
Αυτοματοποιημένη Ενσωμάτωση
Κατανεμημένων Εφαρμογών Βασιζόμ

σε Ετερογενές Ενδιάμεσο Λογισμικ

Ιάσων Τ σαπ αρλής

Μ Ε Τ Α Π Τ Υ Χ Ι Α Κ Η Ε Ρ Γ Α Σ Ι Α Ε Ξ Ε Ι Δ Ι Κ Ε Υ Σ Η

- ♦ -

Ιωάννινα, Ιούνιος 2009

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

DEPARTMENT OF COMPUTER SCIENCE
U N I V E R S I T Y O F I O A N N I N A

ΑΥΤΟΜΑΤΟΠΟΙΗΜΕΝΗ ΕΝΣΩΜΑΤΩΣΗ
ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΕΦΑΡΜΟΓΩΝ ΒΑΣΙΖΟΜΕΝΩΝ

ΣΕ ΕΤΕΡΟΓΕΝΕΣ ΕΝΔΙΑΜΕΣΟ ΛΟΓΙΣΜΙΚΟ

Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

υποβάλλεται στην

ορισθείσα από τη Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Πληροφορικής Εξεταστική Επιτροπή

από τον

Ιάσονα Τσαπαρλή

ως μέρος των υποχρεώσεων για τη λήψη του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΟ

ΛΟΓΙΣΜΙΚΟ

Ιούνιος 2009

ΒΙΒΛΙΟΘΗΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟΥ IflANNINON

026000314 70

‘:j ·. -Ρν, ' Μ / Λ - ' ί / :< ; ' { « - ■‘ •■'ϊ α φ :? v - : w m /
ιΟΥΥΊΟΛ αίΑ'ΥΑίΔΥαΥΥΥΜ h;

ν / ,
: : ; 1 / Α Ϊ > Η
: : η ΐ ΐ ; :ΐ 2

2Μ2Υ3/ΠΔΙ3Η3 ΑίΚΑΤΥ’ :α ·λ Ι/Υ'ΓΠΛΤ3.!λ Η

s k : a *

'ν· ' V; ·

3
'· :· · · ν . ν . υ - f f K J V i , : " · , · ,γ · .χ . a: w -a .-o ;Q'v>

Ύ! >Τ.

V ί-1“·; ', -«■
0 A q *»T O .i s w v o r i

Υι;Λ ■■ ρ ν ,ν /K-W'Q·· ■A ji se^k* : «

Y Y Y ΜΔΛΠίΔ '·

3:YYYilYi3S3 3··

r m m s M j j %:-■

‘ ; ; ; ;λ ίI C*A*i

'-'■ΆΜ'***■-&:-3#;'

&op

D e d ic a t io n

To my parents,

A c k n o w l e d g e m e n t

I would like to thank my supervisor assistant professor A p o s to lo s Zarras for the oppor
tunity he provided me to work under his supervision for carrying out the research study
reported in this thesis. His constant guidance, help and encouragement during the whole
process of this thesis were invaluable.

1
1
4
4
5
6
6
7
8

13
15

16
16
17
17
18
18
18
18
19
19
19
20
20
20
22

22
23
23
24

T a b l e o f C o n t e n t s

1 Introduction
1.1 The Issue o f Heterogeneity in Distributed System s..
1.2 Case Study ..

1.2.1 Implementation of the Server O b je c ts ..
1.2.2 Implementation of the Client O b j e c t ..

1.3 Transparent Integration of the Heterogenous Applications..............................
1.3.1 B ridgin g ...
1.3.2 Implementation of the Interoperability C om ponents...........................
1.3.3 Large Scale Integration and Web Services...

1.4 Illusion Maker: Automating the Integration of Heterogenous Middleware .
1.5 The Structure of the T h e s is ..

2 Background and Related W ork
,2.1 Middleware and Distributed S y s te m s ..
2.2 Basic Properties of M id d lew a re ..

2 .2.1 O p e n n e s s ..
2 .2.2 S calability..
2.2.3 Performance and Fault-Tolerance

2.3 Distribution Transparency...........................
2.3.1 Access Transparency..
2.3.2 Location Transparency...
2.3.3 Concurrency Transparency..
2.3.4 Failure Transparency..
2.3.5 Migration T ran sparen cy ..
2.3.6 Persistence Transparency and Transaction T ran sp aren cy

2.4 Interaction between Distributed Com ponents..
2.5 Related W o r k ...

2.5.1 JADDA: Java Adaptive framework for Dynamic Distributed Archi
tecture ...

2.5.2 ReMMoC: Reflective Middleware for Mobile Com puting.....................
2.5.3 INDISS: Interoperable Discovery System for Networked Service . .

2.6 The Contribution of the Illusion Maker F ra m ew ork ...

1

3 The Architecture o f the Illusion Maker Framework 25
3.1 Basic Functionality... 25
3.2 Input and the Use of X M L ... 26
3.3 Description of the Architecture of a Legacy S erver.. 27
3.4 Platform Specific Patterns34

3.4.1 Generation of Platform Specific Illusion Interfaces................................... 35
3.4.2 Generation of Platform Specific Object Im plem entations.....................37
3.4.3 Generation of Platform Specific Illusion C a p s u le s 41
3.4.4 Generation of Web Service W ra p p ers .. 43
3.4.5 Mapping of Data T y p e s ...46

3.5 Design and Implementation o f the F ram ew ork ..47
3.5.1 Parsing XML Docum ents..48
3.5.2 The XML Parsers of the Framework ..49
3.5.3 Parsing the Platform Independent Inform ation... 49
3.5.4 Parsing the Platform Specific P a ttern .. 52
3.5.5 Utilizing Interpreter Design P attern ..53
3.5.6 Mapping of Data T y p e s ... 56
3.5.7 Creating the Output Source F ile .. 56

3.6 Scalability I s s u e s .. 60
3.7 The Graphical User Interface o f the F ram ew ork ... 61

4 Evaluation o f the Illusion Maker Framework 65
4.1 Implementation E f f o r t .. 66

4.1.1 Form alization.. . 66

4.1.2 Experimental R esu lts.. 68
4.2 Overhead .. 72

4.2.1 Non-Heterogenous Distributed Environments... 72
4.2.2 First Scenario: A CORBA Client invokes a Java RMI Server 73
4.2.3 Second Scenario: A Java RMI Client invokes a CORBA Server . . . 74
4.2.4 C om parison ... 76

4.3 Conclusion.. 77

5 Conclusion 79
5.1 S u m m a r y .. 79

5.2 Future W ork .. go

ii

List of Figures

1.1 Heterogenous Middleware 2
1.2 An Interoperability S cen ario .. 3
1.3 Transparent Integration of Heterogenous M id d lew a re 7
1.4 Large Scale Distributed System s... 8

1.5 Integration using Web Services... 9

3.1 The Basic Functionality of the Framework... 26
3.2 The Generic Architecture of a S e r v e r ... 28
3.3 The Software Elements generated by Illusion M a k e r .. 35
3.4 The Subsystems of the Illusion M aker... 48
3.5 The Classes of the Illusion Maker D e s ig n ... 50
3.6 The Architecture Class H iera rch y................ 52
3.7 Interpreter Design P a tte rn .. 54
3.8 List of Expression Objects for a CORBA IDL In terfa ce 56
'3.9 Classes for Parameter Direction Modes and Data Types M a p p in g 57
3.10 The File Utility Subsystem ... 58
3.11 Graphical User Interface - Basic F u nctiona lity ... 62
3.12 Graphical User Interface - Registration of Platform Specific Patterns . . . 63
3.13 Graphical User Interface - Search for a Pattern ... 63

4.1 Implementation Effort for the Generation of CORBA Illusion Interfaces . . 68

4.2 Implementation Effort for the Generation of CORBA Object Implementa
tions - 1 ... 69

4.3 Implementation Effort for the Generation of CORBA Object Implementa
tions - 2 ... 69

4.4 Implementation Effort for the Generation of CORBA Illusion Capsules . . 70
4.5 Implementation Effort for the Generation of Web Service Wrappers - 1 . . 70
4.6 Implementation Effort for the Generation of Web Service Wrappers - 2 . . 71
4.7 Total Implementation Effort for achieving Integration 72
4.8 First Scenario: Using Web S e r v ic e s ... 73
4.9 First Scenario: The CORBA-specific Illusion Object access directly the

Server O b je c t ... 74

4.10 Second Scenario: Using Web S erv ices .. 75

iii

4.11 Second Scenario: The RMI-specific Illusion Object access directly the Server
O b je c t 76

4.12 Heterogenous vs Non-Heterogenous Distributed Environment 76
4.13 Using Web Services vs Not Using Web Services 77

iv

List of Tables

3.1 Data Types M app in g............. 47

4.1 Metrics for the Size of the Server Application 66
4.2 Implementation Effort for our Case S t u d y ...68

4.3 Average Response Times in Non-Heterogenous Environments..................... 73
4.4 First Scenario: Average Response Times using Web S e r v ic e s 73

4.5 First Scenario: Average Response Times without using Web Services . . . 74
4.6 Second Scenario: Average Response Times using Web S erv ices 75
4.7 Second Scenario: Average Response Times without using Web Services . . 75

v

List of Listings

1.1 A Java RMI Remote In terface....................... 4
1.2 A Java RMI implementation of a Server O b je c t ... 4
1.3 A Java RMI S erv e r .. 5
1.4 A CORBA C lie n t .. 6

1.5 The CORBA IDL Interface provided by the HP S e r v e r 8

1.6 The CORBA-specific Object Implementation acting as a Java RMI Client 10
1.7 The CORBA HP Server that the Client in v o k e s ... 11
1.8 The CORBA-specific Object Implementation acting as a Web Service Client 12
1.9 The Web Service Wrapper acting as a Java RMI C lie n t 13
3.1 XML Schema for the Platform Independent Information 29
3.2 XML Document of the Platform Independent Information 33
3.3 Generation of CORBA IDL Illusion In terfa ces ... 37
3.4 Generation of CORBA-specific Object Im plementations...................................... 38
3.5 Generation of CORBA-specific Illusion C apsules... 42
3.6 Generation of Web Services that serve as Java RMI C lien ts 43
5.1 Generation of Java RMI Illusion In terfaces.. 83
5.2 Generation of Java RMI-specific Object Im plem entations............................... 85
5.3 Generation of Java RMI-specific Illusion C a p su le s ... 88
5.4 Generation of Web Services that serve as CORBA Clients............................... 89
5.5 Generation of CORBA-specific Object Implementations that serve as Java

RMI C lien ts .. 92
5.6 Generation o f CORBA-specific Illusion Capsules that host CORBA Objects

serving as Java RMI C lie n ts .. 95
5.7 Generation of Java RMI-specific Object Implementations that serve as

CORBA C lien ts.. 97
5.8 Generation of Java RMI-specific Illusion Capsules that host Java Objects

serving as CORBA C lien ts .. 100

vi

A b s t r a c t

Iason G. Tsaparlis, MSc, Computer Science Department, University o f Ioannina, Greece.
June 2009.

Title of Dissertation: ” Automated Integration of Distributed, Based on Heterogenous
Middleware Applications” .

Thesis Supervisor: Apostolos Zarras

In this thesis, we propose an automated process for the interoperability and integration
of distributed applications that are based on heterogenous middleware. In particular,
for a pair of middleware platforms A and B, used by a client and a server application
respectively, the proposed framework creates the illusion that the server application relies
on platform A. To enable this illusion, the framework generates automatically: (i) Web
services that wrap the functionality o f the actual server application; and (ii) an A-specific
view of the server application playing the role o f the client for the Web service wrappers.

To enable the automatic code generation process, we define a set o f rules that model
the descriptions of mappings (e.g. data types, interface definitions) between the different
middleware standards (e.g. CORBA and Java RMI) and WSDL. The proposed framework
implements a code generator mechanism that accepts as input the aforementioned set of
rules. This mechanism interprets the set o f rules and produces the desirable source code
that brings the interoperability. In this way we attain the integration, without depending
on the middleware platforms assumed by the legacy applications and without interfering
with their source code. In addition, the integration is transparent to both client and
server applications.

We evaluate the proposed methodology both from the application developer’s and final
user’s perspective. The benefit for a developer wishing to write the source code manually
is important even in middle scale systems. On the other hand, the use o f the extra software
interoperable elements introduces a substantial delay in the side-to-side communication.

Vll

Εκτενής Περίληψη

Ιάσων Γ. Τσαπαρλής, MSc, Τμήμα Πληροφορικής, Πανεπιστήμιο Ιωαννίνων. Ιούνιος 2009.

Τίτλος Διατριβής: "Αυτοματοποιημένη Ενσωμάτωση Κατανεμημένων Εφαρμογών Βασιζό
μενων σε Ετερογενές Ενδιάμεσο Λογισμικό” .

Επιβλέπων Καθηγητής: Απόστολος Ζάρρας.

Η εξέλιξη των κατανεμημένων συστημάτων εισάγει το πρόβλημα της ετερογένειας σ το
ενδιάμεσο λογισμικό (middleware). Κατανεμημένες εφαρμογές που έχουν υλοποιηθεί με
βάση διαφορετικές πλατφόρμες ενδιάμεσου λογισμικού πρέπει να διασυνδεθούν, ώστε να
επιτευχθεί η διαλειτουργικότητα. Πρόσφατες προσεγγίσεις στο ζήτημα αυτό πετυχαίνουν
μεν τον στόχο αλλά επιβάλλουν στις υπάρχουσες εφαρμογές περιορισμούς, σε σχέση με
την υλοποίησή τους. Ειδικότερα, ο κώδικας των εφαρμογών πρέπει να τροποποιείται ώστε
να καθίσταται συμβατός με τους μηχανισμούς που προτείνουν οι διάφορες μεθοδολογίες.
Στην παρούσα εργασία ακολουθούμε μια διαφορετική φιλοσοφία αναφορικά με την επίτευξη
της διαλειτουργικότητας μεταξύ ετερογενών πλατφορμών middleware. Η προτεινόμενη
μεθοδολογία δεν επιβάλλει:

• κανένα περιορισμό στο είδος των προτύπων ενδιάμεσου λογισμικού που χρησιμο
ποιούνται για την υλοποίηση των κατανεμημένων εφαρμογών,

• καμία τροποποίηση στον πηγαίο κώδικα των υπαρχουσών εφαρμογών.

Συγκεκριμένα, για μια εφαρμογή-πελάτη που έχει υλοποιηθεί στη βάση μιας πλατφόρμας εν
διάμεσου λογισμικού Α και για μια εφαρμογή-εξυπηρετητή που βασίζεται σε μια πλατφόρμα
Β, ο προτεινόμενος μηχανισμός δημιουργεί την "ψευδαίσθηση” ότι και η εφαρμογή-εξυπηρετητής
βασίζεται στην πλατφόρμα Α. Για το σκοπό αυτό, ο μηχανισμός κατασκευάζει αυτόματα:
(1) υπηρεσίες διαδικτύου (Web services) που ενσωματώνουν τη λειτουργικότητα της πραγ
ματικής εφαρμογής-εξυπηρετητή, λειτουργώντας ως πελάτες γι’ αυτήν και (2) μια εικονική
εφαρμογή-εξυπηρετητή, βασισμένη στην πλατφόρμα Α, που καλεί η πραγματική εφαρμογή-
πελάτης. Ο εικονικός αυτός εξυπηρετητής λειτουργεί ταυτόχρονα ως πελάτης για τις υπη
ρεσίες διαδικτύου.

V111

Στόχος είναι ο πηγαίος κώδικας που υλοποιεί τα παραπάνω να παράγεται αυτόματα. Για
το σκοπό αυτό, ορίζουμε ένα γενικό σύνολο κανόνων που περιγράφουν τον τρόπο με τον
οποίο θα παραχθεί ο επιθυμητός κώδικας. Οι κανόνες αυτοί αποτελούν ένα είδος προτύπου
(pattern) το οποίο μοντελοποιεί την αντιστοίχιση των περιγραφών (π.χ. τύποι δεδομέ
νων, περιγραφές διεπαφών) μεταξύ υπαρχουσών πλατφορμών ενδιάμεσου λογισμικού (π.χ.
CORBA, Java RMI) και WSDL. Επομένως, για το ζεύγος των εφαρμογών που ανάφε-
ραμε παραπάνω, ο μηχανισμός απαιτεί την ύπαρξη των προτύπων A-to-WebServices και
WebServices-to-B. Τα δύο αυτά πρότυπα ορίζουν γενικά το πώς θα παραχθεί ο κώδικας για
τις παρακάτω οντότητες λογισμικού:

1. Την περιγραφή της διεπαφής με βάση την πλατφόρμα Α που απαιτεί η εφαρμογή-
πελάτης και που θα είναι όμοια με την περιγραφή της υπάρχουσας, με βάση την
πλατφόρμα Β, διεπαφής (πρότυπο A-to-WebServices).

2. Τα αντικείμενα που υλοποιούν την παραχθείσα, με βάση την πλατφόρμα Α, διεπαφή
(πρότυπο A-to-WebServices).

3. Τις υπηρεσίες διαδικτύου που καλούν τα παραχθέντα, με βάση την πλατφόρμα Α, αντι
κείμενα και οι οποίες ενσωματώνουν τη λειτουργικότητα της εφαρμογής-εξυπηρετητή,
παρέχοντας μια όμοια διεπαφή (πρότυπο WebServices-to-B).

Για τον ορισμό των προτύπων, χρησιμοποιούμε XML. Σχεδιάζουμε και υλοποιούμε έναν
μηχανισμό παραγωγής κώδικα, ο οποίος δέχεται ως είσοδο το προαναφερόμενο σύνολο προ
τύπων, μεταφράζοντάς το στον επιθυμητό πηγαίο κώδικα που θα επιφέρει την ζητούμενη
διαλειτουργικότητα. Ένας αναλυτής SAX διαβάζει τους κανόνες που περιέχονται σε ένα
πρότυπο και παράγει ένα σύνολο από αντικείμενα μιας ιεραρχία κλάσεων. Αυτή η ιεραρχία
κλάσεων ορίζεται σύμφωνα με το σχεδιαστικό πρότυπο Interpreter (Interpreter design pat
tern). Η χρήση του σχεδιαστικού αυτού προτύπου διευκολύνει τη διαδικασία παραγωγής
του κώδικα. Ο κώδικας παράγεται αυτόματα και είναι έτοιμος να χρησιμοποιηθεί για την
ενσωμάτωση εφαρμογών που βασίζονται σε ετερογενές ενδιάμεσο λογισμικό.

Η χρήση των προτύπων που ορίζουν τους κανόνες παραγωγής του κώδικα προσδίδει στο
μηχανισμό τη δυνατότητα να επιτυγχάνει την ενσωμάτωση, ανεξαρτήτως του ενδιάμεσου
λογισμικού που χρησιμοποιεί τόσο ο πελάτης όσο και ο εξυπηρετητής. Επίσης, το επιθυμητό
αποτέλεσμα επιτυγχάνεται διατηρώντας την κλειστότητα του κώδικα των εμπλεκόμενων
εφαρμογών, με τρόπο διάφανο προς αυτές.

Αξιολογούμε την προτεινόμενη μεθοδολογία, τόσο από την οπτική του σχεδιαστή εφαρμο
γών όσο και από την οπτική του τελικού χρήστη ενός κατανεμημένου συστήματος. Συγκε
κριμένα, εστιάζουμε: (1) στο όφελος που αποκομίζει ένας σχεδιαστής-προγραμματιστής
εφαρμογών, αφού δεν χρειάζεται να γράφει τον διαλειτουργικό πηγαίο κώδικα, και (2)
στην επιβάρυνση της απόδοσης που επιφέρει αναπόφευκτα η προσθήκη των διαλειτουργικών
οντοτήτων λογισμικού στο κατανεμημένο σύστημα.

ιχ

Για την αξιόλογηση του οφέλους για τον προγραμματιστή, μετρούμε το πλήθος των γραμ
μών κώδικα LO G (Lines of Code) που παράγει αυτόματα ο μηχανισμός. Τυποποιούμε το
LOC ως συνάρτηση μεγεθών που αντανακλούν την κλίμακα μιας εφαρμογής-εξυπηρετητή
(π.χ. αριθμός των παρεχόμενων διεπαφών, αριθμός των αντικειμένων που υλοποιούν τις
διεπαφές, αριθμός των παρεχόμενων, λειτουργιών.). Το όφελος..για τον προγραμματιστή
είναι αδιαμφισβήτητο ακόμη και σε σχετικά μεσαίας κλίμακας συστήματα. Έ τσι, ο προ
γραμματιστής κερδίζει σημαντικό χρόνο, τον οποίο μπορεί να αφιερώσει σε θέματα σχετικά
με την υλοποίηση της λειτουργικότητας των εφαρμογών.

Η προσθήκη των επιπλέον στοιχείων στο κατανεμημένο περιβάλλον έχει ως αποτέλεσμα
μια επιβάρυνση όσον αφορά την απόδοση των εφαρμογών που ενσωματώνονται. Η χρήση
των υπηρεσιών διαδικτύου ως ενδιάμεσης πλατφόρμας για τη διαλειτουργικότητα εισάγει
μια σημαντική καθυστέρηση στο χρόνο εξυπηρέτησης των εφαρμογών-πελάτη.

X

C h a p t e r 1

In t r o d u c t io n

1.1 The Issue of Heterogeneity in Distributed Systems

1.2 Case Study

1.3 Transparent Integration of the Heterogenous Applications

1.4 Illusion Maker: Automating the Integration of Heterogenous Middleware

1.5 The Structure of the Thesis

1.1 The Issue of Heterogeneity in Distributed Systems

A distributed system is a collection o f autonomous computer systems that are connected
through a network [6]. In each computer system, one or more applications are executed,
interacting with each other and with the applications o f other systems. The independence
of these computer systems comes from the fact that their existence and function is inde
pendent of the existence and the function of the whole distributed system, in which they
appear.

The inherent heterogeneity of the distributed applications can arise from differences in
device architectures, data representations, communication mechanisms and programming
languages. This heterogeneity imposes the use o f a middleware platform that facilitates
the interoperability, so that the distributed system appears as a single and integrated
computing entity. The term interoperability reflects the capability o f an application being
executed in a computer system to obtain access to applications being executed in other
systems.

1

Middleware is the current trend in the development of open distributed systems. It is
perceived as a software layer that stands between the operating system and the applica
tions, providing the developer with the facilities that render an application distributed
[4]. Middleware consists of a basic communication mechanism, which is often called a
broker, and a number of middleware services. The broker masks the differences in under
lying architectures to enable the interoperation between the constituent elements of the
distributed system.

In this way, middleware makes possible the transparent integration of distributed appli
cations. The mechanisms offered by middleware platforms encapsulate the distributed
nature of the applications. A developer does not need to care about issues regarding
the distributed execution of an application. He/she is free to consider issues, related ex
clusively to the implementation of the functionality that the application provides. This
functionality is realized by a software entity (e.g. a class) on top of a middleware infras
tructure (e.g. CORBA, J2EE) and is provided through a well-defined interface.

Conventional distributed systems are build upon their typical users’ requirements. All
the applications within the distributed environment are implemented on top of the same
middleware platform. However, the evolution of the distributed systems demands that
multiple middleware systems have to be combined. Legacy or off-the-shelf applications
that have been implemented on top of different middleware infrastructures have to be
integrated. Suppose, for instance, that the two departments of an organization use con
ventional information systems that have been build on top o f different middleware plat
forms. The workload of the organization imposes the exchange o f information between
these two systems. Unfortunately, this is impossible because of the different middleware
infrastructures (figure 1.1). For this reason, the question that comes up is the following:

”Is middleware still the full answer to the issue o f interoperability in this kind o f distributed
environments? ”

Figure 1.1: Heterogenous Middleware

2

In the previous case, besides heterogeneity in device architectures, communication mech
anisms, data representations and programming languages, we further face the problem o f
middleware platform heterogeneity. A typical case is pervasive computing environments,
which constitute a recent trend in the field of distributed systems [1]. In pervasive comput
ing environments, the user can be anybody joining the environment with his/her mobile
device. The applications deployed on the user’s device can possibly assume a middleware
infrastructure that differs from the one that has been employed for the development of
the services offered by the environment.

Consequently, we have to make an attempt aiming at enabling the interoperation of
applications, developed on top of different middleware platforms. In the recent past, some
of the proposed solutions were ad-hoc, focusing on pairs o f middleware platforms such as
CORBA and DCOM. Other solutions, such as the middleware platforms ReMMoC [9] and
JADDA [7], impose the development of client applications to rely on specific constraints,
arising from these platforms. In other words, the source code of a client application must
be modified. The previous is undesirable, because it contravenes the closure of the legacy
application. Our purpose is to propose a framework that enables middleware platform
interoperability, without imposing any particular constraint on the middleware platforms
used fo r the development o f the distributed applications.

/ς\
; ?

Figure 1.2: An Interoperability Scenario

3

1.2 Case Study

To highlight the concept of middleware platform heterogeneity, let us consider the fol
lowing scenario (figure 1.2). Suppose that a user, carrying a PDA enters the Computer
Science Department o f the University o f Ioannina. On top of his PDA, the user has a
simple application for printing documents. The application is realized using CORBA
and consists o f a client object that initializes the basic CORBA broker and the CORBA
Naming Service. The application uses the CORBA Naming service to locate CORBA
object references to printers named ” HP” and ’’ Stulex” . The expected IDL interface of
these objects is supposed to provide a print() operation that accepts as input a file. The
file is forwarded to the remote object, which serves as a front-end to the corresponding
printer that takes in charge of printing the given file. Unfortunately for the user, the
server objects that play the role of the front-end to the printers are realized on top of
J2EE. The objects are pure Java RMI objects, whose references have been registered to
the corresponding J2EE naming service.

1.2.1 Implementation of the Server Objects

Since the server objects are pure Java RMI objects, they realize a corresponding Java
interface that provides the print() operation. Listing 1.1 gives the declaration o f the
interface, named H PServer-Interf,, which provides the HP printing functionality. Each
server object implements the print () method. Listing 1.2 gives the implementation o f the
HP server object (class HPServerJm pl).

_______________________ Listing 1.1: A Java RMI Remote Interface________________________
i import ja v a .r m i .* ;

public in ter face HPServer_Interf extends Remotef
void print (String filename) throws RemoteException;

5 }

1

5

10

______________ Listing 1.2: A Java RMI Implementation of a Server Object
import ja v a .r m i .* ;
import j a v a . rm i. server .* ;
import ja v a . la n g .* ;

public c lass HPServer.Impl extends UnicastRemoteObject implements
HPServer_Interf{

public HPServer-Impl () throws RemoteException { }

public void print (String filename) throws RemoteException{
// method implementation

}
}

4

In order for the printing objects to be available to the clients, references of them must be
registered to the corresponding J2EE naming service. Listing 1.3 gives the class HPServer
that contains the main method of the HP server application. A reference of the object
implementation is registered with the name ” HP” to the naming service (lines 10-11).
The server is now ready to accept client requests.

1

5

10

15

20

____________________________ Listing 1.3: A Java RMI Server_________________
im port ja v a , r m i .* ;
im port j a v a . rm i. s e r v e r .* ;
im port j a v a . n e t . * ;
import ja v a . lang . * ; .

p u b l ic c la s s HPServer{

p u b l ic s t a t i c v o id main(String a r g s []) {
try {

HPServer_Impl hpserver = new HPServer_Im.pl () ;
Naming, rebind ("HP" , hpserver);
InetAddress address = Inet Address . getLocalHost () ;
System . o u t. println ("RMI HP Server s ta rted on IP " + address.

getHostAddress() + "\nWaiting fo r incoming r e q u e s t s . . . ") ;
}
c a t c h (Exception ex){

System .e r r .p r in t ln (e x) ;
ex . printStackTrace () ;

}

1.2.2 Implementation of the Client Object

Listing 1.4 gives the source code that implements a possible client application for our
case study scenario. In the main method of the class CorbaClient, the Object Request
Broker and the naming service are initialized (lines 16-18). Through the naming service,
the application searches for a reference, using the name ” HP” , to a remote printing object
(lines 20-22). By obtaining this reference, which is expected to be a CO RBA reference,
the client calls the print() method, provided by the expected CORBA remote interface
(line 23). Instead, the remote interface is a Java RMI interface, as we saw in the previous
subsection. Consequently, the client application will not work.

5

1

5

10

15

20

25

30

_____________________________ Listing 1.4: A CORBA Client______________________
import org . omg. CosNaming. *;
import org .omg. CosNaming. NamingContextPackage . *;
import org . omg. CORBA. * ;
import j a v a . la n g .* ;

p u b l ic c la s s CorbaClient{

HPServer.Interf hp;

p u b l ic s t a t i c v o id main(String args[]) throw s WrongUsageException{
try {

i f (args . length != 6)
throw new WrongUsageException () ;

ORB orb = ORB. in it (args , null) ;
org .omg.CORBA. Object objRef = orb . reso l v e _ in it ia l_ re fe re n c e s ("

NameService");
NamingContextExt ncRef = NamingContextExtHelper . narrow (o b jR ef) ;

i f (args [4]. equals ("HP")) {
hp = HPServer_InterfHelper . narrow(ncRef. r e s o lv e .s t r (args [4])) ;
System . out. println ("Obtained a handle on HP server o b je c t ") ;
hp. p r in t (a r g s [5]) ;

}
e ls e

throw new WrongUsageException () ;
}
ca tch (Exception ex)
{

e x . printStackTrace () ;
}

}

1.3 Transparent Integration of the Heterogenous Applications

1.3.1 Bridging

Middleware interoperability denotes the ability o f applications that have been implemented
on top of different middleware infrastructures to work together. Figure 1.3 shows how
the limitations discussed in the previous sections are overcome. The different middleware
systems participating in application requests communicate with each other via interop

erability bridges. A bridge acts as the mediator that masks the gap arising from the
middleware heterogeneity. Generally speaking, bridges map the representation o f object

6

Figure 1.3: Transparent Integration of Heterogenous Middleware

references that are valid in the domain of one middleware infrastructure to references to
the same object in the representation that another infrastructure assumes. In this way,
the request is translated from the domain of one middleware implementation to another
implementation [6]. Figure 1.3 also denotes the transparent way o f integration. The fact
that the server objects are connected to a different middleware, is transparent for the
client objects. Likewise, it is transparent to the server objects that provide services to
client objects based on a different middleware. Both the client and server objects com
municate only with their middleware, as they did before, and the bridges conceal the
remaining heterogeneity.

1.3.2 Implementation of the Interoperability Components

The mediator that brings the interoperability o f the heterogenous middleware can be im
plemented by application developers on top of an existing middleware implementation.
Regarding our example scenario, the mediator may consist o f a surrogate object. This
object is a surrogate for the server that is invoked by the client using the client’s mid
dleware. Moreover, the same object is a surrogate of the client’s representation in the
server’s middleware. Therefore, the mediator simultaneously plays the role o f a server for
the actual client and the role of a client for the actual server.

Listing 1.5 gives the CORBA IDL interface that the CORBA client application of our sce
nario requires. The HP server object is supposed to provide this interface (H PServer Jnterf)

The necessary stub components for the implementation of a distributed application on
top of CORBA arise from this language-independent interface declaration. Listing 1.6
gives the realization of the previous interface (class H PServerJm pt). This is the surro
gate object that translates the CORBA call into a corresponding Java RMI call. We can
realize easily that the print() method (lines 27-39) implements a Java RMI client. A Java
RMI reference to a server object is looked up within the J2EE naming service (line 29).

7

Using this reference, the actual printQ operation of the Java RMI server is invoked (line
31).

Listing 1.7 gives the implementation of the HP server application (class H PServer), which
accepts the CORBA client requests. The CORBA server initializes the ORB and activates
the POA object (lines 11-13). A reference of the CORBA-specific object implementation
is registered with the name ’’ HP” to the CORBA Naming Service (lines 14-21). The
server can now accept requests.

Listing 1.5: The CORBA IDL Interface provided by the HP Server
interface HPServer-Interf {

void print (in string filename);
};

In this way, we can achieve the transparent integration of the heterogenous applications.
The CORBA client is unaware of the fact that invokes a server object which is based
on Java RMI. The client is serviced as if it were a CORBA server providing the actual
service. Similarly, the Java RMI server is unaware of the fact that its printing operation
is utilized by a client object based on CORBA. In addition, the closure o f both the client
and server applications is maintained.

Figure 1.4: Large Scale Distributed Systems

1.3.3 Large Scale Integration and Web Services

Our scenario reflects a simple case where the extra necessary source code for a bridge can
be written easily and quickly. But what about cases o f large scale distributed systems with
multiple middleware infrastructures being involved? Considering again the case of the

8

organization mentioned in section 1.1, suppose that a new information system is installed
whose applications have been implemented on top of a new middleware platform C. In
order for the new applications to interplay with the existing ones, we have to implement
further mediators. In a similar manner to the one described in the previous subsection, a
developer must implement mediators that bridge the gap between middleware platforms
A and C, and between platforms B and C. Figure 1.4 shows this interoperability scenario.

As the scale of the distributed system increases and as new middleware platforms are
released in the market, we realize that bridging the heterogeneity in the previous way
becomes a very complicated procedure. We always have to map the descriptions of each
existing middleware implementation to those of the new one. It would be desirable to find
a common reference base on which all the mappings should rely. Both the existing and
the possible new middleware infrastractures will be mapped according to this reference
base.

Web services1 can provide us such a reference base. They were originally proposed to
wrap conventional business information systems (BISs), developed on top of different
middleware platforms. They are stateless software entities whose interface is specified
using WSDL, a commonly agreed XML-based language. Accessing Web services relies
on SOAP, a commonly agreed XML-based message format, and other widely accepted
standards such as HTTP and SMTP.

Instead of accessing directly the actual server object (see Listing 1.6), the surrogate object
can play the role of a Web service client that invokes a Web service. This Web service acts
as client for the actual server object, wrapping its functionality. The Web service wrapper
is the front-end for the server object. Figure 1.5 shows the interoperability scenario for
our easy study, in case of using Web services for the integration.

i--- 1

Figure 1.5: Integration using Web Services

^ttp.y/www. w3.org/TR/ws-arch/

9

Listing 1.6: The CORBA-specific Object Implementation acting as a Java RMI Client

10

15

20

25

30

35

import org . omg. CosNaming. * ;
import org . omg. CosNaming. NamingContextPackage . *;
mport org . omg.CORBA. *;
mport org .omg. PortableServer .* ;
mport org .omg. PortableServer .POA;
mport ja v a .r m i.* ;
mport java . rm i. server .* ;

import java . u til . Properties ;
import j a v a .n e t .* ;
import j a v a . la n g .* ;

public c lass HPServer.Impl extends HPServer.InterfPOA {
private ORB orb;
private String RMIServerURL;
H PServer.Interf r e f ;

public HPServer.Impl(String servURL) {
RMIServerURL = servURL;

}

public void setORB(ORB orb_val) {
th is . orb = o r b .v a l ;

}

public void print (String filename) {
t ry {

re f = (H PServer_Interf) Naming, lookup (RMIServerURL)
>

System . o u t . println (" Obtain a handle on RMI HP
server object");

r e f .p r in t (filenam e) ;
}
catch (Exception ex) {

e x . printStackTrace () ;
System .ou t .println ("Cannot establish connection

with RMI server!");
System . exit (0) ;

}

10

1

5

10

15

20

25

30

import org . omg. CosNaming. *;
import org .omg. CosNaming. NamingContextPackage . * ;
import org.omg.CORBA.*;
import org .omg. PortableServer . *;
import org .omg. PortableServer .POA;
import j a v a .n e t .* ;

p u b l ic c la s s HPServer {
p u b l ic s t a t i c v o id main(String args[]) {

t r y {
ORB orb = ORB. in it (args , n u l l) ;
POA rootpoa = POAHelper. narrow (orb .

resol v e _ in it ia l_ re fe re n ce s ("RootPOA")) ;
rootpoa .the_POAManager() . activate () ;
org .omg.CORBA. Object objRef = orb.

re so lv e _ in it ia l_ re fe re n c e s ("NameService") ;
NamingContextExt ncRef = NamingContextExtHelper.

narrow (ob jR ef);
HPSer ver.Impl impl = new HPServer_Impl ("rmi

: / / 19 2 . 16 8 .0 .2 / H P ") ;
im pl. setORB (orb) ;
org .omg.CORBA. Object re f = rootpoa.

servan t-to .re feren ce (impl) ;
HPServer_Interf href = HPServer_InterfHelper . narrow

(r e f) ;
NameComponent path [] = ncRef. to.name ("HP") ;
ncRef. rebind (path , href) ;
System . o u t. println ("Corba HP s ta rted on IP " +

In et Address . get Local Host () . get Host Address ()+"\n"
);

o rb . run () ;
}
ca tch (Exception ex) {

System . err . println ("ERROR : " + ex) ;
ex . printStackTrace (System . out) ;

______________Listing 1.7: The CORBA HP Server that the Client invokes_____________

In this way, the surrogate object translates the CORBA client’s request into a Web Service
call, which is then translated into a Java RMI request. If we consider the distributed
system of the organization (figure 1.3), for a client application on top of platform A and a
server application on top of platform B, we need to map the description of infrastructure A
to a Web service description (A-to-WebServices mapping) and the Web service description
to a description of infrastructure B (WebServices-to-B mapping). For the opposite case,
we need the B-to-WebServices and WebServices-to-A mappings. As the applications on
top of the new platform C become part of the whole system (figure 1.4) we will need only

11

the C-to-WebServices and WebServices-to-C mappings in order for them to interwork
with the existing applications, acting either as clients or servers. On the contrary, if we
do not use Web services, as a reference base middleware, we will need the A-to-C, C-to-A,
B-to-C and C-to-B extra mappings.

Listing 1.8 gives the CORBA-specific object implementation o f the interface required by
the client application of our scenario, which acts as a Web service client. The printQ
method constructs a dynamic call to the Web service that acts as a front-end for the
HP server object. Listing 1.9 gives this Web service wrapper, whose print () method
implements a Java RMI client, calling the print() method in the actual HP object.

Listing 1.8: The CORBA-specific Object Implementation acting as a Web Service Client

1

5

10

15

20

25

30

import org . apache . axis . c lient . C a l l ;
import o rg . apache . axis . c lient . Service ;
import org . apache . axis . encoding .XMLType;
import org . apache . axis . u t i ls . Options ;
import javax . xml. rpc . ParameterMode;
import java . u til . Properties ;
import ja v a .n e t . * ;
import ja v a . la n g .* ;

public c lass HPServer_Impl extends HPServer_InterfPOA {
' String endpoint ;

public void print (String filename) {
t ry {

Service service = new S e r v ic e () ;
Call ca ll = (C a ll) serv ice . c reateC all () ;
ca ll . set Target Endpoint Address (new URL(endpoint)) ;
ca ll . setOperationName (" p r i n t ") ;
ca ll . addParameter (" a r g l " , XMLType.XSDJSTRING,

ParameterMode. IN) ;
ca ll . setReturnType (XMLType. AXIS-VOID) ;
ca ll . invoke (new jav a . lang . Object [] { filename }) ;

}
catch (Exception ex) {

System . err . println ("ERROR: " + ex) ;
ex. printStackTrace(System . out) ;
System . o u t. println ("Cannot e s ta b lis h connection

with Web S e r v ic e ! ") ;

12

1

5

10

15

20

import j ava . rm i. * ;
import ja v a .n e t .* ;

public c lass WS_HPJRMIClient {

HPServer_Interf o b jr e f ;

public void print (String filename) {
try {

InetAddress address = InetAddress . getLocalHost () ;
String serverURL = "rm i:/ / " + address.

getHost Address () + "/HP";
ob jref = (H PServer_Interf) Naming, lookup (serverURL)

t

System . o u t . println ("Obtain a handle on RMI HP
server o b je c t ") ;

o b jre f . print (filenam e) ;
}
catch (Exception ex) {

ex . printStackTrace () ;
System .out.println ("Cannot establish connection

with RMI Server!") ;
System . exit (0) ;

}
}

}___ ___________________

__________ Listing 1.9: The Web Service Wrapper acting as a Java RMI Client________

1.4 Illusion Maker: Automating the Integration of Heterogenous
Middleware

We have already emphasized that by using Web services, we can facilitate the interoper
ability between different platforms, in a scalable manner. However, in a case of a large
system it will be quite demanding for the application developers to write manually the
source code that leads to the interoperability. Not only have they to specify the mappings
of the descriptions between the heterogenous implementations each time, but also they
have always to write customary code, irrelevant to the functionality of the applications.

A promising idea is to try to model the mappings between the different middleware
standards according to a set o f rules. This set of rules must define the mappings in an
abstracted and coherent form. Then, by applying these rules, the purpose is to automate
the procedure of generating the necessary source code for the integration. In this way, the
developer will obtain automatically the interoperable source code, being free to devote
more attention to issues regarding the implementation of the functionality.

13

In this thesis, we propose a framework that enables middleware platform interoperability,
without imposing:

• any requirements on the middleware platforms used fo r the development o f either
the client or server applications;

• any code modifications.

Specifically, fo r every client application that relies on a middleware platform X , the pro
posed framework creates the illusion that the server applications rely on the same plat
form. To enable this illusion, the framework automatically generates (1) Web services
that wrap the functionality of the server objects, and (2) a X-specific view of the server
object, playing the role of the client for the Web service wrappers. For this reason, we
call the proposed framework ” The Illusion Maker F r a m e w o r k Considering our example
scenario, the Illusion Maker will automatically generate the source code, presented in
Listings 1.5, 1.7, 1.8, 1.9, creating the illusion that the Java RMI server application relies
on the CORBA platform, on which the client application actually relies.

The automatic code generation process is based on a set o f rules that model the descrip
tions of mappings between the different middleware standards, mentioned in the previous
subsection. This involves mapping the build-in types and the interface definitions o f each
middleware platform (such as CORBA and J2EE) to WSDL, and vice versa. We call
this set of rules ” The platform specific patterns”, because they specify how to create the
aforementioned platform specific ’’ illusion” . For a pair o f platforms A and B assumed by a
client' and a server respectively, the Illusion Maker requires the existence of 2 correspond
ing patterns, A-to-WebServices and WebServices-to-B. The patterns specify generically
how to generate:

1. The A-specific illusion interface, required by the client application (pattern A-to-
WebServices).

2. The A-specific implementations o f the objects that serve as Web service clients
(pattern A-to-WebServices).

3. The Web services that serve as B-specific clients to the actual server objects (pattern
WebServices-to-B).

The proposed framework implements a Code Generator Mechanism that accepts as input
the platform specific pattern. The mechanism interprets the rules within the provided
pattern and produces the corresponding source code. This automatically generated source
code is ready to be utilized for the integration of the applications based on heterogenous
middleware. We can define this kind of rules for every possible pair of middleware plat
forms assumed by a client and a server application respectively. By using the Illusion
Maker framework, we attain the integration without depending on the assuming middle
ware platforms and without touching the source code of the legacy applications.

14

1.5 The Structure of the Thesis

This thesis is structured as follows:

• Chapter 2 discusses the background about the middleware that facilitates the de
sign and development of distributed systems. It presents further related work with
respect to the issue o f middleware platform interoperability.

• Chapter 3 details the basic concepts of the proposed framework. It describes the
input components o f the Illusion Maker framework, and elaborates the definition of
the platform specific patterns. A detailed view o f the design and the implemantion
of the Code Generator mechanism is also given.

• Chapter 4 presents an evaluation of our proposed methodology, both from the de
veloper’s and from the final user’s perspective. An application developer reaps the
benefit arising from the automated code generation process. On the other hand, a
user of a distributed application may realize a decline on the performance due to
the communication overhead, which is introduced inevitably.

• Chapter 5 summarizes the contribution of the current thesis and discusses possible
future work.

15

C h a p t e r 2

B a c k g r o u n d a n d R e l a t e d W o r k

2.1 Middleware and Distributed Systems

2.2 Basic Properties o f Middleware

2.3 Distribution Transparency

2.4 Interaction between Distributed Components

2.5 Related Work

2.6 The Contribution o f the Illusion Maker Framework

This chapter starts with the fundamentals of middleware that facilitate the design and
the development of distributed systems. Afterwards, it presents a review of the related
work, in the direction of middleware platform interoperabilty. Finally, we point out again
the purpose of our proposed methodology and how its contribution is diversified from the
previous work.

2.1 Middleware and Distributed Systems

Middleware [4] is a software layer that stands between network operating systems and
distributed applications. It is in charge of issues concerning the execution of an application
within a distributed environment. It releases the developer from this obligation and
permits him/her to take action only about issues regarding the implementation o f the
functionality provided by distributed applications. Middleware realizes the encapsulation
of the distributed nature of applications. This feature o f distributed systems is called
distribution transparency [6] [16]. Thus, the developer implements the functionality of
the distributed application, as if it were for an application intended for a non-distributed
environment.

16

The communication between the distributed applications is carried out through a com
puter network. The network is responsible for the physical transmission of data as elec
trical signals. The data is routed to the destinations as a set o f packets, composed of
byte streams or fixed-length messages. This network functionality is provided by the
operating system. If the distributed applications are build upon directly the operating
system, the developer will confront issues related to the communication between the ap
plications. These issues arise from the heterogenous nature o f the involved computing
entities (e.g. differences in data representations, incompatibilities in data types, syn
chronization between client and server, error detection, etc.). Bridging this gap by the
application engineer is time consuming, error prone, and distracts his/her attention from
the problems related to the provided functionality.

Middleware comes to overcome this conceptual gap. It provides the application engineer
with a high level of abstraction, based on primitives that are provided by the network
operating system. In this way, it hides the complexity of using a network operating system
from application developers. Without this, the bridging of this gap would be difficult to
achieve.

2.2 Basic Properties of Middleware

The utilization of middleware for the design and development of distributed systems
gives 'them some properties concerning their quality and their functionality. Because
these properties are fundamentally substantial for the distributed systems, they form an
important part o f the International Standard on Open Distributed Processing (ODP)
[11]. As far as quality is concerned, a middleware platform should provide a distributed
system with openess, scalability, perform ance and fault-tolerance. Regarding functionality,
a middleware platform should provide a distributed system with distribution transparency
[6] [16]. In the following subsections, we discuss these basic properties.

2.2.1 Openness

Openess means that the system can easily be modified in the presence of changing func
tional requirements, with the existing architecture remaining stable. To achieve this, the
software components of the system must have well-defined interfaces. A client component
obtains access to a server component through its interface. The implementations of the
interfaces are completely encapsulated from the components. Changes in the functional
requirements must be implemented as extensions of the existing interfaces or must be
derived from new interfaces. The existing implementations must never be touched. If
the previous happens, all the components depending on the modified implementations
will be affected. The existing middleware infrastructures enable us to declare interface
definitions, through specific descriptions called Interface Definition Languages (IDLs).

17

2.2.2 Scalability

Scalability reflects the ability of a system to handle successfully future growing loads. For
instance, if the number of requests demanding service grows rapidly, the system should be
able to accommodate the growing demands by maintaining simultaneously its behavior
stable. To achieve this, extra software components can take in charge o f servicing the
increasing number of requests. The architectural design which is based on the utilization
of the interfaces facilitates such a solution. In addition, trading services can contribute to
the scalability of a system, as a load balancing mechanism.

2.2.3 Performance and Fault-Tolerance

Performance denotes the efficient execution of the applications that are built on top of
a middleware infrastructure. Fault-Tolerance demands that a system should continue to
operate, even in the occurrence of faults. It would be desirable to achieve fault-tolerance
with the limited interference of users or system administrators.

2.3 Distribution Transparency

Distribution transparency involves the encapsulation of the fact that a system is com
posed from distributed components. This is the reason why a distributed environment is
perceived by users and developers as an integrated entity, rather than as a collection of
independent elements [6] [16]. Distribution transparency is refined to a number of more
specific transparencies, which are described in the following subsections.

2.3.1 Access Transparency

From the developer’s perspective, access transparency demands that accessing either local
or remote application components should be obtained in the same way. In other words,
the interface provided by a server component is the same for the communication between
components on the same host and components on different hosts. Middleware platforms
provide access transparency through the utilization of stubs. A stub acts as a surrogate
or a proxy of the server component to the client component, and vice versa. The stubs
hide the fact the a service request is remote. The client component makes a local call to
the stub-proxy of the server component, which in turn forwards the request to the server
component, via the network. In a similar manner, the server-side proxy of the client
component accepts the client’s request, and converts it into a local service request. An
identical procedure takes place for the transfer of the server’s response back to the client
component.

The two stubs translate the request and the response into a suitable form, for their trans
mission through the network and then again to a perceivable form for the components. In

18

this way, the gap which is due to the heterogeneous features of the system components is
bridged. Middleware platforms employ special compilers for the automatic stub genera
tion coming from the corresponding IDL descriptions. The stubs provide interfaces which
can be utilized in the source code of a client component, in order that access transparency
be achieved.

2.3.2 Location Transparency

Location transparency enables a client component to discover and access server compo
nents, without knowledge of their physical location. Middleware infrastructures provide
this mechanism through naming services and trading services.

Naming services maintain a registry of service names, which are associated with a refer
ence to the corresponding componenent that offers the service. Server components register
this kind of associations, through interfaces provided by the naming service. Client com
ponents, through these interfaces, use the registered names to discover references to the
server components that provide a desirable service. By acquiring such a reference, the
client component can request a service.

Trading services provide interfaces through which a server component can register the
provided operations and their quality features (i.e. response time, availability o f resources,
etc). A client component uses the trading service to discover server components that
provide services having particular quality features. If an appropriate component is found
within the registry, the client obtains a reference to this component, through which the
client requests the service.

2.3.3 Concurrency Transparency

Concurrency transparency means that a server component shares its functionality with
multiple client components concurrently, and the integrity of the shared component is
preserved. Neither users nor developers realize how the concurrency is achieved.

Concurrency control is typically provided by the middleware platforms through locking
mechanisms and threads. Locking mechanisms ensure that only one among all the client
components requesting the same service can obtain access to the server component that
offers the service. In case of threads, a single thread can carry out the service provision
in a serial manner or multiple threads can provide the service in parallel. In the second
case, the synchronization of threads that carry out the service provision, is required.

2.3.4 Failure Transparency

A distributed system should be tolerant to the presence of failures. It should continue to
function properly, so that both the users and the developers be unaware o f how the failures

19

are resolved. Fault tolerance is attained through mechanisms that maintain replicas o f the
system components. If for some reason (e.g. software or hardware failure) a component
fails to provide service, a replica of it can undertake the service provision. Middleware
platforms provide interfaces for the failure detection and recovery. The mechanism which
is responsible for the handling of replicas organizes each primary component with its
replicas into groups. In an occurrence of a failure, a notification is sent to the recovery
mechanism that takes upon to activate a replica of the failing component, so as to execute
the request.

2.3.5 Migration Transparency

Sometimes it is necessary to move a component from one location to another. This may
happen because of an overload of the initial host, or in order for an upgrade to take place;
in addition, the component may be relocated closer to its usual clients. This kind of
relocation is referred to as migration, and must be provided in a transparent way. This
means that the service provision is executed without the client component knowing that it
is being served by a component whose location has changed. The mechanisms that provide
migration transparency must be able to handle the states of the components and their
dependencies on other residing components. The interfaces o f these mechanisms must offer
operations for getting the state of a component and setting it again, after its migration. If
dependencies on other components are discovered, the depending components must also
migrate to the new location.

2.3.6 Persistence Transparency and Transaction Transparency

Persistence transparency refers to the mechanisms that a middleware infrastructure should
provide for the storage of the components’ state. The provided interfaces enable the
creation of storage entities and their association with the system components. Transaction
transparency provides means for coordinating the execution of atomic transactions.

2.4 Interaction between Distributed Components

RM-ODP (Reference Model for Open Distributed Processing) [11] proposes a generic
architectural style that should be followed by middleware platforms, to enable the devel
opment of open distributed systems. According to this style, a distributed system consists
of basic engineering elements, organized into capsules for the purpose of encapsulation of
processing, storage, and request flow. A basic engineering element provides one or more
interfaces, consisting of operations that can be invoked by other basic engineering ele
ments. The interoperation between engineering elements that belong to different capsules
is realized through channels. A channel is a compound element consisting of pairs of stubs,
binders, and protocol elements, that realize the access transparency mechanism. As we

20

have seen already, stubs mask the differences with respect to the heterogenous features.
Binders are in charge of preserving the integrity of the channel (i.e. error detection, data
multiplexing, etc.) while protocols provide the basic communication mechanisms (i.e.
TC P/IP socket creation, broadcast of requests after a time-out, etc.).

Invoking an operation on a target element involves holding a reference to that element.
If both the requester and the requested element reside in the same address space (i.e.
elements belonging to the same capsule), the reference is a typical language-specific pointer
(e.g. a C + + pointer or a Java reference). On the other hand, if the requester and the
requested element reside in different address spaces (i.e. elements belonging to different
capsules), the reference is a pointer to a representative (i.e. a stub-proxy) o f the requested
element in the requester’s address space.

The typical behavior o f a capsule that plays the role o f a server is summarized in the
following steps:

1. The server capsule initializes the core broker;

2. A reference to a standard middleware service that provides location transparency is
obtained.

3. The basic engineering elements that constitute the server capsule are created.

4. References to the basic engineering elements are created.

5. The references are registered to the middleware service which provides location
transparency, using a particular key, such as a name, or the interface specification
of the referenced elements.

6. Hereafter, the references can be discovered by client capsules that wish to use the
referenced elements.

The typical behavior o f a capsule that plays the role of the client to basic engineering
elements, deployed on another capsule that plays the role of the server , is summarized in
the following steps:

1. The client capsule initializes the core broker and obtains a reference to a standard
middleware service that provides location transparency.

2. The aforementioned service is used to obtain references to the basic engineering
elements that should be invoked. 3

3. The references found in the previous step are used for invoking operations on the
target elements.

21

Several standard middleware infrastructures such as CO RBA1, J2EE2 3 and DCOM3 fol
low the generic RM-ODP style [16]. In this way, a distributed system, which is built
upon one of these infrastructures, integrates heterogenous applications and achieves the
interoperability that renders it an integrated entity.

2.5 Related Work

In this section, we return to the issue of middleware platform interoperability. We refer to
three approaches that deal with the issue under consideration, and we point out concisely
how they achieve the interoperability.

2.5.1 JA D D A : Java Adaptive framework for Dynamic Distributed
Architecture

The JADDA [7] framework combines ideas from the fields of Dynamic Software Architec
tures and of Aspect-Oriented Programming to specify and implement middleware vari
ability at both development and run-time. All the constituent architectural elements of
a distributed system (e.g. software components, middleware platforms) are treated as
variants that can easily be changed during development or run-time.

The framework relies on architectural specifications defined with xADL (XML-based Ar
chitecture Description Language). It constitutes XML descriptions that provide a means
of stafidardization for expressing architectural specifications. At the implementation level,
the JADDA class provides an API, which is used by the system components for service
requests. The DistributedConnector abstract class is the common interface for different
middleware platforms. A number of subclasses of the previous class implement the func
tionality of the various middleware (e.g. CorbaConnector, SoapConnector). Each specific
subclass provides a callQ method that transforms invocations into messages conforming
with the middleware platform used for the realization of the services. The invocation is
constructed at run-time, using Java Reflection.

The interoperability is attained as follows: A client wishing to request a service initializes
a JADDA instance and invokes the call() method. Depending on the values of the pa
rameters provided to the method, a search takes place among the available xADL-based
architectural descriptions. This search discovers that the requested service is realized, for
instance, on top of CORBA. Therefore, a CorbaConnector object is initialized at run-time,
providing a reference to the CORBA Naming Service. After this point, the remote call is
carried out according to the CORBA communication mechanisms. If the search discovers

1 http://www.omg.org/technology/documents/formal/corbaJiop.htm
2http://java.sun.com/j2ee/
3http://www.microsoft.com/com / default.mspx

22

http://www.omg.org/technology/documents/formal/corbaJiop.htm
http://java.sun.com/j2ee/
http://www.microsoft.com/com

that the requested service has been implemented using Web services, a SoapConnector
instance is instantiated dynamically providing a reference to the UDDI registry.

We perceive that middleware interoperability is transparent to the server components,
but the client component must be compatible with the JADDA API. It must invoke the
call() method of the JADDA object. In this way, each client is transformed dynamically
into a client for the middleware platform, on top of which the server component is based.

2.5.2 ReM M oC: Reflective Middleware for Mobile Computing

ReM M oC [9\ is a similar framework to JADDA. It provides a generic API, called Binding
Abstraction. This API is based on WSDL, and is utilized for the discovery and request o f
services provided by a distributed system. The underlying Binding Framework consists of
a number of different personalities. A personality is a plug-in that transforms the generic
invocation made through the Binding Abstraction into a message, whose format conforms
with the middleware platform that was used for the realization of the invoked service. The
suitable personality is selected dynamically at run-time, through the reflection mechanism.

In addition to the Binding Framework, the Binding Abstraction provides also the Service
Discovery Framework. Its personalities implement different service discovery protocols
(SDPs). The mechanism looks up for services that can be found independently of the
assumed SDP. For every SDP that can be discovered (based on the SDP-specific per
sonalities currently plugged in), the framework makes either a synchronous request or
monitors continuously the environment and generates an event on detection. The infor
mation related to the requested service is retrieved by the Service Discovery Framework,
and then is utilized by the Binding Framework to make the remote call.

Currently, ReMMoc provides personalities for Java RMI, CORBA and SOAP. Concerning
the SDPs, it incorporates personalities for SLP and UPnP. Again, the middleware plat
form interoperability is transparent for the actual server applications. However, a client
application must utilize the ReMMoC API in order to communicate with a server. Simi
larly with JADDA, the client is automatically configured with respect to the middleware
infrastructure assumed by the server.

2.5.3 INDISS: Interoperable Discovery System for Networked Ser
vice

INDISS [5] is a system which provides SDP interoperability in a transparent way, both
for clients and servers. The interoperability mechanism is based on common features that
all the SDPs share. Its architecture consists o f two basic subsystems, the parser and
the composer. The coordination between the two subsystems is based on an event-driven
mechanism. The parser accepts the client’s request and processes it, to retrieve the SDPs-
independent semantics that are necessary for making feasible the interoperability. These

23

semantics are exported from the parser as a series of events, which then feed the composer.
This subsystem transforms the series of events into an integrated message, based on the
server’s SDP semantics. In this way, the initial data which was suitable for the client’s
SDP is converted into a valid form for the server’s SDP.

The interaction between each couple of parser and composer is based on the event-driven
architecture, which is completely hidden from the external environment of INDISS. Both
the client and the server do not realize the fact that they interact, even if they are based
on different SDPs.

2.6 The Contribution of the Illusion Maker Framework

In the previous section, we alluded to three frameworks that try to overcome the mid
dleware platform heterogeneity, enabling the transparent interoperability with respect to
clients and servers. While they achieve this interoperability in a transparent way, they
impose the client applications to comply to the frameworks specifications. In other words,
the implementations of the client applications must be modified according to the API that
each framework provides. In the case of JADDA, the client application has to utilize the
JADDA object, while in the case o f ReMMoC the provided API must be used for the
dynamic configuration of the Binding Framework. Concerning INDISS, although the SDP
interoperability is transparent to both sides, the source code must be modified according
to INDISS requirements for accessing the remote services.

There exist cases where the modification o f the client’s source code is impossible. Users
may not possess the source code of their applications, so as to make this code compatible
with mechanisms, such as the ones described above. Even if the source code is at the
user’s disposal, it will be difficult and time-consuming for a developer to modify it. For
this reason, the Illusion Maker framework follows a different philosophy, by not imposing
any constraints on the development of client and server applications. Instead, we auto
matically generate everything that is required to render the software parts interoperable
without interfering with their source code.

24

Chapter 3

The Architecture of the Illusion

Maker Framework

3.1 Basic Functionality

3.2 Input and the Use of XML

3.3 Description of the Architecture of a Legacy Server

3.4 Platform Specific Patterns

3.5 Design and Implementation of the Framework

3.6 Scalability Issues

3.7 The Graphical User Interface of the Framework

3.1 Basic Functionality

Figure 3.1 gives an overview of the general functionality of the Illusion Maker Framework.
The Illusion Maker can be considered as a black box whose main functionality is to
generate automatically the necessary source code for integrating applications which are
based on heterogenous middleware platforms. The input needed to be given for this
procedure consists of two components, the platform independent information and the
platform specific pattern.

The platform independent information describes the architecture o f a legacy server ap
plication, in an abstracted form (e.g. the names of the remote objects, their interface
definitions, etc.). This information is necessary in order to create illusion server cap
sules, with respect to the client’s application middleware platform, that will wrap the
functionality of the actual remote objects.

25

Platform independent
information

■>
Illusion Maker

Framework
>

Platform specific
pattern

Generated source
^ code for the integration

Figure 3.1: The Basic Functionality of the Framework.

The platform specific pattern specifies the generic rules for generating the desirable plat
form interoperable source code. Being combined with the platform independent informa
tion, these rules are refined into the source code, through which the integration will be
attained.

The following sections discuss explicitly the structure o f the input and the design o f the
architecture of the Illusion Maker framework.

3.2 Input and the Use of X M L

To specify formally the structure of both of the input components, we chose XML. X M L
(extensible Markup Language) is a general markup language which provides a basic struc
ture and set o f rules for modelling and structuring data in a completely consistent and
customizable manner. Not only is it simple but also efficient and highly structured. This is
why it is perfectly suited for data exchange between different application infrastructures,
providing a high level o f interoperability [10] [12].

In the Illusion Maker, XML has facilitated the following actions:

1. the specification of a structure which describes the platform independent informa
tion;

2. the specification of a structure for the platform specific patterns, which provide the
rules for the code generation process;

3. the implementation of the whole functionality provided by the framework.

26

3.3 Description of the Architecture of a Legacy Server

The first input component of the framework contains information which is related to
the architecture of a legacy server application. This information is independent o f the
middleware infrastructure assumed by the server application, and will be used for the
creation of illusion server capsules, as a front-end for the actual remote application. So,
it is necessary for these data to be registered in a structured manner in order to be easily
accessible and retrievable. As we mentioned in section 3.2, a XML document is a suitable
component for storing information in a fully structured way.

Before we describe explicitly the structure of this particular XML document, let us discuss
briefly what exactly piece of information should be contained in the XML document. For
this purpose, we have to consider the basic functionalities provided by the middleware
platforms for the development of distributed systems and the structure that these systems
are assumed to have.

In section 2.4 we have already alluded to the generic architectural style which RM -ODP
has proposed towards the standardization o f the basic functionalities that should be pro
vided by middleware platforms [11]. Our approach is based on the RM -ODP proposed
style, but assumes a more simple structure.

The Diagram in figure 3.2 gives an overview of our approach, concerning the architecture
of a server application. The basic component is the element which reflects the functionality
that the application offers to the distributed environment. In other words, the element
is the actual remote object, which encapsulates the implementation of its functionality.
Each element provides one or more interfaces, consisting of operations which can be
invoked by other elements. The interface is an abstract description of the functionality
of an application that provides a means of communication between distributed objects.
A client application through an interface can obtain access to the server application and
invoke an operation.

The elements are organized into capsules for the purpose of encapsulation o f processing,
storage and request flow. When the elements that constitute the server capsule are cre
ated, the corresponding references are registered to the middleware service that provides
location transparency, using a particular key such as a name. Each element must maintain
such a reference in order that other elements from client capsules be able to discover the
former and use their functionality.

According to the simplified generic architectural style described above, we create specific
XML documents containing the necessary information to be used as input to our frame
work. Listing 3.1 declares the XML schema, on which such XML documents should rely.
As we can see, the root element, named architecture (lines 3-12), consists o f a sequence
of three child elements:

27

Figure 3.2: The Generic Architecture o f a Server

• interfaces

• elements

• capsules

It also has an attribute named type, which according to its specific declaration (lines 32-
36) its value must always be equal to ” architecture” . We can realize easily that each one
of the aforementioned child elements is referred to each one o f the basic components o f
the architectural style (figure 3.2).

The Interfaces element (lines 14-18) contains a number of child elements named interface.
each one o f them represents an interface that a remote object provides. The Elem ents
element (lines 20-24) contains child elements named element, and each one represents an
element-object that realizes a corresponding interface. The Capsules element (lines 26-30)
includes child elements named capsule, depicting the corresponding server capsules.

For each interface, element and capsule, we have to keep some essential information which
is independent o f the middleware infrastructure. To achieve this we make use of the XM L
capabilities, that is, child elements and attributes. Therefore, for each interface (lines
38-45) we have to know its name (name child element) and the provided operations
(operations child element). It may also be vital to keep in mind the assuming middleware
platform. So, we use the mdwjplatform element and currently we assume three possible
values: Corba, R M I and WS, representing the corresponding middleware platforms (lines
64-70).

28

15

20

25

30

35

40

<?xm l v e r s io n = " 1 .0 " ? >
<xsd:schema xmlns:xsd="http: //www. w 3 . org/2001/XMLSchema">

<xsd:element name=" architecture'^
<xsd:complexType>

<xsd:sequence>
<xsd:element name="interfaces" type="interfsType" minOccurs=" 1"

maxOccurs=" 1"/>
<xsd:element name=" elements" type="elemsType" minOccurs=" 1"

maxOccurs=" 1" />
<xsd:element name="capsules" type="capsType" minOccurs=" 1"

maxOccurs=" 1" />
</xsd:sequence>
<xsd.-attribute name="type" type="archType"/>

</xsd:complexType>
</xsd:element>

<xsd:complexType name="interfsType">
<xsd:sequence>

<xsd:element name=" interface" type=" interf Type" minOccurs="l"
maxOccurs=" unbounded " />

</xsd:sequence>
< / xsd:complexType>

<xsd:complexType name="elemsType">
<xsd:sequence>

<xsd:element name="element" type="elemType" minOccurs=" 1" maxOccurs="
unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="capsType">
<xsd:sequence>

<xsd:element name="capsule" type="capsuleType" minOccurs=" 1"
maxOccurs="unbounded" />

</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="archType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="architecture"/>
</xsd :restriction>

</xsd:simpleType>

<xsd:complexType name="interfType">
<xsd:sequence>

<xsd:element name="mdw_platform" type="mdwtype" minOccurs=" 1"
maxOccurs=" 1" />

<xsd:element name="name" type="xsd:string" minOccurs="l" maxOccurs="l

"/>

_________ Listing 3.1: XML Schema for the Platform Independent Information________

29

<xsd:element name="operations" type="opsType" minOccurs="l" maxOccurs
="1"/>

</ xsd:sequence>
<xsd:attribute name=,,id" type="xsd: integer" use="required"/>

</xsd:complexType>

<xsd:complexType name="elemType">
<xsd:simpleContent>

<xsd:extension base="xsd:string">
<xsd:attribute name="id" type="xsd:integer" use="required"/>
<xsd:attribute name=" interim id" type="xsd: integer” use="required"/>

</ xsd:extension>
</ xsd:simpleContent>

</xsd:complexType>

<xsd:complexType name=" capsuleType">
<xsd:sequence>

<xsd:element name=" references" type="refsType" minOccurs=" 1"
maxOccurs=" 1" />

</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer" use="required"/>
<xsdrattribute name="IPaddress" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:simpleType name="mdwtype">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Corba"/>
' <xsd renumeration value— 1 RMI"/>
<xsd:enumeration value="WS"/>

</ xsd :restriction>
</ xsd:simpleType>

<xsd:complexType name="opsType">
<xsd:sequence>

<xsd:element name="operation" type="opType" minOccurs=" 1" maxOccurs="
unbounded"/>

</ xsd:sequence>
</ xsd:complexType>

<xsd:complexType name="refsType ">
<xsd:sequence>

<xsd:element name="reference" type="refType" minOccurs="l" maxOccurs=
"unbounded"/>

</xsd:sequence>
< / xsd:complexType>

<xsd:complexType name="opType">
<xsd:sequence>

<xsd:element name="args" type="argsType" minOccurs="l" maxOccurs="l"/
>

30

88

90

100

105

110

120

</xsd:sequence>
<xsd:attribute name="id" type="xsd: integer" use="required"/>
<xsd:attribute name="retType" type="xsd: string" use="required"/>
<xsd.attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="refType">
<xsd:simpleContent>

<xsd:extension base="xsd:string">
<xsd:attribute name="id" type="xsd: integer" use="required"/>
<xsd:attribute name="elem_id" type="xsd: integer" use="required"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

<xsd:complexType name="argsType">
<xsd:sequence>

<xsd:element name="arg" type="argType" minOccurs="0" maxOccurs="
unbounded"/>

</xsd:sequenee>
</xsd:complexType>

<xsd:complexType name=" argType">
<xsd:simpleContent>

<xsd:extension base="xsd: string">
<xsd:attribute name="id" type="xsd: integer" use— 'required"/>
<xsd rattribute name="direction" type="dirType" use="required"/>
<xsd:attribute name="type" type="xsd: string" use="required"/>

</ xsd:extension>
</ xsd:simpleContent>

</ xsd:complexType>

<xsd:simpleType name="dirType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="in"/>
<xsd-.enumeration value="out"/>
<xsdrenumeration value=" inout"/>

< / xsd: restriction>
< / xsd:simpleType>

</xsd:schema>

For each operation provided by one interface, a corresponding operation child element
should be contained in the operations element (lines 72-76). Each operation is character
ized by its name and its return type. Moreover, it may have or may have not parameters.
So, an operation element has two attributes, named retType and name respectively (line
84-91).

As far as the parameters of an operation are concerned, an args element must exist inside
each operation element. If one operation has parameters, then for each parameter a

31

corresponding arg element will be inside the args element (lines 102-106). Parameters are
characterized by their name, data type and direction mode. Actually, each arg element
has the direction and type attributes, while the string contained between the start and the
end tag represents the name of the parameter (lines 108-116). Concerning the direction
mode of a parameter, the direction attribute can take one o f the known values (in, out,
inout) according to the declaration in lines 118-125. On the other hand, if an operation
has no parameters, then the args element will be empty.

All the basic elements mentioned so far have an id attribute which takes a numeric value
as a unique identifier. This identifier will be used for referencing purposes during both
the parsing and code generation processes.

For each element-object which realizes an interface, we have to know its name and its
realizing interface. Therefore, the element element has an interf-id attribute whose value
refers to the value of the id of the corresponding interface element (lines 47-54). The
element element has also an id attribute, while the string between the start and the end
tag is the name of the element-object.

Each capsule element has an id attribute and an IP address attribute. The latter de
picts the IP address o f the server machine hosting the server capsule (lines 56-62). As
we mentioned previously, server capsules should maintain references, through a location
transparency mechanism, so as the communication between remote objects to be possible.
Consequently, we have to include information about these references.

A references element, including a number of reference elements, should be involved in
the capsule element (lines 78-82). Each reference element represents a reference that the
current capsule holds to the corresponding element-object. These references are char
acterized by a name and by the object they refer to. The reference element has an id
attribute and an elernJd attribute, with the latter referring to the id of the corresponding
element-object. The string inside the tags of the element is the name of the reference
(lines 93-100).

Listing 3.2 gives a possible instance of the aforementioned XML schema. Such a XML
document can be the first input component to the framework (figure 3.1), according
to our example scenario. The XML schema file architecture.xsd, mentioned in the root
element of the document, is referred to the previously declared XML schema (listing 3.1)
and is used here for the validation of the current XML document. It is implied from
this XML document that we have a server capsule (lines 31-38), hosted in a machine
with IP address 127.0.0.1. The capsule contains two elements, named HPServerJrnpl
and StulexServerJrnpl (lines 27-30), realizing two interfaces named H P S erverJ n terf and
StulexServerJnterf respectively (lines 4-14 and 15-25), on top of Java R M I middleware
platform (lines 5, 16). The two interfaces provide an operation named prin t() (lines 7, 18)
which is implemented by the elements. The functionality o f the operations has to do with

32

a printing application and they accept as a parameter a string with the name o f the file
to be printed (lines 9, 20). The server capsule uses the names H P and Stulex respectively
(lines 33-36) as references to the corresponding element-objects that can be utilized by
other elements in order to locate them (e.g. through the Naming Service) and use their
services.

Listing 3.2: XML Document o f the Platform Independent Information

30

35

<?xm l v e r s io n = " 1 .0 " ?>
< architecture type="architecture" xmlns:xsi="http: //www. w 3 . org/2001/

XMLSchema-instance" xsi:noNamespaceSchemaLocation="architecture . xsd">
<interfaces>

Cinterface id="l">
<mdw_platform>RM</mdw_platform>
<name>HPServer_Interf</name>
<operations>

Coperation id="l" retType="void" name="print">
<args>

Carg id = " l " direction^"in" type=" string">filenamec/arg>
</args>

</ operation>
< / operations>

< / interface>
<interface id="2">

<mdw_platform>RMI</mdw_platform>
<name>StulexServer_Interf</name>
<operations>
' Coperation id="l" retType="void" name="print">

<args>

Carg id= " l " direction="in" type=" string">filenameC/arg>
</args>

</operation>
</operations>

< / interface>
< / interfaces>
<elements>

Celement id="l" interf_id="l">HPServer_Impl</element>
Celement id="2" interf_id="2">StulexServer_Impl</element>

</ elements>
<capsules>

Ccapsule id="l" IPaddress="127.0.0.1">
<references>

Creference id="l" elem_id="l">HP</reference>
Creference id="2" elem_id="2">Stulex</reference>

</references>
</ capsule>

< / capsules>
</ architecture>

33

3.4 Platform Specific Patterns

We have already stated that the basic requirement for our framework is that it does not
depend on the middleware platforms assumed by the clients neither on the middleware
platforms assumed by the servers, existing in a distributed environment. To achieve the
previous, the Illusion Maker generates:

1. Web services that wrap the server objects by providing identical interfaces with the
ones provided by the actual objects and play the role of clients for the server objects.

2. Illusion server capsules on top of the middleware infrastructure assumed by the
client, which create objects that correspond to the objects required by the client,
i.e. they provide the specific interface required by the client applications.

3. The implementation of these objects which play the role of a Web service client to
the Web services that wrap the actual server objects.

The generation of all o f these software components is based on a number o f platform
specific patterns, which are given as input to the framework (see figure 3.1). These
patterns specify the set o f rules that model the descriptions o f mappings between the
various middleware standards. These rules must contain the following:

• Mapping the build in data types of each middleware platform (such as CORBA and
Java RMI) to WSDL, and vice versa.

• Mapping the interface definitions of each middleware platform to WSDL, and vice
versa.

• Platform independent parameters which reflect the basic architectural features of a
legacy server and whose values can be retrieved from the first input component of
the framework (see section 3.3).

In this way, we achieve the transformation of descriptions that are valid in the domain
of one middleware infrastructure to identical descriptions that another middleware in
frastructure assumes. Roughly, for a pair of platforms A and B assumed respectively
by a client and a server, the Illusion Maker requires the existence o f two corresponding
patterns A-to-WebServices and WebServices-to-B. The patterns specify generically how
to generate:

1. The A-specific illusion capsule that hosts the objects invoked by the client applica
tion (pattern A-to-WebServices).

2. The A-specific implementations of the objects that serve as Web service clients
(pattern A-to-WebServices).

34

USER PDA

Client Capsule Obtain references | :c«Kmint |

Corba Object Reference
HP: PrinterObject

Corba Object Reference
Stulex: PrinterObject

Illusion Capsule ------------ - C<uSimmgffj

CORBA Object Reference
HP: PriuterObiect

CORBA Object Rer>tn:ce
Stulex: Piintei Object

>-■ / ^ (' 7
CORBA Object IinpIenwutaUoL CORBA Object Implementation
HP: PrinterObjectlmpI - Stulex: PrioterObiectlinpl HI

Figure 3.3: The Software Elements generated by Illusion Maker

3. The Web services that serve as B-specific clients to the objects included in the server
capsule (pattern WebServices-to-B).

The framework specializes the rules into the source code which leads to the interoperabil
ity. Based on the registered information in the first input component and on the set of
specified rules in the pattern A-to-WebServices, the framework generates the A-specific
interface definitions according to the interfaces of the objects required by the client. In
addition, the framework generates the implementations of the objects, which are Web
service clients, that the client invokes and the client-side illusion capsule, hosting the
aforementioned created objects. Similarly, pattern WebServices-to-B, in conjunction with
the registered information about the architecture of the server, is specialized into WSDL
descriptions according to the interfaces of the objects offered by the server. Thus, the
Web service wrappers for the actual server objects are created. The software elements
contained in the grey boxes of figure 3.3 are the ones generated by the Illusion Maker,
regarding our case study scenario.

3.4.1 Generation of Platform Specific Illusion Interfaces

To specify patterns, we rely again on XML constructs. Each XM L tag, with its nested
content inside a platform specific pattern, constitutes a particular rule for the Illusion

35

Maker. Listing 3.3 gives part of the CORBA-to-WebServices pattern which can be used
in our example scenario to allow the client to access the ” HP” and the ’’ Stulex” objects
through CORBA. This part specifies the rules for generating CORBA IDL interfaces and
its structure reflects the structure of a CORBA IDL definition (see listing 1.5). If we
examine listing 3.3, we discover the following pattern rules:

• The inter/-.exp rule, containing literaLexp rules, the inter/-.name platform indepen
dent parameter and an operation-exp rule.

• The operation-exp rule contains further literaLexp rules, the ret Type and op Name
parameters and an arg.exp rule.

• The arg.exp rule contains a direction-type-argName platform independent parameter
and a literaLexp rule.

The basic rule for the this part of the CORBA-to-WebServices pattern is the inter/-exp
rule (line 18). According to this rule, the Illusion Maker is instructed to generate an IDL
interface for every inter/ace element in the XML document of the platform independent
information. The nested rules within the inter/-exp start and end tags (lines 19-35) in
struct the Illusion Maker to generate the content o f an IDL definition. The text involved
in literaLexp elements reflects the parts o f the source code, which are platform specific
and are going to be reproduced identically. The platform independent parameters (such
as inter/-name, opNarne, etc.) reflect the architectural features of the legacy server appli
cation;" their values are retrieved, during the code generation process, from the particular
XML document.

The first line of the interface declaration consists of the string inter/ace, contained in
the first literaLexp element (line 19), followed by the name of the interface which is
represented by the inter/-name platform independent parameter (line 20). Following
that, the pattern instructs the Illusion Maker to iterate through the operations of the
interface; this is realized by the operation-exp rule (line 22). For each operation element
in the XML document of the platform independent information, a corresponding operation
declaration should exist inside the interface declaration. An operation declaration consists
of the return data type (retType parameter, line 24), the name of the operation (opNarne
parameter, line 25) and a list of arguments. This task involves another iteration through
the list of parameters of each operation (reflected by arg-exp rule, line 27). Thus, for
each arg element in the XML document of the platform independent information, an
arg declaration (consisting of the direction mode, the data type and the name of each
parameter) is added to the corresponding operation declaration.

36

1

5

10

15

20

25

30

35

_______________ Listing 3.3: Generation of CORBA IDL Illusion Interfaces______ ____
<?xm l v e r s io n = " 1 .0 " ?>
<pattern type="Interf" platform="Corba">

<datatypes>
<datatype id='Ό,' name="void">void</datatype>
<datatype id="l" name="boolean">boolean</datatype>
<datatype id="2" name="char">char</datatype>
<datatype id="3" name="string">string</datatype>
<datatype id="4" name="byte">octet</datatype>
<datatype id="5" name="short">short</datatype>
<datatype id="6" name="unsigned short">unsigned short</datatype>
<datatype id="7" name=" int ">long</datatype>
<datatype id="8" name="unsigned int">unsigned long</datatype>
<datatype id="9" name="long">long long</datatype>
<datatype id=" 10" name="unsigned long">unsigned long long</datatype>
<datatype id="ll" name="float">float</datatype>
<datatype id="12" name="double">double</datatype>

</ datatypes>
<interf_exp>

<literal_exp>in ter face </literal_exp>
<interf_name />
<literal_exp> { < / literal_exp>
<operation_exp>

<literal_exp>_newline</ literal.expXliteral_exp>_tab</ literal_exp>
<retType/>
<opName/>
<literal_exp>(</ liter al_exp>
<arg_exp>

<direction_type_argName/>
<literal_exp> ,</literal_exp>

</arg_exp>
<literal_exp>) ;</literal_exp>

</operation_exp>
<literal_exp>_newline</literal_exp>
< 1 ί Ι β ^ 1 _ β χ ρ > } ; < / 1 ϊ ί β ^ 1 _ β χ ρ >
<literal_exp>_newline</ lit er al_exp>

< / interf_exp>
</ pattern>

3.4.2 Generation of Platform Specific Object Implementations

The rest of the patterns work in a similar manner. Listing 3.4 is the part o f the CORBA-
to-WebServices pattern that details the generation of CORBA-specific object implemen
tations, acting as Web service clients (see listing 1.8). This part of the platform specific
pattern contains the following rules:

• The elemenLexp rule, which contains several UteraLexp rules, the interf-nam e pa
rameter, the element-name parameter and an operation-exp rule.

37

• The operation-exp rule is similar to the corresponding rule described in the previous
subsection. It further contains one addparameter-exp rule, an invoke rule and a
retType-exp rule.

• The addparameter-exp rule contains the arg.id, type and direction parameters.

• The invoke rule contains the retType-exp rule twice and an arg.exp rule.

In particular, the basic element-exp rule instructs the Illusion Maker to iterate through
the element-objects, which realize each interface (line 26). For each element element in
the XML document of the platform independent information, a elem ent-nam e Java class
is created (lines 40-44). The operation-exp rule (line 55) instructs the Illusion Maker to
iterate through the list of operations, implemented by the corresponding element. Each
operation of this class constructs dynamically a Web service call that accesses a Web ser
vice wrapper (lines 55-115). For each parameter of each operation, the addparameter-exp
rule (lines 72-80) instructs the Illusion Maker to generate a source code line that adds
the corresponding parameter to the dynamic operation invocation (i.e. line 22 in listing
1.8). The invoke rule with its nested rules (lines 84-101) generate the source code line
which realizes the dynamic invocation (i.e. line 24 in listing 1.8). The last retType-exp
rule (lines 107-110) generates the return type line of a non-void operation (in listing 1.8
the implemented operation is void).

1

s

10

__________ Listing 3.4: Generation of CORBA-specific Object Implementations__________
<?xml version^" 1.0"?>
<pattern type="0bjectlmpl" platform="Corba">

<datatypes>

<datatype id="0" name="void" xmltype="AXIS_V0ID">void</datatype>
<datatype id="l" name="boolean" retValue="false" xmltype="XSD_B00LEAN"

javalangtype="Boolean" holder="BooleanHolder">boolean</datatype>
<datatype id="2" name="char" retValue="’\u0000'" xmltype="XSD_STRING"

javalangtype=" Character" hoi der=" Char Holder ">char</ d at at ype>
<datatype id="3" name="string" retValue="null" xmltype="XSD_STRING"

javalangtype="String" holder="StringHolder">String</datatype>
<datatype id="4" name="byte" retValue="-1" xmltype="XSD_BYTE"

javalangtype="Byte" holder="ByteHolder">byte</datatype>
<datatype id="5" name="unsigned byte" retValue="-l" xmltype="

XSD.UNSIGNEDBYTE" javalangtype="Short" holder=" ShortHolder ">short</
datatype>

<datatype id="6" name="short" retValue="-l" xmltype="XSD_SH0RT"
javalangtype="Short" holder="ShortHolder">short</datatype>

<datatype id="7" name="unsigned short" retValue="-1" xmltype="
XSD.UNSIGNEDSHORT" javalangtype="Short" holder="ShortHolder">short</
datatype>

<datatype id="8" name="int" retValue="-1" xmltype="XSD_INT"
javalangtype="Integer" holder="IntHolder">int</datatype>

38

15

20

25

30

35

40

45

<datatype id="9 " name="unsigned int" retValue="- l" xmltype="
XSD.UNSIGNEDINT" javalangtype="Integer" holder="IntHolder">int</
datatype>

<datatype id="10" name="long" retValue="-l" xmltype="XSD_LONG"
javalangtype="Long" holder="LongHolder">long</datatype>

<datatype i d = " l l " name="unsigned long" retValue="- 1" xmltype="
XSD_UNSIGNEDLONG" javalangtype="Long" holder="LongHolder">long</
datatype>

<datatype id="12" name="float" retValue="- 1 . 0 " xmltype="XSD_FLOAT"
javalangtype=" Float" holder=" FI oat Holder ">float</datatype>

<datatype id= "13" name="double" ret Value="- 1 .0 " xmltype="XSD_DOUBLE"
javalangtype=" Double" holder="DoubleHolder">double</datatype>

<datatype id= "14" name="BigInt" retValue="java. math. Biglnteger. ZERO"
xmltype="XSD_INTEGER" javalangtype="java. math. Biglnteger" holder="
ObjectHolder">java .math. Biglnteger</datatype>

<datatype id="15" name="decimal" retValue="new java. math. BigDecimal(
java. math. Biglnteger. ZERO)" xmltype="XSD_DECIMAL" javalangtype=" j ava
. math. BigDecimal" ho 1 der=" Obj ectHolder ">java . math . BigDecimal</
datatype>

< / datatypes>
<parametermodes>

<mode name="in">IN</mode>
Cmode name=" out ">OUT</mode>
<mode name=" inout ">INOUT</mode>

< / parametermodes>
<eLement_exp>

<literal_exp>import org .omg. CosNaming. * ;</ literal_exp>
<literal_exp>import org .omg. CosNaming. NamingContextPackage . * ;</

literal_exp>
<literal_exp>import org .omg. CORBA. *;</ liter al_exp>
<literal_exp>import org .omg. PortableServer . * ;</ liter al_exp>
<literal_exp>import org .omg. PortableServer .POA;</literal_exp>
<literal_exp>import org . apache . axis . client . Call ;</ literal_exp>
<literal_exp>import org . apache . axis .client. Service ;</literal.exp>
<literal_exp>import org . apache . axis . encoding .XMLType;</ literal.exp>
<literal_exp>import org . apache . axis . utils . Options ;</ literal_exp>
<literal_exp>import javax . x m l . rpc . ParameterMode ;</ lit er al_exp>
<literal_exp>import java . util . Properties ;</ literal_exp>
<literal_exp>import java.net .*;</literal_exp>
<literal_exp>import java . lang . * ;</ literal_exp>
<literal_exp>public class < / literal_exp>
<element_name />
<literal_exp> extends </literal_exp>
<interf_name />
<literal_exp>POA { < / literal_exp>
<literal_exp>private ORB orb ;</literal_exp>

<literal_exp>private String endpoint ;</literal.exp>
<literal_exp>public < / literal_exp>
<element_name />

<literal_exp>(String servURL) {< / literal.exp>

39

<literal_exp>endpoint = servURL ;</literal_exp>
<literal_exp>}</liter al_exp>
<literal_exp>public void setORB(ORB orb.val) {</literal_exp>
<literal.exp>this . orb = orb.val ;</liter al_exp>
<1 iteral_exp>}</ literal.exp>
<operation_exp>

<literal.exp>public < / literal.exp>
<retType/>
<opName/>
<literal_exp>(</liter al.exp>
<arg_exp>

<direction_type_argName/>
<literal_exp>,</literal_exp>

< / arg.exp>
<literal.exp>) {</literal_exp>
<literal_exp>try {</literal_exp>
<literal_exp>Service service = new Service () ;</literal_exp>
<literal.exp>Call call = (Call) service . createCall ();</literal_exp>
<literal_exp>call . set Target Endpoint Address (new URL(endpoint)) ;</

literal _exp>
<literal_exp>call . setOperationName (" </literal_exp>
<opName/>
<literal_exp>") ;</literal_exp>
<addparameter_exp>

<literal_exp>call . addParameter ("arg</literal_exp>
, <arg_id/>

<literal_exp>" , XMLType.</literal_exp>
<type/>
<literal_exp>, ParameterMode.</literal_exp>
<direction/>
<literal_exp>) ;</literal_exp>

</addparameter_exp>
<literal_exp>call . setReturnType(XMLType.</literal_exp>
<retType/>
<literal_exp>) ;</literal_exp>
<invoke>

<retType_exp id="l">
<retType/>
<literal_exp> ret = (</literal_exp>
<retType/>
<literal_exp>) < / literal.exp>

</retType_exp>
<literal_exp>call . invoke (new java . lang . Object [] { < / literal_exp>
<arg_exp>

<direction.type_argName/>
< 1 i t e r al.exp> ,</ liter al_exp>

</arg.exp>
<literal_exp> }) ;</literal.exp>
<retType.exp id="2">

<literal_exp>_tab</ liter al .exp>

40

100
<literal_exp>return ret ;</literal>exp>

< / retType_exp>
</invoke>
<literal_exp>} < / literal_exp>
<literal_exp>catch (Exception ex) {</literal.exp>
<literal_exp>System . err . println ("ERROR: " + ex) ;</ liter al_exp>
<literal_exp>ex . printStackTrace (System . out) ;</literal_exp>
<literal_exp>System . out. println ("Cannot establish connection with Web

Service!") ;</literal_exp>
<retType_exp id="3">

<literal_exp>return </literal_exp>
<retValue/>

no <literal_exp>;</literal_exp>
</retType_exp>
<literal_exp>}</ lit er al_exp>
<literal_exp>}</literal_exp>

</ operation _exp>
. ns <literal_exp>}</literal_exp>

< / element_exp>
</ pattern>

3.4.3 Generation of Platform Specific Illusion Capsules

Listing 3.5 is the part of the CORBA-to-WebServices pattern that details how to gen
erate'CORBA-specific illusion capsules (see listing 1.7). The basic pattern rule is the
reference-exp rule (line 3). For every object within a capsule, this rule instructs the Il
lusion Maker to generate a Java class whose name will be reference-nam eServer (lines
10-12); reference-name (line 11) is the platform independent parameter that denotes the
name of a reference with which the corresponding object is associated. The code for this
class is given within the reference-exp tags. The main method o f each class initializes the
ORB broker and several other CORBA specific objects, such as the RootPO A and the
NameService (lines 13-19). Then, a new instance of the CORBA-specific object imple
mentation is created (element-name parameter, lines 20-22), which involves specifying the
URI where the corresponding Web service wrapper can be found. The latter is reflected
by the jws-exp rule (lines 23-39). Finally, the Illusion Maker is instructed to generate code
(lines 40-49) that registers the just previously created instance, with the corresponding
assumed name (represented by the reference-nam e platform independent parameter, line
47), to the CORBA Naming Service.

41

15

20

25

30

35

40

____________ Listing 3.5: Generation of CORBA-specific Illusion Capsules________
<?xm l v e r s i o n = " l . 0 "?>
<pattern type="Capsule" platform="Corba">

«Preference _exp>
<literal_exp>import org .omg. CosNaming. * ;</literal_exp>
<literal_exp>import org .omg. CosNaming. NamingContextPackage . * ;</

literal_exp>
<literal_exp>import org .omg.CORBA. * ;</literal_exp>
<1 iteral_exp>import org .omg. PortableServer . * ;</ literal_exp>
<literal_exp>import org .omg. PortableServer .POA;</lit eral _exp>
<literal_exp>import java . net .*;</literal_exp>
<literal_exp>public class < / literal_exp>
<reference_name />
<literal_exp>Server {</literal_exp>
<literal_exp>public static void main(String args[]) {< / literal_exp>
<literal_exp>try {</literal_exp>
<literal_exp>ORB orb = ORB. init (args , null) ;</ literal_exp>
< 1 iter al_exp>POA rootpoa = POAHelper . narrow (orb .

resolve_initial_references ("RootPOA")) ;</literal_exp>
<literal_exp>rootpoa . the_POAManager () . activate () ;</ lit eral _exp>
<literal_exp>org .omg.CORBA. Object objRef = orb.

resolve_initial_references ("NameService") ;</ liter al_exp>
<literal_exp>NamingContextExt ncRef = NamingContextExtHelper . narrow(

objRef) ;</literal_exp>
<element_name/>
<literal_exp> impl = new < / literal_exp>
<element_name/>
<literal_exp>("http: //</literal_exp>
<IPAddress/>
<literal_exp>:8080/axis/</literal_exp>
<jws_exp>

<jws id="l">

<literal_exp>WS_</li'teral_exp>
<reference_name/>
<literal_exp>_</literal_exp>
<server_platform/>
<literal_exp >Cllent</literal_exp>

</jws>
<jws id="2">

<reference.name/>
<literal_exp>Server </literal_exp>

</jws>
</jws_exp>
<literal_exp>.jws");</literal_exp>
<literal.exp>impl .setORB(orb) ;</literal_exp>
<literal_exp>org .omg.CORBA. Object ref = rootpoa . servant_to_reference (

impl) ;</literal>exp>
<interf_name/>
<literal_exp> href = < / literal_exp>
<interf_name />

42

45

46

50

55

60

<literal_exp>Helper . narrow (ref) ;</literal_exp>
<literal_exp>NameComponent path [] = ncRef. to_narae("</literal_exp>
<reference_name/>
<literal_exp>") ;</ literal_exp>
<literal_exp>ncRef. rebind (path ,href) ;</literal_exp>
<literal_exp>System . out. print In ("Corba </literal_exp >
<reference_name/>
<literal_exp> started on IP " -+· Inet Address . getLocalHost () .

getHostAddress ()+"\n") ;</literal_exp>
<literal_exp>orb . run () ;</literal_exp>
<literal_exp>}</literal_exp>
<literal_exp>catch (Exception ex) {</literal_exp>
<literal_exp>System . err . println ("ERROR: " + ex) ;</liter al_exp>
<literal_exp>ex . printStackTrace (System . out) ;</literal_exp>
<literal_exp>}</literal_exp>
cliteral_exp>}</ literal_expXliteral_exp>_newline</literal_exp>
<literal_exp>}</ literal_exp>

</ reference_exp>
</pattern>

3.4.4 Generation of Web Service Wrappers

Finally, listing 3.6 constitutes the WebServices-to-RMI pattern which can be used in our
scenario in order to generate the Web service wrappers (see listing 1.9). For each actual
remote object, a Web service is created that wraps the functionality of the former and
works as a frontend for it (wrapper-exp rule, line 21). The generated Web service Java
class is named W S-referenceNam eserverplatform Client as mentioned in lines 24-27 (in our
example the two classes will be named W S-H P-RM IClient and W SStulex-R M IClient).
The wrapperoperation-exp rule (line 30) instructs the Illusion Maker to iterate through
the list of operations provided by the server object. For every one o f these operations,
the framework generates a corresponding web service operation, which is a Java RMI
Client. A reference to the Java RMI object is looked up within the RMI registry, using
a particular name which has been associated with the object (lines 40-47). By obtaining
this reference, the Web service invokes the actual operation provided by the interface of
the remote object (invoke rule, lines 51-70).

_________Listing 3.6: Generation of Web Services that serve as Java RMI Clients_________
i <?xml version=" 1.0" ?>

<pattern type="0bjectlmpl" platform="WS">
<datatypes>

<datatype id="0" name="void" retValue="null">void</datatype>
5 <datatype id="l" name="boolean" retValue="f alse" holder=" javax . xm l . rpc .

holders.BooleanHolder">boolean</datatype>
<datatype id="2" name="char" ret Value=" ’\u0000 ’ " holder="javax.x m l .r p c .

holders.StringHolder">char</datatype>
<datatype id="3" name=" string" retValue="nullH holder="javax.xm l .r p c .

holders.StringHolder">String</datatype>

43

10

15

25

30

35

40

<datatype id="4" name="byte" retValue="-l" holder=" javax. xm l . rpc.
holders.ByteHolder">byte</datatype>

<datatype id="5" name=" unsigned byte" retValue="-1" holder="javax.xml.
rpc.holders.ShortHolder">short</datatype>

<datatype id="6" name="short" retValue="-l" holder="javax.xm l .rp c .
holders . ShortHolder ">short</datatype>

<datatype id="7" name="unsigned short" retValue="-1" holder="javax.xml.
rpc.holders.ShortHolder">short</datatype>

<datatype id="8" name="int" retValue="-l" holders" javax. x m l . rpc . holders
.IntHolder">int</datatype>

<datatype id="9" name="unsigned int" retValue="-1" holder=" javax. xml.
rpc.holders.IntHolder">int</datatype>

<datatype id="10" name="long" retValue="-1" holder="j avax . xm l . rpc .
holders.LongHolder">long</datatype>

<datatype id="ll" name="unsigned long" retValue="-1" holder="javax . xml.
rpc.holders.LongHolder">long</datatype>

<datatype id="12" name="float" retValue="-1.0" holder="javax.x m l .rp c .
holders.FloatHolder">float</datatype>

<datatype id="13" name="double" retValue="-1.0" holder="javax.xm l .rp c .
holders . DoubleHolder">double</datatype>

<datatype id="14" name="BigInt" retValue="java.m a t h .Biglnteger.ZERO"
hoi der=" javax . x m l . rpc . holders . Biglnteger Holder ">java . m a t h . Biglnteger
</datatype>

<datatype id="15" name="decimal" retValue="new java.m a t h .BigDecimal(
java.math.Biglnteger.ZERO)" holder="j avax.x m l .r p c .holders.

. BigDecimalHolder">java .math. BigDecimal</datatype>
</ datatypes>
<wrapper_exp>

<literal_exp>import java . rmi .*;</ literal _exp>
<literal_exp>import java . net .*;</ literal_exp>
<literal_exp>public class WS_</literal_exp>
<reference_name/>
<literal_exp>_</ literal_exp>
<literal_exp>RMIClient {</literal_exp>
<interf_name/>
<literal_exp> objref;</literal_exp>
<wrapperoperation_exp>

<literal_exp>public </literal_exp>
<retType/>
<opName/>
<literal_exp>(</ liter al_exp>
<arg_exp>

<direction.type_argName />
<literal_exp> ,</literal_exp>

< / arg_exp>
<literal.exp>) {</literal.exp>
<literal_exp>try {</literal_exp>
<literal_exp>InetAddress address = InetAddress . getLocalHost () ;</

literal_exp>

<literal_exp>String serverURL = "rmi://" + address . getHostAddress ()

44

43

45

50

55

60

65

70

75

60

85

+ "/</literal_exp>
<reference_name/>
<literal.exp>" ;</literal_exp>
<literal_exp>objref = (</literal_exp>
Cinterf.name />
<literal_exp>) Naming, lookup (serverURL) ;</literal_exp>
<literal_exp>System . ou t . println ("Obtain a handle on RMI </literal_exp

>
<reference_name/>
<literal_exp> server object");</literal_exp>
<invoke>

<retType_exp id="l">
<retType/>
Cliteral_exp> ret = (</literal_exp>
<retType/>
cliter al_exp>) < / literal.exp>

< / retType_exp>
<literal_exp>objref .</literal_exp>
<opName/>
<literal_exp>(</ liter al_exp>
Carg_exp>

<direction_type_argNam e/>
<literal_exp>,</literal_exp>

</arg_exp>
< literal_exp>) ;</literal_exp>

. <retType_exp id="2">
<literal_exp>return ret ;</literal_exp>

</retType_exp>
< / invoke>
<literal_exp>}</literal_exp>
<literal_exp>catch (Exception ex) {</literal_exp>
<literal_exp>ex . printStackTrace () ;</ literal_exp>
<literal_exp>System . out. println ("Cannot establish connection with RMI

Server!") ;</literal_exp>
<literal.exp>System . exit (0) ;</literal_exp>
<retType_exp id="3">

<literal_exp>return < / literal_exp>
<retValue/>
<literal_exp>;</ liter al_exp>

</retType_exp>
Cliteral_exp>}</ literal_exp>
<1 i teral .ex p>}</ liter al_exp>

</wrapperoperation_exp>
<literal_exp>}</ liter al-exp>

</ wrapper_exp>
</ pattern>

This kind of platform specific patterns (*-to-WebServices and WebServices-to- *) can
be defined for every possible pair of middleware platforms assumed by a client and a

45

server application respectively. In the Appendix we provide the RMI-to-WebServices and
WebServices-to-CORBA patterns, which can be utilized by the Illusion Maker Framework
to achieve the interoperability in a scenario where the actual client relies on Java RMI
and the legacy server relies on CORBA. In addition, we provide the CORBA-to-RMI
and RMI-to-CORBA patterns specifying how to generate CORBA and Java RMI imple
mentations of objects respectively, which access directly the corresponding Java RMI and
CORBA actual servers, without using the intermediate Web services.

3.4.5 Mapping of Data Types

At this point, we have to discuss about the datatypes and parametermodes sections of
the platform specific patterns. These sections specify a kind of mapping among the
data types and the direction modes of heterogenous middleware platforms. Currently,
the framework supports only the existence of build-in data types; it does not support
complex data types such as structs, unions etc. Each datatype child element inside the
datatypes element reflects a specific data type. An id attribute is used as an identifier for
referencing purposes.

For each specific data type, referred in the XML document of the platform independent
information (e.g. the return type of an operation, the data type of a parameter), we use
a general term. This term is declared within a platform specific pattern as the value of
the name attribute of the datatype element. The string value contained between the start
and the end tag is the corresponding name of the data type, which is used by the assumed
middleware platform. Here we use Corba IDL data types and Java basic data types.

In addition, we need to know the corresponding Java wrapper classes o f the data types1,
the corresponding Holder classes2, and XML data types3. Java wrappers and XML data
types are used by the Web service clients in the dynamic object invocation. Holder objects
are used when we have to do with parameters whose direction mode is out or inout. For this
information, a corresponding attribute is used inside each datatype element (javalangtype,
holder and xmltype attributes respectively). We also need to keep a possible return value
for each data type, which is going to be returned by an operation whenever something
goes wrong, for instance when an exception occurs. This value is declared in the retValue
attribute. Table 3.1 gives a brief view of the mapping among the data types, assumed as
input by the Illusion Maker framework ([2], [3], [6], [13], [14], [15]). Similar is the purpose
of the parametersmodes section.

^ava.lang.* classes which wrap a value of the corresponding primitive types in an object (e.g.
java.lang.Integer, java.lang.Float etc.).

2org.omg.Corba.* and javax.xml.rpc.holders.* classes for Corba IDL[2] and JAX-RPC [15] re
spectively which use a value attribute to keep the value of an out or inout parameter (e.g.
org.omg.CORBA.LongHolder, javax.xml.rpc.holders.ByteHolder etc.).

3org.apache.axis.encoding.XMLType.* constants which have been declared as X M L type QNames to
indicate the corresponding X M L data types, e.g. XSD.STRING, X S D J N T etc. (see [3]).

46

Basic Type X M L Type Java
Type

Java
Wrapper

Java Holder Corba IDL
Type

void AXIS-VOID - - - void
boolean X S D . B O O L E A N boolean Boolean BooleanHolder boolean

char XSD-STRING char Character CharHolder char

string XSD.STRING String String StringHolder string

byte X S D J B Y T E byte Byte ByteHolder octet
unsigned byte X S D - U N S I G N E D B Y T E short Short ShortHolder short
short X S D-SHORT short Short ShortHolder short
unsigned short X S D . U N S I G N E D S H O R T short Short ShortHolder unsigned

short
int X S D J N T int Integer IntHolder long
unsigned int XSD.UNSIGNEDINT int Integer IntHolder unsigned

long
long X S D . L O N G long Long LongHolder long long

unsigned long X S D - U N S I G N E D L O N G long Long LongHolder unsigned
long long

float XSD-Float float Float FloatHolder float
double X S D - D O U B L E double Double DoubleHolder double

Table 3.1: Data Types Mapping

Finally, we can see in the UteraLexp elements of the platform specific patterns some strings
such as _newline or Jab. These are special instructions which tell the Illusion Maker to
change a line (the former) or leave a tab space (the latter) while generating the source
code and writing it to the output file. For simplification purposes, in the listings shown
here, most of these declarations are omitted. This is the general function of the platform
specific patterns which is being done by the Illusion Maker in order to refine them into
the desirable source code.

3.5 Design and Implementation of the Framework

Figure 3.4 gives a more refined view of the main subsystems that constitute the Illusion
Maker. As we see, the framework consists of two parsers. The first parser accepts as
input the XML document which contains the platform independent information. This
parser converts the XML structure to a corresponding hierarchy of objects, which hold
the information contained in the XML document.

The purpose of the second parser is to parse the platform specific pattern and translate
it into the desirable source code. The platform specific pattern is given as input to this
parser, and the output of the first parsing process feeds its data into the current process.
The result is another hierarchy of objects into which the content of the generated source
code is organized. Finally, the latter, more refined hierarchy of objects, is forwarded to
the File Utility subsystem, which is in charge of storing the source code into suitable

47

Source code
output file

Figure 3.4: The Subsystems of the Illusion Maker

output files.

In the following subsections, we elaborate the details on the design and the implementation
of these subsystems.

3.5.1 Parsing X M L Documents

As we have stated above, the basic components of the framework are the two parsers
which are responsible for specializing the platform specific patterns into the desirable
source code. Since both the platform independent information and the platform specific
patterns are stored in XML documents, we need parsers which will read and extract the
data contained in the specific XML documents.

For this purpose, we implemented the two parsers on the basis o f the Simple A P I for

X M L (SAX) [10] [12]. S A X provides an interface (the X M L R ea d er interface) for event-
based parsing of XML files. It is a standard that describes how a SAX parser should be
written and which events must be supported. The SAX parser does not do anything to
the XML data other than trigger certain events. It is up to the user’s need and demand
to determine what happens when these events take place. So, the user can implement
functions for copying the data into a data structure o f a native programming language,
transforming it into a presentation format or applying a style to it.

The parser reads a document from beginning to end. While doing so, it encounters start
tags, end tags, text, comments, processing instructions and more. In SAX, the parser is
based on a callback mechanism. This mechanism provides the ContentHandler interface,
which the client application should implement to receive notification of the document
content. The client application will instantiate a specific instance of the ContentHandler

interface and associate it with the parser that is going to read the document. As the

48

parser reads the document, it tells the client application what it sees as it sees it (e.g.
start tags, end tags etc.) by calling back to the methods in the registered ContentHandler
object. The user-defined implementations of these methods determine what to do to the
parsed data [10] [12].

3.5.2 The X M L Parsers of the Framework

The Illusion Maker framework reflects a case, where the use of XM L parsers is necessary.
The first parser is a SAX parser which reads the XML document of the platform indepen
dent information. What it does is merely reading the whole document and extracting the
contained text data, that is the text within the tags and the attribute values. The result
is to copy the data into a list of objects belonging to a class hierarchy that conforms with
the structure of the parsed XML document.

The second parser is in charge of parsing the XML document, which specifies the platform
specific pattern. We have already mentioned that the platform specific pattern specifies
the set of rules, according to which the source code will be generated. Each tag represents
a particular instruction for the parser. So, as the parser reads the document, for each
pattern rule which is being seen, a particular operation is executed which refines the in
put. The necessary platform independent information, involved in the server architectural
parameters of the rules, is provided to this process, by iterating through the set o f lists
generated by the first parser. The final output is organized again to a class hierarchy
which is ready to be transformed into plain source code.

The UML diagram in figure 3.5 shows the classes and the dependencies between them,
which implement the basic functionality of the Illusion Maker framework. In the diagram,
the XM LParser abstract class is the basic class encapsulating the parsing functionality.
Its non-abstract method parseXM L() implements this functionality, making use of the
XMLReader4 and ContentHandler5 interfaces. An instance of the former interface is
created with respect to a Xerces SAX Parser6, which is then attached to a ContentHandler
instance, using the DefaultHandler7 adapter class. The xmlfilename attribute reflects the
name of the XML Document to be parsed. The three abstract methods checkType(),
isValid() and parseXM Lf) realize the whole parsing operation.

3.5.3 Parsing the Platform Independent Information

The ArchXM L Parser class specializes the XM LParser abstract class, implementing the
specific parser for parsing the XML document o f the platform independent information.

4org.xml.sax.XMLReader: http://java.sun.eom /j2se/l.4.2/docs/api/org/xm l/sax/XM LReader.htm l
5org.xml.sax.ContentHandler: http://java.sun.eom/j2se/l.4.2/docs/api/org/xml/sax/ContentHandler.html
6Xerces is the XML Parser from the Apache Software Foundation: http://xml.apache.org
7org.xml.sax.helpers.DefaultHandler: http://java.sun.eom/j2se/l.5.0/docs/api/org/xml/sax/helpers/package·

summary.html

49

http://java.sun.eom/j2se/l.4.2/docs/api/org/xml/sax/XMLReader.html
http://java.sun.eom/j2se/l.4.2/docs/api/org/xml/sax/ContentHandler.html
http://xml.apache.org
http://java.sun.eom/j2se/l.5.0/docs/api/org/xml/sax/helpers/package%c2%b7

Figure 3.5: The Classes of the Illusion Maker Design

j C
od

e
G

e
n

e
ra

to
r

g
 X

M
LP

ar
se

r
A

tt
ri
b

u
te

s
A

tt
ri
b

u
te

s

pr
iva

te
 S

tri
ng

 p
at

h
pr

iva
te

 S
tri

ng
 s

ou
rc

ec
od

e
=

'
pr

iva
te

 S
tri

ng
 x

m
lfi

le
na

m
e

O
p

e
ra

tio
n

s

pu
bl

ic
int

 c
he

ck
Ty

pe
(X

M
LP

ar
se

r p
ar

se
r)

pu

bl
ic

bo
ol

ea
n

isV
al

id
(X

M
LP

ar
se

r p
ar

se
r)

pu
bl

ic
in

t
pa

rs
eX

M
L(

 X
M

LP
ar

se
r p

ar
se

r)
pu

bl
ic

St
rin

g
ge

tP
la

tfo
m

if
Pa

tte
m

XM
LP

ar
se

r p
ar

se
r)

pu
bl

ic
Fi

le
Ut

ilit
y[

0.
.*

]
ne

w
Fi

le
(A

rc
hi

te
ct

ur
e

ar
ch

. S
tri

ng
 ty

pe
, S

tri
ng

 p
la

tfo
rm

)
pu

bl
ic

vo
id

 c
le

ar
Co

de
i

I

O
p
e
ra

tio
n

s

pu
bl

ic
int

 p
ar

se
XM

L(
 o

rg
.x

m
l.s

ax
.h

el
pe

rs
.D

ef
au

ltH
an

dl
er

te
)

pu
bl

ic
 in

i
ch

ec
l<

Ty
pe

(
)

pu
bl

ic
 b

oo
le

an
 i

sV
al

id
(

)
pu

bl
ic

 ir
i

pa
rs

eX
M

Lf
)

--
--
-
7-
-

O
pe

ra
tio

ns

pu
bl

ic
Ar

ch
ite

ct
ur

e
ge

tA
rc

hi
te

ct
ur

e{

Op
er

at
io

ns
 R

ed
ef

in
ed

 F
ro

m
 X

M
LP

a
rs

er

pu
bl

ic
 in

t
cb

ec
kT

yp
e(

)

pu
bl

ic
bo

ol
ea

n
isV

al
id

{
)

pu
bl

ic
in

t
pa

rs
eX

M
L(

)

«d
at

at
yp

es
·?

*
Si

or
g.

xm
l.

sa
x.

h
el

p
e

rs
.D

e
fa

u
lt

H
an

d
le

r

3 P
at

te
m

XM
LP

ar
se

r
O

pe
ra

tio
ns

pu
bl

ic
St

rin
g

ge
tP

la
tfo

rm
(

)
pu

bl
ic

 A
rc

hi
te

ct
ur

eE
xp

s
ge

tE
xp

re
ss

io
ns

(

O
p

er
at

io
ns

 R
ed

ef
in

ed
 R

o
m

 X
M

LP
a

rs
er

pu
bl

ic
in

t
cb

ec
kT

yp
e(

)

pu
bl

ic
bo

ol
ea

n
isV

al
id

(
)

pu
bl

ic
In

t
pa

rs
eX

M
L(

)

«d
at

at
yp

e»

IS
} E

xc
ep

ti
on

j I
nv

al
id

Pa
tt

er
nT

yp
eE

xc
ep

ti
on

O
pe

ra
ti

on
s

pu
bl

ic
ln

va
lid

Pa
tte

rn
Ty

pe
E*

ce
pt

io
n(

 }

E
S

T
ex

tE
xt

ra
ct

or

Op
er

ati
on

s
pu

bl
ic

vo
id

 c
ha

ra
ct

er
s(

 c
ha

r c
h[

0.
*|

, i
nt

 s
ta

rt,
 in

t l
en

gt
h)

pu

bl
ic

vo
id

 s
ta

rtE
le

m
en

t(
 S

tri
ng

 n
am

es
pa

ce
UR

I,
St

rin
g

lo

pu
bl

ic
vo

id
 e

nd
El

em
en

t(
St

rin
g

na
m

es
pa

ce
UR

I,
St

rin
g

lo
c

pu
bl

ic
 A

rc
hi

te
ct

ur
e

ge
tA

rc
hi

te
ct

ur
e(

)

pr
iva

te
 S

tri
ng

 ty
pe

pr

iva
te

 b
oo

le
an

 v
al

id

pr
iva

te
 S

tri
ng

 p
lat

fo
rm

O
pe

ra
tio

ns

pu
bl

ic
 v

oi
d

st
ar

tE
le

m
en

t(
 S

tri
ng

 n
am

es
pa

ce
UR

I.
St

rin
g

lo
c;

pu

bl
ic

bo
ol

ea
n

isV
al

id
(

)
pu

bl
ic

St
rin

g
ge

tP
la

tfo
rm

(
)

pr
iva

te
 v

oi
d

ch
ec

k(
 S

tri
ng

 t
)

j C
od

eE
xt

ra
et

or

O
p
e
ra

tio
n

s

pu
bl

ic
vo

id
 c

ha
ra

ct
er

s(
 c

ha
r c

h[
0.

.*)
, i

nt
 s

ta
rt,

 in
t l

e
pu

bl
ic

 v
oi

d
st

ar
tE

le
m

en
t(

St
rin

g
na

m
es

pa
ce

UR
I,

St

pu
bl

ic
vo

id
 e

nd
El

em
en

t(
 S

tri
ng

 n
am

es
pa

ce
UR

I,
St

r
pu

bl
ic

Ar
ch

ite
ct

ur
eE

xp
s

ge
tE

xp
re

ss
io

ns
(

)

0 fcl l7l£0009^0

The TextExtractor class realizes the ContentHandler interface, and extends the corre
sponding DefaultHandler class. So, TextExtractor is the callback mechanism whose meth
ods will be invoked by the parser while reading the XML data. The PatternTypeExtractor
class is another realization of the ContentHandler interface. Its functionality is to check
whether the XML document which is going to be parsed is a suitable XM L document
according to the functionality of the framework.

The ArchXM LParser should instantiate the PatternTypeExtractor and TextExtractor classes
The parsing process consists of the following steps:

1. Using the PatternTypeExtractor instance of the callback mechanism, the parser
checks the suitability of the XML document to be parsed.

• The suitability is indicated by the value of the type attribute, which should
exist in the architecture root element of the particular XM L document. In
this case, this value must be equal to ” architecture” (listing 3.1, lines 32-36
and listing 3.2, line 2). The operation is implemented by the checkTypef) and
isValidQ redefined methods of the ArchXMLParser class.

2. Using the TextExtractor instance of the callback mechanism, the parser reads the
XML document and extracts the contained data. During this process, the overridden
methods (characters(), startElementf), endElement(J) of the TextExtractor class

-are called back by the parser, building the set of objects which hold the platform
independent information. The whole operation is encapsulated in the parseXM LQ
redefined method of the ArchXMLParser.

This parsing process results in the creation of an instance of the Architecture class, which
depicts the corresponding XML structure of the platform independent information. This
instance is created by the methods of the callback mechanism. Figure 3.6 gives an overview
of this class hierarchy.

We can easily observe that the XML structure has been transformed into a class structure.
Each particular XML element, which specifies a basic component of the server architec
ture, is represented by a corresponding class (e.g. capsule, reference, element, interface,
operation, argument). Each set of basic components is represented by a vector-list of the
corresponding objects, which is contained in the particular object: a Capsule object in
cludes a set of Reference objects, an Inter/object includes a set of Operation objects, with
each one of them including a set of Arg objects. As a whole, an Architecture object will
contain sets of Capsule, Element and Inter/ objects. Attributes and child elements of the
XML elements that correspond to basic features of the components, are represented by
specific class attributes. Consequently, the Architecture instance, created during the pars
ing of the XML document of the platform independent information, is hereafter available
to feed its data into the platform specific parsing process.

51

Figure 3.6: The Architecture Class Hierarchy

3.5.4 Parsing the Platform Specific Pattern

As far as the platform specific patterns parsing is concerned, we follow a similar manner
with the one described above with respect to the parsing of the platform independent
information. The PatternXM LParser class (figure 3.5) constitutes the specific parser,
specializing the XM LParser class, to parse the XML documents which form the platform
specific patterns. The PatternTypeExtractor realization of the ContentHandler interface
is used again for the same purpose as previously mentioned, while the CodeExtractor
provides the callback mechanism which is utilized by the parser as it reads the platform
specific pattern. Similarly, the PatternXM LParser instantiates the PatternTypeExtractor
and CodeExtractor classes, according to the following steps:

1. Using a PatternTypeExtractor instance of the callback mechanism, the parser con
firms the suitability of the XML document to be parsed. •

• Here, the permissible values of the type attribute o f the pattern root element,
that indicate the suitability of the XML documents, are ” I n t e r f , ” Capsule”
and ” ObjectlmpP ’ . Each of the previous values correspond to the part o f a plat
form specific pattern, being responsible for the generation of platform specific

52

illusion interfaces (listing 3.3 line 2), illusion capsules (listing 3.5 line 2) and
object implementations (listings 3.4 and 3.6 line 2) respectively. This opera
tion is implemented by the checkTypeQ and isValid() redefined methods of the
PatternXMLParser.

2. Provided that the specified XML document is suitable, the parser parses the plat
form specific pattern. While doing so, for every pattern rule for which it receives
notification, it invokes the overriden methods (characters (), st art Elem ent (), endEle-
ment(J) of the CodeExtractor. In addition, it retrieves data from the already cre
ated Architecture instance. During this procedure, for each specific rule seen in the
platform specific pattern, a corresponding rule object is created. The PatternXML
Parser parseXM LQ overriden method incorporates the whole operation.

In the wake of this parsing process, an ArchitectureExps instance is created which contains
a list of rule objects, as detailed in the following subsection. These objects belong to a
class hierarchy derived by an abstract class, named Expression. Afterwards, the list of
Expression objects is ready to be converted to plain source code and be written to a
proper output file.

3.5.5 Utilizing Interpreter Design Pattern

The platform specific patterns specify the rules which determine generically how to gen
erate the necessary source code in order that the middleware platform interoperability is
achieved. Each XML element within a platform specific pattern is a pattern rule. The
PatternXM LParser produces a list of code generation instructions. To simplify the code
generation process, we chose to apply the Interpreter Design Pattern [8]. This design
pattern describes how to define a representation for the pattern rules.

According to the Interpreter design pattern, we use a class to represent each pattern
rule. Therefore, every platform specific pattern can be represented by objects of a class
hierarchy, derived by the Expression abstract class. The diagram in figure 3.7 gives the
whole structure of the Expression class hierarchy, which is assumed by the Interpreter
design pattern, as applied to our framework.

The Expression abstract class provides the interface which the framework uses to interpret
the platform specific pattern. It declares an abstract generatef) method that is common
to all Expression subclasses and reflects the functionality of generating the source code.
We can see that each rule in the XML document which contains the platform specific
pattern (see section 3.4) is represented by a specific Expression subclass. Moreover, the
sourcecode static string attribute will gradually accumulate the being generated source
code.

53

Figure 3.7: Interpreter Design Pattern

In section 3.4 we mentioned that the UteraLexp XML elements represent the non-parameterized
platform specific parts of the source code, which will be reproduced as it is. Furthermore,
to refer to the corresponding platform independent information which has to be retrieved,
we use some elements, as parameters, inside the platform specific patterns. So, we can
consider that these two components of our rules, that is the platform independent param
eters and the UteraLexp elements, constitute terminal expressions. For every one of these
components, a LiteralExp instance has to exist in the list of objects, generated by the
PatternXMLParser. The overriden generateQ method of these objects appends the cor
responding terminal sequence to the currently contained string in the Expression abstract
class sourcecode attribute.

The rest of the XML elements (e.g. interf.exp, element_exp etc) in a platform specific
pattern form the nonterminal expressions of the rules. In the generated list of objects,
one particular object of a corresponding subclass is required for every corresponding piece
of platform independent information. Thus, for each In terf instance in the constructed
Architecture class hierarchy (i.e. for each interface element in the platform independent
information), an InterfaceExp object will be created.

Each object that represents a nonterminal expression contains a list o f Expression refer
ences to other objects that can be terminal and/or nonterminal expressions. The objects
included in these lists correspond to the nested rules contained within other rules. As
an example, the name of an interface (represented by the in terf .nam e parameter) will be
included as a LiteralExp object in the list of objects of the corresponding InterfaceExp ob
ject. Similarly, for every operation of an interface, the corresponding InterfaceExp object
should contain in its list of objects an OperationExp instance; the latter contains, in its
particular object list, other terminals-LiteralExp instances (e.g. the name and the return
type of the operation) and nonterminals (e.g. one ArgExp instance for every operation pa
rameter), and so on. The nonterminal classes have also various id attributes for referencing
purposes. Figure 3.8 gives the hierarchy of objects that represents a CORBA interface
definition, arising from the parsing of the corresponding part of CORBA-to-WebServices
pattern (see Listing 1.5).

The generateQ methods of the nonterminal classes implement an iteration through their
list of Expression objects. This iteration involves calling recursively the corresponding
generateQ method of each object. Since all nonterminals are finally refined to terminals
(e.g. all the nonterminal Expression objects are refined to terminals-LiteralExp objects,
see figure 3.8), we end up in calling the LiteralExp generateQ method. The source code
is generated gradually and is accumulated as a string sequence, in the Expression class
sourcecode static attribute.

The Architecture class hierarchy forms the context, containing information which has to
be global to the interpreter’s environment. Here, this information participates in the
platform specific pattern parsing and in the code generation.

55

Figure 3.8: List o f Expression Objects for a CORBA IDL Interface

This is the logic behind the construction of the platform specific patterns and their parsing.
We translated the XML structure of the platform specific patterns into an hierarchy of
Expression classes. The Interpreter design pattern provides a simple way to define a
gramfnar, which afterwards can be easily extended. Since classes are used for representing
grammar rules, the grammar can be extended using inheritance. Existing expressions can
be modified incrementally and new expressions can be defined as variations of old ones.
In addition, classes in the abstract syntax tree usually have similar implementations [8].

3.5.6 Mapping of Data Types

The mapping of data types between the different middleware infrastructures is also part
of platform specific patterns ([2], [3], [6], [13], [14], [15]). We have already referred to the
declaration of basic data types mapping within the platform specific patterns (subsection
3.4.4). During their parsing process, a list of Type instances is created. For each datatype
XML element, a corresponding Type object is created. The object has attributes which
correspond to the attributes of the datatype element. When the parser has to retrieve a
specific data type, it iterates through the list of Type objects and gets the suitable data
type information. Similar is the case with the mapping of parameters direction modes.
Figure 3.9 gives the structure of Type and ParameterM ode classes.

3.5.7 Creating the Output Source File

The CodeGenerator class (figure 3.5) is the front-end which wraps the functionality of the
framework. A user wishing to use the framework should instantiate an instance of this

56

Figure 3.9: Classes for Parameter Direction Modes and Data Types Mapping

class. Moreover, it should instantiate instances of the A rchXM LParser and Pattem X M L -
Pars&r classes. The filesystem path where the generated source file will be placed is
declared by the path string attribute. The three methods, checkType(), isValidQ and
parseXM L , are wrappers of the corresponding XMLParser methods. According to the
specific instance of an XMLParser subclass which is given as parameter to every method,
the identical method will be invoked in this instance.

As long as the entire parsing process will have been completed successfully, the Architec-
tureExps instance will be available, containing the constructed list of Expression objects.
The list of the Expression objects is forwarded to the File Utility subsystem, in order
to convert the object hierarchy into a plain source code, based on the Interpreter design
pattern (subsection 3.5.5). Figure 3.10 shows the class structure of the File Utility system.

The File Utility class implements operations related to files handling, such as reading or
writing data from /to a file, copying files, getting the extension of a file, checking if a file
exists, setting and getting the path of the utilizing file, etc. These operations complement
the functionality of the framework, as we will see in section 3.7. An instance of this class
can be used for writing the source code in a plain form.

The FileType abstract class is the interface which provides the functionality for creating
the suitable files where the source code is going to be stored. This functionality is reflected
by the newFile() abstract method. Every FileType subclass represents a particular type of

57

Figure 3.10: The File Utility

source file, with their newFileQ redefined method implementing the operation of creating
such a file.

The CodeGenerator newFileQ method wraps the procedure of creating the files for storing
the source code. Based on the platform specific pattern type that was parsed and on the
middleware platform to which the generated source code is related, this method creates a
specific instance of a FileType subclass. The type of the pattern is indicated by the type
attribute of the pattern root element, while the middleware platform is indicated by the
platform attribute of the same root element (see listings in section 3.4). The creation of
the FileType instance is carried out by a factory class, responsible for creating instances
of the FileType subclasses. This factory class is the FileTypeFactory class; for instance,
if a Web service wrapper is going to be generated, a W ebServiceFileType instance will be
created. Following that, the newFileQ method is called in this instance. This method
uses the Architecture instance to retrieve information to construct the name of the file.

In the previous example, for every actual remote object, the method has to create a
.jws file, containing the source code of a Web service wrapper. Considering our ex
ample scenario, two Web services would be created taking the name, according to the
pattern W S-referenceNam eserverPlatform Client.jws, that is WS_HP_RMIClient.jws and
WS_Stulex_RMIClient.jws. The referenceName and serverPlatform data will be retrieved
from the Architecture instance (see listing 3.2). In particular, the newFileQ method does
not create the actual file, but creates a FileUtility instance which is associated with the
actual file to be created. The latter instance is added to a list o f FileUtility instances
which the FileType main class maintains. This list contains as many FileUtility instances
as does the number of the source files, which must be created. In the example mentioned,
the list will contain two FileUtility instances.

Provided that the previous operation was successful, the already created FileUtility in
stances are about to store the source code contained in Expression instances. Framework
generate() method (GUI class in figure 3.10) iterates through the Expression instances
list and invokes the corresponding generateQ method in each instance. For each instance,
the content of the Expression sourcecode static attribute, which is the actually being gen
erated source code, is retrieved and appended to the identical CodeGenerator attribute.
The content of the latter string attribute is written to the appropriate output file by the
FileUtility fwriteQ method.

After the proper completion of this recurring process, the output source files can be
found in the initially specified path of the file system. These source files are about to be
utilized making feasible the intercommunication between the heterogenous middleware
infrastructures.

59

3.6 Scalability Issues

The design which was followed provides the framework with a satisfactory degree of seal-
ability. This is useful for future extensions and modifications of its functionality.

The basic feature which contributes to the scalability is our design choice to use Web
services as an intermediate platform to facilitate interoperability between different plat
forms. For a client platform A and a server platform B, an alternative approach would be
to generate an A-specific illusion capsule. This capsule contains A-specific objects whose
implementations access directly the B-specific actual server objects, instead of their Web
service wrappers. That is, the A-specific pattern should specify generically how to gener
ate A-specific implementations of the objects required by the user, which play the role of
the client to the B-specific server objects (see the CORBA-to-RM I and RM I-to-CORBA
patterns in the appendix).

For every possible pair of platforms A and B, which may be used either by a client or
a server within a distributed environment, we would have to specify an A-to-B and a
B-to-A pattern. In the same way, for a new platform C, we would have to specify the
A-to-C, the C-to-A, the B-to-C and the C-to-B patterns in order to be able to utilize it
by means of our framework. Alternatively, with our approach we only have to specify
the C-to-WebServices and the WebServices-to-C patterns, in a similar manner with the
already existing *-to-WebServices and WebServices-to-* patterns. Therefore, the use
of am intermediate platform, such as Web services, simplifies the work to accomplish
interoperability; this is clearer when we want to incorporate a new middleware platform.

Next we discuss briefly the procedure which someone has to consider, should he want to
extent the functionality of the framework by incorporating a new middleware platform.
Suppose X is a new middleware platform released in the market. First of all, the XML
Schema shown in listing 3.1 should be slightly changed. Specifically, an extra enumeration
value should be included in the set of possible values for the mdwjplatform element (lines
64-70) of every interface element in the XML document of the platform independent
information. This is being done in order to maintain the validity of the XM L document.

Afterwards, we have to make available the X-to-WebServices and WebServices-to-X pat
terns. To construct these patterns, we have to consider the facilities that the platform
X offers for implementing the distributed applications. We have to examine possible ex
amples and organize the code in a similar manner to the existing patterns. The code
should be organized into platform independent and platform specific parts. The structure
should rely on the architecture, implied from the Interpreter design pattern (figure 3.7).
If it is necessary to define new nonterminal expressions for the pattern rules (according
to the structure of the patterns implied by the new middleware platform), these rules can
easily be added to the existing context, by defining new subclasses, specializing further
the Expression abstract syntax tree. Such a new subclass will maintain a vector-list of
Expression references and will implement an identical generateQ method.

60

In addition, we must define a similar data types mapping between the possible data
types supported by the new platform and the existing data types. The X-to-WebServices
pattern will specify generically how to generate interface definitions, according to the
interfaces of the objects required by the client; the implementations of the objects, which
are Web service clients, that the client will invoke; and the illusion capsules which will
host these objects. On the other hand, the pattern WebServices-to-X will specify the
rules to generate the Web services that will be the clients of the actual remote objects,
wrapping their functionality.

In case of defining new grammar rules, we may define a new parser, which will be able
to interpret the new defined platform specific patterns. This is also feasible to be done
without the underlying implementation having to undergo any change. The reason is
again our design choice to implement the particular parsers (ArchXM LParser and Pat-
ternXM LParser classes) as specializations of a basic XM LParser class. A new specialized
parser can be incorporated as a XMLParser subclass, without affecting the existing parser
implementations and functionality.

Moreover, we are able to implement new ContentHandler instances, which will offer the
call back mechanism attached to the new parser. These instances will be specializations
of the DefaultHandler adapter class, which they will override the characters(), startEle-
m ent(), and endElem entf) methods. The parser will invoke back these methods, while
receiving notification of the platform specific patterns content. The Illusion Maker frame
work'is rendered scalable, by utilizing the interfaces offered by SAX API.

Finally, the new specified platform specific patterns will be ready to be used within the
framework, to attain integration between the new and the existing middleware platforms.
In our example scenario, supposing that we have a third server application on top of
platform X then we will use the Corba-to-WebServices and WebServices-to-X patterns to
generate the necessary source code. On the contrary, if a new client application, that has
been implemented on the basis of platform X, joined the environment, we would use the
X-to-WebServices and WebServices-to-RMI patterns.

3.7 The Graphical User Interface of the Framework

The Illusion Maker framework offers a graphical user interface (GUI) which incorporates
the whole functionality. The user-friendly environment makes its use simple enough.
Figure 3.11 shows the main window of the GUI which depicts the basic functionality of
the code generation.

The user should specify in the first two fields the input components, that is the appropri
ate XML documents of the platform independent information and the platform specific
patterns. In particular, the user searches and specifies the paths of the corresponding
XML files.

61

I

if Code Generator | Patterns Registra tio n] Search for a Pattern

1) Specify the XML document with the platform independent information

! 1
I i Open...

2) Specify the pattern XML document

1 ! €3 Open...

3) Select the type of the source code which is going to he generated

O Platform specific Interface

G Platform specific Object Implementation

G Platform specific Illusion Capsule

4) Specify the path where the source codefiles will be saved
!
it

j1
i €3 Open... j

| Generate.» Clear j

| P re v ie w ... j

Figure 3.11: Graphical User Interface - Basic Functionality

The kind of the output source code must be specified by selecting one option each time
in the radio boxes. These options correspond to the three possible types o f source code
which can be generated, as follows:

1. Platform specific Interface: This option corresponds to the generation of a platform
specific illusion interface, which is supposed by the client objects.

2. Platform specific Object Implementation: This corresponds to the generation of the
code which will act as the mediator to bring about the interoperability. In other
words, this option should be selected for the generation of: either the platform
specific objects on top of the middleware platform assumed by a client application
(serving as Web service clients); or the Web services that will be the clients for the
actual remote objects. The result depends on the type of the specified platform
specific pattern.

3. Platform specific Illusion Capsule: This selection corresponds to the generation of a
platform specific illusion capsule, which will host the objects invoked by the client
application.

62

(Code Generator]f P atte rn iR iq fe a tlw i~ y Search for a Pattern j

Figure 3.12: Graphical User Interface - Registration of Platform Specific Patterns

W illusion Maker framework” '-7,; .-TjrjnJ TT*»#Vi«i. i «a/*-.
ΓΈode Generator J Patterns Registration if Seardi for a Pattern

Specify the pattern XML Document to preview

^ Open .

Figure 3.13: Graphical User Interface - Search for a Pattern

In any occasion, the XML document that contains the appropriate part of a platform
specific pattern should be specified, in order to generate the corresponding source code.
This means that, for creating a platform specific interface, the part o f a *-to-WebServices
pattern responsible for generating an interface declaration must be given as input (see
listing 3.3). For the other cases, corresponding to each selection, listings 3.4, 3.6 and 3.5
can possibly be specified as input respectively.

Finally, the path within the file system, where the output files will be stored, can be
selected and specified in the third text field. Provided that the source files have been
successfully created, the environment gives the user the possibility to take a glance o f the
generated code by pressing Preview button, at the bottom of the window. A new window
will be opened, containing the source code.

63

The graphical interface provides two other operations concerning the handling of the
patterns, which supplement the main functionality of the framework. The first operation
is related to the registration of platform specific patterns. The user can gather all the
XML documents (either the ones of the platform independent information or those of the
platform specific patterns) into a particular filesystem path, assumed by the framework. In
this way, the patterns can easily be discovered in a particular place within the environment
and then be used for the specific purpose. The second operation gives the possibility to
search for a pattern XML document and preview its content. Figures 3.12 and 3.13 show
the corresponding windows of the graphical interface, which provide these operations.

64

C h a p t e r 4

E v a l u a t io n o f t h e Il l u s io n M a k e r

F r a m e w o r k

4.1 Implementation Effort

4.2 Overhead

4.3 Conclusion

To highlight the usefulness of the proposed framework, we rely on the experimental results
coming from our case study scenario. In particular, our evaluation focuses on the following
points:

1. The implementation effort, required for the development o f the platform interoper
able code.

2. The overhead which is introduced in the distributed system as a result of the uti
lization of the mediator.

The implementation effort reflects the gain from applying the proposed methodology, be
cause the developers do not have to write the necessary source code manually. Instead,
the necessary code is generated automatically by the code generator mechanism of the
framework. The overhead depicts the delay which is introduced in the intercommunica
tion between the heterogenous applications, while using the generated source code as a
mediator. The implementation effort is measured in terms of the well-known L O C (Lines
of Code) metric [17]. Specifically, we measure the amount of the necessary source code
which is generated. The overhead is measured as the elapsed time, in milliseconds, from
the moment the client calls a server operation to the moment the client receives back
a response. We compare scenarios in which we make use of the Web service wrappers

65

as a mediator with scenarios in which the client-side illusion objects access directly the
actual remote objects, without using Web services. We also compare these cases with non-
heterogenous cases. Finally, we point out the conclusions deduced from the experimental
evaluation.

4.1 Implementation Effort

We formalize the implementation effort metric (LOC) as a function of parameters that
reflect the scale of a server application involved in a heterogenous scenario. The size of
these parameters is reflected by the metrics given in table 4.1, and the information about
this size comes from the platform independent information. The implementation effort
functions are used for measuring the total number of TOC generated by the framework.
This measure depicts the impact in the implementation effort which a developer has to
pay in case of implementing the mediator elements manually. The amount of generated
LOC is compared with the size of the platform specific patterns. In this way, we highlight
a threshold, which denotes the minimum size that the legacy server’s parameters should
have, so as to obtain a benefit from using the proposed framework.

M etric Definition
NIn ter/ Number of provided interfaces

_ NcaPs Number of capsules
AE lem i Number of elements hosted by the i-th capsule
NoPl Number of operations provided by the i-th interface and implemented by

the i-th element
NA rg a Number of parameters accepted by the j-th operation of the i-th element

Table 4.1: Metrics for the Size of the Server Application

In the case of our example scenario, the number o f interfaces is Njnterf — 2, with one
element realizing each of them; so for each interface, it is = 1. Both the elements
are hosted by the same capsule, that is N caps — 1· Moreover, one operation is provided
by every one interface and is implemented by a corresponding element; so N op = 1 per
interface and per element. Each of these operations accepts one parameter, hence NArg =
1 per operation.

4.1.1 Formalization

We use the CORBA-to-WebServices pattern (listings 3.3, 3.4 and 3.5) and the WebServices-
to-RMI pattern (listing 3.6) to derive the implementation effort functions, which can be
applied in a case like the one mentioned in our example scenario, for calculating the gen
erated amount of LOC. In the same manner, we can derive further implementation effort
functions for other cases of platform specific patterns (see appendix).

66

Considering the number of CORBA-specific illusion interfaces that must be generated, we
have (Nop + 2) LOC per interface. Hence, the LOC for the total number of interfaces is:

Njnterf
L O C interf = 2ΛWriter/ + ^ 0 Pi (4.1)

i = l

Regarding the implementations of CORBA-specific elements which realize the illusion in
terfaces, for each element we have a standard number of 23 LO C . In addition, for each
operation which is implemented by an element, we have {N arg + 17) LOC in case of
a non-void operation, and (N arg + 15) LOC, in case of a void operation. Taking the

t -j \ jy in on v o id)

overall number of operations into account, we have [{11N q ™ vo1 * + Σ ί = ϊ iVArgj) +

(15N q ™ + ./V ^ J] LOC generated. Therefore, the LOC for all the implementa
tions of elements is:

NjSlern N E lem N E lem ^ O P i

W C Elem = 23 N Elem + 1 7 £ N £ ™ void) + 15 £) N ^ d) ^ N Argti (4.2)
i= 1 i= 1 i— 1 j ' = l

As far as the code for the CORBA-specific illusion capsules is concerned, we have 29 L O C

for each hosting element; hence for the overall number of elements hosted by a capsule,
29Ngitm L O C are generated in total. Consequently, for all the illusion capsules required
in a distributed environment, the total number of LOC is:

Neaps
L O C Capsule = 29 ^ ̂ A/Elemi

i= 1

Concerning the Web service wrappers, that have to be generated by utilizing the WebServices-
to-RMI pattern, for each Web service we have a standard number of 5 L O C . Furthermore,
for each non-void and void wrapping operation we have 16 and 14 L O C respectively. So,
every Web service consists of (5 + \§N ο / ηοηνοιά̂ + 14N op(vold)) LOC totally. Since for
every element a corresponding Web Service wrapper is generated, then the overall number
of LOC which is generated is:

N E lem N E lem

L O C w s = 5N Elem + 16 + 14 £ (4.4)
i = l i= 1

So, the total L O C which is generated by the framework, using this couple of platform
specific patterns, is the aggregation of the amount coming from the four aforementioned
equations:

LOCfotal ~ L O C inteTf + LOCElem + LOCcapsule + L O C w s (4.5)

(4.3)

67

In the case of our example scenario, by applying the aforementioned implementation effort
formula, we result in the amount of generated LOC given in table 4.2. This number does
not make any sense, compared to the size of platform specific patterns. However, this
is just a simple case study scenario, involved in a small scale distributed environment.
In the following subsection, we show that the benefit arising from the application of the
Illusion Maker framework is significant, as the scale of a heterogenous distributed system
rises.

L 0 C j n t e r f 6
L 0 C E i em 7 8
L 0 C C a p s u le 5 8

L O C w s 3 8

L O C T o t a l 1 8 0

Table 4.2: Implementation Effort for our Case Study

4.1.2 Experimental Results

We investigate the implementation effort gained by applying the proposed approach with
respect to the size of the platform specific patterns that should be developed. Figure 4.1
shows the amount of generated LOC for a CORBA interface declaration (equation 4.1), as
the riumber of operations increases. The size of the part o f the CORBA-to-WebServices
pattern, responsible for the generation of these interface declarations, is equal to 34 L O C

(see listing 3.3). Supposing a case where only one interface is provided by the actual server
application, we observe that a developer obtains a gain if the actual interface provides 33
operations at least. This seems negative at a first glance. However, it does not reflect the
whole case.

Figure 4.1: Implementation Effort for the Generation of CORBA Illusion Interfaces

68

The next two charts highlight the generated amount of LOG for a CORBA object im
plementation (equation 4.2). The first chart (figure 4.2) shows the amount of LOC as a
function of the number of elements, realizing a CORBA illusion interface. Supposing that
the actual interface provides one non-void operation, which accepts one parameter, we
observe that if 3 elements exist at least, realizing the actual server’s interface, the use of
our framework for the code generation benefits a developer. The size of the corresponding
part of the CORBA-to-WebServices pattern (see listing 3.4) is equal to 1 1 7 X M L LO C.

Figure 4.2: Implementation Effort for the Generation of CORBA Object Implementations
- 1

The second chart (figure 4.3) shows the amount of LOC as a function of the number of
operations. We suppose that one CORBA element realizes a CORBA illusion interface,
and each provided operation accepts one parameter. We assume non-void operations only.
In this case, we see that the actual server element must implement 6 operations at least,
so as to obtain a gain with respect to the amount of generated code.

Figure 4.3: Implementation Effort for the Generation of CORBA Object Implementations
- 2

69

Following that, we give the representation of the amount of LOC needed for a CORBA-
specific illusion capsule (equation 4.3), as a function of the number of CORBA elements
that the capsule hosts (figure 4.4). The responsible for the generation of these illusion
capsules part of the CORBA-to-WebServices pattern has a size of 62 X M L L O C (see
listing 3.5) . We perceive that as the number of hosting elements rises, the amount of
LOC rises proportionately. A developer gains in the existence o f 3 hosting elements by
the actual server capsule.

Figure 4.4: Implementation Effort for the Generation of CORBA Illusion Capsules

Regarding the Web service wrappers acting as Java RMI clients, that have to be generated
for every element of the actual server application, the corresponding WebServices-to-RMI
platform specific pattern consists of 85 X M L L O C (see listing 3.6). Figure 4.5 gives the
generated amount of LOC as a function of the number of elements, while figure 4.6 gives
the amount of LOC as a function of the number of operations, implemented by a server
element (equation 4.4). We assume again non-void operations.

Figure 4.5: Implementation Effort for the Generation o f Web Service Wrappers - 1

70

Figure 4.6: Implementation Effort for the Generation of Web Service Wrappers - 2

In the first case, we consider that each actual server element implements one operation. If
the actual server application consists o f 5 elements at least, we reap the benefit from using
the Illusion Maker for the generation of the Web service wrappers. In the second case,
we suppose that the server application has one element. As the number of operations
implemented by this element increases, we observe that 6 operations are adequate for a
developer to make a gain with respect to the implementation effort.

Finally, the chart in figure 4.7 provides a total view concerning the implementation effort.
We assume a case where an actual Java RMI server provides one remote interface con
taining non-void operations that accept one parameter. One Java RMI-specific element
realizes the aforementioned interface and one server capsule hosts the element. We show
the total amount of LOC, which is necessary to be generated for the previous scenario, as
a function of the number of provided operations. The overall size of the platform specific
patterns to be used is equal to 298 X M L LO C. We perceive that the server application
should provide at least 7 operations. In such a case, the developer obtains the benefit
from utilizing our framework to achieve the integration.

From the previous results, we further observe that the implementation of illusion elements
is the most demanding for someone to develop, with the implementation of Web service
wrappers following after. These two cases are expected to be the most demanding as they
require the development of the operations that serve as Web service clients and as clients
for the actual remote objects, respectively. On the other hand, the implementation effort
for the illusion interface declarations is the less demanding for a developer to pay. We can
also point out that the factors that contribute mostly to the increase of LOC are the Nsiem

and the N op. Consequently, as the scale of a heterogenous distributed system increases,
the utilization of the Illusion Maker framework gives us a substantial advantage.

71

Figure 4.7: Total Implementation Effort for achieving Integration

4.2 Overhead

The use of a mediator for the integration of the heterogenous distributed applications
introduces inevitably a delay in the communication between the client and the server
objects. This delay degrades the performance of the whole system and may be substantial,
depending on the kind of the services provided and on the needs o f the clients. We
evaluate the overhead by measuring the total time elapsed until the client receives back
the response. We also try to portion out the total overhead among the components
involved in the intercommunication, and find out which of them contribute the most.
Our evaluation approach focuses mainly on the invocation cost. The components, acting
as clients, initialize once the connections and execute a recurrent call to the corresponding
server components. Then, we find an average value of the response time involved in each
case. This approach provides a more representative view, concerning the factors that
contribute most to the overhead. The experiments were performed in an environment
where the actual client and server element resided in different machines, connected through
a Local Area Network Ethernet switch of 100 Mbps speed.

4.2.1 Non-Heterogenous Distributed Environments

We start with the invocation costs involved in cases where both the client and the server
elements rely on the same middleware. Table 4.3 gives the results. For the CORBA and
Java RMI cases the client and server elements reside in different hosts. The clients make
a static call in both cases. For the Web service case, the client constructs at run time a
call to a locally deployed Web service. We observe that the invocation cost is relatively
low for Java RMI, more higher for CORBA and quite more higher for the dynamic Web
service invocation.

72

CORBA Response Time = 7.937 ms/call
RMI Response Time = 2.6525 ms/call

Web Service Response Time = 14.9235 ms/call

Table 4.3: Average Response Times in Non-Heterogenous Environments

4.2.2 First Scenario: A C O R B A Client invokes a Java R M I Server

The scenario o f figure 4.8 corresponds to the one depicted by our case study. The two
elements hosted by the client and the server capsules are the legacy applications. We
deploy both the CORBA-specific illusion object, acting as Web service client, and the
Web service wrapper on the server machine.

Figure 4.8: First Scenario: Using Web Services

Table 4.4 gives the experimental results. The R M I R esp on se reflects the time elapsed
until the Web service, acting as RMI client, receives back the response from the actual
RMI server object. The W eb Service R espon se reflects the time elapsed until the
CORBA-specific illusion server object takes the response back from the Web service. It
is obvious that this time interval includes the RMI response time period. The C O R B A
R espon se represents the total delay between the moment the actual client object makes
the request and the moment it receives the response. From these results, we deduce the
following:

• Each RMI request-response takes 0.517 ms;

• each Web service request-response takes 7.117 - 0.517 = 6.6 ms;

• each CORBA request-response takes 15.594 - 7.117 = 8.477 ms.

RMI Response Time = 0.517 m s/call
Web Service Response Time = 7.117 m s/call

CORBA Response Time = 15.594 ms/call

Table 4.4: First Scenario: Average Response Times using Web Services

73

Next we compare these results with the ones coming from the case in which we do not
use Web services as mediator. Instead, the CORBA-specific illusion object acts as a RMI
client for the actual server object. Figure 4.9 depicts the distributed environment for
this case, with the illusion object being deployed on the client machine. In this way, the
client object makes a local call to the illusion object, which is the proxy that forwards
the request to the server object.

Figure 4.9: First Scenario: The CORBA-specific Illusion Object access directly the Server
Object

Table 4.5 gives the results for the average response times, without using Web services. In
this case we perceive that:

• The RMI response takes more time than in the first case (1.15 vs 0.517 ms), while
the CORBA response time is smaller than the first case: S.556 - 1.15 = 7.406 vs
8.477 ms.

• Regarding the total execution time, the use of Web services introduces an important
overhead in the total delay of the side-to-side communication. This overhead is
about 45% higher (15.594 vs 8.556 ms) in the first case compared to the second
case.

RMI Response Time = 1 .1 5 ms/call
CORBA Response Time = 8.556 ms/call

Table 4.5: First Scenario: Average Response Times without using Web Services

4.2.3 Second Scenario: A Java R M I Client invokes a C O R B A
Server

Figure 4.10 gives a scenario where the actual client is based on Java RMI and the actual
server is based on CORBA. We use a Web service wrapper for the integration. Both
the RMI-specific illusion object and the Web service wrapper are deployed on the server
capsule. Table 4.6 gives the experimental results for the execution times o f operation
invocations. In this case, we have larger response times than the corresponding case of
the opposite scenario, in the previous subsection:

74

• Each CORBA request-response takes 2.9962 ms;

• each Web service request-response takes 65.1452 - 2.9962 = 62.1490 ms;

• each RMI request-response takes 90.6320 - 65.1452 = 25.4868 ms.

Figure 4.10: Second Scenario: Using Web Services

CORBA Response Time = 2.9962 ms/call
Web Service Response Time = 65.1452 m s/call

RMI Response Time = 90.6320 ms/call

Table 4.6: Second Scenario: Average Response Times using Web Services

Table 4.7 gives the corresponding results for the same scenario, but without using Web
service. The RMI-specific illusion object invoked by the actual client acts as a CORBA
client accessing the actual server. The illusion object is deployed on client capsule (figure
4.11). Again, the execution time of the invocation is substantially larger compared to the
correspinding case of the opposite scenario:

• CORBA response takes 3.7854 ms, while RMI response takes 64.1797 - 3.7854 =
60.3943 ms.

• Concerning the total execution time for the second scenario, the overhead is about
30% higher in the case of using Web service (90.6320 vs 64.1797 ms).

CORBA Response Time = 3.7854 ms/call
RMI Response Time = 64.1797 m s/call

Table 4.7: Second Scenario: Average Response Times without using Web Services

75

Client Capsule r Illusion Capsule i : Server Capsule

'Client Object l
1-̂-- f t - f e

Illusion Object
i ; Server Object

Java RMI | R M I Server / CO RBA Client
-r-W

1 ; CORBA
V_______) V______ - _________)

L. — — — — — — — — — — — I

Figure 4.11: Second Scenario: The RMI-specific Illusion Object access directly the Server
Object

4.2.4 Comparison

The comparison focuses on the following points:

• The introduced overhead in a heterogenous distributed environment compared with
the typical overhead existing in a non-heterogenous environment.

• The overhead in the case of using Web service wrappers versus the overhead in
the case of not using Web service wrappers, as the mediator which realizes the
interoperability.

The first chart (figure 4.12) shows the expected difference in the overhead between the
heterogenous and non-heterogenous cases. In a non-heterogenous environment the over
head arises mainly from the network. On the other hand, in a heterogenous environment
the interoperable software elements introduce extra overhead. The second chart (figure
4.13) shows the substantially larger overhead that is caused by the use o f Web services,
as the mediator element.

CORBAto Java RMI Web CORBAto RMI to
COR BA to Java Service to RMI using CORBA

RMI Web Web using Web
Service services sevlces

■ Total Execution Time

Figure 4.12: Heterogenous vs Non-Heterogenous Distributed Environment

76

Total Execution Time

M Using Web Services

m Not Using Web Services

Figure 4.13: Using Web Services vs Not Using Web Services

4.3 Conclusion

In the developer’s perspective, the benefit from using the Illusion Maker framework is
unquestionable. Someone who wishes to implement the components that will make the
integration of heterogenous applications possible saves significant time, specifically in the
case of large-scale distributed systems. He/she is released from the obligation to have
always to write manually the customary source code, responsible for the interoperabil
ity. On the contrary, he/she has the chance to devote more time about issues concerning
the implementation of the functionality of the distributed applications. The code gen
erator mechanism produces quickly the necessary code for the integration. Afterwards,
the developer has this code at his/her disposal, being free to implement the desirable
functionality. Following that, one can compile the code, produce the corresponding exe
cutable files and deploy them on the suitable hosts. The user is hereafter able to utilize
the integrated distributed applications. He/she can use heterogenous services offered by
the environment through his/her own application, in the same manner as if the assuming
middleware infrastructures were the same.

Regarding the overhead, we have to take into consideration not only the delay introduced
by the utilization of the mediator, but also the network overhead (e.g. the workload, the
throughput, the bandwidth). Depending on the purpose of the provided functionality, the
capability of the applications to serve quickly the clients’ requests may be crucial. So, we
have to examine solutions in order to minimize the extra overhead.

In the previous section, we saw that the use of the Web service wrappers introduces a
significant overhead. On the other hand, in section 3.6 we emphasized that the use of the
Web services provides the framework with an important degree o f scalability, as regards
design issues for future extensions of its functionality. Hence, we have a trade-off concern
ing the use of Web services, and for this reason we should try to minimize the negative
effect of the overhead. We might pay more attention on the issue of the deployment of
the components that bring the interoperability. Specifically, we can examine where the
interoperable elements are better to be deployed, i.e. on the client capsule or on the

77

server capsule. If the functionality o f a distributed application is critical with respect to
the execution time involved, the use of Web services as the mediator might be avoided.
In this case, it would be better to prefer a solution like the ones depicted by figures 4.9
or 4.11.

/·

f
f*. I'

78

C h a p t e r 5

C o n c l u sio n

5.1 Summary

5.2 Future Work

5.1 Summary

In this thesis, we discussed the problem of interoperability between distributed appli
cations that have been implemented on top of heterogenous middleware infrastructures.
We proposed the Illusion Maker framework that aims at enabling middleware platform
interoperability, without imposing any particular constraint on the middleware platforms,
used for the development of the distributed applications. Given a client application that
relies on a particular middleware platform and a server application that relies on another
middleware platform, the Illusion Maker creates the ’’ illusion” that the server application
relies on the platform assumed by the client application.

The framework automates the process of generating the source code of the software ele
ments that constitute the aforementioned illusion. The code generator mechanism does
not depend on the platforms assumed by the client or the server. Specifically, the gen
eration of illusions relies on platform specific patterns which are given as input to the
Illusion Maker framework. These patterns specify a set of rules that model the descrip
tions of mappings between the different middleware standards. In this way, the proposed
approach is rendered generic enough to be used in any distributed environment.

We chose to use XML for the specification of the platform specific patterns. In this way,
the parsing of the patterns was facilitated. We implemented a SAX parser, which accepts
as input an XML-based description of a platform specific pattern and converts it into a
list of objects, belonging to a particular class hierarchy. To define this class hierarchy, we
applied the Interpreter design pattern. Also, the Interpreter design pattern simplified the
implementation of the code generation process.

79

The evaluation of the proposed methodology focused on the benefit for a developer, follow
ing from the fact that he/she does not have to write the necessary source code manually.
The framework produces the interoperable source code quickly. A developer has at his
disposal this code, saving significant time which he/she can devote to implement the desir
able functionality. In addition, we examined the issue of the overhead, which is introduced
inevitably by adding the interoperable software elements to a distributed environment.
The experimental results showed that the use of Web services as the intermediate element
for the integration causes an important increase in the time needed for the execution of a
client request.

5.2 Future W ork

Prom an engineering point of view, one can further explore the following issues:

• The extension of the framework in order to be able to handle complex data types
and exceptions.

• The capability of the already defined pattern rules to specify new patterns in case
of using other middleware platforms (in addition to CORBA and Java RMI).

• The interoperability issues introduced by the use of different middleware services
' (e.g. the CORBA Object Transaction Service) on the side of the client that differ
from the middleware services assumed on the side of the server (e.g. the Java
Transaction Service). It would be a challenge, indeed, to define patterns for this
kind of services.

• The possibility to replace the XML descriptions with other more user-friendly de
scriptions.

Regarding the performance of the distributed applications, one could examine the issue
of deployment of the components that bring the interoperability. If these components
are deployed on client-side, the performance may be enhanced. However, this deployment
causes security issues concerning the client machine. On the other hand if the components
are deployed on an intermediate machine or on the server machine, the performance may
degrade. Finally, the possibility of using other middleware platforms in place of Web
services with respect to the issue of performance, could be investigated.

80

Bibliography

[1] E. Aarts, R. Harwig and M. Schuurmans, Ambient Intelligence, chapter The Invisible
Future: The Seamless Integration o f Technology into Everyday L ife , pp. 235-250.
McGraw-Hill, 2001.

[2] M. Aleksy, A. Korthaus, M. Schader, Implementing Distributed
Systems with Java and Corba, Springer, June 2005, available at
http://www.springerlink.com/content/n4v226/?p=8b685689f0494cflae95040flbe65256&pi

[3] The Apache Software Foundation , WebServices-Axis, Java Axis API Documentation
for Apache Axis 1.2, May 2005, http://ws.apache.org/axis/java/apiDocs/index.htm l

[4] P. A. Bernstein, Middleware: A Model for Distributed System Services, Communi
cations o f the ACM , 39(2), pp. 86-98, Feb. 1996.

[5] Y.-D. Bromberg and V. Issarny, INDISS: Interoperable Discovery System for Net
worked Services, In Proceedings o f Middleware 2005, pp. 164-183, 2005.

[6] W. Emmerich, Engineering Distributed Objects, John Wiley h Sons, Ltd, 2000.

[7] P. Falcarin and G. Alonso, Software Architecture Evolution through Dynamic AOP.
In F. Oquendo, B. Warboys, and R. Morrison, editors, Software Architecture: First
European Workshop (EW SA 2004), volume 3047 of LNCS, pp. 57-73. Springer, 2004.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements o f
Reusable Object-Oriented Software, Addison-Wesley Longman, 1995.

[9] P. Grace, G. S. Blair and S. Samuel, A Reflective Framework for Discovery and
Interaction in Heterogeneous Mobile Environments, A C M M obile Computing and
Communications Review, 9(1), pp. 2-14, 2005.

[10] E. R. Harold, Processing XM L with Java, 2002, Online Edition available at
http://www.cafeconleche.org/books/xm ljava/.

81

http://www.springerlink.com/content/n4v226/?p=8b685689f0494cflae95040flbe65256&pi
http://ws.apache.org/axis/java/apiDocs/index.html
http://www.cafeconleche.org/books/xmljava/

[11] ISO/IEC. Open Distributed Processing Reference Model, P a rts: Architecture. Tech
nical Report 10746-3, ISO/IEC, 1995.

[12] M. Morrison, Teach Yourself X M L in 24 Hours, Second Edition, by Sams Publishing,
2002.

[13] Object Management Group Available Specification, ID L to Java Language M ap

ping, Version 1.3, OMG Document Number: formal/08-01-11, January 2008,
http://www.omg.org/cgi-bin / doc?form al/08-01-12

[14] Object Management Group Available Specification, Java to ID L Language M ap

ping, Version 1.4, OMG Document Number:formal/08-01-14, January 2008,
http://www.omg.org/cgi-bin/doc7formal/08-01-14

[15] Sun Microsystems Inc., JSR-101 Expert Group, Java(T M) A P I for

XM L-based R P C J A X -R P C Specification, Version 1.1, October 2003,
http://jcp.org/aboutJava/communityprocess/final/jsrl01/index2.html

[16] A. Zarras, A Comparison Framework for Middleware Infrastructures, Journal o f Ob

ject Technology, 3(5), pp. 100-123, 2004.

[17] A. Zarras, Applying Model Driven Architecture to Achieve Distribution Transparen
cies, Information and Software Technology, 48(7), pp. 498-516, 2006.

82

http://www.omg.org/cgi-bin
http://www.omg.org/cgi-bin/doc7formal/08-01-14
http://jcp.org/aboutJava/communityprocess/final/jsrl01/index2.html

A ppendix

RMI-to-WebServices Pattern

Listing 5.1: Generation of Java RMI Illusion Interfaces

10

20

25

30

<?xm l v e r s io n = " 1 . 0 "?>
<pattern ty p e = " In te r f" platform="RMI">

<datatypes>
<datatype id="0" name="void">void</datatype>
<datatype id = " l" name="boolean">boolean</datatype>

<datatype id="2" name="char">char</datatype>
<datatype id="3" nam e="string">String</datatype>
<datatype id="4" name="byte">byte</datatype>
<datatype id="5" name="unsigned byte">short</datatype>
<datatype id="6" name=" short ">short</datatype>
<datatype id="7" name="unsigned short">short</datatype>
<datatype id="8" name="int">int</datatype>
<datatype id="9" name="unsigned in t"> in t< /d atatyp e>
<datatype id ="10" name="long">long</datatype>
<datatype id = " l l " name="unsigned long">long</datatype>
<datatype id ="12" nam e="float"> float</datatype>
<datatype id = " 13 " name="double">double</datatype>
<datatype id ="14" name="BigInt "> java . math . B ig ln tegerc/

datatype>
<datatype id = " 15 " name=" decimal ">jav a . math . BigDecimal</

datatype>
</datatypes>
<interf_exp>

< 1 iteral_exp>im port java .rm i . * ;</ l i te ra l_ e x p >
<literal_exp>public interface < / literal_exp>
<interf_name />
<literal_exp> extends Remote { < / literal_exp>
<operation_exp>

<retType/>
<opName/>
<literal_exp>(</ liter al_exp>
<arg_exp>

<direction_type_argName />
<literal_exp> ,</ liter al_exp>

</arg_exp>
<literal_exp>) throws RemoteException ;< / literal_exp>

83

35

36

40

</operation-exp> ; ’ · - « - " ;.ί„ϋ m '··
<lite ra l_exp > -n ew lin e< / lite ra l_exp >
<literal»exp>}</ liter al_exp> v
<literal_exp>_newline</literal_exp> 'v

</ interf.exp> . ■- ■ y-.y ;
</ pattern>

ί

Γ
I
1

f

I
i

?;v · .·; :' · '·..'■ ■■ :>.y y :.■ y y ^ s r ·- ' ;>y^- ;· : ‘ " · λ >; 0 ; -r ■ .-■ / ·.' λ ; V., y v . y

. V̂. ·. · : ■ - - | : ■’ , '■ i,’ ■ .ί· :: . : s ; ! : r - _ ν !ν '· V a l i z r y 1 " ' i i ' n i ’ ··'
i'

Ί

/ n r . * ; > < v y ; ?. y ‘ r, A ' '/ V / v p t-V ' . .. i
‘ ■= v .y y irV ” i; ·:

.-· r
t

v i'.·; ■■ ·: . -.· ·'Ί ξ ΐ p S i v r i y ; • - V ■ :; ί -ί 'S -> y y ■ ■ f

*; 'v · ·> i· ;·'. - 1 ■ i y - ; 1 v . r..-··1 ’ ’ ■ ; - 1
. , ί ' ϊ ϊ ν " ■ >.<¥··-,:-,.i· ..·■. y > y - , ; i ;i V r y · ' 4 -,. ί : >·.; • i .

-d:S-‘ i:- · : , : i r ; ; ; . - t » ’ - -Λ : · , , “ν - 5 Vi r . : : ; iy-ps':

■] i.'~ :‘ r · . t ' · ' · , ; ·“? ■-■) ·:.'· y ’'. 'Ί * " jhV v i f i f t Λ ·^ :. ·; ;:···; ^ ^ y ' · . - n ; 7 ■:· ^ •V y-tyV vf*.■ t

■/ ·Λ ·:.;· ■ ; '■> ’■■ . : ' ■ “ ·- ' j ij»yi V Vi v -- ; ' ■ If··. .. v V '.7, , : -y . v
ί
\

·« Si'y /■ y y> · -- . ■ ' . -* V-V‘ Γ '■ ■ ■ ,:·.?; y y ; - r -; , ■ ;■ -i- 7

-~y -y.-'i ‘ y ' ’ :* -v. • ■<!;[■; ·., . . £*: s?.;V r ·■ .·.* , .

' Or ‘ ; o;< o ■; 'τ " ,f 7 \ -■ v. . · , ■ ■ ■' .·.· ; -y · ' :. ./ ■t

I

:'s ·.? ;:·'·· .·. ·.■ '>; -· ,···'Ϋ>
7.Vv

y:-: V - y , ' ' v ,5^<; v : : y W s r - n V y V· r r ' - ; i f y j S V i

■ -V y y v i - v ' y i y ; v ‘ y ; - · y, : • · ̂ ;* ;·>..·' '■ U - y " ί ii ;■ , .ν ρ * ί - ; j ! v v I
. ■ ; / . : . { % J' / : -■·'■■ s " - · n y c i ^ - 11 ... V $ n . - V V v 7 y y y y . , :V ' . , r ’■- v r r ■■■"" · I

V ? v - · > ?.· ·..; A ' U y *y v y C ' ν · · ί · - ' · - / · ό * 4 · 'ί*·ο V Γ : - ·' '.f

: 4 v i . i y V V ■v i . ' . -Λ ■ V '> y .1 i- < > '£ "J: * : · \ 7 ζ "V V i f i . * ! . ■ : f ·(

f ;'· t" r f yiv: V·*··» ; , ' - V ? r - " L r . v : v ; r , ί i

’ » , <*: , ■ ■ v »;·..(·> i

:y M r - r r “ tii'V V /frvV -i t-,Η ,*■i · S t ”■ ;■' »'■:'. 7 ' ί; .· y e r t! ’ ' 'v i v ' - y r y t r ; V / i V y - ' .

, v-y y J ' ; (: ■ , v v :< r . / ; y Γ '- r ' i ' „ T' ; .· Γ : r V · ■·, •y v ■·■? ” v t H t ; -

y ;ϊ :· y. ; ,V ' V V 1 . : ^ Η ^ ν - ;ί 7<v"Ov ' :■ r- Τ V ·. y- ■ /■ ■■ ■ > " .v

“ Vvr ' ; .. ·.'■ ’ · .] V Λ V f -Λ.,?ί· V i ^ y -jv U - ;

’‘“A i - S 54 -V '·’ ' ■ Η.'!·"·. t ' “ i 1 y : y y -

■f· O ■’ ■■■£'. ■ - : 'VVy ' ν·ίπ.:.: j. .v,i;y~ · ;■;·> _ ’

v. . v. ,?.■*·./" , ,· ·■■ y .. y . f t * y , , V·. ; y

: ; ' ί ϊ V V-;·' : y * y >'■ y y ■ , y , y y .;· ^ - r i . V _

· V' ·- ■ ·>··;'·;;· : - Γΐ,*:--.y- . 'χϊ
■- , y V-« -f “ v Λ i · - · ' ,-T .·’ jySi η* . £ ;% i,

V:;y :■ ;··|ί«!>·
; ί;·:

r-- ; - ■ ; :u ■■■' ’Λ* --
: V ■■ ■' ■
j - ■■· ··■ v r v -

r ·■ ·" '■ -Λ ̂ ··

;* ;■■ -v · ·■ ?·. vtri
it: ·; v :-r

?·■ '·.;. *y v -r s.: r, y i> i V. -■ it

ί ■ >C0vy ?;;--·̂ ίί:ϊ. .- .i‘^ -
' y v.· y.

■ :'.. ■ v ■ v■ ■ ':·Ρ
. . . ; ;; ; '■' - ^

'<ypsrrs- ŷ>J > ϊ ? ί , μ ι . .· - ■-
K/iVsr jtpf;

< s>; V»·■ i k i, ̂ -n ; a v ̂ f. £ ? ‘ - y-av ii'fy·'

1

s

10

15

20

25

_________ Listing 5.2: Generation of Java RMI-specific Object Implementations________
<?xml v ers io n = " 1 . 0" ?>
<pattern type="0bjectlmpl" platform="RMI">

<datatypes>
<datatype id="0" name="void" retValue="null" xmltype="AXIS_VOID"

javalangtype="null">void</datatype>
<datatype id="l" name="boolean" retValue="f alse" xmltype="

XSD.BOOLEAN" javalangtype="Boolean">boolean</datatype>
<datatype id="2" name="char" retValue=" 1 \u0000 * " xmltype="

XSD.STRING" javalangtype="Character ">char</datatype>
<datatype id="3" name="string" retValue="null" xmltype="

XSD_STRING" javalangtype="String">String</datatype>
<datatype id="4" name="byte" retValue="-1" xmltype="

XSD.BYTE" javalangtype="Byte">byte</datatype>
<datatype id="5" name="unsigned byte" retValue="- l" xmltype

= " XSD.UNSIGNEDBYTE" javalangtype="Short">short</datatype
>

<datatype id="6" name=" short" retValue="- l" xmltype="
XSD.SHORT" javalangtype="Short">short</datatype>

<datatype id="7" name=" unsigned short" ret Value—1-1"
xmltype="XSD_UNSIGNEDSHORT" j avalangtype="Short ">short</
datatype>

<datatype id="8" name="int" retValue="- l" xmltype="XSD_INT"
javalangtype=" Integer ">int</ datatype>

<datatype id="9" name="unsigned int" retValue="-1" xmltype=
"XSD.UNSIGNEDINT" javalangtype="Integer">int</datatype>

<datatype id="10" name="long" retValue="- l" xmltype="
XSD.LOMG" j avalangtype=" Long ">long</dat at ype>

<datatype id—"11" name="unsigned long" retValue="-1"
xmltype="XSD_UNSIGNEDLONG" javalangtype="Long">long</
datatype>

<datatype id="12" name="float" retValue="-1 .0 " xmltype="
XSD.FLOAT" javalangtype="Float">f loat</datatype>

<datatype id="13" name="double" retValue="-1 .0" xmltype="
XSD.DOUBLE" javalangtype="Double">double</datatype>

<datatype id="14" name="BigInt" retValue="java.math.
Big lnteger . ZERO" xmltype="XSD_INTEGER" javalangtype="
java, math. Biglnteger ">java . math . Biglnteger</datatype>

<datatype id="15" name="decimal" retValue="new java.math.
BigDecimal(java.math.Biglnteger. ZERO)" xmltype="
XSD.DECIMAL" javalangtype="java.math.BigDecimal">java.
math. BigDecimal</datatype>

</datatypes>
<parametermodes>

Cmode n am e = " in "> IN < /m o d e >
<mode name=" out ">OUT</ mode>
<mode name=" inout ">INOUT</mode>

</parametermodes>
< e le m e n t_ e xp >

< l i t e r a l _ e x p > i m p o r t j a v a . r m i . * ; < / l i t e r a l _ e x p >

85

29

30

35

40

45

50

55

60

65

70

75

< l i t e r a l _ e x p > i m p o r t ja v a . r m i . server . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org . apache . a x i s . c l i e n t . C a l l ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org . apache . axis . c l i e n t . S erv ice ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org . apache . axis . encoding . X M L T y p e ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org .apache . axis . u t i l s . Options ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t ja v a x . x m l . rpc . ParameterMode ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t j a v a , u t i l . P r o p e rt ie s ; < / l i t e r a l _ e x p >
< 1 i t e r a l _ e x p > i m p o r t j a v a . n e t . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t j a v a . l a n g . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > p u b l i c c la s s < / l i t e r a l _ e x p >
<elem ent_n ame/>
< l i t e r a l _ e x p > extends UnicastRemoteObject implements < / l i t e r a l _ e x p >
< in te r f_ n am e / >
< l i t e r a l _ e x p > { < / l i t e r a l . e x p >
< l i t e r a l . e x p > p r i v a t e S tr in g endpoint ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > p u b l i c < / l i t e r a l _ e x p >
<element_ na me/>
< l i t e r a l _ e x p > (S tr in g servURL) throws RemoteException { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > e n d p o i n t = servURL ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > } < / l i t e r a l _ e x p >
< o p e r a t i o n _ e x p >

< l i t e r a l _ e x p > p u b l i c < / l i t e r a l _ e x p >
< r e t T y p e / >
<opName/>
< l i t e r a l _ e x p > (< / l i t e r a l _ e x p >

' < a r g _ e x p >
< d ir e c t io n _ t y p e _ a r g N a m e / >
< l i t e r a l _ e x p > , < / l i t e r a l _ e x p >

< / a r g _ e x p >
< l i t e r a l _ e x p >) { < / l i t e r a l _ e x p >
< l i t e r a l » e x p > t r y { < / l i t e r a l _ e x p >
< 1 i t e r a l _ e x p > S e r v i c e s e r v ic e = new S erv ice () ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > C a l l ca l l ' = (C a l l) s e r v i c e . c r e a t e C a l l () ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > c a l l . s e tT a r g e tE n d p o in tA d d re s s (new U R L (e n d p o in t)) ; < /

l i t er al _ e x p >
< l i t e r a l _ e x p > c a l l . se tOpera tio nN am e(" < / l i t e r a l _ e x p >
<opName/>
<l itera l_exp>") ;< / l i te ra l_exp>
<addparameter _exp>

< l i t e r a l _ e x p > c a l l . addParameter (" a r g < / l i t e r a l _ e x p >
<arg_id/>
< l i t e r a l _ e x p > ' ' , X M L T y p e . < / l i t e r a l . e x p >
< t y p e / >
< l i t e r a l _ e x p > , ParameterMode . < / l i t e r a l _ e x p >
< d i r e c t i o n / >
< 1 i t e r a l _ e x p >) ; < / l i t e r a l _ e x p >

< / addparameter_exp>
< l i t e r a l _ e x p > c a l l . se tReturnType (X M L T y p e . < / l i t e r a l _ e x p >
< r e t T y p e / >
< l i t e r a l . e x p >) ; < / l i t e r a l - e x p >

86

80

78

85

90

95

100

105

110

<in v ok e >
< r etT yp e_exp i d = " 1 " >

< r e t T y p e / >
< l i t e r a l _ e x p > ret = (< / l i t e r a l _ e x p >
< r e t T y p e / >
< 1 i t e r a l _ e x p >) < / l i t e r a l . e x p >

< / retT yp e_ex p>
< l i t e r a l _ e x p > c a l l . invoke (new ja v a . lang . Object [] { < / l i t e r a l . e x p >
< a r g _ e x p >

< d i r e c t i o n _ t y p e _ a r g N a m e / >
< l i t e r a l _ e x p > , < / l i t e r a l _ e x p >

< / arg_exp>
C r etT y p e .e xp i d = " 2 " >

< l i t e r a l _ e x p > _ t a b < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > r e t u r n ret ; < / l i t e r a l _ e x p >

< / r e t T y p e _ e x p >
< / i n v o k e >
< l i t e r a l _ e x p > } < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > c a t c h (E xc eption ex) { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > S y s t e m . err . p r i n t l n ("ERROR: " + ex) ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > e x . p r i n t s t a c k T r a c e (S y s t e m . o ut) ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > S y s t e m . o u t . p r i n t l n ("Cannot e s t a b l i s h c o n n e c t i o n with Web

S e r v i c e ! ") ; < / l i t e r a l _ e x p >
C r et T y p e .e x p i d = " 3 " >

C l i t e r a l _ e x p > _ t a b < / l i t e r a l _ e x p >
- < l i t e r a l _ e x p > r e t u r n < / l i t e r a l _ e x p >

<ret Valu e / >
< l i t e r a l _ e x p > ; < / l i t e r a l _ e x p >

< / r e t T y p e > e x p >
< l i t e r a l _ e x p > } < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > } < / l i t e r al _ e x p >

< / o p e r a t io n _ e x p >
< 1 i t e r a l _ e x p > _ n e w l i n e < / l ' i t e r a l . e x p >
< 1 i t e r a l _ e x p > } < / l i t e r a l _ e x p >

< / element_exp>
< / p a t t e r n >

87

1

s

10

15

20

25

30

35

40

45

Listing 5.3: Generation of Java RMI-specif ic Illusion Capsules__________

<?xml v e r s i o n = " 1 . 0 " ?>
< p a t te r n ty p e = " C a p s u le " p la t fo r m = "R M I ">

< r e f e r e n c e _ e x p >
< l i t e r a l _ e x p > i r a p o r t j a v a . rmi . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t ja v a . r m i . server . * ; < / l i t e r a l - e x p >
< l i t e r a l _ e x p > i m p o r t j a v a . n e t , * ; < / l i t e r a l _ e x p >
< l i t e r a l . e x p > p u b l i c c la ss < / l i t e r a l _ e x p >
< r e f e r e n c e _ n a m e />
< l i t e r a l _ e x p > S e r v e r { < / l i t e r a l . e x p >
< l i t e r a l _ e x p > p u b l i c s t a t i c void m a in (S tr in g a r g s []) { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > t r y { < / l i t e r a l _ e x p >
<element_narae / >
< l i t e r a l _ e x p > impl = new < / l i t e r a l _ e x p >
<element_name / >
< l i t e r a l _ e x p > (" h t t p : / / < / l i t e r a l _ e x p >
<IP A ddr ess />
< l i t e r a l _ e x p > : 8 0 8 0 / a x i s / < / l i t e r a l _ e x p >
<jws_exp>

<jws i d = " l " >
< l i t e r a l _ e x p > W S _ < / l i t e r a l _ e x p >
< r e f e r e n c e . n a m e / >
< l i t e r a l _ e x p > _ < / l i t e r a l _ e x p >
< s e r v e r _ p l a t f o r m / >
< l i t e r a l _ e x p > C l i e n t < / l i t e r a l _ e x p >

< / j w s >
<jws i d = " 2 " >

< r e fe r e n c e _ n a m e />
< l i t e r a l _ e x p > S e r v e r < / l i t e r a l _ e x p >

< / j w s >
< / j w s _ e x p >
< l i t e r a l _ e x p > . j w s ") ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > N a m i n g . rebind (" < / l i t e r a l _ e x p >
< r e fe re n c e _ n a m e />
< l i t e r a l _ e x p > " , impl) ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > S y s t e m . o u t . p r in t In ("RMI < / l i t e r a l _ e x p >
< r e fe re n c e _ n a m e />
< l i t e r a l _ e x p > s t a r t e d on IP " + I n e tA d dress . g e t L o c a lH o s t () .

getHost Address () + " \ n ") ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > } < / l i t e r a l _ e x p >
C l i t e r a l _ e x p > c a t c h (Exception ex) { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > S y s t e m . err . p r in t ln ("ERROR: " + ex) ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > e x . p r in tS t a c k T r a c e (System . o u t) ; < / l i t e r a l _ e x p >
<1 it e r a l _ e x p > } < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > } < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > } < / l i t e r a l _ e x p >

< / r e f e r e n c e _ e x p >
< / p a t t e r n >

88

W ebServices-to-CORBA pattern

1

5

10

15

20

25

_________Listing 5.4: Generation of Web Services that serve as CORBA Clients________
<?xml v e r s i o n = " 1 . 0 " ? >
<pattern type="ObjectImpl" platform="WS">

<datatypes>
<datatype id="0" name="void" retValue="null">void</datatype>

<datatype id="l" name="boolean" ret Value=" fa lse " holder="
j avax. xml. r p c . ho lders . BooleanHolder">boolean</ datatype>

<datatype id="2" name="char" retValue=" ’ \u0000 * " holder="
javax. xml. r p c . ho lders . StringHolder">char</datatype>

<datatype id="3" name="string" retValue="null" holder="
javax . xml. r p c . ho lders . StringHolder">String</datatype>

<datatype id="4" name="byte" retValue="- l" holder=" j avax .
xml. r p c . ho lders . ByteHolder ">byte</datatype>

<datatype id="5" name=" unsigned byte" retValue="-1" holder=
" javax . xml. r p c . ho lders . ShortHolder">short</datatype>

<datatype id="6" name="short" retValue="- l" holder=" javax.
xml. r p c . ho lders . ShortHolder">short</datatype>

<datatype id="7" name="unsigned short" retValue="- l" holder
= " javax. xml. r p c . ho lders . ShortHolder">short</datatype>

<datatype id="8" name="int" retValue="-1" holder="javax. xml
. r p c . holders.IntHolder">int</ datatype>

<datatype id="9" name="unsigned int" retValue="-1" holder="
- javax. xml. r p c . ho lders . IntHolder">int</datatype>

< d a t a t y p e i d = " 1 0 " n a m e = " lo n g " r e t V a l u e = " - l " h o l d e r = " j a v a x .
xml. rpc . holders . LongHolder ">long</ datatype>

<datatype id = " l l " name="unsigned long" retValue="-1" holder
=" javax . xml. rpc . holders . LongHolder ">long</datatype>

<datatype id="12" name="float" retValue="- 1 .0 " holder="
javax . xml. r p c . ho lders . FloatHolder">float</datatype>

<datatype id="13" name="double" retValue="-1 .0" holder="
j avax . xml. rpc . holders . DoubleHolder ">double</datatype>

<datatype id="14" name="BigInt" retValue="java.math.
Big lnteger . ZERO" holder="j avax. xml. r p c . h o ld e r s .
BiglntegerHolder ">java . math. Biglntegerc /datatype>

<datatype id="15" name="decimal" retValue="new java.math.
BigDecimal(java . math. B ig lnteger . ZERO)" hoider="javax. xml
. rpc . holders . BigDecimalHolder ">java . math. BigDecimal</
datatype>

< / datatypes>
< wra ppe r, exp >

< l i t e r a l _ e x p > i m p o r t org .omg. CosNaming . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org .omg. CosNaming. NamingContextPackage

. * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org .omg.CORBA. * ; < / l i t e r a l , e x p >
< l i t e r a l _ e x p > i m p o r t ja v a . net . * ; < / l i t e r a l _ e x p >
< i i t e r a l _ e x p > p u b l i c c la s s W S _ < / l i t e r a l _ e x p >
< r e f e r e n c e _ n a m e / >

89

30

3S

SO

l
1

55

60

66

<l i tera l .exp>_< / liter al_exp>
<literal_exp>CorbaClient {< / l i t e r a l - e x p >
<interf_name/>
< 1 iteral_exp> ref ; < / liter al_exp>

<wra p pero p era t io n_ex p>
< 1 iteral_exp>public < / l i te ra l_exp>
<retType/>

<opName/>
< l i t e r a l _ e x p > (< / l i t e r a l _ e x p >

< a r g_ e x p >
<direction_type_argName/>
<l iteral_exp> , < / l i teral_exp>

</arg_exp>
<l i tera l_exp>{< / l iter al _exp>

<l iteral_exp>try {< / l i teral_exp>
<literal_exp>String [] args = { " -ORBInitialPort" , "

1050","-ORBInitialHost" , InetAddress.
getLocalHost () . getHostAddress () } ;< / l i t e r a l_ e x p >

<literal_exp>ORB orb = ORB. init (args , n u l l) ;</
l iter al_exp>

C l i t e r a l _ e x p > o r g .omg.OORBA. Ob ject o b j R e f = o rb .
r e s o l v e _ i n i t i a l _ r e f e r e n c e s (" N a m e S e r v i c e ") ; < /
l i t e r a l _ e x p >

<literal_exp>NamingContextExt ncRef =
NamingContextExtHelper . narrow (objRef) ;< /
l i teral_exp>

<li tera l_exp>ref = < / l i tera l_exp>
<interf_name />
<literal_exp>Helper . narrow (ncRef . resolve_str ("< /

l i teral_exp>
<reference_name/>
< l i tera l_exp>")) ; < / l i teral _exp>
<lit'eral_exp>System . o u t . println ("Obtain a handle on

Corba < / l i tera l_exp>
<reference_name/>
<literal_exp> server o b je c t ") ; < / l i teral_exp>
<invoke>

< re tT y p e _ e x p i d = " l " >
<retType/>
< l i tera l_exp> ret = (< / l i t e ra l .e x p >
<retType/>
< l i tera l_exp>) < / l i t e r a l . e x p >

< / retType_exp>
< l i t e ra l_ e x p > re f .< / l i t e ra l_ e x p >
<opName/>
< l i tera l_exp> (< / l i tera l -exp>
<arg_exp>

<direction_type_argName/>
< l i t e r a l . e x p > ,< / l iter a l .exp>

< / arg_exp>

90

70

75

80

85

90

<literal_exp>) ;< / l i tera l_exp>
CretType.exp id="2">

< l itera l_exp>_tab< / l i tera l -exp>
<literal_exp>return ret ; < / l i t e r a l . e x p >

< / ret Type _exp>
</invoke>
<l itera l_exp>}< / l iter al_exp>
<l iteral_exp>catch (Exception ex) { < / l i teral_exp>
<li ter al_exp>ex . print St ackTr ace () ;< / l i te ra l_exp>
<literal_exp>System . ou t . print In ("Cannot establish

Corba server ! ") ; < / l i teral_exp>
<literal_exp>System . exit (0) ;< / l i tera l_exp>
<retType_exp id="3">

<l iteral_exp>_tab</ l iter al_exp>
<literal_exp>return < / l i t e ra l_exp >
<ret Value />
< l i te ra l_exp> ;< / l i te ra l_exp>

</retType_exp>
<l i tera l_exp>}< / l iter al_exp>
<l i te ra l_exp > }< / l i t e r al_exp>

< / wrapperoperation_exp>
<l i te ra l_exp > }< / l i t e r al_exp>

</ wrapper_exp>
</pattern>

connection with

91

CO R B A -to-R M I pattern

To generate CORBA illusion interfaces, we can use the corresponding part of the CORBA-
to-WebServices pattern (see listing 3.3).

Listing 5.5: Generation of CORBA-specific Object Implementations that serve as Java
RMI Clients

1

5

10

15

20

<?xml version=" 1.0" ?>
<pattern type="ObjectImpl" platform="Corba">

<datatypes>
<datatype id="0" name="void">void</datatype>
<datatype id="l" name="boolean" holder="BooleanHolder" retValue="false"

>boolean</datatype>
<datatype id="2" name="char" holder="CharHolder" retValue="

’ \u0000’ ">char</datatype>
<datatype id="3" name="string" holder="StringHolder"

ret Value=" null">String</datatype>
<datatype id="4" name="byte" holder="ByteHolder" retValue="

- l ">byte< / datatype>
<datatype id="5" name=" unsigned byte" holder="ShortHolder"

retValue=" - l">short</datatype>
<datatype id="6" name="short" holder="ShortHolder" retValue

=" -1 ">short</ datatype>
<datatype id="7" name="unsigned short" holder="ShortHolder"

retV alue=" -l">short</datatype>
<datatype id="8" name="int" holder="IntHolder" retValue="-l

">int</datatype>
<datatype id="9" name="unsigned int" holder="IntHolder"

ret Value=" - l">int</datatype>
<datatype id="10" name="long" holder="LongHolder" retValue=

" - l">long</datatype>
<datatype id = " l l " name="unsigned long" holder="LongHolder"

retValue="-l">long</datatype>
<datatype id="12" name="float" holder="FloatHolder"

retValue=" - 1 . 0">f loat</datatype>
<datatype id="13" name="double" holder="DoubleHolder"

retValue=" - 1 . 0">double</datatype>
<datatype id="14" name="BigInt" holder="0bjectHolder"

ret Value=" java.math. B ig lnteger . ZER0">java.math.
Biglntegerc/datatype>

<datatype id="15" name="decimal" holder—ObjectHolder"
retValue="new java . math. BigDecimal(j a v a . math. B ig lnteger .
ZERO) ">java .math. BigDecimal</datatype>

</ datatypes>
<element_exp>

< l i t e r a l _ e x p > i m p o r t org .omg. CosNaming . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org .omg. CosNaming. NamingContextPackage .* ; < /

l i t e r a l _ e x p >

92

25

26

35

50

55

60

65

70

< l i t e r a l _ e x p > i m p o r t org . omg.CORBA. * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org .omg. Po rt a b le S e rv e r . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org .omg. P ort ab le S erv er .P O A ;< / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t ja v a . r m i . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t ja v a . rmi . s e r v e r . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t ja v a . u t i l . P r o p e r t i e s ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t ja v a .net . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t j a v a . l a n g . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > p u b l i c c la s s < / l i t e r a l _ e x p >
<elem ent_n ame/>
< l i t e r a l _ e x p > extends < / l i t e r a l _ e x p >
< i n t e r f _ n a m e / >
< l i t e r a l _ e x p > P O A { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > p r i v a t e ORB orb ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > p r i v a t e Str in g R M I S e r v e r U R L ; < / l i t e r a l _ e x p >
< i n t e r f _ n a m e / >
< l i t e r a l _ e x p > r e f ; < / l i t e r a l _ e x p >

< l i t e r a l _ e x p > p u b l i c < / l i t e r a l _ e x p >
<element_name / >
< l i t e r a l _ e x p > (S tr in g servURL) { < / l i t e r a l _ e x p >
<li te ra l_e x p > R M IS e r v e rU R L = servURL ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > } < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > p u b l i c void setORB(ORB o r b . v a l) { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > t h i s . orb = o r b . v a l ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > } < / l i t e r a l _ e x p >
< o p e r a t i o n _ e x p >

< l i t e r a l _ e x p > p u b l i c < / l i t e r a l _ e x p >
< r e t T y p e / >
<opName/>
< l i t er a l _ e x p > (< / l i t e r al _ e x p >
< a r g _ e x p >

< d ir e c t io n _ t y p e _ a r g N a m e / >
< l i t e r a l _ e x p > , < / l i t e 'r a l _ e x p >

< / arg_exp>
< l i t e r a l _ e x p >) { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > t r y { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > r e f = (< / l i t e r al _ e x p >
< in t e r f_ n a m e / >
< l i t e r a l _ e x p >) Naming. lookup (RMIServerURL) ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > S y s t e m . o u t . p r i n t l n ("Obtain a handle on RMI </literal_exp

>
<reference_name/>
<literal_exp> server object");</literal_exp>
< in v o k e >

< re tT y p e _ e x p i d = ‘' l H>
< r e t T y p e / >
< l i t e r a l _ e x p > ret = (< / l i t e r a l _ e x p >
< r e t T y p e / >
< l i t e r a l _ e x p >) < / l i t e r a l _ e x p >

< / r etT yp e_e x p>

93

74

75

80

85

90

95

100

<litera l_exp>ref . < / l i tera l .exp>
<opName/>
<li t e ra l_exp > (< / l i te ra l , ex p>
<arg_exp>

<direction_type_argName/>
<l iteral_exp> , < / l i teral_exp>

< / arg_exp>
<l i te ra l .exp >) ; < / l i teral_exp>
CretType.exp id="2">

<literal_exp>return ret ; < / l i teral_exp>
< / retType_exp>

</invoke>
< l i tera l_exp>}< / l i tera l_exp>
<literal_exp>catch (Exception ex) {< / l i t e r a l_ e x p >
<litera l .exp>ex .pr intStackTrace () ;< / l i tera l_exp>
<literal_exp>System . ou t . println ("Cannot establish connection with RMI

server!") ;< / l i tera l_exp>
<literal_exp>System . exit (0) ;< / l i tera l_exp>
<retType_exp id="3">

<l iteral_exp>return < / l i t e ra l_exp >
<retValue/>
< l i te ra l_ e xp > ;< / l i t e r a l .exp>

</retType_exp>
< l i tera l_exp>}< / l iter al_exp>
< l i te ra l_exp > }< / l i t e r al_exp>

</operation_exp>
< l i t e r a l . e x p > }< / l iter al_exp>

</ element_exp>
< / pattern>

94

Listing 5.6: Generation of CORBA-specific Illusion Capsules that host CORBA Objects
serving as Java RMI Clients

1

5

10

15

20

25

30

35

<?xm l v e r s i o n = " 1 . 0 " ? >
< p at te r n t y p e = " C a p s u l e " p l a t f o r m = " C o r b a " >

< r e f e r e n c e _ e x p >
< l i t e r a l _ e x p > i m p o r t org .omg. CosNaming . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org .omg. CosNaming. NamingContextPackage . * ; < /

l i t er al _ e x p >
< l i t e r a l - e x p > i m p o r t org .omg.CORBA. * ; < / l i t e r a l _ e x p >

< l i t e r a l _ e x p > i m p o r t org .omg. P o r t a b le S e r v e r . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org .omg. P o rta b le S e r ve r ,P O A ;< / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t ja v a . net . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > p u b l i c c la s s < / l i t e r a l _ e x p >
< r e f e r e n c e _ n a m e />
< 1 i t e r a l _ e x p > S e r v e r { < / l i t e r al _ e x p >
< l i t e r a l _ e x p > p u b l i c s t a t i c void m a in (S tr in g a r g s []) { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > t r y { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > O R B orb = ORB. i n i t (args , n u l l) ; < / l i t e r a l _ e x p >
< l i t e r a l . e x p > P O A rootpoa = POAHelper. narrow (orb .

r e s o l v e _ i n i t i a l _ r e f e r e n c e s (" R o o t P O A ")) ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > r o o t p o a . the_POAManager () . a c t i v a t e () ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > o r g .omg.CORBA. Object o b jR e f = orb.

r e s o l v e _ i n i t i a l _ r e f e r e n c e s (" NameService") ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > N a m i n g C o n t e x t E x t ncRef = Nam ingContextExtHelper . narrow (

o b jR e f) ; < / l i t e r a l _ e x p >
< e le ment_ na me/>
< l i t e r a l _ e x p > impl = new < / l i t e r al _ e x p >
<element_ na me/>
< l i t e r a l _ e x p > ("rmi : / / < ! - - " + Inet Address . g e t L o c a lH o s t () . get Host Address ()

+ " / - - > < / l i t e r a l _ e x p >
< IP A ddr ess />
< l i t e r a l _ e x p > / < / l i t e r a l . e x p >
< r e f e r e n c e . n a m e / >
< l i t e r a l _ e x p > ") ; < / l i t e r a l _ e x p >
C l i t e r a l _ e x p > i m p l .se tO RB (o rb) ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > o r g .omg.CORBA. Object r e f = r o o t p o a . s e r v a n t _ t o _ r e f e r e n c e (

impl) ; < / l i t e r a l _ e x p >
< in te r f_ n a m e / >
< l i t e r a l _ e x p > href = < / l i t e r a l _ e x p >
< in te r f_ n a m e / >
< l i t e r a l _ e x p > H e l p e r . narrow (r e f) ; < / l i t e r a l _ e x p >
<litera l_exp>Na me Co mp one nt path[] = n c R e f . to .name (" < / l i t e r a l _ e x p >
< r e fe r e n c e_ n a m e />
< l i t e r a l _ e x p > ") ; < / l i t e r a l > e x p >
< l i t e r a l _ e x p > n c R e f . rebind (path , h r e f) ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > S y s t e m . o u t . p r i n t l n ("Corba < / l i t e r a l _ e x p >
< r e fe re n c e _ n a m e />

95

40

41

45

50

<literal_exp> started on IP " + InetAddress . getLocalHost () .
getHostAddress ()+"\n") ; < / l i teral_exp>

<literal_exp>orb . run () ; < / l i teral_exp>
< l i tera l_exp>}< / l i ter al_exp>
<literal_exp>catch(Exception ex) {< / l i t e ra l_ e x p >
<literal_exp>System . err . println ("ERROR: " + ex) ; < / l i t e r a l - e x p >
<li teral_exp>ex . printStackTrace (System . out) ;< / l i tera l_exp>
< l i tera l_exp>}< / l i teral_exp>
Cliter al_exp>}<y liter al_exp>
<l itera l_exp>}</ l i t e r a l e x p >

</reference_exp>
</pattern>

'. t \

r ■

i

r]vr· ' . '■· V j _■

·. i ·. : ·'

\ i

i

■ i - i ·· i. ' . . ·
* ; . , v r* . - , S

;·

:■ '
1 . . . ,

. c ■

? Λ . y , . ..

■ . · ; ; ; 1 * : τ ' ■ *;.

t · : ·

■ f : '

' ' ' ‘ ·: · · 1 ir ■ ,J·; ■ ■*.■. ' V. h 1

·■■■« ■ i X M S S .■'·■?

' '
. λ Χ ·
; · ν . * ; s y *.

’ ■■■ : * &,£:>■'

' ·' r ■ ■ '

96

R M I-to-C O R B A pattern

To generate Java RMI illusion interfaces, we can use the corresponding part of the RMI-
to-WebServices pattern (see listing 5.1 in the current appendix).

Listing 5.7: Generation of Java RMI-specific Object Implementations that serve as
CORBA Clients

1

5

10

15

20

25

<?xml v e r s i o n = " 1 . 0 " ? >
<pattern type="0bjectlmpl" platform="RMI">

<datatypes>
< d ataty p e i d = " 0 " n am e = "vo id " r e t V a l u e = " n u l l " > v o i d < / d a t a t y p e >

< d a t a t y p e i d = " l " nam e = "bo o le a n" r e t V a l u e = " f a l s e " > b o o l e a n < /
d ataty p e >

<datatype id="2" name="char" retValue="’ XuOOOO ’ ">char</
datatype>

<datatype id="3" name=" string" retValue="null">String</
datatype>

<datatype id="4" name="byte" retValue="- l">byte</datatype>
<datatype id="5" name="unsigned byte" retValue="- l">short< /

datatype>
<datatype id="6" name="short" retValue="-l ">short</datatype

>
<datatype id="7" name="unsigned short" retValue="- l">short<

/datatype>
<datatype id="8" name="int" retValue="- l">int</datatype>
<datatype id="9" name="unsigned int" retValue="- l "> int< /

datatype>
< d a t a t y p e i d = " 1 0 " n a m e = " lo n g " r e t V a l u e = " - l " > l o n g < / d a t a t y p e >
< d a t a t y p e i d = " l l " name="unsigned l o n g " r e t V a l u e = " - l " > l o n g < /

d at aty p e >
< d a t a ty p e i d = " 1 2 " n a m e = " f l o a t " r e t V a l u e = " - 1 . 0 " > f l o a t < /

d at aty p e >

<datatype id="13" name="double" retValue="- 1 . 0">double</
datatype>

<datatype id="14" name="BigInt" retValue=" java.math.
Biglnteger . ZERO">java . math. Biglnteger</datatype>

<datatype id="15" name="decimal" retValue="new java.math.
BigDecimal(java.math.Biglnteger. ZERO)">java.math.
BigDecimal</datatype>

< / d a t a t y p e s >
<element_exp>

< l i t e r a l _ e x p > i m p o r t ja v a . rmi . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t j a v a . rmi . s e r v e r . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org .omg. CosNaming. * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org .omg.CosNaming. NamingContextPackage .* ; < /

l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t org .omg.CORBA. * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t j a v a , u t i l . P r o p e r t ie s ; < / l i t e r a l _ e x p >

97

30

35

40

45

50

55

60

65

70

<literal_exp>import java .net ,* ;< / l i t e ra l_exp >
<literal_exp>import java . lang . * ; < / l i te ra l .exp>
<literal_exp>public class < / l i teral_exp>
<element_name/>
< l i tera l .exp> extends UnicastRemoteObject. implements < / l i t e ra l_ e x p >
<interf_name/>
<li teral_exp> { < / l i teral_exp>
<interf_name/>
<l iteral_exp> ref ;< / l i tera l_exp>
<literal_exp>private String [] args ; < / l i teral_exp>

<l iteral_exp>public < / l i t e ra l_exp >
<element_name/>
<l i tera l_exp>() throws RemoteException { < / l i tera l_exp>
<li teral_exp>args = new String [4] ; < / l i teral_exp>
<literal_exp>args [0] = "-ORBInitialPort" ; < / l i tera l_exp>
Cliteral_exp>args [1] = " 1050" ; < / l i teral_exp>
< 1 iteral_exp>args [2] = "-ORBInitialHost" ; < / l i tera l_exp>
Cliteral_exp>args [3] = "< / l i tera l_exp>
<IPAddress/>
< l i tera l_exp>" ; < / l i teral_exp>
<l i tera l_exp>}< / l i teral_exp>
<operation_exp>

<li teral_exp>public < / l i teral_exp>
<retType/>
<opName/>

' < l i tera l_exp>(< / l i tera l_exp>
<arg_exp>

<direction_type_argName/>
< l i te ra l_exp > ,< / l i t e ra l_exp >

</arg_exp>
< l i te ra l . exp >) {< / l i t e ra l_ e x p >
<li teral_exp>try { < / l i teral_exp>
<literal_exp>ORB orb = ORB. init (args , null) ;< / l i t e r a l - e x p >
<l iteral_exp>org .omg.OORBA. Object objRef = orb.

reso lve_ in it ia l_re ferences ("NameService") ; < / l i tera l_exp>
<literal_exp>NamingContextExt ncRef = NamingContextExtHelper. narrow(

objRef) ; < / l i teral_exp>
<l i tera l_exp>ref = < / l iter al _exp>
<interf_name/>
<literal_exp>Helper . narrow(ncRef. reso lve .s tr (" < / l i tera l_exp>
<reference_name/>
< l i te ra l_ e xp > ")) ; < / l i t e ra l .e x p >
<literal_exp>System . ou t . println ("Obtain a handle on Corba </

l iteral_exp>
<reference_name/>
<literal_exp> server ob je c t ") ; < / l i teral_exp>
<invoke>

<retType_exp id=" l">
<retType/>
< l i t e ra l - e x p > ret = (< / l i te ra l_exp>

98

75

76

80

85

90

95

100

105

<retType/>
<li teral_exp>) < / l i t e r a l . e x p >

</retType_exp>
<l i te ra l_exp >re f .< / l i t e ra l_exp >
<opName/>
<l i te ra l_exp> (< / l i te r al_exp>
<arg_exp>

<direction_type_argName />
<l i tera l_exp> ,</ l iter al_exp>

</arg_exp>
<li teral_exp>) ; < / l i teral_exp>
<retType_exp id="2">

<literal_exp>return ret ;< / l i tera l_exp>
< / retType_exp>

</invoke>
< l i tera l_exp>}< / l i tera l_exp>
<literal_exp>catch (Exception ex) { < / l i teral_exp>
<l iteral_exp>ex . printStackTrace () ;</ l i teral_exp>
<literal_exp>System . ou t . print In ("Cannot establ ish

Corba server ! ") ; < / l i teral_exp>
<literal_exp>System .exit (O) ;< / l i tera l_exp>
<retType_exp id="3">

<l iteral_exp>return < / l i teral_exp>
<retValue/>
< l i te ra l_exp > ;< / l i t e ra l_exp >

' </retType_exp>
<l i te ra l_exp > }< / l i t e ra l_exp >
<l i te ra l_exp > }< / l i te ra l_exp >

< / operation_exp>
<l i te ra l_exp > }< / l i t e r al_exp>

</element.exp>
</pattern>

c o n n e c t io n w ith

99

Listing 5.8: Generation of Java RMI-specific Illusion Capsules that host Java Objects .
serving as CORBA Clients

1

s

10

IS

20

25

30

<?xml version=" 1.0" ?>
<pattern type=" Capsule" platforra="RMI">

d e f e r ence_exp>
< l i t e r a l _ e x p > i m p o r t ja v a . rmi . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t ja v a . rmi . s e r v e r . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > i m p o r t j a v a . n e t . * ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > p u b l i c c la s s < / l i t e r a l _ e x p >
< r e f e r e n c e _ n a m e />
< l i t e r a l _ e x p > S e r v e r { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > p u b l i c s t a t i c void m a in (S tr in g a r g s []) { < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > t r y { < / l i t e r a l _ e x p >
<element_name / >
< l i t e r a l _ e x p > impl = new < / l i t e r a l _ e x p >
<element_n ame/>
< l i t e r a l _ e x p > () ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > N a m i n g . rebind (" < / l i t e r a l _ e x p >
< r e fe r e n c e_ n a m e />
< l i t e r a l _ e x p > " , imp l) ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > S y s t e m . o u t . p r i n t l n ("RMI < / l i tera l_exp>
< r e fe r e n c e_ n a m e />
< l i t e r a l _ e x p > s t a r t e d on IP " + Inet Address . g e t L o c a lH o s t () .

getHostAddress () + " \ n ") ; < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > } < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > c a t c h (Exception ex) { < / l i t e r a l _ e x p >
<literal_exp>System . err . println ("ERROR: " + ex) ; < / l i tera l_exp>
<l i tera l_exp>ex . printStackTrace (System . out) ;< / l i tera l_exp>
< l i te ra l_exp > }< / l i t e r al_exp>
< l i t e r a l _ e x p > } < / l i t e r a l _ e x p >
< l i t e r a l _ e x p > } < / l i t e r a l _ e x p >

< / r e f e r e n c e _ e x p >
< / p at te rn >

100

Short CV

las on Tsaparlis was born in Ioannina in 1982. He completed the high school in Ioannina
in 2000, and obtained his Diploma in Computer Engineering from the Department of
Computer Engineering and Informatics of the University of Patras in 2005. The theme
of his undergraduate diploma thesis was ’’ Implementation of a Multilingual Electronic
Magazine by using XML Technology” . After fulfilling his national service in the Greek
army, he started his postgraduate studies in the Department of Computer Science of
the University of Ioannina, in 2007. His research focused on the problem of middleware
platform heterogeneity and interoperability. He is a member of the Technical Chamber of
Greece (TEE) since 2006.

