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ABSTRACT

Giorgos Ch. Philos. MSc, Computer Science Department, University of Ioannina, Greece.
July, 2008. A Modular Architecture for the Runtime System of the OMPi Compiler.
Thesis Supervisor: Vassilios V. Dimakopoulos.

OpenMP has become a standard paradigm for shared memory programming, as it offers
the advantage of simple and incremental program development, in a high abstraction level.
In this thesis we purpose a modular architecture for the runtime support of OpenMP pro-
grams produced by the OMPi source-to-source compiler. We present the implementation
of our runtime system, along with detailed performance evaluation results.

The purpose of this thesis is twofold: study nested parallelism support in OpenMP and
extend OpenMP applicability to clustered environments. In the first part we deal with
multilevel parallelism which is a major feature of OpenMP. Specifically, threads encoun-
tering nested parallel regions are allowed to spawn new threads dynamically. Although
many, contemporary OpenMP compilation systems provide some kind of nested paral-
lelism support, there has been no evaluation of the overheads incurred by such a support.
In this thesis, we present a new runtime threading module for OMPi, called PTHR, which
provides basic support for nested parallelism. Using a novel microbenchmark suite, we
evaluate how a multitude of freeware and commercial OpenMP compilers behave in the
presence of nested parallelism. |

In the second part, we concentrate on computational clusters. The most widely used and
arguably most efficient tool for programming clusters is the Message Passing Interface
(MPI). However, MPI is rather cumbersome as it burdens the application programmer
with the explicit distribution of program’s data and the orchestration of communications
by hand. As OpenMP becomes more and more popular nowadays, researchers have stud-
ied ways of extending OpenMP to clusters mostly using Shared Virtual Memory (SVM)
libraries which give the illusion of a shared address space on top of a distributed memory
environment. We present a new module called OPRC, which is part of the runtime system
of OMPi, enabling the execution of OpenMP programs on clusters. The unique features
of our work include an abstraction layer which decouples the runtime core from the actual
SVM library, making it possible to utilize any arbitrary SVM implementation. We have
successfully integrated 5 different SVM libraries with different memory consistency pro-
tocols and memory allocation scmantics. OQur implementation follows a hybrid approach

v



whereby the SVM subsystem is only utilized for user program shared variables, while
internal scheduling and synchronization operations rely on explicit MPI calls. We finally
present an experimental evaluation of our platform over a cluster with Gigabit Ethernet
interconnects, using a number of typical parallel applications.
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EKTENHE [IEPIAHUH

INdpyog Pihoc tou Xprotou xan e Yroamavtis. MSc, Tuiua ITinpogopuxic, Mavemoth-
wo Iwavwiveov. ToGhog, 2008. M Aounuévn Apyttextovued yia To Ldotnua Xpdvou-
Extéleorng tou Maparknronountixod Metappaoth OMPi. EmPBiénwy: Baotiewog B. Anuo-
X6TOVAOG.

To OpenMP eivon éva pdTuTto Yior TNV avdnTuEY) TAPAAANAWY EPAPUOYDV OF UNYAVES XOL-
viic uviune. Yrootpllet tic yAdooeg npoypappationod C/C++ xou Fortran. Anoteleitat
ané évo oGvoro and odnyleg (directives) xou poutiveg BPBMoONnc. Te avtiBeon ue da
npétuna, énwe to mpbétuno POSIX yua ta viuata, 1o OpenMP elvon plo Steragpy| vdmAs-
Tepou EMMEdOV MoV eMTPENEL TNV Tapadiniontolnoy evég oelplaxol TPoYPdUMATOG HE Evay
amhd xou avErtixd tpémo. Ou adnylec mpootifevtar oe éva oewpuaxd npdypauua C/C++ 1
Fortran e tétolo tpdéno dote anhd va oyvoolvtar oTny teplntwoy tov o YeTappactic dev
urootnplle. odnyiec OpenMP. Xuvendc, To tpéTuTo eReEXTELVEL Tapd ahNoLdVEL TNV YAGGON

TPOYPAUUATLOUOY.

'Eva Baowxé yapaxtmpiotind tou OpenMP elvon o mohverinedog napalnhouds. Tuyxe-
XPWEVA, ToL VAUATA TOL ELOEPYOVTAL OE EUPWAEVUEVES TUPAAANAES TEPLOYEG EMLTPETETAL Vo
dnuovpyolv duvouind véeg ouddeg vudtwy. To yapaxtnpiotind auté eivon aruavtind yla
éva eupY oVVOAo and TaPEAANAES EQapUOYEC ToL amautoly ToAveninedo napahAniioud Gote
vor eTiyouy xavorouqTixy| emtdyuvor (speedup). Tlapd v onuaoio tou, 1 urnootipln
TOU dPYNOE VA EUQAVIOTEL OTOUC UETAQPPACTEG. LTIC MEPEC UOC, OL MEPLOGOTEQOL PETA-
ppaotéc OpenMP mopéyouv xdmolou eldoug unoothpln yia molverinedo mapaAAnAoud.
"‘Ouwg, uéxpr otiyifs dev éxel napouoiaatel xdrola YeAétn oyeTind Ue To emmAéov x6oTOCG
OV ELGAYETAL 0T0 OVOTNUA AOYW® TNG SlaElpLong TwV TOAATAGY EMTESWY RUPUAANALOUOD.
Ly napodoa Satpn, mapovardlouye o BBhodinn ypdvov-extéreong (runtime library)
Y Tov TaparAnhomontixd petagpact OMPI tou emitpénel tnv extéieon, OpenMP npo-
Yoouudtwy pe Baouy unootiply yia tolveninedo naparinhoud. Emmiéov, avartdfaue
wae mhatgdpua afloréynone (benchmark) xo mapovoidfovye pia Tetpapatixd HEAETY tNng
an6doorg evOg GUVOAOL and eumopLxoUs XaL TEwauaTIXoVs peTagpaotés OpenMP uré to
xafeotdhg Tolveninedov napaAAnALouoL.

[pbogota, 1 épeuva éxel otpagel oe TpdTOLG Enéxtaong tng extéleorng OpenMP npoypayu-
Mbtwv o pyeyahltepa utoloyioTtxd mepiBdAlovta, drwe ot ouatddec utohoytotdhy (clus-
ters), ouvdudlovtag étaol Ty amhbTnTa TOU TPOYpPaUMaTIoTIX0Y wovTéhou Tou OpenMP ue
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™y uroloyiotixy Lol Tou mpooépouv ta cuoThuata auTd. To Mo Yvwotéd xat eupéwg
anodexTd LOVTEND TPOYPUUUATIONOU OE GUOTAdES LTtoAoYLoTAY elvan 1 uetaBifacn unvu-
pdtwv xan ouyxexpuséva to MPI (Message Passing Interface). Ilopéro mov n npooextixd
xerion tou MPI empéper xad) anbédoon) otig epapuoyés, o TpoYpauuatioTic xakeltar vo
OPYAVOOEL TIG ETLXOLVWVIEC XA VAl XUTAVEUEL Tar SESOUEVA TOU TPOYPIUMATOS PNTH 0TOUG
x6uPoug tou cusTiuatag. Ouundpyovuceg vhornoifioers OpenMP yia ouotddeg unoroyloTdy
xenowonotoby ecwtepixd PiBhiodixec xotviic etxovudic uviune (Shared Virtual Memory -
SVM) nou napéyouy évay exxovixd xowvé xbpo dieuBivoewy. Tuyxexpytéva, N xowvh uviun
elvan ewcoving o amoTEAElTOL ARG TUAUATA TV QUOXGY UVNUGY TeV XOUBwy, evd 1 ou-
voyf xou 1) oLVETELL TN xowVNg Mviung vhoroteltar eEohoxAfipou o Aoytopxd. Me autéy
oV P60, eExo@uAeTon TO HoVTEND XOLViG UViung mou Tpolnobétel To rpétuno OpenMP,
oe éva xataveunuévo nepBdirov. Iapdra autd, 1 anddooy autdy Twv PiBAobnxdy dev &l-
vau avorountia). H ouyvi| xan ypovoPdpa emxolvevia mou amontettat yia vo e€aogalioTtel
N oLVOYY) XL GUVETELX TNG X0V UVHUNG MELdVEL atoBntd Ty anddoor twy eQopuoYdY,
Wiwg dtav n egapuoyr arowtel ouyvi| Tporonolnon xowvdy dedouévoyv.

Lty napovoa datplf, tapouvoidletan pio BBAoBixn xpdvou-extéleons Yo TOV TopaA-
Anhonountd uetagpaoth OMPi nou urnootnpiler tnv extéleon OpenMP npoypauudtwy
oe ouoTddeg umohoyotdy. [a Adyoug anddoong, n vhonolnon uac etvar VBpWL: évag
nuprvag SVM yepiCetar ta dedopéva tng eqapuoyric mou opllovtal wg xowvé petad twv
Siepyaoidy, evéd oL avdyxeg yia TV Spopohbynomn xat Tov cUVTOVOUS TeV SlEpYIOLEY ECW-
Tepd oty BBAobixn e€urnpetodvial ue MPIL. Q¢ anotéheoua, emtuyydvouue anodoti-
x6tepeg emxovwvies. Evd ou undpyovreg uetagpaotéc OpenMP ouvifng ctoyebouv pla
ouyxexpuévn BBhiobhxn SVM nou elva avaréonaoto TuRpe Tou LeTapeaaty, 1) LAorolno,
pag unopel var expetaihevtel onowadnrote tétow PiAobinn embuuel o mpoypapuatioTic
x0Bd¢ 10 clotnua xpdvou-extéheans tou OMPi elvar ave€dptnro and tov muphva SVM
mou ypnowonotelton. Evowpatdooue emtuyde 5 Pihobrixec mou axolouboldy Sragpopetixd
UOVTEAX OLVETELWIC TNG XOWNG UVAUNG Xt TAPOVGLACOVUE TELPOUATIXG anoTEAEoHATA and
Lol oUOTAdA UTOAOYLO TGV, UEAETOVTAC OUYXPLTLXG TNV enidoon Tou petagpaoth OMPI, oe
évat ohvoho and TapdAAnAes epapuoYEc.
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CHAPTER 1

INTRODUCTION

1.1 OpenMP
1.2 Thesis Objectives

1.3 Thesis Structure

1.1 OpenMP

OpenMP (Open Multi-Processing) is an application programming interface (API) that
supports multi-platform shared memory multiprocessor programming in C/C++ and For-
tran on many architectures, including Unix and Microsoft Windows platforms. It consists
of a set of compiler directives and a runtime system supporting calls. In contrast with
other APIs such as the POSIX threads, OpenMP is a higher level API which allows the
programmer to parallelize a serial program in a simple, controlled and incremental way.
It provides directives for expressing parallelism, worksharing and synchronization. The
OpenMP directives arc added to an existing serial program written in C/C++ or For-
tran in such a way that they can safely be discarded by compilers that do not support
OpenMP (thus leaving the original program unchanged). As a consequence, OpenMP
extends rather than changes the base language (C/C++ or Fortran).

Nowadays, OpenMP has become a standard paradigm for programming symmetric shared
memory multiprocessors (SMP). Its usage is continuously increasing as small SMP ma-
chines have become the mainstream architecture even in the personal computer market,
thanks to the domination of multicore CPUs. Its popularity has been proven from the fact
that many research and commercial/proprictary OpenMP compilers are now available.
Companies like Fujitsu, HP, Intel, Microsoft and Sun have developed OpenMP-compliant
compilers. Also, a multitude of research/experimental OpenMP compilers exist nowa-
days. Namely, some of them are: the OMPi compiler [10], the Omni compiler [31], the
OpenUH compiler {27], and the Nanos Mercurium compiler [2].

1



Without dispute, OpenMP is very popular nowadays. It’s main advantage is the pro-
gramming simplicity. The API hides all the cumbersome details from the user. Since the
first version (v1.0) of the API specification, a number of new features have been added
to OpenMP. Its current version is v3.0. Research on OpenMP includes the improvement
of the API so as to be more useful to the end users, and the development of efficient
compilation and runtime systems supporting OpenMP.

1.2 Thesis Objectives

The OMPi compiler is a light-weight, portable and modular source-to-source compiler for
the v2.5 OpenMP specification. It currently supports only the C programming language.
The OMPi compiler is the result of the work of the Parallel Processing Group (PARAGROUP)
at the Computer Science Departure of University of Ioannina. Its first public release
was in 2003. The current version of OMPI is v1.0.0 featuring a redesigned-from-scratch
translator and an enhanced runtime system, which is based on the work described in
this thesis. This work is mainly focused in the extension of OMPi’s runtime system.
Specifically, the contributions of this work are the following:

e Provision of runtime support for nested parallelism, along with a novel microbench-
mark suite for assessing its performance.

¢ Development of a new portable and modular runtime library for the execution of
-OMPi programs on top of clusters.

1.2.1 Nested Parallelism in OpenMP

Nested parallelism has been a major feature of OpenMP since its very beginning. As a
programming style, it provides an clegant solution for a wide class of parallel applica-
tions, with the potential to achieve substantial utilization of the available computational
resources, in situations where outer-loop parallelism simply cannot. Notwithstanding its
significance, nested parallelism support was slow to find its way into OpenMP imple-
mentations, commercial and research ones alike. Even nowadays, the level of support is
varying greatly among compilers and runtime systems.

Our objective is to provide runtime support for nested parallelism in OMPi. To this end,
we first develop a new threading library for OMPi. We also develop a microbenchmark
suite based on the EPCC microbenchmarks {4], which allows us to measure OpenMP
overheads when nested parallelism is in effect. Using our methodology, we perform an
experimental study of the overheads introduced in nested parallelism, providing results
for a number research/experimental and freeware/proprietary compilation systems.



1.2.2 OpenMP on Clusters

Computation clusters have emerged as a cost-effective approach to high performance
computing (HPC). Individual machines unified by a LAN, either using a commodity or
high performance interconnect, can be viewed as a virtual large-scale machine with a big
number of processors and can be programmed as such. They offer an expandable and
reliable computational environment which is quite more economic than large massively
parallel machines. However, programming for a cluster is rather cumbersome. The most
widely used and arguably most efficient tool for cluster programming is the Message
Passing Interface (MPI). Nevertheless, MPI forces the programmer to explicitly distribute
the program’s data and orchestrate communications by hand, and as a result it has not
found its way to mainstream computing.

An alternative to MPI is the use of shared virtual memory (SVM) libraries which give
the illusion of shared memory. An equivalent term for shared virtual memory is software
distributed shared memory (sDSM). Many SVM libraries have been developed in the past.
They all provide an API for allocating shared memory on a distributed environment
along with synchronization routines. Most of them employ relaxed memory consistency
protocols meaning that memory updates are delayed until synchronization. Consequently,
this forces the programmer to insert explicit synchronization calls in order to make sure
that the program executes correctly. Although SVM systems do not seem to be able
to achieve the speedups possible with carefully hand-coded MPI programs, they have
nevertheless been proven successful for a number of data-intensive applications. A problem
with SVM systems is the complete incompatibility between the various implementations
and the esoteric API they usually provide. As a result, it is not always easy to experiment
with and compare such systems.

The combination of OpenMP and SVM systems has been proposed by many researchers
as a convenient means of leveraging a cluster, matching the programmer-friendliness of
OpenMP with the SVM layer that abstracts away the underlying distributed architecture.
Any peculiarities of the SVM layer are completely hidden from the programmer and are
left to the compiler and runtime system to handle. A number of research/experimental
compilers support OpenMP on clusters. The Omni compiler [31] uses the SCASH SVM
system to implement the shared memory semantics. The ParADE OpenMP translator [21]
is based on the Omni Compiler and utilizes its own underlying SVM system. The Nanos
compiler [8] also supports a cluster execution environment. Many researchers began with
the development of SVM systems and later integrated a compiler and runtime system
for the support of OpenMP on clusters. Intel has recently released v9.0 of its OpenMP
compiler, which extends it to clusters [13]. It internally targets a modified version of the
TrcadMarks commercial SVM system [23].

However, almost all OpenMP implementations are based on a tight coupling of the com-
piler and the runtime library. The whole system targets SMP machines or clusters but



usually not the both. Even in the few cases that supports both, there is a fixed, built-
in threading library and an SVM core and the generated code targets them specifically,
making it almost impossible to experiment with alternative configurations.

Our objective is to develop an efficient and modular runtime system for the execution of
QOMPi programs on top of clusters. We use a hybrid approach where communication at the
runtime library is achieved by explicit message passing (MPI), while an SVM core provides
the shared memory semantics at the application level. The key feature of our design is
that the SVM core is not a fixed part of the runtime system, allowing the integration of
any desirable SVM library. We managed to experiment with different configurations and

provide comparative results.

1.3 Thesis Structure

This thesis is organized as follows:

e Chapter 2 presents briefly the OpenMP API and describes the compilation pro-
cess and the basic transformations made by the OMPi compiler, in the presence of
threads or SVM processes.

e Chapter 3 presents in detail the runtime architecture of OMPi.

e Chapter 4 describes our design for the support of nested parallelism. In addition,
“it presents our microbenchmark methodology, along with comparative experimental
results for a multitude of OpenMP compilation systems.

e Chapter 5 is a self-contained introduction to shared virtual memory concepts. It
also surveys the ongoing research regarding OpenMP program execution on clusters
using SVM libraries.

e Chapter 6 presents our runtime architecture for the execution of OMPi programs
on top of clusters along with implementation details. This chapter also provides
experimental results.

e Chapter 7 concludes this thesis with a summary of our contributions and possible
directions for future work.



CHAPTER 2

OPENMP AND OMPI

2.1 OpenMP in Brief
2.2 The OMPi Compiler
2.3 OMPi’s Transformations for Threads

2.4 Support for Processes

2.1 OpenMP in Brief

The OpenMP API is comprised of three primary components: compiler directives, runtime
library routines and environmental variables. The OpenMP directives in C have the
general format of:

#pragma omp directive-name [clause,...] newline

Each directive applies to the succeeding statement, which must be a structured block.
OpenMP specifies a set of syntax and binding rules for the directives. In this section
we will not cover all the details; instead, we will present briefly the most important and
commonly used features of the API. For more details, the reader is referred to the official
OpenMP API specification [1].

2.1.1 The Parallel Construct

The programmer defines a structured block of code to be executed by multiple threads
using the parallel directive. OpenMP adopts the fork/join model. The master thread,
i.e. the thread that originally executes the user program, creates a team of worker threads
whenever a parallel directive is encountered. All worker threads independently execute



the same block of code enclosed within the parallel directive. At the end of the par-
allel region, all threads are synchronized and only the master thread continues with the
sequential execution of the succeeding code. For example, consider the following code in

OpenMP/C:

main(){.
int id;
/% Fork a team of threads */
#pragma omp parallel private(id)

{
/* Each thread has its own id */

id = omp_get_thread_num();
printf("hello from thread %d\n", id);

if(id == 0) /* Only master do this */

{
printf ("number of threads = %d\n", omp_get_num_threads());

}
}

/* Only the master thread reaches this point */

¥

Each thread has a unique id which is available through a call to omp_get_thread_num().
Threads are numbered scquentially starting from 0 (master thread). The number of
threads executing a parallel region is queried by a call to omp_get_num_threads().

The number of threads in a parallel region depends on the following factors:

e Use of the omp_set_num_threads() library routine.
e Value of the OMP_NUM_THREADS environmental variable.

e Implementation default.

The omp_set_num_threads() has precedence over the OMP_NUM_THREADS environmental
variable. By default, a program with multiple parallel regions will use the same number
of threads to execute each parallel region. This behavior can be changed to allow the
runtime system to dynamically adjust the number of threads that are created for a given
parallel section. The programmer can turn on the dynamic mode through the following
methods:

o Use of the omp_set_dynamic() library routine.

o Setting the OMP_DYNAMIC environmental variable.



To assure that the requested number of threads will actually be created, the program-
mer must turn off the dynamic mode and explicitly set the number of threads via the

omp_set_num_threads() routinc.

OpenMP allows parallel regions to be nested each other. This feature is optional. When
nested parallelism is supported by an implementation and is enabled, multiple teams of
threads are created. Each thread in the first level creates a new team. If nested parallel is
not supported or is disabled, each thread in the first level creates a new team consisting
of only one thread, that is to say, the parallel region is serialized.

2.1.2 Workshare Constructs

The most important feature of OpenMP is the support of threads worksharing. The for
directive is the most commonly used workshare directive in OpenMP programs. For loop
iterations are divided into chunks and scheduled among the executing threads according to
a schedule policy. Consider the following part of a simple matrix multiplication program
using OpenMP/C:

: #pragma omp parallel for private(i,j,k) schedule(static)

2 for(i = 0; i < rows; i++) {

3 for(j = 0; j < cols; j++) {

4 for(k = 0; k < rows; k++) {

5 clil (3] += alil[kl*b[k][j];
6 }

7}

8 }

Note that, the parallel directive can be combined with the for directive in a single
OpenMP statement. This means that a new team of worker threads will be created
and the first for loop’s iterations (line 2) will be scheduled among them. Each thread
will execute the succeeding code (lines 3-6) as many times as its assigned iterations.
Eventually, after the work is done, all threads will be synchronized.

OpenMP offers different schedule policies that can be applied to loop iterations. The
default schedule policy, namely static, defines that loop iterations are divided into chunks
of equal size and scheduled among the executing threads. However, the static schedule
does not take into account the possible load/speed imbalance of the executing threads.
For this reason, OpenMP provides two additional schedules, namely dynamic and guided.
In dynamic and guided schedules, chunks are dynamically scheduled among the threads;
when a thread finishes one chunk, it contents for another.

The section directive provides also workshare semantics. With the use of the section
directive the work is divided into the user-defined sections. Each section is assigned to
a different thread. If the number of sections are more than the number of threads, then
some threads will eventually execute more than one sections.
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2.1.3 Data Scoping

OpenMP provides a set of constructs to define how and which data variables in the serial
section of the program are transferred to the parallel section of the program. The most
commonly used data scope constructs are:

° privat-e: This clause is used to declare a list of variables as private to each thread
for a given region. Each thread reads/modifies it’s own copies of these variables.
Private variables can either be stack variables or even global variables.

e shared: This clause is used to declare a list of variables as shared among threads.
Shared variables can either be global variables or stack variables.

e threadprivate: This directive is used to declare global file scope variables(C/C++)
or common blocks (Fortran) as thread-private among the threads. The difference
with private is that thread-private variables are able to persist among multiple
parallel regions. Each thread gets its own copy of the variables, so data written by
one thread is not visible to other threads.

By default, all variables are declared as shared. The private and shared clauses are
used in conjunction with the parallel and for directives to control the scoping of en-
closed variables. The threadprivate directive must appear after the declaration of the
associated variables.

2.1.4 Synchronization Constructs

OpenMP provides a set of synchronization directives which are necessary when program-
ming in a shared memory environment. These are the barrier, the critical, the atomic
and the flush directives. The barrier directive provides a synchronization point among
all threads in the thread team. When a barrier directive is reached, a thread will wait at
that point until all other threads-have reached the same barrier. The critical directive
specifies a critical region of code, i.e. a region of code that must be executed by only one
thread at a time. The atomic directive is a mini critical section where only a specific
memory location must be updated atomically. The flush directive is used to enforce a
consistent view of memory.

2.1.5 The Reduction Clause

The reduction clause performs a scalar operation on the variables that appear in its list.
A private copy for each variable is created for each thread. At the end of the reduction,
the reduction operation is applied to all private copies of the shared variable, and the
final result is written to the global shared variable. For example, consider the following
OpenMP/C code which calculates the value of pi:



#define N 65536
#define W 1.0/N
main(){
double pi = 0.0, 1pi;
int i;
#pragma omp parallel private(i, 1pi) reduction(+:pi)
{
1pi = 0.0;
#pragma omp for schedule(static)
for(i = 0; i < N; i++) ,
1pi += (4%W)/(1+(i+0.5))*(i+0.5)*W*W);
pi += 1lpi;
}
/* Master thread */
printf("pi = %f\n", pi);
}

Iterations of the parallel loop will be equally distributed to threads (static). Each thread
will calculate its own part of the final value of pi. At the end of the parallel loop construct,
all threads will add their private values (1pi) to update the master thread’s global copy.
Instead of using the reduction clause, we could also use the atomic directive, so as each
thread in the team atomically updates pi.

2.1.6 Library Calls and Environmental Variables |

OpenMP defines a set of library calls to perform a variety of functions. We have al-
ready seen some of them, in the previous sections. Generally, these library routines are
categorized as follows:

e Query the number of threads/processors, set number of threads to use.
o General propose locking routines.
e Set execution environment routines.

Also, the execution of the parallel code can be controlled through 4 special environmental
variables:

e OMP_NUM_THREADS: Set the default number of threads to be created at the program’s
parallel regions.

e OMP_SCHEDULE: The schedule policy used at a for construct. Valid values are static,
dynamic or guided.

e OMP_DYNAMIC: Enables or disables the dynamic adjustment of the number of threads
available for executing parallel regions. Valid values are TRUE or FALSE.
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e OMP_NESTED: Enables or disables nested parallelism. Valid values are 'TRUE or
FALSE.

2.2 The OMPi Compiler

OMPi’s source-to-source translator takes as input C source code with OpenMP directives
and outputs transformed but egquivalent C code augmented with calls to OMPi’s runtime
system. The compiler and the runtime system is entirely written in C. In its current
version, it features a parser capable of understanding programs with C99 syntax and
OpenMP v2.5 directives.

Input:
OpenMP/C
Program

parsing and Compilation with
Preproccesing Ii> Transformations :} th%g%s;‘ielgs

4

Linking with
Final Executable <:E OMPi's Runtime
Library

Figure 2.1: The compilation process.

Transformed
Code with Calls
to the Runtime
System

During parsing, which is the first phase of the compilation process, an abstract syntax
tree (AST) is built, which represents the original program. The AST is the input of the
second (transformation) phase. The transformer visits the tree nodes and acts whenever a
node containing an OpenMP statement is met; it then replaces the whole subtree rooted
at that node by a new one which mostly maintains the original block of statements but
has additional calls to the runtime system inserted at appropriate places. The third (final)
phase of the compilation process simply traverses the transformed AST and prints out
the corresponding C code. The resulting program is compiled by the system’s native C
compiler and linked with the runtime library producmg the final executable. Figure 2.1
shows the compilation steps.

2.3 OMP1i’s Transformations for Threads

While some transformations are relatively intuitive, some others are quite involved. The
most crucial transformation is the one made when an OpenMP parallel directive is en-
countered. For example, consider the following simple code in OpenMP/C:
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void £() {
#pragma omp parallel

{
printf("Hello world from thread %d\n", omp_get_thread_num());

}
g0);
}

The equivalent but multithreaded code produced by OMPi is as follows. OMPi follows the
outlining approach [7]. Specifically, the portion of the code enclosed within the parallel
directive is moved to another function (-thrFunc0.()) which is eventually called by all
created threads.

static void * _thrFuncO_(void *_arg) {
/* #pragma omp parallel -- body moved bellow */

{
printf("hello world from thread %d\n", omp_get_thread_num());

}
return (void *)0;

}

In £(), a runtime call to ort_execute_parallel() is inserted in place of the migrated
code. The master thread calls this routine to create a new team of threads. The first
argument is the number of threads to be created. The ~1 means that the runtime system
will decide for the size of the thread team. The second argument is the name of the thread
function (_thrFunc0.) and the third argument is a pointer to possible shared data among
the threads:

void £() {

{

/* #pragma omp parallel */
ort_execute_parallel(-1, _thrFuncO_, (void *)0);
}

gQ;

}

All new threads including the master thread call the thread function with the latter
returning back in £() after thread-synchronization, so as to continue with the succeeding
program code.

The most important problem arising from this design is that of variable visibility. As
we already mentioned in Section 2.1.3, OpenMP provides ways of changing the default
scope of variables used within a parallel region. For stack variables declared as private,
the compiler just clones the variable declarations into the thread function. By default,
these variables will be private among the threads. The same approach is used for global
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variables declared as private. For global variables declared as shared there is nothing
to do actually. The main problem arises for stack variables that need to be shared. The
solution is the use of pointers. For example, consider the following code in OpenMP/C:

1 int a;

2 void £ {

3 int b, ¢, d;

4 #pragma omp parallel private(d)
5 a=b+c+d;

6 }

Variables a, b, and ¢ must be shared by default. Variable d needs to be private. In this
case the resulted transformed code is the following:

void £() {
int b, c, 4;
struct { int (*b); int (*c); }_shvars = {&b, &c);
ort_execute_parallel(-1, _thrFuncO_., &_shvars);

}

Global variable a needs no special treatment since global variables are by nature shared
among threads. Variable d must be private to each thread; this is easily achieved by
cloning d’s declaration in the thread function. However, b and c are to be shared but
are stack variables. Sharing is achieved by creating pointers to them and passing these
pointers explicitly to the thread function. Threads can access them through a runtime
call to ort_get_shared_vars(). This also necessitates the transformation of the original
code (line 5) since in the thread function b and c are now pointers.

static void *_thrFuncO_(void *_arg){
struct {int (*b); int (*c);} *_shvars = ort_get_shared_vars();

int *b = _shvars->b; /#* shared non-global */
int *c = _shvars->c; /* shared non-global #*/
int d; /* private */

a = (*¥b) + (*c) + d; /* Transformation due to pointers */

return (void *) 0;

2.4 Support for Processes

OpenMP is an API for programming parallel computers with physically shared mem-
ory. When the execution environment changes to a cluster, the programming model also
changes. The two main changes are:
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e We can no longer assume the thread-execution model. Execution entities (EEs) are
now processes instead of threads

e The system’s memory is no longer shared among the processors. System’s memory
is private and distributed among the computational nodes

Notwithstanding the programming model change, we must still provide the features of
OpenMP, without changing the directives semantics. The programmer must be able to
write shared memory based programs without caring whether the program runs on an
cluster or a single multiprocessor system.

As far as the compiler is concerned, the majority of the original transformations made
for the thread-model work fine in the process-model, too. However, global variables and
OpenMP data clauses need a special treatment. In the thread-model, global variables are
by nature shared among the threads. In the process model this is not the case; global
variables are attached to each process’s private address space. Also, consider the stack
variables that need to be shared because of the presence of a shared OpenMP clause.
Pointer passing no longer works because processes can not access the stack space of each
other.

2.4.1 Global Variables

Global variables must somehow become shared among the executing processes. As we
already mentioned in Chapter 1, SVM systems provide shared memory semantics on top
of distributed memory systems. So, we have a way of allocating shared memory on top of
a cluster. The question is, how to reallocate the whole global address space into the SVM
system’s shared memory? The answer is through the compiler. In particular,

e The compiler first identifies all the user’s global variables in the program and trans-
forms them into pointers of the same type as the original variables.

e The compiler creates a constructor function; a function that will be called before
the main (), which makes a runtime call to ort_sglvar_allocate() for each global
variable.

e Finally, the ort_sglvar_allocate() routine is responsible for passing the control
to the runtime system. Upon initialization, the runtime library allocates a shared
memory area and assigns the pointer of each variable to an appropriate offset of this
area, writing in the initial variable’s value, if any.

For example, consider the following:

inta=1, b =2, c;
void f() {
#pragma omp parallel
¢c=a+b;

13



Variables a, b, ¢ are global variables and must be shared among processes. Moreover, a
and b are initialized. The resulted transformed code is the following

int _sglini_a = 1, (*a), _sglini_b =1, (¥b), (*c);

static void *_thrFuncO_(void *arg) {
/* #pragma omp parallel - body moved below */
(*c) = (xa) + (*b);
return (void *) O;

¥

Variables a, b and ¢ are all transformed into pointers of the same data type. All references
of these variables will be also transformed into pointer accesses. Moreover, 2 additional
variables, namely _sglini_a and _sglini_b, contain the initial values of a and b.

void £() {
ort_execute_parallel(-1, _thrFuncO_, (void *)0);

}

static void __attribute__((constructor))_init_shvars_0(void)

static void _init_shvars_0(void){
ort_sglvar_allocate((void **)&c, sizeof(int), (void#)0);
ort_sglvar_allocate((void **)&b, sizeof(int), (void*)&_sglini_b);
ort_sglvar_allocate((void **)&a, sizeof(int), (void*)&_sglini_a);

}.

The _init_shvars_0() is the constructor function called right before the program’smain().
It contains 3 calls to ort_sglvar_allocate(); one for each global variable. The reader
may wonder why the constructor function is necessary. Consider the case where many
independent C modules contain global variable definitions and all are linked together into
one executable file. In this case, its impossible to know all these variable definitions at the
compile time. By defining a constructor function in each C module, we guarantee that
all these constructors will be eventually called before main does. Also, we must ensure
that the constructors names are different in each file. The parser takes care of this, by
generating a unique id attached to the constructor's name.

Omni for clusters [31], follows the same strategy. However, some other implementations
such as the NanosCompiler [8], are following a different approach. In Nanos, the whole
process’s address space is shared through the underlaying SVM system. In this approach,
nothing has to be done for the global variables neither by the compiler nor the runtime
system. As we will see later in this work, letting the SVM system to handle everything
results in poor performance.
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2.4.2 Non-Global Shared Variables

Stack variables can also be declared as shared through the OpenMP shared clause. In
Section 2.3, we described the transformation made by our compiler in the case of threads.
When the execution entities are processes, the pointers created by the compiler are no
longer valid. A process can not access the private stack space of another process. However,
if the stacks of all processes are explicitly allocated in shared memory, then the mechanism
of the pointers will work without any further modifications. Considering a single level of
parallelism support, we only have to make sure the master thread (process 0) runs on a
shared stack. All other processes will access all shared stack variables through pointers
to the shared stack of the master thread. These pointers are this way valid, since they
point into a shared memory region. Note that, with this technique, the compiler needs
absolutely no modifications. We will not further discuss the implementation details in
this chapter, as the solution is implemented entirely at the runtime system.

In [14, 31] a different approach is followed. For every parallel region (a) a new shared
memory area is created (b) stack variables are copied into this area and (c) at the end
of the parallel region, variables are copied back into their original area and the shared
memory area is released. This technique needs special treatment by the compiler and also
hides a considerable amount of memory allocation/copy/deallocation overheads.
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CHAPTER 3

- OMP1 RUNTIME ARCHITECTURE

3.1 Initialization

3.2 Entering a Parallel Region

3.3 Workshare Region Scheduling

3.4 Synchronization

3.5 Handling Threadprivate Variablgs

3.6 The Interface with EELIB

The runtime system of OMPi provides the execution entities that will carry out the work
of OpenMP threads and controls their operation and synchronization. It consists of two
modules, as shown in Figure 3.1. The first module (ORT) groups the EEs, coordinates
them and schedules their execution within worksharing regions, but it does not implement
them. The second module (EELIB) is the one that implements them. A multitude of
EELIB libraries are currently available, adhering to a unified interface. ORT’s operation
is largely independent of the actual EELIB employed.

3.1 Initialization

Upon program startup, ORT is firstly invoked by a call to ort_initialize(). This
routine is responsible for initializing the whole runtime system. The compiler inserts this
call in the program’s main() function. Its duties are:
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Figure 3.1: OMPi Runtime Organization.

1. Processing the OpenMP environmental variables.
2. The initialization of the EELIB.

3. The construction of the master’s control block (eecb); an EE-specific block contain-
ing everything ORT needs in order to schedule the EE.

4. The management of the program’s global data. This is only necessary when EEs
are processes.

3.2 _Entering a Parallel Region

When called to execute a parallel region (through the ort_execute_parallel()), ORT
enters a negotiation phase with EELIB, asking for a particular number of EEs, depending
on what the program requests and whether nested parallelism and the dynamic adjustment
of the number of threads is enabled or not. After EELIB confirms the availability of EEs,
it gets instructed by ORT to release them in a bunch, as a team. When an EE from the
team commences execution, its very first obligation is to call ort_get_ee_work(), which
supplies all the information for the work the EE is supposed to do.

Specifically, among other things, it provides a pointer to the function to be executed.
At this point, each EE initializes its own eecb. The eecb includes information regarding
the team size, the id of the EE within the team, its parallel level and a pointer to the
eecb of the team’s parent. Through the latter pointer, ORT maintains a dynamic tree
of eecbs which grows whenever a new team of EEs is unleashed and shrinks whenever a
team completes the execution of a parallel region. In Figure 3.2, such a tree is depicted.
Upon startup, the sole EE running is the initial EE and operates in level 0. Whenever,
an EE encounters a parallel region, it becomes the parent of the spawned team; if the
parent is in level ¢, its children lie in level i 4+ 1. Also, note that a new eccb is created for
the parent of the tcam, as a member of the spawned team. When the parallel region is
over, the parent assumes again it’s original eecb. The eecb holds additional information
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Figure 3.2: An example of the dynamic tree of eecbs.

for the EE that becomes a parent of a new team. This includes a barrier structure for
synchronizing the team members, a copyprivate staging area {or single constructs that
require it and a structure with scheduling information for work-sharing regions.

There is no prerequisite regarding an EE’s level, providing thus full and unlimited support
for nested parallelism, as long as EELIB is willing to supply EEs.

3.3 Workshare Region Scheduling

OpenMP defines three workshare directives, namely, for, sections and single whereby
the work is divided appropriately among the participating EEs. These code regions are
normally blocking, in the sense that they conclude with an implied barrier that synchro-
nizes the EEs before letting them continue their execution. However, when the nowait
clause is present, there is no implied barrier and the region is non-blocking; such regions
present bookkeeping complications. In all three directives, the runtime library needs some
kind of counters to count the number of EEs that have passed through their regions. For
example, in the sections case we need a counter z so as to assign the xth section to the
zth arriving EE. For a single region; a region that must be executing by only one EE,
all but the first EE that arrives should not execute the region. In order to ensure this, we
need a counter or a flag. However, keeping a counter or a flag for servicing all workshare
regions is impossible when regions are non-blocking. This is because some EEs of the
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team may advance to subsequent workshare regions. In this case, multiple regions can be
active at any given time. A workshare region is active when:

e at least onc EE has entered and
¢ not all EEs have passed through it yet.

A solution to the problem could be to keep seperate counters or flags for each workshare
region. The compiler statically numbers the directives, giving each one a unique id. This
id is then used by the library to index the corresponding counter. However, this approach
does not solve the problem completely. For example, consider the case where a single
or a sections directive is called repeatedly within a loop. In this case, a counter or flag
for this region is not enough. EEs proceed with different speeds and, due to the nowait
clause, chances are that different EEs may have encountered the same region a different
number of times at any given moment.

Solutions to this problem include bookkecping using a dynamically allocated list of work-
share region structures [3] or avoiding the problem altogether by disallowing more than
one non-blocking regions to be simultancously active, as in the runtime library of the
Omni compiler [31]. The approach followed in OMPi is similar to [18]. In the control
block of the parent of a team, ORT maintains a preallocated workshare queue of fixed
size (MAXWS) with bookkeeping information about each active workshare region. Stored
information includes construct-specific data (e.g. the number of remaining sections for a
section construct; the next iteration to be scheduled and the increment step for a for
construct; locks for protecting accesses to this data by the EEs of the team) plus queue-
related data, such as the number of EEs that have exited (finished) this region. When
the tail and the head of the queue arc MAXWS regions apart, i.e. there are MAXWS
simultaneously active regions, any EE that tries to activate a new region gets blocked
until the tail of the queue advances. This way, we avoid the cost of dynamic adjustment
of the capacity of the queue, without introducing the artificial barrier required in [18].

ORT optimizes the operation of the workshare queue by using lock-free accesses when
possible and by employing atomic operations if available, resorting to plain locking when-
ever really necessary. A final optimization is the avoidance of the full initialization of the
queue. Every time a new team of EEs is created, all regions of the queue must be properly
initialized by the parent before being put to use. If MAXWS is not small this results in
a major overhead. ORT avoids this by initializing only the first region of the queue; the
first EE to enter a new non-blocking region is responsible for initializing the next region
in the queue. This way, at any given time, the queue has one extra region ready for use.

From ORT’s point of view, two routines are always involved when a workshare directive
is encountcred. Every EE begins its region with an ort_enter_workshare_region() call
and finishes it with an ort_leave workshare region() call. These two calls do all the
management of the workshare queue. If the EE is the first to enter a workshare region,
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it is responsible for initializing the region’s specific structure and also prepare the next
region in the queue. All other EEs entering the region do absolutely nothing. When the
EE finishes its assigned work, it just calls the ort_leave _workshare _region() routine.
If the EE is the last to leave, it marks the region as empty. Otherwise, it just decrements
the notleft counter. Marking the region as empty, enables us to do a kind of recycle; the
region’s structure can be used again by a subsequent workshare region in the program.

We close this section with an example:

void £() {
int i;
#pragma omp parallel
#pragma omp for private(i) schedule(static)
for(i = 0; i < 100; i++)
do_some_calculations(i);

}

This is a simple program using the for directive and static schedule. The function
called by all EEs is _thrFunc0_():

1 static void * _thrFuncO_(void *arg)

2 {

s {

4 int i;

5 . int from_ = 0, to_ = 0, step_;

6 struct _ort_gdopt_ gdopt_;

T

8 step_ = 1;

9 ort_entering_for(1, 0, 0, step_, &gdopt_);
10 if (ort_get_static_default_chunk(0, 100, step_, &from_, &to.))
1 { -

12 for(i = from; i < to_; i =i + 1)

13 do_some_calculations(i);

14 }

15 ort_leaving_for();

16 }

17 return(void*)0;

1}

The first ORT routine called by each running EE is ort_entering for () (line 9). Inter-
nally, this routine includes a call to ort_enter _workshare region(). Its first argument
informs ORT about the region type; blocking or non-blocking. 1 means that the region
is non-blocking, i.e. it has a nowait clause. However, the compiler is clever enough to
see that there is no need to have two barriers at the end of the parallel region; one for
the parallel directive and one for the for directive. So, it removes the implied for
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barrier and tells ORT that its a nowait region. The second argument tells ORT if the
for directive is combined with the ordered clause or not. The third and forth arguments
are the loop’s lower bound and step, respectively. The last argument is used only for
optimizations at guided and dynamic schedules. The ort_get_static_default_chunk()
is responsible for scheduling the loop’s iterations among the calling EEs (line 10). Finally,
each EE finishes the region by calling the ort_leaving for() (line 15) which internally
just calls ort_leave_workshare_region().

3.4 Synchronization

ORT provides support for the synchronization directives of OpenMP. ORT provides an
efficient barrier implementation for the support of the barrier directive. The compiler
replaces the directive by a call to ort_barrier me(). When an EE calls this routine, it
marks itself as blocked, using a shared array, and waits until the parent of the team wakes
it up. Waiting is achieved by spinning on a flag. However, in order not to waste CPU
cycles, EEs are spinning for a while and then yield. When the parent of the team reaches
the barrier, it waits until all other EEs have rcached the barrier. This is achieved by just
checking the shared array. When this is done, it just sets the flag to true and releases all
waiting threads. This is the default ORT’s barrier implementation. However, ORT gives
the programmer the ability to avoid it and use his own barrier implementation, if needed.

The critical and atomic directives are treated in the exact same way by ORT. EELIB’s
lock routines are used to provide the necessary mutual exclusion. The compiler places an
ORT call at the beginning of the code to be protected and an ORT call at the end. For
atomic directives, the same lock is used for all atomic operations. This lock is declared
and initialized inside ORT. However, this is not the case for the critical directive.
OpenMP allows critical directives to have distinct names. For this reason, the compiler
declares a global lock for each distinct critical region and passes it to ORT. The first EE
entering the critical region is also responsible for the initialization of the lock.

3.5 Handling Threadprivate Variables

ORT also provides the necessary mechanisms for handling the OpenMP threadprivate
variables. The threadprivate directive specifies that named global-lifetime variables are
replicated, with each thread having its own copy. The support of threadprivate variables is
not a straightforward procedure under the original thread model. This is because, global
variables are by nature shared among threads. The exact opposite occurs in the process-
model. All global variables are by nature process-private and we need a mechanism to
make them shared.
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Both the compiler and the runtime library are involved in the implementation of the
threadprivate directive. For example, consider the following piece of code, where vari-
ables a and b are threadprivate:

int a, b = 1;
#pragma omp threadprivate(a,b);
void £()
{
#pragma omp parallel copyin(b)
a = omp_get_thread_num() + b;

}

The function containing the parallel code follows. Variables a and b are transformed
into tp_a and tp_b, respectively. The compiler also assigns a thread-specific data key to
each threadprivate variable; the tp_a key is dedicated to variable a and the tp_b_key is
dedicated to b. As specified by the POSIX standard, all threads use the same key but
they can have different values associated with it.

1 int tp_a, tp_b = 1;

2 8tatic void *tp_a_key;

a3 static void *tp_b_key;

s static void * _thrFuncO_(void *arg)
s {

6 int (* a)
7 int (* b)

ort_get_thrpriv(&tp_a_key_, sizeof(tp_a), &tp_a.);
ort_get_thrpriv(&tp_b_key, sizeof(tp_b_), &tp_b_);

8 /* Copyin initialization(s) */

) *b = tp_b;

10 ort_barrier_me();

1 (*a) = omp_get_thread_num() + (*b);
12 return(void *)0;

13}

Each thread entering the _thrFunc0_() function must initialize its own threadprivate
copies. This is because, at line 11, threads must refer to their own threadprivate variables.
This is achieved by using calls to the ORT’s ort_get_thrpriv() routine (lines 6-7). Its
arguments are the key, the size and a pointer to the variable. First, each thread allocates
a memory area for the variable and copies in its initial value. The thread associates this
area with the compiler’s dedicated key. From now on, threads can “remember” their own
threadprivate copies of each variable by using only the variable’s key. These memory
areas are not freed until the program terminates. Consequently, threads maintain their
threadprivate variables among different parallel regions in the program.

The implementation of the copyin clause is relatively simple. The copyin clause simply
specifies that all threadprivate variables appearing in its list must be initialized using
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the master’s corresponding values, before the actual parallel execution begins. Con-
sider the previous example. The master thread is the only thread that uses the origi-
nal variables tp_a and tp_b as its threadprivate copies. This is managed internally in
ort_get_thrpriv(). These variables are accessible by all threads, since they are global
scope. In this way, the master thread initializes b (line 1), and all other threads main-
tain its value by simply accessing it (line 9). A barrier is necessary (line 10) in order to
ensure that all threads have completed the threadprivate initializations before the actual
execution begins.

The copyprivate clause needs more effort by ORT. The copyprivate clause appears
only in the single directives. It provides a mechanism to use a threadprivate variable to
broadcast a value from one member of a team to the other members. The broadcast is done
by calling ORT’s ort_broadcast_private(). This routine takes as its input the pointers
to the thread’s private variables to be broadcast. In this routine, the thread (owner)
dynamically constructs an array of pointers. This array is maintained at the parent’s eecb
so as all threads can access it. The other thread members just call ort_copy_private()
to copy the new values into their threadprivate variables. Each of them, accesses the
owner’s variables (through the pointer array) and copies them into its own threadprivate
space.

3.6 The Interface with EELIB

EELIB is responsible for providing all execution entities except the master EE, plus three
types of locks: normal, nested and spin locks. The first two types are made available to
the programmer through the OpenMP runtime library interface, while the third type is
only used internally in ORT. When execution entities are threads, EELIB has no other
obligation, as everything is handled entirely by ORT. However, when execution entities
are processes, EELIB’s interface in slightly extended to support the new execution envi-
ronment. A shared memory allocation routine must now be provided by EELIB. Also,
ORT’s communication subsystem needs access to some special structures held by EELIB.
All these issues, will be discussed in detail in the following Chapter.

Upon initialization, EELIB announces its capabilities to ORT, which include support of
nested parallelism, support for dynamic adjustment of the number of EEs, the maximum
number of EEs and the maximum number of nested parallelism levels supported. Regard-
ing the EEs, EELIB implements three functions that are called by ORT (see Figure 3.3):
ee_request (), ee_create() and ee waitall(). The first two are used when creating a
new team. The parent asks for a particular number of EEs through a ee_request () call.
EELIB replies with the actual number it can provide. In EELIBs that do not support
nested parallelism, the number returned is always 0 when called from a level > 1. If the
EELIB can not provide the requested number of EEs, and the dynamic adjustment of the
number of EEs is disabled, the program is forced to an early termination. Otherwise, if
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Figure 3.3: EELIBS and interface with ORT.

the dynamic adjustment is enabled, the program continues its execution with a warning.
Thereafter, ORT calls ee_create() to instruct EELIB to actually create the requested
EEs. ORT passes to EELIB all the necessary information it needs in order to create and
direct the execution of the EEs, i.e. the number of EEs to be created and the function
to be executed by all EEs. When an EE from the team commences execution, its very
first obligation is to call ort_get_ee_work(), which fills in the EE’s control block with the
necessary information for the EE to proceed with the parallel region’s execution. This
routine is implemented in ORT. Upon completion of the parallel region, the master EE
calls ee_waitall() and blocks until all other EEs in the team have finished their work.

24



CHAPTER 4

OMPI1 AND NESTED PARALLELISM

4.1 Nested Parallelism in OpenMP
4.2 Enabling Nested Parallelism in OMPi
4.3 Measuring the OpenMP Overheads

4.4 Assessing the Performance

4.1 -Nested Parallelism in OpenMP

Nested parallelism has been a major feature of OpenMP since its very beginning. As a
programming style, it provides an elegant solution for a wide class of parallel applications,
with the potential to achieve substantial processor utilization, in situations where outer-
loop parallelism simply can not. However, even nowadays, the level of support is varying
greatly among compilers and runtime systems. Even some of the proprietary OpenMP
compilers do not fully support nested parallelism.

For applications that have enough and balanced outer-loop parallelism, a small number
of coarse threads is usually enough to produce satisfactory speedups. In many other
cases though, including situations with multiple nested loops, or recursive and irregular
parallel applications, threads should be able to dynamically create new teams of threads
because only a large number of threads has the potential to achieve good utilization of
the computational resources. Figure 4.1 shows the classic example of Fibonacci numbers;
the nth Fibonacci number is calculated recursively as the sum of the (n — 1)th and the
(n — 2)th. In each recursive call, two threads are spawned with each one executing a
section. As a result, the number of threads grows exponentially. If nested parallelism
is not supported, speedup is limited to 2 because only two threads will be created at the
first parallel region and will take the responsibility of executing all the required recursive
calls.
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The OpenMP specification [1] leaves support for nested parallelism as optional, allowing
an implementation to serialize the nested parallel region, i.e. execute it by only one thread.
In implementations that support nested parallelism, the user can choose to enable or
disable it either during startup through the OMP_SET_NESTED environmental variable or
dynamically at runtime through an omp_set_nested() call. The number of threads that
will comprise a team can by controlled by the omp_set_num_threads() library call. This
routine is only allowed to appear in sequential regions of code and consequently there is
no way to specify a different number of threads for inner levels of parallclism. For this
reason, OpenMP since version 2.0 provides the num_threads(n) clause. Such a clause
can appear in a (nested) parallel directive and request that this particular region be
executed by exactly n threads.

int fibonacci(int n)

{
int f1, £2;

if(n < 2) return 1;
#pragma omp parallel sections num_threads(2)

{
#pragma omp section
f1 = fibonacci(n-1); /* Recursive call */
#pragma omp section
f2 = fibonacci(n-2); /* Recursive call */
. }
return (f1+£2);

Figure 4.1: Fibonacci numbers using nested parallelism.

However, the actual number of threads dispatched in a (nested) parallel region depends
also on other things. OpenMP provides a mechanism for the dynamic adjustment of
the number of threads which, if activated, allows the implementation to spawn fewer
threads than what is specified by the user. In addition to dynamic adjustment, factors
that may affect the actual number of threads include the nesting level of the region, the
support/activation of nested parallelism and the peculiarities of the implementation.

According to the OpenMP specification, an implementation which serializes the nested
parallel regions, even if nested parallelism is enabled by the user, is considered com-
pliant. An implementation can claim support of nested parallelism if nested parallel
regions may be executed by more than 1 thread. Because of the difficulty in handling
efficiently a possibly large number of threads, many implementations provide support for
nested parallelism but with certain limitations. For example, there exist systems that
support a fixed number of nesting levels; some others allow an unlimited number of nest-
ing levels but have a fixed number of simultaneously active threads. In the latter case,
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a nested parallel region may be executed by a smaller number of threads than the one
requested, if there are not enough free threads.

4.2 Enabling Nested Parallelism in OMPi

Two threading libraries are available for OMPi: a library based on POSIX threads
(PTHR1) and a library based on Solaris threads (SOL1). The architecture of both li-
braries is identical. The only thing that changes is the type of the kernel threads used
(POSIX or Solaris). Both libraries provide a single level of parallelism, i.e nested paral-
lelism is not supported. In this section, we present a new threading library (PTHR) based
on POSIX treads, which provides support for nested parallelism, while maintaining good
performance levels even for the non-nested case.

We focused on the EELIB part of the runtime and managed to develop a new threading
library specifically for supporting nested parallelism. The new library is called PTHR and
utilizes POSIX threads. We also developed an equivalent library based on Solaris threads
called SOL (see Figure 3.3).

4.2.1 The PTHR Threading Library

In order to provide full nested parallelism support, the PTHR library must be able to
supply the requested number of threads, whenever ORT asks for it. This means that, if
ORT }equests for z threads at any parallel level y > 1, and the dynamic adjustment of
the number of threads is disabled, the PTHR library is forced to release a bunch of z
threads.

From the PTHR’s point of view, this can be achieved by dynamically creating the re-
quested threads using explicit pthread_create() calls. In this case, z threads will be
created from scratch. Although this is a complete solution, it involves quite high book-
keeping overheads. These overheads are actually inevitable because we can not really
guess the number of threads (so as to pre-create them) that ORT will eventually request
upon a parallel region entrance. Even if this could be possible, the efficient management
of a large number of threads has been proved to be not an easy task. For instance, time-
sharing can significantly increase the implicit synchronization overheads associated with
the thread management. '

However, when the dynamic adjustment of the number of threads is enabled, the EELIB
part is the one that decides on how many EEs it will supply to ORT. Based on this, we
can still provide efficient but limited nested parallelism support. Our purpose is to limit
the number of created threads. Specifically, the PTHR library pre-creates a fixed number
of threads based on ORT’s instructions. Whenever ORT asks for a particular number
of threads, PTHR checks for available (idle) threads; these are the only threads it can
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supply ORT with. Threads that finish their execution become idle. When all PTHR’s
threads are busy, the PTHR can not service ORT’s request. In this case the (nested)
parallel region is serialized.

Upon initialization, PTHR creates a pool of idle threads. The size of the pool is deter-
mined by ORT and depends on two factors: a) the OMP_SET_NUM_THREADS environmental
variable and b) the number of the physical processors. If the user does not explicitly
declare the OMP_SET_NUM_THREADS variable, then PTHR creates as many threads as the
system’s processors. The pool is actually a plain queue. Each thread is associated with
a specific node in the pool, which contains thread-specific information including a flag
representing the current state of thread (running or idle), the thread id within the team
and the function to be executed.

Initially, the queue is occupied by threads waiting to be scheduled. Each thread waits by
spinning on its own private flag. In order to avoid oversubscribing the processors, threads
spin for a relatively small number of iterations and then yield the processor. Upon an
ee_request () call, the PTHR library must inform ORT about thread availability. If it
is called from level = 0, the caller is the master thread. Otherwise, it may be called by
multiple threads which encounter a nested parallel region. In both cases, the requester
checks the size of the pool. This is done by just reading a global counter (plen) which
keeps the current size of the pool. If the requested number is smaller or equal to plen
then PTHR is capable of serving the request. Otherwise, PTHR can partially serve the
request with exactly plen threads. Before returning, ee_request() updates the size of
the pool. Since many threads are simultaneously competing for the same global pool, the
plen variable must be accessed and updated atomically. This is achieved by using a spin
lock named plock. When level = 0, the use of plock is unnecessary, because the only
running thread is the master.

The ee_create() call signals the start of the parallel execution. Its argument list includes
the number of threads to be released (numthr), the function to be executed by all team
members (workfunc) and a pointer to the team parent’s eecb. The latter is used so as
each thread remembers its own team parent. PTHR dispatches numthr threads from the
pool and gives them work to do. Specifically, it traverses the first numthr pool elements,
supplying each thread with an execution id, a pointer to the workfunc function and a
pointer to the parent’s eecb. It releases each initialized thread by simply setting its spin
flag to false.

When a thread finishes the execution of the workfunc function, it simply rejoins the
pool so as to be able to serve another request. Due to the implicit barrier at the end of
every parallel region, threads rejoining the pool must somehow inform the parent of the
team about their completion. This is achieved by keeping an extra field at the parent’s
eecb. This field is declared in ORT but is only accessible by PTHR. It is a pointer to
a PTHR structure (info) containing two things: a) a running counter which represents
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the number of running threads in the team and b) a spin lock for accessing this counter.
A thread that becomes a parent of a team for the first time is responsible for initializing
its info structure. Each thread after rejoining the pool, accesses the info structure of
its parent and decrements running by 1. Finally, when the parent calls ee_waitall(), it
blocks until the running counter becomes 0.

We can not claim that our implementation provides full nested parallelism support. This
is because the PTHR library can not create new threads on the fly when the pool has
ran out of threads. However, the user can ensure that enough threads will be available to
serve nested parallel regions by simply setting the OMP_SET_NUM_THREADS environmental
variable to the total desirable number. In this way, the pool will always maintain a
sufficient number of threads in order to serve the program’s requests.

Omni [31] handles nested parallelism in the same way; the special OMPC_NUM_PROCS en-
vironmental variable determines the size of the pool. In the Balder runtime library of
OdinMP [20] the pool size is not fixed; it is expanded whenever it is necessary. All ven-
dors that support nested parallelism also utilize on a pool of kernel threads. Specifically,
in the Intel compiler [34], threads are not created until the first parallel region is executed,
and only as many threads as needed by that parallel region are created. Further threads
are created as needed by subsequent parallel regions. However, threads that are created
by the runtime library are not destroyed but join a thread pool until they are called to
participate in a subsequent team. In GOMP [29], the OpenMP implementation for GCC,
the pool is exploited only for non-nested parallel regions, while threads arc dynamically
created for inner levels.

Our PTHR library, which has become the default EELIB of OMPi, although providing
limited support of nested parallelism, is mostly optimized for single-level parallelism. For
cases where deep nesting levels are expected, other libraries should be employed, e.g. the
PSTHREADS [12] library. This library implements a two-level thread model, where user-level
threads are executed on top of kernel threads that act as virtual processors. The number
of the virtual processors never exceeds the number of the physical processors. Each virtual
processor is a POSIX kernel thread which runs a dispatch loop, selecting the next-to-run
user-level thread from a set of ready queues, where threads are submitted for execution.
The primary user-level thread operations are provided by UthLib (Underlying Threads
Library), a platform independent package. The PSTHREADS library is completely portable
because its implementation is based entirely on the POSIX standard. The management
of nested parallelism situations is efficiently handled by using adaptive work distribution
schemes, such as thread migration.

4.3 Measuring the OpenMP Overheads

Despite the significance of nested parallelism in OpenMP, there is no research study
made until now measuring the overheads associated with OpenMP constructs when nested
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parallelism is in effect. Most works focus on application speedups, which give overall
performance indications but do not reveal potential construct-specific problems.

The well known EPCC microbenchmark suite [4, 5] is the most commonly used tool
for measuring runtime overheads of individual OpenMP constructs. However, it is only
applicable to Single-level parallelism. We managed to develop a set of benchmarks based
on the EPCC microbenchmarks which measure the overheads of OpenMP constructs
under nested parallelism. Using these benchmarks, we experimented with several freeware
and commercial OpenMP compilers. The results of this section have been presented in

[9]-

4.3.1 The EPCC Microbenchmark Suite

The EPCC microbenchmarks are divided into two parts. The synchronization part mea-
sures the overheads of OpenMP constructs that require barrier synchronization (e.g.
parallel, parallel for, single, etc) along with OpenMP constructs that require mu-
tual exclusion (e.g. critical, atomic, etc). The other part is the scheduling part.
This measures the overheads associated with the schedule policies of OpenMP, static,
dynamic or guided, using a set of different configurations of the chunksize parameter.

The technique used to measure the overheads of the OpenMP directives, is to compare
the time taken for a scction of code to be executed sequentially with the time taken for the
same code executed in parallel, enclosed within a given directive. Let T, be the execution
time of a program on p processors and 73 be the execution time of its sequential version.
The overhead of the parallel execution is defined as the total time spent collectively by the
p processors over and above T, the time required to do the “real” work, i.e. Ty, = pT,—T;.
The per-processor overhead is then T, = T,,—T; /p. The EPCC microbenchmarks measure
T, for the case of single-level parallelism using the method described below.

A reference time, T, is first ﬁxéd, which represents the time needed for a call to a
particular function named delay(). To avoid measuring times that are smaller than
the clock resolution, 7; is actually calculated by calling the delay() function sufficiently
many times:

for (j = 0; j < innerreps; j++)
delay(delaylength);

and dividing the total time by innerreps. 7T, is actually representing the time needed for
the sequential execution. Then, the same function call (delay()) is surrounded by the
OpenMP construct under measurement, which is in turn enclosed within a parallel direc-
tive. For example, consider the EPCC code that measures the for directive overheads,
as shown in Figure 4.2.
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1 testfor() {

3 tl = getclock(); /* start measurement */
4 #pragma omp parallel private(j)

s {
6 for (j = 0; j < innerreps; j++)

7 #pragma omp for

8 for (i = 0; i < p; i++)

9 delay(delaylength);

w )

o t2 = ’getclock(); /* end measurement */
12 )

Figure 4.2: Portion of the testfor () EPCC microbenchmark routine.

At line 4, parallel execution begins. The created threads, which are as many as the pro-
cessors, execute repeatedly the code of lines 7-9 for innerreps iterations. The parallel
loop (line 8) has to schedule p iterations on exactly p threads using the default static
schedule. That means that the loop’s iterations will be equally distributed to the threads
with each one of them getting exactly one iteration. Consequently, each thread will even-
tually execute the delay function for innnerreps times which means that each thread’s
work requires a total of 7} time.

The ;;arallel execution time, T}, is then defined as time needed to execute the whole
measurement (lines 4-10), divided by innerreps. The overhead of the for directive is
derived as T, — T, since the total work done needs actually p7;, sequential time. Notice
that, the measurement includes the time taken by the parallel directive. In order to
avoid this, innerreps is large enough so the overhead of the parallel directive can be
safely ignored. Each overhead measurement is repeated several times and the mean and
standard deviation are computed over all measurements.

The thread/processor mapping plays a crucial role in the measurements. We must ensure
that the number of threads running the parallel region of each measurement is equal to
the number of present processors. This is because, we do not want to overestimate the
overheads due to the time-sharing of the processors.

4.3.2 Our Methodology

To study how efficiently OpenMP implementations support nested parallelism, we have
extended both the synchronization and scheduling microbenchmarks of the EPCC suite.
According to our approach, the core benchmark routine for a given construct (e.g. the
testfor() discussed above) is represented by a task. Each task has a unique identifier and
utilizes its own memory space for storing its table of runtime measurements. We create a
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tcam of threads, where each member of the team executes its own task. When all tasks
finish, we measure their total execution time and compute the global mean of all measured
runtime overheads. Our approach is outlined in Figure 4.3. The team of threads that
execute the tasks expresses the outer level of parallelism, while each benchmark routine

(task) contains the inner level of parallelism.

1 void nested_benchmark(char *name, func_t originalfunc) {
2 int task_id;
3 double t0, t1;

5 t0 = getclock();
6 #ifdef NESTED_PARALLELISM

7 #pragma omp parallel for schedule(static,1)
8 #endif

9 for (task_id = 0; task_id < p; task_id++) {
10 (*originalfunc) (task_id);

11 }

12 tl = getclock();

13

14 <compute global statistics>

15 <print construct name, elapsed time (ti-t0), statistics>
6} '

17

18 main() {

19 <compute reference time>

20 omp_set_num_threads(omp_get_num_procs());
21 omp_set_dynamic(0);

22 nested_benchmark ("PARALLEL", testpr);

23 nested_benchmark("FOR", testfor);

24

25 }

Figure 4.3: Extended microbenchmarks for nested parallelism overhead measurements.

In Figure 4.3, if the outer loop (lines 9-11) is not parallelized, the tasks are executed
in sequential order. This is equivalent to the original version of the microbenchmarks,
having each core benchmark repeated more than once, due to the presence of the for loop
(line 9). On the other hand, if nested parallelism is enabled, the loop is parallelized (lines
6-8) and the tasks are executed in parallel. Each thread of the first parallel level calls
the corresponding measurement function (e.g. testfor) using its taskid. The number of
simultaneously active tasks is bound by the number of OpenMP threads that constitute
the team of the first level of parallelism. To ensure that each member of the team executes
exactly one task, a static schedule with chunksize of 1 was chosen at line 7. In addition,
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to guarantee that the OpenMP runtime library does not assign fewer threads to inner
levels than in the outer one, dynamic adjustment of threads is disabled through a call to

omp_set_dynamic (0).

By measuring the aggregated execution time of the tasks, we use the microbenchmark
as an individual application. This time does not only include the parallel portion of the
tasks, i.e. the time the tasks spend on measuring the runtime overhead, but also their
sequential portion. This means that even if the mean overhead increases when tasks are
executed in parallel, as expected due to the higher number of running threads, the overall
execution time may decrease.

In OpenMP implementations that provide full nested parallelism support, inner levels
spawn more threads than the number of physical processors, which are mostly kernel-
level threads. Thus, measurements exhibit higher variations than in the case of single-
level parallelism. In addition, due to the presence of more than one team parents, the
overhead of the parallel directive increases in most implementations, possibly causing
overestimation of other measured overheads (see Fig. 4.2). To resolve these issues, we
increase the number of internal repetitions (innerreps) for each microbenchmark, so as
to be able to reach the same confidence levels (95%). A final subtle point is that when
the machine is oversubscribed, each processor will be timeshared among multiple threads.
This leads to an overestimation of the overheads because the microbenchmarks account
for the sequential work (7;) multiple times. We overcame this by decreasing delaylength
so that 7, becomes negligible with respect to the measured overhead.

4.4 Assessing the Performance

Using our methodology, we experimented with a set of freeware and commercial OpenMP
compilation systems. The freeware compilers are OMP1 0.9.0, Omni 1.6 and GCC 4.2.0.
The commercial ones are the Intel C++ 10.0 compiler (ICC) and the Sun Studio 12
(SUNCC). For OMPi and Omni which are source-to-source compilers we chose to use
GCC as the naitive back-end compiler. Also, OMPi was tested using two configurations,
namely OMPi+PSTHR (PSTHREADS) and OMPI+POSIX. The latter configuration
utilizes our implementation of the PTHR library.

All our measurements were taken on a Compaq Proliant ML570 server with 4 Intel Xeon
111 single-core CPUs running Debian Linux (2.6.6). Although this is a relatively small
SMP machine, size is not a issuc. Our purpose was to create a significant number of
threads, which exceeds the number of available processors (4), in order to exploit the
effects of nested parallelism. In the first level of parallelism, 4 threads are always created.
Each one of them calls the original benchmark routine where it creates 2, 4 or 8 threads
for testing a given directive. Consequently, the benchmark application creates a total of
4x2=28,4x%x4=16or 4 x 8 =32 threads, respectively.
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Most implementations start by crcating an initial pool of threads, usually equal in size
to the number of available processors, which is 4 in our case. In order to be sure that
an implementation will actually create the requested number of threads in both parallel
levels, we disabled the dynamic adjustment of the number of threads using a call to
omp_set_dynamic (0). For the case where 4 x 4 = 16 threads need to be created, we only
had to make a call to omp_set_num threads(4) upon the application startup. In all other
cases, we explicitly set the number of inner thrcads using the num_threads() clause.

However, Omni and OMPi can not create more than 4 threads on the fly, even if is needed;
they support nested parallelism as long the initial pool has idle threads, otherwise the
nested parallel regions get serialized. To overcome this problem, in OMPi, we explicitly
set the desired number of threads to be created using the OMP_NUM_THREADS environmental
variable. In this way, the pool always maintains a sufficient number of threads to serve
the parallel regions. The same thing was done also in Omni, using the OMPC_NUM_PROCS
environmental variable. We have, however, been careful not to give those two imple-
mentations the advantage of zero thread creation overhead since with the above trick all
threads are pre-created. For this reason, we include a dummy nested parallel region at
the top of code, so as all implementations have the chance to create the requested number
of threads before the actual measurements commence.

Our first set of results is depicted in Figure 4.4. We present the overheads of the parallel,
for, single and critical directives, when 4 X 4 total threads are active. Each plot also
includes the single-level overheads of each compilation system for reference. As we were
expecting, overheads are increased when nested parallelism is in effect, mainly duc to
the presence of more active threads. We observe however that Intel, GCC, and Omni
do not scale well in the parallel construct, although ICC remains quite fast. For all
three of them, the runtime overhead is more than an order of magnitude higher in the
case of nested parallelism. For ICC this could be attributed, in part, to the fact that
threads join a unique central pool before getting grouped to teams [34]. On the other
hand, both OMPi+POSIX and SUNCC clearly scale better and their overheads increase
linearly, with SUNCC, however, exhibiting higher overheads than OMPi for both single
level and nested parallelism.

Similar behavior is scen for the for and single constructs, except that GCC shows sig-
nificant but not excessive increase. The Sun compiler seems to handle loop scheduling
quite well showing a decrease in the actual overheads. This, combined with the decrease
in the single overheads, reveals efficient team management since both constructs in-
cur mostly inter-tcam contention. On the other side, Omni does not scale well in both
situations. Among all, ICC and OMPi+POSIX have the smallest overheads for the single-
level case, while OMPi+PSTHR has the smallest overheads, when nested parallelism is
in effect. Especially in the single construct, OMPi+PSTHR shows the advantage of
uscr-level threading: inner levels are executed by user-level threads, which mostly live
in the processor where the parent thread is, eliminating most inter-team contention and
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the associated overheads. In contrast, the (unnamed) critical construct incurs global
contention since all threads from all teams must compete for a single lock protecting the
critical code section. Overheads are increased significantly in all systems, suggesting that
unnamed critical constructs should be avoided when nested parallelism is required.

Figure 4.5 includes results from the scheduling microbenchmarks. For presentation clar-
ity, we avoided reporting curves for a wide range of chunksizes; instead we include results
for (static,1), (dynamic,1), (dynamic,8) and (guided,1). Schedules with a chunk-
size of 1 represent the worst cases, with the highest possible scheduling overhead. This is
because, threads execute only one loop iteration before the compiler reschedules them for
another one. Moreover, due to the nature of the dynamic and guided schedules, threads
are continuously competing to gain a loop iteration. Scheduling overheads increase, as
expected, for the static and guided schedules in the case of nested parallelism. The
high overheads of OMPi+POSIX are mainly due the excessive locking that take place.
It is expected that with the use of appropriate atomic operation primitives which are
nowadays available, those overheads will disappear.

Overheads of the dynamic scheduling policy seem to increase at a slower rate and in some
cases (SUNCC, GCC and OMPi+PSTHR) actually decrease, which scems rather surpris-
ing. This can be explained by the fact that for this particular scheduling strategy and
with this particular chunk size, the overheads are dominated by the excessive contention
among the participating threads. Recall that 16 threads need to be scheduled on 4 pro-
cessors. With locality-biased team management, which groups all team threads onto the
same CPU, and efficient locking mechanisms, which avoid busy waiting, the contention
has the potential to drop sharply, yielding lower overheads than in the single-level case.
This appears to be the case for the Sun Studio and GCC compilers. OMPi with user-
level threading achieves the same goal because it is able to assign each independent loop
to a team of non-preemptive user-level OpenMP threads that mainly run on the same
processor. However, as the chunksize increases, jobs become coarser and any gains due to
contention avoidance vanish. This case is depicted in the third plot of Figure 4.5. As the
chunksize increases to 8, nested overheads increase for all implementations with respect
to the single-level case.

In Figures 4.6 and 4.7 we present the results of our next experimentation: we delved
into discovering how the behavior of our subjects changes for different populations of
threcads. We fixed the number of first-level threads to 4 but changed the second-level
teams to consist of 2, 4 and 8 threads, yielding in total 8, 16 and 32 threads on the 4
processors. Because this was only possible using the num_threads() clause (an OpenMP
V.2.0 addition), Omni was not included, as it is only V.1.0 compliant. Figures contain
one plot per compiler, including curves for most synchronization microbenchmarks.
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Figure 4.5: Scheduling overheads for static, dynamic and guided.
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The results confirmed what we expected to see: increasing the number of threads in
the second level leads to increased overheads. We observe that the parallel and the
reduction directives exhibit exponential behavior in ICC and GCC. The latter seems
that it can not handle the situation when 32 threads are present. By far, the most
scalable behavior is exhibited by the OMPi+PSTHR setup, although in absolute numbers
the Intel compiler is in many cases the fastest. Finally, the overheads of SUNCC on all
cases are directly comparable with the ones of OMPI4+POSIX, which seems to have a
graceful reaction to increasing number of threads, while maintaining very low overheads
for a single-level parallelism.
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Figure 4.6: Synchronization overheads for OMPi 'on a different population of threads.
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CHAPTER 5 :

SHARED VIRTUAL MEMORY AND OPENMP
FOR CLUSTERS

5.1 An Introduction to Shared Virtual Memory

5.2 OpenMP and Shared Virtual Memory

5.1 -An Introduction to Shared Virtual Memory

Shared virtual memory (SVM) is a single address space shared by a number of processors
in a distributed environment such as a cluster. Any participating processor has a memory
mapping manager which implements the mapping between its local memory and the
shared memory address space. Other than mapping, managers are also responsible for
keeping the shared address space consistent at all times.

The difference between the hardware distributed shared memory systems and SVM, is
that shared memory is implemented via software. Although the hardware approach has
been shown to perform quite well, it incurs a high engineering cost and is usually not
available in commodity systems. On the other hand, SVM is a cost-effective method for
providing the shared abstraction model on networks of workstations since it requires no
special hardware support and is relatively easy to implement. Application programs can
use SVM just as they do on a traditional virtual memory system except that processes
can run on different machines in parallel.

Traditionally, most SVM systems (15, 17, 21, 23, 24, 26] implement page-baged shared
virtual memory. The virtual memory is partitioned into pages which can be replicated
and migrated between processors on demand, just like a cache line in hardware DSM
systems. In order to keep the copies of the pages synchronized, the system must supply a

40



mechanism to maintain coherence between them, called coherency protocol. The system
must also provide a memory consistency model. While the cache coherency protocol
dctermines what values should be visible to other processors, the memory consistency
model determines when those values will be visible to other processors.

5.1.1 Page-Based SVM

A SVM system selects a portion of the virtual address space to implement the shared
memory region. This space is divided into pages. The state of each shared page at any
given time can be: read-only, read-write or invalid. Pages that are marked as read-only
can have copies residing in the physical memories of many processors at the same time.
A page marked read-write can reside in only one processor’s memory if the coherence
protocol is single-writer or it can reside on many processor physical memories if the
SVM system implements a more advanced coherent mechanism, like a multiple writers
pratocol. A page marked as invalid is the result of a invalidate-type coherency protocol.
The memory mapping manager views its local memory as a large cache of the shared
memory address space for its associated processor, and manages it in fully associative
mode at page granularity. The shared memory exists only virtually. A memory reference
causes a page fault when the page is not in a processor’s current virtual memory. When
this happens, the memory manager retrieves the page either from the disk or the memory
of another processor. If the page of the faulting memory reference has copies on other
processors, then the corresponding memory mapping managers must cooperate to keep
the memory coherent.

A very simple form of shared memory coherence is illustrated in Figure 5.1. In the
beginning, processors PO and P1 do not have a copy of the stippled shared page. Events
occur in the order 1, 2, 3, 4. At first, PO tries to read a page that its not present in its own
local memory. This raises a page fault and control passes to the memory mapping manager
(MMO). The memory mapping manager is actually a signal handler which is associated
with a set of signals. The most common signal is the segmentation fault (SIGSEV) which
is generated upon a page fault. PO eventually obtains, through the handler, its copy of the
shared page and the application process takes control again. Thereafter, P1 also requests
the same page (2). A page fault occurs and its handler fetches a new copy of the same
shared page from PO. The next event is a write request from PO on the same page (3).
However, the page is read-only protected causing a new page fault. The page handler of
PO knows that P1 has a copy of the page and forces it to be invalidated. P0 has now
exclusive rights to the page, meaning that it can modify the page. Meanwhile, if P1 tries
to access the page, a page fault will occur (4). P1’s handler finds the processor which has
the most up-to-date copy of that page, which is PO, and fetches a new copy.

Notice that, the physical address where the page is mapped may be completely different
among the processors physical memories. Also, the handler must know or determine from
where to obtain the up-to-date copy of a page or which pages it needs to invalidate before
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Figure 5.1: A simple form of memory coherence in SVM.

it returns the control to the application process. A page may have a home, determined by
its virtual address. In this case, the handler maintains an entry for each page indicating
its owner.

The main problem with paged-based shared virtual memory is the high overhead of the
memory protocol invocation and processing. Page faults need time to generate the inter-
rupt and switch to the execution of the handler. The latter is responsible for taking control
and executing the memory coherency /consistency protocol, which is usually a heavyweight
software implementation. In addition, the handler is also responsible for serving requests
from other processors. Incoming requests slow down further the application’s execution.
In all cases, the invocation of the memory protocol also incurs considerable communica-
tion overheads. The large granularity of communication is a serious problem since even
if a single word is needed, a whole page must be fetched.

It becomes clear that, in order to achieve good performance, SVM systems must avoid the
frequent memory protocol invocations. In addition, the memory protocol itself must be
efficiently designed to avoid large communication costs. For example, in a sequential con-
sistency model, invalidations are propagated and performed as soon as the corresponding
write is detected, so pages may be frequently ping-ponged back and forth among proces-
sors resulting in high delays in the application and communication level. For this reason,
modern SVM systems employ more relaxed memory protocols, which delay the protocol
invocation until it becomes absolute nessecary.
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5.1.2 Memory Consistency Models in SVM

As we have already mentioned, the memory consistency model determines when the mod-
ified pages will be visible to other processors. A memory consistency model of a shared
memory system formally specifies how the memory system will appear to the programmer.
Essentially it defines constrains on the order in which memory accesses can be performed
in shared memory systems. The stricter the memory consistency model, the easier for pro-
grammers to program, and the smaller the opportunity for optimization. Strict memory
consistency models like sequential consistency result in a serious performance degradation
in SVM. False sharing is a situation where multiple processors request for the same page
but write different locations in it. In the scquential memory consistency model, a write
operation on a shared page causes the coherence protocol to immediately invalidate all
of its copies. If processors simultancously write on the same page, even if they write
on different locations, the page will be ping-ponged back and forth resulting in a high
communication cost.

Although the memory consistency model specifies when coherence operations and data
need to become visible, it can actually be implemented with various degrees of “laziness”.
Greater laziness implies greater complexity of the protocol, but fewer communication
and protocol operations. In order to improve the performance of SVM systems, one of
the most affective method is to relax the memory consistency model. Relaxed memory
consistency models allow the propagation of the modified pages to be postponed until
synchronization points, greatly reducing the impact of false sharing and the frequency of
protocol operations.

A multitude of relaxed memory consistency models have been presented in the past. For
example, TreadMarks [23] uses the Lazy Release memory consistency model while JIAJIA
[15] uses the Scope memory consistency model (scC) [16]. In Lazy Release consistency, the
propagation of the modified pages is delayed until a synchronization point is reached, i.e
a barrier or a lock-acquire operation. When a process reaches the barrier it gets informed
about which shared pages were modified since the last synchronization occurred. In
the same way, when a process acquires a lock it gets informed for the modified pages,
by the last process that released the lock. ScC is based on consistency scopes which are
limited views of memory with respect to which memory references are performed. That is,
modifications to data performed within a scope are only guaranteed to be visible within
that scope. A consistency scope consists of all critical sections protected by the same
lock. Additionally, barricrs define a global consistency scope which includes the entire
program. Any modifications made within a scope session become visible to processes
that subsequently enter new sessions of that scope (acquire the lock or call a barrier).
Modifications made outside the scope session are not guaranteed to be visible.

In general, all relaxed memory consistency models are variations of a general model rather
than new models. From the usecr’s point of view, the programming interface is closely
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tied to the memory consistency model adopted by the SVM system. For example, in a
SVM system with sequential consistency like Mome [17], the programmer can write the
program just like he would do on a traditional shared memory system. However, in a
relaxed model, the user must rely on the use of synchronization operations to enforce
memory consistency. Moreover, the programmer must be aware of all the details of the
underlying memory model. For example, programs that target JIAJIA, also run correctly
with TreadMarks. However, the opposite is not true. JIAJIA uses the ScC model, which is
slightly lazier than the Lazy Release model adopted by TreadMarks. Consequently, while
relaxed models are more efficient than stricter ones, there is the trade-off of programming
complexity. In any case, programming for shared virtual memory remains a simpler task
than using explicit message passing techniques, like MPI.

5.1.3 Cache Coherency Protocols in SVM

The presence of multiple cached copies of a shared page requires a mechanism to notify
other sharers of a modified memory location. There are two main categories of cache
coherence protocols: write-invalidate and write-update. In the first category, a process
writing a location in a shared page first invalidates all existent copies. When a remote
process tries to access the invalidated page it generates a page-fault and its handler fetches
the up-to-data copy from the writer. In the write-update category, the writer immediately
supplies all processes with the modified pages, allowing them to create an up-to-date copy.

The cache coherency protocol is tightly related to the memory consistency model. Most
SVM systems employ more complex coherence schemes. For example, TreadMarks and
JIAJIA use the multiple-writers coherence protocol combined with a write-invalidate
method. ParADE [21] uses the same protocol combined with a write-update method.
By this protocol, multiple processes can write on the same page or on different pages
simultaneously. This combined with the relaxed memory consistency model employed,
greatly reduces false sharing and application delay. Each process modifying a page, first
creates a twin. A twin is a replica of the page to be modified. After modifying the page,
the process calculates a diff comparing its twin and its modified page. This diff its an
encoding representing the changes that the process is responsible for. Upon a lock release
or a barrier, processes send invalidation messages regarding the pages that they modified
by the time after the last synchronization occurred. This causes the processes acquiring
the lock or entering the barrier to invalidate their corresponding copies. Subsequently,
when a process tries to access an invalid page, a page fault occurs. In TreadMarks, the
process fetches the corresponding page and applies its own diff and all received diffs from
the other processes that also modified this page. With the exception of the first time
a processor accesses a page, cach copy of that page is updated exclusively by applying
diffs; a new complete copy of the page is never neceded. In JIAJIA, the same approach is
followed except that the home node of page receives and applies the diffs into the page.
When processes request this page, the home node supplies them with the up-to-date copy.
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In general, the coherence protocol must deal with three important questions: (a) how to
smplement locks, (b) how to simplement barriers, and (3) what to do when the access fault
occurs?. The answers depend on what memory consistency model and what coherence
protocol are used. There is no standard regarding which memory coherency protocol
should be always used. Some systems implement more than onc coherency protocols and
give users the choice of the most suitable protocol for their applications.

5.1.4 Memory Organization Methods

The memory consistency model and the coherency protocol determine the algorithm and
the data structures to implement a SVM system. However, there is one more issue to be
taken care of: the management of the shared virtual address space. In general, there are
two methods for organizing shared virtual memory.

The first method organizes the shared virtual address space as a cache-only memory
architecture (COMA), where all local memory of each node is treated as a large cache,
and pages can be replicated or migrated on demand. TreadMarks uses this method.
Shared pages are usually kept at the same virtual addresses on every processor’s local
memory. Each page has an owner, and a mechanism is used to find where the owner of
the faulting page is when a page fault occurs. However, owners do not remain static; a
page owner may migrate unexpectedly.

The second method organizes the shared virtual memory in a non-uniform memory access
(NUMA) way. Each page has a fixed home and when a page fault occurs, the faulting
processor can fetch the up-to-date page from the home directly. JIAJIA and Mocha [24],
which is an improved version of JIAJIA, belong into this category. In JIAJIA and Mocha,
each page has a home and homes are distributed across all nodes. References to remote
shared pages cause these pages to be fetched from its home and cached locally. By the
use of a cache mechanism, the size of the shared space can be as large as the sum of each
machine’s local memories, in contrast with TreadMarks where each local memory has to
maintain a sufficient space for all shared pages. ParADE uses a hybrid approach, where
the home of a page can migrate based on statistics. Specifically, for each shared page,
it counts the number of page faults occurred. When this number is large enough for a
particular process, it chooses that process as the page’s home.

5.1.5 Application Programming Interface

All SVM systems allow the allocation of global memory and the transparent access to
these globally shared memory segments. In addition, they provide a set of synchronization
operations which can be used to coordinate the distributed tasks and to achieve a reliable
program execution. However, the API is varying among different SVM systems. In the
simplest casc the routines arc simply named differently, but in most cases they also have
slightly different semantics. A typical example is whether the memory allocation is local,
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i.e. allocated by a single node, or global operation, i.e. requires the participation of
all nodes. For example, in TreadMarks a process allocates a shared memory area by a
call to the Tmk malloc() routine and distributes the memory information to all other
processes by a call to the Tmk_distribute() routine. Upon synchronization, all remote
processes will be informed of the new memory segment. In contrast, JIAJIA uses the
global approach. All nodes must call the jia_alloc routine for the allocation to complete.
In this case, an explicit distribution operation is not needed. In Mome [17], both local
and global allocation routines are implemented. This difference can be lead to several
code changes when porting from one API to another.

5.1.6 SVM for Clusters of SMPs

Early SVM systems assumed uniprocessor nodes, thus allowing only one thread per process
on a node. Currently, commodity off-the-shelf microprocessors and network components
are widely used as building blocks for parallel computers. This trend has made clusters
of symmetric multiprocessors attractive platforms for high performance computing. How-
ever, the first generation SVM systems are too restricted to exploit multiprocessor nodes
in the cluster. The next generation of SVM systems are aware of SMP nodes and exploit
them by means of multiple processes or threads per-node. In general, the most common
approach is the use of multiple threads, so nothing need to be done to provide memory
consistency among the threads in a node. This also boosts performance because a page
fetched by a thread as a result of a page fault is by nature visible to all the other threads
within the process. The programming model is now hybrid with pure shared memory for
intra-node communication and distributed shared memory for inter-node communication.

As far as the SVM system is concerned, the memory protocol needs to be carefully de-
signed. The conventional page fault mechanisms will fail in multithreaded environments
because multiple threads may try to access the same page while a thread is performing
a page-update procedure. On the first access to an invalid page, the system will set the
page writable in order to replace it with a valid one. Unfortunately, this change will also
be visible to all application threads which will not rise a page fault when accessing the
writable page and continue with garbage data. This situation is known as the atomic page
update problem. The most obvious solution is to block all threads until the page-update
is completed. However, this is not an efficient solution because threads will stop their
execution even if pages are unrelated to them. In [22] the authors present 3 techniques
for efficiently handling the atomic page update problem.

5.2 OpenMP and Shared Virtual Memory

Many researchers have proposed methods for extending OpenMP to clusters. A typical
design of such a compiler includes a translator and a runtime system which utilizes a
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particular SVM system [8, 13, 14, 21, 25, 31]. Through the latter, the compiler is ca-
pable of providing the shared memory model required by OpenMP, within a distributed
environment.

5.2.1 Shared Variables

A major problem arising when moving to a cluster is that of variables visibility. Global
variables are no longer shared among the system’s processes. Also, stack variables that
need to be shared inside a parallel region, due to the presence of a shared clause, need
also special treatment. Some OpenMP systems overcome these difficulties by following
an everything shared approach. By this approach, each process’s entire address space
is allocated in shared memory. In this way, global and stack variables are visible by
every process. Nanos follows this approach [8]. Other compilers are based on translator
instructions. The translator puts explicit calls to the runtime system regarding global
variables that need to be allocated in the shared space. As already described in Section
2.4, Omni and OMPi follow this approach. OMPi handles the stack variables that need
to be shared by letting the initial (master) process run on a shared stack. In order to
support nested parallelism, all processes should run also on shared stacks. In Omni [31],
stack variables that need to be shared inside a parallel region are copied into a shared
memory area right before the parallel execution begins and are copied back into their
original memory addresses after the parallel region ends. On the other hand, Intel [34]
introduces a special directive named intel_omp_sharable for explicitly declaring global
data that need to be shared. However, this approach requires applications to be modified
in order to run correctly on a clustered environment.

5.2.2 Memory Consistency

In clusters, memory consistency is no longer handled exclusively by the underlying hard-
ware. Instead, the SVM system is responsible for providing a consistent view of the shared
data. Most SVM systems exploit relaxed memory consistency models which have major
semantic differences with the models adopted in hardware shared memory architectures.
These differences must be well hidden from the application programmer. Fortunately,
OpenMP assumes a very relaxed memory consistency model. The flush directive is the
only OpenMP directive which enforces a memory consistency operation to take place. In
most cases, a flush operation is directly mapped to the corresponding synchronization
operation required by the SVM system. For example, in TreadMarks a lock/unlock se-
quence is enough to provide the memory consistency needed. In JIAJIA, which employs
a lazier memory model, a lock/unlock sequence is not enough to provide global memory
consistency. In this case, a barrier operation must be performed. Consequently, the im-
plementation of the flush directive is closely related to the memory consistency model
used by the underlying SVM system.
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5.2.3 Performance

In general, the performance of OpenMP systems utilizing shared virtual memory is not
satisfactory. Frequent and costly page faults result in a significant performance degra-
dation. Researches have shown that applications exploiting fine-grain parallelism do not
perform well on these systems. For this reason, researchers have focused on finding ways
of reducing the overheads associated with shared virtual memory. A way of improving
performance is to avoid shared virtual memory by using explicit communication tech-
niques, whenever possible [11]. For example, communications at the runtime library can
be efficiently managed through MPI rather than throﬁgh shared variables. In this way,
shared virtual memory is only used for managing the program’s shared data. Further
improvements include optimizations for efficient distribution of the shared data among
processes [8, 28]. Data locality is a major factor affecting an application’s performance.
If processes maintain locally most of the needed pages, page faults will occur rarely. The
presence of multiple threads per-process can also result in overall performance increase in

clusters of SMPs [11, 14, 21].
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CHAPTER 6

OMP1 AND CLUSTERS

6.1 A Modular Architecture
6.2 A Hybrid Approach

6.3 The OPRC Library

6.4 Managing ORT

6.5 Experimental Results

-

6.1 A Modular Architecture

For the execution of OpenMP programs on top of clusters, we have developed a new
EELIB module for OMPi, called. OPRC. An SVM system is responsible for providing
the shared memory abstraction needed by the OpenMP application. Our runtime system
allows arbitrary SVM cores to be integrated into OMPi by decoupling the SVM core
from the rest of the runtime system. OPRC makes arbitrary calls for shared memory
allocation or synchronization without really knowing which SVM core is the actual target.
We have managed to experiment with OMPi by using a number of different SVM systems:
TreadMarks (23], JIAJIA [15], Mocha [24], ParADE [21] and Mome [17]. All but Mome
use relaxed memory consistency models. Mome’s memory consistency model is based on
sequential consistency. The work of this chapter was presented in [30].

With OPRC’s architecture, the incorporation of a new SVM system into the runtime
library of OMPi is a straightforward procedure. For each candidate SVM system, we
develop a C module containing all the OPRC routines that must be implemented with
the help of the corresponding SVM core. Specifically, shared memory allocation and
synchronization routines are implemented in this module and target the SVM core. We
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have developed five different C modules, one for each SVM system (see Figure 6.1). For
example, whenever the runtime library makes a generic call to oprc_shmalloc(), it is
being translated into a Tmk_malloc() call if OMPi was configured with TreadMarks or into
a jia_alloc() call if OMPi was configured with JIAJIA. Moreover, each of these modules
implements the memory fence mechanism required by the OpenMP flush directive. The
memory fence operation is tied to the SVM system’s specific memory protocol. Usually,
in relaxed memory consistency models, the fence operation is translated into a barrier
operation or a lock/unlock sequence.

OPRC SVM
processes
opre_shmalloc()
oprc_barrier_wait()
oprc_lock()
oprc_unlock()
. \\\
SVM layer .
A \{ 4
TreadMarks ( JIana \r Macha \( ParADE W( Mame
Tmk_maflocf) jia_alloc() Jia_alloc() galloc(} MomeMalloc()
Tmk_barrier() jia_barrier(} jia_barrier() parade_omp_barrier() || Mome_Barrier()
Tmk_Jock_acquire() lia_lock() Jia_lock() parade_lock _acq(} Mome_mutex_lock(}
Tmk_lock_release() Jia_unlock() jia_unlock() parade_lock_rel(} !  Mome_mutex_unlock()

Figure 6.1: The OPRC library and its interaction with SVM systems.

-

As discussed in Section 5.1.5, some SVM systems require the memory allocation to be
global, i.e. executed by all processes. Other systems require the allocation to be local, i.e.
executed by exactly one process and distribute the result to the others. In our approach,
all processes call a generic oprc_shmalloc() routine which is eventually mapped to the
specific SVM system’s allocation routine taking into consideration the allocation policy.
For example, if the target SVM system is TreadMarks, only process 0 will eventually
call the Tmk_malloc() routine and distribute the memory using the Tmk_distribute()
routine.

6.2 A Hybrid Approach

Assuming the original thread model, execution entities are able to communicate with
each other by exploiting the underlying physical shared memory. Communication at the
runtime library is achieved by simply reading or modifying global variables. However,
this is not the case when execution entities are processes. Memory is now distributed
among the nodes in the cluster. One way of achieving inter-process communication is
to exploit the SVM system’s shared memory provision. All ORT and OPRC structures
that need to be process-shared (e.g. ORT workshare specific structures) are explicitly
allocated in the SVM system’s shared memory. As a result, processes are treated in the
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exact same way as threads. However, shared memory is no longer provided by hardware
so additional synchronization operations must be incorporated into the code, in order
to enforce memory consistency. All application’s shared data (e.g. global variables) are
handled also by the SVM system using the technique presented in Section 2.4.

Although this approach seems appealing, the performance is rather poor. The SVM
system has to handle a possible large number of pages for the application’s shared data
along with pages related only to the runtime system’s shared structures. Consider a barrier
operation performed by OPRC in order to enforce consistency in its shared structures. All
page modifications will be propagated to the processes including page modifications caused
by the application even if the user has not explicitly requested a memory consistency
operation. Moreover, frequent inter-process communication at the runtime level will result
in frequent page faults. Whenever a page fault occurs, the application is suspended and
the page handler is invoked. Consequently, the application is burdened with considerable
overheads which are due to the runtime system.

A more efficient approach is to disassociate the SVM system from the runtime library’s
communications. Communications needed by ORT or OPRC can be efficiently handled
by explicit message passing, using for example MPI. All communication patterns in both
ORT and OPRC are well known at their design phase, in contrast to the application’s
data access patterns which are hard or even impossible to guess at compile-time. In our
design, both ORT and OPRC communications are efficiently handled via MPI, while the
application’s shared data are handled via the underlying SVM system.

6.3 The OPRC Library

The control of the application’s startup is moved to OPRC by renaming the applica-
tion’s main() function into ompi_original main() and declaring a main() function in-
side OPRC. Note that, main() is called by all processes since all of them run the same
executable. The first routine invoked is the SVM system’s specific initialization routine.
All processes are initialized and each one of them gets a distinct id. The master process
(home) has id 0. As described in Section 2.4, the master process must somehow run
on a shared cxecution stack. The makecontext(), swapcontext(), and getcontext ()
C library routines allow us to create a user-level thread and explicitly declare its stack
memory area. We create a user-level thread (through makecontext()) which has its
stack allocated by the SVM system’s allocation routine. Process 0 is then switched to
this usecr-level thread, and thus the desired effect is achieved. The process now runs
on a shared stack and stack variables will be automatically allocated in shared memory.
The new user-level thread begins its execution by calling the application’s original main
(ompi_original main()). An alternative method would be to create a kernel-level thread
(e.g. POSIX) and explicitly declare its stack to be shared. However, this would result in
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two kernel-level threads with the one of them having no real work to do other than just
spending computational resources while waiting for the other thread to finish.

However, keeping the master process stack in shared memory causes two problems. The
first problem is that the process’s signal handler also runs on this shared stack. This is
quite dangerous, because the handler may modify pages that are invalid. This would cause
page faults inside the handler. For this reason, right before switching to the user-level
thread, we declare an alternative signal stack for the handler’s execution, allocated in pri-
vate memory this time. This was achieved by using the sigaltstack facility and forcing
the handler to use this stack for the execution of the received signals (e.g. SIGSEV).

The second problem is closely related to the first. When the master process tries to
access an invalid page, a page fault occurs. The signal handler receives the SIGSEV
signal and invokes the memory protocol to fetch the up-to-date page. The handler writes
some information to the process’s stack in order to resume the application’s execution
right after the page request is served. What happens if the handler tries to write this
information to the same invalid page which contains the data? In this case, a page-fault
will also be raised inside the handler.

One way to avoid this problematic scenario is to ensure that shared data are far away in
pages from the current execution pages. This can be achieved by using dummy “paddings”
of size equal to the page size right after the declarations of the stack variables. In this
way, we ensure that the current execution page does not contain shared data. Although
this approach works, we choose to do something different: the master process runs always
the work function on a private stack. Right before the parallel execution starts, process
0 switches back to the original private stack. All process’s stack variables that may need
to be shared inside the parallel region, are already residing in the shared stack and are
accessible by all remote processes. When the process finishes its work, it assumes again
the shared stack. The overhead of changing stacks is negligible with respect to the overall
overheads due to the use of efficient user-level context switching.

6.3.1 OPRC Initialization

All processes start by calling the oprc_initialize() initialization routine. Like the
others EELIBs of OMPi (e.g. PTHR), OPRC announces its capabilities to ORT, which
include support of nested parallelism, the maximum number of processes and the support
for dynamic adjustment of the number of processes. In its current version, OPRC does
not support nested parallelism. The maximum number of processes available to QRT
is limited by user parameter given at the command line upon execution request. That
means that new processes can not be created on the fly. The dynamic adjustment of the
number of processes is enabled by default.
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Thereafter, each process initializes its own pcb; a control block containing process-specific
information such as the process’s execution id, the number of owned locks, the execution
id of the team’s parent process and a thread descriptor. A SVM system usually provides a
number of locks. These are usually plain integer numbers to be used in the lock routines.
These numbers arc uniformly distributed among processes and each one of them keeps a
counter of its active locks. The thread descriptor points to an extra kernel-level thread
created by each process, which is called server-thread. All but process 0 then call an
OPRC internal routine, named wait_for_work(), waiting for actual program execution.

6.3.2 The ServerrThread Model

In our design, each process creates a server thread upon initialization. The server-thread
is a POSIX kernel-level thread. Its main duty is to listen for incoming requests generated
by remote processes or by its own host process. From now on, processes executing the
application’s code will be referred as application threads. Consequently, each node of
the cluster maintains an application thread and a server thread. The communication
between the application thread and its server is achieved by utilizing a local queue called
event-queue. Specifically, the server thread inserts the received request into the event-
queue in order for it to be served by the application thread. The most important requests
each server thread can receive are the PARALLEL, FINALIZE and ORT requcsts. The first
one signals a parallel exccution event and targets a remote group of server threads. The
FINALIZE cvent is generated by the home process upon program termination and targets
all system’s server threads. Finally, the ORT event is generated by an application thread
requesting ORT shared data and will be described in Section 6.4.2.

6.3.3 Executing a Parallel Region

In single-level parallelism, the home application thread executing the sequential part of the
application makes a call to oprc_create () whenever it encounters a parallel directive.
Its arguments include the size of the team, say n, and the function to be executed by all
team members. The home application thread generates a PARALLEL request which targets
the first n remote server threads. (see Figure 6.2). An MPI message containing all the
parallel region specific information (e.g. work function, parent’s pid, etc) is constructed
and is sent to the n server threads (1). Each server receiving the PARALLEL request
immediately forwards it to the application thread by inserting it into the local event-
queue (2). The application thread checks the event-queue on a regular basis looking
for new events. By the time it receives the PARALLEL request (3), it immediately starts

execution.
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Figure 6.2: The series of events upon a parallel execution request.

6.3.4 Synchronization

Regarding barrier operations, we considered two design choices: a) use the MPI bar-
rier routine (MPI_Barrier()) or b) use the barrier routine supplied by the SVM system.
In most cases, OpenMP includes a memory fence (flush) operation at synchronization
points. For example, the barrier directive which provides synchronization among appli-
cation threads implies a memory fence operation. As already mentioned, SVM systems
based .on relaxed memory protocols provide memory consistency at synchronization points.
Moreover, usually a barrier operation enforces global memory consistency. That is, all
shared memory modifications made since the last synchronization occurred, are propa-
gated to the application threads. Consequently, the barrier itself contains a memory fence
operation. So, in our approach every call to a barrier operation is directly mapped into a
call to the SVM system’s barrier routine. However, we can not guarantce that all initially
created processes will execute the barrier. The user can explicitly set the size of the paral-
lel team through a omp_set_num threads () call or through the use of the num_threads ()
clause. If the requested number of processes is smaller than the total number of processes
in the system, the barrier will block waiting for all processes to arrive. To overcome this
problem, whenever a barrier operation is performed, we force all possible idle processes
to execute the barrier by sending a SYNCHRONIZE request to their server threads.

In order to provide consistency during lock operations, locks are also handled by the SVM
system. These include locks utilized by ORT or application-level locks declared and used
by the programmer. SVM locks are usually plain integer numbers. We only have to ensure
that these integers are kept in shared memory so as to be readable by all processes.
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6.3.5 Finalization

The last OPRC function called is oprc_finalize(), upon program finalization. The
home application thread sends the FINALIZE event to all server threads including its
own server thread. Each server receiving the event forwards it to the local application
thread and terminates immediately. All processes are then terminated by calling the
SVM system’s finalization routine. The master process switches back to the original
private stack, releasing the shared stack memory area right before termination.

6.4 Managing ORT

ORT maintains data that need to be accessible by all. For example, all scheduling in-
formation presented in Section 3.3 is stored in the team’s parent control block (eecb),
and all team members need to have access to it. Moreover, the OpenMP environmental
variables declared by the application programmer need to be process-shared. Normally,
allocating the parent’s eecb and the structure holding the environmental variables in a
shared memory area allocated by the underlying SVM system is enough for correct ORT
execution. However, as we already discussed, this is not an efficient solution, due to per-
formance issues. For this reason, we employed MPI for implementing the shared memory
abstraction. ORT shared data reside in the home node. An application thread that needs
to access the data, generates a request to the home’s server thread. An access to ORT
shared data deals with a small set of variables. In most cases, a simple increment or
assignment operation is applied to a variable. In the original thread model, these accesses
are protected by locks to ensure atomicity. In our case, a write operation is by nature
atomic because a server thread services one request at a time.

We also simplified the management of the workshare regions by avoiding the utilization
of the workshare queue described in Section 3.3. Specifically, when execution entities are
processes, all workshare regions are only blocking. Despite the limitation introduced, in
this way we avoid the communication overheads of managing the queue via MPI messages.
The same approach is also followed by Omni.

6.4.1 ORT Initialization

The first routine called in ORT is ort_initiaiize(). The master process reads the
OpenMP environmental variables and sends their values to all other remote processes
using an MPI collective message. Server threads are not involved here. Thereafter, all
processes call the ort_share_globals() routine. By this function, all application’s global
variables are reallocated in shared memory. As described in Section 2.4.1, for cach global
variable, a call to the ORT’s ort_sgvar_allocate() is inserted by the parser at the
generated file. By this routine, a list containing all the application’s global variables is
constructed. Each node of the list contains a pointer to the variable, the variable’s size and
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initial value. In ort_share_globals(), a shared memory area of size equal to the total
size of the application’s global variables is allocated using the SVM system’s allocation
routine. Variables are then mapped in this memory area.

6.4.2 ORT Communication Scheme

ORT shared data include the structure holding the environmental variables and the team
parent’s eecb. We only support single-level parallelism, so the parent of the team is
always the home application thread. All processes read and write ORT shared data by
moving data across the nodes using the underlying network. Environmental variables are
rarely accessed by the processes and usually only for reading, in contrast with worksharing
specific data which is frequently accessed and modified inside worksharing regions. These
structures are stored in parent’s eechb.

A simple example showing the communication steps upon a read request is illustrated
in Figure 6.3. Application thread 1 makes a request to its local server thread (1). The
request specifies the type of the shared data that it needs to read. The server thread
forwards the request (through an MPI message) to the corresponding node maintaining
the original data (2). This is the home node in our case. The home server thread is
responsible for serving the request. A reply MPI message containing the corresponding
data is sent directly to application thread 1 (3). Upon a write operation, the application
thread generates a request which includes the modifications to be done. The home server
thread is responsible for applying them to the original data.

Although we only support single-level parallelism, the above design can also work in nested
parallel regions. Upon a new (nested) parallel region, all server threads are notified about
the identity of the team parent. Consequently, the local server thread will know where to
redirect a read/write request.

6.5 Experimental Results

In this section, we present representative experiments on a SVM cluster system. In all
of our experiments, we tested two OpenMP platforms: OMPi+OPRC and an evaluation
copy of the Intel 10.0 compiler with cluster OpenMP support [13]. Specifically, OMPi was
tested using a number of different SVM cores (see Figure 6.1), while the Intel compiler
(ICC) was configured using the default values. All experiments were performed on 8 nodes
of a HP XC cluster system. Each node has 2 AMD Opteron 248 processors running Linux
2.6 and 4 GB main memory, while the nodes are interconnected with Gigabit Ethernet.
The MPI library used in our experiments for communication and application launching
is MPICH2 (1.0.6).
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Figure 6.3: Communication steps followed upon a read request.

In Section 6.5.1, we present results for the EPCC microbenchmarks. In Section 6.5.2,
we present the speedups gained when running a set of known parallel applications on an
increasing number of nodes in the cluster.

6.5.1 EPCC Microbenchmarks

Our first experiment was to execute the EPCC microbenchmarks on a varying number of
nodes-in the cluster. For OMPi, the microbenchmark codes were executed without any
modifications to the source code of the them. From the other hand, we had to explicitly
insert a specific directive (#pragma intel omp sharable) for the management of global
variables that need to be shared, in the case of the Intel compiler. For presentation
clarity, we avoid reporting measurements of all EPCC microbenchmarks. Instead, we
present results for the parallel for, single and parallel reduction directives. Also,
we choose to present measurements for OMPi targeting Mocha and Mome. The former is a
SVM system which is based on a relaxed memory consistency model (scope consistency)
while the latter is based on sequential consistency. The behavior of OMPi targeting
TreadMarks, JIAJIA or ParADE was similar to that of OMPi+Mocha, because all of
them exploit similar relaxed memory consistency models.

Table 6.1:0verheads for parallel for (us)
Compiler J 2 nodes ] 4 nodes TS nodes I 4 nodes x 2 threads
ICC 10.0 905.86 | 1048.21 | 1205.84 1388.64
OMPi + Mocha | 784.79 | 1051.65 | 1437.44 -
OMPi + Mome | 491.09 834.39 1295.15 -

Tables 6.1, 6.2 and 6.3 summarize our results. Measurements regard overheads when
running the EPCC codes on 2 nodes, 4 nodes, and 8 nodes of the cluster. In all cases,
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Table 6.2:0verheads for single (us)

Compiler 2 nodes T 4 nodes E nodes r4 nodes x 2 threads
ICC 10.0 674.22 720.37 750.84 1242.81

OMPi + Mocha [ 315.78 578.93 773.82 -

OMPi + Mome | 210.53 488.90 801.19 -

Table 6.3:Overheads for parallel reduction(us)

Compiler J 2 nodes f4 nodes L8 nodesT4 nodes x 2 threads
ICC 10.0 1527.18 | 3610.28 | 6362.96 5228.18

OMPi + Mocha | 115147 | 2389.92 | 4729.03 -

OMPi + Mome | 1065.97 { 12487.11 | 28639.31 -

a single application thread is executed in each node, although Intel can handle multiple
application threads per-process. For this reason, we also present the case of 4 nodes with
2 application threads per-node in the case of the Intel compiler. The results show that
OMPi is faster than Intel when the number of nodes is relatively small. However, Intel
seems to scale better than OMPi. On 8 nodes, Intel and OMP1 have similar overheads in
all cases except of the parallel reduction overheads. Here, OMPi+Mome experiences
very high overheads compering with OMPi+Mocha or ICC. A reason for this could be the
strict memory protocol that Mome uses. All team members atomically write the shared
reduction variable, while in every write operation, the new value of the reduction variable
is immediately propagated to all other nodes. This causes the heavy-weight protocol
of the sequential consistency to be invoked at every write operation. From the other
hand, OMPi+Mocha or ICC, which targets a modified version of TreadMarks, experience
lower overheads due to the fact that a light-weight relaxed memory consistency model is
exploited.

Additionally, ICC experiences lower parallel reduction overheads in the 4 x 2 case.
Although the number of execution entities remains the same (8), the parallel reduction
overhead drops from 6362.96 us to 5228.18 us. This can be explained from the fact
that intra-node threads share the modifications of the virtual memory. A page update
performed by a thread is directly visible to all other intra-node threads through hardware
shared memory. From the other hand, parallel for and single overheads increase in
the 4x2 case. Considering the single overheads, this can be explained from the fact that
multiple threads and processes are competing for the execution of the single region. In
some implementations, the master thread is always responsible for executing the single,
while other processes wait the master thread’s completion. Other implementations use
atomic regions to ensure that only a thread exccutes the single region. In both cases,
an hierarchical barrier or lock is needed to be implemented. In the first level, intra-node
threads are synchronized, while in the second level inter-node processes are synchronized.
This clearly adds overheads to the all OpenMP dircctives that require synchronization



operations to be performed.

Table 6.4:0Overheads for the OMPi compiler(us)

OMPi + POSIX | OMPi + OPRC
(8 threads) (8 nodes)
parallel for 54.79 1437.44
barrier 32.97 229.39
single 55.71 773.82
parallel reduction 39.12 4729.03

In Table 6.4, we present results for OMPi when the benchmarks are executed on a single
SMP machine or on the HP XC cluster system. The SMP machine is an Intel SR6850HW
4M model with 4 Intel Xeon dual-core 3.0 GHz processors running Linux 2.6 and 4GB
main memory. We present results for the case of 8 threads on the SMP machine using
OMPi+POSIX (PTHR) or 8 nodes of the cluster using OMPi+OPRC targeting the Mocha
SVM system. Although we could run the benchmarks on a single node of the cluster and
observe the performance in the case of a single SMP machine, this would limit us to
a small number of threads (2) because each node of the HP XC cluster is a dual-core
processor. For this reason, we chose to run the benchmarks on the Intel SR6850HW using
8 threads which is equal to the number of physical processors of the machine.

The results confirm our predictions. The OpenMP overheads are significantly increased
in the case of OMPi+OPRC. In some cases, the overhcad is more than two orders of
magnitude bigger than in the SMP case. This is a presumable result considering the high
network latencies involved in inter-process communication especially when compered with
the latencies of threads communications in hardware shared memory systems. Moreover,
whenever the SVM system is involved (e.g. parallel reduction), overheads increase
even more. The authors of [33] performed a series of experiments regarding the Intel
compiler for cluster OpenMP execution. A comparison of the OpenMP overheads using
the EPCC microbenchmark suite is made when the target is an SMP machine or a cluster
system. Their results show that in all cases, the overheads taken on the cluster are
significantly bigger than the ones on the SMP machine independently of the underlying
network fabric (Gigabit Ethernet or InfiniBand). However, a faster network fabric results
in smaller overheads when the number of nodes increases.

6.5.2 Applications

In this section, we present experimental results for a class of known parallel applications:
NAS EP, Matrix Multiplication (MM) and Molecular Dynamics (MD). The EP application
is a part of the OpenMP implementation of the NAS Parallel Benchmarks [19]. MM is
a simple parallel matrix multiplication application. MD is the C version of the sample
application available at the official site of OpenMP (http://www.openmp.org).
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The EP (embarrassingly parallel) benchmark generates pairs of Gaussian random deviates
according to a specific scheme. This is the best case possible case for any kind of SVM
system because there is no sharing of pages between different nodes of the cluster.

MD is a form of simulation in which atoms and molecules are allowed to interact for a
period of time under known laws of physics, giving a view of the motion of atoms. MD
exploits numerical methods to solve the problem. Given positions, masses and velocities
of np particles, MD computes the energy of the system and the forces on each particle. A
numerical iterative procedure is used to obtain an approximation whose precision depends
on the number of simulation steps. The computation of forces and energies is fully parallel
using a for directive by which particles are distributed among the execution entities.
However, the initialization step is performed sequentially by the master thread (node).

In MM, which multiples 2 square matrices, the master thread performs the initialization
step and then each OpenMP thread (node) computes its statically assigned chunk of
iterations. After the parallel region, the master thread accesses the resulted matrix.

Figure 6.4 depicts our results. We executed the applications on 2, 4, and 8 nodes of
the HP XC cluster system. We present results for OMPi targeting Mocha, TreadMarks,
Mome and ParADE along with ICC results. In EP (class A), things go quite well. The
speedups in all cases are close to the ideal. This is logical due to the fact that this
benchmark does not modify shared data and consequently the underlying SVM system
does not penalize the execution except for the first copy of the data. A perfect speedup
its not achieved due to the reductions that need to be done at the end of the loop and
because the static schedule is not perfectly balanced; some nodes have more work to do
than others. In MM, two square matrices of size N = 1024 are multiplied. Although
nodes modify shared data, the relaxed memory consistency models deployed by all SVM
systems except Mome, limit false-sharing; nodes may concurrently write on the same
shared page but page modifications are not immediately propagated to them.

Mome seems to suffer from its sequential consistency model. This becomes clear in the
MD (4096 particles, dimension=3) case. Things seem to get out of control in the case of
OMPi+Mome. The main reason for that is frequent false-sharing. In MD, shared data
occupy only a small a set of pages. Moreover, pages need to be frequently accessed. Par-
ticles are distributed among the participating nodes, while the main computational step
includes the calculation of the forces and potential energies of each particle with respect to
all other particles. That means that the shared arrays keeping the forces and energies are
frequently accessed from the applications threads and although threads are writing on dif-
ferent locations in the arrays, often the same page is involved. ICC and OMPI+ParADE
achicve better speedups although they are not close to the ideal. A reason for that could
be the reduction operations performed at the end of each computational step.
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CHAPTER 7

- CONCLUSIONS AND FUTURE WORK

7.1 OpenMP and Nested Parallelism

7.2 OpenMP on Clusters

7.1 OpenMP and Nested Parallelism

In Chapter 4, we described our implementation of a threading library called PTHR for
the support of nested parallelism. Also, we presented a novel methodology based on
the EPCC microbenchmark suite which allows us to measure OpenMP overheads under
nested parallelism. Using our methodology, we presented an extensive study of how
commercial and research/expiremental compilers behave, in terms of overheads, when
nested parallelism is in effect. To the best of our knowledge, this is the first study of its
kind as all others have focused only on application speedups.

QOur conclusion is that many implementations have scalability problems when nested paral-
lelism is exploited and the number of threads increases well beyond the number of physical
processors. This is most probably due to the kernel-level thread model the majority of
the implementations use. When the number of threads that compete for hardware re-
sources significantly exceeds the number of available processors, the system is overloaded
and the parallelization overheads outweigh any performance benefits. Although our study
was limited to two nesting levels, it became clear that studying deeper levels would only
reveal worse behavior.

Possible future work on this subject includes the extension of our microbenchmarks to
any arbitrary nesting level. Using the microbenchmarks as a tool, we can study ways of
boosting performance. This is very important because nested parallelism is a very usable
feature of OpenMP and is necessary on a wide range of parallel applications.
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7.2 OpenMP and Clusters

In the second part, we presented the architecture of a new runtime library of OMPi, for the
execution of OpenMP programs on top of clusters, called OPRC. It uses a hybrid approach
where inter-process communication at the runtime library is achieved via MPI, while the
shared memory abstraction at the application level is provided by an SVM system. As
OpenMP becomes more and more popular, many studies have been proposed of combining
an SVM system with an OpenMP compiler for the execution of OpenMP programs on
top of clusters, matching the programmer-friendliness of OpenMP with the computational
power of clusters. Recently, Intel presented the latest version of its OpenMP compiler
which also includes support for cluster OpenMP. However, most implementations entirely
use the SVM to offer shared memory semantics at both application and compiler level. We
presented a more efficient solution by utilizing MPI for all the necessary communications
in the runtime library of OMPi. Moreover, usually, most implementations target a specific
SVM which is an inextricable part of the compiler. In our case, we managed to easily
integrate a multitude of SVM systems due to the fact that the runtime library is actually
independent of the target SVM system.

Regarding OMP1i, many optimizations and extensions can be made as part of future work.
Inter-process communication can be further optimized, while the translator can also take
advantage of MPI whenever possible, limiting thus the utilization of the SVM system and
subsequently boosting performance. The next step in the development of OMPi should
be the support of multiple threads per-node, so as to exploit clusters of SMPs efficiently.

Although nested parallelism is a key feature of OpenMP, there has been no study of
how nested parallel regions can be mapped on a cluster. All present OpenMP compil-
ers for clusters do not support nested parallelism. Although, an obvious solution is to
map the nested parallel regions locally on nodes using kernel-level or lightweight user-
level threads, this would not exploit the computational resources of the cluster, in non-
balanced situations. Consequently, more complex scheduling schemes must be considered.
The development of efficient compilation systems for the execution of OpenMP on larger
computational environments than a cluster, like grids, is in our opinion the next step
in research. The compiler has to discover the multiple execution levels of the system in
order to efficiently exploit the computational resources. For example, consider a system
consisting of several clusters, while each node of the cluster is an SMP machine with each
processor consisting of multiple hyper-threaded cores. The compiler’s task is to discover
the hicrarchical execution levels and to map the execution vehicles into them in order to
fully exploit the system.

Finally, our experience with OMPi shows that applications originally written taking into
account the shared memory programming model may not perform well when executed
on a cluster, especially when often communication is needed. In order to achieve better
speedups, applications often need to be rewritten. However, optimizations like the ones

63



mentioned in Section 5.2.3, can significantly boost performance. Moreover, new special
OpenMP directives for cluster application development could be introduced and exploited
by advanced OpenMP programmers. For example, the programmer could use directives to
explicitly distribute shared data in a way that every node of the cluster performs mainly
computations with local data.
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