BBBBBBBBB
NNNNNNNNNNNNNNNNNNNNN

222222222222

Yootnua ‘Exdoone/ Luvdpoune yia ™ Metddoon ITAnpogoptdv pe
- Baon T Hpotyunoeic xou v Ionahouopgla

C2)

unAQ
H METAIITYXIAKH EPI'AYIA EZEIAIKEYYHY

unoPdAAeTaL TNV
oplobeton and v Ievua) Xuvéhevon Edudic LivBeonc

. tov Tuduatoc ITAnpogopuiic E€etaotind Emtporn)
and TNV

Mogpiva Apdoou

0¢ MEPOC TWV YTOYPEMOEWY Yt TN An Tou

METAIITYXIAKOY AINIAQMATOY ¥THN [IAHPO®OPIKH
ME E=ZEIAIKEYXH
2. TO AOTI'TYMIKO

YentéuPprog 2008

. 9 ’
, .
K .
b
-
3
B
- N
. . . 1
S) B |
B
. . -
e b
. S
' o

ok 61308 aol AL £ Sadimd s ina

—

ACKNOWLEDGEMENTS

I would first like to thank my supervisor, Prof. Evaggelia Pitoura, for her help, dedication
and time spent du-ring the elaboration of this thesis. I would also like to thank all the
people of the DMOD laboratory who turned my time there into a joyful experience,
especially my office-mate and friend Kostas Stefanidis and also Eftychia Baikoussi, Mirto
Ntetsika, Kostas Lillis and Prof. Panos Vassiliadis. Finally, I would like to thank my
parents and my friends for their continuous support throughout all the years of my studies.

-~

TABLE OF CONTENTS

List of Figures -
List of Tables
Algorithm Index

1 Introduction .
1.1 Scope of Thesis v v v i e e e e e
1.2 Thesis Qutline. 0 e e e e e e e

2 Preference Model

2.1 Publish/Subscribe Preliminaries L.
2.2 Preferential Subscriptions o oo
23 ComputingEvent Ranks

3 Timing Policies

3.1 Continuous Timing Policy
3.2 Periodic Timing Policy
3.3 Sliding Window Timing Policy
3.4 Event Delivery e

4 Events Diversity
41 EventsDistance e

..............................

5 Ranking in Publish/Subscribe
9.1 Preferential Subscription Graph
52 Forwarding Events
5.3 Topoloéy of Servers

6 Evaluation

.....................................

....................................

iii

iv

11
12
14

15
15
17

20
20
22
25

7 Related Work

7.3 Preferences
7.4 Diversity . .

Future Work

PN

A P i C I bt S b

T T T T R T RN T T
)

‘
E.

i

H

, >
¢ g
‘e -

K

71 Publish/Subscribe
7.2 Ranked Publish/Subscribe Lo,

8 Conclusions And 7

35
35
41
42
43

45

LisT OF FIGURES

2.1 Publish/subscribe system operations. 4
« 2.2 Event and subscription examples. L0000 5
2.3 Preferential subscription examples. 6
2.4 Priority condition example.o oL, 7
2.5 Extracting preferenceranks. L0000 7
3.1 Continuous (no expiration): top-2 events for John at 22:55. 10
3.2 ~ Continuous (with expiration): top-2 events for John at 22:55. 11
3.3 Periodic: top-1event for ’=30min. 12
3.4 Sliding window: top-levent forw=3. 13
4.1 Computing top-4 diverse events. 18
5.1 John and Anna’s preferential subscriptions. 21
5.2 Preferential subscription graph example. 21
5.3 Clustering. e e 26
6.1 Generateddata. 27
6.2 Number of delivered events. 29
6.3 Number of delivered events, when diversifying. 30
6.4 Averagerank of delivered events. 31
6.5 Average rank of delivered events, when diversifying. 32
6.6 Sliding window timing policy: list diversity for delivered events. 32
6.7 Freshness of delivered events. 33
6.8 Freshness of delivered events, when diversifying. 34
6.9 PrefSIENA performance. 34

iii

LisT OoF TABLES

4.1 List-Diversity for the random, heuristic and brute-force methods. 17
® 6.1 Movies dataset properties. . . e e e e 28
; r
(4 - -
F
: . . .
p X
” k |)
 \

nige

—

ALGORITHM INDEX

L 4

1
2

Diverse Top-k Events Algorithm.

Continuous Forwarding Events Algorithm

-

ABSTRACT

Marina K. Drosou. MSc, Computer Science Department, University of Ioannina, Greece.
September, 2008. Preference-Aware Publish/Subscribe Delivery with Diversity. Thesis
Supervisor: Evaggelia Pitoura.

In publish/subscribe systems, users describe their interests in specific events via sub-
scriptions and get notified whenever new events that match their interests become avail-
able. Typically, in such systems, all subscriptions are considered equally important. As
the amount of information generated increases rapidly, to control the amount of data de-
livered to users, we propose enhancing publish/subscribe with a ranking mechanism based
on user preferences, so that only top-ranked events are delivered to each user. Ranking
is based on letting users express their preferences on events by ordering the associated
subscriptions. Since many times top-ranked events are similar to each other, we pro-
pose diversifying delivered events to further increase user satisfaction. Furthermore, we
examine a number of different timing policies for delivering ranked events to users. We
have fully implemented our approach in SIENA, a popular publish/subscribe middleware
system, and report experimental results of its deployment.

>

vi

EKTETAMENH [IEPIAHVH

Mopiva Apboou tou Kwvotaviivou xat g Kwvotavtivag. MSe, Turua ITinpogopuxi,
[aventothuio loavvivey, TentéuPprog, 2008. Liotnua ‘Exdoons/Evvdpouifc yia tp Metd-
Soan ITAnpogoptdy e Paon tic Hpotuijoeic xat tyv HovAouoppia. EmBrénovoa: Evay-
yehla Tlitoupd.

Z1a ovotiuata éxdoong/ouvdpoune, ol cuvdpountés ex@pdlouv Ta EVLAPEPOVTE TOUS
Yt JLAPOPES XATNYOPIEC YEYOVOTWY XOL GTY) CUVEYELN EVNUEPGDVOVTAL aTd TO GVaTNUA Ub-
A¢ dnuooteboviar yeyovota mou tatptdlouv ota evdlagépovtd touc. Kabde o éyxog tng
TAnpopoplag mov Tapdyetal augdvetat paydaia, TPOTEIVOUUE TNV EMEXTACT) TWV CUOTNUATOV
éxdoong/cuvdpounic ue éva unyovioud didtadne, £ToL AoTe HEVo Ta T EVOLIYEPOVTA YEYO-
vota va mapadidovral otoug yenotes. o vo dtatdéoude Ta YEYOVOTA, ENLTPENOUUE GTOUG
Yenotec va opllouv TPoTWNOELS AVAUESH aTa EVOLAPEPOVTE Toug. Luvdéouue xGbe yeyovig
e €va ypovo AEng €tot dote Tohl evdiagépovTa YEYOVOTa var uny anoxAelovy vedtepa and
10 vor Topadidovtal atoug ypRoteg. [va auENoouue TEPALTEP® TNV LXAVOTOINOY TWV XPN-
o1V, mpotelvouue ™V ab&non tng mouhouopelag TwV YEYOVéTeY tou napadidovtat. T
va Yivel autd, emAéyouue To yeyovéta mou Bo mapadoBolv haufdvoviag unddn byt ubvo
NV OYECT TOUC UE T EVOLAPEPOVTA TWV YPNOTAV ARG Xat TNV METAEY TOUC ouodTNTA.

[Tio avohutid, ota mapadootaxd custiuata éxdoonc/cuvdpounc, 6heg oL cuvdpouéc
oV XpNnoTdv Bewpolvral eZloou onuoavixés. Auth 1 undbeon teplopiler Tic emAoyég Tou
yenot. T mapdderyya, ag unobBécouue évav ypHotn o omolog evdiagépeTtal YeEvixd Yo
dpouatixéc tauvieg. ITo ouyxexpluéva, ac utoBécouue GTu evdla@épetal TepLocdTEPO Yid
dpapatixés Touvieg Tou T. Burton and étu yio dpapatinés tawvies tou S. Spielberg. Etnv
nepintwon auth, o ypRotne Ba Hfeke va etdonoteitan yio Spapatixée tawvies tou S. Spiel-
berg uévo oty nepintwon mov dev undpyouv apxeTéc TANPOOplES Yia dpauaTIXéS Tatvieg
tou T. Burton. Ta urndpyovta cuotiuata éxdoonc/cuvdpourc 6uwe, dev mapéyouv)
duvatdTTa Expaone auThc TG TPoTiUNaNG.

Yy epyaoia outh, npotelvouue 0 yprion xdnotou eidoug didtagng petagd Twv evdlage-
POVIWY TWV XPNOTAY, €TOL (HOTE VI TOUG TAPEYETAL 1) SUVATOTNTA VA EXPRAGOUY TO YEYOVES
. Tw¢ xdmowr evilapépovTal elvan mo® onuavTixd ond xdmota dhha. T va dratdEouue To
“ EVOLUQEPOVTE, XPNOLUOTOLOVUE TPOTIUACES. Ald@opa UOVTENX TPOTWHGEWY EYOUV TPO-
tafel oto mapehbov. To mepioobiepa axohovloldv elte v mocotixy, elte ™V noloTixd
TPOCEYYLON. LNV TPOTN TEPINTWOY 0L YPHOTES XPNOUIOTOLOVY UoBNUATIXES CUVAPTHOELS
Tou avabéTouv évay optBunted Babud oe xdbe dedouévo, evd 6T delTEPY OL TPOTUNTELS

vii

uetakl twv didgopwyv dedouévwv opilovtar dueca ue T yprion duadixdv oyéoewy. Ta va
ezq)pa’zc'rouys REOTWROELS UETAEY GUVBLOUGY, TEOTA ELGAYOUUE TIG CUVOLOUES RpOTIUNOTG.
Or ouvdgougg =potiurorg uropovyv va yenotuorotrfoly xat ue o 300 Uoviéla REOTWUHOEWY
UE.T0 va ouvdéouv évav Babud evdagépovtog oe xdbe ouvdpoun.

Baotouévor oTic ouvdpoués 7poTiunoTng, etodyovue ula ragaddayr Tou npotinou €xdo-
org/ouvdgourc otnv onoia ot yprioTeg Aauddvouv u6vo Ta k mo evdiagégovia YEYOvOTa
xat Oyt 6ha 6oa targrdlouv oTig cuvdpouéc Touc. EZetdoouue évay aptBud moltixdv ypo-
viowol Y Trv napddoor, yYeyovotwy: (i) Tnv moktixy cuveyolc povg, (ii) tnv mepLodixy
oMt xan (iii) v "o, xulduevou wagaBigou. Etny molTixy cuveyolg porg, Ta
=to evdlagépova YEYoVOTa Rpowfolvial 6Toug YeNoTES T OTLYUN) TN¢ €%B00T1¢ Toug. LIny
7Bpodur| mokttixk, T mo evdiagépovia YEyovdTa mpowbolvral avd Taxtd ypowixd Sta-
OTTUATA, EVO OTTV ROATLXY Xulibuevou mapafigou ouvdudlouue T dVo mpoNYOUUEVES
rpooeYyloels ue 7o va vroloyilovue xat va npowbodue Ta o evdagépovia yeyovoTa VO
xuhtuevou ragafipou YeEYovoTwy we rpoxalfoptouévo urxoc.

Ta 7o evdagépovian yeyovéta yia xdbe yprioty ouyvd napovctdlouv UeYdAly) ouoLd-
mta. Qot600, 1 abinoy TS ROUAOULOPYIAC TWV YEYOVOTWY 7ou mapadidoviar TeAxd
o70Ug YEToTeS aUEAVEL TNV XavoRoiToY; Toug and To ovotnua. o mapddetyua, o ypriotng
Tou moapadeiyuatds uac Ba rheke va hauPdver mingogopiec xupiwe yia diagopetiéc dpa-
uatxég Tawviec Tou T. Burton xat, uta 670 1600, Xt Yia xdmoteg dpayatixéc Touvieg Tov
S. Spielberg. I'ia T0 Aéyo autd, TgoROTOLOUUE TO UNYAVLOUS UROAOYLOUOL TV k XahUTe-
pwV YEYOVOTWYV €70t OOTE va Aaufdvouue urddn xat Ty movalouoppia Touc. Xe auTHv
v xatetBuvor;, yerowonototue éva ouvduaoud g onuaciag Tou x&be yeyovdtog yia Tov
EXAGTOTE YENOTN XAl TNC OUOGTNTAG TOU UE dhha onuavIxd yeyovéta yia autdv. EZetd-
Coule 7WS MROPOVUE Vo aUERCOLUE TNV TOLXAOUOEPia TWV YEYOVOTWY Yo Xdfe TOMTIXA
YPOVLOHO0V.

[tov axodotxd eviomoud Twv ouvdpoudv rpotiunone mou taptdlouv ue éva véo
YeYOVOG, viofeTolue uia avarapdotaoy Twv cuvdpoudy Baciouévry oe Ypdgoug, TNV onota
xahoVUE YPA@o GUVBPOUGY TEOTIUNOTC, XAt TNV YENOWOTOOVUE Yl THy Tpodinon Twv
YEYOVOTWY %0 drjuoctebovTal 6TouS YproTeC.

Yaorouigaye Eva ngdtuno ovoTNUY, 10 onoio ovoudlouue PrefSIENA, 1o onoto enextet-
veL 10 ovotnua SIENA, éva druopiéc olvotrua éxdoons/ouvdpouns, Ue TV EVOWUATWOT
oUVBEOUOY REOTIUTOTC, ROMTIXMY YPOVIOUOU Xat avinoT ToXhoUopPias TwV YEYOVOTWV
UE 0%0%6 TOV EVIORIOUS TWV k 7O ONUAVTX@V YEYOVOTWY Yo X&Be yphoTn Xat TV napd-
doo7| Toug ot autév. Tagovaidlouue évay aptBud RELAUATIXOY ATOTENEOUATWY GYETIXE UE
Tov 2ptfud xaL Trv ZoGTNTA TV YEYOVOTWY oL Tapadidoviat 6Toug YproTeg and To Pref-
SIENA o¢ obyxgton ue to obotnua SIENA, xafde xau to enrhéov x66T0¢ mou amatteitar
Yty Stdtaly; Twv YEYOVOTwY.

viii

CHAPTER 1

INTRODUCTION

1.1 Scope of Thesis

1.2 Thesis Outline

1.1 Scope of Thesis

With the explosion of the amount of information that is currently available online, pub-
lish/subscribe systems offer an attractive alternative to searching by providing a proactive
model of information supply. In such systems, users express their interest in specific pieces
of data, or events, via subscriptions. Then, they are notified whenever some other user
generates (or publishes) an event that matches one of their subscriptions. Typically, all
subscriptions are considered equally important and users are notified whenever a published
event matches any of their subscriptions.

However, getting notified about all matching events may lead to overwhelming the
users with huge amounts of notifications about events, thus hurting the acceptability of
publish/subscribe systems. To control the rate of notifications received by the subscribers,
it would be useful to allow them to rank the importance or relevance of events. Then,
they would only receive notifications for the most important or relevant among them.
For example, take a user, say John, that generally likes drama movies but prefers drama
movies directed by T. Burton to drama movies directed by S. Spielberg. Ideally, John
would like to recéive notifications about S. Spielberg drama movies only if there are no,
or not enough, notifications about T. Burton drama movies.

In this work, we propose enhancing publish/subscribe with a ranking mechanism based
on user preferences, so that only top-ranked events are delivered to each user. To do this,
we extend subscriptions to allow users express the fact that some events are more im-
portant or relevant to them than others. To indicate priorities among subscriptions, we

3

introduce preferential subscriptions. In general, there are two basic approaches to spec-
ifying ;)references among data items: the quantitative and the qualitative approach. In
the guantitative approach (e.g. [6, 20, 27]), users employ scoring functions that associate
a numeric score with specific data items to indicate their interest in them. In the qualita-
tive approach (e.g. [10, 15, 19]), preferences between two data items are specified directly,
typically using binary preference relations. We show how to formulate preferences among
subscriptions using each one of these approaches. Published events are ranked so that an
event that matches a highly preferred subscription is ranked higher than an event that
matches a subscription with a lower preference.

Based on preferential subscriptions, we introduce a top-k variation of publish/subscribe
in’ which users receive only the matching events having the k highest ranks as opposed
to all events matching their subscriptions. Since the delivery of events is continuous, we
also introduce a number of timing policies that determine the range of events over which
the top-k computation is performed.

However, the top-k events are often very similar to each other. Besides pure accuracy
achieved by matching the criteria set by the users, diversification, i.e. recommending items
that differ from each other, has been shown to increase user satisfaction [29]. For instance,
our user John would probably like to receive information about different drama movies
by T. Burton as well as a couple of S. Spielberg movies once in a while. To this end,
we adjust the top-k computation to take also into account the diversity of the delivered
events. To achieve this, we consider both the importance of each event, as specified by the
user preferences, as well as its diversity from the other top-ranked events. We examine
how the results can be diversified for each of the timing policies.

As a proof-of-concept, we have implemented a prototype, termed PrefSIENA [3]. Pref-
SIENA extends SIENA [4], a popular publish/subscribe middleware system, with prefer-
ential subscriptions, timing policies and diversity towards achieving top-k event delivery.
We present a number of experimental results that evaluate the number of events delivered
by PrefSIENA with respect to the original SIENA system, as well as the rank, freshness
and diversity of such events. We also report on the overheads of supporting top-k delivery.

1.2 Thesis QOutline

The rest of this thesis is structured as follows. In Chapter 2, we present publish/subscribe
preliminaries and introduce preferential subscriptions, i.e. subscriptions augmented with
degrees of interest. We also show how to compute the importance of published events for
each user. In Chapter 3, we examine a number of different timing policies for delivering
events and in Chapter 4, we focus on_how to diversify the top-ranked events. In Chapter 5,
* we describe preferential subscription graphs and introduce an algorithm for computing
top-ranked events based on preferential subscriptions. In Chapter 6, we present our
evaluation setup and experimental results. Chapter 7 describes related work and finally,
Chapter 8 concludes this thesis with a summary of our contributions and outlines future
work.

CHAPTER 2

PREFERENCE MODEL

2.1 Publish/Subscribe Preliminaries
2.2 Preferential Subscriptions

2.3 Computing Event Ranks

In this chapter, we first present some background on publish/subscribe systems and
describe a typical form of events and subscriptions used in such systems. Then, we
introduce an extended version of subscriptions that include the notion of preference.
Finally, we examine how to compute the importance of published events for each user.

2.1 Publish/Subscribe Preliminaries

A publish/subscribe system is an event-notification service designed to be used over large-
scale networks, such as the Internet. Such systems offer an attractive alternative to
searching by providing a proactive model of information supply. Generators of events,
called publishers, can publish events to the service and consumers of such events, called
subscribers, can subscribe to the service to receive a portion of them. Publishers can
publish events at any time. The events will be delivered to all interested subscribers at
some point in the future.
>
Architecture: In general, a publish /subscribe system [11] consists of three main parts:
(i) the publishers that provide events to the system, (ii) the subscribers that consume these
* events and (iii) an event-notification service that stores the various subscriptions, matches
the incoming events with them and delivers these events to the appropriate subscribers.
As shown in Figure 2.1, the event-notification service provides a number of primitive op-
erations to the users. The publish() operation is called by a publisher whenever it wishes
to generate a new event. The subscribe() operation is called by a subscriber whenever

3

publisher . subscribeQ) @
nodes responsible for — g
storing subscriptions and subscriber
- matching cvents to them
@ Publish() O subscribe()
—
. \ unsubscribe()
publisher PRI 1S
notify() .
——> subscriber

O O 0O

subscriber

‘,“b\'\s\\o

N publisher

event-notification service

Figure 2.1: Publish/subscribe system operations.

the subscriber wishes to express a new interest. An unsubscribe() operation is usually
also provided to cancel previous subscriptions. An optional (un)advertise() operation
may be available to publishers, so that they can advertise the content of their future pub-
lications. The event-notification service can use the notify() operation whenever it wants
to deliver an event to a subscriber. An event-notification service can be implemented
using either a centralized or a distributed architecture, that is, we may have one or a set
of servers responsible for the process of matching events with subscriptions.

Events: We use a generic way to form events, similar to the one used in {7, 13], to
maximize user expressiveness. In particular, events are sets of typed attributes. Each
event consists of an arbitrary number of attributes and each attribute has a type, a
name and a value. Attribute types belong to a predefined set of primitive types, such as
“integer” or “string”. Attribute names are character strings that take values according
to their type. An example event about a movie is shown in Figure 2.2a. Formally:

Definition 2.1 (Event). An event e is a set of typed attributes {a,...,a,}, where each
a; is of the form (a;.type a;.name = a;.value), 1 < i < p.

Subscriptions: Subscriptions are used to specify the kind of events users are interested
in. Therefore, they can be thought of as filters that are used to filter out all irrelevant
informatjon. Each subscription consists of a set of constraints on the values of specific
attributes. Each attribute constraint has a type, a name, a binary operator and a value.
Types, names and values have the same form as in events. Binary operators include
. common operators such as =, #, <, >, <, >, substring, prefiz and suf fiz. An example

subscription is depicted in Figure 2.2b. Formally:

Definition 2.2 (Subscription). A subscription s is a set of attribute constraints {b,, ..., b,},
where each b; is of the form (b;.type b;.name 6y, b;.value), 6y, € {=,# <, >, <, >, substring,

. prefiz, suf fiz}, 1 <i<gq.

string title

» string director
time releasc_date
string genre

integer oscars

Big Fish

T. Burton

13 Feb 2004
drama

0

string director = T.Burton
time release_date > 1 Jan 2003

(a) Event example.

(b) Subscription example.

Figure 2.2: Event and subscription examples.

Matching events with subscriptions:

To deliver the appropriate events to sub-

scribers, the event-notification service has to identify all interesting information for each
user. To do this, the.Cover Relation is used. Intuitively, we can say that a subscription s
covers an event e, or alternatively e maitches s, if and only if, every attribute constraint

of s is satisfied by some attribute of e. Formally:

Definition 2.3 (Cover Relation). Given an event e of the form {a,,...,a,} and a sub-
scription s of the form {by, ..., b}, s covers e, if and only if, V b; € s, 3 a; € e, such that,

a;.type = bj.type, a;.name = b;.name and ((a;.value) 6, (bj.value)) holds, 1 < i < p,

1<j<q

An event e is delivered to a user, if and only if, the user has submitted at least one
subscription s, such that, s covers e. For example, the subscription of Figure 2.2b covers
the event of Figure 2.2a and therefore, this event should be delivered to all users who

have submitted this subscription.

2.2 Preferential Subscriptions

To allow users to express the fact that some events are more important to them than

others, we propose extending the publish/subscribe paradigm to incorporate ranking.

Our goal is for each subscriber not to receive all matching events but instead, the most
interesting of them, i.e. the most highly ranked ones. To achieve this, we allow users
to express preferences through preferential subscriptions. Preferential subscriptions are

subscriptions enhanced with degrees of interest, called preference ranks.

Definition 2.4 (Preferential Subscription). A preferential subscription ps¥ of user X is
a pair of the form ps¥ = (s;, prefrank]), where s, is a subscription and prefrank¥ is a
real number in [0, 1] that expresses the degree of interest of X for s;.

The higher the preference rank, the more interested the user is in events covered by
the specified subscription. Examples of preferential subscriptions are shown in Figure 2.3.
In general, preferences can be expressed following either a quantitative or a qualitative

approach. Following a quantitative preference model, users explicitly provide numeric
scores, e.g. values within the range [0, 1], to indicate the importance of each of their

subscriptions. In this case, the preference rank that is associated with a subscription, is,

the score provided for it by the user.

e e e

T. Burton
drama

string director
» string genre

08

string dircctor

i S. Spiclberg 06
string genre

drama

Figure 2.3: Preferential subscription examples.

Following a qualitative model, users employ binary relations to define priorities among
their subscriptions. Specifically, assume that a user X provides a set of preferential
subscriptions PX and that those preferential subscriptions contain the set of subscriptions
SX. To express preférences between subscriptions, X defines priority conditions of the
form (s; > s;), si, s; € Sx, to denote that s; is preferred to s; (e.g. Figure 2.4). Let CX
be the set of priority conditions expressed by user X, i.e. CX = {(s; > s;) | si,5; € SA }.
To extract the most preferable subscriptions based on CX, we use the winnow operator
[10]. The first application of the winnow operator returns the set win* (1) of subscriptions
s; € S§, such that, Vs; € winX(1) there is no s; € S with s; > s;. To retrieve the
most preferable subscriptions after the ones included in win*X (1), we apply the winnow
operator a second time. winX (2) consists of the subscriptions s; € (S& — win* (1)), such
that, Vs; € winX(2) there is no subscription s; € (S§ — win*(1)) with s; > s;. The
winnow operator is applied until all user subscriptions are returned.

Generalizing the winnow operator, we introduce a multiple level variation, defined as
follows:

Definition 2.5 (Multiple Level Winnow Operator). Assume a user X and the set PX
of the preferential subscriptions of X. Let Sj be the set of all subscriptions in PX and
C* the set of all priority conditions defined by X. The multiple level winnow operator
at level [, I > 1, returns a set of subscriptions, win* (1), consisting of the subscriptions s;
€ 5§ — U,Zjwin* (q), such that, V s; € win® (1), 3 s; € S — Uiy win* () with (s; > s;)
€ CX.

The preference rank associated with each subscription depends on the winnow level
that the subscription belongs to, since subscriptions retrieved earlier are of higher im-
portance for the users. In particular, a subscription s; € winX(l) is associated with a
preference rank equal to 1/l. As in the quantitative model, a higher preference rank
indicates a more important subscription.

Any ¢onflicting priorities should be resolved prior to computing preference ranks, ei-
ther by involving the users or by using some default conflict resolution procedure. Here,
we assume that the priorities between subscriptions follow a strict partial order. There-

« fore, to find the most interesting subscriptions based on CX, we organize them using a
“directed graph in which nodes correspond to subscriptions and edges to priority condi-
tions. Then, we apply a topological sort algorithm on this graph to extract the most
preferable subscriptions in levels. For example, Figure 2.5 depicts the graph for a set of

. . " witiy,,
priority conditions and the extracted preference ranks. N ey,

1
N
"

Voo Y

-

S. Spielberg

drama

T. Burton
drama

string director
» string genre

string director
> e
string genre

Figure 2.4: Priority condition example.

Priority Conditions Graph Preference Ranks
S1 > 84 5, S, 53
Sg > S4 l / l l S1,82,83: 1
$9 > Sj S, S S 84, S5, 56: 0.5
83 > Sg s7: 0.33
. S5 ™ S7 s,
89 > 87

Figure 2.5: Extracting preference ranks.

Summarizing, subscriptions are augmented with preference ranks specified using either
the quantitative or the qualitative approach. A preference rank indicates the user’s degree
of interest for the corresponding subscription. The higher the preference rank, the more
important the events covered by the corresponding subscription.

2.3 Computing Event Ranks

Let PX be the set of preferential subscriptions of user X. We use these preferential
subscriptions to rank the published events and deliver to X only the highest ranked ones.
We define the rank of an event to be a function F of the preference ranks of the user
subscriptions that cover it:

Definition 2.6 (Event Rank). Assume an event e, a user X and the set PX of the
user’s preferential subscriptions. Assume further the set PX = {(s),prefrankf), ...,
(8m,prefrankX)}, PX C PX| for which s; covers e, 1 < i < m. The event rank of e
for X is equal to rank(e, X) = F(prefrank{, ..., prefrankX), where F is a monotonic
function.

An event e, is more preferable for user X to an event e,, if and only if, it has a higher
event rank for X than e,.

As thie aggregation function F for computing the rank of an event, we may use the
maximum, mean,” minimum or a weighted sum of the preference ranks of its covering
subscriptions. Furthermore, instead of using the preference ranks of all covering subscrip-

* tions, we can use only those of the most specific ones. For example, assume the event
of Figure 2.2a and the preferential subscriptions ({genre = drama}, 0.9) and ({genre =
drama, director = T. Burton}, 0.8) (for ease of presentation, we omit the type of each
attribute). Both subscriptions cover the event. Between the two, the latter subscription
is more specific than the former one, in the sense that in the latter subscription the user

7

poses an additional, more specific requirement to movies. Thus, intuitively, the preference

- rank of'the latter subscription should superimpose that of the former one, whenever an

event matches both of them. Formally, a subscription s € PX is a most specific one if no
other subscription in PX is covered by it. “The cover relation between two subscriptions

is defined as follows:

Definition 2.7 (Cover Between Subscriptions). Given two subscriptions s; and s;, s;
covers s;, if and only if, for each event e such that s; covers e, s; covers e.

In general, computing ranks may increase the complexity of the process of match-
ing events with subscriptions. In traditional publish/subscribe systems, for matching to
be completed successfully, it suffices to find just one subscription that covers the event,
whereas for computing the rank of an event, we may need to locate all covering subscrip-
tions.

CHAPTER 3

TIMING POLICIES

3.1 Continuous Timing Policy
. 3.2 Perivdic Timing Policy
3.3 Sliding Window Timing Policy

3.4 Event Delivery

Having defined event ranks, our goal is to send notifications only for the top-k events to
each user, i.e. the events with the k highest ranks. Since events are continuously published
and matched with subscriptions, we need to specify the timing period over which the top-k
events are computed. In this chapter, we examine the various timing policies that can be
applied to a publish/subscribe system, since different timing policies can affect whether
an event belongs to a user’s top-k results or not. In particular, we examine the following
timing policies: (i) continuous, in which events are forwarded to interested subscribers at
the time of their publication, (ii) periodic, in which events are forwarded at predefined
time intervals and (iii) sliding window, which combines the previous policies.

3.1 Continuous Timing Policy

In the coptinuous timing policy, a newly published event is delivered to a user, if and only
if, it matches one of the user’s subscriptions and the user has not already received k events
with higher ranks than the new one's. Since new events are constantly produced, it is
s possible for very old but highly preférable events to prevent any new ones from reaching
“the user. For instance, consider the example in Figure 3.1. For simplicity, we assume a
single user, say John, who has defined a number of preferential subscriptions for movies.
l’\ssume that a movie theater publishes the events e, es, ..., € in that order, at the time
shown on the left of each event, and that John is interested in the top-2 results. Assume

title = The Apartment
¢, (20:00) genre = comedy
showing time = 22:15

title = The Godfather

€,(20:10) genre = drama Preferential
- showing time = 21:10 subscriptions e title = The Apartment
! genre = comedy
title = Ratatouille genre = comedy |0.9 showing time = 22:15
e,(20:15) genre = comedy i
showing time = 22:40 title = The Godfather
o genre=drama |08| i —» & genre = drama
title = Fight Club showing time = 21:10
©(22:00) genre = drama title = Ratatouille
ShOWII'lg time = 23:00 genre = horror 0.5 N genre = comcdy
title = Vertigo showing time = 22:40

e,(22:10) genre = horror
showing time = 23:20

title = Casablanca

e.(22:25 genre = drama
«) showing time = 23:10

Figure 3.1: Continuous (no expiration): top-2 events for John at 22:55.

further that as an aggregation function F we use the maximum value of the preference
ranks of the covering subscriptions, i.e. 7 = max. e; and e, will be delivered to John,
since they are the first two events that are covered by his subscriptions. ej is equally
preferred to e; and will therefore also be delivered to John. Since ey, €5 and eg are less
preferable to the current top-2 results, none of them will be delivered. If John checks his
top-2 results at 22:55, he will only find movies that he can no longer watch (the top-2
results at 22:55 are marked with gray color in the figure), even though some events about
interesting movies that start at 23:00 have been published.

To overcome this problem, we can associate with each published event e an expiration
time e.ezp. The event is considered wvalid only while e.exp has not expired. This way,
older events which have expired do not prevent new ones from reaching the users. An
alternative way to set the expiration time for an event is by letting the user define a refresh
time along with each subscription. Then, the expiration time of an event e covered by a
user subscription s with refresh time 7 is set to t 47, where t is the time that e is matched
with s. Note that in this approach, a specific event does not have a single expiration time
but instead, it is associated with a different one for each user.

Next, we define the conditions under which a published event belongs to the top-k
results of a user using expiration times.

Definition 3.1 (Continuous Top-k). Let PX be the set of preferential subscriptions of
user X. An event e published at time t, belongs to the top-k events of X, if and only if, e
.is covered by at least one subscription s of a preferential subscription ps € PX and there
are no k events ey, ..., e, with e;.exp > t. and rank(e;, X) > rank(e, X), 1 < i < k, that
have already been forwarded to X.

< In the previous example, assume now that each event expires at the showing time
. Of the corresponding movie (see Figure 3.2). e;, e and e; will be delivered to the user

10

title = The Apartment
€,(20:00)| genre = comedy
showing time = 22:15

title = The Godfather e, title = Th_c Apartment
€,(20:10) genre = drama Preferential genre = coxzedy'
- showing time = 21:10 subscriptions showing time = 22:15
title = Ratatouille genre = comedy | 0.9 c title = The Godfather
2

genre = drama

¢,(20:15) genre = comedy showing time = 21:10

showing time = 22:40

———> genre=drama | 0.8 i —»

title = Fight Club N h;i:; Ea;?)lxz:iil;e

¢,(22:00) genre = drama fire = comedy
showing time = 23:00 genre =horror | 0.5 showing txmé - 22:40

title = Vertigo title = Casablanca

€ genre = drama
showing time = 23:10

€,(22:10) genre = horror
o showing time = 23:20

title = Casablanca

€,(22:25) genre = drama
showing time = 23:10

Figure 3.2: Continuous (with expiration): top-2 events for John at 22:55.

as before. By the time e; and e5 are published, the top-2 events have not expired and
therefore, e4 and es will not be delivered to the user. Finally, eg will be delivered to John,
since at the time of its publication e; has expired. Therefore, when John checks his top-2
results at 22:55, he will find an interesting movie to watch (“Casablanca”).

When the continuous timing policy is used, the number of delivered events depends on
the relative order of their publication. For example, if events are produced in ascending
order with regard to their rank, all of them will be delivered, while if they are produced
in descending order only a portion of them will.

3.2 Periodic Timing Policy

An alternative timing policy is the periodic one. In this approach, time is divided into
periods of duration T and top-k events are computed within each period. As with the
continuous timing policy, events can be associated with expiration times, so that only
valid events are delivered to users. For instance, considering the previous example, for
a time period that begins at 20:00 and ends at 20:30, the top-2 results are the events
e) and ey, while from 20:00 to 22.20, the top-2 results are the events ez and ¢4, since e,
and e, have already expired, eg is less preferable to e4 and eg has not been published yet.
Clearly, in the periodic timing policy, the computation of the top-k results depends on
the duration of the period.

Definition 3.2 (Periodic Top-k). Let PX be the set of preferential subscriptions of user
X. An event e published at time ¢, in the current period belongs to the top-k events of
t,he period for X, if and only if, e is covered by at least one subscription s appearing in a
preferential subscription ps € PX, e.exp > [t./T] - T and there are no k events ey, ..., e

11

title = The Apartment
e, $20:00) genre = comedy
showing time = 21:10

title = Seven
¢,(20:20) genre = horror
- showing time = 21:00

Preferential

i subscriptions title = The Apartment
title = The Godfather | |— | genre=comedy |09|{—» & | genre = conle;ly_w
¢,(20:25) genre = drama showing time = 21

showing time = 21:25

- genre =drama | 0.8

title = Jaws
¢,(20:35) genre = horror
showing time = 21:30

title = Psycho
—_— e genre = horror
genre =horror 1 0.5 showing time = 21:50

title = Vertigo
¢,(20:45) genre = horror
showing time = 21:45

title = Psycho

€,(20:50) genre = horror
showing time = 21:50 | |

Figure 3.3: Periodic: top-1 event for T' = 30 min.

-

published in the period with e;.exp > [t./T]-T and rank(e;, X) > rank(e, X),1 <i <k.

For any time interval of length ¢, the number of events that eventually reach the users
is bounded by k and equal to k - |¢/T|. The order of events published within a specific
period does not affect the top-k results for it.

3.3 Sliding Window Timing Policy

In the periodic timing policy, the top-k computation starts anew in the beginning of each
period. Therefore, the ranks of events received by the user may end up being rather
arbitrary. For example, high-ranked events appearing in periods with many other high-
ranked ones may not be delivered to the user, whereas low-ranked publications appearing
in periods with a small number of high-ranked ones may be delivered. For instance,
assume the events e, e, ..., eg of Figure 3.3 and John’s previous subscriptions. Assume
now that John is interested in the top-1 result. For the time period from 20:00 to 20:30
the best result is e;, while for the period from 20:30 to 21:00 the best result is eg, which
means that e; is not delivered to John, even though it is more preferable than eg. Note
that we select to resolve ties among events by picking the most recent one to improve the
freshness of results.

To overcome this issue, we use sliding event-windows and start the computation anew
.at each new matching event. That is, we compute the top-k events for a user based only
on the events published during an event-window of length w, i.e. based only on the w
most recent matching events. For example, assume a window of length w = 3 and the
previous published events (see Figure 3.4). We use the notation W; to refer to the events
that are included in the i** window. As depicted in the figure, if we are interested in the

12

<

title = The Apartment | \ . e title = The Apartment

€ (20:0Q)| genre = comedy W, ——>» E— G genre = comedy

showing time =21:10 Preferential showing time = 21:10
bscripti

Title = Seven Sbscrptions ; > e title = The Godfather

€,(20:20) genre = horror W, —» | genre =comedy |09 ’) genre = dnln;a, 25

- showing time = 21:00 showing time = 21:

title = The Godfather genre =drama 0.8
€,(20:25) genre = drama W, — » —> (no new event)
showing time = 21:25 | |
_ genre = horror | 0.5
title = Jaws title = Psycho
¢,(20:35) genre = horror w,—> —» & genre = horror
showing time =21:30 | | showing time = 21:50

title = Vertigo
§:(20:45) genre = horror
showing time = 21:45

title = Psycho

¢,(20:50) genre = horror
showing time = 21:50

Figure 3.4: Sliding window: top-1 event for w = 3.

top-1 result, the first window W, returns the event e;, W5 returns e3, W3 returns no event
and so on.

Observe that between two consequent event-windows, at most one event is delivered.
To see this, assume a window W and its following window W5, both of length w, and the
two sets A;, A, with the top-k events for W; and W, respectively. Since W, and W, have
w — 1 common events, let W) = (ej,ey,...,e,) and Wy = (eg, €3,. .., €u+1).- When e,
is published, one of the following holds:

e ¢; € A;. Then Ay = (A; —{e1}) U{€'}, where ¢ is either e,4; or € is an event that
was published in W) for which ¢’ ¢ A; holds, or

e ¢ ¢ A;. Then Ay = A, or A; = (A — {€'}) U{ew+1}, where ¢’ is an event that was
published in Wj.

In any case, at most one event enters the set A,, thus:

Property 3.1. Between two consequent event-windows, when events do not expire, at
most one new event is delivered to the user.

_ As in the continuous timing policy, the number of delivered events depends on their
publication order with regards to their relative ranks. In this policy as well, an event e
thay be associated"with a specific expiration time e.ezp. The definition of sliding window
top-k is similar to the periodic one. _

Summarizing, the timing policies determine the range of events over which the top-k
computation is performed. In the continuous timing policy, the top-k events are selected
over all previously published events, while in the periodic and sliding window timing
policies, they are selected over the events published in the current period or window
respectively.

13

3.4 Ezvent Delivery

Independently of how the top-k events are computed by the system, we offer to users two
ways to view their results: proactive and on-demand. In the proactive approach, top-
ranked results are computed by the system, using any one of the three timing policies,
and delivered to the users at specific moments in time. Top-results are gathered by the
event-notification service and forwarded to users every 7" time units. Note that, even
though the use of the periodic timing policy with length T to compute top-ranked events
is allowed in conjunction with proactive delivery, T is not necessarily equal to 7”. In this
case, whenever new results are to be delivered to the user, the forwarded results are those
of the last completed period.

In the on-demand approach, top-results are gathered again by the event-notification
service and are forwarded to the user upon request. All three timing policies can be used
with this method as well. However, the one intuitively most suitable for it is that of the
sliding window timing policy, since in this case, the user receives the most recent to the
time of ths request top-ranked events.

ERX O

14

CHAPTER 4

EVENTS DIVERSITY

4.1 Events Distance

4.2 Diverse Top-k Events

In a typical publish/subscribe system, many events are continuously published and
competing for a position in a user’s top-k results. Many times, the results that eventually
reach the user are very similar to each other. However, it is often desirable that these
results exhibit some diversity. In this chapter, we examine how to arrange the results
delivered to users in order to reduce their similarity. First, we present a technique for
locating k diverse results and then focus on how to compute the top-k results based on
both their diversity and their rank.

4.1 Events Distance

Instead of overwhelming users with published events that are all very similar to each other,
we opt to select a representative set of events according to their diversity. To measure the
diversity of events, i.e. how different they are, we first define the distance between two
events. Without loss of generality, we assume that the events have the same number of

. attributes. Otherwise, we can append a sufficient number of “dummy” attributes to the
one with fhe smaller number of attributes.

Definition 4.1 (Event Distance). Given two events e; = {ay,...,a,} and e = {a}, ..., a}},

the distance between e; and e, is:
b
2)=1 wi(si

p ,
i=1 Wi

1 if a; = aﬁ

DI =1-
S(er e2) 0 otherwise

, where §; = {
and each w; is an attribute specific weight, 1 <4 < p.

15

According to the above definition, given two events, their distance decreases as the
number of their common attributes increases. The weight assigned to each attribute is
application dependent, since for some applications, some attributes may be more influ-
ential than others. In the lack of application-specific information, we can assign equal
weights to all attributes.

Given the set M of all matching events for a user, we would like to deliver to the user
alist L, L C M, with the k most diverse ones. To measure the diversity of the events
that belong to a list, we use the List Diversity that computes the average distance of all
pairs of events in L.

Definition 4.2 (List Diversity). Given a list of m events L = (ey, . . ., en), the list diversity

of L is: m ™
D im Zj=i+l DIS(e; €;)

Div(L) = (m—1)m/2

A brute-force method to identify the k most diverse events from M is to first produce
all (f) possible combinations of k events, where ¢ is the number of elements in M, and
then pick the one with the maximum list diversity. The complexity of this process in
terms of the required event distance operations is equal to k!(q"i i (k_zl)k.

To reduce the complexity, we use the following heuristic. We incrementally construct

a diverse subset of events based on the Fvent-List Distance, defined as follows:

Definition 4.3 (Event-List Distance). Given an event e and a list of m events L =

(e1,-..,em), the event-list distance between e and L is:
™ DIS(e,¢;
DIS(e, L) = Lzt (e,)
m
Given the set M = {e,...,e,} of q events, ¢ > k, our goal is to produce a list
L={(e,...,e.),e; € M,1<i<k,with the k most diverse events. Initially, we consider

an empty list L. We first add to L a random event of M. Then, we incrementally construct
L by seclecting events of M according to their distance from events previously inserted
into L. In particular, we compute the distances DIS(e;, L), Ve;, such that e; € M and
e; ¢ L and add to L the one with the maximum distance. This process is repeated until
k events have been added to the list. Following this method, the required event distance
operations are equal to (¢ — 1) +2(¢—2)+ ...+ (k- 1)(g—k+1).

To compare the quality of our heuristic against the brute-force method, we perform
the following experiment. First, we create sets of g random events. For simplicity reasons,
each event consists of a number in [0, 100] and their distance is measured as the absolute
value of the difference of their values. .Then, we select k out of them (i) randomly, (ii) using
‘our heuristic and (iii) using the brute-force method. In Table 4.1, we show the average
List-Diversity for the lists produced in each case. We see that the heuristic performs much
better than the random approach and produces lists with List-Diversity slightly smaller
than the brute-force method.

16

Table 4.1: List-Diversity for the random, heuristic and brute-force methods.

I q ’ k | Random I Heuristic Brute—ForceJ

2 35.76 71.88 90.45
20 4 193.23 330.69 349.27
8 938.72 1302.50 1314.64
2 34.14 74.86 95.86
40 | 4 200.35 353.78 375.84
8 944.63 1427.09 1447.93

4.2 Diverse Top-k Events

The method described above delivers to the user a set of diverse events but ignores their
importance according to the preferential subscriptions. However, we would also like to
consider t}ie user preferences when selecting the events to be forwarded.

Therefore, to compute the top-k diverse events for a user X, i.e. a list LX, we modify
the above method to also take into account the ranks of the events. Initially, instead of
selecting the first event to be added to L* randomly, we pick the one with the highest
rank, since this is the most preferable to the user. When selecting the next event to be
added to L¥X, we choose the one with the maximum value of divrank, where divrank is
a function that takes as input an event e and a user X and combines the rank of e for X
and its distance from the already selected events for that user using the formula:

divrank(e, X) = o - rank(e, X) + (1 — o) - DIS(e, LX)

where o € [0,1]. When o = 0 (respectively o = 1), only the distance (respectively rank)
is taken into account.

In the following example, we apply the above procedure to six events e;, e; ..., €.
To simplify our example, we assume that all events have only the attribute “genre” with
values equal to “comedy”, “drama”, “drama”, “drama”, “horror”, “sci-fi” and ranks 0.9,
0.75, 0.75, 0.75, 0.65, 0.6 respectively. Figure 4.1 shows the trace of the method applied
on our example for ¢ = 0.5.

Let L be the current list of diverse top-k events. We observe that after the insertion
of an event e to L, L' = L.append(e), the distances of all other events that have not yet
entered the diverse top-k events from L' are affected only by the presence of e. Therefore,
we can reduce the number of performed operations of the above procedure by exploiting
Lthe following property:

Property 4.1. Given an event e and two lists L and L' = L.append(e), the distance of
an event ¢’ from L is:
DIS(e,L)-(|L] — 1) + DIS(e,¢)

|L|

k4

DIS(¢, L) =

17

Ranking of events
e1(comedy), e(drama), e3(drama), es(drama), es(horror), eg(sci-f1)

Top-4 events based on their ranks
(e1,€2,€3,€4)

Diverse Top-4 events

DIS(ey,L) | DIS(ez, L) | DIS(es,L) | DIS(es,L) | DIS(es,L) | DIS(es,L) | L=10

- - - - - - L = (e1)

- 0.875 0.875 0.875 0.825 0.800 L = (e1,€e2)

- - 0.625 0.625 0.825 0.800 L = (e}, e2,€5)

- - 0.708 0.708 - 0.800 L= (81 ,€2,€5, es)

Figure 4.1: Computing top-4 diverse events.

Algorithm 1 (Diverse Top-k FEvents Algorithm) summarizes the above procedure.

Input: A set M of matching events for user X.
Output: A list L of diverse top-k events.
begin
L=
find the event e € M with the maximum rank(e, X);
L = L.append(e);
M = M.remove(e);
for all events e; € M do

distance,, = 0;
while |L| < k do

for all events e; € M do

i dist _-(IL|—1)+DIS(e;,L.last
dzstancee'. = istancee; (1L] |2|+ (es as);

© ® D@y

b
Q@

find the event e with the maximum

divrank(e, X) = o - rank(e, X) + (1 — o) - distance,;
12: L = L.append(e);

13: M = M.remove(e);

14: return L;

15: end

o
[y

Algorithm 1: Diverse Top-k Events Algorithm.

Note that diversification may increase the number of events delivered to the user. For
example, in the sliding window timing policy, when diversifying the top-k results, we may
deliver up to k events at each event-window, that is, in this case, Property 3.1 does not
%old. To illustrate this, let W;, W, be two consequent event-windows and e, e;, e3, €4
a number of events. Assume that W, = (e, ez, e3), W2 = (e, €3, €4) and also that
e, is a horror movie directed by T. Burton with rank 0.9, e; is an A. Hitscock’s horror
movie with rank 0.85, e3 is a S. Spielberg’s drama movie with rank 0.8 and finally, e, is

< a Q. Tarantino’s drama movie with rank 0.9. Applying Algorithm 1, the top-2 events for

L3

18

W, are the events e; and e3, while the top-2 events for W, are e4 and e;, which means
| 4
that more than one event will be delivered in W.
In conclusion, to compute the final rank of an event, we use the divrank function that

combines both preferences and diversity.

ot

19

CHAPTER 5

RANKING IN PUBLISH/SUBSCRIBE

5.1 Preferential Subscription Graph
5.2 Forw;zrding Events

5.3 Topology of Servers

In this chapter, we outline a method for matching events with subscriptions and for
computing event ranks. To this end, we introduce the preferential subscription graph for
organizing our preferential subscriptions. We also show how to compute the top-k results
for each timing policy.

5.1 Preferential Subscription Graph

To reduce the complexity of the matching process between events and subscriptions, it
is useful to organize the subscriptions using a graph. We use preferential subscriptions
to construct a directed acyclic graph, called preferential subscription graph, or PSG. In
a preferential subscription graph, nodes correspond to subscriptions and edges to cover
relations between subscriptions (see Definition 2.7). Let P be the set of all preferential
_subscriptions, i.e. the preferential subscriptions defined by all users. For each subscription
si € Sp, where Sp is the set of all subscriptions in P, we maintain a set of pairs, called
PrefRank’Set, of the form (X, prefranky), where X is a user and prefrank is the
p‘feference rank of X for s;. A subscription s; is associated with the pair (X, prefrank¥),
if and only if, a preferential subscription ps¥ = (s;, prefrankX) exists in P. Given a set
‘of users U, for each s; € Sp, the PrefRank Set is the set R; = {(X, prefrank}) |
(si,prefrankX) € P, X € U}. Formally:

Definition 5.1 (Preferential Subscription Graph). Let P be a set of preferential sub-
scriptions and Sp the set of all subscriptions in 2. A Preferential Subscription Graph

20

Sypscription John’s prefrank Anna’s prefrank
{cinema = ster} 0.5 -
{genre = drama, time > 21:00} 0.7 -

- {genre = comedy} 0.7 -
{cinema = ster, time < 20:00} 0.4 -
{cinema = ster, genre = drama, time > 21:00} 0.9 0.6
{cinema = odeon, genre = drama, time > 21:00} 0.3 0.9
{genre = comedy, time > 23:00} - 0.8
{cinema = ster, genre = drama, time > 23:00} - 0.8

Figure 5.1: John and Anna’s preferential subscriptions.

cinema = ster genre = drama genre = comedy
time > 21:00 TRw——
J 0.5 , 0.
(fohn, 0.5) (John, 0.7) (fohn, 0.7)

\\\. A

- cinema = ster cinema = odeon
cinema = ster genre = a genre = 2 genre = comedy
time < 20:00 “('J“eh:’?;;o “(‘;‘ehz’z(::;o time > 23:00
(o) A O .
(John, 0.4) (Anna, 0.6) (Anna, 0.9) Anna, 0.8)

cinema = ster
genre = drama
time > 23:00

(Anna, 0.8)

Figure 5.2: Preferential subscription graph example.

PSGp(Vp, Ep) is a directed acyclic graph, where for each different s; € Sp, there exists
a node v;, v; € Vp, of the form (s;, R;), where R; is the PrefRank Set of s;. Given two
nodes v;, v;, there exists an edge from v; to v;, (v;,v;) € Ep, if and only if, s; covers s;
and there is no node v} such that s; covers s} and s} covers s;.

For example, assume two users, John and Anna, who express the preferential sub-
scriptions of Figure 5.1. For those preferential subscriptions, the graph of Figure 5.2 is
constructed.

The preferential subscription graph resembles the filters poset data structure proposed
in [7). Whereas the filters poset represents a partially ordered set of subscriptions, the
preferential subscription graph is based on subscriptions enhanced with preferences. Next,
*we will describe how preferential subscription graphs are constructed.

The partial order of the subscriptions of a preferential subscription graph PSG is
defined by the covering relation between subscriptions. We say that a subscription s;
is an immediate predecessor of a subscription sy, if and only if, s; covers s, and there
is no other subscription s3 in PSG such that s; covers s3 and s3 covers s,. s; is called

21

an immgdiate successor of s;. Subscriptions with no predecessors in the graph are called
roots. For every new preferential subscription psX = (s;, prefrank;X), one of the following
holds:

e s; already exists as a node in the graph
e s; is added as a root node

e s; is inserted somewhere in the graph with a nonempty set of predecessors

Upon receiving a preferential subscription ps¥ = (s;, prefrank]), the graph is tra-
versed in a breadth-first way and two (possibly empty) sets are identified, namely 3; and
si, representing the immediate predecessors and the immediate successors of s; respec-
tively. If 57 = s; = {s;}, then s; already exists in the graph and the pair (X, pre frankl)
is simply added to the subscription’s PrefRank Set. If X had issued the same subscription
in the past associated with a different preference rank, then the corresponding value is
updated instead. If s; does not already exist in the graph, it is inserted between ; and
s; and its PrefRank Set is initialized appropriately. In the special case when 5; = 0, s; is
inserted as a root node. Upon receiving an unsubcription request, any pairs containing X
are removed from all the PrefRank Sets of the subscriptions defined in the request. Any
subscriptions left with an empty PrefRank Set are removed as well.

5.2 Forwarding Events

To show how the top-k results for each user are computed, we first assume a single server
maintaining a preferential subscription graph PSG. This server acts as an access point
for all subscribers and publishers. Next, we describe how event delivery is performed for
each of the three timing policies, considering first using ranks based solely on preferences.
Typically, publish/subscribe systems are stateless, in that, they do not maintain any
information about previously delivered events. However, to provide users with the top-
ranked matching events, we may need to maintain some information about previously
delivered events as well as buffer some published events prior to their delivery or dismissal.
In the continuous timing policy, we need to maintain information about previously
" forwarded top-ranked events. Specifically, the server maintains a list of k elements for
cach of the subscribers that are connected to it. These lists contain elements of the form
(rank, expiration), where rank is a numeric value and ezpiration is a time field. The
rank part of such a pair represents the rank of an event that has already been forwarded
to the corresponding user and expir(;s at time ezxpiration. Only the ranks corresponding
to the top-k most preferable valid events that have been already sent to the users appear
in these lists.
All lists are initially empty. Whenever the server receives an event e, it walks through
its PSG to find all subscriptions that cover e. For each subscriber X associated with

22

Input: An event e and a preferential subscription graph PSG.
Output:' The set of subscribers ResSet that e will be forwarded to.
1: begin
2: ResSet = 0
3: tmpR = 0; /* temporary PrefRank Set */
4: for all nodes v; in PSG do
5. if s; covers e then
6: tmpR = tmpRU R;;
7: for all subscribers X that appear in tmpR do
8: rank(e,X) = maz{prefrank{,... ,prefrankix}, where (X, prefrankX) € tmpR,

1<i<mX ;

9: for all elements i in listX do

10: if 7 has expired then

11: remove i from listX;

12: if listX contains less than k elements then
13: add (rank(e, X), e.exp) to listX;

14: ResSet = ResSet U j;

15: else

16: find the element ¢ of listX with the minimum rank;
17: if rank(e, X) > i.rank then

18: remove i from listX;

19: add (rank(e, X), e.exp) to listX;
20: ResSet = ResSet U j;
21: return ResSet;
22: end

Algorithm 2: Continuous Forwarding Events Algorithm

at least one of these subscriptions, an event rank rank(e, X) is computed. In this work,
we assume that the preference ranks associated with the various subscriptions are indica-
tors of positive interest, thus, we use as an aggregation function F the maximum value
of the preference ranks of the covering subscriptions. Assuming that m subscriptions
51,52, ..., Sm submitted by X cover e, rank(e, X) = max {prefrank;, prefranky, ...,
prefrankX}.

After that, the corresponding list with the k element pairs, denoted listX | is checked
and all elements which have expired are removed. If [istX contains now less than k
clements, e is forwarded to X and the pair (rank(e, X), e.exp) is added to the list, where
e.exp is the expiration time of e. Otherwise, ¢ is forwarded to X only if rank(e, X) is
greater or equal to the rank of the element with the minimum rank in the list. In this case,
"this element is replaced by (rank(e, X),e.exp). Note that, a more recent event equally
important to an older one is forwarded to the user to favor fresh data over equally-ranked
old ones. The process described above is summarized in the Continuous Forwarding
Events Algorithm shown in Algorithm 2.

23

Next, we show the completeness and correctness of Algorithm 2. First, we will show
that if an event e belongs to the top-k results of user X, then it will be forwarded to X.
Assume for the purpose of contradiction, that such an event is not forwarded to X. Let
rank(e, X) be the rank of e for X. Since e is not forwarded to X, there exist k valid events
e,...,ex with ranks rank(e;, X),...,rank(ex, X) such that rank(e;, X) > rank(e, X),
1 < i € k. This means that e does not belong to the top-k results of user X, which violates
our assumption. Next, we proceed with showing that if an event e is forwarded to X,
then it belongs to the user’s top-k results. For the purpose of contradiction, assume that
e does not belong to the user’s top-k results. This means that there exist k valid events
ey, ...,ex with ranks rank(e;, X),...,rank(ex, X) such that rank(e;, X) > rank(n, X),
1 S‘z’ < k. Therefore, according to Algorithm 2 (line 21), e will not be forwarded to X,
which is a contradiction.

Note that it is not necessary to walk through all nodes of the preferential subscription
graph to locate the subscriptions that cover a specific event e. We may safely ignore a
node v with subscription s for which there is no other node v with subscription s, such
that s’ covers s and at the same time s’ covers e. This way, entire paths of the graph
can be pruned and not used in the matching process. For example, in Figure 5.2, if an
incoming event is not covered by {cinema = ster}, then it is certainly not covered by
{cinema = ster, time < 20:00}, {cinema = ster, genre = drama, time > 21:00} or
{cinema = ster, genre = drama, time > 23:00} either and therefore, those subscriptions
do not have to be checked against the event.

In the case of the periodic timing policy, there is no need to maintain information
about previously sent events. Instead, the server buffers all events published during the
current period. At the end of the period, we compute the ranks of the buffered events for
all users and deliver the corresponding top-k events to each of them. Only events that
are still valid, i.e. not expired, at the end of the period are considered.

The computation of top-k results in the sliding window timing policy is similar to the
periodic one. However, in this case, the server needs to buffer the w most recent matching
events for each subscriber. Whenever a new event is added to a buffer, the top-k events
of the buffer are computed. The ones that have not already been forwarded to the user in
the past are delivered (events may have been forwarded in the past because consequent
windows overlap). In the case that expiration times are used, events are removed from

. the buffer upon expiration.

Since in the continuous timing policy we do not maintain any information about
the content of previously forwarded events but only about their ranks, we opt not to
abply the diversity technique. The focus of this timing policy is the fast delivery of top-
iranked events. The diversity technique is best suited for the periodic and sliding window
‘policies. Concerning the periodic policy, at the end of each period, we apply the Diverse
Top-k Events Algorithm (Algorithm 1) to compute the top-k diverse events for each user.
Similarly, in the sliding window policy, whenever a new event is added to a buffer, its
contents are re-arranged according to the events’ divranks. After this re-arrangement

24

takes place, the events that belong to the top-k ones in the buffer are forwarded to the
user, unless they have already been forwarded in the past.

5.3 Topology of Servers

An event-notification service can be implemented over various architectures. At one
extreme, a centralized approach can be followed, e.g. [13]. In this case, a single server
gathers all subscriptions and notifications and carries out the matching process. However,
due to the nature of such systems, where participants are physically distributed across
the®globe, a distributed architecture is more scalable. When more than one server exists
in the network, each server runs Algorithm 2 for its own preferential subscription graph.
Events are propagated among servers based on the server topology. The servers of the
system are responsible for collecting all the published events and carrying out the selection
process, i.e. delivering each event only to the subscribers that have declared their interest
to it. ~
In this work, we consider a hierarchical topology, where the servers that implement the
event-notification service are connected to each other to form a hierarchy. Each publisher
and subscriber is connected to one of the servers in the hierarchy. We wish to organize the
participants of the network in an efficient way, i.e. in a way that will reduce the number
of messages exchanged between the servers and the complexity of the maintained data
structures. One way to achieve this is by placing subscribers with similar subscriptions
nearby in the hierarchy, so that the events covered by those subscriptions need to be
propagated only toward this part of the hierarchy. To do this, we exploit the structure of
preferential subscription graphs and more specifically, the covering relations between their
nodes. We observe that all events that are covered by some subscription of a preferential
subscription graph PSG are also covered by at least one of the most generic subscriptions
in it. Therefore, only events covered by the subscriptions in nodes with no incoming
edges, i.e. root nodes, need to be propagated to the server maintaining the PSG. So, in
order to reduce the exchanged messages we have to minimize the number of root nodes
in the various preferential subscription graphs of the system.
While in most publish/subscribe systems new subscribers randomly select a server
to connect to, in our approach, when a new subscriber enters the network, it probes a
' number of servers and chooses one of them according to the following criteria:

« o (Criterion 1) The number of new root nodes added to the server’s preferential
subscription graph. The smaller the number of such nodes, the fewer the additional
. events that should be propagated to the server in the future.

e (Criterion 2) The number of nodes in the server’s preferential subscription graph.
The fewer the nodes in the graph, the lower the complexity of searching it.

o (Criterion 3) The number of existing subscriptions in the graph covered by the new

Server B

genre = comedy
(X, 0.5)
- genre = comedy
length > 120
X,,0.7)
T N~
(b)
Server A Server B
= ed = dram genre = comedy
genre = comedy genre a length > 120
- ,0.5
X, 0.5) . 07)
T T —

(c)

Figure 5.3: Clustering.

ones. The closer to the root level of the graph the new subscriptions will be inserted,
the quicker future pruning will occur.

A new subscriber may first use Criterion 1, and in case of a tie, Criterion 2 and/or
Criterion 3 to select a server. For example, consider the case of Figure 5.3a where there
are two servers, Server A and Server B, both already storing some user subscriptions
from subscribers X; and X,. Assume that a new subscriber X3 wishes to insert a new
preferential subscription ({genre = comedy, length > 120}, 0.7) to the system. If Xj
chooses Server A to subscribe, the result will be the one shown in Figure 5.3b. If X3
chooses Server B, the result will be the one shown in Figure 5.3c. Using the first criterion,
X3 will choose to join Server A because in this case no new root nodes will be added to
the preferential subscription graph of Server A and thus, no new message traffic will be
generated (except from the messages sent from Server A to X3). This clustering method
is non-preemptive, in the sense that it does not modify the existing underlying structures
of the system. :

26

CHAPTER 6

EVALUATION

6.1 Dataset

6.2 Experiments

To evaluate our approach, we have extended the SIENA event notification service [4],
a multi-threaded publish/subscribe implementation, to include preferential subscriptions
and perform ranked delivery of diverse events according to the three timing policies. We
refer to our prototype as PrefSIENA [3]. In this chapter, we first describe the dataset
used to evaluate our approach and then present our expérimental results.

6.1 Dataset

To evaluate the performance of our model, we use a real dataset, available online at [2].
The dataset consists of data derived from the Internet Movie Database (IMDB) [1], a
major database of information about movies, actors, film makers etc., online since 1990.
The dataset contains information about 58788 movies. More specifically, for each movie
the information of Table 6.1 is available.

string genre = drama
1 string title = BigFish integer length > 100 0.8
. integer year = 2004 integer year < 1980
integer length = 125
double rating = 9.0
P integer votes = 180 ° string genre = romance
’ string mpaa = PG-13 string year > 1990 0.6
string genre = drama string mpaa = PG-13
(a) Generated event. (b) Generated preferential subscriptions.

Figure 6.1: Generated data.

27

Table 6.1: Movies dataset properties.

Attribute | Description Type
- title The title of the movie string
year The year of release integer
budget | The budget of the movie (in US dollars) | double
length The length of the movie (in minutes) | integer
rating The'average IMDB user rating for the double
movie
The number of IMDB users who rated | .
. votes) Integer
the movie

The distributions of votes for each rat-
rl-r10) double
ing (from 1.0 to 10.0)

The Motion Picture Association of
America (MPAA) rating for the movie
The genre of the movie (possibly more

than one)

mpaa string

genre string

Data generation: Publishers generate events as follows. At random intervals, each
publisher uniformly selects mp numbers from 1 to 58788. For each of the corresponding
mp movies the publisher creates a new event consisting of the title, year, length, rating,
votes, mpaa rating and the genre(s) of the movie. An example of such an event can be
seen in Figure 6.1a.

Subscribers generate subscriptions as follows. At random intervals, each subscriber
generates mg subscriptions. Each subscription is generated independently from the others
and contains a random number of the following attributes: year, length, rating, votes,
mpaa and genre. For each numerical attribute an operator must also be chosen. The
operators we consider are =, < and >. Operators are chosen according to predefined
probabilities following a zipf distribution.

The value of each attribute can be generated using either a uniform or a zipf distri-
bution. In the uniform method, string attributes take a value uniformly chosen over the
set of all possible values. For example, for the mpaa attribute, all of the four possible

“values ‘PG”, “PG-13", “R” and “NC-17" have a 25% probability to be chosen. Numerical
attributes take a value uniformly chosen between the minimum and maximum possible
value of the attribute, according to the dataset.

However, since real subscriptions are not expected to follow a uniform distribution,
we also consider another method to generate subscriptions. This second method uses a,
zipf distribution to choose values for the various attributes. In this case, possible values
for each attribute are ranked based on the dataset properties and our experience. For
example, in a real scenario we would expect more people to subscribe for PG rated movies
than for NC-17 rated movies, so the “PG” value is higher ranked than the “NC-17” value

28

y T T T
T T L
800(& . 800 o
| 4 10, TudQ =t -
or mmm e et mmg:o'fd ——
Burst scenaro —if— Burst sconanio, T=40 ——
Random scenario soenario, Ted0 —8— .
600 A% maching everts —83 -4 600 §~ Best-Firs scenario, =80 +
- Best-Last scenario, T=80 X
2 Burst sconaﬂ": ;ﬁ :
gsmv B §5°°" mumméwns—e-
k3 3
g 00 b é 400 | br
z
20 | 4 20
[/.__’/.'/—: 200 |-
]
1o} * E 100 -
i 1
0 —t— + H ° 2
‘) 12 16 20 ‘4 [l 12 16 2
K k
- (a) Continuous timing policy.

8

Number of events

8 8 & § 8

o

(c) Sliding window timing policy.

Figure 6.2: Number of delivered events.

for the mpaa attribute. When a value for a given attribute must be chosen, the subscriber
draws a number i from a zipf distribution and chooses the i* most popular value for the
attribute.

Finally, in any case, a preference rank uniformly distributed in [0, 1] is associated with
each subscription. Subscription examples can be seen in Figure 6.1b.

6.2 Experiments

- We perform two sets of experiments. In the first set, we evaluate the number and quality
of the events delivered to the users using PrefSIENA and SIENA. In the second set, we
evaluate the overheads introduced by ranking.

Number and quality of delivered events: Since both the number and quality of
events depend on the order of publications with regard to their ranks, to perform our
experiments, we consider a number of different event-scenarios. In particular, in the
“Best-First” scenario, the highest-ranked events are published first, while in the “Best-
Last” scenario, these events are published after the lower-ranked ones. In the “Burst”

29

:——,‘—__’._ -
700 | Best-First scenario, wad0 —+— R e
1O, .

Random .
Best-First scenano. w=80 +
100 - Best-Last scenario. w=80 X]
Burst sconano, w=80 X
Random scenano, we80 @
A memnq ovents —&—

L]
° I 1 1 0 1 1
8 2 16 20 4 8 12 16 20
k k

- (a) Periodic timing policy. (b) Sliding window timing policy.

Figure 6.3: Number of delivered events, when diversifying.

scenario, we consider the case of bursts of highly-ranked events at specific moments in
time and finally, in the “Random” scenario, high and low ranked events are interleaved.
For comparison, besides top-k delivery, we also consider the case in which all matching
events are delivered to the users, as in traditional publish/subscribe.

First, we measure the number of events delivered to a specific subscriber using Pref-
SIENA as a function of the number k& of the top results the subscriber is interested in.
We use a set of 2500 events out of which 800 match the user’s subscriptions. We first
consider the continuous timing policy with no expiration (Figure 6.2a) and run this ex-
periment for the above scenarios. The greatest reduction in received events occurs in the
“Best-First” scenario. This happens because when low-ranked events arrive, they cannot
enter the top-k results, since higher-ranked events already occupy all the available slots.
The “Best-Last” scenario is the one with the most delivered events, since the user receives
both the events with the lower ranks that arrive first and the events with higher ranks
that arrive later. The number of delivered events increases along with k, something that
is better illustrated in the “Random” scenario due to the mixed sequence of published
events. In this case for example, for k = 4, PrefSIENA delivers on average 9% of the
matching events, while for k£ = 20, the corresponding percentage is around 29%.

In Figure 6.2b, we show the number of delivered events for the periodic timing policy.
We consider a constant rate of publications and run this experiment for periods with

T = 40 and T' = 80 events for all scenarios. The number of delivered events does not
depend on the used scenario, since at each period this number is bounded by k. On
average, the number of events delivered by PrefSIENA ranges from 7% to 35% of all
matching events for the various values of k. The results for the sliding window timing
policy are shown in Figure 6.2c. We use two window lengths, w = 40 and w = 80. In all
scenarios, we observe that when w = 80, fewer events are delivered. This happens because
when a larger window length is used, highly-ranked events remain in the subscriber’s
buffer for longer and prevent more low-ranked events from entering the top-k results.
In the “Random” scenario, there are always some high-ranked events in the buffer that

30

12 T T T 12 v T T
1 1 1) -4
— os% op ——————8 - * I -
i i 1
g * H §
§ osf — =, g os = & a
E: Z
04 4 04t 4
F Bost-First sconano, Twd) —4—
Bost-Last scenario, Tad) ~—6—
Burst scenario, Ted) i
Bostroet soonana 1080 v
02F esemsosnaio —— 7 021 Best-Last scenario, 180 X
Burst scenasio Bumgnn:dﬂg ;ﬁ :
Random scenario ——=— 3
o Allmatd-nomc:s = ol N N o N M NIm?v:Nng ovents —B—
P) 12 16 20 4 [12 16 2
- k 3
- (a) Continuous timing policy. A (b) Periodic timing policy.
12 T T T
' 4
- - 4
-—
X x

0 1 L
4 8 12 16 20

(¢) Sliding window timing policy.

Figure 6.4: Average rank of delivered events.

block low-ranked ones from entering the top-k list. Therefore, the number of delivered
events is considerably smaller than in the other scenarios. For example, for £ = 4 the
reduction is nearly 75%. Figure 6.3b shows the results for the sliding window timing
policy, when diversifying the delivered events. Considering the various scenarios and the
window length, the results are similar to the previous case. Generally, there is an increase
in the number of delivered events, since more than one events may be now forwarded in
each new window (see Section 4.2). This does not happen in the periodic policy, since
the number of delivered events is the same, even if the actual events differ (Figure 6.3a).

In summary, periodic delivery ensures that each user receives a specific number of
"matching events per period. In contrast, in continuous and sliding window-based delivery,
there is some fluctuation in the number of delivered events based on the order of event
arrival with respect to their rank as well as on whether we require diversity or not. As
expected, larger periods and windows decrease the event delivery rate.
» We also run a set of experiments to evaluate the quality of the delivered events. We
characterize quality based on three factors: (i) the average rank of delivered events, (ii)
their diversity and (iii) their freshness, i.e. the elapsed time between their publication and
the time they reach the user.

Figure 6.4 depicts the average rank of all the delivered events for the various timing

31

12 T T T
1 'r
- 08 B 08 R
— . m 2) e e e + .
} ST] _s 3 - |
H : - o e X - o
o & os6 Py
3o o e o :
: H
“r ’ “r Best-Firs wto —— |
- 0410, Twb0 —t— -First scenario,
g:ss:m gmm, Tnd0 —H— Bost-Last scenario, wedQ ~—H—
Burst sconano, Ted0 —B— Burst sconano, wa40 —a-——
) Tnd0 —@— scenanc, wad0 —e—
02 Best-First sconario, T=80 + - = 02 Best-First scenario. w=80 - + - -
Best-Last scenario, Ta80 X Best-Last scenario. w=80 X
Burst scenario, TeB0 X Burst scenario, w-80 X
sconano, T8O @ Ram;nscg_avbhm: -
matchi —8—
o M s Aumfmngamts —— o N a ing
4 8 12 16 20 4 8 12 16 20
-k K
- (a) Periodic timing policy. (b) Sliding window timing policy.

Figure 6.5: Average rank of delivered events, when diversifying.

List distance
°
[+
T

05 w=40, 6=1.0 —+— b
w=40,06=02 - x-
oal w=60.0=10 —x—
g w=60,0=02 - O -
w=80, 06=1.0 —8—
03} w=80,0=02 - © .

4 8 12 16 20
k

Figure 6.6: Sliding window timing policy: list diversity for delivered events.

policies and scenarios. Generally, we observe that the average rank depends on the used
scenario. The average rank of all matching events is 0.59. In PrefSIENA, even though in
the presence of many high-ranked events some of them may fail to appear in the top-k
results, the average rank is larger than that in all cases. When diversifying the events,
there is a slight decrease of the average rank, since diverse events may have lower ranks
(Figure 6.5).

In Figure 6.6, we measure the list-distance of the events that are forwarded to a user

when we follow the sliding window timing policy for the “Random” scenario. We run
- this experiment for different window lengths using the diversification method with ¢ = 1
and o = (.2. We see that the produced results do indeed exhibit a higher diversity when
they are chosen based not only on their ranks but also on their distance from each other.
Similar behavior is observed in the periodic timing policy.

Next, we measure the freshness of the delivered events, that is the time between their
publication and their delivery (Figure 6.7). In the continuous timing policy, the freshness
of data does not depend on the scenario, since events are forwarded immediately. In
the periodic policy, the sequence of the published events influences the freshness of the
delivered ones. For example, if high-ranked events are published towards the end of a

32

—— Bast-First scenario, Tad) —bem

Average detivery time (medc)
g
verage deiivery
g &

< 1500 +
400 |- -
1000 o
200 |- - <008 o s .
zw‘ ; 1.1' 116 20 04 ; l"z v‘5 20
® k
- (a) Continuous timing policy. (b) Periodic timing policy.
16000
..... I .4 !
. ; N
14000 |- J
Best-First s0onaro, wad0 —+—
Last sconanc, wad) —e—
12000 Burst scenarnc, wad) —a— -1
- soonario, 0 ——ll—
Best-First sconario, wa80 ~+
2 Best.Last sconario, w=80 X i
£ 10000 mmm.:—_ﬁg :
i Al maiching events —&—
Z aooo _
~ §
%- 6000 |- i
< - x X x
w0t ..
2000 |- - [k-
. ° e

Iy

8 12 16 20

(c) Sliding window timing policy.

Figure 6.7: Freshness of delivered events.

period, they will reach the user earlier than if they are published at the beginning. As
expected, a larger period length results in larger delays between publication and delivery.
In the sliding window timing policy, a larger window length increases the average delivery
time. This happens because an event remains in the window for longer and therefore,
it has more opportunities to enter the top-k. When we diversify the events, the average
delivery time increases because of the additional time required to select which events to
forward (Figure 6.8).

In summary, although top-k delivery reduces the number of delivered events, it in-
creases their preference rank. All policies deliver events with comparable preference ranks.
"These ranks vary slightly with the order of event arrival; this variation is most notice-
able in the continuous timing policy. Our diversification algorithm reduces the average
preference rank of the délivered events, but increases their average diversity. Finally, in
terms of freshness, the continuous policy is the most effective one. In the periodic and
sliding window policies, freshness del;ends on the arrival rate and on the size of the pe-
riod and the window respectively. Diversification reduces freshness mainly because of the
additional overheads introduced by the diversification algorithm.

rd

33

10000 —— T T 25000 T T T
Best-First 306030, Tudd —4——
Best-Last scenaro, T=d0 —H—
Burst scenario, T=40 ——
scensro, T=40 —@— +
Best-First sconano, T=80 +
8000 scenao, T=80 X 20000 | . 4
scenano, T
Random scenario, T80 R . . »
E b ¥ P Lk o 1 E yeer Best-First scenarnio, wedd ——+—)
> 1 » > Best-Last s0enan0, wed) ——H—
[IR] s Burst $c8nano, wodQ ——N—
; f 3 Best-First m: :ﬁ +
g ool B § 10000 ““’ﬁ‘“’“%:ﬁ § ! .
$ 5 Random soenano, w-00 B e
2 < AR matching - 9
| - L .
2000 = 4 50004 - 4
R & & e ? . 5 %
4] 12 18 20 4 8 12 16 20
. k k
- (a) Periodic timing policy. (b) Sliding window timing policy.
Figure 6.8: Freshness of delivered events, when diversifying.
400 — Y T T 120000 T T T
Non-ranked delivery (SIENA) ezxzzz3 buffer size =20 —eo—
Ranked delivery (PrefSIENA) CC—— gﬂer size = gg ——
er size = ——
30 T 100000 - butfer size = 80 —»— .
-~ buffer size = 100 —+—
300 | ﬂ 80000 | N
° °
% 250 - 1 ‘3 60000 [
[£
E E
200 4 40000 [b
150 | 1 20000 - b
100 0 i 1
15 30 120 240 4 8 12 16 20
Number of subscriptions k
(a) Matching time (per event). (b) Diversification time (per window).

Figure 6.9: PrefSIENA performance.

Performance: Finally, we perform a number of experiments to evaluate the perfor-
mance of PrefSIENA. There is a substantial overhead for implementing ranked delivery
of events for two reasons. First, to compute the importance of a new event, we have to
locate all matching subscriptions, while in traditional publish/subscribe systems it suf-
fices to locate just one of them. In Figure 6.9a, we evaluate this overhead. This depends
on the size of the preferential subscription graph. On average, when performing ranked
delivery, we have to check incoming events against twice as many nodes as in the case of
—non-ranked delivery. Second, there is also the overhead of maintaining state for previously
forwarded’ events and performing computations to decide whether a new event belongs
iri the diverse top-ranked results. In Figure 6.9b, we measure the overhead of computing
diverse top-k results using Algorithm.1 that implements our heuristic. The extra compu-
fational cost depends on the buffer size and the number k of produced results. We see
that the required time increases linearly with both factors. Note that if instead of using
the heuristic method for diversifying events we use the brute-force one, the required time
increases much faster (for example, for a buffer size equal to 40 events and k = 12, this
. time exceeds 2 hours).

34

CHAPTER 7

RELATED WORK

7.1 Publish/Subscribe
7.2 Ranked Publish/Subscribe
7.3 Preferences

7.4 Diversity

In this chapter we present related work on a number of fields related to our work.
First, we describe some popular publish/subscribe systems that have been proposed in
the literature and some forwarding techniques that have been applied. Then, we present
recent work that focuses on ranking in publish/subscribe. Later, we describe various
alternatives for users to specify preferences and also some work aiming to increase the
diversity of results that are returned to users.

7.1 Publish/Subscribe

In this section we will describe a number of publish/subscribe systems. Most of the
research so far in this field aims at improving the scalability of the system by decreasing
‘the time required to perform matching between events and subscriptions. To do this,
various indexing schemes have been proposed for storing subscriptions. These schemes
depend on the way-users define their subscriptions. There are two widely used methods
to define subscriptions: the topic-based method and the content-based one. In the topic-
based method (e.g. [22]), there are a number of predefined event topics, usually identified
by keywords. Published events are associated with a number of topics. Users can subscribe
to a number of individual topics and receive all events associated with at least one of them.
Topic hierarchies can also be used with these method. When a user subscribes to some
topic in the hierarchy the user implicitly also subscribes to all of its subtopics as well.

35

The topig-based method is easy to understand and implement, but has the disadvantage
that the topics are static and predefined and therefore the users cannot express random
interests. In the content-based method [13, 7], such as the one used in this work, the
classification of the published events is based on their actual content. Users express
their subscriptions through constraints which identify valid events. An event matches a
subscription, if and only if, it satisfies all of the subscription’s constraints. In general,
the content-based method offers greater expressiveness to subscribers but is harder to
implement. A third, not so widely used, alternative is the type-based method (e.g. [12]).
This method is similar to the topic-based one with the difference that published events
are not associated with keywords but rather with a type (which implies a certain event
stru::ture).

Publish/Subscribe Systems: A centralized, main memory mechanism for matching
incoming events against a set of stored subscriptions is described in [13]. The proposed
method is processor cache conscious and makes use of the “prefetch” command which
is available*in modern processors to fetch certain blocks from memory and thus achieve
better performance. Subscriptions are treated as sets of predicates, as in our work. Each
predicate consists of an attribute a, a value v and a relational operator op . An event is a
set of pairs, each one of them consisting of an attribute @’ and a value v'. An event pair
(d',v") matches a subscription predicate (a,v,o0p) if a’ = a and v’ op v.

The main idea behind the proposed matching algorithm is to cluster subscriptions
according to their predicates and define an access predicate for each cluster. An event
can match some of the subscriptions of a cluster only if it matches the cluster’s access
predicate. Since an incoming event is expected to match only a small number of the
defined access predicates, we only have to check a small number of clusters to find the
subscriptions that are matched by the incoming event. More specifically, the proposed
algorithm makes use of a list of clusters (each one associated with an access predicate),
an index on those access predicates and a bit vector. The bit vector consists of one bit
for every predicate known to the system. Upon receiving a new event, the bit vector is
reset. For each predicate contained in the event, the corresponding bit is set to 1. Using
the index, the access predicates that match the incoming event are found. After this,
the subscriptions of the corresponding clusters are checked one by one against the bit
vector to determine whether they contain any predicates that are not satisfied by the
event. Only equality predicates common to all the subscriptions of a cluster are used
as access predicates. The most challenging part of the method, however, is to define
those access predic.étes in such a way as to minimize the number of clusters that each
incoming event has to be matched against. The authors propose a cost model based on
their implementation choices to calculate the cost of matching an incoming cvent against
a certain configuration of the system (number of clusters etc.) and use a greedy algorithm
to find a local cost optimum.

Experimental evaluation shows that the proposed algorithm is highly scalable, support-

36

g

ing milligns of subscriptions and high rates of incoming events. The proposed algorithm
is very fast indeed but remains centralized and therefore prone to failure. However, it
can be applied to each of the nodes of a distributive system as in the case of COBRA
[24].~ Also, since the proposed algorithm is a main memory one, for it to be fast, the
node running it should have enough memory available to store all of the subscriptions
and events it is aware of. Another issue is the use of processor commands which means
that the algorithm implementation is processor-specific.

Scribe [9] is a topic-based publish/subscribe system. It is built on top of Pastry {25], a
peer-to-peer routing protocol. Each Pastry node has a unique id. These ids are uniformly
distTibuted. Pastry offers one main operation: Given a message and a key, it routes
the message to a node such that the node’s id is numerically closest to the key among
all the other ids. Ids and keys are both sequences of digits with base 2° (where b is a
system parameter). The routing of a message needs [logs N steps on average, where N
is the number of nodes in the system. Delivery is guaranteed even in the case of many
simultancons node failures. The routing table of each Pastry node X has [logys N rows,
each of which contains 2° — 1 entries. All entries in row 7 of the table refer to nodes whose
ids match X’s id in the first n digits and whose (n + 1) digit differs. Generally, to route
a message along with its key, the current node forwards the message to a node whose id
shares with the key a prefix that is at least one digit longer than the prefix that the key
shares with the current node’s id.

Scribe makes use of Pastry’s routing strategy to built an application-level multicast
infrastructure on top of it. A scribe node can create groups. Other nodes can later
join these groups or multicast messages to them. Scribe is responsible to deliver the
multicasted messages to the appropriate nodes. There exists one group (with a unique
group id) for every available topic. The Scribe node with id numerically closest to the
group id is responsible for the group. This node is called the rendezvous point for the
group. The rendezvous point is the root of a multicast tree which includes all the members
of the group. Such trees are created by joining the Pastry routes from each group member
to the rendezvous point and may therefore contain nodes that are not members of the
group. When a group member wants to publish a new event associated with a specific
topic, it forwards the event to the corresponding rendezvous point responsible for the

‘topic. From there, the event is delivered to all interested parties via the corresponding

multicast tree. Scribe takes advantage of the scalibility and fault-tolerance of the Pastry
protocol but routes all group messages via a single rendezvous point. Also, it is a DHT-
based approach, and therefore inherits all of the DHT’s maintenance costs.

In [24], the problem addressed is the creation of a customized RSS (Really Simple
Syndication) feed for a user via the aggregation of the vast number of RSS feeds that
arc available on the Internet. Towards this direction, the Cobra (Content-Based RSS
Aggregator) system is presented. Motivated by the rapid growth of continuously-updated
discussions in the blogoshere, the authors propose a three-tiered network of -crawlers,

37

z

filters and reflectors to tackle the problem of finding interesting blog posts and track
blogs with interesting content. The purpose of the Cobra system is to gather posts
(crawlers), perform content-based filtering for each of its subscribers (filters) and present
to them a personalized RSS feed (reflectors). Cobra includes an offline service provisioning
technique that determines the components needed to support a certain number of sources
and subscribers, i.e. it determines the number of crawlers, filters and reflectors used by
the system. These components can be distributed over a number of hosts.

Each crawler is given a (separate) list of source blog URLs and periodically crawls each
URL to find new posts. Each URL is assigned to a crawler according to latency measures.
In order to reduce bandwidth consumption, crawlers make use of http meta data and a
hasﬁing technique to distinguish between old and new posts. New posts are pushed to the
second tier, the filters. Each filter receives posts from all the crawlers. A filter contains a
list of subscriptions of the form (subscription id, reflector id, keywords). The subscription
id is unique for every subscription in the network. The reflector id identifies the reflector
responsible for the subscriber who issued the subscription. In order for a subscription to
match a published post, all of its keywords must be found inside the post. In order to
perform the matching, each Cobra filter uses the algorithm proposed in [13] because of its
high scalability and efficiency. The new posts which match a subscription are forwarded
to the corresponding reflector. A reflector is responsible for collecting all the relative posts
for a number of subscribers and create a personalized RSS feed for each one of them. Due
to performance reasons, filters only push the matched posts to the reflectors (without a
subscriber list attached). Therefore, each reflector re-runs the filtering algorithm for each
post it receives to decide the subscribers who should receive it. For each user subscription,
the corresponding reflector caches the k latest posts received and maintains a feed which
the user can view via any RSS reader.

Periodically, Cobra makes use of statistics collected at each component to re-run the
offline provisioning algorithm at a central controller node and adjust the number of needed
components. Cobra can be used along with one of the many already existing RSS read-
ers and uses the already very popular RSS feeds as sources. However, it is not a fully
distributed system as it is designed to run on a hosting center.

Forwarding Techniques: The work in [22] is focused on topic-based publish/subscribe
systems. Concerned by the cost introduced by these systems in order to maintain a sup-
porting structure (such as a multicast tree) for each distinct topic, the authors propose a
distributed clustering algorithm that makes use of the correlations between the subscrip-
tions stored in the system to group topics together into virtual topics. The corresponding
supporting structures are then unified, thus reducing the overall cost of the system.

" The authors assume a basic topic-based system where users subscribe to a number of
topics. For each topic there is a node in the system which is considered to be responsible
for it. For each topic there exists a multicast tree rooted at the corresponding responsible
node. This tree connects all the users who have subscribed to the corresponding topic.

38

Whenevey a publisher publishes an event on this specific topic, it sends it to the responsible
node. Using the multicast tree the event eventually reaches all the subscribed users. The
main idea of the proposed method is to group topics with similar sets of subscribers into
a virtual topic and merge their supporting structures, namely their multicast trees. Users
can use a local filter to prune irrelevant results in case they are interested in only a fraction
of the virtual topic’s topics.

A cost model for the structure maintenance of the system and the dissemination
of events is introduced. The maintenance cost depends on two factors: the average
maintenance cost for a multicast tree with a given number of subscribers and the cost
of maintaining the association between a given virtual topic and each of its topics. The
dissemination cost also depends on two factors: the cost of notifying the responsible node
of a topic (or a virtual topic) about an event and the cost of propagating the event through
the multicast tree to the appropriate subscribers. The overall cost is the sum of all these
factors over all the existent topics and virtual topics.

To form and maintain virtual topics only local operations are performed. Those op-
erations involve only the nodes participating in one or two topics (or virtual topics) and
include the grouping of two topics to form a virtual topic, the addition of a topic to an
existing virtual topic, the merging of two virtual topics, the removal of a topic from a
virtual topic and the destruction of a virtual topic. Prior to the performance of such an
operation, its contribution to the reduction of the overall cost is estimated. The operation
is performed only if it is beneficial to the system. Since it is not practical to estimate the
overall cost based on all the existing topics, only the participating topics are used (for
example, when merging two virtual topics we estimate the overall cost reduction based
on these two virtual topics alone). For a more detailed explanation of each operation the
reader is referred to [22]. Finally, the authors propose a heuristic greedy algorithm for a
subscriber to find a combination of topics and virtual topics that cover its interests. The
proposed methods have been implemented on top of Scribe [9)].

A forwarding algorithm for content-based publish/subscribe systems is presented in
(17]. Since content-based matching does not have a worst case efficient solution [18], the
authors attempt to reduce the number of content-based matching operations needed. The
basic idea of their method is to perform only one content-based matching per event when
‘the event enters the system and associate the event with a prefiz. This prefix is then used
by all other nodes to route the event.

Routing is performed in a SIENA-like fashion [7]. SIENA’s poset data structure is
reéplaced by the Routing Tree. All servers of the system maintain a Routing Tree. The
Routing Tree stores filters in a disjoint form. Each of its nodes hold a simple attribute
constraint with only one predicate. Some nodes of this tree contain pointers to subscribers
while only new root nodes of the tree are propagated to other servers of the network. When
a new event reaches a server it is matched against its Routing Tree. The result of this
operation is a Forwarding Prefix Tree, which is constructed by the nodes and paths of

« the Routing Tree that match some of the event’s attributes. This Forwarding Prefix Tree

39

is attached to the event and piggy-backed along with it toward the appropriate subset of
the server’s neighbors. When a server receives an event along with a Forwarding Prefix
Tree, it maps the Forwarding Prefix Tree on its own Routing Tree to find the appropriate
neighbors that it must forward the event to.

A major drawback of the proposed method is that in order for it to work, all servers
must have identical Routing Trees (possibly with different neighbors stored at their nodes).
For this to happen all Routing Trees must be composed of the same set of filters and
those filters must be inserted into the trees at the same order. This is nearly impossible
to happen in a distributed environment where each subscriber sends its subscriptions
(filters) to only a very small number of servers. To overcome this obstacle, the authors
prol;ose the use of the Tree Optimizer. The Tree Optimizer is one central node in the
system which is responsible for the construction of the Routing Tree and its propagation
to all the other nodes. A possible extension is the use of many nodes, each of which will
be responsible for a part of the Routing Tree. Servers must forward all newly received
filters that do not already exist in their Routing Tree to the Tree Optimizer. Since it
would be impractical to wait for the changes to the Routing Tree to be propagated to the
whole network, they insert pointers to the subscribers in their own (now outdated) copy
of the Routing Tree but only in already-existing nodes. This results in a number of false
positives until the changes in the Routing Tree are propagated to the network and the
local Routing Table copy becomes more precise.

The proposed method lowers the number of content-based matching operations to only
one per event but inserts the overhead of the Forwarding Prefix Tree to each event and
the notion of the Tree Optimizer which remains mainly a centralized structure taht inserts
significant maintenance costs.

Another content-based routing technique, described in [8], aiming to increase scal-
ability. The authors make use of a fundamental concept of content-based routing, i.e.
events and subscriptions must “meet” at some point in the network. They propose to
route events and subscriptions on different but intersecting partitions of the network. The
routing infrastructure is perceived as a multidimensional grid. Subscriptions are dissemi-
nated through partitions that cover the whole network but do not overlap with each other.
Events are disseminated through partitions that intersect all subscriptions partitions. To
visualize this concept, assume a 2-dimensional grid. A possible partitioning of this space
is.to disseminate subscriptions along the columns of the grid and events along its rows.
Subscriptions are routed in a SIENA-like fashion but can be propagated only on a single
partition of the network. For example, if a new subscription s is issued by X in the
2-dimensional space, it will be propagated only on X’s (entire) column. If s is also issued
by some other node Y of the same column, then it will be propagated along the column
until it reaches a node that is already aware of it because of X’s previous subscription.
From that point on, s does not need to be propagated again and therefore no additional
resources are needed for the handling of the second subscription. Simulation studies show

. that the proposed technique can indeed increase scalability.

40

7.2 Ranked Publish/Subscribe

In this section we review related work on ranked publish/subscribe system. Up to now,
there has not been much research in this field. To the best of our knowledge, the following
work“, along with our own, is the first on this topic.

In [21], the problem of ranked publish/subscribe systems is also considered. However,
the problem is viewed in a different way. In a sense, the authors consider the “reverse”
or “dual” problem, since they aim to recover the most relevant matching subscriptions
for a published event (instead of locating the most relevant events for each subscription).
Such a view of the problem is interesting in applications such as targeted web advertising,
whore as an “event” we consider a user’s visit to a website and the advertisers wish
to display their advertisements (“subscriptions”) only to the users that are the most
interested in them. Subscriptions are modeled as sets of interval ranges in a number
of dimensions and events as points that match all the intervals that they stab. Each
interval is associated with a predefined score. Top subscriptions are recovered based
on those scores. A subscription matches an event exactly, if and only if, the event is
fully contained the subscription’s hyper-rectangle. If the event stabs only some of the
subscription’s intervals then we have relaxed matching. In the first case, each subscription
is associated with a single score while in the latter case each interval of the subscription
is associated with a weight and the score of the subscription is computed based on the
weights of the stabbed intervals.

To quickly recover the top subscriptions related to an event, a scored interval index
is build over the subscription intervals of each possible dimension. Those indices take
in an event value v; and provide an iterator returning the intervals containing v; in the
order of their score. Given an incoming event (v, ...,v,), the n corresponding indices
are probed. Then, in the case of exact matching, the produced intervals are intersected to
produce the subscriptions in score order. In the case of relaxed matching, the Threshold
Algorithm [14] is used to find the highest score subscriptions. After a study of existing
tree structures like interval trees, segment trees and R-trees, the authors also propose two
new tree structures to index each of the mentioned dimensions: the interval R-tree (I R-
tree) and the Score-Optimal R-Tree (SOPT-R-tree). The I R-tree uses an R-trec instead
of a list to index the intervals of each node of an interval tree, while the SO PT-R-tree is
in fact a scored R-tree in which the intervals are sorted in a careful way so that less tree

‘nodes are accessed by the tree’s iterator.

~ A problem that arises in this approach is that a user (who is treated as an event) that
does not match suhscriptions with a high score receives data depending on the existence
of other users. For example, a user X that does not belong to the advertiser’s target group
will not reccive any advertisements as long as there are other users who do. However, if
there are no such users, X will receive those same advertisements.

Another work that also deals with the problem of ranked publish/subscribe is [23].
In the proposed model, a subscriber receives the & most relevant events per subscription

41

within a_window w which can be either time-based or number-based. Both events and
subscriptions are associated with expiration times. Event relevance to a subscription
is measured as the event’s distance to the subscription, as computed by a user defined
ranking function. All events that are among the user’s top-k results at some point in time
will eventually be delivered to the user.

Events are divided into three groups: (i) Excellent candidates, i.e. events among the
user’s top-k results at the moment of their publication, (ii) Good candidates, i.e. events
that are not among the user’s top-k results at the moment of their publication but have
a probability larger than some threshold o to enter the top-k resuits before the current
window passes and (iii) Bad candidates, i.e. events for which this probability is less that
o. For each user subscription a queue is maintained. This queue has a head for keeping
excellent candidates and a tail for good candidates. The focus is on efficiently maintaining
this queue. The size of the head is k while the size of the tail depends on o. The authors
assume Poisson distributions for the generation and expiration of events and compute a
minimum length for the queue’s tail so that all good candidates that have high probability
to enter tlte user’s top-k results at some point in the future can be stored there. This
length grows sub-linearly with k.

7.3 Preferences

In this section, we describe the way users can express various degrees of interest for their
subscriptions by using preferences. There are two different approaches for expressing
preferences, the quantitative and the qualitative one. In the quantitative approach (e.g.
[6, 20]), preferences are expressed indirectly via the employment of scoring functions. Such
functions associate a numeric score with each specific data item. Those scores indicate
the user’s interest for the corresponding data. In [6} for example, users can assign to each
item a score in [0, 1] to indicate interest, declare their indifference in it or even veto it
from ever appearing in their results.

In the qualitative approach (e.g. [10, 19, 15}), preferences between two data items are
specified directly by the users, typically using some form of binary relations between data.
In [15] for example, qualitative preferences are used to express priorities among the values
of specific attributes of relational databases and also among the attributes themselves.
'B.ased on those preferences, a query lattice is constructed and utilized to retrieve database
tuples in the order directed by the preferences defined by the user.

* The qualitative® approach is more general than the quantitative one, since scoring
functions can always be defined in terms of binary relations. However, not all binary rela-
tions among data items can be captured by scoring functions. Therefore, the qualitative
approach offers greater expressiveness to users.

User preferences can also be combined so that additional preferences can be extracted.
Since different preferences may follow different orders (such as the strict partial, weak
_ o Or total order), there are various ways to combine them that can either preserve those

42

orders or,not [10]. Such ways include the prioritized, pareto and lexicographic preference
compositions.

Since user preferences may depend on the user’s current state, contextual preferences
have-been introduced to further increase user expressiveness. Contextual preference mod-
els have been proposed following both the quantitative ({27, 26]) and the qualitative
([5, 16]) approach. When contextual preferences are defined by the users, an extra pre-
processing step is required to select the appropriate subset of preferences that apply under
the user’s current context. Further computations should be based only on the selected
preferences.

-

7.4 Diversity

The notion of diversity is lately beginning to be considered in personalized systems. Up to
now, most of research focused on improving the recommendations made to the users by the
various personalized systems. However, while accurate suggestions are fundamental for
those systems, they do not always guarantee user satisfaction. Diversity aims to produce
recommendation lists that, when viewed as a whole, are more satisfactory to the users.

In {29], the authors propose a method for topic diversification, i.e. a method for modify-
ing personalized recommendation lists in order to increase user satisfaction. The purpose
is to balance recommendation lists so that they do not include only suggestions related
to the user’s top-ranked interests but reflect their complete spectrum of interests instead,
while still continuing to take into consideration the accuracy of the individual suggestions.
The intra-list similarity metric is introduced to assess the topical diversity of a given rec-
ommendation list. The proposed method can be applied on top of any recommendation
list produced with any method (usually some form of collaborative filtering), as long as
its size is larger than the desired size of the final list.

Assuming a set B of items and an arbitrary function ¢ : B x B — [~1, +1] measuring
the similarity c(b;, b;) between items b;, b;, the intra-list similarity of a recommendation
list P is defined as:

iep EbjEP,b,-;ébj c(bi, b;)
2
Higher intra-list similarity scores denote lower diversity of the corresponding list. Note

ILS(P) =

that the metric is permutation-insensitive. In order to produce the final diversified list
P', we first insert into it the first item of P. Then, for every subsequent item we want to
th position of P’, we collect the items of P that do not occur in positions 0
to z in P" and compute their similarity with those that do. Sorting these items in reverse

insert in the 2

order according to the similarity we computed, we obtain a dissimilarity rank for each
of them. This dissimilarity rank is merged with the original recommendation rank that
the object has in P, yielding a final rank for the item. The highest ranked item is then
inserted into P'. While the diversification of a recommendation list naturally leads to the

43

decrease of the precision and recall of its suggestions, a wide case study with more than
2000 users showed that user satisfactions increases.

The notion of diversity is also explored in [28], where the authors focus on queries
concerning e-shopping. Queried items are tuples of a database relation R. Motivated
by the fact that some relation attributes are more important to the user, a method is
proposed where a recommendation list is diversified by first varying the values of higher
priority attributes before varying the values of lower priority ones. Therefore, having
defined a diversity ordering, i.e. an ordering < of R’s attributes, the authors then define
a prefix with respect to <g as a sequence of attribute values, in the order given by <pg,
moving from highest to lower priority. If two tuples t;, t; share a prefix p of length [, then
their similarity SIM(t;,t;) is 1 if their (I + 1)% attribute is the same and 0 otherwise. A
set S of tuples is defined to be diverse with respect to p if STM(t;,t;) is minimized over
all pairs of tuples in S. In case the tuples are associated with scores, the scored variation
of diversity always picks tuples with higher scores over tuples with lower ones. If many
tuples are tied, then the tuples are picked in a diversity preserving way.

44

CHAPTER &

CONCLUSIONS AND
FUTURE WORK

In this thesis, we extend the publish/subscribe paradigm with a ranking mechanism so
that only the top-ranked events are delivered to each user. Ranking is based on letting
users define their preferences among specific events. Our overall goal in this work has been
to increase the quality of events received by the users of publish/subscribe systems in terms
of: (i) their importance or relevance, (ii) diversity and (iii) freshness. Ranking events by
importance is achieved by letting users express preferences along with their subscriptions.
Events that match more preferable subscriptions are ranked higher than events that match
less preferable ones. To rank an event, we also take into account how different the event
is from the other top-ranked ones so that the overall diversity among the delivered event
notifications is increased. Finally, for freshness, we have examined a number of policies
with regards to the time range over which the top-k events are computed, namely a
continuous, a periodic and a sliding window one. We organize preferential subscriptions
in a graph and utilize it to forward events to users. We have fully implemented our
approach in SIENA, a popular publish/subscribe middleware system.

Our overall focus has been on increasing the value of the events received by each
user. There are many directions for future work, mainly regarding performance. One is
developing indexing structures towards making matching events with subscriptions and

.ranking more efficient. Also, organizing the servers of the event-notification service in
other topologies besides the hierarchical one used in this work and exploit the underlying
structures to further reduce the messages propagated through the network. Regarding
expressiveness, an interesting direction is the extraction of preference ranks for published
events based on more than one factors in a skyline fashion. In this case, diversity can also
‘be employed to resolve ties among the events that belong to the skyline.

45

BIBLIOGRAPHY

(1] The Internet Movie Database. http://www.imdb.com.

[2]' Movies dataset. http://had.co.nz/data/movies.

[3] PrefSIENA. http://www.cs.uoi.gr/~mdrosou/PrefSIENA.
[4] SIENA. http://serl.cs.colorado.edu/~serl/dot/siena.html.

[5] R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking. In SIGMOD
Conference, pages 383-394, 2006.

[6] R. Agrawal and E. L. Wimmers. A framework for expressing and combining prefer-
ences. In SIGMOD Conference, pages 297-306, 2000.

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-area
event notification service. ACM Trans. Comput. Syst., 19(3):332-383, 2001.

(8] S. Castelli, P. Costa, and G. P. Picco. Hypercbr: Large-scale content-based routing
in a multidimensional space. In INFOCOM, 2008.

[9] M. Castro, P. Druschel, A. marie Kermarrec, and A. Rowstron. Scribe: A large-
scale and decentralized application-level multicast infrastructure. IEEE Journal on
Selected Areas in Communications (JSAC), 20, 2002.

(10] J. Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst.,
28(4):427-466, 2003.

(11] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of
’ publish/subscribe. ACM Comput. Surv., 35(2):114-131, 2003.

(12] P. T. Eugster_and R. Guerraoui. Content-based publish/subscribe with structural
reflection. In COOTS’01: Proceedings of the 6th conference on USENIX Conference
on Object-Oriented Technologies and Systems, pages 10-10. USENIX Association,
2001.

[13] F. Fabret, H-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Fil-
“ tering algorithms and implementation for very fast publish/subscribe. In SIGMOD
Conference, pages 115-126, 2001.

46

http://www.imdb.com
http://had.co.nz/data/movies
http://www.cs.uoi.gr/~mdrosou/PrefSIENA
http://serl.cs.colorado.edu/~serl/dot/siena.html

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
In PODS, 2001.

[15] P. Georgiadis, I. Kapantaidakis, V. Christophides, E. M. Nguer, and N. Spyratos.
Efficient rewriting algorithms for preference queries. In ICDF, pages 1101-1110, 2008.

[16] S. Holland and W. Kie ling. Situated preferences and preference repositories for
personalized database applications. In ER, pages 511-523, 2004.

[17] Z. Jerzak and C. Fetzer. Prefix forwarding for publish/subscribe. In DEBS, pages
238-249, 2007.

L 4

[18] S. Kale, E. Hazan, F. Cao, and J. P. Singh. Analysis and algorithms for content-based
event matching. In ICDCS Workshops, pages 363-369, 2005.

[19] W. Kiessling. Foundations of preferences in database systems. In VLDB, pages
311-322, 2002.

[20] G. Koutrika and Y. E. Ioannidis. Personalized queries under a generalized preference
model. In ICDE, pages 841-852, 2005.

[21] A. Machanavajjhala, E. Vee, M. Garofalakis, and J. Shanmugasundaram. Scalable
ranked publish/subscribe. In VLDB, 2008.

[22] T. Milo, T. Zur, and E. Verbin. Boosting topic-based publish-subscribe systems with
dynamic clustering. In SIGMOD Conference, pages 749-760, 2007.

[23] K. Pripuzic, I. P. Zarko, and K. Aberer. Top-k/w publish/subscribe: finding k most
relevant publications in sliding time window w. In DEBS, pages 127-138, 2008.

[24] 1. Rose, R. Murty, P. R. Pietzuch, J. Ledlie, M. Roussopoulos, and M. Welsh. Cobra:
Content-based filtering and aggregation of blogs and rss feeds. In NSDI, 2007.

[25] A. 1. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Middleware, pages 329-350, 2001.

[26] K. Stefanidis and E. Pitoura. Fast contextual preference scoring of database tuples.
In EDBT, pages 344-355, 2008.

[27] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding context to preferences. In ICDE,
pages 846-855, 2007.

3[28] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. Amer-Yahia. Efficient
° computation of diverse query results. In ICDE, pages 228-236, 2008.

[29] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommen-
7 dation lists through topic diversification. In WWW, pages 22-32, 2005.

47

AUTHOR’S PUBLICATIONS

Marina Drosou, Evaggelia Pitoura and Kostas Stefanidis, Preferential Publish/Subscribe,
in Proc. of the 2nd International Workshop on Personalized Access, Profile Management
and Context Awareness: Databases (PersDB 2008), in conjunction with the VLDB 2008
Conference, August 23, 2008, Auckland, New Zealand.

Marina Drosou, XML Summaries for Routing in P2P systems, in Proc. of the 1st Pan-
hellenic Scientific Student Conference in Informatics, Computer Engineering and Related
Technologies (EUREKA 2007), May 18-20, 2007, Patras, Greece.

AT R TS I Y L e
MR ST

SHORT ViTA

Marina was born in Ipannina in 1984. She was admitted at the Computer Science De-
parement of the University in Ioannina in 2002 and graduated in 2006. At the same year
she began her postgraduate studies at the same department. She is a member of the
Distributed Management of Data (DMOD) Laboratory since 2006. Her research interests
include publish/subscribe systems and sensor networks.

