="2" elem_id="2">Stulex</reference>
</references>
</capsule>
</capsules>
</architecture>

33

3.4 Platform Specific Patterns

We have already stated that the basic requirement for our framework is that it does not
depend on the middleware platforms assumed by the clients neither on the middleware
platforms assumed by the servers, existing in a distributed environment. To achieve the
previous, the Ilusion Maker generates: '

1. Web services that wrap the server objects by providing identical interfaces with the
ones provided by the actual objects and play the role of clients for the server objects.

2. Tllusion server capsules on top of the middleware infrastructure assumed by the
client, which create objects that correspond to the objects required by the client,
i.e. they provide the specific interface required by the client applications.

3. The implementation of these objects which play the role of a Web service client to
the Web services that wrap the actual server objects.

The generation of all of these software components is based on a number of platform
specific patterns, which are given as input to the framework (see figure 3.1). These
patterns specify the set of rules that model the descriptions of mappings between the
various middleware standards. These rules must contain the following:

e Mapping the build in data types of each middleware platform (such as CORBA and
Java RMI) to WSDL, and vice versa.

e Mapping the interface definitions of each middleware platform to WSDL, and vice

versa.

e Platform independent parameters which reflect the basic architectural features of a
legacy server and whose values can be retrieved from the first input component of
the framework (see section 3.3).

In this way, we achieve the transformation of descriptions that are valid in the domain
of one middleware infrastructure to identical descriptions that another middleware in-
frastructure assumes. Roughly, for a pair of platforms A and B assumed respectively
by a client and a server, the Illusion Maker requires the existence of two corresponding
patterns A-to-WebServices and WebServices-to-B. The patterns specify generically how
to generate:

1. The A-specific illusion capsule that hosts the objects invoked by the client applica-
tion (pattern A-to-WebServices).

2. The A-specific implementations of the objects that serve as Web service clients
(pattern A-to-WebServices).

34

Server Capsule

RMI Object Reference
HP: PrinterObject

RMI Object Implementation RMI Object Implementation
HP: PrivterObjectImpl Stulex: PrinterObjectImpl

N Register references
RMT Object Reference

Stulex: PrinterObject

Stulex ‘

Client Capsule Obtainreferences | :Coaming |

Corba Object Reference Corba Object Reference
HP: PrinterObject Stulex: PrinterObject

Figure 3.3: The Software Elements generated by Illusion Maker

3. The Web services that serve as B-specific clients to the objects included in the server
capsule (pattern WebServices-to-B).

The framework specializes the rules into the source code which leads to the interoperabil-
ity. Based on the registered information in the first input component and on the set of
specified rules in the pattern A-to-WebServices, the framework generates the A-specific
interface definitions according to the interfaces of the objects required by the client. In
addition, the framework generates the implementations of the objects, which are Web
service clients, that the client invokes and the client-side illusion capsule, hosting the
aforementioned created objects. Similarly, pattern WebServices-to-B, in conjunction with
the registered information about the architecture of the server, is specialized into WSDL
descriptions according to the interfaces of the objects offered by the server. Thus, the
Web service wrappers for the actual server objects are created. The software elements

contained in the grey boxes of figure 3.3 are the ones generated by the Illusion Maker,
regarding our case study scenario.

3.4.1 Generation of Platform Specific Illusion Interfaces

To specify patterns, we rely again on XML constructs. Each XML tag, with its nested
content inside a platform specific pattern, constitutes a particular rule for the Illusion

35

Maker. Listing 3.3 gives part of the CORBA-to-WebServices pattern which can be used
in our example scenario to allow the client to access the "HP” and the ”Stulex” objects
through CORBA. This part specifies the rules for generating CORBA IDL interfaces and
its structure reflects the structure of a CORBA IDL definition (see listing 1.5). If we
examine listing 3.3, we discover the following pattern rules:

e The interf_ezp rule, containing lteral_exp rules, the interfname platform indepen-
dent parameter and an operation_ezp rule.

e The operation_exp rule contains further literal_ezp rules, the retType and opName

parameters and an arg_ezp rule.

e The arg_ezp rule contains a direction.type_argName platform independent parameter
and a literal_ezp rule.

The basic rule for the this part of the CORBA-to-WebServices pattern is the interf_erp
rule (line 18). According to this rule, the Illusion Maker is instructed to generate an IDL
interface for every interface element in the XML document of the platform independent
information. The nested rules within the interf ezp start and end tags (lines 19-35) in-
struct the Illusion Maker to generate the content of an IDL definition. The text involved
in literal_ezp elements reflects the parts of the source code, which are platform specific
and are going to be reproduced identically. The platform independent parameters (such
as interf-name, opName, etc.) reflect the architectural features of the legacy server appli-
cation; their values are retrieved, during the code generation process, from the particular
XML document.

The first line of the interface declaration consists of the string interface, contained in
the first literal exp element (line 19), followed by the name of the interface which is
represented by the interf-name platform independent parameter (line 20). Following
that, the pattern instructs the Illusion Maker to iterate through the operations of the
interface; this is realized by the operation_ezp rule (line 22). For each operation element
in the XML document of the platform independent information, a corresponding operation
declaration should exist inside the interface declaration. An operation declaration consists
of the return data type (retType parameter, line 24), the name of the operation (opName
parameter, line 25) and a list of arguments. This task involves another iteration through
the list of parameters of each operation (reflected by arg-ezp rule, line 27). Thus, for
each arg element in the XML document of the platform independent information, an
arg declaration (consisting of the direction mode, the data type and the name of each
parameter) is added to the corresponding operation declaration.

36

10

15

20

25

30

Listing 3.3: Generation of CORBA IDL Illusion Interfaces

<?xml version="1.0"7>
<pattern type="Interf" platform="Corba">
<datatypes>
<datatype id="0" name="void">void</datatype>
<datatype id="1" name="boolean">boolean</datatype>
<datatype id="2" name="char">char</datatype>
<datatype id="3" name="string">string</datatype>
<datatype id="4" name="byte">octet</datatype>
<datatype id="5" name="short">short</datatype>
<datatype id="6" name="unsigned short">unsigned short</datatype>
<datatype id="7" name="int">long</datatype>
<datatype id="8" name="unsigned int">unsigned long</datatype>
<datatype id="9" name="long">long long</datatype>
<datatype id="10" name="unsigned long">unsigned long long</datatype>
<datatype id="11" name="float">float</datatype>
<datatype id="12" name="double">double</datatype>
</datatypes>
<interf_exp>
<literal_.exp>interface </literal_exp>
<interf_name />
<literal_exp> { </literal_exp>
<operation_exp> 7
<literal_exp>_newline</literal_exp><literal_exp>_tab</literal_exp>
<retType/>
<opName/>
<literal_exp>(</literal_exp>
‘<arg_exp>
<direction_type_argName />
<literal_exp>,</literal_exp>
</arg_exp>
<literal_exp>);</literal_exp>
</operation_exp>
<literal_exp>_newline</literal_exp>
<literal_exp>};</literal_exp>
<literal_exp>_newline</literal_exp>
</interf_exp>
</pattern>

3.4.2 Generation of Platform Specific Object Implementations

The rest of the patterns work in a similar manner. Listing 3.4 is the part of the CORBA-
to-WebServices pattern that details the generation of CORBA-specific object implemen-
tations, acting as Web service clients (see listing 1.8). This part of the platform specific

pattern contains the following rules:

o The element_ezp rule, which contains several literal_exp rules, the interf.name pa-

rameter, the element.name parameter and an operation_exp rule.

37

10

e The operation_ezp rule is similar to the corresponding rule described in the previous
subsection. It further contains one addparameter_ezp rule, an inwvoke rule and a

ret Type_ezp rule.
e The addparameter_ezp rule contains the arg_id, type and direction parameters.

e The invoke rule contains the retType_ezp rule twice and an arg_ezp rule.

In particular, the basic element_exp rule instructs the Illusion Maker to iterate through
the element-objects, which realize each interface (line 26). For each element element in
the XML document of the platform independent information, a elemeni_name Java class
is created (lines 40-44). The operation_ezp rule (line 55) instructs the Illusion Maker to
iterate through the list of operations, implemented by the corresponding element. Each
operation of this class constructs dynamically a Web service call that accesses a Web ser-
vice wrapper (lines 55-115). For each parameter of each operation, the addparameter_exp
rule (lines 72-80) instructs the Illusion Maker to generate a source code line that adds
the corresponding parameter to the dynamic operation invocation (i.e. line 22 in listing
1.8). The invoke rule with its nested rules (lines 84-101) generate the source code line
which realizes the dynamic invocation (i.e. line 24 in listing 1.8). The last ret Type_exp
rule (lines 107-110) generates the return type line of a non-void operation (in listing 1.8
the implemented operation is void).

Listing 3.4: Generation of CORBA-specific Object Implementations

<?xml version="1,0"7>
<pattern type="ObjectImpl" platform="Corba">

<datatypes>

<datatype id="0" name="void" xmltype="AXIS_VOID">void</datatype>

<datatype id="1" name="boolean" retValue="false" xmltype="XSD_BOOLEAN"
javalangtype="Boolean" holder="BooleanHolder">boolean</datatype>

<datatype id="2" name="char" retValue="’\u0000'" xmltype="XSD_STRING"
javalangtype="Character" holder="CharHolder">char</datatype>

<datatype id="3" name="string" retValue="null" xmltype="XSD_STRING"
javalangtype="String" holder="StringHolder">String</datatype>

<datatype id="4" name="byte" retValue="-1" xmltype="XSD_BYTE"
javalangtype="Byte" holder="ByteHolder">byte</datatype>

<datatype id="5" name="unsigned byte" retValue="-1" xmltype="
XSD_UNSIGNEDBYTE" javalangtype="Short" holder="ShortHolder">short</
datatype>

<datatype id="6" name="short" retValue="-1" xmltype="XSD_SHORT"
javalangtype="Short" holder="ShortHolder">short</datatype>

<datatype id="7" name="unsigned short" retValue="-1" xmltype="
XSD_UNSIGNEDSHORT" javalangtype="Short" holder="ShortHolder">short</
datatype>

<datatype id="8" name="int" retValue="-1" xmltype="XSD_INT"
javalangtype="Integer" holder="IntHolder">int</datatype>

38

15

20

25

30

35

10

45

<datatype id="9" name="unsigned int" retValue="-1" xmltype="
XSD_UNSIGNEDINT" javalangtype="Integer" holder="IntHolder">int</
datatype>
<datatype id="10" name="long" retValue="-1" xmltype="XSD_LONG"
javalangtype="Long" holder="LongHolder">long</datatype>
<datatype id="11" name="unsigned long" retValue="-1" xmltype="
XSD_UNSIGNEDLONG" javalangtype="Long" holder="LongHolder">long</
datatype>
<datatype id="12" name="float" retValue="-1.0" xmltype="XSD_FLOAT"
javalangtype="Float" holder="FloatHolder">float</datatype>
<datatype id="13" name="double" retValue="-1.0" xmltype="XSD_DOUBLE"
javalangtype="Double" holder="DoubleHolder">double</datatype>
<datatype id="14" name="BigInt" retValue="java.math.BigInteger.ZERD"
xmltype="XSD_INTEGER" javalangtype="java.math.BigInteger" holder="
ObjectHolder">java .math. Biglnteger</datatype>
<datatype id="15" name="decimal" retValue="new java.math.BigDecimal(
java.math.BigInteger.ZERDO)" xmltype="XSD_DECIMAL" javalangtype="java
.math,.BigDecimal" holder="0ObjectHolder">java.math.BigDecimal</
datatype>
</datatypes>
<parametermodes>
<mode name="in">IN</mode>
<mode name="out ">0UT</mode>
<mode name="inout">INOUT</mode>
</parametermodes> '
<element.exp>
<literal.exp>import org.omg.CosNaming.*;</literal_exp>
<literal.exp>import org.omg.CosNaming. NamingContextPackage .*;</
literal_exp>
<literal.exp>import org.omg.CORBA.x;</literal_exp>
<literal_exp>import org.omg.PortableServer.*;</literal_exp>
<literal_exp>import org.omg.PortableServer .POA;</literal_exp>
<literal.exp>import org.apache.axis.client.Call;</literal_exp>
<literal_exp>import org.apache.axis.client.Service;</literal_exp>
<literal.exp>import org.apache.axis.encoding.XMLType;</literal_exp>
<literal_exp>import org.apache.axis.utils.Options;</literal_exp>
<literal_exp>import javax.xml.rpc.ParameterMode;</literal_exp>
<literal_exp>import java.util.Properties;</literal_exp>
<literal_exp>import java.net.x;</literal_exp>
<literal.exp>import java.lang.*;</literal_exp>
<literal_exp>public class </literal_exp>
<element_name />
<literal_exp> extends </literal.exp>
<interf_name />
<literal._exp>POA { </literal_exp>
<literal.exp>private ORB orb;</literal_exp>
<literal_exp>private String endpoint;</literal_exp>
<literal.exp>public </literal.exp>
<element_name />
<literal_exp>(String servURL) {</literal_exp>

39

50

51

55

60

65

70

75

80

85

90

95

<literal_exp>endpoint = servURL;</literal_exp>
<literal_exp>}</literal_exp>
<literal_exp>public void setORB(ORB orb.val) {</literal_exp>
<literal.exp>this.orb = orb.val;</literal.exp>
<literal_exp>}</literal_exp>
<operation_exp>
<literal.exp>public </literal_exp>
<retType/>
<opName/>
<literal_exp>(</literal_exp>
<arg.exp> V
<direction_.type_argName />
<literal.exp>,</literal_exp>
<[/arg.exp>
<literal.exp>) {</literal_exp>
<literal_exp>try {</literal_exp>
<literal_exp>Service service = new Service();</literal_exp>
<literal_exp>Call call = (Call) service.createCall();</literal_exp>
<literal_exp>call.setTargetEndpointAddress (new URL(endpoint));</
literal_exp>
<literal_exp>call.setOperationName("</literal_exp>
<opName/>
<literal_exp>");</literal_exp>
<addparameter.exp>
<literal.exp>call .addParameter ("arg</literal_exp>
. <arg_id/>
<literal_exp>", XMLType.</literal_exp>
<type/>
<literal_exp>, ParameterMode.</literal_exp>
<direction />
<literal_exp>);</literal_exp>
</addparameter_exp>
<literal.exp>call.setReturnType (XMLType.</literal.exp>
<retType/>
<literal_exp>);</literal_exp>
<invoke>
<retType.exp id="1">
<retType/>
<literal_exp> ret = (</literal_exp>
<retType/>
<literal_exp>) </literal.exp>
</retType.exp>
<literal_exp>call.invoke(new java.lang.Object[] { </literal_exp>
<arg-exp>
<direction.type_argName />
<literal_exp>,</literal_exp>
<[/arg._exp>
<literal_exp> });</literal_exp>
<retType._exp id="2">
<literal_exp>_tab</literal_exp>

40

100

105

110

. 115

<literal.exp>return ret;</literal_exp>
</retType_exp>
</invoke>
<literal_exp>} </literal_exp>
<literal_.exp>catch (Exception ex) {</literal.exp>
<literal_exp>System.err.println ("ERROR: " + ex);</literal_exp>
<literal.exp>ex.printStackTrace(System.out);</literal.exp>
<literal._exp>System.out.println ("Cannot establish connection with Web
Service!");</literal_exp>
<retType.exp id="3">
<literal_exp>return </literal_exp>
<retValue/>
<literal_exp>;</literal_exp>
</retType_exp>
<literal_.exp>}</literal_exp>
<literal_exp>}</literal_exp>
</operation_exp>
<literal_exp>}</literal_exp>
</element_exp>
</pattern>

3.4.3 Generation of Platform Specific Illusion Capsules

Listing 3.5 is the part of the CORBA-to-WebServices pattern that details how to gen-
erate” CORBA-specific illusion capsules (see listing 1.7). The basic pattern rule is the
reference_ezp rule (line 3). For every object within a capsule, this rule instructs the II-
lusion Maker to generate a Java class whose name will be reference_nameServer (lines
10-12); reference_name (line 11) is the platform independent parameter that denotes the
name of a reference with which the corresponding object is associated. The code for this
class is given within the reference_ezp tags. The main method of each class initializes the
ORB broker and several other CORBA specific objects, such as the RootPOA and the
NameService (lines 13-19). Then, a new instance of the CORBA-specific object imple-
mentation is created (element_name parameter, lines 20-22), which involves specifying the
URI where the corresponding Web service wrapper can be found. The latter is reflected
by the jws_ezp rule (lines 23-39). Finally, the Illusion Maker is instructed to generate code
(lines 40-49) that registers the just previously created instance, with the corresponding
assumed name (represented by the reference_name platform independent parameter, line
47), to the CORBA Naming Service.

41

10

20

25

30

35

40

Listing 3.5: Generation of CORBA-specific Illusion Capsules

<?xml version="1,0"7>
<pattern type="Capsule" platform="Corba">
<reference.exp>
<literal_exp>import org.omg.CosNaming.x*;</literal_exp>
<literal_exp>import org.omg.CosNaming.NamingContextPackage .*;</
literal_exp>
<literal_exp>import org.omg.CORBA.x;</literal_exp>
<literal_exp>import org.omg.PortableServer.*;</literal_exp>
<literal_exp>import org.omg.PortableServer .POA;</literal_exp>
<literal_exp>import java.net.x;</literal_exp>
<literal_exp>public class </literal_exp>
<reference_name />
<literal_exp>Server {</literal_exp>
<literal_exp>public static void main(String args[])) {</literal.exp>
<literal_exp>try {</literal_exp>
<literal.exp>ORB orb = ORB.init (args, null);</literal_exp>
<literal_exp>POA rootpoa = POAHelper.narrow{orb.
resolve.initial.references ("RootPOA"));</literal.exp>
<literal_exp>rootpoa.the. POAManager().activate();</literal_exp>
<literal_exp>org.omg.CORBA. Object objRef = orb.
resolve._initial_references ("NameService");</literal_exp>
<literal_exp>NamingContextExt ncRef = NamingContextExtHelper.narrow(
objRef);</literal_exp>
<element.name />
<literal.exp> impl = new </literal_exp>
<element_name /> .
<literal.exp>("http://</literal_exp>
<IPAddress/>
<literal_exp>:8080/axis/</literal_exp>
<jws_exp>
<jws id="1">
<literal_exp>WS_</literal_exp>
<reference_name/>
<literal_exp>_</literal_exp>
<server_platform/>
<literal_exp>Client</literal_exp>
. </jus>
<jws id="2">
<reference_name/>
<literal_exp>Server</literal_exp>
</jws>
</jws_exp>
<literal_exp>.jws");</literal_exp>
<literal.exp>impl.setORB(orb);</literal_exp>
<literal.exp>org.omg.CORBA. Object ref = rootpoa.servant_-to.reference(
impl);</literal_exp>
<interf_name/>
<literal.exp> href = </literal_exp>
<interf_name/>

42

50

55

60

<literal_exp>Helper.narrow(ref);</literal_exp>
<literal_exp>NameComponent path[] = ncRef.to_name("</literal_exp>
<reference_name/>
<literal_exp>");</literal_exp>
<literal_exp>ncRef.rebind (path, href) ;</literal_exp>
<literal.exp>System.out.printin("Corba </literal_exp>
<reference_name/>
<literal_exp> started on IP " + InetAddress.getLocalHost ().
getHostAddress ()+"\n");</literal_exp>
<literal_exp>orb.run();</literal_exp>
<literal_exp>}</literal_exp>
<literal_.exp>catch (Exception ex) {</literal_exp>
<literal_exp>System.err.println ("ERROR: " + ex);</literal_exp>
<literal_exp>ex.printStackTrace(System.out);</literal_exp>
<literal_exp>}</literal_exp>
<literal_exp>}</literal_exp><literal_exp>_newline</literal_exp>
<literal_exp>}</literal_exp>
</reference_exp>
</pattern>

3.4.4 Generation of Web Service Wrappers

Finally, listing 3.6 constitutes the WebServices-to-RMI pattern which can be used in our
scenario in order to generate the Web service wrappers (see listing 1.9). For each actual
remofe object, a Web service is created that wraps the functionality of the former and
works as a frontend for it (wrapper_ezp rule, line 21). The generated Web service Java
class is named WS_referenceName_serverplatformClient as mentioned in lines 24-27 (in our
example the two classes will be named WS_HP_RMIClient and WS_Stulex.RMIClient).
The wrapperoperation_ezp rule (line 30) instructs the Illusion Maker to iterate through
the list of operations provided by the server object. For every one of these operations,
the framework generates a corresponding web service operation, which is a Java RMI
Client. A reference to the Java RMI object is looked up within the RMI registry, using
a particular name which has been associated with the object (lines 40-47). By obtaining
this reference, the Web service invokes the actual operation provided by the interface of
the remote object (invoke rule, lines 51-70).

Listing 3.6: Generation of Web Services that serve as Java RMI Clients

<?xml version="1.0"7>
<pattern type="ObjectImpl" platform="WS">
<datatypes>
<datatype id="0" name="void" retValue="null">void</datatype>
<datatype id="1" name="boolean" retValue="false" holder="javax.xml.rpc.
holders.BooleanHolder">boolean</datatype>
<datatype id="2" name="char" retValue="’\u0000’'" holder="javax.xml.rpc.
holders.StringHolder">char</datatype>
<datatype id="3" name="string" retValue="null" holder="javax.xml.rpc.
holders.StringHolder">String</datatype>

43

10

15

20

25

30

as

10

<datatype id="4" name="byte" retValue="-1" holder="javax.xml.rpc.
holders.ByteHolder">byte</datatype>
<datatype id="5" name="unsigned byte" retValue="-1" holder="javax.xml.
rpc.holders.ShortHolder">short</datatype>
<datatype id="6" name="short" retValue="-1" holder="javax.xml.rpc.
holders.ShortHolder">short</datatype>
<datatype id="7" name="unsigned short" retValue="-1" holder="javax.zxml.
rpc.holders.ShortHolder">short</datatype>
<datatype id="8" name="int" retValue="-1" holder="javax.xml.rpc.holders
.IntHolder">int</datatype> :
<datatype id="9" name="unsigned int" retValue="-1" holder="javax.xml.
rpc.holders.IntHolder">int</datatype>
<datatype id="10" name="long" retValue="-1" holder="javax.xml.rpc.
holders.LongHolder">long</datatype>
<datatype id="11" name="unsigned long" retValue="~1" holder="javax.xml,
rpc.holders.LongHolder">long</datatype>
<datatype id="12" name="float" retValue="-1.0" holder="javax.xml.rpc.
holders.FloatHolder">float</datatype>
<datatype id="13" name="double" retValue="-1.0" holder="javax.xml.rpc.
holders.DoubleHolder">double</datatype>
<datatype id="14" name="BigInt" retValue="java.math.BigInteger.ZERQ"
holder="javax.xml.rpc.holders.BigIntegerHolder">java .math. Biglnteger
</datatype>
<datatype id="15" name="decimal" retValue="new java.math.BigDecimal(
java.math.BigInteger.ZER0)" holder="javax.xml.rpc.holders.
. BigDecimalHolder">java.math.BigDecimal</datatype>
</datatypes>
<wrapper_exp>
<literal_exp>import java.rmi.*;</literal_exp>
<literal_exp>import java.net.*;</literal_exp>
<literal.exp>public class WS</literal_exp>
<reference_name /> ’
<literal.exp>_</literal_exp>
<literal_exp>RMIClient {</literal_exp>
<interf_name />
<literal.exp> objref;</literal_exp>
<wrapperoperation_exp>
<literal_exp>public </literal_exp>
<retType/>
<opName />
<literal_exp>(</literal_exp>
<arg.exp>
<direction.type-argName/>
<literal_exp>,</literal.exp>
</arg-exp>
<literal_exp>) {</literal_exp>
<literal.exp>try {</literal_exp>
<literal.exp>InetAddress address = InetAddress.getLocalHost ();</
literal_exp>
<literal_exp>String serverURL = "rmi://" + address.getHostAddress()

44

§5

60

65

70

75

80

+ "/</literal_exp>

<reference_name/>

<literal_exp>";</literal_exp>

<literal.exp>objref = (</literal_exp>

<interf_.name />

<literal_exp>) Naming.lookup (serverURL);</literal_exp>

<literal.exp>System.out.println("0Obtain a handle on RMI </literal_exp
>

<reference_name/>

<literal_exp> server object");</literal_exp>

<invoke>
<retType_exp id="1">
<retType/>
<literal_exp> ret = (</literal_exp>
<retType/>

<literal.exp>) </literal.exp>
</retType_exp>
<literal_exp>objref.</literal_exp>
<opName/>
<literal_exp>(</literal_exp>
<arg.exp>
<direction_type_-argName />
<literal_exp>,</literal_exp>
</arg.exp>
<literal_exp>);</literal.exp>
. <retType.exp id="2">
<literal_exp>return ret;</literal_exp>
</retType_exp>
</invoke>
<literal_exp>}</literal_exp>
<literal_exp>catch (Exception ex) {</literal_exp>
<literal_exp>ex.printStackTrace();</literal_exp>
<literal.exp>System.out.println ("Cannot establish connection with RMI
Server!");</literal_exp>
<literal.exp>System.exit (0);</literal_exp>
<retType.exp id="3">
<literal_exp>return </literal_exp>
<retValue/>
<literal_exp>;</literal_exp>
</retType.exp>
<literal_exp>}</literal_exp>
<literal.exp>}</literal_exp>
</wrapperoperation_exp>
<literal.exp>}</literal_exp>

</wrapper.exp>
</pattern>

This kind of platform specific patterns (*-to-WebServices and WebServices-to-*) can
be defined for every possible pair of middleware platforms assumed by a client and a

45

server application respectively. In the Appendix we provide the RMI-to-WebServices and
WebServices-to-CORBA patterns, which can be utilized by the Illusion Maker Framework
to achieve the interoperability in a scenario where the actual client relies on Java RMI
and the legacy server relies on CORBA. In addition, we provide the CORBA-to-RMI
and RMI-to-CORBA patterns specifying how to generate CORBA and Java RMI imple-
mentations of abjects respectively, which access directly the corresponding Java RMI and
CORBA actual servers, without using the intermediate Web services.

3.4.5 Mapping of Data Types

At this point, we have to discuss about the datatypes and parametermodes sections of
the platform specific patterns. These sections specify a kind of mapping among the
data types and the direction modes of heterogenous middleware platforms. Currently,
the framework supports only the existence of build-in data types; it does not support
complex data types such as structs, unions etc. Each datatype child element inside the
datatypes element reflects a specific data type. An id attribute is used as an identifier for
referencing purposes.

For each specific data type, referred in the XML document of the platform independent
information (e.g. the return type of an operation, the data type of a parameter), we use
a general term. This term is declared within a platform specific pattern as the value of
the name attribute of the datatype element. The string value contained between the start
and the end tag is the corresponding name of the data type, which is used by the assumed
middleware platform. Here we use Corba IDL data types and Java basic data types.

In addition, we need to know the corresponding Java wrapper classes of the data types!,
the corresponding Holder classes?, and XML data types®. Java wrappers and XML data
types are used by the Web service clients in the dynamic object invocation. Holder objects
are used when we have to do with parameters whose direction mode is out or inout. For this
information, a corresponding attribute is used inside each datatype element (javalangtype,
holder and zmltype attributes respectively). We also need to keep a possible return value
for each data type, which is going to be returned by an operation whenever something
goes wrong, for instance when an exception occurs. This value is declared in the ret Value
attribute. Table 3.1 gives a brief view of the mapping among the data types, assumed as
input by the Illusion Maker framework ([2], [3], [6], [13], [14], [15]). Similar is the purpose
of the parametersmodes section.

ljava.lang.* classes which wrap a value of the corresponding primitive types in an object (e.g.

java.lang.Integer, java.lang.Float etc.).
%org.omg.Corba.* and javax.xmlrpc.holders.* classes for Corba IDL(2] and JAX-RPC [15] re-

spectively which use a value attribute to keep the value of an out or inout parameter (e.g.

org.omg.CORBA.LongHolder, javax.xml.rpc.holders.ByteHolder etc.).
3org.apache.axis.encoding. XMLType.* constants which have been declared as XML type QNames to

indicate the corresponding XML data types, e.g. XSD.STRING, XSD_INT etc. (see [3]).

46

Basic Type XML Type Java Java Java Holder | Corba IDL
Type Wrapper Type
void AXIS_.VOID - - - void
boolean XSD_.BOOLEAN boolean Boolean BooleanHolder| boolean
char - | XSD.STRING char Character | CharHolder char
string XSD STRING String String StringHolder | string
byte XSD BYTE byte Byte ByteHolder octet
unsigned byte | XSD.UNSIGNEDBYTE | short Short ShortHolder | short
short XSD_SHORT short Short ShortHolder | short
unsigned short | XSD_UNSIGNEDSHORT | short Short ShortHolder | unsigned
short
int XSDINT int Integer IntHolder long
unsigned int XSD.UNSIGNEDINT int Integer IntHolder unsigned
long
long XSD_LONG long Long LongHolder long long
unsigned long | XSD_UNSIGNEDLONG | long Long LongHolder unsigned
long long
float XSD _Float float Float FloatHolder float
double XSD_DOUBLE double Double DoubleHolder | double

Table 3.1: Data Types Mapping

Finally, we can see in the literal_ezp elements of the platform specific patterns some strings
such as _newline or _tab. These are special instructions which tell the Illusion Maker to
change a line (the former) or leave a tab space (the latter) while generating the source
code and writing it to the output file. For simplification purposes, in the listings shown
here, most of these declarations are omitted. This is the general function of the platform
specific patterns which is being done by the Illusion Maker in order to refine them into
the desirable source code.

3.5 Design and Implementation of the Framework

Figure 3.4 gives a more refined view of the main subsystems that constitute the Illusion
Maker. As we see, the framework consists of two parsers. The first parser accepts as
input the XML document which contains the platform independent information. This
parser converts the XML structure to a corresponding hierarchy of objects, which hold
the information contained in the XML document.

The purpose of the second parser is to parse the platform specific pattern and translate
it into the desirable source code. The platform specific pattern is given as input to this
parser, and the output of the first parsing process feeds its data into the current process.
The result is another hierarchy of objects into which the content of the generated source
code is organized. Finally, the latter, more refined hierarchy of objects, is forwarded to
the File Utility subsystem, which is in charge of storing the source code into suitable

47

.
.

Platform specific
pattem U

Platform independent; Code Generator E
information : !
' | Parserforthe XML :
; Document with the :
' Platform lndegendent Hierarchy of File Utility : Source code
: Information objects Subsystern ; output file
E' Parser for the Platform Refined Hierarchy of :
r Speciﬁc Pattern objects E

Figure 3.4: The Subsystems of the Illusion Maker

output files.

In the following subsections, we elaborate the details on the design and the implementation
of these subsystems.

3.5.1 Parsing XML Documents

As we have stated above, the basic components of the framework are the two parsers
which are responsible for specializing the platform specific patterns into the desirable
source code. Since both the platform independent information and the platform specific
patterns are stored in XML documents, we need parsers which will read and extract the
data contained in the specific XML documents.

For this purpose, we implemented the two parsers on the basis of the Simple API for
XML (SAX) [10] [12]. SAX provides an interface (the XMLReader interface) for event-
based parsing of XML files. It is a standard that describes how a SAX parser should be
written and which events must be supported. The SAX parser does not do anything to
the XML data other than trigger certain events. It is up to the user’s need and demand
to determine what happens when these events take place. So, the user can implement
functions for copying the data into a data structure of a native programming language,
transforming it into a presentation format or applying a style to it.

The parser reads a document from beginning to end. While doing so, it encounters start
tags, end tags, text, comments, processing instructions and more. In SAX, the parser is
based on a callback mechanism. This mechanism provides the ContentHandler interface,
which the client application should implement to receive notification of the document
content. The client application will instantiate a specific instance of the ContentHandler
interface and associate it with the parser that is going to read the document. As the

43

parser reads the document, it tells the client application what it sees as it sees it {(e.g.
start tags, end tags etc.) by calling back to the methods in the registered ContentHandler
object. The user-defined implementations of these methods determine what to do to the

parsed data [10] [12].

3.5.2 The XML Parsers of the Framework

The Illusion Maker framework reflects a case, where the use of XML parsers is necessary.
The first parser is a SAX parser which reads the XML document of the platform indepen-
dent information. What it does is merely reading the whole document and extracting the
contained text data, that is the text within the tags and the attribute values. The result
is to copy the data into a list of objects belonging to a class hierarchy that conforms with
the structure of the parsed XML document.

The second parser is in charge of parsing the XML document, which specifies the platform
specific pattern. We have already mentioned that the platform specific pattern specifies
the set of rules, according to which the source code will be generated. Each tag represents
a particular instruction for the parser. So, as the parser reads the document, for each
pattern rule which is being seen, a particular operation is executed which refines the in-
put. The necessary platform independent information, involved in the server architectural
parameters of the rules, is provided to this process, by iterating through the set of lists
generated by the first parser. The final output is organized again to a class hierarchy
which is ready to be transformed into plain source code.

The UML diagram in figure 3.5 shows the classes and the dependencies between them,
which implement the basic functionality of the Illusion Maker framework. In the diagram,
the XMLParser abstract class is the basic class encapsulating the parsing functionality.
Its non-abstract method parseXML() implements this functionality, making use of the
XMLReader* and ContentHandler® interfaces. An instance of the former interface is
created with respect to a Xerces SAX Parser®, which is then attached to a ContentHandler
instance, using the DefaultHandler” adapter class. The zmlifilename attribute reflects the
name of the XML Document to be parsed. The three abstract methods checkType(),
isValid() and parseXML/() realize the whole parsing operation.

3.5.3 Parsing the Platform Independent Information

The ArchXMLParser class specializes the XMLParser abstract class, implementing the
specific parser for parsing the XML document of the platform independent information.

4org.xml.sax. XMLReader: http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/XMLReader.html

Sorg.xml.sax.ContentHandler: http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ContentHandler.html

8Xerces is the XML Parser from the Apache Software Foundation: http://xml.apache.org

Torg.xml.sax.helpers.DefaultHandler: http://java.sun.com/j2se/1.5.0/docs/api/org/xml/sax /helpers/package-
summary.html

49

http://java.sun.eom/j2se/l.4.2/docs/api/org/xml/sax/XMLReader.html
http://java.sun.eom/j2se/l.4.2/docs/api/org/xml/sax/ContentHandler.html
http://xml.apache.org
http://java.sun.eom/j2se/l.5.0/docs/api/org/xml/sax/helpers/package%c2%b7

026000314130

sasse|y uolissasdxd Jo Aydsesaly B

sasse|d Jo Ayaiesaly =]

sdx32.mpPaYIIVE

1/ sdxeyaie

2UINIIINYAYE
DINPIEPYAE

yae

{)suoissaidxgish sdxgainyaapyaiy syqnd
1§ ‘nededsaweu bung huawsajpua pioa aqnd
18 ‘fynededsaweu bung Jluawai3uels ploa-gnd

SiogeIRHQ

“{ABunS ooy plo djenid

{)uisopiey 186 Bung ongnd.
: { IpyeAS! ueej>0q 1jgnd
+a0) Bung *Rynesedsswey ,ms,:.m Jusweiguels pioa aygnd

3] 1 ‘peis it [, olud f8ya Jsiatseieyd pioa aygnd T S—
SUAREIIEO
pijeA ueajooq ajeaud
J0e0x32P0D 3 sdk) Gang oensd
sanquy
Jopenx3adAlueyed 5

. { eimosuysiyieb ainoayydivy sijgnd;
20] Buwg |ynaaedsswey Buig Juswaigpue pioa Jnqnd
o) bu)g "jyneaedseweu bung wswaiguels pios Myqnd
{ yibusy it “pers i [, Qlyd seyd Jsieioeseyd pioa angnd
svonelado

10)0RAXAXOLES

1 a

{ Niaxasied i signd
{ pieas) ueajooq aygnd
(JodApyoaud jut augnd’

{ JuoydesxzedA juiane gpyeau) 2ugnd
SuoRE1200

IBSIBLINX Wi PBULBPaY SUORRIRED

¢ Yiwxesied Ui dijand

(JPUEAS) UBSIOOY Jlignd <<adielep>>

1aipueHiInejag-ssadiay xes X 810 5y

FOSIBLINX WAk PAUYAPSY SUOHRISCD

{ Jeunpoauyargiab aimodeyyaiy gnd
sdoReiado

{)adA1yoay2 u) augnd

co_ﬁooxwaoﬂc‘.oﬁm!_?c_m

7

{ Jsumsserdx3eb sdxjaimrapyaiy.o)qnd

{ Juwsoyejciefi Buig atgnd
SUORLISIQ

1e57e,

uoRdesx3y sy

JTINXUINEd

<<8dAeIep>>

JasiedTNXU2IVES

sasseld Annn i)

£
 hwxesied i dygnd
(Joyepsy uesjooq yqnd
{ Jodhgyoayo jis ayand J

! 104 2)|qne
{ uuopeid Buwg *edA1 Buwg “yaie ainoeuyany Yepgmau [, glhumnand sngnd

{ 19s518d Josie WxXWaANE Jwiope|41eb Suug agnd
(1asued sasieg X JTnxesed o agnd

(1esued sasse X JptieAS! ueajouq aygqnd

{1ested 1esiedX JodA1noays Jul agnd

{ =1a8jpueipynejeq-siadjay xes jwx B0 yyxasied ju aiqnd KN\ SU0RTIA60
suoyLIed)
o = Sp0JeaInes bumg sjeAnd
ausevapyjux Sung ayeaud . yied Sumg ajeaund
sanqupy Sawnqiy
Jesied X =) Jojesauanapod 5

ign

ion Maker Des

The Classes of the Illus

.
.

Figure 3.5

50

The TeztExtractor class realizes the ContentHandler interface, and extends the corre-
sponding DefaultHandler class. So, TeztExtractor is the callback mechanism whose meth-
ods will be invoked by the parser while reading the XML data. The PatternTypeExtractor
class is another realization of the ContentHandler interface. Its functionality is to check
whether the XML document which is going to be parsed is a suitable XML document
according to the functionality of the framework.

The ArchXMLParser should instantiate the Pattern TypeEztractor and TextEztractor classes.
The parsing process consists of the following steps:

1. Using the PatternTypeExtractor instance of the callback mechanism, the parser
checks the suitability of the XML document to be parsed.

e The suitability is indicated by the value of the fype attribute, which should
exist in the architecture root element of the particular XML document. In
this case, this value must be equal to ” architecture” (listing 3.1, lines 32-36
and listing 3.2, line 2). The operation is implemented by the checkType() and
isValid() redefined methods of the ArchXMLParser class.

2. Using the TeztExztractor instance of the callback mechanism, the parser reads the
XML document and extracts the contained data. During this process, the overridden
methods (characters(), startElement(), endElement()) of the TextExtractor class
.are called back by the parser, building the set of objects which hold the platform
independent information. The whole operation is encapsulated in the parseXML()
redefined method of the ArchXMLParser.

This parsing process results in the creation of an instance of the Architecture class, which
depicts the corresponding XML structure of the platform independent information. This
instance is created by the methods of the callback mechanism. Figure 3.6 gives an overview
of this class hierarchy.

We can easily observe that the XML structure has been transformed into a class structure.
Each particular XML element, which specifies a basic component of the server architec-
ture, is represented by a corresponding class (e.g. capsule, reference, element, interface,
operation, argument). Each set of basic components is represented by a vector-list of the
corresponding objects, which is contained in the particular object: a Capsule object in-
cludes a set of Reference objects, an Interf object includes a set of Operation objects, with
each one of them including a set of Arg objects. As a whole, an Architecture object will
contain sets of Capsule, Element and Interf objects. Attributes and child elements of the
XML elements that correspond to basic features of the components, are represented by
specific class attributes. Consequently, the Architecture instance, created during the pars-
ing of the XML document of the platform independent information, is hereafter available
to feed its data into the platform specific parsing process.

561

£l capsule

£ Architecture

Qperations

public void. setinterfs(Interf v[0..*])
public void setElems(Elemant v{0..
public void setCaps(Capsule v{0..*]
public Interf[0..*] getinterfs()
public Element(0..*] getElems()
public: Capsule[0..*] .getCaps{)

Attributes
private int id
private String IPaddress

Operations
public void setRefs(Reference v[0.,*])
public Reference[0..] getRefs()

refsf 1.

EiReference
Attributes
private int id
private int elem_id
private String name

caps

elemsy|,1..*

EZElement

private String name

Attribates
private int id
private int-interf_id

£ Interf

L

interfs

Attributes
private int id
private String midw_platf
private Stiing name

B } Qpsrations .
public void setOps{ Operation ¥[0.."}.)
public Operation[0..*] getOps()

QPS]/ 1.

{2 operation
Attributes
private int id
private String retType
private String-name

) . “Operations
public void setArgs(Arg ¥0:."))
public Arg[0.."} getArgs() |

argsI *

Elarg
Altributes
private int-id
private Strig direction
private String type
private Sfring name.

Figure 3.6: The Architecture Class Hierarchy

3.5.4 Parsing the Platform Specific Pattern

As far as the platform specific patterns parsing is concerned, we follow a similar manner
with the one described above with respect to the parsing of the platform independent
information. The PatternXMLParser class (figure 3.5) constitutes the specific parser,
specializing the XML Parser class, to parse the XML documents which form the platform
specific patterns. The PatternTypeExtractor realization of the ContentHandler interface
is used again for the same purpose as previously mentioned, while the CodeExtractor
provides the callback mechanism which is utilized by the parser as it reads the platform
specific pattern. Similarly, the PatternXMLParser instantiates the PatternTypeEztractor
and CodeEztractor classes, according to the following steps:

1. Using a PatternTypeExtractor instance of the callback mechanism, the parser con-
firms the suitability of the XML document to be parsed.

o Here, the permissible values of the type attribute of the pattern root element,
that indicate the suitability of the XML documents, are ” Interf’, ” Capsule’
and ” ObjectImpl’. Each of the previous values correspond to the part of a plat-

form specific pattern, being responsible for the generation of platform specific

52

illusion interfaces (listing 3.3 line 2), illusion capsules (listing 3.5 line 2) and
object implementations (listings 3.4 and 3.6 line 2) respectively. This opera-
tion is implemented by the checkType() and isValid() redefined methods of the
PatternXMLParser.

2. Provided that the specified XML document is suitable, the parser parses the plat-
form specific pattern. While doing so, for every pattern rule for which it receives
notification, it invokes the overriden methods (characters(), startElement(), endEle-
ment()) of the CodeEztractor. In addition, it retrieves data from the already cre-
ated Architecture instance. During this procedure, for each specific rule seen in the
platform specific pattern, a corresponding rule object is created. The PatternXML-
Parser parseXML() overriden method incorporates the whole operation.

In the wake of this parsing process, an ArchitectureEzps instance is created which contains
a list of rule objects, as detailed in the following subsection. These objects belong to a
class hierarchy derived by an abstract class, named FEzpression. Afterwards, the list of
FEzpression objects is ready to be converted to plain source code and be written to a
proper output file.

3.5.5 Utilizing Interpreter Design Pattern

The platform specific patterns specify the rules which determine generically how to gen-
erate the necessary source code in order that the middleware platform interoperability is
achieved. Each XML element within a platform specific pattern is a pattern rule. The
PatternXMLParser produces a list of code generation instructions. To simplify the code
generation process, we chose to apply the Interpreter Design Pattern [8]. This design
pattern describes how to define a representation for the pattern rules.

According to the Interpreter design pattern, we use a class to represent each pattern
rule. Therefore, every platform specific pattern can be represented by objects of a class
hierarchy, derived by the Ezpression abstract class. The diagram in figure 3.7 gives the
whole structure of the Ezpression class hierarchy, which is assumed by the Interpreter
design pattern, as applied to our framework.

The Ezpression abstract class provides the interface which the framework uses to interpret
the platform specific pattern. It declares an abstract generate() method that is common
to all Expression subclasses and reflects the functionality of generating the source code.
We can see that each rule in the XML document which contains the platform specific
pattern (see section 3.4) is represented by a specific Expression subclass. Moreover, the
sourcecode static string attribute will gradually accumulate the being generated source
code.

53

(YoreiauaB pioA ajgnd
UDISSRIIXT WGk PaULBPRY SUCLRISED

{)oesouab ploa anand
OIS aICXT WO POUOPOY SUORRBUQ

pipeu jui-ajeaud

i do juysjeand

pi Jui BjeAld i paju i gjeand piBue Jui ajeaud
sxnquay piadAy wi ajeaud pi-do i ajeaud
dxusweI Pl ut 3jeaud pIHeiu i sjeAnd o
= sangLEy semquay J0)0eNX389p0D)
/ dx3adAney B dxzusjeweiedppy

{ Ya1843UaB pioA 3ijand
UOISSAIONT WOH PBULBPIY SUORBIDTED

prrwsye jutajeand
pisdea jur ageaud
pi ur Bieaud
sarqiay
dx3soualaled =

{)ajesauab ploA jyand
uosssaudx3 woss poulspay SUDRBISTD

pImwa)aTjal i ajeaud

pi_sde2 jui ajeand

pUjal i aieaud
SaBqLRY

dxjpeddesm =5

{)oresausf pioa aygnd
UOISSaIIXT WIS PaUEPDY SUoRRIAdO

pi~do Jur sjeaud

pi~pawi jui ajeaud

[ETRITIES I

pisded i ajeaud
saunquURY

N

\

()ajesausb ploaayand

UOISSaIOXT WO palijoapoy suopessdo

SasspI) 30 AUSIRIBIHE

2IMPAUYIIVES

{)sdxgieb. [, -pluoissaidx3 oygnd
([, ol :c_.nwm.au_m. jsdx3gias pioa oignd

swopead)

sanquUYy

sdxz0amaNYdIv

*

(Jepooweb Bums aygnd
{'apoa Bung)spogies’ proa aygnd
(Joresousts proasiqnd

suoneIado

apovazinos Buug sieand
sonquay

'S

uojssesdx3 =)

dxguoneiadossddeimi

{ Yayesauab proa algnd
UOISSAIAXT L0 PEUIBPBY SUOHRISID

L *

{)ajeisuab pioa agnd
HOISSDICKT. IO PAULEPSY SUONRISED

Pty 3jeaud

pido i ajeaud

i~ a1 i ajeaud
sanquEy

dxabiy =

{)aresaualb pioa anand
U0ISS0I0XT iRk PIUYAPD SUCHLITD

RUE T
pi"pa3u1 it ajeaud
SaWIGLRY

dx3uoneiedo =

()aesau=b pioa amgnd

{)aeiauab pioa agnd

p1 131 U1 ajeaud
p1-sdes i ajeand

UOISSDIOXT WQIS LOUIEPY SUOREISTD

UofSSaiCXF Wit paLlepay suchesadd

p! w ajeand anjea bung ajeand Pt ajeaud
sxAqLRY sopquay SNAQLRIY
dxasmr = dxgraan s ‘dx3a3enu S

Interpreter Design Pattern

Figure 3.7

54

In section 3.4 we mentioned that the literal_ezp XML elements represent the non-parameterized
platform specific parts of the source code, which will be reproduced as it is. Furthermore,

to refer to the corresponding platform independent information which has to be retrieved,

we use some elements, as parameters, inside the platform specific patterns. So, we can
consider that these two components of our rules, that is the platform independent param-

eters and the literal_ezp elements, constitute terminal expressions. For every one of these
components, a LiteralEzp instance has to exist in the list of objects, generated by the
PatternXMLParser. The overriden generate() method of these objects appends the cor-
responding terminal sequence to the currently contained string in the Expression abstract

class sourcecode attribute.

The rest of the XML elements (e.g. interf_exp, element_exp etc) in a platform specific
pattern form the nonterminal expressions of the rules. In the generated list of objects,
one particular object of a corresponding subclass is required for every corresponding piece
of platform independent information. Thus, for each Interf instance in the constructed
Architecture class hierarchy (i.e. for each interface element in the platform independent
information), an InterfaceEzp object will be created.

Each object that represents a nonterminal expression contains a list of Ezpression refer-
ences to other objects that can be terminal and/or nonterminal expressions. The objects
included in these lists correspond to the nested rules contained within other rules. As
an example, the name of an interface (represented by the interf-name parameter) will be
included as a LiteralExp object in the list of objects of the corresponding InterfaceExp ob-
ject. Similarly, for every operation of an interface, the corresponding InterfaceExp object
should contain in its list of objects an OperationFzp instance; the latter contains, in its
particular object list, other terminals-LiteralExp instances (e.g. the name and the return
type of the operation) and nonterminals (e.g. one ArgEzp instance for every operation pa-
rameter), and so on. The nonterminal classes have also various id attributes for referencing
purposes. Figure 3.8 gives the hierarchy of objects that represents a CORBA interface
definition, arising from the parsing of the corresponding part of CORBA-to-WebServices
pattern (see Listing 1.5).

The generate() methods of the nonterminal classes implement an iteration through their
list of Expression objects. This iteration involves calling recursively the corresponding
generate() method of each object. Since all nonterminals are finally refined to terminals
(e.g. all the nonterminal Expression objects are refined to terminals-LiteralExp objects,
see figure 3.8), we end up in calling the LiteralExp generate() method. The source code
is generated gradually and is accumulated as a string sequence, in the Expression class
sourcecode static attribute.

The Architecture class hierarchy forms the context, containing information which has to
be global to the interpreter’s environment. Here, this information participates in the
platform specific pattern parsing and in the code generation.

99

List of Expression
Objects

1.

InterfaceExp

vl o

LiteralExp LiteralExp LiteralExp LiteralExp
“interface inter{_name g OperationExp ¥ O
1 / ? 1 \ 1
*
LiteralExp LiteralExp LiteralExp LiteralExp
retType opName v ArgExp)"
l 1? \ .
LiteralExp LiteralExp LiteralExp LiteralExp
"in" { "out" | "inout” type argName .

Figure 3.8: List of Expression Objects for a CORBA IDL Interface

This is the logic behind the construction of the platform specific patterns and their parsing.
We translated the XML structure of the platform specific patterns into an hierarchy of
Expression classes. The Interpreter design pattern provides a simple way to define a
grammar, which afterwards can be easily extended. Since classes are used for representing
grammar rules, the grammar can be extended using inheritance. Existing expressions can
be modified incrementally and new expressions can be defined as variations of old ones.
In addition, classes in the abstract syntax tree usually have similar implementations [8].

3.5.6 Mapping of Data Types

The mapping of data types between the different middleware infrastructures is also part
of platform specific patterns ([2], [3], [6], [13], [14], [15]). We have already referred to the
declaration of basic data types mapping within the platform specific patterns (subsection
3.4.4). During their parsing process, a list of Type instances is created. For each datatype
XML element, a corresponding Zype object is created. The object has attributes which
correspond to the attributes of the datatype element. When the parser has to retrieve a
specific data type, it iterates through the list of Type objects and gets the suitable data
type information. Similar is the case with the mapping of parameters direction modes.
Figure 3.9 gives the structure of Type and ParameterMode classes.

3.5.7 Creating the Output Source File

The CodeGenerator class (figure 3.5) is the front-end which wraps the functionality of the
framework. A user wishing to use the framework should instantiate an instance of this

56

E3 codeExtractor

16

parametermodes datatypes
ElparameterMode E Type
Altributes - Atnibutes
private String parameterMode private int id
private String platformSpecificMode private String dataType
private String retValue
private String XMLType

private Stiing javaLangType
private-String holder
private String. platformSpecificType

Figure 3.9: Classes for Parameter Direction Modes and Data Types Mapping

class. Moreover, it should instantiate instances of the ArchXMLParser and PatternXML-
Parsér classes. The filesystem path where the generated source file will be placed is
declared by the path string attribute. The three methods, checkType(), isValid() and
parseXML, are wrappers of the corresponding XMLParser methods. According to the
specific instance of an XMLParser subclass which is given as parameter to every method,
the identical method will be invoked in this instance.

As long as the entire parsing process will have been completed successfully, the Architec-
tureEzps instance will be available, containing the constructed list of Ezpression objects.
The list of the Expression objects is forwarded to the File Utility subsystem, in order
to convert the object hierarchy into a plain source code, based on the Interpreter design
pattern (subsection 3.5.5). Figure 3.10 shows the class structure of the File Utility system.

The FileUtility class implements operations related to files handling, such as reading or
writing data from/to a file, copying files, getting the extension of a file, checking if a file
exists, setting and getting the path of the utilizing file, etc. These operations complement
the functionality of the framework, as we will see in section 3.7. An instance of this class
can be used for writing the source code in a plain form.

The FileType abstract class is the interface which provides the functionality for creating
the suitable files where the source code is going to be stored. This functionality is reflected
by the newFile() abstract method. Every File Type subclass represents a particular type of

57

h ,mEmcw_Esm mcc_w u_sza

{ eyep Bums Yoy uesjooq gnd
{ Jpesy Bums ougnd

{ yred Bumg Junnand siand

{ yied Bumg Yadkyey jesesid odkiad dngrid
(ubopied Bung *adky Buug JhioyeJedK 84 sngnd
. suegesedo .

adf} buuig ajeaud
spqURY

unojieyd Buing ayeaud’

AojregedAlend B

(uose 21nIRYLILY Jalgmau. pioa augnd
o0/ il Wols paulEpaY SUOIEiadD

(tred Bumg Jadkja)13e01n0599M dNgnd

suonesedp

sayqLnRy

adAlandsdimasqaME]

(yase 21MP3YYILY Jaiamau ploA yand
@Q\Lm&k Woi4 pouiapay m.Qo‘aENQD

{ wied Bug)od4 |apgeinsde?) sgnd
Suonesdp

sarqupy
adAlLafidainsded

suongedo
X, = WX DU g0
aweusyy bung ateaud
sapquyy
Aunnend 5 2« o_ww_..— 3.__52_ 4L _mzo.mmm.axm uoissaidx3 Jejessush pioa ajeaud
-0 ,mm..__. SUOLI00
N ES
{7)5pagIRt buwig angnd

o

(Jsen41B [olAumnaid ojand
{yaie ampoajiyory Jsjidmau pioa aygnd
{ Jweqieb Bumg angnd
{ yied Bumg)ad4 a4 oygnd

swoneIedy

{ wioyejd: m:Ew 2dK) 6ug yate ainjoeuyory Jejdmau [, o_b___Sm_I 2jgnd
(1osied sessEMXWRtIEd Juuojiejdieb Buuig aiygnd

Yied Bumg sieaud
sanquy

SuoReIFdo
. = 6pU353IN0S QUG S3eAl
yied buujg ajeaud
sonGIRY
10jelaus9epod

edA16/i7

{ yase aimP2uUaLY Ja)aMau pioA JjIand

{ yase-a1Ma3UY2IY J3lldmMaU PIOA Jygnd
ad/ 1 8ji4 WO poulispey suoieiad)

(uaue 2aMPIBYUALY JAlIdMaU PIoA Jand
adf 1 8ji- WOk pauepay suoneisdo

od/ (8] Woi paUIRpaY suonesedQ

SUoRLI200

(yied Buing)ad4 japJidwpoalqg algnd

(yied Bug Jed4 o1 oygnd

{ yied Buws)adA 1oy qpetuny 2ngnd

sanqLyy

adAgaiididwioeia0

SUoRBISID SUOKRPIPED
SANQURY sanqLUgy
L = adALsldUBUNNY B3

o8

The File Utility Subsystem

Figure 3.10

source file, with their newFile() redefined method implementing the operation of creating
such a file.

The CodeGenerator newFile() method wraps the procedure of creating the files for storing
the source code. Based on the platform specific pattern type that was parsed and on the
middleware platform to which the generated source code is related, this method creates a
specific instance of a FileType subclass. The type of the pattern is indicated by the ¢ype
attribute of the pattern root element, while the middleware platform is indicated by the
platform attribute of the same root element (see listings in section 3.4). The creation of
the FileType instance is carried out by a factory class, responsible for creating instances
of the FileType subclasses. This factory class is the FileTypeFactory class; for instance,
if a Web service wrapper is going to be generated, a WebSeruviceFile Type instance will be
created. Following that, the newFile() method is called in this instance. This method
uses the Architecture instance to retrieve information to construct the name of the file.

In the previous example, for every actual remote object, the method has to create a
.Jws file, containing the source code of a Web service wrapper. Considering our ex-
ample scenario, two Web services would be created taking the name, according to the
pattern WS_referenceName_serverPlatformClient.jws, that is WS_HP_RMIClient.jws and
WS_Stulex RMIClient.jws. The referenceName and serverPlatform data will be retrieved
from the Architecture instance (see listing 3.2). In particular, the newFile() method does
not create the actual file, but creates a FileUtility instance which is associated with the
actual file to be created. The latter instance is added to a list of FileUtility instances
which the FileType main class maintains. This list contains as many FileUtility instances
as does the number of the source files, which must be created. In the example mentioned,
the list will contain two FileUtility instances.

Provided that the previous operation was successful, the already created FileUtility in-
stances are about to store the source code contained in Frpression instances. Framework
generate() method (GUI class in figure 3.10) iterates through the Expression instances
list and invokes the corresponding generate() method in each instance. For each instance,
the content of the Expression sourcecode static attribute, which is the actually being gen-
erated source code, is retrieved and appended to the identical CodeGenerator attribute.
The content of the latter string attribute is written to the appropriate output file by the
FileUtility fwrite() method.

After the proper completion of this recurring process, the output source files can be
found in the initially specified path of the file system. These source files are about to be
utilized making feasible the intercommunication between the heterogenous middleware
infrastructures.

59

3.6 Scalability Issues

The design which was followed provides the framework with a satisfactory degree of scal-
ability. This is useful for future extensions and modifications of its functionality.

The basic feature which contributes to the scalability is our design choice to use Web
services as an intermediate platform to facilitate interoperability between different plat-
forms. For a client platform A and a server platform B, an alternative approach would be
to generate an A-specific illusion capsule. This capsule contains A-specific objects whose
implementations access directly the B-specific actual server objects, instead of their Web
service wrappers. That is, the A-specific pattern should specify generically how to gener-
ate A-specific implementations of the objects required by the user, which play the role of
the client to the B-specific server objects (see the CORBA-to-RMI and RMI-to-CORBA

patterns in the appendix).

For every possible pair of platforms A and B, which may be used either by a client or
a server within a distributed environment, we would have to specify an A-to-B and a
B-to-A pattern. In the same way, for a new platform C, we would have to specify the
A-to-C, the C-to-A, the B-to-C and the C-to-B patterns in order to be able to utilize it
by means of our framework. Alternatively, with our approach we only have to specify
the C-to-WebServices and the WebServices-to-C patterns, in a similar manner with the
already existing *-to-WebServices and WebServices-to-* patterns. Therefore, the use
of an- intermediate platform, such as Web services, simplifies the work to accomplish
interoperability; this is clearer when we want to incorporate a new middleware platform.

Next we discuss briefly the procedure which someone has to consider, should he want to
extent the functionality of the framework by incorporating a new middleware platform.
Suppose X is a new middleware platform released in the market. First of all, the XML
Schema shown in listing 3.1 should be slightly changed. Specifically, an extra enumeration
value should be included in the set of possible values for the mdw_platform element (lines
64-70) of every interface element in the XML document of the platform independent
information. This is being done in order to maintain the validity of the XML document.

Afterwards, we have to make available the X-to-WebServices and WebServices-to-X pat-
terns. To construct these patterns, we have to consider the facilities that the platform
X offers for implementing the distributed applic'ations. We have to examine possible ex-
amples and organize the code in a similar manner to the existing patterns. The code
should be organized into platform independent and platform specific parts. The structure
should rely on the architecture, implied from the Interpreter design pattern (figure 3.7).
If it is necessary to define new nonterminal expressions for the pattern rules (according
to the structure of the patterns implied by the new middleware platform), these rules can
easily be added to the existing context, by defining new subclasses, specializing further
the Ezpression abstract syntax tree. Such a new subclass will maintain a vector-list of
Expression references and will implement an identical generate() method.

60

In addition, we must define a similar data types mapping between the possible data
types supported by the new platform and the existing data types. The X-to-WebServices
pattern will specify generically how to generate interface definitions, according to the
interfaces of the objects required by the client; the implementations of the objects, which
are Web service clients, that the client will invoke; and the illusion capsules which will
host these objects. On the other hand, the pattern WebServices-to-X will specify the
rules to generate the Web services that will be the clients of the actual remote objects,

wrapping their functionality.

In case of defining new grammar rules, we may define a new parser, which will be able
to interpret the new defined platform specific patterns. This is also feasible to be done
without the underlying implementation having to undergo any change. The reason is
again our design choice to implement the particular parsers (ArchXMLParser and Pat-
ternXMLParser classes) as specializations of a basic XMLParser class. A new specialized
parser can be incorporated as a XMLParser subclass, without affecting the existing parser
implementations and functionality.

Moreover, we are able to implement new ContentHandler instances, which will offer the
call back mechanism attached to the new parser. These instances will be specializations
of the DefaultHandler adapter class, which they will override the characters(), startEle-
ment(), and endElement() methods. The parser will invoke back these methods, while
receiving notification of the platform specific patterns content. The Illusion Maker frame-
work ‘is rendered scalable, by utilizing the interfaces offered by SAX API.

Finally, the new specified platform specific patterns will be ready to be used within the
framework, to attain integration between the new and the existing middleware platforms.
In our example scenario, supposing that we have a third server application on top of
platform X then we will use the Corba-to-WebServices and WebServices-to-X patterns to
generate the necessary source code. On the contrary, if a new client application, that has
been implemented on the basis of platform X, joined the environment, we would use the
X-to-WebServices and WebServices-to-RMI patterns.

3.7 The Graphical User Interface of the Framework

The Illusion Maker framework offers a graphical user interface (GUI) which incorporates
the whole functionality. The user-friendly environment makes its use simple enough.
Figure 3.11 shows the main window of the GUI which depicts the basic functionality of
the code generation.

The user should specify in the first two fields the input components, that is the appropri-
ate XML documents of the platform independent information and the platform specific
patterns. In particular, the user searches and specifies the paths of the corresponding
XML files.

61

B 4] lusion Maker Framework. 88
I R A L R L I e e 7

..... &

{{ Code Generator | Patterns Registration | Search for a Pattern |

1) Specify the XML document with the platform independent information

(o |
2) Specify the pattern XML document

= open.. |
3) Select the type of the source code which is going to be generated

£ Platform speciﬁé Interface

' Platform specific Object Implementation

(' Platform specific lusion Capsule

4) Specify the path where the source code files will he saved

| || open.._|

; Generate... H Clear]

Figure 3.11: Graphical User Interface - Basic Functionality

The kind of the output source code must be specified by selecting one option each time
in the radio boxes. These options correspond to the three possible types of source code
which can be generated, as follows:

1. Platform specific Interface: This option corresponds to the generation of a platform
specific illusion interface, which is supposed by the client objects.

2. Platform specific Object Implementation: This corresponds to the generation of the
code which will act as the mediator to bring about the interoperability. In other
words, this option should be selected for the generation of: either the platform
specific objects on top of the middleware platform assumed by a client application
(serving as Web service clients); or the Web services that will be the clients for the
actual remote objects. The result depends on the type of the specified platform
specific pattern.

3. Platform specific Illusion Capsule: This selection corresponds to the generation of a
platform specific illusion capsule, which will host the objects invoked by the client
application.

62

l &2 glusnon Maker Framewor
o L e TR e A S

(Code Generator || Patterns Registration | Search for a Pattern |
47

Specify'the pattern XML Document to register

{ } [B8 Open

| Register || ciear_ |

Figure 3.12: Graphical User Interface - Registration of Platform Specific Patterns

Code Generator | Patterns Registration }{:Se‘ar§11 for.a Pattern |

Specify the pattern XML Document to preview

| || = open~. |

§ Prendew... H Clear I

Figure 3.13: Graphical User Interface - Search for a Pattern

In any occasion, the XML document that contains the appropriate part of a platform
specific pattern should be specified, in order to generate the corresponding source code.
This means that, for creating a platform specific interface, the part of a *-to-WebServices
pattern responsible for generating an interface declaration must be given as input (see
listing 3.3). For the other cases, corresponding to each selection, listings 3.4, 3.6 and 3.5
can possibly be specified as input respectively.

Finally, the path within the file system, where the output files will be stored, can be
selected and specified in the third text field. Provided that the source files have been
successfully created, the environment gives the user the possibility to take a glance of the
generated code by pressing Preview button, at the bottom of the window. A new window
will be opened, containing the source code.

63

-

The graphical interface provides two other operations concerning the handling of the
patterns, which supplement the main functionality of the framework. The first operation
is related to the registration of platform specific patterns. The user can gather all the
XML documents (either the ones of the platform independent information or those of the
platform specific patterns) into a particular filesystem path, assumed by the framework. In
this way, the patterns can easily be discovered in a particular place within the environment
and then be used for the specific purpose. The second operation gives the possibility to
search for a pattern XML document and preview its content. Figures 3.12 and 3.13 show
the corresponding windows of the graphical interface, which provide these operations.

64

CHAPTER 4

EVALUATION OF THE ILLUSION MAKER
FRAMEWORK

4.1 Implementation Effort
4.2 Overhead

4.3 Conclusion

-

To highlight the usefulness of the proposed framework, we rely on the experimental results
coming from our case study scenario. In particular, our evaluation focuses on the following
points:

1. The implementation effort, required for the development of the platform interoper-
able code. :

2. The overhead which is introduced in the distributed system as a result of the uti-
lization of the mediator.

The implementation effort reflects the gain from applying the proposed methodology, be-
cause the developers do not have to write the necessary source code manually. Instead,
the necessary code is generated automatically by the code generator mechanism of the
framework. The overhead depicts the delay which is introduced in the intercommunica-
tion between the heterogenous applications, while using the generated source code as a
mediator. The implementation effort is measured in terms of the well-known LOC (Lines
of Code) metric [17]. Specifically, we measure the amount of the necessary source code
which is generated. The overhead is measured as the elapsed time, in milliseconds, from
the moment the client calls a server operation to the moment the client receives back
a response. We compare scenarios in which we make use of the Web service wrappers

65

as a mediator with scenarios in which the client-side illusion objects access directly the
actual remote objects, without using Web services. We also compare these cases with non-
heterogenous cases. Finally, we point out the conclusions deduced from the experimental

evaluation.

4.1 Implementation Effort

We formalize the implementation effort metric (LOC) as a function of parameters that
reflect the scale of a server application involved in a heterogenous scenario. The size of
these parameters is reflected by the metrics given in table 4.1, and the information about
this size comes from the platform independent information. The implementation effort
functions are used for measuring the total number of LOC generated by the framework.
This measure depicts the impact in the implementation effort which a developer has to
pay in case of implementing the mediator elements manually. The amount of generated
LOC is compared with the size of the platform specific patterns. In this way, we highlight
a threshold, which denotes the minimum size that the legacy server’s parameters should
have, so as to obtain a benefit from using the proposed framework.

Metric | Definition
Ninters | Number of provided interfaces

N¢aps Number of capsules

Nglem, | Number of elements hosted by the i-th capsule

Nop, Number of operations provided by the i-th interface and implemented by
the i-th element

Narg,, Number of parameters accepted by the j-th operation of the i-th element

Table 4.1: Metrics for the Size of the Server Application

In the case of our example scenario, the number of interfaces is Njnery = 2, with one
element realizing each of them; so for each interface, it is Ngjm = 1. Both the elements
are hosted by the same capsule, that is Ng,ps = 1. Moreover, one operation is provided
by every one interface and is implemented by a corresponding element; so Np, = 1 per
interface and per element. Each of these operations accepts one parameter, hence Ny, =
1 per operation.

4.1.1 Formalization

We use the CORBA-to-WebServices pattern (listings 3.3, 3.4 and 3.5) and the WebServices-
to-RMI pattern (listing 3.6) to derive the implementation effort functions, which can be
applied in a case like the one mentioned in our example scenario, for calculating the gen-
erated amount of LOC. In the same manner, we can derive further implementation effort
functions for other cases of platform specific patterns (see appendix).

66

Considering the number of CORBA-specific illusion interfaces that must be generated, we
have (N, + 2) LOC per interface. Hence, the LOC for the total number of interfaces is:

Nlnterl

LOCInterf = 2N1nterf + Z NOm (41)

i=1

Regarding the implementations of CORBA-specific elements which realize the illusion in-
terfaces, for each element we have a standard number of 28 LOC. In addition, for each
operation which is implemented by an element, we have (Nuy + 17) LOC in case of

a non-void operation, and (N, + 15) LOC, in case of a void operation. Taking the
N(nonvmd)

overall number of operations into account, we have [(17N, g;;’"”"“’) + 3 Nag) +
vo id)

(15N8;”d) + E Narg,)] LOC generated. Therefore, the LOC for all the implementa-
tions of elements is:

NEgtem NEtem NEiem on

LOCptem = 23Npiem +17 Y, NG +15 3 NEZ 4+ 3~ 3" Napg,, (42)

i=1 =1 =1 j=1

As far as the code for the CORBA-specific illusion capsules is concerned, we have 29 LOC
for each hosting element; hence for the overall number of elements hosted by a capsule,
29Ngiem LOC are generated in total. Consequently, for all the illusion capsules required
in a distributed environment, the total number of LOC is:

N, Caps

LOCCapsule =29 Z NElem,' (43)

i=1

Concerning the Web service wrappers, that have to be generated by utilizing the WebServices-
to-RMI pattern, for each Web service we have a standard number of 5§ LOC. Furthermore,
for each non-void and void wrapping operation we have 16 and 14 LOC respectively. So,
every Web service consists of (5 + 16N, + 14Ng,(*¥) LOC totally. Since for
every element a corresponding Web Service wrapper is generated, then the overall number

of LOC which is generated is:

NEgtem)
LOCiws = 5Npiem +16 _ Now™? +14 Z NG (4.4)

i=1 i=1

So, the total LOC which is generated by the framework, using this couple of platform
specific patterns, is the aggregation of the amount coming from the four aforementioned

equations:
LOCTotal = LOCInterf + LOCElem + LOCC’apsule + LOCWS (4-5)

67

In the case of our example scenario, by applying the aforementioned implementation effort
formula, we result in the amount of generated LOC given in table 4.2. This number does
not make any sense, compared to the size of platform specific patterns. However, this
is just a simple case study scenario, involved in a small scale distributed environment.
In the following subsection, we show that the benefit arising from the application of the
Illusion Maker framework is significant, as the scale of a heterogenous distributed system

rises.

LO OInterf 6

LOCgiem 78
LO CCapsule 98
LOCws 38

LOCrotar | 180

Table 4.2: Implementation Effort for our Case Study

4.1.2 Experimental Results

We investigate the implementation effort gained by applying the proposed approach with
respect to the size of the platform specific patterns that should be developed. Figure 4.1
shows the amount of generated LOC for a CORBA interface declaration (equation 4.1), as
the number of operations increases. The size of the part of the CORBA-to-WebServices
pattern, responsible for the generation of these interface declarations, is equal to 34 LOC
(see listing 3.3). Supposing a case where only one interface is provided by the actual server
application, we observe that a developer obtains a gain if the actual interface provides 33
operations at least. This seems negative at a first glance. However, it does not reflect the
whole case.

Nluterf= 1
45
40 :’
35
30
o 25 /
0 yd
-+ 20
15 pd - w4 Generated LOC
10 / e 26 Of Pattern
5 i
4
o} i T Y | 1
0 10 20 30 40 50
NDP

Figure 4.1: Implementation Effort for the Generation of CORBA Illusion Interfaces

68

The next two charts highlight the generated amount of LOC for a CORBA object im-
plementation (equation 4.2). The first chart (figure 4.2) shows the amount of LOC as a
function of the number of elements, realizing a CORBA illusion interface. Supposing that
the actual interface provides one non-void operation, which accepts one parameter, we
observe that if 3 elements exist at least, realizing the actual server’s interface, the use of
our framework for the code generation benefits a developer. The size of the corresponding
part of the CORBA-to-WebServices pattern (see listing 3.4) is equal to 117 XML LOC.

Nipert= 1, Nop = 1/interface, Ny = 1/Operation

140
120 /.9
100

80 /

Y / g Generated LOC
40 ¢ womanSize OF PBtERFN
20

LoC

Figure 4.2: Implementation Effort for the Generation of CORBA Object Implementations
-1

The second chart (figure 4.3) shows the amount of LOC as a function of the number of
operations. We suppose that one CORBA element realizes a CORBA illusion interface,
and each provided operation accepts one parameter. We assume non-void operations only.
In this case, we see that the actual server element must implement 6 operations at least,
S0 as to obtain a gain with respect to the amount of generated code.

Nintert= 1, Neew = 1/Interface, N, = 1/Operation

140

120 /:‘Z
100 —
80 /
60 / ' weipue Generated LOC
40

weansw STz Of Pattern

LoC

20

Figure 4.3: Implementation Effort for the Generation of CORBA Object Implementations
-2

69

Following that, we give the representation of the amount of LOC needed for a CORBA-
specific illusion capsule (equation 4.3), as a function of the number of CORBA elements
that the capsule hosts (figure 4.4). The responsible for the generation of these illusion
capsules part of the CORBA-to-WebServices pattern has a size of 62 XML LOC (see
listing 3.5) . We perceive that as the number of hosting elements rises, the amount of
LOC rises proportionately. A developer gains in the existence of 3 hosting elements by
the actual server capsule.

Neaps =1
100
o0
70
(8] 60 f
Q S0
= 40 // e Generated LOC
30 moueSize of Pattern
20
10
0 H - ¥ 1
0 1 2 3 4
Nﬂm

Figure 4.4: Implementation Effort for the Generation of CORBA Illusion Capsules

-

Regarding the Web service wrappers acting as Java RMI clients, that have to be generated
for every element of the actual server application, the corresponding WebServices-to-RMI
platform specific pattern consists of 85 XML LOC (see listing 3.6). Figure 4.5 gives the
generated amount of LOC as a function of the number of elements, while figure 4.6 gives
the amount of LOC as a function of the number of operations, implemented by a server
element (equation 4.4). We assume again non-void operations.

Ng,=1/ Element

120
100 2

80

€0

LocC

e Generated LOC

40
/ woem §128 OF Pattern
20

Figure 4.5: Implementation Effort for the Generation of Web Service Wrappers - 1

70

120
100
80 W
60
/ e Generated LOC
40 / ween Si2e Of Pattern

20 v

Loc

Figure 4.6: Implementation Effort for the Generation of Web Service Wrappers - 2

In the first case, we consider that each actual server element implements one operation. If
the actual server application consists of 5 elements at least, we reap the benefit from using
the Illusion Maker for the generation of the Web service wrappers. In the second case,
we suppose that the server application has one element. As the number of operations
implemented by this element increases, we observe that 6 operations are adequate for a
developer to make a gain with respect to the implementation effort.

Finally, the chart in figure 4.7 provides a total view concerning the implementation effort.
We assume a case where an actual Java RMI server provides one remote interface con-
taining non-void operations that accept one parameter. One Java RMI-specific element
realizes the aforementioned interface and one server capsule hosts the element. We show
the total amount of LOC, which is necessary to be generated for the previous scenario, as
a function of the number of provided operations. The overall size of the platform specific
patterns to be used is equal to 298 XML LOC. We perceive that the server application
should provide at least 7 operations. In such a case, the developer obtains the benefit
from utilizing our framework to achieve the integration.

From the previous results, we further observe that the implementation of illusion elements
is the most demanding for someone to develop, with the implementation of Web service
wrappers following after. These two cases are expected to be the most demanding as they
require the development of the operations that serve as Web service clients and as clients
for the actual remote objects, respectively. On the other hand, the implementation effort
for the illusion interface declarations is the less demanding for a developer to pay. We can
also point out that the factors that contribute mostly to the increase of LOC are the Ngep,
and the No,. Consequently, as the scale of a heterogenous distributed system increases,
the utilization of the Illusion Maker framework gives us a substantial advantage.

71

Nimert = 1, Nejo = 1/Interface, Ny, = 1/Operation, N, =1

350

300
250 /

200
2 / -t~ Total Generated LOC
100

A 4 s TOL3 Size of Patterns

Loc

50

Figure 4.7: Total Implementation Effort for achieving Integration

4.2 Overhead

The use of a mediator for the integration of the heterogenous distributed applications
introduces inevitably a delay in the communication between the client and the server
objects. This delay degrades the performance of the whole system and may be substantial,
depending on the kind of the services provided and on the needs of the clients. We
evaluate the overhead by measuring the total time elapsed until the client receives back
the response. We also try to portion out the total overhead among the components
involved in the intercommunication, and find out which of them contribute the most.
Our evaluation approach focuses mainly on the invocation cost. The components, acting
as clients, initialize once the connections and execute a recurrent call to the corresponding
server components. Then, we find an average value of the response time involved in each
case. This approach provides a more representative view, concerning the factors that
contribute most to the overhead. The experiments were performed in an environment
where the actual client and server element resided in different machines, connected through
a Local Area Network Ethernet switch of 100 Mbps speed.

4.2.1 Non-Heterogenous Distributed Environments

We start with the invocation costs involved in cases where both the client and the server
elements rely on the same middleware. Table 4.3 gives the results. For the CORBA and
Java RMI cases the client and server elements reside in different hosts. The clients make
a static call in both cases. For the Web service case, the client constructs at run time a
call to a locally deployed Web service. We observe that the invocation cost is relatively
low for Java RMI, more higher for CORBA and quite more higher for the dynamic Web
service invocation.

72

CORBA Response Time = 7.937 ms/call
RMI Response Time = 2.6525 ms/call
Web Service Response Time = 14.9235 ms/call

Table 4.3: Average Response Times in Non-Heterogenous Environments

4.2.2 First Scenario: A CORBA Client invokes a Java RMI Server

The scenario of figure 4.8 corresponds to the one depicted by our case study. The two
elements hosted by the client and the server capsules are the legacy applications. We
deploy both the CORBA-specific illusion object, acting as Web service client, and the
Web service wrapper on the server machine.

Client Capsule e e - 1 . Server Capsule
[llusion Capsule :

|
Client Object - Illusion Object | Server Object
e ‘Web Service /
CORBA CORBA Server/ | RMI Client Java RMI
Web Service Client | ‘
b am o e e e e = am -

Figure 4.8: First Scenario: Using Web Services

-

Table 4.4 gives the experimental results. The RMI Response reflects the time elapsed
until the Web service, acting as RMI client, receives back the response from the actual
RMI server object. The Web Service Response reflects the time elapsed until the
CORBA-specific illusion server object takes the response back from the Web service. It
is obvious that this time interval includes the RMI response time period. The CORBA
Response represents the total delay between the moment the actual client object makes
the request and the moment it receives the response. From these results, we deduce the
following:

e Each RMI request-response takes 0.517 ms;
e each Web service request-response takes 7:117 - 0.517 = 6.6 ms;

o each CORBA request-response takes 15.594 - 7.117 = 8.477 ms.

RMI Response Time = 0.517 ms/call
Web Service Response Time = 7.117 ms/call
CORBA Response Time = 15.594 ms/call

Table 4.4: First Scenario: Average Response Times using Web Services

73

Next we compare these results with the ones coming from the case in which we do not
use Web services as mediator. Instead, the CORBA-specific illusion object acts as a RMI
client for the actual server object. Figure 4.9 depicts the distributed environment for
this case, with the illusion object being deployed on the client machine. In this way, the
client object makes a local call to the illusion object, which is the proxy that forwards
the request to the server object.

Client Capsule

_ © = 7 Tission C;p;xle- -~ - : Server Capsule
Client Object Tllusion Object Server Object
CORBA CORBA Server / RMI Client Java RMI

Figure 4.9: First Scenario: The CORBA-specific Illusion Object access directly the Server
Object

Table 4.5 gives the results for the average response times, without using Web services. In
this case we perceive that:

o The RMI response takes more time than in the first case (1.15 vs 0.517 ms), while
_the CORBA response time is smaller than the first case: 8.556 - 1.15 = 7.406 vs
8.477 ms.

¢ Regarding the total execution time, the use of Web services introduces an important
overhead in the total delay of the side-to-side communication. This overhead is
about 45% higher (15.594 vs 8.556 ms) in the first case compared to the second
case.

RMI Response Time = 1.15 ms/call
CORBA Response Time = 8.556 ms/call

Table 4.5: First Scenario: Average Response Times without using Web Services

4.2.3 Second Scenario: A Java RMI Client invokes a CORBA
Server

Figure 4.10 gives a scenario where the actual client is based on Java RMI and the actual
server is based on CORBA. We use a Web service wrapper for the integration. Both
the RMI-specific illusion object and the Web service wrapper are deployed on the server
capsule. Table 4.6 gives the experimental results for the execution times of operation
invocations. In this case, we have larger response times than the corresponding case of
the opposite scenario, in the previous subsection:

74

e Each CORBA request-response takes 2.9962 ms;
e cach Web service request-response takes 65.1452 - 2.9962 = 62.1490 ms;

e each RMI request-response takes 90.6320 - 65.1452 = 25.4868 ms.

Client Capsule

m——————— Server Capsule
Illusion Capsule .

Client Object Hlusion Object | , Server Object
y Web Service/ |
Java RMI RMI Server / Web | | CORBACIient CORBA
Service Client | ’
bt o s e = m - - -J

Figure 4.10: Second Scenario: Using Web Services

CORBA Response Time = 2.9962 ms/call
Web Service Response Time = 65.1452 ms/call
RMI Response Time = 90.6320 ms/call

Table 4.6: Second Scenario: Average Response Times using Web Services

Table 4.7 gives the corresponding results for the same scenario, but without using Web
service. The RMI-specific illusion object invoked by the actual client acts as a CORBA
client accessing the actual server. The illusion object is deployed on client capsule (figure
4.11). Again, the execution time of the invocation is substantially larger compared to the
correspinding case of the opposite scenario:

o CORBA response takes 3.7854 ms, while RMI response takes 64.1797 - 3.7854 =
60.3943 ms.

e Concerning the total execution time for the second scenario, the overhead is about
30% higher in the case of using Web service (90.6320 vs 64.1797 ms).

CORBA Response Time = 3.7854 ms/call
RMI Response Time = 64.1797 ms/call

Table 4.7: Second Scenario: Average Response Times without using Web Services

75

Client Capsule

= 7 Tiesion C“p;m" =77 Server Capsule
Client Object Ilusion Object Server Object
Java RMI RMI Server / CORBA Client CORBA

Figure 4.11: Second Scenario: The RMI-specific [llusion Object access directly the Server
Object '

4.2.4 Comparison

The comparison focuses on the following points:

o The introduced overhead in a heterogenous distributed environment compared with
the typical overhead existing in a non-heterogenous environment.

e The overhead in the case of using Web service wrappers versus the overhead in
the case of not using Web service wrappers, as the mediator which realizes the
interoperability.

The first chart (figure 4.12) shows the expected difference in the overhead between the
heterogenous and non-heterogenous cases. In a non-heterogenous environment the over-
head arises mainly from the network. On the other hand, in a heterogenous environment
the interoperable software elements introduce extra overhead. The second chart (figure
4.13) shows the substantially larger overhead that is caused by the use of Web services,
as the mediator element. | |

100 17

o0+

CORBAto lJave RMI Web CORBAto RMito

CORBA tosava Serviceto RMiusing CORBA
]RMI Web Web using Web

Service services sevices

B Total Execution Time

Figure 4.12: Heterogenous vs Non-Heterogenous Distributed Environment

76

Total Execution Time
W Using Web Services
% Not Using Web Services

CORBAto RMI RMIto CORBA

Figure 4.13: Using Web Services vs Not Using Web Services

4.3 Conclusion

In the developer’s perspective, the benefit from using the Illusion Maker framework is
unquestionable. Someone who wishes to implement the components that will make the
integration of heterogenous applications possible saves significant time, specifically in the
case of large-scale distributed systems. He/she is released from the obligation to have
always to write manually the customary source code, responsible for the interoperabil-
ity. On the contrary, he/she has the chance to devote more time about issues concerning
the implementation of the functionality of the distributed applications. The code gen-
erator mechanism produces quickly the necessary code for the integration. Afterwards,
the developer has this code at his/her disposal, being free to implement the desirable
functionality. Following that, one can compile the code, produce the corresponding exe-
cutable files and deploy them on the suitable hosts. The user is hereafter able to utilize
the integrated distributed applications. He/she can use heterogenous services offered by
the environment through his/her own application, in the same manner as if the assuming
middleware infrastructures were the same.

Regarding the overhead, we have to take into consideration not only the delay introduced
by the utilization of the mediator, but also the network overhead (e.g. the workload, the
throughput, the bandwidth). Depending on the purpose of the provided functionality, the
capability of the applications to serve quickly the clients’ requests may be crucial. So, we
have to examine solutions in order to minimize the extra overhead.

In the previous section, we saw that the use of the Web service wrappers introduces a
significant overhead. On the other hand, in section 3.6 we emphasized that the use of the
Web services provides the framework with an important degree of scalability, as regards
design issues for future extensions of its functionality. Hence, we have a trade-off concern-
ing the use of Web services, and for this reason we should try to minimize the negative
effect of the overhead. We might pay more attention on the issue of the deployment of
the components that bring the interoperability. Specifically, we can examine where the
interoperable elements are better to be deployed, i.e. on the client capsule or on the

(s

server capsule. If the functionality of a distributed application is critical with respect to
the execution time involved, the use of Web services as the mediator might be avoided.
In this case, it would be better to prefer a solution like the ones depicted by figures 4.9

or 4.11.

78

e > T Y ATE SRR N e SR

CHAPTER 5

CONCLUSION

5.1 Summary

5.2 Future Work

5.1 Summary

In this thesis, we discussed the problem of interoperability between distributed appli-
cations that have been implemented on top of heterogenous middleware infrastructures.
We proposed the Illusion Maker framework that aims at enabling middleware platform
interoperability, without imposing any particular constraint on the middleware platforms,
used for the development of the distributed applications. Given a client application that
relies on a particular middleware platform and a server application that relies on another
middieware platform, the Illusion Maker creates the ”illusion” that the server application
relies on the platform assumed by the client application.

The framework automates the process of generating the source code of the software ele-
ments that constitute the aforementioned illusion. The code generator mechanism does
not depend on the platforms assumed by the client or the server. Specifically, the gen-
eration of illusions relies on platform specific patterns which are given as input to the
Hlusion Maker framework. These patterns specify a set of rules that model the descrip-
tions of mappings between the different middleware standards. In this way, the proposed
approach is rendered generic enough to be used in any distributed environment.

We chose to use XML for the specification of the platform specific patterns. In this way,
the parsing of the patterns was facilitated. We implemented a SAX parser, which accepts
as input an XML-based description of a platform specific pattern and converts it into a
list of objects, belonging to a particular class hierarchy. To define this class hierarchy, we

applied the Interpreter design pattern. Also, the Interpreter design pattern simplified the
implementation of the code generation process.

79

The evaluation of the proposed methodology focused on the benefit for a developer, follow-
ing from the fact that he/she does not have to write the necessary source code manually.
The framework produces the interoperable source code quickly. A developer has at his
disposal this code, saving significant time which he/she can devote to implement the desir-
able functionality. In addition, we examined the issue of the overhead, which is introduced
inevitably by adding the interoperable software elements to a distributed environment.
The experimental results showed that the use of Web services as the intermediate element
for the integration causes an important increase in the time needed for the execution of a

client request.

5.2 Future Work

From an engineering point of view, one can further explore the following issues:

e The extension of the framework in order to be able to handle complex data types
and exceptions.

e The capability of the already defined pattern rules to specify new patterns in case
of using other middleware platforms (in addition to CORBA and Java RMI).

e The interoperability issues introduced by the use of different middleware services
-(e.g. the CORBA Object Transaction Service) on the side of the client that differ
from the middleware services assumed on the side of the server (e.g. the Java
Transaction Service). It would be a challenge, indeed, to define patterns for this
kind of services.

e The possibility to replace the XML descriptions with other more user-friendly de-
scriptions.

Regarding the performance of the distributed applications, one could examine the issue
of deployment of the components that bring the interoperability. If these components
are deployed on client-side, the performance may be enhanced. However, this deployment
causes security issues concerning the client machine. On the other hand if the components
are deployed on an intermediate machine or on the server machine, the performance may
degrade. Finally, the possibility of using other middleware platforms in place of Web
services with respect to the issue of performance, could be investigated.

80

BIBLIOGRAPHY

[1] E. Aarts, R. Harwig and M. Schuurmans, Ambient Intelligence, chapter The Invisible
Future: The Seamless Integration of Technology into Everyday Life, pp. 235-250.
McGraw-Hill, 2001.

[2) M. Aleksy, A. Korthaus, M. Schader, Implementing Distributed
Systems with Java and Corba, Springer, June 2005, available at
http://www.springerlink.com/content/n4v226/7p=8b685689{0494cf1ae95040f1be65256& pi=0

[3] The Apache Software Foundation, WebServices-Axis, Java Axis API Documentation
for Apache Axis 1.2, May 2005, http://ws.apache.org/axis/java/apiDocs/index.html

(4] P. A. Bernstein, Middleware: A Model for Distributed System Services, Communi-
cations of the ACM, 39(2), pp. 86-98, Feb. 1996.

[5] Y.-D. Bromberg and V. Issarny, INDISS: Interoperable Discovery System for Net-
worked Services, In Proceedings of Middleware 2005, pp. 164-183, 2005.

[6] W. Emmerich, E’ngz'neerz’hg Distributed Objects, John Wiley & Sons, Ltd, 2000.

[7] P. Falcarin and G. Alonso, Software Architecture Evolution through Dynamic AOP.
In F. Oquendo, B. Warboys, and R. Morrison, editors, Software Architecture: First
European Workshop (EWSA 2004), volume 3047 of LNCS, pp. 57-73. Springer, 2004.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Longman, 1995.

9] P. Grace, G. S. Blair and S. Samuel, A Reflective Framework for Discovery and
Interaction in Heterogeneous Mobile Environments, ACM Mobile Computing and
Communications Review, 9(1), pp. 2-14, 2005.

(10] E. R. Harold, Processing XML with Java, 2002, Online Edition available at
http://www.cafeconleche.org/books/xmljava/.

81

http://www.springerlink.com/content/n4v226/?p=8b685689f0494cflae95040flbe65256&pi
http://ws.apache.org/axis/java/apiDocs/index.html
http://www.cafeconleche.org/books/xmljava/

[11] ISO/IEC. Open Distributed Processing Reference Model, Part3: Architecture. Tech-
nical Report 10746-3, ISO/IEC, 1995.

[12] M. Morrison, Teach Yourself XML in 24 Hours, Second Edition, by Sams Publishing,
2002.

[13] Object Management Group Available Specification, IDL to Java Language Map-
ping, Version 1.3, OMG Document Number: formal/08-01-11, January 2008,
http://www.omg.org/cgi-bin/doc?formal/08-01-12

[14] Object Management Group Available Specification, Java to IDL Language Map-
ping, Version 1.4, OMG Document Number:formal/08-01-14, January 2008,
http://www.omg.org/cgi-bin/doc?formal /08-01-14

[15] Sun Microsystems Inc., JSR-101 Expert Group, Java(TM) API for
XML-based RPC JAX-RPC Specification, Version 1.1, October 2003,
http://jcp.org/aboutJava/communityprocess/final/jsr101/index2.html

[16] A. Zarras, A Comparison Framework for Middleware Infrastructures, Journal of Ob-
ject Technology, 3(5), pp. 100-123, 2004.

(17] A. Zarras, Applying Model Driven Architecture to Achieve Distribution Transparen-
cies, Information and Software Technology, 48(7), pp. 498-516, 2006.

82

http://www.omg.org/cgi-bin
http://www.omg.org/cgi-bin/doc7formal/08-01-14
http://jcp.org/aboutJava/communityprocess/final/jsrl01/index2.html

15

20

25

30

APPENDIX

RMI-to-WebServices Pattern

Listing 5.1: Generation of Java RMI Illusion Interfaces

<?xml version="1.0"7>
<pattern type="Interf" platform="RMI">

<datatypes>

<datatype id="0" name="void">void</datatype>
<datatype id="1" name="boolean">boolean</datatype>

</datatypes>
<interf.exp>

<datatype id="2"
<datatype id="3"
<datatype id="4"
<datatype id="5"
<datatype id="g"
<datatype id="T7"
<datatype id="8"
<datatype id="g"
<datatype id="10"
<datatype id="11"
<datatype id="12"
<datatype id="13"
<datatype id="14"
datatype>
<datatype id="15"
datatype>

name="char">char</datatype>
name="string">String</datatype>
name="byte">byte</datatype>
name="unsigned byte">short</datatype>
name="short">short</datatype>
name="unsigned short">short</datatype>
name="int">int</datatype>
name="unsigned int">int</datatype>
name="long">long</datatype>
name="unsigned long">long</datatype>
name="float">float</datatype>
name="double">double</datatype>
name="BigInt">java .math.Biglnteger</

name="decimal">java.math.BigDecimal</

<literal.exp>import java.rmi.*;</literal_exp>
<literal_exp>public interface </literal_exp>
<interf_name/> '
<literal_exp> extends Remote {</literal_exp>
<operation._exp>
<retType/>

<opName />

<literal_exp>(</literal_exp>

<arg-exp>

<direction.type.argName />

<literal_exp>,</literal.exp>
</arg.exp>
<literal_exp>) throws RemoteException;</literal_exp>

83

A AR T S,

N B

Bldac it

 </operation_exp> ¢ e s : §
s | . <literal_exp>.newline</literal.exp> L L
<literal.exp>}</literal_exp> S IR
<literal_exp>_ newhne</11teral exp> .
</interfiexp> . e e g
10 |</pattern> C e , R

o

i

[R S

Pe
o .
‘?,
I
i .
H p
i
1 b
i ! “ . b
B i
: EAR v e E . . ER
- o ‘ el
B N Z B A “ ' =,
PR R prei s ¥ ;
- -
3 |
3 .
L |
£ ;
S
x.
%
CE.
A
&
; :
3

S e at

1 R Ve

rvinde 9 il

10

15

20

25

Listing 5.2: Generation of Java RMI-specific Object Implementations

<?xml version="1.0"7>
<pattern type="0ObjectImpl" platform="RMI">
<datatypes>
<datatype id="0" name="void" retValue="null" xmltype="AXIS_VOID"
javalangtype="null">void</datatype>
<datatype id="1" name="boolean" retValue="false" xmltype="
XSD_BOOLEAN" javalangtype="Boolean">boolean</datatype>
<datatype id="2" name="char" retValue="’\u0000’" xmltype="
XSD_STRING" javalangtype="Character">char</datatype>
<datatype id="3" name="string" retValue="null" xmltype="
XSD_STRING" javalangtype="String">String</datatype>
<datatype id="4" name="byte" retValue="-1" xmltype="
XSD_BYTE" javalangtype="Byte">byte</datatype>
<datatype id="5" name="unsigned byte" retValue="-1" xmltype
="XSD_UNSIGNEDBYTE" javalangtype="Short">short</datatype
>
<datatype id="6" name="short" retValue="-1" xmltype="
XSD_SHORT" javalangtype="Short">short</datatype>
<datatype id="7" name="unsigned short" retValue="-1"
xmltype="XSD_UNSIGNEDSHORT" javalangtype="Short">short</
datatype>
<datatype id="8" name="int" retValue="-1" xmltype="XSD_INT"
javalangtype="Integer">int</datatype>
<datatype id="9" name="unsigned int" retValue="-1" xmltype=
- "XSD_UNSIGNEDINT" javalangtype="Integer">int</datatype>
<datatype id="10" name="long" retValue="-1" xmltype="
XSD_LONG" javalangtype="Long">long</datatype>
<datatype id="11" name="unsigned long" retValue="-1"
xmltype="XSD_UNSIGNEDLONG" javalangtype="Long">long</
datatype>
<datatype id="12" name="float" retValue="-1.0" xmltype="
XSD_FLOAT" javalangtype="Float">float</datatype>
<datatype id="13" name="double" retValue="-1.0" xmltype="
XSD_DOUBLE" javalangtype="Double">double</datatype>
<datatype id="14" name="BigInt" retValue="java.math.
BigInteger.ZERO" xmltype="XSD_INTEGER" javalangtype="
java.math.BigInteger">java.math. Biglnteger</datatype>
<datatype id="15" name="decimal" retValue="new java.math.
BigDecimal (java.math.BigInteger.ZERO)" xmltype="
XSD_DECIMAL" javalangtype="java.math.BigDecimal">java.
math.BigDecimal</datatype>
</datatypes>
<parametermodes>
<mode name="in">IN</mode>
<mode name="out">0UT</mode>
<mode name="inout">INOUT</mode>
</parametermodes>
<element_exp>
<literal_exp>import java.rmi.*;</literal_exp>

85

N v

29
30

35

40

45

50

55

60

65

70

75

<literal_exp>import java.rmi.server.x;</literal_exp>
<literal_exp>import org.apache.axis.client.Call;</literal_exp>
<literal_exp>import org.apache.axis.client.Service;</literal_exp>
<literal_exp>import org.apache. axis.encoding.XMLType;</literal_exp>
<literal_exp>import org.apache.axis.utils.Options;</literal_exp>
<literal_exp>import javax.xml.rpc.ParameterMode;</literal_exp>
<literal_exp>import java.util.Properties;</literal_exp>
<literal_exp>import java.net.x;</literal_exp>
<literal_exp>import java.lang.x;</literal_exp>
<literal.exp>public class </literal_exp> ~
<element_name />
<literal_exp> extends UnicastRemoteObject implements </literal_exp>
<interf.name/>
<literal.exp> {</literal_exp>
<literal.exp>private String endpoint;</literal_exp>
<literal_exp>public </literal_exp>
<element_name />
<literal_exp>(String servURL) throws RemoteException {</literal_exp>
<literal.exp>endpoint = servURL;</literal_exp>
<literal_exp>}</literal_exp>
<operation.exp>
<literal.exp>public </literal_exp>
<retType/>
<opName/>
<literal.exp>(</literal.exp>
- <arg-exp>
<direction-type-argName />
<literal_exp>,</literal_exp>
</arg.exp>
<literal_exp>) {</literal_exp>
<literal_exp>try {</literal_exp> ‘
<literal_exp>Service service = new Service();</literal_exp>
<literal.exp>Call call = (Call) service.createCall();</literal_exp>
<literal_exp>call .setTargetEndpointAddress (new URL(endpoint));</
literal.exp>
<literal_exp>call.setOperationName("</literal_exp>
<opName/>
_<literal_exp>");</literal_exp>
<addparameter_exp>
<literal_exp>call.addParameter("arg</literal_exp>

<arg_id/>
<literal_exp>" , XMLType.</literal_exp>
<type/>
<literal_exp>, ParameterMode.</literal_exp>
<direction />
<literal_exp>);</literal_exp>
</addparameter._exp>
<literal_exp>call.setReturnType (XMLType.</literal_exp>
<retType/>

<literal_exp>);</literal.exp>

86

P APt IS

PR A o 4

78

85

90

95

100

105

110

<invoke>
<retType.exp id="1">
<retType/>
<literal_exp> ret = (</literal.exp>
<retType/>
<literal_exp>) </literal._exp>
</retType_exp>
<literal_exp>call.invoke(new java.lang.Object[] { </literal.exp>
<arg.exp>
<direction_type_argName/>
<literal_exp>,</literal.exp>
</arg._exp>
<retType_exp id="2">
<literal_exp>_tab</literal_exp>
<literal_exp>return ret;</literal_exp>
<[retType.exp>
</invoke>
<literal_exp>} </literal_exp>
<literal_exp>catch (Exception ex) {</literal_exp>
<literal.exp>System.err.println ("ERROR: " + ex);</literal_exp>
<literal_exp>ex.printStackTrace(System.out);</literal_exp>
<literal_exp>System.out.printin("Cannot establish connection with Web
Service!");</literal_exp>
<retType.exp id="3"> 4
<literal.exp>_tab</literal_exp>
« <literal_exp>return </literal_exp>
<retValue/>
<literal_exp>;</literal_exp>
</retType.exp>
<literal.exp>}</literal_exp>
<literal_exp>}</literal_exp>
</operation.exp>
<literal_exp>_newline</literal_exp>
<literal_exp>}</literal.exp>
</element_exp>

</pattern>

87

e

¥
3
3

e g TYMR IR

10

15

20

25

30

35

40

45

Listing 5.3: Generation of Java RMI-specific Illusion Capsules

<?xml version="1.0"7>
<pattern type="Capsule” platform="RMI">
<reference.exp>
<literal_exp>import java.rmi.*;</literal_exp>
<literal_exp>import java.rmi.server.*;</literal_exp>
<literal_exp>import java.net.*;</literal_exp>
<literal_exp>public class </literal_exp>
<reference_name />
<literal_exp>Server {</literal.exp>
<literal_exp>public static void main(String args[]) {</literal_exp>
<literal_exp>try {</literal_exp>
<element_name />
<literal.exp> impl = new </literal_exp>
<element_name />
<literal_exp>("http://</literal_exp>
<IPAddress/>
<literal_exp>:8080/axis/</literal_exp>
<jws_exp>
<jws id="1">
<literal_exp>WS_</literal_exp>
<reference_name/>
<literal_exp>_</literal_exp>
<server_platform/>
<literal_exp>Client</literal_exp>
</jws>
<jws id="2">
<reference_name/>
<literal_exp>Server</literal_exp>
</jus>
</jws_exp>
<literal_exp>. jws");</literal_exp>
<literal_exp>Naming.rebind ("</literal_exp>
<reference_name/>
<literal_exp>", impl);</literal_exp>
<literal_exp>System.out.printin ("RMI </literal_exp>
<reference_name/>
<literal_exp> started on IP " + InetAddress.getLocalHost ().
getHostAddress ()+"\n");</literal_exp>
<literal_exp>}</literal.exp> '
<literal_exp>catch (Exception ex) {</literal_exp>
<literal_exp>System.err.println ("ERROR: " + ex);</literal_exp>
<literal.exp>ex.printStackTrace(System.out);</literal.exp>
<literal.exp>}</literal_exp>
<literal_exp>}</literal_exp>
<literal.exp>}</literal_exp>
</reference.exp>
</pattern>

88

10

15

20

25

WebServices-to-CORBA pattern

Listing 5.4: Generation of Web Services that serve as CORBA Clients

<?xml version="1.0"7>
<pattern type="ObjectImpl" platform="WwS">

<datatypes>

<datatype id="0" name="void" retValue="null">void</datatype>

</datatypes>

<wrapper.exp>

<datatype id="1" name="boolean" retValue="false" holder="
javax.xml.rpc.holders.BooleanHolder">boolean</datatype>

<datatype id="2" name="char" retValue="’\u0000’" holder="
javax.xml.rpc.holders.StringHolder">char</datatype>

<datatype id="3" name="string" retValue="null" holder="
javax.xml.rpc.holders.StringHolder">String</datatype>

<datatype id="4" name="byte" retValue="-1" holder="javax.
xml.rpc.holders.ByteHolder">byte</datatype>

<datatype id="5" name="unsigned byte" retValue="-1" holder=
"javax.xml.rpc.holders.ShortHolder">short</datatype>

<datatype id="6" name="short" retValue="-1" holder="javax.
xml.rpc.holders.ShortHolder">short</datatype>

<datatype id="7" name="unsigned short" retValue="-1" holder
="javax.xml.rpc.holders.ShortHolder">short</datatype>

<datatype id="8" name="int" retValue="-1" holder="javax.xml
.rpc.holders.IntHolder">int</datatype>

<datatype id="9" name="unsigned int" retValue="-1" holder="
javax.xml.rpc.holders.IntHolder">int</datatype>

<datatype id="10" name="long" retValue="-1" holder="javax.
xml.rpc.holders.LongHolder">long</datatype>

<datatype id="11" name="unsigned long" retValue="-1" holder
="javax.xml.rpc.holders.LongHolder">long</datatype>

<datatype id="12" name="float" retValue="-1.0" holder="
javax.xml.rpc.holders.FloatHolder">float</datatype>

<datatype id="13" name="double" retValue="-1.0" holder="
javax.xml.rpc.holders.DoubleHolder">double</datatype>

<datatype id="14" name="BigInt" retValue="java.math.
BigInteger.ZERD" holder="javax.xml.rpc.holders.
BigintegerHolder">java.math. Biglnteger</datatype>

<datatype id="15" name="decimal" retValue="new java.math.
BigDecimal (java.math.BigInteger.ZERQO)" holder="javax.xml
.rpc.holders.BigDecimalHolder">java .math.BigDecimal</
datatype>

<literal.exp>import org.omg.CosNaming.*;</literal_exp>

<literal_exp>import org.omg.CosNaming.NamingContextPackage
+;</literal _exp>

<literal.exp>import org.omg.CORBA.x;</literal.exp>

<literal_exp>import java.net.*;</literal_exp>

<literal.exp>public class WS</literal_exp>

<reference.name />

89

30

35

40

45

50

56

60

65

<literal.exp>.</literal.exp>
<literal.exp>CorbaClient {</literal_exp>
<interf_name />
<literal_exp> ref;</literal.exp>
<wrapperoperation.exp>
<literal.exp>public </literal_exp>
<retType/>
<opName/>
<literal_exp>(</literal_exp>
<arg.exp>] '
<direction_type.argName />
<literal_exp>,</literal_exp>
</arg.exp>
<literal_exp>{</literal_exp>
<literal_exp>try {</literal.exp>
<literal_exp>String []args = {"-ORBInitialPort","
1050" ,"-ORBInitialHost", InetAddress.
getLocalHost () . getHostAddress () };</literal_exp>
<literal_exp>ORB orb = ORB. init (args,null);</
literal_exp>
<literal_exp>org.omg.CORBA. Object objRef = orb.
resolve.initial.references ("NameService") ;</
literal.exp>
<literal_exp>NamingContextExt ncRef =
NamingContextExtHelper .narrow (objRef) ;</

- literal_exp>

<literal_exp>ref = </literal_exp>
<interf_name />
<literal.exp>Helper.narrow(ncRef.resolve_str (“</
literal_exp> :
<reference_name/> '
<literal_exp>"));</literal_exp>
<literal.exp>System.out.println ("Obtain a handle on
Corba </literal_exp>
<reference_name/>
<literal_exp> server object");</literal_exp>

<invoke>
<retType.exp id="1">
<retType/>
<literal.exp> ret = (</literal_exp>
<retType/>

<literal.exp>) </literal_exp>
</retType_exp>
<literal.exp>ref.</literal_exp>
<opName/>
<literal.exp>(</literal.exp>
<arg.exp>

<direction.type_argName />

<literal_exp>,</literal_exp>
</arg.exp>

90

e

5 TPTTI| TPRPRY. FOEOIL W 1) R

70

75

80

85

80

<literal_exp>);</literal_exp>
<retType-exp id="2">
<literal_exp>_tab</literal_exp>
<literal.exp>return ret;</literal.exp>
</retType.exp>
</invoke>
<literal.exp>}</literal_exp>
<literal.exp>catch (Exception ex) {</literal.exp>
<literal.exp>ex.printStackTrace () ;</literal_exp>
<literal.exp>System.out.println("Cannot establish connection with
Corba server!");</literal_exp>
<literal_exp>System.exit (0) ;</literal_exp>
<retType-exp id="3">
<literal_exp>.tab</literal_exp>
<literal_exp>return </literal_exp>
<retValue/>
<literal.exp>;</literal.exp>
</retType_exp>
<literal_exp>}</literal_exp>
<literal_exp>}</literal_exp>
</wrapperoperation._exp>
<literal_exp>}</literal_exp>
</wrapper.exp>
</pattern>

91

10

15

20

CORBA-to-RMI pattern

To generate CORBA illusion interfaces, we can use the corresponding part of the CORBA-
to-WebServices pattern (see listing 3.3).

Listing 5.5: Generation of CORBA-specific Object Implementations that serve as Java
RMI Clients '

<?xml version="1.0"7>
<pattern type="ObjectImpl" platform="Corba">
<datatypes>
<datatype id="0" name="void">void</datatype>
<datatype id="1" name="boolean" holder="BooleanHolder" retValue="false"
>boolean</datatype>
<datatype id="2" name="char" holder="CharHolder" retValue="
"\u0000’">char</datatype>
<datatype id="3" name="string" holder="StringHolder"
retValue="null">String</datatype>
<datatype id="4" name="byte" holder="ByteHolder" retValue="
-1">byte</datatype>
<datatype id="5" name="unsigned byte" holder="ShortHolder"
retValue="-1">short</datatype>
<datatype id="6" name="short" holder="ShortHolder" retValue
="-1">short</datatype>
<datatype id="7" name="unsigned short" holder="ShortHolder”
retValue="-1">short</datatype>
<datatype id="8" name="int" holder="IntHolder" retValue="-1
">int</datatype>
<datatype id="9" name="unsigned int" holder="IntHolder"
retValue="-1">int</datatype>
<datatype id="10" name="long" holder="LongHolder" retValue=
"-1">long</datatype>
<datatype id="11" name="unsigned long" holder="LongHolder"
retValue="-1">long</datatype>
<datatype id="12" name="float" holder="FloatHolder"
retValue="-1.0">float</datatype>
<datatype id="13" name="double" holder="DoubleHolder"
retValue="~1.0">double</datatype>
<datatype id="14" namez"BigInt" holder="0bjectHolder"
retValue="java.math.BigInteger.ZER0">java .math.
Biglnteger</datatype>
<datatype id="15" name="decimal" holder="ObjectHolder"
retValue="new java.math.BigDecimal(java.math.BigInteger.
ZERD) ">java.math.BigDecimal</datatype>
</datatypes>
<element.exp>
<literal_exp>import org.omg.CosNaming.*;</literal_exp>
<literal.exp>import org.omg.CosNaming.NamingContextPackage.*;</
literal.exp>

92

25

26

30

35

40

45

50

55

60

65

70

<literal.exp>import org.omg.CORBA.*;</literal_exp>
<literal_exp>import org.omg.PortableServer.*;</literal_exp>
<literal_exp>import org.omg.PortableServer .POA;</literal_exp>
<literal_exp>import java.rmi.x;</literal_exp>
<literal.exp>import java.rmi.server .*;</literal_exp>
<literal_exp>import java.util.Properties;</literal_exp>
<literal_exp>import java.net.*;</literal.exp>
<literal.exp>import java.lang.*;</literal_exp>
<literal_exp>public class </literal_exp>
<element_name />
<literal_exp> extends </literal_exp>
<interf_name />
<literal_exp>POA { </literal_exp>
<literal_exp>private ORB orb;</literal_exp>
<literal_exp>private String RMIServerURL;</literal_exp>
<interf_name />
<literal_exp> ref;</literal_exp>
<literal_exp>public </literal.exp>
<element_name/>
<literal_exp>(String servURL) {</literal.exp>
<literal_exp>RMIServerURL = servURL;</literal_exp>
<literal.exp>}</literal.exp>
<literal_exp>public void setORB(ORB orb.val) {</literal_exp>
<literal.exp>this.orb = orb_val;</literal.exp>
<literal_exp>}</literal_exp>
<operation_exp>
<literal_exp>public </literal_exp>
<retType/>
<opName />
<literal_exp>(</literal_exp>
<arg.exp>
<direction_type.argName />
<literal_exp>,</literal_.exp>
</arg_exp>
<literal_exp>) {</literal_exp>
<literal_exp>try {</literal_exp>
<literal_exp>ref = (</literal_exp>
<interf.name />
<literal.exp>) Naming.lookup (RMIServerURL);</literal_exp>
<literal_exp>System.out.println("0Obtain a handle on RMI </literal_exp
>
<reference_name/>
<literal_exp> server object");</literal_exp>
<invoke>
<retType.exp id="1">
<retType/>
<literal_exp> ret = (</literal_.exp>
<retType/>
<literal.exp>) </literal.exp>
</retType.exp>

93

74
75

80

85

90

85

100

e e e s ey

<literal.exp>ref.</literal.exp>
<opName/> '
<literal_exp>(</literal_exp>
<arg.exp>
<direction.type.argName />
<literal_exp>,</literal_exp>
</arg_exp>
<literal_exp>);</literal_exp>
<retType.exp id="2">
<literal_exp>return ret;</literal_exp>
</retType_exp>
</invoke>
<literal_exp>}</literal_exp>
<literal_exp>catch (Exception ex) {</literal.exp>
<literal_exp>ex.printStackTrace () ;</literal.exp>

<literal_exp>System.out.println ("Cannot establish connection with RMI

server!");</literal_exp>
<literal_exp>System.exit (0);</literal_exp>
<retType.exp id="3">
<literal_exp>return </literal_exp>
<retValue/>
<literal_exp>;</literal_exp>
</retType_exp>
<literal_exp>}</literal_exp>
<literal_exp>}</literal_exp>
</operation_-exp>
<literal_exp>}</literal_exp>
</element_exp>
</pattern>

94

10

i5

20

25

30

35

Listing 5.6: Generation of CORBA-specific Illusion Capsules that host CORBA Objects -
serving as Java RMI Clients

<?xml version="1.0"7>
<pattern type="Capsule"
<reference.exp>
<literal_exp>import
<literal_exp>import
literal.exp>
<literal_exp>import

platform="Corba">

org.omg.CosNaming.*;</literal_exp>
org .omg.CosNaming . NamingContextPackage . *;</

org.omg.CORBA.*;</literal_exp>

<literal.exp>import org.omg.PortableServer.x;</literal_exp>

<literal.exp>import

org.omg. PortableServer .POA;</literal_exp>

<literal.exp>import java.net.x;</literal_exp>

<literal_exp>public
<reference_name />

<literal_exp>Server
<literal_exp>public

class </literal_exp>

{</literal_exp>
static void main(String args[]) {</literal.exp>

<literal_exp>try {</literal_exp>

<literal.exp>ORB orb = ORB. init (args, null);</literal_exp>

<literal_exp>POA rootpoa = POAHelper.narrow (orb.
resolve_initial_references ("RootP0OA"));</literal_exp>

<literal_exp>rootpoa.the. POAManager() . activate () ;</literal_exp>

<literal_exp>org.omg.CORBA. Object objRef = orb.
resolve_initial _references ("NameService");</literal_exp>

<literal.exp>NamingContextExt ncRef = NamingContextExtHelper.narrow(
objRef) ;</literal._exp>

<element.name />

<literal_exp> impl =

<element_name/>

new </literal_exp>

<literal.exp>("rmi://<!--"+ InetAddress.getLocalHost ().getHostAddress ()
+"/~--></1literal_exp>

<IPAddress/>

<literal_exp>/</literal_exp>

<reference_name/>

<literal_exp>");</literal_exp>

<literal_exp>impl.setORB(orb);</literal_exp>

<literal_exp>org.omg.CORBA. Object ref = rootpoa.servant_to_reference(
impl);</literal_exp>

<interf_name />

<literal_exp> href = </literal_exp>

<interf_name />

<literal_exp>Helper .narrow(ref);</literal_exp>
<literal.exp>NameComponent path{] = ncRef.to.name("</literal_exp>

<reference_name/>

<literal_exp>");</literal_exp>
<literal_exp>ncRef.rebind (path, href);</literal_exp>
<literal_exp>System.out.println("Corba </literal_exp>

<reference_name/>

95

=

T

B

B ALt

40

41

45

50

<literal_exp> started on IP " + InetAddress.getLocalHost ().

getHostAddress ()+"\n");</literal_exp>
<literal_exp>orb.run() ;</literal_exp>
<literal_exp>}</literal_exp> .
<literal.exp>catch (Exception ex) {</literal_exp>
<literal-exp>System.err.println ("ERROR: " + ex);</literal_exp>
<literal_exp>ex.printStackTrace(System.out);</literal_exp>
<literal.exp>}</literal_exp>
<literal.exp>}</literal_exp>
<literal.exp>}</literal_exp>
</reference.exp>
</pattern>
ioh
9w '
£ = ;

10

15

20

25

RMI-to-CORBA pattern

To generate Java RMI illusion interfaces, we can use the corresponding part of the RMI-
to-WebServices pattern (see listing 5.1 in the current appendix).

Listing 5.7: Generation of Java RMl-specific Object Implementations that serve as

CORBA Clients

<?7xml version="1,0"7>
<pattern type="ObjectImpl" platform="RMI">

<datatypes>

<datatype id="0" name="void" retValue="null">void</datatype>

</datatypes>
<element_exp>

<literal_exp>import
<literal_exp>import
<literal.exp>import
<literal_exp>import

<datatype id="1"
datatype>
<datatype id="2"
datatype>
<datatype id="3"
datatype>
<datatype id="4"
<datatype id="5"
datatype>
<datatype id="6"
>
<datatype id="T7"
/datatype>
<datatype id="8"
<datatype id="9"
datatype>-
<datatype id="10"
<datatype id="11"
datatype>
<datatype id="12"
datatype>
<datatype id="13"
datatype>
<datatype id="14"

name="boolean" retValue="false">boolean</
name="char" retValue="’\u0000’">char</
name="string" retValue="null">String</

name="byte" retValue="-1">byte</datatype>
name="unsigned byte" retValue="-1">short</

name="short" retValue="-1">short</datatype
name="unsigned short" retValue="-1">short<

name="int" retValue="-1">int</datatype>
name="unsigned int" retValue="-1">int</

name="long" retVaIue:"—1">long</datatype>
name="unsigned long" retValue="-1">long</

name="float" retValue="-1.0">float</
name="double" retValue="-1.0">double</

name="BigInt" retValue="java.math,

BigInteger.ZERD">java.math. BigIlnteger</datatype>

<datatype id="15"

name="decimal" retValue="new java.math.

BigDecimal(java.math.BigInteger.ZERO)">java .math.
BigDecimal</datatype>

java.rmi.
java.rmi.

literal_exp>

<literal_exp>import
<literal.exp>import

java.util

x;</literal_exp>
server .x;</literal_exp>

org.omg.CosNaming.*;</literal_exp>
org .omg. CosNaming . NamingContextPackage . x ;</

org.omg.CORBA. x;</literal_exp>

.Properties;</literal_exp>

97

30

35

10

45

50

55

60

65

70

<literal_exp>import java.net.*;</literal_exp>
<literal_exp>import java.lang.x;</literal_exp>
<literal_exp>public class </literal_exp>
<element.name />
<literal.exp> extends UnicastRemoteObject implements </literal_exp>
<interf.name />
<literal_exp> {</literal_.exp>
<interf_name/>
<literal_exp> ref;</literal_exp>
<literal.exp>private String []args;</literal_exp>
<literal_exp>public </literal_exp>
<element_name /> '
<literal_exp>() throws RemoteException {</literal_exp>
<literal_exp>args = new String[4];</literal_exp>
<literal_exp>args[0] = "-ORBInitialPort";</literal_exp>
<literal_exp>args[1l] = "1050";</literal.exp>
<literal_exp>args[2] = "-ORBInitialHost";</literal_exp>
<literal_exp>args (3] = “</literal_exp>
<IPAddress/>
<literal_exp>";</literal_exp>
<literal_exp>}</literal_exp>
<operation_exp>
<literal_exp>public </literal_.exp>
<retType/>
<opName />
- <literal_exp>(</literal_exp>
<arg.exp>
<direction_type_argName />
<literal.exp>,</literal_exp>
</arg.exp>
<literal_exp>) {</literal_exp>
<literal_exp>try {</literal_exp>
<literal_exp>ORB orb = ORB. init (args,null);</literal_exp>
<literal_exp>org.omg.CORBA. Object objRef = orb.
resolve._initial_references ("NameService");</literal_exp>
<literal_exp>NamingContextExt ncRef = NamingContextExtHelper.narrow(
objRef);</literal_exp>
<literal_exp>ref = </literal_exp>
<interf.name />
<literal.exp>Helper.narrow(ncRef.resolve_str ("</literal_exp>
<reference_name/>
<literal_exp>"));</literal_exp>
<literal_exp>System.out.println ("0Obtain a handle on Corba </
literal_exp>
<reference_name/>
<literal_exp> server object");</literal.exp>
<invoke>
<retType.exp id="1">
<retType/>
<literal.exp> ret = (</literal_exp>

98

75

76

80

85

90

95

100

105

<retType/>
<literal_exp>) </literal.exp>
</retType.exp> '
<literal.exp>ref.</literal.exp>
<opName/>
<literal.exp>(</literal_exp>
<arg-exp>
<direction.type.argName />
<literal_exp>,</literal_exp>
<[arg-exp> |
<literal_exp>);</literal_exp>
<retType_exp id="2"> ‘
<literal_exp>return ret;</literal.exp>
</retType.exp>
</invoke>
<literal_exp>}</literal_exp>
<literal_exp>catch (Exception ex) {</literal_exp>
<literal_exp>ex.printStackTrace () ;</literal_exp>
<literal_exp>System.out.println("Cannot establish connection with
Corba server!");</literal_exp>
<literal_exp>System.exit (0);</literal_exp>
<retType_exp id="3">
<literal_exp>return </literal_exp>
<retValue/> 4
<literal_exp>;</literal_.exp>
- </retType_exp>
<literal_exp>}</literal_exp>
<literal.exp>}</literal_exp>
</operation_exp> ‘
<literal.exp>}</literal.exp>
</element_exp>
</pattern>

99

:
!
I3
¥
3

C 10

15

20

235

30

Listing 5.8: Generation of Java RMI-specific Illusion Capsules that host Java Objects .
serving as CORBA Clients

<?xml version="1.0"7>
<pattern type="Capsule" platform="RMI">
<reference_exp>
<literal_exp>import java.rmi.x;</literal_exp>
<literal_exp>import java.rmi.server.%;</literal_exp>
<literal_exp>import java.net.x;</literal_exp>
<literal_exp>public class </literal_exp>
<reference._name />
<literal_exp>Server {</literal_exp>
<literal_exp>public static void main(String args[]) {</literal_exp>
<literal_exp>try {</literal_exp>
<element_name />
<literal_exp> impl = new </literal_exp>
<element_name />
<literal_exp>();</literal_exp>
<literal_exp>Naming.rebind ("</literal_exp>
<reference_name/>
<literal_exp>", impl);</literal_exp>
<literal_exp>System.out.println ("RMI </literal_exp>
<reference_name/>
<literal_exp> started on IP " + InetAddress.getLocalHost ().
getHostAddress ()+"\n");</literal_exp>
<literal_exp>}</literal_exp>
<literal_exp>catch (Exception ex) {</literal_exp>
<literal_exp>System.err.println ("ERROR: " + ex);</literal_exp>
<literal_exp>ex.printStackTrace (System.out);</literal_exp>
<literal_exp>}</literal_exp>
<literal_exp>}</literal_exp>
<literal_exp>}</literal_exp>
</reference.exp>
</pattern>

100

|

SHORT CV

Iason Tsaparlis was born in Ioannina in 1982. He completed the high school in Ioannina
in 2000, and obtained his Diploma in Computer Engineering from the Department of
Computer Engineering and Informatics of the University of Patras in 2005. The theme
of his undergraduate diploma thesis was ”"Implementation of a Multilingual Electronic
Magazine by using XML Technology”. After fulfilling his national service in the Greek
army, he started his postgraduate studies in the Department of Computer Science of
the University of Ioannina, in 2007. His research focused on the problem of middleware
platform heterogeneity and interoperability. He is a member of the Technical Chamber of
Greece (TEE) since 2006.

