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ABSTRACT

Gkamas, Theodosios, N.

MSc, Computer Science Department, University of loannina, Greece. October, 2010.
Optical flow estimation using spatially varying smoothing.

Thesis Supervisor: Christophoros Nikou.

The problem of estimating the optical flow in a sequence of images is an
important research problem in the area of computer vision with applications in visual
object tracking, stereopsis and motion segmentation, among others. Optical flow is the
2D velocity field, describing the apparent motion in the image that results from
independently moving objects in the scene or from observer motion. Its estimation is a
particularly difficult problem due to several factors. At first, the massive image data
which produce small and/or large scale linear systems that must be solved to obtain
the solution in as little as possible and competitive period of time. Furthermore, the
problems that occur because of the nature of the images, such as motion
discontinuities and object occlusion must be addressed. To overcome these
difficulties, the majority of the state of the art optical flow computation techniques
rely on the imposition of a smoothness constraint on the motion field. In this work, we
propose two methods for the accurate estimation of the optical flow where the
smoothness constraint varies with respect to the image content. The first method is
based on image segmentation and the smoothness constraint is applied to image areas
belonging to the same segment and simultaneously presenting low spatial gradient
information, to avoid smoothing probable motion boundaries. The second method
relies on a probabilistic modeling of the optical flow problem where the motion
vectors are considered as unobserved random variables generated by a Student’s #-
distribution with spatially varying parameters. In that case, as the complete data
likelihood is intractable we recur to the variational-Bayes methodology for inference
of the model parameters and variables.
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Extipnon mg ontikig porig pe pebodovg ywpikd petafariiopsvng eEopdivvong.
EmBrénav: Xprotdépopog Nikov.

To mpoéPAnua extipnong ™ ommkig porlg o€ pa akorovBia ekévav,
anmoTeELEL oMUAVTIKO £PEVVIITIKO TPOPANHA GTOV TopéA TNE VRTOAOYIOTIKIG Opaomg, UE
€PaPUOYEG OTIV ORTIKY MAPAKOAOVONOY QVTIKEWEVOV, TNV GTEPEOCKOMIA KUl TI|V
Katatunon xivinong, petad dAiov. Ortkyy pony ovopdlovpe 1o 2A medio
HETATOTICEWV, MOV MEPLYPAPEL TNV EUPavi] kivnon péca o€ pa €koéva 1) omoia
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egopdivvong petafarletar avdhoya pe 1o mEpExOpevo TG ewkévac. H mpdm
uéBodog ompiletar omv katdTunom €wovag kar o mEPopPopds e&opdhuvong
epapudletal oe mePloys G EIKOVAC TOV AVIIKOVV GTO id10 TURMO KOl TAVTOYXpOva
napovcldfovv yaunAin TANPoPopia TNV YWPIKY TAPAYWOYO, CTOPEVYOVINS ETOL TNV
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otv Mnebliavr] (variational-Bayes) pegbodoloyic ywaa v mpocéyyion TV
TAPAPETPOV KAl TOV TUYAIWV HETARANTOV TOV HOVTEAOV.
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CHAPTER 1. INTRODUCTION

1.1. Objectives of the Thesis
1.2, Structure of the Thesis

1.1. Objectives of the Thesis

In this thesis, we deal with the problem of optical flow containing small
movements. Without doubt, the measurement of optical flow is one of the
fundamental problems in computer vision. It is the problem of approximating the
movement of brightness patterns in an image sequence and, thus, provides useful
information for the determination of the 3D structure of the environment and the
object in the image [2] but also can be used for image registration. In the last two
decades the quality of optical flow estimation methods has increased dramatically.
Starting from the original approaches of Horn and Schunck [25] as well as Lucas and
Kanade [28], research developed many new concepts for dealing with shortcomings
of previous models. In order to handle discontinuities in the flow field, the quadratic
regulariser in the Horn and Schunck model was replaced by smoothness constraints
that permit piecewise smooth results [7]. Some of these ideas are close in spirit to
methods motivated from robust statistics where outliers are penalized less severely
[9]. Coarse-to-fine strategies [2, 9] as well as non-linearised models [7] have been

used to tackle large displacements.

However, not only new ideas have improved the quality of optical flow

estimation techniques. Also efforts to obtain a better understanding of what the
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methods do in detail, and which effects are caused by changing their parameters, gave
an insight into how several models could work together. Furthermore, variational
formulations of models gave access to the long experience of numerical mathematics
in solving partly difficult optimization problems. Finding the optimal solution to a
certain model is often not trivial, and often the full potential of a model is not used
because concessions to implementation aspects have to be made. Moreover, one
method using the variational inference and belonging to the state of the art is the
algorithm proposed by T. Brox, A. Bruhn, N. Papenberg and J. Weickert [12] in the
year of 2004. Finally, our contribution to this area, is to introduce three method, two
from the combination of [7, 32] and a novel approach created via variational

inference.

1.2. Structure of the Thesis

The structure of the thesis is as follows: chapter 2 shows three classic
methods, the Lucas-Kanade (LK) method [28], the affine optical flow method [39]
and the Horn-Schunck method [25]. The last section of this chapter describes the error
metrics which were used in order to evaluate the methods. Chapter 3 shows two
proposed methods, firstly, the Joint Lucas-Kanade method [7] and secondly, the
method of Nagel et al. [32]. Additionally, in this chapter, we proposed two variations
derived by the combination of [7, 32]. Moreover, chapter 4 introduces a novel
algorithm for the estimation of the optical flow, by using the variational Bayes
inference. Finally, chapter 5 is the conclusion of the thesis and the future work which

worth to be studied further in order to improve the proposed methods.
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CHAPTER 2. OPTICAL FLOW

2.1. Definition of the Problem

2.2. Optical Flow Methods

2.3. Classic Algorithms for Computing Optical Flow
2.3.1. Lucas-Kanade (LK) Method
2.3.2. Affine Optical Flow
2.3.3. Horn-Schunck (HS) Method

2.4. Error Metrics

2.1. Definition of the Problem

First of all let’s give the definition of the problem. As there are many
definitions for optical flow let’s start with a short one: optical flow is the observed
motion of intensity patterns on the image plane. Another one according to B. Horn
and B. Schunck [25], who are among the pioneers in that field, optical flow is the
distribution of apparent velocities of movement of brightness patterns in an image.
Additional to this, optical flow can arise from relative motion of objects and the
viewer [20, 21]. Consequently, optical flow can give important information about the
spatial arrangement of the objects viewed and the rate of change of this arrangement
[22].

Additionally to the definition, we have to make one fundamental assumption
regarding the nature of the scene the moving objects maintain constant intensity
profile throughout their motion. This assumption is the famous brightness constancy

assumption and forms the basis of all the approaches for estimating optical flow. Let
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I be an image and I(x(t), y(?), 1) denote the intensity of a point projected onto the
image at the location (x(¢), y(f)) at time ¢ . At a time ¢ + At, the projected point moves
to a new location (x(t + Af), y(t + Af)). According to the brightness constancy

assumption, the point has the same intensity at both locations, which means
I(x(t + AD), y(t + A1), t + Ab) = I(x(1), y(0), 1). 2.1)

Expanding the above equation using Taylor series about the point (x(f), ¥(f)) and
taking the limits, a familiar form of the optical flow equation is obtained which is

given by
fuv;)=Lu+Lv+L=0, 22)

where I, and I represent the partial derivatives of the image in x and y directions
respectively, /; represents the temporal derivative of the image, and » and v are the
horizontal and vertical components of the unknown pixel velocity respectively. Given
a pair of images and their spatial and temporal derivatives, the goal is to determine
[, v]". Since there is only one equation involving two unknowns, the system is
under-constrained, and an unambiguous solution cannot be obtained. This is the well
known aperture problem, and herein lays the biggest challenge in estimating the

optical flow.

The way to address the aperture problem is to add more constraints so as to
obtain a required set of equations at least equal in number to the unknowns. Solving
for [u, v]' requires an additional equation which can be obtained, for example, by
considering motion of two pixels together instead of one. This results in two
equations, and the system can be solved. In practice, multiple pixels are considered
together to obtain a set of equations such that their solution minimizes some error
function. Most optical flow approaches differ from each other in the way they bunch
pixels together for the estimation of their combined velocity, or the kind of error

function they minimize.
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2.2. Optical Flow Methods

The prominent optical flow approaches can be classified into one of the

following categories:

e Block matching methods: estimating the optical flow vectors for a
window of pixels by computing its warp in the consecutive frame
using techniques like normalized cross correlation (NCC), sum of
absolute differences (SAD), or sum of squared differences (SSD) [2].

e Differential methods: using the spatial and temporal derivatives of the
image to estimate the pixel displacement. This can be achieved by
computing local displacement of image patches (Lucas-Kanade [28]),
or imposing a global smoothness function on the flow field (Horn-
Schunck [25]), or a combination of both (Bruhn et al. [13], Birchfield-
Pundlik [7]). Lucas-Kanade appeals more to the idea of sparse optical
flow while Horn-Schunck approach is more suited for computing dense

flow.

e Variational methods: involving use of additional terms based on the
calculus of variations in the energy functional to be minimized to
obtain optical flow. Such techniques have become popular recently
because of their ability to model the discontinuities in the motion and
produce highly accurate optical flow estimates (Cremers-Soatto [17],
Brox et al. [11]).

The next section describes three classic algorithms for estimating the optical flow.

2.3. Classic Algorithms for Computing Optical Flow

In this section we are going to describe three classic methods for estimating
optical flow, which are Lucas—Kanade [28), Affine Optical Flow [39] and
Horn-Schunck [25].
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2.3.1. Lucas-Kanade (LK) Method

The basic assumption in the Lucas-Kanade (LK) method is that the pixels in a
local neighborhood undergo a constant but unknown displacement u = [« v]" . This
additional constraint is used to overcome the aperture problem as it yields one optical
flow Equation (see 2.2) per pixel in the neighborhood. The constant displacement of
neighboring pixels implies two basic assumptions, namely, the spatial coherence
(neighboring pixels belong to the same 3D surface projected onto the image plane)
and the temporal persistence (motion of the pixel neighborhood changes gradually
over time). Let 7 and J be the two frames between which the flow has to estimated
and let x = [x y]" denote a pixel location. Optical flow equation (2.2) for a single
pixel x can be rewritten as

u
v

[K(x) 5(x)] [ ] = —I(x) = Ix) - J(x) (23)

Considering that the n points xy, ..., X, in a local neighborhood have the same amount

of displacement, all of the » pixels will then follow equation (2.3), leading to

(1(x,) Ty(x))] (1, (x,)]
. . . :
[ ] = . (24)
v
| Ty (x,) 1,(x,) J _It(xn)J
-Ix(xl) Iy(xl)— -11("1)-
In(x) ... Iy(x,) ' ' w] [Ix(x) ... Iyx) '
Ix(xn) ... Iy(xn) ’ - 18 Ix(x..) ... Iy(x..) .
| x(x,) Iy(x,) | | 1,(x,) ]

(2.5)
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2
n Ix(xi) Ix(Xi)Iy(xj) I:u:I R l:lx(xi)lt(xi)] (2.6)

| L) Iy (x;) 1)2)(;;,.) v 4| L,x)(x)

Equation (2.6) consolidates the optical flow by summing the spatial and temporal
derivatives over the neighborhood. Instead of performing a summation over a spatial
window, a weighted window such as a Gaussian with its mean at the center pixel can

also be used. Hence, a general case of Lucas-Kanade equation is given by

, 2.7
14

(2) K+{(11) H= K+ 1)

5 :
Kp*(lxly) K, *(Iy) KP*(IyIt)

where K, is a suitable convolution kernel whose size determines the number of
neighboring pixels to be aggregated and assigns appropriate weights to the pixels
inside the window. The size of K, has to be selected carefully because a small sized
window may not be enough to overcome the aperture problem due to the presence of
image noise. On the other hand, a very large window size may lead to the breakdown

of spatial coherency assumption. Equation (2.7) can be written in a simplified form as
Zu=e 2.8)

It can be seen that Z looks like a covariance matrix with squares of gradients in the x
and y directions along the diagonal, and it is symmetric, which is why it is called the

gradient covariance matrix or the Hessian,

Displacements u of a local neighborhood of pixels can be directly determined

by solving (2.8) via least squares, i.e. by minimizing

Ex(u) =K, * (f(u, %), (2.9)
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or equivalently, solving for the estimate # =Z"e. However, this may not yield an
accurate estimate because (2.6) is a linear approximation of a nonlinear function (the
original optical flow equation is nonlinear if all the terms in the Taylor series are
considered). To obtain an accurate estimate, iterative schemes such as Newton-
Raphson [15] are used. Newton-Raphson is a popular technique of approximating the
values of the roots of a real valued function given the initial estimate of the roots.

Consider a 1D case, where if u*) (pixel displacement in 1D) is the estimate of the root

of function f(u,t)=1,1+1,=0 (1D counterpart to the optic flow function) at the k*

(k) _ S/ ("(k)

. From
fl u k)

inspection it can be seen that f (u(")=1,u(*)+1, and f '(u""): I, which means

iteration, then its update value at (k+1)* iteration is given by

u®*) :—f—'. Every iteration yields a value of u that is added to the overall

displacement and convergence is obtained when u does not change significantly
between two iterations. Extending this idea to two dimensions, every iteration of the

(k)

Newton-Raphson technique gives a displacement u'*’ of the window. The window in

the next frame is shifted by u and warped with the first image to obtain a new value of

I; at each iteration and a new displacement estimate is found using @ =Z'e (see

Algorithm Lucas-Kanade for a complete description).

To efficiently compute the optical flow using LK, some implementation issues
should be addressed. The computational cost of the algorithm depends on the nature
of mathematical operations performed and the time it takes to converge. Since the
same set of steps are applied to each point (or each pixel) for which the flow field is
computed, reducing the computation time of one flow vector directly affects the
overall computation cost. Looking at the description of the Lucas-Kanade algorithm
(figure 2.1) it can be seen that the mathematical operations include computing Z ',
spatial derivatives of the image / and warping of the window in image J to compute /.
Of the above mentioned quantities, image derivatives can be computed beforehand
along with their squares and products (hence, Z for each point can be computed
beforehand). Solving for a system of equations shown in (2.8) yields u, but it is more

efficient to use Gaussian elimination rather than actually computing Z”'.
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The only computation that needs to be iteratively performed is the warping of
the window in the second image and computation of e. Usually, the location of the
shifted window is given by non-integers. Hence, methods like bilinear interpolation
are utilized to compute the value of image intensity at sub-pixel precision.
This improves the accuracy of estimation of u. Regarding the convergence, Newton-
Raphson reaches an optimum solution within a few iterations if the initial estimate of
the root is close enough. In this case it also depends on g.x, the threshold for

minimum displacement obtained during one iteration.

Algorithm: Lucas-Kanade

Input: two images / and J of a sequence
Output: optical flow field
1. pre-compute the spatial derivatives Z and
2. initialize K,
3. for each point i
(a) compute gradient covariance matrix, Z;
(b) initialize u, = (0, 0)
(c) repeat until convergence
i. compute /, from first image and shifted second image,
k= Hx) =~ Jx; + ;)
ii. compute e;
iii. find the estimate of displacement, §; =Z'e,

iv.g; =w; + ﬁi

v.if | &i;] <&, (minimum displacement threshold), exit

Figure 2.1: The standard Lucas-Kanade algorithm.

Many implementations of LK adopt a coarse-to-fine refinement strategy to
accurately estimate optic flow [6, 10]. The idea here is to sub-sample the images
progressively and build image pyramids such that the coarsest scale is at the top.

Then u is computed starting from the coarsest level to the finest level. At every level,
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the u is scaled up according to the scale factor of that level and the warp is computed
between corresponding levels of the two image pyramids. There are two main
advantages of such an approach. First, it reduces the effect of temporal aliasing and
the high frequency component introduced as a result in the image signal. Second, it
can estimate large motions (where inter-frame displacement of the feature window is
large). Since velocity is reduced at the coarsest level, estimates at the coarsest level
can be scaled up and determined accurately at the finer levels. Computational cost in
this kind of implementation is increased as compared to the standard case and is
directly proportional to the number of levels of the pyramid used. A pyramidal
implementation of LK is O(nNm) as compared to O(Nm) of the single scale
implementation, where N is the number of points, m is average number of Newton-

Raphson iterations and # is the number of pyramid levels.

2.3.2. Affine Optical Flow

Affine optical flow is an extension of the previously described Lucas-Kanade

method.

% Two Models of Image Motion

As the camera moves, the patterns of image intensities change in a complex
way. However, away from occluding boundaries and near surface markings, these

changes can often be described as image motion,

I(x9y’ 1+T)=I(x*f(X,y, 5 T)’ )’—'I(X,y, t’ t))a (2']0)

Thus, a later image taken at time 7+t can be obtained by moving every point in the
current image, taken at time ¢, by a suitable amount. The amount of motion & = (&, )

is called the displacement of the point at x = (x, y).

The displacement vector d is a function of the image position x, and variations

in J are often noticeable even within the small windows used for tracking. It then
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makes little sense to speak of “the” displacement of a feature window, since there are

different displacements within the same window. An affine motion field is a better

representation:
6=Dx+d , 2.11)
where
Do [dn d,y]
d)’x d)'y

is a deformation matrix, and d is the translation of the feature window’s center. The
image coordinates x are measured with respect to the window’s center. Then, a point
x in the first image / moves to point 4x + d in the second image J, where A =1+ D

and 1 is the 2 x 2 identity matrix:
J(4x+d)=1I(x) , (2.12)

Given two images / and J and a window in image /, tracking means determining the
six parameters that appear in the deformation matrix D and displacement vector d.
The quality of this estimate depends on the size of the feature window, the
texturedness of the image within it, and the amount of camera motion between
frames. When the window is small, the matrix D is harder to estimate, because the
variations of motion within it are smaller and therefore less reliable. However, smaller
windows are in general preferable for tracking because they are less likely to straddle
a depth discontinuity. For this reason, a pure translation model is preferable during

tracking, where the deformation matrix D is assumed to be zero:
o=d.

According to J. Shi and C. Tomasi [39], experiments had shown that the best
combination of these two motion models is pure translation for tracking, because of
its higher reliability and accuracy over the small inter-frame motion of the camera,
and affine motion for comparing features between the first and the current frame in

order to monitor their quality.
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% Computing Image Motion

Because of image noise and because the affine motion model is not perfect, (2.12) is
in general not satisfied exactly. The problem of determining the motion parameters is

then that of finding the 4 and d that minimize the dissimilarity

&= [[J(ax+d) - I®F w(x)ax , (2.13)

where W is the given feature window and w(x) is a weighting function. In the simplest
case, w(x) = 1. Alternatively, w could be a Gaussian-like function to emphasize the
central area of the window. Under pure translation, the matrix A is constrained to be
equal to the identity matrix. To minimize the residual (2.13), we differentiate it with
respect to the unknown entries of the deformation matrix D and the displacement
vector d and set the result to zero. We then linearize the resulting system by the

truncated Taylor expansion
JUAx+d)=J(x)+g" (u). (2.149)
This yields (see [40]) the following linear 6 x 6 system:
Tz=a, (2.15)

where z' = [dy dx dy d,, d. d)] collects the entries of the deformation D and

displacement d, the error vector

V8.

a=([ [Ix)-Jm)] w dx
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depends on the difference between the two images, and the 6 x 6 matrix 7, which can

be computed from one image, can be written as

T=jjw [If], Z] wdx , (2.16)

where

x’g;  x’g.g, w8l wg.g,
X’g.g, ¥'g 088 Vg, - =[ng x8,8, & yg,g,]
xyg.  wg.g, y'gr y'sg.s, xg.8, *2, V2.8, Y& |
xyg.8, g, y'g.g, Y8

7o g 8.8,
- 5|
2.8, &

Even when affine motion is a good model, equation is only approximately

U =

satisfied, because of the linearization of (2.14). However, the correct affine change
can be found by using (2.15) iteratively in a Newton-Raphson style minimization
[40].

During tracking, the affine deformation D of the feature window is likely to be
small, since motion between adjacent frames must be small in the first place for
tracking to work at all. It is then safer to set D to the zero matrix. In fact, attempting to
determine deformation parameters in this situation is not only useless but can lead to
poor displacement solutions: in fact, the deformation D and the displacement d
interact through the 4 x 2 matrix ¥V of equation (2.16), and any error in D would cause

errors in d. Consequently, when the goal is to determine d, the smaller system

Zd=e, (2.17)

should be solved, where e collects the last two entries of the vector a of equation

2.15).
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2.3.3. Horn-Schunck (HS) Method

The main difference between Lucas-Kanade and Horn-Schunck is that in the
first method we used a window in which we consider all pixels having the same

displacement, while in the second method we handle every pixel independently.

First of all, let’s see the optical flow equation without the summing window.
We will derive an equation that relates the change in image brightness at a point to the
motion of the brightness pattern. Let the image brightness at the point (x, y) in the
image plane at time t be denoted by I(%, y, t). Now consider what happens when the

pattern moves. The brightness of a particular point in the pattern is constant, so that

dl
—=0. 2.18
2 (2.18)
Using the chain rule for differentiation we see that
orox oAy o, 2.19)

+——+
oxot odyot ot

(See Appendix A for a more detailed derivation).

If we let u=%x~ and v=%, then it is easy to see that we have a single linear

equation in the two unknowns u and v,
Lu+ly+L=0, (2.20)

where we have also introduced the additional abbreviations I, I, and 1, for the partial
derivatives of image brightness with respect to x, y and ¢, respectively. The constraint
on the local flow velocity expressed by this equation is illustrated in figure 2.2, where
we can see that the basic rate of change of image brightness equation constrains the

optical flow velocity. The velocity (u, v) has to lie along a line perpendicular to the
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brightness gradient vector (%, k). The distance of this line from the origin equals %
divided by the magnitude of (J, k). Writing the equation in still another way,

(U L) - (0, v) =- L @221)

Thus the component of the movement in the direction of the brightness gradient

Il

(I Iy) equals: ———.
Jr +12

v

N

(Ix, Iy)

< >

constraint line

Figure 2.2: The constraint on the local flow velocity.

We cannot, however, determine the component of the movement in the
direction of the iso-brightness contours, at right angles to the brightness gradient. As a
consequence, the flow velocity (u, v) cannot be computed locally without introducing

additional constraints.
Now we will see some more complex issues inside the method.

First of all, we will analyze, what we call, the smoothness constraint. If
every point of the brightness pattern can move independently, there is little hope of
recovering the velocities. More commonly we view opaque objects of finite size
undergoing rigid motion or deformation. In this case neighboring points on the objects

have similar velocities and the velocity field of the brightness patterns in the image
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varies smoothly almost everywhere. Discontinuities in flow can be expected where
one object occludes another. An algorithm based on a smoothness constraint is likely

to have difficulties with occluding edges as a result.

One way to express the additional constraint is to minimize the square of the

magnitude of the gradient of the optical flow velocity:

EECECRC A

Another measure of the smoothness of the optical flow field is the sum of the squares
of the Laplacians of the x- and y-components of the flow. The Laplacians of # and v

are defined as

2 2 2 2
=gx—';+gy—? and vy =27,V

2
Véu pw: ayz’

(2:23)

In simple situations, both Laplacians are zero. If the viewer translates parallel to a flat
object, rotates about a line perpendicular to the surface or travels orthogonally to the
surface, then the second partial derivatives of both # and v vanish (assuming
perspective projection in the image formation). Horn-Schunck here uses the square of

the magnitude of the gradient as smoothness measure.

Secondly, let’s see how Hom-Schunck estimates the partial derivatives. We
must estimate the derivatives of brightness from the discrete set of image brightness
measurements available. It is important that the estimates of L, I,, and I, be
consistent. That is, they should all refer to the same point in the image at the same
time. While there are many formulas for approximate differentiation [16, 23] we will
use a set which gives us an estimate of I, I, /, at a point in the center of a cube
formed by eight measurements. The relationship in space and time between these
measurements is shown in figure 2.3. Each of the estimates is the average of four first

differences taken over adjacent measurements in the cube. More analytically, the
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column index j corresponds to the x direction in the image, the row index i to the y

direction, while £ lies in the time direction.

A

/

i+l —»

- A

k+1
T
k

tot
i

Figure 2.3: The relationship in space and time between I, 1,, I,.

1
1 P Z{I i, j+l.k —1 i.j.k +1 i+l, j+k -1, i+, jk +1 i, j+L,k+1 -1 i,]k+ +] i+, j4Lk+1 "Im, j,k+1}
b
Lt 1, +1 AN SRS A —1, pa}
y = Z i+ ik — Ligk + i+Ljek T i ja1k + i+1,j,k+1 ij k1 i+, j+Lk+1 i, jeLk4l
b
ALY} S Lys + 1 i =L s +1 Ly s}
t Z ifk+t T L gk + i+1,7,k41 ~ Lisl,jk + 1, j+,k+ i,j+1k + B 4Lk T L, fLk
2>
(2.24)

Here the unit of length is the grid spacing interval in each image frame and the unit of

time is the image frame sampling period.

We also need to approximate the Laplacians of the flow velocities # and v.

One convenient approximation takes the following form

Vi K(l_l',, LT ) and Vv~ "(‘7:./.1 - "t./.lr) (2.25)

14

where the local averages # and ¥ are defined as follows
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1 1 }
U jp ™ 5 { Up g YU g T U T U, }+ E{ Uy porpe T Uy paape T Wi o T % ok

_ 1 }
Vi & 5 {vl-l, ik T Viex T Vhagk TV }'*' { Vi TV et Vi ek Vi o1k

12
(2.26)

The proportionality factor x equals 3 if the average is computed as shown and we
again assume that the unit of length equals the grid spacing interval. In figure 2.4 we
can see that the Laplacian is estimated by subtracting the value at a point from a

weighted average of the values at neighboring points.

V12| Ve (112

/6 -1 1’6

12| 1’6 |12

Figure 2.4: The Laplacian operator.
Now we have to analyze the minimization problem. Horn-Schunck
minimizes the sum of the errors in the equation for the rate of change of image
brightness,

Eo -Lu+Lv+1h, 2.27)

and the measure of the departure from smoothness in the velocity flow,

E!= (6_:4)2 + (6_;:) + (Q)z +(ﬂ] , (2.28)
ax) \oy) \ax) \oy

What should be the relative weight of these two factors? In practice the image
brightness measurements will be corrupted by quantization error and noise so that we

cannot expect E, to be identically zero. This quantity will tend to have an error
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magnitude that is proportional to the noise in the measurement. This fact guides us in
choosing a suitable weighting factor, denoted by d’, as will be seen later.

Let the total error to be minimized be
E* = [[(e*E? + E} )ax dy, (2.29)

The minimization is to be accomplished by finding suitable values for the optical flow

velocity (u, v). Using calculus of variation (see Appendix C) we obtain

{Ifu+l,1yv =a’Vu-11, 230)

2. 2v2 L
LIu+Iv=a'Vv-I]1,

Using the approximation to the Laplacian introduced previously we will get,

{(az +If)u+1,1y":(a217_1’]') (2.31)

2 2 _ 2— 4
ILILu+(a" +)yv=(av-1])

The determinant of the coefficient matrix equals o*(a® + 1,2 + Iyz). Solving for # and v

we find that

, 2.32
(@ +I}+Dy=-LLa+(@*+1})v-11, (2:32)

{(az + 12+ 1=+’ +1)a~117-1],
Let us now see the difference of the flow at a point by using local average in

comparison with the LK method. Firstly, (2.32) can be written in the alternative form

{(a’+1§+1,’)(u—z7)=—1,(1,l7+1y‘_’+1:) (2.33)

@+ I+ IYv-V)=-1,(La+1y+1)’

This shows that the value of the flow velocity («, v) which minimizes the error

E? lies in the direction towards the constraint line along a line that intersects the
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constraint line at right angles. This relationship is illustrated geometrically in figure
2.5, and the value of the flow velocity which minimizes the error lies on a line drawn
from the local average of the flow velocity perpendicular to the constraint line. The
distance from the local average is proportional to the error in the basic formula for
rate of change of brightness when #, ¥ are substituted for ¥ and v. Finally we can see
that o’ plays a significant role only for areas where the brightness gradient is small,
preventing haphazard adjustments to the estimated flow velocity occasioned by noise
in the estimated derivatives. This parameter should be roughly equal to the expected

noise in the estimate of .’ + L.

(Ix, Iy)

< >

constraint line
Figure 2.5: The relationship between (u, v), (u,v), I, and I,
Additionally to the previous part, we are going to analyze the impact of
parameter o’>. When we allow o’ to tend to zero we obtain the solution to a

constrained minimization problem. Applying the method of Lagrange multipliers [36,

43] to the problem of minimizing E.? while maintain Ey,=0leads to

IV u=1V%, Lu+lv+I =0
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Approximating the Laplacian by the difference of the velocity at a point and the

average of its neighbors then give us

(w-w)=-I,[La+1y+I ]
(+12)( -¥)=-1, [Iu+1v+1]

(2.34)
Referring again to figure 2.5, we note that the point computed here lies at the
intersection of the constraint line and the line at right angles through the point (ﬁ, V).

We will not use these equations since we do expect errors in the estimation of the

partial derivatives.

We now have a pair of equations for each point in the image, let’s see which
will be the iterative solution. It would be very costly to solve these equations
simultaneously by one of the standard methods, such as Gauss-Jordan elimination [23,
24]. The corresponding matrix is sparse and very large since the number of rows and
columns equals twice the number of picture cells in the image. Iterative methods, such
as the Gauss-Seidel method [23, 24], suggest themselves. We can compute a new set

of velocity estimates (", v™*') from the estimated derivatives and the average of the

previous velocity estimates (z7 "y ") by

{“"* =" -1, [Iu +L7 41, ) [l + 124 12) (235)

v =y o (L + 15" +I,]/(a +13+Ij)

It is interesting to note that the new estimates at a particular point do not depend

directly on the previous estimates at the same point.

The natural boundary conditions for the variational problem turn out to be a
zero normal derivative. At the edge of the image, some of the points needed to
compute the local average of velocity lie outside the image. Here we simply copy

velocities from adjacent points further in.
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The next point we are going to analyze is the case how we have to fill in
uniform regions. In parts of the image where the brightness gradient is zero, the
velocity estimates will simply be averages of the neighboring velocity estimates.
There is no local information to constrain the apparent velocity of motion of the
brightness pattern in these areas. Eventually the values around such a region will
propagate inwards. If the velocities on the border of the region are all equal to the
same value, then points in the region will be assigned that value too, after a sufficient
number of iterations. Velocity information is thus filled in from the boundary of a

region of constant brightness.

If the values on the border are not all the same, it is a little more difficult to
predict what will happen. In all cases, the values filled in will correspond to the

solution of the Laplace equation for the given boundary condition [1, 31, 35].

The progress of this filling-in phenomena is similar to the propagation effects
in the solution of the heat equation for a uniform fiat plate, where the time rate of
change of temperature is proportional to the Laplacian. This gives us a means of
understanding the iterative method in physical terms and of estimating the number of
steps required. The number of iterations should be larger than the number of picture
cells across the largest region that must be filled in. If the size of such regions is not
known in advance one may use the cross-section of the whole image as a conservative

estimate.

Another part we have to discuss is the tightness of constraint. When
brightness in a region is a linear function of the image coordinates we can only obtain
the component of optical flow in the direction of the gradient. The component at right
angles is filled in from the boundary of the region as described before. In general the
solution is most accurately determined in regions where the brightness gradient is not
too small and varies in direction from point to point. Information which constrains
both components of the optical flow velocity is then available in a relatively small
neighborhood. Too violent fluctuations in brightness on the other hand are not
desirable since the estimates of the derivatives will be corrupted as the resuit of under-

sampling and aliasing
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Also we have to choose the iterative scheme. As a practical matter one has a
choice of how to interlace the iterations with the time steps. On the one hand, one
could iterate until the solution has stabilized before advancing to the next image
frame. On the other hand, given a good initial guess one may need only one iteration
per time-step. A good initial guess for the optical flow velocities is usually available

from the previous time-step.

The advantages of the latter approach include an ability to deal with more
images per unit time and better estimates of optical flow velocities in certain regions.
Areas in which the brightness gradient is small lead to uncertain, noisy estimates
obtained partly by filling in from the surround. These estimates are improved by
considering further images. The noise in measurements of the images will be
independent and tend to cancel out. Perhaps more importantly, different parts of the
pattern will drift by a given point in the image. The direction of the brightness
gradient will vary with time, providing information about both components of the
optical flow velocity. A practical implementation would most likely employ one

iteration per time step for these reasons.

2.4. Error Metrics

The first measure of performance that we use in the comparison is the average
angular error (AAE) [4]. This is the most common measure of performance for
optical flow [3]. Let vo = (4o, vy) be the correct velocity and v; = (u; , v;) be the

estimated velocity. The angular error (4E) between these two vectors is

v, =arccos(V,-V,) (2.36)
where V,, v, are the 3D normalized representations of v,,, v,, respectively and they

are defined as

¥y = (g, 05, 1) 5 237

o=
,/u§+v§+l
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Ve (4,,0,,1) - (2.38)

,/u,’ +ul +1

The AAE is then obtained by calculating the average of all angular errors between
correct and estimated velocities in the optical flow. However, it can be seen from
(2.36) that errors in regions of large flows are penalized less in AE than errors in
regions of small flows [3]. One needs to be cautious when using the A4E metric as
estimates with the same error magnitude may result in significantly different angular

error values.

Another error metric is the normalized magnitude of the vector difference
between the correct and estimated flow vectors [29]. The magnitude of the correct

velocity is used as the normalization factor. The magnitude of difference error is

defined as
' Ivo —vil .
it "W iffjv,|>7T
"vo" || 0"
B = (BT e <7 and oot (239)
0, if [vo|<T and|v,|<T

where T is a threshold, whose purpose is to ignore smaller vectors’ norms than 7. The
algorithm is not expected to reliably produce accurate flow vectors in areas where the
actual flow magnitude is less than T [29]. We used 7 = 0.5 in all of our experiments.
The average magnitude of difference error (AME) is then calculated as the average

of the normalized magnitude of difference errors.

A third error metric, which is slightly similar with A4E, is the absolute error,

which is the error in flow endpoint (EP) [3] defined by

EP = \/(“o ~u,) +(v, -0, ) = ||Vo - V||| , (2.40)
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CHAPTER 3. COMPUTING OPTICAL
FLOW THROUGH SYNERGY OF ADAPTIVE
SMOOTHING AND SEGMENTATION

3.1. Joint Lucas-Kanade (JLK) method
3.2. Optical flow with adaptive smoothing
3.3. Combination of JLK and adaptive smoothing
3.4. Guiding optical flow using segmentation
3.5. Experimental Results and Discussion
3.5.1. Squared-texture Sequence
3.5.2. Textured-Triangles with equal in Norm Moves
3.5.3. Textured-Triangles with unequal in Norm Moves
3.5.4. Yosemite without Clouds Sequence
3.5.5. Yosemite with Clouds Sequence
3.5.6. Dimetrodon Sequence
3.5.7. Rubberwhale Sequence

3.6. Partial Conclusion

In this chapter we study two methods. Firstly, S. Birchfield’s and S. Pundlik’s
method [7] (section 3.1) and secondly, H. Nagel’s and W. Enkelmann’s method [32]
(section 3.2). Additionally, we propose two variations resulting from the combination
of the previously mentioned methods (sections 3.3, 3.4). In section 3.5, we present

experimental results which are discussed in section 3.6.
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3.1. Joint Lucas-Kanade (JLK) method

S. Birchfield and S. Pundlik [7] proposed a combination of Lucas-Kanade and
Homn-Schunck energy functionals respectively which resulted in an energy functional

to be minimized for Joint Lucas-Kanade (JLK):

Eye =) (Ep()+AE(), G.1)

i=1

where N is the number of pixels, and the data and smoothness terms are given by

E,) =K, *((f@u,,v;1)F) (2)

EyG)=((u, -} +(v,-,7) 33)

where K, is a suitable convolution kernel whose size determines the number of
neighboring pixels to be aggregated and assigns appropriate weights to the pixels

inside the window.

In these equations, the energy of pixel / is determined by how well its displacement

(u4;, v;)" matches the local image data, as well as how far the displacement deviates
from the expected displacement (#,,9,)" . Note that the expected displacement can be

computed in any desired manner and is not necessarily required to be the average of
the neighboring displacements. According to [7], they predict the motion
displacement of a pixel by fitting an affine motion model to the displacements of the
surrounding pixels, which are inversely weighted according to their distance to the

pixel. They use a Gaussian weighting function on the distance, with ¢ = 10 pixels.
Differentiating £, x with respect to the displacements (u;, v,)T, i=1,...,N,
and setting the derivatives to zero, yields a large 2V x 2N sparse matrix equation,

whose (2i — 1)th and (2i)th rows are

Z,'I.I' =€ (34)
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where

A+K, *(1) K,*(L) A, -K, *(I1,)
Z = , €= .
K,*(I1) 4 +K,*(1) A%, ~K, *(1,1)

This sparse system of equations can be solved using Jacobi iterations of the form

7 (k) 5®)
JU; + I v+,

u® — p® _
! ' A+d+J,

(3-5)

~ (k) 5(%)
Ju +J v +J,
A+d +d,

v'gm) _ ‘;i(k) _

(3.6)

where Jix = K, #(L), Joy = Kp #(Ly), Jua = Ky, *(L), I,y = Ky +(L,%), and Jj, = K, +(LL).

To sum up, the (JLK) algorithm is presented in figure 3.1:

Algorithm: Joint Lucas-Kanade

1. For each pixel i,

(a) Initialize u; « (0, 0)”
(b) Initialize A,

2. For pyramid level n — 1 to 0 step —1,

(a) For each pixel i, compute Z,
(b) Repeat until convergence:

i. For each pixel i,
(a) Determine 1,
(b) Compute the difference /, between the first image and the shifted
second image: I(x, y) = Iy(x,y) — L(x + u, y + v,)
(c) Compute e,
(d) Solve Zu'; = e; for incremental motion u’;
(e) Add incremental motion to overall estimate: u; — u; + u;
(c) Expand to the next level: u, «— ku,, where k is the pyramid scale factor

Figure 3.1: The Joint Lucas-Kanade algorithm [7].

. IO(
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3.2. Optical flow with adaptive smoothing

H. Nagel and W. Enkelmann proposed in [32] to adaptively introduce

smoothness constraints into the problem of optical flow.

We recall the basic optical flow equation of Horn-Schunck [25]:

min {H( (Vw1 )+ (2 +a2 432 +v2) )axy | 3.7)

where u = («, v)" and Vu = (“’ v’], represents the matrix of partial derivatives of
u}‘ v}‘

the displacement vector components with respect to the image coordinates. The

second term in (3.7) represents the smoothness requirement introduced by Horn and

Schunck [25]. Parameter A denotes the strength of the smoothness requirement

relative to the first term.

Horn and Schunck used one parameter 1, same for all the pixels. This means
that one pixel /, inside a texture and one pixel j, on the borders of an object use the
same smoothness constraint. As a result, for pixel i the estimated optical flow is
computed well, but for the pixel j, which is located on an edge of an object, the
estimated optical flow tend to lose its accuracy because it expands its flow around that

edge.

Therefore, the main idea was to introduce a weight matrix C! into the
smoothness term, whose purpose is to give zero weight for pixels located on edges
and greater values than zero for other pixels located inside textured areas. So, in that

case, the optical flow problem becomes:

n‘}'ivn{ H( (VITu+1) +24 trace((Vu)TC" (Vu)) )dxdy } : (3.8)
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The factor b° denotes the relative weight of the two contributions. If we carefully

examine matrix F we will see that it is a 2 x 2 matrix and after some manipulation we

(F.. F.z)
F, Fy

At this point, we have to find the solution to the minimization problem of

obtain:

1>

~ b2, +12) —(r1, +0?2 (1 1, +1,1,)
F= (— (1,1yy+ b? (I;}W +xy1,y1,“ ) ny + bz(;y;)i If,jy

(3.8). Firstly, let us rewrite the problem in a more convenient way:

n:ivn{E(u,v,u,,uy,v,,vy)dxcb/} o
min [[(Lu+Ly+1,f +4 (Fyu? +2F,u,u,+ Fy )
+ Fyv2 +2F, v, v, +F,v})dedy (3.10)

11 "x 12 "x "y

The solution of (3.10) is obtained by using the Calculus of Variations theory, (see

Appendix C for details) where the related Euler-Lagrange equations are

{ \ (
min OF _d[0E ) _d|OoF =0, (3.11a)
“u |Ou dx\Ou,) dy\Ou,

|oE af(eE) dfoE)

v _“ - Z= [ =0 3.11b
m"m{a" d"[a‘w dy\""’u} 10

From equation (3.11a), in order to find a solution for # we have to compute the

following expressions

OE
) E=2(I,u+l,v+],)lx
o aE:ZFH/‘Lux+2F,21.uy
d| oE
> ;(a‘\]=2ﬁ,/‘tun+2ﬁ]zﬂuv
° —a—E—=2Fn/’Luy+21"}2Au,r

Ou

y
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> %LE}-_-anAu”nFnzuv

ty

Substituting the above expressions into (3.11a) we come up with the following

equation:

Pu+IIv =—LI+A(Fu,+Fyu,+F,u,).

It ¥ x 12 %xy

By repeating the same procedure for equation (3.11b) we find a similar equation for v.

Finally, we end up with the following linear system:

Pu+IIyv=-LI+A(Fyu, +F,u, +F,u,)

11 ¥ xx

LLu+*v ==LI+4(F,v, +F,v, +F,v,)

11 "xx

A usual approach to solve the above linear system is to proceed iteratively. For
the computation of ) and v**" at step (+1) we employ their derivatives computed

at time step .

Pu 4 11 v =~ L1+ (Fu® + Fpu® + F, u®)

11 *xx 12 % xy
Lo
LI u™ 4120 = I+ 4 (F,v® + Fyv? + F, v?)
2 LLu] [-11+4(Fu® + Fpu® + F u®)
= 2 A" =50, (3.12)
L1, v | | -LL+a(F,v® +F,v? + F,v?)

In (3.12), if F); = F>2 =1 and Fy; = 0 we obtain the linear system we have at the Horn
and Schunck scenario [25]. Finally, the solution to (3.12) is obtained by solving the

previous iterative scheme.

3.3. Combination of JLK and adaptive smoothing

The first method we propose in this chapter is the combination of the two

previously mentioned methods of S. Birchfield — S. Pundlik [7] and H.Nagel-
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W. Enkelmann [32]. The main idea is to keep the proposed scheme of Nagel et al.
[32], in order to have adaptive smoothness constraints and modifying it by adding the
neighboring area proposed by Lucas-Kanade [28] and then also used by S. Birchfield—
S. Pundlik [7]. In other words, the linear system (3.12) proposed in section 3.2 now

becomes:
J. Jy fu™ | |-J, +4 (F“ ul + Fpul) + F, ug))
- (3.13)
J I, v | | =a, + 4 (F v + Py v® + Fy v®)

| Xy w
!

* where Ji. = K, (1), Jyy = K, *(LL,), Jua = K, *(L), Jy = K, +(I,2), and J,, = K, +(I,1,)
| and K, is a suitable convolution kernel whose size determines the number of
- neighboring pixels to be aggregated and assigns appropriate weights to the pixels

inside the window. For our experiments, which we show in section 3.5, we use a 7x7

E average kernel.

3.4. Guiding optical flow using segmentation

The second method we propose in this chapter is a variation of the method
described in section 3.3. The innovation here is that we “carefully” choose which of
the neighboring pixels are going to participate into the convolution matrix K. The
choice is taken by examining if the neighboring pixel i’ belongs to the same super-
pixel with the current pixel i. If it doesn’t belong to the same super-pixel, then the

value of K, for that neighboring pixel is equal to zero.

Here appears the need to analyze what we mean by the term “super-pixel” and
how it is produced. It is common to use the term super-pixel in order to name a unit —
a piece from the result of the procedure called image segmentation. Another name you

may be seen in bibliography instead of super-pixel is segment. Additionally, image

segmentation is the procedure in which we group together pixels of an image that

appear to have the same features (or simpler the same behaviour). The most common
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An example of image segmentation is shown in figure 3.2.
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Figure 3.2: Various image segmentations. (a) Yosemite's without clouds, (b) Dimetrodon'’s
and (c) Rubberwhale’s image segmentation.

In our experiments, the super-pixels were produced by using the method
purposed in {38], where G. Mor proposed a method based on normalized cuts
(spectral clustering). For each experiment (except from the trivial artificial images of
sections 3.5.1-3.5.3 where the number of the super-pixels does not affect the result),
we are showing various combinations between the window size and the number of the

super-pixels at the appendix E.
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3.5. Experimental Results and Discussion

The proposed methods were tested on image sequences including both
synthetic and real scenes. Some of the synthetic images were synthesized from us and
other were taken from publicly available data sets as for example the Middlebury
public flow dataset [3], [4, 29] in order to guarantee the objectiveness of our

evaluations.

More specifically, we tested our method on three synthetic sequences. The
first sequence is showing a Textured Square moving from the center to the top left
corner by one pixel. The second one is showing two Textured Triangles. The upper
left triangle moves about one pixel to the bottom left corner, while the bottom right
triangle moves about one pixel to the bottom right corner. The third one is showing
two Textured Triangles with the only difference from the second synthetic sequence
that here the bottom right triangle moves about 2 pixels to the bottom right corner.
The background color for all the previously mentioned sequences is black, without

loss of generality.

Additionally, we tested our methods on the well-known Yosemite sequence
without clouds, the Dimetrodon sequence and the Rubberwhale sequence [3] (which
contain hidden texture ~ occlussions). We compared our approaches with the
algorithms of Pundlik’s method [7] and Nagel’s method [32]. For the evaluation of

our method we used the error metrics described in section 2.4.
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3.5.1. Textured-Square Sequence

This is a simple 256 x 256 example, which consists of a textured square
located at the center of the first frame, while at the second frame it moves by one
pixel towards the top left comner. Figure 3.3 shows a frame of the image and figure 3.4
shows optical flow estimations from the compared methods along with the ground
truth. Figure 3.5 shows the angular error and figure 3.6 presents the flow by using
color coding [3]. We do not show the end-point error for each pixel as it has too small
values (but we show the average end-point error, which is equivalent and more

meaningful).

Figure 3.3: Textured-square sequence: first frame of the sequence.
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Figure 3.4: Textured-square sequence: (a) ground truth optical flow, (b) optical flow using

the JLK method [7), (c) flow using the method of Nagel et al. [32), (d) resulting optical flow of

the proposed method of section 3.3 and (e) resulting optical flow of the proposed method of

section 3.4.
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Figure 3.5: Textured-square’s Angular Error (AE) of the compared methods. (a) JLK method
[7], (b) method of Nagel et al. (32] (c) JLK with adaptive smoothing (section 3.3) and
(d) guided optical flow using image segmentation (section 3.4).
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Figure 3.6: Textured-square sequence: colorful optical flow. (a) Flow field color coding,

(b) ground truth, (c) flow field using the JLK method [7), (d) flow field using the method of

Nagel et al. [32), (e) flow field using the method proposed in section 3.3 and (f) flow field
using the method proposed in section 3.4.
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Table 3.1: Average error metrics for the Textured-square sequence.

Method AAE (in degrees) | AME (in pixels) | EP (in pixels)
Lucas-Kanade [28] 3.09 0.08 0.08
Horn-Schunck [25] 1.84 0.04 0.04

Joint Lucas-Kanade [7] 2.67 0.04 0.05
Nagel et al. [32] 1.60 0.04 0.04
Method of section 3.3 1.50 0.05 0.04
Method of section 3.4 1.46 0.04 0.04

As we can see from table 3.1 our approaches achieve smaller errors than

Nagel’s et al. [32] and Joint Lucas-Kanade method [7], for all the error metrics.

3.5.2. Textured-Triangles with equal in Norm Moves

This is a slightly more complicated 256 x 256 example, which consists of two
textured triangles located at the top left comer and at the bottom right comer of the
first frame, while at the second frame the upper left triangle moves by one pixel to the
bottom left corner, while the bottom right triangle moves by one pixel to the bottom
right corner. Figure 3.7 shows the image and figure 3.8 the estimated optical flows.
Figure 3.9 shows the angular error and figure 3.10 presents the flow by using color
coding [3]. We do not show the end-point error for each pixel as it has too small
values (but we show the average end-point error, which is equivalent and more

meaningful).

Figure 3.7: Textured-triangles (with equal in norm moves) sequence: first frame of the
sequence.
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Figure 3.8: Textured-triangles (with equal in norm moves) sequence: (a) ground truth optical
flow, (b) optical flow using the JLK method 7], (c) flow using the method of Nagel et al. [32],

(d) resulting optical flow of the proposed method of section 3.3 and (e) resulting optical flow

of the proposed method of section 3.4.
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Figure 3.9: Textured-triangles’ (with equal in norm moves) Angular Error (AE) of the
compared methods. (a) JLK method (), (b) method of Nagel et al. [32] (c) JLK with adaptive
smoothing (section 3.3) and (d) guided optical flow using image segmentation (section 3.4).
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Figure 3.10: Textured-triangles (with equal in norm moves) sequence: colorful optical flow.
(a) Flow field color coding, (b) ground truth, (c) flow field using the JLK method (7],
(d) flow field using the method of Nagel et al. [32], (e) flow field using the method proposed
in section 3.3 and (f) flow field method proposed in section 3.4.
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Table 3.2: Average error metrics for the Textured-triangles (with equal in norm moves)

sequence.

Method AAE (in degrees) | AME (in pixels) | EP (in pixels)
Lucas-Kanade [28)] 591 0.15 0.14
Horn-Schunck [25] 247 0.05 0.05
Joint Lucas-Kanade [7] 410 0.07 0.08
Nagel et al. [32] 2.25 0.06 0.05
Method of section 3.3 233 0.08 0.05
Method of section 3.4 2.26 0.07 0.05

As we can see from table 3.2 our approaches are slightly worse than Nagel’s er
al. approach [32] (~ 0.01 difference in A4E) although our results in fig. 3.10 are more
coherent our lost comes because our methods expands the optical flow slightly outside
the edges of the triangles, but better than Joint Lucas-Kanade method [7], for all the

error metrics.

3.5.3. Textured-Triangles with unequal in Norm Moves

A next experiment consists in increasing the difficulty of the previous
configurations. We have a 256 x 256 example, which consists of two textured
triangles located at the top left corner and at the bottom right corner of the first frame,
while at the second frame the upper left triangle moves by one pixel to the bottom left
comner, while the bottom right triangle moves by two pixel to the bottom right corner.
Figure 3.11 shows the image and figure 3.12 the estimated optical flows. Figure 3.13
shows the angular error and figure 3.14 presents the flow by using color coding [3].
We do not show the end-point error for each pixel as it has too small values (but we

show the average end-point error, which is equivalent and more meaningful).

Figure 3.11: Textured-triangles (with unequal in norm moves) sequence: first frame of the
sequence.
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) sequence. (a) ground truth

in norm moves,

al. [32], (d) resulting optical flow of the proposed method of section 3.3 and (e) resulting
optical flow of the proposed method of section 3.4.

Figure 3.12: Textured-triangles (with unequal
optical flow, (b) optical flow using the JLK method [7], (c) flow using the method of Nagel et
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Figure 3.13: Textured-triangles’ (with unequal in norm moves) Angular Error (AE) of the
compared methods. (a) JLK method [7), (b) method of Nagel et al. [32] (c) JLK with adaptive
smoothing (section 3.3) and (d) guided optical flow using image segmentation (section 3.4).
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Figure 3.14: Textured-triangles (with unequal in norm moves) sequence: colorful optical
Sflow. (a) Flow field color coding, (b) ground truth, (c) flow field using the JLK method (7],

(d) flow field using the method of Nagel et al. [32), (e) flow field using the method proposed
in section 3.3 and (f) flow field method proposed in section 3.4.
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Table 3.3: Average error metrics for the Textured-triangles (with unequal in norm moves)

sequence.

Method AAE (in degrees) | AME (in pixels) | EP (in pixels)
Lucas-Kanade [28] 8.58 0.17 0.26
Horn-Schunck [25] 5.57 0.14 0.19
Joint Lucas-Kanade [7] 6.95 0.18 0.22
Nagel et al. [32] 4.79 0.13 0.18
Method of section 3.3 4.67 0.17 0.17
Method of section 3.4 478 0.16 0.18

As we can see from table 3.3 our approach achieves smaller errors than
Nagel’s et al. approach [32] in AAE and EP and slightly worse in AME, while in
comparison with the Joint Lucas-Kanade method {7] our methods performs better for

all the error metrics, although all the methods did not have perfectly estimations.

3.5.4. Yosemite Sequence without Clouds

The  Yosemite  sequence  without clouds, is available at
http://www.cs.brown.edu/people/black/images.html.

Figure 3.15: Yosemite sequence without clouds: first frame of the sequence.
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Figure 3.16: Yosemite sequence without clouds: ground truth optical flow.
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of section 3.3.
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Figure 3.20: Yosemite sequence without clouds: resulting optical flow of the proposed method
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Figure 3.23: Yosemite sequence without clouds: colorful optical flow. (a) Flow field color
coding, (b) ground truth, (c) flow field using the JLK method [7), (d) flow field using the
method of Nagel et al. [32], (e) flow field using the method proposed in section 3.3 and
(9 flow field using the method proposed in section 3.4.
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Table 3.4: Average error metrics for the Yosemite without Clouds sequence.

Method AAE (in degrees) | AME (in pixels) | EP (in pixels)
Lucas-Kanade [28] 11.65 023 0.48
Horn-Schunck [25] 543 0.10 020

Joint Lucas-Kanade [T] 797 0.17 035
Nagel etal [32] 9.15 0.19 0.36
Method of section 3.3 5.12 0.12 022
Method of section 3.4 3.79 0.09 0.15

As we can see from the table 3.4 our approaches are better than Nagel’s et al.
method [32], JLK [7], LK [28] and HS [25] for all the error metrics. In order to obtain
those results, we used 40 super-pixels and a 19x19 window, representing the
neighborhood. See appendix E for more combinations between the number of the

super-pixels and the window size.

3.5.5. Yosemite Sequence with Clouds

The original version of the Yosemite sequence with cloudy sky was created by Lynn
Quam and is available at ftp://ftp.csd.uwo.ca/pub/vision.

Figure 3.24: Yosemite sequence with clouds: first frame of the sequence.
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Figure 3.25: Yosemite sequence with clouds: ground truth optical flow.
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Figure 3.26: Yosemite sequence with clouds: optical flow using the JLK method [7).
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Figure 3.27: Yosemite sequence with clouds: optical flow using the method of Nagel et al.
[32]
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Figure 3.28: Yosemite sequence with clouds: resulting optical flow of the proposed method of
section 3.3.
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Figure 3.29: Yosemite sequence with clouds: resulting optical flow of the proposed method of
section 3.4.

Figure 3.30: Yosemite with clouds’ Angular Error (AE) of the JLK method 7).




(c)
ite with clouds’ Angular Error (AE) of the compared methods. (a) Method
(b) JLK with adaptive smoothing (section 3.3) and (c) guided optical flow

using image segmentation (section 3.4).
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(c) (@

i

(e) 1/

Figure 3.32: Yosemite sequence with clouds: colorful optical flow. (a) Flow field color

coding, (b) ground truth, (c) flow field using the JLK method (7], (d) flow field using the

method of Nagel et al. {32), (e) flow field using the method proposed in section 3.3 and
(D) flow field using the method proposed in section 3.4.
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Table 3.5: Average error metrics for the Yosemite with Clouds sequence.

Method AAE (in degrees) | AME (in pixels) | EP (in pixels)
Lucas-Kanade [28] 20.75 0.46 0.87
Horn-Schunck [25] 12.57 032 0.55

Joint Lucas-Kanade (7] 16.69 0.35 0.63
Nagel et al. [32] 19.78 0.47 0.84
Method of section 3.3 13.46 0.38 0.66
Method of section 3.4 11.86 0.30 0.52

As we can see from the table 3.5 our approaches are better than Nagel’s et al.
method [32], Joint Lucas-Kanade [7], LK [28] and HS [25] for all the error metrics. In
order to obtain those results, we used 40 super-pixels and a 21x21 window,
representing the neighborhood. See appendix E for more combinations between the

number of the super-pixels and the window size.

3.5.6. Dimetrodon Sequence

The dimetrodon sequence is obtained from the Middlebury database [3]. It

contains non-rigid motion and large areas with little (hidden or not) texture.

Figure 3.33: Dimetrodon sequence: first frame of the sequence.
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Figure 3.34: Dimetrodon sequence: ground truth optical flow.
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Figure 3.35: Dimetrodon sequence: optical flow using the JLK method [7].
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Figure 3.36: Dimetrodon sequence: optical flow using the method of Nagel et al. [32].
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Figure 3.37: Dimetrodon sequence: resulting optical flow of the proposed method of section

3.3
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Figure 3.38: Dimetrodon sequence: resulting optical flow of the proposed method of section
34.

Figure 3.39: Dimetrodon's Angular Error (AE) of the JLK method [7}.



(c)

- Dimetrodon’s Angular Error (AE) of the compared methods. (a) Method of
32), (b) JLK with adaptive smoothing (section 3.3) and (c) guided optical flow
using image segmentation (section 3.4).
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Figure 3.41: Dimetrodon sequence: colorful optical flow. (a) Flow field color coding,
(b) ground truth, (c) flow field using the JLK method [7), (d) flow field using the method of
Nagel et al. [32), (e) flow field using the method proposed in section 3.3 and (f) flow field

using the method proposed in section 3.4.
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Table 3.6: Average error metrics for the Dimetrodon sequence.

Method AAE (in degrees) | AME (in pixels) | EP (in pixels)
Lucas-Kanade [28] 27.52 0.56 1.07
Horn-Schunck [25] 8.51 0.24 049

Joint Lucas-Kanade [7] 33.14 0.65 035
Nagel et al. [32] 17.58 0.38 1.17
Method of section 3.3 10.17 0.24 0.52
Method of section 3.4 6.24 0.18 0.36

As we can see from table 3.6 our approaches are better than Nagel’s ef al.
method [32], Joint Lucas-Kanade [7], HS [25] and LK [28], for all the error metrics.
The EP = 0.35 for the JLK method is misleading since JLK failed in AAE metric. In
order to obtain those results, we used 40 super-pixels and a 29 x 29 window,
representing the neighborhood. See appendix E for more combinations between the

number of the super-pixels and the window size.

3.5.7. Rubberwhale Sequence

The rubberwhale sequence is obtained from the Middlebury database [3].

Figure 3.42: Rubberwhale sequence: first frame of the sequence.
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Figure 3.43: Rubberwhale sequence: ground truth optical flow.
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Figure 3.44: Rubberwhale sequence: optical flow using the JLK method [7).
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Figure 3.45: Rubberwhale sequence: optical flow using the method of Nagel et al. [32].

Pr— ~ -~ ~ * - . =~ - = = .~ = .~ o = = - - - =
__-__.__—_..\~‘¢l..\\_'1‘4_—.--.-.—...-.-..-.—\\
o e e e e e a e a e e e e e e e e e e el A A e e e o e e e e o e =
. D T e e U U A
- e e e m e F 7 a e s, A, e, ] a4 e e e s e M T e v e e v e W e Y e W e we w
e e e = e m e m e o o w m 2 ol e m e e e v e e v e e e o~ —
- = a4 e w e e = s D A i N N,
D TP e S S S O U UG U U U,
D o S U U U
e mm e s s b PV b m e e v s e e e e e e e e e e~
rf m m NN~ meemmrmomrom s Sl N e e e e e e - -
NN N N mmm e PSS S ke e e e v e e . . - =
A m m e e m b s e PSS S S S N o e e e e e e e e o e e .
- e e o v o v e o AL S S S S e e e e e am o e e e e oA =
I R e R S S N SV S U U U
ot e r e e St oo e 8 AL IN e o e e e e o e =
et o o et e - e e e 2 S LSS P i e e et 4 e m = -
e a2\ e et YV et e P LS S P e e e e a . - -
. - . - e P P e o - - e m et e ™ LS S P e v en ay e e - e o v - -
--..//\._,_,..~..._...._._..\ Y A L S RO
Y 2 U S, B P T T T
~-_\\.’...~\\\///,,..,,_._4-/-.,«-..\.._-..“‘-.
--—.—///.-\.\\//I,,.../, _._..’\ - e o e mm mr ay ee - = =
---.-///—\\\////“‘—H—./—.—h—---._-.-“_-.-“"
- o v e e a e v e m e = - . v s et P ar - 2 . m - - e = o -

Figure 3.46: Rubberwhale sequence: resulting optical flow of the proposed method of section

33.
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Figure 3.47: Rubberwhale sequence: resulting optical flow of the proposed method of section
34.

Figure 3.48: Rubberwhale’s Angular Error (AE) of the JLK method [7].



(c)
Rubberwhale’s Angular Error (AE) of the compared methods. (

2], (b) JLK with adaptive smoothing (section 3.3) and (c) guide
using image segmentation (section 3.4).
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Figure 3.50: Rubberwhale sequence: colorful optical flow. (a) Flow field color coding,
(b) ground truth, (c) flow field using the JLK method [7), (d) flow field using the method of
Nagel et al. [32), (e) flow field using the method proposed in section 3.3 and (f) flow field
using the method proposed in section 3.4.
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Table 3.7: Average error metrics for the Rubberwhale sequence.

Method AAE (in degrees) | AME (in pixels) { EP (in pixels)
Lucas-Kanade [28] 9.59 0.22 0.29
Horn-Schunck [25] 8.75 0.22 0.25

Joint Lucas-Kanade [7) 18.44 0.43 0.50
Nagel et al. [32] 11.87 0.29 0.33
Method of section 3.3 835 0.21 0.25
Method of section 3.4 8.17 0.21 0.24

As we can see from table 3.7 our approaches are better than Nagel’s ez al.
method {32], Joint Lucas-Kanade [7], LK [28] and HS [25], for all the error metrics.
In order to obtain those results, we used 100 super-pixels and a 9x9 window,
representing the neighborhood. See appendix E for more combinations between the

number of the super-pixels and the window size.

3.6. _ Partial Conclusion

In this chapter we studied the methods proposed in [7], [32] but also we
proposed two variations of them. As we can see from the previous section, our
suggestions manage to achieve significantly better result than the JLK method {7] and
the approach of Nagel et al. [32].

Furthermore, we conclude that for the same window size, as the number of the
super-pixels increases, we obtain worse results. Additionally, it is understood that the
window size has a greater role than the number of the super-pixels, which was
expected, since super-pixels have an effect only on the pixel belonging to motion

boundaries or to edges in the image, who are the minority of the image canvas.
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CHAPTER 4. VARIATIONAL BAYESIAN
OPTICAL FLOW

4.1. Introduction

4.2. A Prior for the Motion Vectors

4.3. A Probabilistic Model for Optical Flow

4.4. Model Inference

4.5. Experimental Results and Discussion
4.5.1. Squared-texture Sequence
4.5.2. Textured-Triangles with equal in Norm Moves
4.5.3. Textured-Triangles with unequal in Norm Moves
4.5.4. Yosemite without Clouds Sequence
4.5.5. Dimetrodon Sequence

4.6. Partial Conclusion

4.1. Introduction

This work resulted from the combination of the method proposed in [14] with
the well-known Homn-Schunck (AS) method [25]). More specifically, the main
difference between our approach and the method of HS is that we don’t employ a
deterministic parameter to control the strength of the smoothness constraint. More
specifically, we impose stochastic parameters, one for each pixel, similar in spirit with

[14], which are updated at each iteration. Moreover, we impose Gaussian noise
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statistics in order to capture the missing information due to the linearization by Taylor

expansion series.

4.2. A Prior for the Motion Vectors

We assume that u,(i), u,(i) for i = 1 ,..., N are i.i.d zero mean Student’s-¢ distributed

(see Appendix B for details), with parameters Ay, v and 4y, vy, respectively:

{u,(i) ~ 810, 4,,v,) (4.1)

u, ()~ SO, 4,,v,)’

The Student’s t-distribution implies a two-level generative process [8]. More

specifically, ax(?) and a, (/) are first drawn from a Gamma distribution

a, (i) ~ Gamma (L‘—,v—’)
2°2
], (4.2)

o, (i) ~ Gamma (—",—’

At this step, the probability density function (4.1) may be written as an integral

P, )=S0, by,v,) = [ p(u,(0), 0,()) da,()
= [ p(u,()10,()) p(@, () do, (), (43)

As v goes to infinity, the pdf of ax(i)’s has its mass concentrated around its
mean. This in turn reduces the Student’s-f to a normal distribution, because all (s},

ke {x, y} are drawn from the same normal distribution with precision Ay, since
ax() = 1. When v, — 0 the prior becomes uninformative. In general, for small values

of v, the probability mass of the Student’s-f pdf is more “heavy tailed”.



84

Then, u,(i), uyi) are generated from two independent zero-mean normal
distributions with precision A; QTA,Q, A, QTA,. , respectively, where Q is the
Laplacian operator and A, = diag{ a.(i) }, A, = diag{ a,(i) }, according to

plu,| A,)=N (0, (ﬂxQ'A,Q)q)
X (4.4)

rlu, 1 4,)=1(0,(,074,0)")
Equation (4.4) may also be written more compactly as:
plu1X)=nlo,(074 &)"),

A ~ |A 0 . . . ..
where 4 = [/{’] , A =[ 0‘ A ] , 0 is a zero matrix of size (N x N) and similarly
y

- [Q o
Q‘[o Q]‘

Combining both components of u in one equation we obtain the density for the

motion vectors

N

palZ)- T [T(hA)" exof- S AuiQa,Qu,} @3)

kefx,y} i=1

Following (4.3), the marginal distribution p(u) yearns for a closed form.
However, this prior is analytically intractable because one cannot find in closed form
its normalization constant. This problem stems from the fact that it is not possible to
find the eigenvalues of the matrix Q,"A;Q since it is very large and it does not have a
structure that is amenable to efficient eigenvalue computation. Consequently, we have
to import a proper model inference scenario, which in our case is described in section

44.
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4.3. A Probabilistic Model for Optical Flow

Let I be the first image frame (vectorized intensity values) which is
commonly named as the target image, J the second image frame, which will be the
source image, x the vector containing the 2D coordinates of the pixels in a frame, and
u the optical flow vectors of the pixels. For convenience, but without loss of

generality, we use 1D notation.

As many methods usually do, based on the brightness constancy constraint,
our aim is to minimize the intensity error, J(x) — I(x + u), with respect to u. By
developing the Taylor series expansion of I(x + u) around point x and keeping only

the linear part, we come up with the following linear system:

6. ¢,] [:‘}—d -0,

y

which can be written also as

d=Gu+w, (4.6)

where d is the initial intensity difference between the two frames d = J(x) — I(x) in
vectorized form (e.g. lexicographic ordering), G contains the spatial gradients

G=VJ=[G, Gl G, =diag{ﬂ} , G, =diag{ﬂ} , N being
i=l, ., N i=l,...N

i)i=,.., iJi=,..,

the number of pixels, u = [u,, u,]", and w is additive white noise modeling the rest of

the Taylor expansion terms. We also assume Gaussian statistics for the noise:

W~ _7V(0, (]'noise B)_l )’ 4.7)

where AniseB is the noise precision matrix, 0 is an N x | vector of zeros and

B =diag{b(1),...,b(N)}. To make the model more flexible, we also consider that:

b(i)~Gammz{§,§), 4.8)
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Following the optical flow model in (4.6),

p@|w) = (Gu, (4,.B)"), 4.9)

DO
CICHEN

Vr Vy

Figure 4.1: The graphical model of the method.
As it may be observed the graphical model of figure 4.1, d is the vector

containing the observations (temporal differences), u, A:, A,, b, are the hidden

variables of the model and A, Ay, Anoise, Vx, vy and u are the model’s parameters.

4.4, Model Inference

Working in the Bayesian framework, the complete data likelihood is
pldu A b;60)= pld|u, A0 0)plu| A, b;6)p(A:0)p:0),  @10)
where 8 = [Anoise » Ax » 4y » #, Vx, V] contains the parameters of the model.

Estimation of the model parameters could be obtained through maximization
of the marginal distribution of the observations p(d; 6):
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g= arg max HJ p(d,u,K,b;B) du dA db 4.11)
[/}

However, in the present case, this marginalization is not possible, since the

posterior of the latent variables given the observations p(u, A, b | d) is not known
explicitly and inference via the Expectation-Maximization (EM) algorithm is not

possible [5].

For this reason, we have to resort to the variational methodology [14], [8], [26]

and [5]. According to this methodology, we have to maximize the following lower

~ ~ ,A,b
L(u, A, b;0)= ) Lq(u,A, b)log;(%:mg) . (4.12)

This involves finding approximations of the posterior distribution of the hidden

bound

variables, denoted by g(u), q(K), q(b) because there is no analytical form of the
auxiliary function g for which the bound in (4.12) becomes equality. In the variational
methodology, however, we employ the Mean Field approximation (see Appendix D
for details):

alu, &,b)=q(u) ¢(&) q(b) (4.13)
and (4.12) becomes

L(u,x, b; 0)= I q(u) q(X) q(b) log q(u) 9 A q(b (4.19)

oXb pd,u,K,b;a .

In our case, in the VE-step of the variational algorithm, optimization of the
functional L(g(x), 6) is performed with respect to the auxiliary functions. In the
present case following the variational inference framework, the distributions g(uy),

k e{x, y}, are normal:

R (1N | B3 it
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Therefore, this bound is actually a function of the parameters Ry and my and a
functional w.r.t. the auxiliary functions g(Ay), g(B). Using (4.13), the variational

bound in our problem becomes

L{g(u,),q(u,),q(A,).q(A,),q(B),6,,6, )=

[ TTaCu,;6)4(A,)q(B)log p(d,u, A,B;6,) du dA dB

ke{x,y}

—Iq(ukﬁ )9(A,)gB)log [ Tp(u,;6,)9(A,)q(B) du dA dB , (4.15)

kefx,y}

where 6; = [Ry, Ry, my, my] and 6, = [A,, Ay, B, A«, Ay vx, W]. Thus, in the VE-step of
our algorithm the bound must be optimized with respect to Ry, my, g(Ax) and q(B).

Taking the derivatives of (4.15) w.r.t to my, Ry, g(Ag), ¢(B) and setting them to zero

we obtain

m{* = 49, RVBYG,(d - G u¥)
(4.16)
m¢*) = 19, ROBYG (d - G u?)

Rgu) - (/1(:)‘ GIﬁmG, + ﬂ.‘,”Q’ AY)Q)—l

noise

N “4.17)
RU = (,1(:) GTB"’G +A0QT A"’Q)

noise " y

After some manipulation, we obtain the update equations for the model
parameters which maximize over g(Ay), g(b). The form of all ¢ approximating-to-the-
posterior functions will remain the same as the corresponding prior (due to the

conjugate priors we employ) namely g(Ax), g(b) which approximate p(Ag| ug, Ax Cs;

vi), p(b|u, Anoise, F; p) will follow Gamma distributions.
( 0 0
q"*"(a(¥)) = Gamma vz ; v2 +— l"’((Qu(’))z +C9(,i ))}V i,
) (4.18)
0) ®
K ¢“(a, ()= Gammakv—;— ; 2l A"’((Qu“’)f+c‘,"(i,i))], vi,
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1) )
g“*(b(7))= Ga;mna("‘7 + %#T + %,152‘, (Gu© -af + F"’(i,i))), vi, (4.19)

where C¥ =QRYQ’, kefx, y}, F¥ = ) G,RYG] , d = J(x) - K(x) (the intensity
kelx,y)

difference between the two initial frames) . Notice that the final estimates for us and

uy are m, and my, in (4.16) respectively.

Observing the size of matrices R,, R, and consequently C,, C,, F, we have to
use an iterative method in order to calculate them. Hence, we recur to the Lanczos

method [14, 33].

As we can see from (4.16) there is a dependency between u; and uy, as it is the

case in the standard Horn—Schunck method.

Notice that since each ¢“'(ayi)) are Gamma pdfs of the form

q“" (@ (i) = Gamma(a, B), their expected values are

((a @) 2 i ‘
D g0 4 10(Qu ) +c0, i)
4 , (4.20)
' o v 41
a \ + N m_ f ‘
( ,,( ))q(: Da, () B v;') " ’lfv’) ((Qll(y')),z +C:”) (i, l))

and the same stands for the expected value of b(i):

a_ MO+ \
B 400 ((Gu"’ _d)i2 +FO, ,-)),

(b(i »q('*l)(b(,-)) = “4.21)

where (.)q“ denotes the expectation w.rt. an arbitrary distribution g(.). These

estimates are used in (4.16) and (4.17), where A® and B are diagonal matrices

with elements

;\(:) (i’ i) = (a‘ (i»q(')(ak(l)) and ﬁ(,) (iai) = (b(i»q(')(b(l)) =1, N,
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At the variational M-step, the bound is maximized with respect to the model

parameters:

VM-step: gyn) = arg max L(q(ul)(uk )’q(“‘)(Aklq(’n)(ﬁle](l“)’gz) , where
6.

2

L(q (r+1) (ll i )’ q (l+|)( A R ) g (e+1) (ﬁ)’ gl(m) , 02 ) oc (log P(d, u, A k> ﬁ; 02 »‘1('1: ; ol(nl)} q('”)(ﬂk ) q(r+|)(§)

is calculated using the results from (4.16) — (4.19).

The update for A, is obtained after taking the derivative of

L(q(”') (u,) q(‘”)(f\ . )q(”") (ﬁ), o, 6, ) in (4.15) and setting it to zero:

S = 2 \ 4.22
noise z‘l\zll b(,+1 ) (l) ((G“(t) _d)’z +F(:+1) (i, ,)) ’ ( )
By the same procedure we obtain:
( ﬂ(fﬂ) = . N N
YN g [(Qu) + Cen (i)
) , (4.23)
2'('”) = . N N
7YY e ([Qul) + i)

The “degrees of freedom” parameter v; of the Student’s ¢-distribution is also

computed by setting the derivative of (4.15) equal to zero with respect to v:

0]

1 (& ) N . y I
RTINS <a"('»4"*"w)]+W(T+5J

l’_'(':)_ _l_ _ Vi A -

_log[2 +2 t//—z +log ) +1=0

I (x)

w(x)= g;logl‘(x)= )’

for v, Vk e {x, y} , Where

is the digamma function and v is the value of v, at the previous iteration (¢) used

to evaluate the expectations in (4.20) during the VE-step.
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Finally, by the same procedure we obtain estimates for the parameter u of the

noise distribution

1 (& . N u® 1
I_V. Z log(b(l»q(‘ﬂ) o) Z(b(l)) £ () ) Ty (—2—‘ + -'2-'

i=1 i=1
)
- log(ﬁ—— + l] - w(ﬂ) + log(%) +1=0
2 2 2 ., (4.25)

where u @ is the value of u at the previous iteration (f) used to evaluate the

expectations in (4.21) during the VE-step.

In our implementation, we solve (4.16), (4.24) and (4.25) iteratively. For
equations (4.24) and (4.25), we employ the bisection method, as also proposed in [27]
and [14]. For equation (4.16) we employ a method based on the Lanczos process [5],
[33].

To resume, the steps of the Variational EM — algorithm are presented in fig. 4.2.

Algorithm: Variational — Bayesian optical flow method

1: Initialize u, , u, by the Horn-Schunck optical flow.

2: DO until convergence

3 VE-step:

4 Compute the expectations a,(7), a,(i) using (4.20).
5: Compute the expectation of b(i) using (4.21).

6: VM-step:

7 Compute A, Using (4.22).

8 Compute A, , A, using (4.23).

9

Solve for v,, v, equation (4.24), using the bisection method.

10: Solve for u equation (4.25), using the bisection method.

11: Update the mean vectors using (4.16).

12; Update matrices C,, C,, F and R,, R, using (4.17) and the Lanczos method.
13: Solve (4.16) to obtain the values of m,, m,.

14: Set [u,, u,] : = [m,, m,).

15: ENDDO

Figure 4.2: The steps of the proposed method.
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4.5. Experimental Results and Discussion

The proposed method was tested on image sequences including both synthetic
and real scenes. Some of the synthetic images were synthesized from us and other
were taken from publicly available data sets as for example the Middlebury public

flow dataset [3], [4, 29] in order to guarantee the objectiveness of our evaluations.

More specifically, we tested our method on three synthetic sequences. The
first sequence is showing a Textured Square moving from the center to the top left
corner by one pixel. The second one is showing two Textured Triangles. The upper
left triangle moves about one pixel to the bottom left corner, while the bottom right
triangle moves about one pixel to the bottom right corner. The third one is showing
two Textured Triangles with the only difference from the second synthetic sequence
that here the bottom right triangle moves about 2 pixels to the bottom right comer.
The background color for all the previously mentioned sequences is black, without

loss of generality.

Additionally, we tested our method on the well-known Yosemite sequence
without clouds and the Dimetrodon sequence [3] (which contains hidden texture). We
compared our approach with the algorithms of Horn-Schunck [25], and Lucas-Kanade
[28]. For the evaluation of our method we used the error metrics described in section
2.4.
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4.5.1. Textured-Square Sequence

This is a simple 256 x 256 example, which consists of a textured square
located at the center of the first frame, while at the second frame it moves by one
pixel towards the top left corner. Figure 4.3 shows a frame of the image and figure 4.4
shows optical flow estimations from the compared methods along with the ground
truth. Figure 4.5 shows the angular error and figure 4.6 presents the flow by using
color coding [3]. We do not show the end-point error for each pixel as it has too small
values (but we are showing the average end-point error, which is equivalent and more

meaningful).

Figure 4.3: Textured-square sequence: first frame of the sequence.
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Figure 4.4: Textured-square sequence: (a) ground truth optical flow, (b) optical flow
initialization using the method of Horn-Schunck [25], (c) optical flow using the method of
Lucas-Kanade (28) and (d) resulting optical flow of the proposed method.
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Figure 4.5: Textured-square’s Angular Error (4E) of the compared methods. (a) Initial AE
using the method of Horn-Schunck [25), (b) AE using the method of Lucas-Kanade (28} and
(c) AE of the proposed method.
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Figure 4.6: Textured-square sequence: colorful optical flow. (a) Flow field color coding,
(b) ground truth, (c) initial flow field using the method of Horn-Schunck [25), (d) flow field
using the method of Lucas-Kanade (28) and (e) flow field of the proposed method.
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Table 4.1: Average error metrics for the Textured-square sequence.

Method AAE (in degrees) AME (in pixels) EP (in pixels)
Lucas-Kanade [28] 3.09 0.08 0.08
Horn-Schunck [25] 1.84 0.04 0.04

Joint Lucas-Kanade [7] 2.67 0.04 0.05
Nagel et al [32] 1.60 0.04 0.04
Method of section 3.3 1.50 0.05 0.04
Method of section 3.4 1.46 0.04 0.04
Proposed method (Chapter 4) 0.76 0.02 0.02

As we can see from table 4.1 our approach achieves smaller errors than Homn-

Schunck and Lucas-Kanade method, for all the error metrics.

4.5.2. Textured-Triangles with equal in Norm Moves

This is a slightly more complicated 256 x 256 example, which consists of two
textured triangles located at the top left corner and at the bottom right corner of the
first frame, while at the second frame the upper left triangle moves by one pixel to the
bottom left corner, while the bottom right triangle moves by one pixel to the bottom
right corner. Figure 4.7 shows the image and figure 4.8 the estimated optical flow.
Figure 4.9 shows the angular error and figure 4.10 presents the flow by using color
coding [3]. We do not show the end-point error for each pixel as it has too small
values (but we are showing the average end-point error, which is equivalent and more

meaningful).

Figure 4.7: Textured-triangles (with equal in norm moves) sequence: first frame of the
sequence.
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the method of Horn-Schunck [25), (c) optical flow

ion using

flow, (b) optical flow initializat
using the method of Lucas-Kanade [28] and (d) resulting optical flow of the proposed method.

Figure 4.8. Textured-triangles (with equal in norm moves) sequence: (a) ground truth optical
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Figure 4.9: Textured-triangles’ (with equal in norm moves) Angular Error (AE) of the
compared methods. (a) Initial AE using the method of Horn-Schunck {25}, (b) AE using the
method of Lucas-Kanade [28) and (c) AE of the proposed method.
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Figure 4.10: Textured-triangles (with equal in norm moves) sequence: colorful optical flow.

(a) Flow field color coding, (b) ground truth, (c) initial flow field using the method of Horn-

Schunck [25), (d) flow field using the method of Lucas-Kanade [28) and (e) flow field of the
proposed method.
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Table 4.2: Average error metrics for the Textured-triangles (with equal in norm moves)

sequence.

Method AAE (in degrees) | AME (in pixels) | EP (in pixels)
Lucas-Kanade [28] 5.91 0.15 0.14
Horn-Schunck [25] 247 0.05 0.05
Joint Lucas-Kanade [T] 4.10 0.07 0.08
Nagel et al {32] 2.25 0.06 0.05
Method of section 3.3 233 0.08 0.05
Method of section 3.4 2.26 0.07 0.05
Proposed method (Chapter 4) 1.06 0.02 0.03

As we can see from table 4.2 our approach achieves smaller errors than Horn-
Schunck and Lucas-Kanade method, for all the error metrics. Additionally, by
observing figure 4.10(d), we understand that Lucas-Kanade method have problems

estimating the motion vectors at the edges of the objects.

4.5.3. Textured-Triangles with unequal in Norm Moves

A next experiment consists in increasing the difficulty of the previous
configurations. We have a 256 x 256 example, which consists of two textured
triangles located at the top left corner and at the bottom right corner of the first frame,
while at the second frame the upper left triangle moves by one pixel to the bottom left
corner, while the bottom right triangle moves by two pixel to the bottom right corner.
Figure 4.11 shows the image and figure 4.12 the estimated optical flow. Figure 4.13
shows the angular error and figure 4.14 presents the flow by using color coding [3].
We do not show the end-point error for each pixel as it has too small values (but we

are showing the average end-point error, which is equivalent and more meaningful).

Figure 4.11: Textured-triangles (with unequul in norm moves) sequence: first frame of the
sequence.
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Figure 4.12: Textured-triangles (with unequal in norm moves) sequence: (a) ground truth
optical flow, (b) optical flow initialization using the method of Horn-Schunck (25], (c) optical
flow using the method of Lucas-Kanade [28) and (d) resulting optical flow of the proposed

method.
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(a) (b)

{c)

Figure 4.13: Textured-triangles’ (with unequal in norm moves) Angular Error (AE) of the
compared methods. (a) Initial AE using the method of Horn-Schunck [25), (b) AE using the
method of Lucas-Kanade [28] and (c) AE of the proposed method.
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Figure 4.14: Textured-triangles (with unequal in norm moves) sequence: colorful optical
Slow. (a) Flow field color coding, (b) ground truth, (c) initial flow field using the method of
Horn-Schunck [25), (d) flow field using the method of Lucas-Kanade [28] and (e) flow field of
the proposed method.
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Table 4.3: Average error metrics for the Textured-triangles (with unequal in norm moves)

sequence.

Method AAE (in degrees) | AME (in pixels) | EP (in pixels)
Lucas-Kanade [28] 8.58 0.17 0.26
Horn-Schunck [25] 5.57 0.14 0.19
Joint Lucas-Kanade [7] 6.95 0.18 0.22
Nagel et al [32] 4.79 0.13 0.18
Method of section 3.3 4.67 0.17 0.17
Method of section 3.4 4.78 0.16 0.18
Proposed method (Chapter 4) 3.93 0.10 0.16

As we can see from table 4.3 our approach achieves smaller errors than Horn-
Schunck and Lucas-Kanade method, for all the error metrics, although all methods did
not have perfectly estimations. Additionally, by observing figure 4.14(d), we
understand that Lucas-Kanade method have problems estimating the motion vectors at

the edges of the objects.

4.5.4. Yosemite Sequence without Clouds

The  Yosemite  sequence  without clouds, is available at
http://www.cs.brown.edu/people/black/images.html.

Figure 4.15: Yosemite sequence without clouds: first frame of the sequence.
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Figure 4.16: Yosemite sequence without clouds: ground truth optical flow.
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Horn-Schunck [25].
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Figure 4.18: Yosemite sequence without clouds: optical flow using the method of Lucas-
Kanade [28].
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method.
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Figure 4.20: Yosemite's Angular Error (AE) of the compared methods. (
the method of Horn-Schunck [25), (b) AE using the method of Lucas-Kan
of the proposed method.
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Figure 4.21: Yosemite sequence without clouds: colorful optical flow. (a) Flow field color
coding, (b) ground truth, (c) initial flow field using the method of Horn-Schunck [25), (d) flow
field using the method of Lucas-Kanade [28] and (e) flow field of the proposed method.
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Table 4.4: Average error metrics for the Yosemite without Clouds sequence.

Method AAE (in degrees) | AME (in pixels) | EP (in pixels)
Lucas-Kanade [28) 11.65 0.23 0.48
Hormn-Schunck [25] 543 0.10 0.20

Joint Lucas-Kanade [7] 797 0.17 035
Nagel et al {32] 9.15 0.19 0.36
Method of section 3.3 5.12 0.12 022
Method of section 3.4 3.79 0.09 0.15
Proposed method (Chapter 4) 445 0.11 0.24

As we can see from the table 4.4 our approach is better than Horn-Schunck

method at the average angular error metric (which is the most important), slightly

worse for the average magnitude error (difference 0.01) but AS must know the exact

value of the deterministic parameter and also slightly worse for the average end-point

error (difference 0.04).

4.5.5. Dimetrodon Sequence

The Dimetrodon sequence is obtained from the Middlebury database [3]. It

contains nonrigid motion and large areas with little (hidden or not) texture.

Figure 4.22: Dimetrodon sequence: first frame of the sequence.
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Figure 4.23: Dimetrodon sequence: ground truth optical flow.
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Figure 4.24: Dimetrodon sequence: optical flow initialization using the method of Horn-
Schunck [25].
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Figure 4.25: Dimetrodon sequence: optical flow using the method of Lucas-Kanade [28].
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Figure 4.26: Dimetrodon sequence: resulting optical flow of the proposed method.
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Figure 4.27: Dimetrodon’s Angular Error (AE) of the compared methods. (a) I
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Figure 4.28: Dimetrodon sequence: colorful optical flow. (a) Flow field color coding,

(b) ground truth, (c) initial flow field using the method of Horn-Schunck [25), (d) flow field
using the method of Lucas-Kanade (28] and (e) flow field of the proposed method.
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Table 4.5: Average error metrics for the Dimetrodon sequence.

Method AAE (in degrees) | AME (in pixels) | Avg EP (in pixels)
Lucas-Kanade [28] 27.52 0.56 1.07
Horn- Schunck [25] 8.51 0.24 0.49
Joint Lucas-Kanade [7] 33.14 0.65 0.35
Nagel et al [32] 17.58 0.38 1.17
Method of section 3.3 10.17 0.24 0.52
Method of section 3.4 6.24 0.18 0.36
Proposed method (Chapter 4) 431 0.13 0.22

As we can see from table 4.5 our approach is better than both Horn-Schunck
method and Lucas-Kanade, for all the error metrics.

4.6. Partial Conclusion

At the beginning, let’s discuss the reason why in some experiments we do not
manage better results than the HS method and LK method. Although our method is
more flexible than HS method, since we allow every pixel to move independently in
the spatial domain, it has more parameters to fix. This will be also a disadvantage, if

we have to deal with sequences which contain “simple” moves.

Secondly, our method obtains better estimations when we have a variety of
different in norm movements than Horn-Schunck and Lucas-Kanade methods produce

(as we can see from section 4.5.4).

One issue which is worth proposing for future work, is to update a part of the
equations (4.18 — 4.23) at each step, since the parameters Aqqise, Ax, Ay tend to increase

their values rapidly, while A,, A, and b(i) more slowly.
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CHAPTER 5. CONCLUSION AND
FUTURE WORK

5.1. Conclusion
5.2. Future work

S5.1. Conclusion

In the present thesis, we studied the fundamental problem of optical flow,
located in the area of computer vision, but also we proposed three methods in order to

solve it.

More detail, in chapter 2 we studied three classic methods, the Lucas-Kanade
(LK) method [28], the Horn-Schunck (HS) method [25] and the affine optical flow
method [39]. Next, in chapter 3, we studied two variations of the LK and HS methods,
firstly the Joint Lucas-Kanade [7] and secondly the method proposed from Nagel et
al. [32] where they use adaptive smoothness constraints. Additionally, we analyze our
suggestions in order to improve those methods and we show experimental resuit.
Finally, in chapter 4, was presented a brand new approach, which was inspired from
the HS method and was imposed stochastic parameters instead of stationary that were
used in HS.

5.2. Future work

To begin with, one improvement for the methods proposed in chapter 3, is to
find a suitable method to approximate the second order derivatives which they were
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used in the linear system. Secondly, you can use another method for the image
segmentation which will give more competitive results. Thirdly, you can experiment
in finding the suitable type of the neighboring kernel, instead of the average kernel

which we used, but also the size of it.

As for the method proposed in chapter 4, one worthy effort is to find a
different algorithm instead of Lanzcos method, in order to solve the iterative system
of this chapter.
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APPENDICES

APPENDIX A. Rate of Change of Image Brightness

Consider a patch of the brightness pattern that is displaced a distance dx in the
x-direction and dy in the y-direction in time dt. The brightness of the patch is assumed

to remain constant so that

Ix, y, ) = I(ctox, y+dy, t+oi). (A1)

Expanding the right-hand side about the point (x, y, f) we get,

I(x,y,t)= I(x,y,t)+&21-+¢§/g+&g+g.
& "oy o (A2)

Where € contains second and higher order terms in Jx, dy, and dt. After subtracting
I(x, y, ?) from both sides and dividing through by ¢ we have

ol ool ol
——+=—+—=+0(&)=0.
Adx Aoy ot o) (A3)

where O(dY) is a term of order ot (we assume that dx and dy vary as d¢). In the limit as
ot — 0 this becomes

éﬁl_ +Q§£ +Q =0. (A4)

Ax &y o
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APPENDIX B. Student’s ¢z-distribution

In what follows, we briefly present the properties of Student’s ¢-distributions.

A d-dimensional random variable X that follows a multivariate t-distribution
with mean g, positive definite, symmetric and real d x d covariance matrix 2’ and has

ve [0, « ) degrees of freedom has a density expressed by

r(";d) bE

()t r(%) [14v75(x, ;3)] 5

plem2,v)= (B.1)

where J(x, ,u;E)z(x— p)TZ’l(x~ /l) is the Mahalanobis squared distance and I” is the

Gamma function.
It can be shown that the Student’s ¢-distribution is equivalent to a Gaussian

distribution with a stochastic covariance matrix. In other words, given a weight u

following a Gamma distribution parameterized by v:
u~rv/2,v/2), (B.2)

The variable X has the multivariate normal distribution with mean u and covariance
2lu:

Xl,u,E,v,u~N([l,2/u), (B'3)
It can be shown that for v — o the Student’s r-distribution tends to a Gaussian

distribution with covariance X. Also, if v > 1, u is the mean of X and if v > 2,

v(v-2)"Z‘ is the covariance matrix of X. Therefore, the family of t-distributions
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provides a heavy-tailed alternative to the normal family with mean x4 and covariance

matrix that is equal to a scalar multiple of X, if v > 2 (Fig. B.1).

Figure B.1: A univariate Student’s t-distribution (u = 0, o = 1) for various Degrees of
Freedom. As v— o the distribution tends to a Gaussian. For small values of v the
distribution has heavier tails than a Gaussian.
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APPENDIX C. Calculus of Variations

C.1. Introduction

Variational methods have their origins in the 18th century with the work of
Euler, Lagrange, and others on the calculus of variations. Standard calculus is
concerned with finding derivatives of functions. We can think of a function as a
mapping that takes the value of a variable as the input and returns the value of the
function as the output. The derivative of the function then describes how the output
value varies as we make infinitesimal changes to the input value. Similarly, we can
define a functional as a mapping that takes a function as the input and that returns the
value of the functional as the output. An example would be the entropy H[p], which
takes a probability distribution p(x) as the input and returns the quantity

HIp] = | p(x)In p(x)dx, ((eh))

as the output. We can introduce the concept of a functional derivative, which
expresses how the value of the functional changes in response to infinitesimal changes
to the input function (Feynman et al., 1964). Many problems can be expressed in
terms of an optimization problem in which the quantity being optimized is a
functional. The solution is obtained by exploring all possible input functions to find
the one that maximizes, or minimizes, the functional. Variational methods have broad
applicability and include such areas as finite element methods (Kapur, 1989) and

maximum entropy (Schwarz, 1988).

C.2. I Derivative in the Functional

For a given function u(x): [a, b] » R and a functional F(x, u, «’ ) we define
b
E(u)=[F(x,u,u’) dx, (o3

and the problem is to minimize E(u) with respect to u(x).



126
Firstly, we have to define the first variation of E(«), which is

gu—E=E(u+v)—E(u) with v(x) such that v(a) = v(8) =0 , €3)

therefore, %E=o & E(u+v)-E(w)=0, (C4)

Secondly, by using Taylor series expansion of F! (x, u+v, u'+v’) around the point

(x, u, v), we get

oF
o'

F(x,u+v,u’ +v')= F(x,u,v)+ v%+v’

= IF(x,u+v,u'+v’)ix=J.[F(x,u,v)+v?£ +v g—uﬁ—:

& E@u+v)=E@)+| [v——+ Zf,]dx, (C.5)

Then follows the minimization,

min {E@)} = Eu+v)-E@u)=0

F aF
S v—+v =0
I[Vau o’

o j%m jv'gi%dn
d oF

oF oF "™
< |v—dx+ — —-|v——=dx=0
Iv [v(x) '] . Iv -

v(a):v(b)=0 I Iv i giabc

dx ou’
aF d oF
LA k-0,v
o drow » Vv(x)

- o \ (C.6)
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By solving the previous Euler equation, we obtain the solution u(x) which

minimizes the energy function E(u).

The next point we have to stand is the case when we have second order

derivatives in the functional.

C.3. I* & 2" Order Derivatives in the Functional
In this case the function E(x) we want to minimize becomes
b
E(u)= j F(xu,u’u") dx = min {Ew)} , (C.D

While the differential equation becomes

2
rﬂgl{E(u)}@ 9F _ —d-(gij 4 ( oF ) =0, (C.8)

ou  de\ou') de*\ou"

C.4. Second order Partial Derivatives in the Functional and 2-D unknown Functions

ux, y)
For a given function u(x, y): [a, b] x [c, d] > R and a functional F(x, u, u’,u")
the modified problem is

bd
E(u) = [ j F(x,u,u’,u") dxdy = min {Eu)}
e uee (C.9)

Similarly we obtain the following differential equation,

min{E(w)} < a_F_i(aF)_i(aF}+ d* (ap J+ d (ap J=0
e ou dc\Ou,) dy\du,) dx*\Ouy dy’ \ ou,, , (C.10)

where u,, u,, u,,, uy, are defined as the partial derivatives

ou ou o'u _du
Ta YTy e Ty
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APPENDIX D. Approximate Inference

In this appendix, we are going to quote some issues about the approximate

inference which were taken from C. Bishop’s book [8].
D.1. Variational Inference

Suppose we have a fully Bayesian model in which all parameters are given
prior distributions. The model may also have latent variables as well as parameters,
and we shall denote the set of all latent variables and parameters by Z. Similarly, we
denote the set of all observed variables by X. For example, we might have a set of N
independent, identically distributed data, for which X = {x, ..., xy} and Z= {z, ,...,
zy}. Our probabilistic model specifies the joint distribution p(X,Z), and our goal is to
find an approximation for the posterior distribution p(Z|X) as well as for the model

evidence p(X). We can decompose the log marginal probability using

In p(X) = L(q) + KL(q|| p) , (D.1)
where we have defined
L) = [a@) md PXD }dZ, D.2
(@) = [9(2) n{ D (D2)
KL = _[a@)1 M}dz, D.3
@llp) =-[a@) n{ D (D3)

We can maximize the lower bound L(q) by optimization with respect to the
distribution g(Z), which is equivalent to minimizing the KL divergence. If we allow
any possible choice for g(Z), then the maximum of the lower bound occurs when the
KL divergence vanishes, which occurs when ¢(Z) equals the posterior distribution
P(Z|X). However, we shall suppose the model is such that working with the true

posterior distribution is intractable,
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We therefore consider instead a restricted family of distributions g(Z) and then
seek the member of this family for which the KL divergence is minimized. Our goal is
to restrict the family sufficiently that they comprise only tractable distributions, while
at the same time allowing the family to be sufficiently rich and flexible that it can
provide a good approximation to the true posterior distribution. It is important to
emphasize that the restriction is imposed purely to achieve tractability, and that
subject to this requirement we should use as rich a family of approximating
distributions as possible. In particular, there is no ‘over-fitting’ associated with highly
flexible distributions. Using more flexible approximations simply allows us to

approach the true posterior distribution more closely.

One way to restrict the family of approximating distributions is to use a
parametric distribution g(Z|w) governed by a set of parameters w. The lower bound
L(g) then becomes a function of w, and we can exploit standard nonlinear

optimization techniques to determine the optimal values for the parameters.

D.1.1. Factorized distributions

Here we consider an alternative way in which to restrict the family of distributions
q(Z). Suppose we partition the elements of Z into disjoint groups that we denote by Z,
where i =1, ..., M. We then assume that the ¢ distribution factorizes with respect to

these groups, so that
M
9Z)=[1a.2) (D.4)
i=1

It should be emphasized that we are making no further assumptions about the
distribution. In particular, we place no restriction on the functional forms of the
individual factors ¢,(Z;). This factorized form of variational inference corresponds to
an approximation framework developed in physics called mean field theory. Amongst

all distributions g(Z) having the form (D.4), we now seek that distribution for which
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the lower bound L(q) is largest. We therefore wish to make a free form (variational)
optimization of L(q) with respect to all of the distributions g,(Z;), which we do by
optimizing with respect to each of the factors in tumn. To achieve this, we first
substitute (D.4) into (D.2) and then dissect out the dependence on one of the factors
q(Z,;). Denoting g(Z;) by simply g; to keep the notation uncluttered, we then obtain

L(q) = IHqi{ln P(X,Z) _Z]n qi}dz

= q}.j{ln p(X,Z)—Hin,}de —Iqj Ing,dZ; + const

i#j

= (g, Inp(X,Z,)dZ; - [q,Inq,dZ, +const , D.5)
where we have defined a new distribution p(X,Z;) by the relation

In5(X,Z,)=E,;[In p(X,Z)]+const , (D.6)

i#j
Here the notation E,, [...] denotes an expectation with respect to the g distributions

over all variables z; for i # j, so that

E,j[n p(X,2)]=[In p(X,2) [ q.42, , ©.7)

i#)

Now suppose we keep the {q,g j} fixed and maximize L(g) in (D.5) with

respect to all possible forms for the distribution gj(Zj). This is easily done by
recognizing that (D.5) is a negative Kullback-Leibler divergence between g;(Z;) and
p(X,Z;). Thus maximizing (D.5) is equivalent to minimizing the Kullback-Leibler

divergence, and the minimum occurs wheng,(Z;)=B(X,Z;). Thus we obtain a

general expression for the optimal solution ¢}(Z;) given by

Ing;(Z,)=E [In p(X,Z)]+const , (D.8)

i#j
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It is worth taking a few moments to study the form of this solution as it
provides the basis for applications of variational methods. It says that the log of the
optimal solution for factor g; is obtained simply by considering the log of the joint
distribution over all hidden and visible variables and then taking the expectation with

respect to all of the other factors {g;} for i #;.

The additive constant in (D.8) is set by normalizing the distribution q;.(Zj) .

Thus if we take the exponential of both sides and normalize, we have

exp(E,,;[In p(X,2)))
[E.lIn p(X,Z))0Z,

q;(Zj)z

In practice, we shall find it more convenient to work with the form ( D.8) and then

reinstate the normalization constant (where required) by inspection.

The set of equations given by (D.8) for j = 1, . . ., M represent a set of
consistency conditions for the maximum of the lower bound subject to the

factorization constraint. However, they do not represent an explicit solution because
the expression on the right-hand side of (D.8) for the optimum ¢;(Z;) depends on

expectations computed with respect to the other factors gi(Z;) for i # j. We will
therefore seek a consistent solution by first initializing all of the factors gi(Z;)
appropriately and then cycling through the factors and replacing each in turn with a
revised estimate given by the right-hand side of (D.8) evaluated using the current
estimates for all of the other factors. Convergence is guaranteed because bound is

convex with respect to each of the factors g(Z,).
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APPENDIX E. Additional Numerical Experimental Results
from Chapter 3

Table E.1: Various combinations between the number of super-pixels and the window size for
the Yosemite sequence, with and without clouds.

Number of | Window | Yosemite without clouds Yosemite with clouds

super-pixels | size AAE | AeM | AEP | AAE | AeM | AEP
40 5x5 5.76 | 0.13 0.25 13.81 0.40 0.70
70 5x5 5.80 | 0.13 0.25 13.88 0.40 0.71
100 5x5 5.80 0.13 0.25 13.88 0.40 0.71
200 5x5 5.89 | 0.13 0.26 13.98 0.40 0.71
1000 5x5 6.07 | 0.14 0.27 14.32 0.41 0.73
40 7x7 5.06 | 0.12 0.22 13.25 0.38 0.66
70 7x7 5.12 | 0.12 0.22 13.34 0.38 0.67
100 7x7 5.18 0.12 0.22 13.34 0.38 0.67
200 7x7 5.30 | 0.12 0.23 13.52 0.38 0.68
40 9x9 4.62 0.11 0.20 12.87 0.36 0.62
70 9x9 4.69 0.11 0.20 12.95 0.36 0.63
100 9x9 4.76 0.11 0.20 12.98 0.36 0.63
200 9x9 4.89 0.11 0.21 13.17 0.37 0.64
40 11x11 | 428 0.10 0.18 12.59 0.34 0.59
70 11x11 | 4.38 0.10 0.19 12.67 0.34 0.60
100 11x11 | 445 0.10 0.19 12.69 0.34 0.60
40 13x13 | 4.06 0.10 0.17 12.34 0.33 0.57
70 13x13 | 4.14 0.10 0.18 12.42 0.33 0.57
40 15x15 | 3.90 0.10 0.16 12.16 0.32 0.55
70 15x15 | 3.96 0.09 0.17 12.24 0.32 0.56
40 17x17 | 3.80 | 0.09 0.15 12.01 0.31 0.54
70 17x17 | 3.87 0.09 0.16 12.10 0.32 0.54
40 19x19 | 3.79 | 0.09 0.15 11.90 0.31 0.53
70 19x19 | 3.85 0.09 0.16 12.01 0.31 0.54
40 21x21 | 3.89 | 0.09 0.16 11.86 0.30 0.52
70 21x21 | 3.90 0.09 0.16 11.99 0.31 0.53
40 23x23 | 4.06 0.09 0.16 11.91 0.30 0.52
70 23x23 | 4.04 0.09 0.16 12.06 0.31 0.53
40 25x25 | 4.31 0.10 0.17 12.04 0.30 0.52
70 25x25 | 4.26 0.09 0.17 12.21 0.31 0.53
40 27x27 | 4.58 0.10 0.18 12.26 0.30 0.53
70 27x27 | 4.51 0.10 0.18 12.44 0.31 0.54
40 29x29 | 4.84 | 0.11 0.19 12.57 0.31 0.54
70 29x29 | 479 | 0.10 0.19 12.75 0.31 0.55
40 31x31 | 5.11 0.11 0.20 12.92 0.31 0.55
70 31x31 | 5.05 0.11 0.20 13.11 0.32 0.56
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Table E.2: Various combinations between the number of super-pixels and the window size for
the Dimetrodon sequence and the Rubberwhale sequence.

Number of | Window | Dimetrodon Sequence | Rubberwhale Sequence
super-pixels |  size AAE | AeM | AEP | AAE | AeM | AEP
40 5x5 11.31 | 0.26 | 0.57 | 8.45 022 | 0.26
70 5x5 11.34 | 026 | 0.56 | 844 | 022 | 0.26
100 5x5 11.36 | 026 | 0.56 | 846 | 0.22 | 0.26
200 5x5 1146 | 026 | 0.56 | 8.50 | 0.22 | 0.26
1000 5x5 11.78 | 027 | 057 | 8.52 | 0.22 | 0.26
40 7x7 10.04 | 0.24 | 0.51 824 | 0.21 0.25
70 7x7 10.09 | 0.24 | 0.52 8.22 | 0.21 0.25
100 7x7 10.14 | 024 | 0.52 | 822 | 0.21 0.25
200 7x7 1026 | 0.25 | 0.52 | 827 | 0.21 0.25
40 9x9 9.18 | 023 | 048 | 822 | 0.21 0.24
70 9x9 9.23 023 | 048 | 8.19 | 0.21 0.24
100 9x9 928 | 023 | 049 | 8.17 | 0.21 0.24
200 9x9 942 | 023 | 049 | 820 | 0.21 0.24
40 11x11 | 8.55 022 | 046 | 836 | 0.21 0.24
70 I1xI1 | 860 | 022 | 046 | 830 | 0.21 0.24
100 I1x11 | 8.65 0.22 | 0.46 826 | 0.21 0.24
40 13x13 | 8.07 | 021 | 0.44 | 857 | 022 | 0.25
70 13x13 | 8.12 | 021 | 0.44 849 | 0.22 | 0.25
40 15x15 ] 7.68 { 020 | 042 | 8.81 022 | 0.25
70 15x15 | 7.75 020 | 0.43 870 | 0.22 | 0.25
40 17x17 | 734 | 020 | 041 9.07 | 023 0.26
70 17x17 | 7.43 020 | 0.41 894 | 0.23 0.25
40 19x19 ] 7.06 | 0.19 | 040 | 9.35 024 | 0.26
70 19x19 | 7.17 | 0.19 | 040 | 922 | 0.23 0.26
40 21x21 | 6.82 | 0.19 | 039 | 9.65 024 | 0.27
70 21x21 | 6.95 0.19 | 0.39 | 9.5I1 024 | 0.27
40 23x23 | 6.61 0.19 | 038 | 996 | 0.25 0.28
70 23x23 | 6.77 | 0.19 | 038 | 9.8l 024 | 0.27
40 25x25 | 6.43 0.18 | 037 [ 1027 | 0.26 | 0.29
70 25x25 | 6.61 0.19 | 0.38 | 10.12 | 0.25 0.28
40 27x27 | 629 | 0.18 | 0.36 | 1056 | 0.26 | 0.29
70 27x27 | 647 | 0.18 | 037 | 1042 | 026 | 0.29
40 29x29 | 6.24 0.18 0.36 10.84 | 0.27 0.30
70 29x29 | 642 | 0.18 | 037 | 1071 | 026 | 0.29
40 31x31 | 626 | 0.18 | 036 | 11.13 | 0.28 | 0.31
70 31x31 | 643 0.18 | 036 | 11.03 | 0.27 | 0.30
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