BIBAMOOHKH
MANETIZTHMIOY IRANNINDN

0926000265473

R S

>

any

[TIOAITIKEZ PYOMIZHX THXE AIAXEIPIZHZ
THX ENHMEPQZHY ATTO®OHKQN AEAOMENQN

MAG

METAIITYXIAKH EPI'AXIA EEEIAIKEYXHE

YnroBdAretar otnv
opwsbeica and v I'evikn Zovérevon Ewduaig XovBeong

7oV Tpunparog IAnpogopkiic .
E&etaotua] Emtpom

. oh Tov

Avactéoto Kopayuivvn

©G HEPOG TV YTOYPEDCEDV
Yie ™ Afyn
70V

METAIITYXIAKOY ANIAQMATOZX ZTHN ITAHPO®OPIKH
ME EZEIAIKEYXH £TO AOI'IZMIKO

IovAtog 2007

IRV
S B f)@
. i

\,\

‘”/,1//
‘lf
k!

Aty ol

_\\'IUL "

T TR Ry O AN

wle

iii

DEDICATION

-

This thesis is dedicated to my parents who have supported me all the way since the

beginning of my studies, allowing me to achieve my goals.

-8

bl

ACKNOWLEDGMENTS

I would like to record my gratitude to my supervisor Dr. Panos Vassiliadis for
guiding, supporting and motivating me, as well as, for the patience he showed
throughout this research work. T also thank Alkis Simitsis for his constructive
fomments during the course of my research. Also, I would like to express many

thanks to Vasiliki Tziovara for providing me the initial ETL scenarios.

At the end of my thesis I would like to thank all those people who made this thesis
possible and an enjoyable experience for me; especially my colleagues and friends,
Eutixia, Fotini, Giannis and Tzeni for their help and encouragement throughout this

work.

vii

CONTENTS

Dedication
Acknowledgments
Contents
List of Tables
List of Figures
Abstract
[MepiAnym
CHAPTER 1. Introduction
1.1. Introduction
"1.2. Thesis Structure
CHAPTER 2. Related Work
2.1. Data Warehouses and ETL
2.1.1. Commercial studies and tools.
. 2.1.2. Research Studies
2.2. General Theory on Scheduling
2.2.1. Types of processor scheduling
2.2.2, Criteria
2.2.3. Preemption
2.3. Scheduling in data stream systems
2.3.1. Aurora Data Stream Manager
2.3.2. Chain Scheduling Policy
2.3.3. Pipeline Scheduling
2.3.4. Summaries of the studied algorithms
CHAPTER 3. System Architecture
3.1. General Idea
3.2. Description and logical representation of an ETL Scenario
3.3. Logical and physical perspective of an ETL scenario
3.4. Execution model and requirements for the ETL engine
3.5. Scheduler
3.6. Implementation of the logical level
3.7. Implementation of the physical level
3.7.1. Execution Item functionality
3.7.2. Monitor functionality and messages
3.7.3. Unary activities
3.7.4. Binary activities
3.7.5. Sorter
CHAPTER 4. Scheduling Algorithms
4.1. Problem formulation
4.2. Categories of algorithms

iii

vii
ix
Xi
xiil

viii

4.3. Round Robin
4.4. Minimum Cost
4.5. Minimum Memory
CHAPTER 5. Experiments
5.1. Measures and Parameters
5.2. Datasets
5.2.1. TPC-H
5.2.2. TPC-DS
5.3. Scenarios and data sources
5.3.1. Data Sources
5.3.2. ETL Scenarios
5.4. Tuning scheduling policies
5.4.1. Tuning Round Robin
5.4.2. Tuning Minimum Cost
5.4.3. Tuning Minimum Memory
5.5. Line workflow
5.5.1. Effect of input size
5.5.2. Effect of workflow selectivity
5.6. Wishbone workflow
5.6.1. Effect of input size
5.6.2. Effect of workflow selectivity
5.7. Primary flow workflow
5.7.1. Effect of input size
5.7.2. Effect of workflow selectivity
5.8. Balanced butterfly workflow
5.8.1. Effect of input size
5.8.2. Effect of workflow selectivity
5.9. Tree workflow
5.9.1. Effect of input size
5.9.2. Effect of workflow selectivity
5.10. Fork workflow
5.10.1. Effect of input size
5.10.2. Effect of workflow selectivity
5.11. Observations deduced from experiments
CHAPTER 6. Conclusions And Future Work
6.1. Conclusions
6.2. Future Work -
References
Appendix
Short Biography

46

47
48
51
52
54
54
55
56
57
58
65
66
69
71
74
74
76
77
78
79
81
82
83
85
85
87
89
89
91
93
93
94
96
99
99
100
103
107
111

ix

LIST OF TABLES

Table 2.1 Summary table of scheduling algorithms for microprocessors [Sched06] 15

Table 2.2 Summary table of all stream scheduling algorithms
Table 3.1 The Execute() function of the Execution Item class
Table 3.2 The DataProcess() function of a Reader

Table 3.3 The DataProcess() function of a Filter

J'able 3.4 The message types of the ETL engine

Table 4.1 Categories of scheduling algorithms

Table 4.2 Scheduling steps of the studied scheduling poilicies
Table 4.3 Scheduling steps of Round Robin

Table 4.4 Scheduling steps of Minimum Cost

Table 4.5 Scheduling steps of Minimum Memory

Table 5.1 Development environment

Table 5.2 Configuration of RR

Table 5.3 Configuration of MC

Table 5.4 Configuration of MM

Table A.1 Experiments from the Aurora Scheduler [CCR+03]
Table A.2 Experiments from the Chain Scheduler [BBDMO03]
Table A.3 Experiments from the X-Join Scheduler [UrFr01]

22
36
37
38
40
45
46
47
48
49
52
68
70
74
107
108
109

g?!gi..};{;‘f

X1

LIST OF FIGURES

Figure 1.1 Architecture of a Data Warehouse.

Figure 1.2 Extract - Transform - Load.

Figure 2.1 Typical template transformations provided by ARKTOS II.
Figure 2.2 An example of a data flow diagram {[CCR+03].

Figure 3.1 Notation of the architecture graph [VSG+05].

Figure 3.2 Representation of an ETL scenario with the architecture graph.

Figure 3.3 Logical and physical level for the scenario elements.
Figure 3.4 Association of the logical and physucal level [VSG+05]
Figure 3.5 Pipelined execution of an ETL scenario.

Figure 3.6 The class diagram of the logical level.

Figure 3.7 The class diagram of the physical level.

Figure 4.1 An example butterfly scenario.

Figure 5.1 The basic structure of a butterfly workflow.

Figure 5.2 The TPC-H relational schema.

Figure 5.3 The storage house relational schema.

Figure 5.4 The sales point relational schema.

Figure 5.5 A Line Scenario

Figure 5.6 A Wishbone Scenario

Figure 5.7 A Primary Flow Scenario

Figure 5.8 A Balanced Butterfly Scenario

Figure 5.9 A tree scenario

Figure 5.10 A fork scenario

Figure 5.11 Tuning DQS in the small line scenario (RR)

Figure 5.12 Tuning DQS in the butterfly scenario (RR)

Figure 5.13 Tuning RPS in the line scenario (RR)

Figure 5.14 Tuning RPS in the butterfly scenario (RR)

Figure 5.15 Tuning DQS in the butterfly scenario (MC)

Figure 5.16 Tuning RPS in the butterfly scenario (MC)

Figure 5.17 Execution time and TmS! in the small line scenario (MM)
Figure 5.18 Execution time and TmS! in the butterfly scenario (MM)

‘Figure 5.19 Max and avg memory and T7mS! in the small line scenario (MM)
Figure 5.20 Max and avg memory and TmS! in the butterfly scenario (MM)

Figure 5.21 Execution time for a line scenario (Sel = 0.5)
Figure 5.22 Average memory for a line scenario (Sel = 0.5)
Figure 5.23 Maximum memory for a line scenario (Sel = 0.5)
Figure 5.24 Execution time for a line scenario (SF = 0.5)
Figure 5.25 Average memory for a line scenario (SF = 0.5)
Figure 5.26 Maximum memory for a line scenario (SF = 0.5)
Figure 5.27 Execution time for a wishbone scenario (Sel = 0.5)

12
16
24
26
28
29
30
33
34
46
54
55
57
58
59
60
61
62
63
64
67
68
69
69
70
71
72
72
73
73
75
75
76
76
77
77
78

xii

Figure 5.28 Average memory for a wishbone scenario (Sel = 0.5)
Figure 5.29 Maximum memory for a wishbone scenario (Sel = 0.5)
Figure 5.30 Execution time for a wishbone scenario (SF = 0.5)
Figure 5.31 Average memory for a wishbone scenario (SF = 0.5)
Figure 5.32 Maximum memory for a wishbone scenario (SF = 0.5)
Figure 5.33 Execution time for a primary flow scenario (Sel = 0.5)
Figure 5.34 Average memory for a primary flow scenario (Sel = 0.5)
Figure 5.35 Maximum memory for a primary flow scenario (Sel = 0.5)
Figure 5.36 Execution for a primary flow scenario (SF = 0.5)
Figure 5.37 Average memory for a primary flow scenario (SF = 0.5)
Figure 5.38 Maximum memory for a primary flow scenario (SF = 0.5)
Figure 5.39 Execution time for a balanced butterfly scenario (Sel = 0.5)
Figure 5.40 Average memory for a balanced butterfly scenario (Sel = 0.5)
Figure 5.41 Maximum memory for a balanced butterfly scenario (Sel = 0.5)
Figure 5.42 Execution time for a balanced butterfly scenario (SF = 0.5)
Figure 5.43 Average memory for a balanced butterfly scenario (SF = 0.5)
Figure 5.44 Maximum memory for a balanced butterfly scenario (SF = 0.5)
Figure 5.45 Execution time for a tree scenario (Sel = 0.5)

. Figure 5.46 Average memory for a tree scenario (Sel = 0.5)
Figure 5.47 Maximum memory for a tree scenario (Sel = 0.5)
Figure 5.48 Execution time for a tree scenario (SF = 0.5)
Figure 5.49 Average memory for a tree scenario (SF = 0.5)
Figure 5.50 Maximum memory for a tree scenario (SF = 0.5)
Figure 5.51 Execution time for a fork scenario (Sel = 0.5)
Figure 5.52 Average memory for a fork scenario (Sel = 0.5)
Figure 5.53 Maximum memory for a fork scenario (Sel =0.5)
Figure 5.54 Execution time for a fork scenario (SF = 0.5)
Figure 5.55 Average memory for a fork scenario (SF = 0.5)
Figure 5.56 Maximum memory for a fork scenario (SF =0.5)

79

79
80
81
81
82
83
83
84
84
85
86
87
87
88
88
89
90
90
91
91
92
92
93
94
94
95
95
96

Xiii

ABSTRACT

Karagiannis Anastasios. MSc, Computer Science Department, University of Joannina,
Greece. July, 2007. Scheduling policies for the refresh management of Data
warehouses. Thesis Supervisor: Panos Vassiliadis.

;)ata Warehouses are collections of data coming from different sources, used mostly
to support decision making and data analysis in an organization. To populate a data
warehouse with up-to-date records that are extracted from the sources, special tools
are employed, called Extraction — Transform — Load (ETL) tools, which organize the
steps of the whole process as a workflow. An ETL workflow can be considered as a
directed acyclic graph (DAG) used to capture the flow of data from the sources to the
data warehouse. The nodes of the graph are activities that apply transformations or
cleansing procedures on data or recordsets used for storage purposes. The edges of the
graph are input/output relationships between the nodes. The workflow is an abstract
design at the logical level, which has to be implemented physically, i.e., to be mapped
to a combination of executable programs/scripts that perform the ETL workflow.
Each activity of the workflow can be implemented physically, to be mapped to a set

of software modules that can execute the ETL workflow.

This thesis proposes the design of an ETL workflow engine, in which all logical-level
activities can be implemented with various algorithmic methods; every one with
sdifferent cost in terms of time or system resources (e.g., main memory, disk usage).
The system is easily expanded to support any possible activities. Another contribution
of this thesis is the systematic study of tuning the execution of a workflow concerning
its logical and physical characteristics; the size of the input data, the workflow
complexity and selectivity, etc. Lacking of rclated research methodology the

workflows that are used in the experimental methodology are grouped into fiducial

Xiv

k4
structures. Finally, the third contribution of this thesis is the suggestion of a well

organized set of experimental scenarios is.

"

XV

INEPIAHYH

Avaotdoiog Kopoayiavvng, tov Tewpyiov kaw g Moapivag. MSc, Tunpo
IMnpogopkng, Mavemomimo Ioavvivev, lodiog, 2007. Tlolmkég pvOuong g
Swysipiong ™ evnuépmong anobnkdv Jdedopivov. EmPrémev: TMavayuwtng
Booihaddng.

Ot Amobikeg Aedopévev eivar ovAloyég Sedopévav mov mpoépyoviar amd
S10Q0peTIKEG TTYEG KO YPTCLLOTOI00VIOL KLPIWG Yo TN ARYT ano@doewv o £va
opyoviopd. T'a va tpogodotnOei ma omobrikn pe véo dedopéva, O6mmwG avtd
Tapdyovial oTig mYES, Ypnoponotovvral epyareia EEaywyig — Metaoynpatiopod —
Ddoptwong dedopévwv (Extract — Transform — Load epyoieia, ETL), 10 omoia
opyavovouy Ta emi pépoug Pripata mg 6Ang dudicaciog cav pia pot| epyaciog. Mia
pon) epyaciog ETL pmopel va OewpnBel wg évag xatevBuvouevog axvxkiukds ypaeog
mOV ypnoponowitar yo va ovomopooticer m pon dedoptvev amd T TMYEG
dedopévav mpog v arnodiin dedopévav. Ot kdupot Tov ypheov eivor dadikooieg
xoBapiopod/ petac)muatiopod dedopévav 1 cUVOAD EYYPUOAV KoL 01 akués GXECELG
£10600v/e£680v petald twv kouPuv. H pori epyacias ivar éva apnpnuévo oxnpa ce
Aoywkd eminedo, 10 omofo mpémer va vhomowmPei oe Quowd eminedo, dnAadn va
avuiotouymBei oe éva cvvdvacpd omd exkteréoiua TPOYPAUUATE TOV EXKTEAOLV TNV

ETL pon epyaciag.

XV gpyasia ouTh, KATOOKEVAOTNKE éva cVoTHE EKTEAEONC podv epyociag ETL,
GT0 Omo Ot Aoywod emméSou dwdikaocieg ™G porig epyociag upmopovv vo
vAhomomnBolv pe mowkikeg alyoprBuucéc neBodovg, kabewd pe Srpoperikd KdoTog
600V aPopd amTCELS GE YPOVO 1 TOPOVE CLGTHNATOS (.Y, UVTiun, YOPOo oto dicko,
KAm.). To ochomua eiven edkola enexTaoo o€ oyEon pe Tig Sradikacieg mov pmopet

va vrootnpitet. H apyttextovikn tov cvotipatog etvar oxedoopévn ue 1€toto tpdno,

CIVRRE O

xvi

5.3

dote va yiveton anodotikry xprion TV evdidpecwv dsdopévav, kavovrag xprion e

TEYVIKTG TNg droxéTevong, 6mov autd givar PiKTo.

Mia nepartépe cupBolii g epyaciag sivor n cuompotiky perém g poBong e
Agrtovpyiug pag potig epyaciag 6€ oyéon pe AOYIKA Kot QUGIKGE XOPOKTNPICTIKE TNG:
oyxo mnyaiov dedopévav, ToAvmhokdmTa ™G dopng g pong, EMAEKTIKOTNTA GTOV
dyko tav teMkdv dedopbvav ki, Tpew moltikég podiuong mpoteivoviat og ot
mv epyacia. H pie sivor moArriki Round Robin, yvwot amd 1o topéo twv
Agrtovpyikav cvotnudrov. H debtepn eivan n Minimum Cost, dmov €xgr 0¢ 61éY0
petwor Tov ypdvov extédeong. Téhog, 1 Tpitn moArtikny pOBuong, Minimum Memory,
UEUDVEL TIG OMALTIIOES TOV CLCTIHOTOG yia puvijun xatd tn Sidpkeia extédeong evlg
ETL cevapiov.

OloxAnp@vovrag, edheiyer oxetuaic mewopatuais pebodoroyiag crq Biproypagia,
0l poég MOV XPNCLOMOOVVIOL GTHV MEWOUATIC) PeAETN TG EPYOGIOG opyavdvovTa
o€ npdtuneg dopés, Tomov metadovdag. H mpdraom evdg xadd oyediacuévou cuvorov
TEWPOPATIKOV oevapiov yia mv ueléty podv epyaciag ETL sivon n pitn cupPord
™G epyaciog.

RREY

CHAPTER 1. INTRODUCTION

1.1 Introduction
1.2 Thesis Structure

1.1. Introduction

A Data Warehouse (DW) is an information infrastructure that collects, integrates and
stores an organization's data. The most important feature of a i)ata Warehouse is that
it produces accurate and timely management information, so companies utilize data
warehouses to enable their employees (executivés, managers, analysts, etc.) to make
better and faster decisions. Furthermore, data warehouses can be used to support
complex data analysis. According to Inmon [Inmo02], a DW is “a collection of
subject-oriented, integrated, non-volatile and time-variant data in support of

management decisions”.

W. H. Inmon [Inmo02] presents a formal definition of a data warehouse as a database

consisting of computerized data that is organized to most optimally support reporting

and analysis activity. According to Inmon, a data warehouse has four characteristics:

1. Tt is subject-oriented, meaning that the data in the DW is organized so that all
data elements relating to the same real-world event or object are linked
together.

2. Integrated, meaning that the database contains data from most or all of an
organization’s operational applications, and that this data is gathered in a
single location to be mad;: consistent.

3. Non-volatile, meaning that data in the database is never over-written or

deleted, but retained for future reporting.

-

4. Time-variant, meaning that the changes to the data in the database are tracked

and recorded so that reports can be produced showing changes over time.

There are many advantages of using a data warehouse. First of all, a data warehouse is
able to combine a variety of data from different sources in a single location.
Interesting information is extracted from various distributed sources, which are
usually heterogeneous. This means that the same data is represented differently at the
sources, for instance through different database schemata. The data warehouse has to
identify same entities, represented in different ways at the sources, and model it under
a unique database schema. This means that data in a data warehouse have to go
through a series of transformations to be made consistent and up-to-date. This process
is often referred to as semantic reconciliation and is an important property of the data
warehouse. Another advantage of a data warehouse is that it can support changes to
data, since modifications to the data in a data warehouse are tracked and recorded.

The data warehouse also keeps a historical record of the loaded data.

Quality
Issues Netidat
e Repository
| 'C"';‘mw, [ETL
e e

R

KE

o &)
End User

Designer

Figure 1.1 Architecture of a Data Warehouse.

Finally, data quality is an important issue, since data arriving at the data warchouse
are in most cases inconsistent. The above features of a data warehouse show that a

data warchouse is always expected to contain up-to-date, consistent and integrated

data in order to support decision making and data analysis. Figure 1.1 presents the

architecture of a data warehouse.

1.

The primary components of a data warehouse are Data Sources, Data Staging
Area, Data Marts, the Metadata Repository, ETL and other reporting and
OLAP applications.

Data Sources or Operational Databases are databases that store structured or
unstructured data as part of the operational environment of a company or an
organization. Data Sources supply the data warehouse with operational data.
Data derived from various Sources are usually heterogeneous.

The Data Staging Area (DSA) is a smaller database used to store intermediate
results produced by the application of cleansing techniques or transformations
to the source data.

The Data Warehouse and the Data Marts are systems that store data provided
to the users. The data in the warehouse are organized in fact and dimension
tables. Fact tables contain the records with the actual information in terms of
measured values, whereas dimension tables contain reference values for these
facts. For example, assuming that a customer purchases a part for a certain
price, the reference values for the customer and the part are stored (along with
all their extra details) in the dimension tables, and the fact table records the
references to these records (through foreign keys) along with the price paid.
Data marts focus on a single thematic area and usually contain only a subset of
the enterprise information. For example, a data mart may be used in a single
department of the company and may contain only the data that is available to
this department.

The Metadata Repository is a subsystem that stores information concerning
the structure and the operation of the system. This information is called
Metadata and concerns the ETL design and runtime processes.

ETL (Extraction - Transformation - Loading) applications extract the data
from the sources, clean it and apply transformations over it before the loading
of data to the data warehouse.

Finally, reporting and OLAP tools are reporting applications that perform
OLAP and Data Mining tasks. OLAP tools form data into logical multi-

dimensional structures and allow users to select which dimensions to view

:

iy,

A4

data by. On the other hand, Data mining tools allow users to perform detailed
mathematical and statistical calculations on data to detect trends, identify

patterns and analyze data.

The process of moving data from the sources into a warehouse is performed in three
steps:
— Extraction - is the process used to determine which data stored in the sources
should be further processed and ultimately loaded to the data warehouse.
— Transformation — is the step in which data are adapted into the format required
by the warehouse.
— Loading — is the process of populating the data into the warehouse.
~ This process is normally abbreviated ETL. Figure 1.2 presents these three
steps of an ETL process.

In order to manage the data warehouse operations, specialized tools are available in
the market, called ETL tools. ETL (Extraction-Transformation-Loading) tools are a
category of software tools responsible for the extraction of data from distributed
sources, their cleansing and customization and finally their loading to the data
warehouse ([VaSS02]). P

Read and
5\ Transmit
. Port
.\ Cl?]%n;m Conversion
il. Tool
tagi - Warehouse
- Clean

Data
Source
Databases

Metadata

Loading Tool

Extract Cleansirg Transform Load

Figure 1.2 Extract - Transform - Load.

Their basic tasks are:

the identification of relevant information at the source side
— the extraction of this information
— the customization and integration of the information coming from multiple
sources into a common format
* — the cleansing of the resulting data set, on the basis of database and business
rules
— the propagation and loading of the data to the data warehouse and/or data
marts.
) As we mentioned earlier, in data warehdusing, data are extracted from various sources
and have to go through a set of transformations and cleansing procedures before they
reach their destination, usually a data warehouse and/or data marts. Typical data
transformations are data conversions (e.g., conversions from European formats to
American and vice versa), orderings of data, generation of summaries of data (in other
words groupings), etc. Finally, data are loaded into the data warehouse. A typical load
of data involves processing large volumes of data (e.g., several GBs of data) and
requires many complex transformations of data. This means that this process is time-
consuming (often takes many hours or even days to complete) and usually takes place
during the night, in order to avoid overloading the system with extra workload.
Moreover, in many systems, the warehouse load must be completed within a certain
time window, which means that the request for performance is pressing. Based on the
above, we can summarize the main problems of ETL tasks: (a) the enormous volumes
of data for processing, (b) performance, since all operations must be completed within
a specific period of time, (c) quality problems, since data usually have to be cleansed.
Furthermore, (d) failures during the transformation process or the warehouse loading
~process, cause significant problems to the warehouse operation and finally, (e) the
< evolution~of the sources and the data warehouse can lead to daily maintenance

operations. Under these conditions, we see that we can overcome the problems of

ETL tasks by designing and managing ETL tasks efficiently.

This thesis makes the following three contributions in the research area of ETL tools:

-

~ Our first contribution concerns the design and implementation of an execution
engine of ETL scenarios. The elements of the ETL scenario are mapped from
a logical level to a physical level. In other works, all logical-level activities
and recordsets are mapped to the appropriate physical-level software modules.
The execution engine provides the software components that a scenario needs.
The ETL engine guarantees that all source data will be produced and there will
be no data loss.

— We have designed and studied three scheduling algorithms. A scheduling
mechanism is necessary to lead the execution towards optimizing a measure
such as execution time or low memory requirements. The measures that are of
interest in the case of ETL are execution time or low memory requirements.
Our algorithms are the following:

© Round Robin: A.simple scheduling algorithm that assigns the activities
to execute in FIFO order.

o Minimum Cost: This algorithm improves the execution time of the
execution by assigning for execution the activity that has more data to
process (at the time of scheduling).

o Minimum Memory: This algorithm reduces the execution's
requirements for memory. At every time the activity that will consume
the largest number of tuples.

— Our experiments suggest than Minimum Cost performs better than Round
Robin in all cases; at the same time, Minimum Memory though is the most
time consuming policy of all three policies, still Minimum Memory is the most
efficient policy when it comes to average memory requirements. In most cases

Minimum Cost has less average memory requirements than Round Robin.

1.2. Thesis Structure

This thesis consists of 6 chapters. Chapter 2 presents related research in the area of
ETL tools. Also, we discuss the related work on scheduling in data stream systems,
among with some basic principles in scheduling in the same chapter. In chapter 3, the

architecture of the ETL engine is explained in detail among with the class diagrams of

TR et Y

RS

the implementation. In chapter 4 the implemented scheduling algorithms are
explained, along with examples of how they apply on a specific scenario. In chapter 5
we experimentally assess the studied scheduling algorithms. Finally in chapter 6 all

results and conclusions are summarized and there is a discussion for future work.

-

s

»-
L
i

CHAPTER 2. RELATED WORK

2.1. Data Warehouses and ETL
2.2. General Theory on Scheduling
2.3. Scheduling in Data Stream Systems

-

The related work that concems us is research on systems that process a great amount
of data. Such systems are traditional ETL engines and data stream systems. It is
common to data stream system to have é;. scheduler that will coordinate the query
execution. In such systems we will emphasize in this chapter, since the aim for this
thesis is the design for a scheduler for the Arktos project.

2.1. Data Warehouses and ETL

Due to their importance and complexity, ETL tools constitute a multi-million market.
There is a plethora of commercial ETL tools available. The traditional database
vendors provide ETL solutions built in the DBMS’s. In [SVSS07] and [SiVS05] there
is a list with the most popular ETL market tools; we briefly mention them in the
following section. Also, there have been research efforts towards the design and
optimization of ETL tasks. We mention three research prototypes: (a) AJAX
[GFSS00], (b) Potter’s Wheel [RaHeO1], and (c) ARKTOS II [VSG+05]. The first
stwo prototypes are based on algebras, which are mostly tailored for the case of
homogenizing web data; the latter concerns the modeling of ETL processes in a
customizable and extensible manner, without the support, though, of an execution

engine.

10

2.1.1. Commercial studies and tools.

In terms of technological aspects, the main characteristic of the area is the
involvement of traditional database vendors with ETL solutions built in the DBMS’s.
The three major database vendors that practically ship ETL solutions “at no extra
charge” are pinpointed: Oracle with Oracie Warehouse Builder [Oracle07], Microsoft
with Microsoft with SQL Server 2005 Integration Services (SSIS) (the next version of
Data Transformation Services in MS-SQL Server 2000) [SSIS07] and IBM with the
Data Warehouse Center [IBMO07]. Still, the major vendors in the area are
Informatica’s Powercenter 8 [Infrm07] and Ascential’s DataStage suites [Asc03] (the
latter being part of the IBM recommendations for ETL solutions). As a general
comment, we emphasize the fact that the former three tools have the benefit of the
minimum cost, because they are shipped with the database, while the latter two have
the benefit to aim at complex and deep solutions not envisioned by the generic
products. The aforementioned discussion is supported from a second recent study
[Gart03], where the authors note the decline in license revenue for pure ETL tools,
mainly due to the crisis of IT spending and the appearance of ETL solutions from
traditional database and business intelligence vendors. The Gartner study discusses
the role of the three major database vendors (IBM; Microsoft, Oracle) and points that
they slowly start to take a portion of the ETL market through their DBMS-built-in

solutions.

2.1.2. Research Studies

The AJAX [GFSS00] system deals with typical data quality problems, such as the
object identity problem, errors due to mistyping and data inconsistencies between
matching records. This tool can be used either for a single source or for integrating
multiple data sources. AJAX provides a framework wherein the logic of a data
cleaning program is modeled as a directed graph of data transformations that start
from some input source data. AJAX also provides a declarative language for
specifying data cleaning programs, which consists of SQL statements enriched with a

set of specific primitives to express mapping, matching, clustering and merging

11

transformations. Finally, an interactive environment is supplied to the user in order to
resolve errors and inconsistencies that cannot be automatically handled and support a

stepwise refinement design of data cleaning programs.

The Potter’s Wheel [RaHe01] system is targeted to provide interactive data cleaning
to its users.- The system offers the possibility of performing several algebraic
operations over an underlying data set, including format (application of a function),
drop, copy, add a column, merge delimited columns, split a column on the basis of a
regular expression or a position in a string, divide a column on the basis of a predicate
(resulting in two columns, the first involving the rows satisfying the condition of the
predicate and the second involving the rest), selection of rows on the basis of a
condition, folding columns (where a set of attributes of a record is split into several
rows) and unfolding. Optimization algorithms are also provided for the CPU usage for
certain classes of operators. The general idea behind Potter’s Wheel is that users build
data transformations in an iterative and interactive way; thereby, users can gradually
build transformations as discrepancies are found, and clean the data without writing

complex programs or enduring long delays.

Arktos IT [VSG+05] is a coherent framework for the conceptual, logical, and physical
design of ETL processes. The uttermost goal of this line of research is to facilitate,
manage and optimize the design and implementation of the ETL processes both
during the initial design and deployment stage, as such during the continuous
evolution of the data warehouse. To this end, in [VaSS02] and [SVSS03] a conceptual
model is proposed. Further, in [SVSS03] a logical model is presented. The proposed
models, conceptual and logical, are constructed in a customizable and extensible
manner, so that the designer can enrich them with his own re-occurring patterns for
ETL processes. Therefore, Arktos IT offers a palette of several templates, representing
rfrequctntly used ETL transformations along with their semantics and their
interconnection (Figure 2.1). In this way, the construction of ETL scenarios, as a flow

of these transformations, is facilitated.

12

Filters Unary transformations
Selection (o) Push

Not null (NN) Aggregation (y)

Primary key violation (PK) Projection (mt)

Foreign key violation (FK) Function application (f)
Unique value (UN) Surrogate key assignment (SK)
Domain mismatch (DM) Tuple normalization (N)

Tuple denormalization (DN)

Transfer operations

Ftp (FTP) File operations
Compress/Decompress (Z/dZ) EBCDIC to ASCII conversion
Encrypt/Decrypt (Cr/dCr) (EB2AS)

Sort file (Sort)

Binary transformations
Union (U)

Join (b<)

Diff (A)

Update Detection (Aypp)

Composite transformations
Slowly changing dimension (Type
1,2,3(SDC-1/2/3)

Format mismatch (FM)

Data type conversion (DTC)
Switch (¢*)

Extended union (U)

Figure 2.1 Typical template transformations provided by ARKTOS II.

2.2. General Theory on Scheduling

This section contains some general theory about scheduling, which derives from the

operating system research. Also the terminology that is used is very close to operating

system theory; in operating systems scheduling is among processes and not activities.
&

We discuss the basic types of processor scheduling, fundamental principles and

criteria that characterize these algorithms. Moreover we mention a few well known
simple algorithms such as FIFO, Round Robin etc. There is a brief description of
these algorithms in Table 2.1 [Sched06], at the end of this section.

2.2.1. Types of processor scheduling

There are three different types of scheduling [UnSched07], identified by the size of

the time fragment that the scheduler provides to each process.

— Long-term scheduling is performed to decide if a new process is to be

created and be added to the pool of processes. Long-term scheduling controls

the degree of multiprogramming. The more processes that are created, the

smaller is the percentage of time that each process can be executed, Thus, the

long term scheduler may limit the degree of multiprogramming to provide
satisfactory service to the current set of processes. Whenever a process
terminates, or the fraction of time that the processor is idle exceeds a certain
threshold, the long-term scheduler may be invoked. The decision may be made
on a first-come-first-served basis or it can be a tool to manage system
performance. For example, if the suitable information is available, the
scheduler may attempt to keep a mix of processor-bound and I/O-bound
processes. A processor-bound process is one that mainly performs
computational work and occasionally uses /O devices, while an I/O-bound
process is one that uses /O devices more than the microprocessor.
Medium-term scheduling is a part of the swapping function of the opcrating
system. In operating systems, in order to increase the amount of total memory
the idea of virtual memory is used. This technique increases the resources of a
computer in main memory by using some disk space also. When a process is
idle there is no use to keep it loaded in the main memory. So, the process is
copied to a file (swap file) and the freed space in memory is then available to
the system. The way virtual memory is handled can affect the performance of
a system. The scheduler can decide if a process should be loaded into the main
memory either completely or partially so as to be available for execution and
improve the system's performance.
Short-term scheduling is the most common use of the term scheduling, i.e.
deciding which ready process to execute next. The short-term scheduler, also
known as the dispatcher, is invoked whenever an event occurs that may lead to
the suspension of the current process or that may provide an opportunity to
preempt a currently running process in favor of another. Examples of such
events include:
o Clock interrupts

. 0 VO interrupts
o Operating system calls
. .

Signals

14

2.2.2. Criteria

There are various algorithms available for the short-term scheduling work. Each
scheduling algorithm is built in such a way that one or more fundamental criteria are
best served by it. The major criteria relating to processor scheduling are as follows:

— Turnaround time is the interval of time between the submission of a process
and its completion. This is an appropriate measure for a process in a batch
operating system.

- Response time is the elapsed time between the submission of a request and
the moment the response appears.

- Throughput is the rate at which processes are completed. The scheduling
policy should attempt to maximize the throughput so that more tasks could be
performed.

— Processor utilization is the percentage time that the processor is bisy. For a
shared system, this is a significant criterion, while in single-user systems and
real-time systems, this criterion is less important than soine of others.

— Fairness addresses whether some processes suffer starvation. Fairness should
be enforced in most systems.

These criteria may be categorized into two groups: user-oriented and system-oriented.
The former group focuses on the properties that are visible and of interest to the users.
For example, in an interactive system, a user always wishes to get response as soon as
possible. This may be measured by response time. Some criteria are system oriented,
focusing on effective and efficient utilization of the processor, such as throughout.
System-oriented criteria are usually important on multi-user operating systems, while
on the single-user system, it is probably not important to achieve high processor
utilization or high throughput as long as the single user’s need is fully met. It is
obvious that the above criteria are interdependent and cannot be optimized
simultaneously. For example, providing good response time may require a scheduling
algorithm that switches between processes frequently, which increases the overhead

of the system, reducing throughput. In a particular operating system, some criteria

e

15

may be of more importance than others, thus the designer of the operating system may

simply focus on improving those concemned aspects.

Table 2.1 Summary table of scheduling algorithms for microprocessors [Sched06]

Remaining Time)

FCEFS (First Come |The first ready task is executed first until it is done. The next one is

First Served, also the second ready task and so on

known as FIFO)

RR (Round Robin) |Every ready task is kept in a queue and they take control of the CPU
for a while. Another version is VRR (Virtual Round Robin), where

R blocked tasks from I/O are put in another queue and the system gives
them the remaining time of their time slice.

SPN (Shortest Process|In this algorithm every task has a priority. The one that is expected to

Next) need the least CPU time to finish has the bigger priority. It is not easy
to tell the remaining time of a task. There are not time slices here

ISRT (Shortest This algorithm is similar to SPN but the running task might be

interrupted when a new task is ready for execution and the new task

will finish sooner than the running task.

the number of priority

queues)

'HRRN (Highest This algorithm has a simple formula calculating the priorities of all

Response Ratio Time) |tasks, favoring those that have the smallest remaining execution time.
It seems better that the two above because in the formula there is
estimated the time a tasks waits to get the CPU. This way starvation is
avoided. There are no time slices, a task gets the CPU only when the
active has finished or blocked (due to I/O).

Feedback (with q as |This algorithm keeps a number of priority queues and places tasks to

one of these queues. The new tasks are put in first queue, which is the
one with the higher priority. This algorithm is preemptive and uses
time slices. When the time slice is finished, the scheduler picks one
task from the first queue (biggest priority), and if it is empty it goes to
the next queue. The task that has been interrupted gets a lower priority
and is put te the appropriate queue. For example a new task is put at
first to the first queue, and the second time (when its time slice was

finished) will be put to the second queue and so on. This algorithm

could possibly lead some tasks to starvation

16

2.2.3. Preemption

Another issue relating to scheduling is whether a running process could be preempted
or not. There are two categories:

— Non-preemptive: In this case, a running process continues to execute until (a)
it terminates or (b) blocks itself to wait for I/O or to request some operating
system service.

— Preemptive: The currently running process may be interrupted and moved to
the "ready" state by the operating system. The preemption may possibly be
made due to the arrival of a new process, or the occurrence of an interrupt that

' places a blocked process in the "ready” state.

Preemptive policies incur greater overhead than non-preemptive-ones but may be
preferred since they prevent some processes from monopolizing the processor for a

long time.

Figure 2.2 An example of a data flow diagram [CCR+03].

2.3. Scheduling in data stream systems

Data stream systems process great amounts of continuous data that derive from sensor
networks, position tracking, fabrication line management, network management, and
financial portfolio management, where data come in continuous and asynchronous

fashion, in volumes and rates so high that it is not possible to store them in a

17

traditional DBMS. Because of their idiomorphic nature, data stream systems must
perform basic operations such as selections (filters in ETL and data streaming

terminology) and joins without the service of a DBMS system.

The sequence of the applied operators in one or more input streams defines a data
flow diagram (Figure 2.2). One issue that rises is how these operators will be
executed. Two basic patterns can be proposed for the design of an execution engine
for data stream systems. One is to have one thread per operator, and all operations are
executed simultaneously. The second pattern is to execute one operator at a time, so
using one single thread is sufficient. In either case having a scheduler that will
coordinate the execution of the query, even a naive scheduler that will apply a FIFO
or a Round Robin scheduling policy, is necessary. More advanced scheduling policies
are essential because in most cases some extra requirements must be met. These
requirements typically involve the (a) minimization of memory usage, (b) response
time and (c) execution time. The related work that is presented throughout this chapter
concems of scheduling the execution of streams in some well known stream systems.
We specifically focus on the design of their scheduler, and how the requirements

mentioned above are accomplished.

2.3.1. Aurora Data Stream Manager

The Aurora stream manager [CCR+03] has three techniques for scheduling operators
in streams, for minimizing execution time (MC), latency time (ML) and memory
(MM). The Aurora system can execute more than one query (continuous queries) for
the same input stream(s). Every stream is modeled as a graph with operators.
Scheduling each operator separately is not very efficient, so the notion of a superbox
’is introduc;ed. A superbox is a sequence of boxes that is scheduled and executed as an

atomic group. A superbox is not necessarily a whole query.

There is a two-level scheduling algorithm for the Aurora stream manager. The first
level is to decide which superbox to execute, while the second level is to schedule the

operators inside the selected superbox. There are two ways to deal with this problem.

18

Specifically, at the first level, the scheduler chooses dynamically or statically the next
superbox. The static approach is rather simple, a single superbox is pre-defined for
every query, and a scheduling policy can be applied (e.g., round robin) for selecting
every time which superbox to execute. The dynamic approach defines at run time
which will be the next superbox to execute. In [CCR+03] the static approach is used.
Three strategies are proposed for the second level, to minimize the execution time

(MC), the latency time (ML) and the memory consumption (MM).

The minimum cost (MC) strategy serves the basic idea of minimizing the number of
box calls per output tuple. This means that every operator will be executed only if the

preceded operators are already scheduled. Every operator is scheduled only once.

The minimum latency (ML) strategy uses a metric called output cost whose value is
an estimate of the latency incurred in producing some output data and processing
them to all following operators of the stream, until they reach the streams final output.

Each time, the operator with the smallest cutput cost is selected.

The minimum memory (MM) strategy tries to maximize the data consumption per
time unit. In other words it yields the maximum 4increase of the available memory.
The formula that is used estimates the memory reduction rate per operator. The

operator with the largest value is selected.

2.3.2. Chain Scheduling Policy

The Chain [BBDMO03] scheduler reduces the required memory when executing a
query in a data stream system. [BBDMO03] focuses on the aspect of real-time resource
allocation. The basic idea for this scheduler is to select an operator path which will
have the greatest data consumption than the others. The scheduler selects a group of
operators instead of one. The authors use a progress to explain the functionality of
their scheduler. The horizontal axis of the progress chart represents time and the
vertical axis represents tuple size. The chart contains operator points. The operators

that participate in the execution create an operator path, which is the flow of data

19

during the execution of the query. Every time the scheduler runs, a part of the
operator path is selected dynamically. To accomplish this, the scheduler must get a
snapshot of the system. The progress chart is refreshed and demonstrates the current
state of the system; the selectivity of every operator and its input. Based on a
mathematical formula some adjacent points are grouped. The first and the last point of
the group are connected with a dashed line. Every such group is called as a lower
envelope. The steepness of every line indicates how effective each group would be if

it is set for execution.

The scheduling strategy is rather simple, every time they select the steepest lower
énvelope. The system makes sure that there are no tuples in the middle of any
operator group. This makes possible to treat all lower envelops (operator groups) as
single units of processing. In other systems the basic idea to decrease the required
memory is to select one operator that has the biggest data consumption. In this work

this idea is expanded a little by selecting a group of operators instead.

2.3.3. Pipeline Scheduling

[UrFr01] presents two scheduling algorithms when pipelining is employed in query
execution. Both algorithms aim to improve the system's response time; therefore it is
necessary that all operators are non-blocking. The scheduler needs to compute the

output rate of every operator in the stream and select the one with the highest rate.

At first three non-blocking join operators SHJ, DPHJ and XJOIN are discussed. These
operators have one, two and three stages of execution. In every stage, the XJOIN
operator has a different behavior, and this is something that affects the scheduler. In
revery stage, the scheduler must use different formulas to estimate correctly the
operators ;utput rates.

The authors propose a rate based algorithm, which schedules strcams, rather than
operators. A stream is considered as an execution unit which consumes tuples and

produces output data. In every execution of the scheduler the stream with the biggest

20
output rate is selected. The scheduler runs every one second. If the selected stream
finishes in less than one second, the next stream that is selected is based the previous

estimates of the scheduler.

A second approach on this problem is also discussed; here the authors consider that
some data are more important than other, based on the preference of the user (an
ORDER BY clause in the query). The second algorithm presented can schedule
streams in a way that important data will be preceded than others in the execution, and
reach the final output first. Every tuple is assigned a rank which shows how important
this tuple is. The important data are favored at the join operators, will others are put
aside for some time. There are two formulas to estimate the importance of data, CM
and AM. Two variants of the algorithm are presented, called SIP and SJP. The above
formulas can be applied in both cases. In SIP when a tuple arrives there is a check on
its rank and it is compared with a random value. If the tuple's value is greater it is
processed. SJP works in a similar manner with the difference that it decides to process

the tuple, not when the tuple arrives but when it is about to be joined.

2.3.4. Summaries of the studied algorithms .

In this summary we present all the scheduling algorithms we studied in related work
papers. All algorithms have some common properties, which are presented in Table
2.2. Our classification is performed through the following axes:
— Who is next: This dimension presents the parameter or parameters each
scheduler uses to select the next operator. ~
— For how long: This dimension tells us whether each algorithm is dependent
on the use of time slot or not. In the latter case, an operator typically becomes
idle if all its input is consumed or its output queue is full. Some algorithms can
incorporate both criteria in the calculation of the duration of the execution of
an operator. Conceming the preemptiveness property, one could possibly
argue that time-slot based algorithms are preemptive in a sense, since their
execution is stalled whenever they reach their designated deadline. Still, since

the most clear case of non- preemptiveness is the case where each operator

21

consumes all its input, possibly stores it, and then passes the execution to the
next operator, it is clear that several degrees of preemptiveness can be
considered.

Criterion: In this dimension we can see the criterion each algorithm tries to
favor.

Decision: Some algorithms base their decision on each operator's condition
only, while others need to consider more than one operator to make a decision.
For example MC checks the input size of every operator, while ML for every
operator needs to know the output rates of its successors in the stream.
Parameters: This dimension presents the parameters that every algorithm

requires for its decision.

For an ETL engine the criteria fairness, execution time and memory consumption are

important and we provide a scheduling algorithm for each criterion. Our scheduling

policies are explained in detail in chapter 4. The criterion response time is not

appropriate for an ETL engine because response time mostly concerns interactive

query processes where an end user is involved, while the ETL setting we are

interested in, involves off-line refreshment of the warehouse. Moreover, the presence

of blocking activities, such as aggregator and join, eliminates any chances to improve

the system's response time.

Table 2.2 Summary table of all stream scheduling algorithms

Name Seurce Who Is Next Fo{::gw Criterion Decision Parameters
FIFO [BBDMO3], (UrFr01] next token utli]rtrlllelglft/ Faimness Local operator 1D
Round Robin [BBDMO3], [UrFr01] | next ready token ut?[t:llelgllst/ Fairness Local operator ID
Equal Time [UrFr01] least c?xecuted UI:l'[ll idle / Fairness Global execution time
time time slot
Cheapest First [UrFr01] least pcrgscte SSIng until idle response time Local processing cost
Greedy Scheduling [BBDMO3] least selectivity time slot memory Local selectivity
consumption
Min Latency [CCR+03] largest output size until idle response time Global selectivity, cost
Rate Based [UrFr01] largest output size until idle-. response time Global selectivity, cost
Min Cost [CCR+03] largest input size until idle execution time Local input size
Min Memory [CCR+03] largest data until idle memory Local Input size,
consumption consumption selectivity, cost
Chain Scheduling [BBDMO3] largest data time slot memory Global input size,
consumptton consumption selectivity, cost

|

23

CHAPTER 3. SYSTEM ARCHITECTURE

3.1. General Idea

3.2. Description and logical representation of an ETL Scenario
3.3. Logical and physical perspective of an ETL scenario

3.4. Execution model and requirements for the ETL engine
3.5. Scheduler

3.6. Implementation of the logical level

3.7. Implemen‘tz_ztion of the physical level

This thesis focuses on the design and the implementation of a parametric ETL system,
in which simple and complex ETL scenarios can be defined and executed. The user of
this ETL execution engine is able to define the scenarios easily. In this thesis we
centre our efforts to implement the execution model of this system. Another basic
goal is to design a scheduler for this system, able to tune the execution of the data

cleaning and transformations, based on an operating policy the user has selected.

3.1. General Idea

When starting the design of an ETL engine, we must consider a few basic issues. At
first, we should provide some functionality to the user, so that he will be able to
define a scenario, and all of the components that compose a complete ETL scenario.
The definition of the scenario will keep a level of abstraction, so that some of the
implementation details will not.be a part of it. Then, we need to design the logical
representation of these components. We also need to design a model for the physical

representation of the same objects, in which implementation and execution details will

24
be important, and an execution engine which will be responsible for the correct

execution the ETL scenario.

3.2. Description and logical representation of an ETL Scenario

As mentioned before, the definition of an ETL scenario is a composition of the
definitions of the elements that form a scenario, as well with its respective parameters.
At this point we will describe its basic components, and also the logical model on

which our definition is based.

The execution of a scenario can be divided into three basic steps. At first, data are
extracted from several data sources (text files, databases, etc), then certain
transformation, cleaning or integration operations are applied on the input data, and

finally the processed data are put into a data warehouse.

Data Types Black ellipsoid @ RecordSets Cylinders
-
Function Black rectangles s2¢ Funcdons Gray rectamgles
Types
Constants Black circles Parameters White rectangles rate
Ateributes Unshaded ellipsoid Activities Triangles
Provider Bold solid ammows
Part-Of Simple lines with .
] fro; der to
Relationships diamond edgas® <o Relationships ' (from Pf:;" »
Bold dotted
Insrance-Of Dotted Derived anows (from
Relationships (from mstance) =TT > Provider provider o Eaiaig
towards the type) Relatlonships consumer)
Regulator .
Dotted lines | ---=v-=--
Relationships

Figure 3.1 Notation of the architecture graph [VSG+05].

25

The basic structure of an ETL scenario consists of data sources and targets, which we
will refer to them as recordsets, and a set of operations that are performed on the data
which we will refer to them as activities. The activities are the transformation,
cleaning or integration operations, while the recordsets are the places where data is
either extracted or loaded by the system. An activity can be a filter, a join or an
aggregation operator. In an ETL scenario the activities that are applied on some data
have a specific execution order. Therefore it is important to define the order the
activities are executed and we can treat an ETL scenario as a composite workflow.
The full layout of an ETL scenario, involving activities and recordsets can be modeled
by a graph, which we call the architecture graph [VSG+05], in which all the details

relating to the ETL scenario are enclosed.

The architecture graph is directed and acyclic. The direction of the graph represents
the flow that the input data will follow inside the ETL scenario. The nodes of the
architecture graph will be the activities and the recordsets, while the edges will
provide information for the flow of the processed data, and which node (activity or
recordset) will work as a data provider for another node (the data consumer). For
every activity or recordset, we need to set some properties. An activity can be defined
as an entity with possibly more than one input schemata, an output schema and a list
of parameters that specify the current activity. A recordset, can be defined as an entity
with one input (or output) schema, and a parameter list that identify the data source or
target. The edges of the graph describe the relationships between the nodes. There is
more than one type of edges in the architecture graph. The basic relationship is the
provider relationship, which illustrates the provider-consumer relationships between
the activities and recordsets of the scenario. The schemata of the data are also shown
in the architecture graph. The part-of relationship associates each schema with one
gctivity or recordset. The regulator relationship shows the relation between attributes
of the input and output schemata of an activity. The complete notation for the
architecture graph is shown with detail in Figure 3.1 [VSG+05]. A complete
definition of a complex scenario‘might give us a heavy and overloaded representation
of the graph. It is not expected for the user to fully design the graph, but the graph is

used mainly to give the user a graphic perspective of the scenario.

26
In Figure 3.2, a simple ETL scenario is shown with the use of the notation deseribed.
In this figure some details are omitted, so that the reader can understand the actual

scenario, as well as the basic structure of the architecture graph.

ﬁ

Sowrce

Y

Figure 3.2 Representation of an ETL scenario with the architecture graph.

The scenario that is presented in Figure 3.2 is mainly composed by four activities. We .
will now briefly deseribe this scenario. The big rectangle on the figure is the data
staging area (DSA).

The first thing to do is to start extracting data from out data source. Depending on the
scenario, it is not necessary to always wait for all input data to be loaded. Since input
data are loaded, or have started loading in the DSA, the first activity will separate the
new tuples from the old ones. It is supposed that we have extracted data from the
same source at some point in the past, and now we want to process only the tuples that
have been created since. So, the first activity will reject all the tuples that have been
already loaded in the system. The remaining tuples are (a) persistently stored for
checkpointing reasons and (b) passed to the next activity for further processing.

The next activity will perform a null-check on the new tuples, on the attribute "cost".
All tuples that have the NULL value at this field will be rejected.

When extracting data from more than one source, it is very useful to add an attribute
to each tuple indicating the data source. The third activity does that operation, adding

one attribute to each tuple, in this case the integer value 1.

[4

27

The last activity of the scenario adds a surrogate key to each tuple. The need for a
global key for all the tuples is pretty much clear. All tuples have a primary key from
their source. Usually each source has a different data type for a primary key, or if it is
of the same type, it is most likely that the same value (e.g. id = 5) is already assigned
to more than one tuple. Since all tuples will be placed into the same table their
existing primary key can not be used. The activity has a lookup table, and also uses
the attribute added from the previous activity to provide each tuple with a unique

value, which usually is an integer for performance issues.

We have now defined the logical model to represent an ETL scenario. We must
p;ovide the user with some functionality so that he can be able to easily create his
own scenarios. We could use a graphic environment in which the user actually
sketches the architecture graph [VSG+05]. Another way to do so is to use a
declarative language for the definition of the ETL scenario. In [VVS+01] the SADL
language is proposed. A variant of this language can be used, in which the user will
specifically define the nodes and the edges of the graph, in terms of activities,

recordsets, schemata etc.

3.3. Logical and physical perspective of an ETL scenario

The model we just described briefly has a certain level of abstraction for all the
elements of the ETL scenario. As mentioned before, we follow a traditional approach
and group the design elements into logical and physical, with each category
comprising its own perspective. At the logical perspective, we classify the design
elements that provide an abstract description of the workflow environment, where as
in the physical perspective all the design elements enclose the details and parameters
;'equired for their execution. In other words, the activities defined at the logical layer
(in an abstract way) are materialized and executed through the specific software

modules of the physical perspective.

28
Since we have decided that the logical and physical level to be independent, we need
a mechanism that given as input the logical representation of an ETL scenario, it will
provide us the respective physical representation. This mechanism is responsible for
the correct and efficient mapping of logical objects to the respective physical objects,
which are the appropriate software modules that exist inside the system. For example,
this mechanism is in charge of to decide which join operator should be selected
(Nested Loops Join, Merge Join, etc) when an activity in the logical level is defined as
join. Also, inside this mechanism we could integrate an optimizer in order to achieve
a different representation of the objects at the physical level, which will possibly lead
to a faster execution of the scenario. Designing an optimizer for this system is not a
part of this thesis. In Figure 3.3 there is a simple sketch illustrating this general

mechanism and how it interacts will other parts of the system.

TN,

ﬂogiuuml é/;’hysimllcvel 3

§ i

i i i

| All elements are i All elements here

g kept mainly in this i existonly duringthe i

i perspective { execution i

i j

‘\\\ P— \""\ e-"'-'-—‘"--'-"'/

L4
Parsingan | Transition Scenario
ETL to the execution
scenaric physical
level

Figure 3.3 Logical and physical level for the scenario elements.

—~~

In order to correctly depict the design elements to the physical level, a set of template
classes can be used [VSG+05]. The objects that exist in the physical perspective of
the ETL scenario are instances of these template classes. In Figure 3.4 the mapping
between the logical level and the physical level appears through the template classes.

When the mapping process is completed, the execution of the ETL scenario can be

initiated.

Laatuii

29

Figure 3.4 Association of the logical and physical level [VSG+05].

3.4. Execution model and }equirements for the ETL engine

Having defined the logical and the physical level, we need to design an execution
model for the activities of the physical level. Generally, each activity receives tuples
and processes them, and puts the result tuples into the input of another activity,
according to the edge in the architecture graph. On the other hand recordsets do not
always have both producers and consumers. Recordsets are entitled to feed the
workflow with source data from an external source (e.g., text file, database) or write
output data to an external target (e.g., a data warehouse).
There are three fundamental issues that we need to resolve in the design of an ETL
execution engine, and a scheduler for it:

— The manaéement of intermediate data.

— The strict requirement for zero data losses.

—~ The avoidance of deadlocks.

AL
N
\

-

GNIONVO

\:~

30

-

Management of intermediate data: One basic issue that rises is how to manage the
intermediate data that are produced. One idea is to execute each activity separately,
and store its output to a file. When this activity is done, its consumer activity can be
started by reading the providers output file. This approach is simple, but it has two
main disadvantages: (a) the need for disk space, which might not always be available
and (b) the overhead of temporarily staging intermediate results and subsequently
retrieving them again for the next activity. An alternative solution is to keep input and
intermediate tuples into main memory and the activities will process them without the
need to store intermediate data. Parts of the workflow that do not contain blocking
operators can take advantage of the pipelining method. With this approach all
activities need to be executed simultaneously, since we can not load all the input data
into main memory. Every activity will read and write tuples from the appropriate
shared data structures, such as queues (Figure 3.5). In the case of blocking operators

(é. g., aggregator, sort-merge join) the intermediate data need to be stored temporarily.

‘.. e
.-__

Activityl Activity 2 Activity3 Activity 4

Figure 3.5 Pipelined execution of an ETL scenario.

This approach has a few more benefits. In the case where the input data are not stored
locally, but the system receives them from a remote computer there is an extra
communication cost for receiving the data from the remote computer. During this
time, we can start processing the tuples that have arrived. The method of pipelining is

also efficient in the case where the produced data must be sent to a remote computer.

RS

L 4

31

The output data which are already produced can be sent to the remote target without
having to wait for the execution of the scenario to finish. In both cases we can reduce

the execution time since it overlaps with the time spent for communications.

Zero data Josses: An essential principle for this system is that there is no data loss.
All the tuples that are present in the input must be appropriately processed and
propagated as the scenario dictates. The execution model must guarantee that no tuple
will be lost during execution, due to the fact that some output buffer has been filled
and its producer continues to output data to this buffer. Moreover, we need to come
up with an implementation in the absence of the luxury of load shedding. When a
DSMS (Data Stream Management System) experiences data overload, the load
shedding technique is applied and some of the input data are ignored; then, each query
is executed with the remaining data. Load shedding is useful in such cases, so that
possible time constraints are satisfied. On the contrary, in our setting, all data are

important, so we must ensure that we have zero data losses.

Deadlocks: One vital issue in the case of pipelined execution is that it is possible to
have deadlocks during execution. The method of pipelining is commonly used when
an SQL query is executed by a DBMS. There are cases where in a pipelined execution
a deadlock might appear [DSRSO1]. In a similar manner we may experience
deadlocks when executing an ETL scenario. Our system should avoid the appearance
of deadlocks.

Full
queue X

queue

Figure 3.6 Deadline example (preliminary implementation).

32

In our preliminary implementations, when the scheduling was left to the operating
system, the following kind of deadlock was observed: an original producer 4 would
feed two parallel "lines” of activities, that would ultimately converge to a binary
activity Z. Assuming that a blocking operator X participates in one of the two "lines”,
then Z's input queues could possibly come to the state where one was completely
empty and the other full. At the same time, all the queues between X and Z are empty
and the queues in the other "line" of activities between A and Z were full. Then, Z
cannot execute since one of its input queues is empty and A cannot execute since one

of its output queues is full.

3.5. Scheduler

Designing the engine's scheduler is one of the main tasks for the construction: of an
ETL engine. There are many possibilities for tuning a scheduling protocol. A first,
simple to implement opportunity (without the existence of a scheduler) involves
having the activities of the scenario running concurrently in random (as threads). The
lack of a user-level scheduler means that we rely on the scheduling provided by the
underlying operating system; we cannot get any guarantee that this is the best way
(e.g., fastest, memory efficient) to execute the scenario. Designing a usey-level
scheduler gives us the ability to schedule the running activities with our own
standards; therefore we can achieve a more efficient execution of the ETL scenario. -
Based on a user selected policy, the scheduler can tune the execution of the running
activities. The user can pick from a palette of fundamental goals, e.g., (a) select to
tune the scenario so that the total execution time'is minimized or (b) to minimize the

memory requirements, average and maximum.

3.6. Implementation of the logical level

As mentioned before, the definition of an ETL scenario is- a composition of the
definitions of the elements that form a scenario, as well with its respective parameters.

A scenario is a graph, so is composed of nodes and edges. A node could be either an

PR Y

L 4

33

activity or a recordset. Every node has some input schemata, and one output schema,
Every schema is a finite list of attributes. Finally, attributes are characterized by their

name and data type.

1 1

! e

Scenarlo 1 L-AllActivities
1 -AIEdges d —<t-AllRecordeSets
c -AllACtivities -AllEdges
-AliSchemas -AliSchemas
- {-AlfTables +AddAcCrivity()
+ReportToFite() 1 ::ggggg(())
] e +AddSchema()
- +AddScenano()
Edge 4 +ReportToFile()
-Name 0 L__
-Name : String 1 1
-EndNode
-StarntQutputName ; String Node
-EndinputName : String FinDegres - Inieger
. +QutDegree : integer
Schema 1 {eName : String
-Name : String -Ancestor
. +AttributeList -Successor
+AddAttribute() +GetName() : String
- T
1.
Attribute
-Name : String
- Type : String . * .
+SetName()
+SetType()
+GetName() ; String Activity RecordSet L
+GetType() : String Type : String |-Schema : Schema
. |-Semantics : String +ReportToFile()

-RejectAction : String
-RejectSemantics : String
+ReportToFlle()

Figure 3.7 The class diagram of the logical level.

Therefore a scenario is a set of activities, recordsets, edges and schemata. In Figure
3.7 a class diagram of the logical level is depicted. Since every scenario is a graph,
node and edge classes are defined in the class diagram. A node can be an activity or a
recordset, 30 the Node class is extended to an Activity class and a Recordset class. The
Node class is abstract, since it does not represent a specific element of an ETL
scenario. The Schema class and the Auribute class represent the schemata and
attributes of a scenario. There is also a Scenario class which holds all the elements
that define it in collections. A simple declarative language is used, in which scenarios

and all of its elements can be declared. Given a declaratively specified scenario the

34

engine's parser transforms it into objects of the aforementioned classes. We used the
AntLR [AntLRO7] parser, a simple and efficient tool that generates the code for a
parser. With the parser a Loader class was created that reads the information the
parser provides and creates the instances of the classes in Figure 3.7, and ensures that

all elements are created and loaded correctly to a Core object.

3.7. Implementation of the physical level

Considering the above requirements for the ETL engine, its implementation
necessitates the use of threads. Every activity and recordset will be executéd from a
single thread. A monitor thread is also essential for the control of the scenario
execution, and will have a supervising role over the executing activities and
recordsets. In order for the threads to communicate, a messaging system must be put

into operation. This architecture is easy and simple to understand.

Status
Exucutionitem [+Flnished . Bootean
[ria - integor - sLastiressage : Booloan
. myBox : MaiBox 1 OCaunmt'weéer
Monitor l [+Execueq) _ -
\ 1o
MonOptimizer : Optimizer | 4 + [DataProcess) 1
[Montoring() ' OstaQueue
3 [*RiseQ . e
<
4 +PutDataQ
1 l [rLima() : Boolean
heid ExscutionRSet MaiiBox
wdSet - RecordSet [Sooue
T hun :
hysi ALENSgemen () f+Send()
[H.ogicalToPhysical) [sReconeo :
- Message
id : String
Reader Wiiter . . Type : Sting
xy : ProxyResder : Proxy\Wiler nf0 : String
ataProcess| [*DataProcess) [fGerSenderid(: Strng
d 0 L-GatTypeq : String
Schaduier ! 1 dionActvity |
Litsmiian 1 1 onsiructActivity : Activity
NextAziivityQ() : Integer boxMansgemsnt(
00 PraxyReader{ Proxywriter

*ReadTople) L WeTupie0 J: —l
+Destroy0 [+Destroy)
Fiver [[Genericactiviy
[#OataProcesS() bau?mo kﬂu?mo
FilerReader FlleWritar
-Paih ; String L-Path : Slring

Figure 3.8 The class diagram of the physical level.

— .

35

The design of the physical level requires dealing with ETL scenarios from a different
perspective. Every node of a scenario is a unit that performs a portion of processing,
even if that is simply reading or writing data. Therefore we consider every node
(activity or recordset) as an execution item or operator. All intermediate data that
execution items process must be stored in queues, so that the pipelined execution is
accomplishable. These queues are called data queues and they contain tuples. As seen
in the Aurora Stream Manager [CCR+03] processing every tuple separately is not
efficient, so we use row packs, a structure which holds a number of tuples. Data

queues keep row packs instead of tuples.

Since the graph is directed and acyclic every node can be characterize its neighbors as
producers or consumers. Every execution item must have a mailbox, in order to
support the messaging system that is required. Every execution item should know the
mailbox of its producers and consumers, as well as the monitor's mailbox. The
monitor is a component of the system that supervises and directs the execution. In
Figure 3.8 there is the class diagram of the physical level. The two basic components
of the physical level are the Monitor and the Execution Item classes. The Execution
Item class is extended to the Execution Recordset class and the Execution Activity
class. These two classes are also abstract. The basic functionality though exists in the
Execution Item class. The other classes simply provide functionality for assigning
producers and consumers to the nodes. A recordset has either only one consumer or
only one producer, while an activity can have both many producers and many

consumers.

3.7.1. Execution Item functionality

When a scgnario starts to execute, the Execute() function is called for every operator.
The execution of the operator is complete when the function returns. At each time
point, it is possible that some of the operators will not have any data to process. For
performance reasons we need to stall them for a small portion of time (every threcad

sleeps for a small time fragment).

36

The Execute() function is constructed as a loop (Table 3.1) in which (a) the operator
checks its inbox regularly and (b) decides whether to processes some data or to stall
for a small time fragment. Every operator has a status flag that indicates whether it
must process data or not and a finished flag that indicates whether the operator should
exit the Execute() function. Thus, it is necessary for the operator to check its inbox
frequently, since the monitor or some other operator might have sent an appropriate
message. The operator will exit the while loop when the finished flag will turn its
value form false to true. The DataProcess() function is not implemented in the

Executionltem class, but by a concrete sub-class that overrides this function.

Table 3.1 The Execute() function of the Execution Item class

Sub Execute ()
InitExecute ()
wWhile (Not OperatorStatus.Finished)
InboxManagement (}
If (OperatorStatus.Stalled) Then
Thread.Sleep (EngineStallTime)
Else '
DataProcess ()
End If -
End While
EndExecute ()
End Sub

In any case, though, a critical point in our design has to do with the implementation of
the DataProcess() function. As we shall see later in this section, the inbox of an
operator receives messages from a monitor of the engine, with directives on when the
current round of its execution completes and another operator must be activated. If we
want an operator to relate to these notifications, the DataProcess() function must be
constructed in such a way that it processes a small number of data -- small enough, so
that their processing will have been completed before the designated deadline arrives.
Moreover, the implementation of the DataProcess() function must respect the

constraint that whenever the output queue is full, the operator must be stalled.

37

As seen in Figure 3.8 the recordsets of the scenario can be instantiated as Readers or
Writers. These classes are responsible to feed the workflow with input data or store
the output data, correspondingly. Every Reader or Writer uses a proxy inside the
DataProcess() function. The proxy is simply a wrapper for objects that read from (or
write to) text files, databases etc. Depending on whether the recordset is used for
reading, writing or both, we define the correct proxy to instantiate, e.g., a FileReader
or FileWriter class. In Table 3.2 we see the implementation of the DataProcess()
function of a Reader class. The Status variable keeps the status of the consumer's data

queues. If the queues are full the operator must stop processing data.

Table 3.2 The DataProcess() function of a Reader

Protected Overrides Sub DataProcess()

Dim Status As Boolean

For I As Integer = 1 To EnginePackSize

If (CurrentTuple Is Nothing) Then 'Reached End Of Input
OperatorStatus.Finished = True

MyProxy.ReadTuple (CurrentTuple)

Exit For
Else
Status = ForwardToConsumers (CurrentTuple)
If (Not Status) Then
StallThread ()
BExit For
End If
End If
Next
End Sub

The activities of the scenario will be instantiated to a sub-class of the Execution
Activity class. The DataProcess() function will contain the code that reads from its
data queues, process the tuples and then forwards them to its producers. In Table 3.3
we see the implementation of the DataProcess() function of a Filter class. Again the
operator must check the status of the consumer's queue, and if they are full the data

processing must temporarily stop. In other activities, such as joins the DataProcess()

function is more complex; yet the logic is the same. In every case the DataProcess()..:v |

A\,

—

Fira

i,
Z

g
i

38

function must process only a small amount of input data, so that the operator can

check its inbox frequently.

Every Execution Item has a Status object. The Status class simply holds some flags
and values for the status of the operator. This class acts as a grouper of these values,
simply to keep the code organized and nice. The values that a Status class gathers are:
— Stalled (boolean): This value, if true, allows the operator to call the
DataProcess() function
— LastMessage (boolean): This value is set true only when the operator will not
receive any more messages from its producers. This will happen only if all of
its producers are finished.
— Finished (boolean): This value is set true if the execution of the operation is

complete.

-

. Table 3.3 The DataProcess() function of a Filter

Protected Overrides Sub DataProcess()
Dim Status As Boolean = True

Producer.Queue.GetData (InPack)
If (InPack Is Nothing) Then
1f (OperatorStatus.LastMessage) Then
OperatorsStatus.Finished = True

StallThread()
End If
Else -~
While (InPack.GetRow{(CurrentTuple)) .
If (FilterCalculator.Evaluate{(CurrentTuple)) Then
Status = Status And ForwardToConsumers (CurrentTuple)
End If
End While
If (Not Status) Then
StallThread()
End If
End If
End Sub

Else -

PR

e

39

3.7.2. Monitor functionality and messages

The Monitor thread is responsible for the correct initialization and execution of the
scenario. The execution of this thread has three basic steps. The first step is to create
the physical object with respect to the logical objects the Loader created. In our
system this mapping process is done by the Optimizer class. For all source recordsets
the Optimizer returns a Reader object, and for target recordsets it returns a Writer
object. For activities the Optimizer returns an object that inherits the
ExecutionActivity() class. Since designing an Optimizer is not part of this thesis, the
user defines explicitly e.g., which join activity prefers. Also during this process the
Optimizer assigns a unique id to every operator. This id is used as an identifier so that
threads can communicate to each other. Moreover, the Optimizer performs a simple
check on the graph. Some errors, such as the incorrect definition of an edge, that were
not detected from the parsing process will be found here. The Optimizer also makes

sure that every thread knows its producers and consumers data queues and mailboxes.

After creating the physical objects, the monitor raises the threads of every operator by
calling the Execute() function and then the monitoring process starts. This is the basic
functionality of the monitor. When the execution starts all threads begin in stalled
mode and simply wait for a message from the monitor to begin the execution process.
The monitor uses an ArktosScheduler object, which selects the next thread to activate.
Its interface is simple; on creation it creates a list with all threads. The NextActivity()
function returns the id of the selected thread and the Remove(ld As Integer) function
removes a thread from the list. This function is used when a thread is finished, to
remove it from the list of the scheduler. Every time the monitor wants to activate a
thread and allow it to execute, it must use the NextActivity() function to select the best
operator according to the scheduier.

The monitoring process is a loop in which the monitor thread checks its mailbox and
gathers some statistics. The stati;tics it gathers concern the required memory during
the scenario exccution. The monitor checks its messages to see when an operator has
stalled or finished its execution. Depending on the message the monitor acts

accordingly. Every operator has a mailbox and knows the mailbox of the monitor, as

40

well as its neighbors. All these objects communicate by sending messages. There are
a few message types that the threads use. In Table 3.4 we see a brief description of the

message types.

Table 3.4 The message types of the ETL engine

Message type Description
This message is sent among operators so that an
MsgEndOfData operator will notify its consumers that it has
finished producing data.

This message forces the thread t terminate even if
MsgTerminate the data process is not complete. If it sent to the
monitor it notifies that the sender has terminated.

When an operator receives this messége it resumes
MsgResume the data processing by switching the flag Stalled to
false.

When an operator receives this message it stops
MsgStall temporarily processing data by switching the flag
Stalled to true.

This message type is used to force all operators to
execute once the DataProcess() function. This is
MsgDummyResume used only when the scheduler could not select the
next thread. This will give the chance to the
operators to update some flags used internally.

3.7.3. Unary activities

—~~

These activities are filters and function activities. They have only one input edge and
they are rather simple to implement. The function activities simply change a field of
the tuple and forward the result tuple to its consumers. The filter activities are also
simple and check the tuples they process based on a constrained defined at the

semantics of every activity. This could be a domain filter or a null check.

41

Our implementation supports filters that compare fields with constant values that are
of type integer, double and string. Also the filters can perform a null check for a set of
fields. Every filter uses an instance of a SingleTupleEvaluator class. This class is
abstract and it is instantiated to a specific concrete object when the filter is initialized.
For example, if the filter performs the check "age > 0" the evaluator object will be an
instance of the IntegerBigger class, because the field "age" is of type integer and the
comparison is of type "bigger". If the filter performs a null check the instance will be
the NotNullCheck class, which also inherits the SingleTupleEvaluator class. Selecting
the correct evaluator is simple and should be done at the initialization of the
execution. Using the evaluator is straightforward, since all that is necessary is to call
the Evaluate(Tuple As String) which will return a Boolean value, indicating whether

the tuple is to be kept or rejected.

3.7.4. Binary activities

The binary activities our system supports are Join, Surrogate Key, Diff (with sort-
merge and nested-loops variants) and Aggregaror. These activities are blocking (or
semi-blocking in the case of nested-loops) since they have to gather all input data to
text files and sort them. Every operator handles these files. These operators have two
stages of execution.

The first stage simply collects all input data and places them at a file. When all input
is put into the file, it is sorted on the join field (except from the case of nested-loops
activities, where only one input is blocking and this input is stored to a file).

The second stage is the joining process, where the sorted inputs are read and joined.

In the case of the aggregator in this stage the grouping process occurs.

T"he SMJoin class performs a join, based on the join condition provided. If there is no
match, no tuple will be produced. The SMSkey class adds a surrogate key to the tuple
based on a lookup table. The SMDiff class implements the diff operation on the two
input datasets. The Aggregator class groups the tuples based on one or more fields

and calculates all aggregate functions (maximum, minimum, sum, average and count).

42

3.7.5. Sorter

The sorter is a useful tool that allowed us to implement the binary operators
mentioned above. The file that is used to store the incoming tuples is handled by the
VBSorter class. When a tuple is stored to the unsorted file, one extra field is put on the
start of the tuple. This field is the sorting field. In some cases we need to sort with
more than one field. In this case we sort with the concatenation of the sorting fields.
In order for this technique to work, each sorting field must be of equal size, so we use
padding to achieve equality in the length of the sorting fields. For padding, we use the
space character. When a sorting field is a string or date we add padding from the left
and when the sorting field is an integer or double we add padding from the right. This
trick allows us to treat the sorting field as a string. The concatenation of the fields is

done after the padding is added.

When the operator calls the Sort() function the sorter runs a batch file in which the
input data are sorted. We use an external program to sort our files, borrowed from the
cygwin UNIX emulator [Cygwin07]. Before using this sorter, we tried to find the
source code of a file sorter, but we didn't find something that would suite us. In all
cases the sorting process was very slow. For instance one of the sorters we found
required two or three hours to sort a few hundred tuples, while the cygwin sorter
managed to finish sorting in a few seconds.

The unsorted data are put in text files. Putting all input in one file creates one big file
that the sorter cannot sort; there was no CPU utilization and the function never
returned. To override this difficulty we adopted ;ﬁe following approach. The input is
spitted into many text files. Every such file has a maximum capacity of 1,000,000
rows. If the unsorted input is more than 1,000,000 rows, it is divided to many such
files. Then, every file is sorted separately and then merged, again with the help of the
Sort() function. When the sorting is complete, the Sor#() function retums and when
the operator asks for a tuple the sorter removes the unnecessary sorting field from the

tuple and returns it to the caller.

43

CHAPTER 4. SCHEDULING ALGORITHMS

4.1. Problem formulation
4.2. Categories of algorithms
4.3. Round Robin

4.4. Minimum Cost

4.5 Minimum Memory

In this section we formalize our problem suggesting a mathematical definition. Then
will describe the algorithms we implemented, and finally discuss a few simple

examples of how these algorithms work.

4.1. Problem formulation

Consider a graph G(V,E), and V = VA (94 VR =V, v { VSOURCE L/ v TARGET Y VINTERM}-
V4 denotes the activities of the graph and Vy the recordsets. ¥ can be further divided

into three disjoin sets; for the source, intermediate and target recordsets.

Also the set of all the nodes of the graph can be considered as V = {Venisuep U
Veanpipates}, where Veanpipares is the set of operators that are active and participate

in the execution and Vevsyep is the set of nodes that have finished their processing.

b g

-~

For each activity node ve ¥V, we define:
~ u(v), as the consumption rate of node v.
— queue(v), as the sum of all input queue sizes (not capacity) of node v
— 0y, as the selectivity of node v.

For each recordset node ve V3 we define:

— H(v), also as the consumption rate of node v.
Furthermore, for each source recordset node ve Vs we define:

—~ volume(v) as the size of the recordsets input of node v.

We consider T as an infinite countable set of timestamps and a scheduler with policy
P. The scheduler divides T into disjoint and adjacent intervals T = T; U T, U ... with:
-~ T =[T.first, T;.last]
~ Tilast= Ty first - 1

Whenever a new interval 7; begins, (at timestamp 7.firs?) the scheduler decides one or
some of the following actions; Option (1) is mandatory.
1. active(T), the next activity to run,
2. T.last. This value is the timestamp that the operator active(T) will stop
execﬁting. In other words it is T;./ength(), the schedulers time slot.
3. Status of all queues at T}./ast.

The operator active(T;) will stop its processing if one of the following occurs:
1. clock = T.last. That means that the time slot has exhausted.
2. gqueue(active(T})) = 0. This means that th; active operator has no more input
- data to process.
3. Fv, ve consumer(active(T;}) such that queue(v) = M{V)ns. This means that

one of the consumers of the active activity active(T;) has a full input queue.

At this point we must check if active(T;) should he moved to Vrmsyep. In order for an

operator v to be moved to Vevisuzp, both of the following must be valid.
— V ve producer(active(T})), ve Vrsyep, and

— queue(active(T})) = 0 or volume(v) =0, if ve Vsource.

A workflow G(V, E) ends when V = Vgisuep. The interval during which this event

takes place is denoted as T./ast.

o et amren . —— o

1 4

45

Based on the previous we can implement a scheduling policy P for a scenario G(V, E)

such that:

P creates an appropriate division of T into intervals T; U T, U ... Tiay

— Vit eT, v €V queue(v) < Max(queue(v)) (i.e., all data are properly processed).
— One of the following holds:

— Tiast is minimized, Ty, is the interval where G stops

— max X queueri(v) is minimized, teT, veV.

Table 4.1 Categories of scheduling algorithms

Category Description

Token Based ?Vcry operator has a token, and based on that the

scheduler assigns the CPU

This category contains scheduling policies that target

Execution Time ? , L
: to optimize the system's execution time.

Such scheduling policies try to.improve the systems

Response Time .
response time

In this category the scheduling policies aim to

Mem S . . .
ory minimize the required memory during the execution

4.2, Categories of algorithms

While studying the related work we discermned four basic categories of algorithms. The
first category includes the token based algorithms, such as Round Robin. These
algorithms are used mostly as a baseline to compare other algorithms. The second
category includes the algorithms that aim to reduce the total execution time. In the
third category reside the algorithms that aim to improve the response time and the last
category includes the algorithms that target to reduce the required memory during the
execution. In Table 4.1 we see these categories with a brief description. As mentioned
in chapter 2, the improvement of response time is npt a requirement, thus we choose

to design one algorithm from every category apart from the third one. Therefore, we

46

concentrate on the three other categories, and propose one policy for each of them
(Table 4.2).

Table 4.2 Scheduling steps of the studied scheduling policies

RR MC MM

Pick Next | Operator ID | Max Input | Max tuple
Queue Size | consumption

Reschedule when Input queue | Input queue

. . Time slot
is exhausted | is exhausted
Max (S. C.),
Not Null Min{S.C.) h'l‘ax {g. (C:;.
i Group by in (S.C.
v gn Koy, DerveFnc (Nation Key, Group by

Part Key)

14

rd

Sum(T.C.)

Ni":up’:)‘ Sum(T.C)
(Nation Key, Group by
Phone Format

(NE!IQ;: .‘i‘iy; c(’g:o:;;n Supp Key) (Supp Key)

13

——

Figure 4.1 An example butterfly scenario.

4.3. Round Robin

The Round Robin (RR) scheduling algorithm is very simple to implement since its
only requirement is to assign a unique identifier to every operator and order them with
this identifier. Then, based on this order the scheduler sets the operators to run. This

simple algorithm has some very good properties; every operator gets the same

47

chances to run (fairness) and it will not lead the system to starvation. In Figure 4.1
there is an example scenario with their operators (activities and recordsets) numbered.
The numbering is random. This scenario will be used as an example so that we can
demonstrate how the scheduling algorithm works.

The Round Robin algorithm selects the operators based on their identifier. At start up
only operators 1 and 2 can do some data process. The algorithm selects at first
operator 1. The scheduling that Round Robin will apply is presented in Table 4.3. In
step 10 the operator 10 is set to run, but at this point 10 has no data to process, since 9

is blocking.

Table 4.3 Scheduling steps of Round Robin

Step Can Select Selects

1
Next(1)=2
Next(2)=3
Next(3)=4
Next(4)=5
Next(5) = 6
Next(6) =7
Next(7) =8
Next(8) =9
Next(9) =10

—
[

Q|0 Q]| Sfwito
O[R[N RN A (WIN

P—
o
—
o

4.4, Minimum Cost

The Minimum Cost (MC) scheduling algorithm minimizes the scenario’s execution
time. This is achieved by minimizing any overhead that occurs from the scheduler and
mainly from the communications between the threads. The operator that is selected
must have data to process, and pre‘ferably, this will be the operator with the most input
data. In addition, no time slots are used, so that the selected operator can process all
its input data with no interrupts from the monitor thread. We consider that all

operators that read data from an external source are always available for execution. In

48

“

order to demonstrate the scheduling of the Minimum Cost algorithm we will use the

example in Figure 4.1.

Table 4.4 Scheduling steps of Minimum Cost

Step Can Select Selects
1 1(R),2(R) 1
2 1R),2(R),3(100) 3
3 1(®R),2(R),5(90) 5
4 1(®R),2(R), 6 (80),8(80) 6
5 1(R),2(R),8(80) 8
6 1R),2 R), 2
7 1 (R),2(R),4(100) 4
8 1(R),2 (R),7 (50) 7
9 1(R),2(R),8(30),9(30) 8
10 1(R),2(R),9(30) 9

In Table 4.4 we see how the Minimum Cost algorithm works. The second column
shows the id's of the operators that are candidates for execution accompanied with the
size of their input queue. Since some operators are Readers (i.e., proxies for source
recordsets and as such they continuously retrieve the next available tuple from their
recordset, which they add to their input queue), \;;e use the symbolism (R). The third
column has the choice of the scheduler. In every step, the scheduler selects the
operator with the biggest input size. Between operators with equal input size, we can

select either, without affecting the performance of the execution. -

4.5. Minimum Memory

The Minimum Memory (MM) scheduling algorithm tries to schedule the operators in a
way that the maximum and average memory that the system requires during the
execution of a scenario is minimized. The scheduler must select the operator that will
consume the biggest amount of data. The amount of data an operator consumes is the
data that the operator removes from memory, either by rejecting the tuples or writing

them into a file, for a specific portion of time. In order to achieve this scheduling we

1 4

49

need small selectivity as well as large processing rate and input size from the
preferred operator. The input size should be large so that the operator can process and
possibly reduce many data. The selectivity needs to be small enough so that the
operator can actually consume its input tuples. Finally the processing rate should be

large in order for the data consumption to occur as fast as possible.

Alternatively we could compute the consumption rate directly, considering the
number of tuples consumed (input data - output data) divided by the processing time
of the input data. The overall memory benefit is the input size of an operator

multiplied by its input size, as seen in equation (4.1).
MemB(p) = ((In(p) — Out(p)) / ExecTime(p)) * Queue(p) Eq. 4.1

In this equation p is the operator. /n(p) and Out(p) denote the number of tuples that p
has as input and as output respectively. ExecTime(p) is the time the operator p needed
- to process the In(p) tuples. Queue(p) is the number of tuples that are in p's input
queues. The MM scheduler selects the operator with the biggest MemB() value at
every scheduling step.

Table 4.5 Scheduling steps of Minimum Memory

Step Can Select Input Size Selects
1 1R),2(R) 1
2 1(-0.16) 3(11) 3
3 1 (-0.16) 5(11) 5
4 1(-0.16) 8(11) 8
5 1(-0.16), 8 (0.27) 8(6),6(5) 8
6 1(-0.16) 6(11) 6
g 7 1(-0.16) 1®R),2((R) 1
8 . "~ 1(-0.26),3(5.75) 3(23) 3
9 1(-0.26),5(1.3) 5(23) 5
10 1(-0.26),6(1.03),8(1.13) 6 (23), 8(23) 8
11 1(-0.26) 6(23) 6

When the scenario starts to execute, no operator has processed any data, so the above

formula cannot apply. In this case we use the logic of Minimum Cost algorithm, so the

50

operator with the biggest input size is selected. In Table 4.5 we see how the MM
algorithm behaves. The second column contains the calculations of MemB(p) for
every scheduling step. In every step, some operators are omitted becaﬁse the MemB()
value is equal to 0. In such a case, or when all operators have a negative MemB()
value, we select an operator based on its input size. The third column contains the

input size for every operator in every scheduling step.

3
4
4
!
J

51

CHAPTER 5. EXPERIMENTS

5.1. Measures and Parameters
5.2. Datasets

5.3. Scenarios and data sources
5.4 Tuning scheduling policies
5.5. Line workflow

5.6. Wishbone workflow

5.7. Primary flow workflow’
5.8. Butterfly workflow

5.9. Tree workflow

5.10. Fork workflow

5.11. Observations deduced from experiments

This section provides the details for the experiments performed in order to test the
efficiency of the Arktos scheduler. The first section of this chapter describes the
metrics and the measures that are of interest, the second section has a brief description
of the datasets used during the experiments and the remaining sections present and
comment the experimental results. In Table 5.1 we see the hardware and software

specifications of the computer we conducted the following experiments.

52

Table 5.1 Development environment

Hardware
CPU Dual Core 2 @ 2.13 Ghz
M/M 1 GB
Hard Disk 230 GB
Software
: Windows XP
Operating System Professional SP2
Development . .
Software Visual Studio 2005, SP1
Programming VB 2005, C# 2005
Language NET 2.0 framework.

5.1. Measures and Parameters

The measures that concern us in this thesis are following:
— Execution Time
o Execution time is a basic measure to quantify each scheduling policy's
efficiency.
— Memory consumption
o Memory consumption measures the memory requirements of every
scheduling policy during execution. We are concerned for average, as

well as, maximum memory requirements. In regular time intervals we

get a snapshot of the system, keeping information for the size of all .

queues. We keep the maximum value and a sum, which gives

eventually the average memory.

—~.

The input parameters that will be used to quantify the above measures will be:

— Workflow size
- The number of activities in an ETL scenario will have an effect on the
above measures. The kind of activities (blocking or non-blocking) is also a
considerable parameter.

- Workflow selectivity

¢

ot

33

— If in an existing scenario most of the input data are dirty, the execution
time and the memory requirements can be affected. As workflow
selectivity we consider the selectivity a workflow has from its sources to
its body (Figure 5.1).

— Time Slot

— This parameter defines the time interval that each operator runs. At the end

of each time interval the scheduler selects the next operator.
— Row Pack Size

~ The selected size of the row pack defines the granularity of the

DataProcess() function.
— Queue size

— Using various queue sizes we can see whether the execution time will
increase linearly with the input size, and if there are any changes in the
memory minimization algorithm.

— Workflow Structure

— We handle the complexity of workflow characteristics with a set of
characteristic scenarios' instead of employing large and randomly
generated workflows. To this end, a broad category of workflows is used,
called Butterflies [Tzio06]. A butterfly is an ETL workflow that consists of
three distinct components: (a) the /eft wing, (b) the body and (c) the right
wing of the butterfly. The left and right wings are two non-overlapping
groups of nodes which are attached to the body of the butterfly. In Figure
5.1 there is the basic structure of a butterfly workflow. Different variations
of this structure are used in the experiments, which are discussed in section
5.3.2.

"We tune row pack, time slot size and queue size parameter for every scheduling
policy. We determine best possible values with micro-benchmarks so that we can
proceed to the experiments. In $ection 5.4 we present the experiments we conducted

to determine these values.

54

N Left wing Right wing R

/!

[
\\133
~
S

‘_.a—--.—mn-u-ﬁ-—‘
7

Figure 5.1 The basic structure of a butterfly workflow.

5.2. Datasets

One popular benchmark for evaluating database systems is the TPC-H benchmark.
Recently the TPC-DS benchmark was released, as a follower of the TPC-H. A draft
version of the TPC-DS benchmark is also available. |

»

5.2.1. TPC-H

The TPC Benchmark™ H (TPC-H) [TPCHO7] is described as a decision support B
benchmark. It consists of a suite of business oriented ad-hoc queries and concurrent
data modifications. The queries and the data pepulating the database have been
chosen to have broad industry-wide relevance. Also, this benchmark illustrates
decision support systems that examine large volumes of data, execute queries with a

high degree of complexity, and give answers to critical business questions.

TPC-H evaluates the performance of various decision support systems by the
execution of sets of queries against a standard database under controlled conditions.
The queries that this benchmark provides give answers to real-world business

questions and simulate generated ad-hoc queries. They are far more complex than

e

55

most OLTP transactions and they include a rich breadth of operators and selectivity
constraints. Also, they generate intensive activity on the part of the database server
component of the system under test. The relational schema of the data that TPC-H
provides consists of eight separate tables, as illustrated here in Figure 5.2. It describes
a sales system, keeping information for the parts and the suppliers, and data about
orders and the supplier's customers. The dataset can be generated in variety of sizes

up to 100 TB. Update datasets are also provided but in this benchmark there are no

update functions.

LINEITEM
PARTSUPP Y SR
L P r—l
supmEy —J
Avanary '
e : : ORDERS
. SUPPLYCOST - —
e ——— o SROEREY
o s@E i e L' CUBTKEY - 3-
m e 2 TOTALCOST e
" CONTAIMER : -
it o . REGION CUSTOMER

Figure 5.2 The TPC-H relational schema.

’5.2.2. TPC-DS

-

The TPC Benchmark™ DS (TPC-DS) [TPCDS07], [OtPo06] is a new Decision
Support (DS) workload being developed by the TPC. This benchmark models the
decision support system of a retail product supplier, including queries and data
maintenance. Although the underlying business model of TPC-DS is a retail product

. . . iy
supplier, the database schema, data population, queries, data maintenance model and ™

v
-
-
e
!

56
implementation rules have been designed to be broadly representative of modem

decision support systems.

The relational schema of this benchmark is more complex than the schema presented
in TPC-H. There are three sales channels, store, catalog and the web. There are two
fact tables in each channel, sales and returns, and a total of seven fact tables. In this
dataset the row counts for tables scale realistically. Specifically in fact tables the row

count grow linearly, while in dimension tables grow sub-linearly.

This benchmark also provides update data. Moreover it has a set for update functions.
All these functions are primary flows, in which surrogate and global keys are assigned

to all tuples.

5.3. Scenarios and data sources

This section contains all the experimental scenarios we have designed in order to test
our system. As a source for the experiments the dataset from the TPC-H benchmark
was used, in various sizes. The dataset is about a sales system. The information kept is
for the parts and its suppliers. Also detailed information is kept about the orders that
the suppliers have, and some demographic data for the customers. The scenarios that
are used in the experiments clean and transform the source data into the desired
warchouse schema. The schema of the data warehouse consists of the table PART
(s_partkey, name, mfgr, brand, type, size, container, comment), the table SUPPLIER
(s_suppkey, name, address, nationkey, phone, acctbal, comment, totalcost), the table
PARTSUPP (s _partkey, s suppkey, availqty, supplycost, comment), the table
CUSTOMER (s_custkey, name, address, nationkey, phone, acctball, mktsegment,
comment), the table ORDER (s_orderkey, custkey, orderstatus, totalprice, orderdate,
orderpriority, clerk, shippriority, comment) and table LINEITEM (s_orderkey,

partkey, suppkey, linenumber, quantity, extendedprice, discount, tax, returnflag,

linestatus, shipdate, commitdate, receiptdate, shipinstruct, shipmode. comment,

profit). The relational schema of each source is similar to the TPC-H schema in

Figure 5.2.

57

5.3.1. Data Sources

The sources for our experiments are of two groups, the storage houses and the sales
points. Every storage house keeps the data for the suppliers and the parts, while every
sale point keeps the data for the customers and the orders. The storage house schema
consists of the table PART (partkey, name, mfgr, brand, type, size, container,
comment), the table SUPPLIER (suppkey, name, address, nationkey, phone, acctbal,
comment) and the table PARTSUPP (partkey, suppkey, availqty, supplycost,
comment) who relates the previous two. The storage house is in Figure 5.3.

SUPPLIER

PARTSUPP

“AVAILGYY -

PR S
£ SUPPLYCO!
o

Figure 5.3 The storage house relational schema.

The sales point schema consists of the table CUSTOMER (custkey, name, address,
nationkey, phone, acctball, mktsegment, comment), the table ORDER (orderkey,
custkey, orderstatus, totalprice, orderdate, orderpriority, clerk, shippriority, comment)
and table LINEITEM (orderkey, partkey, suppkey, linenumber, quantity,
~extendedprice, d_iscount, tax, returnflag, linestatus, shipdate, commitdate, receiptdate,

shipinstruct, shipmode, comment), The schema of the sales points is in Figure 5.4

i
58
LINEITEM
 ORDERKEY ..
ORDERS , .
- PARTKEY
 ORDERKEY - -
—_ ' SURPKEY
[c ' " LINENUMBER ©
. ORDERSTATUS —_—
. . QuANTTTY . 7 T
" TOTALPRICE — —
' " EXTENDEDPRICE .
ORDERDATE ——
CUSTOMER — T DIScouNT -
- ORDERPRIORITY =
e custEy. J o . - TAX
YJ . CUSTKEY s CLERK 2 —_ -
' S— RETURNFLAG |~
SHIPPRIORITY —
—— . UNESTATUS -
" . COMMENT _
L e SHIPDATE
[+ comaroare: i
" RecepToAtE .
SHIPINSTRUCT " :
rr . . ‘e e 4
' w‘t":'smpmbs %
e \
N wlwt. Foc ~ . i
Figure 5.4 The sales point relational schema. :
L
5.3.2. ETL Scenarios
The experiments for the cleaning of the data sources include many workflow types, '
which are explained in detail in [Tzio06]. These workflow types are: (a) line, (b) 1
wishbone, (c) primary flow, (d) butterfly, (¢) trée and (f) fork. The scenarios that -
appear in this section will be used to evaluate our system.

An example of a line workflow is in Figure 5.5. This scenario type is used to filter a
source table and make sure that the data meet the logical constraints of the data

warchouse. In the example in Figure 5.5 the applied operations are:
1. Checking the fields "partkey", "orderkey" and "suppkey" if they have NULL

values.
1 .
S sIRL)
W, >
>~ 23
- - = N .
I |
[u ¥
A T v
o T "~ -.\"-
’1_’.
<,
2

59

2. Converting the dates in the "shipdate" and "receiptdate” fields into a date id, a

unique identifier for every date.

(¥3]

This activity is a calculation of a value "profit". This value derives from other
fields in every tuple; is the amount of "extendedprice" subtracted by the values
of the "tax" and "discount" fields.

4. This activity changes the fields "extendedprice”, "tax", "discount" and "profit"
to a different currency. The results of this operation are loaded into the data
warehouse.

5. The workflow is not is not stopped since we would like to create some
materialized views. This operation keeps only the data that its return status is
“False".

6. This is an aggregation, calculating the sum of "profit" and "extendedprice"
fields grouped by "partkey" and "linestatus".

7. This activity keeps the tuplées that the "linestatus" field has the value
"delivered".

8. This final aggregation calculates the sum of "profit" and "extendedprice"

fields grouped by "partkey".

Sum (Profd),
Not Null Date Key . Currency Sum (Ext. Price) Sum (Proft),
Patiey, (SnpOste, EPhe, Robm Gopby(Pat LineStaus sum(Ext Prco)
Ordes Key, eceipt erive Fnc iscount, Sl::‘zs Key, Line S Group by (Par

Supp Key) Date) (Profit) Tax, Profit)

Figure 5.5 A Line Scenario

A wishbone workflow joins two tables into one, as appears in Figure 5.6. This
scenario is preferred when two tables in the source database must be joined in order to
be loaded to the data warehouse. The example scenario in Figure 5.6 has as input data
the tables "customer” and "orders".

1. This activity checks for NULL values in the "nationkey" field.

60

2. This activity converts the phone numbers in a numeric format, removing
dashes and replacing the '+ character with the "00" equivalent.

This is activity checks the "custkey” fields for NULL values.

The Date-Key activity is applied on the "orderdate” field.

This activity applies the currency operation on the "totalprice” field.

N » s W

On this activity the source tables are joined. The Sort-Merge Join activity will

be used at the experiments.

7. On the joined result an aggregation is applied calculating the sum and the
maximum of the "totalprice” field, grouped by the "nationkey" and "orderdate"
field.

8. This aggregator calculates the sum and the maximum of the "totalprice" field,

as in the previous activity, but grouped only by the "nationkey".

NotNuli Phone Format
(Natlon Key) (Phone)

Sum (T.P.),

Max(T.P) Sum(T.P),
Group by Max (T.P)

C_CustKey = {Nation Key, Group by
Order Date) (Nation Key)

Not Null Date Key ~ Currency
(Cust Key) (Order Date) (Tolal Price)

Figure 5.6 A Wishbone Scenario

The primary flow scenario is a common scenario in cases where the source table
must be enriched with surrogate and global keys. It is not a ling scenario because the
operator that adds surrogate keys to every tuple is a join variant. In general, a primary
flow could easily have a join operator. An example of a primary flow scenario is in

Figure 5.7. This primary flow scenario has as input the "lineitem" table

61

' 0
Linhe
Item

(1-4).The first four activities are the same four of the line scenario.
(5-7).The other three activities assign to each tuple a surrogate key for the

"partkey", "suppkey" and "orderkey" fields which are business keys.

Date Key Currency

Not Null

(Part Key (Ship Date, (Ext. Prica,

Supp Key', Receipt Discount, Derive Fnc

der Key) Date) Tax) (Profit)

SK {Supp

I Key)

SK (Order
Key)

Figure 5.7 A Primary Flow Scenario

The most common scenario type is a balanced butterfly scenario. It joins two or

more source tables into one, then a set of aggregations are performed on the result of

the join. The left wing of the butterfly joins the source tables, while the right wing

performs the desired aggregations producing materialized views. An example of a

butterfly scenario is in Figure 5.8. For this scenario the "partsupp" and "supplier"

tables are used as input.

1.

woR e

Checking for NULL values on the "partkey" and "suppkey" fields.

Calculating and adding to each tuple the "totalcost” field.

Checking the "nationkey" field for NULL values.

This activity transforms the "phone” field.

This activity joins results from activities 2 and 4 on the "ps_suppkey" and
"s_suppkey" fields.

Tl;is aggregation calculates the maximum and the minimum value of the
"supplycost” field grouped by the "nationkey" and "partkey" fields.

This aggregation calculates the maximum and the minimum of the

"supplycost" field grouped by the "partkey” fields.

62

8. This activity calculates the sum of the "totalcost" field grouped by the

"nationkey" and "suppkey" fields.
9. This activity calculates the sum of the "totalcost" field grouped by the

"suppkey" field.

Max (S. C.),

Min(S.C) Max (. C.),

Not Nut . Group by Min (S. C.)
(PatKey, Derive Fnc (Nation Key, Group by
SuppKey) (Total Cost) Part Key) (Part Key)

SP_Supp Key

Sum(T.C.)
Group by Sum (T.C)

(Nation Key, Group by

Supp Key) (Supp Key)

NotNull Phone Format
(Nation Key). (Phone)

Figure 5.8 A Balanced Butterfly Scenario

The tree scenario in Figure 5.9 joins two or more source tables and applies
aggregations on the result recordset. This tree scenario uses as input the "partsupp", -
"part" and "supp" tables.
1. This activity checks for NULL values the "suppkey" and "partkey” fields of
the "partsupp" table.]
2. This activity calculates the "totalcost" field for the tuples of the "partsupp"
table.
3. This activity checks for NULL values the "partkey" field of the "part” table.
4. This activity joins the transformed "part" and "partsupp” tables on the
"partkey" field of every table. ,
5. This activity checks for NULL values the "suppkey" fields of the "supplier"
table.
6. This activity transforms the "phone" field.

Ve

63

7. This activity joins the "supplier" table with the result of the activity (4) on the
"suppkey" field of every input.

8. The last activity aggregates the result of the activity (8), calculating the
maximum and the minimum value of the "totalcost" field, groupd by the

"suppkey" and "partkey" fields.

Not Null Deri
(3upp Key‘ enve
Part Key) (Total Cost)

Join
(PS_PartKey =
P_Partkey)

Not Null
(Part Key)

Max (TC), Min(TC)
Join (SuppKey ~ Group by (SuppKey,
= S_Suppkey) PartKey)

Not Null
(Supp Key)

Phone Format
(Phone)

Figure 5.9 A tree scenario

Finally the fork scenario applies a set of aggregations on a single source table. First
the source table is cleaned, just like in a line scenario and the result table is used to
create a set of materialized views. The tree scenario in Figure 5.10 uses as input the
"lineitem" table.
1. Checking the fields "partkey”, "orderkey" and "suppkey" if they have NULL
values.
2. Converting the dates in the "shipdate" and "receiptdate" fields into a date id, a
unique identifier for every date.
3. This activity is a calculation of a value "profit". This value derives from other
fields in every tuple; is the amount of "extendedprice" subtracted by the values
of the "tax" and "discount” fields.

64

>

. This activity changes the fields "extendedprice", "tax", "discount” and "profit"

to a different currency. The result of this scenario will be forwarded so that a

number of aggregations can be performed.

. This filter activity keeps the tuples where the "returnstatus” field has the value

l'mle“.

. This aggregator calculates the sum of the "profit” and "extendedprice” fields

grouped by the "partkey” and "linestatus” fields.

. This aggregator calculates the sum of the "profit" and "extendedprice" fields

grouped by the "linestatus" fields.

. This aggregator calculates the sum of the "profit" field and the average of the

"discount" field grouped by the "partkey" and "suppkey" fields.

. This filter activity keeps the tuples where the "discount” field has the value

"0"‘

10. This aggregator calculates the average of the "profit" and "exténdedprice"”

fields grouped by the "partkey" and "linestatus" fields.

Sum (Profit),
Sum (Ext. Price)
- ST:"""_ Group by (Part
us = Key, Line

True

Sum (Profit),
Sum (Ext. Price)
Not Null Date Key Currency
(Pant Key, (Ship Date, (Ext. Prics,
Order Key, Receipt Discount, Derive Fne
Supp Key) Date) Tax) {(Profit)

Sum (Profit),
Avg (Discount)
Group by (Pan
Key, Supp Key)

Avg (Profit),
Avg (Ext. Price)
Group by (Part
Biscount = 0 Key, Line

>

Figure 5.10 A fork scenario

65

5.4. Tuning scheduling policies

Our ETL engine has a few parameters that can affect the execution. These parameters

are:

— Time Slot: This value determines the size of the time slot the scheduler will
use. The time slot is determined in milliseconds.

— Stall Time: This value sets the duration each thread will remain stalled; is
measured in milliseconds.

— Data Queue Size (DQS): This value sets the maximum size of the systems
data queues. In data queues row packs are inserted.

— Row Pack Size (RPS): This value sets the size (number of tuples) of every

row pack.

The Stall Time value is used as parameter for the system command
Thread.Sleep(EngineStallTime). This command is not very reliable, since there is no
guarantee that the thread will continue its execution after sleeping for
EngineStallTime milliseconds. So we need to keep it very small; big values lead the
system to an idle state for some time. This occurs because the use of big values would
make the operators to be idle for a long period of time and also they would read their

messages long after it was sent. In all algorithms we used the value of 4 milliseconds.

We need to determine which set of values optimizes the execution of every scheduler.
For the RR and MC algorithms we will try to optimize the execution time, while in
the MM we will try to find a set of values that give smaller memory demands and
relatively good execution time. Using time slots in this RR and MC scheduling
policies would lead to more communication and scheduling overhead and finaily to a
bBigger execution time. In MC for example, consider an operator p than needs 150
msec to empty its data queue. If the time slot is 50 msec, the scheduler will interrupt p
two times before its queue is empty. The two interrupts are unnecessary and add
additional cost to the execution. Since our concern is to minimize execution time we
avoid such unnecessary scheduling interrupts by not using time slots. So in these two
policies we will conduct experiments to find an area of good values for the DQOS and

RPS parameters. For the MM algorithm we will use the values for the DQS and RPS

66
parameters from the previous experiments and try to find a good value for the 7mSI

parameter.

To conduct our experiments after tuning our scheduling policies we created variations
at the input size and the selectivity of the workflows.

— Conceming the input size, we used the data generator the TPC-H [TPCH07]
provided. The data generator has a scale factor (SF) that defines the size of the
data to be generated. When SF is set to 1, the data generator produces one GB
of data. For our experiments we created three datasets with scale factors 0.1,
0.5 and 1.0.

— Concerning the selectivity of the workflows, we changed the semantics of one
or more filter activities so that the desired selectivity occurred. The selectivity
values we used are 0.5, 0.8 and 1.0. This broad range will give us a good

perspective of how selectivity affects the execution of evety scenario.

5.4.1. Tuning Round Robin

To determine the values of DQS and RPS for ‘this scheduling algorithm we have
conducted two set of experiments. The first set aims to find a good area of values for
the DQS parameter, while the second set aims to find a good area of values for the
RPS parameter, For each set we have used two different scenarios, the butterfly in-
Figure 5.8 and a small line scenario, (a variation of the line scenario in Figure 5.5,
keeping only the first four activities). -
For the first set we have used four different values {100, 150, 200, 250} for the RPS
parameter. In Figure 5.11 we can see how RR behaves in the line scenario. For any
value of RPS, we observe that any value of DQS above 30 performs equally for any
value of RPS. For this range of values the execution time is very close to the best
execution time on this chart. When DQS has small values (< 30) the execution time is
bigger since small DQS values require much more scheduling steps; this means that

we have more scheduling and communication overhead. When there are many

67

unnecessary communications the system stays idle and there is not a good utilization

of the CPU.

- RR Small Line

w4ru RPS = 200
=3 RPS = 250

Exscution Time {soc)

DataQueue Size

Figure 5.11 Tuning DQS in the small line scenario (RR)

In Figure 5.12 there we can see the results of the RR algorithm with the butterfly
scenario. In this chart, the RR scheduler optimizes its execution time when the DQS
parameter has values bigger than 45. Greater values of DQS do not affect the

execution time of the scenario.

68

RR Butterfly

Execution Yime (sec)

10 20 30 40 70 80 90 100 110 120 130 140 150

DataQueue Size

Figure 5.12 Tuning DQS in the butterfly scenario (RR)

In Figure 5.13 and in Figure 5.14 we can observe the results for the second set of
experiments. We used for the DOS parameter te values {80, 100, 120}. The RPS
parameter has a range from 100 to 550 tuples. In both cases (small line and butterfly

scenarios) the execution time remains at the same levels with slightly a better

performance between 200 and 500. -
Table 5.2 Configuration of RR
Good Areas Conﬁguration
TmSli 0 0
DQS 30-150 100
RPS 200-500 400

Based on the above observations we end up with a good configuration for RR, which

is presented in Table 5.2. This configuration is used in the subsequent experiments.

Nt

69
—
Small Line (RR)
20
18
16
o 14
E 12 o= DataQueus Size = 80
E 10 i DataQueus Size = 100
-1 o iz DataQueue Size = 120
g 6 —w— ZeIpa4
4
2
0 %
100 150 200 250 300 350 400 450 500 550
RowPack Slze
-

 Figure 5.13 Tuning RPS in the line scenario (RR)

RR Butterfly

20 f

7

-3

gk |t Datatiucue Stze = 80
E amdinms Dal2Queue Size = 100
s +-m1evs DalaQueue Size = 120
? 10 —H— LpGd

o

- RowPack Size

Figure 5.14 Tuning RPS in the butterfly scenario (RR)

5.4.2. Tuning Minimum Cost

¥

We conduct the same set of experiments with RR for the MC scheduling policy. The
scheduling of RR and MC in the small line scenario is identical. We present results of
the MC scheduler only for the butterfly scenario. In Figure 5.15 the schedule behaves
in a similar manner with RR. While the value of DQS increases the execution time

decreases and when DQS is over 80 the execution time remains steady.

70

8

w—==RPS = 100

Execution Time (sac)
8 B

-
o

10 5E

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
DataQueue Size

Figure 5.15 Tuning DQS in the butterfly scenario (MC)

. .

In Figure 5.16 we can observe the behavior of MC at the second set of experiments
that tunes RPS. The execution time is not affectéd at all from the different values of
RPS we see on the chart. In Table 5.3 we can see the configuration we used for the

subsequent experiments.
¢
Table 5.3 Configuration of MC
Good Area: Configuration i
TmSI 0 0 |
DQS 80-150 100 !
RPS 200-450 400

e

71

MC Butterfly

=—4—DataQueue Size = 80
i~ DataQueue Size = 100
~z~~ DataQueue Size = 120
—n-— ZEIPG4

Execution Timo (sec)

100 150 200 250 300 350 400 450 500 550
RowPack Size

Figure 5.16 Tuning RPS in the butterfly scenario (MC)

3.4.3. Tuning Minimum Memory

For the MM scheduling policy we will use the same values for DQOS and RPS that we
selected for RR and MC. Using the same values we can get an objective perspective
of how good MM is. In Figure 5.17 and in Figure 5.18 we can see the execution time
for MM at the small line and butterfly scenario for different values in the time slot
parameter. As the TmS! increases the execution time decreases. The reason for that is
that a communication overhead occurs since more scheduling steps are required. For
the small line scenario MM seems to remain unaffected for 7mS! values. The

workflow size is a parameter for that behavior.

72

MM SmallLine

Execution Time (sac)

Scheduler Time Stot {msac)

Figure 5.17 Execution time and 7mS/ in the small line scenario (MM)

MM Butterfly

Execution Tima {sec)

Scheduler Time Siot (msec)

Figure 5.18 Execution time and 7mS] irrthe butterfly scenario (MM)

!

—ri

73

MM SmallLine

Rescrved Memory (#packs) .

Scheduter Time Slot (msec)

Figure 5.19 Max and avg memory and 7mS! in the small line scenario (MM)

In Figure 5.19 and in Figure 5.20 we observe how the memory requirements change
for different v;ilues of TmSI. Using smaller values in TmS! we achieve smaller
requirements in maximum and average memory. Considering the increase of
ex.ecution‘ time.for this range of TmS/, we choose to use for TmS/ the value 70. In

Table 5.4 we see the configuration of MM.

MM Butterfly

[u Meax Memory
| Average Memory

Rosev=rved Memory (#packs)

Scheduler Time Siot (msac)

Figure 5.20 Max and avg memory and 7mS/ in the butterfly scenario (MM)

ISRV
— .

3
//
e

PO

O e ol
PRERCWROT-SEr

74

Table 5.4 Configuration of MM

Good Areas Configuration
TmSI 60-70 70
DQS - 100
RPS - 400

5.5. Line workflow

The experiments we present in this section show the behavior of a line scenario

(Figure 5.5) with various input sizes as well with the workflow's total selectivity.

5.5.1. Effect of input size

The chart in Figure 5.21 shows how execution time changes in various inpui sizes.
MC performs better than RR especially in the cast of 1GB of data input, while MC is
more time consuming than MC and RR. In all three scheduling policies the increment
in the y-axis is practically linear, as one would typically expect from a linear

workflow. -

75

]
r Line Scenario 3

=g~ Round Robin
=B Minimum Cost
(==~ Minimum Memory

Execution Time (sec)

Input Size (in GB)

Figure 5.21 Execution time for a line scenario (Sel =0.5)

In Figure 5.22 and Figure 5.23 we can see how the average and maximum memory
requirements of the three scheduling policies. RR has the greatest requirements in
average memory. MC is a bit better than RR, while MM achieves a 50% smaller
memory consumption compared to MC and RR. All policies have the similar
maximum requirements in memory. Since MM has much lower average values, we

come to the conclusion that the result are not so often peaks during the scenario

execution.
Line Scenario

60
__ 50
H
ERLE:
> | ‘@Round Robin |

> g: 30 .-Mlmmum Cost

3 | 0 Minimum Memory
g» 20
2

10

0
input Size (GB)
Figure 5.22 Average memory for a line scenario (Sel = 0.5)

76

Line Scenario

Max Memory (tupies)

0.1

0.5
Input Size (GB)

& Round Robin
@ Minimum Cost
0 Minimum Memory

Figure 5.23 Maximum memory for a line scenario (Sel = 0.5)

5.5.2. Effect of workflow selectivity

In Figure 5.24 we see how our execution time changes for different selectivity values,
from 0.5 to 1.0. RR and MC are close but MC performs a little better. MM needs

more time to complete the execution.

200 {4
150

100

Execution Time (sec)

3

Line Scenario

Workflow salectivity

«g==Round Robin
== Minimum Cost
~wir= Minimum Memory

Figure 5.24 Execution time for a line scenario (SF = 0.5)

77

In Figure 5.25 and in Figure 5.26 we depict the memory requirements of each
scheduling policy. RR has the biggest requirements in average and maximum
memory. MC performs better and MM has smaller memory requirements than MC

and has similar maximum requirements.

Line Scenario

—
|m Round Robin

| Minimum Cost

{ O Minimum Memory

Average Memory (tuples)

Workflow selactivity

Figure 5.25 Average memory for a line scenario (SF = 0.5)

Line Scenario

n
8

@ Round Robin
1 |@Minimum Cost
1 |0 Minimum Memory

Max Memory (tuples)
g 8

8

0.5 0.8 1
~ Workflow selectivity

Figure 5.26 Maximu;n memory for a line scenario (SF = ().5)

5.6. Wishbone workflow

78

The experiments presented in this section show the behavior of a wishbone scenario

(Figure 5.6) with various input sizes as well with the workflow's total selectivity.

5.6.1. Effect of input size

The chart in Figure 5.27 shows how execution time changes in various input sizes.
MC performs better than RR when the input size is 0.5 GB or more, while MC is
more time consuming than MC and RR. In all three scheduling policies the increment

in the y-axis is practically linear.

Wishbone Scanario

180 TSR

- mm&gw ,
140 K —
g o ;
8 120 pE ¥
E100 Akrp \E| |=#=Round Robin
: i §l |-@—Minimum Cost -
g vy] | =~ Minimum Memory|
-
g 60
*
PV R -

20

0

{nput Size (GB)

Figure 5.27 Execution time for a wishbone scenario (Sel =0.5)

>

In Figure 5.28 and in Figure 5.29 we can see how the average and maximum memory
requirements of the three scheduling policies. RR and MC have the greatest
requirements in average memory. MM achieves a 60% memory consumption
compared to MC and RR. RR and MM have the similar maximum requirements in
memory. MC performs better for big input sizes. Again since MM has much lower

average values, it is safe to come to the conclusion that there are not so often peaks

during the scenario execution.

.

79

Wishbone Scenario !
g i
(-3
2 P
E: B Round Robin
g ®/ Minimum Cost
§ '0 Minimum Memory
>
g
<
0.1 0.5 1
Input Size (GB)
-
Figure 5.28 Average memory for a wishbone scenario (Sel = 0.5)
Wishbone Scenario
350 7=
300
7T 250
2 —
£ 200 1= 03 Round Robin
g & Minimum Cost
E 150 - ia Minimum Memory
g 100 £
50
0 LY AL ks
0.1 0.5 1
Input Size (GB)

Figure 5.29 Maximum memory for a wishbone scenario (Sel = 0.5)

5.6.2. Effect of workflow selectivity

>

In Figure 5.30 we see the performance of our engine in a wishbone scenario. MC is
clearly better than RR, but again MC is more time consuming than the others. It is
interesting though that all algorithms behave the same when the selectivity is above

0.8 the execution time does not increment as expected but practically remains the

same. This workflow has only one join operation; this opcration is costly, maiq}yj
AN

A3 <.

ATy
&

80

k4

because of the sorting actions this operator performs. The filter we used to achieve the
different selectivity values is applied on the small recordset. So the big recordset in all

cases is the same and its sorting process is the one that defines the sorting cost.

Wishbone Scenario

«=Round Robin
b= Minimum Cost
| =<~ Minimum Memorty

Execution Time (sec)

Woridlow selectivity

Figure 5.30 Execution time for a wishbone scenario (SF = 0.5)

In Figure 5.31 and in Figure 532 we see,our scheduling policies memory
requirements. For average memory, RR AND MC perform worse than MM who has a
very low average here. For maximum memory MC is performing better than RR and

MM, which have similar values.

81

[. —
! Wishbone Scenario |
|5
2
e
‘ 2
Y @ Round Robin
£ '@ Minimum Cost
f a Minimum Memory
[~]
e
2
<

0.5 0.8 1
Workflow selectivity

Figure 5.31 Average memory for a wishbone scenario (SF = 0.5)

Wishbone Scenario

8 Minimum Cost
0 Minimum Memory

Max Memory (tuples)

Workflow selectivity

Figure 5.32 Maximum memory for a wishbone scenario (SF = 0.5)

5.7. Primary flow workflow

b

The experiﬁaents we present in this section show the behavior of a primary flow

scenario (Figure 5.7) with various input sizes as well with the workflow's total

selectivity.

82

3.7.1. Effect of input size

The chart in Figure 5.33 shows how execution time changes in various input sizes.
MC performs slightly better than RR. Again MM is more time consuming than MC
and RR. In all three scheduling policies the increment in the y-axis is practically
linear. MC and RR are very close because all operators have data to process. There is
no operator that all its producers are blocking activities. Even so, MC is slightly

better.

Primary flow Scenario

3} , =4=Round Robin
, ==@ue Minimum Cost
| s Minimum Memory

Executlon Time (sec)

Input Size (GB)

Figure 5.33 Execution time for a primary flow scenario (Sel = 0.5)

In Figure 5.34 and in Figure 5.35 we can observe the average and maximum memory
requirements of our scheduling policies for the case of the primary flow scenario. RR
performs much worse that the other two. The reason for this is that RR will schedule
many recordsets before it schedules an activity that might consume data. Remember
that in a primary flow there are many input source recordsets because of many look
up tables. Concerning average memory MC has lesser requirements than RR and MM
is better than MC and RR. Concerning maximum memory RR has the biggest
maximum requirements in memory. MM is better than RR but MC is doing much

better.

Ve

83

————

Primary flow Scenario ,

[+2]
o

5]
(=1

&
o

@ Round Robin
8 Minimum Cost
0 Minimum Memory

Avarage Memory (tuples)
8 8

-
o

input Size (GB)

Figure 5.34 Average memory for a primary flow scenario (Sel = 0.5)

Primary Flow Scenarib

@

K

[}

2 @ Round Robin

E B Minimum Cost

5 0 Minimum Memory
3

3

Input Size (GB)

Figure 5.35 Maximum memory for a primary flow scenario (Sel = 0.5)

5.7.2. Effect of workflow selectivity

In Figure 5.36 we see the execution time of our scheduling policies for different

workflow selectivity values. RR and MC are close, with MC having slightly better

times. MM consumes more time to complete the execution of the scenario.

84

Primary flow Scenario

| == Round Robin
. ;=8 Minimum Cost

<= Minimum Memory

Execution Time (sec)

Workflow selectivity

Figure 5.36 Execution for a primary flow scenario (SF =0.5)

In Figure 5.37 and in Figure 5.38 we see the average and maximum memory
requirements of our scheduling policies for the primary flow scenario. RR performs
much worse that the other two. The reason for this is that RR will schedule many
recordsets before it schedules an activity that might consume data, because of the
presence of many input source recordsets (many look up tables). MC has less average
memory requirements than RR and MM is better than MC and RR. RR has the biggest

maximum requirements in memory. MM is better than RR but MC is doing better.

Primary flow Scenario

60 -
g, a
5% :
E 40 _‘ ‘ iﬂRound Robin
g - @ Minimum Cost
= 30 ¢ | 0 Minimum Memory
>
$
<

10

o p

0.5 08 1
Workflow selactivity

—

Figure 5.37 Average memory for a primary flow scenario (SF = 0.5)

85

Primary Flow Scenario

i +

2

' [-%
2 37 | @ Round Robin
g $ {m Minimum Cost 1
5 | &3 Minimum Memory
»
(-]
=

Workflow selectivity

Figure 5.38 Maximum memory for a primary flow scenario (SF = 0.5)

5.8. Balanced butterfly workflow

The experiments we present in this section show the behavior of a balanced butterfly
scepario (Figure 5.8) with various input sizes as well with the workflow's total

selectivity.

5.8.1. Effect of input size

The chart in Figure 5.39 shows how execution time changes in various input sizes in a
balanced butterfly scenario. MC performs better than RR. MM performs worse than
the other two. In all three scheduling policies the increment in the y-axis is practically

linear.

86

Butterfly Scenario

< 120 {2
§ g
o 100 £ ——
£ : —#-Round Robin
: 80 | ~h= Minimum Cost
Q { .
§ 60 I8 <. -Minimum Memory
w40 4

20

04 o . . >

0.1 0.5 1
Input Size (GB)

Figure 5.39 Execution time for a balanced butterfly scenario (Sel = 0.5)

In Figure 5.40 and in Figure 5.41 we see the memory demands of our scheduling
policies for a balanced butterfly scenario. RR has the greatest values in average and
maximum memory requirements, except when the input size is 1 GB, where RR and
MC have very close values. MM is doing very well since it manages to achieve véry
low average memory requirements, about 15% and 20% of the demands of RR and
MC. For this scenario MM has the lowest value in for maximum memory, especially
when the input size is 0.1 GB; the maximum valu; is very small comparing to RR and
MC. In a balanced butterfly scenario we have small non-blocking parts (sequence of
non-blocking operators) and many blocking operators. This forces the system to

gather all its input data temporarily many times. This state helps MM to avoid high™
memory peaks.

RLEY

87

Butterfly Scenario

= N
8 8

—— —

-
D
(=3

140 %
120 -

& Minimum Cost
i |0 Minimum Memory

Average Memory (tuples)
8

Input Size (GB)

Figure 5.40 Average memory for a balanced butterfly scenario (Sel = 0.5)

Butterfly Scenario

@ Round Robin
& Minimum Cost
0 Minimum Memory

N W

g

Max Memory (tuples)
g

g

8

0.1 a.5 1
input Size (GB)

Figure 5.41 Maximum memory for a balanced butterfly scenario (Sel = 0.5)

5.8.2. Effect of workflow selectivity

B2
In the case of the balanced butterfly workflow the execution time all of our scheduling
policies' increases linearly (Figure 5.42) as the workflow selectivity increases. Again

MC is a little better than RR, while MM is much more time consuming.

88

Butterfly Scenario X
I \
160 }
140 ?
L g 120
s .
e 100 .
& | —#—Round Robin |
v 8 |=@—Minimum Cost |
o ' .
S 60 & =~ Minimum Memory |
s !
w40 =
20
N
0.5 0.8 1
i Workflow selectivity

Figure 5.42 Execution time for a balanced butterfly scenario (SF = 0.5)

In Figure 5.43 an>d_ in Figure 5.44 we depict the average and maximum memory
requirements for our scheduling policies. RR and MC are close, but MC outperforms
RR when the selectivity is below 1.0. MM behaves very well since it requires only the
20% o.f average memory of MC and RR. Also, for the balanced butterfly workflow

MM has the best maximum memory requirements.

-

r
{ Butterfly Scenario
-
I 180
|
H - 160
[
[|
P ET —
Do 1207 /@ Round Robin
' g 100 @ Minimum Cost |
' 2 & aMin'munManotyi
N o
| € &
i 2
L 40
By
| ol
L Workflow ssisctivity

Figure 5.43 Average memory for a balanced butterfly scenario (SF = 0.5)

y -

e

89

Max Memory (tuples)
g 888 Y8

o

L

Figuré 5.44 Maximum memory for a balanced butterfly :scenario (SF=0.5)

5.9. Tree workflow .

The experiments we present in this section show the behavior of a tree scenario

(Figure 5.9) with various input sizes as well with the workflow's total selectivity.

3.9.1. Effect of input size

In Figure 5.45 we see the time performance of the three scheduling policies as we
vary the input size. Again RR and MC are very close, but MC is slightly better. MM

needs more time to complete the execution of the scenario.

90

Tree Scenario

i LV P ——

120 3L

g

Y |~e=Round Robin
=@=Minimum Cost
-=ze~ Minimum Memory

60 1

40 £

Execution Time (sec)

20 {

78.071875 431.978125 974,39375
input Size (GB)

Figure 5.45 Execution time for a tree scenario (Sel = 0.5)

In Figure 5.46 and in Figure 5.47-we see the memory requiremen'ts‘ for the tree
scenario. RR and MC are close, but MC is performing slightly better. MM has about
the 20-25% of RR's and MC's average memory requirements. In the case of the
maximum memory metric all policies are close except for- MC, where in the case of
0.1GB has a small maximum value, since the input is small (therefore the execution

time was also small), there were no peaks during the execution.

[4,]
o

Round Robin
B Minimum Cost
0 Minimum Memory

Average Memoty (tuples)
8 8 8

a1 05 1
Input Size (GB)

Figure 5.46 Average memory for a tree scenario (Sel = 0.5)

Tree Scenario -

91
' 0]
| Tree Scenario
| 250
|
!
| 200
Y
)
2 | P —
’ 2 150 '@ Round Robin
2 . B Minimum Cost
3 " ’ N
§ 100 0 Minimum Memory
] ;
= :
50
[(R
Input Size (GB)

Figure 5.47 Maximum memory for a tree scenario (Sel = 0.5)

5.9.2. Effect of worlgﬂov;) selettivity

In Figure 5.48 we can observe the time each scheduling policy needs to complete the
execution of a tree scenario. All three scheduling policies behave as expected. The

execution time increases slowly and RR is slightly worse than MC. Finally MM needs

KA O

more time to finish.

Tree Scenario

e

S
°
E I* Round Robin
= P! | e Minimum Cost
:3 £ |~—»~~Mlnimum Memory
H
W

gkt Rl

PARER NS VYA T
FAXSIT%
fd;?&ﬂ:aam

> »
TR
7 ”}, k)3

Workflow selectivity

A

5,

23
h;

Figure 5.48 Execution time for a tree scenario (SF =0.5)

92

In Figure 5.49 and in Figure 5.50 we can observe the memory requirements of each
scheduling policy. RR and MC have the biggest requirements in average memory.
MM has smaller average memory requirements. All scheduling policies have similar
maximum memory requirements except for the case of (sel=1.0) where MM has a

distinguishably bigger maximum value.

Tree Scenario
%0
80
g0
o0
2 50k 8 Round Robin
S 5
13 148 # Minimum Cost
2 40 i -
3 g Minimum Memory
o —
@ 30
s
L
10 }
0
0.5 0.8 1
Workflow selectivity
Figure 5.49 Average memory for a tree scenario (SF = 0.5)
]
r Tree Scenario
300 -~
250 ¢
w
< 200
£ B Round Robin
E‘ 150 ® Minimum Cost
E O Minimum Memory
£ 100
=
50
0
0.5 0.8 1
Workflow selectivity
Figure 5.50 Maximum memory for a tree scenario (SF = 0.5) [
-y

93

5.10. Fork workflow

The experiments we present in this section show the behavior of a fork scenario

(Figure 5.10) with various input sizes as well with the workflow's total selectivity.

5.10.1. Effect of input size

In Figure 5.51 we see the time performance of the three scheduling policies as we
vary the input size. Again RR and MC are very close, but MC is a little better. MM

needs much more time to complete the execution of the scenario.

Fork Scenario : :

j| | s=gm=Round Robin
== Minimum Cost
=z Minimum Memory

Execution Time (sec)

78.071875 431.978125
Input Size (GB)

Figure 5.51 Execution time for a fork scenario (Sel = 0.5)

In Figure 5.52 and in Figure 5.53 we see our scheduling policies' memory
requirements. Concerning average memory, RR performs worse than the other two,
while MC i a little better than RR. MM has a very low average here. For maximum
memory MC is performing much better than RR and MM, which have similar values.

Again when the input is small MM has the smallest maximum memory.

94

Fork Scenario

0O Round Robin
= Minimum Cost
0 Minimum Memnory

Average Memory (tuples)

input Size (GB)

Figure 5.52 Average memory for a fork scenario (Sel = 0.5)

” Fork Scenario

@ Round Robin
Minimum Cost
a Minimum Memory

g 8 & 8

Max Memory (tuples)
X
s

8

0.1 0.5 1
Input Size (GB) -~

Figure 5.53 Maximum memory for a fork scenario (Sel = 0.5)

5.10.2. Effect of workflow selectivity

In Figure 5.54 we see how our scheduling policies perform in the case of a fork

scenario. For all scheduling policies the execution time increases linearly. i

95

Fork Scenario

| === Round Robin
=t Minimum Cost
| ~5= Minimum Memory

Execution Time (sec)
H
g g

200 f~
T
Y IO g

Workflow salectivity

. Figure 5.54 Execution time for a fork scenario (SF = 0.5)

In Figure 5.55 and in Figure 5:56 we sec the average and ma.ugimum memory
requirements for a fork scenario. RR has the worst average memory requirements and
MC is doing a little better than RR. MM though outperforms RR and MC, having
very low average values. All three scheduling policies have similar values for

maximum memory.

Fork Scenario

250
g 200
[-9
2 e
E 150 @ Round Robin
5 & Minimum Cost
f 100 |Q Minimum Memory
o
g
< 50

Workflow selectivity

Figure 5.55 Average memory for a fork scenario (SF = 0.5)

96

' Fork Scenario

[]
Q
o

B
o
o

<
oQ
o

Max Memory {tuples)
N (4]
8 8

8

(-]

0.5 0.8 1
Workflow sslectivity

Figure 5.56 Maximum memory for a fork scenario (SF = 0.5)

' 5.11. Observations deduced from experiments

At first we conducted some preface experiments so that we can tune and optimize
each scheduling policy. For RR and MC we found a good set of values that optimize
the executions' time. For MM we chose asset of values that could give a good

execution time as well as distinctly smaller memosy requirements.

From our experiments we come to the following conclusions:

— RR: This simple scheduling policy does not perform well; in all cases was _ B
worse than MC, in terms of execution time and memory requirements, both
average and maximum.

- MC: This scheduling policy outperforms the other two for the execution time
metric. Also, in most cases it has better maximum and average memory
requirements.

— MM: This scheduling policy manages to outperform the other two, when it
comes to average memory requirements. MM could be used in an environment
where more than one concurrent operations run, and being memory efficient is

important, but memory can be available at peak times. ‘

3

97

In general, our three scheduling algorithms increment their execution time linearly as
the selectivity of a workflow or the input size increases. As the selectivity or the input
size increase, MC outperforms RR. Also, regardless of the input size or the selectivity
the average memory requirements are not affected. Also, when the execution time of a

scenario is relatively small, MM might not have any peaks at all.

99

CHAPTER 6. CONCLUSIONS AND FUTURE
WORK

6.1 Conclusions
6.2 Future Work

6.1. Conclusions

In this thesis we designed an ETL engine, powerful enough to support all possible

- data operations. The architecture of our engine is simple. Every logical-level activity

that participates in an ETL scenario is implemented in more than one physical-level
operators. Every operator participating in the scenario's execution is performed by
using a single thread. The threads communicate and exchange data, through the data
structures they share. Disk usage is necessary only by blocking operators for saving
data temporarily, e.g., when they need to sort their input and the size is too big to fit in
the system's main memory. The progress of the execution is controlled by a monitor
thread. The monitor thread performs the execution's scheduling. At every scheduling
step the monitor activates the operator the scheduler suggests.

In our system we have implemented three scheduling policies. Round Robin (RR),
Minimum Cost (MC) and Minimum Memory (MM). RR is a simple and fair
scheduling policy, since it schedules the operators according to a pre-defined order.
MC schedules the operator that has many data to process, achieving better execution
times. Finally MM is a time slot-based scheduling policy, and at every scheduling
step it selects the operator that consumes many data. We consider that an operator

consumes data when it process and rejects data.

100
Finally, a set of fiducial ETL workflows is proposed as an experimental methodology,
lacking related methodology in the research area of ETL tools. This well organized set

contains a broad variety of workflows covering many cases of ETL scenarios.

6.2. Future Work

There are many issues that are of interest for future research. The execution engine,
though well designed, can be expanded to a more mature architecture. Also, there are
a few issues concerning our scheduling policies.

— A set of well designed software modules (page-based database algorithms)
could be embedded so that the common operations supported by the engine
can function in a more efficient manner. For example, our external sorter is
one issue, since the engine has no control over it and any unexpected behavior
cannot be handled (e.g., a possible crash would require the sorting to start
over). The adaptation of optimizing techniques is also a good opportunity for
future research.

— A more specialized design for the physical-level object would offer the ability
to embed easily more activity types. The désign of binary and unary templates
is a first step towards this direction.

— One important issue in this engine is the communication cost we experienced
while conducting our experiments. A lighter and faster messaging system
could benefit all scheduling policies.

— A failure handling system could also be ggsigned, so that in case of a system
failure (e.g., process termination), the engine could recover and continue the
scenario's execution.

— MM can be improved so that we will not experience any peaks in maximum
memory requirements,

— Also a different approach could be used, based on the idea that some operators
need more memory to keep their input tuples, while the sum of all queues
capacity will remain fixed.

- Finally, adapting our scheduling policies in order to schedule not only one

operator at each scheduling step is of interest, since multi-core computers are

101

very common in our days. This could be achieved by having the scheduler to
propose two operators instead of one, the one that seems most appropriate and

the operator that is the second most appropriate.

[

Y

Nt

103

BIBLIOGRAPHY

[Asc03] Data Warehousing Technology.
Available at; http://www.ascentialsoftware.com/products/datastage. html/

[RntLRO7] A parser generator tool. Available at: http://www.antlr.org/

[BBDMO3] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, Chain:
Operator Scheduling for Memory Minimization in Data Stream Systems, SIGMOD
2003, June 912, 2003, San Diego, CA.

[CCR+03] Don Camey, Ugur Cetintemel, Alex Rasin, Stan Zdorik, Mitch Cherniack, -
Mike Stonebraker, Operator Scheduling in a Data Stream Manager, Proceedings of
the 29th VLDB Conference, Berlin, Germany 2003.

[Cygwin07] A UNIX emulator for Windows.
Available at: http://www.cygwin.com/

[DSRS01] Nilesh N. Dalvi, Sumit K Sanghai, Prasan Roy, S. Sudarshan. Pipelining in
MultiQuery Optimization, PODS '01 Santa Barbara USA.

[Gart03] ETL Magic Quadrant Update: Market Pressure Increases. Gartner’s
Strategic Data Management Research Note, M-19-1108.

[GFSS00] Galhardas, H., Floreséu, D., Shasha, D., and Simon, E. (2000). 4djax: An
Extensible Data Cleaning Tool. In Proceedings ACM SIGMOD International

Conference on the Management of Data, page 590, Dallas, Texas.

http://www.ascentialsoftware.com/products/datastage.html/
http://www.antlr.org/
http://www.cygwin.com/

104

(IBM07] IBM Data Warehouse Manager.
Available at http://www-306.ibm.com/software/data/integration/datastage/

[Infrm07] Informatica (2007). PowerCenter 8. Available at:
http://www.informatica.com/products/powercenter/

[Inmo02] W. Inmon, Building the Data Warehouse, John Wiley & Sons, Inc. 2002,

[Oracle07]. Oracle Warehouse Builder 10g. Retrieved, 2007.
Available at http://www.oracle.com/technology/products/warehouse/

[OtPo06] Raghunath Othayoth, Meikel Poess. The Making of TPC-DS, VLDB ‘06,
September 1215, 2006, Seoul, Korea.

[RaHe01] Raman, V., and Hellerstein, J. (2001). Potter's Wheel: An Interactive Data
Cleaning System. In Proceedings of 27th International Conference on Very Large
Data Bases (VLDB), pages 381-390, Roma, Italy. -

[Sched06] Description of scheduling algorithms in Wikipedia, 2006.

http://en.wikipedia.org/wiki/Scheduling%28computing

[SiVS05] A. Simitsis, P. Vassiliadis, T. Sellis. Extraction-Transformation-Loading
(ETL) Processes. In L.C.Rivero, J.H.Doom, V.E.Ferragine (eds.), Encyclopedia of
Database Technologies and Applications, Idea Group, August 2005, ISBN 1-59140-
560-2.

[SSIS07] Microsoft. SQL Server 2005 Integration Services (SSIS).
Available at: http;/technet. microsoft.com/en-us/sglserver/bb331782.aspx/

[SVSS03] Simitsis, A., Vassiliadis, P., Skiadopoulos, S., and Sellis, T. Modeling of
ETL Processes Using Graphs. In the Proceedings of 2nd Hellenic Data Management
Symposium (HDMSO03), Athens, Greece.

http://www-306.ibm.com/software/data/integration/datastage/
http://www.informatica.com/products/powercenter/
http://www.orac)e.com/technology/products/warehouse/
http://en.wikipedia.org/wiki/Scheduling%28computing
http://technet.microsoft.com/en-us/sqlserver/bb331782.aspx/

105

[SVSS07] A. Simitsis, P. Vassiliadis, S. Skiadopoulos, T. Sellis. Data Warehouse
Refreshment. In R. Wrembel, C. Konsilia (eds.), Data Warehouses and OLAP:
Concepts, Architecture and Solutions, IGI Global, ISBN-10: 1599043645, ISBN-13:
978-1599043647, 2007.

[TPCHO7] The TPC-H benchmark. Available at: http://www.tpc.org/tpch/

[TPCDS07] The TPC-DS benchmark. Available at:

http://www.tpc.org/tpcds/tpcds.as

-

[Tzio06] Vasiliki Tziovara, Order aware workflows. MSc Thesis, Computer Science,

University of Ioannina, Hellas, 2006.

[UnSched07] Jinzhong Niu Uniprocessor Scheduling, Available at: '
www.sci.brooklyn.cuny.eduw/~jniw/teaching/csc33200/files/1201-

UniprocessorScheduling.pdf/

[UrFr01] Tolga Urhan, Michael J. Franklin, Dynamic Pipeline Scheduling for
Improving Interactive Query Performance, Proceedings of the 27th VLDP
Conference, pp 1-10, Roma, Italy, 2001.

[VaSS02] P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Modeling ETL Activities as
Graphs. In Proceedings of the 4™ International Workshop on the Design and
Management of Data Warehouses (DMDW'2002) in conjunction with CAiISE’02, pp.
52-61, Toronto, Canada, May 27, 2002.

[VaSS02] Vassiliadis, P., Simitsis, A., and Skiadopoulos, S. Conceptual Modeling for
ETL Processes. In the Proceedings of the 5th Data Warehousing and OLAP (DOLAP
'02), McLean, VA, USA.

[VSG+05] Panos Vassiliadis, Alkis Simitsis, Panos Georgantas, Manolis Terrovitis,

Spiros Skiadopoulos. 4 generic and customizable framework for the design of ETL

http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/tpcds.asp
http://www.sci.brooklvn.cunv.edu/~iniu/teaching/csc33200/files/1201-UniprocessorScheduling.pdf/
http://www.sci.brooklvn.cunv.edu/~iniu/teaching/csc33200/files/1201-UniprocessorScheduling.pdf/

106

2

scenarios. Information Systems, vol. 30, no. 7, pp. 492-525, November 2005, Elsevier
Science Ltd.

[VVS+01] Panos Vassiliadis, Zografoula Vagena, Spiros Skiadopoulos, Nikos
Karayannidis, Timos Sellis. Arktos: Towards the modeling, design, control and
execution of ETL processes. Information Systems, vol. 26, no. 8, pp. 537-561,

December 2001, Elsevier Science Ltd.

B

oot Sltmins

ey

A U e S A 1y

107

APPENDIX

Table A.1 Experiments from the Aurora Scheduler [CCR+03]

train" and "superbox"

Description Y-axis X-axis
Comparison between the thread-per-box and the
. Average Latency Number of
~ Aurora architecture. The thread-per-box is not
(seconds) Boxes
scalable.
The second experiment shows that two level
System load
scheduling (application at a time) is more Average Latency .
. (input queue
efficient that simple scheduling (box at a time), (seconds) ity)
capaci
specifically using the MC strategy.
Comparison between MC and ML strategies on
. . Average Latency Cost per box
average latency for different processing costs in
(seconds) (msec)
each operator box.
Comparison of MC, ML and MM strategies for Memory required
memory consumption during the run of a (normalized on Time (sec)
superbox. MM)
This experiment shows how tuple batching can
reduce overhead in bursty inputs. There are Average overhead L.
. . Train size
measures for three burst sizes, in each case there (tuples / sec)
is less overhead when the train size is bigger
A graph that shows the distribution of execution
iy Relative overhead The three
workloads with different scheduling tactics. The A
. (percentage values scheduling
tactics compared are "tuple at a time", "tuple .
from 0 to 100) tactics

108

Table A.2 Experiments from the Chain Scheduler [BBDMO03]

Description Y-axis X-axis

A simple comparison of FIFO and greedy

scheduling. The greedy algorithm performs much

better.

Comparison of all scheduling algorithm in a

. . total queue size

single stream with two operators and a real data Time (msec)
(Kbytes)

set

Comparison of all scheduling algorithm in a .

. .) total queue size

single stream with two operators and a synthetic Time (msec)
(Kbytes)

data set

Comparison of all scheduling algorithm in a

.) total queue size .

single stream with four operators and a real data Time (msec)
(Kbytes)

set

Comparison of all scheduling algorithm in a . .

. . . total queue size .

single stream with four operators and a synthetic Time (msec)
(Kbytes)

data set

Comparison of all scheduling algorithm in a . i

. . . total queue size | .

single stream with two operators and a synthetic Time (msec)
(Kbytes)

data set and s> 1.
]

Comparison of all scheduling algorithm in a .

. total queue size .

single stream with sliding-window join, three (Kbytes) Time (msec)

es

selections and a real data set

Comparison of all scheduling algorithm in a .

. . . . total queue size .

single stream with sliding-window join, three (Kbytes) Time (msec)

S
selections and a synthetic data set
Comparison of all scheduling algorithm with { ~Yotal queue size .
Time (msec)
multiple queries and a real data set (Kbytes) -
Comparison of all scheduling algorithm with total queue size .
Time (msec)
multiple queries and a synthetic data set (Kbytes)

T'a

109

Table A.3 Experiments from the X-Join Scheduler [UrFr01]

Description Y-axis X-axis
Shows how the scheduling algorithms behave .
. . Size of final
when we schedule 4 streams with 16 input Time (sec)
. . output (#tuples)
relations (lower is better)
Shows how the scheduling algorithms behave .
e . . Size of final
when we schedule 2 streams with 4 input relations Time (sec)
output (#tuples)

(lower is better)

These results show the selective input and join
processing behave, with each algorithm. Also they

measure the simple case of ordered and unordered

Percentage of final

Methods that are

. . . . output compared

input data. Joined relations are of equal size. Here

are the results after 5 seconds of execution.

Here are the results after 25 seconds of execution. Percentage of final Methods that are
Joined relations are of equal size output compared

Here are the results after 5 seconds of execution.

Percentage of final

Methods that are

Joined relations are not of equal size. output compared
Here are the results after 25 seconds of execution. Percentage of final Methods that are
Joined relations are not of equal size. output compared

ad

NN

I

Laaals Sy

. SRS

PSR

R L

Sl bt
‘ i

Al el 44 ot~ eaiidiis b

‘e

111

SHORT CV

Anastastios Karagiannis was bom in Thessaloniki in 1982 and finished high school in
1999. He obtained his B.Sc. in Computer Science in 2004 from the Computer Science
Department of the University of Ioannina. Anastastios Karagiannis has enrolled in the
Graduate Program of the Computer Science Department of the University of loannina
as an M.Sc. candidate in the academic year 2003 - 2004. His research interests are
Databases, Data Warehouses and ETL tools.

