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9 Π ε ρ ίλ η ψ η

Οι Μπεϋζιανές μέθοδοι είναι ιδιαίτερα δημοφιλείς για την επίλυση προβλημάτων 

μάθησης με επίβλεψη, στα οποία, δοθέντος ενός συνόλου παρατηρήσεων της εξόδου ενός 

συστήματος για διάφορες τιμές των εισόδων του, ζητείται η πρόβλεψη των τιμών της εξόδου 

για πιθανές άλλες τιμές των εισόδων. Οι μέθοδοι αυτές μοντελοποιούν το σύστημα ως μια 

τυχαία διαδικασία, που επηρεάζεται από ένα σύνολο τυχαίων μεταβλητών. Οι προβλέψεις 

γίνονται με βάση πιθανοτικούς κανόνες, όμως συχνά είναι απαραίτητη η χρήση αρκετών 

προσεγγίσεων.

To Relevance Vector Machine (RVM) [24] είναι ένα τέτοιο Μπεϋζιανό μοντέλο, η 

έξοδος του οποίου εκφράζεται ως γραμμικός συνδιασμός κάποιων σταθερών συναρτήσεων που 

ονομάζονται συναρτήσεις βάσης και η τιμή των οποίων εξαρτάται από την είσοδο του 

συστήματος. Το μοντέλο αυτό είναι αραιό, δηλαδή στο γραμμικό συνδιασμό των συναρτήσεων 

βάσης περιέχονται μόνο λίγες από αυτές. Η πρόβλεψη της εξόδου για όποιαδήποτε νέα τιμή της 

εισόδου μπορεί να γίνει αν υπολογιστεί η κατανομή των παράμετρων του γραμμικού 

συνδιασμού, που ονομάζονται βάρη. Στα βάρη ανατίθεται κάποια αρχική συνάρτηση 

κατανομής πιθανότητας, που εκφράζει την επιθυμία για αραιά μοντέλα, και με βάση αυτή 

υπολογίζεται η κατανομή των βαρών δεδομένων των παρατηρήσεοον.

Στη συνέχεια το μοντέλο RVM χρησιμοποιείται για την ανάλυση εικόνων λειτουργικού 

μαγνητικού προσανατολισμού. Οι εικόνες αυτές παρέχουν ένα μέτρο της λειτουργίας των 

νευρώνων του εγκεφάλου σε κάθε σημείο του και μπορούν να χρησιμοποιηθούν για την 

αντιστοίχηση μιας περιοχής του εγκεφάλου σε κάποια λειτουργία ή κάποιο ερέθισμα. Συνήθως, 

στα πειράματα που εκτελούνται συλλέγονται δύο σύνολα εικόνων, στό ένα μόνο από τα οποία 

υπάρχει το ερέθισμα. Έτσι συγκρίνοντας τα δύο αυτά σύνολα εικόνων μπορεί κανείς να 

αποφανθεί για την περιοχή στην οποία επηρεάζεται η λειτουργία του εγκεφάλου εξαιτίας του 

συγκεκριμένου ερεθίσματος. Η περιοχή αυτή ονομάζεται περιοχή ενεργοποίησης..

Υπάρχουν διάφορες μέθοδοι για. την ανάλυση εικόνων λειτουργικού μαγνητικού 

συντονισμού. Οι πιο διαδεδομένες από αυτές (l-test, covariance thresholding, SVD) 

αποφασίζουν εάν ένα σημείο της εικόνας είναι ενεργοποιημένο ή όχι βασιζόμενες μόνο σε τιμές 

του σημείου αυτού. Καλύτερα αποτελέσματα μπορούν να επιτευχθούν αν ληφθεί υπόψιν η 

δομή του σήματος ενεργοποίησης, συμπεριλαμβάνοντας στην απόφαση και τις τιμές των 

γειτονικών σημείων της εικόνας. Αυτό επιτυγχάνεται υποθέτωντας ότι το σήμα ενεργοποίησης 

έχει κάποια συγκεκριμένη δομή. Μια τέτοια μέθοδος ακολουθείται στο [13], η οποία όμως 

βασίζεται στον αλγόριθμο Reversible Jump Markov Chain Monte Carlo και έχει σημαντικό

2



υπολογιστικό κόστος. Στην εργασία αυτή προτείνεται η χρήση του RVM για την 

μοντελοποίηση του σήματος ενεργοποίησης, και δημιουργούνται τεχνητά δεδομένα για την 

αξιολόγηση της μεθόδου. *

*
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1 Introduction

1.1 Supervised Learning

Supervised learning is the task of estimating an unknown function /  : X  -»  Γ given a 

training set {(*„,*„)}* of input vectors xn e X  and output values tn e  T , so that tn = f { x n). 

The domain X  of the function /  can be any set, but usually it is the set of vectors with length 

D of real numbers, X  = 5RD. In a wide variety of problems the domain T of the function /  is 

the set of real numbers. Such problems are called regression problems, and examples of these 

are the prediction of stock market values and approximating some quantity of interest given a 

set of relative measurements. In another class of problems, which are called classification 

problems, T is a discrete set of class labels. Some classification problems are optical character 

recognition (OCR), pattern recognition and object recognition in computer vision. In practice, 

noise is added to the output of the function, thus the target values in are given by

t„ = / (xn) + εη, where εη is the noise component and behave as random variables. This noise is

usually modeled as additive, Gaussian distributed and independent among the training 

examples.

In the general case, where /  can be any function, the problem described above cannot 

be solved, since knowing the value of the function /  for a given input vector xn, does not 

provide any knowledge for the function at other input vectors, even if they are close to xn.

However, we can make predictions based on assumptions that we make on the form of function 

/ .  These assumptions are called the inductive bias of the learning algorithm. Usually, the 

inductive bias is established by modeling the function /  with a known parametric function 

y(x-,0), where θ = (θι,θ2,...,θΜ) is a set of unknown parameters. Examples of commonly used 

parametric forms are the neural networks, polynomials and mixture models. The model of /  is 

chosen according to its properties, the size of the training set and the amount of noise added to 

its output values. It is desired that the model has as few parameters as possible so that they can 

be easily estimated from the training data. However, models with few parameters are more 

probable to fail to fit the function / .  Generally, selecting a model that describes the training 

data satisfactorily is a very difficult problem.
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1.2_ Maximum Likelihood

After modeling the function f  with a parametric function γ (χ;θ)  we have to use an

algorithm to fit the model to the training set, by selecting the appropriate values for the 

parameters Θ. A general method that is commonly used is called maximum likelihood and, as 

its name implies, it suggests selecting the values of the parameters that maximize the likelihood 

of the training data:

9ml = arg max L(t; Θ).
θ

The likelihood is the probability that the training data is generated for^the specific values Θ of 

the model parameters.

If we assume that training examples are independent and the noise is additive, white and 

Gaussian, then

Κ = ν { χη,θ) + ε„,

with

£„~jV(o,CT2),

where σ 2 is the variance of the noise. Then, the training data is also Gaussian distributed, with

ρ(ί;θ)  = Ν ( γ { χ · θ ) , σ 2).

If the training data are assumed independent, the likelihood can be written as:

n*l

Equivalently to maximizing the likelihood in (1.5) we can minimize the negative logarithm of it, 

since it is a monotonically decreasing function. Thus we minimize:
N N

rr
- In  L{f ,e)  = - ln f[/> (x „ ;0 )  = -£ ln /? (x „ ;0 )

n=\ n=|

= —̂ - ν ( > / ( χ η;0 ) - /π)2 + - l n —^-
2 Ι π σ 1

which is equivalent to minimizing the mean squared error, given by
✓

N 2
0Wt= a rg m in £ ( j/ (x n;0 ) - r n) .

( 1.1)

( 1.2)

( 1.3)

( 1.4)

( 1.5)

(1.6) 

( 1.7)
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Unfortunately, for most models γ (χ : θ )7 we cannot find analytically the parameters that

gninimi7p the mean squared error. Instead we can use multidimensional optimization methods, 

such as for example gradient descent or Quasi-Newton methods.

Although mavimiTing the likelihood o f the training set seems intuitively to be the best 

way to select die parameter values, it is possible, in the presence o f noise, that the values that 

minimize the likelihood are not the ones that best fit die function. This will happen if  the model 

is so flexible that ft will fit the noise instead o f the function and it is known as overfitting. In 

order to avoid overfitting we have to choose a model with few7 parameters, so that it is not 

flexible enough to fit the noise. Alternatively, we can use a validation set to detect overfitting 

and slop the training process when the performance on the validation set starts decreasing. 

Another popular way to avoid overfitting is to set constraints on the parameters o f the model. 

These consteaints can either be hard constraints, such as assigning an upper and low er bound to 

a parameter, or soft constraints such as assigning a probability density function to a parameter 

(prior).

A common approach to avoid overfitting is weight decay. This is an extension o f the 

maximum likelihood method that adds a penalty term to the objective function which is 
minimized-

Θμι =argm inl^(_y(xB;0 )—ίβ)2 +/Ό(Θ)

where
M

Q ( e ) = ± 0 ; ,

and 0  = {#,}!!, is the set o f parameters of the model. The term 0 ( θ )  prevents the parameters

from taking very large values, which results in smooth models that are less likely to overfit the

data. Parameter λ  controls how- much w% want to emphasize on the smoothness o f the model

and therefore to avoid overfitting. Very small values of λ  result in very flexible models that are

likely to overfit the data, while very’ large values will result in setting all parameters close to

zero, and the model will fail to fit the training data satisfactorily.
%to

( 1.8)

( 1.9)
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1.3 Bayesian methods

Bayesian methods also assume that the unknown function f  is modeled with a

parametric form y ( x ;0 ) . However, the parameters Θ are now assumed to be random variables,

and the corresponding probability density functions are assumed known. Although, usually the 

parameters of the model do not have a physical meaning and thus their distributions are actually 

unknown, assuming a specific prior distribution on the model parameters can establish 

preference for certain' values of the parameters which is frequently desired. In Bayesian 

methods, we do not compute specific values for the parameters, but compute their posterior 

probability density function. Predictions are made using the posterior distribution, which 

usually provides more knowledge than a specific value (e.g. the expected value of the posterior) 

would provide.

Having defined these prior probability distributions we can compute the posterior 

probability density of the parameters given the training data using the Bayes theorem

ρ { θ \ ή  =
ρ ( ί \ θ ) ρ ( θ )

P( ‘)
( l . l O )

where p( t \6 )  is the probability that the training data are created from the model with

parameters Θ and can easily be computed if we know the pdf of the noise affecting the training 

set. The denominator /?(/) = J/?(/1 θ )ρ (θ )ά θ  is a normalizing constant.

Predictions in Bayesian method are made by marginalizing over all unknown 

parameters. Then, given a new point x*, the corresponding value of the unknown function /* is 

predicted as follows:

p((. |/ )=  \p(t ,  \ χ . , θ ) ρ { θ \ ί ) ά θ . ( i l l )

Unfortunately, this integral is very rarely computed analytically and usually it is necessary to 

make some approximations.

Generally, Bayesian methods give better results, because they make predictions based 

on the whole posterior distribution of the parameters. However, there are two important 

problems. First, it is not always obvious what prior probabilities should be chosen for the 

parameters of the model and second, the posterior probability in (1.10) can be very rarely 

computed analytically and approximations have to be considered. Commonly used techniques to 

approximate these integrals are the variational techniques where a lower bound of the integral is 

found, and sampling techniques such as Monte Carlo integration where the integral is 

approximated by a finite sum of suitably sampled values of the integrated function.

9



Iif order to avoid the difficulties of the Bayesian methodology, sometimes instead of 

computing p{6 \ t )  and the integral of (1.11), we only estimate the values of the parameters Θ

that maximize p ( 0 \ t )  and use them to make predictions. This is called the maximum a

posteriori (MAP) methodology and is similar to the maximum likelihood method, but it also

considers prior information for the parameters of the model.

It can be shown that the MAP estimate is equivalent to a maximum likelihood solution

with weight decay. If we assume that noise is additive, Gaussian distributed and independent 
♦

among the training examples the pdf of the training set given the parameters is:

p((\e) = Y lN(y(x„\^),a2),
n=1

and assuming zero-mean Gaussian prior distributions for the parameters of the model,

ρ(θ,) = Ν(0,α,),

we can apply Bayes’s theorem as:

PV)
The MAP estimate is then computed as:

@mai> = a rgm ax(/> (/|0 )p(0)).
Θ

Since the samples and parameters are independent:
(  N

Θμρ = arg max
Θ U p ( o e ) f l p WV n=\ /=]

which (taking the negative logarithm) is equivalent to:

Θμαρ = argmin
Θ

2 σ
\  /=]

Equation (1.17) is similar to (1.8) when the parameter λ  is set to the ratio of the noise variance

to the variance of the parameter prior distribution — . Thus, the weight decay method used to
a.

avoid overfitting is identical to the MAP method when assuming Gaussian distributions for the 

” model parameters.

( 1. 12)

0.13)

(1.14)

(1.15)

(1.16)

(1.17)
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1.4 Graphical Models

Although, in most problems the probability distributions of most variables are not known, 

usually they can be efficiently approximated using common types of distributions. However, in 

problems with many (generally not independent) variables, computation of the joint distribution 

of the whole variable set is not always straightforward. Graphical models are then used to 

express the joint probability density function over a set of variables.

Graphical models consist of nodes that represent random variables and arcs between some 

of the nodes, that may be directed or not, and represent relations between the variables. 

Graphical models that contain only undirected arcs are also called Markov networks or Markov 

random fields (MRFs) and those that contain only directed arcs are also called Bayesian 

networks or belief networks. Sometimes both directed and undirected arcs are contained in the 

same graphical model. This class of graphs is known as chain graphs.

Figure 1.1. Examples o f Graphical Models

In Markov Random Fields two sets of nodes A, B are conditionally independent given a 

third set of nodes C, if all paths between A and B are separated by a node in C. Obviously, a

where z is the set of variables, Cy(z ) , /  = 1..J are the cliques of the graph, y/f , j  = \ . J  is a set

(a) a directed graph (b) an undirected graph

node is independent of all other non-neighboring nodes given the values of its immediate 

neighbors. The probability distribution of the set of variables can be expressed as

( 1 . 18)

of clique potential functions and Z is a normalizing constant to ensure that p (z) is a 

probability function. The set of cliques |C y (z)| ( is defined so that the cliques cover all the 

variables, |C, (z)U-.-UC/ (z)j = z and they may be overlapping. The clique potential functions

11



ψ are afbitrary real valued positive functions that assign a positive number to each possible

assignment of values to the variables of the clique.

In Bayesian networks an arc from node X to node Y informally expresses the fact that A 

causes B. Conditional independence between two nodes X and Y, given a set of nodes C, is easy 

to detect, since a node is always independent of its ancestors given its parents. The ancestors of 

a node are recursively defined as union of the set of parents of that node and the ancestors of the 

node’s parents. Similarly, the descendents of a node are defined as the union of the set of 

children of that node and the descendents of the node’s children. Two sets of nodes A and B are 

independent given the set o f nodes C if  they are d-separated by C. Two nodes X and Y are said 

to be d-separated if every undirected path form X to Y contains a node d that satisfies one of the 

following conditions: 1) d has converging arrows and neither d nor its descendants are in C 2) d 

does not have converging arrows and is in C. A node has converging arrows when it is the child 

of the previous node and parent of the following node in the path (e.g. Node W in Figure 1.1a).

The probability distribution over the set of variables can be computed as:

p ( z ) = I \ p ( zj \ zrtJ))’ ( l-,9)
J=1

where z = j ^ is the set of variables and zpâ  is the set of parents of node .

Given a set of nodes A, we are often interested in the minimal set of nodes C such that the 

nodes in A are independent with all other nodes that do not belong in C, given the nodes in C.

The set C is called the Markov blanket of the set A. The Markov blanket of a single node is the 

union of the node’s parents, its children and the parents of its children.

In the field of machine learning directed networks are more popular because they usually 

provide an easier way to express the process underlying the creation of the observations. On the 

other hand, undirected graphs are more popular in the physics and vision communities because 

the systems being studied can usually be expressed in terms of many localized potential 

functions.

- 1.5 Exact Inference in Graphical Models

Nodes in graphical models represent random variables which may be observed, if we can 

observe the value of the variable, or hidden otherwise. Inference is the process of estimating the 

posterior distribution of hidden variables, given the values of the observed variables. If all nodes 

of the model are observed, it is relatively straightforward to estimate the parameters of the

12



model, using a maximum likelihood technique as discussed in section 1.2. However, when the 

model contains hidden variables, application of the maximum likelihood technique is not trivial 

and usually requires the use of Expectation-Maximization (E-M) algorithms, that iteratively 

maximize the likelihood by finding estimates of the hidden variables and then using them to 

compute and maximize the likelihood of the observations. The estimation of the hidden 

variables requires the computation of their posterior distribution.

Let H  represent the hidden variables of the graphical model and E represent the 

observed variables (also called evidence). We are interested in computing the posterior 

distribution of the hidden variables:

9

p(E,  H)  I s computed as:

p { H \ E )  =
P{E,H)

P(E)

p ( E , H ) = p { E \ H ) p { H ) .

and p(E)  is computed by marginalizing over the hidden variables:

p (E)  = \ p { E  | H ) p ( H ) d H ,

Computational difficulties arise when trying to compute the marginal distribution 

p(E) .  Thus, inference algorithms focus on computation of marginal probabilities. Then, all 

other quantities are easily computed.

Let x = {xl5x25x3,x4,x5} be the set of discrete variables of the undirected graphical 

model shown in Figure 1.1b. The joint probability distribution of all variables is given by 

equation (1.18). The marginal distribution of variable x, is computed as:

Μ *ΐ) = 7 Σ Σ Σ Σ ν Φ ΐ> * Ο Κ * Ρ * 3 ) ν Φ , ,> Ο Κ * 2 ’λ'5Μ *3>*5Μ *4,*5)
£ X2 X3 XA X5

This generally requires o { k n} computations where n is the number of nodes and k  the

number of different values that a variable takes and is practically computable only for very 

small number of variables. However, the marginal distribution can be more efficiently 

computed by exploiting the independence properties of the graphical model, as follows:

ρ { * )  = ^ Σ ψ { χ \ > χι ) Σ ψ { χΐ ’Χί ) Σ ψ { χ ^ ) ψ { χ Α , χ ί ) ^ ' { χ ^ ) ψ { χ ι , χ 5 )
y ^  *1 X4 *2

= - ^ Σ ψ ( Χ» Χ3 ) Σ ν ' ( Χ}’Χ5 ) Σ ¥ ( Χ>,Χ4)ψ(Χ4>Χ$)™2(Χ2>Χ5)

( 1.20)

( 1.21)

( 1.22)

(1.23)

(1.24)

(1.25)
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(1.26)

(1.27)

(1.28)

where each message /w. (*,...) is a new potential obtained by eliminating theyth variable, and is

a function of all the variables linked to the eliminated variable.

In general, the process to compute the marginal likelihood of a set of variables is 

described by the following algorithm:

1. Choose a node of the model Xj to eliminate

2. Define a new message m}

3. Remove node x}. Connect its neighbors with edges.

4. Repeat from step 1 until only the requested nodes remain in the model.

Inference in directed graphical models generally follows the same principles. Every 

directed graphical model can be converted to an equivalent undirected graphical model, with a 

procedure called moralisation. Thus, inference on directed graphical models can be done by 

applying the inference procedure on the equivalent undirected graph. However, if the graph is a 

tree, it is possible to apply an exact analogous algorithm, called belief propagation, on the 

directed graph immediately.

described in section 1.5 are computationally intractable and approximate methods have to be 

considered. Most important methods that perform approximate inference in graphical models 

are based either on Monte Carlo sampling algorithms or variational techniques.

1.6.1 Monte Carlo Integration

Monte Carlo integration is a method for approximating integrals with finite sums as 

follows:

1.6 Approximate Inference Methods for Graphical Models

In many problems, where the graphical model is complicated, exact inference methods as

14
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where x \ i  = \...,N  are samples generated from the distribution p (x ) .

In many cases it is difficult to draw samples from p (x ) .  Rejection sampling and

importance sampling [7] are algorithms that draw samples from an arbitrary distribution p (x )

and can be used in Ibis case. Both these algorithms are based on drawing samples from a 

proposal distribution, and their performance depends on the choice of this proposal distribution. 

Unfortunately, for high dimensional spaces it is very difficult to find a suitable proposal 

distribution, and these algorithms cannot be used. Instead, there is a variety of Markov Chain 

Monte Carlo (MCMC) algorithms that achieve good performance. These algorithms, define a 

Markov Chain that is guaranteed to converge to a desired distribution p ( x ) .

The most popular MCMC algorithm is the Metropolis-Hastings algorithm. The algorithm 

randomly selects an initial state x° for the Markov Chain and then iteratively selects the next 

state based on a proposal distribution #(x'+l |x 'j .  In order to converge to the desired target

distribution /?(*), samples x'-1 generated from the proposal distribution q[x ,+) |x ') are 

accepted with probability

R = min
' p ( x M) q ( x ‘ \Xl+')'

otherwise the chain remains at state x '. The performance of the algorithm highly depends on the 

choice of a proposal distribution. Generally, it is desirable that the proposal distribution is 

similar to the target distribution.

Within the context of graphical models, Monte Carlo integration can be used to 

approximate marginal likelihoods, as follows:

. p{E)= \ p ( E \ H ) p { H ) d H  = ± - Σ ρ (ε \Η' ) ,  

where H ' , i = \...N  are samples generated from the prior distribution p ( H ) .

1.6.2 Variational methods

Variational methods are used as approximation methods in a wide variety of problems. 

They introduce a set of variational parameters that is used to express a class of bounds for the

(1.29)

(1.30)

(1-31)
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quantity of interest. Then, the variational parameters are set to values that obtain the tighter of 

the bounds, which is used to approximate the unknown function.

Variational methods depend on the observation that a concave function /  (x) can be 

represented via a conjugate or dual function as follows:

f { x )  = min{XTx - f ' { X j \ ,

where Λ is a set of variational parameters and f  (A) is the conjugate function of /  (x) which 

can be computed by:

/*  (A) = rnin { λτ x - / ( * ) } .

Thus, A7x - /* (A )  is a class of lower bounds for function f ( x ) .  The benefit of the

expression(1.32) is that given a value for the variational parameters A, it is linear to the 

variables x.  This is an important simplification, but also introduces the additional cost of 

finding appropriate values of the variational parameters A for each possible instance of the 

variables x.

Similarly, upper bounds can be found for a convex function. If the function is neither 

concave nor convex, the same methodology can be applied after transforming the argument of 

the function so that it becomes convex or concave. This will generally lead to non-linear bounds 

for / ( * ) .

When used for approximate inference in graphical models, variational methods obtain a 

class of lower bounds for the logarithm of the marginal likelihood In P ( £ ) , as follows:

ln £ (£ )  = ln \ p ( E , H )d H

=ι„Ε[£ ίΜ >1
Q{H \E) \

P(E,H)  
Q{H\E)

ln£

> £  s In (applying Jensen’s inequality)

= L(Q).

( 1.32)

(1.33)

( 1.34)
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The difference between the true log marginal likelihood ln P (£ )  and its lower bound 

L(Q) is

0(211 P) = - J e ( » | £ ) l n ^ | | | i r f / / ,

which is the Kullback-Leibler (KL) divergence between the approximating distribution 

Q(H\E)  and the true posterior p ( H \ E ) .  Thus, in order to obtain the tightest bound for the

marginal likelihood it is sufficient to minimize the KL divergence. If we assume that Q[H \ E ) 

may be any function, minimization of the KL divergence happens when Q ( H  \ E ) = P ( H  \ E ).

However this does not simplify the problem at all. Instead we have to choose a family of 

distributions that are flexible enough to approximate the target distribution efficiently, and yet 

simple enough that the lower bound L{Q) can be easily evaluated. Usually, we choose a

parametric form Q(H  \ Ε,λ )  for the family Q of distributions, where λ  is a set o f variational

parameters. Then, the variational parameters λ * are set to the values that minimize the 

Kullback-Leibler (KL) divergence between the approximating distribution Q(H \ E ) and the

true posterior p ( H \ E ) .

A* = argmin D(Q(H \ Ε , λ ) \ \P(H\  £ ) ) .

By choosing an approximating distribution Q(H\  Ε,λ)  that is flexible enough, we can 

obtain bounds that can efficiently approximate the desired distribution p ( H  | £ ) .

1.7 Kernel Methods

As discussed in section 1.2, in order to achieve good generalization it is essential that the 

learning algorithm implies the appropriate inductive bias. However, it is usually very difficult to 

identify what the proper inductive bias is, and equally difficult to design an algorithm that 

 ̂ implements that inductive bias.

Kernel methods are based on the concept of similarity between training examples to 

perform generalization. Given a training set {(*„,/„)}* t the prediction for the target value U at

a new point xn is made based on training examples that are similar to the new point x,. The 

similarity between two training vectors is measured by a class of functions that are called kernel

(1.35)

(1.36)
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functions. Depending on the type of the training vectors, an appropriate kernel function has to 

be chosen, that describes suitably the similarity between training examples.

A kernel function is a symmetric function

k : X * X - * S R

that, given two vectors xi,x2 e X , returns a real number that expresses a measure of the

similarity between the vectors xx and x2. Common kernel functions are:

1. Polynomial kernels ♦
k(x}ix2) = (xl,x2y ,

where (xl9x2) denotes the dot product between x] and x2.
2. Gaussian kernels

k{xl,x2) = zxp
t

»

3. Sigmoid kernels

k (x,, x2) = tanh (& (xt, x2) + 5)

4. Inhomogenous polynomial kernels

Λ (^l »̂ 2 ) = ((^1. ̂ 2) +

5. B-Spline kernels

*(x„x2) = B2p+] ( | |x , - x2| ) , with B„=® / p  , j

The most popular class of kernel functions are positive definite kernel functions. A 

kernel function is said to be positive definite if for any set of training points and

any set of real numbers {αρ <72, . . . , α it satisfies

Σ α , α ^ ( χ „ χ^ > 0 .
•J

* < * *

This is equivalent to saying that the Gram matrix defined by [£ ]y = k (x,., xj ) is positive 

definite.

Positive definite kernel functions have the property that they represent similarity as the 

dot product in some linear space H  [18], so there exists a map Φ for which:

*(*ΐ’*2) = (φ (*ι)>φ (*2)).

where

( 1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

0-43)

(144)
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Φ : Χ  -> ·//, χ η Φ (χ), (1.45)

An interesting mapping is :

Φ : X —y , λ Ή

where R x := { / :  X  -> M} is the set of functions mapping X  into R  . Thus, Φ (χ) is a function

that assigns the value k ( x \ x ) to x ' e X . This mapping constructs a feature space consisting of

functions on the domain X . Each of these functions represents similarity between a vector of 

the*training set and vectors in the rest feature space. This feature space is a very useful 

representation of the training set, since learning in kernel methods is achieved based on 

similarity between training examples. Though initially it might seem very difficult to apply a 

learning algorithm on the feature space defined in (1.46), surprisingly the dot product defined in 

this space &an be computed by evaluation of the kernel function:

(φ (^ ) ,Φ (χ 2)) = ^ (χ ,,χ2)·

Kernel methods benefit from this observation, and apply simple algorithms based on dot 

product distances after mapping the data on a new feature space. This mapping can be done

explicitly by applying the algorithm on the training set {Φ (* ,)}* , but it is much more efficient

to just substitute the dot product operations with evaluation of the kernel function corresponding 

to the desired mapping. The same idea can be applied on any algorithm that is based on a

positive definite kernel k and substitute it with another positive definite kernel k.  This 

procedure is known as the kernel trick.

1.8 Support Vector Machines

A  popular algorithm for regression and classification problems that is based on the 

kernel trick is the Support Vector Machine (SVM) [17]. Considering regression problems and

given a training set the goal of the SVM algorithm is to find a function /  (x) that is

as smooth as possible and its distance J / ( x „ ) - 6 , |  from each training point is bounded by a

constant ε . The function /  (x) is assumed to be of the form:

f ( x )  = x1w + b .

Then, the wanted function can be found by solving the following optimization problem:

(1.46)

(1-47)

( 1.48)
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minimize: ^llw”2||w||2, (smoothness criterion)

subject to: \ f ( xn) - t n\ < e , n = l ,. . . ,N .

However, given a constant ε  the above optimization problem does not always have a 

solution. In order to cope with situations like this, some errors may be allowed but we seek the 

function that minimizes them. Thus the optimization problem can be written as:

* minimize: U w f  + C ]T (£  + £ )

subject to: ί „ - / ( χ „ ) < ε  + ξ„, n =

/ ( * „ ) - '„  + C  W = 1......H

This formulation allows errors smaller than ε without penalizing them, but if this is not 

feasible greater errors may be accepted. Moreover, errors greater than ε  may be accepted if this 

would result in a much more smooth function / (x ) . The parameter C determines the trade-off

between the smoothness of /  (jc) and the cost of errors larger than ε .

In order to solve the above constrained minimization problem we form the Lagragian 

function as:

L=r IMf+1€Σ (6+£) ■-Σ 1“< (£+£ -h+/(*-))/=!

-Σ«; (ε+£-t, +/(*i))-ZM +n'£)
• ·

N

Σ/=! 1=1

with a ,,a ] ,η,,η, > 0 .

It can be shown that the optimal solution of (1.51) can be found by finding the saddle 

points of the Lagragian.

t=]

8L τςρ f t\ -- = * - £ ( « , - α , μ = ο

T 7  = c ~ ai~  77,. = 0
°ζ<

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)
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(1.56)dL η  · · n— r = C - a l -η,  = 0
οξ,

Substituting (1.53) - (1.56) into (1.52) yields the dual optimization problem:

m i n i m i z e :

i  N N  ,

“ Σ Σ » . - * '
*  MI MI

s u b j e c t  t o : Σ ( α ' - α ' ) = 0 ’

AT
Σ
Ml

/V

Σ
MI

/-I

* α,,α* e[0 ,C ].

Many optimization algorithms can be used to solve the problem of (1.57), such as 

gradient descent and quasi-Newton algorithms.

From (1.54) we can write

w = Y i( a , - a ’)xi
Mi

which gives:

f { x)=YJ(a.~ a ' )x! x+b
M

Thus the weight vector can completely be described as the linear combination o f the 

training patterns x, . Furthermore, it can be shown [17] that the weights are independent of

many input patterns x ,. Actually, the training process only requires those training patterns that

the weights depend on, which are called Support Vectors (SV).

Moreover, the complete algorithm can be described in terms o f dot products between the 

data. This motivates the use of the kernel trick in order to extend the algorithm for more general 

than linear functions. The use of the kernel trick allows to apply the SVM learning algorithm on 

projections of the training data to some other space. Although particular projections may be 

very hard to compute, using the kernel trick bypasses this difficulty by finding effective ways to 

compute dot products in such spaces. The kernel trick suggests projecting the training data to 

another space using a map Φ , and then, running the dot product SVM algorithm, is equivalent 

to running the SVM algorithm and substitute dot products with a proper kernel function, so that:

K(*,,*2) = (<!>(*, ),Φ (*2))

Thus, assuming the more general model: 

v f ( x )  = Φ{x )w+b ,

the weights can be found from the solutions of the optimization problem in (1.57) by 

substituting the dot product with a kernel function that satisfies (1.60).

(1-57)

( 1-58)

0 -59)

(1.60)

(1.61)
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2 The Relevance Vector Machine

2.1 Introduction

A model that is frequently used in supervised learning is that o f the form:

v(x:v) = £ w ,4 (x )  =
♦

where the output is the linear combination o f M  basis functions 

^ (x)= (ή  (*)> A (x)-— (Χ))Γ * These basis functions are fixed and our goal is to estimate the

values o f the weights w = ) in order to fit the given training set

The Support Vector Machine (SVM) [17], [28] is a specialization o f the model defined in 

equation (2.1). where the set o f basis functions, consists o f one kernel function ΛΓ(χ,χ,) for 

each training point. Furthermore, a bias is used by adding one constant basis function, giving:
.V

3 (x; μ)  = X  (x.x,) + m0
1=1

To achieve good generalization, it is desirable that the trained model is sparse, meaning 

that most weights are set to zero, effectively pruning the corresponding kernel functions. This is 

desired because it speeds up computations on the trained model, and also reduces the effective 

number of parameters, which otherwise is equal to the number o f the training examples, 

resulting in better generalization performance.

Inference on this model using the SVM learning algorithm is quite satisfactory, but there 

are some practical limitations, such as:

• The SVM algorithm produces relatively sparse solutions, but the number of support vectors 

generally grows linearly with the number of training examples, which implies that the 

sparseness o f the estimated model depends on the number of training examples.

•  Predictions are. not probabilistic, meaning that they are hard point estimates for regression 

and class labels in classification. Ideally, we wish to compute the conditional probability'
I

p( t  \ x. X)  of the output at a given point x given the training set X , wiiich provides also a 

measure of uncertainty in the prediction.

•  Parameters of the SVM training method have to be estimated using methods such as cross- 

validation that are generally computationally expensive

• The kernel functions must be symmetric and positive definite

(2.1)

(2^)
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The Relevance Vector Machine (RVM) is an alternative method of learning in models 

like (2.2). Learning is achieved by following a Bayesian inference procedure, after assuming 

appropriate prior distributions on the parameters o f the model. These prior distributions are 

chosen to encode our preference for sparse models. This is achieved by using automatic 

relevance determination (ARD) priors [15] on the weights. A set of hyperparameters is 

introduced, one associated with each weight and their most probable values are iteratively 

estimated from the training data. Then, basis functions that are irrelevant with the data are 

pnfhed from the model by setting their associated weight to zero, while emphasis is given on 

those basis functions that are supported by the data.

Selecting the appropriate basis functions for modeling the training data is essential in 

order to achieve good generalization performance. However, there is no methodology to find 

the optimal basis functions. Instead, one has to select arbitrary sets o f basis functions, compute 

the performance of each of the resulting models using a method such as cross validation [2] and 

then select the model with the best performance.

2.2 RVM Model Description

The Relevance Vector Machine (RVM) has been proposed in [24]. Given a training set 

{χη’ΚΫη-j s the target values tn are assumed to derive from the model y ( x n;w) defined in (2.2) 

with additive noise,

+ (2.3)

Target values may be either continuous variables or discrete "class labels’, but we will 

only study regression problems and thus assume that tn are continuous random variables.

Classification using a RVM is very similar and requires only small modifications. The noise 

samples are assumed to be independent and Gaussian distributed w'ith zero mean and deviation 

σ 2 w'hich is assumed unknown and w'ill be estimated from the training data. Thus the target 

values are also assiimed independent and Gaussian distributed,

·/?(/„ | w , ct2) =  N(<Dw, ctj ) , (2.4)

where Φ is the N x ( N  +1) design matrix with Φ = [^ (x , ) J  and

'Φ{χ.)= \} * κ {χ*>χ \)*κ {χ^ ) ' · · · > κ {χ**χ» )ί ί  -
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Priors are assumed over the model parameters in order to follow a Bayesian inference 

procedure. Automatic Relevance determination (ARD) priors [15] are used for the weights in 

order to encode the preference for smooth models. Thus, the weights wi of the model are 

assigned Gaussian prior distributions:

/? (w '.|a ,.)  =  N ( ° ,a '· 1) ,  (2.5)

where a  = (a 0,a p ...,aN) is a vector of W +l hyperparameters which are also treated as 

random variables and allow pruning of irrelevant basis functions by setting the corresponding 

hyperparameter to infinity. These hyperparameters a t and the noise variance σ 1 are scale 

parameters, and suitable priors for them are Gamma distributions [1]:

ρ(<Ζι) = Gamma(a9b), (2.6)

p  ( σ 2) = Gamma (c , <2), (2.7)

where

Gamma{a>b) = Γ (α ) Xbaaa~xe~ha (2.8)

and
CO

Γ ( α ) =  \ t a~'e~'dt. (2.9)
0

Parameters a, b , c and d of the Gamma distributions allow us to set the mean and 

variance of the Gamma, and usually should be set to very small values making the Gamma 

distributions uninformative. By setting appropriate values for these parameters, we can 

strengthen or weaken our preference for sparser models. However, a too sparse model is 

unlikely to be flexible enough to fit the training data well, while a too big model will probably 

overfit it.

p(t|w,oz)=N(y(x;w),o2)

Figure 2.1 Graphical model o f  the Relevance Vector Machine
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The sparseness o f the model relies on the prior distributions defined above. Although the 

weight prior p(>v|a), which is a Gaussian distribution, does not appear to encourage sparse

models, it can be seen by integrating out the weights, that p(w ) is a Student-t distribution

which has most probability mass concentrated at sparse models. This is why by selecting 

different values for the parameters of the Gamma distributions over the hyperparameters, the 

sharpness of p(w ) can be modified, adjusting at the same time our preference for sparser 

models.

In the described model the weight parameters are as many as the training examples are. 

However, the priors defined over the parameters, prevent the model from overfitting the data. 

The assigpment of one additional hyperparameter for each weight of the model is the key 

feature of the RVM, and the sparseness of the model relies on these additional hyperparameters. 

To introduce additional jV + 1 parameters may seem counter-intuitive, since there are already 

too many parameters. However, from a Bayesian perspective, these parameters can be 

intergraded out and they do not present a problem.

9

2.3 Inference

The posterior probability over the unknowns can be computed using Bayes’ rule:

/ 2 \ p ( t \ w , a , a 2) p ( w , a , a 2)
ρ(.ν ,α ,σ ! I f )— i--------- f - f ----------L

p(t )

Unfortunately, the normalizing integral />(/) = 1 ) ρ(η>, α, σ2^hvdada2 in

the denominator of (2.10) cannot be analytically computed and an effective approximation is 

used instead. The posterior is decomposed as:

ρ(Μ’,α ,σ 2 !/) = ρ(Μ'|^α,σ2) ρ ( α , σ 2|ί) .

Then, the posterior over the weights ρ (ν ν |/,α ,σ 2) can be analytically computed, since its

denominator ρ ^ α , σ 1^  ^p [ t \w9a 2^p{w\a)dw  is now a convolution of two Gaussian

functions. As described in Appendix A the posterior over the weights can be computed by

t t . 2\ p ( t \ w , a 2) p { w \ a )
p [ w \ t , a , a  ) = — —̂  ’ ------= Ν(//,Σ),

p ( t \ a , a  )

where

(2 . 10)

(2 . 11)

(2.12)
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Σ = ( σ '2ΦτΦ + Α ) '\  

μ  = σ '2ΣΦΓ/ ,

with A = diag(a„a2,...,aM).

The posterior ρ { α ,σ 21 t'j cannot be computed analytically and it is approximated by a 

delta function at its mode.

„ ' ρ { α ’σ 2 \ ή * δ (αΜρ,σΙΡ),

where aMP and σ ^ ρ are the most probable values of ρ { α , σ ι |f ) ,

= a rg m a x (p (a |/)) i
a "

„ =argm ax(p(ai |/) ) .
C

This approximation has been frequently used and in this problem it is very effective.

We can find aMP and σ\,ρ by maximizing ρ [ α ,σ 1 |ί)< χρ> (/|α ,σ 2)ρ (α ) .ρ (σ 2). The

first term p[l  j ce.er2) is known as the marginal likelihood and is computed by marginalizing 

over the weights (see Appendix A) according to

ρ ( ί |α ,σ 2)=  \ p ( t \ w , a 2'}p(w\a)dw.

This gives

p ( r |a , a 2) = N (0,C ),

with C = <r2/-f Φ^Γ’Φ7 . The marginal likelihood is also referred to as the ‘evidence for the 

hyperparameters5 [14]. In order to maximize it with respect to the hyperparameters a, many of

these have to be set to infinity. This leads to setting the corresponding weights wf to zero, and

pruning the corresponding basis functions. The basis functions that get pruned this way are 

those which are not supported by the training set. On the other hand, the hyperparameters 

corresponding to basis functions which are well supported by the data are set to small values, 

broadening the prior distribution of the corresponding weights and allowing them to be set to 

.«large values.

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18) 

(2.19)
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2.4 Hyperparameter Optimization
9

Unfortunately aMi, cannot be computed analytically. Instead we use iterative formula for

its re-estimation. Maximization of the marginal likelihood is equivalent to maximizing its 

logarithm with respect to the logarithm of the hyperparameters:
N

L = \ogp(t\  log a , log σ 2) + ̂  log p  (log a , ) + log p  (log σ 2), (2.20)
i=0

which is computed as *
1 N

L ~  —  [log\C\+ l og ai -  bai) + c log a 2 -  d a 2, (2.21)
2 /=o

ignoring terms that are independent of a  and a 1.

\C\ and C_I are computed using the determinant identity and matrix inversion lemma 
■%

respectively:

log |C| = — log |ς | -  N  log a 2 -  log \A\, trC‘xt = a 2tr ( t - Φ μ )  (2.22)

Substituting to (2.21) we get:
1 N

L ~ — [log|z| + jV loga2 +log|yi|-CT2iy ( / - 0 / / ) j  + ̂ ( a l o g a / -& a() + c lo g a 2 - d a 2. (2.23)
2 - /=o

Differentiation of (2.23) with respect to log a, and equating to zero (see Appendix B), gives

new
u .i 2

1 + 2 a
/*;+Σλ+26

where μι is the i-th element of the posterior mean weight and Z(Vis the i-th diagonal element of

the posterior weight covariance. μί and Ση are evaluated from (2.13) and (2.14) respectively

using the current estimate for aMI,. This update formula for the hyperparameters is equivalent to

an expectation-maximization update [24], and so is guaranteed to converge to a local maximum. 

However, following the procedure described by MacKay in [14] results in the update formula:

(2.24)

a,
μ 2 +2 b

(2.25)

with

γ{=\  -α ,Σ (/ϊ (2.26)

which converges much faster, although convergence cannot be proved theoretically.

The update formula for the noise variance a 2 is computed through differentiation of 

(2.23) with respect to lo g a2 and equating to zero, which gives
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(2.27)
||ί-Φ μ ||2 +2 d

Ν ~ Σ ϊ > + 2α

2.5 Making Predictions Using RVM

Given a new test point Jt*, the posterior probability of the target value t* is computed as 

follows:

p ( t . \ t ,a Mr,a 2MI,)= jp ( t . \w ,a 2MP)p (w \t,a MP,a 2Mr)dw. (2.28)

Both terms in the integral are Gaussians, so this is easily computed givijig:

p ( t . \ t ,a MP,a 2MP) = N[ y „a } ) (2.29)

with

γ . = μ Ί'φ(χ.), (2-30)

σ · = σΜΡ + Φ (*·)' ΣΦ (**) ■ (2.31)

Equation (2.30) gives the expected value of f*, which intuitively is equal to γ ( χ . ; μ )  and

equation (2.31) gives the expected error which comprises the sum of two variance components: 

the estimated noise in the data, and that due to uncertainty in the prediction of the weights. In 

practice, the parameters w are set to fixed value μ  while Σ can be used for computing error 

bars.

The learning algorithm proceeds by the repeated application of (2.25) and (2.27), along 

with the update of the posterior statistics Σ and μ  from (2.13) and (2.14), until some suitable 

convergence criterion have been satisfied. Computation of Σ in (2.13) requires the computation 

of the inverse of an MxM matrix , which is done using Cholesky decomposition with 

complexity O^M3). During re-estimation, many of the hyperparameters a t are found to tend to

infinity, meaning that the distribution of the associated weight is a delta function peaked at zero. 

These basis functions can be pruned from the model, reducing dramatically the number of basis 

'functions M  after a few iterations, therefore computations become significantly faster. 

However, initially there are N  basis functions and computation of Σ is time consuming.

Figure 2.2 demonstrates the relevance vectors of an RVM model fitted on a sample 

sinusoidal function with additive Gaussian noise.
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Figure 2.2. Relevance Vectors and the RVM estimate o f  a sample sinusoidal function

2.6 Discussion

The RVM can also be formulated as a Gaussian process model. Learning in RVM i: 

performed by maximizing the marginal likelihood in (2.19). This can be re-expressed as:

/>(/) = AT(0,C),

with

n- C  =  σ 21+ Σ  a~'vtv l .

and v, = ($ (* ι ) ’$'(χ2), "·’^>(**)) "

(2.32)

(2.33)
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Figure 2.3 demonstrates the projection of such a model in two dimensions. The shape 

and size of C can be changed by adjusting the hyperparameters a , and σ 2. Specifically, 

adjusting a hypermarameter a i stretches the shape of C along the direction of the 

corresponding basis vector v(, while adjusting the noise variance σ 2 changes the size of C by 

growing or shrinking it equally in all directions.

When learning a data set t , the objective is to find values for the hyperparameters a,

and σ 2 that best explain the data. This is achieved by maximizing the probability of observing 

the data set, given in (2.32). If we assume that the data set is to be explained by noise alone, the 

noise variance σ 2 would be set equal to the variance of the data set, and the C would have the 

shape of a circle. If we consider adding to the model a basis vector v,, the shape of C would

become an ellipse. Whether the model with the basis function is preferred over the empty model 

depends on the alignment between the basis function and the observed data set. Generally, in 

order to maximize the probability of the observations p(r ) we have to prune those basis

functions for which the data are better explained by the noise variance.

In Bayesian models, like the RVM, the marginalized probability of a given model M, 

which is given by:

p(t  IM)  = Jp(t  | α , σ 2, M ) p { a ) p ( a 2) d a d a 2, (2.34)
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can be used as a measure of the generalization performance of the model and can be used in 

order to select the appropriate basis functions for a given data set. However, computation of the 

marginal probability p { t \ M )  can not be done analytically, and approximations are either

9

computationally expensive or ineffective. Instead a cross validation criterion can be used to 

select the basis functions, which is given by:

y TP{diag{P)rPy 
Nσωο ~~ (2.35)

where P = IN -ΦΣΦ7 is known as the projection matrix.

Alternatively, considering basis functions of a given family (e.g. gaussian), we can 

optimize the parameters of the basis functions such as the width of the kernel, along with the 

training process. This approach has the advantage that a different width parameter can be 

associated with each dimension of the data set, but optimization of the extra width parameters is 

usually significantly time consuming.

2.7 Applications

Although the RVM has been introduced very recently, there are already a number of 

applications where it has been used. Many of these applications exploit its property to produce 

sparse models. Other applications use it as a normal regression technique that overcomes the 

problem of setting the parameters C and ε  of the SVM.

2.7.1 Robust regression

In [4] an extension of the RVM algorithm is described that can be used to perform 

generalization tasks in data sets that may contain several outliers. Outliers are data points that 

are so noisy that should not be modelled with a standard Gaussian distribution. This robust 

regression algorithm defines a mixture model with two components. One of the components is 

an uninformative distribution describing the outlier data points and the other is a RVM model 

describing the rest data points. The uninformative distribution for the outliers may be either a 

‘'Gaussian probability function centred at the estimated function value y(x;w ), or a uniform

distribution between the minimum and maximum of the data points. The method considers a 

fixed percentage of outlier datapoints and performs a variational inference algorithm to achieve 

learning.
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2.7.2 Image compression
Another application of the RVM algorithm is in constructing approximate image 

compression algorithms. A suitable set of basis functions has to be chosen, and then a RVM 

model with these basis functions is trained with the values of the image pixels as target values. 

The image can then be represented by the values of the weights of the RVM model and it can 

easily be reconstructed given the weights and the basis functions. Although the weights are as 

many as the pixels o f the image, compression is succeeded because a large percentage of the 

weights will be set to zero since the model is sparse. Thus, the image can be represented by the 

non-zero values of the weights. In order to control the compression ratio, the noise variance σ 2 

can be set to a suitable fixed value.

2.7.3 Image super-resolution

The RVM algorithm can also be used to construct a high resolution image from a set of 

lower resolution images, which is known as the super-resolution problem [27]. A RVM model 

is trained on the set of low resolution images. Then, the high resolution image is constructed by 

evaluating the value of the trained model at each pixel.

2.7.4 Sparse kernel PCA

In [25] the RVM methodology is used to modify the kernel PCA algorithm so that it 

produces sparse solutions. The kernel PCA algorithm is a non-linear extension of the well- 

known Principal Component Analysis (PCA) algorithm. Unfortunately, the principal 

components obtained with the kernel PCA method are expressed in terms of kernels associated 

with every training vector. Sparse components can be obtained by approximating the covariance 

matrix in the feature space by a reduced number of example vectors, using a methodology very 

similar to the RVM algorithm.

2.7.5 Time-series prediction

The RVM algorithm has also been used for time-series prediction in [3]. In order to find 

suitable values for the width of the Gaussian basis functions that were used, an iterative 

optimization was performed. Since all basis functions are assumed to have the same width, this 

is a one dimensional optimization problem and was solved using a simple direct search method 

[8]. Direct search is more efficient in this case, because evaluating the derivative of the 

marginal likelihood with respect to the width of the kernel functions is much more 0 

computationally expensive than evaluating the marginal likelihood. Generalization results prove
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that the RVM estimator outperforms all the other methods that were tested, including a simple 

linear model, five nearest neighbour approach and a carefully optimized multilayer perceptron.

r*·
i*·

*
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3 Incremental Marginal Likelihood Maximization

In this chapter an alternative method for maximizing the marginal likelihood is 

described [26]. In the original marginal likelihood maximization algorithm, initially all basis 

functions were assumed in the model, and then many of these basis functions were pruned. 

Computation of the posterior statistics was very expensive in the first few steps because all 

basis functions had to be considered, and improved dramatically after the first few iterations, 

because many basis functions are pruned, since the model is sparse.

The incremental algorithm works by initially defining a model with only one basis 

function. Then, basis functions are iteratively added until the marginal likelihood is maximized. 

Of course* since the model is modified when a basis function is added, the values of the 

hyperparameters may have to be re-estimated after adding some basis function. It is even 

possible, that a basis function added in some step of the algorithm may eventually have to be 

deleted. Thus, at each iteration a basis function may be added, removed, or a hyperparameter 

may be re-estimated. The algorithm in each step selects an operation on a basis function so that 

the marginal likelihood is increased. Eventually, when no further increase is possible, the 

algorithm has converged to a local maximum.

When constructing the model by adding basis functions, it is very difficult to choose 

which basis function should be added. In contrast, when pruning a function from the full model 

it is much easier to select the basis function that should be pruned. Thus, the incremental 

algorithm, may add basis functions that will later be deleted, and this causes the algorithm to 

require more iterations until it converges. However, the posterior statistics are now computed 

significantly faster, since the model will typically consist of a small number of basis functions. 

When the noise variance is assumed fixed, the posterior statistics can be computed even more 

efficiently using the result of the previous iteration and an update formula that requires very 

little computations.

3.1 Marginal likelihood analysis

Assuming flat priors over the hyperparameters, maximization of the marginal likelihood 

in equation (2.21) is equivalent to maximizing the quantity
o

3 4



(3.1)X * - - [ b g |c |+ / rC“V].

Considering the dependence of I  on a single hyperparameter an  the matrix C = σ 21 + ΦΑ~ιΦ7 

can be decomposed into two terms as:

0  = σ Ί  + Σ  + ατ'φ,φ!

= C_t + α~'φ,ψ{ ,

where C_/ denotes C with the contribution of basis vector i removed.

Now, using the determinant and matrix inversion identities, L can be decomposed as

1
2

l°g|C,| + ;7'C /-lo g a ,+ lo g (a , + φ [ ^ φ ι)~

loga, - l o g ^  + s ,)+ —^
a, + i.

(3.2)

(3.3)

= L{a_i) + l (a t),

where L(a_,) is independent of hyperparameter a,. and

(3.4)

l (a)  = \
/T̂

log a, -  log (a,. + s,.) + —
CCt+Si

(3.5)

is independent of all hyperparameters except αΊ.

The quantities sf and qi introduced in equation (3.3) are defined as

s, =  <f! and qi = φ[C“V . (3.6)

The ‘sparseness factor’ s{ provides a measure of the overlap of basis vector φ. with the other 

basis vectors, while the ‘quality factor’ qt can be written as q, = o‘~2φ J ( J - y i) i and thus 

provides a measure of the alignment of basis vector φ( with the error of the model. Intuitively,

in order to maximize the marginal likelihood, the basis functions included in the model should 

have large quality factors and small*sparseness factors. This observation can be used when 

selecting a basis function to add to the model or remove from it.

Since L(a_f) is independent of basis function φη  the maximum of the marginal

likelihood with respect to a , is found from equation (3.4) by maximizing l{a,) .  _By,,u 

differentiating equation (3.5) we find that l{a,) is maximized when:
-λ

+-
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(3.7)a i = - T if <7, > s f ,
<7, s ,

a .  = oo , if q f< s r  (3.8)

Computation of 5, and q, from equation (3.6) is relatively straightforward since

C = σ 1 2Ι  + ΦΑ~'ΦΓ has as many rows as the basis functions in the model, and thus its inverse 

can be computed. However, it is more efficient to maintain values of

and compute s„ and qm from

<*-S- a«Qm

(3.9)

a„ -S,m m α„, -  «S'm m
(3.10)

Using the Woodbury identity, we can efficiently compute Sm and Qm:

= < ? Φ ΐ Φ .  -  σ Αφ ΐ Φ Τ Φ τ φ Λ, (3.11)

β , = σ 2̂ - σ ν ί Φ Σ Φ 3Γί-  (3.12)

Thus, maximization of the marginal likelihood with respect to only one hyperparameter 

ai is straightforward from equations (3.7) and (3.8). It is also implied that:

• A basis function φί inside the model, should be removed if  qf < .

• A basis function φ, excluded from model, should be added if q] > st .

This observation is useful when selecting a function to add or remove from the model.

3.2 A sequential hyperparameter optimization algorithm

Based on the observations of the previous section, the following algorithm is suggested, 

that finds a local maximum of the marginal likelihood.

1. Initialize σ 2.

2. Assume an initial model with only one basis function φ,. From equation (3.7), set

a. = , which maximizes the initial marginal likelihood.

3. Compute Σ and μ  from equations (2.13) and (2.14), and sm and qm from equation (3.6) 

for all basis functions.
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4. Select a candidate basis vector φι , either included in the model or not.

5. Compute = q] -  si .

6. If θι > 0 and a t < co, re-estimate a , .

7. If Θ, > 0 and at = oo, add φι to the model and update a,..

8. If Θ; < 0 and a, < °o, delete φι from the model and set a i = oo,

3 .  Update the noise variance estimate σ 2 = -------- ---------.
Ν - Μ  + Υ α „ Σ/  i m mm 

m

10. Recompute Σ , μ  and all sm and qm.

11. If converged terminate, otherwise repeat from step 4. Convergence is detected when the 

marginal likelihood can no longer be increased by adding or removing a basis function, 

and re-estimation of the hyperparameters does not significantly change their values.

In step 2 of the algorithm, though any basis function can be selected as initial, the best 

choice is to choose the one that maximizes the initial marginal likelihood, which is the one that

has the largest normalized projection onto the target vector, \&f . Alternatively, a bias

may be selected.

In step 4 of the algorithm, the selection of a candidate function can be done in several 

ways. The simplest is to select it at random, or from an ordered list in sequence. However, 

better performance may be obtained by selecting the basis function that would cause the largest 

increase in the marginal likelihood. This would require computing in each step the change in the 

marginal likelihood for each basis function, which can be done efficiently only when the noise 

variance is fixed.

3.3 Incremental updates

If the noise variance is fixed, quantities Sm9 Qm, Φ , Σ and the change in the marginal 

’likelihood AL can be computed using their values at the previous iteration, from the following 

update formula:

• Adding a new basis function:

2 i i . e ^ +log| ,
o

(3.13)
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m

Σ + σ^Σ,.ΣΦ τφ,φ?ΦΣ - σ - % ίΣΦτφί 

-σ -2Σ ,( Σ Φ ^ ) Γ Σ,

μ  =
μ - μ , σ ' 2ΣΦ Ίφ

μ,

S,

Qm=Qm-  μ> {°2Φΐ*1)>

where Σ„ = (α, + S,)" ', //,. = Σ,.,.β, and e, = φ, -  σ~1ΦΣΦτφί .

• Re-estimating a basis function:

2 AL = log{l + S, [ a ; ' - a ; ' ] } ,

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Σ = Σ - κ Σ  ΣJ J J

where Kj = (ς̂  + [a, -  a) 1 j .
• Deleting a basis function:

μ  = μ -  κ]μ /Σ

~Sm=Sm+Kj( a - % V

Qm= Qm+ KjMj (σ·_2Σ2 Φ7

o 12ΔΖ = ——-----log
'  9 Λ
1-  —

a i J

(3-19)

(3.20)

(3.21)

(3.22)

(3.23)

fr
K

b

► if-

(3.24)

(3.25)

(3.26)

(3.27)
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Following updates (3.24) and (3.25) the appropriate row and/or column is removed from Σ and 

M-

In the above equations, the integer / is used to index the single basis function for which 

at is to be updated, and the integer j  to denote the index within the current basis, that 

corresponds to i . Updated quantities are denoted by a tilde (e.g. a,.). These update formulas are 

much more efficient than recomputing these quantities on each iteration.

3A Conclusions

The incremental algorithm is computationally much more efficient than the initially 

approach. Specifically, the computation of the posterior weight distribution initially needed
x

operations, where M  is the total number of basis functions, while the incremental

algorithms needs 6>(A/*3), where M* is the number of basis functions included in the model.

These are expected to be significantly less than the total number of basis functions.

The improved performance of the incremental algorithm is also proved experimentally 

in [16]. Figure 3.1 shows the run time required for different numbers of training examples. For 

instance, given 1000 training examples, the initial algorithm needs about 18 times more run

time than the incremental algorithm. Also, it is shown experimentally that the performance of 

the two algorithms, in terms of generalization error, is approximately the same, and that the 

incremental algorithm produces more sparse models.
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Regression run tim e

Figure 3.1. Runtime comparison between the initial and incremental RVM algorithm 

and an implementation o f the SVM learning algorithm
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4 Functional Magnetic Resonance imaging

4.1 Introduction

Functional neuroimages are brain images, in which the intensity of the image at each point 

measures the neural activity in that brain area. Although neural activity cannot be directly 

measured, there are techniques to measure it indirectly. PET imaging measures the blood flow 

and Functional MRI the BOLD (Blood Oxygenation Level Dependent) signal in a brain area, 

which are both proportional to the neural activity in that area. Thus, brain regions which are 

activated can be identified by finding regions in a PET or fMRI image,where the blood flow or 

BOLD signal is elevated in comparison to a baseline or control state. The baseline is the 

measurement of blood flow or BOLD signal when the brain does not perform any task. 

Similarly, brain regions which have lower activity than the baseline state are said to be 

inhibited.

A brain activation study aims in recording brain activity during performing a specific 

task, such as cognition, memory, sensory stimulation and motor activity or studying the effects 

of diseases or drugs to normal brain activity. A typical activation study consists of four parts:: 

Experimental Design, Image Acquisition, Preprocessing and Analysis.

The Experimental Design is the step where all the parameters of the experiment are 

defined. There are mainly two types of designs: 1) block design and 2) event-related design. In 

block related design, the experiment consists of alternating periods in which a specific event or 

task is performed and periods of rest. Neuroimages are obtained continuously, and can be split 

into two sets, depending on whether the task or event is performed at the time or not. Event- 

related activation studies consist of a brief stimulus performed only once. Furthermore, other 

parameters, such as the subjects that will be tested and the machinery that will be used are 

determined. Usually the signal to noise ratio of the obtained images is very poor and in order to 

get robust results many images are required. However, due to safety considerations, these have 

to be obtained from different subjects. Generally, the subjects should be chosen to be of the 

same age and gender and with similar medical history in order to eliminate extraneous factors 

that might produce irrelevant results. Of course it is impossible to perform a perfectly controlled 

study in practice.

In the Image Acquisition step several scans of the brain of each subject are obtained. In G 

the Preprocessing step the data are prepared for analysis. The main objective of this step is to
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eliminate the differences in the images that are caused by extraneous factors. For example, the 

position of the head of the subjects cannot be perfectly repeated among scans, so an image 

processing technique known as image registration is used to correct any misalignments. If 

images are obtained from more than one subjects, differences in the anatomy of the subject’s 

brain should also be eliminated before the image analysis step. In this case, piecewise linear 

transformations based on the Talairach brain atlas [21] are used to bring the brain images into 

anatomical alignment in a standard coordinate system. Then, the images are usually spatially 

smoothed by a low-pass filter.

The final step is Image Analysis. The aim of neuroimaging analysis are: 1) 

characterization of the spatio-temporal activation pattern induced in the brain by the stimulus, 

and 2) estimation of data model parameters that can be used to accurately predict the values of 

experimental design parameters (e.g. state labels) given the brain scans not previously analyzed.

There are several important factors that make it difficult to relate specific changes in 

brain activity to the experimental conditions being studied: 1) the brain is always active 

therefore the experiment must be designed carefully to isolate the effect of the stimulus, 2) the 

degree of activation with respect to the baseline state can be very slight and difficult to detect, 

3) the images often suffer from poor quality (low resolution, blur and noise), 4) anatomical and 

functional differences among subjects introduce additional errors, and 5) very little prior 

knowledge is available about human brain activity.

These challenges have inspired to develop an arsenal of image processing and statistical 

tools to detect and establish statistical significance of studies. The predominant approach [5], 

[29] based on the t-test from statistics [10], uses pixel-wise comparisons between images of the 

control and test states of the brain to detect the local changes in activity. Newer methods, which 

have gained lower acceptance so far, are based on pairwise pixel correlations. The recent 

advances in signal processing have opened a number of possibilities for further developments in 

this field.

We consider a two-state activation study, in which activation and control slate images 

are obtained and used to locate activated regions. We consider only two-dimensional images, 

but the analysis is the same for three-dimensional images. We model the images of the brain in 

the control and activation states, respectively, as:

g{p {x , y )  = b{x,y) + n[p{x,y) ,  

g{“\ x , y )  = b{x,y) + S{x,y) + «<“> (x,y)t
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for j  = l. ,N , w h ere , at e a c h  spatia l lo ca tio n  ( x , y )  in  th e  brain , th e  a c tiv a tio n  p a ttern  w e  w is h

to determine is s ( x , y ) . The baseline value is b{x,y)  and nf\x>y) and n{p{x>y) are the imaging

noise contributions for the two cases. We model the noise as additive colored Gaussian noise, 

the covariance of which is proportional to the value of the baseline image at the corresponding 

pixel and is assumed known [20]. This noise is given by nj 'a) ( x , y ) ~  N (0,C„) where Ctt is 

the covariance matrix of the noise. We define the mean activation image as:

g('](x>y) = J ] { s (ia)(x’y ) - S j ) (x,y))·  (4.2)

Then, from equation (4.1) follows that:

g(s){x,y) = s{x,y) + n(s)(x,y)  '  (4.3)

where (*> y) = Σ [«(σ) {x,y)~ «(c) (χ, y)] is the average noise in the images and

, ^ ( X, y ) ~ N ( 0 , j j C n).

In the activation state, the image differs from the control state only by addition of the activation 

pattern.

4.2 f-fesi

The most popular approach to detect activations in an activation study as the one 

described above uses the t-test. The value of the t-statistic image in pixel j  is calculated as 

follows:

./· \ ? (ϊ)(λ:̂ )
{X,y)~ S ( , , y ) / J N  <4·4)

where iS(x?ty) is a standard deviation estimate for pixel (x ,^ ). It can either be a single pixel 

estimate, given by

Γ i N 2lI/2
s { x , y ) =  ·7Γ3 τ Σ {(^ ,α (x’y ) ~ 8 <‘ . (4.5)

_ * * * /el

or a pooled variance estimate, given by

1 x y l m
~ Σ Σ 5 (*»*) <4·6)

Then, detection of activations is performed, by thresholding the t-statistic image, as
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r
(4.7)

where T  is a threshold. Selecting a very small value for the threshold results in detecting 

successfully most activations, but will probably lead to detecting false activated regions as well. 

On the other hand, a very large value of the threshold T  will fail to detect all activations. 

Generally, there is a trade-off between the probability of correctly detecting an activated pixel 

(probability of detection), and the probability of falsely detecting as activated a non activated 

pixel (probability of false alarm).

\t(x,y)\> T ,

4.3 Singular Value Decomposition

Another method for detecting activations is the Singular Value Decomposition (SVD) 

method, ft proceeds by computing the vector direction along which the data set exhibits the 

greatest variance, known as the principal eigenimage. Activated regions are expected to have 

the greatest variance, and they can be detected by thresholding the principal eigenimage. A 

matrix X  containing the data is formed, as

X  = [x|(o)..4 " )x,(c)-JCv)]  .

where and xfc} are vectors containing the intensity at all pixels o f images gja> and 

respectively. The SVD of X  is then computed, i.e.

χ = ϋ λ ν τ .

The columns of 0  are eigenimages of the pooled covariance matrix of the data set. The 

eigenimage corresponding to the largest singular value in A serves as the test-statistic image for 

this method. Detection performance is improved by normalizing the data matrix X , using either 

row-centering, column-centering, or double-centering.

Row centering of matrix X 0 is defined as:

X  = X 0-[c..£ ],

where the elements of column vector care

1 7N

J  is the number o f pixels of each image, and \ X \  j denotes the ij element of X . Each row of

'the row-centered data matrix sums to zero.

Similarly, column centering of matrix X 0 is defined by

(4.8)

(4-9)

(4.10)

(4.11)
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r

where the elements of the row vector r are

0 - 7 Σ Μ / .··' = 1- · · 2Α'·j  /»1

and each column the column-centered data matrix sums to zero.

* Double centering consists of the successive application of both row centering and column 

centering.

4.4 Covariance thresholding and correlation-coefficient thresholding

Unlike the t-test that detects activations based on the mean activation differences of each 

location, covariance thresholding and correlation-coefficient thresholding detect activations by 

finding regions where the activation signal is highly correlated. Methods like these, which focus 

exclusively on the analysis of the correlation structure of the activation signal, are very 

important in fMRI studies. The main advantage of such methods is that they require one set of 

images in the activation state, and do not need images in a control state like most methods.

The correlation coefficient between pixels p  and q is defined as:

Zfc -£,)(<, -A,)
Γ Λί - I 1/2 Γ Ν ~Ί 1/2

Σ «,- 4 ,1
. '=> _ 1=1

where μ ρ is the sample mean of pixel p .

Detection is performed by thresholding the test-statistic image, defined as:

rn = ™ f { Rr.',}

where 7(/ is the set of indices of pixels whose distance from the qth pixel is sufficiently large, so

that noise between these two pixels is not correlated. The value of the test-statistic image in a 

pixel is equal to the greatest correlation that this pixel has with any other pixel. Since activated 

regions are highly correlated they can be detected by thresholding the correlation-coefficient 

test-statistic image.

Covariance thresholding, is essentially similar to the correlation-coefficient method, but 

omits the sample standard deviation factors used for normalization in the denominator of (4.14).

( 4 . 1 2 )

(4.13)

(4.14)

(4.15)
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This produces improved detection performance because it eliminates variance caused by these 

noisy standard deviation estimates.

4.5 Fisher discriminant appiied to the SVD of the data matrix

In this method, a Fisher discriminant vector, which serves as the test-statistic image, is 

computed from N activation-state and N control-state images. The Fisher discriminant is 

derived from 2N feature vectors, each consisting of a subset of the SVD coefficients for an 

image vector in the data matrix X . Using a subset of the SVD coefficients as a feature vector 

serves to reduce dimensionality and to regularize the solution [11]. The number of eigenvectors 

to include was selected in two ways: 1) fixed at one-third the total .number of eigenvectors 

(Fisher-Fixed); or 2) using a Scree plot and the graphical Cattell-Jaspers rule (identified as 

Fisher-Adaptive [9]). This graphical method uses the empirical observation that, beyond the 

significant low-order values, the eigenvalue spectrum is usually roughly linear. The method 

seeks to determine the lowest-order eigenvalue that does not fit a linear model of the high-order 

portion of the eigenvalue spectrum.

The basis vectors of the SVD feature space are the eigenimages in 0  that correspond to 

the largest singular values in Λ. This subset of the eigenimages and their corresponding 

singular values will be denoted by matrices U and Λ , respectively. The coordinates of the 

images in this reduced-dimension feature space are contained in the columns of the matrix Z 

given by

z  = UTX  = U'UKV'  = KVr (4.16)

Let z° and z* denote the feature vectors for images x° and x) , respectively, and let

r r
y°t ~ z f  dz and y* = %c dz denote, respectively, the projections of z° and z] onto vector d , .

The Fisher discriminant is the vector dz that yields the greatest separation of the values

y% \- 1,...,N , from the values y%i = 1,...,N , as measured by the Fisher ratio [16]:

N { r + n (t

± { ν - r h ± ( v - r f

(4.17)

i = \

In (4.17) y “ and y c are the sample of y° and y f , respectively, and y  is the grand mean

of the two groups. Once the feature-space Fisher discriminant d , has been computed, it must be t,
V̂ O-

0-i s
I , ^

•■f
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transformed back into image space to take the form of a test-statistic image dx . The 

transformation is performed as follows:

dx =Udz

4.6 General Linear Model (SPM)

The Statistical Parametric Mapping (SPM) [6], which is a popular application for 

analysis of functional neuroimages, is based on the general linear model. The general linear 

model considers an arbitrary number of K  effects during the experiment. The general linear 

model is defined as:

'  X  = Gfi + e.

Here, we assume that we have obtained N  images, each of which contains M  pixels. X  is the 

N x M  data matrix whose element X tJ at position z,y is the value of they'-th pixel of the z-th

image, G is the N x K  design matrix whose i-th row determines the effects under which the i- 

th image was taken, β  is the K x M  parameter matrix whose element fitJ at position z,y is an

unknown parameter describing how the pixel j  is affected by effect i, and ε  is a matrix of 

independent and identically distributed error values.

The use of a general linear model allows studying complex experiments, which may 

combine more than one stimuli simultaneously. The design matrix G has one column for each 

stimulus, designating for each image if this stimulus is present or not. If the stimulus has many 

levels of intensity, a real number can be used to express how intense the stimulus was when the 

image was taken, otherwise an integer in {0,1} can be used. The design matrix can involve

many other design parameters as well. For instance, if the study involves many images and we 

are interested in the differences between the subjects, the design matrix may also have columns 

that designate from which subject each image was taken. Generally, the parameters of the 

design matrix are chosen according to the design of the experiment and the effects that are being 

Λ studied.

Assuming that the noise is normally distributed the maximum likelihood solution of 

(4.19) is equivalent to the least squares solution and can be found by:

β  = arg mjn ( X  -  Ωβ)τ ( X  -  G p ) ,

which gives:

(4.18)

(4.19)

(4.20)
o
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(4.21)y9 = (GrG )'l GX.

Then, in order to test whether stimulus described by the k-th parameter is present at

some pixel j  of the image we test the for the hypothesis

H>:fik = 0 
0

Thresholding the likelihood ratio of the two hypotheses:

L = P (X ;H i) 
p { X \H 0) ’

is equivalent to thresholding:
A

where c is a vector that describes the tested stimulus, and e f is an estimate of the standard

deviation of voxel j .

Consider for example a simple experiment consisting of one image set under a control 

state and another image set under an activated state. In this case the design matrix would consist 

of two columns, one of which would correspond to the control state image, and the other would 

correspond to the activation signal induced by some stimulus.

G = [g\ £i]

with

since the control signal is present in all images and

il if X: is in the activation state
Su = 0 otherwise

In order to test if activation is present at voxel j  we define c = [-1 l ] . Then the test-statistic is

given by (4.24) and it can be proven that it is equivalent to the t-test defined in (4.4). 

Furthermore, the correlation coefficient thresholding can be considered as a special case of a 

•’general linear model.

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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4.7 Markov Chain Monte Carlo

In the general linear model described above, decisions about the activation state of a voxel 

are made based on intensity values of that voxel only. However, better performance can be 

achieved if the intensity values of the neighboring voxels are also considered when deciding 

about the activation state of a voxel, since activated regions usually consist of several 

neighboring voxels. In [13] a model is suggested that considers the spatial correlation of the 

activation signal. Specifically, it is modeled as the superposition of K  two dimensional circular 

functions, as
κ

s ( x , y \ e )  = Y j aih[x ,y ,c‘i ,c‘j, , r 'Y  (4.28)
i=1

where h{x,y,c'x,c'y,r ')  is a circular function centered at location (cx,cy^ , with diameter r‘ and

activation strength ά . The activation function s[x,y)  is determined by the following set of 

parameters:

(4.29)

The method proceeds by computing the maximum a posteriori (MAP) estimate Θ of the 

parameters Θ of the activation signal:

Θ = arg max L (g  | Θ) p  (0 ) , (4.30)
Θ

where p{9)  is the prior distribution of 0 , g is a collection of the activation-state and control-

state images and L (g |0 )  is the likelihood of observing data g  given the parameters in Θ.

Assuming that noise is independent across observed images, equivalently we minimize the 

negative logarithm of (4.30), which gives:

Θ = arg min [g ja) -  g{c) -  s ( 0 ) J  C ;1 [g 'o) -  g f  -  s (0 )] -  log (p  (0)) J. (4.31)

The location, size and amplitude parameters of one source, are assumed to be 

independent of each other, and also the parameters of each source are assumed independent to 

the parameters of each other source. The prior over the number of sources K and the prior over

c* are assumed uniform. The diameter r andthe locations of the activations 

amplitude a of an activation source are assigned truncated Gaussians prior distributions.
G
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The MAP estimate of the parameter vector Θ is difficult to be computed because the 

length of the parameter vector is not fixed. However, samples from the posterior distribution 

p (6 \g )  can be generated using the Reversible Jump Markov Chain Monte Carlo (RJMCMC)

[13] algorithm. Then the one that has the maximum posterior probability is chosen. Because the

number of sources is unknown, the algorithm has to be able to explore a space with varying

dimensionality. The RJMCMC algorithm operates similarly to the standard MCMC algorithm,

generating samples from a given proposal distribution and then accepting or rejecting them in 
♦

order to approximate the target distribution. Furthermore, it uses 'jumps' to move between 

spaces of different dimensionality.

The algorithm proceeds by randomly choosing one of the following steps at each 

iteration: 1) creation (‘birth’) of a new source, 2) deletion (‘death’) o f a source, 3) merge of two 

sources into one (‘merge’), split of a source into two (‘split’), or improving the estimate of the 

parameters without changing the parameter vector length (‘update’). In each iteration of 

RJMCMC a new parameter sample vector is proposed. The acceptance ratio that governs the 

probability of acceptance of a proposed sample at iteration I  is:

9

π ( θ Μ, § ) ζ ( θ ' , ^ ρ - '  \9l+',g) d9M
π ( θ ' , g ) ζ [ θ Μ,step\9‘, g ) d9‘

where π  is the so called target distribution from where we want to sample. In our application 

this is the posterior distribution. Therefore, the target ratio term is composed of likelihood-ratio 

and prior-ratio terms:

π ( θ Μ,ξ )  _ L( eM \ g ) p ( e M )

L ( e ' \ g )  p ( 9 t ) '

where θ' is a current value of parameter vector at iteration /. In (4.32) ζ{θ'*' ,step\9' ,g} is

the probability that Θ/+I will be proposed by selecting a certain step given the set of the chain 

Θ1 and the observations g . Finally, step'1 denotes the inverse of a step, e.g. birth"1 = death. The 

proposal ratio in (42? 2) also consists of two terms :

•

ζ  (θ', step’' \9l+i,g)  _ q ( 9 ' \  9M, g, step' ' ) p , [step-' \ ΘΜ ) 

ζ { θ Μ,5ίβρ\θ' ,g)  q (e '" \e ' ,g ,s tep )  p , (s tep \9 ')

(4.32)

(4.33)

(4.34)

o
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where q[0l | ΘΜ ,g,step'1 ) is the proposal distribution from which new parameters are sampled 

and p K (step | is the probability that, out of five possible types of steps, a particular one will

be chosen given the current state of the chain.

All steps are equi-probable and the following exceptions apply: (a) if the current number 

of sources on Θ1 is zero, only a birth step is possible, (b) if the current number of sources in Θ1 

is one, a merge step is not possible, (c) if the current number of sources in Θ1 is equal to some 

predefined maximum number, birth and split steps are not possible.

Any choice of proposal distributions q will produce samples from the desired target 

distribution, but the convergence time of the chain will not be the same for every choice.

To create a new source in the birth step, the location, diameter and amplitude parameters 

are sampled independently:

qt,{a\9,g) = qc(cx,cy \e,g,birth)qa(a\e,g,birth)qa(r\e,g,birth)  

where = cv a r j  are parameters describing a new source. Location parameters was

sampled from the distribution that is proportional to the current residual as proposed in [19]:

9c L ’cv 1 birth)oc ^ L ( g ! n) {Ĉ C>’) - S (?  (cx,cy) - s ( c x,cy | 0 '))V (c

where /, c ^  is an indicator function equal to zero if location {cx9cy} is already a center of a

source defined by Θ1 and s{cx9cy \01} is the value of the signal defined by Θ1 at location

[cx9cy} . Diameter r and amplitude a are sampled from proposal distributions equal to their

prior distributions. In the death step each source has an equal chance to be proposed for 

deletion:

ς(ω\[θΙ ω], g, death) = -^T ,

where ω is a parameter vector of a source to delete, θ[ are the other parameters not to be

changed and K1 is the number of sources at iteration /. For both birth and death steps the 

"determinant of the Jacobian is equal to 1.

In split steps, one source is replaced with two new sources, located near the old one. In 

merge steps, two sources are replaced with one source located between the two old sources.

The update step makes no change in the parameter space dimensionality. Its purpose is 

to improve the current estimate of the parameters. The parameters are updated one by one,

(4.35)

(4.36)

(4.37)
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dividing the update step in the number of sub-steps equal to the total current of parameters to 

update, 4K . At each of these sub-steps an update is proposed for only one parameter and the 

change is accepted according to the acceptance ratio defined in (4.32). To update a location we 

sampled again from the distribution proportional to the residual but we restricted the possible 

choices only to the neighborhood of the current value:

wflfere 1^ c ^  is an indicator function equal to one if location (cx9cy} is in the neighborhood of

the location {c'x9cy} being updated, ε  is the parameter defining the neighborhood and / is the

index of the source for which the parameters are being updated. The proposed value for the 

update of the diameter and amplitude are sampled from their respective prior distributions 

centred around the current value of the parameter being updated.

Once the samples are generated the one that has the maximum posterior probability is

chosen.

κ

(4.38)
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5 Relevance Vector Machine Analysis of functional neuroimages

5.1 Signal Model

In this chapter we propose the use of the Relevant Vector Machine (RVM) model in 

detecting activations in functional neuroimages. We consider a two-state neuroimaging study,

wiih one set of images in the activation state denoted by and another set of images in the 

control state denoted which are modeled as:

g ^  (x) = b (x) + (x)

gW  (x )  = b (x )  +  s  (x; w ) + (x )  (5. l )
x

where 6(x) is the value of the baseline image in the pixel x , w ^(x) and fl^ (x ) respectively 

are the noise components in the activation and control states and s ( x \ w )  is a parametric 

representation of the activation signal. The images in the activation and control state differ only 

in the activation signal .?(χ;νν).

The noise is assumed to be independent between the images and zero mean Gaussian 

distributed:

n  ~  N ( Q , C n ) .  (5.2)

Furthermore, the noise variance is assumed proportional to the baseline image, and neighboring 

pixels are assumed correlated. The noise covariance matrix Cn is assumed known. This noise 

model is proposed in [20].

A simple estimate of the activation signal can be obtained by computing the mean 

difference between the images in the control and activation states:

K x )  =  - ^ ( g { a) ( x ) - S { a) ( x ) )  (5-3)

where N  is the total number of images.

This simple estimate works on each pixel independently and does not consider any 

dependencies of the activation signal between neighboring pixels. Instead, we consider 

modeling the activation signal using a RVM model. This corresponds to the superposition of 

kernel functions, one centered at each pixel x( of the image, given by:
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(5.4)
Μ3 

/=1

where the number of pixels in each image is M 2, K(x ,x0) is some kernel function and wt is 

the amplitude of the kernel centered at xt . The weights wi are assumed to be zero-mean 

Gaussian distributed:

w, ~W(0,a:,), (5.5)

and their variances at are assumed Gamma distributed:

a i ~ Gamma(a,b) . (5.6)

This prior formulation that is suggested by the RVM model leads to sparse representations of 

the activation signal, meaning that most of the weights should be set to zero after the training 

process. Ideally, if the shape of the kernel functions is identical to the shape of the activations, 

we would expect as many non-zero weights as the activation sources are. However, even if the 

shape of some activation is significantly different from the shape of the kernel functions, it can 

be effectively approximated using a combination of kernel functions. Though any kernel 

function can be used, in practice we assume the commonly used Gaussian kernel functions, of 

the form:

K(x ,x0) = e 2,1 ol . (5.7)

The value of the width q of the kernel functions can be specified to adjust the 

smoothness of the model. Selecting the appropriate value for the width is significant in order to 

achieve good performance. Cross validation is a method that can be used to select the values of 

the width parameter that provide the best performance. Alternatively, the width parameter can 

be optimized during the training process, but this requires significant additional computations.

5.2 Bayesian Inference

Following the "Bayesian inference procedure described by the RVM, we compute the 

 ̂posterior weight distribution:

/ , \ p( l I w) p ( w\°) , „p(wU,g) = ·̂ ·' - /  y  ’ =Ν(μ,Σ),
p(t I

(5.8)

where
o
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(5.9)
ς  = ( φ το φ  + λ )"'

μ  =  Σ Φ τ Ο  (

and the marginal likelihood:

p( t \a)= a)dw = N(0,C)

with

c = c,+o>rV
* Maximization of the marginal likelihood is achieved either by initially assuming a full 

model and iteratively pruning the basis functions that are irrelevant, or by initially assuming an 

empty model and iteratively adding basis functions. Both methods achieve similar results, but 

the second requires significantly less computations and therefore less ran-time.

Ideally, if the shape of the activation is effectively approximated by the shape of the 

basis functions, we would expect the RVM algorithm to prune all basis functions except those 

located on an activated region. However, practically it is possible for some basis functions on a 

non-activated region to be maintained in the model but the associated weight will be set to a 

small value. Although it is not possible to find the type of kernel functions that gives the best 

performance, there are methods such as cross-validation [2][1], that give a measure of the 

performance of a given model, and thus provide a way to compare the performance of a set of 

different basis functions and choose the best of these.

5.3 Results

To evaluate the method we used a simple phantom whose properties were derived from a 

positron emission tomography (PET) neuroimaging study, but are also representative of whole- 

brain, blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging 

(fMRI) studies that have been spatially smoothed [20]. Figure 1 (a) shows the average of ten 

simulated activation patterns. The location and amplitude of the activation were varied 

randomly from image to image to represent physiological variability between subjects or scans. 

Figure 1 (b) shows the average of ten simulated “activated” images. Figures 1 (c) and (d) show 

the activation pattern estimated by the RVM method for different values of the 

hyperparameters.

(5.10)

(5.11)
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Figure 1. (a) - the average of ] 0 simulated 
activation patterns, (b) - the average o f 10 

“activated” images, (c) - the activation 
pattern estimated by RVM with α=1, β=0, 
(d) -  the activation pattern estimated by 

RVM with α=Ι0-2, β=0

Two types of activation studies were performed, one where activation was actually 

present and one where there was no activation. The purpose of this was to simulate both null 

and alternative hypothesis conditions for purposes of measuring a ROC curve. Both types of 

activation studies were simulated 50 times to get a good statistical estimate of the ROC curve.

A statistical parametric map (SPM) was generated for each activation study and then the 

value of the pixel where the activation was sometimes present was thresholded to decide 

between the two hypotheses. The SPM was generated by computing the value of the likelihood 

ratio for the two hypotheses at each pixel of the image

p{g{’]{x ,y) \s(x>y)’H\) K x>y)
P  ( g W (·*. y )  I s  ( x ,  y ) , H 0) σ ( χ , γ ) / ^ Ν

where s ( x9y)  is the estimate of the activation signal, and σ( χ , γ )  is the standard deviation of 

the imaging noise at location (xty ) .

To evaluate and compare performance, we used the area under the ROC curve for false 

positive fraction between 0.0 and 0.1 because this is the most useful range of operating points. 

A comparison is shown in with various methods listed in order of performance. These methods 

*are described in detail in Table I. The RVM provided the second best performance in the simple 

case we considered and was only slightly worse than the RJMCMC approach in [13]. However, 

RJMCMC being a random sampling method is notoriously time consuming. Furthermore, it is 

difficult to establish when the chain has converged in order to stop sampling.
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Method
Area under the 
ROC curve*

RJMCMC 0.0818
RVM 0.0732
SVD thresholding, column centering 0.0624
t-test, pooled variance estimate 0.0439
SVD thresholding, Fisher, row centering 0.0387
SVD thresholding, Fisher, column centering 0.0318
SVD thresholding, Fisher, double centering 0.0311
SVD thresholding, row centering 0.0252
t-test, single-pixel variance estimates 0.0242
SVD thresholding, double centering 0.0160
Table I. Comparison o f  performances

In order to find an appropriate value for the width parameter of the Gaussian kernels we 

used the leave one out cross validation criterion:

_ y P(diag(P)y2Py 
σ,Λ0 N

where P = IN -ΦΣΦ7 is known as the projection matrix, and Φ is the design matrix consisting

of the kernel functions evaluated at each point of the training set. Using cross-validation to 

select the appropriate kernel width for each experiment, lead to slightly increasing the measured 

ROC area, compared to using the same width for all experiments.

We also performed a comparison study between the initial iterative algorithm and the 

improved incremental algorithm. Both algorithms gave similar results in detection performance 

but the incremental algorithm converged significantly faster. Table II shows the runtime 

required by each algorithm to compute an estimate of the activation signal on a 30x30 image. 

The important advantage of the incremental algorithm is that it can be run on larger images, for 

example 60x60 images, in reasonable time.

Iterative RVM (30x30) 12 sec

Incremental RVM (30x30) 5 sec

Incremental RVM (60x60) 196 sec

Table II. Comparison o f  the iterative and incremental algorithms.

(5.13)
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In the experimental results shown here, Ctl was assumed known. We also found that the 

best detection performance occurred when using a completely uninformative prior which is 

defined by setting the hyperparameters a = β  = 0 . However the resulting RVM fit is quite stable 

over a large range of values for the hyperparameters, see for example Fig. lc and Id.

6 Conclusions
♦

The Relevance Vector Machine (RVM) is a flexible model used for classification and 

regression problems. The output of the model is a sparse linear combination of some basis 

functions that are assumed fixed and that depend only on the input of the model. Inference is 

achieved using a Bayesian framework and sparseness of the model is established by assigning 

appropriate prior distributions to the parameters of the linear combination. These priors are a 

type of automatic relevance determination priors (ARD) [15] and automatically prune basis 

functions that are irrelevant.

We studied the use of the RVM model to estimate the activation signal in functional 

neuroimages. An artificial phantom was used to evaluate the method and compare it with 

existing approaches. Two sets of images were constructed, one containing some activated 

regions and one without activations. Then, the RVM algorithm was used to estimate the 

activation signal in each image, and a hypothesis test was formulated to decide whether a pixel 

was activated or not. An ROC curve was constructed based on the percentage of correctly and 

falsely identified activations and used for evaluation of the method. Results show that the 

proposed algorithm outperforms all methods reported in [12] and yields very close performance 

to the RJMCMC based method reported in [13]. However unlike RJMCMC where the number 

of activations is determined by searching, RVM provides a method for their incremental 

determination, therefore is extremely faster.
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Appendix A. Computation of Marginal Likelihood and Posterior 

Weight Probability Distribution

The marginal likelihood p[t  | α , σ 2} can be analytically computed by computing the integral:

p{t  | α ,σ 2) = j p ( t \ w , a 2)p { w \a )d w , 

wlych can be computed since it is the convolution of two Gaussian functions.

Then the posterior weight distribution p (w\ t, a, σ 2) can be computed from:

p ( w \ t , a , a 2) =
p(t  |ν ι\σ 2)/?(νν|α) __

ρ ( ί \ α , σ 2)
X

However, it is easier to compute both these quantities from Bayes’s rule, as follows: 

p(w \ t ,a ,G2) p ( t \ a , a 2) = p ( t \ w , a 2}p(w\<x)

= [2πσ2) m  exp j - ~ y | | f "  ΦΗΓ W  exP { "

= (2π) ^ +l/2̂ (σ 2 ) / jyf|2 exp·! — — σ '2 ( ί -O w )7 (f-O w ) + W Aw.1
2L

= (27γ) ^ +l/̂  (σ 2) * |/l|2 exp j-·^· σ '2(Φνι>)7 (Φνι>)-σΎ  ( φ ν ) - σ  2 (Φνν)7 t + σ  2t‘t + wl Aw

= (2π)  ^ +ι/2̂ σ 2) Νί \α \ι exp·!-— W  (Α + σ  2Φ7φ ) ιν - ( σ  2t ' G ^ w - w 1 (σ  2Φ7/) + σ"2/7/

= {2π) ^ +ι/2̂ (σ2) 1 \λ \ϊ  e x p |- —|̂ ·Μ'/ Σ~ινΐ'-(σ"2/Γφ)ΣΣ"ινΐ'-\ν7Σ 'Σ (σ  2Φ7/) + σ  V /

with Σ = (νί + σ~2ΦΤΦ^ . 

p ( w \ t , a , a 2) p ( l \ a , a 2} =

= { 2 π γ (̂ Ι2)( σ 2γ η \Α^

exp j - i [ ( wr - σ ’ν 'Φ Σ )Σ '1w - ( w7' - σ 'Υ 'Φ Σ  + σ Ύ Φ Σ )Σ ',Σ (σ -2ΦΓί)·+ σ ' 2? ^  

= { 2 π γ Ν"Ι2)( σ 2] ΝΙ1\ ̂

expr i L
(wr -  ( a ' W r ) '  ) ς _ι (w -  ( σ '2ΣΦ77)) -  ( σ '2 )2 ί7'ΦΣΦ7'ί + σ ' Y t
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w
Defining μ  = σ~2ΣΦτί we have: 

p [w \ l ,a ,a2'jp^t\a,(T1) =

e x p (wr - μ τ )Σ-] ( w - μ ) - t T ((σ ’2/  Φ (σ ’2ΦΓΦ + Α)~' Φ7' + σ~2/ ) t

=(2^)-(Λ,+,/2)(σ 2)-"/2μ |ΐ

*exp< (Μ>τ - μ Γ^Σ 1 ( w - μ ) - ί τ { (σ  2)2|σ '2/  + (φ 7’) ’ ΑΦ

= (2π)-{Ν+'Ι2)(σ γ /2\Α^

1 Λ
■1 \ -2- σ  I

exp 1
9

""
( ,  .1 1 / . . ι \-1 > \

(w 7 - / / 7 ) ς _1 ( w - / z ) - f r σ 2/ - σ 4 ( φ 7 ) ( σ 2φ - ' ( φ 7 ) + Α ~ ' )  Φ ' ' - σ -2/
V )

(2π) (Λ,+’/2)(σ 2) ΝΙ1\α \ί· ex p j—|  (wr - / / ) ς  1 ( w - p )  + tr (σ 2/  + ΦΛ“'Φ Γ)

= (2ττ) (W+I)/2|Σ| z e x p j - ^ w 7 - μ τ ^Σ 1 (w - μ )

(27t)‘W/2 σ 2Ι  + ΦΑ 'Φ 7 ~  ί  1 τ 2 exp··!— r [σ2Ι  + ΦΑ 'Φ 7')

since |ς | ϊ σ 2Ι  + ΦΑ ‘Φ7’ 2 = σ"2Φ7'Φ + Λ 2 |σ2/  + Φ^·"'φ7'

σ"2 A

σ '2/!2\a U =

Φ7^Γ'φ + σ 2/ |2

ν ι

σ 2Ι  + ΦΑ~'ΦΓ

= ( σ = ρ μ | ϊ

Thus, *

p [ w \ t , a ,a 2) = (2π·)·(Λ,+ι)/2 |ς |"ϊ exp ( τ /  -  μ7' ) Σ"1 ( w -

and

η ρ ( ΐ \ α , σ 2} = {2π) ■ Ν/ 2 σ 2/  + Φ ^_ιΦ7' 2 6 χ ρ |-^ · ί7'( σ 2/  + Φ ^ 'ιΦ7')
-ι

ί>.
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Appendix B. Computation of Marginal Likelihood Derivatives

Optimization of the marginal likelihood is equivalent to minimizing its negative logarithm.

Z (a) = —[log|Z| + 7Vloga2 + \og\A\ -  a 2tT ( ί -Φ μ )]  + ̂ ( α loga, - b a ^  + c loga2 -  d a 2
2 ,=o

Then, the saddle points of L (a )  are the zero-crossings of its derivative. For ease of calculations

we consider the derivative with respect to the logarithm of the hyperparameters a i.
*

N N

log μ | = log π « , = Σ  los  °i

^ipgMI _ 1
δ log a,

δΣ „ δΣ '1 δ (σ -2ΦΓΦ + Λ)
= - Σ - -------- Σ = - Σ —---------------- -Σ  =

51oga, δ log a, 3 log a,

0 0 0 
0 -α ,Σ 2 0 
0 0 0

δμ δ σ  ΣΦ'ί , δΣ
= σ  --------- Φ Ί  =

3 log a , 31oga( δ log a,

0 0 0' 
0 -α ,σ _2Σ2ΦΓί 0 
0 0 0

aiog|z| 
3 log a,

= tr 5Ι°8 |Σ |(_ _ 3 Σ _ λ 
d log a,3Σ

= tr = -« Λ ,

δ σ Υ ( ί - Φ μ )  3 9ίτΦμ
----------- = σ~------ — = σ 2/ΓΦ ——— = -a,//,2

δ log a, 3 log a, 3 log a,

dL
3 log a,

\  [log£ | + log μ | -  σ Υ  (/ -  Φ//)] + X  (a log a, -  ba,)
^ i=Q

3 log a,

~ r  ( - « Λ  + 1 + a,μ] + 2tf- 2  ba,)

Setting dL

a. =

5 log a,

l + 2a

= O', we obtain the following update formula:

' Σλ - Μ2 + 2 6 '
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