
ίί

►e<LS920009Z0

NUNINNVOIA0IWH1IIU3NVU
HMHooivera

Μια Δομημένη Αρχιτεκτονική για το Σύστημα
Χρόνου-Εκτέλεσης του Παραλληλοποιητικου Μεταφραστή

ΟΜΡΐ

jjirv/vi

Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Πληροφορικής Εξεταστική Επιτροπή

από τον

Γεώργιο Φίλο

ως μέρος των Υποχρεώσεων για τη λήψη του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ

ΣΤΑ ΥΠΟΛΟΓΙΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Ιούλιος 2008

Dedication

To my parents and my sister Christina

Acknowledgements

I w ould like to th an k m y su p erv isor P rofessor V . V . D im a k o p o u lo s for h is co n tin u o u s

guid ing, m o tiv a tin g and esp ec ia lly for th e p a tien ce h e h as sh ow n u n til th is th e s is w as

com p leted . I a lso th an k h im for th e o p p o rtu n ity h e gave m e to tra v el to P o la n d /K ra k o w

and present a p art o f th is th esis . F urtherm ore, i w ou ld like to th a n k D r. P a n a g io tis

E. H adjidoukas for h is va lu ab le h elp and th e t im e h e sp en t sh arin g h is k n o w led g e d u rin g

th e elaboration o f th is th esis .

1
1
2
2
3

4

5
5

5

7

8
8
8
9

10
10
12
13

15

16
16

17

18

21
21
23

25
25

27

27

Table of Contents

1 Introduction

1.1 O p e n M P ..

1.2 T h esis O b j e c t i v e s ..
1.2.1 N ested P ara lle lism in O p e n M P

1 .2 .2 O p en M P on C lu s t e r s ..

1.3 T h esis S tr u c tu r e ..

2 O P E N M P and O M P i

2.1 O p en M P in B r i e f ..

2 .1.1 T h e P ara lle l C o n s t r u c t ..

2 .1 .2 W orkshare C o n s t r u c t s ..

2 .1 .3 D a ta S c o p i n g ..

2 .1 .4 S yn ch ron iza tion C o n s t r u c t s

2 .1 .5 T h e R ed u ctio n C l a u s e ..

2 .1 .6 L ibrary C alls an d E n v iro n m en ta l V ariab les

2.2 T h e O M P i C o m p i l e r

2.3 O M P i’s T ran sform ation s for T h r e a d s

2.4 S u pp ort for P ro cesses

2 .4 .1 G lo b a l V ariab les ..

2 .4 .2 N o n -G lo b a l Shared V a r ia b le s

3 O M P i R u n t i m e Architecture

3.1 I n it ia l iz a t io n ..

3 .2 E n terin g a P ara lle l R e g i o n ...

3 .3 W orkshare R egion S c h e d u l i n g ...

3 .4 Synchronization...
3.5 H an d lin g T h read p riva te V a r ia b le s

3 .6 T h e In terface w ith E E L I B ...

4 O M P i and Nested Parallelism

4.1 N ested P ara lle lism in O p en M P

4 .2 E n ab lin g N ested P a ra lle lism in O M P i

4 .2 .1 T h e P T H R T h read in g L ib r a r y

1

4.3 M easuring th e O p en M P O v e r h e a d s · · · · 29
4 .3 .1 T h e E P C C M ierobenchm ark S u ite .. 30

4 .3 .2 Our M e th o d o lo g y .. 31

4.4 A ssessin g th e P e r fo r m a n c e ... 33

5 Shared Virtual M e m o r y and O p e n M P for Clusters 40

5.1 A n In trod u ction to Shared V irtu a l M em ory .. 40

5.1 .1 P age-B ased S V M .. 41

5 .1 .2 M em ory C on sisten cy M od els in S V M ... 43

5 .1 .3 C ache C oherency P ro to co ls in S V M .. 44

5 .1 .4 M em ory O rgan iza tion M e t h o d s ..45

5 .1 .5 A p p lica tio n P rogram m in g I n t e r f a c e .. 45

5 .1 .6 SV M for C lu sters o f S M P s ..46

5.2 O p en M P and Shared V ir tu a l M e m o r y ... 46

5 .2 .1 Shared V a r i a b l e s ... 47

5 .2 .2 M em ory C o n s i s t e n c y ... 47

5 .2 .3 P e r fo r m a n c e ... 48

6 O M P i and Clusters 49

6.1 A M odular A r c h i t e c t u r e .. 49

6.2 A H ybrid A p p r o a c h ... 50

6.3 T h e O P R C L ib r a r y ... 51

6 .3 .1 O P R C In itia liza tio n .. 52

6 .3 .2 T h e Server T h read M o d e l ... 53

6 .3 .3 E x ecu tin g a P ara lle l R e g i o n ... 53

6 .3 .4 S y n c h r o n iz a t io n ... 54
6 .3 .5 F in a liza tio n ... 55

6.4 M an agin g O R T ... 55
6.4 .1 O R T I n i t i a l i z a t i o n ... 55
6.4 .2 O R T C o m m u n ica tio n S c h e m e ... 56

6.5 E x p erim en ta l R e s u l t s ... 56

6 .5 .1 E P C C M ic r o b e n c h m a r k s ... 57
6 .5 .2 A p p l ic a t io n s ... 59

7 Conclusions and Future W o r k 62

7.1 O p en M P and N ested P a ra lle lism .. 62
7.2 O p en M P and C l u s t e r s ... 63

ii

List of Figures

2.1 T h e co m p ila tio n process. 10

3.1 O M P i R u n tim e O rg a n iza tio n .. 17

3.2 A n ex a m p le o f th e d y n a m ic tree o f e ec b s .. 18

3 .3 E E L IB S and in terface w ith O R T ... 24

4.1 F ib o n a cc i num bers u sin g n ested p a ra lle lism ... 26

4.2 P ortion o f th e t e s t f o r O E P C C m icrobenchm ark r o u tin e ... 31

4.3 E x ten d ed m icrobenchm arks for n ested p ara lle lism overh ead m ea su rem en ts . 32

4.4 O verheads for th e p a r a l l e l , f o r , s i n g l e and c r i t i c a l .. 35

4.5 S ch ed u lin g overheads for s t a t i c , d yn am ic and g u id e d .. 37

4.6 S yn ch ron iza tion overheads for O M P i on a d ifferent p o p u la tio n o f th read s. . 38

4 .7 S yn ch ron iza tion overheads for G C C , IC C an d S U N C C on a d ifferent p o p

u la tio n o f th rea d s 39

5:1 A sim p le form o f m em ory coh erence in S V M ... 42

6.1 T h e O P R C library and its in tera c tio n w ith S V M s y s te m s ...50

6.2 T h e series o f ev en ts u p o n a p ara lle l ex ecu tio n req u est... 54

6 .3 C o m m u n ica tio n s tep s fo llow ed u p o n a read req u est... 5 7

6 .4 S p eed u p s for N A S E P , M M an d M D ... 61

111

List of Tables

6.1 O verheads for p a r a l l e l f o r (μβ) . 57
6.2 O verheads for s i n g l e (/u ,s) 58

6.3 O verheads for p a r a l l e l r e d u c t i o n ^) ... 58

6.4 O verheads for th e O M P i c o m p i l e r ^) 59

Abstract

G iorgos Ch. P h ilo s. M Sc, C om pu ter S cien ce D ep a rtm en t, U n iv ersity o f Io a n n in a , G reece.

July, 200S. A M odular A rch itectu re for th e R u n tim e S y stem o f th e O M P i C om piler .

T hesis Supervisor: V assilios V . D im ak op ou los.

O penM P has b ecom e a stan d ard p arad igm for shared m em ory p rogram m in g , as it offers

th e advantage o f s im p le and in crem en ta l program d ev e lo p m en t, in a h igh a b stra c tio n level.

In th is th esis we purpose a m od u lar arch itectu re for th e ru n tim e su p p o rt o f O p en M P pro

gram s produced by th e O M P i sou rce-to -sou rce com p iler . W e p resen t th e im p le m en ta tio n

o f our ru n tim e sy stem , a lo n g w ith d eta iled perform an ce ev a lu a tio n resu lts .

T h e purpose o f th is th esis is tw ofold: s tu d y n ested p a ra lle lism su p p o rt in O p en M P and

ex ten d O p en M P ap p lica b ility to c lu stered en v iron m en ts. In th e first p art w e d ea l w ith

m u ltilevel parallelism w hich is a m ajor featu re o f O p en M P . S p ecifica lly , th rea d s en co u n

tering n ested parallel reg ions are allow ed to sp aw n new th read s d y n a m ica lly . A lth o u g h

m a n y con tem p orary O p en M P co m p ila tio n sy ste m s p rov id e so m e k ind o f n ested p a ra l

le lism su pp ort, there has b een no ev a lu a tio n o f th e overheads incurred b y su ch a su p p o rt.

In th is th esis , w e p resent a n ew ru n tim e th rea d in g m o d u le for O M P i, ca lled P T H R , w h ich

provides basic su p p ort for n ested p ara lle lism . U sin g a n ovel m icrob en ch m ark su ite , w e

eva luate how a m u ltitu d e o f freew are an d com m erc ia l O p en M P co m p ilers b eh a v e in th e

presence o f n ested para llelism .

In th e second part, w e co n cen tra te on co m p u ta tio n a l c lu sters . T h e m o st w id e ly u sed an d

arguab ly m o st efficient to o l for p rogram m in g c lu sters is th e M essage P a ss in g In terface

(M P I). H ow ever, M P I is rather cu m b ersom e as it b u rd en s th e a p p lica tio n p rogram m er

w ith th e ex p lic it d istr ib u tio n o f p rogram ’s d a ta an d th e o rch estra tio n o f co m m u n ica tio n s

by hand. A s O p en M P b eco m es m ore an d m ore p o p u la r n ow ad ays, researchers h ave s tu d

ied ways o f ex ten d in g O p en M P to c lu sters m o stly u sin g Shared V ir tu a l M em ory (S V M)

libraries w hich g ive th e illu sio n o f a sh ared ad d ress sp a ce on to p o f a d is tr ib u ted m em o ry

en vironm en t. W e present a n ew m o d u le ca lled O P R C , w h ich is p art o f th e ru n tim e sy ste m

o f O M P i, en ab lin g th e ex ecu tio n o f O p en M P p rogram s on c lu sters. T h e u n iq u e fea tu res

o f our work in clu d e an a b stra ctio n layer w hich d eco u p les th e ru n tim e core from th e a c tu a l

SV M library, m ak in g it p o ssib le to u tilize an y arb itrary S V M im p le m en ta tio n . W e h ave

su ccessfu lly in tegrated 5 d ifferent SV M libraries w ith d ifferent m em o ry c o n s is te n c y pro

to co ls and m em ory a llo ca tio n sem a n tics . O ur im p le m en ta tio n fo llow s a h yb rid ap p roach

v

w hereby th e SV M su b sy stem is on ly u tilized for user program sh ared variab les, w h ile

in ternal sch ed u lin g and syn ch ron iza tion o p era tio n s rely on ex p lic it M P I ca lls . W e fin a lly

present an ex p erim en ta l eva lu ation o f our p la tform over a c lu ster w ith G ig a b it E th ern et

in terconn ects, u sin g a num ber o f ty p ica l para lle l ap p lica tio n s.

vi

Εκτενής Περίληψη

Γ ιώ ργος Φ ίλος του Χ ρήστου και της Υ παπαντής. M Sc, Τ μ ή μ α Π ληροφορικής, Π ανεπιστή

μιο Ιω αννίνω ν. Ιούλιος, 2008 . Μια Δ ομ η μ ένη Α ρχιτεκτονικ ή γ ια το Σ ύσ τη μ α Χ ρ ό νο υ -

Ε κτέλεσης του Π αραλληλοποιητικού Μ εταφραστή Ο Μ Ρ ϊ. Επιβλέπω ν: Β α σ ίλειο ς Β . Δ η μ α -

κ όπουλος.

T o O p en M P είναι ένα πρότυπο γ ια την ανάπτυξη παράλληλω ν εφ α ρ μ ογώ ν σ ε μ η χα νές κ ο ι

νής μνήμης. Υ ποστηρίζει τις γ λ ώ σ σ ες προγρα μ μ α τισ μ ού C / C + + και F ortran . Α π οτελείτα ι

από ένα σ ύ νο λο από οδη γίες (d irectives) και ρουτίνες βιβλιοθήκης. Σ ε αντίθεση μ ε άλλα

πρότυπα, όπω ς το πρότυπο P O S IX για τα νήματα, το O p en M P είναι μία διεπαφή υψ ηλό

τερου επιπέδου που επιτρέπει την παραλληλοποίηση ε ν ό ς σειριακού π ρ ογρ ά μ μ α τος με ένα ν

απλό και αυξητικό τρόπο. Οι οδηγίες προστίθενται σ ε ένα σειριακό π ρόγρα μ μ α C / C + + ή

Fortran με τέτοιο τρόπο ώ στε απλά να α γνο ο ύ ντα ι στην περίπτω ση που ο μεταφ ραστή ς δεν

υποστηρίζει οδηγίες O penM P . Σ υνεπώ ς, το πρότυπο επεκ τείνει παρά α λλοιώ νει την γ λ ώ σ σ α

προγρα μ μ α τισμ ού .

Έ ν α βασικό χαρακτηριστικό του O p en M P είναι ο π ολυεπίπεδος πα ρ α λλη λισμ ός. Σ υ γ κ ε

κριμένα, τα νήματα που εισ έρ χοντα ι σ ε εμ φ ω λευμ ένες παράλληλες π ερ ιο χές επιτρέπεται να

δημιουργούν δυναμικά ν έες ομ άδες νημάτω ν. Τ ο χαρακτηριστικό αυτό είναι σ η μ α ντικ ό γ ια

ένα ευρύ σ ύ νο λο από παράλληλες εφ α ρ μ ογές που απαιτούν π ολυεπίπεδο π α ρ α λλη λισμ ό ώ στε

να π ετύχουν ικανοποιητική επ ιτά χυνση (sp eed u p). Παρά την σημασία το υ , η υποστήριξη

του άργησε να εμφ ανιστεί σ τ ο υ ς μεταφ ραστές. Σ τις μέρες μας, οι π ερ ισσ ότερ οι μ ετα

φραστές O p en M P π α ρ έχουν κάποιου είδους υποστήριξη για πολυεπίπεδο πα ρα λλη λισμ ό.

Ό μ ω ς, μέχρι στιγμ ή ς δεν έ χ ε ι παρουσιαστεί κάποια μ ελέτη σ χετ ικ ά μ ε το επ ιπ λέο ν κ ό σ τ ο ς

που εισάγεται σ το σύστη μα λ ό γ ω της δ ιαχείρισης τω ν π ο λλα π λώ ν επιπέδω ν π α ρ α λλη λισμ ού .

Σ την παρούσα διατριβή, π αρουσιάζουμε μια βιβλιοθήκη χ ρ ό ν ο υ -εκ τ έλ εσ η ς (ru n tim e lib rary)

για το ν παραλληλοποιητικό μεταφραστή Ο Μ Ρ ΐ που επιτρέπει την εκ τέλεσ η O p en M P προ

γραμμάτω ν με βασική υποστήριξη γ ια πολυεπίπεδο παραλληλισμό. Ε π ιπ λέον , α να π τύξα μ ε

μια πλατφόρμα α ξιολόγη σ η ς (b en ch m ark) και π α ρ ουσ ιά ζουμ ε μια πειραματική μ ελέτη της

απόδοσης ενό ς σ υ νό λο υ από εμπορικούς και πειραμ ατικούς μ ετα φ ρα σ τές O p en M P υπό το

καθεστώ ς πολυεπίπεδου παραλληλισμού.

Π ρόσφατα, η έρευνα έ χ ε ι στραφεί σε τρόπους επ έκταση ς της εκ τέλεσ η ς O p en M P π ρ ογρ α μ

μάτω ν σε μ εγαλύτερα υπ ολογισ τικ ά περιβάλλοντα , όπω ς ο ι σ υ σ τά δ ες υ π ο λ ο γ ισ τ ώ ν (c lu s

ters), συνδυά ζοντα ς έτσι την απλότητα του π ρογρα μ μ α τισ τικ ού μ ο ν τ έλ ο υ το υ O p en M P με

vii

την υπολογιστική ισ χύ που προσφ έρουν τα συστήματα αυτά. Τ ο πιο γ νω σ τ ό και ευρέω ς

αποδεκτό μ ο ντέλ ο προγραμματισμού σ ε συστά δες υπ ο λο γισ τώ ν είναι η μεταβίβαση μ ηνυ

μάτων και συγκεκριμ ένα το Μ Ρ Ι (M essage P a ssin g In terface). Π α ρόλο που η προσεκτική

χρήση του Μ ΡΙ επιφέρει καλή απόδοση στις εφ α ρμ ογές , ο προγραμμα τιστή ς καλείται να

οργανώ σει τις επικοινω νίες και να κατανέμει τα δεδομένα του π ρ ογρ ά μ μ α τος ρητά σ το υ ς

κόμβους του συστή ματος. Οι υπ ά ρχουσες υλοποιή σεις O p en M P για σ υ σ τά δ ες υ π ο λο γ ισ τώ ν

χρη σιμοποιούν εσωτερικά βιβλιοθήκες κοινής εικονικής μνήμης (S hared V ir tu a l M em ory -

SVM) που πα ρέχουν έναν εικονικό κ ο ινό χώ ρο διευθύνσεω ν. Σ υ γκ εκ ρ ιμ ένα , η κοινή μνήμη

είναι εικονική και αποτελείται από τμήματα τω ν φ υσικώ ν μνημώ ν τω ν κ όμ βω ν, ενώ η συ

νοχή και η συνέπεια της κοινής μνήμης υλοποιείται εξολοκ λή ρ ου σε λ ο γ ισ μ ικ ό . Μ ε α υτόν

τον τρόπο, εξασφ αλίζεται το μ ο ντέλ ο κοινής μνήμης που προϋποθέτει το πρότυπο O p en M P ,

σε ένα κατανεμημένο περιβάλλον. Π αρόλα αυτά, η απόδοση αυτώ ν τω ν β ιβλιοθηκώ ν δεν εί

ναι ικανοποιητική. Η σ υ χνή και χρονοβ όρα επικοινω νία που απαιτείται γ ια να εξα σ φ α λισ τεί

η σ υνοχή και συνέπεια της κοινής μνήμης μειώ νει αισθητά την απόδοση τω ν εφ α ρμ ογώ ν,

ιδίως όταν η εφαρμογή απαιτεί σ υ χνή τροποποίηση κοινώ ν δεδομ ένω ν.

Σ την παρούσα διατριβή, παρουσιάζεται μια βιβλιοθήκη χρ ό νο υ -εκ τ έλ εσ η ς γ ια τ ο ν παραλ-

ληλοποιητικό μεταφραστή O M P i που υποστηρίζει την εκ τέλεσ η O p en M P π ρογρα μ μ ά τω ν

σε συστάδες υ π ολογιστώ ν. Για λ ό γ ο υ ς απόδοση ς, η υλοποίηση μας είναι υβριδική: ένα ς

πυρήνας SV M χειρίζεται τα δεδομένα της εφ αρμογής που ορ ίζοντα ι ω ς κ οινά μ ετα ξύ τω ν

διεργασιώ ν, ενώ οι α νά γκ ες για την δρομ ολόγη σ η και το ν σ υ ντο ν ισ μ ό τω ν διεργα σιώ ν εσω

τερικά στην βιβλιοθήκη εξυπηρετούνται με Μ Ρ Ι. Ως α π οτέλεσ μ α , επ ιτ υ γ χ ά νο υ μ ε αποδοτι

κότερες επικοινω νίες. Ε νώ οι υπ ά ρ χοντες μεταφ ραστές O p en M P συνήθω ς σ τ ο χ ε ύ ο υ ν μία

συγκεκριμένη βιβλιοθήκη SV M που είναι α να π όσ π α στο τμήμα του μεταφ ραστή , η υλοποίη ση

μας μπορεί να εκμ ετα λλευτεί οποιαδήποτε τέτοια βιβλιοθήκη επιθυμεί ο π ρογρα μ μ α τισ τή ς

καθώς το σύστημα χρ ό νο υ -εκ τέλεσ η ς του O M P i είναι ανεξά ρτητο από τ ο ν πυρήνα S V M

που χρησιμοποιείται. Ε νσω ματώ σα με επ ιτυχώ ς 5 β ιβλιοθή κες που α κ ο λ ο υ θ ο ύ ν διαφορετικά

μ οντέλα συνέπειας της κ οινή ς μνήμης και π α ρ ουσ ιά ζουμ ε πειραματικά α π οτελέσ μ α τα από

μια συστάδα υπ ολογισ τώ ν, μ ελετώ ντα ς σ υγκ ριτικ ά την επίδοση του μεταφ ραστή O M P i, σ ε

ένα σ ύ νο λο από παράλληλες εφ α ρμ ογές.

V111

Chapter 1

Introduction

1.1 O p en M P

1.2 T h esis O b jectiv es

1.3 T h esis S tru ctu re

1 .1 O p e n M P

OpenMP (O p en M u lti-P ro cessin g) is an a p p lica tio n p ro g ra m m in g in terface (A P I) th a t

su pp orts m u lti-p la tform shared m em ory m u ltip ro cesso r p rogram m in g in C / C + + an d For

tran on m an y arch itectu res, in c lu d in g U n ix an d M icrosoft W in d o w s p la tfo rm s. I t co n s is ts

o f a set o f com p iler d irectiv es and a ru n tim e sy ste m su p p o rtin g ca lls . In co n tra st w ith

other A P Is such as th e P O S IX th read s, O p en M P is a h igh er leve l A P I w h ich a llo w s th e

program m er to p ara lle lize a seria l program in a s im p le , co n tro lled an d in crem en ta l way.

It provides d irectives for exp ressin g p ara lle lism , w orksharing and sy n ch ro n iza tio n . T h e

O p en M P d irectives are ad d ed to an ex is t in g ser ia l p rogram w r itten in C / C + + or For

tran in such a w ay th a t th ey can sa fe ly b e d iscard ed by co m p ilers th a t d o n o t su p p o rt

O p en M P (th u s lea v in g th e orig in a l p rogram u n ch a n g ed). A s a co n seq u en ce , O p en M P

ex ten d s rather th a n ch an ges th e b ase la n g u a g e (C / C + + or F ortran).

N ow adays, O p en M P h as b eco m e a sta n d a rd p a ra d ig m for p ro g ra m m in g sy m m etr ic sh ared

m em ory m u ltip rocessors (S M P). Its u sa g e is co n tin u o u sly in creasin g a s sm a ll S M P m a

ch ines have b eco m e th e m ain strea m a rch itectu re even in th e p erso n a l co m p u ter m a rk et,

th an ks to th e d o m in a tio n o f m u lticore C P U s. Its p o p u la r ity h a s b een p roven from th e fa c t

th a t m an y research and co m m erc ia l/p ro p r ie ta ry O p en M P com p ilers are now ava ila b le .

C om pan ies like F u jitsu , H P, In te l, M icrosoft an d S u n h ave d ev e lo p ed O p en M P -co m p lia n t

com pilers. A lso , a m u ltitu d e o f r e sea rch /ex p er im en ta l O p en M P co m p ilers e x is t n ow a

days. N am ely, so m e o f th em are: th e O M P i co m p iler [10], th e O m n i co m p iler [31], th e

O p en U H com p iler [27], an d th e N a n o s M ercurium co m p iler [2].

1

W ith o u t d isp u te , O p en M P is very p op u lar now adays. I t ’s m ain a d v a n ta g e is th e pro

gram m ing sim p lic ity . T h e A P I h ides a ll th e cu m b ersom e d eta ils from th e user. S in ce th e

first version (v l.O) o f th e A P I sp ecifica tion , a num ber o f new fea tu res h ave b een a d d ed

to O penM P . Its current version is v3 .0 . R esearch on O p en M P in clu d es th e im p rovem en t

o f the A P I so as to b e m ore useful to th e end users, and th e d ev e lo p m en t o f efficien t

com p ila tion and ru n tim e sy stem s su p p o rtin g O penM P .

1 .2 T h e s i s O b j e c t i v e s

T h e O M P i com p iler is a lig h t-w eig h t, p o rta b le an d m o d u la r so u rce-to -so u rce co m p iler for

th e v2 .5 O p en M P sp ecifica tio n . It cu rrently su p p o rts o n ly th e C p rogram m in g la n g u a g e .

T h e O M P i com p iler is th e resu lt o f th e w ork o f th e P a ra lle l P ro cessin g G roup (PARAGROUP)

at th e C om puter Science D ep artu re o f U n iversity o f Ioan n in a . I ts first p u b lic release

w as in 2003. T h e current version o f O M P i is v l .0 .0 fea tu rin g a red esign ed -from -scra tch

translator and an enhanced ru n tim e sy stem , w hich is b a sed on th e w ork d escr ib ed in

th is thesis. T h is work is m a in ly focu sed in th e e x ten s io n o f O M P i’s ru n tim e sy ste m .

Specifically , th e co n tr ib u tio n s o f th is w ork are th e fo llow ing:

• P rov ision o f ru n tim e su p p ort for n ested p ara lle lism , a lo n g w ith a n ovel m icro b en ch

m ark su ite for a ssessin g its perform ance.

• D evelop m en t o f a n ew p o rta b le and m o d u la r ru n tim e library for th e ex e c u tio n o f

.O M P i program s on to p o f clusters.

1 .2 .1 N e s t e d P a r a l l e l i s m i n O p e n M P

N ested p arallelism h as b een a m ajor fea tu re o f O p en M P s in ce it s very b eg in n in g . A s a

program m ing sty le , it provides an e leg a n t so lu tio n for a w id e c la ss o f p a ra lle l a p p lica

tion s, w ith th e p o ten tia l to ach ieve su b sta n tia l u t iliz a tio n o f th e ava ila b le c o m p u ta tio n a l

resources, in s itu a tio n s w here o u ter-lo o p p a ra lle lism s im p ly ca n n o t. N o tw ith s ta n d in g its

sign ificance, n ested p ara lle lism su p p o rt w as s low to find it s w ay in to O p en M P im p le

m en ta tio n s, com m ercia l an d research on es a like. E ven n ow ad ays, th e le v e l o f su p p o r t is

varying g rea tly a m on g com p ilers and ru n tim e sy stem s.

O ur o b jectiv e is to provide ru n tim e su p p o rt for n ested p a ra lle lism in O M P i. T o th is en d ,

w e first develop a new th read in g library for O M P i. W e a lso d evelop a m icro b en ch m a rk

su ite based on th e E P C C m icrob en ch m ark s [4], w h ich a llo w s us to m ea su re O p en M P

overheads w hen n ested p ara lle lism is in effect. U sin g our m eth o d o lo g y , w e perform an

ex p erim en ta l s tu d y o f th e overheads in tro d u ced in n ested p ara lle lism , p ro v id in g resu lts

for a num ber resea rch /ex p er im en ta l and freew a re /p ro p r ie ta ry co m p ila tio n sy ste m s.

2

1 .2 .2 O p e n M P o n C l u s t e r s

C om p u tation c lusters have em erged as a co st-effectiv e approach to h igh perform an ce

com p u tin g (H P C). In d iv id u al m ach in es unified by a L A N , e ith er u sin g a co m m o d ity or

high perform ance in terconn ect, can b e v iew ed as a v ir tu a l large-sca le m ach in e w ith a b ig

num ber o f processors and can be program m ed as such . T h ey offer an ex p a n d a b le and

reliable co m p u ta tio n a l en vironm ent w hich is q u ite m ore eco n o m ic th a n large m a ssiv e ly

parallel m ach ines. H ow ever, program m in g for a c lu ster is rather cu m b ersom e. T h e m o st

w idely used and arguab ly m o st efficient to o l for c lu ster p rogram m in g is th e M essage

P assin g Interface (M P I). N everth eless, M P I forces th e p rogram m er to e x p lic it ly d is tr ib u te

th e program ’s d a ta and o rch estra te co m m u n ica tio n s by h an d , and as a resu lt it h as n o t

found its w ay to m ain stream com p u tin g .

A n a ltern ative to M P I is th e use o f shared virtual memory (S V M) libraries w h ich g iv e

the illu sion o f shared m em ory. A n eq u iva len t term for sh ared v ir tu a l m em o ry is software

distributed shared memory (sD S M). M any SV M libraries have b een d ev e lo p ed in th e p a st.

T h ey all provide an A P I for a llo ca tin g shared m em ory on a d istr ib u ted en v iro n m en t

along w ith syn ch ron iza tion routines. M ost o f th em em p lo y relaxed m em o ry co n s is ten cy

p rotoco ls m ea n in g th a t m em ory u p d a tes are delayed u n til sy n ch ro n iza tio n . C on seq u en tly ,

th is forces th e program m er to insert ex p lic it sy n ch ro n iza tio n ca lls in order to m ak e su re

th a t th e program ex ecu tes correctly. A lth o u g h SV M sy ste m s d o n o t seem to b e a b le

to ach ieve th e sp eed u p s p o ssib le w ith carefu lly h a n d -co d ed M P I p rogram s, th e y h ave

nevertheless b een proven su ccessfu l for a n um ber o f d a ta -in ten siv e a p p lica tio n s. A p rob lem

w ith SV M sy stem s is th e co m p lete in co m p a tib ility b etw een th e various im p le m en ta tio n s

and the esoteric A P I th ey u su a lly p rovide. A s a resu lt, it is n o t a lw ays ea sy to ex p er im en t

w ith and com pare such sy stem s.

T h e com b in ation o f O p en M P and SV M sy ste m s h as b een p rop osed by m a n y researchers

as a conven ient m eans o f leverag in g a c lu ster , m a tch in g th e p ro gram m er-fr ien d lin ess o f

O p en M P w ith th e SV M layer th a t a b stra c ts aw ay th e u n d erly in g d is tr ib u ted a rch itectu re .

A ny p ecu liar ities o f th e S V M layer are c o m p le te ly h id d en from th e p rogram m er an d are

le ft to th e com p iler and ru n tim e sy ste m to h an d le . A n u m b er o f r e sea r ch /ex p er im en ta l

com pilers su p p ort O p en M P on clusters. T h e O m n i co m p iler [31] u ses th e S C A S H S V M

sy stem to im p lem en t th e shared m em ory sem a n tics . T h e P a rA D E O p en M P tr a n s la to r [21]

is based on th e O m n i C om p iler and u tilizes its ow n u n d er ly in g S V M sy ste m . T h e N a n o s

com piler [8] a lso su p p orts a c lu ster ex ecu tio n en v iro n m en t. M any researchers b eg a n w ith

th e d evelop m en t o f SV M sy stem s and la ter in teg ra ted a com p iler an d ru n tim e sy ste m

for th e su p p ort o f O p en M P o n c lu sters. In te l h as recen tly released v 9 .0 o f it s O p en M P

com piler, w hich ex ten d s it to c lu sters [13]. It in tern a lly ta rg e ts a m o d ified v ersion o f th e

TreadM arks com m ercia l SV M sy stem [23].

H owever, a lm o st a ll O p en M P im p lem en ta tio n s are b a sed on a tig h t co u p lin g o f th e c o m

piler and th e ru n tim e library. T h e w h o le sy ste m ta rg e ts S M P m a ch in es or c lu sters b u t

3

u sually n o t th e b o th . E ven in th e few cases th a t su p p o rts b o th , th ere is a fixed , b u ilt-

in thread ing library and an SV M core and th e gen erated co d e ta rg e ts th em sp ecifica lly ,

m aking it a lm ost im p o ssib le to exp erim en t w ith a ltern a tiv e con figu ration s.

O ur ob jectiv e is to develop an efficient an d m o d u la r ru n tim e sy ste m for th e e x ec u tio n o f

O M P i program s on to p o f clusters. W e use a hybrid approach w here co m m u n ica tio n a t th e

runtim e library is ach ieved by ex p lic it m essage p a ssin g (M P I), w h ile an S V M core p rov id es

the shared m em ory sem a n tics a t th e ap p lica tio n level. T h e key fea tu re o f our d esign is

th a t th e SV M core is n o t a fixed part o f th e ru n tim e sy ste m , a llo w in g th e in teg ra tio n o f

any desirab le S V M library. W e m an aged to ex p erim en t w ith d ifferent co n fig u ra tio n s an d

provide com p arative resu lts.

1 .3 T h e s is S t r u c t u r e

T h is th esis is organ ized as follows:

• C hap ter 2 p resen ts briefly th e O p en M P A P I an d d escrib es th e c o m p ila tio n pro

cess and th e b asic tran sform ation s m a d e by th e O M P i com p iler , in th e p resen ce o f

threads or SV M processes.

• C h ap ter 3 presen ts in d e ta il th e ru n tim e a rch itectu re o f O M P i.

• C hap ter 4 d escrib es our d esign for th e su p p o rt o f n ested p a ra lle lism . In a d d itio n ,

'it presents our m icrobenchm ark m eth o d o lo g y , a lo n g w ith co m p a ra tiv e ex p er im en ta l

resu lts for a m u ltitu d e o f O p en M P co m p ila tio n sy ste m s.

• C hapter 5 is a se lf-co n ta in ed in tro d u ctio n to sh ared v ir tu a l m em o ry co n cep ts . It

also surveys th e on g o in g research regard in g O p en M P p rogram e x ec u tio n on c lu sters

u sing SV M libraries.

• C hap ter 6 p resen ts our ru n tim e a rch itectu re for th e ex ec u tio n o f O M P i p rogram s

on top o f c lu sters a lo n g w ith im p le m en ta tio n d e ta ils . T h is ch a p ter a lso p rov id es

exp erim en ta l resu lts.

• C h ap ter 7 con clu d es th is th es is w ith a su m m a ry o f our co n tr ib u tio n s an d p o ss ib le

d irection s for fu ture work.

4

Chapter 2

OPENMP and OMPi

2.1 O p en M P in B r ie f

2 .2 T h e O M P i C om piler

2 .3 O M P i’s T ran sform ation s for T h read s

2 .4 S u pp ort for P rocesses

2 .1 O p e n M P i n B r i e f

T h e O p en M P A P I is com p rised o f th ree p rim ary co m p o n en ts: com p iler d irectiv es , ru n tim e

library rou tin es and en v iron m en ta l variab les. T h e O p en M P d irec tiv es in C h ave th e

general form at of:

#pragma omp directive-name [clause,...] newline

E ach d irective ap p lies to th e su cceed in g s ta te m e n t, w h ich m u st b e a s tru c tu red b lock .

O p en M P sp ecifies a se t o f sy n ta x an d b in d in g ru les for th e d irectiv es . In th is s e c t io n

w e w ill n o t cover a ll th e d eta ils; in stea d , w e w ill p resen t b riefly th e m o st im p o r ta n t an d

co m m on ly u sed fea tu res o f th e A P I. For m ore d e ta ils , th e reader is referred to th e offic ia l

O p en M P A P I sp ec ifica tio n [1].

2 . 1 . 1 T h e P a r a l l e l C o n s t r u c t

T h e program m er defines a stru ctu red b lock o f co d e to b e ex ec u te d by m u lt ip le th rea d s

u sin g th e p a r a l l e l d irectiv e . O p en M P a d o p ts th e fo r k /jo in m o d e l. T h e m a ster th rea d ,

i.e . th e th read th a t o r ig in a lly ex ecu te s th e user program , cre a tes a te a m o f w orker th rea d s

w henever a p a r a l l e l d irectiv e is en cou n tered . A ll w orker th rea d s in d ep en d en tly e x e c u te

5

th e sam e b lock o f co d e en closed w ith in th e p a r a l l e l d irective . A t th e en d o f th e par

a lle l region , a ll threads are syn ch ron ized an d o n ly th e m aster th rea d co n tin u es w ith th e

seq u en tia l ex ecu tio n o f th e su cceed in g cod e. For ex a m p le , con sid er th e fo llo w in g co d e in

O p en M P /C :

main(){
int id;
/* Fork a team of threads */
#pragma omp parallel private(id)
{

/* Each thread has its own id */
id = omp_get_thread_num();
printf("hello from thread '/ed\n", id);

if(id ** 0) /* Only master do this */

printf ("number of threads = 7»d\n", omp_get_num_threads ()) ;
>

}
/* Only the master thread reaches this point */

}

E ach thread has a u n iq u e id w hich is ava ilab le th rou gh a ca ll to o m p _ g et_ th rea d _ n u m ().

T hreads are num bered seq u en tia lly s ta r tin g from 0 (m a ster th rea d). T h e n u m b er o f

threads ex ecu tin g a p arallel reg ion is queried by a ca ll to o m p _ g et_ n u m _ th rea d s().

T h e num ber o f th read s in a parallel reg ion d ep en d s o n th e fo llo w in g factors:

• U se o f th e o m p _ se tja u m _ th rea d s() lib rary ro u tin e .

• V alue o f th e OMP JJUM_THREADS en v iro n m en ta l variab le .

• Im p lem en ta tio n d efau lt.

T h e omp_set_num_threads() has p recedence over th e OMP_NUM_THREADS en v iro n m en ta l

variable. B y d efa u lt, a program w ith m u ltip le p ara lle l reg ion s w ill u se th e sa m e n u m b er

o f threads to ex ecu te each para lle l reg ion . T h is b eh a v io r can b e ch an ged to a llo w th e

runtim e sy stem to d y n a m ica lly ad ju st th e n u m ber o f th rea d s th a t are crea ted for a g iv en

parallel sec tio n . T h e program m er can turn on th e d y n a m ic m o d e th ro u g h th e fo llo w in g

m ethods:

• U se o f th e o m p _ se t_ d y n a m ic () library rou tin e .

• S e ttin g th e OMPJDYNAMIC en v iro n m en ta l variab le.

6

To assure th a t th e requested num ber o f th read s w ill a c tu a lly b e crea ted , th e p rogram

m er m ust turn off th e d y n a m ic m o d e and ex p lic it ly se t th e n um ber o f th read s v ia th e

omp_set_num_threads() routine.

O penM P allow s parallel regions to b e n ested each o th er. T h is fea tu re is o p tio n a l. W h en

nested p arallelism is su p p orted by an im p lem en ta tio n an d is en ab led , m u ltip le te a m s o f

threads are created . E ach thread in th e first level crea tes a n ew tea m . I f n ested p ara lle l is

n ot su p p orted or is d isab led , each th read in th e first lev e l crea tes a n ew te a m co n s is tin g

o f on ly one thread , th a t is to say, th e p arallel region is seria lized .

2 . 1 . 2 W o r k s h a r e C o n s t r u c t s

T h e m ost im p ortan t featu re o f O p en M P is th e su p p o rt o f th read s w orksharing . T h e fo r

directive is th e m ost co m m o n ly used w orkshare d irectiv e in O p en M P program s. For lo o p

iteration s are d iv id ed in to chunks and sch ed u led a m o n g th e ex ec u tin g th read s a ccord in g to

a schedu le policy . C onsider th e fo llow in g p art o f a s im p le m a tr ix m u ltip lica tio n p rogram

u sing O p en M P /C :

1 #pragma omp parallel for privateCi,j,k) schedule(static)
2 for(i = 0; i < rows; i++) {
3 for(j * 0 ; j < cols; j++) {
4 for(k = 0 ; k < rows; k++) {
5 c[i] [j] += a[i] [k]*b[k] [j] ;
6 }
7 ' }
8 }

N o te th a t, th e p a r a l l e l d irectiv e can b e com b in ed w ith th e f o r d irec tiv e in a s in g le

O p en M P sta tem en t. T h is m ean s th a t a n ew tea m o f w orker th rea d s w ill b e crea ted

and th e first f o r lo o p ’s itera tio n s (lin e 2) w ill b e sch ed u led a m o n g th em . E ach th rea d

w ill ex ecu te th e su cceed in g cod e (lines 3 -6) as m an y tim es as its a ssig n ed ite r a tio n s .

E ventually , a fter th e work is d on e, a ll th read s w ill b e syn ch ron ized .

O p en M P offers d ifferent sch ed u le p o lic ies th a t can b e a p p lied to lo o p iter a tio n s . T h e

d efau lt sch ed u le p olicy , n a m ely s ta t ic , defines th a t lo o p iter a tio n s are d iv id ed in to chunks

o f equal size and sch ed u led a m o n g th e ex ec u tin g th read s. H ow ever, th e s ta t ic sch ed u le

d oes n ot tak e in to accou n t th e p o ssib le lo a d /s p e e d im b a la n ce o f th e e x e c u tin g th read s.

For th is reason , O p en M P p rov id es tw o a d d itio n a l sch ed u les , n a m ely d y n a m ic an d g u id ed .

In d y n a m ic and gu id ed sch ed u les, chunks are d y n a m ica lly sch ed u led a m o n g th e th read s;

w hen a thread fin ishes on e chunk, it co n ten ts for an oth er.

T h e s e c t io n d irectiv e p rov id es a lso w orkshare sem a n tic s . W ith th e u se o f th e s e c t io n

d irective th e work is d iv id ed in to th e user-d efin ed sec tio n s . E ach se c t io n is a ssig n ed to

a different thread . I f th e num ber o f sec tio n s are m ore th a n th e n u m ber o f th rea d s , th en

som e th read s w ill ev en tu a lly ex ec u te m ore th a n on e sec tio n s .

7

2 . 1 . 3 D a t a S c o p in g

O p en M P provides a set o f con stru cts to define how and w hich d a ta variab les in th e seria l

section o f th e program are transferred to th e p ara llel sec tio n o f th e program . T h e m o st

com m on ly used d a ta sco p e con stru cts are:

• p r iv a t e : T h is clause is used to declare a list o f variab les as p rivate to each th read

for a g iven region . E ach thread rea d s /m o d ifie s i t ’s ow n co p ies o f th ese variab les.

P rivate variab les can e ith er b e stack variab les or even g lo b a l variab les.

• sh a red : T h is clause is used to declare a lis t o f variab les a s sh ared a m o n g th rea d s.

Shared variables can e ith er be g lo b a l variab les or s ta ck variab les.

• t h r e a d p r iv a t e : T h is d irective is used to d eclare g lo b a l file sco p e v a r ia b le s (C /C + +)

or com m on b locks (Fortran) as th read -p rivate a m o n g th e th read s. T h e d ifference

w ith p r i v a t e is th a t th read -p rivate variab les are ab le to p ers is t a m o n g m u ltip le

parallel regions. E ach thread g e ts its ow n cop y o f th e variab les, so d a ta w r itten by

one thread is n o t v is ib le to o th er threads.

B y d efau lt, a ll variab les are declared as shared . T h e p r i v a t e an d s h a r e d c la u ses are

used in con ju n ction w ith th e p a r a l l e l and f o r d irectiv es to co n tro l th e sco p in g o f en

closed variables. T h e t h r e a d p r iv a t e d irectiv e m u st ap p ear a fter th e d ec la ra tio n o f th e

associa ted variables.

2 . 1 . 4 S y n c h r o n i z a t i o n C o n s t r u c t s

O p en M P provides a se t o f sy n ch ro n iza tio n d irectiv es w h ich are n ecessa ry w h en p rogram

m in g in a shared m em ory en v ironm en t. T h ese are th e b a r r i e r , th e c r i t i c a l , th e a to m ic

and th e f l u s h d irectives. T h e b a r r i e r d irectiv e p rov id es a sy n ch ro n iza tio n p o in t a m o n g

all threads in th e th read tea m . W h en a b a r r i e r d irectiv e is reached, a th rea d w ill w a it a t

th a t p o in t u n til all o th er th read s have reached th e sa m e barrier. T h e c r i t i c a l d irec tiv e

sp ecifies a cr itica l region o f cod e, i.e . a reg ion o f co d e th a t m u st b e ex e c u te d by o n ly o n e

thread a t a tim e . T h e a to m ic d irectiv e is a m in i c r it ica l sec t io n w h ere o n ly a sp ec ific

m em ory lo c a tio n m u st b e u p d a te d a to m ica lly . T h e f l u s h d irectiv e is u sed to en force a

con sisten t v iew o f m em ory.

2 . 1 . 5 T h e R e d u c t i o n C la u s e

T h e r e d u c t io n c lau se perform s a sca lar o p era tio n on th e variab les th a t a p p ea r in its lis t .

A private cop y for each variab le is crea ted for each th rea d . A t th e en d o f th e red u ctio n ,

th e red u ction o p era tio n is ap p lied to all p r iv a te co p ies o f th e sh ared variab le , an d th e

final result is w r itten to th e g lob a l shared variab le. For ex a m p le , co n sid er th e fo llo w in g

O p c n M P /C co d e w hich ca lcu la tes th e va lu e o f pi:

8

#define N 65536
#define W 1.0/N
main(){
double pi = 0.0, lpi;
int i;
#pragma omp parallel private(i, lpi) reduction(+:pi)
{
lpi =0.0;
tpragma omp for schedule(static)
for(i =0; i < N; i++)
lpi += (4*W)/(l+(i+0.5))*(i+0.5)*W*W);

pi += lpi;
>
/* Master thread */
printfC'pi = */.f\n", pi);

>

Iteration s o f th e para lle l lo o p w ill b e eq u a lly d istr ib u ted to th rea d s (s t a t i c) . E ach th rea d

w ill ca lcu la te its ow n part o f th e final va lu e o f p i . A t th e en d o f th e p a ra lle l lo o p co n stru c t,

all threads w ill add th eir p riva te va lu es (l p i) to u p d a te th e m a ster th r e a d ’s g lo b a l copy.

In stead o f u sin g th e r e d u c t io n clause, w e cou ld a lso u se th e a to m ic d irectiv e , so as each

thread in th e tea m a to m ica lly u p d a tes p i .

2 . 1 . 6 L i b r a r y C a l l s a n d E n v i r o n m e n t a l V a r i a b l e s

O p en M P defines a set o f library ca lls to perform a va riety o f fu n ctio n s . W e h a v e a l

ready seen som e o f th em , in th e p rev iou s sec tio n s . G enera lly , th ese lib rary ro u tin es are

categorized as follow s:

• Q uery th e num ber o f th rea d s /p ro cesso rs , se t n u m b er o f th read s to u se .

• G eneral p rop ose lock in g rou tin es.

• S et ex ecu tio n en v iron m en t rou tin es.

A lso , th e ex ecu tio n o f th e p ara lle l co d e ca n b e co n tro lled th ro u g h 4 sp ec ia l en v iro n m en ta l

variables:

• OMP_NUM_THREADS: S et th e d efau lt num ber o f th rea d s to b e crea ted a t th e p ro g ra m ’s

parallel regions.

• OMP .SCHEDULE: T h e sch ed u le p o licy u sed a t a f o r co n stru c t. V a lid v a lu es are s t a t ic ,

dynam ic or g u id e d .

• OMP-DYNAMIC: E n ab les or d isa b les th e d y n a m ic a d ju stm en t o f th e n u m b er o f th rea d s

availab le for ex ecu tin g p ara lle l reg ions. V a lid va lu es are T R U E or F A L SE .

9

• OMP-NESTED: E n ab les or d isab les n ested p ara lle lism . V alid v a lu es are T R U E or

FALSE.

2 .2 T h e O M P i C o m p i l e r

O M P i’s sou rce-to -source tran sla tor tak es as in p u t C sou rce co d e w ith O p en M P d irectiv es

and o u tp u ts transform ed b ut equivalent C co d e a u g m en ted w ith ca lls to O M P i’s ru n tim e

system . T h e com piler and th e runtim e sy ste m is en tire ly w r itten in C . In it s current

version , it features a parser cap ab le o f u n d ersta n d in g p rogram s w ith C 99 sy n ta x and

O p en M P v2 .5 d irectives.

Input:
OpenMP/C
Program

Transformed
Code with Calls
to the Runtime

System

Preproccesing Parsing and
Transformations

Compilation with
the System 's

Compiler

a

, Final Executable)
Linking with

OMPi’s Runtime
Library

F igu re 2.1: T h e co m p ila tio n p rocess.

D uring parsing , w hich is th e first p h ase o f th e co m p ila tio n p rocess, an a b str a c t sy n ta x

tree (A S T) is b u ilt , w h ich represents th e o r ig in a l program . T h e A S T is th e in p u t o f th e

second (tran sform ation) p h ase. T h e tran sform er v is its th e tree n o d es an d a c ts w h en ev er a

n od e co n ta in in g an O p en M P sta tem en t is m et; it th en rep laces th e w h o le su b tree ro o ted

at th a t n od e by a new o n e w hich m o stly m a in ta in s th e orig in a l b lo ck o f s ta te m e n ts b u t

has a d d itio n a l ca lls to th e ru n tim e sy ste m in serted a t a p p ro p ria te p la ces. T h e th ird (fin a l)

phase o f th e co m p ila tio n p rocess s im p ly traverses th e tran sform ed A S T a n d p r in ts o u t

th e correspon d in g C cod e. T h e resu ltin g p rogram is co m p iled by th e s y s te m ’s n a tiv e C

com piler and linked w ith th e ru n tim e library p ro d u cin g th e final ex ec u ta b le . F ig u re 2.1
show s th e co m p ila tio n step s.

2 .3 O M P i ’ s T r a n s f o r m a t i o n s f o r T h r e a d s

W h ile som e tran sform ation s are re la tiv e ly in tu itiv e , so m e o th ers are q u ite in v o lv ed . T h e

m ost crucial tran sform ation is th e on e m a d e w h en an O p en M P p a ra lle l d ire c tiv e is en

countered . For ex a m p le , co n sid er th e fo llow in g s im p le co d e in O p e n M P /C :

1 0

void f() {
#pragma omp parallel
{
printf ("Hello world from thread */»d\n", omp_get J;hread_.num());

>
g();

>

The equivalent but multithreaded code produced by OMPi is as follows. OMPi follows the
outlining approach [7]. Specifically, the portion of the code enclosed within the parallel
directive is moved to another function (_thrFuncO_()) which is eventually called by all
created threads.

static void * _thrFuncO_(void *_arg) {
/* #pragma omp parallel — body moved bellow */
{
printf ("hello world from thread 7«d\n", omp_get_thread_num());

>
return (void *)0;

>

In f () , a runtime call to o rt_execu te_paralle l() is inserted in place of the migrated
code. The master thread calls this routine to create a new team of threads. The first
argument is the number of threads to be created. The —1 means that the runtime system
will decide for the size of the thread team. The second argument is the name of the thread
function (_thrFuncO_) and the third argument is a pointer to possible shared data among
the threads:

void f() {

/* #pragma omp parallel *-/
ort_execute_parallel(-l, _thrFuncO_, (void *)0);
>
g();

>

All new threads including the master thread call the thread function with the latter
returning back in f () after thread-synchronization, so as to continue with the succeeding
program code.

The most important problem arising from this design is that of variable visibility. As
we already mentioned in Section 2.1.3, OpenMP provides ways of changing the default
scope of variables used within a parallel region. For stack variables declared as p r iv a te ,
the compiler just clones the variable declarations into the thread function. By default,
these variables will be private among the threads. The same approach is used for global

1 1

variables declared as p riv a te . For global variables declared as shared there is nothing
to do actually. The main problem arises for stack variables that need to be shared. The
solution is the use of pointers. For example, consider the following code in OpenMP/C:

1 int a;
2 void f 0 {
3 int b, c, d;
4 #pragma omp parallel private(d)
s a = b + c + d;
6 }

Variables a, b, and c must be shared by default. Variable d needs to be private. In this
case the resulted transformed code is the following:

void f() {
int b, c, d;
struct { int (*b); int (*c); }_shvars = {&b, &c);
ort_execute_parallel(-l, _thrFuncO_, &_shvars);

>

Global variable a needs no special treatment since global variables are by nature shared
among threads. Variable d must be private to each thread; this is easily achieved by
cloning d’s declaration in the thread function. However, b and c are to be shared but
are stack variables. Sharing is achieved by creating pointers to them and passing these
pointers explicitly to the thread function. Threads can access them through a runtime
call to ort_get_shared_vars(). This also necessitates the transformation of the original
code (line 5) since in the thread function b and c are now pointers.

static void *_thrFuncO_(void *_arg){
struct {int (*b); int (*c);> *_shvars = ort_get_shared_vars();

int *b * _shvars->b;
int *c = _shvars->c;
int d;

/* shared non-global */
/* shared non-global */
/ * private */

a * (*b) + (*c) + d; /* Transformation due to pointers */
return (void *) 0;

>

2 . 4 S u p p o r t f o r P r o c e s s e s

OpenMP is an API for programming parallel computers with physically shared mem
ory. When the execution environment changes to a cluster, the programming model also
changes. The two main changes are:

1 2

• W e can no longer assu m e th e th rea d -ex ecu tio n m od el. E x ecu tio n en tit ie s (E E s) are

now processes in stead o f threads

• T h e sy ste m ’s m em ory is no longer shared am on g th e processors. S y s te m ’s m em ory

is private and d istr ib u ted am on g th e co m p u ta tio n a l n od es

N otw ith sta n d in g th e p rogram m ing m o d el ch an ge, w e m u st s t ill p rovid e th e fea tu res o f

O penM P , w ith o u t ch an gin g th e d irectives sem a n tics . T h e program m er m u st b e a b le to

w rite shared m em ory based program s w ith o u t carin g w h eth er th e p rogram runs on an

cluster or a sin g le m u ltip rocessor sy stem .

A s far as th e com p iler is con cerned , th e m a jo r ity o f th e or ig in a l tra n sfo rm a tio n s m a d e

for th e th read -m od el work fine in th e p ro cess-m o d el, to o . H ow ever, g lo b a l variab les and

O p en M P d a ta clau ses need a sp ec ia l trea tm en t. In th e th rea d -m o d el, g lo b a l variab les are

by nature shared a m on g th e threads. In th e p rocess m o d e l th is is n o t th e case; g lo b a l

variables are a tta ch ed to each p ro cess’s p rivate ad d ress space. A lso , co n sid er th e sta ck

variables th a t need to b e shared b ecau se o f th e presen ce o f a s h a r e d O p en M P clau se .

P ointer p assin g no lon ger w orks b ecau se p rocesses can n o t access th e sta ck sp a ce o f each

other.

2 .4 .1 G l o b a l V a r i a b l e s

G lobal variables m u st som eh ow b eco m e shared a m o n g th e ex ec u tin g p ro cesses . A s w e

already m en tion ed in C hap ter 1, SV M sy ste m s p rov id e sh ared m em o ry sem a n tic s on to p

o f d istr ib u ted m em ory sy stem s. So, w e h ave a w ay o f a llo c a tin g sh ared m em o ry on to p o f

a cluster. T h e q u estion is, how to reallocate the whole global address space into the SVM

system’s shared memory? T h e answ er is th rou gh th e com p iler . In p a rticu la r ,

• T h e com p iler first id en tifies all th e u ser’s g lo b a l v a riab les in th e p rogram an d tra n s

form s th em in to p o in ters o f th e sa m e ty p e as th e orig in a l variab les.

• T h e com p iler crea tes a con stru cto r fu n ction ; a fu n c tio n th a t w ill b e ca lled b efore

th e m a in () , w h ich m akes a ru n tim e ca ll to o r t _ s g l v a r - a l l o c a t e () for each g lo b a l

variable.

• F inally , th e o r t . s g l v a r . a l l o c a t e () ro u tin e is resp o n sib le for p a ssin g th e co n tro l

to th e ru n tim e sy stem . U p o n in itia liz a tio n , th e ru n tim e library a llo c a te s a sh ared

m em ory area and assign s th e p o in ter o f each variab le to an ap p ro p ria te o ffset o f th is

area, w ritin g in th e in itia l va r ia b le’s va lu e, if any.

For exam p le , con sid er th e fo llow ing:

int a = 1, b = 2, c;
void f() {
#pragma omp parallel

c * a + b;
>

1 3

V ariables a , b, c are g lob a l variables and m u st b e shared a m on g p rocesses. M oreover, a

and b are in itia lized . T h e resu lted transform ed co d e is th e fo llow in g

int _sglini_a = 1, (*a), _sglini_b ■ 1, (*b), (*c);

static void *_thrFuncO_(void *arg) {
/* #pragma omp parallel - body moved below */
(*c) « (*a) + (*b);
return (void *) 0;

>

V ariables a, b and c are a ll transform ed in to p o in ters o f th e sa m e d a ta ty p e . A ll references

o f th ese variables w ill b e a lso transform ed in to p o in ter accesses. M oreover, 2 a d d itio n a l

variables, n am ely _ s g l in i _ a and _ s g l in i_ b , co n ta in th e in itia l va lu es o f a a n d b.

void f() {
ort_execute_parallel(-l, _thrFuncO_, (void *)0);

>

static void _attribute_((constructor))_init_shvars_0(void)
static void _init_shvars_0(void){
ort_sglvar_allocate((void **)&c, sizeof(int), (void*)0);
ort_sglvar_allocate((void **)&b, sizeof(int), (void*)&_sglini_b);
ort_sglvar_allocate((void **)&a, sizeof(int), (void*)&_sglini_a);

y

T h e _ in it_ s h v a r s _ 0 () is th e co n stru cto r fu n ctio n ca lled r igh t b efore th e p ro g ra m ’s m a in () .

It con ta in s 3 ca lls to o r t _ s g l v a r _ a l l o c a t e () ; o n e for each g lo b a l variab le . T h e reader

m ay w onder w hy th e con stru ctor fu n ctio n is necessary. C onsider th e ca se w h ere m a n y

in d ep en d en t C m od u les co n ta in g lob a l variab le d efin itio n s an d a ll are lin k ed to g e th er in to

one ex ecu ta b le file. In th is case, its im p o ss ib le to know a ll th ese variab le d e fin itio n s a t th e

com p ile tim e. B y d efin in g a con stru ctor fu n ctio n in each C m o d u le , w e g u a ra n tee th a t

all th ese con stru ctors w ill b e ev en tu a lly ca lled before m ain d oes. A lso , w e m u st en su re

th a t th e co n stru ctors n am es are d ifferent in each file. T h e parser tak es care o f th is , b y

gen erating a u n ique id a tta ch ed to th e co n stru cto r ’s n am e.

O m ni for clusters [31], fo llow s th e sa m e stra tegy . H ow ever, so m e o th er im p le m e n ta tio n s

such as the N a n osC om p iler [8], are fo llow in g a d ifferent approach . In N a n o s , th e w h o le

p rocess’s address sp ace is shared th rou gh th e u n d erla y in g S V M sy ste m . In th is ap p roach ,

n o th in g has to be d o n e for th e g lob a l variab les n e ith er by th e co m p iler n or th e ru n tim e

sy stem . A s w e w ill see la ter in th is work, le t t in g th e SV M sy ste m to h a n d le e v er y th in g

resu lts in poor p erform ance.

1 4

2 . 4 . 2 N o n - G l o b a l S h a r e d V a r i a b l e s

Stack variables can also be declared as shared through the OpenMP shared clause. In
Section 2.3, we described the transformation made by our compiler in the case of threads.
When the execution entities are processes, the pointers created by the compiler are no
longer valid. A process can not access the private stack space of another process. However,
if the stacks of all processes are explicitly allocated in shared memory, then the mechanism
of the pointers will work without any further modifications. Considering a single level of
parallelism support, we only have to make sure the master thread (process 0) runs on a
shared stack. All other processes will access all shared stack variables through pointers
to the shared stack of the master thread. These pointers are this way valid, since they
point into a shared memory region. Note that, with this technique, the compiler needs
absolutely no modifications. We will not further discuss the implementation details in
this chapter, as the solution is implemented entirely at the runtime system.

In [14, 31] a different approach is followed. For every parallel region (a) a new shared
memory area is created (b) stack variables are copied into this area and (c) at the end
of the parallel region, variables are copied back into their original area and the shared
memory area is released. This technique needs special treatment by the compiler and also
hides a considerable amount of memory allocation/copy/deallocation overheads.

1 5

Chapter 3

OMPi Runtime Architecture

3.1 Initialization

3.2 Entering a Parallel Region

3.3 Workshare Region Scheduling

3.4 Synchronization

3.5 Handling Threadprivate Variables

3.6 The Interface with EELIB

The runtime system of OMPi provides the execution entities that will carry out the work
of OpenMP threads and controls their operation and synchronization. It consists of two
modules, as shown in Figure 3.1. The first module (ORT) groups the EEs, coordinates
them and schedules their execution within worksharing regions, but it does not implement
them. The second module (EELIB) is the one that implements them. A multitude of
EELIB libraries are currently available, adhering to a unified interface. ORT’s operation
is largely independent of the actual EELIB employed.

3 .1 I n i t i a l i z a t i o n

Upon program startup, ORT is firstly invoked by a call to o r t _ in i t i a l i z e () . This
routine is responsible for initializing the whole runtime system. The compiler inserts this
call in the program’s mainO function. Its duties are:

1 6

O M P i R un tim e L ib ra ry

r λ r λ

O R T E E L I B
-Team bookkeeping Threads creation:

-Kernel-level-Worksharing -User-levelscheduling -Processes-Synchronization

V)

Figure 3.1: OMPi Runtime Organization.

1. Processing the OpenMP environmental variables.

2. The initialization of the EELIB.

3. The construction of the master’s control block (eecb); an EE-specific block contain
ing everything ORT needs in order to schedule the EE.

4. The management of the program’s global data. This is only necessary when EEs
are processes.

3 .2 , E n t e r i n g a P a r a l l e l R e g io n

When called to execute a parallel region (through the ort_execute_parallel()), ORT
enters a negotiation phase with EELIB, asking for a particular number of EEs, depending
on what the program requests and whether nested parallelism and the dynamic adjustment
of the number of threads is enabled or not. After EELIB confirms the availability of EEs,
it gets instructed by ORT to release them in a bunch, as a team. When an EE from the
team commences execution, its very first obligation is to call ort_get_ee_work(), which
supplies all the information for the work the EE is supposed to do.

Specifically, among other things, it provides a pointer to the function to be executed.
At this point, each EE initializes its own eecb. The eecb includes information regarding
the team size, the id of the EE within the team, its parallel level and a pointer to the
eecb of the team’s parent. Through the latter pointer, ORT maintains a dynamic tree
of eecbs which grows whenever a new team of EEs is unleashed and shrinks whenever a
team completes the execution of a parallel region. In Figure 3.2, such a tree is depicted.
Upon startup, the sole EE running is the initial EE and operates in level 0. Whenever,
an EE encounters a parallel region, it becomes the parent of the spawned team; if the
parent is in level i , its children lie in level i + 1. Also, note that a new eecb is created for
the parent of the team, as a member of the spawned team. When the parallel region is
over, the parent assumes again it’s original eecb. The eecb holds additional information

1 7

EE 0 enters
a nested

.parallel region

f
Master eecb

chlldren=3
level=0

id=0

J

Single-level

C H Λ' eecb 1
(\

eecb 2
(\

eecb 3

team s ize =3 team s ize =3 team size =3
children=2 level= l level® 1

level= l id= l id=2
V id‘° J V "· J \ ·" V

M a c t o r i Io v id I

(\
eecb 4

(\
eecb 5

team size =2 team size =2
level=2 level=2

id=0 id= l

\ ____: ____ J V ... - J

Figure 3.2: An example of the dynamic tree of eecbs.

for the EE that becomes a parent of a new team. This includes a barrier structure for
synchronizing the team members, a copyprivate staging area for s in g le constructs that
require it and a structure with scheduling information for work-sharing regions.

There is no prerequisite regarding an EE’s level, providing thus full and unlimited support
for nested parallelism, as long as EELIB is willing to supply EEs.

3 . 3 W o r k s h a r e R e g i o n S c h e d u l i n g

OpenMP defines three workshare directives, namely, fo r, sec tio n s and s in g le whereby
the work is divided appropriately among the participating EEs. These code regions are
normally blocking, in the sense that they conclude with an implied barrier that synchro
nizes the EEs before letting them continue their execution. However, when the nowait
clause is present, there is no implied barrier and the region is non-blocking; such regions
present bookkeeping complications. In all three directives, the runtime library needs some
kind of counters to count the number of EEs that have passed through their regions. For
example, in the sec tions case we need a counter x so as to assign the xth section to the
xth arriving EE. For a s in g le region; a region that must be executing by only one EE,
all but the first EE that arrives should not execute the region. In order to ensure this, we
need a counter or a flag. However, keeping a counter or a flag for servicing all workshare
regions is impossible when regions are non-blocking. This is because some EEs of the

1 8

team may advance to subsequent workshare regions. In this case, multiple regions can be
active at any given time. A workshare region is active when:

• at least one EE has entered and

• not all EEs have passed through it yet.

A solution to the problem could be to keep seperate counters or flags for each workshare
region. The compiler statically numbers the directives, giving each one a unique id. This
id is then used by the library to index the corresponding counter. However, this approach
does not solve the problem completely. For example, consider the case where a s in g le
or a sections directive is called repeatedly within a loop. In this case, a counter or flag
for this region is not enough. EEs proceed with different speeds and, due to the nowait
clause, chances are that different EEs may have encountered the same region a different
number of times at any given moment.

Solutions to this problem include bookkeeping using a dynamically allocated list of work-
share region structures [3] or avoiding the problem altogether by disallowing more than
one non-blocking regions to be simultaneously active, as in the runtime library of the
Omni compiler [31]. The approach followed in OMPi is similar to [18]. In the control
block of the parent of a team, ORT maintains a preallocated workshare queue of fixed
size (MAXWS) with bookkeeping information about each active workshare region. Stored
information includes construct-specific data (e.g. the number of remaining sections for a
section construct; the next iteration to be scheduled and the increment step for a fo r
construct; locks for protecting accesses to this data by the EEs of the team) plus queue-
related data, such as the number of EEs that have exited (finished) this region. When
the tail and the head of the queue are MAXWS regions apart, i.e. there are MAXWS
simultaneously active regions, any EE that tries to activate a new region gets blocked
until the tail of the queue advances. This way, we avoid the cost of dynamic adjustment
of the capacity of the queue, without introducing the artificial barrier required in [18].

ORT optimizes the operation of the workshare queue by using lock-free accesses when
possible and by employing atomic operations if available, resorting to plain locking when
ever really necessary. A final optimization is the avoidance of the full initialization of the
queue. Every time a new team of EEs is created, all regions of the queue must be properly
initialized by the parent before being put to use. If MAXWS is not small this results in
a major overhead. ORT avoids this by initializing only the first region of the queue; the
first EE to enter a new non-blocking region is responsible for initializing the next region
in the queue. This way, at any given time, the queue has one extra region ready for use.

From ORT’s point of view, two routines are always involved when a workshare directive
is encountered. Every EE begins its region with an ort_enter_w orkshare_region() call
and finishes it with an ort_leave_workshare_region() call. These two calls do all the
management of the workshare queue. If the EE is the first to enter a workshare region,

1 9

it is responsible for initializing the region’s specific structure and also prepare the next
region in the queue. Ail other EEs entering the region do absolutely nothing. When the
EE finishes its assigned work, it just calls the ort_leave_workshare_region() routine.
If the EE is the last to leave, it marks the region as empty. Otherwise, it just decrements
the not l e f t counter. Marking the region as empty, enables us to do a kind of recycle; the
region’s structure can be used again by a subsequent workshare region in the program.

We close this section with an example:

void f() {
int i;
#pragma omp parallel
#pragma omp for private(i) schedule(static)
for(i = 0; i < 100; i++)
do_some_calculations(i);

>

This is a simple program using the fo r directive and s t a t i c schedule. The function
called by all EEs is _thrFuncO_():

1 static void * _thrFuncO_(void *arg)
2 {
3 {

4 int i;
5 „ int from. = 0, to_ * 0, step.;
6 struct .ort.gdopt. gdopt.;
r

e step. =1;
9 ort_entering_for(l, 0, 0, step., ftgdopt.);
10 if(ort_get_static_default.chunk(0, 100, step., ftfrom., &to_))
11 i
η for(i = from; i < to.; i = i + 1)
13 do.some.calculations(i) ;
14 }

is ort.leaving.for();
16 >

i7 return (void*) 0;
is >

The first ORT routine called by each running EE is o rt_en tering_for()(line 9). Inter
nally, this routine includes a call to ort_enter_w orkshare_region(). Its first argument
informs ORT about the region type; blocking or non-blocking. 1 means that the region
is non-blocking, i.e. it has a nowait clause. However, the compiler is clever enough to
see that there is no need to have two barriers at the end of the parallel region; one for
the p a ra l le l directive and one for the fo r directive. So, it removes the implied fo r

20

barrier and te lls O R T th a t its a n o w a it region . T h e secon d a rgu m en t te lls O R T if th e

f o r d irective is com bined w ith th e o r d e r e d c la u se or n o t. T h e th ird an d forth argu m en ts

are the lo o p ’s low er b ou n d and step , resp ectively . T h e la st argu m en t is u sed o n ly for

o p tim iza tion s a t gu id ed and d y n a m ic sch ed u les. T h e o r t _ g e t _ s t a t i c _ d e f a u l t _ c h u n k ()

is responsib le for sch ed u lin g th e lo o p ’s itera tio n s am on g th e ca llin g E E s (lin e 10). F in a lly ,

each E E fin ishes th e region by ca llin g th e o r t _ l e a v in g _ f o r () (lin e 15) w h ich in tern a lly

ju st ca lls o r t_ le a v e _ w o r k s h a r e _ r e g io n () .

3 . 4 S y n c h r o n i z a t i o n

O R T provides su pp ort for th e syn ch ron iza tion d irectiv es o f O p en M P . O R T p ro v id es an

efficient barrier im p lem en ta tio n for th e su p p o rt o f th e b a r r i e r d irectiv e . T h e co m p iler

replaces th e d irective by a ca ll to o r t _ b a r r ie r _ m e () . W h en an E E ca lls th is ro u tin e , it

m arks itse lf as b locked, u sin g a shared array, and w a its u n til th e p aren t o f th e tea m w akes

it up. W aitin g is ach ieved by sp in n in g on a flag. H ow ever, in order n o t to w a ste C P U

cycles, E E s are sp in n in g for a w h ile and th en y ie ld . W h en th e parent o f th e tea m reaches

th e barrier, it w aits u n til a ll o th er E E s have reached th e barrier. T h is is a ch iev ed by ju s t

checking th e shared array. W h en th is is d on e, it ju s t s e ts th e flag to tru e an d re lea ses a ll

w aitin g threads. T h is is th e d efau lt O R T ’s barrier im p lem en ta tio n . H ow ever, O R T g iv es

th e program m er th e a b ility to avoid it an d u se h is ow n barrier im p lem en ta tio n , if n eed ed .

T h e c r i t i c a l and a to m ic d irectives are trea ted in th e e x a c t sa m e w ay by O R T . E E L IB ’s

lock rou tin es are used to provide th e n ecessary m u tu a l ex c lu sio n . T h e co m p iler p la ces an

O R T ca ll a t th e b eg in n in g o f th e co d e to b e p ro tec ted an d an O R T ca ll a t th e en d . For

a to m ic d irectives, th e sa m e lock is u sed for a ll a to m ic o p era tio n s . T h is lo ck is d ec la red

and in itia lized in sid e O R T . H ow ever, th is is n o t th e ca se for th e c r i t i c a l d irectiv e .

O p en M P allow s cr itica l d irectives to have d is t in c t n am es. For th is reason , th e co m p iler

declares a g lob a l lock for each d is t in c t cr itica l reg ion and p a sses it to O R T . T h e first E E

en tering th e cr itica l region is a lso resp o n sib le for th e in itia liz a tio n o f th e lock .

3 .5 H a n d l i n g T h r e a d p r i v a t e V a r i a b l e s

O R T a lso p rov id es th e n ecessary m ech a n ism s for h a n d lin g th e O p en M P th rea d p r iv a te

variables. T h e t h r e a d p r iv a t e d irectiv e sp ec ifies th a t n a m ed g lo b a l-life tim e v a riab les are

rep licated , w ith each th read h a v in g its ow n copy. T h e su p p o rt o f th rea d p riv a te variab les is

not a stra ightforw ard p rocedure under th e orig in a l th read m o d el. T h is is b eca u se , g lo b a l

variables are by n atu re shared a m o n g th read s. T h e e x a c t o p p o s ite o ccu rs in th e p ro cess-

m od el. A ll g lob a l variab les are b y n a tu re p ro cess-p r iv a te an d w e n eed a m ech a n ism to

m ake th em shared .

2 1

B oth th e com piler an d th e ru n tim e library are in vo lved in th e im p le m en ta tio n o f th e

t h r e a d p r iv a t e d irective. For exam p le, consider th e fo llow in g p iece o f co d e , w here vari

ab les a and b are threadprivate:

int a, b = 1 ;
#pragma omp threadprivate(a,b);
void f()
{
#pragma omp parallel copyin(b)
a = omp_get_thread_num() + b;

}

T h e fu n ction co n ta in in g th e p ara llel co d e fo llow s. V ariab les a an d b are tran sform ed

in to tp _ a and tp_b , resp ectively . T h e co m p iler a lso a ssig n s a th rea d -sp ecific d a ta k ey to

each threadprivate variable; th e tp _a_k ey is d ed ica ted to variab le a an d th e tp _ b _ k ey is

d ed ica ted to b. A s sp ecified by th e P O S IX sta n d a rd , a ll th rea d s u se th e sa m e key b u t

th ey can have different va lu es a sso c ia ted w ith it .

1 int tp_a, tp_b = 1 ;
2 static void *tp_a_key;
3 static void *tp_b_key;
4 static void * _thrFuncO_(void *arg)
5 {
e int (* a) = ort_get_thrpriv(&tp_a_key_, sizeof(tp_a), &tp_a_);
7 int (* b) = ort_get_thrpriv(&tp_b_key, sizeof(tp_b_), &tp_b_);
s /* Copyin initialization(s) */
s *b = tp_b;
io ort_barrier_me();
a (*a) = omp_get_thread_num() + (*b);
12 return (void *)0 ;
13 >

E ach thread en ter in g th e _th rF u n cO _() fu n ctio n m u st in it ia liz e its ow n th rea d p r iv a te

cop ies. T h is is b ecau se, a t lin e 11, th read s m u st refer to th e ir ow n th rea d p r iv a te v ariab les.

T h is is ach ieved by u sin g ca lls to th e O R T ’s o r t _ g e t _ t h r p r i v () ro u tin e (lin es 6 -7). Its

argum ents are th e key, th e s ize and a p o in ter to th e variab le . F irst, each th rea d a llo c a te s

a m em ory area for th e variab le and cop ies in its in it ia l va lu e. T h e th rea d a sso c ia te s th is

area w ith th e co m p iler ’s d ed ica ted key. F rom now o n , th rea d s can “rem em b er” th e ir ow n

th read p rivate cop ies o f each variab le by u sin g o n ly th e v a r ia b le ’s key. T h e se m em o ry

areas are n o t freed u n til th e program term in a te s . C o n seq u en tly , th rea d s m a in ta in th e ir

th read p rivate variab les a m o n g different p ara lle l reg ion s in th e p rogram .

T h e im p lem en ta tio n o f th e c o p y in c lau se is re la tiv e ly s im p le . T h e c o p y in c la u se s im p ly

sp ecifies th a t a ll th read p riva te variab les a p p ea r in g in it s lis t m u st b e in it ia liz ed u s in g

2 2

th e m a ster’s corresponding values, before th e a ctu a l p ara lle l ex ecu tio n b eg in s. C on

sider th e p revious exam p le. T h e m aster thread is th e o n ly th read th a t uses th e orig i

nal variables tp _ a and tp _b as its th read p rivate cop ies. T h is is m a n a g ed in tern a lly in

o r t _ g e t _ t h r p r iv () . T h ese variables are accessib le by a ll th read s, s in ce th e y are g lo b a l

scope. In th is way, th e m aster thread in itia lizes b (lin e 1), and a ll o th er th rea d s m a in

ta in its value by s im p ly a ccessin g it (lin e 9). A barrier is necessary (lin e 10) in order to

ensure th a t a ll threads have com p leted th e th read p riva te in itia liz a tio n s b efore th e a c tu a l

execu tion begins.

T h e c o p y p r iv a te clause needs m ore effort by O R T . T h e c o p y p r iv a t e c la u se a p p ears

on ly in th e s i n g l e d irectives. It provides a m ech an ism to use a th rea d p riv a te variab le to

broadcast a value from one m em ber o f a tea m to th e o th er m em b ers. T h e b ro a d ca st is d on e

by ca llin g O R T ’s o r t _ b r o a d c a s t _ p r iv a t e () . T h is rou tin e tak es as its in p u t th e p o in ters

to th e th rea d ’s private variab les to b e b road cast. In th is rou tin e, th e th rea d (ow ner)

d yn am ica lly co n stru cts an array o f p o in ters. T h is array is m a in ta in ed a t th e p a ren t’s eecb

so as all threads can access it . T h e o th er th read m em b ers ju s t ca ll o r t _ c o p y _ p r iv a t e ()

to copy th e new values in to th e ir th read p riva te variab les. E ach o f th em , a ccesses th e

ow ner’s variab les (th rou gh th e p o in ter array) an d co p ies th e m in to its ow n th rea d p riv a te

space.

3 .6 T h e I n t e r f a c e w i t h E E L I B

EELII3 is resp on sib le for p rov id in g all ex ecu tio n en tit ie s ex cep t th e m a ster E E , p lu s th ree

ty p es o f locks: norm al, n ested and sp in locks. T h e first tw o ty p es are m a d e a v a ila b le to

th e program m er th rou gh th e O p en M P ru n tim e lib rary in terface, w h ile th e th ird ty p e is

on ly used in tern a lly in O R T . W h en ex ec u tio n e n tit ie s are th read s, E E L IB h a s no o th er

ob ligation , as ev ery th in g is h an d led en tire ly by O R T . H ow ever, w hen ex ec u tio n e n tit ie s

are processes, E E L IB ’s in terface in s lig h tly ex ten d ed to su p p o rt th e n ew ex e c u tio n en v i

ronm ent. A shared m em ory a llo ca tio n ro u tin e m u st now b e p rov id ed b y E E L IB . A lso ,

O R T ’s co m m u n ica tion su b sy stem needs access to so m e sp ec ia l s tru c tu res h e ld b y E E L IB .

A ll th ese issu es, w ill b e d iscu ssed in d e ta il in th e fo llo w in g C h ap ter .

U p o n in itia liza tio n , E E L IB a n n ou n ces its ca p a b ilitie s to O R T , w hich in c lu d e su p p o r t o f

n ested parallelism , su p p ort for d y n a m ic a d ju stm en t o f th e n u m ber o f E E s, th e m a x im u m

num ber o f E E s and th e m ax im u m num ber o f n ested p a ra lle lism lev e ls su p p o rted . R eg a rd

in g th e E E s, E E L IB im p lem en ts three fu n ctio n s th a t are ca lled by O R T (see F ig u re 3 .3):

e e j r e q u e s t 0 , e e _ c r e a t e () an d e e _ w a i t a l l () . T h e first tw o are u sed w h en cre a tin g a

new team . T h e parent asks for a p articu lar num ber o f E E s th rou gh a e e _ r e q u e s t () ca ll.

E E L IB rep lies w ith th e a c tu a l num ber it can p rov id e. In E E L IB s th a t d o n o t su p p o r t

n ested parallelism , th e num ber returned is a lw ays 0 w h en ca lled from a lev e l > 1. I f th e

E E L IB can n o t p rovid e th e req u ested n um ber o f E E s, an d th e d y n a m ic a d ju stm en t o f th e

num ber o f E E s is d isab led , th e program is forced to an early term in a tio n . O th erw ise , i f

2 3

m a s t e r

ort_get_ee_work

F igu re 3.3: E E L IB S an d in terface w ith O R T .

th e d yn am ic a d ju stm en t is en ab led , th e p rogram co n tin u es its ex ec u tio n w ith a w arn in g .

T hereafter, O R T ca lls e e _ c r e a t e () to in stru ct E E L IB to a c tu a lly crea te th e req u ested

E E s. O R T p asses to E E L IB a ll th e n ecessary in fo rm a tio n it n eed s in order to crea te an d

direct th e ex ecu tio n o f th e E E s, i.e . th e n um ber o f E E s to b e crea ted a n d th e fu n c tio n

to b e ex ecu ted by a ll E E s. W h en an E E from th e tea m co m m en ces ex ec u tio n , it s very

first o b lig a tio n is to ca ll o r t_ g e t_ e e _ w o r k () , w h ich fills in th e E E ’s co n tro l b lo ck w ith th e

n ecessary in form ation for th e E E to p roceed w ith th e p a ra lle l r eg io n ’s ex ec u tio n . T h is

routing is im p lem en ted in O R T . U pon c o m p le tio n o f th e p ara lle l reg ion , th e m a ster E E

calls e e _ w a i t a l l () and b locks u n til a ll o th er E E s in th e te a m h ave fin ish ed th e ir w ork.

2 4

Chapter 4

OMPi and Nested Parallelism

4.1 N ested P ara lle lism in O p en M P

4.2 E n ab lin g N ested P a ra lle lism in O M P i

4 .3 M easuring th e O p en M P O verheads

4 .4 A ssessin g th e P erform ance

4 .1 'N e s t e d P a r a l l e l i s m i n O p e n M P

N ested p arallelism h as b een a m ajor featu re o f O p en M P s in ce it s very b eg in n in g . A s a

program m ing sty le , it p rov id es an e leg a n t so lu tio n for a w id e c la ss o f p a ra lle l a p p lica tio n s ,

w ith th e p o ten tia l to ach ieve su b sta n tia l p rocessor u tiliz a tio n , in s itu a t io n s w h ere o u ter-

lo o p p arallelism s im p ly can n o t. H ow ever, even n ow ad ays, th e le v e l o f su p p o rt is v a ry in g

greatly am on g com p ilers and ru n tim e sy ste m s. E v en so m e o f th e p ro p rie ta ry O p en M P

com pilers do n ot fu lly su p p o rt n ested p ara lle lism .

For ap p lica tio n s th a t have en ou gh and b a la n ced o u ter -lo o p p a ra lle lism , a sm a ll n u m ber

o f coarse threads is u su a lly en o u g h to p ro d u ce sa tis fa c to ry sp eed u p s. In m a n y o th er

cases th ou gh , in c lu d in g s itu a tio n s w ith m u ltip le n ested lo o p s , or recu rsive a n d irregu lar

p ara llel a p p lica tio n s, th read s sh o u ld b e a b le to d y n a m ica lly crea te n ew te a m s o f th rea d s

b ecau se on ly a large num ber o f th read s h as th e p o te n tia l to a ch ieve g o o d u tiliz a tio n o f

th e co m p u ta tio n a l resources. F ig u re 4.1 sh ow s th e c la ss ic ex a m p le o f F ib o n a c c i num bers;

th e n th F ib o n a cc i num ber is ca lcu la ted recursively as th e su m o f th e (n — l) t h an d th e

(n — 2)th . In each recursive ca ll, tw o th rea d s are sp a w n ed w ith each o n e e x e c u tin g a

s e c t i o n . A s a resu lt, th e n um ber o f th rea d s grow s ex p o n en tia lly . I f n e s te d p a ra lle lism

is n o t su p p orted , sp eed u p is lim ited to 2 b eca u se o n ly tw o th rea d s w ill b e crea ted a t th e

first parallel region and w ill tak e th e resp o n sib ility o f e x e c u tin g a ll th e requ ired recursive

calls.

2 5

T h e O p en M P sp ecifica tion [1] leaves su p p o rt for n ested p ara lle lism as o p tio n a l, a llow in g

an im p lem en ta tion to seria lize th e n ested parallel reg ion , i.e . ex ecu te it by o n ly o n e th read .

In im p lem en ta tion s th a t su p p ort n ested p ara lle lism , th e user can ch o o se to en a b le or

disab le it e ith er during sta rtu p through th e OMP_SET_NESTED en v iro n m en ta l variab le or

d yn am ica lly a t runtim e th rou gh an o m p _ se t_ n e s te d () ca ll. T h e n u m ber o f th rea d s th a t

w ill com prise a team can by con tro lled by th e om p_set_num _threads 0 library ca ll. T h is

routine is on ly allow ed to appear in seq u en tia l reg ion s o f co d e and co n seq u en tly th ere is

no w ay to sp ecify a different num ber o f th read s for in n er levels o f p ara lle lism . For th is

reason, O p en M P sin ce version 2 .0 p rov id es th e m in i-th rea d s (n) c lau se . Such a c la u se

can appear in a (n ested) p a r a l l e l d irectiv e and req u est th a t th is p a rticu la r reg ion b e

executed by ex a ctly n threads.

int fibonacci(int n)
{
int fl, f2;

if(n < 2) return 1;
#pragma omp parallel sections num_threads(2)
{

#pragma omp section
fl = fibonacci(n-l); /* Recursive call */

#pragma omp section
f2 = fibonacci(n-2); /* Recursive call */

>
return (fl+f2);

>

F igure 4.1: F ib o n a cc i nu m bers u sin g n ested p ara lle lism .

H owever, th e a ctu a l num ber o f th read s d isp a tch ed in a (n ested) p a r a l l e l reg ion d ep en d s

also on o th er th in g s. O p en M P p rov id es a m ech a n ism for th e d y n a m ic a d ju stm en t o f

th e num ber o f th read s w hich , i f a c tiv a ted , a llo w s th e im p le m en ta tio n to sp a w n few er

th read s th a n w h a t is sp ecified by th e user. In a d d itio n to d y n a m ic a d ju stm en t, fa cto rs

th a t m ay affect th e a c tu a l num ber o f th rea d s in c lu d e th e n estin g lev e l o f th e reg ion , th e

su p p o r t/a c tiv a tio n o f n ested p ara lle lism and th e p ecu lia r itie s o f th e im p le m en ta tio n .

A ccord ing to th e O p en M P sp ec ifica tio n , an im p le m en ta tio n w h ich ser ia lizes th e n ested

p a r a l l e l regions, even i f n ested p ara lle lism is en a b led by th e user, is co n sid ered com

pliant. A n im p lem en ta tio n can cla im support o f n ested p a ra lle lism if n e sted p a r a l l e l

regions m ay b e ex ecu ted by m ore th a n 1 th read . B eca u se o f th e d ifficu lty in h a n d lin g

efficiently a p o ssib ly large n um ber o f th rea d s, m a n y im p le m en ta tio n s p ro v id e su p p o r t for

n ested p arallelism b u t w ith certa in lim ita tio n s . For ex a m p le , th ere e x is t sy s te m s th a t

su p p ort a fixed num ber o f n estin g levels; so m e o th ers a llow an u n lim ited n u m b er o f n e s t

in g levels b u t have a fixed num ber o f s im u lta n eo u s ly a c tiv e th read s. In th e la tte r ca se ,

2 6

a n ested p a r a l l e l region m ay b e ex ecu ted b y a sm aller num ber o f th read s th a n th e o n e

requested , if there are not en ou gh free threads.

4 . 2 E n a b l i n g N e s t e d P a r a l l e l i s m i n O M P i

T w o th read in g libraries are availab le for O M P i: a library b a sed on P O S IX th read s

(P T H R l) and a library based on Solaris th read s (S O L I). T h e a rch itectu re o f b o th li

braries is id en tica l. T h e on ly th in g th a t ch an ges is th e ty p e o f th e kernel th read s used

(P O S IX or S olaris). B o th libraries provide a sin g le leve l o f p ara lle lism , i.e n ested p ara l

le lism is n o t su pp orted . In th is sec tio n , w e p resent a new th rea d in g library (P T H R) b ased

on P O S IX treads, w hich provides su p p o rt for n ested p ara lle lism , w h ile m a in ta in in g g o o d

perform ance levels even for th e n o n -n ested case.

W e focused on th e E E L IB part o f th e ru n tim e an d m a n a g ed to d ev e lo p a n ew th rea d in g

library sp ecifica lly for su p p o rtin g n ested p ara lle lism . T h e n ew library is ca lled P T H R and

u tilizes P O S IX threads. W e a lso d ev elo p ed an eq u iva len t library b a sed on S o lar is th rea d s

called SOL (see F igure 3 .3).

4 .2 .1 T h e P T H R T h r e a d i n g L i b r a r y

In order to provide fu ll n ested p ara lle lism su p p o rt, th e P T H R library m u st b e a b le to

supp ly th e requested num ber o f th read s, w h en ever O R T asks for it . T h is m ea n s th a t , i f

O R T requests for x th read s a t an y para lle l lev e l y > 1, and th e d y n a m ic a d ju stm en t o f

th e num ber o f th read s is d isab led , th e P T H R library is forced to re lease a b u n ch o f x

threads.

From th e P T H R ’s p o in t o f v iew , th is ca n b e ach ieved b y d y n a m ica lly cre a tin g th e re

q u ested th read s u sin g ex p lic it p th r e a d _ c r e a t e O ca lls . In th is ca se , x th rea d s w ill b e

created from scratch . A lth o u g h th is is a co m p le te so lu tio n , it in v o lv es q u ite h ig h b o o k

keep ing overheads. T h ese overh ead s are a c tu a lly in e v ita b le b eca u se w e ca n n o t rea lly

guess th e num ber o f th read s (so as to p re-crea te th em) th a t O R T w ill ev en tu a lly req u est

upon a parallel region en tran ce. E ven i f th is co u ld b e p o ss ib le , th e effic ien t m a n a g em en t

o f a large num ber o f th read s h as b een proved to b e n o t an ea sy ta sk . For in sta n ce , t im e

sharing can sig n ifica n tly in crease th e im p lic it sy n ch ro n iza tio n overh ead s a s so c ia te d w ith

th e thread m a n agem en t.

H owever, w hen th e d y n a m ic a d ju stm en t o f th e num ber o f th rea d s is en a b led , th e E E L IB

part is th e on e th a t d ecid es on how m an y E E s it w ill su p p ly to O R T . B a sed o n th is , w e

can s t ill provide efficient b u t lim ited n ested p a ra lle lism su p p o rt. O ur p u rp o se is to lim it

th e num ber o f created th read s. Sp ecifica lly , th e P T H R library p re-crea tes a fixed n u m b er

o f threads based on O R T ’s in stru ctio n s. W h en ev er O R T asks for a p a rticu la r n u m ber

o f threads, P T H R checks for ava ilab le (id le) threads; th ese are th e o n ly th rea d s it can

2 7

supply O R T w ith . T hreads th a t fin ish th eir ex ecu tio n b eco m e id le . W h en a ll P T H R ’s

threads are busy, th e P T H R can n ot serv ice O R T ’s request. In th is case th e (n ested)

parallel region is serialized .

U pon in itia liza tio n , P T H R creates a p o o l o f id le th read s. T h e s ize o f th e p o o l is d e ter

m ined by O R T and d ep en d s on tw o factors: a) th e OMP_SETJJUM_THREADS en v iro n m en ta l

variable and b) th e num ber o f th e p h y sica l processors. I f th e user d o es n o t e x p lic it ly

declare th e OMP_SET_NUM_THREADS variable, th en P T H R creates as m an y th rea d s as th e

sy ste m ’s processors. T h e p o o l is a c tu a lly a p la in queue. E ach th read is a sso c ia te d w ith

a specific n od e in th e p o o l, w hich co n ta in s th read -sp ecific in fo rm a tio n in c lu d in g a flag

representing th e current s ta te o f th read (ru n n in g or id le) , th e th read id w ith in th e tea m

and th e fu n ction to b e ex ecu ted .

In itia lly , th e queue is occu p ied by threads w a itin g to b e sch ed u led . E ach th rea d w a its by

sp in n in g on its ow n p rivate flag. In order to avoid oversu b scrib in g th e p rocessors, th rea d s

sp in for a rela tively sm a ll num ber o f itera tio n s an d th en y ie ld th e p rocessor. U p o n an

e e _ r e q u e s t () ca ll, th e P T H R library m u st in form O R T a b o u t th rea d a va ilab ility . I f it

is ca lled from level = 0, th e ca ller is th e m a ster th read . O th erw ise , it m a y b e ca lled by

m u ltip le th read s w hich en cou n ter a n ested p ara lle l reg ion . In b o th ca ses , th e req u ester

checks th e s ize o f th e p o o l. T h is is d o n e by ju s t read in g a g lo b a l co u n ter (p le n) w h ich

keeps th e current size o f th e p o o l. I f th e req u ested n um ber is sm a ller or eq u a l to p l e n

th en P T H R is cap ab le o f serv in g th e req u est. O th erw ise , P T H R can p a rtia lly serve th e

request w ith ex a c tly p le n th read s. B efore retu rn in g , e e _ r e q u e s t () u p d a te s th e s ize o f

th e pool. S ince m an y threads are s im u lta n eo u sly c o m p etin g for th e sa m e g lo b a l p o o l, th e

p le n variable m u st b e accessed an d u p d a ted a to m ica lly . T h is is a ch iev ed b y u s in g a sp in

lock nam ed p lo c k . W h en leve l = 0, th e u se o f p lo c k is u n necessary , b eca u se th e o n ly

running thread is th e m aster .

T h e e e _ c r e a te 0 ca ll s ig n a ls th e sta r t o f th e para lle l ex ecu tio n . I ts arg u m en t lis t in c lu d es

the num ber o f th read s to b e released (nu m th r), th e fu n c tio n to b e ex e c u te d b y a ll tea m

m em bers (w o rk fu n c) and a p o in ter to th e tea m p a ren t’s eecb . T h e la tte r is u sed so as

each th read rem em bers its ow n tea m parent. P T H R d isp a tch es num thr th rea d s from th e

p o o l and g ives th em work to do. S p ecifica lly , it traverses th e first num thr p o o l e lem en ts ,

su p p ly in g each th read w ith an ex ecu tio n id , a p o in ter to th e w o rk fu n c fu n ctio n and a

p oin ter to th e p a ren t’s eecb . It releases each in itia liz ed th rea d by s im p ly s e t t in g its sp in

flag to false.

W hen a th read fin ish es th e ex ecu tio n o f th e w o rk fu n c fu n ctio n , it s im p ly rejo in s th e

p o o l so as to b e ab le to serve an oth er req u est. D u e to th e im p lic it barrier a t th e en d o f

every parallel region , th read s rejo in ing th e p o o l m u st so m eh o w in form th e p a ren t o f th e

team a b o u t their co m p letio n . T h is is ach ieved by k eep in g an ex tra field a t th e p a ren t’s

eecb. T h is field is d eclared in O R T b u t is o n ly a ccessib le by P T H R . It is a p o in ter to

a P T H R stru ctu re (i n f o) co n ta in in g tw o th in gs: a) a r u n n in g co u n ter w h ich rep resen ts

·; A

2 8

;Y
J
v

-

th e num ber o f running th read s in th e tea m an d b) a sp in lock for a ccessin g th is cou n ter.

A thread th a t becom es a parent o f a tea m for th e first tim e is resp on sib le for in itia liz in g

its in f o structure. Each thread after rejo in in g th e p o o l, accesses th e i n f o stru ctu re o f

its parent and decrem ents r u n n in g by 1. F ina lly , w hen th e parent ca lls e e _ w a i t a l l () , it

blocks u n til th e r u n n in g cou n ter b ecom es 0.

W e can n o t cla im th a t our im p lem en ta tio n provides fu ll n ested p ara lle lism su p p o rt. T h is

is b ecause th e P T H R library can not crea te n ew th read s on th e fly w h en th e p o o l h as

ran ou t o f threads. H ow ever, th e user can ensure th a t en ou gh th read s w ill b e a va ilab le to

serve n ested parallel regions by s im p ly se tt in g th e 0MP_SET_NUM_THREADS en v iro n m en ta l

variable to th e to ta l desirab le num ber. In th is way, th e p o o l w ill a lw ays m a in ta in a

sufficient num ber o f threads in order to serve th e p ro g ra m ’s requests.

O m ni [31] handles n ested p arallelism in th e sa m e way; th e sp ec ia l 0MPC_NUM_PR0CS en

v ironm en ta l variable d eterm in es th e size o f th e p o o l. In th e B a ld er ru n tim e library o f

O dinM P [20] th e p o o l s ize is n o t fixed; it is exp an d ed w henever it is n ecessary . A ll v en

dors th a t su p p ort n ested p ara llelism a lso u tilize on a p o o l o f kernel th read s. S p ecifica lly ,

in th e Intel com p iler [34], th read s are n ot created u n til th e first para lle l reg ion is ex ecu ted ,

and on ly as m any th read s as needed by th a t p ara lle l reg ion are crea ted . F urther th read s

are created as needed by subseq u en t p arallel reg ions. H ow ever, th read s th a t are crea ted

by th e ru n tim e library are n ot destroyed b u t jo in a th read p o o l u n til th e y are ca lled to

p artic ip a te in a su bseq u en t tea m . In G O M P [29], th e O p en M P im p le m en ta tio n for G C C ,

th e p oo l is ex p lo ited o n ly for n o n -n ested p ara lle l reg ion s, w h ile th rea d s are d y n a m ica lly

created for inner levels.

Our P T H R library, w hich has b eco m e th e d efa u lt E E L IB o f O M P i, a lth o u g h p ro v id in g

lim ited su p p ort o f n ested p ara lle lism , is m o stly o p tim ized for s in g le -lev e l p a ra lle lism . For

cases w here d eep n estin g lev e ls are ex p ec te d , o th er libraries sh o u ld b e em p lo y ed , e .g . th e

PSTHREADS [12] library. T h is library im p lem en ts a tw o -lev e l th read m o d e l, w h ere u ser-lev e l

threads are ex ecu ted on top o f kernel th read s th a t act as virtual processors. T h e n u m ber

o f th e v irtu a l p rocessors never exceed s th e n u m b er o f th e p h y sica l p rocessors. E ach v ir tu a l

processor is a P O S IX kernel th read w hich runs a d isp a tch lo o p , se le c t in g th e n e x t-to -ru n

user-level thread from a se t o f ready q u eu es, w here th rea d s are su b m itte d for e x ec u tio n .

T h e prim ary u ser-level thread o p era tio n s are p rov id ed by U th L ib (U n d er ly in g T h rea d s

L ibrary), a p la tform in d ep en d en t package. T h e PSTHREADS library is c o m p le te ly p o r ta b le

b ecau se its im p lem en ta tio n is b ased en tire ly on th e P O S IX sta n d a rd . T h e m a n a g em en t

o f n ested p ara lle lism s itu a tio n s is effic ien tly h a n d led by u s in g a d a p tiv e w ork d is tr ib u tio n

schem es, such as thread m igration .

4 .3 M e a s u r i n g t h e O p e n M P O v e r h e a d s

D esp ite th e sign ifican ce o f n ested p ara lle lism in O p en M P , th ere is no research s tu d y

m ade u n til now m easu rin g th e overheads a sso c ia ted w ith O p en M P c o n stru c ts w h en n ested

2 9

parallelism is in effect. M ost works focu s on a p p lica tio n sp eed u p s, w hich g ive overall
perform ance in d ica tio n s b u t d o n ot reveal p o ten tia l co n stru ct-sp ec ific p rob lem s.

T h e well know n E P C C m icrobenchm ark su ite [4, 5] is th e m o st co m m o n ly u sed to o l

for m easuring runtim e overheads o f in d iv id u a l O p en M P co n stru cts . H ow ever, it is o n ly

app licab le to sin g le-level parallelism . W e m an aged to d ev e lo p a se t o f b en ch m ark s b ased

on the E P C C m icrobenchm arks w hich m easure th e overheads o f O p en M P co n stru cts

under n ested parallelism . U sin g th ese benchm arks, w e exp er im en ted w ith severa l freew are

and com m ercia l O p en M P com pilers. T h e resu lts o f th is sec tio n h ave b een p resen ted in

[9],

4 .3 .1 T h e E P C C M i c r o b e n c h m a r k S u i t e

T h e E P C C m icrobenchm arks are d iv id ed in to tw o p arts. T h e sy n ch ro n iza tio n p a rt m ea

sures the overheads o f O p en M P co n stru cts th a t require barrier sy n ch ro n iza tio n (e .g .

p a r a l l e l , p a r a l l e l f o r , s i n g l e , e tc) a lo n g w ith O p en M P co n stru cts th a t require m u

tu a l exclu sion (e.g . c r i t i c a l , a to m ic , e tc) . T h e o th er part is th e sch ed u lin g p art.

T h is m easures th e overheads a sso c ia ted w ith th e sch ed u le p o lic ies o f O p en M P , s t a t i c ,

dynam ic or g u id e d , u sin g a set o f d ifferent con figu ration s o f th e c h u n k s iz e p aram eter.

T h e techn ique used to m easure th e overh ead s o f th e O p en M P d irec tiv es , is to co m p a re

th e tim e taken for a sec tio n o f cod e to b e ex ecu ted seq u en tia lly w ith th e t im e tak en for th e

sam e cod e ex ecu ted in p arallel, en closed w ith in a g iven d irective . L et Tp b e th e e x ec u tio n

tim e o f a program on p p rocessors and T\ b e th e ex ec u tio n tim e o f it s seq u en tia l version .

T h e overhead o f th e parallel ex ecu tio n is d efined as th e to ta l t im e sp en t c o lle c t iv e ly b y th e

p processors over and ab ove T i, th e t im e required to d o th e “rea l” w ork, i.e . Tovh = pTp- T 1.

T h e per-processor overhead is th en TQ = Tp—T\/p. T h e E P C C m icro b en ch m a rk s m easu re

T0 for th e case o f s in g le -lev e l p a ra lle lism u sin g th e m eth o d d escr ib ed b elo w .

A reference tim e , Tr , is first fixed , w h ich rep resents th e t im e n eed ed for a ca ll to a

particu lar fu n ction n am ed d e l a y () . To avoid m ea su rin g tim e s th a t are sm a ller th a n

th e clock reso lu tion , Tr is a c tu a lly ca lcu la ted by ca llin g th e d e la y 0 fu n c tio n su ffic ien tly

m any tim es:

for (j =0; j < innerreps; j++)
delay(delaylength);

and d iv id in g th e to ta l t im e by in n e r r e p s . Tr is a c tu a lly rep resen tin g th e t im e n eed ed for

th e seq u en tia l ex ecu tio n . T h en , th e sa m e fu n ctio n ca ll (d e l a y ()) is su rrou n d ed b y th e

O p en M P co n stru ct under m ea su rem en t, w h ich is in turn en c lo sed w ith in a p a ra lle l d irec

tiv e . For ex a m p le , con sid er th e E P C C co d e th a t m easu res th e f o r d irec tiv e o verh ead s,
as show n in F igure 4 .2 .

3 0

1 testforO {
2 ...

3 tl = getclockQ ; /* start measurement */
4 #pragma omp parallel private(j)
5 {
6 for (j = 0 ; j < innerreps; j++)
7 #pragma omp for
s for (i = 0 ; i < p; i++)
9 delay(delaylength);

10 }
u t2 = getclockO; /* end measurement */
12 }

F igure 4.2: P ortion o f th e t e s t f o r O E P C C m icrob en ch m ark ro u tin e .

A t lin e 4, parallel ex ecu tio n b eg in s. T h e crea ted th read s, w hich are as m a n y as th e pro

cessors, ex ecu te rep ea ted ly th e cod e o f lin es 7 -9 for in n e r r e p s iter a tio n s . T h e p a ra lle l

loop (line 8) h as to sch ed u le p itera tio n s on ex a c tly p th read s u sin g th e d efa u lt s ta t ic

schedule. T h a t m ean s th a t th e lo o p ’s itera tio n s w ill b e eq u a lly d is tr ib u ted to th e th rea d s

w ith each one o f th em g e tt in g ex a c tly on e itera tio n . C on seq u en tly , each th rea d w ill ev en

tu a lly ex ecu te th e d e la y fu n ction for in n n e r r e p s t im es w h ich m ea n s th a t each th r e a d ’s

work requires a to ta l o f Tr tim e.

T h e parallel ex ecu tio n tim e , Tp, is th en d efined as t im e n eed ed to ex e c u te th e w h o le

m easurem ent (lin es 4 -1 0) , d iv id ed by in n e r r e p s . T h e overh ead o f th e f o r d ire c tiv e is

derived as Tp — Tr s in ce th e to ta l work d on e n eed s a c tu a lly pTT seq u en tia l t im e . N o tic e

th a t, th e m easu rem en t in c lu d es th e t im e tak en b y th e p a r a l l e l d irec tiv e . In order to

avoid th is , in n e r r e p s is large en ou gh so th e overhead o f th e p a r a l l e l d irec tiv e ca n b e

safely ignored. E ach overhead m easu rem en t is rep ea ted severa l t im es an d th e m ea n an d

standard d ev ia tio n are co m p u ted over a ll m easu rem en ts.

T h e th rea d /p ro cesso r m a p p in g p lays a cru cia l role in th e m ea su rem en ts . W e m u st en su re

th a t th e num ber o f th read s ru n n in g th e para lle l reg ion o f each m ea su rem en t is eq u a l to

th e num ber o f present processors. T h is is b eca u se , w e d o n o t w a n t to o v ere stim a te th e

overheads d u e to th e tim e-sh a r in g o f th e p rocessors.

4 . 3 . 2 O u r M e t h o d o l o g y

To s tu d y how effic ien tly O p en M P im p lem en ta tio n s su p p o rt n ested p a ra lle lism , w e h ave

ex ten d ed b o th th e sy n ch ro n iza tio n and sch ed u lin g m icrob en ch m ark s o f th e E P C C su ite .

A ccord in g to our approach , th e core b en ch m ark ro u tin e for a g iven co n stru ct (e .g . th e

t e s t f o r O d iscu ssed ab ove) is rep resented by a task. E ach ta sk h a s a u n iq u e id en tifier a n d

u tilizes its ow n m em ory sp a ce for s to r in g it s ta b le o f ru n tim e m ea su rem en ts . W e c re a te a

3 1

team o f threads, w here each m em ber o f th e tea m ex ecu te s its ow n ta sk . W h en a ll ta sk s

finish, we m easure th eir to ta l ex ecu tio n tim e and co m p u te th e g lob a l m ean o f a ll m easu red

runtim e overheads. O ur approach is o u tlin ed in F igure 4 .3 . T h e tea m o f th rea d s th a t

execu te th e tasks expresses th e ou ter leve l o f p ara lle lism , w h ile each b en ch m ark ro u tin e

(task) con ta in s th e inner level o f parallelism .

1

2

3

4

5
6

7

8

9
10

11

12

13

14

15

16

17

U
19

20

21

22

23

24

25

void nested_benchmark(char ♦name, func_t originalfunc) {
int task., id;
double tO, t1;

tO = getclockO;
#ifdef NESTED.PARALLELISM
#pragma omp parallel for schedule(static,1)
#endif
for (task_id = 0; task.id < p; task_id++) {
(♦originalfunc)(task_id);

>
tl = getclockO;

<compute global statistics>
<print construct name, elapsed time (ti-tO), statistics>

}

mainO {
<compute reference time>

omp_set_num_threads(omp_get_num_procs());

omp_set.dynamic(0);

nested_benchmark("PARALLEL", te s tp r) ;

nested_benchmark("FOR", t e s t fo r) ;

>

F igure 4.3: E x ten d ed m icrobenchm arks for n ested p a ra lle lism overh ead m ea su rem en ts .

In F igure 4 .3 , if th e ou ter lo o p (lines 9 -1 1) is n o t p a ra lle lized , th e ta sk s are ex ec u te d

in seq u en tia l order. T h is is eq u iva len t to th e orig in a l v ersion o f th e m icro b en ch m a rk s,

h avin g each core b en ch m ark rep ea ted m ore th a n o n ce, d u e to th e p resen ce o f th e for lo o p

(lin e 9). O n th e o th er h an d , i f n ested p ara lle lism is en a b led , th e lo o p is p a ra lle lized (lin e s

6- 8) and th e ta sk s are ex ecu ted in parallel. E ach th rea d o f th e first p a ra lle l lev e l ca lls

th e correspon d in g m easu rem en t fu n ctio n (e .g . t e s t f o r) u sin g it s t a s k i d . T h e n u m b er o f

sim u lta n eo u sly a ctiv e tasks is b ou n d by th e n um ber o f O p en M P th rea d s th a t c o n s t itu te

th e tea m o f th e first level o f p ara llelism . T o en su re th a t each m em b er o f th e te a m e x e c u te s

ex a c tly on e task , a s ta t ic sch ed u le w ith ch u n ksize o f 1 w as ch osen a t lin e 7. In a d d itio n ,

3 2

to guarantee that the OpenMP runtime library does not assign fewer threads to inner
levels than in the outer one, dynamic adjustment of threads is disabled through a call to
omp_set-dynamic (0).

By measuring the aggregated execution time of the tasks, we use the microbenchmark
as an individual application. This time does not only include the parallel portion of the
tasks, i.e. the time the tasks spend on measuring the runtime overhead, but also their
sequential portion. This means that even if the mean overhead increases when tasks are
executed in parallel, as expected due to the higher number of running threads, the overall
execution time may decrease.

In OpenMP implementations that provide full nested parallelism support, inner levels
spawn more threads than the number of physical processors, which are mostly kernel-
level threads. Thus, measurements exhibit higher variations than in the case of single-
level parallelism. In addition, due to the presence of more than one team parents, the
overhead of the p a ra l le l directive increases in most implementations, possibly causing
overestimation of other measured overheads (see Fig. 4.2). To resolve these issues, we
increase the number of internal repetitions (innerreps) for each microbenchmark, so as
to be able to reach the same confidence levels (95%). A final subtle point is that when
the machine is oversubscribed, each processor will be timeshared among multiple threads.
This leads to an overestimation of the overheads because the microbenchmarks account
for the sequential work ('.Tr) multiple times. We overcame this by decreasing de lay leng th
so that Tr becomes negligible with respect to the measured overhead.

4 . 4 A s s e s s in g t h e P e r f o r m a n c e

Using our methodology, we experimented with a set of freeware and commercial OpenMP
compilation systems. The freeware compilers are OMPi 0.9.0, Omni 1.6 and GCC 4.2.0.
The commercial ones are the Intel C + + 10.0 compiler (ICC) and the Sun Studio 12
(SUNCC). For OMPi and Omni which are source-to-source compilers we chose to use
GCC as the naitive back-end compiler. Also, OMPi was tested using two configurations,
namely OMPi+PSTHR (PSTHREADS) and OMPI+POSIX. The latter configuration
utilizes our implementation of the PTHR library.

All our measurements were taken on a Compaq Proliant ML570 server with 4 Intel Xeon
III single-core CPUs running Debian Linux (2.6.6). Although this is a relatively small
SMP machine, size is not a issue. Our purpose was to create a significant number of
threads, which exceeds the number of available processors (4), in order to exploit the
effects of nested parallelism. In the first level of parallelism, 4 threads are always created.
Each one of them calls the original benchmark routine where it creates 2, 4 or 8 threads
for testing a given directive. Consequently, the benchmark application creates a total of
4 x 2 = 8, 4 x 4 = 16 or 4 x 8 = 32 threads, respectively.

3 3

Most implementations start by creating an initial pool of threads, usually equal in size
to the number of available processors, which is 4 in our case. In order to be sure that
an implementation will actually create the requested number of threads in both parallel
levels, we disabled the dynamic adjustment of the number of threads using a call to
omp_set_dynamic(0). For the case where 4 x 4 = 16 threads need to be created, we only
had to make a call to omp_set_num_threads (4) upon the application startup. In all other
cases, we explicitly set the number of inner threads using the num_threads() clause.

However, Omni and OMPi can not create more than 4 threads on the fly, even if is needed;
they support nested parallelism as long the initial pool has idle threads, otherwise the
nested parallel regions get serialized. To overcome this problem, in OMPi, we explicitly
set the desired number of threads to be created using the OMP JJUM_THREADS environmental
variable. In this way, the pool always maintains a sufficient number of threads to serve
the parallel regions. The same thing was done also in Omni, using the 0MPC_NUM_PR0CS

environmental variable. We have, however, been careful not to give those two imple
mentations the advantage of zero thread creation overhead since with the above trick all
threads are pre-created. For this reason, we include a dummy nested parallel region at
the top of code, so as all implementations have the chance to create the requested number
of threads before the actual measurements commence.

Our first set of results is depicted in Figure 4.4. We present the overheads of the p a ra l le l ,
fo r, s in g le and c r i t i c a l directives, when 4 x 4 total threads are active. Each plot also
includes the single-level overheads of each compilation system for reference. As we were
expecting, overheads are increased when nested parallelism is in effect, mainly due to
the presence of more active threads. We observe however that Intel, GCC, and Omni
do not scale well in the p a ra l le l construct, although ICC remains quite fast. For all
three of them, the runtime overhead is more than an order of magnitude higher in the
case of nested parallelism. For ICC this could be attributed, in part, to the fact that
threads join a unique central pool before getting grouped to teams [34]. On the other
hand, both OMPi+POSIX and SUNCC clearly scale better and their overheads increase
linearly, with SUNCC, however, exhibiting higher overheads than OMPi for both single
level and nested parallelism.

Similar behavior is seen for the fo r and s in g le constructs, except that GCC shows sig
nificant but not excessive increase. The Sun compiler seems to handle loop scheduling
quite well showing a decrease in the actual overheads. This, combined with the decrease
in the sing le overheads, reveals efficient team management since both constructs in
cur mostly inter-team contention. On the other side, Omni does not scale well in both
situations. Among all, ICC and OMPi+POSIX have the smallest overheads for the single-
level case, while OMPi+PSTHR has the smallest overheads, when nested parallelism is
in effect. Especially in the s in g le construct, OMPi+PSTHR shows the advantage of
user-level threading: inner levels are executed by user-level threads, which mostly live
in the processor where the parent thread is, eliminating most inter-team contention and

3 4

«PRAGMA OMP PARALLEL

«PRAGMA OMP FOR

100

90

80

~ 70
| 60

30

20

10

0
ICC

«PRAGMA OMP SINGLE

SUNCC GCC OMNI OMPh-POSIX OMPh-PSTHR

«PRAGMA OMP CRITICAL

Figure 4.4: Overheads for the p a ra l le l , fo r, s in g le and c r i t i c a l .

3 5

the associated overheads. In contrast, the (unnamed) c r i t i c a l construct incurs global
contention since all threads from all teams must compete for a single lock protecting the
critical code section. Overheads are increased significantly in all systems, suggesting that
unnamed c r i t i c a l constructs should be avoided when nested parallelism is required.

Figure 4.5 includes results from the scheduling microbenchmarks. For presentation clar
ity, we avoided reporting curves for a wide range of chunksizes; instead we include results
for (s t a t i c ,1), (dynamic, 1), (dynamic,8) and (gu ided ,1). Schedules with a chunk-
size of 1 represent the worst cases, with the highest possible scheduling overhead. This is
because, threads execute only one loop iteration before the compiler reschedules them for
another one. Moreover, due to the nature of the dynamic and guided schedules, threads
are continuously competing to gain a loop iteration. Scheduling overheads increase, as
expected, for the s t a t i c and guided schedules in the case of nested parallelism. The
high overheads of OMPi+POSIX are mainly due the excessive locking that take place.
It is expected that with the use of appropriate atomic operation primitives which are
nowadays available, those overheads will disappear.

Overheads of the dynamic scheduling policy seem to increase at a slower rate and in some
cases (SUNCC, GCC and OMPi+PSTHR) actually decrease, which seems rather surpris
ing. This can be explained by the fact that for this particular scheduling strategy and
with this particular chunk size, the overheads are dominated by the excessive contention
among the participating threads. Recall that 16 threads need to be scheduled on 4 pro
cessors. With locality-biased team management, which groups all team threads onto the
same CPU, and efficient locking mechanisms, which avoid busy waiting, the contention
has the potential to drop sharply, yielding lower overheads than in the single-level case.
This appears to be the case for the Sun Studio and GCC compilers. OMPi with user-
level threading achieves the same goal because it is able to assign each independent loop
to a team of non-preemptive user-level OpenMP threads that mainly run on the same
processor. However, as the chunksize increases, jobs become coarser and any gains due to
contention avoidance vanish. This case is depicted in the third plot of Figure 4.5. As the
chunksize increases to 8, nested overheads increase for all implementations with respect
to the single-level case.

In Figures 4.6 and 4.7 we present the results of our next experimentation: we delved
into discovering how the behavior of our subjects changes for different populations of
threads. We fixed the number of first-level threads to 4 but changed the second-level
teams to consist of 2, 4 and 8 threads, yielding in total 8, 16 and 32 threads on the 4
processors. Because this was only possible using the num_threads() clause (an OpenMP
V.2.0 addition), Omni was not included, as it is only V.1.0 compliant. Figures contain
one plot per compiler, including curves for most synchronization microbenchmarks.

3 6

SCHEDULE(STATIC,1)

SCHEDULE(DYNAMIC,1)

SCHEDULE* GUIDED,!)

Figure 4.5: Scheduling overheads for s t a t i c , dynamic and guided.

3 7

The results confirmed what we expected to see: increasing the number of threads in
the second level leads to increased overheads. We observe that the p a ra l le l and the
reduction directives exhibit exponential behavior in ICC and GCC. The latter seems
that it can not handle the situation when 32 threads are present. By far, the most
scalable behavior is exhibited by the OMPi+PSTHR setup, although in absolute numbers
the Intel compiler is in many cases the fastest. Finally, the overheads of SUNCC on all
cases are directly comparable with the ones of OMPI+POSIX, which seems to have a
graceful reaction to increasing number of threads, while maintaining very low overheads
for a single-level parallelism.

O M PI+PO SIX

—• —PARALLEL

— FOR

— BARRIER

-" -C R IT IC A L

•— LOCK/UNLOCK

— SINGLE

—+— REDUCTION

O M P I+PSIH R

- — PARALLEL

— FOR

- —-•BARRIER

— CRITICAL

- — LOCK/UNLOCK

— SINGLE

—♦— REDUCTION

Figure 4.6: Synchronization overheads for OMPi on a different population of threads.

3 8

GCC

—♦—PARALLEL

- — FOR

-— BARRIER

— CRITICAL

- — LOCK/UNLOCK

— SINGLE

—t— REDUCTION

IC C

— PARALLEL

— FOR

-— BARRIER

—«—CRITICAL

- — LOCK /UNLOCK

— SINGLE

—i— REDUCTION

SU N C C

- — PARALLEL

— FOR

— BARRIER

— CRITICAL

— ■LOCK/UNLOCK

— SINGLE

— REDUCTION

Figure 4.7: Synchronization overheads for GCC, ICC and SUNCC on a different popula
tion of threads.

3 9

Chapter 5

Shared Virtual Memory and OpenMP
for Clusters

5.1 An Introduction to Shared Virtual Memory

5.2 OpenMP and Shared Virtual Memory

5 .1 A n I n t r o d u c t i o n t o S h a r e d V i r t u a l M e m o r y

Shared virtual memory (SVM) is a single address space shared by a number of processors
in a distributed environment such as a cluster. Any participating processor has a memory
mapping manager which implements the mapping between its local memory and the
shared memory address space. Other than mapping, managers are also responsible for
keeping the shared address space consistent at all times.

The difference between the hardware distributed shared memory systems and SVM, is
that shared memory is implemented via software. Although the hardware approach has
been shown to perform quite well, it incurs a high engineering cost and is usually not
available in commodity systems. On the other hand, SVM is a cost-effective method for
providing the shared abstraction model on networks of workstations since it requires no
special hardware support and is relatively easy to implement. Application programs can
use SVM just as they do on a traditional virtual memory system except that processes
can run on different machines in parallel.

Traditionally, most SVM systems [15, 17, 21, 23, 24, 26] implement page-baged shared
virtual memory. The virtual memory is partitioned into pages which can be replicated
and migrated between processors on demand, just like a cache line in hardware DSM
systems. In order to keep the copies of the pages synchronized, the system must supply a

4 0

mechanism to maintain coherence between them, called coherency protocol. The system
must also provide a memory consistency model. While the cache coherency protocol
determines what values should be visible to other processors, the memory consistency
model determines when those values will be visible to other processors.

5 . 1 . 1 P a g e - B a s e d S V M

A SVM system selects a portion of the virtual address space to implement the shared
memory region. This space is divided into pages. The state of each shared page at any
given time can be: read-only, read-write or invalid. Pages that are marked as read-only

can have copies residing in the physical memories of many processors at the same time.
A page marked read-write can reside in only one processor’s memory if the coherence
protocol is single-writer or it can reside on many processor physical memories if the
SVM system implements a more advanced coherent mechanism, like a multiple writers

protocol. A page marked as invalid is the result of a invalidate-type coherency protocol.
The memory mapping manager views its local memory as a large cache of the shared
memory address space for its associated processor, and manages it in fully associative
mode at page granularity. The shared memory exists only virtually. A memory reference
causes a page fault when the page is not in a processor’s current virtual memory. When
this happens, the memory manager retrieves the page either from the disk or the memory
of another processor. If the page of the faulting memory reference has copies on other
processors, then the corresponding memory mapping managers must cooperate to keep
the memory coherent.

A very simple form of shared memory coherence is illustrated in Figure 5.1. In the
beginning, processors PO and P I do not have a copy of the stippled shared page. Events
occur in the order 1, 2, 3, 4. At first, PO tries to read a page that its not present in its own
local memory. This raises a page fault and control passes to the memory mapping manager
(MMO). The memory mapping manager is actually a signal handler which is associated
with a set of signals. The most common signal is the segmentation fault (SIGSEV) which
is generated upon a page fault. PO eventually obtains, through the handler, its copy of the
shared page and the application process takes control again. Thereafter, P I also requests
the same page (2). A page fault occurs and its handler fetches a new copy of the same
shared page from PO. The next event is a write request from PO on the same page (3).
However, the page is read-only protected causing a new page fault. The page handler of
PO knows that P I has a copy of the page and forces it to be invalidated. PO has now
exclusive rights to the page, meaning that it can modify the page. Meanwhile, if P i tries
to access the page, a page fault will occur (4). P i ’s handler finds the processor which has
the most up-to-date copy of that page, which is PO, and fetches a new copy.

Notice that, the physical address where the page is mapped may be completely different
among the processors physical memories. Also, the handler must know or determine from
where to obtain the up-to-date copy of a page or which pages it needs to invalidate before

4 1

local memories
1 2 3 4

Figure 5.1: A simple form of memory coherence in SVM.

it returns the control to the application process. A page may have a home, determined by
its virtual address. In this case, the handler maintains an entry for each page indicating
its owner.

The main problem with paged-based shared virtual memory is the high overhead of the
memory protocol invocation and processing. Page faults need time to generate the inter
rupt and switch to the execution of the handler. The latter is responsible for taking control
and executing the memory coherency/consistency protocol, which is usually a heavyweight
software implementation. In addition, the handler is also responsible for serving requests
from other processors. Incoming requests slow down further the application’s execution.
In all cases, the invocation of the memory protocol also incurs considerable communica
tion overheads. The large granularity of communication is a serious problem since even
if a single word is needed, a whole page must be fetched.

It becomes clear that, in order to achieve good performance, SVM systems must avoid the
frequent memory protocol invocations. In addition, the memory protocol itself must be
efficiently designed to avoid large communication costs. For example, in a sequential con
sistency model, invalidations are propagated and performed as soon as the corresponding
write is detected, so pages may be frequently ping-ponged back and forth among proces
sors resulting in high delays in the application and communication level. For this reason,
modern SVM systems employ more relaxed memory protocols, which delay the protocol
invocation until it becomes absolute nessecary.

4 2

5 . 1 . 2 M e m o r y C o n s i s t e n c y M o d e l s i n S V M

As we have already mentioned, the memory consistency model determines when the mod
ified pages will be visible to other processors. A memory consistency model of a shared
memory system formally specifies how the memory system will appear to the programmer.
Essentially it defines constrains on the order in which memory accesses can be performed
in shared memory systems. The stricter the memory consistency model, the easier for pro
grammers to program, and the smaller the opportunity for optimization. Strict memory
consistency models like sequential consistency result in a serious performance degradation
in SVM. False sharing is a situation where multiple processors request for the same page
but write different locations in it. In the sequential memory consistency model, a write
operation on a shared page causes the coherence protocol to immediately invalidate all
of its copies. If processors simultaneously write on the same page, even if they write
on different locations, the page will be ping-ponged back and forth resulting in a high
communication cost.

Although the memory consistency model specifies when coherence operations and data
need to become visible, it can actually be implemented with various degrees of “laziness” .
Greater laziness implies greater complexity of the protocol, but fewer communication
and protocol operations. In order to improve the performance of SVM systems, one of
the most affective method is to relax the memory consistency model. Relaxed memory
consistency models allow the propagation of the modified pages to be postponed until
synchronization points, greatly reducing the impact of false sharing and the frequency of
protocol operations.

A multitude of relaxed memory consistency models have been presented in the past. For
example, TreadMarks [23] uses the Lazy Release memory consistency model while JIAJIA
[15] uses the Scope memory consistency model (scC) [16]. In Lazy Release consistency, the
propagation of the modified pages is delayed until a synchronization point is reached, i.e
a barrier or a lock-acquire operation. When a process reaches the barrier it gets informed
about which shared pages were modified since the last synchronization occurred. In
the same way, when a process acquires a lock it gets informed for the modified pages,
by the last process that released the lock. ScC is based on consistency scopes which are
limited views of memory with respect to which memory references are performed. That is,
modifications to data performed within a scope are only guaranteed to be visible within
that scope. A consistency scope consists of all critical sections protected by the same
lock. Additionally, barriers define a global consistency scope which includes the entire
program. Any modifications made within a scope session become visible to processes
that subsequently enter new sessions of that scope (acquire the lock or call a barrier).
Modifications made outside the scope session are not guaranteed to be visible.

In general, all relaxed memory consistency models are variations of a general model rather
than new models. From the user’s point of view, the programming interface is closely

4 3

tied to the memory consistency model adopted by the SVM system. For example, in a
SVM system with sequential consistency like Mome [17], the programmer can write the
program just like he would do on a traditional shared memory system. However, in a
relaxed model, the user must rely on the use of synchronization operations to enforce
memory consistency. Moreover, the programmer must be aware of all the details of the
underlying memory model. For example, programs that target JIAJIA, also run correctly
with TreadMarks. However, the opposite is not true. JIAJIA uses the ScC model, which is
slightly lazier than the Lazy Release model adopted by TreadMarks. Consequently, while
relaxed models are more efficient than stricter ones, there is the trade-off of programming
complexity. In any case, programming for shared virtual memory remains a simpler task
than using explicit message passing techniques, like MPI.

5 . 1 . 3 C a c h e C o h e r e n c y P r o t o c o l s i n S V M

The presence of multiple cached copies of a shared page requires a mechanism to notify
other sharers of a modified memory location. There are two main categories of cache
coherence protocols: write-invalidate and write-update. In the first category, a process
writing a location in a shared page first invalidates all existent copies. When a remote
process tries to access the invalidated page it generates a page-fault and its handler fetches
the up-to-data copy from the writer. In the write-update category, the writer immediately
supplies all processes with the modified pages, allowing them to create an up-to-date copy.

The cache coherency protocol is tightly related to the memory consistency model. Most
SVM systems employ more complex coherence schemes. For example, TreadMarks and
JIAJIA use the multiple-writers coherence protocol combined with a write-invalidate
method. ParADE [21] uses the same protocol combined with a write-update method.
By this protocol, multiple processes can write on the same page or on different pages
simultaneously. This combined with the relaxed memory consistency model employed,
greatly reduces false sharing and application delay. Each process modifying a page, first
creates a twin. A twin is a replica of the page to be modified. After modifying the page,
the process calculates a diff comparing its twin and its modified page. This diff its an
encoding representing the changes that the process is responsible for. Upon a lock release
or a barrier, processes send invalidation messages regarding the pages that they modified
by the time after the last synchronization occurred. This causes the processes acquiring
the lock or entering the barrier to invalidate their corresponding copies. Subsequently,
when a process tries to access an invalid page, a page fault occurs. In TreadMarks, the
process fetches the corresponding page and applies its own diff and all received diffs from
the other processes that also modified this page. With the exception of the first time
a processor accesses a page, each copy of that page is updated exclusively by applying
diffs; a new complete copy of the page is never needed. In JIAJIA, the same approach is
followed except that the home node of page receives and applies the diffs into the page.
When processes request this page, the home node supplies them with the up-to-date copy.

4 4

In general, the coherence protocol must deal with three important questions: (a) how to

implement locks, (b) how to implement barriers, and (3) what to do when the access fault

occurs?. The answers depend on what memory consistency model and what coherence
protocol are used. There is no standard regarding which memory coherency protocol
should be always used. Some systems implement more than one coherency protocols and
give users the choice of the most suitable protocol for their applications.

5 . 1 . 4 M e m o r y O r g a n i z a t i o n M e t h o d s

The memory consistency model and the coherency protocol determine the algorithm and
the data structures to implement a SVM system. However, there is one more issue to be
taken care of: the management of the shared virtual address space. In general, there are
two methods for organizing shared virtual memory.

The first method organizes the shared virtual address space as a cache-only memory

architecture (COMA), where all local memory of each node is treated as a large cache,
and pages can be replicated or migrated on demand. TreadMarks uses this method.
Shared pages are usually kept at the same virtual addresses on every processor’s local
memory. Each page has an owner, and a mechanism is used to find where the owner of
the faulting page is when a page fault occurs. However, owners do not remain static; a
page owner may migrate unexpectedly.

The second method organizes the shared virtual memory in a non-uniform memory access

(NUMA) way. Each page has a fixed home and when a page fault occurs, the faulting
processor can fetch the up-to-date page from the home directly. JIAJIA and Mocha [24],
which is an improved version of JIAJIA, belong into this category. In JIAJIA and Mocha,
each page has a home and homes are distributed across all nodes. References to remote
shared pages cause these pages to be fetched from its home and cached locally. By the
use of a cache mechanism, the size of the shared space can be as large as the sum of each
machine’s local memories, in contrast with TreadMarks where each local memory has to
maintain a sufficient space for ail shared pages. ParADE uses a hybrid approach, where
the home of a page can migrate based on statistics. Specifically, for each shared page,
it counts the number of page faults occurred. When this number is large enough for a
particular process, it chooses that process as the page’s home.

5 . 1 . 5 A p p l i c a t i o n P r o g r a m m i n g I n t e r f a c e

All SVM systems allow the allocation of global memory and the transparent access to
these globally shared memory segments. In addition, they provide a set of synchronization
operations which can be used to coordinate the distributed tasks and to achieve a reliable
program execution. However, the API is varying among different SVM systems. In the
simplest case the routines are simply named differently, but in most cases they also have
slightly different semantics. A typical example is whether the memory allocation is local,

4 5

i.e. allocated by a single node, or global operation, i.e. requires the participation of
all nodes. For example, in TreadMarks a process allocates a shared memory area by a
call to the Tmk_malloc() routine and distributes the memory information to all other
processes by a call to the Tm k_distribute() routine. Upon synchronization, all remote
processes will be informed of the new memory segment. In contrast, JIAJIA uses the
global approach. All nodes must call the j ia .a l lo c routine for the allocation to complete.
In this case, an explicit distribution operation is not needed. In Mome [17], both local
and global allocation routines are implemented. This difference can be lead to several
code changes when porting from one API to another.

5 . 1 . 6 S V M f o r C l u s t e r s o f S M P s

Early SVM systems assumed uniprocessor nodes, thus allowing only one thread per process
on a node. Currently, commodity off-the-shelf microprocessors and network components
are widely used as building blocks for parallel computers. This trend has made clusters
of symmetric multiprocessors attractive platforms for high performance computing. How
ever, the first generation SVM systems are too restricted to exploit multiprocessor nodes
in the cluster. The next generation of SVM systems are aware of SMP nodes and exploit
them by means of multiple processes or threads per-node. In general, the most common
approach is the use of multiple threads, so nothing need to be done to provide memory
consistency among the threads in a node. This also boosts performance because a page
fetched by a thread as a result of a page fault is by nature visible to all the other threads
within the process. The programming model is now hybrid with pure shared memory for
intra-node communication and distributed shared memory for inter-node communication.

As far as the SVM system is concerned, the memory protocol needs to be carefully de
signed. The conventional page fault mechanisms will fail in multithreaded environments
because multiple threads may try to access the same page while a thread is performing
a page-update procedure. On the first access to an invalid page, the system will set the
page writable in order to replace it with a valid one. Unfortunately, this change will also
be visible to all application threads which will not rise a page fault when accessing the
writable page and continue with garbage data. This situation is known as the atomic page
update problem. The most obvious solution is to block all threads until the page-update
is completed. However, this is not an efficient solution because threads will stop their
execution even if pages are unrelated to them. In [22] the authors present 3 techniques
for efficiently handling the atomic page update problem.

5 .2 O p e n M P a n d S h a r e d V i r t u a l M e m o r y

Many researchers have proposed methods for extending OpenMP to clusters. A typical
design of such a compiler includes a translator and a runtime system which utilizes a

4 6

particular SVM system [8, 13, 14, 21, 25, 31]. Through the latter, the compiler is ca
pable of providing the shared memory model required by OpenMP, within a distributed
environment.

5 .2 .1 S h a r e d V a r i a b l e s

A major problem arising when moving to a cluster is that of variables visibility. Global
variables are no longer shared among the system’s processes. Also, stack variables that
need to be shared inside a parallel region, due to the presence of a shared clause, need
also special treatment. Some OpenMP systems overcome these difficulties by following
an everything shared approach. By this approach, each process’s entire address space
is allocated in shared memory. In this way, global and stack variables are visible by
every process. Nanos follows this approach [8]. Other compilers are based on translator
instructions. The translator puts explicit calls to the runtime system regarding global
variables that need to be allocated in the shared space. As already described in Section
2.4, Omni and OMPi follow this approach. OMPi handles the stack variables that need
to be shared by letting the initial (master) process run on a shared stack. In order to
support nested parallelism, all processes should run also on shared stacks. In Omni [31],
stack variables that need to be shared inside a parallel region are copied into a shared
memory area right before the parallel execution begins and are copied back into their
original memory addresses after the parallel region ends. On the other hand, Intel [34]
introduces a special directive named intel_omp_sharable for explicitly declaring global
data that need to be shared. However, this approach requires applications to be modified
in order to run correctly on a clustered environment.

5 . 2 . 2 M e m o r y C o n s i s t e n c y

In clusters, memory consistency is no longer handled exclusively by the underlying hard
ware. Instead, the SVM system is responsible for providing a consistent view of the shared
data. Most SVM systems exploit relaxed memory consistency models which have major
semantic differences with the models adopted in hardware shared memory architectures.
These differences must be well hidden from the application programmer. Fortunately,
OpenMP assumes a very relaxed memory consistency model. The f lu sh directive is the
only OpenMP directive which enforces a memory consistency operation to take place. In
most cases, a flush operation is directly mapped to the corresponding synchronization
operation required by the SVM system. For example, in TreadMarks a lock/unlock se
quence is enough to provide the memory consistency needed. In JIAJIA, which employs
a lazier memory model, a lock/unlock sequence is not enough to provide global memory
consistency. In this case, a barrier operation must be performed. Consequently, the im
plementation of the f lu sh directive is closely related to the memory consistency model
used by the underlying SVM system.

4 7

5.2.3 Performance

In general, the performance of OpenMP systems utilizing shared virtual memory is not
satisfactory. Frequent and costly page faults result in a significant performance degra
dation. Researches have shown that applications exploiting fine-grain parallelism do not
perform well on these systems. For this reason, researchers have focused on finding ways
of reducing the overheads associated with shared virtual memory. A way of improving
performance is to avoid shared virtual memory by using explicit communication tech
niques, whenever possible [11]. For example, communications at the runtime library can
be efficiently managed through MPI rather than through shared variables. In this way,
shared virtual memory is only used for managing the program’s shared data. Further
improvements include optimizations for efficient distribution of the shared data among
processes [8, 28]. Data locality is a major factor affecting an application’s performance.
If processes maintain locally most of the needed pages, page faults will occur rarely. The
presence of multiple threads per-process can also result in overall performance increase in
clusters of SMPs [11, 14, 21].

4 8

Chapter 6

OMPi and Clusters

6.1 A Modular Architecture

6.2 A Hybrid Approach

6.3 The OPRC Library

6.4 Managing ORT

6.5 Experimental Results

6 .1 A M o d u l a r A r c h i t e c t u r e

For the execution of OpenMP programs on top of clusters, we have developed a new
EELIB module for OMPi, called. OPRC. An SVM system is responsible for providing
the shared memory abstraction needed by the OpenMP application. Our runtime system
allows arbitrary SVM cores to be integrated into OMPi by decoupling the SVM core
from the rest of the runtime system. OPRC makes arbitrary calls for shared memory
allocation or synchronization without really knowing which SVM core is the actual target.
We have managed to experiment with OMPi by using a number of different SVM systems:
TreadMarks [23], JIAJIA [15], Mocha [24], ParADE [21] and Mome [17]. All but Mome
use relaxed memory consistency models. Mome’s memory consistency model is based on
sequential consistency. The work of this chapter was presented in [30].

With OPRC’s architecture, the incorporation of a new SVM system into the runtime
library of OMPi is a straightforward procedure. For each candidate SVM system, we
develop a C module containing all the OPRC routines that must be implemented with
the help of the corresponding SVM core. Specifically, shared memory allocation and
synchronization routines are implemented in this module and target the SVM core. We

4 9

have developed five different C modules, one for each SVM system (see Figure 6.1). For
example, whenever the runtime library makes a generic call to oprc-shmalloc O , it is
being translated into a Tmkjmalloc () call if OMPi was configured with TreadMarks or into
a jia _ a llo c () call if OMPi was configured with JIAJIA. Moreover, each of these modules
implements the memory fence mechanism required by the OpenMP f lu sh directive. The
memory fence operation is tied to the SVM system’s specific memory protocol. Usually,
in relaxed memory consistency models, the fence operation is translated into a barrier
operation or a lock/unlock sequence.

OPRC

SVM layer

' TreadMarks A/ JIAJIA \ Mocha ' f ParADE A ' Mome '

T m k m a llo c O jia a llo c !) jia a llo c !) g a l lo c !) M o m e M a llo c !)

T m k b a rr ie r !) jia b a rr ie r !) jia b a rr ie r !) p a ra d e o m p b a r r ie r !) M o m e _ B B rr le r ()

T m k lo c k a c q u ir e !) jia lo c k !) jia lo c k !) p a ra d e lo c k a c q !) M o m e _ m u te x _ lo c k O

T m k _ lo c k _ re le a s e () j i a j j n lo c k !) j i a j j n lo c k !) p a ra d e _ lo c k _ re l () M o m e _ m u te x _ u n lo c k ()

Figure 6.1: The OPRC library and its interaction with SVM systems.

As discussed in Section 5.1.5, some SVM systems require the memory allocation to be
global, i.e. executed by all processes. Other systems require the allocation to be local, i.e.
executed by exactly one process and distribute the result to the others. In our approach,
all processes call a generic oprc_shmalloc() routine which is eventually mapped to the
specific SVM system’s allocation routine taking into consideration the allocation policy.
For example, if the target SVM system is TreadMarks, only process 0 will eventually
call the Tmk_malloc() routine and distribute the memory using the Tm k_distribute 0
routine.

6 .2 A H y b r i d A p p r o a c h

Assuming the original thread model, execution entities are able to communicate with
each other by exploiting the underlying physical shared memory. Communication at the
runtime library is achieved by simply reading or modifying global variables. However,
this is not the case when execution entities are processes. Memory is now distributed
among the nodes in the cluster. One way of achieving inter-process communication is
to exploit the SVM system’s shared memory provision. All ORT and OPRC structures
that need to be process-shared (e.g. ORT workshare specific structures) are explicitly
allocated in the SVM system’s shared memory. As a result, processes are treated in the

5 0

exact same way as threads. However, shared memory is no longer provided by hardware
so additional synchronization operations must be incorporated into the code, in order
to enforce memory consistency. All application’s shared data (e.g. global variables) are
handled also by the SVM system using the technique presented in Section 2.4.

Although this approach seems appealing, the performance is rather poor. The SVM
system has to handle a possible large number of pages for the application’s shared data
along with pages related only to the runtime system’s shared structures. Consider a barrier
operation performed by OPRC in order to enforce consistency in its shared structures. All
page modifications will be propagated to the processes including page modifications caused
by the application even if the user has not explicitly requested a memory consistency
operation. Moreover, frequent inter-process communication at the runtime level will result
in frequent page faults. Whenever a page fault occurs, the application is suspended and
the page handler is invoked. Consequently, the application is burdened with considerable
overheads which are due to the runtime system.

A more efficient approach is to disassociate the SVM system from the runtime library’s
communications. Communications needed by ORT or OPRC can be efficiently handled
by explicit message passing, using for example MPI. All communication patterns in both
ORT and OPRC are well known at their design phase, in contrast to the application’s
data access patterns which are hard or even impossible to guess at compile-time. In our
design, both ORT and OPRC communications are efficiently handled via MPI, while the
application’s shared data are handled via the underlying SVM system.

6 . 3 T h e O P R C L i b r a r y

The control of the application’s startup is moved to OPRC by renaming the applica
tion’s mainO function into ompi_original_main() and declaring a mainO function in
side OPRC. Note that, mainO is called by all processes since all of them run the same
executable. The first routine invoked is the SVM system’s specific initialization routine.
All processes are initialized and each one of them gets a distinct id. The master process
(home) has id 0. As described in Section 2.4, the master process must somehow run
on a shared execution stack. The makecontext O , swapcontext (), and g e tco n tex tO
C library routines allow us to create a user-level thread and explicitly declare its stack
memory area. We create a user-level thread (through makecontext ()) which has its
stack allocated by the SVM system’s allocation routine. Process 0 is then switched to
this user-level thread, and thus the desired effect is achieved. The process now runs
on a shared stack and stack variables will be automatically allocated in shared memory.
The new user-level thread begins its execution by calling the application’s original main
(ompi_original_main()). An alternative method would be to create a kernel-level thread
(e.g. POSIX) and explicitly declare its stack to be shared. However, this would result in

5 1

two kernel-level threads with the one of them having no real work to do other than just
spending computational resources while waiting for the other thread to finish.

However, keeping the master process stack in shared memory causes two problems. The
first problem is that the process’s signal handler also runs on this shared stack. This is
quite dangerous, because the handler may modify pages that are invalid. This would cause
page faults inside the handler. For this reason, right before switching to the user-level
thread, we declare an alternative signal stack for the handler’s execution, allocated in pri
vate memory this time. This was achieved by using the s ig a lts ta c k facility and forcing
the handler to use this stack for the execution of the received signals (e.g. SIGSEV).

The second problem is closely related to the first. When the master process tries to
access an invalid page, a page fault occurs. The signal handler receives the SIGSEV
signal and invokes the memory protocol to fetch the up-to-date page. The handler writes
some information to the process’s stack in order to resume the application’s execution
right after the page request is served. What happens if the handler tries to write this
information to the same invalid page which contains the data? In this case, a page-fault
will also be raised inside the handler.

One way to avoid this problematic scenario is to ensure that shared data are far away in
pages from the current execution pages. This can be achieved by using dummy “paddings”
of size equal to the page size right after the declarations of the stack variables. In this
way, we ensure that the current execution page does not contain shared data. Although
this approach works, we choose to do something different: the master process runs always
the work function on a private stack. Right before the parallel execution starts, process
0 switches back to the original private stack. All process’s stack variables that may need
to be shared inside the parallel region, are already residing in the shared stack and are
accessible by all remote processes. When the process finishes its work, it assumes again
the shared stack. The overhead of changing stacks is negligible with respect to the overall
overheads due to the use of efficient user-level context switching.

6 . 3 . 1 O P R C I n i t i a l i z a t i o n

All processes start by calling the o p rc _ in itia liz e () initialization routine. Like the
others EELIBs of OMPi (e.g. PTHR), OPRC announces its capabilities to ORT, which
include support of nested parallelism, the maximum number of processes and the support
for dynamic adjustment of the number of processes. In its current version, OPRC does
not support nested parallelism. The maximum number of processes available to ORT
is limited by user parameter given at the command line upon execution request. That
means that new processes can not be created on the fly. The dynamic adjustment of the
number of processes is enabled by default.

5 2

Thereafter, each process initializes its own pcb; a control block containing process-specific
information such as the process’s execution id, the number of owned locks, the execution
id of the team’s parent process and a thread descriptor. A SVM system usually provides a
number of locks. These are usually plain integer numbers to be used in the lock routines.
These numbers are uniformly distributed among processes and each one of them keeps a
counter of its active locks. The thread descriptor points to an extra kernel-level thread
created by each process, which is called server-thread. All but process 0 then call an
OPRC internal routine, named wait_for_work(), waiting for actual program execution.

6 . 3 . 2 T h e S e r v e r T h r e a d M o d e l

In our design, each process creates a server thread upon initialization. The server-thread
is a POSIX kernel-level thread. Its main duty is to listen for incoming requests generated
by remote processes or by its own host process. From now on, processes executing the
application’s code will be referred as application threads. Consequently, each node of
the cluster maintains an application thread and a server thread. The communication
between the application thread and its server is achieved by utilizing a local queue called
event-queue. Specifically, the server thread inserts the received request into the event-
queue in order for it to be served by the application thread. The most important requests
each server thread can receive are the PARALLEL, FINALIZE and ORT requests. The first
one signals a parallel execution event and targets a remote group of server threads. The
FINALIZE event is generated by the home process upon program termination and targets
all system’s server threads. Finally, the ORT event is generated by an application thread
requesting ORT shared data and will be described in Section 6.4.2.

6 . 3 . 3 E x e c u t i n g a P a r a l l e l R e g i o n

In single-level parallelism, the home application thread executing the sequential part of the
application makes a call to oprc_create() whenever it encounters a p a r a l le l directive.
Its arguments include the size of the team, say n, and the function to be executed by all
team members. The home application thread generates a PARALLEL request which targets
the first n remote server threads, (see Figure 6.2). An MPI message containing all the
parallel region specific information (e.g. work function, parent’s pid, etc) is constructed
and is sent to the n server threads (1). Each server receiving the PARALLEL request
immediately forwards it to the application thread by inserting it into the local event-
queue (2). The application thread checks the event-queue on a regular basis looking
for new events. By the time it receives the PARALLEL request (3), it immediately starts
execution.

53

Inter-node communication (MPI)

• ► intra-node communication

Figure 6.2: The series of events upon a parallel execution request.

6 . 3 . 4 S y n c h r o n i z a t i o n

Regarding barrier operations, we considered two design choices: a) use the MPI bar
rier routine (M PI_Barrie r()) or b) use the barrier routine supplied by the SVM system.
In most cases, OpenMP includes a memory fence (flu sh) operation at synchronization
points. For example, the b a r r ie r directive which provides synchronization among appli
cation threads implies a memory fence operation. As already mentioned, SVM systems
based On relaxed memory protocols provide memory consistency at synchronization points.
Moreover, usually a barrier operation enforces global memory consistency. That is, all
shared memory modifications made since the last synchronization occurred, are propa
gated to the application threads. Consequently, the barrier itself contains a memory fence
operation. So, in our approach every call to a barrier operation is directly mapped into a
call to the SVM system’s barrier routine. However, we can not guarantee that all initially
created processes will execute the barrier. The user can explicitly set the size of the paral
lel team through a omp_set_num_threads() call or through the use of the num_threads ()

clause. If the requested number of processes is smaller than the total number of processes
in the system, the barrier will block waiting for all processes to arrive. To overcome this
problem, whenever a barrier operation is performed, we force all possible idle processes
to execute the barrier by sending a SYNCHRONIZE request to their server threads.

In order to provide consistency during lock operations, locks are also handled by the SVM
system. These include locks utilized by ORT or application-level locks declared and used
by the programmer. SVM locks are usually plain integer numbers. We only have to ensure
that these integers are kept in shared memory so as to be readable by all processes.

54

6 . 3 . 5 F i n a l i z a t i o n

The last OPRC function called is o p rc_ fin a lize (), upon program finalization. The
home application thread sends the FINALIZE event to all server threads including its
own server thread. Each server receiving the event forwards it to the local application
thread and terminates immediately. All processes are then terminated by calling the
SVM system’s finalization routine. The master process switches back to the original
private stack, releasing the shared stack memory area right before termination.

6 .4 M a n a g i n g O R T

ORT maintains data that need to be accessible by all. For example, all scheduling in
formation presented in Section 3.3 is stored in the team’s parent control block (eecb),
and all team members need to have access to it. Moreover, the OpenMP environmental
variables declared by the application programmer need to be process-shared. Normally,
allocating the parent’s eecb and the structure holding the environmental variables in a
shared memory area allocated by the underlying SVM system is enough for correct ORT
execution. However, as we already discussed, this is not an efficient solution, due to per
formance issues. For this reason, we employed MPI for implementing the shared memory
abstraction. ORT shared data reside in the home node. An application thread that needs
to access the data, generates a request to the home’s server thread. An access to ORT
shared data deals with a small set of variables. In most cases, a simple increment or
assignment operation is applied to a variable. In the original thread model, these accesses
are protected by locks to ensure atomicity. In our case, a write operation is by nature
atomic because a server thread services one request at a time.

We also simplified the management of the workshare regions by avoiding the utilization
of the workshare queue described-in Section 3.3. Specifically, when execution entities are
processes, all workshare regions are only blocking. Despite the limitation introduced, in
this way we avoid the communication overheads of managing the queue via MPI messages.
The same approach is also followed by Omni.

6 . 4 . 1 O R T I n i t i a l i z a t i o n

The first routine called in ORT is o r t_ in i t ia l iz e () . The master process reads the
OpenMP environmental variables and sends their values to all other remote processes
using an MPI collective message. Server threads are not involved here. Thereafter, all
processes call the ort_share_globals() routine. By this function, all application’s global
variables are reallocated in shared memory. As described in Section 2.4.1, for each global
variable, a call to the ORT’s o rt_ sgvar_allocate() is inserted by the parser at the
generated file. By this routine, a list containing all the application’s global variables is
constructed. Each node of the list contains a pointer to the variable, the variable’s size and

55

initial value. In ort.share_globals 0 , a shared memory area of size equal to the total
size of the application’s global variables is allocated using the SVM system’s allocation
routine. Variables are then mapped in this memory area.

6 . 4 . 2 O R T C o m m u n i c a t i o n S c h e m e

ORT shared data include the structure holding the environmental variables and the team
parent’s eecb. We only support single-level parallelism, so the parent of the team is
always the home application thread. All processes read and write ORT shared data by
moving data across the nodes using the underlying network. Environmental variables are
rarely accessed by the processes and usually only for reading, in contrast with worksharing
specific data which is frequently accessed and modified inside worksharing regions. These
structures are stored in parent’s eecb.

A simple example showing the communication steps upon a read request is illustrated
in Figure 6.3. Application thread 1 makes a request to its local server thread (1). The
request specifies the type of the shared data that it needs to read. The server thread
forwards the request (through an MPI message) to the corresponding node maintaining
the original data (2). This is the home node in our case. The home server thread is
responsible for serving the request. A reply MPI message containing the corresponding
data is sent directly to application thread 1 (3). Upon a write operation, the application
thread generates a request which includes the modifications to be done. The home server
thread is responsible for applying them to the original data.

Although we only support single-level parallelism, the above design can also work in nested
parallel regions. Upon a new (nested) parallel region, all server threads are notified about
the identity of the team parent. Consequently, the local server thread will know where to
redirect a read/write request.

6 . 5 E x p e r i m e n t a l R e s u l t s

In this section, we present representative experiments on a SVM cluster system. In all
of our experiments, we tested two OpenMP platforms: OMPi+OPRC and an evaluation
copy of the Intel 10.0 compiler with cluster OpenMP support [13]. Specifically, OMPi was
tested using a number of different SVM cores (see Figure 6.1), while the Intel compiler
(ICC) was configured using the default values. All experiments were performed on 8 nodes
of a HP XC cluster system. Each node has 2 AMD Opteron 248 processors running Linux
2.6 and 4 GB main memory, while the nodes are interconnected with Gigabit Ethernet.
The MPI library used in our experiments for communication and application launching
is MPICH2 (1.0.6).

56

() Application thread j Server thread ORT + OPRC area

Handled by the DSM core Explicit message passing

Figure 6.3: Communication steps followed upon a read request.

In Section 6.5.1, we present results for the EPCC microbenchmarks. In Section 6.5.2,
we present the speedups gained when running a set of known parallel applications on an
increasing number of nodes in the cluster.

6 . 5 . 1 E P C C M i c r o b e n c h m a r k s

Our first experiment was to execute the EPCC microbenchmarks on a varying number of
nodes-in the cluster. For OMPi, the microbenchmark codes were executed without any
modifications to the source code of the them. From the other hand, we had to explicitly
insert a specific directive (#pragma in te l omp sharable) for the management of global
variables that need to be shared, in the case of the Intel compiler. For presentation
clarity, we avoid reporting measurements of all EPCC microbenchmarks. Instead, we
present results for the p a ra l le l fo r, s in g le and p a r a l le l reduc tion directives. Also,
we choose to present measurements for OMPi targeting Mocha and Mome. The former is a
SVM system which is based on a relaxed memory consistency model (scope consistency)
while the latter is based on sequential consistency. The behavior of OMPi targeting
TreadMarks, JIAJIA or ParADE was similar to that of OMPi+Mocha, because all of
them exploit similar relaxed memory consistency models.

Table 6.1 .Overheads for p a ra l le l fo r (/xs)
Compiler 2 nodes 4 nodes 8 nodes 4 nodes x 2 threads
ICC 10.0 905.86 1048.21 1205.84 1388.64

OMPi + Mocha 784.79 1051.65 1437.44 -
OMPi + Mome 491.09 834.39 1295.15 -

Tables 6.1, 6.2 and 6.3 summarize our results. Measurements regard overheads when
running the EPCC codes on 2 nodes, 4 nodes, and 8 nodes of the cluster. In all cases,

57

Table 6.2:Overheads for s in g le (/ns)
Compiler 2 nodes 4 nodes 8 nodes 4 nodes x 2 threads
ICC 10.0 674.22 720.37 750.84 1242.81

OMPi + Mocha 315.78 578.93 773.82 -
OMPi + Mome 210.53 488.90 801.19 -

Table 6.3.Overheads for p a ra l le l r e d u c t io n ^)
Compiler 2 nodes 4 nodes 8 nodes 4 nodes x 2 threads
ICC 10.0 1527.18 3610.28 6362.96 5228.18

OMPi + Mocha 1151.47 2389.92 4729.03 -
OMPi + Mome 1065.97 12487.11 28639.31 -

a single application thread is executed in each node, although Intel can handle multiple
application threads per-process. For this reason, we also present the case of 4 nodes with
2 application threads per-node in the case of the Intel compiler. The results show that
OMPi is faster than Intel when the number of nodes is relatively small. However, Intel
seems to scale better than OMPi. On 8 nodes, Intel and OMPi have similar overheads in
all cases except of the p a ra l le l reduction overheads. Here, OMPi+Mome experiences
very high overheads compering with OMPi+Mocha or ICC. A reason for this could be the
strict memory protocol that Mome uses. All team members atomically write the shared
reduction variable, while in every write operation, the new value of the reduction variable
is immediately propagated to all other nodes. This causes the heavy-weight protocol
of the sequential consistency to be invoked at every write operation. From the other
hand, OMPi+Mocha or ICC, which targets a modified version of TreadMarks, experience
lower overheads due to the fact that a light-weight relaxed memory consistency model is
exploited.

Additionally, ICC experiences lower p a ra l le l reduc tion overheads in the 4 x 2 case.
Although the number of execution entities remains the same (8), the p a r a l le l red u c tio n
overhead drops from 6362.96 //s to 5228.18 μβ. This can be explained from the fact
that intra-node threads share the modifications of the virtual memory. A page update
performed by a thread is directly visible to all other intra-node threads through hardware
shared memory. From the other hand, p a ra l le l fo r and s in g le overheads increase in
the 4x2 case. Considering the s in g le overheads, this can be explained from the fact that
multiple threads and processes are competing for the execution of the s in g le region. In
some implementations, the master thread is always responsible for executing the s in g le ,
while other processes wait the master thread’s completion. Other implementations use
atomic regions to ensure that only a thread executes the s in g le region. In both cases,
an hierarchical barrier or lock is needed to be implemented. In the first level, intra-node
threads are synchronized, while in the second level inter-node processes are synchronized.
This clearly adds overheads to the all OpenMP directives that require synchronization

58

operations to be performed.

Table 6.4:Overheads for the OMPi com piler^)
OM Pi + PO SIX

(8 threads)
OM Pi + OPRC

(8 nodes)
p ara lle l for 54.79 1437.44

barrier 32.97 229.39
sin g le 55.71 773.82

p ara lle l reduction 39.12 4729.03

In Table 6.4, we present results for OMPi when the benchmarks are executed on a single
SMP machine or on the HP XC cluster system. The SMP machine is an Intel SR6850HW
4M model with 4 Intel Xeon dual-core 3.0 GHz processors running Linux 2.6 and 4GB
main memory. We present results for the case of 8 threads on the SMP machine using
OMPi+POSIX (PTHR) or 8 nodes of the cluster using OMPi+OPRC targeting the Mocha
SVM system. Although we could run the benchmarks on a single node of the cluster and
observe the performance in the case of a single SMP machine, this would limit us to
a small number of threads (2) because each node of the HP XC cluster is a dual-core
processor. For this reason, we chose to run the benchmarks on the Intel SR6850HW using
8 threads which is equal to the number of physical processors of the machine.

The results confirm our predictions. The OpenMP overheads are significantly increased
in the case of OMPi+OPRC. In some cases, the overhead is more than two orders of
magnitude bigger than in the SMP case. This is a presumable result considering the high
network latencies involved in inter-process communication especially when compered with
the latencies of threads communications in hardware shared memory systems. Moreover,
whenever the SVM system is involved (e.g. p a ra l le l reduction), overheads increase
even more. The authors of [33] performed a series of experiments regarding the Intel
compiler for cluster OpenMP execution. A comparison of the OpenMP overheads using
the EPCC microbenchmark suite is made when the target is an SMP machine or a cluster
system. Their results show that in all cases, the overheads taken on the cluster are
significantly bigger than the ones on the SMP machine independently of the underlying
network fabric (Gigabit Ethernet or InfiniBand). However, a faster network fabric results
in smaller overheads when the number of nodes increases.

6 . 5 . 2 A p p l i c a t i o n s

In this section, we present experimental results for a class of known parallel applications:
NAS EP, Matrix Multiplication (MM) and Molecular Dynamics (MD). The EP application
is a part of the OpenMP implementation of the NAS Parallel Benchmarks [19]. MM is
a simple parallel matrix multiplication application. MD is the C version of the sample
application available at the official site of OpenMP (http://www.openmp.org).

59

http://www.openmp.org

The EP (embarrassingly parallel) benchmark generates pairs of Gaussian random deviates
according to a specific scheme. This is the best case possible case for any kind of SVM
system because there is no sharing of pages between different nodes of the cluster.

MD is a form of simulation in which atoms and molecules are allowed to interact for a
period of time under known laws of physics, giving a view of the motion of atoms. MD
exploits numerical methods to solve the problem. Given positions, masses and velocities
of np particles, MD computes the energy of the system and the forces on each particle. A
numerical iterative procedure is used to obtain an approximation whose precision depends
on the number of simulation steps. The computation of forces and energies is fully parallel
using a fo r directive by which particles are distributed among the execution entities.
However, the initialization step is performed sequentially by the master thread (node).

In MM, which multiples 2 square matrices, the master thread performs the initialization
step and then each OpenMP thread (node) computes its statically assigned chunk of
iterations. After the parallel region, the master thread accesses the resulted matrix.

Figure 6.4 depicts our results. We executed the applications on 2, 4, and 8 nodes of
the HP XC cluster system. We present results for OMPi targeting Mocha, TreadMarks,
Mome and ParADE along with ICC results. In EP (class A), things go quite well. The
speedups in all cases are close to the ideal. This is logical due to the fact that this
benchmark does not modify shared data and consequently the underlying SVM system
does not penalize the execution except for the first copy of the data. A perfect speedup
its not achieved due to the reductions that need to be done at the end of the loop and
because the static schedule is not perfectly balanced; some nodes have more work to do
than others. In MM, two square matrices of size N = 1024 are multiplied. Although
nodes modify shared data, the relaxed memory consistency models deployed by all SVM
systems except Mome, limit false-sharing; nodes may concurrently write on the same
shared page but page modifications are not immediately propagated to them.

Mome seems to suffer from its sequential consistency model. This becomes clear in the
MD (4096 particles, dimension=3) case. Things seem to get out of control in the case of
OMPi+Mome. The main reason for that is frequent false-sharing. In MD, shared data
occupy only a small a set of pages. Moreover, pages need to be frequently accessed. Par
ticles are distributed among the participating nodes, while the main computational step
includes the calculation of the forces and potential energies of each particle with respect to
all other particles. That means that the shared arrays keeping the forces and energies are
frequently accessed from the applications threads and although threads are writing on dif
ferent locations in the arrays, often the same page is involved. ICC and OMPI+ParADE
achieve better speedups although they are not close to the ideal. A reason for that could
be the reduction operations performed at the end of each computational step.

60

NASEP

Matrix Multiplication

Number of Nodes

Molecular Dynamics

Figure 6.4: Speedups for NAS EP, MM and MD.

6 1

Chapter 7

Conclusions and Future Work

7.1 OpenMP and Nested Parallelism

7.2 OpenMP on Clusters

7 .1 O p e n M P a n d N e s t e d P a r a l l e l i s m

In Chapter 4, we described our implementation of a threading library called PTHR for
the support of nested parallelism. Also, we presented a novel methodology based on
the EPCC microbenchmark suite which allows us to measure OpenMP overheads under
nested parallelism. Using our methodology, we presented an extensive study of how
commercial and research/expiremental compilers behave, in terms of overheads, when
nested parallelism is in effect. To the best of our knowledge, this is the first study of its
kind as all others have focused only on application speedups.

Our conclusion is that many implementations have scalability problems when nested paral
lelism is exploited and the number of threads increases well beyond the number of physical
processors. This is most probably due to the kernel-level thread model the majority of
the implementations use. When the number of threads that compete for hardware re
sources significantly exceeds the number of available processors, the system is overloaded
and the parallelization overheads outweigh any performance benefits. Although our study
was limited to two nesting levels, it became clear that studying deeper levels would only
reveal worse behavior.

Possible future work on this subject includes the extension of our microbenchmarks to
any arbitrary nesting level. Using the microbenchmarks as a tool, we can study ways of
boosting performance. This is very important because nested parallelism is a very usable
feature of OpenMP and is necessary on a wide range of parallel applications.

62

7 .2 O p e n M P a n d C l u s t e r s

In the second part, we presented the architecture of a new runtime library of OMPi, for the
execution of OpenMP programs on top of clusters, called OPRC. It uses a hybrid approach
where inter-process communication at the runtime library is achieved via MPI, while the
shared memory abstraction at the application level is provided by an SVM system. As
OpenMP becomes more and more popular, many studies have been proposed of combining
an SVM system with an OpenMP compiler for the execution of OpenMP programs on
top of clusters, matching the programmer-friendliness of OpenMP with the computational
power of clusters. Recently, Intel presented the latest version of its OpenMP compiler
which also includes support for cluster OpenMP. However, most implementations entirely
use the SVM to offer shared memory semantics at both application and compiler level. We
presented a more efficient solution by utilizing MPI for all the necessary communications
in the runtime library of OMPi. Moreover, usually, most implementations target a specific
SVM which is an inextricable part of the compiler. In our case, we managed to easily
integrate a multitude of SVM systems due to the fact that the runtime library is actually
independent of the target SVM system.

Regarding OMPi, many optimizations and extensions can be made as part of future work.
Inter-process communication can be further optimized, while the translator can also take
advantage of MPI whenever possible, limiting thus the utilization of the SVM system and
subsequently boosting performance. The next step in the development of OMPi should
be the support of multiple threads per-node, so as to exploit clusters of SMPs efficiently.

Although nested parallelism is a key feature of OpenMP, there has been no study of
how nested parallel regions can be mapped on a cluster. All present OpenMP compil
ers for clusters do not support nested parallelism. Although, an obvious solution is to
map the nested parallel regions locally on nodes using kernel-level or lightweight user-
level threads, this would not exploit the computational resources of the cluster, in non-
balanced situations. Consequently, more complex scheduling schemes must be considered.
The development of efficient compilation systems for the execution of OpenMP on larger
computational environments than a cluster, like grids, is in our opinion the next step
in research. The compiler has to discover the multiple execution levels of the system in
order to efficiently exploit the computational resources. For example, consider a system
consisting of several clusters, while each node of the cluster is an SMP machine with each
processor consisting of multiple hyper-threaded cores. The compiler’s task is to discover
the hierarchical execution levels and to map the execution vehicles into them in order to
fully exploit the system.

Finally, our experience with OMPi shows that applications originally written taking into
account the shared memory programming model may not perform well when executed
on a cluster, especially when often communication is needed. In order to achieve better
speedups, applications often need to be rewritten. However, optimizations like the ones

63

mentioned in Section 5.2.3, can significantly boost performance. Moreover, new special
OpenMP directives for cluster application development could be introduced and exploited
by advanced OpenMP programmers. For example, the programmer could use directives to
explicitly distribute shared data in a way that every node of the cluster performs mainly
computations with local data.

64

Bibliography

[1] OpenMP Architecture Review Board: OpenMP and C + + Application Pogram In
terface, Version 2.5, May 2005.

[2] E. Ayguade, M. Gonzalez, J. Labarta, X. Martorell, N. Navarro and J. Oliver,
NanosCompiler: A Research Platform for OpenMP Extensions, In Proc. of the first
Europian Workshop on OpenMP (EWOMP ’99), Lund, Sweden, September 1999.

[3] C. Brunschen, OdinMP/CCp - A Portable Compiler for C with OpenMP to C with
POSIX Threads, Master’s thesis, Dept, of Information Technology, Lund University,
Sweden, July 1999.

[4] J. M. Bull, Measuring Synchronization and Scheduling Overheads in OpenMP, In
Proc. of the 1st European Workshop on OpenMP (EWOMP ’99), Lund, Sweden,
1999.

[5] J. M. Bull and D. O’Neill, A Microbenchmark Suite for OpenMP 2.0, In Proc. o f the
3th European Workshop on OpenMP (EWOMP ’01), Barcelona, Spain, 2001.

[6] D. R. Butenhof, Programming with POSIX Threads, Addison-Wesley, 1997.

[7] J.-H. Chow, L. E. Lyon and V. Sarkar, Automatic parallelization for symmetric
shared-memory multiprocessors, In Proc. of the 1996 conference of the Centre for Ad
vanced Studies on Collaborative research (CASCON596), Toronto, Canada, Novem
ber 1996.

[8] J. J. Costa, T. Cortes, X. Martorell, E. Ayguade and J. Labarta, Running OpenMP
Applications Efficiently on an Everything-Shared SDSM, Journal of Parallel and
Distributed Computing 66 (2006) 647-658.

[9] V. V. Dimakopoulos, P. E. Hadjidoukas and G. Ch. Philos, A Microbenchmark Study
of OpenMP Overheads Under Nested Parallelism, In Proc. of the Jfth International
Workshop on OpenMP (IWOMP’08), West Lafayette, IN, USA, May 2008.

[10] V. V. Dimakopoulos, E. Leontiadis and G. Tzoumas, A Portable C Compiler for
OpenMP V.2.0, In Proc. of the 5th Europian Workshop on OpenMP (EWOMP ’03),
Aachen, Germany, October 2003.

65

[11] R. Eigenmann, J. Hoeflinger, R. H. Kuhn, D. Padua, A. Basumallik, S. Min and
J. Zhu, Is OpenMP for Grids?, In Proc. of the International Parallel and Distributed
Processing Symposium (IPDPS’02), 2002.

[12] P. E. Hadjidoukas and V. V. Dimakopoulos, Nested Parallelism in the OMPi OpenMP
C Compiler, In Proc. of the European Conference on Parallel Computing (EUROPAR
’07), Rennes, France, August 2007.

[13] J. P. Hoeflinger, Extending OpenMP to Clusters, White Paper, Intel Coorporation,
2006.

[14] Y. C Hu, H. Lu, A. L. Cox and W. Zwaenepoel, OpenMP for Networks of SMPs,
Journal of Parallel and Distributed Computing 60 (2000) 1512-1530.

[15] W. Hu, W. Shi and Z. Tang, JIAJIA: An SVM System Based on A New Cache Co
herence Protocol, In Proc. of the 7th International Conference on High Performance
Computing and Networking (HPCN ’99), Amsterdam, The Netherlands, April 1999.

[16] L. Iftode, J. P. Singh and K. Li, Scope Consistency: A bridge between release consis
tency and entry consistency, In Proc. of the 8th ACM Annual Symposium on Parallel
Algorithms and Architectures (SPAA ’96), Padua, Italy, June 1996.

[17] Y. Jeegou, Implementation of Page Management in Mome, a User-Level DSM, In
Proc. of the 3th IEEE International Symposium on Cluster Computing and the Grid
(CCGRID ’03), Tokyo, Japan, May 2003.

[18] G. Zhang, R. Silvera and R. Archambault, Structure and algorithm for implementing
OpenMP workshares, In Proc. of the 5th Workshop on OpenMP Applications and
Tools (WOMPAT Ό4), Houston, TX, USA, 2004.

[19] H. Jin, M. Frumkin, and J. Yan, The OpenMP Implementation of the NAS Par
allel Benchmarks and its Performance, Technical Report NAS-99-011, NASA Ames
Research Center, October 1999.

[20] S. Karlsson, A Portable and Efficient Thread Library for OpenMP, In Proc. of the
6th European Workshop on OpenMP (EWOMP ’04), Stockholm, Sweden, October
2004.

[21] Y. S. Kee, J. S. Kim and S. Ha, ParADE: An OpenMP Programming Environment
for SMP Cluster Systems. In Proc. of the 15th International Conference for High
Performance Computing, Network, Storage, and Analysis (SC ’03), Phoenix, AZ,
USA, November 2003.

[22] Y. S. Kee, J. S. Kim and S. Ha, Memory management for multithreaded software
DSM systems, Parallel Computing 30 (2004) 121-138.

66

[23] P. Keleher, A. L. Cox, S. Dwarkadas and W. Zwaenepoel, TreadMarks: Distributed
Shared Memory on Standard Workstations and Operating Systems, In Proc. of the
Winter 94 USENIX Conference, San Fransisco, CA, USA, January 1994.

[24] K. Kise, T. Katagiri, H. Honda and T. Yuba, Evaluation of the Acknowledgment Re
duction in a Software-DSM System, In Proc. of the 6th International Conference on
Parallel Processing and Applied Mathematics (PPAM ’05), Poznan, Poland, Septem
ber 2005.

[25] Tyng-Yeu Liang, Shih-Hsien Wang, Jyh-Biau Chang and Ce-Kuen Shieh, Supporting
the OpenMP Programming Interface on Teamster-G, Advances in Grid and Pervasive
Computing 3947 (2006) 547-556.

[26] Tyng-Yeu Liang, Chun-Yi Wu, Jyh-Biau Chang, and Ce-Kuen Shieh, Teamster-G:
A Grid-enabled Software DSM System, In Proc. of the 5th IEEE International Sym
posium on Cluster Computing and the Grid (CCGrid ’05), Cardiff, UK, May 2005.

[27] C. Liao, O. Hernandez, B. Chapman, W. Chen and W. Zheng, OpenUH: An Opti
mizing, Portable OpenMP Compiler, In Proc. of the 12th Workshop on Compilers
for Parallel Computers, A Coruna, Spain, January 2006.

[28] S. J. Min, A. Basumallik, and R. Eigenmann, Supporting Realistic OpenMP Ap
plications on a Commodity Cluster of Workstations, In Proc. of the International
Workshop on OpenMP Applications and Tools (WOMPAT ’03), Toronto, Canada,
June 2003.

[29] D. Novillo, OpenMP and automatic parallelization in GCC, In Proc. of the 2006
GCC Summit, Ottawa, Canada, June 2006.

[30] G. Ch. Philos, V. V. Dimakopoulos and P. E. Hadjidoukas, A runtime architecture
for ubiquitous support of OpenMP, In Proc. of the 7th International Symposium
on Parallel and Distributed Computing (ISPDC’08), Krakow, Poland, July 2008, to
appear.

[31] M. Sato, S. Satoh, K. Kusano and Y. Tanaka, Design of OpenMP Compiler for an
SMP Cluster, In Proc. of the first Europian Workshop on OpenMP (EWOMP ’99),
Lund, Sweden, September 1999.

[32] M. Schulz, Overcoming the problems associated with the existence of too many DSM
APIs, In Proc. of the second IEEE/ACM International Symposium on Cluster Com
puting and the Grid (CCGRID Ό2), 2002.

[33] C. Terboven, D. Mey, D. Schmidl, and M. Wagner, First Expiriences with Intel Clus
ter OpenMP, In Proc. of the 4th International Workshop on OpenMP (IWOMP Ό8),
West Lafayette, IN, USA, May 2008.

67

[34] X. Tian, J. P. Hoeflinger, G. Haab, Y-K Chen, M. Girkar and S. Shah, A compiler for
exploiting nested parallelism in OpenMP programs, Parallel Computing 31 (2005)
960-983.

68

Author’s Publications

• G. Ch. Philos, V. V. Dimakopoulos and P. E. Hadjidoukas, A runtime architecture
for ubiquitous support of OpenMP, In Proc. of the 7th International Symposium
on Parallel and Distributed Computing (ISPDC}08), Krakow, Poland, July 2008, to
appear.

• V. V. Dimakopoulos, P. E. Hadjidoukas and G. Ch. Philos, A Microbenchmark Study
of OpenMP Overheads Under Nested Parallelism, In Proc. of the 4 th International
Workshop on OpenMP (IWOMP’08), West Lafayette, IN, USA, May 2008, 1-12.

Short Vita

George Philos was born in Ioannina in 1982. He is a MSc student in the Department of
Computer Science at the University of Ioannina (Uol) since September 2005. He received
his BSc degree from the same department in 2005 and until now, he is a member of the
Parallel Processing Group.

Contact e-mail: georgephilos@yahoo.gr

mailto:georgephilos@yahoo.gr

