
ΒΙΒΛΙΟΘΗΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΩΝ

t '

I

Σύστημα Έκδοσης/Συνδρομής για τη Μετάδοση Πληροφοριών με
βάση τις Προτιμήσεις και την Ποικιλομορφία_

UinA£

Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

* του Τμήματος Πληροφορικής Εξεταστική Επιτροπή

από την

Μαρίνα Δρόσου

ως μέρος των Υποχρεώσεων για τη λήψη του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ

ΣΤΟ ΛΟΓΙΣΜΙΚΟ

Σεπτέμβριος 2008

Dedication *$*-■

<?*·· Λ

To my parents, and Gregory.

A c k n o w l e d g e m e n t s

I would first like to thank my supervisor, Prof. Evaggelia Pitoura, for her help, dedication
and time spent during the elaboration of this thesis. I would also like to thank all the
people of the DMOD laboratory who turned my time there into a joyful experience,
especially my office-mate and friend Kostas Stefanidis and also Eftychia Baikoussi, Mirto
Ntetsika, Kostas Lillis and Prof. Panos Vassiliadis. Finally, I would like to thank my
parents and my friends for their continuous support throughout all the years of my studies.

T a b l e o f C o n t e n t s

9

List o f F igu res ' iii♦

List o f T ables iv

A lgo rithm In d ex v

1 In tro d u c tio n 1
1.1 ̂ Scope of T h e s is ... 1
1.2 Thesis O utline ... 2

2 P re feren ce M odel 3
2.1 Publish/Subscribe P relim inaries... 3
2.2 Preferential Subscriptions ... 5
2.3 Computing Event R a n k s .. 7

3 T im ing Policies 9
3.1 Continuous Timing P o l ic y ... 9
3.2 Periodic Timing P o lic y ... 11
3.3 Sliding Window Timing P olicy .. 12
3.4 Event Delivery .. 14

4 E ven ts D iversity 15
4.1 Events D istance .. 15
4.2 Diverse Top-fc E v e n ts ... 17

5 R ank ing in P u b lish /S u b sc r ib e 20
5.1 Preferential Subscription G r a p h ... 20
5.2 Forwarding E v e n t s .. 22
5.3 Topology of Servers.. 25

* *

6 E valuation 27
6.1 Dataset ... 27
6.2 Experim ents... 29

*

1

7 Related Work 35
7Λ Publish/Subscribe..................... 35
7.2 Ranked Publish/Subscribe 41
7.3 Preferences ...42
7.4 D iversity...................... 43

. Γ : ■ ' i i - ’H

8 Conclusions And . ;
Future Work 45

(··'.· "H.·

> T. 'r' •k > -

■ *jrt

r-

4
5
6
7
7

10
11
12
13

18

21
21
26

27
29
30
31
32
32
33
34
34

r

L i s t o f F i g u r e s

2.1 Publish/subscribe system operations..
* 2.2 Event and subscription examples...

2.3 Preferential subscription examples...
2.4 Priority condition example..
2.5 Extracting preference ranks..

3.1 Continuous (no expiration): top-2 events for John at 22:55. . .
3.2 Continuous (with expiration): top-2 events for John a t 22:55. .
3.3 Periodic: top-1 event for T = 30 min..
3.4 Sliding window: top-1 event for w = 3..

4.1 Computing top-4 diverse events...

5.1 John and Anna’s preferential subscriptions...................................
5.2 Preferential subscription graph example...
5.3 Clustering..

6.1 Generated data ..
6.2 Number of delivered events...
6.3 Number of delivered events, when diversifying.............................
6.4 Average rank of delivered events..

*6.5 Average rank of delivered events, when diversifying....................
6.6 Sliding window timing policy: list diversity for delivered events
6.7 Freshness of delivered events...
6.8 Freshness of delivered events, when diversifying...........................
6.9 PrefSIENA performance...

%

in

r

L i s t o f T a b l e s

4.1 List-Diversity for the random, heuristic and brute-force methods...................17

6.1 Movies dataset properties. 28

f' W·
>■

*
15 *

M

*
iv

r

A l g o r i t h m I n d e x ______________ _____________

1 Diverse Top-A: Events Algorithm... 18
* 2 Continuous Forwarding Events Algorithm 23

t

V

r

A b s t r a c t

Marina K. Drosou. MSc, Computer Science Department, University of Ioannina, Greece.
Septem ber, 2008. P r e fe r e n c e -A w a r e P u b l i s h /S u b s c r ib e D e l i v e r y w i th D i v e r s i t y . Thesis
Supervisor: Evaggelia Pitoura.

In publish/subscribe systems, users describe their interests in specific events via sub
scriptions and get notified whenever new events tha t match their interests become avail
able. Typically, in such systems, all subscriptions are considered equally important. As
the amount of information generated increases rapidly, to control the amount of data de
livered to users, we propose enhancing publish/subscribe with a ranking mechanism based
on user preferences, so that only top-ranked events are delivered to each user. Ranking
is based on letting users express their preferences on events by ordering the associated
subscriptions. Since many times top-ranked events are similar to each other, we pro
pose diversifying delivered events to further increase user satisfaction. Furthermore, we
examine a number of different timing policies for delivering ranked events to users. We
have fully implemented our approach in SIENA, a popular publish/subscribe middleware
system, and report experimental results of its deployment.

i

VI

V

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ

Μαρίνα Δρόσου του Κωνσταντίνου και της Κωνσταντίνας. MSc, Τμήμα Πληροφορικής,
Πανεπιστήμιο Ιωαννίνων, Σεπτέμβριος, 2008. Σ ύ σ τ η μ α Έ κ δ ο σ η ς / Σ υ ν δ ρ ο μ ή ς γ ι α τη Μ ε τ ά

δοση Π λη ρ ο φ ο ρ ιώ ν μ ε β ά σ η τις Π ρ ο τ ιμ ή σ ε ις και την Π ο ικ ιλ ο μ ο ρ φ ία . Επιβλέπουσα: Ευαγ
γελία Πίτουρά.

Στα συστήματα έκδοσης/συνδρομής, οι συνδρομητές εκφράζουν τα ενδιαφέροντά τους
για διάφορες κατηγορίες γεγονότων και στη συνέχεια ενημερώνονται από το σύστημα μό
λις δημοσιεύονται γεγονότα που ταιριάζουν στα ενδιαφέροντά τους. Καθώς ο όγκος της
πληροφορίας που παράγεται αυξάνεται ραγδαία, προτείνουμε την επέκταση των συστημάτων
έκδοσης/συνδρομής με ένα μηχανισμό διάταξης, έτσι ώστε μόνο τα πιο ενδιαφέροντα γεγο
νότα να παραδίδονται στους χρήστες. Για να διατάξουμε τα γεγονότα, επιτρέπουμε στους
χρήστες να ορίζουν προτιμήσεις ανάμεσα στα ενδιαφέροντά τους. Συνδέουμε κάθε γεγονός
με ένα χρόνο λήξης έτσι ώστε πολύ ενδιαφέροντα γεγονότα να μην αποκλείουν νεότερα από
το να παραδίδονται στους χρήστες. Για να αυξήσουμε περαιτέρω την ικανοποίηση των χρη
στών, προτείνουμε την αύξηση της ποικιλομορφίας των γεγονότων που παραδίδονται. Για
να γίνει αυτό, επιλέγουμε τα γεγονότα που θα παραδοθούν λαμβάνοντας υπόψη όχι μόνο
την σχέση τους με τα ενδιαφέροντα των χρηστών αλλά και την μεταξύ τους ομοιότητα.

Πιο αναλυτικά, στα παραδοσιακά συστήματα έκδοσης/συνδρομής, όλες οι συνδρομές
των χρηστών θεωρούνται εξίσου σημαντικές. Αυτή η υπόθεση περιορίζει τις επιλογές του
χρήστη. Για παράδειγμα, ας υποθέσουμε έναν χρήστη ο οποίος ενδιαφέρεται γενικά για
δραματικές ταινίες. Πιο συγκεκριμένα, ας υποθέσουμε ότι ενδιαφέρεται περισσότερο για
δραματικές ταινίες του Τ. Burton από ότι για δραματικές ταινίες του S. Spielberg. Στην
περίπτωση αυτή, ο χρήστης θα ήθελε να ειδοποιείται για δραματικές ταινίες του S. Spiel
berg μόνο στην περίπτωση που δεν υπάρχουν αρκετές πληροφορίες για δραματικές ταινίες
του Τ. Burton. Τα υπάρχοντα συστήματα έκδοσης/συνδρομής όμως, δεν παρέχουν τη
δυνατότητα έκφρασης αυτής της προτίμησης.

Στην εργασία αυτή, προτείνουμε τη χρήση κάποιου είδους διάταξης μεταξύ των ενδιαφε
ρόντων των χρηστών, έτσι ώστε να τους παρέχεται η δυνατότητα να εκφράσουν το γεγονός
πως κάποια ενδιαφέρονται είναι πιο'σημαντικά από κάποια άλλα. Για να διατάξουμε τα

' ενδιαφέροντα, χρησιμοποιούμε προτιμήσεις. Διάφορα μοντέλα προτιμήσεων έχουν προ-
ταθεί στο παρελθόν. Τα περισσότερα ακολουθούν είτε την ποσοτική, είτε την ποιοτική
προσέγγιση. Στην πρώ τη περίπτωση οι χρήστες χρησιμοποιούν μαθηματικές συναρτήσεις
που αναθέτουν έναν αριθμητικό βαθμό σε κάθε δεδομένο, ενώ στη δεύτερη οι προτιμήσεις

νιι

μεταξύ των διάφορων δεδομένων ορίζονται άμεσα με τη χρήση δυαδικών σχέσεων. Για να
εκφράσουμε προτιμήσεις μεταξύ συνδρομών, πρώτα εισάγουμε τις συνδρομές προτίμησης.
Οι συνδρομές προτίμησης μπορούν να χρησιμοποιηθούν και με τα δύο μοντέλα προτιμήσεων
με. το να συνδέουν έναν βαθμό ενδιαφέροντος σε κάθε συνδρομή.

Βασισμένοι στις συνδρομές προτίμησης, εισάγουμε μία παραλλαγή του προτύπου έκδο-
σης/συνδρομής στην οποία οι χρήστες λαμβάνουν μόνο τα k πιο ενδιαφέροντα γεγονότα
και όχι όλα όσα ταιριάζουν στις συνδρομές τους. Εξετάσουμε έναν αριθμό πολιτικών χρο
νισμού για την παράδοση γεγονότων: (i) την πολιτική συνεχούς ροής, (ii) την περιοδική
πολιτική και (iii) την πολιτική κυλιόμενου παραθύρου. Στην πολιτική συνεχούς ροής, τα
πιο ενδιαφέροντα γεγονότα προωθούνται στους χρήστες τη στιγμή της έκδοσής τους. Στην
περιοδική πολιτική, τα πιο ενδιαφέροντα γεγονότα προωθούνται ανά τακτά χρονικά δια
στήματα, ενώ στην πολιτική κυλιόμενου παραθύρου συνδυάζουμε τις δύο προηγούμενες
προσεγγίσεις με το να υπολογίζουμε και να προωθούμε τα πιο ενδιαφέροντα γεγονότα ενός
κυλιόμενου παραθύρου γεγονότων με προκαθορισμένο μήκος.

Τα πιο ενδιαφέρονται γεγονότα για κάθε χρήστη συχνά παρουσιάζουν μεγάλη ομοιό
τητα. Οστόσο, η αύξηση της ποικιλομορφίας των γεγονότων που παραδίδονται τελικά
στους χρήστες αυξάνει την ικανοποίησή τους από το σύστημα. Για παράδειγμα, ο χρήστης
του παραδείγματος μας θα ήθελε να λαμβάνει πληροφορίες κυρίως για διαφορετικές δρα
ματικές ταινίες του Τ. Burton και, μια στο τόσο, και για κάποιες δραματικές ταινίες του
S. Spielberg. Για το λόγο αυτό, τροποποιούμε το μηχανισμό υπολογισμού των k καλύτε
ρων γεγονότων έτσι ώστε να λαμβάνουμε υπόψη και την ποικιλομορφία τους. Σε αυτήν
την κατεύθυνση, χρησιμοποιούμε ένα συνδυασμό της σημασίας του κάθε γεγονότος για τον
εκάστοτε χρήστη και της ομοιότητάς του με άλλα σημαντικά γεγονότα για αυτόν. Εξετά
ζουμε πως μπορούμε να αυξήσουμε την ποικιλομορφία των γεγονότων για κάθε πολιτική
χρονισμού.

Για τον αποδοτικό εντοπισμό των συνδρομών προτίμησης που ταιριάζουν με ένα νέο
γεγονός, υιοθετούμε μία αναπαράσταση των συνδρομών βασισμένη σε γράφους, την οποία
καλούμε γράφο συνδρομών προτίμησης, και την χρησιμοποιούμε για την προώθηση των
γεγονότων που δημοσιεύονται στους χρήστες.

Υλοποιήσαμε ένα πρότυπο σύστημα, το οποίο ονομάζουμε PrefSIENA, το οποίο επεκτεί
νει το σύστημα SIENA, ένα δημοφιλές σύστημα έκδοσης/συνδρομής, με την ενσωμάτωση
συνδρομών προτίμησης, πολιτικών χρονισμού και αύξηση ποικιλομορφίας των γεγονότων
με σκοπό τον εντοπισμό των k πιο σημαντικών γεγονότων για κάθε χρήστη και την παρά
δοσή τους σε αυτόν. Παρουσιάζουμε έναν αριθμό πειραματικών αποτελεσμάτων σχετικά με
τον αριθμό και την ποιότητα των γεγονότων που παραδίδονται στους χρήστες από το Pref
SIENA σε σύγκριση με το σύστημα SIENA, καθώς και το επιπλέον κόστος που απαιτείται
για την διάταξη των γεγονότων.

V111

9

C h a p t e r 1

I n t r o d u c t i o n

1.1 Scope of Thesis

1.2 Thesis Outline

1.1 Scope of Thesis

W ith the explosion of the amount of information that is currently available online, pub-
lish/subscribe systems offer an attractive alternative to searching by providing a proactive
model of information supply. In such systems, users express their interest in specific pieces
of data, or e v e n ts , via su b sc r ip t io n s . Then, they are n o tif ie d whenever some other user
generates (or p u b lish es) an event that m a tc h e s one of their subscriptions. Typically, all
subscriptions are considered equally important and users are notified whenever a published
event matches any of their subscriptions.

However, getting notified about all matching events may lead to overwhelming the
users with huge amounts of notifications about events, thus hurting the acceptability of
publish/subscribe systems. To control the rate of notifications received by the subscribers,
it would be useful to allow them to rank the importance or relevance of events. Then,
they would only receive notifications for the most important or relevant among them.
For example, take a user, say John, that generally likes drama movies but prefers drama
movies directed by T. Burton to drama movies directed by S. Spielberg. Ideally, John
would like to receive notifications about S. Spielberg drama movies only if there are no,
or not enough, notifications about T. Burton drama movies.

In this work, we propose enhancing publish/subscribe with a ranking mechanism based
on user preferences, so that only top-ranked events are delivered to each user. To do this,
we extend subscriptions to allow users express the fact that some events are more im
portant or relevant to them than others. To indicate priorities among subscriptions, we

1

introduce p r e fe r e n t ia l su b sc r ip t io n s . In general, there are two basic approaches to spec
ifying preferences among data items: the quantitative and the qualitative approach. In
the q u a n ti ta t iv e approach (e.g. [6, 20, 27]), users employ scoring functions that associate
a numeric score with specific data items to indicate their interest in them. In the q u a li ta

t ive approach (e.g. [10, 15, 19]), preferences between two data items are specified directly,
typically using binary preference relations. We show how to formulate preferences among
subscriptions using each one of these approaches. Published events are ranked so that an
event that matches a highly preferred subscription is ranked higher than an event that
matches a subscription with a lower preference.

Based on preferential subscriptions, we introduce a top- k variation of publish/subscribe
in* which users receive only the matching events having the k highest ranks as opposed
to all events matching their subscriptions. Since the delivery of events is continuous, we
also introduce a number of timing policies that determine the range of events over which
the top-A; computation is performed.

However, the top-A; events are often very similar to each other. Besides pure accuracy
achieved-by matching the criteria set by the users, diversification, i.e. recommending items
that differ from each other, has been shown to increase user satisfaction [29]. For instance,
our user John would probably like to receive information about different drama movies
by T. Burton as well as a couple of S. Spielberg movies once in a while. To this end,
we adjust the top-A; computation to take also into account the d i v e r s i t y of the delivered
events. To achieve this, we consider both the importance of each event, as specified by the
user preferences, as well as its diversity from the other top-ranked events. We examine
how the results can be diversified for each of the timing policies.

As a proof-of-concept, we have implemented a prototype, termed PrefSIENA [3]. Pref-
SIENA extends SIENA [4], a popular publish/subscribe middleware system, with prefer
ential subscriptions, timing policies and diversity towards achieving top-A; event delivery.
We present a number of experimental results that evaluate the number of events delivered
by PrefSIENA with respect to the original SIENA system, as well as the rank, freshness
and diversity of such events. We also report on the overheads of supporting top-A; delivery.

1.2 Thesis O utline

The rest of this thesis is structured as follows. In Chapter 2, we present publish/subscribe
preliminaries and introduce preferential subscriptions, i.e. subscriptions augmented with
degrees of interest. We also show how to compute the importance of published events for
each user. In Chapter 3, we examine a number of different timing policies for delivering
events and in Chapter 4, we focus on^how to diversify the top-ranked events. In Chapter 5,
we describe preferential subscription graphs and introduce an algorithm for computing
top-ranked events based on preferential subscriptions. In Chapter 6, we present our
evaluation setup and experimental results. Chapter 7 describes related work and finally,
Chapter 8 concludes this thesis with a summary of our contributions and outlines future
work.

2

ψ

C h a p t e r 2

P r e f e r e n c e M o d e l

2.1 Publish/Subscribe Preliminaries

2.2 Preferential Subscriptions

2.3 Computing Event Ranks

In this chapter, we first present some background on publish/subscribe systems and
describe a typical form of events and subscriptions used in such systems. Then, we
introduce an extended version of subscriptions that include the notion of preference.
Finally, we examine how to compute the importance of published events for each user.

2.1 P ub lish /S u b scrib e Prelim inaries

A publish/subscribe system is an event-notification service designed to be used over large-
scale networks, such as the Internet. Such systems offer an attractive alternative to
searching by providing a proactive model of information supply. Generators of events,
called publishers, can publish events to the service and consumers of such events, called
subscribers, can subscribe to the service to receive a portion of them. Publishers can
publish events at any time. The events will be delivered to all interested subscribers at
some point in the future.

r

A rch itec tu re : In general, a publish/subscribe system [11] consists of three main parts:
(i) the p u b lish ers that provide events.to the system, (ii) the su b sc r ib e r s that consume these

* events and (iii) an e v e n t -n o t i f ic a t io n se r v ic e that stores the various subscriptions, matches
the incoming events with them and delivers these events to the appropriate subscribers.
As shown in Figure 2.1, the event-notification service provides a number of primitive op
erations to the users. The publish() operation is called by a publisher whenever it wishes
to generate a new event. The subscribeQ operation is called by a subscriber whenever

3

p u b lish e r

event-notification service

Figure 2.1: Publish/subscribe system operations.

the subscriber wishes to express a new interest. An u n subscribe() operation is usually
also provided to cancel previous subscriptions. An optional (u n)advertise () operation
may be available to publishers, so that they can advertise the content of their future pub
lications. The event-notification service can use the notifyQ operation whenever it wants
to deliver an event to a subscriber. An event-notification service can be implemented
using either a centralized or a distributed architecture, that is, we may have one or a set
of servers responsible for the process of matching events with subscriptions.

E vents: We use a generic way to form events, similar to the one used in [7, 13], to
maximize user expressiveness. In particular, events are sets of typed attributes. Each
event consists of an arbitrary number of attributes and each attribute has a type, a
name and a value. Attribute types belong to a predefined set of primitive types, such as
“integer” or “string” . Attribute names are character strings tha t take values according
to their type. An example event about a movie is shown in Figure 2.2a. Formally:

D efin ition 2.1 (Event). An event e is a set of typed attributes {αχ, . . . , d p } , where each
di is of the form (d i . t y p e d i .n d m e = d i . v d l u e), 1 < i < p.

Subscrip tions: Subscriptions are used to specify the kind of events users are interested
in. Therefore, they can be thought of as filters that are used to filter out all irrelevant
information. Each subscription consists of a set of constraints on the values of specific
attributes. Each attribute constraint has a type, a name, a binary operator and a value.
Types, names and values have the same form as in events. Binary operators include

% common operators such as = , Φ , < , > , < , > , s u b s t r i n g , p r e f i x and s u f f i x . An example
subscription is depicted in Figure 2.2b. Formally:

D efin ition 2.2 (Subscription). A subscription s is a set of attribute constraints { b }, . . . , bq} ,

where each bi is of the form (b i . t y p e b i .n d m e Θ b i . v d lu e), Θ̂ € {=, φ < , >, < , > , s u b s t r i n g ,
.. p r e f i x , s u f f i x } , 1 < i < q.

4

string title Big Fish
string director = T. Burton

time rclcascdatc = 13 Feb 2004
string genre drama

integer oscars 0

(a) Event example.

string director = T. Burton
time release date > 1 Jan 2003

(b) Subscription example.

Figure 2.2: Event and subscription examples.

M atch ing even ts w ith subscrip tions: To deliver the appropriate events to sub
scribers, the event-notification service has to identify all interesting information for each
user. To do this, th e .C o v e r R e la t io n is used. Intuitively, we can say that a subscription s

co vers an event e, or alternatively e m a tc h e s s, if and only if, every attribute constraint
of s is satisfied by some attribute of e. Formally:

D efinition 2.3 (Cover Relation). Given an event e of the form {a i , . . . , a p } and a sub
scription s of the form {61? . . . , bq} , s covers e, if and only if, V bj G s, 3 ^ G e, such that,
a i . t y p e = b j . t y p e , a*.name — b j .n a m e and ((a*.v a lu e) Θ̂ (b j . v a lu e)) holds, 1 < i < p,

1 < 3 < q ·

An event e is delivered to a user, if and only if, the user has submitted at least one
subscription s, such that, s covers e. For example, the subscription of Figure 2.2b covers
the event of Figure 2.2a and therefore, this event should be delivered to all users who
have submitted this subscription.

2.2 P referen tial Subscriptions

To allow users to express the fact that some events are m o r e im p o r t a n t to them than
others, we propose extending the publish/subscribe paradigm to incorporate ranking.
Our goal is for each subscriber not to receive all matching events but instead, the most
interesting of them, i.e. the most highly ranked ones. To achieve this, we allow users
to express preferences through p r e fe r e n t ia l su b sc r ip t io n s . Preferential subscriptions are
subscriptions enhanced with degrees of interest, called p r e fe r e n c e ranks.

D efinition 2.4 (Preferential Subscription). A preferential subscription p s * of user X is
a pair of the form p s * = (s*, p r e f r a n k *), where s { is a subscription and p r e fra n k * is a
real number in [0,1] that expresses the degree of interest of X for s*.

The higher the preference rank, the more interested the user is in events covered by
the specified subscription. Examples of preferential subscriptions are shown in Figure 2.3.

In general, preferences can be expressed following either a quantitative or a qualitative
approach. Following a q u a n t i ta t iv e preference model, users explicitly provide numeric
scores, e.g. values within the range [0,1], to indicate the importance of each of their
subscriptions. In this case, the preference rank that is associated with a subscription 's
the score provided for it by the user. \\

jt- \5

string director - T. Burton
string genre = drama

string director - S. Spielberg
0.6

string genre = drama

Figure 2.3: Preferential subscription examples.

Following a q u a li ta t iv e model, users employ binary relations to define priorities among
their subscriptions. Specifically, assume that a user X provides a set of preferential
subscriptions P x and that those preferential subscriptions contain the set of subscriptions
Sfo. To express preferences between subscriptions, X defines p r i o r i t y c o n d i t io n s of the
form (s i >- 5j), Si, Sj G S x , to denote that is preferred to Sj (e.g. Figure 2.4). Let C x

be the set of priority conditions expressed by user X , i.e. C x = {(s* >- S j) | S i ,S j G S x } .

To extract the most preferable subscriptions based on C x , we use the winnow operator
[10]. The first application of the winnow operator returns the set w i n x (1) of subscriptions
si G S x , such that, Vs* G w i n x { 1) there is no Sj G S x with s j >- To retrieve the
most preferable subscriptions after the ones included in w i n x (1), we apply the winnow
operator a second time. w i n x (2) consists of the subscriptions Si G (S x — w i n x (1)), such
that, \fsi G w i n x (2) there is no subscription Sj G (S x — w i n x { 1)) with Sj >- Si. The
winnow operator is applied until all user subscriptions are returned.

Generalizing the winnow operator, we introduce a multiple level variation, defined as
follows:

D efinition 2.5 (Multiple Level Winnow Operator). Assume a user X and the set P x

of the preferential subscriptions of X . Let S x be the set of all subscriptions in P x and
C x the set of all priority conditions defined by X . The multiple level winnow operator
at level Z, l > 1, returns a set of subscriptions, w i n x (l), consisting of the subscriptions Si

6 S $ - U £ w i n x (q), such that, V Si G w i n x (l), $ s j G S x — U lgJ xw i n x (q) with (Sj >- s i)

e C x .

The preference rank associated with each subscription depends on the winnow level
that the subscription belongs to, since subscriptions retrieved earlier are of higher im
portance for the users. In particular, a subscription s* G w i n x (l) is associated with a
preference rank equal to 1/Z. As in the quantitative model, a higher preference rank
indicates a more important subscription.

Any conflicting priorities should be resolved prior to computing preference ranks, ei
ther by involving .the users or by using some default conflict resolution procedure. Here,
we assume that the priorities between subscriptions follow a strict partial order. There

fo re , to find the most interesting subscriptions based on we organize them using a
directed graph in which nodes correspond to subscriptions and edges to priority condi
tions. Then, we apply a topological sort algorithm on this graph to extract the most
preferable subscriptions in levels. For example, Figure 2.5 depicts the graph for a set of
priority conditions and the extracted preference ranks. X\V^-V/

string director = T. Burton s. string director = S. Spielberg
9 string genre = drama string genre = drama

Figure 2.4: Priority condition example.

P riority Conditions G raph Preference Ranks

5 1 >- S4

5 2 X S4

5 2 >- «5

5 3 y S 6

S 5 y S 7

S 2 >- S 7

s, s2

1 / 1
s4 s5

s7

S3

I Si,s2 ,s3: 1

^6 S 4 , S 5 , sq. 0.5
s7: 0.33

Figure 2.5: Extracting preference ranks.

Summarizing, subscriptions are augmented with preference ranks specified using either
the quantitative or the qualitative approach. A preference rank indicates the user’s degree
of interest for the corresponding subscription. The higher the preference rank, the more
important the events covered by the corresponding subscription.

2.3 C om puting Event R anks

Let P x be the set of preferential subscriptions of user X . We use these preferential
subscriptions to rank the published events and deliver to X only the highest ranked ones.
We define the rank of an event to be a function T of the preference ranks of the user
subscriptions that cover it:

D efinition 2.6 (Event Rank). Assume an event e, a user X and the set P x of the
user’s preferential subscriptions. Assume further the set P x = { (s \,p re fra n k x), . . . ,
(sm,p re fra n kx)}, P x C P x , for which Si covers e, 1 < i < m. The event rank of e
for X is equal to rank(e , X) = T (p re fra n k x , . . . , p re fra n kx), where T is a monotonic
function.

An event e\ is more preferable for user X to an event e2, if and only if, it has a higher
event rank for X than e2.

As the aggregation function T for computing the rank of an event, we may use the
maximum, mean," minimum or a weighted sum of the preference ranks of its covering
subscriptions. Furthermore, instead of using the preference ranks of all covering subscrip-

* tions, we can use only those of the most specific ones. For example, assume the event
of Figure 2.2a and the preferential subscriptions ({genre = dram a}, 0.9) and ({genre =
drama, director = T. B urton}, 0.8) (for ease of presentation, we omit the type of each
attribute). Both subscriptions cover the event. Between the two, the latter subscription
is more specific than the former one, in the sense tha t in the latter subscription the user

7

poses an additional, more specific requirement to movies. Thus, intuitively, the preference
rank of the latter subscription should superimpose that of the former one, whenever an
event matches both of them. Formally, a subscription s € P * is a most specific one if no
other subscription in Pex is covered by it. The cover relation between two subscriptions
is defined as follows:

D efin ition 2.7 (Cover Between Subscriptions). Given two subscriptions s* and Sj, s*
covers Sj, if and only if, for each event e such that Sj covers e, st* covers e.

In general, computing ranks may increase the complexity of the process of match
ing events with subscriptions. In traditional publish/subscribe systems, for matching to
be completed successfully, it suffices to find just one subscription th a t covers the event,
whereas for computing the rank of an event, we may need to locate all covering subscrip
tions.

*r

i -

*

8
/ ‘ v:

9

C h a p t e r 3

T i m i n g P o l i c i e s

3.1 Continuous Timing Policy

3.2 Periodic Timing Policy

3.3 Sliding Window Timing Policy

3.4 Event Delivery

Having defined event ranks, our goal is to send notifications only for the top-A: events to
each user, i.e. the events with the k highest ranks. Since events are continuously published
and matched with subscriptions, we need to specify the timing period over which the top-fc
events are computed. In this chapter, we examine the various timing policies th a t can be
applied to a publish/subscribe system, since different timing policies can affect whether
an event belongs to a user’s top-fc results or not. In particular, we examine the following
timing policies: (i) continuous, in which events are forwarded to interested subscribers at
the time of their publication, (ii) periodic, in which events are forwarded a t predefined
time intervals and (iii) sliding window, which combines the previous policies.

3.1 C ontinuous T im ing Policy

In the continuous timing policy, a newly published event is delivered to a user, if and only
if, it matches one of the user’s subscriptions and the user has not already received k events
with higher ranks than the new one’s. Since new events are constantly produced, it is

* possible for very old but highly preferable events to prevent any new ones from reaching
the user. For instance, consider the example in Figure 3.1. For simplicity, we assume a
single user, say John, who has defined a number of preferential subscriptions for movies.
Assume that a movie theater publishes the events e\, 6 2 , .. ·, e$ in that order, a t the time
shown on the left of each event, and that John is interested in the top-2 results. Assume

9

e, 0 0 :0 0)
title = The Apartm ent

genre = com edy
show ing tim e = 22:1S

e,(20:10)

e3(20:15)

tit le = The Godfather
genre = drama

show ing tim e = 21:10

title = Ratatouille
genre = comedy

showing tim e = 22:40

e4 (22:00)

* e,(22:10)

t it le = F ight C lub
genre = drama

showing tim e = 23:00

title = Vertigo
genre = horror

show ing tim e = 23:20

Preferential
subscriptions

genre = comedy 0.9

genre = drama 0.8

genre = horror 0.5

e4 (22:25)

tit le = Casablanca
genre = drama

show ing tim e = 23:10

Figure 3.1: Continuous (no expiration): top - 2 events for John at 22:55.

further that as an aggregation function T we use the maximum value of the preference
ranks of the covering subscriptions, i.e. T = max. e\ and e2 will be delivered to John,
since they are the first two events that are covered by his subscriptions, e3 is equally
preferred to e\ and will therefore also be delivered to John. Since e4, es and e§ are less
preferable to the current top - 2 results, none of them will be delivered. If John checks his
top-2 results at 22:55, he will only find movies that he can no longer watch (the top-2
results at 22:55 are marked with gray color in the figure), even though some events about
interesting movies that start at 23:00 have been published.

To overcome this problem, we can associate with each published event e an expiration
time e.exp. The event is considered valid only while e.exp has not expired. This way,
older events which have expired do not prevent new ones from reaching the users. An
alternative way to set the expiration time for an event is by letting the user define a refresh
time along with each subscription. Then, the expiration time of an event e covered by a
user subscription s with refresh time r is set to t + r, where t is the time th a t e is matched
with s. Note that in this approach, a specific event does not have a single expiration time
but instead, it is associated with a different one for each user.

Next, we define the conditions under which a published event belongs to the top-fc
results of a user using expiration times.

D efinition 3.1 (Continuous Top-A;). Let P x be the set of preferential subscriptions of
user X . An event e published at time tc belongs to the top-A: events of A , if and only if, e

%is covered by at least one subscription .s* of a preferential subscription ps £ P x and there
are no k events e\ , . . . , with ei.exp > te and rank(ei, X) > rank(e , A), 1 < i < A;, that
have already been forwarded to X .

' In the previous example, assume now that each event expires at the showing time
* of the corresponding movie (see Figure 3.2). ei, e2 and e3 will be delivered to the user

10

e, (20:00)
title = The Apartment

genre = comedy
showing time = 22:15

ej(20:10)

e ,(2 0 :15)

title = The Godfather
genre = drama

showing tim e = 21:10

title = Ratatouille
genre = comedy

showing tim e = 22:40

e4 (22:00)
tit le = F igh t C lub

genre = drama
showing tim e = 23:00

* es(22:10)
t it le = Vertigo
genre = horror

show ing tim e = 23:20

Preferential
subscriptions

genre = com edy 0.9

genre = d ram a 0.8

genre = h o rro r 0.5

>

e4 (22:25)

tit le = Casablanca
genre = drama

showing tim e = 23:10

Figure 3 .2 : Continuous (with expiration): top-2 events for John at 22:55.

as before. By the time e4 and e5 are published, the top-2 events have not expired and
therefore, e4 and e5 will not be delivered to the user. Finally, e§ will be delivered to John,
since at the time of its publication ex has expired. Therefore, when John checks his top-2
results at 22:55, he will find an interesting movie to watch (“Casablanca”).

When the continuous timing policy is used, the number of delivered events depends on
the relative order of their publication. For example, if events are produced in ascending
order with regard to their rank, all of them will be delivered, while if they are produced
in descending order only a portion of them will.

3.2 Periodic T im ing Policy

An alternative timing policy is the periodic one. In this approach, time is divided into
periods of duration T and top-A; events are computed within each period. As with the
continuous timing policy, events can be associated with expiration times, so tha t only
valid events are delivered to users. For instance, considering the previous example, for
a time period that begins at 20:00 and ends at 20:30, the top-2 results are the events
cj and e2, while from 2 0 :0 0 to 2 2 .2 0 , the top - 2 results are the events e3 and e4, since ex
and e2 have already expired, e5 is less preferable to e4 and e6 has not been published yet.
Clearly, in the periodic timing policy, the computation of the top-A; results depends on
the duration of the period.

%

i

D efinition 3.2 (Periodic Top-A;). Let P x be the set of preferential subscriptions of user
X . An event e published at time te in the current period belongs to the top-A; events of
the period for X, if and only if, e is covered by at least one subscription s appearing in a
preferential subscription ps G P x , e.exp > \te/ T] · T and there are no k events ex, . . . , e*

11

e, (20:00)

e, (20:20)

e, (20:25)

e« (20:35)

e, (20:45)

e6(20:50)

title = The Apartment
genre = comedy

showing time = 21:10

t itle = Seven
genre = horror

showing tim e = 21:00

title = The Godfather
genre = drama

show ing tim e = 21:25

tit le = Jaws
genre = horror

showing tim e = 21:30

tit le = Vertigo
genre = horror

show ing tim e = 21 :45

tit le = Psycho
genre = horror

show ing tim e = 21 :50

Preferential
subscriptions

genre = com edy 0.9

genre = d ram a 0 .8

genre = h o rro r 0.5

tit le = The A partm ent
genre = comedy

show ing tim e = 21:10

e*
t it le = Psycho
genre = ho rro r

show ing tim e = 21 :50

Figure 3.3: Periodic: top-1 event for T = 30 min.

published in the period with ei.exp > \te/ T] -T and ra n k fa , X) > rank(e , X), 1 < i < k.

For any time interval of length c, the number of events tha t eventually reach the users
is bounded by k and equal to k · |_c/Tj. The order of events published within a specific
period does not affect the top-fc results for it.

3.3 Sliding W indow Tim ing Policy

In the periodic timing policy, the top-A; computation starts anew in the beginning of each
period. Therefore, the ranks of events received by the user may end up being rather
arbitrary. For example, high-ranked events appearing in periods with many other high-
ranked ones may not be delivered to the user, whereas low-ranked publications appearing
in periods with a small number of high-ranked ones may be delivered. For instance,
assume the events ei, β2 , . . . , e$ of Figure 3.3 and John’s previous subscriptions. Assume
now that John is interested in the top - 1 result. For the time period from 20:00 to 20:30
the best result is e1? while for the period from 20:30 to 21:00 the best result is e6, which
means that e3 is not delivered to John, even though it is more preferable than e<$. Note
that we select to resolve ties among events by picking the most recent one to improve the
freshness of results.

To overcome this issue, we use sliding event-windows and start the computation anew
,a t each new matching event. That is, we compute the top-A; events for a user based only
on the events published during an event-window of length w, i.e. based only on the w
most recent matching events. For example, assume a window of length w = 3 and the
previous published events (see Figure 3.4). We use the notation to refer to the events
that are included in the i th window. As depicted in the figure, if we are interested in the

12

e, (20:0φ

e> (20:20)

e, (20:25)

t itle = The Apartment
genre = comedy

showing tim e = 21:10

title = Seven
genre = horror

showing tim e = 21:00

title = The Godfather
genre = drama

showing tim e = 21:25

c4 (20:35)

£<(20:45)

tit le = Jaws
genre = horror

showing tim e = 21:30

title = Vertigo
genre = horror

showing tim e = 21:45

e6 (20:50)

tit le = Psycho
genre = horror

showing tim e = 21:50

> e'

> e3
title = The Godfather

genre = drama
show ing tim e = 21:25

title = The Apartment
genre = comedy

showing time = 21:10

>► (no new event)

>
t it le = Psycho
genre = ho rro r

show ing tim e = 21:50

Figure 3.4: Sliding window: top-1 event for w = 3.
·*

top- 1 result, the first window W\ returns the event elf W 2 returns e3, W3 returns no event
and so on.

Observe that between two consequent event-windows, at most one event is delivered.
To see this, assume a window W\ and its following window W2, both of length w , and the
two sets A i, A 2 with the top-k events for W\ and W 2 respectively. Since W\ and W 2 have
w — 1 common events, let W\ = (ei, e2, . . . , ew) and W 2 = (e2, e3, . . . , e^+i). When ew+\
is published, one of the following holds:

• ei 6 A\. Then A2 = (Αχ — {βι}) U {e'}, where e' is either ew+x or e' is an event tha t
was published in W\ for which e' ^ A \ holds, or

• βχ $£ A\. Then A2 = A\ or 4̂2 = (Αχ — {e'}) U {εω+ι}, where e' is an event tha t was
published in W\.

In any case, at most one event enters the set A2, thus:

P ro p e r ty 3.1. Between two consequent event-windows, when events do not expire, at
most one new event is delivered to the user.

As in the continuous timing policy, the number of delivered events depends on their
publication order with regards to their relative ranks. In this policy as well, an event e
rhay be associated*'with a specific expiration time e.exp. The definition of sliding window
top-fc is similar to the periodic one.

* Summarizing, the timing policies determine the range of events over which the top-A;
computation is performed. In the continuous timing policy, the top-A; events are selected
over all previously published events, while in the periodic and sliding window timing
policies, they are selected over the events published in the current period or window
respectively.

13

3.4 Event Delivery
9

Independently of how the top-A; events are computed by the system, we offer to users two
ways to view their results: proactive and on-demand. In the proactive approach, top-
ranked results are computed by the system, using any one of the three timing policies,
and delivered to the users at specific moments in time. Top-results are gathered by the
event-notification service and forwarded to users every Τ ' time units. Note that, even
though the use of the periodic timing policy with length T to compute top-ranked events
is allowed in conjunction with proactive delivery, T is not necessarily equal to V . In this
case, whenever new results are to be delivered to the user, the forwarded results are those
of tjie last completed period.

In the on-demand approach, top-results are gathered again by the event-notification
service and are forwarded to the user upon request. All three timing policies can be used
with this method as well. However, the one intuitively most suitable for it is th a t of the
sliding window timing policy, since in this case, the user receives the most recent to the
time of the request top-ranked events.

* -

14

ψ

C h a p t e r 4

E v e n t s D i v e r s i t y

4.1 Events Distance

4.2 Diverse Top-/; Events

In a typical publish/subscribe system, many events are continuously published and
competing for a position in a user’s top-/; results. Many times, the results th a t eventually
reach the user are very similar to each other. However, it is often desirable tha t these
results exhibit some diversity. In this chapter, we examine how to arrange the results
delivered to users in order to reduce their similarity. First, we present a technique for
locating k diverse results and then focus on how to compute the top-λ; results based on
both their diversity and their rank.

4.1 Events D istance

Instead of overwhelming users with published events tha t are all very similar to each other,
we opt to select a representative set of events according to their diversity. To measure the
diversity of events, i.e. how different they are, we first define the distance between two
events. W ithout loss of generality, we assume that the events have the same number of
attributes. Otherwise, we can append a sufficient number of “dummy” attributes to the
one with the smaller number of attributes.

D efin ition 4.1 (Event Distance). Given two events e\ = {a i , . . . , a p } and e2 = {^i , · · · , Gp},
the distance between e\ and e2 is:

and each Wi is an attribute specific weight, 1 < i < p.

1 if ai = o!{
0 otherwise

15

According to the above definition, given two events, their distance decreases as the
number of their common attributes increases. The weight assigned to each attribute is
application dependent, since for some applications, some attributes may be more influ
ential than others. In the lack of application-specific information, we can assign equal
weights to all attributes.

Given the set M of all matching events for a user, we would like to deliver to the user
a list L, L C M, with the k most diverse ones. To measure the diversity of the events
that belong to a list, we use the List Diversity that computes the average distance of all
pairs of events in L.

D efinition 4.2 (List Diversity). Given a list of m events L = (βχ,. . . , em), the list diversity
of L is:

ΣΓ=ιΣΓ=ί+ι0/% ^)D IV (L)
(m — l)m/2

A brute-force method to identify the k most diverse events from M is to first produce
all Q) possible combinations of k events, where q is the number of elements in M , and
then pick the one with the maximum list diversity. The complexity of this process in
terms of the required event distance operations is equal to * k̂̂ k.

To reduce the complexity, we use the following heuristic. We incrementally construct
a diverse subset of events based on the Event-List Distance, defined as follows:

D efinition 4.3 (Event-List Distance). Given an event e and a list of m events L =
(e1?. . . , em), the event-list distance between e and L is:

m

Given the set M = {ei , . . . ,e<J of q events, q > fc, our goal is to produce a list
L = (e'1?. . . , e'fc), e[G Μ, 1 < i < /c, with the k most diverse events. Initially, we consider
an empty list L. We first add to L a random event of M . Then, we incrementally construct
L by selecting events of M according to their distance from events previously inserted
into L. In particular, we compute the distances D IS [e^L), Ve*, such tha t e* G M and
e, £ L and add to L the one with the maximum distance. This process is repeated until
k events have been added to the list. Following this method, the required event distance
operations are equal to (q — 1) -f 2 (q — 2) + . . . + (k — 1)(q — k -f 1).
. To compare the quality of our heuristic against the brute-force method, we perform

the following experiment. First, we create sets of q random events. For simplicity reasons,
each event consists of a number in [0 , 1 0 0] and their distance is measured as the absolute
value of the difference of their values. .Then, we select k out of them (i) randomly, (ii) using
our heuristic and (iii) using the brute-force method. In Table 4.1, we show the average
List-Diversity for the lists produced in each case. We see that the heuristic performs much
better than the random approach and produces lists with List-Diversity slightly smaller
than the brute-force method.

16

Table 4.1: List-Diversity for the r a n d o m , heuristic a n d brute-force methods.

Q k R a n d o m H e u r is t ic B r u t e -F o r c e

2 35.76 71.88 90.45

20 4 193.23 330.69 349.27

8 938.72 1302.50 1314 .64

2 34.14 74.86 95.86

40 4 200.35 353.78 375.84

8 944.63 1427.09 1447.93

4.2 Diverse Top-fc Events

The method described above delivers to the user a set of diverse events but ignores their
importance according to the preferential subscriptions. However, we would also like to
consider the user preferences when selecting the events to be forwarded.

Therefore, to compute the top-A; diverse events for a user X 1 i.e. a list we modify
the above method to also take into account the ranks of the events. Initially, instead of
selecting the first event to be added to L x randomly, we pick the one with the highest
rank, since this is the most preferable to the user. When selecting the next event to be
added to Lx , we choose the one with the maximum value of d i v r a n k , where d i v r a n k is
a function that takes as input an event e and a user X and combines the rank of e for X

and its distance from the already selected events for that user using the formula:

d i v r a n k (e , X) = σ · r a n k (e , X) -I- (1 — σ) · D I S (e , L x)

where σ G [0,1]. When σ = 0 (respectively σ = 1), only the distance (respectively rank)
is taken into account.

In the following example, we apply the above procedure to six events e i , 62 . . . , e6.
To simplify our example, we assume that all events have only the attribute “genre” with
values equal to “comedy” , “drama” , “drama” , “drama” , “horror” , “sci-fi” and ranks 0 .9 ,
0.75, 0.75, 0.75, 0.65, 0.6 respectively. Figure 4.1 shows the trace of the method applied
on our example for σ = 0 .5 .

Let L be the current list of diverse top-A; events. We observe that after the insertion
of an event e to L, V = L . a p p e n d (e)) the distances of all other events that have not yet
entered the diverse top-A; events from U are affected only by the presence of e. Therefore,
we can reduce the number of performed operations of the above procedure by exploiting
the following property:

P ro p e r ty 4.1. Given an event e and two lists L and LI = L .a p p e n d (e) 1 the distance of
an event e' from LI is:

D I S (e \ V) = D I S { < ! , L) - { \ L \ - \) + D I S { e , < !)

17

9 R a n k in g of events
ei (comedy), e2(drama), e3(drama), e^dram a), es(/2orror), ee (sc i-fi)

-
T o p -4 events based on th e ir ranks

(βχ, 62j e3,e4)

D iverse T o p -4 events
D IS (e \,L) D IS (e2,L) D IS (e 3lL) D IS (e A,L) D IS (e 5,L) D IS (e$,L) L = 0
- - - - - - L = (e i)
- 0.875 0.875 0.875 0.825 0.800 £ = (e i ,e 2)
- - 0.625 0.625 0.825 0.800 L (ί ΐ ι 621 65)
- - 0.708 0.708 - 0.800 L = (ex,e2,e5,e6)

Figure 4.1: Computing top-4 diverse events.

Algorithm 1 (Diverse Top-k Events Algorithm) summarizes the above procedure.

In p u t : A set M of matching events for user X .
O u t p u t : A list L of diverse to p -k events.

1: b e g in

2: L = 0;

3: find the event e 6 M with the m axim um r a n k (e ,X);

4: L = L.append(e);
5: M = M .re m o ve (e);

6: for a ll events e* £ M d o

7: d ista n cec . = 0;

8: w h ile \L\ < k d o

9: for a ll events e,· € M d o

10: d ista n ce ei = ^ ^ (l L|- y D/5(e*'L -fas^

1 1 : find the event e with the m axim um

d iv ra n k (e , X) = σ · ra n h (e , X) 4- (1 — σ) · d is ta n c e e;

12: L = L .append (e);

13: M = M .rem o ve(e);
14: r e t u r n L ;

15: e n d

Algorithm 1 : Diverse Top-A; Events Algorithm.

Note that diversification may increase the number of events delivered to the user. For
example, in the sliding window timing policy, when diversifying the top-λ; results, we may
deliver up to k events at each event-window, that is, in this case, Property 3.1 does not

-liold. To illustrate this, let Wi, W 2 be two consequent event-windows and βχ, e2, e$, e±
a number of events. Assume that VFi = (βχ, e2, e3), W 2 = (e2, e3, e4) and also tha t
βχ is a horror movie directed by T. Burton with rank 0.9, e2 is an A. Hitscock’s horror
movie with rank 0.85, e3 is a S. Spielberg’s drama movie with rank 0 .8 and finally, e4 is
a Q. Tarantino’s drama movie with rank 0.9. Applying Algorithm 1 , the top - 2 events for

18

Wi are the events e\ and e3, while the top-2 events for W2 are e4 and e2, which meansr
that more than one event will be delivered in W2.

In conclusion, to compute the final rank of an event, we use the divrank function tha t
combines both preferences and diversity.

'r

I

19

9

C h a p t e r 5

R a n k i n g i n P u b l i s h / S u b s c r i b e

5.1 Preferential Subscription Graph

5 .2 Forwarding Events

5.3 Topology of Servers

In this chapter, we outline a method for matching events with subscriptions and for
computing event ranks. To this end, we introduce the p r e fe r e n t ia l s u b s c r ip t io n g ra p h for
organizing our preferential subscriptions. We also show how to compute the top- k results
for each timing policy.

5.1 P referen tial Subscrip tion G raph

To reduce the complexity of the matching process between events and subscriptions, it
is useful to organize the subscriptions using a graph. We use preferential subscriptions
to construct a directed acyclic graph, called p r e fe r e n t ia l s u b s c r ip t io n g ra p h , or P S G . In
a preferential subscription graph, nodes correspond to subscriptions and edges to cover
relations between subscriptions (see Definition 2.7). Let P be the set of all preferential
subscriptions, i.e. the preferential subscriptions defined by all users. For each subscription
Si € Sp, where S p is the set of all subscriptions in P , we maintain a set of pairs, called
P re fR a n k S e t , of the form (X , p r e f r a n k *) , where X is a user and p r e f r a n k * is the
preference rank of X for S{. A subscription Si is associated with the pair (X , p r e f r a n k *) ,

if and only if, a preferential subscription p s * — (s i , p r e f r a n k *) exists in P . Given a set
of users U , for each Si G S P , the PrefRank Set is the set P* = {(X , p r e f r a n k *) \

{ s { , p r e f r a n k *) € P , X £ U). Formally:

D efinition 5.1 (Preferential Subscription Graph). Let P be a set of preferential sub
scriptions and S P the set of all subscriptions in P. A Preferential Subscription Graph

20

Subscription Jo h n ’s p re fra n k A n n a ’s p re fra n k

{cinema = ster} 0.5 -

{genre = drama , tim e > 21:00} 0.7 -
- {genre = comedy} 0.7 -

{cinema = ster , tim e < 20:00} 0.4 -
{cinema = ster , genre = drama, tim e > 21:00} 0.9 0.6
{cinema = odeon, genre = dram a , tim e > 21:00} 0.3 0.9
{genre = comedy, tim e > 23:00} - 0.8
{cinema — ster, genre = drama, tim e > 23:00} - 0.8

Figure 5.1: John and Anna’s preferential subscriptions.
♦

Figure 5.2: Preferential subscription graph example.

PSGp(Vp, Ep) is a directed acyclic graph, where for each different Si £ S p , there exists
a node vt·, Vi £ Vp, of the form where Ri is the PrefRank Set of st·. Given two
nodes Vi, Vj, there exists an edge from u* to ẑ ·, £ E p , if and only if, s* covers
and there is no node u'· such that s* covers s' and s'· covers Sj.

For example, assume two users, John and Anna, who express the preferential sub
scriptions of Figure 5.1. For those preferential subscriptions, the graph of Figure 5.2 is
constructed.

The preferential subscription graph resembles the filters poset data structure proposed
iff [7]. Whereas the filters poset represents a partially ordered set of subscriptions, the
preferential subscription graph is based on subscriptions enhanced with preferences. Next,

*we will describe how preferential subscription graphs are constructed.
The partial order of the subscriptions of a preferential subscription graph P SG is

defined by the covering relation between subscriptions. We say that a subscription s\
is an immediate predecessor of a subscription s2, if and only if, s\ covers s2 and there
is no other subscription s3 in P S G such that s\ covers s3 and s3 covers s2. s2 is called

21

an immediate successor of S\. Subscriptions with no predecessors in the graph are called
roots. For every new preferential subscription ps? = (sj, pre fran k?), one of the following
holds:

• S{ already exists as a node in the graph

• Si is added as a root node

• Si is inserted somewhere in the graph with a nonempty set of predecessors

Upon receiving a preferential subscription ps? = (s*, p re fra n k?), the graph is tra
veled in a breadth-first way and two (possibly empty) sets are identified, namely s7 and
Si, representing the immediate predecessors and the immediate successors of st respec
tively. If si = s^ = {s7;}, then s* already exists in the graph and the pair (X , p re fra n k?)
is simply added to the subscription’s PrefRank Set. If X had issued the same subscription
in the past associated with a different preference rank, then the corresponding value is
updated instead. If Si does not already exist in the graph, it is inserted between sj and
S{ and its PrefRank Set is initialized appropriately. In the special case when = 0, Si is
inserted as a root node. Upon receiving an unsubcription request, any pairs containing X
are removed from all the PrefRank Sets of the subscriptions defined in the request. Any
subscriptions left with an empty PrefRank Set are removed as well.

5.2 Forw arding Events

To show how the top-k results for each user are computed, we first assume a single server
maintaining a preferential subscription graph PSG. This server acts as an access point
for all subscribers and publishers. Next, we describe how event delivery is performed for
each of the three timing policies, considering first using ranks based solely on preferences.

Typically, publish/subscribe systems are stateless, in that, they do not maintain any
information about previously delivered events. However, to provide users with the top-
ranked matching events, we may need to maintain some information about previously
delivered events as well as buffer some published events prior to their delivery or dismissal.

In the continuous timing policy, we need to maintain information about previously
forwarded top-ranked events. Specifically, the server maintains a list of k elements for
each of the subscribers that are connected to it. These lists contain elements of the form
(rank, expiration}·, where rank is a numeric value and expiration is a time field. The
rank part of such a pair represents the rank of an event that has already been forwarded

•to the corresponding user and expires at time expiration. Only the ranks corresponding
to the top-fc most preferable valid events that have been already sent to the users appear
in these lists.

All lists are initially empty. Whenever the server receives an event e, it walks through
its PSG to find all subscriptions that cover e. For each subscriber X associated with

22

In p u t : A n event e and a preferential subscription graph P S G .
O u t p u t : Th e set of subscribers R e s S e t that e will be forwarded to.

1: b e g in

2: R e s S e t = 0;
3: tm p R = 0; /* temporary P refR ank Set * /

4: for a ll nodes V{ in P S G d o

5: if si covers e th e n

6: tm p R = t m p R U Ri\

7: for a ll subscribers X that appear in tm p R do

8: r a n k (e ,X) = m a x { p r e f r a n k x , . . . ,pre/raraA ;*x }, where (X , p r e f r a n k x) € t m p R ,
^ 1 < i < m x \

9: for a ll elements i in l i s t x d o

10: i f i has expired th e n

11 : remove i from l i s tx ;
12: i f l i s t x contains less than k elements t h e n

13: add (r a n k (e , X), e .exp) to l i s t x \

14: R e s S e t = R e s S e t U j \

15: else

16: find the element i of l i s t x with the m inim um rank;

17: i f r a n k (e ,X) > i . r a n k th e n

18: remove i from l i s t x ;

19: add (r a n k (e , X), e .e x p) to l i s t x ;

20: R e s S e t = R e s S e t U j ;

21: r e t u r n R e s S e t ;
22: e n d

Algorithm 2 : Continuous Forwarding Events Algorithm

at least one of these subscriptions, an event rank ra n k (e ,X) is computed. In this work,
we assume that the preference ranks associated with the various subscriptions are indica
tors of positive interest, thus, we use as an aggregation function T the maximum value
of the preference ranks of the covering subscriptions. Assuming th a t m subscriptions
s i , s2, . . . , sm submitted by X cover e, ranfc(e,X) = m ax {p re fra n kx , p re fra n k x , . . . ,
pre fra n k x }.

After that, the corresponding list with the k element pairs, denoted lis tx , is checked
and all elements which have expired are removed. If lis tx contains now less than k
elements, e is forwarded to X and the pair (rank(e ,X), e.exp) is added to the list, where
e.exp is the expiration time of e. Otherwise, e is forwarded to X only if ra n k (e ,X) is
greater or equal to the rank of the element with the minimum rank in the list. In this case, *

'this element is replaced by (rank(e ,X), e.exp). Note that, a more recent event equally
important to an older one is forwarded to the user to favor fresh data over equally-ranked
old ones. The process described above is summarized in the Continuous Forwarding
Events Algorithm shown in Algorithm 2 .

23

Next* we show the completeness and correctness of Algorithm 2. First, we will show
that if an event e belongs to the top-fc results of user X , then it will be forwarded to X .
Assume for the purpose of contradiction, that such an event is not forwarded to X . Let
rank(e, X) be the rank of e for X. Since e is not forwarded to X , there exist k valid events

with ranks rank(e\, X) , . . . , rank(ek, X) such that ranfc(e,-,X) > rcmA:(e,X),
1 < i < k. This means that e does not belong to the top-A: results of user X , winch violates
our assumption. Next, we proceed with showing that if an event e is forwarded to X ,
then it belongs to the user’s top-k results. For the purpose of contradiction, assume that
e does not belong to the user’s top-k results. This means that there exist k valid events

with ranks ranfc(ei ,X), . . . ,ranfc(e^,X) such that rank(ei,X) > rank(n,X),
1 < i < k. Therefore, according to Algorithm 2 (line 21), e will not be forwarded to X ,
wiiich is a contradiction.

Note that it is not necessary to w'alk through all nodes of the preferential subscription
graph to locate the subscriptions that cover a specific event e. We may safely ignore a
node v with subscription s for which there is no other node ν' with subscription s', such
that s' coders s and at the same time s' covers e. This wray, entire paths of the graph
can be pruned and not used in the matching process. For example, in Figure 5.2, if an
incoming event is not covered by {cinema = ster}, then it is certainly not covered by
{cinema = ster, time < 2 0 :0 0 }, {cinema = ster, genre = drama , time > 2 1 :0 0 } or
{cinema = ster, genre = drama , time > 23:00} either and therefore, those subscriptions
do not have to be checked against the event.

In the case of the periodic timing polic}', there is no need to maintain information
about previously sent events. Instead, the server buffers all events published during the
current period. At the end of the period, w'e compute the ranks of the buffered events for
all users and deliver the corresponding top-A; events to each of them. Only events tha t
are still valid, i.e. not expired, at the end of the period are considered.

The computation of top-A: results in the sliding w'indowr timing policy is similar to the
periodic one. However, in this case, the server needs to buffer the w most recent matching
events for each subscriber. Whenever a new event is added to a buffer, the top-A; events
of the buffer are computed. The ones that have not already been forwarded to the user in
the past are delivered (events may have been fonvarded in the past because consequent
windows overlap). In the case that expiration times are used, events are removed from
the buffer upon expiration.
- Since in the continuous timing policy we do not maintain any information about

the content of previously forwarded events but only about their ranks, w'e opt not to
4 ^

apply the diversity technique. The focus of this timing policy is the fast delivery of top-
ranked events. The diversity technique is best suited for the periodic and sliding window
policies. Concerning the periodic policy, at the end of each period, wre apply the Diverse
Top-k Events Algorithm (Algorithm 1) to compute the top-A: diverse events for each user.
Similarly, in the sliding window policy, whenever a new' event is added to a buffer, its
contents are re-arranged according to the events’ divranks. After this re-arrangement

24

takes pl^ce, the events that belong to the top-A; ones in the buffer are forwarded to the
user, unless they have already been forwarded in the past.

5.3 Topology of Servers

An event-notification service can be implemented over various architectures. At one
extreme, a centralized approach can be followed, e.g. [13]. In this case, a single server
gathers all subscriptions and notifications and carries out the matching process. However,
due to the nature of such systems, where participants are physically distributed across
the*globe, a distributed architecture is more scalable. When more than one server exists
in the network, each server runs Algorithm 2 for its own preferential subscription graph.
Events are propagated among servers based on the server topology. The servers of the
system are responsible for collecting all the published events and carrying out the selection
process, i.e. delivering each event only to the subscribers that have declared their interest
to it.

In this work, we consider a hierarchical topology, where the servers tha t implement the
event-notification service are connected to each other to form a hierarchy. Each publisher
and subscriber is connected to one of the servers in the hierarchy. We wish to organize the
participants of the network in an efficient way, i.e. in a way that will reduce the number
of messages exchanged between the servers and the complexity of the maintained data
structures. One way to achieve this is by placing subscribers with similar subscriptions
nearby in the hierarchy, so that the events covered by those subscriptions need to be
propagated only toward this part of the hierarchy. To do this, we exploit the structure of
preferential subscription graphs and more specifically, the covering relations between their
nodes. We observe that all events that are covered by some subscription of a preferential
subscription graph P SG are also covered by at least one of the most generic subscriptions
in it. Therefore, only events covered by the subscriptions in nodes with no incoming
edges, i.e. root nodes, need to be propagated to the server maintaining the P S G . So, in
order to reduce the exchanged messages we have to minimize the number of root nodes
in the various preferential subscription graphs of the system.

While in most publish/subscribe systems new subscribers randomly select a server
to connect to, in our approach, when a new subscriber enters the network, it probes a
number of servers and chooses one of them according to the following criteria:

3-
* · (Criterion 1) The number of new root nodes added to the server’s preferential

subscription graph. The smaller the number of such nodes, the fewer the additional
• events that should be propagated to the server in the future.

• (Critenon 2) The number of nodes in the server’s preferential subscription graph.
The fewer the nodes in the graph, the lower the complexity of searching it.

• (Criterion 3) The number of existing subscriptions in the graph covered by the new

25

Server A Server B
^ ---------------

genre = comedy genre® drama

(X.,0.5) (Χ,,Ο.6)

^ ^ ------------- _____

(a)

Server A

genre = comedy

(Χ,,ο̂

genre = comedy
length > 120

(X„ 0.7)

Server B
■' ---------

genre = drama

(X,,0.6)

(b)

Server A

genre = comedy

(Χ „0 .5)

Server B

genre = drama

(Χ,,Ο.6)

(c)

genre = comedy
length > 120

(X>,0.7)

Figure 5.3: Clustering.

ones. The closer to the root level of the graph the new subscriptions will be inserted,
the quicker future pruning will occur.

A new subscriber may first use Criterion i, and in case of a tie, Criterion 2 and/or
Criterion 3 to select a server. For example, consider the case of Figure 5.3a where there
are two servers, Server A and Server B, both already storing some user subscriptions
from subscribers X \ and X 2 . Assume that a new subscriber X 3 wishes to insert a new
preferential subscription ({genre = comedy, length > 120}, 0.7) to the system. If X 3

chooses Server A to subscribe, the result will be the one shown in Figure 5.3b. If X 3

chooses Server B, the result will be the one shown in Figure 5.3c. Using the first criterion,
X 3 will choose to join Server A because in this case no new root nodes will be added to
the preferential subscription graph of Server A and thus, no new message traffic will be
generated (except from the messages sent from Server A to X 3). This clustering method
is non-preemptive, in the sense that it does not modify the existing underlying structures
of the system.

r

i

26

r

Chapter 6

Evaluation

6 . 1 Dataset

6.2 Experiments

To evaluate our approach, we have extended the SIENA event notification service [4],
a multi-threaded publish/subscribe implementation, to include preferential subscriptions
and perform ranked delivery of diverse events according to the three timing policies. We
refer to our prototype as PrefSIENA [3]. In this chapter, we first describe the dataset
used to evaluate our approach and then present our experimental results.

6.1 D ataset

To evaluate the performance of our model, we use a real dataset, available online at [2].
The dataset consists of data derived from the Internet Movie Database (IMDB) [1], a
major database of information about movies, actors, film makers etc., online since 1990.
The dataset contains information about 58788 movies. More specifically, for each movie
the information of Table 6.1 is available.

string genre = drama
integer length > 100 0.8
integer year < 1980

string title = Big Fish
integer year = 2004
integer length = 125
double rating = 9.0
integer votes = 180

string mpaa = PG-13
string genre drama

string genre = romance
string year > 1990 0.6
string mpaa = PG-13

(a) Generated event. (b) Generated preferential subscriptions.

Figure 6.1: Generated data.

27

Table 6.1: M o vi es dataset properties.

A ttr ib u te D escrip tion T y p e

title The title of the movie string
year The year of release integer

budget The budget of the movie (in US dollars) double
length The length of the movie (in minutes) integer

rating
The average IMDB user rating for the
movie

double

votes
The number of IMDB users who rated
the movie

integer

rl-rlO
The distributions of votes for each rat
ing (from 1.0 to 10.0)

double

mpaa
The Motion Picture Association of
America (MPAA) rating for the movie

string

genre
The genre of the movie (possibly more
than one)

string

D a ta genera tion : Publishers generate events as follows. At random intervals, each
publisher uniformly selects m p numbers from 1 to 58788. For each of the corresponding
m p movies the publisher creates a new event consisting of the title, year, length, rating,
votes, mpaa rating and the genre(s) of the movie. An example of such an event can be
seen in Figure 6.1a.

Subscribers generate subscriptions as follows. At random intervals, each subscriber
generates m s subscriptions. Each subscription is generated independently from the others
and contains a random number of the following attributes: year, length, rating, votes,
mpaa and genre. For each numerical attribute an operator must also be chosen. The
operators we consider are = , < and >. Operators are chosen according to predefined
probabilities following a zipf distribution.

The value of each attribute can be generated using either a uniform or a zipf distri
bution. In the uniform method, string attributes take a value uniformly chosen over the
set of all possible values. For example, for the mpaa attribute, all of the four possible

' values ‘PG” , “PG-13” , “R” and “NC-17” have a 25% probability to be chosen. Numerical
attributes take a value uniformly chosen between the minimum and maximum possible
value of the attribute, according to the dataset.

However, since real subscriptions are not expected to follow a uniform distribution,
we also consider another method to generate subscriptions. This second method uses a
zipf distribution to choose values for the various attributes. In this case, possible values
for each attribute are ranked based on the dataset properties and our experience. For
example, in a real scenario we would expect more people to subscribe for PG rated movies
than for NC-17 rated movies, so the “PG ” value is higher ranked than the “NC-17” value

28

(a) Continuous timing policy. (b) Periodic timing policy.

(c) Sliding window timing policy.

Figure 6.2: Number of delivered events.

for the mpaa attribute. When a value for a given attribute must be chosen, the subscriber
draws a number i from a zipf distribution and chooses the i th most popular value for the
attribute.

Finally, in any case, a preference rank uniformly distributed in [0,1] is associated with
each subscription. Subscription examples can be seen in Figure 6.1b.

6.2 E xperim ents

- We perform two sets of experiments. In the first set, we evaluate the number and quality
of the events delivered to the users using PrefSIENA and SIENA. In the second set, we
evaluate the overheads introduced by ranking.

JNumber an d q u a lity o f de livered events: Since both the number and quality of
events depend on the order of publications with regard to their ranks, to perform our
experiments, we consider a number of different event-scenarios. In particular, in the
“B e s t-F ir s t” scenario, the highest-ranked events are published first, while in the “B e s t-

L a s t” scenario, these events are published after the lower-ranked ones. In the “B u r s t”

29

(a) Periodic timing policy. (b) Sliding window timing policy.

Figure 6.3: Number of delivered events, when diversifying.

scenario, we consider the case of bursts of highly-ranked events at specific moments in
time and finally, in the “R a n d o m ” scenario, high and low ranked events are interleaved.
For comparison, besides top-A; delivery, we also consider the case in which all matching
events are delivered to the users, as in traditional publish/subscribe.

First, we measure the number of events delivered to a specific subscriber using Pref-
SIENA as a function of the number k of the top results the subscriber is interested in.
We use a set of 2500 events out of which 800 match the user’s subscriptions. We first
consider the continuous timing policy with no expiration (Figure 6.2a) and run this ex
periment for the above scenarios. The greatest reduction in received events occurs in the
“Best-First” scenario. This happens because when low-ranked events arrive, they cannot
enter the top-A; results, since higher-ranked events already occupy all the available slots.
The “Best-Last” scenario is the one with the most delivered events, since the user receives
both the events with the lower ranks tha t arrive first and the events with higher ranks
that arrive later. The number of delivered events increases along with A;, something that
is better illustrated in the “R a n d o m ” scenario due to the mixed sequence of published
events. In this case for example, for A: = 4, PrefSIENA delivers on average 9% of the
matching events, while for k = 20, the corresponding percentage is around 29%.

In Figure 6.2b, we show the number of delivered events for the periodic timing policy.
We consider a constant rate of publications and run this experiment for periods with
T = 40 and T = 80 events for all scenarios. The number of delivered events does not
depend on the used scenario, since at each period this number is bounded by k . On
average, the number of events delivered by PrefSIENA ranges from 7% to 35% of all
matching events for the various values of k . The results for the sliding window timing
policy are shown in Figure 6.2c. We use two window lengths, w = 40 and w = 80. In all
scenarios, we observe that when w = 80, fewer events arc delivered. This happens because
when a larger window length is used, highly-ranked events remain in the subscriber’s
buffer for longer and prevent more low-ranked events from entering the top-A: results.
In the “R a n d o m ” scenario, there are always some high-ranked events in the buffer tha t

30

r ■ * ------------------------ .-------------------------------.-------------------------- r------------------------------ \2

1

------------------------------1----------------------------- T 1

ir---------------------------S - _____ ■ ..

:---------------- Γ Γ ~1
I S 0.6 (

p---------------------------- &-----------------------------8------------— -------*-------— 1

- Best-Fir») scenario — 4—
Besl-lastscenario — H—

Random acenario ■ ■
A* matching events — Θ— (f

' e
5 <

0.4

0 2

0

Bost-Flrst scenario. T-40 — 4—
Best-Last scenario, T-40 — X—

Burst scenario. T-40 —K—
Random scenario, T-40 —> —

Best-First scenario. T-80 + · -
Best-last scenario. T*80 x

Burst sconario. Tr.00 X
Random scenario, T=80 ■

All matching events —S —

k

(a) Continuous timing policy. (b) Periodic timing policy.

(c) Sliding window timing policy.

Figure 6.4: Average rank of delivered events.

block low-ranked ones from entering the top-fc list. Therefore, the number of delivered
events is considerably smaller than in the other scenarios. For example, for k = 4 the
reduction is nearly 75%. Figure 6.3b shows the results for the sliding window timing
policy, when diversifying the delivered events. Considering the various scenarios and the
window length, the results are similar to the previous case. Generally, there is an increase
in the number of delivered events, since more than one events may be now forwarded in
each new window (see Section 4.2). This does not happen in the periodic policy, since
the number of delivered events is the same, even if the actual events differ (Figure 6.3a).

In summary, periodic delivery ensures that each user receives a specific number of
'matching events per period. In contrast, in continuous and sliding window-based delivery,
there is some fluctuation in the number of delivered events based on the order of event
arrival with respect to their rank as well as on whether we require diversity or not. As
expected, larger periods and windows decrease the event delivery rate.
* We also run a set of experiments to evaluate the quality of the delivered events. We
characterize quality based on three factors: (i) the average rank of delivered events, (ii)
their diversity and (iii) their freshness, i.e. the elapsed time between their publication and
the time they reach the user.

Figure 6.4 depicts the average rank of all the delivered events for the various timing

31

(a) Periodic timing policy. (b) Sliding window timing policy.

Figure 6.5: Average rank of delivered events, when diversifying.

Figure 6.6: Sliding window timing policy: list diversity for delivered events.

policies and scenarios. Generally, we observe tha t the average rank depends on the used
scenario. The average rank of all matching events is 0.59. In PrefSIENA, even though in
the presence of many high-ranked events some of them may fail to appear in the top-fc
results, the average rank is larger than tha t in all cases. When diversifying the events,
there is a slight decrease of the average rank, since diverse events may have lower ranks
(Figure 6.5).

In Figure 6.6, we measure the list-distance of the events that are forwarded to a user
when we follow the sliding window timing policy for the “Random” scenario. We run

- this experiment for different window lengths using the diversification method with σ = 1
and σ = 0.2. We see that the produced results do indeed exhibit a higher diversity when
they are chosen based not only on their ranks but also on their distance from each other.
Similar behavior is observed in the periodic timing policy.
, Next, we measure the freshness of the delivered events, that is the time between their
publication and their delivery (Figure 6.7). In the continuous timing policy, the freshness
of data does not depend on the scenario, since events are forwarded immediately. In
the periodic policy, the sequence of the published events influences the freshness of the
delivered ones. For example, if high-ranked events are published towards the end of a

32

(a) Continuous timing policy. (b) Periodic timing policy.

(c) Sliding window timing policy.

Figure 6.7: Freshness of delivered events.

period, they will reach the user earlier than if they are published at the beginning. As
expected, a larger period length results in larger delays between publication and delivery.
In the sliding window timing policy, a larger window length increases the average delivery
time. This happens because an event remains in the window for longer and therefore,
it has more opportunities to enter the top-A;. When we diversify the events, the average
delivery time increases because of the additional time required to select which events to
forward (Figure 6.8).

In summary, although top-A; delivery reduces the number of delivered events, it in
creases their preference rank. All policies deliver events with comparable preference ranks.
These ranks vary slightly with the order of event arrival; this variation is most notice
able in the continuous timing policy. Our diversification algorithm reduces the average
preference rank of the delivered events, but increases their average diversity. Finally, in
terms of freshness, the continuous policy is the most effective one. In the periodic and
eliding window policies, freshness depends on the arrival rate and on the size of the pe
riod and the window respectively. Diversification reduces freshness mainly because of the
additional overheads introduced by the diversification algorithm.

33

(a) Periodic timing policy. (b) Sliding window timing policy.

Figure 6.8: Freshness of delivered events, when diversifying.

(a) Matching time (per event). (b) Diversification time (per window).

Figure 6.9: PrefSIENA performance.

Perfo rm ance: Finally, we perform a number of experiments to evaluate the perfor
mance of PrefSIENA. There is a substantial overhead for implementing ranked delivery
of events for two reasons. First, to compute the importance of a new event, we have to
locate all matching subscriptions, while in traditional publish/subscribe systems it suf
fices to locate just one of them. In Figure 6.9a, we evaluate this overhead. This depends
on the size of the preferential subscription graph. On average, when performing ranked
delivery, we have to check incoming events against twice as many nodes as in the case of
npn-ranked delivery. Second, there is also the overhead of maintaining state for previously
forwarded' events and performing computations to decide whether a new event belongs
in the diverse top-ranked results. In Figure 6.9b, we measure the overhead of computing
diverse top-A: results using Algorithm .1 that implements our heuristic. The extra compu
tational cost depends on the buffer size and the number k of produced results. We see
that the required time increases linearly with both factors. Note tha t if instead of using
the heuristic method for diversifying events we use the brute-force one, the required time
increases much faster (for example, for a buffer size equal to 40 events and k = 12, this

. time exceeds 2 hours).

34

9

C h a p t e r 7

R e l a t e d W o r k

7.1 Publish/Subscribe

7.2 Ranked Publish/Subscribe

7.3 Preferences

7.4 Diversity

In this chapter we present related work on a number of fields related to our work.
First, we describe some popular publish/subscribe systems that have been proposed in
the literature and some forwarding techniques that have been applied. Then, we present
recent work that focuses on ranking in publish/subscribe. Later, we describe various
alternatives for users to specify preferences and also some work aiming to increase the
diversity of results that are returned to users.

7.1 P ub lish /S u b scrib e

In this section we will describe a number of publish/subscribe systems. Most of the
research so far in this field aims at improving the scalability of the system by decreasing
the time required to perform matching between events and subscriptions. To do this,
various indexing schemes have been proposed for storing subscriptions. These schemes
depend on the way-users define their subscriptions. There are two widely used methods
to define subscriptions: the topic-based method and the content-based one. In the to p ic -

based method (e.g. [22]), there are a number of predefined event topics, usually identified
by keywords. Published events are associated with a number of topics. Users can subscribe
to a number of individual topics and receive all events associated with at least one of them.
Topic hierarchies can also be used with these method. When a user subscribes to some
topic in the hierarchy the user implicitly also subscribes to all of its subtopics as well.

35

The topig-based method is easy to understand and implement, but has the disadvantage
that the topics are static and predefined and therefore the users cannot express random
interests. In the co n te n t-b a se d method [13, 7], such as the one used in this work, the
classification of the published events is based on their actual content. Users express
their subscriptions through constraints which identify valid events. An event matches a
subscription, if and only if, it satisfies all of the subscription’s constraints. In general,
the content-based method offers greater expressiveness to subscribers but is harder to
implement. A third, not so widely used, alternative is the ty p e -b a se d method (e.g. [12]).
This method is similar to the topic-based one with the difference that published events
are not associated with keywords but rather with a type (which implies a certain event*
structure).

P u b lish /S u b sc rib e System s: A centralized, main memory mechanism for matching
incoming events against a set of stored subscriptions is described in [13]. The proposed
method is processor cache conscious and makes use of the “prefetch” command which
is available'in modern processors to fetch certain blocks from memory and thus achieve
better performance. Subscriptions are treated as sets of predicates, as in our work. Each
predicate consists of an attribute a, a value v and a relational operator o p . An event is a
set of pairs, each one of them consisting of an attribute a' and a value v '. An event pair
(α', ν ') matches a subscription predicate (a, v , op) if a' = a and ν ' o p v .

The main idea behind the proposed matching algorithm is to cluster subscriptions
according to their predicates and define an access p r e d ic a te for each cluster. An event
can match some of the subscriptions of a cluster only if it matches the cluster’s access
predicate. Since an incoming event is expected to match only a small number of the
defined access predicates, we only have to check a small number of clusters to find the
subscriptions that are matched by the incoming event. More specifically, the proposed
algorithm makes use of a list of clusters (each one associated with an access predicate),
an index on those access predicates and a bit vector. The bit vector consists of one bit
for every predicate known to the system. Upon receiving a new event, the bit vector is
reset. For each predicate contained in the event, the corresponding bit is set to 1. Using
the index, the access predicates that match the incoming event are found. After this,
the subscriptions of the corresponding clusters are checked one by one against the bit
vector to determine whether they contain any predicates that are not satisfied by the
event. Only equality predicates common to all the subscriptions of a cluster are used
as access predicates. The most challenging part of the method, however, is to define
those access predicates in such a way as to minimize the number of clusters that each
incoming event has to be matched against. The authors propose a cost model based on
Λ

their implementation choices to calculate the cost of matching an incoming event against
a certain configuration of the system (number of clusters etc.) and use a greedy algorithm
to find a local cost optimum.

Experimental evaluation shows that the proposed algorithm is highly scalable, support

36

ing millions of subscriptions and high rates of incoming events. The proposed algorithm
is very fast indeed but remains centralized and therefore prone to failure. However, it
can be applied to each of the nodes of a distributive system as in the case of COBRA
[24].-Also, since the proposed algorithm is a main memory one, for it to be fast, the
node running it should have enough memory available to store all of the subscriptions
and events it is aware of. Another issue is the use of processor commands which means
that the algorithm implementation is processor-specific.

Scribe [9] is a topic-based publish/subscribe system. It is built on top of Pastry [25], a
peer-to-peer routing protocol. Each Pastry node has a unique id. These ids are uniformly
distributed. Pastry offers one main operation: Given a message and a key, it routes
the message to a node such that the node’s id is numerically closest to the key among
all the other ids. Ids and keys are both sequences of digits with base 2b (where 6 is a
system parameter). The routing of a message needs \log2t>N] steps on average, where N
is the number of nodes in the system. Delivery is guaranteed even in the case of many
simultaneous node failures. The routing table of each Pastry node X has \log2bN'] rows,
each of which contains 2h — 1 entries. All entries in row n of the table refer to nodes whose
ids match X 's id in the first n digits and whose (n-f- l) th digit differs. Generally, to route
a message along with its key, the current node forwards the message to a node whose id
shares with the key a prefix that is at least one digit longer than the prefix that the key
shares with the current node’s id.

Scribe makes use of Pastry’s routing strategy to built an application-level multicast
infrastructure on top of it. A scribe node can create groups. Other nodes can later
join these groups or multicast messages to them. Scribe is responsible to deliver the
multicasted messages to the appropriate nodes. There exists one group (with a unique
group id) for every available topic. The Scribe node with id numerically closest to the
group id is responsible for the group. This node is called the rendezvous point for the
group. The rendezvous point is the root of a multicast tree which includes all the members
of the group. Such trees are created by joining the Pastry routes from each group member
to the rendezvous point and may therefore contain nodes that are not members of the
group. When a group member wants to publish a new event associated with a specific
topic, it forwards the event to the corresponding rendezvous point responsible for the
topic. From there, the event is delivered to all interested parties via the corresponding
multicast tree. Scribe takes advantage of the scalibility and fault-tolerance of the Pastry
protocol but routes all group messages via a single rendezvous point. Also, it is a DHT-
based approach, and therefore inherits all of the DHT’s maintenance costs.

In [24], the problem addressed is the creation of a customized RSS (Really Simple
Syndication) feed for a user via the aggregation of the vast number of RSS feeds that
are available on the Internet. Towards this direction, the Cobra (Content-Based RSS
Aggregator) system is presented. Motivated by the rapid growth of continuously-updated
discussions in the blogoshere, the authors propose a three-tiered network of crawlers,

37

filters aiyJ reflectors to tackle the problem of finding interesting blog posts and track
blogs with interesting content. The purpose of the Cobra system is to gather posts
(crawlers), perform content-based filtering for each of its subscribers (filters) and present
to them a personalized RSS feed (reflectors). Cobra includes an offline service provisioning
technique that determines the components needed to support a certain number of sources
and subscribers, i.e. it determines the number of crawlers, filters and reflectors used by
the system. These components can be distributed over a number of hosts.

Each crawler is given a (separate) list of source blog URLs and periodically crawls each
URL to find new posts. Each URL is assigned to a crawler according to latency measures.
In order to reduce bandwidth consumption, crawlers make use of http met a data and a♦
hashing technique to distinguish between old and new posts. New posts are pushed to the
second tier, the filters. Each filter receives posts from all the crawlers. A filter contains a
list of subscriptions of the form (subscription id, reflector id, keywords). The subscription
id is unique for every subscription in the network. The reflector id identifies the reflector
responsible for the subscriber who issued the subscription. In order for a subscription to
match a published post, all of its keywords must be found inside the post. In order to
perform the matching, each Cobra filter uses the algorithm proposed in [13] because of its
high scalability and efficiency. The new posts which match a subscription are forwarded
to the corresponding reflector. A reflector is responsible for collecting all the relative posts
for a number of subscribers and create a personalized RSS feed for each one of them. Due
to performance reasons, filters only push the matched posts to the reflectors (without a
subscriber list attached). Therefore, each reflector re-runs the filtering algorithm for each
post it receives to decide the subscribers who should receive it. For each user subscription,
the corresponding reflector caches the k latest posts received and maintains a feed which
the user can view via any RSS reader.

Periodically, Cobra makes use of statistics collected at each component to re-run the
offline provisioning algorithm at a central controller node and adjust the number of needed
components. Cobra can be used along with one of the many already existing RSS read
ers and uses the already very popular RSS feeds as sources. However, it is not a fully
distributed system as it is designed to run on a hosting center.

Forw arding Techniques: The work in [22] is focused on topic-based publish/subscribe
systems. Concerned by the cost introduced by these systems in order to maintain a sup
porting structure (such as a multicast tree) for each distinct topic, the authors propose a
distributed clustering algorithm that makes use of the correlations between the subscrip-

4
tions stored in the system to group topics together into virtual topics. The corresponding
supporting structures are then unified, thus reducing the overall cost of the system.
' The authors assume a basic topic-based system where users subscribe to a number of
topics. For each topic there is a node in the system which is considered to be responsible
for it. For each topic there exists a multicast tree rooted at the corresponding responsible
node. This tree connects all the users who have subscribed to the corresponding topic.

38

Whenever a publisher publishes an event on this specific topic, it sends it to the responsible
node. Using the multicast tree the event eventually reaches all the subscribed users. The
main idea of the proposed method is to group topics with similar sets of subscribers into
a virtual topic and merge their supporting structures, namely their multicast trees. Users
can use a local filter to prime irrelevant results in case the}' are interested in only a fraction
of the virtual topic’s topics.

A cost model for the structure maintenance of the system and the dissemination
of events is introduced. The maintenance cost depends on two factors: the average
maintenance cost for a multicast tree with a given number of subscribers and the cost
of maintaining the association between a given virtual topic and each of its topics. The
dissemination cost also depends on two factors: the cost of notifying the responsible node
of a topic (or a virtual topic) about an event and the cost of propagating the event through
the multicast tree to the appropriate subscribers. The overall cost is the sum of all these
factors over all the existent topics and virtual topics.

To form and maintain virtual topics only local operations are performed. Those op
erations involve only the nodes participating in one or two topics (or virtual topics) and
include the grouping of two topics to form a virtual topic, the addition of a topic to an
existing virtual topic, the merging of two virtual topics, the removal of a topic from a
virtual topic and the destruction of a virtual topic. Prior to the performance of such an
operation, its contribution to the reduction of the overall cost is estimated. The operation
is performed only if it is beneficial to the system. Since it is not practical to estimate the
overall cost based on all the existing topics, only the participating topics are used (for
example, when merging two virtual topics we estimate the overall cost reduction based
on these two virtual topics alone). For a more detailed explanation of each operation the
reader is referred to [22]. Finally, the authors propose a heuristic greedy algorithm for a
subscriber to find a combination of topics and virtual topics tha t cover its interests. The
proposed methods have been implemented on top of Scribe [9].

A forwarding algorithm for content-based publish/subscribe systems is presented in
[17]. Since content-based matching does not have a worst case efficient solution [18], the
authors attem pt to reduce the number of content-based matching operations needed. The
basic idea of their method is to perform only one content-based matching per event when
the event enters the system and associate the event with a prefix. This prefix is then used
by all other nodes to route the event.

Routing is performed in a SIENA-like fashion [7]. SIENA’s poset data structure is
replaced by the Routing Tree. All servers of the system maintain a Routing Tree. The
Routing Tree stores filters in a disjoint form. Each of its nodes hold a simple attribute
constraint with only one predicate. Some nodes of this tree contain pointers to subscribers
while only new root nodes of the tree are propagated to other servers of the network. When
a new event reaches a server it is matched against its Routing TVee. The result of this
operation is a Forwarding Prefix Tree, which is constructed by the nodes and paths of
the Routing Ttee that match some of the event’s attributes. This Forwarding Prefix IVee

39

is attached to the event and piggy-backed along with it toward the appropriate subset of
the server’s neighbors. When a server receives an event along with a Forwarding Prefix
Tree, it maps the Forwarding Prefix Tree on its own Routing Tree to find the appropriate
neighbors that it must forward the event to.

A major drawback of the proposed method is that in order for it to work, all servers
must have identical Routing Trees (possibly with different neighbors stored at their nodes).
For this to happen all Routing Trees must be composed of the same set of filters and
those filters must be inserted into the trees at the same order. This is nearly impossible
to happen in a distributed environment where each subscriber sends its subscriptions
(filters) to only a very small number of servers. To overcome this obstacle, the authors*
propose the use of the Tree Optimizer. The Tree Optimizer is one central node in the
system which is responsible for the construction of the Routing Tree and its propagation
to all the other nodes. A possible extension is the use of many nodes, each of which will
be responsible for a part of the Routing Tree. Servers must forward all newly received
filters that do not already exist in their Routing Tree to the Tree Optimizer. Since it
would be impractical to wait for the changes to the Routing Tree to be propagated to the
whole network, they insert pointers to the subscribers in their own (now outdated) copy
of the Routing Tree but only in already-existing nodes. This results in a number of false
positives until the changes in the Routing Tree are propagated to the network and the
local Routing Table copy becomes more precise.

The proposed method lowers the number of content-based matching operations to only
one per event but inserts the overhead of the Forwarding Prefix Tree to each event and
the notion of the Tree Optimizer which remains mainly a centralized structure tah t inserts
significant maintenance costs.

Another content-based routing technique, described in [8], aiming to increase seal-
ability. The authors make use of a fundamental concept of content-based routing, i.e.
events and subscriptions must “meet” at some point in the network. They propose to
route events and subscriptions on different but intersecting partitions of the network. The
routing infrastructure is perceived as a multidimensional grid. Subscriptions are dissemi
nated through partitions that cover the whole network but do not overlap with each other.
Events are disseminated through partitions that intersect all subscriptions partitions. To
visualize this concept, assume a 2-dimensional grid. A possible partitioning of this space
is. to disseminate subscriptions along the columns of the grid and events along its rows.
Subscriptions are routed in a SIENA-like fashion but can be propagated only on a single
partition of the network. For example, if a new subscription s is issued by X in the
2-dimensional space, it will be propagated only on X ’s (entire) column. If s is also issued
By some other node Y of the same column, then it will be propagated along the column
until it reaches a node that is already aware of it because of X ’s previous subscription.
From that point on, s does not need to be propagated again and therefore no additional
resources are needed for the handling of the second subscription. Simulation studies show

« that the proposed technique can indeed increase scalability.

40

7.2 Ranked P ub lish /S ubscribe

In this section we review related work on ranked publish/subscribe system. Up to now,
there has not been much research in this field. To the best of our knowledge, the following
work, along with our own, is the first on this topic.

In [21], the problem of ranked publish/subscribe systems is also considered. However,
the problem is viewed in a different way. In a sense, the authors consider the “reverse”
or “dual” problem, since they aim to recover the most relevant matching subscriptions
for a published event (instead of locating the most relevant events for each subscription).
Such a view of the problem is interesting in applications such as targeted web advertising,
whore as an “event” we consider a user’s visit to a website and the advertisers wish
to display their advertisements (“subscriptions”) only to the users that are the most
interested in them. Subscriptions are modeled as sets of interval ranges in a number
of dimensions and events as points that match all the intervals that they stab. Each
interval is associated with a predefined score. Top subscriptions are recovered based
on those scores. A subscription matches an event exactly, if and only if, the event is
fully contained the subscription’s hyper-rectangle. If the event stabs only some of the
subscription’s intervals then we have relaxed matching. In the first case, each subscription
is associated with a single score while in the latter case each interval of the subscription
is associated with a weight and the score of the subscription is computed based on the
weights of the stabbed intervals.

To quickly recover the top subscriptions related to an event, a scored interval index
is build over the subscription intervals of each possible dimension. Those indices take
in an event value V{ and provide an iterator returning the intervals containing V{ in the
order of their score. Given an incoming event (rq, . . . , vn), the n corresponding indices
are probed. Then, in the case of exact matching, the produced intervals are intersected to
produce the subscriptions in score order. In the case of relaxed matching, the Threshold
Algorithm [14] is used to find the highest score subscriptions. After a study of existing
tree structures like interval trees, segment trees and i?-trees, the authors also propose two
new tree structures to index each of the mentioned dimensions: the interval R - tree (/72-
tree) and the Score-Optimal 7?-Tree (S O P T - R - tree). The I R - tree uses an R - tree instead
of a list to index the intervals of each node of an interval tree, while the S O P T - R - tree is
in fact a scored R - tree in which the intervals are sorted in a careful way so that less tree
nodes are accessed by the tree’s iterator.

A problem that arises in this approach is that a user (who is treated as an event) that
does not match subscriptions with a high score receives data depending on the existence
of other users. For example, a user X that does not belong to the advertiser’s target group
will not receive any advertisements as long as there are other users who do. However, if
there are no such users, X will receive those same advertisements.

Another work that also deals with the problem of ranked publish/subscribe is [23].
In the proposed model, a subscriber receives the k most relevant events per subscription

41

within a^window w which can be either time-based or number-based. Both events and
subscriptions are associated with expiration times. Event relevance to a subscription
is measured as the event's distance to the subscription, as computed by a user defined
ranking function. All events that are among the user's top-λ* results a t some point in time
will eventually be delivered to the user.

Events are divided into three groups: (i) Excellent candidates, i.e. events among the
user’s top-λ* results at the moment of their publication, (ii) Good candidates, i.e. events
that are not among the user’s top-λ* results a t the moment of their publication but have
a probability larger than some threshold σ to enter the top-λ* results before the current
window passes and (ii!) Bad candidates, i.e. events for which this probability is less that
σ. For each user subscription a queue is maintained. This queue has a head for keeping
excellent candidates and a tail for good candidates. The focus is on efficiently maintaining
this queue. The size of the head is k while the size of the tail depends on σ. The authors
assume Poisson distributions for the generation and expiration of events and compute a
minimum length for the queue’s tail so tha t all good candidates tha t have high probability
to enter the user’s top-λ* results a t some point in the future can be stored there. This
length grows sub-linearly with k.

7.3 Preferences

In this section, we describe the way users can express various degrees of interest for their
subscriptions by using preferences. There are two different approaches for expressing
preferences, the quantitative and the qualitative one. In the quantitative approach (e.g.
[6, 20]), preferences are expressed indirectly via the employment of scoring functions. Such
functions associate a numeric score with each specific data item. Those scores indicate
the user’s interest for the corresponding data. In [6] for example, users can assign to each
item a score in [0,1] to indicate interest, declare their indifference in it or even veto it
from ever appearing in their results.

In the qualitative approach (e.g. [10, 19, 15]), preferences between two data items are
specified directly by the users, typically using some form of binary relations between data.
In [15] for example, qualitative preferences are used to express priorities among the values
of specific attributes of relational databases and also among the attributes themselves.
Based on those preferences, a query lattice is constructed and utilized to retrieve database
tuples in the order directed bv the preferences defined by the user.

4 The qualitative'approach is more general than the quantitative one, since scoring
functions can always be defined in terms of binary relations. However, not all binary rela
tions among data items can be captured by scoring functions. Therefore, the qualitative
approach offers greater expressiveness to users.

User preferences can also be combined so that additional preferences can be extracted.
Since different preferences may followr different orders (such as the strict partial, weak

^ or total order), there are various wrays to combine them that can either preserve those

42

orders or^not [10]. Such ways include the prioritized, pareto and lexicographic preference
compositions.

Since user preferences may depend on the user’s current state, contextual preferences
have-been introduced to further increase user expressiveness. Contextual preference mod
els have been proposed following both the quantitative ([27, 26]) and the qualitative
([5, 16]) approach. When contextual preferences are defined by the users, an extra pre
processing step is required to select the appropriate subset of preferences that apply under
the user’s current context. Further computations should be based only on the selected
preferences.

7.4 D iversity

The notion of diversity is lately beginning to be considered in personalized systems. Up to
now, most of research focused on improving the recommendations made to the users by the
various petsonalized systems. However, while accurate suggestions are fundamental for
those systems, they do not always guarantee user satisfaction. Diversity aims to produce
recommendation lists that, when viewed as a whole, are more satisfactory to the users.

In [29], the authors propose a method for topic diversification, i.e. a method for modify
ing personalized recommendation lists in order to increase user satisfaction. The purpose
is to balance recommendation lists so that they do not include only suggestions related
to the user’s top-ranked interests but reflect their complete spectrum of interests instead,
while still continuing to take into consideration the accuracy of the individual suggestions.
The intra-list similarity metric is introduced to assess the topical diversity of a given rec
ommendation list. The proposed method can be applied on top of any recommendation
list produced with any method (usually some form of collaborative filtering), as long as
its size is larger than the desired size of the final list.

Assuming a set B of items and an arbitrary function c: B x B —» [— 1, -1-1] measuring
the similarity c(bi,bj) between items &*, 6j, the intra-list similarity of a recommendation
list P is defined as:

IL S (P) =
Σ ΰ , ζ ρ c (b j , b j)

Higher intra-list similarity scores denote lower diversity of the corresponding list. Note
that the rpetric is permutation-insensitive. In order to produce the final diversified list
P ', we first insert into it the first item of P. Then, for every subsequent item we want to
insert in the zth position of P ', we collect the items of P that do not occur in positions 0
to z in P' and compute their similarity with those that do. Sorting these items in reverse
order according to the similarity we computed, we obtain a dissimilarity rank for each
of them. This dissimilarity rank is merged with the original recommendation rank that
the object has in P , yielding a final rank for the item. The highest ranked item is then
inserted into P '. While the diversification of a recommendation list naturally leads to the

43

decrease of the precision and recall of its suggestions, a wide case study with more than
2000 users showed that user satisfactions increases.

The notion of diversity is also explored in [28], where the authors focus on queries
concerning e-shopping. Queried items are tuples of a database relation R. Motivated
by the fact that some relation attributes are more important to the user, a method is
proposed where a recommendation list is diversified by first varying the values of higher
priority attributes before varying the values of lower priority ones. Therefore, having
defined a diversity ordering, i.e. an ordering -<r of /?’s attributes, the authors then define
a prefix with respect to -<r as a sequence of attribute values, in the order given by -<r ,
moving from highest to lower priority. If two tuples £*, tj share a prefix p of length Z, then
their similarity SIM (U ^tj) is 1 if their (l + l) si attribute is the same and 0 otherwise. A
set S of tuples is defined to be diverse with respect to p if) is minimized over
all pairs of tuples in S. In case the tuples are associated with scores, the scored variation
of diversity always picks tuples with higher scores over tuples with lower ones. If many
tuples are tied, then the tuples are picked in a diversity preserving way.

-y

44

9

Chapter 8

Conclusions And
Future Work

In this thesis, we extend the publish/subscribe paradigm with a ranking mechanism so
that only the top-ranked events are delivered to each user. Ranking is based on letting
users define their preferences among specific events. Our overall goal in this work has been
to increase the quality of events received by the users of publish/subscribe systems in terms
of: (i) their importance or relevance, (ii) diversity and (iii) freshness. Ranking events by
importance is achieved by letting users express preferences along with their subscriptions.
Events that match more preferable subscriptions are ranked higher than events that match
less preferable ones. To rank an event, we also take into account how different the event
is from the other top-ranked ones so that the overall diversity among the delivered event
notifications is increased. Finally, for freshness, we have examined a number of policies
with regards to the time range over which the top-A; events are computed, namely a
continuous, a periodic and a sliding window one. We organize preferential subscriptions
in a graph and utilize it to forward events to users. We have fully implemented our
approach in SIENA, a popular publish/subscribe middleware system.

Our overall focus has been on increasing the value of the events received by each
user. There are many directions for future work, mainly regarding performance. One is
developing indexing structures towards making matching events with subscriptions and
ranking more efficient. Also, organizing the servers of the event-notification service in
other topologies besides the hierarchical one used in this work and exploit the underlying
structures to further reduce the messages propagated through the network. Regarding * ·»
expressiveness, an interesting direction is the extraction of preference ranks for published
events based on more than one factors in a skyline fashion. In this case, diversity can also
be employed to resolve ties among the events that belong to the skyline.

45

Bibliography

[1] The Internet Movie Database. http://www.imdb.com.
*

[2] Movies dataset http://had.co.nz/data/m ovies.

[3] PrefSIENA. http://www.cs.uoi.gr/~mdrosou/PrefSIENA.

[4] SIENA, http://serl.cs.colorado.edu/~serl/dot/siena.htm l.

[5] R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking. In SIGMOD
Conference, pages 383-394, 2006.

[6] R. Agrawal and E. L. Wimmers. A framework for expressing and combining prefer
ences. In SIGMOD Conference, pages 297-306, 2000.

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-area
event notification service. ACM Trans. Comput. Syst., 19(3):332-383, 2001.

[8] S. Castelli, R Costa, and G. R Picco. Hypercbr: Large-scale content-based routing
in a multidimensional space. In INFOCOM , 2008.

[9] M. Castro, P. Druschel, A. marie Kermarrec, and A. Rowstron. Scribe: A large-
scale and decentralized application-level multicast infrastructure. IEEE Journal on
Selected Areas in Communications (JSAC% 20, 2002.

[10] J. Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst.,
28(4):427-466, 2003.

[11] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of
publish/subscribe. ACM Comput. Surv., 35(2):114—131, 2003.

r
[12] P. T. Eugster and R. Guerraoui. Content-based publish/subscribe with structural

reflection. In CO O TS’Ol: Proceedings of the 6th conference on JJSENIX Conference
% on Object-Oriented Technologies and Systems, pages 10-10. USENIX Association,

2001.

[13] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Fil-
' tering algorithms and implementation for very fast publish/subscribe. In SIGMOD

Conference, pages 115-126, 2001.

46

http://www.imdb.com
http://had.co.nz/data/movies
http://www.cs.uoi.gr/~mdrosou/PrefSIENA
http://serl.cs.colorado.edu/~serl/dot/siena.html

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In PODS, 2001.

[15] P. Georgiadis, I. Kapantaidakis, V. Christophides, E. M. Nguer, and N. Spyratos.
Efficient rewriting algorithms for preference queries. In ICDE, pages 1101-1110, 2008.

[16] S. Holland and W. Kie ling. Situated preferences and preference repositories for
personalized database applications. In ER, pages 511-523, 2004.

[17] Z. Jerzak and C. Fetzer. Prefix forwarding for publish/subscribe. In DEBS , pages
238-249,2007. -

♦
[18] S. Kale, E. Hazan, F. Cao, and J. P. Singh. Analysis and algorithms for content-based

event matching. In ICDCS Workshops, pages 363-369, 2005.

[19] W. Kiessling. Foundations of preferences in database systems. In VLDB , pages
311-322, 2002.

Ή

[20] G. Koutrika and Y. E. Ioannidis. Personalized queries under a generalized preference
model. In ICDE , pages 841-852, 2005.

[21] A. Machanavajjhala, E. Vee, M. Garofalakis, and J. Shanmugasundaram. Scalable
ranked publish/subscribe. In VLDB, 2008.

[22] T. Milo, T. Zur, and E. Verbin. Boosting topic-based publish-subscribe systems with
dynamic clustering. In SIGMOD Conference, pages 749-760, 2007.

[23] K. Pripuzic, I. P. Zarko, and K. Aberer. Top-k/w publish/subscribe: finding k most
relevant publications in sliding time window w. In DEBS, pages 127-138, 2008.

[24] I. Rose, R. Murty, P. R. Pietzuch, J. Ledlie, M. Roussopoulos, and M. Welsh. Cobra:
Content-based filtering and aggregation of blogs and rss feeds. In NSDI, 2007.

[25] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Middleware, pages 329-350, 2001.

[26] K. Stefanidis and E. Pitoura. Fast contextual preference scoring of database tuples.
In EDBT, pages 344-355, 2008.

[27] K. Sfefanidis, E. Pitoura, and P. Vassiliadis. Adding context to preferences. In ICDE ,
pages 846-855, 2007.

i[28] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. Amer-Yahia. Efficient
computation of diverse query results. In ICDE, pages 228-236, 2008.

[29] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommen
dation lists through topic diversification. In WWW, pages 22-32, 2005.

47

Author’s P ublications

Marina Drosou, Evaggelia Pitoura and Kostas Stefanidis, Preferential Publish/Subscribe,
in Proc. of the 2nd International Workshop on Personalized Access, Profile Management
and Context Awareness: Databases (PersDB 2008), in conjunction with the VLDB 2008
Conference, August 23, 2008, Auckland, New Zealand.

Marina Drosou, XML Summaries for Routing in P2P systems, in Proc. of the 1st Pan-
hellenic Scientific Student Conference in Informatics, Computer Engineering and Related
Technologies (EUREKA 2007), May 18-20, 2007, Patras, Greece.

Short Vita

Marina was born in Ioannina in 1984. She was admitted a t the Computer Science De
partment of the University in Ioannina in 2002 and graduated in 2006. At the same year
she began her postgraduate studies at the same department. She is a member of the
Distributed Management of D ata (DMOD) Laboratory since 2006. Her research interests
include publish/subscribe systems and sensor networks.

