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ABSTRACT

Gkamas, Theodosios, N.
MSc, Computer Science Department, University of Ioannina, Greece. October, 2010. 
Optical flow estimation using spatially varying smoothing.
Thesis Supervisor: Christophoros Nikou.

The problem of estimating the optical flow in a sequence of images is an 
important research problem in the area of computer vision with applications in visual 
object tracking, stereopsis and motion segmentation, among others. Optical flow is the 
2D velocity field, describing the apparent motion in the image that results from 
independently moving objects in the scene or from observer motion. Its estimation is a 
particularly difficult problem due to several factors. At first, the massive image data 
which produce small and/or large scale linear systems that must be solved to obtain 
the solution in as little as possible and competitive period of time. Furthermore, the 
problems that occur because of the nature of the images, such as motion 
discontinuities and object occlusion must be addressed. To overcome these 
difficulties, the majority of the state of the art optical flow computation techniques 
rely on the imposition of a smoothness constraint on the motion field. In this work, we 
propose two methods for the accurate estimation of the optical flow where the 
smoothness constraint varies with respect to the image content. The first method is 
based on image segmentation and the smoothness constraint is applied to image areas 
belonging to the same segment and simultaneously presenting low spatial gradient 
information, to avoid smoothing probable motion boundaries. The second method 
relies on a probabilistic modeling of the optical flow problem where the motion 
vectors are considered as unobserved random variables generated by a Student’s t- 
distribution with spatially varying parameters. In that case, as the complete data 
likelihood is intractable we recur to the variational-Bayes methodology for inference 
of the model parameters and variables.
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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Θεοδόσιος Γκάμας του Νικολάου και της Αννούλας.
MSc. Τμήμα Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Οκτώβριος, 2010. 
Εκτίμηση της οπτικής ροής με μεθόδους χωρικά μεταβαλλόμενης εξομάλυνσης. 
Επιβλέπων: Χριστόφορος Νίκου.

Το πρόβλημα εκτίμησης της οπτικής ροής σε μια ακολουθία εικόνων, 
αποτελεί σημαντικό ερευνητικό πρόβλημα στον τομέα της υπολογιστικής όρασης, με 
εφαρμογές στην οπτική παρακολούθηση αντικειμένων, την στερεοσκοπία και την 
κατάτμηση κίνησης, μεταξύ άλλων. Οπτική ροή ονομάζουμε το 2Δ πεδίο 
μετατοπίσεων, που περιγράφει την εμφανή κίνηση μέσα σε μια εικόνα η οποία 
προκύπτει από ανεξάρτητα κινούμενα αντικείμενα στην σκηνή ή από την κίνηση του 
παρατηρητή. Η εκτίμησή της είναι ένα ιδιαίτερα δύσκολο πρόβλημα που οφείλεται σε 
διάφορους παράγοντες. Καταρχάς, τα ογκώδη δεδομένα της εικόνας που παράγουν 
μικρής και/ή μεγάλης διάστασης γραμμικά συστήματα τα οποία πρέπει να επιλυθούν 
για να λάβουμε την λύση μέσα σε όσο το δυνατόν μικρό και ανταγωνιστικό χρονικό 
διάστημα. Επιπλέον, τα προβλήματα που προκύπτουν λόγω της φύσης των εικόνων, 
όπως οι μη συνεχείς κινήσεις και οι επικαλύψεις αντικειμένων πρέπει να 
αντιμετωπιστούν. Για να ξεπεραστούν αυτές οι δυσκολίες, η πλειοψηφία των 
κορυφαίων τεχνικών υπολογισμού της οπτικής ροής βασίζονται στην εισαγωγή 
περιορισμών εξομάλυνσης στο πεδίο κίνησης. Στην παρούσα διατριβή, προτείνουμε 
δύο μεθόδους για την ακριβή εκτίμηση της οπτικής ροής, στις οποίες ο περιορισμός 
εξομάλυνσης μεταβάλλεται ανάλογα με το περιεχόμενο της εικόνας. Η πρώτη 
μέθοδος στηρίζεται στην κατάτμηση εικόνας και ο περιορισμός εξομάλυνσης 
εφαρμόζεται σε περιοχές της εικόνας που ανήκουν στο ίδιο τμήμα και ταυτόχρονα 
παρουσιάζουν χαμηλή πληροφορία στην χωρική παράγωγο, αποφεύγοντας έτσι την 
εξομάλυνση σε πιθανά όρια κίνησης. Η δεύτερη μέθοδος βασίζεται σε ένα πιθανοτικό 
μοντέλο του προβλήματος της οπτικής ροής όπου τα διανύσματα κίνησης θεωρούνται 
ως κρυφές τυχαίες μεταβλητές παραγόμενες από μια Student’s /-κατανομή με χωρικά 
μεταβαλλόμενες παραμέτρους. Σε αυτή την περίπτωση, επειδή δεν μπορούμε να 
υπολογίσουμε ακριβώς την συνολική πιθανοφάνεια των δεδομένων ανατρέχουμε 
στην Μπεϋζιανή (variational-Bayes) μεθοδολογία για την προσέγγιση των 
παραμέτρων και των τυχαίων μεταβλητών του μοντέλου.
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CHAPTER 1. INTRODUCTION

1.1. Objectives of the Thesis

1.2. Structure of the Thesis

1.1. Objectives of the Thesis

In this thesis, we deal with the problem of optical flow containing small 

movements. Without doubt, the measurement of optical flow is one of the 

fundamental problems in computer vision. It is the problem of approximating the 

movement of brightness patterns in an image sequence and, thus, provides useful 

information for the determination of the 3D structure of the environment and the 

object in the image [2] but also can be used for image registration. In the last two 

decades the quality of optical flow estimation methods has increased dramatically. 

Starting from the original approaches of Horn and Schunck [25] as well as Lucas and 
Kanade [28], research developed many new concepts for dealing with shortcomings 

of previous models. In order to handle discontinuities in the flow field, the quadratic 

regulariser in the Horn and Schunck model was replaced by smoothness constraints 

that permit piecewise smooth results [7]. Some of these ideas are close in spirit to 

methods motivated from robust statistics where outliers are penalized less severely 

[9]. Coarse-to-fine strategies [2, 9] as well as non-linearised models [7] have been 
used to tackle large displacements.

However, not only new ideas have improved the quality of optical flow 

estimation techniques. Also efforts to obtain a better understanding of what the
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methods do in detail, and which effects are caused by changing their parameters, gave 

an insight into how several models could work together. Furthermore, variational 
formulations of models gave access to the long experience of numerical mathematics 

in solving partly difficult optimization problems. Finding the optimal solution to a 
certain model is often not trivial, and often the full potential of a model is not used 
because concessions to implementation aspects have to be made. Moreover, one 

method using the variational inference and belonging to the state of the art is the 

algorithm proposed by T. Brox. A. Bruhn, N. Papenberg and J. Weickert [12] in the 

year of 2004. Finally, our contribution to this area, is to introduce three method, two 

from the combination of [7, 32] and a novel approach created via variational 

inference.

1.2. Structure of the Thesis

The structure of the thesis is as follows: chapter 2 shows three classic 

methods, the Lucas-Kanade (LK) method [28], the affine optical flow method [39] 

and the Hom-Schunck method [25]. The last section of this chapter describes the error 

metrics which were used in order to evaluate the methods. Chapter 3 shows two 

proposed methods, firstly, the Joint Lucas-Kanade method [7] and secondly, the 

method of Nagel et al. [32]. Additionally, in this chapter, we proposed two variations 

derived by the combination of [7, 32]. Moreover, chapter 4 introduces a novel 

algorithm for the estimation of the optical flow, by using the variational Bayes 

inference. Finally, chapter 5 is the conclusion of the thesis and the future work which 

worth to be studied further in order to improve the proposed methods.
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CHAPTER 2. OPTICAL FLOW

2.1. Definition of the Problem

2.2. Optical Flow Methods

2.3. Classic Algorithms for Computing Optical Flow

2.3.1. Lucas-Kanade (LK) Method

2.3.2. Affine Optical Flow

2.3.3. Hom-Schunck (HS) Method

2.4. Error Metrics

2.1. Definition of the Problem

First of all let’s give the definition of the problem. As there are many 

definitions for optical flow let’s start with a short one: optical flow is the observed 

motion of intensity patterns on the image plane. Another one according to B. Horn 

and B. Schunck [25], who are among the pioneers in that field, optical flow is the 

distribution of apparent velocities of movement of brightness patterns in an image. 

Additional to this, optical flow can arise from relative motion of objects and the 

viewer [20, 21]. Consequently, optical flow can give important information about the 

spatial arrangement of the objects viewed and the rate of change of this arrangement 

[22].

Additionally to the definition, we have to make one fundamental assumption 

regarding the nature of the scene the moving objects maintain constant intensity 
profile throughout their motion. This assumption is the famous brightness constancy 

assumption and forms the basis of all the approaches for estimating optical flow. Let

A
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/  be an image and I(x(t), y(t), t) denote the intensity of a point projected onto the 
image at the location (x(t), y(t)) at time t . At a time t + At, the projected point moves 
to a new location (x(t + At), y(t + Δ/)). According to the brightness constancy 

assumption, the point has the same intensity at both locations, which means

W  + Δ/), y(t + At), t + At) = I(x(t), y(t), t). (2.1)

Expanding the above equation using Taylor series about the point (x(t), y{t)) and 

taking the limits, a familiar form of the optical flow equation is obtained which is 
given by

A u> v;i) = /xu + /yv + /t = 0, (2.2)

where 7X and Iy represent the partial derivatives of the image in x and y  directions 

respectively, /, represents the temporal derivative of the image, and u and v are the 

horizontal and vertical components of the unknown pixel velocity respectively. Given 

a pair of images and their spatial and temporal derivatives, the goal is to determine 

[u, v] . Since there is only one equation involving two unknowns, the system is 

under-constrained, and an unambiguous solution cannot be obtained. This is the well 

known aperture problem, and herein lays the biggest challenge in estimating the 
optical flow.

The way to address the aperture problem is to add more constraints so as to 

obtain a required set of equations at least equal in number to the unknowns. Solving 

for [u, v] requires an additional equation which can be obtained, for example, by 

considering motion of two pixels together instead of one. This results in two 

equations, and the system can be solved. In practice, multiple pixels are considered 

together to obtain a set of equations such that their solution minimizes some error 

function. Most optical flow approaches differ from each other in the way they bunch 

pixels together for the estimation of their combined velocity, or the kind of error 

function they minimize.

A
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2.2. Optical Flow Methods

The prominent optical flow approaches can be classified into one of the 
following categories:

• Block matching methods: estimating the optical flow vectors for a 

window of pixels by computing its warp in the consecutive frame 

using techniques like normalized cross correlation (NCC), sum of 
absolute differences (SAD), or sum o f squared differences (SSD) [2].

• Differential methods: using the spatial and temporal derivatives of the 

image to estimate the pixel displacement. This can be achieved by 

computing local displacement of image patches (Lucas-Kanade [28]), 

or imposing a global smoothness function on the flow field (Horn- 

Schunck [25]), or a combination of both (Bruhn et al. [13], Birchfield- 

Pundlik [7]). Lucas-Kanade appeals more to the idea of sparse optical 

flow while Hom-Schunck approach is more suited for computing dense 

flow.

• Variational methods: involving use of additional terms based on the 

calculus of variations in the energy functional to be minimized to 

obtain optical flow. Such techniques have become popular recently 

because of their ability to model the discontinuities in the motion and 

produce highly accurate optical flow estimates (Cremers-Soatto [17], 

Broxet al. [II]).

The next section describes three classic algorithms for estimating the optical flow.

2.3. Classic Algorithms for Computing Optical Flow

In this section we are going to describe three classic methods for estimating 

optical flow, which are Lucas-Kanade [28], Affine Optical Flow [39] and 
Horn-Schunck [25].
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2.3.1. Lucas-Kanade (LK) Method

The basic assumption in the Lucas-Kanade (LK) method is that the pixels in a 

local neighborhood undergo a constant but unknown displacement u = [u v]T . This 
additional constraint is used to overcome the aperture problem as it yields one optical 
flow Equation (see 2.2) per pixel in the neighborhood. The constant displacement of 

neighboring pixels implies two basic assumptions, namely, the spatial coherence 

(neighboring pixels belong to the same 3D surface projected onto the image plane) 

and the temporal persistence (motion of the pixel neighborhood changes gradually 

over time). Let I  and J  be the two frames between which the flow has to estimated 

and let x = [x y]T denote a pixel location. Optical flow equation (2.2) for a single 
pixel x can be rewritten as

[« x ) #χ )] = -7t(x) = /(x) -J(x) (2.3)

Considering that the n points x i , ..., x„ in a local neighborhood have the same amount 

of displacement, all of the n pixels will then follow equation (2.3), leading to

1

£

__
__

1

• *
U
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V

^ x ( Xn) a ) / / ( * „ )

(2.4)
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u Ι χ ( * ι )  · · - i)
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(2.5)
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(2 .6)

Equation (2.6) consolidates the optical flow by summing the spatial and temporal 

derivatives over the neighborhood. Instead of performing a summation over a spatial 

window, a weighted window such as a Gaussian with its mean at the center pixel can 
also be used. Hence, a general case of Lucas-Kanade equation is given by

Κ-*(Λ2) κ-* (7λ Ι u KAxi,)
Μ 7λ ) v ( / 2 ) .

V

M V » ) .

(2.7)

where Kp is a suitable convolution kernel whose size determines the number of 

neighboring pixels to be aggregated and assigns appropriate weights to the pixels 

inside the window. The size of Kp has to be selected carefully because a small sized 

window may not be enough to overcome the aperture problem due to the presence of 

image noise. On the other hand, a very large window size may lead to the breakdown 

of spatial coherency assumption. Equation (2.7) can be written in a simplified form as

Z u = e (2.8)

It can be seen that Z looks like a covariance matrix with squares of gradients in the x 

and y  directions along the diagonal, and it is symmetric, which is why it is called the 

gradient covariance matrix or the Hessian.

Displacements u of a local neighborhood of pixels can be directly determined 

by solving (2.8) via least squares, i.e. by minimizing

Ekl(u) = Kp * ( / ( u, i f ) , (2.9)
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or equivalently, solving for the estimate u = Z-1e . However, this may not yield an 

accurate estimate because (2.6) is a linear approximation of a nonlinear function (the 
original optical flow equation is nonlinear if all the terms in the Taylor series are 
considered). To obtain an accurate estimate, iterative schemes such as Newton- 

Raphson [15] are used. Newton-Raphson is a popular technique of approximating the 

values of the roots of a real valued function given the initial estimate of the roots. 

Consider a ID case, where if u{k) (pixel displacement in ID) is the estimate of the root 

of function /(w,f) = Ixti + /, = 0 (ID counterpart to the optic flow function) at the k01

ir«)
y H  Fn”

inspection it can be seen that /(« (i))= / + 1, and f '(u {t))= Ix, which means

z/i+l) = - y - . Every iteration yields a value of u that is added to the overall

displacement and convergence is obtained when u does not change significantly 

between two iterations. Extending this idea to two dimensions, every iteration of the 

Newton-Raphson technique gives a displacement u(t) of the window. The window in 

the next frame is shifted by u and warped with the first image to obtain a new value of 

I, at each iteration and a new displacement estimate is found using u =Z 'e (see 

Algorithm Lucas-Kanade for a complete description).

To efficiently compute the optical flow using LK, some implementation issues 

should be addressed. The computational cost of the algorithm depends on the nature 

of mathematical operations performed and the time it takes to converge. Since the 

same set of steps are applied to each point (or each pixel) for which the flow field is 

computed, reducing the computation time of one flow vector directly affects the 

overall computation cost. Looking at the description of the Lucas-Kanade algorithm 

(figure 2.1) it can be seen that the mathematical operations include computing T x, 
spatial derivatives of the image /  and warping of the window in image J  to compute I,. 
Of the above mentioned quantities, image derivatives can be computed beforehand 

along with their squares and products (hence, Z for each point can be computed 
beforehand). Solving for a system of equations shown in (2.8) yields u, but it is more 

efficient to use Gaussian elimination rather than actually computing Z~x.

iteration, then its update value at (k + \Y  iteration is given by uW / (
r t l
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The only computation that needs to be iteratively performed is the warping of 

the window in the second image and computation of e. Usually, the location of the 

shifted window is given by non-integers. Hence, methods like bilinear interpolation 

are utilized to compute the value of image intensity at sub-pixel precision. 

This improves the accuracy of estimation of u. Regarding the convergence, Newton- 

Raphson reaches an optimum solution within a few iterations if the initial estimate of 

the root is close enough. In this case it also depends on elk, the threshold for 

minimum displacement obtained during one iteration.

Algorithm: Lucas-Kanade

Input: two images /  and J o f  a sequence 

Output: optical flow field

1. pre-compute the spatial derivatives /x and Iy

2. initialize Kp

3. for each point /

(a) compute gradient covariance matrix, Zk

(b) initialize u> = (0,0)

(c) repeat until convergence

i. compute /, from first image and shifted second image,

4 = /(Xi)-J(Xi + Uj)

ii. compute e,

iii. find the estimate of displacement, u i = Z[,ei

iv. Uj = ^  + fij

v. if I Uj| < e KL (minimum displacement threshold), exit

Figure 2.1: The standard Lucas-Kanade algorithm.

Many implementations o f LK adopt a coarse-to-fine refinement strategy to 

accurately estimate optic flow [6, 10]. The idea here is to sub-sample the images 

progressively and build image pyramids such that the coarsest scale is at the top. 

Then u is computed starting from the coarsest level to the finest level. At every level,
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the u is scaled up according to the scale factor of that level and the warp is computed 
between corresponding levels of the two image pyramids. There are two main 

advantages of such an approach. First, it reduces the effect of temporal aliasing and 

the high frequency component introduced as a result in the image signal. Second, it 
can estimate large motions (where inter-frame displacement of the feature window is 
large). Since velocity is reduced at the coarsest level, estimates at the coarsest level 

can be scaled up and determined accurately at the finer levels. Computational cost in 

this kind of implementation is increased as compared to the standard case and is 

directly proportional to the number of levels of the pyramid used. A pyramidal 
implementation of LK is 0(nNm) as compared to 0(Nm) of the single scale 

implementation, where N  is the number of points, m is average number of Newton- 
Raphson iterations and n is the number of pyramid levels.

2.3.2. Affine Optical Flow

Affine optical flow is an extension of the previously described Lucas-Kanade 

method.

❖  Two Models o f Image Motion

As the camera moves, the patterns of image intensities change in a complex 

way. However, away from occluding boundaries and near surface markings, these 
changes can often be described as image motion,

I(x,y, /+r) = / (x - (x,y, t, r), y-rj(x,y, t, t) )  , (2.10)

Thus, a later image taken at time t+τ can be obtained by moving every point in the 
current image, taken at time t, by a suitable amount. The amount of motion δ = (£ ή) 
is called the displacement of the point at x = (x, y).

The displacement vector δ is a function of the image position x, and variations 
in δ are often noticeable even within the small windows used for tracking. It then
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makes little sense to speak of “the” displacement of a feature window, since there are 
different displacements within the same window. An affine motion field is a better 
representation:

3 = Dx + d , (2.11)
where

D =
y*

xy
yy

is a deformation matrix, and d is the translation of the feature window’s center. The 

image coordinates x are measured with respect to the window’s center. Then, a point 

x in the first image /  moves to point Ax + d in the second image J., where A = 1 + D 

and 1 is the 2 x 2 identity matrix:

y(^x + d) = /(x) , (2.12)

Given two images /  and J  and a window in image /, tracking means determining the 

six parameters that appear in the deformation matrix D and displacement vector d. 

The quality of this estimate depends on the size of the feature window, the 

texturedness of the image within it, and the amount of camera motion between 

frames. When the window is small, the matrix D is harder to estimate, because the 

variations of motion within it are smaller and therefore less reliable. However, smaller 

windows are in general preferable for tracking because they are less likely to straddle 

a depth discontinuity. For this reason, a pure translation model is preferable during 

tracking, where the deformation matrix D is assumed to be zero:

<5 = d.

According to J. Shi and C. Tomasi [39], experiments had shown that the best 

combination of these two motion models is pure translation for tracking, because of 

its higher reliability and accuracy over the small inter-frame motion of the camera, 

and affine motion for comparing features between the first and the current frame in 
order to monitor their quality.
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❖  Computing Image Motion

Because of image noise and because the affine motion model is not perfect, (2.12) is 
in general not satisfied exactly. The problem of determining the motion parameters is 

then that of finding the A and d that minimize the dissimilarity

£ = JJ[y(^x + d )-/(x )]2w(x)ifr , (2.13)
w

where W is the given feature window and w(x) is a weighting function. In the simplest 

case, w(x) = 1. Alternatively, w could be a Gaussian-like function to emphasize the 

central area of the window. Under pure translation, the matrix A is constrained to be 

equal to the identity matrix. To minimize the residual (2.13), we differentiate it with 

respect to the unknown entries of the deformation matrix D and the displacement 

vector d and set the result to zero. We then linearize the resulting system by the 

truncated Taylor expansion

J(^lx + d) = y(x) + g r(u). (2.14)

This yields (see [40]) the following linear 6 x6  system:

T z = a , (2.15)

where zT = [d„ dyx d^ dyy dx dy] collects the entries of the deformation D and 

displacement d, the error vector

* g x

xSy

H i  l/(*w(*)] ygx
ygy

g  X

wdx

o
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depends on the difference between the two images, and the 6 x 6  matrix T, which can 
be computed from one image, can be written as

where

U V 
VT Z

w c h t  , (2.16)

X2g xg y x y g 2 xyg xg y

X2 g  xg  y X2g 2y xygxgy x y g 2

x y g l xygxgy y 2g 2 y 2g xgy
9

xyg xg y x y g 2y y 2g x g y y 2g 2 _

VT xg2 xgxgy yg\ yg ,gy
Xgxgy Xgy ygxgy ’

g 2x gxg
SxSy gy

Even when affine motion is a good model, equation is only approximately 

satisfied, because of the linearization of (2.14). However, the correct affine change 

can be found by using (2.15) iteratively in a Newton-Raphson style minimization 

[40].

During tracking, the affine deformation D of the feature window is likely to be 

small, since motion between adjacent frames must be small in the first place for 

tracking to work at all. It is then safer to set D to the zero matrix. In fact, attempting to 

determine deformation parameters in this situation is not only useless but can lead to 

poor displacement solutions: in fact, the deformation D and the displacement d 

interact through the 4 x 2 matrix V of equation (2.16), and any error in D  would cause 

errors in d. Consequently, when the goal is to determine d, the smaller system

Zd = e , (2.17)

should be solved, where e collects the last two entries of the vector a of equation 

(2.15).
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2.3.3. Horn-Schunck (HS) Method

The main difference between Lucas-Kanade and Horn-Schunck is that in the 

first method we used a window in which we consider all pixels having the same 
displacement, while in the second method we handle every pixel independently.

First of all, let’s see the optical flow equation without the summing window. 

We will derive an equation that relates the change in image brightness at a point to the 

motion of the brightness pattern. Let the image brightness at the point (x, y) in the 

image plane at time t be denoted by I(x, y, t). Now consider what happens when the 

pattern moves. The brightness of a particular point in the pattern is constant, so that

f  = 0. (2.18)

Using the chain rule for differentiation we see that

37 dx dl dy dl n
dx dt dy dt dt

(2.19)

(See Appendix A for a more detailed derivation).

If we let u = —  and v = — , then it is easy to see that we have a single linear 
dt dt

equation in the two unknowns u and v,

Ixu + 7yv + Λ = O , (2.20)

where we have also introduced the additional abbreviations 7X, 7y, and 7t for the partial 

derivatives of image brightness with respect to x, y  and t, respectively. The constraint 
on the local flow velocity expressed by this equation is illustrated in figure 2.2, where 

we can see that the basic rate of change of image brightness equation constrains the 

optical flow velocity. The velocity (u, v) has to lie along a line perpendicular to the
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brightness gradient vector (/χ, 7y). The distance of this line from the origin equals 7t 

divided by the magnitude of (/x, 7y). Writing the equation in still another way,

(/x ,/y) ( M , v )  =  - / t. (2.21)

Thus the component of the movement in the direction of the brightness gradient

(/x, 7y) equals: I,

We cannot, however, determine the component of the movement in the 

direction of the iso-brightness contours, at right angles to the brightness gradient. As a 

consequence, the flow velocity (u, v) cannot be computed locally without introducing 

additional constraints.

Now we will see some more complex issues inside the method.

First of all, we will analyze, what we call, the smoothness constraint. If 
every point of the brightness pattern can move independently, there is little hope of 

recovering the velocities. More commonly we view opaque objects of finite size 

undergoing rigid motion or deformation. In this case neighboring points on the objects 
have similar velocities and the velocity field of the brightness patterns in the image
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varies smoothly almost everywhere. Discontinuities in flow can be expected where 

one object occludes another. An algorithm based on a smoothness constraint is likely 

to have difficulties with occluding edges as a result.

One way to express the additional constraint is to minimize the square o f the 

magnitude of the gradient o f the optical flow velocity:

(2.22)

Another measure o f the smoothness o f the optical flow field is the sum o f the squares 

o f the Laplacians o f the x-  and y-components o f the flow. The Laplacians o f u and v 

are defined as

V2«
d 2u d 2u 

&Γ +
and V2v = a 2v d 2v  

dx2 + d y 2 ’
(2.23)

In simple situations, both Laplacians are zero. If the viewer translates parallel to a flat 

object, rotates about a line perpendicular to the surface or travels orthogonally to the 

surface, then the second partial derivatives o f both u and v vanish (assuming 

perspective projection in the image formation). Hom-Schunck here uses the square of 

the magnitude of the gradient as smoothness measure.

Secondly, let’s see how Hom-Schunck estimates the partial derivatives. We 

must estimate the derivatives o f brightness from the discrete set o f image brightness 

measurements available. It is important that the estimates o f 7X, 7y, and /,, be 

consistent. That is, they should all refer to the same point in the image at the same 

time. While there are many formulas for approximate differentiation [16, 23] we will 

use a set which gives us an estimate o f 7χ, 7y, Ih at a point in the center o f a cube 

formed by eight measurements. The relationship in space and time between these 

measurements is shown in figure 2.3. Each of the estimates is the average o f four first 

differences taken over adjacent measurements in the cube. More analytically, the
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column index j  corresponds to the x  direction in the image, the row index i  to the y  

direction, while k  lies in the time direction.

7
/ / /

rt-1 -►

/
/

1 k+1

t t
T
k

Figure 2.3: The relationship in space and time between I» Iy, /,.

^ x  *** ^  ^ i . j ,k  ^ i+ ij+ i,k  ^ i+ l j ,k  ^i,j+ l,k+l ^ i,j,k+ l ^i+l,j+l,k+l ^ i+ l,j,k+ l}
9
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9
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9

(2.24)

Here the unit of length is the grid spacing interval in each image frame and the unit of 

time is the image frame sampling period.

We also need to approximate the Laplacians of the flow velocities u and v. 

One convenient approximation takes the following form

y2« * *(w<>M ) and V2v *  f c{v l / k  - v,M) (2.25)

where the local averages u and v are defined as follows
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1 r \  1 /
l U i - \ J J c  +  U i , j + l ,k  +  U i + l J , k  U i , j - 1,* +  12 +  U i~ l J + h k  +  M/+1-'+1’* +  U i+ ' J - l ’k

1 i
v  .. «  — 1 

'■'·* 6 1! W  +  V,J +U  +  v/+ij,ft +  \ j - i j t } + ^ - {  v ,- u - w  +  v/-i,y+i,* + v M J + l ,k  + v f+1J-,,*}

(2.26)

The proportionality factor κ equals 3 if the average is computed as shown and we 

again assume that the unit of length equals the grid spacing interval. In figure 2.4 we 

can see that the Laplacian is estimated by subtracting the value at a point from a 

weighted average of the values at neighboring points.

1/12 1/6 1/12

1/6 -1 1/6

L '12 1/6 1/12

F ig u re  2 .4 :  T he L a p la c ia n  o p era to r .

Now we have to analyze the minimization problem. Hom-Schunck 

minimizes the sum of the errors in the equation for the rate of change o f image 

brightness,

Eb = 7X u + Iy v  +  It , (2.27)

and the measure o f the departure from smoothness in the velocity flow,

(2.28)

What should be the relative weight o f these two factors? In practice the image 

brightness measurements will be corrupted by quantization error and noise so that we 

cannot expect Eb to be identically zero. This quantity will tend to have an error
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magnitude that is proportional to the noise in the measurement. This fact guides us in 

choosing a suitable weighting factor, denoted by a2, as will be seen later.

Let the total error to be minimized be

E 2 = \ \ ( a 2E 2 + E 2b ) A x d y ,  (2.29)

The minimization is to be accomplished by finding suitable values for the optical flow 

velocity (u, v). Using calculus o f variation (see Appendix C) we obtain

J I \ u  + I xI yv  =  a 2V 2u —I xI t 

{I J yu + I 2yv  =  a 2V 2v - I yI, ’
(2.30)

Using the approximation to the Laplacian introduced previously we will get,

U a 2 + 1 \  )u + 1xI yv  =  { a 2u -  I XI , ) 
[ I J j  +  ( a 2 + I 2)v =  ( a 2v - I J )  ’

(2.31)

The determinant of the coefficient matrix equals α2(α2 + 1 2 + 1 2). Solving for u and v 

we find that

U a 2 + 1\  + i 2)u = + ( a 2 + I 2)u -  I xI yv -  I xI, 

[ ( a 2 + 1 2 +  / >  = - I J j S  + ( a 2 + I 2)v -  I yI, ’

Let us now see the difference of the flow at a point by using local average in 

comparison with the LK method. Firstly, (2.32) can be written in the alternative form

U a 2 + I 2 + 1) )(« -  «) = - I x (Ix u + I J  + 1, )  

\ ( a 2 + I 2X + /y)(v - v0 = - I J I xu +  I J + /,)  ’
(2.33)

This shows that the value o f the flow velocity (m, v) which minimizes the error 

is2 lies in the direction towards the constraint line along a line that intersects the

o
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constraint line at right angles. This relationship is illustrated geometrically in figure

2.5, and the value o f the flow velocity which minimizes the error lies on a line drawn 

from the local average o f the flow velocity perpendicular to the constraint line. The 

distance from the local average is proportional to the error in the basic formula for 

rate of change o f brightness when n , v are substituted for u and v. Finally we can see 

that a2 plays a significant role only for areas where the brightness gradient is small, 

preventing haphazard adjustments to the estimated flow velocity occasioned by noise 

in the estimated derivatives. This parameter should be roughly equal to the expected 

noise in the estimate o f I 2 + 1 2.

Figure 2.5: The relationship between (u, v), ( u , v ) ,  Ix andIy

Additionally to the previous part, we are going to analyze the impact of 

parameter a2. When we allow a2 to tend to zero we obtain the solution to a 

constrained minimization problem. Applying the method of Lagrange multipliers [36, 

43] to the problem of minimizing Ec2 while maintain E\, =  0 leads to

/ ; V 2u = IxV 2v  , I xu + I yv + I , = 0
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Approximating the Laplacian by the difference o f the velocity at a point and the 

average o f its neighbors then give us

Referring again to figure 2.5, we note that the point computed here lies at the

We will not use these equations since we do expect errors in the estimation o f the 

partial derivatives.

We now have a pair of equations for each point in the image, let’s see which 

will be the iterative solution. It would be very costly to solve these equations 

simultaneously by one of the standard methods, such as Gauss-Jordan elimination [23, 

24]. The corresponding matrix is sparse and very large since the number o f rows and 

columns equals twice the number o f picture cells in the image. Iterative methods, such 

as the Gauss-Seidel method [23, 24], suggest themselves. We can compute a new set 

of velocity estimates (w"+y, v"+y) from the estimated derivatives and the average o f the 

previous velocity estimates (iT,v") by

It is interesting to note that the new estimates at a particular point do not depend 

directly on the previous estimates at the same point.

The natural boundary conditions for the variational problem turn out to be a 

zero normal derivative. At the edge of the image, some of the points needed to 

compute the local average of velocity lie outside the image. Here we simply copy 

velocities from adjacent points further in.

(2.34)

intersection o f the constraint line and the line at right angles through the point ( m , v ) .

(2.35)
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The next point we are going to analyze is the case how we have to f ill in 

uniform regions. In parts of the image where the brightness gradient is zero, the 

velocity estimates will simply be averages of the neighboring velocity estimates. 

There is no local information to constrain the apparent velocity of motion o f the 

brightness pattern in these areas. Eventually the values around such a region will 

propagate inwards. If the velocities on the border o f the region are all equal to the 

same value, then points in the region will be assigned that value too, after a sufficient 

number of iterations. Velocity information is thus filled in from the boundary o f a 

region of constant brightness.

If the values on the border are not all the same, it is a little more difficult to 

predict what will happen. In all cases, the values filled in will correspond to the 

solution o f the Laplace equation for the given boundary condition [1,31, 35].

The progress o f this filling-in phenomena is similar to the propagation effects 

in the solution of the heat equation for a uniform fiat plate, where the time rate of 

change of temperature is proportional to the Laplacian. This gives us a means of 

understanding the iterative method in physical terms and of estimating the number of 

steps required. The number of iterations should be larger than the number o f picture 

cells across the largest region that must be filled in. If the size o f such regions is not 

known in advance one may use the cross-section of the whole image as a conservative 

estimate.

Another part we have to discuss is the tightness of constraint. When 

brightness in a region is a linear function of the image coordinates we can only obtain 

the component of optical flow in the direction of the gradient. The component at right 

angles is filled in from the boundary of the region as described before. In general the 

solution is most accurately determined in regions where the brightness gradient is not 

too small and varies in direction from point to point. Information which constrains 

both components of the optical flow velocity is then available in a relatively small 

neighborhood. Too violent fluctuations in brightness on the other hand are not 

desirable since the estimates of the derivatives will be corrupted as the result o f under- 

sampling and aliasing.
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Also we have to choose the iterative scheme. As a practical matter one has a 

choice o f how to interlace the iterations with the time steps. On the one hand, one 

could iterate until the solution has stabilized before advancing to the next image 

frame. On the other hand, given a good initial guess one may need only one iteration

from the previous time-step.

The advantages o f the latter approach include an ability to deal with more 

images per unit time and better estimates o f optical flow velocities in certain regions. 

Areas in which the brightness gradient is small lead to uncertain, noisy estimates 

obtained partly by filling in from the surround. These estimates are improved by 

considering further images. The noise in measurements o f the images will be 

independent and tend to cancel out. Perhaps more importantly, different parts o f the 

pattern will drift by a given point in the image. The direction o f the brightness 

gradient will vary with time, providing information about both components o f the 

optical flow velocity. A practical implementation would most likely employ one 

iteration per time step for these reasons.

2.4. E rro r Metrics

The first measure of performance that we use in the comparison is the average 

angular error (AAE) [4]. This is the most common measure of performance for 

optical flow [3]. Let vo = (ito , «ο) be the correct velocity and vj = («/ , u/) be the 

estimated velocity. The angular e rro r (AE)  between these two vectors is

where v 0, v, are the 3D normalized representations of v0, v,, respectively and they 

are defined as

per time-step. A good initial guess for the optical flow velocities is usually available

Ψ α ε  =arccos(v0 -v 1) , (2.36)

V (2.37)
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(2.38)

The AAE  is then obtained by calculating the average of all angular errors between 

correct and estimated velocities in the optical flow. However, it can be seen from

(2.36) that errors in regions of large flows are penalized less in A E  than errors in 

regions o f small flows [3]. One needs to be cautious when using the A AE  metric as 

estimates with the same error magnitude may result in significantly different angular 

error values.

Another error metric is the normalized magnitude o f the vector difference 

between the correct and estimated flow vectors [29]. The magnitude o f the correct 

velocity is used as the normalization factor. The magnitude o f difference error is 

defined as

where T  is a threshold, whose purpose is to ignore smaller vectors’ norms than T . The 

algorithm is not expected to reliably produce accurate flow vectors in areas where the 

actual flow magnitude is less than T  [29]. We used T =  0.5 in all of our experiments. 

The average magnitude of difference erro r (AME) is then calculated as the average 

of the normalized magnitude of difference errors.

A third error metric, which is slightly similar with AAE, is the absolu te  error, 

which is the error in flow endpoint (EP) [3] defined by

T
if ||v0| |< r  and ||v,|| > T  , (2.39)

0, if ||v0|| < ^  a n d lv J ^ T

e p = V(M<> -  « 1  ) 2 + f  =  I h  -  v, I , (2.40)
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CHAPTER 3. COMPUTING OPTICAL 

FLOW THROUGH SYNERGY OF ADAPTIVE 

SMOOTHING AND SEGMENTATION

3.1. Joint Lucas-Kanade (JLK) method

3.2. Optical flow with adaptive smoothing

3.3. Combination of JLK and adaptive smoothing

3.4. Guiding optical flow using segmentation

3.5. Experimental Results and Discussion

3.5.1. Squared-texture Sequence

3.5.2. Textured-Triangles with equal in Norm Moves

3.5.3. Textured-Triangles with unequal in Norm Moves

3.5.4. Yosemite without Clouds Sequence

3.5.5. Yosemite with Clouds Sequence

3.5.6. Dimetrodon Sequence

3.5.7. Rubberwhale Sequence

3.6. Partial Conclusion

In this chapter we study two methods. Firstly, S. Birchfield’s and S. Pundlik’s 

method [7] (section 3.1) and secondly, H. Nagel’s and W. Enkelmann’s method [32] 

(section 3.2). Additionally, we propose two variations resulting from the combination 

of the previously mentioned methods (sections 3.3, 3.4). In section 3.5, we present 

experimental results which are discussed in section 3.6.
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3.1. Joint Lucas-Kanade (JLK) method

S. Birchfield and S. Pundlik [7] proposed a combination o f Lucas-Kanade and 

Hom-Schunck energy functionals respectively which resulted in an energy functional 

to be minimized for Joint Lucas-Kanade (JLK):

E jlk = (0 + (0) j (3.1)
/=1

where N  is the number o f pixels, and the data and smoothness terms are given by

E D(i) =  K p * ( ( f { u nVi; l ) ) 2) (3.2)

£ s (0  = ((", -u,Y +(v, -V ,)2) (3.3)

where Kp is a suitable convolution kernel whose size determines the number of 

neighboring pixels to be aggregated and assigns appropriate weights to the pixels 

inside the window.

In these equations, the energy of pixel / is determined by how well its displacement 

(ui; v,)T matches the local image data, as well as how far the displacement deviates

from the expected displacement (m, , v,)r . Note that the expected displacement can be

computed in any desired manner and is not necessarily required to be the average of 

the neighboring displacements. According to [7], they predict the motion 

displacement of a pixel by fitting an affine motion model to the displacements of the 

surrounding pixels, which are inversely weighted according to their distance to the 

pixel. They use a Gaussian weighting function on the distance, with σ =  10 pixels.

Differentiating EJLK with respect to the displacements (u„ v,)T, i = 1, . . . , N, 

and setting the derivatives to zero, yields a large 2 N  * I N  sparse matrix equation, 

whose (21 -  l)th and (2/)th rows are

ZiU i =  €/, (3.4)
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where

~Xi + K p * ( I J x) K p * ( I xI y ) ' λ , ύ , - K p ' v j S

Z , =
K p  * { I xI y ) X , + K p n i yIy )

, e, =

1 > 1 * >· 1__
__

_

This sparse system o f equations can be solved using Jacobi iterations o f the form

j ^ k) + j „
H<*+I> = «<*>

λ; + + J yy
Xk)

V(*+I) = v (*} /  i λ,ι + i/„  + J yy

(3.5)

(3-6)

where Jxx Kp *(/x ), Jxy Kp *(IX1y), J& ~  Kp *(IJt)9 Jyy — Kp *(Iy ), and «Λ* — Kp

To sum up, the (JLK) algorithm is presented in figure 3.1:

Algorithm: J o i n t  L u c a s - K a n a d e

1. For each pixel/,

(a) Initialize u, <— (0,0)r
(b) Initialize λ*

2. For pyramid level η -  1 to 0 step -1,

(a) For each pixel /, compute Zt
(b) Repeat until convergence:

i. For each pixel /,
(a) Determine u,
(b) Compute the difference /, between the first image and the shifted 

second image: Ifa ,y) = /,(x,y) - I2(x + uhy  + V;)
(c) Compute e,
(d) Solve = e/ for incremental motion u'i
(e) Add incremental motion to overall estimate: u, <— u* + u',

(c) Expand to the next level: u, <— kuh where k is the pyramid scale factor

Figure 3.1: The Joint Lucas-Kanade algorithm [7].

to (
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3.2. Optical flow with adaptive smoothing

H. Nagel and W. Enkelmann proposed in [32] to adaptively introduce 

smoothness constraints into the problem of optical flow.

We recall the basic optical flow equation of Hom-Schunck [25]:

min {JJ( ( v / r u + 1, )2 + λ  (w* + u]  + v* + v 2y ) ) dxe fy}. (3.7)

Xwhere u = (u9 v) and Vu =
I

* , represents the matrix of partial derivatives of

the displacement vector components with respect to the image coordinates. The 

second term in (3.7) represents the smoothness requirement introduced by Horn and 

Schunck [25]. Parameter λ  denotes the strength of the smoothness requirement 

relative to the first term.

Horn and Schunck used one parameter λ,  same for all the pixels. This means 

that one pixel /, inside a texture and one pixel j ,  on the borders o f an object use the 

same smoothness constraint. As a result, for pixel / the estimated optical flow is 

computed well, but for the pixel j ,  which is located on an edge o f an object, the 

estimated optical flow tend to lose its accuracy because it expands its flow around that 

edge.

Therefore, the main idea was to introduce a weight matrix C '1 into the 

smoothness term, whose purpose is to give zero weight for pixels located on edges 

and greater values than zero for other pixels located inside textured areas. So, in that 

case, the optical flow problem becomes:

min { f j ( ( v / r u + / , )  2 +Λ trace((Vu)r C _1 (V u))) dxefy}. (3.8)

where

c r 1 -
detF

and F  =
f  I  \ (  I  λ T

(  L · - / \ f I i

1

y l y + b2 yy xy yy xy

- / - / - / I - I IV l x J \  l * ) ^ *xy XX J V xy XX J
• (3.9)
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The factor b2 denotes the relative weight of the two contributions. If we carefully 

examine matrix F  we will see that it is a 2 x 2 matrix and after some manipulation we 

obtain:

F  -
rl+b‘ (i + / 2 yy *y

x y ^ y y  ^ x y ^ x x ))
h + i V / v J L Fu

Fn

At this point, we have to find the solution to the minimization problem of 

(3.8). Firstly, let us rewrite the problem in a more convenient way:

min [e {u, v ,  ux,uy!vx, )dxdy\

m injj‘(/xw + / yv + / ,)2 + Λ  (f u u 2x + 2 F n  ux uy + F n  u)

+ Fu v ]  + 2 F n  vx v y + F 22 vy )dxdy  , (3.10)

The solution of (3.10) is obtained by using the Calculus o f Variations theory, (see 

Appendix C for details) where the related Euler-Lagrange equations are

. \dE  d  (  dE ^
min<----------

w I du dx v5mw

d_
dy

f  a r ' 1 oE

Kduy ;  j

dE d f  dE Ί d ' d E '
dv dx dy Ι 9* , )

= 0,

=  0

(3.11a)

(3.11b)

From equation (3.11a), in order to find a solution for u we have to compute the 

following expressions

dE
du
dE
du.

2 (/,» + / » + / > ,

= 2 FnXux + 2  FnXuy

> ±
dx Kdu* ;

— 2F^Xuxx + 2F l2Xuxy

dE  
du„

= 2 F22A Uy + 2 Fn X ux
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>  dy &/J 2Fn k u yy+2Fv Xu*y

Substituting the above expressions into (3.11a) we come up with the following 

equation:

l ] u  +  I xI y v  = - I J ,  + λ  (Fu ua  + F nUyy + F n w j .

By repeating the same procedure for equation (3.1 lb) we find a similar equation for v. 

Finally, we end up with the following linear system:

l l  u +  I xI y V = - I zI, + λ  (f u Ιίχχ + F n  Uyy + F n u j

-
I J y u + I y v = - I yI, + λ  (f „ v„  + F12 Vyy +  Fn Vxy)

A usual approach to solve the above linear system is to proceed iteratively. For 

the computation o f M(t+1) and v(t+1) at step (/+ /) we employ their derivatives computed 

at time step t.

I ]  w('+1) + I xI y v('+l> = -  I J ,  + λ  (f m «<? + Fn  « «  + Fn « « )

I J y i/(,+1) + I y v(,+1) .

n  I J y

1---
---

H Λ 1__
__ v<'+1>

/>/i +a (f iiv« + F b v« + F 12v«)

-  I J ,  + Λ fa , u "  +  Fn  + Fn  < > )

-  V ,  + A (FU v”  + Fn  vJJ? + Fn  v «  )

= i x (,+1) = 6 (0, (3.12)

In (3.12), if Fn = F22 = 1 and F 12 = 0 we obtain the linear system we have at the Horn 

and Schunck scenario [25]. Finally, the solution to (3.12) is obtained by solving the 

previous iterative scheme.

3.3. Combination of JLK and adaptive smoothing

The first method we propose in this chapter is the combination o f the two 

previously mentioned methods o f S. Birchfield -  S. Pundlik [7] and H.Nagel-



42

W. Enkelmann [32]. The main idea is to keep the proposed scheme of Nagel et  al. 

[32], in order to have adaptive smoothness constraints and modifying it by adding the 

neighboring area proposed by Lucas-Kanade [28] and then also used by S. Birchfield-

S. Pundlik [7]. In other words, the linear system (3.12) proposed in section 3.2 now 

becomes:

and Kp is a suitable convolution kernel whose size determines the number of 

neighboring pixels to be aggregated and assigns appropriate weights to the pixels 

inside the window. For our experiments, which we show in section 3.5, we use a 7x7 

average kernel.

3.4. Guiding optical flow using segmentation

The second method we propose in this chapter is a variation o f the method 

described in section 3.3. The innovation here is that we “carefully” choose which of 

the neighboring pixels are going to participate into the convolution matrix K p. The 

choice is taken by examining if  the neighboring pixel Γ belongs to the same super­

pixel with the current pixel i. If it doesn’t belong to the same super-pixel, then the 

value o f K p for that neighboring pixel is equal to zero.

Here appears the need to analyze what we mean by the term “super-pixel” and 

how it is produced. It is common to use the term super-pixel in order to name a unit -  

a piece from the result o f the procedure called image segmentation. Another name you 

may be seen in bibliography instead of super-pixel is segment. Additionally, image 

segmentation is the procedure in which we group together pixels of an image that 

appear to have the same features (or simpler the same behaviour). The most common 

feature that is used in this scientific area is the intensity value o f the

J
(3.13)
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An example of image segmentation is shown in figure 3.2.

(c)

Figure 3.2: Various image segmentations, (a) Yosemite's without clouds, (b) D im etrodon’s  
an d  (c) Rubberwhale’s  image segmentation.

In our experiments, the super-pixels were produced by using the method 

purposed in [38], where G. Mori proposed a method based on normalized cuts 

(spectral clustering). For each experiment (except from the trivial artificial images of 

sections 3.5.1-3.5.3 where the number of the super-pixels does not affect the result), 

we are showing various combinations between the window size and the number of the 

super-pixels at the appendix E.

o
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3.5. Experimental Results and Discussion

The proposed methods were tested on image sequences including both 

synthetic and real scenes. Some of the synthetic images were synthesized from us and 

other were taken from publicly available data sets as for example the Middlebury 

public flow dataset [3], [4, 29] in order to guarantee the objectiveness of our 

evaluations.

More specifically, we tested our method on three synthetic sequences. The 

first sequence is showing a Textured Square moving from the center to the top left 

comer by one pixel. The second one is showing two Textured Triangles. The upper 

left triangle moves about one pixel to the bottom left comer, while the bottom right 

triangle moves about one pixel to the bottom right comer. The third one is showing 

two Textured Triangles with the only difference from the second synthetic sequence 

that here the bottom right triangle moves about 2 pixels to the bottom right comer. 

The background color for all the previously mentioned sequences is black, without 

loss of generality.

Additionally, we tested our methods on the well-known Yosemite sequence 

without clouds, the Dimetrodon sequence and the Rubberwhale sequence [3] (which 

contain hidden texture -  occlussions). We compared our approaches with the 

algorithms of Pundlik’s method [7] and Nagel’s method [32], For the evaluation o f 

our method we used the error metrics described in section 2.4.
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3 .5 .1 . T extiired-Square Sequ en ce

This is a simple 256 x 256 example, which consists of a textured square 

located at the center of the first frame, while at the second frame it moves by one 

pLxel towards the top left comer. Figure 3.3 shows a frame of the image and figure 3.4 

shows optical flow estimations from the compared methods along with the ground 

truth. Figure 3.5 shows the angular error and figure 3.6 presents the flow by using 

color coding [3]. We do not show the end-point error for each pixel as it has too small 

values (but we show the average end-point error, which is equivalent and more 

meaningful).

Figure 3.3: Text ured-square sequence: f ir s t fram e o f  the sequence.
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F ig u re  3 .4 : T ex tu red -sq u a re  seq u en ce: (a) g r o u n d  tru th  o p tic a l f lo w , (b) o p t ic a l  f lo w  u sin g  
th e  J L K  m e th o d  [7], (c) f lo w  u sin g  the m e th o d  o f  N a g e l e t  a l  [32], (d ) re su ltin g  o p tic a l f lo w  o f  

th e  p r o p o s e d  m e th o d  o f  se c tio n  3 .3  a n d  (e) re su ltin g  o p tic a l f lo w  o f  th e  p r o p o s e d  m e th o d  o f
se c tio n  3.4.

o



(C) id)

F ig u re  3 .5 :  T e x tu r e d -s q u a r e ’s  A n g u la r  E r r o r  (A E ) o f  th e  c o m p a r e d  m e th o d s , (a ) J L K  m e th o d  
[7], (b ) m e th o d  o f  N a g e l  e t  a l. [32] (c )  J L K  w ith  a d a p t iv e  s m o o th in g  ( s e c tio n  3 .3 )  a n d  

(d ) g u id e d  o p t ic a l  f l o w  u s in g  im a g e  s e g m e n ta t io n  ( s e c tio n  3 .4 ).
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(b)

(d )

(e) (f)

F ig u r e  3 .6 :  T e x tu r e d -s q u a r e  s e q u e n c e :  c o lo r fu l  o p t i c a l  f lo w ,  (a )  F lo w  f i e l d  c o l o r  c o d in g ,  
(b ) g r o u n d  tru th , (c )  f l o w  f i e l d  u s in g  th e  J L K  m e th o d  [7], (d )  f l o w  f i e l d  u s in g  th e  m e th o d  o f  
N a g e l  e t  a l. [32], (e )  f l o w  f i e l d  u s in g  th e  m e th o d  p r o p o s e d  in  s e c t io n  3 .3  a n d  (f) f l o w  f i e l d  

u s in g  th e  m e th o d  p r o p o s e d  in  s e c t io n  3 .4 .
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T able 3 .1: A v e ra g e  e r r o r  m e tr ic s  f o r  th e T ex tu red -squ are  sequ en ce.

Method AAE (in degrees) AME (in pixels) EP (in pixels)
L u ca s-K a n a d e  [28] 3.09 0.08 0.08
H o m -S ch im c k  [25] 1.84 0.04 0.04

J o in t L u ca s-K a n a d e  [7] 2.67 0.04 0.05
N a g e l e t  a l  [32] 1.60 0.04 0.04

M e th o d  o f  s e c tio n  3 .3 1.50 0.05 0.04
M e th o d  o f  s e c tio n  3 .4 1.46 0.04 0.04

As we can see from table 3.1 our approaches achieve smaller errors than 

Nagel’s e t a l . [32] and Joint Lucas-Kanade method [7], for all the error metrics.

3.5.2. Textured-Triangles with equal in Norm Moves

This is a slightly more complicated 256 x 256 example, which consists o f two 

textured triangles located at the top left comer and at the bottom right comer o f the 

first frame, while at the second frame the upper left triangle moves by one pixel to the 

bottom left comer, while the bottom right triangle moves by one pixel to the bottom 

right comer. Figure 3.7 shows the image and figure 3.8 the estimated optical flows. 

Figure 3.9 shows the angular error and figure 3.10 presents the flow by using color 

coding [3]. We do not show the end-point error for each pixel as it has too small 

values (but we show the average end-point error, which is equivalent and more 

meaningful).

F ig u re  3 .7 : T ex tu red -tr ia n g les  (w ith  e q u a l in norm  m oves)  se q u en ce:  f i r s t  f r a m e  o f  th e
sequ en ce.

o
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F ig u re  3 .8 : Textured-triangles (w ith  eq ua l in  norm  moves) sequence: (a ) g ro u n d  truth o p tica l 
f lo w , (b) o p tica l f lo w  using the J L K  m ethod [ 1 \  (c) f lo w  using the m ethod o f  N a g e l e t a l. [32], 

(d ) resu lting  o p tica l f lo w  o f  the p roposed m ethod o f  section 3 .3  an d  (e) resulting o p tica l f lo w
o f  the proposed  m ethod o f  section 3.4.

o



(C) n h

F ig u r e  3 .9 :  T e x tu r e d - tr ia n g le s  ’ (w ith  e q u a l  in  n o rm  m o v e s )  A n g u la r  E r r o r  (Λ Ε ) o f  th e  
c o m p a r e d  m e th o d s , (a )  J L K  m e th o d  [7], (b )  m e th o d  o f  N a g e l  e t  a l. [32] (c )  J L K  w ith  a d a p t iv e  
s m o o th in g  (s e c t io n  3 .3 )  a n d  (d ) g u id e d  o p t ic a l  f l o w  u s in g  im a g e  s e g m e n ta t io n  /s e c t io n  3 .4 ).
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(d)

(e) (f)

Figure 3.10: Textured-triangles (with equal in norm moves) sequence: colorful optical flow.
(a) Flow fie ld  color coding, (b) ground truth, (c) flow  fie ld  using the JLK method [7],

(d) flow  fie ld  using the method o f  Nagel et a i  [32], (e) flow  fie ld  using the method proposed  
in section 3.3 and (f) flow  fie ld  method proposed in section 3.4.

o
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Table  3 .2 : A verage e rro r  m etrics f o r  the Textured-triangles (w ith  equal in  norm  moves)
sequence.

Method AAE (in degrees) AME (in pixels) EP (in pixels)
Lucas-Kanade  [28] 5.91 0.15 0.14
H om -S chunck  [25] 2.47 0.05 0.05

Jo in t Lucas-Kariade  [7] 4.10 0.07 0.08
N a g e l et al. [32] 2.25 0.06 0.05

M e th o d  o f  section 3 .3 2.33 0.08 0.05
M e th o d  o f  section 3 .4 2.26 0.07 0.05

As we can see from table 3.2 our approaches are slightly worse than Nagel’s et 

a l  approach [32] (~ 0.01 difference in A A E )  although our results in fig. 3.10 are more 

coherent our lost comes because our methods expands the optical flow slightly outside 

the edges of the triangles, but better than Joint Lucas-Kanade method [7], for all the 

error metrics.

3 .5 .3 . T e x tu re d -T r ia n g le s  w ith  u n e q u a l in  N o r m  M o v e s

A next experiment consists in increasing the difficulty o f the previous 

configurations. We have a 256 x 256 example, which consists o f two textured 

triangles located at the top left comer and at the bottom right comer of the first frame, 

while at the second frame the upper left triangle moves by one pixel to the bottom left 

comer, while the bottom right triangle moves by two pixel to the bottom right comer. 

Figure 3.11 shows the image and figure 3.12 the estimated optical flows. Figure 3.13 

shows the angular error and figure 3.14 presents the flow by using color coding [3]. 

We do not show the end-point error for each pixel as it has too small values (but we 

show the average end-point error, which is equivalent and more meaningful).

F ig u re  3 .11 : Textured-triangles (w ith  unequal in  norm  moves) sequence: f i r s t  fra m e  o f  the
sequence.

o



54

(a) Φ)

(c) (d)

Figure 3.12: Textured-triangles (with unequal in norm moves) sequence: (a) ground truth 
optical flow, (b) optical flow using the JLK method [7], (c) flow using the method of Nagel et 

al [32], (d) resulting optical flow o f the proposed method o f section 3.3 and (e) resulting 
optical flow o f the proposed method o f section 3.4.
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F ig u re  3 .1 3 : T e x tu re d -tr ia n g le s ' (w ith  u n eq u a l in  n orm  m oves) A n g u la r  E r r o r  (A E ) o f  the  

c o m p a re d  methods, (a ) J L K  m eth o d  [7], (b ) m eth o d  o f  N a g e l et a l. [32] (c ) J L K  w ith  a d ap tive  

sm o o th in g  (section 3 .3 ) a n d  (d ) g u id e d  o p tic a l f lo w  us ing  im age  seg m en tation  (section 3 .4 ).
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Figure 3.14: Textured-triangles (with unequal in norm moves) sequence: colorful optical 
flow, (a) Flow fie ld  color coding, (b) ground truth, (c) flow  fie ld  using the JLK method [7], 
(d) flow  fie ld  using the method o f  Nagel et al. [32], (e) flow  fie ld  using the method proposed  

in section 3.3 and (f) flow  fie ld  method proposed in section 3.4.

o
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T ab le  3 .3 : A v e ra g e  e r r o r  m e tr ic s  f o r  th e T ex tu red -tr ia n g les  (w ith  u n eq u a l in  n o rm  m o v es)
sequ en ce.

Method AAE (in degrees) AME (in pixels) EP (in pixels)
L u c a s-K a n a d e  [28] 8.58 0.17 0.26
H o m -S ch u n ck  [25] 5.57 0.14 0.19

J o in t L u c a s-K a n a d e  [7] 6.95 0.18 0.22
N a g e l e t a l  [32] 4.79 0.13 0.18

M e th o d  o f  se c tio n  3 .3 4.67 0.17 0.17
M e th o d  o f  se c tio n  3 .4 4.78 0.16 0.18

As we can see from table 3.3 our approach achieves smaller errors than 

Nagel’s e t a l  approach [32] in A A E  and E P  and slightly worse in A M E , while in 

comparison with the Joint Lucas-Kanade method [7] our methods performs better for 

all the error metrics, although all the methods did not have perfectly estimations.

3 .5 .4 .  Y o s e m ite  S e q u e n c e  w i th o u t  C lo u d s

The Y o s e m ite  sequence without clouds, is available at
http: //www. cs .brown, edu/people/black/images .html.

F ig u re  3 .1 5 : Y osem ite  se q u e n c e  w ith o u t c lo u d s: f i r s t  f r a m e  o f  th e se q u e n c e .
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Figure 3.16: Yosemite sequence without clouds: ground truth optical flow .

Figure 3.17: Yosemite sequence without clouds: opticalflow using the JLK method [7].
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[32].

F ig u re  3 .1 9 :  Y osem ite  se q u e n c e  w ith o u t c lo u d s:  r e su ltin g  o p tic a l f l o w  o f  th e  p r o p o s e d  m e th o d
o f  s e c tio n  3 .3 .
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F ig u re  3 .2 0 :  Y osem ite  se q u e n c e  w ith o u t c lo u d s :  re su ltin g  o p tic a l f lo w  o f th e  p r o p o s e d  m e th o d
o f  se c tio n  3 .4 .

3S

\

F ig u re  3 .2 1 :  Y osem ite  w ith o u t c lo u d s  ' A n g u la r  E rro r  (AE) o f  th e J L K  m e th o d  [7].



)semite without c lou ds ' Angular Error (AE) o f  the coth 
7 et al. [32], (b) JLK with adaptive smoothing (section  

optical flo w  using image segmentation (section 3.4).
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F ig u r e  3 .2 3 :  Y o se m ite  s e q u e n c e  w i th o u t  c lo u d s :  c o lo r fu l  o p t i c a l  f l o w ,  (a )  F lo w  f i e l d  c o lo r  
c o d in g , (b )  g r o u n d  tru th , (c )  f l o w  f i e l d  u s in g  th e  J L K  m e th o d  [7], (d )  f l o w  f i e l d  u s in g  th e  
m e th o d  o f  N a g e l  e t  a l. [32], (e )  f l o w  f i e l d  u s in g  th e  m e th o d  p r o p o s e d  in  s e c t io n  3 .3  a n d  

(f) f l o w  f i e l d  u s in g  th e  m e th o d  p r o p o s e d  in  s e c t io n  3 .4 .

o
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T able  3 .4 : A v e ra g e  e r r o r  m e tr ic s  f o r  th e  Y osem ite  w ith o u t C lo u d s  se q u e n c e .

Method AAE (in degrees) AME (in pixels) EP (in pixels)
L u ca s-K a n a d e  [28] 11.65 023 0.48
H o m -S ch u n ck  [25] 5.43 0.10 0.20

J o in t L u ca s-K a n a d e  [7] 7.97 0.17 035
N a g e l e t  aL [32] 9.15 0.19 036

M e th o d  o f  se c tio n  3 .3 5.12 0.12 022
M e th o d  o f  se c tio n  3 .4 3.79 0.09 0.15

As we can see from the table 3.4 our approaches are better than Nagel’s e t  aL  

method [32], JLK [7], LK [28] and HS [25] for all the error metrics. In order to obtain 

those results, we used 40 super-pixels and a 19x19 window, representing the 
neighborhood. See appendix E for more combinations between the number of the 

super-pixels and the window size.

3 .5 .5 .  Y o s e m ite  S e q u e n c e  w i th  C lo u d s

The original version of the Y o s e m ite  sequence with cloudy sky was created by Lynn 
Quam and is available at f tp : / / f tp .csd.uwc.ca/pub/vision.

Figure 3.24: Yosemite sequence with clouds: first frame o f the sequence.

ftp://ftp.csd.uwc.ca/pub/vision
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F ig u re  3 .2 5 :  Y o sem ite  se q u e n c e  w ith  c lo u d s:  g r o u n d  tru th  o p tic a l  f lo w .

Figure 3.26: Yosemite sequence with clouds: opticalflow using the JLK method [7].

o
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F ig u re  3 .2 7 : Y osem ite  seq u e n c e  w ith  c lo u d s: o p t ic a lf lo w  u sin g  th e  m e th o d  o f  N a g e l  e t  al.
[32].

F ig u re  3 .2 8 :  Y osem ite  seq u e n c e  w ith  c lo u d s: re su ltin g  o p tic a l f lo w  o f  th e p r o p o s e d  m e th o d  o f
se c tio n  3.3.
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F ig u re  3 .2 9 : Y osem ite  seq u en ce  w ith  c lo u d s: re su ltin g  o p tic a l f lo w  o f  th e  p r o p o s e d  m e th o d  o f
se c tio n  3.4.

Figure 3.30: Yosemite with clouds' Angular Error (AE) o f the JLK method [7].

o



(c)

lite with clouds ’ Angular Error (AE) o f  the com pared methods, (a) M ethod 
(b) JLK with adaptive smoothing (section 3.3) and (c) gu ided optical flo w  

using image segmentation (section 3.4).

p
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F ig u r e  3 .3 2 :  Y o se m ite  s e q u e n c e  w ith  c lo u d s :  c o lo r fu l  o p t i c a l  f l o w . (a )  F lo w  f i e l d  c o l o r  
c o d in g , (b )  g r o u n d  tru th , (c )  f l o w  f i e l d  u s in g  th e  J L K  m e th o d  [7], (d )  f l o w  f i e l d  u s in g  th e  
m e th o d  o f  N a g e l  e t  a i  [32], ( e )  f l o w  f i e l d  u s in g  th e  m e th o d  p r o p o s e d  in  s e c t io n  3 .3  a n d  

(f) f l o w  f i e l d  u s in g  th e  m e th o d  p r o p o s e d  in  s e c t io n  3 .4 .
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Table 3.5: Average error metrics fo r  the Yosemite with Clouds sequence.

Method AAE (in degrees) AME (in pixels) EP (in pixels)
Lucas-Kanade [28] 20.75 0.46 0.87
Hom-Schunck [25] 12.57 0.32 0.55

Joint Lucas-Kanade [7] 16.69 0.35 0.63
Nagel e ta l  [32] 19.78 0.47 0.84

M ethod o f  section 3,3 13.46 0.38 0.66
M ethod o f  section 3,4 11.86 0.30 0.52

As vve can see from the table 3.5 our approaches are better than Nagel’s et al. 

method [32], Joint Lucas-Kanade [7], LK [28] and HS [25] for all the error metrics. In 

order to obtain those results, we used 40 super-pixels and a 21x21 window, 

representing the neighborhood. See appendix E for more combinations between the 
number of the super-pixels and the window size.

3.5 .6 . D im e tr o d o n  S e q u e n c e

The dimetrodon sequence is obtained from the Middlebury database [3]. It 

contains non-rigid motion and large areas with little (hidden or not) texture.

Figure 3.33: Dimetrodon sequence: first frame o f the sequence.
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F ig u re  3 .3 4 :  D im e tro d o n  seq u en ce: g r o u n d  tru th  o p tic a lf lo w .

Figure 3.35: Dimetrodon sequence: optical flow using the JLK method [7]
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F ig u re  3 .3 7 :  D im e tro d o n  seq u en ce: r e su ltin g  o p t ic a lf lo w  o f  th e  p r o p o s e d  m e th o d  o f s e c t io n
3 .3 .
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Figure 3.38: Dimetrodon sequence: resulting optical flow  o f  the proposed method o f  section
3.4.

Figure 3.39: Dimetrodon’s Angular Error (AE) o f the JLK method [1).



D i m e t r o d o n ' s  A n g u l a r  E r r o r  (A E )  o f  th e  c o m p a r e d  m e th o d s ,  ( a )  M e t h o d  o f  

32], ( b )  J L K  w i th  a d a p t i v e  s m o o t h i n g  ( s e c t i o n  3 .3 )  a n d  ( c )  g u i d e d  o p t i c a l  f l o w  

u s i n g  i m a g e  s e g m e n t a t i o n  ( s e c t i o n  3 .4 ) .



(b)

F ig u r e  3 .4 1 :  D im e tr o d o n  s e q u e n c e :  c o lo r fu l  o p t i c a l f l o w ,  (a )  F l o w  f i e l d  c o l o r  c o d in g ,
(b )  g r o u n d  tru th , (c )  f l o w  f i e l d  u s in g  th e  J L K  m e th o d  [7], (d )  f l o w  f i e l d  u s in g  th e  m e th o d  o f  
N a g e l  e t  a l  [32], (e )  f l o w  f i e l d  u s in g  th e  m e th o d  p r o p o s e d  in  s e c t io n  3 .3  a n d  (f) f l o w  f i e l d  

u s in g  th e  m e th o d  p r o p o s e d  in  s e c t io n  3 .4 .
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Table 3.6: Average error metrics fo r  the Dimetrodon sequence.

Method AAE (in degrees) AME (in pixels) EP (in pixels)
Lucas-Kanade [28] 27.52 0.56 1.07
Hom-Schunck [25] 8.51 0.24 0.49

Joint Lucas-Kanade [7] 33.14 0.65 0.35
Nagel et al. [32] 17.58 0.38 1.17

M ethod o f  section 3.3 10.17 0.24 0.52
M ethod o f  section 3.4 6.24 0.18 0.36

As we can see from table 3.6 our approaches are better than Nagel’s et a l  

method [32], Joint Lucas-Kanade [7], HS [25] and LK [28], for all the error metrics. 

The E P  = 0.35 for the JLK method is misleading since JLK failed in A A E  metric. In 

order to obtain those results, we used 40 super-pixels and a 29 x 29 window, 

representing the neighborhood. See appendix E for more combinations between the 

number of the super-pixels and the window size.

3 .5 .7. R u b b e n v h a le  S e q u e n c e

The rubberwhale sequence is obtained from the Middlebury database [3].

Figure 3.42: Rubberwhale sequence: first frame o f  the sequence.
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F ig u re  3 .4 3 :  R u b b erw h a le  se q u e n c e :  g r o u n d  tru th  o p tic a l  f lo w .

Figure 3.44: Rubberwhale sequence: optical flow using the JLK method [7].
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F ig u re  3 .4 5 :  R u b b erw h a le  seq u en ce: o p t ic a lf lo w  u sin g  th e m e th o d  o f  N a g e l  e t  a l. [32],

F ig u re  3 .4 6 : R u b b erw h a le  seq u en ce: re su ltin g  o p tic a l f lo w  o f  th e  p r o p o s e d  m e th o d  o f s e c t io n
3 .3 .
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Figure 3.47: Rubberwhale sequence: resulting optical flow  o f  the proposed method o f  section
3.4.

Figure 3.48: Rubberwhale's Angular Error (AE) o f the JLK method [7]



R u b b e r w h a l e ' s  A n g u l a r  E r r o r  ( A E )  o f  th e  c o m p a r e d  m e th o d s .  ( 
32], ( b )  J L K  w i th  a d a p t i v e  s m o o t h i n g  ( s e c t i o n  3 .3 )  a n d  ( c )  g u id e  

u s i n g  i m a g e  s e g m e n t a t i o n  ( s e c t i o n  3 .4 ) .
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F ig u r e  3 .5 0 :  R u b b e r w h a le  s e q u e n c e :  c o lo t f u l  o p t i c a l  f l o w ,  (a ) F lo w  f i e l d  c o l o r  c o d in g , 
(b )  g r o u n d  tru th , (c )  f l o w  f i e l d  u s in g  th e  J L K  m e th o d  [7], (d )  f l o w  f i e l d  u s in g  th e  m e th o d  o f  
N a g e l  e t  a l. [32 ] ,  (e )  f l o w  f i e l d  u s in g  th e  m e th o d  p r o p o s e d  in  s e c t io n  3 .3  a n d  (f) f l o w  f i e l d  

u s in g  th e  m e th o d  p r o p o s e d  in  s e c t io n  3 .4 .
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T able  3. Ί: A v e ra g e  e r ro r  m e tr ic s  f o r  th e R u b b erw h a le  sequ en ce.

Method AAE (in degrees) AME (in pixels) EP (in pixels)
L u ca s-K a n a d e  [28] 9.59 0.22 0.29
H o m -S ch u n ck  [25] 8.75 0.22 0.25

J o in t L u c a s-K a n a d e  [7] 18.44 0.43 0.50
N a g e l e t  a l  [32] 11.87 0.29 0.33

M e th o d  o f  se c tio n  3 .3 8.35 0.21 0.25
M e th o d  o f  se c tio n  3 .4 8.17 0.21 0.24

As we can see from table 3.7 our approaches are better than Nagel’s e t  al. 

method [32], Joint Lucas-Kanade [7], LK [28] and HS [25], for all the error metrics. 

In order to obtain those results, we used 100 super-pixels and a 9x9 window, 

representing the neighborhood. See appendix E for more combinations between the 

number of the super-pixels and the window size.

3.6.. Partial Conclusion

In this chapter we studied the methods proposed in [7], [32] but also we 

proposed two variations of them. As we can see from the previous section, our 

suggestions manage to achieve significantly better result than the JLK method [7] and 

the approach of Nagel era/. [32].

Furthermore, we conclude that for the same window size, as the number of the 

super-pixels increases, we obtain worse results. Additionally, it is understood that the 

window size has a greater role than the number of the super-pixels, which was 

expected, since super-pixels have an effect only on the pixel belonging to motion 

boundaries or to edges in the image, who are the minority of the image canvas.
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C H A P T E R  4 . V A R IA T IO N A L  B A Y E S IA N

O P T IC A L  F L O W

4.1. Introduction

4.2. A Prior for the Motion Vectors

4.3. A Probabilistic Model for Optical Flow

4.4. Model Inference

4.5. Experimental Results and Discussion

4.5.1. Squared-texture Sequence

4.5.2. Textured-Triangles with equal in Norm Moves

4.5.3. Textured-Triangles with unequal in Norm Moves
4.5.4. Yosemite without Clouds Sequence

4.5.5. Dimetrodon Sequence

4.6. Partial Conclusion

4.1. Introduction

This work resulted from the combination of the method proposed in [14] with 

the well-known Hom-Schunck (H S ) method [25], More specifically, the main 
difference between our approach and the method of H S  is that we don’t employ a 

deterministic parameter to control the strength of the smoothness constraint. More 
specifically, we impose stochastic parameters, one for each pixel, similar in spirit with 

[14], which are updated at each iteration. Moreover, we impose Gaussian noise
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statistics in order to capture the missing information due to the linearization by Taylor 

expansion series.

4.2. A Prior for the Motion Vectors

We assume that ux( i) , Uy(i) for / = 1 N  are i.i.d zero mean Student’s-/ distributed 

(see Appendix B for details), with parameters λ χ, vx and Xy, vy, respectively:

The Student’s /-distribution implies a two-level generative process [8]. More 

specifically, a*(0 and a ^ i )  are first drawn from a Gamma distribution

At this step, the probability density function (4.1) may be written as an integral

p(u*(/)) = S/(0 , Ant,v t )  = £ ,p(ut (0 ,a i (0) dat (/)

= P(“* (01 «* (0) p( «* (0) da* (0, (4.3)

As v* goes to infinity, the pdf of <**(/)’s has its mass concentrated around its 

mean. This in turn reduces the Student’s-/ to a normal distribution, because all u*(/),

«*(/) = 1. When vt —>0 the prior becomes uninformative. In general, for small values 

of v* the probability mass of the Student’s-/ pdf is more “heavy tailed”.

(4.1)

(4.2)

k e { x , y }  are drawn from the same normal distribution with precision λ*, since



84

Then, u ,(i), u / / )  are generated from two independent zero-mean normal 
distributions with precision λ* QTAXQ, λ,, QTAyQ, respectively, where Q is the 
Laplacian operator and A, = diag{ a^i) }, Ay = diag{ ay(i) }, according to

p (u j  A j ^ f o ^ Q X Q ) " )  

p { » y \ Ay)= A (o, (/lyQrAJ,Q)"1)
(4.4)

Equation (4.4) may also be written more compactly as:

p(u I A)=7v(o,(iQrA qY),

where λ  = Γα χ 0

Ia J
, A = 0 Ay_

0 is a zero matrix of size ( N  x  N )  and similarly

Q =
Q o 

0 Q.

Combining both components of u in one equation we obtain the density for the 

motion vectors

/>(u |a )= Y l  n ^ A j ^ e x p j - ^ u ^ Q ^ Q u * ] ·  , (4.5)
/=1 L 1  J

Following (4.3), the marginal distribution p(u) yearns for a closed form. 

However, this prior is analytically intractable because one cannot find in closed form 

its n o r m a l iz a t io n  c o n s ta n t . This problem stems from the fact that it is not possible to 

find the eigenvalues of the matrix Q*TA*Q since it is very large and it does not have a 

structure that is amenable to efficient eigenvalue computation. Consequently, we have 
to import a proper model inference scenario, which in our case is described in section

4.4.
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4.3. A Probabilistic Model for Optical Flow

Let I  be the first image frame (vectorized intensity values) which is 

commonly named as the target image, J  the second image frame, which will be the 

source image, x the vector containing the 2D coordinates of the pixels in a frame, and 
u the optical flow vectors of the pixels. For convenience, but without loss of 

generality, we use ID notation.

As many methods usually do, based on the brightness constancy constraint, 
our aim is to minimize the intensity error, J(x) -  /(x + u), with respect to u. By 

developing the Taylor series expansion of /(x + u) around point x and keeping only 

the linear part, we come up with the following linear system:

[C, G_]
LU > J

d = 0,

which can be written also as

d = G u + w , (4.6)

where d is the initial intensity difference between the two frames d = J ( \ )  — 7(x) in 

vectorized form (e.g. lexicographic ordering), G contains the spatial gradients

G = V J = [ G ,  G, = , W being

the number of pixels, u = [ux, Uy]T, and w is additive white noise modeling the rest of 

the Taylor expansion terms. We also assume Gaussian statistics for the noise:

v r ~ M °  , ίΛ ^ Β )- ') , (4.7)

where An0i$eB is the noise precision matrix, 0 is an N  x 1 vector of zeros and 

B =  d i a g { b ( l ),...,b(7V)}. To make the model more flexible, we also consider that:

(4.8)
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Following the optical flow model in (4.6),

Pid I«) =  w (G u ,  (/W *)·'), (4-9)

F ig u re  4 .1 :  The g r a p h ic a l m o d e l  o f  th e  m ethod .

As it may be observed the graphical model of figure 4.1, d is the vector 

containing the observations (temporal differences), u, A,, Ay, b, are the hidden 

variables of the model and l x, Ay, „̂oise, vx, vy and μ  are the model’s parameters.

4.4. Model Inference

Working in the Bayesian framework, the complete data likelihood is

p(d,u,A ,b;#)=p(d | u, A,b;0)/>(u | A,b;0)p(A;<?)p(b;<9), (4.10)

where Θ = [Anoise, λ χ , Xy , μ ,  v x, vy \  contains the parameters of the model.

Estimation of the model parameters could be obtained through maximization 

of the marginal distribution of the observations p ( d  ; Θ):
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θ  = arg max ί ί [/?(d, u, A, b; θ )  du dA db (4.11)

However, in the present case, this marginalization is not possible, since the 

posterior of the latent variables given the observations p ( u ,  A, b | d) is not known 
explicitly and inference via the Expectation-Maximization (EM) algorithm is not 
possible [5].

For this reason, we have to resort to the variational methodology [14], [8], [26] 

and [5]. According to this methodology, we have to maximize the following lower 

bound

Z,(u,A,b;6>)= f <?(u, A,b)log \ ■ (4.12)
u,A,b p(d,u,A,b;0 ]

This involves finding approximations of the posterior distribution of the hidden 

variables, denoted by q ( u ) ,  q (  A), q ( b )  because there is no analytical form of the 

auxiliary function q  for which the bound in (4.12) becomes equality. In the variational 

methodology, however, we employ the M e a n  F i e ld  approximation (see Appendix D 

for details):

#(u> A, b)= #(u) #(α ) <j(b) (4.13)

and (4.12) becomes

f,(u,A,b;0 )= J g(u) g fi)  ?(b) log · (4.14)
a i t  p[d,u,A,b;6>)

In our case, in the VE-step of the variational algorithm, optimization of the 

functional L ( q ( x ) ,  Θ) is performed with respect to the auxiliary functions. In the 
present case following the variational inference framework, the distributions q ( u k) ,  

k  e { x , y } ,  are normal:

?(u) = W

1---Hs_ fR, ο T----1
S , 1--

-- O

q ( u x )  =  N ( m x , R x )
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Therefore, this bound is actually a function of the parameters R* and m* and a 
functional w.r.t. the auxiliary functions q(Ak), q(B). Using (4.13), the variational 
bound in our problem becomes

4 ? (u* )> ?(“ ,). ?(AZ ), q(Ay ), ̂ (B), θ},θ2) =

f n ^ u*;^ ) i ( A*)9(B) 1°8/>(d,u,A,B;tf2) du dA dB
ke{x ,y )

-i?(«*;^i)?(At)i(B)log Y Y p ivL ^y iiA ^q iP ) du dA dB , (4.15)
*«{*.*}

where 0/ = [Rz, Ry, mx, my] and θ2 = [Ax, Ay, B, λχ, Xy vx, vy]. Thus, in the VE-step of 

our algorithm the bound must be optimized with respect to R*, mk, q(Ak) and q(B).

Taking the derivatives of (4.15) w.r.t to m*, R*, q{Ak), q(B) and setting them to zero 

we obtain

m<'+1> =Λ(0 R(,)B(0G (d -G  u(,))x  noise x jr\ y  y  J

< ' +,) = ^L R «B (,)G,(d -G xu<'>) 

R(; +,) = fe .G ][B (,,Gz + A«Qta Wq )·'
«

Ry+1) = (a£LG;B«G„+a«q ta<,)q )-1

(4.16)

(4.17)

After some manipulation, we obtain the update equations for the model 

parameters which maximize over q{A*), <7(b). The form of all q approximating-to-the- 

posterior functions will remain the same as the corresponding prior (due to the 

conjugate priors we employ) namely q{A*), #(b) which approximate p(Ak | u*, 2*, Ck; 

v*), p (b | u, X„oise, F; μ) will follow Gamma distributions.

q('+,)(az(i)) = Gamma

^(,+l)(a>(/)) = Gamma

( vw 1 ν ’ 1 

2 2 2 2

1 v f  1 

2 2 2 2

^ ( ( Qu ^ y + v/,

(4.18)
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<7(,+1)(b(/)) = GammaV ° 2 _
2 ’

(0 (4.19)

where Cjj.0  = QR^Q7̂  ke{x, y}, F (,) = , d = J(x) -  /(x) (the intensity
k e{x ,y )

difference between the two initial frames) . Notice that the final estimates for ux and 
uy are mx and my, in (4.16) respectively.

Observing the size of matrices Rx, Ry and consequently Cx, Cy, F, we have to 

use an iterative method in order to calculate them. Hence, we recur to the Lanczos 

method [14, 33].

As we can see from (4.16) there is a dependency between ux and uy, as it is the 

case in the standard Hom-Schunck method.

Notice that since each </t+1)(a*(/)) are Gamma pdfs of the form 

q(M)(a(l+v(i))=Gamma(a, β \  their expected values are

v « + l
(«χ(')),<~»Μ0) β  v (0 + 4 ')((q u (; ) ) (2 + c <‘>(/,/)) 

/ /.\\ _ a _ _ ________  vy° + 1_________

v«+A«([Qu«i+C«(/,/))

(4.20)

and the same stands for the expected value of b(r):

(4.21)

where Q denotes the expectation w.r.t. an arbitrary distribution q(.). These

estimates are used in (4.16) and (4.17), where A*° and B(,) are diagonal matrices 

with elements

A(; , (i,/)=<e*0'V)^w) and B(0( '. ')= (b(')),«)(bW, , / = i , . . . ,w .
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At the variational M-step, the bound is maximized with respect to the model 
parameters:

VM-step: 6>2(,+,) = arg max L,{q(,+1} (u *), 4 (,+1} (a  t ) <7(,+1) (b ) <9,('+1), 02) , where

^ ('+,H“ j 9 ('+,)( A j g ('+,H B ^ I('+1\^ Jo c (lo g /7 (d ,u ,A 4,B ;02) ) ^ ^ +1)p +l)(Aiy (+l)(. 

is calculated using the results from (4.16) -  (4.19).

The update for An0ise is obtained after taking the derivative of 

T ^ '+1̂ (ut θ{'+1),θ2) in (4.15) and setting it to zero:

i(/+l) _  
/ Sio»e

N
Σ," b»-^ ((G «< "-d f+ F<'*»(i.,·))'

(4.22)

By the same procedure we obtain:

a(:+‘> = N

Σ," «rvolQ-i’r+crO'./))
3«+l) ____________  M____________,
' "σ :, < ‘w ((Qa^i+cr’o-.i))

(4.23)

The “degrees of freedom” parameter v* of the Student’s /-distribution is also 

computed by setting the derivative of (4.15) equal to zero with respect to v*:

/  N

Σ 1οε(α* (0)f('*.)(A. j - Σ («* (f)),<*+o
/=1

-log

for v*, Vk e {x,y}, where

\ fv«  n+Ψ
) 2 2  ̂ Δ Δ)

ίν<° o
- ψ ' ^ + logM

l  2  2 j K ^ ) l ^ J

. (4-24)
+ 1 = 0

r W = ^ i o gr W = ^

is the digamma function and v*w is the value of v* at the previous iteration (/) used 

to evaluate the expectations in (4.20) during the VE-step.
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Finally, by the same procedure we obtain estimates for the parameter μ  of the 
noise distribution

|° g ( b (/ ) ) i (» » (b(,)) -  Z ( b (''))?(.+i>(b(l)) WV °  1- — + —
 ̂ 2 2

-log iV °  \ y ——+— - ψ [ iO + Iog
2 2 \, 2 J 12 )

+  1 =  0
(4.25)

where μ  w is the value of μ  at the previous iteration (/) used to evaluate the 
expectations in (4.21) during the VE-step.

In our implementation, we solve (4.16), (4.24) and (4.25) iteratively. For 

equations (4.24) and (4.25), we employ the bisection method, as also proposed in [27] 

and [14]. For equation (4.16) we employ a method based on the Lanczos process [5], 
[33].

To resume, the steps of the Variational EM -  algorithm are presented in fig. 4.2.

Algorithm: Variational -  Bayesian optical flow method

1 Initialize ux , uy by the HomSchunck optical flow.

2 DO until convergence
3 VE-step:
4 Compute the expectations «*(/), ay(/) using (4.20).
5 Compute the expectation of b(/) using (4.21).
6 VM-step:
7 Compute λ™*,, using (4.22).
8 Compute λ*, λγ  using (4.23).
9 Solve for vx, vy equation (4.24), using the bisection method.
10: Solve for μ equation (4.25), using the bisection method.
11: Update the mean vectors using (4.16).
12: Update matrices C x, Cy, F and Rx, using (4.17) and the L a n czo s method.
13: Solve (4.16) to obtain the values of m „ my.

14 Set [u„ uy] : = [m ,, m,].

15: END DO

F ig u re  4 .2 : T he s te p s  o f  th e  p r o p o s e d  m eth o d .
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4.5. Experimental Results and Discussion

The proposed method was tested on image sequences including both synthetic 

and real scenes. Some of the synthetic images were synthesized from us and other 
were taken from publicly available data sets as for example the Middlebury public 

flow dataset [3], [4, 29] in order to guarantee the objectiveness of our evaluations.

More specifically, we tested our method on three synthetic sequences. The 

first sequence is showing a Textured Square moving from the center to the top left 

comer by one pixel. The second one is showing two Textured Triangles. The upper 

left triangle moves about one pixel to the bottom left comer, while the bottom right 

triangle moves about one pixel to the bottom right comer. The third one is showing 

two Textured Triangles with the only difference from the second synthetic sequence 

that here the bottom right triangle moves about 2 pixels to the bottom right comer. 

The background color for all the previously mentioned sequences is black, without 

loss of generality.

Additionally, we tested our method on the well-known Yosemite sequence 

without clouds and the Dimetrodon sequence [3] (which contains hidden texture). We 

compared our approach with the algorithms of Hom-Schunck [25], and Lucas-Kanade 

[28]. For the evaluation of our method we used the error metrics described in section
2.4.
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4.5.1. Textured-Square Sequence

This is a simple 256 x 256 example, which consists of a textured square 

located at the center of the first frame, while at the second frame it moves by one 

pixel towards the top left comer. Figure 4.3 shows a frame of the image and figure 4.4 

shows optical flow estimations from the compared methods along with the ground 

truth. Figure 4.5 shows the angular error and figure 4.6 presents the flow by using 

color coding [3], We do not show the end-point error for each pixel as it has too small 

values (but we are showing the average end-point error, which is equivalent and more 

meaningful).

Figure 4.3: Textured-square sequence: first frame o f  the sequence.
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(c) (d)

Figure 4.4: Textured-square sequence: (a) ground truth optical flow, (b) optical flow  
initialization using the method o f Hom-Schunck [25], (c) optical flow using the method of  

Lucas-Kanade [28] and (d) resulting optical flow o f  the proposed method.



t o

Figure 4.5: Textured-square 5 Angular Error (AE) o f  the com pared methods, (a) Initial AE  
using the m ethod o f  Hom-Schunck  [25], (b) AE using the m ethod o f  Lucas-Kanade [28] and

(c) AE o f  the p roposed  method.

a V
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r
Figure 4.6: Textured-square sequence: colorful optical flow, (a) Flow fie ld  color coding,

\ (b) ground truth, (c) initial flow  fie ld  using the method o f  Horn-Schunck [25], (d) flow  fie ld
i using the method o f  Lucas-Kanade [28] and (e) flow  fie ld  o f  the proposed method.

\
r
i\
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Table 4.1: Average error metrics for the Textured-square sequence.

Method AAE (in degrees) AME (in pixels) EP (in pixels)
Lucas-Kanade [28] 3.09 0.08 0.08
Hom-Schunck [25] 1.84 0.04 0.04

Joint Lucas-Kanade [7] 2.67 0.04 0.05
Nagel et al [32] 1.60 0.04 0.04

Method o f  section 3.3 1.50 0.05 0.04
Method o f  section 3.4 1.46 0.04 0.04

Proposed method (Chapter 4) 0.76 0.02 0.02

As we can see from table 4.1 our approach achieves smaller errors than Horn- 

Schunck and Lucas-Kanade method, for all the error metrics.

4.5.2. Textured-Triangles with equal in Norm M oves

This is a slightly more complicated 256 x 256 example, which consists of two 
textured triangles located at the top left comer and at the bottom right comer of the 

first frame, while at the second frame the upper left triangle moves by one pixel to the 

bottom left comer, while the bottom right triangle moves by one pixel to the bottom 

right comer. Figure 4.7 shows the image and figure 4.8 the estimated optical flow. 

Figure 4.9 shows the angular error and figure 4.10 presents the flow by using color 

coding [3]. We do not show the end-point error for each pixel as it has too small 

values (but we are showing the average end-point error, which is equivalent and more 
meaningful).

Figure 4.7: Textured-tr iangles (with equal in norm moves) sequence: first frame o f the
sequence.
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F ig u re  4 .8 : Textured-trtangles (w ith  eq u a l in  norm  moves) sequence: (a ) g ro u n d  truth  o p tica l 
f lo w , (b) o p tica l f lo w  in itia liza tio n  using the m ethod o f  H orn-S chunck  [25], (c) o p tic a lflo w  

using the m ethod o f  Lucas-Kanade  [28] a n d  (d) resu lting  o p tica l f lo w  o f  the p roposed method.
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tc)

F ig u re  4 .9 :  T ex tu red -tr icm g les ' (w ith  e q u a l in  n o rm  m oves) A n g u la r  E r r o r  (A E ) o f  the  

c o m p a re d  m ethods. (a)  in i t ia l  A E  using the m eth o d  o f  H o m -S c h u n c k  [25], (b ) A E  using  the  

m e th o d  o f  L u c a s -K a n a d e  [28] a n d  (c ) A E  o f  the p ro p o s e d  m ethod.

\

/ %  %
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(*)

(d) (e)

F ig u r e  4 .1 0 :  T e x tu r e d - tr ia n g le s  (w ith  e q u a l  in  n o rm  m o v e s )  s e q u e n c e : c o lo r fu l  o p t i c a l  f lo w ,  
(a )  F lo w  f i e l d  c o l o r  c o d in g , (b )  g r o u n d  tru th , (c )  in i t ia l  f l o w  f i e l d  u s in g  th e  m e th o d  o f  H o r n - 
S c h u n c k  [25], (d )  f l o w  f i e l d  u s in g  th e  m e th o d  o f  L u c a s - K a n a d e  [28] a n d  (e ) f l o w  f i e l d  o f  th e

p r o p o s e d  m e th o d .
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T able  4 .2 : A v e ra g e  e r ro r  m e tr ic s  f o r  th e T ex tu red -tr ian g les  (w ith  eq u a l in n orm  m o ves)
sequence.

Method AAE (in degrees) AME (in pixels) EP (in pixels)
L u ca s-K a n a d e  [28] 5.91 0.15 0.14
H o m S c h im c k  [25] 2.47 0.05 0.05

J o in t L u ca s-K a n a d e  [7] 4.10 0.07 0.08
N a g e l e t  a l  [32] 2.25 0.06 0.05

M e th o d  o f  se c tio n  3 .3 2.33 0.08 0.05
M e th o d  o f  se c tio n  3 .4 2.26 0.07 0.05

P r o p o s e d  m e th o d  (C h a p te r  4) 1.06 0.02 0.03

As we can see from table 4.2 our approach achieves smaller errors than Hom- 

Schunck and Lucas-Kanade method, for all the error metrics. Additionally, by 

observing figure 4.10(d), we understand that Lucas-Kanade method have problems 

estimating the motion vectors at the edges of the objects.

4.5.3. Textured-Triangles with unequal in Norm Moves

A next experiment consists in increasing the difficulty o f the previous 

configurations. We have a 256 x 256 example, which consists o f two textured 

triangles located at the top left comer and at the bottom right comer of the first frame, 

while at the second frame the upper left triangle moves by one pixel to the bottom left 

comer, while the bottom right triangle moves by two pixel to the bottom right comer. 

Figure 4.11 shows the image and figure 4.12 the estimated optical flow. Figure 4.13 

shows the angular error and figure 4.14 presents the flow by using color coding [3]. 

We do not show the end-point error for each pixel as it has too small values (but we 

are showing the average end-point error, which is equivalent and more meaningful).

F ig u re  4 .1 1 : T ex tu red -tr ia n g les  (w ith  u nequa l in n orm  m o ves)  seq u en ce: f i r s t  f r a m e  o f  th e
sequ en ce.
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(c) (Φ

Figure 4.12: Textured-trimgles (with unequal in norm moves) sequence: (a) ground truth 
optical flow, (b) optical flow initialization using the method o f Hom-Schunck [25], (c) optical 
flow using the method o f  Lucas-Kanade [28] and (d) resulting optical flow o f the proposed

method.
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(a) (b)

(C )

Figure 4.13: Textured~tr tangles ’ (with unequal in norm moves) Angular Error (AE) o f  the 
compared methods, (a) Initial AE using the method o f  Hom-Schunck [25], (b) AE using the 

method o f  Lucas-Kanade [28] and (c) AE o f  the proposed method.
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(*)

r  A A  /■ !
(b) (c)
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i  j

r
(d) (e)

Figure 4.14: Textured-triangles (with unequal in norm moves) sequence: colorful optical 
flow, (a) Flow fie ld  color coding, (b) ground truth, (c) initial flow  fie ld  using the method o f  

Hom-Schunck [25], (d) flow  fie ld  using the method o f  Lucas-Kanade [28] and (e) flow fie ld  o f
the proposed method.
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T ab le  4 .3 : A v e ra g e  e r r o r  m e tr ic s  f o r  th e T ex tu red -tr ian g les  (w ith  u n equ a l in  n orm  m o ves)
sequence.

Method AAE (in degrees) AME (in pixels) EP (in pixels)
L u ca s-K a n a d e  [28] 8.58 0.17 0.26
H o m -S ch im c k  [25] 5.57 0.14 0.19

J o in t L u c a s-K a n a d e  [7] 6.95 0.18 0.22
N a g e l e t a l  [32] 4.79 0.13 0.18

M e th o d  o f  s e c tio n  3 .3 4.67 0.17 0.17
M e th o d  o f  s e c tio n  3 .4 4.78 0.16 0.18

P r o p o s e d  m e th o d  (C h a p te r  4 ) 3.93 0.10 0.16

As we can see from table 4.3 our approach achieves smaller errors than Hom- 

Schunck and Lucas-Kanade method, for all the error metrics, although all methods did 

not have perfectly estimations. Additionally, by observing figure 4.14(d), we 

understand that Lucas-Kanade method have problems estimating the motion vectors at 

the edges o f the objects.

4.5.4. Yosemite Sequence without Clouds

The Yosemite sequence without clouds, is available at
http: //www.cs .brown.edu/people/black/images .html.

F ig u re  4 .1 5 : Y osem ite  seq u en ce  w ith o u t c lo u d s: f i r s t  f r a m e  o f  th e sequ en ce.

http://www.cs
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Figure 4.16: Yosemite sequence without clouds: ground truth optical flow.

Figure 4.17: Yosemite sequence without clouds: optical flow initialization using the method o f
Hom-Schunck [25].
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Figure 4.18: Yosemite sequence without clouds: optical flow using the method o f  Lucas-
Kanade [28].

Figure 4.19: Yosemite sequence without clouds: resulting opticalflow o f  the proposed
method.
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(h)

(c)

Figure 4.20: Yosemite's Angular Error (AE) o f  the compared methods. ( 
the method o f Hom-Schunck [25], (b) AE using the method o f  Lucas-Kan

o f the proposed method.
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Figure 4.21: Yosemite sequence without clouds: colorful optical flow, (a) Flow fie ld  color 
coding, (b) ground truth, (c) initial flow  fie ld  using the method o f  Horn-Schunck [25], (d)flow  

fie ld  using the method o f  Lucas-Kanade [28] and (e) flow  fie ld  o f  the proposed method.
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T ab le  4 .4 :  A v e ra g e  e r r o r  m e tr ic s  f o r  th e  Y osem ite  w ith o u t C lo u d s  seq u en ce .

Method AAE (in degrees) AME (in pixels) EP (in pixels)
L u ca s-K a n a d e  [28] 11.65 0.23 0.48
H o m -S ch u n ck  [25] 5.43 0.10 0.20

J o in t L u c a s-K a n a d e  [7] 7.97 0.17 035
N a g e l  e t  a l  [32] 9.15 0.19 0.36

M e th o d  o f  s e c tio n  3 3 5.12 0.12 0.22
M e th o d  o f  s e c tio n  3 ,4 3.79 0.09 0.15

P r o p o s e d  m e th o d  (C h a p te r  4 ) 4.45 0.11 034

As we can see from the table 4A  our approach is better than Hom-Schunck 

method at the average angular error metric (which is the most important), slightly 

worse for the average magnitude error (difference 0.01) but HS must know the exact 

value o f the deterministic parameter and also slightly worse for the average end-point 

error (difference 0.04).

4.5.5. Dimetrodon Sequence

The Dimetrodon sequence is obtained from the Middlebury database [3]. It 

contains nonrigid motion and large areas with little (hidden or not) texture.

Figure 4.22: Dimetrodon sequence: first frame o f  the sequence.
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Figure 4.23: Dimetrodon sequence: ground truth opticalflow.

Figure 4.24: Dimetrodon sequence: optical flow initialization using the method o f Horn
Schunck [25].
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Figure 4.26: Dimetrodon sequence: resulting opticalflow o f  the proposed method.
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F ig u r e  4 .2 7 :  D im e tr o d o n 's  A n g u la r  E r r o r  (A E ) o f  th e  c o m p a r e d  m e th o d s , (a ) h  
th e  m e th o d  o f  H o rn -S c h u n c k  [25], (b ) A E  u s in g  th e  m e th o d  o f  L u c a s -K a n a d e  [Ί

o f  th e  p r o p o s e d  m e th o d .



114

(a)

i
i

(b) (c)

t

(d) (e)

F igure 4.28: D im etrodon sequence: colorfu l o p tica lflo w , (a) F low  f ie ld  co lo r cod in g  
(b) ground truth, (c) in itia lflo w  f ie ld  using the m ethod ofH om -Schunck  [25], (d) flo w  f ie ld  

using the m ethod ofL ucas-K anade [28] an d  (e) flo w  f ie ld  o f  the p ro p o sed  m ethod.
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T a b le  4 .5 :  A v e r a g e  e r r o r  m e tr ic s  f o r  th e  D im e tro d o n  seq u en ce .

Method AAE (in degrees) AME (in pixels) Avg EP (in pixels)
L u c a s-K a n a d e  [28] 27.52 0.56 1.07
H o rn - S ch u n ck  [25] 8.51 0.24 0.49

J o in t L u ca s-K a n a d e  [7] 33.14 0.65 0.35
N a g e l  e t  a l  [32] 17.58 0.38 1.17

M e th o d  o f  s e c tio n  3 .3 10.17 0.24 0.52
M e th o d  o f  s e c tio n  3 .4 6.24 0.18 036

P r o p o s e d  m e th o d  (C h a p te r  4 ) 431 0.13 0.22

As we can see from table 4.5 our approach is better than both Hom-Schunck 

method and Lucas-Kanade, for all the error metrics.

4.6. Partial Conclusion

At the beginning, let’s discuss the reason why in some experiments we do not 

manage better results than the HS method and LK method. Although our method is 

more flexible than H S  method, since we allow every pixel to move independently in 

the spatial domain, it has more parameters to fix. This will be also a disadvantage, if 

we have to deal with sequences which contain “simple” moves.

Secondly, our method obtains better estimations when we have a variety of 

different in norm movements than Hom-Schunck and Lucas-Kanade methods produce 
(as we can see from section 4.5.4).

One issue which is worth proposing for future work, is to update a part of the 

equations (4.18 -  4.23) at each step, since the parameters λχ, Xy tend to increase 
their values rapidly, while A*, A y  and b(/) more slowly.
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CHAPTERS. CONCLUSION AND

FUTURE WORK

5.1. Conclusion 

5 2 .  Future work

5.1. Conclusion

In the present thesis, we studied the fundamental problem of optical flow, 

located in the area of computer vision, but also we proposed three methods in order to 

solve it

More detail, in chapter 2 we studied three classic methods, the Lucas-Kanade 

(LK) method [28], the Hom-Schunck (HS) method [25] and the afHne optical flow 

method [39]. Next in chapter 3, we studied two variations of the LK and HS methods, 

firstly the Joint Lucas-Kanade [7] and secondly the method proposed from Nagel e t  

a l. [32] where they use adaptive smoothness constraints. Additionally, we analyze our 

suggestions in order to improve those methods and we show experimental result. 

Finally, in chapter 4, was presented a brand new approach, which was inspired from 

the HS method and was imposed stochastic parameters instead of stationary that were 

used in HS.

52 . Future work

To begin with, one improvement for the methods proposed in chapter 3, is to 
find a suitable method to approximate the second order derivatives which they were
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used in the linear system. Secondly, you can use another method for the image 
segmentation which will give more competitive results. Thirdly, you can experiment 
in finding the suitable type of the neighboring kernel, instead of the average kernel 
which we used, but also the size of it.

As for the method proposed in chapter 4, one worthy effort is to find a 

different algorithm instead of Lanzcos method, in order to solve the iterative system 
of this chapter.
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APPENDICES

APPENDIX A. Rate of Change of Image Brightness

Consider a patch of the brightness pattern that is displaced a distance δχ in the 

x-direction and Sy in the/-direction in time St. The brightness of the patch is assumed 

to remain constant so that

I(x, / ,  t) = l(x+Sx, y±Sy, t+δή. (A.l)

Expanding the right-hand side about the point (x, y, f) we get,

ox ay dt (A.2)

Where ε contains second and higher order terms in δχ, Sy, and St. After subtracting 
7(x, / ,  t) from both sides and dividing through by St we have

| f +| f . +f +0(<*)=o.
St dx St dy dt (A.3)

where 0(δί) is a term of order St (we assume that δχ and Sy vary as St). In the limit as 
St—* 0 this becomes
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APPENDIX B. Student’s ^-distribution

In what follows, we briefly present the properties of Student’s /-distributions.

A {/-dimensional random variable X  that follows a multivariate t-distribution 

with mean //, positive definite, symmetric and real d x d covariance matrixΣ and has 

ve [0, oo ) degrees of freedom has a density expressed by

ρ { χ ; μ , Σ , ν )  =

v + d } 14
(πν)2 Γ Ι00 [ι+ν’ι<?(χ’̂ ;Σ)]

v+d 9
~2~

(B.l)

where δ ( χ ,  μ ,  Σ)= (x -  / u f  Σ_1(χ—/r) is the Mahalanobis squared distance and Τ’is the 

Gamma function.

It can be shown that the Student’s /-distribution is equivalent to a Gaussian 

distribution with a stochastic covariance matrix. In other words, given a weight u  

following a Gamma distribution parameterized by v:

u ~  Γ ( γ / 2 , ν / 2 ) ,  (B.2)

The variable X has the multivariate normal distribution with mean μ  and covariance
Σ /u :

Χ \ μ , τ , ν , η  ~ Ν ( μ , Σ / η ) ,  (B.3)

It can be shown that for v oo the Student’s /-distribution tends to a Gaussian 

distribution with covariance Σ .  Also, if v > 1, μ  is the mean of X  and if v > 2, 
ν ( ν - 2 ) ΛΣ  is the covariance matrix of X .  Therefore, the family of /-distributions
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provides a heavy-tailed alternative to the normal family with mean μ  and covariance 
matrix that is equal to a scalar multiple of 27, if v > 2 (Fig. B.l).

F ig u re  B . l :  A  un ivariate  S tudent’s t-d istribution (μ  =  0, σ  — 1) f o r  various D egrees o f  
Freedom . As v —> <x> the d istribution tends to a  Gaussian. F o r  sm all values o f  v the 

distribution  has h eav ier tails than a  Gaussian.
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APPENDIX C. Calculus of Variations

C .L  I n tr o d u c t io n

Variational methods have their origins in the 18th century with the work of 

Euler, Lagrange, and others on the c a lc u lu s  o f  v a r ia t io n s . Standard calculus is 
concerned with finding derivatives of functions. We can think of a function as a 

mapping that takes the value of a variable as the input and returns the value of the 

function as the output. The derivative of the function then describes how the output 

value varies as we make infinitesimal changes to the input value. Similarly, we can 

define a f u n c t i o n a l  as a mapping that takes a function as the input and that returns the 

value of the functional as the output. An example would be the entropy H|/?], which 
takes a probability distribution p ( x ) as the input and returns the quantity

as the output. We can introduce the concept of a J u n c t io n a l  d e r i v a t i v e , which 

expresses how the value of the functional changes in response to infinitesimal changes 

to the input function (Feynman e t  a l ., 1964). Many problems can be expressed in 

terms of an optimization problem in which the quantity being optimized is a 

functional. The solution is obtained by exploring ail possible input functions to find 

the one that maximizes, or minimizes, the functional. Variational methods have broad 

applicability and include such areas as finite element methods (Kapur, 1989) and 

maximum entropy (Schwarz, 1988).

C .2 .  1st D e r i v a t i v e  in  th e  F u n c t io n a l

For a given function m(x): [a, b] -> and a functional F ( x , w, w')  we define

H[/>] = Jp(x)ln/K*)dx, (C.l)

b

(C.2)
a

and the problem is to minimize E (u )  with respect to w(x).

o
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Firstly, we have to define the first variation of E (u ) , which is

3E
d u

=  E(u+ v) -  E(u) with v(x) such that v(a) = v ( b )  = 0 ,

d Etherefore, —  = 0 <=> E ( u + v ) - E ( u )  =  0, 
d u

(C.3)

(C.4)

Secondly, by using Taylor series expansion of p ( x , u  +  v , u ' + ν ' )  around the point 

(x, a, v), we get

„/ , ,\ _/ \ d F  , d F
F ( x , u + v , u  + v  ) =  F ( x , u , v ) + v — + v ----

d u  d u '

θ | ί ( ι , Β  +  ν ,« '+ ν ' ) i x -  J ' / λ d F  , d F Ί ,  F(,,« ,v)+ v - + v - J *

O £ ( »  +  v) =  £ W  +  j [ v  f  + (C.5)

Then follows the minimization,

min{£(w)} <=> E ( u  + v) -  E ( u )  = 0
tt(x)

o o
JL 3κ'_Γ
f , r , d F  , n  

O  v—-—{be +  v — d x  =  0  i Ά,, J f a yd u

ίνίίΛ
 ̂ 9h

, λ9Ρ
Kx)e ?

x=6

-J
v ( a ) = v ( b ) = 0

* A /  ·  y/*· Λ μ *

<=> | v ——dx +F

· £ *
9k j <ic 9k' 

da d x  d u '

d  d F

d x  d u '
d x  = 0

(C.6)
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B y  solving the previous E uler equation , we obtain the solution u(x) which 

m inim izes the energy function E(u).

The next point we have to stand is the case when we have second order 

derivatives in the functional.

C.3. 1st & 2nd O rder D eriva tives in the Functional

In  this case the function E{u) we want to m inim ize becomes

C.4. Second order P artia l D eriva tives in the Functional a n d  2 -D  unknown Functions

Φ . y)

For a given function «(x, y ):  [a, b] x  [c , d]->  91 and a functional F(x, u, u' ,u") 

the m odified problem is

(C .7 )
a

W hile the differential equation becomes

(C .8 )

4  d

(C .9 )a  c

S im ila rly  we obtain the fo llow ing d ifferential equation,

where ux , uy> ua , Uyy are defined as the partial derivatives

du du d2u d2u

(C .1 0 )
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In this appendix, we are going to quote some issues about the approximate 

inference which were taken from C . B ishop’ s book [8 ].

D . l .  V a r ia t io n a l  I n fe r e n c e

Suppose we have a fu lly  Bayesian model in which a ll parameters are given 

prior distributions. The model may also have latent variables as w e ll as parameters, 

and we shall denote the set o f a ll latent variables and parameters by Z . S im ila rly , we 

denote the set o f a ll observed variables by X . For exam ple, we might have a set o f N  

independent, identically distributed data, fo r which X  = { x i , . . . ,  x * } and Z  = { z \  

z ;v }. Our probabilistic model specifies the jo in t distribution p (X ,Z ), and our goal is to 

find an approximation for the posterior distribution /? (Z |X ) as w e ll as for the model 

evidence />(X). We can decompose the log m arginal probability using

l n p ( X )  =  L(q)  +  K L ( q \ \ p )  , (D .l)

where we have defined

L{q)  =  \ q ( Z )  lnj J d Z  , (D .2 )

K L (?  || p )  =  - Jq (Z ) lnj j  d Z  , (D .3 )

We can m axim ize the low er bound L(q) by optim ization w ith respect to the 

distribution q(Z ), which is  equivalent to m inim izing the K L  divergence. I f  we allow  

any possible choice for q(Z ), then the maximum o f the lower bound occurs when the 

K L  divergence vanishes, which occurs when q(Z)  equals the posterior distribution 

p ( Z |X ). However, we shall suppose the model is  such that working w ith the true 

posterior distribution is intractable.

APPENDIX D. Approximate Inference
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We therefore consider instead a restricted family of distributions q { Z) and then 
seek the member of this family for which the KL divergence is minimized. Our goal is 

to restrict the family sufficiently that they comprise only tractable distributions, while 
at the same time allowing the family to be sufficiently rich and flexible that it can 

provide a good approximation to the true posterior distribution. It is important to 
emphasize that the restriction is imposed purely to achieve tractability, and that 

subject to this requirement we should use as rich a family of approximating 

distributions as possible. In particular, there is no ‘over-fitting’ associated with highly 

flexible distributions. Using more flexible approximations simply allows us to 
approach the true posterior distribution more closely.

One way to restrict the family of approximating distributions is to use a 

parametric distribution q {Z|o) governed by a set of parameters ω. The lower bound 

L (q )  then becomes a function of a), and we can exploit standard nonlinear 

optimization techniques to determine the optimal values for the parameters.

D A  A . F a c to r i z e d  d is t r ib u t io n s

Here we consider an alternative way in which to restrict the family of distributions 

q(Z). Suppose we partition the elements of Z into disjoint groups that we denote by Z, 

where / = 1,. . ., M. We then assume that the q  distribution factorizes with respect to 

these groups, so that

M
<7(Ζ) = Π ? ((Ζ,) , (D.4)

1=1

It should be emphasized that we are making no further assumptions about the 
distribution. In particular, we place no restriction on the functional forms of the 

individual factors ^,(Ζ,). This factorized form of variational inference corresponds to 

an approximation framework developed in physics called m e a n  f i e l d  th e o r y . Amongst 
all distributions q ( Z) having the form (D.4), we now seek that distribution for which
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the lower bound L { q )  is largest. We therefore wish to make a free form (variational) 
optimization of L (q )  with respect to all of the distributions φ(Ζ,), which we do by 

optimizing with respect to each of the factors in turn. To achieve this, we first 
substitute (D.4) into (D.2) and then dissect out the dependence on one of the factors 

q j{7 jj). Denoting by simply q j to keep the notation uncluttered, we then obtain

L ( q )  =  j n « >  /KX> Z) -  ̂  In q , jdZ

= 9 j | 1np(Xiz ) - n ^ ZiJdZy +  c o n s t

=  J q j  \ n p ( X , Z j ) d Z j  -  I n q j d L j  +  c o n s t  ,

where we have defined a new distribution p(X,Zj) by the relation 

In p ( X , Z j )  =  Eijtj[ln p ( X , Z ) ] + c o n s t  ,

(D.5)

(D.6)

Here the notation Ei#y[...] denotes an expectation with respect to the q distributions 

over all variables z,· for / * j ,  so that

Ei#j [In p(X ,Z)\ = J In ρ ( Χ , Ζ ) ^ ά Ζ ,  , (D.7)

Now suppose we keep the [qifj} fixed and maximize L(q) in (D.5) with

respect to all possible forms for the distribution qi(Zj). This is easily done by 

recognizing that (D.5) is a negative Kullback-Leibler divergence between qj{Zj) and 

p ( X ,  Z J .  Thus maximizing (D.5) is equivalent to minimizing the Kullback-Leibler

divergence, and the minimum occurs whenqj(Zj) =  ρ ( Χ , Ζ }) . Thus we obtain a

general expression for the optimal solution q*(Z}) given by

Ing'y(Zj) = Ej)tj[ln p(X ,Z)\+ const , (D.8)
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It is worth taking a few moments to study the form of this solution as it 
provides the basis for applications of variational methods. It says that the log of the 

optimal solution for factor q j is obtained simply by considering the log of the joint 
distribution over all hidden and visible variables and then taking the expectation with 

respect to all of the other factors { q , }  for /

The additive constant in (D.8) is set by normalizing the distribution <7*(Zj). 

Thus if we take the exponential of both sides and normalize, we have

Ί 7 λ  exp(E,Jln/,(Χ,Ζ)])

9 j  '  1®ΐ^ [ ΐη  p ( X , Z ) \ i Z j

In practice, we shall find it more convenient to work with the form ( D.8) and then 

reinstate the normalization constant (where required) by inspection.

The set of equations given by (D.8) for j  = 1, . . . , M  represent a set of 

consistency conditions for the maximum of the lower bound subject to the 

factorization constraint. However, they do not represent an explicit solution because 

the expression on the right-hand side of (D.8) for the optimum <?}(Zj) depends on

expectations computed with respect to the other factors <7,(Z,) for i  φ  j .  We will 

therefore seek a consistent solution by first initializing all of the factors g,(Z/) 

appropriately and then cycling through the factors and replacing each in turn with a 

revised estimate given by the right-hand side of (D.8) evaluated using the current 

estimates for all of the other factors. Convergence is guaranteed because bound is 
convex with respect to each of the factors 9 ,(Z,).
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APPENDIX E. Additional Numerical Experimental Results 

from Chapter 3

Table E . l:  Various com binations between the number o f  super-pixels and the w indow  size fo r  
the Yosemite sequence, w ith  and w ithout clouds.

Number of 
super-pixels

Window
size

Y o s e m ite  w i th o u t  c lo u d s Y o s e m ite  w i th  c lo u d s

AAE AeM AEP AAE AeM AEP
40 5x5 5.76 0.13 0.25 13.81 0.40 0.70
70 5x5 5.80 0.13 0.25 13.88 0.40 0.71
100 5x5 5.80 0.13 0.25 13.88 0.40 0.71
200 5x5 5.89 0.13 0.26 13.98 0.40 0.71
1000 5x5 6.07 0.14 0.27 14.32 0.41 0.73
40 7x7 5.06 0.12 0.22 13.25 0.38 0.66
70 7x7 5.12 0.12 0.22 13.34 0.38 0.67
100 7x7 5.18 0.12 0.22 13.34 0.38 0.67
200 7x7 5.30 0.12 0.23 13.52 0.38 0.68
40 9x9 4.62 0.11 0.20 12.87 0.36 0.62
70 9x9 4.69 0.11 0.20 12.95 0.36 0.63
100 9x9 4.76 0.11 0.20 12.98 0.36 0.63
200 9x9 4.89 0.11 0.21 13.17 0.37 0.64
40 11x11 4.28 0.10 0.18 12.59 0.34 0.59
70 11x11 4.38 0.10 0.19 12.67 0.34 0.60
100 11x11 4.45 0.10 0.19 12.69 0.34 0.60
40 13 x 13 4.06 0.10 0.17 12.34 0.33 0.57
70 13 x 13 4.14 0.10 0.18 12.42 0.33 0.57
40 15 x 15 3.90 0.10 0.16 12.16 0.32 0.55
70 15 x 15 3.96 0.09 0.17 12.24 0.32 0.56
40 17x 17 3.80 0.09 0.15 12.01 0.31 0.54
70 17 x 17 3.87 0.09 0.16 12.10 0.32 0.54
40 19 x 19 3.79 0.09 0.15 11.90 0.31 0.53
70 19 x 19 3.85 0.09 0.16 12.01 0.31 0.54
40 21 x 21 3.89 0.09 0.16 11.86 0.30 0.52
70 21 x 21 3.90 0.09 0.16 11.99 0.31 0.53
40 23 x23 4.06 0.09 0.16 11.91 0.30 0.52
70 23 x23 4.04 0.09 0.16 12.06 0.31 0.53
40 25 x25 4.31 0.10 0.17 12.04 0.30 0.52
70 25 x 25 4.26 0.09 0.17 12.21 0.31 0.53
40 27x27 4.58 0.10 0.18 12.26 0.30 0.53
70 27 x 27 4.51 0.10 0.18 12.44 0.31 0.54
40 29x29 4.84 0.11 0.19 12.57 0.31 0.54
70 29x29 4.79 0.10 0.19 12.75 0.31 0.55
40 31 x 31 5.11 0.11 0.20 12.92 0.31 0.55
70 31x31 5.05 0.11 0.20 13.11 0.32 0.56
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Table E .2: Various com binations between the number o f super-pixels and the w indow  size fo r  
the D im etrodon sequence and the Rubberwhale sequence.

Number of 
super-pixels

Window
size

D im e tr o d o n  S e q u e n c e R u b b e r w h a le  S e q u e n c e

AAE AeM AEP AAE AeM AEP
40 5x5 11.31 0.26 0.57 8.45 0.22 0.26
70 5x5 11.34 0.26 0.56 8.44 0.22 0.26
100 5x5 11.36 0.26 0.56 8.46 0.22 0.26
200 5x5 11.46 0.26 0.56 8.50 0.22 0.26
1000 5x5 11.78 0.27 0.57 8.52 0.22 0.26
40 7x7 10.04 0.24 0.51 8.24 0.21 0.25
70 7x7 10.09 0.24 0.52 8.22 0.21 0.25
100 7x7 10.14 0.24 0.52 8.22 0.21 0.25
200 7x7 10.26 0.25 0.52 8.27 0.21 0.25
40 9x9 9.18 0.23 0.48 8.22 0.21 0.24
70 9x9 9.23 0.23 0.48 8.19 0.21 0.24
100 9x9 9.28 0.23 0.49 8.17 0.21 0.24
200 9x9 9.42 0.23 0.49 8.20 0.21 0.24
40 11x11 8.55 0.22 0.46 8.36 0.21 0.24
70 11x11 8.60 0.22 0.46 8.30 0.21 0.24
100 11x11 8.65 0.22 0.46 8.26 0.21 0.24
40 13x13 8.07 0.21 0.44 8.57 0.22 0.25
70 13 x 13 8.12 0.21 0.44 8.49 0.22 0.25
40 15 x 15 7.68 0.20 0.42 8.81 0.22 0.25
70 15 x 15 7.75 0.20 0.43 8.70 0.22 0.25
40 17x 17 7.34 0.20 0.41 9.07 0.23 0.26
70 17x 17 7.43 0.20 0.41 8.94 0.23 0.25
40 19x 19 7.06 0.19 0.40 9.35 0.24 0.26
70 19x 19 7.17 0.19 0.40 9.22 0.23 0.26
40 21 x 21 6.82 0.19 0.39 9.65 0.24 0.27
70 21 x 21 6.95 0.19 0.39 9.51 0.24 0.27
40 23 x23 6.61 0.19 0.38 9.96 0.25 0.28
70 23 x23 6.77 0.19 0.38 9.81 0.24 0.27
40 25 x 25 6.43 0.18 0.37 10.27 0.26 0.29
70 25 x25 6.61 0.19 0.38 10.12 0.25 0.28
40 27x27 6.29 0.18 0.36 10.56 0.26 0.29
70 27x27 6.47 0.18 0.37 10.42 0.26 0.29
40 29x29 6.24 0.18 0.36 10.84 0.27 0.30
70 29x29 6.42 0.18 0.37 10.71 0.26 0.29
40 31 x 31 6.26 0.18 0.36 11.13 0.28 0.31
70 31 x 31 6.43 0.18 0.36 11.03 0.27 0.30
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