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AbstratOikonomou, Vangelis, P. V..PhD, Computer Siene Department, University of Ioannina, Greee.July, 2010.Title: Bayesian Methods for Biomedial Signal and Image Proessing.Thesis Supervisor: Konstantinos Blekas.This thesis is foused on the study and the development of intelligent methods forthe proessing of biomedial signal and image. Biomedial signals belong to the lass ofsequential data, i.e. data that are evolved in time or spae. Their struture is omplexand an be obtained in serial or bath mode. Finally, biomedial signals ontain hiddenharateristis and their detetion onstitutes a diÆult task. All the above propertiesalthough bring some serious obstales during the study of these signals, are issues of greatresearh interest and hallenges, in the sense of beoming the seeds of building e�etiveand innovative mehanisms and tools for biomedial data analysis. Moreover, the neessityof these methods is further ampli�ed with the fat that biomedial signals belongs to thekind of data from the real world appliations. Under these prism, analyzing these pieesof information may signi�antly a�et the human life, improve the understanding of thehuman body, as well as may beome a light to the disovery of new pereptions andahievements within the medial world.The sope of this thesis is to study and present powerful statistial models that inor-porate various interesting properties of biomedial signals, suh as spatial and temporalorrelations between, their time-varying nature, and their environment, in order to ahievethe improvement of the �delity of analysis and the deision making proedure. A desiredfeature of the models that are presented thought this thesis is to desribe the signal with asingle and less omplex, but powerful and eÆient, formulation in a way of inreasing theirgeneralization apabilities. One suh representation is the sparse representation, whihonstitutes a modern tendeny to the statistial data analysis ommunity with manyappliations to several others �elds, suh the Biomedial Engineering, Biology, MahineLearning et. Variations of the generalized linear regression model and the state - spaemodels, suh as the Kalman Filter, are the main stohasti models that are presentedfor analyzing eletroenephalograms, and time series from the heart and from funtionMagneti Resonane Imaging.In hapter 2 and 3, basi notions about the nature of data and problems that resultsfrom this are given. Biomedial signals that are studied in this thesis are derived fromviii



the brain and the heart. In hapter 2 basi information about these two organs is givenas well as information about the mehanism that generated the orresponding biomedialsignals. For the study of these signals probabilisti models are used in onjuntion with theBayesian framework. Thus, basi tools from statistis and mahine learning are presented,sine these tools will be used to learn model parameters. Also, a review of various generalapproahes, used in biomedial signal ommunity, is performed. In hapter 3, a desriptionof various probabilisti models is given. More spei�ally, the linear regression model, thestate-spae model and the autoregressive model are presented. These models will be usedlatter in this thesis. Furthermore, a desription of various preproessing steps in theanalysis of fMRI data is given.In hapter 4, a method for the enhanement of epilepti spikes is proposed. Epileptispikes are observed in the eletroenephalogram. To deal with the non stationarity ofEEG signal, a time - varying autoregressive model (TVAR) is used. The TVAR modelparameters are estimated with the help of the Kalman Filter. The experimental resultshave shown that the proposed method is able to redue the false alarms while at the sametime keep at aeptable level the loose of true spikes.One important aspet that must be taken into aount is that the biomedial signalis observed with noise. The origin of noise an be some malfuntion of hardware or otherphysiologial proess of the human body. In hapter 5, a method is proposed to removethe noise for the observations. This is ahieved by using a useful prior over the signal ofinterest. The prior is haraterized for its smooth nature and is based on the laplaianoperator. Then, adopting the Bayesian framework the model parameters are estimated.The proposed method is used for the estimation of Event Related Potentials (observedin EEG) and the removal of drift from time series that desribed the heart rhythm. Theresults have shown aurate estimation of these two signals.In hapter 6, a method is proposed for the analysis of fMRI time series when the noiseis non - stationary. The basi building blok of this method is a probabilisti approahof the linear regression model. A sparse representation is used for the weights of thelinear regression model through a sparse prior. Sparsity an improve pattern reognition,ompression, and noise redution among others. The noise term of the linear regressionmodel is non stationary and onsists from two omponents, one omponent originatesfrom the time series while the other from the images. Two versions of this model are usedto desribe the time series. The �rst is based on a voxel-by-voxel analysis of fMRI dataand the seond is based on a simultaneous use of all data. Both approahes are used anextended design matrix to model the drift omponent, while for the estimation proedurethe Variational Bayesian Methodology is adopted resulting in two iterative algorithms.The results, based on real and simulated data, have shown the usefulness of the proposedmethods to �nd the ativated brain areas.The time series arising from fMRI experiments ontains orrelation between themwhen ome out from adjaent brain areas. In hapter 7, we proposed a method that takeinto aount this information. More spei�ally, a probabilisti linear regression modelix



with sparse and spatial properties is proposed. This is ahieved by proposing an enhanedversion of Gibbs distribution for the prior distribution of weights. The potential funtionof the Gibbs distribution is of spei� purpose and has two omponents, one to modelthe sparsity between the weights of one time series and the other to model the spatialorrelation between weights that belongs to adjaent time series. To perform infereneover model parameters the Maximum A Posteriori (MAP) estimation framework is used.Also, an alternative view of the proposed model, using the Expetation - Maximization(EM) algorithm, is presented. The results, based on real and simulated data, have shownthe ability of the proposed method to detet aurately the ativated brain areas.In hapter 8, we proposed a new probabilisti mixture modeling approah for luster-ing fMRI time series based on linear regression models where eah luster is desribedas a linear regression model. A sparse representation of every luster regression modelis used through the use of an appropriate sparse prior over the regression oeÆients.Enforing sparsity is a fundamental regularization priniple and has been used to takleseveral problems, suh as model order seletion. Also, spatial properties of data havebeen inorporated to the mixture model through the notion of Markov Random Field(MRF). Furthermore, to avoid sensitivity of the design matrix to the hoie of kernelmatrix, we have used a kernel omposite design matrix onstruted as linear ombinationof Gaussian kernel matries with di�erent saling parameter. The lustering proedure isformulated as a Maximum A Posteriori (MAP) estimation problem where the Expetation- Maximization (EM) algorithm onstitutes a powerful framework for solving it. To avoidproblems with the initialization of the algorithm, an inremental strategy for buildingthe mixture model is presented. Experiments using arti�ial and real fMRI dataset haveshown that the proposed method o�ers very promising results with an exellent behaviorin diÆult and noisy environments.
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Áñ÷éêÜ, ó�á êåöÜëáéá 2 êáé 3, ðáñïõóéÜæïí�áé âáóéêÝò Ýííïéåò �çò öýóçò �ùí äåäïìÝíùíêáé �ùí ðñïâëçìÜ�ùí ðïõ áðïññÝïõí áðü áõ�Ü. Ôá éá�ñéêÜ óÞìá�á ðïõ ìåëå�ïýí�áéðñïÝñ÷ïí�áé áðü �ïí åãêÝöáëï êáé �çí êáñäéÜ. Ó�ï êåöÜëáéï 2 ðáñÝ÷ïí�áé âáóéêÝò Ýííïéåòêáé ÷áñáê�çñéó�éêÜ ðëçñïöïñßåò ðïõ ó÷å�ßæïí�áé ìå �á äõï áõ�Ü áíèñþðéíá üñãáíá êáèþòåðßóçò êáé ìå �ïí �ñüðï ðáñáãùãÞò �ùí áí�ßó�ïé÷ùí óçìÜ�ùí �ïõò. �éá �çí áíáðáñÜó�áóçêáé åðåîåñãáóßá áõ�þí �ùí óçìÜ�ùí ÷ñçóéìïðïéïýí�áé êõñßùò ðéèáíï�éêÜ ðáñáìå�ñéêÜìïí�Ýëá óå Ýíá Ìðåûæéáíü ðëáßóéï áíÜð�õîçò. ¸�óé, ðáñïõóéÜæïí�áé âáóéêÜ èåùñç�éêÜåñãáëåßá �çò åðéó�çìïíéêÞò ðåñéï÷Þò �çò ó�á�éó�éêÞò êáé �çò ìç÷áíéêÞò ìÜèçóçò (mahinelearning), �á ïðïßá èá ÷ñçóéìïðïéçèïýí ó�ç äéáäéêáóßá åêðáßäåõóçò �ùí ðáñáìÝ�ñùí �ïõìïí�Ýëïõ. Åðßóçò, åðé�åëåß�áé ìéá åõñý�åñç áíáóêüðçóç âáóéêþí áñ÷þí êáé ìåèïäïëïãéþíðïõ ÷ñçóéìïðïéïýí�áé ó�çí åðåîåñãáóßá âéïúá�ñéêïý óÞìá�ïò êáé åéêüíáò. Ó�ï êåöÜëáéï 3ðåñéãñÜöïí�áé åéóáãùãéêÝò Ýííïéåò ðïõ áöïñïýí �á ó�ï÷áó�éêÜ ìïí�Ýëá ðïõ èá ÷ñçóéìïðïéçèïýíó�çí ðáñïýóá äéá�ñéâÞ. �éï óõãêåêñéìÝíá, ðáñïõóéÜæïí�áé �ï ãñáììéêü ìïí�Ýëï ðáëéíäñüìçóç,�ï state - spae ìïí�Ýëï, êáé �ï ìïí�Ýëï áõ�ïóõó÷Ý�éóçò êáèþò êáé ìéá ðéèáíï�éêÞ áíáðáñÜó�áóçáõ�ïý. ÔÝëïò, äßíå�áé ìéá ãåíéêÞ ðåñéãñáöÞ �ùí âçìÜ�ùí ðïõ áöïñïýí �çí ó�á�éó�éêÞáíÜëõóç ÷ñïíïóåéñþí áðü åéêüíåò fMRI.Ó�ï êåöÜëáéï 4, ðñï�åßíå�áé ìéá ìÝèïäïò ðïõ áöïñÜ �Þí åíßó÷õóç �ùí åðéëçð�éêþíäõíáìéêþí (epilepti EEG spike) ðïõ ðáñáñá�çñïýí�áé ó�ï çëåê�ñïåãêåöáëïãñÜöçìá,ìå ó�ü÷ï �çí äéåêüëõíóç �çò äéáäéêáóßáò áíé÷íåõóÞ �ïõò. �éá íá áí�éìå�ùðéó�åß ç ìçó�áóéìü�ç�á (nonstationarity) �ïõ çëåê�ñïåãêåöáëïãñáöÞìá�ïò ÷ñçóéìïðïéåß�áé �ï ÷ñïíéêÜìå�áâáëëüìåíï ìïí�Ýëï áõ�ïóõó÷Ý�éóçò (time varying autoregressive model), ïé ðáñÜìå�ñïé�ïõ ïðïßïõ åê�éìïýí�áé ìå �çí ÷ñÞóç �ùí ößë�ñùí Kalman. Ôá ðåéñáìá�êÜ áðï�åëÝóìá�áÞ�áí ðïëý åíèáññõí�éêÜ, êáèþò ðñïóöÝñïõí óçìáí�éêÞ ìåßùóç �ïõ ðëÞèïõò �ùí ëáíèáóìÝíùíðñïåéäïðïéÞóåùí (false alarms) ðïõ áöïñïýí �çí åìöÜíéóç åíüò åðéëçð�éêïý äõíáìéêïý.¸íá óçìáí�éêü ó�ïé÷åßï êá�Ü �çí ëÞøç �ùí âéïéá�ñéêþí óçìÜ�ùí åéíáé �ï èïñõâþäåòðåñéâÜëëïí. Ï èüñõâïò ìðïñåß íá ðñïÝñ÷å�áé áðï äõóëåé�ïõñãßåò �ïõ õëéêïý Þ áðü Üëëåòëåé�ïõñãßåò �ïõ áíèñþðéíïõ óþìá�ïò ðïõ óõìâáßíïõí �áõ�ü÷ñïíá ìå �ç ëÞøç �ïõ óÞìá�ïòåíäéáöÝñïí�ïò. Ó�ï êåöÜëáéï 5 ðñï�åßíå�áé ìéá ìÝèïäïò ðïõ áöïñÜ �çí áíÜê�çóç (Þ �çíåê�ßìçóç) �ïõ óÞìá�ïò åíäéáöÝñïí�ïò ü�áí áõ�ü ðáñá�çñåß�áé ìÝóá óå Ýíá èïñõâþäåòðåñéâÜëëïí. �éá íá �çí åðß�åõîç áõ�ïý �ïõ ó�ü÷ïõ ÷ñçóéìïðïåß�áé ìéá êá�Üëëçëç åê �ùíðñï�Ýñùí êá�áíïìÞ (prior distribution) ðÜíù ó�ï óÞìá åíäéáöÝñïí�ïò. Êáèþò ç åðéèõìç�Þéäéü�ç�á �ïõ óÞìá�ïò åßíáé áõ�Þ �çò ïìáëü�ç�áò (smoothness) åöáñìüæå�áé ìéá êá�áíïìÞ,ðïõ ÷áñáê�çñßæå�áé ãéá �çí ïìáëü�ç�á �çò (smoothness prior). �éá �çí åê�ßìçóç �ùíðáñáìÝ�ñùí �ïõ ìïí�Ýëïõ ÷ñçóéìïðïéåß�áé ìéá ðñïóåããéó�éêÞ ÌðåûæéáíÞ ìåèïäïëïãßá, ðïõêáëåß�áé Variational Bayesian. Ôï ðñï�åéíüìåíï ìïí�Ýëï ÷ñçóéìïðïéåß�áé ãéá �çí åê�ßìçóçðñïêëç�þí äõíáìéêþí ó÷å�éæüìåíá ìå Ýíá ãåãïíüò (Event Related Potentials) êáé ãéá �çíáöáßñåóç �ïõ drift (óõó�á�éêü �ïõ óÞìá�ïò ðïõ åìöáíßæå�áé ó�éò ÷áìçëÝò óõ÷íü�ç�åò)áðü ÷ñïíïóåéñÝò ðïõ åêöñÜæïõí �çí ìå�áâëç�ü�ç�á �ïõ êáñäéáêïý ñõèìïý (Heart RateVariability).Ó�ï êåöÜëáéï 6 ðñï�åßíå�áé ìéá ìÝèïäïò ðïõ ó÷å�ßæå�áé ìå �çí áíÜëõóç ÷ñïíïóåéñþíðïõ ðñïÝñ÷ïí�áé áðü åéêüíåò ëåé�ïõñãéêïý ìáãíç�éêïý óõí�ïíéóìïý (fMRI). Ôï âáóéêüxii



ìïí�Ýëï ó�çí áíÜëõóç áõ�ïý �ïõ åßäïõò ÷ñïíïóåéñþí åßíáé �ï ãñáììéêü ìïí�Ýëï ðáëéíäñüìçóçòêáé ï óêïðüò �çò áíÜëõóçò åßíáé ï êáèïñéóìüò �ùí ðåñéï÷þí åíåñãïðïßçóçò �ïõ åãêåöÜëïõêá�Ü �çí äÜñêåéá åíüò åñåèßóìá�ïò. Ç ìÝèïäïò ðïõ ðñï�åßíå�áé ëáìâÜíåé õðüøç ÷áñáê�çñéó�éêÜ�ùí ÷ñïíïóåéñùí, üðùò ç ìç ó�á�éìü�ç�á �ïõ èïñýâïõ êáèþò êáé ç ðáñïõóßá �ïõ drift.Ìåëå�Ü�áé ç áðï�åëåóìá�éêü�ç�á äõï ãñáììéêþí ìïí�Ýëùí ðáëéíäñüìçóçò ãéá �çí áíÜëõóç�ùí ÷ñïíïóåéñþí. Ôï ðñþ�ï ìïí�Ýëï ÷ñçóéìïðïéåß�áé ãéá áíÜëõóç ìéáò ÷ñïíïóåéñÜòêÜèå öïñÜ. Ôï äåý�åñï ìïí�Ýëï ëáìâÜíåé õðüøç üëåò �éò ÷ñïíïóåéñÝò ìå áðï�Ýëåóìáíá Ý÷ïõìå ìéá ÷ùñï÷ñïíéêÞ áíÜëõóç �ùí ÷ñïíïóåéñþí. Êáé �á äõï ìïí�Ýëá ðáñÝ÷ïõíáñáéÞ áíáðáñÜó�áóç �ùí ÷ñïíïóåéñþí ìÝóù ìéáò åê �ùí ðñï�Ýñùí êá�áíïìÞò áñáéïý�ýðïõ (sparse prior) ó�á âÜñç (Þ óõí�åëåó�Ýò ðáëéíäñüìçóçò) �ïõ ãñáììéêïý ìïí�Ýëïõ.�éá �çí åê�ßìçóç �ùí ðáñáìÝ�ñùí �ïõ ìïí�Ýëïõ ÷ñçóéìïðïéåß�áé ç Variational Bayesianìåèïäïëïãßá.Ïé ÷ñïíïóåéñÝò ðïõ ðñïÝñ÷ïí�áé áðü åéêüíåò ëåé�ïõñãéêïý ìáãíç�éêïý óõí�ïíéóìïýðáñïõóéÜæïõí ÷ùñéêÝò åîáñ�Þóåéò ëüãù �çò öõóéïëïãßáò �ïõ åãêåöÜëïõ. Ó�ï êåöÜëáéï 7ðñï�åßíå�áé Ýíá óýíèå�ï ãñáììéêü ìïí�Ýëï ðáëéíäñüìçóçò åìðëïõ�ßæïí�áò �ï ìå óçìáí�éêÝòéäéü�ç�åò ðïõ ðñïÝñ÷ïí�áé áðü �éò ÷ùñéêÝò åîáñ�Þóåéò áíÜìåóá ó�éò ÷ñïíïóåéñÝò êáèþò êáéáñáéÞ áíáðáñÜó�áóç �ïõ óõíáñ�çóéáêïý ìïí�Ýëïõ ðåñéãñáöÞò. Áõ�ü åðé�õã÷Üíå�áé ìå �ç÷ñÞóç êá�Üëëçëçò åê �ùí ðñï�Ýñùí êá�áíïìÞò ó�á âÜñç �ïõ ãñáììéêïý ìïí�Ýëïõ ðïõâáóßæå�áé ó�ï ìïí�Ýëï MRF (Markov Random Field). �éï óõãêåêñéìÝíá ðñï�åßíå�áé ìéáóýíèå�ç Gibbs êá�áíïìÞ ç ïðïßá åíóùìá�þíåé �éò äõï ðáñáðÜíù éäéü�ç�åò ó�ï ìïí�Ýëï.êá�Üëëçëç ãéá �ï ðñüâëçìá ìáò. Áêïëïõèåß�áé �ï Ìðåûæéáíü ðëáßóéï äñÜóçò. Ôá âÜñç �ïõìïí�Ýëïõ åê�éìïýí�áé ìÝóù �çò ìåãéó�ïðïßçóçò �çò åê �ùí õó�Ýñùí ðéèáíïöÜíåéáò (Max-imum A Posteriori) ðáñÜãïí�áò åðáíáëçð�éêïýò �ýðïõò. Åííáëáê�éêÜ, ç ðñï�åéíüìåíçìåèïäïëïãßá ìðïñåß íá ðñïóåããéó�åß áêïëïõèþí�áò �ïí áëãüñéèìï Expetation - Max-imization (EM) áí èåùñçóïõìå �á âÜñç ùò êñõììÝíåò ìå�áâëç�Ýò. Ôá ðåéñÜìá�á ðïõäéåîÞ÷èçóáí �üóï óå �å÷íç�Ü üóï êáé óå ðñáãìá�éêÜ äåäïìÝíá Þ�áí ðïëý óçìáí�éêÜ êáéáíÝäåéîáí �ç ÷ñçóéìü�ç�á �çò ìåèüäïõ, óå óýãêñéóç ìå Üëëåò ìåèüäïõò �çò âéâëéïãñáößáò.Ó�ï êåöÜëáéï 8 ðáñïõóéÜæå�áé �ï ðñüâëçìá �çò áíÜëõóçò fMRI äåäïìÝíùí ùò Ýíáðñüâëçìá ïìáäïðïßçóçò (lustering). �éá �ïí óêïðü áõ�ü ÷ñçóéìïðïéåß�áé Ýíá ìéê�üìïí�Ýëï ãñáììéêþí ðáëéíäñïìç�þí, üðïõ êÜèå ïìÜäá (luster) ðåñéãñÜöå�áé ìå Ýíá ìïí�ÝëïãñáììéêÞò ðáëéíäñüìçóçò (linear regression model). Ïé êáéíï�ïìßåò �çò ðñï�åéíüìåíçòìåèïäïëïãßáò åí�ïðßæïí�áé ó�á åîÞò óçìåßá: Áñ÷éêÜ ãßíå�áé ç õðüèåóç ü�é ç ðëçñïöïñßá�çò å�éêÝ�áò �çò ïìÜäáò ðïõ áíÞêåé êÜèå ÷ñïíïóåéñÜ åßíáé ìéá �õ÷áßá ìå�áâëç�Þ ç �éìÞ�çò ïðïßáò åîáñ�Ü�áé áðü �ç åõñý�åñç ãåé�ïíéÜ ó�çí ïðïßá âñßóêå�áé ðÜíù ó�ï ÷Üñ�çåíåñãïðïßçóçò. ¸�óé, åöáñìüæïí�áò ÌáñêïâéáíÜ Ôõ÷áßá �åäßá (Markov Random Fields)êáé �çí êá�áíïìÞ Gibbs ðÜíù ó�éò å�éêÝ�åò, åðé�õã÷Üíå�áé ï åìðëïõ�éóìüò �ïõ ìéê�ïýìïí�Ýëïõ ìå �éò ÷ùñéêÝò éäéü�ç�åò ðïõ õðÜñ÷ïõí êáé ó�ç öýóç �ùí äåäïìÝíùí �ïõ ðñïâëÞìá�ïò.�éá íá åîáóöáëéó�åß ìéá ðåñéóóü�åñï ãåíéêåõìÝíç éêáíü�ç�á óå êÜèå ïìÜäá ðåñéï÷Þ ðïõêá�áóêåõÜæå�áé ÷ñçóéìïðïéåß�áé ìéá áñáéïý �ýðïõ áíáðáñÜó�áóç �ïõ ãñáììéêïý ìïí�Ýëïõðáëéíäñüìçóçò ìå êá�Üëëçëç áñáéÞ êá�áíïìÞ ó�ïõò óõí�åëåó�Ýò êÜèå ïìÜäáò. ÔÝëïò, ãéá�ïí ðßíáêá ó÷åäßáóçò ðñï�åßíå�áé Ýíáò ãñáììéêüò óõíäõáóìüò áðü ðßíáêåò ó÷åäßáóçò ìåxiii



�êáïõóéáíÝò óõíáñ�Þóåéò ðõñÞíá ðïõ Ý÷ïõí äéáöïñå�éêÞ ðáñÜìå�ñï äéáóðïñÜò. Ìå �ïí�ñüðï áõ�ü åðé�õã÷Üíå�áé ç åîÜëåéøç �ïõò ðñïâëÞìá�ïò �çò åîÜñ�çóçò áðü �çí ðáñÜìå�ñïäéáóðïñÜò, ç ïðïßáåðçñåÜæåé óå óçìáí�éêü âáèìü �ï êá�Üëëçëï �áßñéáóìá �ùí äåäïìÝíùíêáé êá�' åðÝê�áóç �ï áðï�Ýëåóìá �çò ïìáäïðïßçóçò. Åðßóçò, ðñï�åßíå�áé ìéá áõîç�éêÞêá�áóêåýç �ïõ ìéê�ïý ìïí�Ýëïõ åöáñìüæïí�áò ìéá óõíå÷Þ äéáäéêáóßá äéÜóðáóçò (split-ting), êáèþò êáé Ýíá êñé�Þñéï �åñìá�éóìïý ìå âÜóç �ï âáèìü óõó÷Ý�éóçò. ¸�óé, ðáñÜëëçëáðñï�åßíå�áé êáé ç åýñåóç �ïõ êá�Üëëçëïõ áñéèìïý �ùí ïìÜäùí, �ï ïðïßï áðï�åëåß êáé Ýíáðïëý óçìáí�éêü ðñüâëçìá ó�çí ïìáäïðïßóç.
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Chapter 1 Introdution
Many funtions of the human body are assoiated with signals of eletrial, hemial oraousti origin. Suh signals arry information whih may not be obvious but it is hiddenin the struture of the signal. This information must be deoded before the signals provideus with some meaningful interpretation. The signals reet properties of assoiated biolog-ial systems and their analysis have been found to be helpful in explaining and identifyingvarious pathologial onditions. The deoding proess is sometimes straightforward andmay involve very limited manual e�ort suh as visual inspetion. However, the omplex-ity of the signal is quite often onsiderable and therefore Biomedial Signal Proessingbeomes an important tool for extrating linially signi�ant information hidden in thesignal. Biomedial Signal Proessing is an interdisiplinary �eld sine knowledge fromvarious sienti� topis is required.Biomedial Signal Proessing plays a ruial role in many aspets of human life. Theanalysis of biomedial signals is the entral part of automated medial systems, aimingat �nding disorders of human body. Also, biomedial signals play signi�ant role to thedesign of Human - Computer Interfaes (HCI) and Brain - Computer Interfaes (BCI).Reent development in tehnology allow monitoring physiologial proesses inside ourbody, for whih no natural interfaes exist. In partiular, we an measure blood pressure,heart rate variability, musular ativity, and brain ativity in eÆient and noninvasiveways. It is natural to assume that suh information an be used in a useful way for thehuman. Nowadays, this information is used to treat various pathophysiologial disordersof human body, to understand the underlying mehanism of the human body, to designmahines whih ommuniate with humans. Mahines, based mostly on brain signals, havedeveloped for a variety of appliations ranging from assistive tehnologies for patients withmotor disabilities, to entertainment devies.Biomedial signals are observations of physiologial ativities of organisms, rangingfrom gene and protein sequenes, to neural and ardia rhythms, to tissue and organimages. The proessing of biomedial signal aims at extrating useful information fromit. Biomedial signals arry information that is useful for the understanding of mehanismsunderlying the behavior of living systems. However, suh information is diÆult to be1



obtained diretly from the raw reorded signals. In most of the ases, it is masked byother biomedial signals whih our at the same time or buried in some additive noise.For suh reasons, proessing is usually required to enhane the relevant information andto extrat from it parameters whih quantify the behavior of the biologial system understudy, mainly for physiologi studies, or to de�ne the degree of pathology for routinelinial proedures (diagnosis, therapy, rehabilitation or monitoring).In the beginning, biomedial signals have been assessed manually leading to unreliablediagnosti onlusions. A fundamental goal of biomedial signal proessing is to redue thesubjetivity of the manual measurements. The introdution of omputer-based methodshelps to objetively quantify the various harateristis of signals. Those improve aurayof measurements and their reproduibility.In addition, biomedial signal proessing an be used to develop methods for featureextration to help haraterize and understand the information obtained from a signal.Suh feature extration methods an be designed to mimi the manual measurements, butan also designed to extrat information whih an not be extrated by visual examination.For example, small variations in the heart rate that annot be pereived by the human eyehave been found to ontain valuable linial information when quanti�ed using a signalproessing method.In many ases, the reorded signal is orrupted by di�erent types of noise and interfer-ene, sometimes originating from another physiologial proess of the body. For example,suh situations may arise when the oular ativity interferes with the desired brain a-tivity, when the eletrodes are poorly attahed to the body, or when external souresdegrade the signal suh as the 50/60 Hz powerline interferene. Hene, signal denoisingrepresents a ruial objetive of biomedial signal proessing.Certain diagnosti proedures required the reording of signals for large time. Suhsituations may arise, for example when we reord brain signals to study the brain funtionduring sleep or when we study disturbanes of the heart rhythm. Also, in many ases thisproedure involves many hannels. All these result to huge data size �ll up the hard disk.Transmission of biomedial signals aross publi networks is another appliation whihinvolve the size of biomedial data. For all these situations, data ompression of digitalbiomedial signals is essential. General purpose methods of data ompression do notperform partiularly well sine the harateristis of biomedial signals are not exploited.Finally, signal modeling and simulation is another important �eld of researh inbiomedial signal proessing. This helps us to better understand physiologial proesses.With suitable de�ned model it is possible to reate signals whih resemble the true signals.For example, models have been reated for the head and the brain to loalize soures ofthe neural ativity. Signal modeling is also part of the branh of signal proessing alled"model - based signal proessing", where algorithm development is based on the opti-mization of an appropriately seleted performane funtion. Algorithms for proessingbiomedial signals onstitute the entral ore of any medial system responsible for ther-apy, monitoring and diagnosis. 2



Several signal proessing tehniques an be used to analyze biomedial signals. Thesetehniques an be performed either on time- or frequeny-domain of the signal. Even ifit is possible to deal with ontinuous time waveforms, it is usually onvenient to onvertthem into a digital form before proessing. The general framework for biomedial signalproessing is presented in Fig. 1.1. First, the setup of the experiment must be arry out.Then, the aquisition of the signal is performed. After that, some preproessing steps,suh as �ltering, are performed. Then, the signal is analyzed to obtain useful informationand perform the physiologial interpretation of the signal i.e. pathologial or normalondition of the subjet. This thesis deals with the last three stages of the framework.The preproessing stage aims at making the signal of interest suitable for the subsequentanalysis. At the end of the preproessing stage we obtain a signal whih ontains thedesired information of our experiment. The statistial analysis stage inludes the analysisof the signal to obtain useful information related to the experiment. This stage inludesthe use of a model to explain the signal. Finally, the interpretation of the results isperformed with the help of a medial expert.A useful lass of methods to proess signals is the model - based approah, whih isadopted in this thesis. A model is a simpli�ed mathematial representation of a signal.Also, it depends on some parameters whih are unknown and usually are estimated usingthe observations of the experiment. Learning the model parameters an be done byminimizing (or maximizing) an objetive funtion, whih in most ases, is a funtion ofthe unknown parameters. The model-based approah to analyze a signal an be thoughtas a ompat sheme onsisting of three main parts:
• The model,
• The objetive funtion,
• The learning proess.The model formalizes the prior knowledge about the proess that generates the observa-tions. The objetive funtion is related to a funtion with respet to model parametersthat takes into aount some natural onstraints of the problem and the parameters. Thelearning proess o�ers an optimization framework for the objetive funtion where theestimation of the model parameters is performed. For example, a regression problem anbe desribed with the linear regression model. Least Squares play the role of the obje-tive funtion that an minimized with a loal optimization algorithm suh as Newton,Gradient Desent, et. In this way, the model parameters will be estimated.The mathematial treatment of the models and algorithms in this thesis is based onthe Bayesian Framework. This means that all the results are treated with probabilitydistributions, whih helps in modeling the unertainties in the model and the physialrandomness. Also, in the Bayesian Framework we are able to introdue onstraints onour model or prior knowledge about it with an elegant and natural way using appropriateprior distributions. Bayesian analysis of data has been greatly failitated in the last deade3



Figure 1.1: Biomedial Signal Proessing framework.
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by advanes in omputing power and improved sope for estimation via iterative samplingmethods. The Bayesian approah allows to make probability statements about the modelparameters and has a single tool, Bayes' theorem, whih is used in all situations. Also,has a straightforward way of dealing with nuisane parameters, while the Bayes' theoremgives the way to �nd the preditive distribution of future observations. But, while itis easy to write the formula for the posterior distribution, a losed form exists only forsimple ases, suh as for a normal sample with a normal prior. In that ase approximationtehniques are applied.1.1 Thesis ContributionThis thesis aims at providing innovative and eÆient probabilisti models for biomedialsignal proessing. Throughout this thesis the target of methods whih are proposed, isto inorporate appropriate medial knowledge and natural onstraints of the problem totheir body, so to beome more e�etive and with more aurate results. This is ahievedthrough the Bayesian Framework that supply a rih platform to naturally treat the phys-ial properties of biomedial signals. This resulting probabilisti environment providesus with a way to introdue onstraints into our problem through the use of prior distri-butions, to obtain an estimate of model parameters through their posterior distribution,and to predit future behavior through the preditive distribution. The use of onstraintsinside a stohasti model expands the apabilities of the model leading to the design ofmore omplex and exible models for the desription of the signal. Sine our goal is toreate general - purpose methodologies, the proposed models are not restrited only tobiomedial signals, but they an be applied to other appliation areas with sequentialdata suh as image proessing, omputer vision, video analysis, bioinformatis, et.Chapters 2 and 3 provide introdutory material for the rest of this thesis. More speif-ially, in hapter 2 we present the physiology and properties of biomedial signals whihare used in this thesis. Also, a desription of the basi tool used in this thesis, the BayesianFramework, is provided. In addition, methods, that help us to make inferene in a model,are desribed. In hapter 3, the basi model of this thesis, the linear regression model,is explained, as well as extensions of it. Furthermore, a desription of the autoregressivemodel is provided sine this model will be used in onjuntion with the linear model.In hapter 4, we present a methodology for epilepti spike enhanement in eletroen-ephalographi (EEG) reordings. The goal of this method is to enhane the epileptispikes so their detetion be more easily performed. To ahieve this the time varying au-toregressive model (TVAR) is used. Using the Kalman Filter we an obtain estimates ofthe time varying AR oeÆients and an enhaned version, with respet to the epileptispikes, of the EEG signal. The results indiate that the proposed methodology reduesigni�antly the number of false alarms. Also, the proposed model an be used for timevarying spetrum estimation.In hapter 5, a method for the reovery of a biomedial signal from a noisy environment5



is proposed. The method is based on the model - based approah, where the signalis modeled through the use of a smoothness prior while the statistis of the noise areunknown. To make inferene about the unknown quantities of the model, the VariationalBayesian Framework is used. The proposed method was applied for the estimation ofEvent Related Potentials and for the removal of the drift from Heart Rate Variabilitytime series.In hapter 6, two algorithms are proposed to deal with the non stationarity of thenoise in the fMRI data. The �rst algorithm is based on the temporal analysis of the dataand it is is based on the linear regression model, while the seond algorithm is based onthe spatio - temporal analysis where a spatio - temporal version of the linear model isused. Both algorithms estimate the variane of the noise aross the images and the voxels.In the linear model, an extended design matrix is used to deal with the presene of thedrift in the fMRI time series. To estimate the regression parameters of the GLM as wellas the variane omponents of the noise, the Variational Bayesian (VB) Methodology isemployed.In hapter 7, an advaned Bayesian framework is presented for the analysis of fun-tional Magneti Resonane Imaging (fMRI) data that simultaneously employs both spatialand sparse properties. The basi building blok of our method is the general linear re-gression model (GML) that onstitutes a well-known probabilisti approah. By treatingregression oeÆients as random variables, we an apply an enhaned Gibbs distributionfuntion that aptures spatial onstrains and at the same time allows sparse representa-tion of fMRI time series. The proposed sheme is desribed as a maximum a posteriori(MAP) approah, where the known Expetation Maximization (EM) algorithm is appliedo�ering losed form update equations for the model parameters.In hapter 8, a new probabilisti mixture modeling approah is proposed for luster-ing fMRI time series based on linear regression models where eah luster is desribedas a linear regression model. A sparse representation of every luster regression modelis used through the use of an appropriate sparse prior over the regression oeÆients.Enforing sparsity is a fundamental regularization priniple and has been used to takleseveral problems, suh as model order seletion. Also, spatial properties of data havebeen inorporated to the mixture model through the notion of Markov Random Field(MRF). Furthermore, to avoid sensitivity of the design matrix to the hoie of kernelmatrix, we have used a kernel omposite design matrix onstruted as linear ombinationof Gaussian kernel matries with di�erent saling parameter. The lustering proedure isformulated as a Maximum A Posteriori (MAP) estimation problem where the Expetation- Maximization (EM) algorithm onstitutes a powerful framework for solving it. To avoidproblems with the initialization of the algorithm, an inremental strategy for buildingthe mixture model is presented. Experiments using arti�ial and real fMRI dataset haveshown that the proposed method o�ers very promising results with an exellent behaviorin diÆult and noisy environments.Finally, at hapter 9, onluding remarks and future diretion of the proposed methods6



are provided.
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Chapter 2 Biomedial Signal Proessing
In this hapter we provide information about the physiology and the properties of biomed-ial signals whih are used in this thesis. Also, the problems that we hallenge, when thesesignals are analyzed, are desribed. Furthermore, details about the Bayesian Framework isprovided, sine it is the basi tool for the analysis of the models that are desribed in latterhapters. In addition, information about two methods, the Expetation - Maximizationalgorithm and the Variational Bayesian Methodology, are provided. These methods helpus to make inferene in a Bayesian approah of a problem.2.1 Physiology of the brainThe human brain is the enter of the human nervous system and a very omplex organ.Enlosed in the ranium, it has the same general struture as the brains of the othersmammals, but it larger from the brain of mammals with equivalent body size. Most ofthe expansion omes from the erebral ortex, a onvoluted layer of neural tissue thatovers the surfae of the forebrain. The erebral ortex is symmetri, with left and righthemispheres and eah hemisphere is divided into four parts, the frontal lobe, parietal lobe,temporal lobe and oipital lobe (see Fig. 2.1). This ategorization does not atually arisefrom the struture of the brain itself, the lobes are named after the bones of the skullthat overlie them.The funtion of the ortex an be divided in three funtional ategories of areas. Oneonsists of the primary sensory area, whih reeive information from the sensory nerves.Primary sensory area inlude the visual area of the oipital lobe, the auditory area in thetemporal lobe and the somatosensory area of the parietal lobe. The seond ategory is theprimary motor area, whih oupies the rear portion of the frontal lobe, diretly in frontof the somatosensory area. The primary motor area is responsible for the planning andexeution of movements. Finally, the third ategory onsists of the remaining parts of theortex, whih are alled the assoiation areas. These areas reeive information from thesensory areas and are involved in the omplex proess that we all pereption, thought8



Figure 2.1: The four brain lobes (reprinted from wikipedia)and deision making. Information about the struture and funtion of the human brainomes from a variety of methods known as funtional neuroimaging. Funtional neu-roimaging is a general term for several brain imaging methods suh as positron emissiontomography (PET), single photon emission tomography (SPET), eletroenephalography(EEG), magnetoenephalography (MEG) and funtional Magneti Resonane Imaging(fMRI) (for overview see [140, 142, 143, 9, 24, 25, 54℄). All these methods, although arebased in di�erent priniples, aim to reveal the funtion of the brain.The nervous system gathers, ommuniate and proesses information from variouspart of the body and assures that the responses are handled rapidly and aurately. Thenervous system is divided into the entral nervous system (CNS), onsisting from thebrain and the spinal ord, and the peripheral nervous system (PNS), onneting the partsof CNS to the body organs and sensory systems. The two systems are integrated beauseinformation from the PNS is sent for proessing to the CNS, and responses are sent bythe PNS to the organs of the body. The nerves transmitting information from the bodyto the CNS are alled sensory nerves, while the nerves transmitting information from theCNS are alled motor nerves.The basi funtional unit of the nervous system is the neuron, whih transmit infor-mation to and from the brain. Neurons an be lassi�ed into three ategories aordingto their funtionality: sensory neurons, onneted to sensor organs, motor neurons, on-neted to musles, and interneurons, onneted to other neurons. The neuron onsists of9



Figure 2.2: Main parts of a neuron.the ell body, the dendrites and the axon (Fig. 2.2). Dendrites an onsist of thousandsof branhes, where eah branh reeive information from another signal. The axon isusually a single branh responsible to transmit the information of the neuron to otherparts of the nervous system. The transmission of information between the neurons takeplae at the synapse. The synapse is the part where one neuron ontat to the other. Theinformation is transmitted between the various part of the nervous system as an eletrialor hemial signal. The urrents generated by a single neuron are too weak to be detetednoninvasively. However, the urrents of individual neurons add up and the simultaneousativation of a population of neurons an result in a urrent that is large enough to bedetetable on the surfae of the brain. The reording of this eletrial ativity of the brainprodues the eletroenephalogram.2.2 funtional Magneti Resonane ImagingMagneti resonane imaging (MRI) is a medial imaging tehnique used to visualize theinternal struture of the body. MRI provides muh greater ontrast between the di�erentsoft tissues of the body than omputed tomography (CT) does. This fat makes MRIuseful in neurologial (brain), musuloskeletal, ardiovasular, and onologial (aner)imaging. MRI uses a powerful magneti �eld to align the nulear magnetization of (usu-ally) hydrogen atoms in water in the body. Radio frequeny (RF) �elds are used tosystematially alter the alignment of this magnetization. This auses the hydrogen nuleito produe a magneti �eld detetable by the sanner. This signal an be manipulatedby additional magneti �elds to build up enough information to onstrut an image ofthe body. An image an be onstruted beause the protons in di�erent tissues return totheir equilibrium state at di�erent rates, whih is a di�erene that an be deteted. Byhanging the parameters on the MRI sanner, this e�et is used to reate ontrast betweendi�erent types of body tissue or between other properties, as in fMRI and di�usion MRI.funtional Magneti Resonane Imaging (fMRI) is a type of speialized MRI san. It10



measures the hemodynami response (hange in blood ow) related to neural ativity inthe brain. Sine the 1990s, fMRI has beome the dominated imaging tehnique in thebrain mapping area due to its relatively low invasiveness, absene of radiation exposureand wide availability. The physial basis, whih make the fMRI possible, is the NulearMagneti Resonane (NMR) phenomenon. This phenomenon was disovered around 1920and 1930. The magneti �eld inside the sanner a�ets the magneti nulei of atoms.Normally, atomi nulei are randomly oriented, but under the magneti �eld the nuleibeome aligned with the diretion of the �eld. When the magneti �eld is large enough,the tiny magneti signals from the nulei add up resulting in a signal that is large enoughto measure. In fMRI it is the magneti signal from hydrogen nulei in water that isdeteted. The key to MRI is that the signal from hydrogen nulei varies in strengthdepending on the surrounding area. This provides a means of disriminating betweengrey matter, white matter and erebral spinal uid in strutural images of the brain. ThefMRI is based on the observation that when neural ativity inreases there is an inreaseddemand for oxygen, whih leads in an inrease in blood ow in regions of inreased neuralativity.It is known that hanges in blood ow and blood oxygenation in the brain (olletivelyknown as hemodynamis) are losely linked to neural ativity. When the nerve ellsare ative their onsumption of oxygen is inreased. The loal response to the oxygenonsumption is to inrease blood ow to regions of inreased neural ativity, whih oursafter a delay of approximately 15 seonds. This hemodynami response rises to a peakover 45 seonds, before falling bak to baseline. This leads to loal hanges in the relativeonentration of oxyhemoglobin and deoxyhemoglobin and hanges in loal erebral bloodvolume (CBV) and erebral blood ow (CBF).Blood Oxygen Level Dependent (BOLD) is the MRI ontrast of blood deoxyhe-moglobin. Through the hemodynami response, blood releases oxygen to ative neuronsat a greater rate than to inative neurons. Hemoglobin is diamagneti when oxygenatedbut paramagneti when deoxygenated. The magneti resonane (MR) signal of blood istherefore slightly di�erent depending on the level of oxygenation. Higher BOLD signalintensities arise from inreases in the onentration of oxygenated hemoglobin sine theblood magneti suseptibility now more losely mathes the tissue magneti suseptibility.By olleting data in an MRI sanner with sequene parameters sensitive to hanges inmagneti suseptibility one an assess hanges in BOLD ontrast. These hanges an beeither positive or negative depending upon the relative hanges in both CBF and oxygenonsumption. Inreases in CBF that outstrip hanges in oxygen onsumption will leadto inreased BOLD signal, onversely dereases in CBF that outstrip hanges in oxygenonsumption will ause dereased BOLD signal intensity. The signal di�erene is verysmall, but given many repetitions of a thought, ation or experiene, statistial methodsan be used to determine the areas of the brain whih reliably show more of this di�er-ene as a result, and therefore whih areas of the brain are ative during that thought,ation or experiene. The BOLD signal is an indiret indiator of the brain ativity and11



an important question is how well it orresponds to the neural ativity, whih in generalis taken as the de�nition of brain ativity. In [109℄ show that the neural ativity of thebrain is well orrelated to the blood oxygenation.The ultimate goal of fMRI data analysis is to detet orrelations between brain a-tivation and the task the subjet performs during the san. The BOLD signature ofativation is relatively weak, so other soures of noise in the aquired data must be are-fully ontrolled. This means that a series of preproessing steps must be performed on theaquired images before the atual statistial searh for task-related ativation an begin.For a typial fMRI san, the 3D volume of the subjet's head is imaged every one ortwo seonds, produing a few hundred to a few thousand omplete images per sanningsession. The nature of MRI is suh that these images are aquired in Fourier transformspae, so they must be transformed bak to image spae to be useful. Beause of pratiallimitations of the sanner the Fourier samples are not aquired on a grid, and sannerimperfetions like thermal drift and spike noise introdue additional distortions. Smallmotions on the part of the subjet and the subjet's pulse and respiration will also a�etthe images.The most ommon situation is that the researher uses a pulse sequene suppliedby the sanner vendor, suh as an eho-planar imaging (EPI) sequene that allows forrelatively rapid aquisition of many images [54, 24, 25℄. Software in the sanner platformitself then performs the reonstrution of images from Fourier transform spae. Duringthis stage some information is lost (spei�ally the omplex phase of the reonstrutedsignal). Some types of artifats, for example spike noise, beome more diÆult to removeafter reonstrution, but if the sanner is working well these artifats are thought tobe relatively unimportant. After reonstrution the fMRI data onsists a series of 3Dimages of the brain. The most ommon orretions performed on these images are motionorretion and orretion for physiologial e�ets. Outlier orretion and spatial and/ortemporal �ltering may also be performed. A variety of methods are used to orrelate thesevoxel time series with the task in order to produe maps of task-dependent ativation. InFig. 2.3 we see a diagram desribing the overall proedure in the analysis of fMRI data,from the design of the experiment until the physiologial interpretation of the data.2.3 fMRI data analysisIn this setion we will provide the general sheme for the analysis of fMRI data sine thistask overs a large part of this thesis.2.3.1 Experimental designThe hoie of the experimental design when setting up a fMRI study depends on theexpeted results and the target of the researh. Two basi types of setups are used whenonerning the appropriate and suitable designs: blok design, event-related design [24, 25℄12



Figure 2.3: Overall sheme in fMRI analysis.
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or a ombination of these two. All these designs have their weaknesses and strengths whihshould be onsidered when hoosing the design.Blok designIn blok design studies the ativating stimuli are presented ontinuously during some timeinterval that is alled a blok. The bloks of ativating stimuli are usually alternatingwith the so alled baseline or resting bloks. During the baseline blok no stimuli arepresented. One ative blok may be onsisted of only one long stimulus or several similarstimuli presented rapidly. It is also possible to study di�erent stimuli by presenting eahstimuli type in its own blok. Therefore, several type of bloks might belong in one studyand the order of the bloks may alternate randomly. The duration of the bloks may alsovary.Blok designs are still in use nowadays. One reason for this is probably better signal-to-noise ratio (SNR) due to bigger amount of data to be averaged. This also ensuresbetter detetion power, to loate ative ortial regions. The weakness of blok designs isthe poor estimation eÆieny to estimate the hemodynami response for a single stimulus.This is basially due to fast presenting rate of the stimuli so the responses overlap witheah other. This overlapping is proved to be nonlinear, whih ompliates the estimationof the shape of the hemodynami response. Blok designs are also experimentally lessdemanding than more exible designs. The possible inauraies in the experiment designare less serious in blok designs than in event-related designs beause the responses in oneblok are averaged.Event-related designIn PET studies only blok designs an be assessed beause of the relatively long half-lifeof the used radioative traers. In fMRI, however, the origin of the response to a stimulusan be related to the erebral hemodynami hanges, and these hanges are detetablewithin seonds of the stimulus onset. The relatively fast response to stimuli enables theuse of brief stimuli in studies of brain funtion.In event-related design a brief stimuli are presented randomly. The term event relatedderives from eletrophysiology and measuring the event-related potentials (ERPs). Thedesign and the presentation of stimuli in fMRI is quite similar to tehnique used in mea-suring the ERPs. The stimuli are no longer presented in bloks of similar stimuli but onetype of stimuli an be randomized so that di�erent types of stimuli alter with eah otherand with baseline. The presentation rate may also vary i.e. a stimulus may our twiea seond or twie a minute. Event-related design has many virtues ompared to blokdesign. When the stimuli are presented in bloks, the subjet's ognitive behavior maydisrupt the response beause the subjet an guess when the next stimulus is presentedand what kind of stimulus it is. The randomization of the stimuli prevents this kind ofproblems and also habituation. The responses an be post ho ategorized aording to14



Slie time orretionMotion CorretionCoregistration and NormalizationSpatial �lteringTemporal �lteringFigure 2.4: Preproessing steps.subjets performane and hene it is possible to study the di�erene between di�erent re-sponses aused by similar stimuli. Another advane of the event-related designs omparedto blok design is the ability to use the so alled oddball-paradigm and study unpreditedstimuli. The advantages of the event-related design over blok design enouraged researhgroups to study and ompare the results obtained with both these design types [24, 25℄.2.3.2 Preproessing of fMRI dataBefore analyzing the fMRI data several preproessing steps an be applied in order stepsto remove artifats and validate the assumptions of the model [54, 24, 25, 108℄. The maingoals of data preproessing are: a) to minimize the inuene of the data aquisition andphysiologial artifats, b) to validate the statistial assumptions and ) to standardizethe brain regions aross subjets. During the analysis of fMRI data is is assumed that allthe voxels of the brain are aquired simultaneously and that eah data point in a spei�voxel's time series onsists of a signal from that voxel (i.e. the partiipant does not moveaross measurements). Finally, all brains are assumed to be registered, so that eah voxelis loated in the same anatomial region for all subjets. However, these assumptions don'thold in reality and there is a need to make them more suitable for the statistial model.The major steps of preproessing are: slie timing orretion, realignment, oregistrationof images, normalization, spatial smoothing and temporal �ltering.Slie timing orretionWhen analyzing 3D fMRI data it is typially assumed that the whole brain is measuredsimultaneously. However, this is not the ase beause the brain volume onsists from mul-tiple slies that are aquired sequentially, and therefore at di�erent time points. Similartime points from di�erent slies are shifted relative to one another. Slie time orretion15



involves the orretion of shift so that one an assume they are measured simultaneously.This is ahieved by Fourier transforming eah voxel's time series into the frequeny do-main, applying a phase shift to the data, and then applying the inverse Fourier transformto reover the orreted data. However, in the above solution there is a problem due tohead motion. In SPM pakage [105℄ there is a note that this step will be remove in future.Motion orretionAn important issue involved in any fMRI study is proper handling of any subjet move-ment that may have taken plae during data aquisition. When movement ours, thesignal from a spei� voxel is ontaminated by the signal from neighboring voxels. The�rst step for motion orretion is to �nd the best possible alignment between the inputimage and some target image. Usually, motion orretion methods assume that the shapeof the head does not hange shape. This means that the orretion involves only trans-lations and rotations (rigid - body transformation). However, non - rigid shape hangesan be our in the brain tissue, for example due to the pulsation of the blood stream.Coregistration and NormalizationfMRI data provides little anatomial detail. This is problem in the ase we want to inter-pret the analysis results. To overome this problem we need to map the results from theobtained fMRI data onto high resolution strutural MR images. The proess of aligningstrutural and funtional images is alled oregistration [54, 24, 25℄ and is performed usinga rigid - body or an aÆne transformation. Also, individual brains have di�erent shapesand features but there exists similarities between the brains. Normalization [54, 24, 25℄attempts to register eah brain anatomy to a ommon spae de�ned by a template brain(e.g. the Talairah or Montreal Neurologial Institute (MNI) brain). During the normal-ization non linear transformations are used to math the loal features.Spatial smoothingIt is useful to spatially smoothed the fMRI data prior to statistial analysis. There areseveral reasons why there is need to smooth the data. First, small amounts of smoothingimproves the signal to noise ratio. The seond reason is that the smoothing improvethe quality of the data for statistial analysis by making them more appropriate for themodel. A ommon approah to smooth the fMRI data is to blur them with a Gaussian�lter [54, 24, 25℄. The disadvantage of spatial smoothing is that we don't know if the sizeof the �lter is the appropriate. Also, smoothing an also ause the merging of brain regionsthat are funtionally di�erent. These problems guide many researhers to investigate waysof ombining spatial information in more sophistiated ways than simple blurring.
16



Figure 2.5: An example un�ltered time series from an ativated voxel (reprinted from[24℄).Temporal �lteringTemporal �ltering, instead of working in eah image, suh as the spatial smoothing, worksin eah voxel's time series. The main point of temporal �ltering is to remove the unwantedomponents of a time series, without damaging the signal of interest. For example, if weapplied a stimulation for 30 se, followed by 30 se rest, and this pattern is appliedmany times then the signal of interest is lose to a square waveform of 60 se period.Temporal �ltering will attempt to remove omponents of the time series that are moreslowly (high pass �ltering) or more quikly varying (low pass �ltering) than this 60 seperiodi signal. In Fig. 2.5, we show an example time series, deomposed into the varioussignal omponents. Temporal �ltering is arried out using linear �lters, suh as FIR �lterfor high pass �ltering and a Gaussian �lter for low pass �ltering [54, 24, 25℄. We musthave in mind that most statistial models are applied diretly on voxel time series, somany aspets of temporal �ltering an be inorporated into the statistial model [32℄.While all the preproessing steps outlined above are essential to the analysis of fMRIdata, there is need to be a lear understanding of the e�ets they have on both thespatial and temporal orrelation struture. More generally, it is neessary to study theinterations among the individual preproessing steps. For example, is it better to performslie timing orretion �rst or realignment, and how this will impat the resulting dataIdeally we want a model for both [108℄. In last years there is a growing interest forgenerative models that inorporate many multiple steps at one.17



Figure 2.6: The international 10-20 system seen from (A) left and (B) above the head.(reprinted from [8℄)2.4 EletroenephalogramThe eletroenephalography onerns the reording and the interpretation of the ele-troenephalogram. Eletroenephalogram (EEG) is a reord of the eletri signal gen-erated by the ooperative ation of brain ells, or more preisely, the time ourse ofextraellular �eld potentials generated by their synhronous ation. EEG an be mea-sured by means of eletrodes plaed on the salp or diretly on the ortex. EEG reordedin the absene of an external stimulus is alled spontaneous EEG, while if it is generatedas a response to external or internal stimulus will be alled event-related potential (ERP).The EEG reording is obtained through eletrodes loated on the salp, where someof them are used as referenes. Referene eletrodes are either loated on the salp or onother parts of the body, e.g., the ear lobes. To ensure reproduibility among studies aninternational system for eletrode plaement, the 10-20 international system [9℄, has beende�ned (Fig. 2.6). It is based on anatomial loation and on perentage of distane amongthese points giving the 10 or 20% in the system name. The original 10-20 system has onlynineteen eletrodes but has been extended to aommodate more than 200 eletrodes.In this system the eletrodes' loations are related to spei� brain areas. For example,eletrodes C3 and C4 are above the motor ortex. Eah EEG signal an therefore beorrelated to an underlying brain area. Of ourse this is only a broad approximation thatdepends on the auray of the eletrode's plaement.The eletroenephalogram an be roughly de�ned as the signal whih orrespondsto the mean eletrial ativity of the brain in di�erent loations of the head. Morespei�ally, it is the sum of the extraellular urrent ows in a large group of neurons.It an be aquired using either intraranial eletrodes inside the brain or salp eletrodes18



on the surfae of the head [9℄. The EEG has been found to be a valuable tool in thediagnosis of numerous brain disorders. Nowadays, the EEG reording is a routine linialproedure and is widely regarded as the physiologial "gold standard" to monitor andquantify levels of drowsiness and wakefulness but also for detetion of epilepti spikes andseizures and generally for the diagnosis of epilepsy [20℄. The eletri ativity of the brainis usually divided into three ategories: 1) bioeletri events produed by single neurons,2) spontaneous ativity, and 3) evoked potentials. EEG spontaneous ativity is measuredon the salp or on the brain. Clinially meaningfull frequenies lie between 0.1Hz and100Hz. In more restrited sense, the frequeny range is lassi�ed into several frequenyomponents, or delta rhythm (Æ: 0.5-4Hz), theta rhythm (�: 4-8Hz), alpha rhythm (�:8-13Hz), beta rhythm (�: 13-30Hz), and gamma rhythm (: 30-60Hz) [9℄.The properties of the EEG signal are omplex [9, 19℄, due to the intriate neuralsystem. Traditionally, the spontaneous EEG is haraterized as a linear stohasti pro-ess with similarities to noise. From the signal proessing view, EEG has the followingproperties [19℄: (a) Noisy and pseudo-stohasti: The EEG is often between 10-300ìV,whih is easily a�eted by various physiologial and eletrial noises. Meanwhile, arte-fats from eletroardiogram (ECG), eletrooulogram (EOG), eletromyogram (EMG),and reording systems an also ontaminate the signals. Even the EEG shows a high de-gree of randomness and nonstationarity. (b) Time-varying and nonstationary: EEG is nota stationary proess; it varies with the physiologial states. The waveforms may inlude aomplex of regular sinusoidal waves, irregular spikes/polyspikes, or spindles/polyspindles.In most pathologial onditions, suh as epilepti seizures, the EEG may show evident sin-gularity or nonstationarity. In pratie, EEG is onsidered as a stationary proess over arelatively short period (approximately 3.5se for routine spontaneous EEG) [18℄. () Highnonlinearity: Although the traditional linear models of EEG still play signi�ant roles inEEG analysis and diagnosis, EEG is a nonlinear proess [10℄. This kind of nonlinearityis also time-, state-, and site-dependent [15℄.One of the most important hallenges of EEG analysis is the quanti�ation of themanifestations of epilepsy [9, 19℄. The main goal is to establish a orrelation between theEEG and linial or pharmaologial onditions. One of the possible approahes is basedon the properties of the inter-ital EEG (eletrial ativity measured between seizures),whih typially onsists of linear stohasti bakground utuations interspersed withtransient nonlinear spikes, sharp waves or spikes-and-wave omplexes [20℄. These transientpotentials originate as a result of a simultaneous pathologial disharge of neurons withina volume of at least several mm3. The traditional de�nition of a spike is based onits amplitude, duration, sharpness, and emergene from its bakground [21℄. However,automati epilepti spike detetion systems based on this diret approah su�er fromfalse detetions in the presene of numerous types of artefats and non-epilepti transients[20, 21℄. This shortoming is partiularly aute for long-term EEG monitoring of epileptipatients, whih beame ommon in 1980s [22, 23℄. In Fig. (2.7) we see an EEG segmentontains four epilepti spikes. 19
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Figure 2.7: EEG signal ontains four spikes.There has also been a hallenge to �nd funtional erebral ativation indies for og-nitive proesses involved in a given task. The EEG is a ontinuous measure over time andan be used to study ongoing ativity in the brain while subjets perform long-lastingand/or variable tasks. The alpha rhythm of the EEG is predominantly observed over theposterior ortex [17℄. This rhythm orrelates with relaxation, and for this reason it hasbeen interpreted as a sign of inhibition of ativity in the areas over whih it has beenreorded. Ativation of the ortex auses a desynhronization of the alpha band, i.e. itsamplitude dereases, while alpha synhronization denotes the inrease of alpha ativity([13, 12℄. When alpha desynhronization or synhronization is related to an internallyor externally paed event, it is alled as event-related desynhronization (ERD) [11℄ orevent-related synhronization (ERS), respetively. The quanti�ation of ERD/ERS re-quires the omparison of two di�erent experimental onditions. ERD and ERS are de�nedas the relative di�erene in the EEG alpha power between the referene reorded beforeeah event and the atual event. ERD/ERS is, thus, a 'within-subjet' measure of ortialativation and is expressed as a perentage. ERD and ERS an be either externally (bystimuli) or internally (by voluntary behavior) paed and they have a spei� topographi-al distribution depending upon the state of the brain, stimulus paradigm and modality[12℄. ERD has been observed e.g. during omplex auditory stimulation [16℄, during og-nitive and attentional tasks, and during voluntary movement tasks [11℄. The ERD/ERSof the lower alpha frequenies (8-10 Hz) has been laimed to reet non-spei� ognitive20
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Figure 2.8: ERD/ERS signal.funtions, suh as sustained attention, while that of the upper alpha frequenies (10-12Hz) appears to reet stimulus-related, i.e. task-spei� ognitive proesses. An exampleof EEG segment where we wish to �nd the ERD/ERS phenomenon is shown in Fig. (2.8).Event-related potentialsEvent-related potentials (ERPs) are the hanges of spontaneous EEG ativity relatedto a spei� event [145℄. ERPs triggered by partiular stimuli, visual (VEP), auditory(AEP), or somatosensory (SEP), are alled evoked potentials (EP). It is assumed thatERPs are generated by ativation of spei� neural populations, time-loked to the stim-ulus, or that they our as the result of reorganization of ongoing EEG ativity. Thebasi problem in analysis of ERPs is their detetion within the larger EEG ativity. ERPamplitudes are an order of magnitude smaller than that of the ongoing EEG. Averagingis a ommon tehnique in ERP analysis; it makes possible the redution of bakgroundEEG noise. However, assumptions underlying the averaging proedure, namely (1) thebakground noise is a random proess, (2) the ERP is deterministi and repeatable, and(3) EEG and ERP are independent, are not well justi�ed. The ERP pattern depends onthe nature of the stimulation, plaement of the reording eletrode, and the atual stateof the brain. ERPs are usually desribed in terms of the amplitudes and latenies of theirharateristi waves [176℄. In Fig. (2.9) we see two trials of ERPs signal from hannel Pz.The stimuli is presented at the time instant equal to 1 se. At this time we also observe21
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Figure 2.9: Two ERPs signals.the distortion at the baseline.2.5 Eletroardiogram and Heart Rate VariabilityThe eletrial ativity of the heart an be haraterized by measurements aquired at theellular level or from the body surfae. The eletroardiogram (ECG) desribes the ele-trial ativity of the heart reorded by eletrodes plaed on the body surfae. The voltagevariations measured by the eletrodes are aused by the ation potentials of the ardiaells. The resulting heartbeat is reorded to the ECG and onsist of a series of waveformswhose morphology and timing onvey information whih are used for diagnosing diseasesthat are reeted by hanges of the heart's eletrial ativity. In Fig. 2.10 a segment ofECG signal and the harateristis of a heart beat are illustrated.The Heart Rate Variability (HRV) signal is obtained from the eletroardiogram(ECG) and desribes the variations between onseutive ardia beats. Studies haveshown that this signal originates from the Autonomous Nervous System (ANS) [1℄. Also,the HRV signal is strongly onneted to respiration and blood pressure [2℄. Thus the HRVsignal an be used as a quantitative marker of the ANS and HRV parameters are usedto evaluate the linial ondition of subjets in normal or pathologial onditions. TheHRV analysis methods an be divided into time-domain, frequeny-domain, and nonlin-22
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(a) (b)Figure 2.10: (a) ECG segment ontains four beats (b) Charateristis of a heart beat.
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(a) (b)Figure 2.11: (a) HRV time series (b) Spetrum of HRV time seriesear methods [3℄. The analysis of HRV is performed by studying various measures of thesignal suh as the standard deviation between two normal beats (SDNN) and the powerspetral density (PSD) [4, 5℄. However, the HRV signal ontains artefats whih an beoriginate from other physiologial proesses, suh as the breathing pattern of a human,or tehnial dysfuntions, suh as QRS misdetetion [6, 7℄. These artefats distort theHRV signal leading in erroneous alulations of various statistial measures. Usually, theHRV signal ontains two osillating omponents, the Low Frequeny (LF) omponentsand the High Frequeny (HF) omponent. The LF omponent appears in the frequenyrange 0.05 - 0.2 Hz and the HF omponent appears in the frequeny range 0.2-0.4 Hz. InFig. (2.11) we see an example of HRV time series and the PSD of it.
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2.6 Mahine Learning approahes for signal proessing2.6.1 Bayesian infereneBayesian inferene provides a mathematial framework that an be used for modeling,where the unertainties of the system are taken into aount and the deisions are madeaording to logial priniples. These main tools are random variables, the probabilitydistributions and the rules of probability alulus.Consider a dataset ontains N samples, Y = {yn}Nn=1, where we assume a distributionover them p(yn|�), where � is the set of parameters whih are unknown and must beestimated. The hoie of this distribution is very important sine it must suite with thenature and partiular harateristis of the observations. By assuming independent andidentially distributed (i.i.d.) samples, a lassial predure for estimating the parame-ter is through the Maximum Likelihood (ML) framework, where we maximize the jointprobability of measurements, also alled likelihood funtion:L(�) = p(Y |�) = N
∏n=1

p(yn|�)For analytial purposes, it is easier to work with the logarithm of the likelihood funtion,beause the logarithm is monotonially inreasing, and thus maximizing the log-likelihoodis equivalent to maximizing the likelihood. We an write more formal the ML estimationproedure as: �ML = argmax� {log p(Y |�)} = argmax� N
∑n=1

log p(yn|�).The di�erene between the Bayesian inferene and the ML method is that the formeronsider the parameters � as a random variable. Then, the posterior distribution ofparameters is omputed by using the Bayes' rule:p(�|Y ) = p(Y |�)p(�)p(Y ) (2.1)where p(�) is the prior distribution, whih models the prior beliefs of parameters beforewe observe any measurement and p(Y ) is a normalization onstant, independent of theparameter. In most situations the normalization onstant is left out and sine the mea-surements are onditionally independent given the parameters, the posterior distributionfor parameters is written as:p(�|Y ) ∝ p(Y |�)p(�) = [

N
∏n=1

p(yn|�)]p(�) (2.2)Now, that we have obtained the posterior distribution, we an use the most probablevalue as an estimate for parameters (Maximum A Posteriori estimate), whih is givenby the maximum of the posterior. Also, a andidate estimate is the posterior mean of24



parameters (MMSE estimate). There are many ways of hoosing the point estimate fromthe distribution and the best way depends on the assumed loss funtion [40℄. It is easy tosee that ML estimate is equivalent to a MAP estimate when it is assume a uniform priordistribution over the parameter �.The basi omponents of a Bayesian model is the prior model enapsulating a prelim-inary knowledge of the shape and the range values of the parameters and the likelihoodas a funtion.Prior distribution The prior information onsists of beliefs about the possible and im-possible parameters values and their relative likelihoods before anything has beenseen. The prior distribution is a mathematial representation of this information:p(�) = Information on parameter � before arises any observations.The lak of prior information an be expressed by using a non-informative prior[125, 121℄.Likelihood funtion Between the measurements and the parameters there is a noisy orinaurate relationship. This relationship is modeled using the likelihood distribu-tion: p(y|�) = Distribution of observation y given the parameter �.Posterior Posterior distribution is the onditional distribution of parameters given theobservation y and represents the information that we have after the observation yhas been obtained. It an be omputed by using the Bayes' rule:p(�|y) = p(y|�)p(�)p(y) (2.3)where the normalization onstant is given by:p(y) = ∫ p(y|�)p(�)d�. (2.4)In the ase we have multiple observations Y = {yn}Nn=1 whih are onditionallyindependent, the posterior distribution beomes:p(�|Y ) ∝ [

N
∏n=1

p(yn|�)]p(�) (2.5)where the normalization term an be omputed by integrating the right hand sideover �. If parameters are disrete variables then the integration is replaed bysummation.Preditive posterior distribution The preditive distribution is the distribution ofthe new observation yN+1:p(yN+1|y1; · · · ;yN) = ∫ p(yN+1|�)p(�|y1; · · · ;yN)d�. (2.6)The preditive distribution an be used for omputing the probability distributionof the (N + 1)th observation, whih has not been observed yet.25



Maximum A Posteriori estimationIn the ase we have a prior distribution over the parameters a simple approah is to use theMaximum A Posteriori (MAP) estimator. The MAP estimator is obtained by performingthe following maximization:�MAP = argmax� {log p(Y |�) + log p(�)} . (2.7)This estimator hooses the model with highest posterior probability density (the posteriormode). This approah provides us with point estimates, whih ontain the prior informa-tion, and an be seen as a penalized maximum likelihood estimator in the lassial sense[121℄. We an observe that as the sample size goes to in�nity, N → ∞, the likelihoodfuntion dominates over the prior distribution p(�). Therefore, the MAP estimator isasymptotially equivalent to the ML estimator [121℄.2.6.2 Expetation Maximization (EM) algorithmThe Expetation-Maximization (EM) algorithm introdued by Dempster et al [205℄ is ageneral method to solve ML estimation problems. The EM algorithm is the basis of manylearning algorithms [45℄. The objetive of the algorithm is to maximize the likelihood ofthe observed data in the presene of hidden variables. Let us denote the observed databy y, the hidden variables by x and the parameters of the model by �. Maximizing thelikelihood as a funtion of � is equivalent to maximizing the log-likelihood:L(�) = log p(y|�) = log

∫ p(y;x|�)dx (2.8)Using any distribution q over the hidden variables, we an obtain a lower bound on L:
log

∫ p(y;x|�) = log

∫ q(x)p(y;x|�)q(x) dx
≥

∫ q(x) log p(y;x|�)q(x) dx
=

∫ q(x) log p(y;x|�)dx− ∫ q(x) log q(x)dx (2.9)
= F (q; �). (2.10)The EM algorithm alternates between maximizing F with respet to the distribution qand the parameters �, respetively, holding the other �xed.E-step: qk+1 ← argmaxq F (q; �k) (2.11)M-step: �k+1 ← argmax� F (qk+1; �) (2.12)It is easy to show that the maximum in the E-step results when q is exatly the poste-rior distribution of the hidden variables x, q(x) = p(x|y; �k), at whih point the bound26



beomes an equality F (qk+1; �k) = L(�k). The maximum in the M-step is obtained bymaximizing the �rst term in Eq. (2.9), sine the entropy of q does not depend on �:M-step: �k+1 ← argmax� ∫ p(x|y; �k) log p(y;x|�)dx (2.13)At eah iteration the EM algorithm guarantees that the log-likelihood does not de-reased, L(�t+1)− L(�t) ≥ 0. From Bayes' rule we have that:
log p(x|y; �t+1) = log p(y;x|�t+1)− log p(y|�t+1)

= log p(y;x|�t+1)− L(�t+1) (2.14)Taking the expetation with respet to q(x) = p(x|y; �k) we obtain:< log p(x|y; �t+1) >q=< log p(y;x|�t+1) >q −L(�t+1) (2.15)sine < L(�t+1) >q= L(�t+1) beause L(�t+1) does not depends from hidden variables.The same holds for the term L(�t), i.e.< log p(x|y; �t) >q=< log p(y;x|�t) >q −L(�t) (2.16)From the above two equation we an obtain:L(�t+1)− L(�t) = − < log p(x|y; �t+1) >q + < log p(x|y; �t) >q
+ < log p(y;x|�t+1) >q − < log p(y;x|�t) >q (2.17)From the M - step, we have < log p(y;x|�t+1) >q − < log p(y;x|�t) >q≥ 0. Also, thedi�erene − < log p(x|y; �t+1) >q + < log p(x|y; �t) >q is the KL divergene betweenthe distribution p(x|y; �t+1) and p(x|y; �t) and is greater or equal to zero. So, in eahiteration of the EM we have L(�t+1)− L(�t) ≥ 0.The EM algorithm performs the M - step based on the ML estimator. However, wean hange slightly this step to inlude the prior distribution of the parameters. Basedon the MAP learning approah and the EM algorithm we are able to derive an EM-MAPalgorithm [42℄ where the M-step of the lassial EM is replaed by:M-step: �k+1 ← argmax� {

log p(�) + ∫ p(x|y; �k) log p(y;x|�)dx} (2.18)2.6.3 Variational Bayesian methodologyVariational Bayesian (VB) methodology is an approximate inferene tehnique that pro-eeds by assuming an arbitrary approximation for the posterior distribution and infereneis made using a EM-like algorithm. A brief introdution of the VB methodology follows.For more information on this subjet one an see at [42, 45℄.
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Assuming an arbitrary distribution for the hidden variables x and the model param-eters � q(x; �) the log of the evidene or the marginal likelihood an be written as:
log p(y) =

∫ q(x; �) log p(y)d�dx
=

∫ q(x; �) log (p(y)p(y;x; �)p(y;x; �))d�dx
=

∫ q(x; �) log p(y;x; �)p(x; �|y) d�dx
=

∫ q(x; �) log p(y;x; �)q(x; �) d�dx
+

∫ q(x; �) log q(x; �)p(x; �|y)d�dx
= F (q;x; �) +KL(q(x; �)||p(x; �|y)): (2.19)Maximizing F (q;x; �) is equivalent to minimizing the KL divergene between the trueposterior and the arbitrary distribution q(·), whih an be used as an approximation tothe true posterior. The variational free energy F (q;x; �) is evaluated as:F (q;x; �) =

∫ q(x; �) log p(y;x; �)q(x; �) d�dx
=

∫ q(x; �) log p(y|x; �)p(x; �)q(x; �) d�dx
=

∫ q(x; �) log p(y|x; �)d�dx
−
∫ q(x; �) log q(x; �)p(x; �)d�dx

= < log p(y|x; �) >q(x;�)
−KL(q(x; �)||p(x; �)); (2.20)where < · >q(x;�) is the expetation with respet to the approximate posterior of theparameters x and �. We mention here that the KL divergene in Eq. (2.19) is betweenthe approximate posterior of parameters and the true posterior, while in Eq. (2.20) isbetween the approximate posterior of the parameters and the prior of the parameters.The goal in a variational approah is to hoose a suitable form of q(x; �) so that thelower bound an be evaluated. In general, we hoose a family of q-distributions and weseek the best approximation within this family by maximizing the lower bound. Sinethe true log-likelihood is independent of q this is equivalent to the minimization of theKL divergene. The KL divergene between the two distributions q(x; �) and p(x; �|y) isminimized when q(x; �) = p(x; �|y) and, thus, the optimal solution for q(x; �) is the trueposterior. This solution does not simplify the problem, so to make progress we onsider amore restrited range of q-distribution. One approah is to onsider a parametri form forq(x; �) suh that q(x; �; �) is governed by a set of parameters � [41℄. We then minimizethe KL divergene with respet to �, �nding the best approximation within this family.28



An alternative approah is to restrit the funtional form of q(x; �) by assuming that itfatorizes over the omponent variables in x; � [42℄:q(x; �) = q(x)∏i qi(�i): (2.21)Minimizing the KL divergene over all the fatorial distributions q(x) and qi(�i), weobtain: q(x) ∝ exp < ln p(y;x; �) >q(�); (2.22)qi(�i) ∝ exp < ln p(y;x; �) >q(x)q(�k 6=i); (2.23)where < · >q(·) denotes expetation with respet to the distribution q(·). The above twoequations onsist the VB - E step and VB - M step respetively.2.6.4 Sampling tehniquesAs we have seen the Bayesian inferene inludes alulations of very ompliated inte-grals. A lass of methods, that is used to alulate suh integrals, is based on samplingtehniques. These methods are applied to the omputation of the evidene, the marginaldensity and moments and expetations. One suh approah is the Monte Carlo integrationmethod [177, 178℄.The Monte Carlo integration method estimates the expetation of a funtion �(y)under a probability distribution p(y), by taking samples {y(n)}Nn=1: y(n) ∼ p(y). Anunbiased estimate, �̂, of the expetation of �(y) under p(y), using N samples is given by:�̂ =

∫ �(y)p(y)dy
≈ 1N N

∑n=1

�(y(n)) (2.24)The Monte Carlo method returns more aurate and reliable estimates the more samplesare taken. In ases where we an not produes samples from p(y), we an use anotherprobability distribution q(y), where we an perform sampling, and orret for this byweighting the samples aordingly. This method is alled importane sampling [177, 178℄.The estimator is given by: �̂ =

∫ �(y)p(y)q(y)q(y)dy
≈ 1N N

∑n=1

w(n)�(y(n)) (2.25)where w(n) are alled the importane weights and are given by:w(n) = p(y(n))q(y(n)) . (2.26)29



Extension of the above approahes is the Markov Chain Monte Carlo tehniques [177,178℄. Sampling methods based on the Markov Chains were �rst developed for appliationsin statistial physis. The lassi paper of Metropolis [212℄ introdued what is now knownas Metropolis algorithm. This method was popularized for Bayesian appliations in theinuential paper of Geman and Geman [98℄, who applied in image proessing problems.MCMC is Monte Carlo integration using Markov Chains [177℄. As desribed above,Monte Carlo integration draw samples from the required distribution, and then formssample averages to approximate expetations. Markov Chain Monte Carlo draws thesesamples by a more lever way based on Markov Chain. Suppose we generate a sequeneof random variables {x0; x1; · · · ; xN} suh that at eah time t ≥ 0 the next sample xt+1 issampled from a distribution k(xt+1|xt) whih depends only on the urrent state. We seethat the next state does not depends further form the history of sequene given the urrentstate. This sequene is alled Markov Chain and k(·|·) is the transition kernel of the hain.It an be shown that after the passing of time the hain will forget the initial state andthe transition kernel will onverge to a unique stationary distribution f(·), whih does notdepends on time or the initial state [177℄. Thus as time inreases the samples {xt} willlook like samples from f(·). Assuming that the onverge to the stationary distribution isahieved after m iterations then we an obtain the samples {xt; t = m; · · · ; N} giving theestimator: �̂ =
1N −m N

∑t=m+1

�(xt). (2.27)Eq. (2.27) show how a Markov Chain is used to ompute the expetation when wehave obtain the stationary distribution f(·). Now, the interesting part is how to onstruta Markov Chain where its stationary distribution is preisely our distribution of interestp(·).A useful method for this purpose is the Metropolis - Hastings (MH) algorithm [177℄.For the MH algorithm at eah time t, the next state xt+1 is hosen by �rst samplinga andidate point y from a proposal distribution q(·|xt). The andidate point is thenaepted with probability a(xt; y) = min
(

1; p(y)q(xt|y)p(xt)q(y|xt)). (2.28)If the andidate is aepted then the next state beomes xt+1 = y else the hain remainsat the urrent state, xt+1 = xt.2.6.5 Mixture modelsA mixture model is a linear ombination of probability density funtions of di�erentsoures and it is formulated as: p(y|Θ) =
K
∑k=1

�kp(y|�k) (2.29)30



where K is the number of mixture omponents, �k are the mixing weights, p(y|�k) arethe omponent density funtions with parameters �k and Θ = {�k; �k}Kk=1 is the set ofparameters. Obviously, the omponent densities may be of di�erent parametri form.The mixing oeÆients �k must satisfy the onstraints:
0 ≤ �k ≤ 1 (2.30)and K
∑k=1

�k = 1 (2.31)Suppose we have a set of observations Y = {yn; n = 1 · · · ; N} and we want to model itwith a mixture model. Assuming that the samples are drawn independently the likelihoodof the data is given by: p(Y |Θ) =
N
∏n=1

(

K
∑k=1

�kp(y|�k)) (2.32)By taking the logarithm we obtain:
log p(Y |Θ) =

N
∑n=1

log
K
∑k=1

�kp(y|�k) (2.33)Maximizing the above log-likelihood funtion is a diÆult problem beause the logarithmats to summation and not diretly over the Gaussian density. To overome this problemthe EM algorithm provides a useful framework for solving the optimization problem.Let us introdue a binary vetor z of dimensionK×1 where a partiular element of thiszk is equal to 1 and all others elements are zero. The values of zk satisfy two onditions:zk ∈ {0; 1} and ∑Kk=1 zk = 1. It is easy to see that there is K di�erent onditions forthe vetor z depending to whih element is nonzero. The marginal distribution of z isspei�ed in term of mixing oeÆients:p(zk = 1) = �kBeause the z is a binary variable we havep(z) = K
∏k=1

�zkkNow, the onditional distribution of y given a partiular element of z is:p(y|zk = 1) = p(y|�k)whih an also be written as: p(y|z) = K
∏k=1

[p(y|�k)]zk31



The joint distribution of y and z is given by p(y|z)p(z). Also, we an �nd the marginaldistribution of y by summing the joint distribution over the z:p(y) = ∑z p(y|z)p(z) = K
∑k=1

�kp(y|�k)In the ase we have many observations yn; n = 1; · · · ; N , then for every observation ynthere is a orresponding variable zn. Now, to apply the EM algorithm we must de�ne theomplete data whih in our study is the observed data yn; n = 1; · · · ; N and the indiatorvariables zn; n = 1 · · · ; N , whih plays the role of hidden variables. The likelihood of theomplete data is: p({yn; zn}Nn=1|{�k; �k}Kk=1) =
N
∏n=1

K
∏k=1

�znkk [p(y|�k)]znkTaking the logarithm we obtain
log p({yn; zn}Nn=1|{�k; �k}Kk=1) =

N
∑n=1

K
∑k=1

znk{log �k + log p(y|�k)}We observe now, that the logarithm ats diretly to the distribution, whih leads to asimpler solution. In the E-step we need to �nd the posterior of the hidden variables,p({zn}Nn=1|{yn}Nn=1; �(t)), using the urrent model parameter values Θ(t) = {�(t)k ; �(t)k }Kk=1.Using the Bayes theorem we have:p({zn}Nn=1|{yn}Nn=1; �(t)) =
p({yn}Nn=1|{zn}Nn=1;Θ(t))p({zn}Nn=1|�(t))p({yn}Nn=1|�(t))

=
N
∏n=1

∏Kk=1[�(t)k p(yn|�(t)k )]znk
∑Kk=1 �(t)k p(xn|�(t)k )

=

N
∏n=1

K
∏k=1

[ �(t)k p(yn|�(t)k )
∑Kk=1 �(t)k p(yn|�(t)k )

]znk (2.34)We an see that the posterior of the hidden variables is a produt of N multinomialdistributions and the expetation of hidden variables in that ase is given by:E{(znk)} = �(t)k p(yn|�(t)k ))
∑Kk=1 �(t)k p(yn|�(t)k )

. (2.35)Calulating the expeted log-likelihood of the omplete data we have:E{zn}Nn=1
{log p({yn; zn}Nn=1|�(t))} = N

∑n=1

K
∑k=1

E{znk}{log �k + log p(yn|�(t)k )} (2.36)The M - step of the algorithm onsist from the maximization of the above expeted log-likelihood with respet to the model parameters. Assuming that the omponents follow32



the Gaussian distribution, �(t+1)k = {m(t+1)k ;�(t+1)k }, and maximizing the expeted log-likelihood of the omplete data with respet to model parameters we obtain:m(t+1)k =
1Nk N

∑n=1

E{znk}yn (2.37)�(t+1)k =
1Nk N

∑n=1

E{znk}(yn −mk)(yn −mk)T (2.38)�(t+1)k =
NkN (2.39)where Nk =

∑Nn=1E{znk}. When we perform the optimization over mixing oeÆients,we must take into aount the onstraints by using Lagrange multipliers.2.7 Useful priors distributions for modeling spei� properties2.7.1 Sparse priorsLet assume that we have a vetor of weights w = {w1; · · · ; wp} whih plays the roleof model parameters. In many situations we aim at obtaining a sparse on�gurationof this vetor, i.e most of the weights to be set to zero. The sparsity is a very helpfulproperty, sine the proessing is faster and simpler in a sparse representation where fewoeÆients reveal the information we are looking for. From a signal proessing perspetive,the sparsity has found many appliations, for example in signal ompression and signaldenoising [214℄. In Bayesian inferene, the sparsity is ahieved through sparse priors whihhelp us:
• to automatially adjust the order of the model,
• to redue the omplexity of the model and its deision part,
• to ompute more easily the output of the model sine few weights are non zero,
• and to determine whih omponents of the model are relevant with the data, whihmay be very useful in many appliations.A natural hoie of a sparse prior distribution for the weights w is a hierarhial priordesribed below. More spei�ally, the weights w are treated as a random variables thatfollow a Gaussian distribution with zero mean and variane a−1i ; i = 1; · · · ; p:p(w|a) = p

∏i=1

N(0; a−1i ): (2.40)The parameters ai are alled hyperparameters and ontrol the prior distribution of theparameter vetor w. Hierarhial priors are often designed using onjugate distributions33



[44℄. This happens for analytial eases and beause the previous knowledge an be readilyexpressed. The empirial Bayes refers to the pratie of optimizing the hyperparametersof the priors, so as to maximize the marginal distribution of the dataset. This pratieis suboptimal sine it ignores the unertainty of the hyperparameters. Alternatively, amore robust approah is to de�ne priors over the hyperparameters. This leads us to afull Bayesian model. The prior distribution over eah hyperparameter ai is a gammadistribution: p(ai) = Γ(ai; bai ; ai). (2.41)The prior over one weight wi depends on the hyperparameter ai. The "true" prior isgiven by integrating over the hyperparameter:p(wi) = ∫ p(wi | ai)p(ai)dai: (2.42)Making the above integration we obtain for the parameter prior:p(wi) ∝ ( 1bai + w2i
2

)−(ai+ 1

2
) (2.43)whih is the kernel of a Student-t density. If we allow ai → 0 and bai → ∞ then weobtain the hyperprior: p(ai) ∝ 1ai ; (2.44)whih is an noninformative prior[125℄. Now, the true prior for one weight, wi, isp(wi) ∝ 1

|wi| ; (2.45)and for all parameters: p(w) ∝
p
∏i=1

1

|wi| : (2.46)This prior is reognized as sparse due to heavy tail and the sharp peak at zero [34, 157℄. InFig. (2.12) plots of the Student's t pdf using � degrees of freedom are shown together witha plot of the Gaussian distribution. It is easy to observe that most of mass is onentratedaround the point x = 0. Also, as the degrees of freedom are inreased the distributionresembles the Gaussian distribution.Another way to delare the sparsity over the weights w is to use a Laplaian distribu-tion over them: p(w|�) = 1Zw exp{−� p
∑i=1

|wi|} (2.47)where � is the regularization parameter. However, this prior leads to a nonlinear opti-mization problem. To overome this problem we use the Fan's approximation [158℄:
|wi| ≈ 1

2
|w̃i|+ 1

2

w2i
|w̃i| (2.48)34
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Figure 2.12: The Student's t pdf plots using 0.1, 1 and 10 degrees of freedom.where |w̃i| 6= 0 is a loal approximation of |wi|, suh that |wi− w̃i| < �. The quantity � isa small positive onstant. Using the above approximation the prior distribution over theweights takes the following form:p(w|�) = 1Zw exp{−�wTLw}, (2.49)where L = [ 1
|w̃1|

; 1
|w̃2|

; · · · ; 1
|w̃p| ]. This prior has been used in [158℄ for image denoising andwavelet oeÆients thresholding. Also, in the same work an extension, based on the useof multiple preision omponents, is presented. Beause in most of the ases, priors ofthis kind are used in an iterative fashion, we an use as loal approximation of |wi|, theestimated weight |ŵi| of the previous iteration.2.7.2 Spatial priorsThere are problems where the data are spatially related to eah other. A harateristiexample is in the task of image analysis, where, apart from the intensity values, pixelspositions onstitute a signi�ant piee of information that must be taken into aount.The Markov Random Field (MRF) is a valuable tool to exploit the spatial harateristisof an image or the orrelation between features in a lassi�ation problem. MRFs havefound many appliation in image analysis, i.e. image denoising,image segmentation, andmahine learning, i.e. lassi�ation and lustering problems.In an MRF, the sites in S, where S is the set of sites, are related to eah other via aneighborhood system, whih is de�ned as N = {Ni; i = 1; · · · ; N}, where Ni is the set ofsites neighboring i, i =∈ Ni and i ∈ Nj ⇔ j ∈ Ni. A random �eld X said to be an MRF35



on S with respet to a neighborhood system N if and only ifP (x) > 0;x ∈ X (2.50)P (xi|xS−{i}) = P (xi|xNi) (2.51)Note, the neighbourhood system an be multi-dimensional. The above property meansthat the probability in the site i depends only from the neighborhood (loal harateristisof the �eld). It is easy to observe that the MRF is a generalization of the Markov proessin whih the time index is replaed by the spae. Aording to the Hammersley-Cli�ordtheorem [100℄, an MRF an equivalently be haraterized by a Gibbs distribution. Thus,P (x) = 1Z exp{−U(x)} (2.52)where Z =
∑x∈X exp{−U(x)} (2.53)is a normalizing onstant alled the partition funtion, and U(x) is an energy funtion ofthe form U(x) = ∑∈C V(x) (2.54)whih is a sum of lique potentials V(x) over all possible liques. A lique  is de�nedas a subset of sites in S in whih every pair of distint sites are neighbours, exept forsingle-site liques. The value of V(x) depends on the loal on�guration on lique . Formore detail on MRF and Gibbs distribution see [100℄.The properties of the distribution with respet to the neighborhood depends from thefuntional form of the potential funtion V(x) [104℄. An important speial ase ariseswhen we onsider liques up to size two. Then the energy funtion takes the form:U(x) = ∑i∈S V1(xi) +∑i∈S ∑i′∈Ni V2(xi; xi′ ). (2.55)The �rst summation ∑i∈S V1(xi) does not inlude any spatial information and for themoment is exluded for the subsequent analysis. The interesting part is the seond sum-mation∑i∈S ∑i′∈Ni V2(xi; xi′ ) whih inludes spatial information through the inner sum-mation. The potential funtion V2(xi; xi′ ) spei�es the relation between xi and xi′ . In theliterature many funtional forms of this potential have been proposed, see for example[104℄. A widely used funtion for this potential is:V2(xi; xi′ ) = (xi − xi′ )2. (2.56)Another funtion, whih is robust to outliers, is:V2(xi; xi′ ) = 1

1 + 1
(xi−xi′ )2 . (2.57)36



Figure 2.13: MRF example: Given the grey nodes, the blak node is onditionally inde-pendent of all other nodes.2.8 Transform - based signal proessingThe purpose of a transform is to desribe a signal or a system in terms of a ombinationof a set of elementary simple signals (suh as sinusoidal signals) that lend themselves torelatively easy analysis, interpretation and manipulation. Transform-based signal pro-essing methods inlude Fourier transform, Laplae transform, z-transform and wavelettransforms. The most widely applied signal transform is the Fourier transform, whih ise�etively a form of vibration analysis, in that a signal is expressed in terms of a ombina-tion of the sinusoidal vibrations that make up the signal. Fourier transform is employedin a wide range of appliations, inluding popular musi oders, noise redution and fea-ture extration for pattern reognition. The Laplae transform, and its disrete-timeversion the z-transform, are generalizations of the Fourier transform. The wavelets aremulti-resolution transforms in whih a signal is desribed in terms of a ombination of ele-mentary waves of di�erent durations. The set of basis funtions in a wavelet is omposedof ontrations and dilations of a single elementary wave. This allows non-stationaryevents of various durations in a signal to be identi�ed and analyzed.A transform is an operation that performs on a signal. Also, a transform an havean inverse, whih restores the original values and it an be thought of a di�erent way ofrepresenting the same information. A natural question is, Why would we do this? Oneanswer is so that we an analyze the transformed signal, for example to ompress it. Thedisrete osine transform have been used e�etively to alter a signal for storing it in aompat form. Sometimes transforms are performed beause things are easier to do inthe transformed domain.
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2.8.1 Fourier transformUnder mild onditions, the Fourier Transform desribes a signal x(t) as a linear superpo-sition of sines and osines haraterized by their frequeny f :x(t) = ∫ X(f)ei2�ftdf (2.58)where X(f) = ∫ x(t)e−i2�ftdt (2.59)are omplex valued oeÆients that give the relative ontribution of eah frequeny f .Equation (2.59) is the ontinuous Fourier Transform of the signal x(t). It an be seen asan inner produt of the signal x(t) with the omplex sinusoidal funtions e−i2�ft, i.e.X(f) =< x(t); e−i2�ft > (2.60)Its inverse transform is given by Eq. (2.58) and sine the mother funtions e−i2�ft areorthogonal, the Fourier Transform is nonredundant and unique.2.8.2 Wavelet transformA wavelet family  a;b is a set of elemental funtions generated by dilations and translationsof a unique admissible mother wavelet  (t): a;b(t) = |a|− 1

2 (t− ab ) (2.61)where a; b ∈ R, a 6= 0, are the sale and translation parameters respetively. The motherwavelet is limited in time domain, has zero mean and is normalized. As a inreases thewavelet beomes more narrow and by varying b, the mother wavelet is displaed in time.Thus, the wavelet family gives a unique pattern and its replias at di�erent sales and withvariable loalization in time. The ontinuous wavelet transform of a signal x(t) ∈ L2(R)(�nite energy signals) is de�ned as the orrelation between the signal and the waveletfuntions  a;b i.e.W x(a; b) = |a|− 1

2

∫ ∞

−∞

x(t) ∗
(t− ab )dt =< x(t);  a;b > (2.62)where ∗ denotes omplex onjugation. Then, the di�erent orrelations < x(t);  a;b >indiates how preisely the wavelet funtion loally �ts the signal at every sale a. Sinethe orrelation is made with di�erent sales of a single funtion, instead of with omplexsinusoids haraterized by their frequenies, wavelets give a time-sale representation.The inverse wavelet transform is:x(t) = 1C ∫ ∞

0

∫ ∞

−∞

W x(a; b)|a|− 1

2 (t− ab )dbdaa2 (2.63)38



(a) (b)Figure 2.14: Time-frequeny tile alloation of the two transforms: (a) Fourier transformand (b) wavelet transform.where C =

∫ ∞

0

|Ψ(!)|2! d! <∞ (2.64)
Ψ(!) is the Fourier Transform of the mother funtion  (t).The above wavelet transform is alled Continuous Wavelet Transform beause anoperate at every sale, from that of the original signal up to some maximum sale thatis determined by trading o� our need for detailed analysis with available omputationalpower. Calulating wavelet oeÆients at every possible sale is time onsuming. How-ever, if we hoose sales and positions based on powers of two then our analysis will bemuh more eÆient and just as aurate. We obtain suh an analysis from the disretewavelet transform (DWT) [151℄.The general sheme of Transform - based signal proessing methods is illustrated inFig. (2.15). First the signal is transformed into the new domain through the transformmatrix A. Then, in the new domain oeÆients an operation, linear or non-linear f(·),is performed. After that, the modi�ed oeÆients is transformed bak into the originaldomain. For example, in wavelet denoising approah the signal is transformed into thewavelet domain and a thresholding operation is performed over wavelet oeÆients whihare transformed bak into the original domain produing the new signal with the desiredproperties. Transform-based methods have been found many appliations in biomedialsignal proessing [144℄.2.9 Prinipal Component AnalysisPrinipal Component Analysis (PCA) is a tool in modern data analysis, where its ap-pliation range from neurosiene to omputer graphi. It is a simple, non-parametri39



Figure 2.15: General sheme of Transform-based methodsmethod for extrating useful information from omplex dataset. PCA help us to reduethe omplexity of the original dataset and to reveal the strutures that underlie it. It isalso known as the Karhunen-Loève transform [45, 129℄. In PCA we seek a linear trans-formation of the original dataset into a new dataset, where prinipal omponents withlarger assoiated variane represent important struture of the dataset.Consider the dataset of observations yn; n = 1; · · · ; N , where yn is a vetor of dimen-sion D × 1. The goal in the PCA is to �nd a projetion of the data onto a spae withsmaller dimensionality than the original, M < D, while at the same time the variane ofthe projeted data is maximized. First, we onsider the projetion onto a one dimensionalspae. We an de�ne the diretion of this spae using a vetor u1 of dimension D×1 withthe onstraint uT1 u1 = 1 (i.e. is the unit vetor). Eah data point is then projeted ontothe new spae given the value uT1 yn. Now the variane of the projeted data is given byvar(uT1 yn) = 1N N
∑n=1

(uT1 yn − uT1 �x)T (uT1 yn − uT1 �y) = uT1�u1where �y =
∑Nn=1 yn is the mean of the data and � = 1N (yn − �y)T (yn − �y) is the dataovariane.Now, we want to maximize var(uT1 yn) with respet to u1 subjet to the onstraintuT1 u1 = 1, i.e.

maxu1

uT1�u1 s.t. uT1 u1 = 1.Introduing the Lagrange multiplier �1 and performing the resulting unonstrained max-imization we obtain the solution: �u1 = �1u1.It is easy to see from the above equation that the vetor u1 is an eigenvetor of theovariane matrix � and �1 the orresponding eigenvalue, whih is also the varianeof uT1 yn. So, to obtain the maximun variane the vetor u1 must be the eigenvetor ofmatrix� with the largest eigenvalue. We ontinue in the same way to introdue additionalomponents until to useM eigenvetors, having in mind that eah new diretion maximizethe projeted variane, as before, while is orthogonal to the diretions that have beenalready added. The appropriate hoie of M is a diÆult problem, however there are twosimple approahes to hoose M . The �rst approah is to hoose M suh that a largefration d of the total variane is taken into aount. Usually, the d is between 70% and40



90%. The seond approah is to examine the eigenvalue spetrum and see if there is a pointwhere the values fall sharply before stay at small values [175℄. We see that PCA is relatedto eigendeomposition of a matrix, whih is symmetri and positive de�nite. When theseproperties are violated then the Singular Value Deomposition ould be used to obtain asimilar proedure. Finally, there is an extension of PCA based in probabilisti formulationof the problem [45℄. This extension gives us the ability to determine the dimension, M ,of the new spae in a more exible way by adopting the Bayesian Framework. Also, theuse of EM algorithm provides us with an eÆient approah in term of omputationalomplexity, espeially in high dimensional spaes [45℄. As expeted PCA has long historyto the analysis of Biomedial Signals. It has been used for EEG monitoring [174℄, ERPanalysis [120℄ and fMRI data analysis [47℄.2.10 Independent Component AnalysisConsider the dataset of observations yn; n = 1; · · · ; N , where yn is a vetor of dimensionD × 1, we have D signals observed in time points n. In ICA we assume that eah vetoryn is a linear mixture of K unknown soures:xn = Asnwhere the matrix of mixing oeÆients A is unknown. The goal in ICA is to �nd thesoures sn or to �nd the inverse of matrix A. The soures are independently distributedwith marginal distributions p(sn) = pi(s(i)n ). Following [152℄, we derive the ICA underthe ML priniple, where we assume that the number of observed signals is equal to thenumber of soures, K = D. The probability of the observations and soures given thematrix A is: p({yn; sn}Nn=1|A) =

N
∏n=1

p(yn|sn;A)p(sn)
=

N
∏n=1

Æ(yn −Asn)p(sn)Performing the marginalization with respet to the soures we obtain the likelihood fun-tion for a single data point xn:p(yn|A) =
1

|A|p(A−1yn)
=

1

|A| K
∏i=1

p( D
∑j=1

A−1ij y(j)n )The log-likelihood of the mixing oeÆients is:
L = log |W|+ K

∑i=1

log p( D
∑j=1

Wijy(j)n ) (2.65)41



where we have made the onvention W = A−1. To �nd the optimum matrix W wemaximize the log-likelihood with respet to it. The gradient is given by:dLdW = [W−1]T + zyTnwhere we have de�ne ai = ∑Dj=1Wijy(j)n , �(ai) = d log pi(zi))dzi and zi = �(ai). We an see thatparameters ai are the reonstruted soures. Sine, we want to maximize the likelihoodwe adapt the matrix W by making small steps of the form:
∆W ∝ [W−1]T + zyTn .Until now, we have not disuss the funtion � whih de�nes the assumed prior distributionof soures. A popular hoie is to use the tanh funtion. To onlude, the algorithm to�nd the independent omponents has three steps:

• Calulate an estimation soures through the mapping: a =Wx.
• Calulate a nonlinear mappping of the estimated soures zi = �(ai).
• adjust the matrix W through ∆W ∝ [W−1]T + zyT .The above exposition of the ICA is based on the ML priniple, however similar algo-rithms for ICA an be obtained by adopting other riteria for the independene. A usefulintrodution in ICA is presented [147℄, where a fast algorithm to perform ICA is alsogiven. As expeted Bayesian formulations of ICA - like model are presented to the liter-ature [150, 148, 149℄. From the perspetive of biomedial signal proessing the ICA hasfound many appliation among them to study the brain dynamis through EEG signals[118, 119℄ to identify the ativated brain's areas in fMRI analysis [48℄ and to estimate theERP signal from the EEG measurements [146℄. A overview of ICA applied to EEG datais shown in Fig. (2.16). First the EEG data are deomposed in independent omponents,then by visual inspetion some of these omponents are removed sine ontain artefats(for example eyes blink), and �nally the artifat-free EEG signals, is obtained by mixingand projeting bak onto the salp hannels seleted non-artifatual ICA omponents.
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Figure 2.16: Shemati overview of ICA applied to EEG data. (Figure reprinted from[119℄ )
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Chapter 3Statistial models for sequential data
Sequential data arise in many �elds of engineering, physis and statistis. The data mayeither be a time series, or a sequene generated by a 1-dimensional spatial proess, e.g.,biosequenes. One may be interested either in online analysis, where the data arrives inreal-time, or in o�ine analysis, where all the data has already been olleted. Also, theanalysis of dynami phenomena is a ommon problem related to sequential data. A timevarying system an be represented through a dynami model, de�ned by an observableomponent and unobservable state. The hidden state represents the desired informationthat we want to extrapolate.In this hapter, we provide material related to the linear regression model. Morespei�ally, the various omponents of the linear model, suh as the design matrix andthe weights (or regression oeÆients), are desribed. In addition, information aboutthe state-spae model is provided. The state-spae model is an extension of the linearmodel, whih help us to inlude into our analysis data that have dynami nature or arisesequentially. Finally, the autoregressive model is desribed. This model help us to analyzethe orrelation struture of a time series.3.1 General Linear Model (GLM)In the General Linear Model (GLM), the observations y = {y1; · · · ; yN} of an experimentare desribed as a linear ombination of some preditors given by the equation:y = �w + e . (3.1)where � is the design matrix of size N × p and it is assumed to be known for theproblem under study, w is the vetor of weights of the linear ombination and has sizep × 1 and e is the additive noise assumed to be zero mean and Gaussian distributed,p(e) = N (0;C−1e ), where C−1e is the inverse preision (ovariane) matrix. The form ofthis matrix de�ned the properties of the additive noise. Usually, we assume that the errorsamples are independent and identially distributed (i.i.d), in that ase a simple approah44



is to assumed C−1e = �I. Also, more general forms an be used suh as a diagonal preisionmatrix, where we use for eah observations yn a separate preision �n. This form of thepreision matrix help to use in indiret way more useful distributions suh as the Student- t distribution [138℄. Finally, the autoregressive (AR) model an be alternatively usedto desribe the autoorrelation between the error samples, where it an be written in thegeneral form of the additive noise.3.1.1 Design matrixIn this setion the role of the design matrix and the various form of it will be desribed.The design matrix has the following general form:� =











�1(x1) �2(x1) · · · �p(x1)�1(x2) �2(x2) · · · �p(x2)

· · · · · · · · · · · ·�1(xN ) �2(xN) · · · �p(xN)










, (3.2)where {xn}Nn=1 are the input variables and �j; j = 1; · · · ; p are the basis funtions, both,the input variables and the basis funtions, are assumed to be known. Aording to thelinear model desribed previously eah observation yn is desribed as a linear ombinationof p basis funtions: yn =

p
∑j=1

wj�j(xn) + en = wTφ(xn) + en. (3.3)We see that the basis funtions desribe the relationship between the observations and theinput variables. In the literature many forms for the basis funtions have been proposed.In the ase where a linear relationship between the observations and the input variablesis assumed then the basis funtions take the form φ(xn) = xn. It is important to observehere that, by using non linear funtions we allow the model to be also non linear to theinput variables while we keep the linearity with respet to the weights.One possible hoie is to use polynomial basis funtions where the basis funtion hasthe form of powers of the input variables, i.e. �j(x) = xj. One other hoie of basisfuntions is the Gaussian basis funtions�j(x) = exp
{

− (x− �j)2
2s2 }, (3.4)where �j are the loations of the basis funtions in the input spae and s2 their sale.Another possibility is the sigmoidal basis funtion of the form:�j(x) = �(x− �js ), (3.5)where �(�) is the logisti sigmoid funtion given by:�(�) = 1

1 + exp(−�) . (3.6)45



Finally, another possible set of basis funtions is the Fourier basis funtions and thewavelet basis funtions. The onstrution of the design matrix is not restrited only tothe approah that we have desribed previously. The design matrix an have many otherregressors (olumns of the design matrix) related to the problem under study as we willsee in latter hapter of this thesis.3.1.2 Maximum Likelihood (ML) parameter estimation of the GLMAssuming that the noise follows white Gaussian distribution, i.e. e ∼ N(0; �I), then thelikelihood of the observations y is given by:p(y;w; �) = ( �
2�)N=2 exp{− �

2
‖y −�w‖2} (3.7)Based on the above formulation, the training of the GLM beomes a maximum likelihood(ML) estimation problem for the regression model parameters Θ = {w; �}, in the senseof maximizing the log-likelihood funtion given byLML(Θ) = log p(y;w; �) = {N

2
log �− �

2
‖y −�w‖2} . (3.8)Setting the partial derivatives of the above funtion. with respet to the parameters,equal to zero, the following update rules for the model parameters are obtainedŵ = (�T�)−1�Ty , (3.9)�̂ =

N
‖y−�ŵ‖2 . (3.10)We want to mention here that we have make the assumption that the matrix �T� isinvertible, whih this is happened only when the design matrix � is of full rank. Apratial solution to this problem is to use a few olumns on the design matrix whihmeans that only few weights will be estimated.3.2 State-Spae ModelsA useful family of models to study sequential data is the state-spae model. In any state-spae model three omponents play the most important role: the initial density p(w1), thetransition density of the states p(xt|wt−1) and the observation density p(yt|wt). Supposethat the densities are the same for all time. There are many state-spae models, themost known are the Hidden Markov Models (HMMs) and the Kalman Filters (KF). Astate-spae model is a model of how wt generates yt and wt+1 and our goal is to inferw1:t = {w1;w2; · · · ;wt} given y1:t = {y1;y2; · · · ;yt}.A graphial representation of a state-spae model is illustrated in Fig. (3.1). In nexttwo setions we will present the HMM and the KF. Also, in the KF model an infereneproedure is provided for the states estimation.46
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Figure 3.1: Graphial representation of a state-spae model.3.3 Hidden Markov ModelsConsider a system whih may be desribed as being in one of a set of N di�erent states,s1; s2; · · · ; sN as depited in Fig. (3.2). At disrete times, the system hanges state (itan also remain in the same state) aording to a set of probabilities assoiated with thestate. We denote the time points, where the state hanges, as t = 1; 2; · · · , also we denotethe state at time t as qt. A full desription of the system requires the urrent state as wellas all previous states. However, in our exposition we will use only the �rst order Markovhain, whih means that the urrent state and the previous state are used to desribe thesystem: P (qt = sj|qt = si; qt−2 = sk; · · · ) = P (qt = sj|qt = si) (3.11)Furthermore we only onsider those systems that the right hand side of (3.11) is indepen-dent of the time, i.e. the state transition probabilities does not hange with time. Thestate transition probabilities aji has the formaij = P (qt = sj|qt−1 = si); 1 ≤ i; j ≤ N . (3.12)Sine the aij are probabilities they subjet to the following onstraints:aij ≥ 0N

∑j=1

aij = 1The above stohasti model is an observable Markov model sine the output of theproess is the set of states at eah time instant and eah state orresponds to an observableevent. We will try to explain the above statistial model through an example. Probablythe reader is familiar with foootball games. When a team plays a game the outome (orobservations) is being one of the following:
• State 1: Draw (D)
• State 2: Loose (L)
• State 3: Win (W) 47



Figure 3.2: A simple Markov Model with 3 states.In a year a team plays a number of games. Let us assume that we are at game number tand that the matrix of state transition probabilities isA = {aij} = 





0:4 0:3 0:3
0:2 0:6 0:2
0:1 0:1 0:8 (3.13)Given that the outome of the game 1 (t = 1) is Win we an ask the question: Whatis the probability that the team's results for the next 7 games will be "W-W-D-D-W-L-W"? This question an be stated more formally as: What is the probability to observethe sequene o = {s3; s3; s3; s1; s1; s3; s2; s3} given the modelM. This probability an beevaluated as:P (o|M) = P (s3; s3; s3; s1; s1; s3; s2; s3|M)

= P (s3|s2)P (s2|s3P (s3|s1)P (s1|s1)P (s1|s3)P (s3|s3)P (s3|s3)P (s3)
= a23a32a13a11a31a33a33�3
= (0:2)(0:1)(0:3)(0:4)(0:1)(0:8)(0:8)1
= 1:536× 10−4where �i are the initial state probabilities:�i = P (q1 = si); 1 ≤ i ≤ N .In the above Markov model, the state orresponded to an observable event. This modelis too restritive to be appliable in many problems. Hidden Markov Model (HMM) is anextension of lassial MC, where the states are not deterministi but are stohasti48
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Figure 3.3: Graphial representation of a Hidden Markov Model.A hidden Markov model is a bivariate disrete time proess {ot; st}; t ≥ 0, where st is aMarkov hain (sequene of states) and, onditional on this Markov hain, ot is a sequeneof independent random variables suh that the onditional distribution of ot only dependson st. The dependene struture of an HMM an be represented by a graphial model asin Fig. (3.3). Aording to the above, the omplete likelihood of a sequene of length Tis given by:p(o1; o2; · · · ; oT ; s1; s2; · · · ; sT ) = p(s1)p(o1|s1) T

∏t=2

p(st|st−1)p(ot|st) (3.14)where p(s1) is the prior probability of the �rst state, p(st|st−1) denotes the transition prob-abilities from state st−1 to st, and p(ot|st) are the emission probabilities for eah symbol ateah state. We an �nd the probability of observing the sequene o1; o2; · · · ; oT by sum-ming over all possible hidden state, p(O = {o1; o2; · · · ; oT}) = ∑Q={s1;s2;··· ;sT } p(O;Q).A HMM is desribed by the following features:
• the number of states in the model,S = {S1; S2; · · · ; SN}
• the number of di�erent observations symbols (alphabet), V = {v1; v2; · · · ; vN
• the state transition probabilities, A = {aij},aij = P (qt+1 = sj|qt = si) and ∑j aij =
1

• the emission probabilities in state j, C = {jk},jk = p(vk|sj)
• the initial state probabilities �i, pii = P (q1 = si); 1 ≤ i ≤ N and ∑i pii = 1A omplete spei�ation of a HMM requires spei�ation of the number of hidden statesand observation symbols, and the spei�ation of the three probability measures, � =

(A;C; �). In the HMM literature there are three basi issues:Problem 1 Given the observation sequene o and a model �, how we eÆiently omputethe likelihood P (o|�) (forward bakward algorithm).Problem 2 Given the observation sequene o and the model �, how do we de�ne themost probable path of states (Viterbi algorithm).49



Problem 3 How do we estimate the model parameters �. Under the ML estimationframework the Baum - Welh algorithm an be applied. Also, an alternative frame-work is the EM algorithm whih reah the same update rules for model parameters.Extensions of HMMs are presented in [156℄. The HMMs have found many interesting ap-pliations in biomediine, espeially in bioinformatis [153, 154℄. An extension of HMMs,when we have ontinuous evolution, is the Kalman Filter, whih is presented at the nextsetion.3.4 Kalman FiltersThe Kalman Filter (KF) is a powerful tool in the analysis of the evolution of a dynamialmodel in time. The �lter provides with a exible manner to obtain reursive estimationof the parameters, whih are optimal in the mean square error sense. The properties ofKF along with the simpliity of the derived equations make it valuable in the analysis ofsignals. In this setion an overview of the Kalman Filter, its properties and its appliationsare presented.The Kalman Filter is an estimator with interesting properties like optimality in theMinimum Mean Square Error (MMSE). After its disovery in 1960 [160℄, this estima-tor has been used in many �elds of engineering suh as ontrol theory, ommuniationsystems, speeh proessing, biomedial signal proessing, et. An analogous estimatorhas been proposed for the smoothing problem [161℄, whih inludes three di�erent typesof smoothers, namely �xed-lag, �xed-point and �xed interval [162, 163℄. The di�erenebetween the two estimators, the Kalman Filter and the Kalman Smoother, it is relatedon how they use the observations to perform estimation. The Kalman Filter uses onlythe past and the present observations to perform estimation, while the Kalman Smootheruses also the future observations for the estimation. This means that the Kalman Filteris used for on - line proessing while the Kalman Smoother for bath proessing. Thederivations of these two estimators is presented in [40, 164, 165℄. Both estimators arereursive in nature. This means that the estimate of the present state is updated usingthe previous state only and not the entire past states. The Kalman Filter is not only anestimator but also a learning method [45, 164℄. The observations are used to learn thestates of the model. The Kalman Filter is also a omputational tool and some problemsmay exist due to the �nite preision arithmeti of the omputers.The Kalman Filter and the Kalman Smoother have been extensively used in biomedialsignal proessing. The general idea is to propose a model for the observations, in mostases linear, where some parameters must be estimated. To be able to apply the KalmanFilter or the Kalman Smoother the model for the observations must be written in astate-spae form. A state-spae model is represented by two equations: One equation,whih desribes the evolution of the parameters, and another equation, whih desribes50



the relation of the parameters with the observations:wt = Awt−1 + vt (3.15)yt = Cwt + et (3.16)These two equations represent a state-spae model. In the above model wt is the statesvetor in time t of dimension p× 1, yt is the vetor of observations of dimension M × 1,vt is the state noise with zero mean and ovariane matrix Cv, et is the observationnoise with zero mean and ovariane matrix Ce , A is the state transition matrix ofdimension p × p and C is the observation matrix of dimension M × p. All the noiseproesses are assumed to be independent between the time instants. In the above modelthe matries A and C are assumed to be known, as well as the ovariane matries Cvand Ce. However, in reality we are not able to know exatly the above matries. In thatase some assumptions are onsidered for the model. For example we an assume thatthe evolution of the parameters is a random walk proedure [166℄, i.e. A = I, whereI is the identity matrix, or we restrit the matrix A to be a diagonal one [170℄. Also,these matries an be estimated through an estimation proedure like the EM algorithm[168, 169℄.In [167℄ the authors proposed a non linear model for the eletroardiogram (ECG)signal. They use the model for ECG denoising and ompression. To estimate the modelparameters they use a modi�ed version of the Kalman Filter, the Extended KalmanFilter (EKF) [165℄. In [171℄ the authors use the Kalman Filter to detet and extratperiodi noise from the ECG. In [172℄ they assumed that the Evoked Potentials in theEletroenephalogram an be represented as a linear ombination of basis funtions. TheoeÆients of the basis funtions are assumed to hange with time. This assumption leadto the use of the Kalman Filter to estimate the oeÆients of the basis funtions.Besides these appliations of the Kalman Filter and the Kalman Smoother for Biomed-ial Signal Proessing, there is a partiular appliation whih has been attrated speialinterest, espeially beause at the end a time varying spetrum is obtained. This applia-tion onerns the use of parametri models suh as the AR and ARMA models. The timevarying autoregressive (TVAR) model is an AR model where the AR oeÆients evolvein time. The parametri spetrum analysis is used to overome the limited frequeny res-olution of FFT based methods. The spetral density an be alulated at eah frequenypoint using the model parameters. The TVAR model has been used for EEG spike de-tetion [170℄, for time varying - spetrum estimation of Event Related Synhronization(ERS) and Desynhronization (ERD) [168℄, for the alulation of oherene in the analysisof biomedial signals suh EEG and ECG [84℄ and for time varying spetrum estimationof intraranial pressure signals from patients with traumati brain injury [173℄. In theabove studies the TVAR oeÆients have been estimated using the Kalman Filter or theKalman Smoother, while in [168℄ the EM algorithm is used to estimate the parameters ofthe model.The Kalman �ltering problem is stated as follows:51



wt−1 wtACyt−1 yt
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Figure 3.4: Graphial representation of the Kalman Filter.
• Use the entire observed data, Y = {y1;y2; · · · ;yk} , �nd for eah k ≥ 1 theminimum mean-square error estimate of the state wt.The problem is alled �ltering if t = k, predition if t > k and smoothing if 1 ≤ t < k.The joint probability distribution of states and observations is given by:p(yNt=1;wNt=1) = p(w1)p(y1|w1)

T
∏t=2

p(yt|wt)p(wt|wt−1) (3.17)and a graphial model for the above fatorization is given in Fig. 3.4. We an see that isthe same model as in the ase of HMM.The MMSE estimator of wt based on observed data Y an be alulated sequentiallyusing the following set of equations:wt|t−1 = Awt|t−1, (3.18)Pt|t−1 = ATPt|t−1A +Cv, (3.19)Kt = Pt|t−1CT (Ce + CTPt|t−1C)−1, (3.20)wt|t = wt|t−1 +Kt(yt − Cwt|t−1), (3.21)Pt|t = (I −KtC)Pt|t−1. (3.22)with initial ondition w1|0 = � and P1|0 = Σ, where � and Σ are the initial onditions forthe states. For more information on how these equations have been derived the interestedreader an look in [40, 165℄. Of ourse the above set of equations is not in the mostgeneral form. Extensions an be made by letting the state and transition matries to betime varying, as well as the ovariane matrix of the noise proesses.From these equations we an observe how the Kalman Filter is working. To estimatethe urrent state wt|t a predition step to obtain the preditive state wt|t−1 based only onthe previous state wt−1|t−1 is performed. After that a orretion step takes plae usingthe present observation yt and the preditive state. Also, we an observe that the updateequation for the ovariane matrix Pt|t is alulated as the di�erene of two matries. Thisan lead to numerial problems and destroy the symmetry of the matrix. To avoid theseproblems the update equation of ovariane Pt|t an be replaed with the so alled Josephform [163℄: Pt|t = (I −KtC)Pt|t−1(I −KtC)T +KtCeKTt . (3.23)52



3.4.1 Kalman Smoother and EMUntil now we have present the solution to the �ltering problem. However, in some aseswe have all the available data, Y = {y1;y2; · · · ;yK}, before the estimation of states. Inthat ase we deal with the smoothing problem.Jt−1 = Pt−1|t−1ATP−1t−1|t−1, (3.24)wt−1|K = wt−1|t−1 + Jt−1(wt−1|K − Awt−1|t−1), (3.25)Pt−1|K = Pt−1|t−1 + Jt−1(Pt|K − Pt|t−1)JTt−1. (3.26)The derivation of those equations is explained in [165℄. The equations of Kalman Filter,together with the above smoothing equations, onsist the Kalman Smoother. In generalto apply the Kalman Filter or the Kalman Smoother to a model, we must write themodel in a state � spae form. After that the above equations an be applied easily.However, there are several parameters whih are assumed known before the appliationof the update equations. These parameters are the ovariane matrix of noise proesses,Ce and Cv, the state transiotion matrix A, the observation matrix C and the initialonditions, � and Σ, i.e. � = {Ce;Cv; A; C; �;Σ}. To �nd the model parameters �the EM algorithm an be used, where the states onsist the hidden variables. The EMalgorithm is an iterative sheme onsisting of two steps, the E-step and the M-step. Inthe E-step the expeted values of the hidden variables are evaluated and in the M-step themaximization is performed with respet to the model parameters. To perform the E-stepthe expeted omplete log-likelihood, L = E
{

log p(Y;w1:K|K); �|Y}, must be alulated.The expeted likelihood depends on three quantities:wt|K = E
{wt|Y}, (3.27)St|K = E
{wtwTt |Y}

= Pt|K +wt|KwTt|K , (3.28)St;t−1|K = E
{wtwTt−1|Y}

= Pt;t−1|K +wt|KwTt−1|K. (3.29)The �rst two quantities an be alulated using the Kalman Smoother equations, whilefor the alulation of the last quantity we an use the following equation:Pt;t−1|K = Jt−1Pt|K. (3.30)The joint log - likelihood of the omplete data {w0; {wt;yt}Kt=1} an be written as:
L = −1
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The M - step involves diret di�erentiation of L with respet to the parameters �. Theestimates for model parameters � are given by:Anew =
[

N
∑t=2

St;t−1|N][ N
∑t=2

St−1|N]−1 (3.32)Cv =
1N − 1

T
∑t=2

(St|N − AnewSt;t−1|N − St;t−1|NATnew + AnewSt|NATnew) (3.33)Cnew =
[

N
∑t=1

ytwTt|N][ N
∑t=1

St|N]−1 (3.34)Ce =
1N N
∑t=1

(ytyTt − Cnewwt|NyTt ) (3.35)w0 = w1|N (3.36)
Σ = P1|N (3.37)The EM algorithm is onsisted of two iterative steps. First applied the Kalman Smoother,using the parameters from previous step, to obtained the expeted statistis, and thenmaximize the expeted log - likelihood with respet to the parameters. These two stepapplied iteratively until the onvergene of the likelihood.3.5 AR and ARMA models3.5.1 AR modelThe autoregressive (AR) model is used in a diverse area of appliations suh as data fore-asting, speeh oding and reognition, model - based spetral analysis, signal restorationand biomedial signal proessing and analysis. The AR model is also known as linearpredition model [113℄. With the AR model we assume that the observed data have beengenerated by the di�erene equation:y[n] = p

∑k=1

a[k]y[n− k] + e[n], (3.38)where y[n] is the observed data, e[n] is the driving noise, and the a[k] are the AR oeÆ-ients. The driving noise e[n] is a zero mean white noise proess with variane �2e , and pis the order of the model. This model is usually abbreviated as AR(p). When the modelof y[n] is an AR(p) model then the Power Spetrum Density (PSD) is given by [159℄:PAR(f) = �2e
|1−∑pk=1 a[k]e−j2�fk|2 . (3.39)Thus, to �nd the PSD of an AR model we need to know the AR oeÆients as well asthe variane of the driving noise. 54



It is useful to derive the probability distribution of the AR model in more ompatform sine this will help us to inlude the AR model in probabilisti models more easily.For a signal blok of N samples [x[0]; x[1]; · · · ; x[N − 1]] the N error equations an bewritten as:
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(3.40)where [y[−1]; y[−2]; y[−3]; · · · ; y[−p]] are the initial onditions. The above set of equa-tions an be written in vetor/matrix form:e = y −Ya. (3.41)The pdf of the signal y given the AR oeÆients and the initial onditions is equal tothe pdf of the driving noise e. Assuming that the driving noise follows a white Gaussiandistribution with zero mean and variane �2e the pdf of the signal y is given:p(y|a) = ( 1

2��2e )N=2 exp{− 1

2�2e (y−Ya)T (y −Ya)}. (3.42)The Eq. (3.40) an be written in an alternative form as
[ e[0]e[1]e[3]

···e[N−1]

]

=

[−a[p] −a[p−1] ··· −a[1] 1 ··· 0 0 0
0 −a[p] ··· −a[2] −a[1] 1 ··· 0 0
0 0 ··· ··· −a[2] −a[1] 1 ··· 0
··· ··· ··· ··· ··· ··· ··· ··· ···
0 0 0 ··· −a[p] −a[p−1] ··· −a[1] 1

][ y[−p]y[−p+1]y[−p+2]
···y[N−1]

] (3.43)In vetor/matrix notation we have: e = Ay. (3.44)Using the above equation we an write the pdf of the signal x in an alternative form:p(y|a) = ( 1

2��2e )N=2 exp{− 1

2�2e yTATAy}. (3.45)The above two versions of the AR proess pdf will be used latter in this thesis.3.5.2 ARMA modelAn extension of the AR model is the Autoregressive Moving Average (ARMA) model. Inthis model the time series is desribed:y[n] = p
∑k=1

a[k]y[n− k] + q
∑l=1

b[l]e[n− l] + e[n]. (3.46)It is easy to see that this model has two parts, the AR part and MA part, hene the nameARMA. In the above equation p is the order of the AR part and q is the order of the MA55



part. This model is usually abbreviated as ARMA(p; q). When the model of y[n] is anARMA(p; q) model then the PSD is given by [159℄:PARMA(f) = �2e |1 +∑ql=1 b[l]e−j2�fl|2
|1−∑pk=1 a[k]e−j2�fk|2 . (3.47)3.6 Gaussian ProessesA Gaussian proess is a generalization of the Gaussian probability distribution. Whereasa probability distribution desribes random variables whih are salars or vetors (formultivariate distributions), a stohasti proess governs the properties of funtions. AGaussian proess is a olletion of random variables, any �nite number of whih have ajoint Gaussian distribution [179℄.A Gaussian proess is ompletely spei�ed by its mean and ovariane funtions. Wede�ne mean funtion m(x) and the ovariane funtion k(x;x′

) of a real proess f(x) as:m(x) = E{f(x)}, (3.48)k(x;x′

) = E{(f(x)−m(x))(f(x′

)−m(x′

))}. (3.49)where x is the input vetor and E{·} denotes the expetation. A Gaussian proess anbe writen as: f(x) ∼ GP (m(x); k(x;x′

)) (3.50)The random variables represent the value of the funtion f(x) at loation x. Often,Gaussian proesses are de�ned over time, i.e. where the index set of the random variablesis time.The linear regression model an be seen as a Gaussian proess. Assume that we havef(x) = �(x)Tw where over the weights we have the prior w ∼ N (0;Σw). Then for themean and the ovariane we have:m(x) = E{f(x)} = �(x)E{w} = 0, (3.51)k(x;x′

) = E{(f(x)−m(x))(f(x′

)−m(x′

))} = E{f(x)f(x′

)}
= �(x)E{wwT}�(x′

) = �(x)Σw�(x′

). (3.52)3.7 Bayesian networksBayesian inferene is fairly simple when it involves small number of variables. However,it beomes muh more omplex when we want to do inferene with many variables. Insuh problems the Bayesian networks provide a solution by adopting the Markov ondi-tion in order to represent the problem in a more eÆient way. Bayesian networks are aombination of two areas: graph theory and probability theory.A Bayesian network is a spei� type of probabilisti graphial model alled diretayli graph (DAG), where all the edges of the graph are direted and there are no56



x1 x2 x3Figure 3.5: A Bayesian network.yles. It is a graphial model that eÆiently enodes the joint probability distributionfor a large set of variables. More formally, a Bayesian network for a set of variablesx = {x1; x2; · · · ; xn} onsists of a network struture S that enodes a set of onditionalindependene assertions about variables in x, and a set P of loal probability distributionsassoiated with eah variables. Together, these omponents de�ne the joint distributionfor x. The nodes in S are in one - to - one orrespondene with the variables in x. Giventhe struture S, the joint distribution for x is given by:p(x) = n
∏i=1

p(xi|pa(xi))where pa(xi) denotes the parents of variable xi. The joint probability of all variables isthe produt of the probabilities of eah variable given its parents.In Fig. 3.5 a Bayesian network is depited. The set of edges is E = {(x2; x1); (x2; x3)}.This is a DAG sine there are no undireted edges and yles. Further, sine x1 and x2are onditionally independent of eah other we have:p(x1|x2; x3) = p(x1|x2). Similar on-lusions an be drawn about the variable x2. Finally, the joint distribution, as fatorizedby this Bayesian network, is given by: p(x1; x2; x3) = p(x1|x2)p(x2)p(x3|x2).There are three main tasks onern a Bayesian network: 1) inferring unobserved vari-ables, 2) learning the model parameters and 3) learning the struture of the network.EÆient algorithms exist that perform inferene and learning in Bayesian networks [45℄.Also, Bayesian networks are used to model sequenes of variables (e.g. speeh signals orprotein sequenes), in that ase are alled dynami Bayesian networks. Bayesian networkshave reently been introdued as a tool for determining the dependenies between brainregions from fMRI data [215, 216℄.3.8 Statistial analysis of fMRI time seriesAfter the preproessing of the fMRI data to meet the requirements of model assumptions,the statistial analysis is performed. In the statistial analysis, there is need to desribethe data and based on this desription to make a deision about the state of brain regions(ativated or not). In the literature two approahes are use to for the desription of thedata. The �rst is the model -based approah, where a generative model is used to desribethe data. The learning task is to estimate the model that optimally �t the data. Theseapproahes use mainly the Generalized Linear Model (GLM) [26℄. The seond approah57



is data driven and to this approah the Independent Component Analysis (ICA) and thePrinipal Component Analysis (PCA) [47, 48, 49℄ belong. The data driven approahesdo not assume a partiular model. The general idea of PCA and ICA approahes isto deompose the dataset in prinipal or independent omponents and then to �nd aempirial relation of omponents with the ativated area. However, the need to explorewhole datasets leads to high omputational osts. On the other hand, the model basedapproahes make an assumption for the generative model. Usually, they require lessomputational e�ort. In this thesis the generative model approah is adopted.3.8.1 Modeling the response to the stimulusIn this setion, we will desribe the model for the brain response in the presene of astimuli. In most ases the relationship between stimuli and BOLD response, x(t), ismodeled using a linear time invariant (LTI) system, where the stimulus, s(t), ats as theinput to the system and the HRF, h(t), as the impulse response funtion. So, the BOLDresponse an be written as: x(t) = ∫ ∞

0

h(u)s(t− u)du: (3.53)In the literature there exist many works whih are onerned with the �nding of the HRF.These works inludes onvolutive models, temporal basis funtions, FIR models and nonlinear models [24, 25℄. However, a simple and elegant approah, whih is justi�es by manystudies [26, 24, 28℄, is to model the HRF with the di�erene of two gamma funtions. Thisformulation of HRF aptures the small dip after the HRF return to zero.3.8.2 Data analysisAfter the determination of the HRF and hene the BOLD signal, the time series of a voxelan be desribed by: y = �w + e . (3.54)where y is the N × 1 vetor of voxel's time series, � is a known design matrix of sizeN × p depending from the experiment, w is the p× 1 vetor of magnitudes response (orregression weights sine we have a linear regression model) and e is the N × 1 vetor ofnoise.After the determination of the model, we need a method to obtain estimates of weightsw. A useful, simple and widely aepted approah is the method of Ordinary LeastSquares (OLS) [40℄. In this method the weights w are found by minimizing the residualssum-of-squares. In that ase the estimates ŵ are obtained by:ŵ = (�T�)−1�Ty . (3.55)We want to mention here that we have make the assumption that the matrix �T� isinvertible, whih it is if, and only if, the design matrix � is of full rank. Also, for the58
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given the e�et size , using the following equation:pp = 1−Ψ
(  − T ŵ√TCŵ); (3.57)where Ψ(·) is the normal umulative distribution funtion (CDF), while ŵ and Cŵ are themean and the ovariane of the posterior distribution of the parameters w. Then, thesevalues of posterior probabilities are mapped on one brain image to produe the posteriorprobabilities map (PPM) [54℄. The major di�erene between the two statistis is that thet - statisti has uniform spei�ity over all voxels [28℄. For the OLS estimates of weights,we have Cŵ = �2(�T�)−1 for both proedures, SPM and PPM.
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Chapter 4EEG spike detetion using KalmanFiltering Tehniques
4.1 IntrodutionIn this hapter we present a methodology for epilepti spike enhanement in eletroen-ephalographi (EEG) reordings. The proposed approah takes advantage of the nonstationarity nature of the EEG signal using a time varying autoregressive (TVAR) model.The time varying oeÆients of AR model are estimated using the Kalman Filter. Theresults show onsiderably improvement in signal - to - noise ratio and signi�ant redutionof the number of false positives. The general proedure of our approah is shown in Fig.(4.1). The EEG signal is fed to a KF, then on the output of KF a detetion proedureis performed to provide us with a desiion. An EEG signal whih ontains four spikes isshown in Fig. (4.2).Eletroenephalography (EEG) is one of the linial tools used in diagnosis, moni-toring and management of neurophysiologial disorders related to epilepsy. Epilepsy isharaterized by sudden reurrent and transient disturbanes of mental funtion and/ormovements of body due to exessive disharge of brain. The presene of epileptiformativity in the EEG on�rms the diagnosis of epilepsy whih sometimes an be onfusedwith other disorders produing similar seizure - like ativity [60℄.During the seizures (ital ativity) the salp EEG of patients who su�er from epilepsyis usually haraterized by high amplitude synhronized periodi waveforms reeting ab-normal disharge of a large groups of neurons. Between, before or after seizures (interitalativity), the EEG might ontain oasional epileptiform transient waveforms. As a re-sult relatively short reordings an still be useful in the diagnosis of epilepsy [61℄. Thesetransient waveforms, isolated spikes, sharp waves and spike wave omplexes are learlydistinguished from bakground ativity. More spei�ally, spikes are de�ned as havingduration from 20 - 70 ms, while sharp waves have duration from 70 - 200 ms. On the otherhand, spike and wave omplexes are de�ned as spikes followed by slow waves and haveduration from 150 - 350 ms [62, 63℄. Throughout this paper, no distintion is made among61



Figure 4.1: General Proedure for epilepti spike detetion.
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Figure 4.2: EEG signal whih ontains four spikes.spike, sharp waves and spike - wave omplexes and therefore they are olletively termedspikes. In general, the detetion of epilepsy inludes visual sanning of EEG reordingsfor spike by an experiened EEGer. This proess, however, is time onsuming, espeiallyin the ase of long reordings [62, 64℄. In addition, the detetion of epileptiform ativityin the EEG is far from straightforward due to the variety of morphology of spikes andtheir similarities to waves whih are part of the bakground ativity and to artefats (i.e.musle ativity, eye blinking ativity, et.) [21℄.Several methods for spike detetion have been proposed based on single and multi-hannel approahes. Those methods an be lassi�ed into �ve ategories: (a) methodsbased on traditional reognition tehniques, known as mimeti tehniques [65, 66, 67℄,(b) methods using template mathing algorithms [68℄, () methods based on parametriapproahes [69℄, (d) methods based on arti�ial neural networks (ANNs) [61, 62, 63, 64,70, 71, 72, 73, 74, 75, 76℄ and (e) methods utilizing knowledge-based rules [64, 77, 78, 79℄.The methods belonging to the �rst ategory imitate the visual analysis followed by anexpert. In partiular, the features of EEG waveforms, suh as duration, slope, sharpness,and amplitude, are ompared with values whih are provided by the experts. In the seondategory template mathing is used for a priori known spike waveforms. The user seletsmanually spikes from a set of test data, whih are averaged to reate a template. Reentapproahes use wavelets. The EEG signal is �ltered using wavelets to obtain features ofthe signal energy whih are used in the detetion of spikes. The methods belonging to thethird ategory assume loal stationarity of the bakground ativity and use single-hannelor multihannel preditive �ltering. Spikes are deteted as deviation from stationarity.Impliit in these approahes is that non-stationarity behaviour omes only from Spikes.In the fourth ategory ANNs are used to reognize patterns, whih are learnt by the net-work during the training phase. Supervised and unsupervised ANNs have been used inthe diagnosis of epilepsy, either to study sleep behaviour, to detet seizures, to predit63



seizures or to lassify and analyze waveforms in the EEG reordings. The majority ofthe methods, mainly those belonging to the �rst two ategories treat single hannel dataonly. In the �fth ategory, knowledge-based reasoning in addition to the above mentionedmethods is widely used. This arises from the need to inorporate knowledge of the expertswhih takes the form of rules inluding temporal rules. Essentially, the spike detetionproblem an be simply transfered to the detetion of the presene of spikes in the multi-hannel EEG reording with high sensitivity and seletivity. That is, a high proportionof true events must be deteted with a minimum number of false detetions.Thus, a balane must be obtained between having high sensitivity and high seletivity.It is relatively easy to adjust system parameters to obtain performane where all spikesare found in a given patient but this would usually be aompanied by an unaeptablylarge number of false detetions. On the other hand, it is also relatively easy to have asystem with very low false detetion rate but then this would usually be aompaniedby an unaeptably large number of missed events. Many researhers argue that it isbetter to have a high sensitivity, minimize missed events and su�er more false detetionswhih an be heked by the EEGer rather than missing events altogether. If we look atthe system from the point of view of minimizing the number of false detetions then thenumber of missed events will inrease. However, if possible spikes an be enhaned priorto the use of a spike detetor it should be possible to inrease the sensitivity minimizingmissed events, while maintaining the seletivity at a satisfatory level.Thereby, a spike enhaner would not be a detetor but would simply aim to enhaneanything vaguely spike like. This means that real spikes, as well as spike like artefatsand bakground will be enhaned, i.e. a large number of unwanted waveforms will beenhaned along with real spikes. This is quite aeptable as long as the spike detetionsystem has high seletivity. To our knowledge, there exist only a few methods that per-form spike enhanement. James et al. [80℄ make use of multireferene adaptive noiseanelling (MRANC) in whih the bakground EEG on adjaent hannels in the multi-hannel EEG reording is used to adaptively anel the bakground EEG on the hannelunder investigation. In addition, adaptive noise anelling has been applied to enhanesomatosensory evoked potentials [81℄ and in anelling the presene of EOG in the EEG[82℄. The above methods assumed that EEG signal is a stationary one. However, it is wellknown that EEG ontains non - stationarities. In hapter we propose a novel method forEEG spike enhanement, whih ombines the AR model with the KF.4.2 Methodology4.2.1 Time - Varying Autoregressive ModelLet the vetor y be the one hannel EEG signal. We assume that the EEG an be modeledby an autoregressive model (AR). In general, AR model found many appliations in EEGanalysis [83, 84℄, although EEG is a nonstationary signal. It an be desribed with the64



following equation: y(t) = p
∑i=1

s(i)y(t− i) + v(t); (4.1)where p is the order of the model, s(i) the AR parameters, y(t) the observations and v(t)the Gaussian noise with zero mean and variane �2 ,i.e. v(t) ∼ N(0; �2). Sine the EEGis non - stationary signal we let the AR parameters to vary in time:y(t) = p
∑i=1

st(i)y(t− i) + v(t); (4.2)or in vetor notation: y(t) = C(t)T s(t) + v(t); (4.3)where C(t) = [y(t − 1); y(t − 2); · · · ; y(t − p)]T is a px1 vetor ontaining the p pastobservations. The vetor s(t) = [st(1); · · · ; st(p)]T ontains the AR parameters and variesin time aording to: s(t) = As(t− 1) +w(t); (4.4)where w(t) is Gaussian noise with zero mean and ovariane Q. This desribes an autore-gressive model for the EEG signal with time varying oeÆient in a state - spae form.To estimate those oeÆients we use the Kalman Filter approah (as desribed in hapter3), whih provides us with the set of equations:ŝt−1(t) = Aŝt−1(t− 1); (4.5)P t−1t = AP t−1t−1AT +Q; (4.6)ŝt(t) = ŝt−1(t) +K(t)(y(t)− C(t)T ŝt−1(t− 1)); (4.7)P tt = (I −K(t)C(t)T )P t−1t ; (4.8)K(t) = P t−1t C(t)(R + C(t)TP t−1t C(t))−1; (4.9)where R = �2. The signal that is used to the detetion proedure is z(t) = C ŝt(t); t =
1; · · · ; T .4.2.2 Detetion stepAfter the KF step, peaks from the output of the �lter whih are higher than a prede�nedthreshold are onsidered as an indiation of the existene of an epilepti spike at thatloation in the time series. In any spike detetion algorithm the threshold is optimizedto minimize missing of true peaks, while keeping the number of falsely deteted peakswithin a reasonable limit. For the proposed method the threshold value is hosen as:Th = � 1N N

∑t=1

b(yt) (4.10)where b(yt) is a segment of bakground EEG ativity, N is the length of the segment and� is a saling fator. 65



Table 4.1: The harateristis of the EEG segments used in the evaluation of our method-ology Patient Duration (se) # Epilepti Spikespatient 1 60 44patient 2 20 31patient 3 20 35patient 4 20 18patient 5 30 25patient 6 20 19patient 7 20 9patient 8 30 17patient 9 30 47patient 10 20 16patient 11 40 16patient 12 40 24patient 13 40 324.3 Experimental results4.3.1 Dataset desriptionAll EEGs were reorded by plaing eletrodes on the salp aording to the International10-20 system [85℄. Sixteen hannels were reorded from �ve bipolar montages where eaheletrode is referened to an adjaent eletrode. The EEGs are aquired while the patientis awake but resting and inlude periods of eyes open, eyes losed, hyperventilation andphoti stimulation. Ampli�ation was provided by Medele Pro�le EEG mahine. Inorder to redue undesired noise, the reordings were sampled at 256 Hz and bandpass�ltered from 1.6 - 70Hz with 12 bit resolution. Our methodology was tested on the EEG'sof 13 patients who were diagnosed with epilepsy or were under evaluation at the UniversityHospital of Ioannina, Greee. Segments of EEG were hosen from eah patient, ontainingspikes identi�ed by an expert neurologist who had aess to the full multihannel EEGi.e. ould rate spikes based on spatial and temporal ontextual information. Table 4.1summarises the EEG harateristis of eah patient.4.3.2 Choie of the parametersSpeial attention must be paid in the hoie of parameters entering our methodology.Those parameters are: the variane of observation noise, the variane of the state noise,the order, p, of the time varying AR model and the matrix A. The form of matrix Areets the orrelation of oeÆients between them and between di�erent time instants.We assume that there is no orrelation between the oeÆients in time instant n, with66



those in time instant n − 1. In addition, we assume a low degree of orrelation betweenAR oeÆients in adjusted time instants. Thus, the diagonal elements of A must havevalues << 1. We hoose matrix A as:A =







0:1 · · · 0... . . . ...
0 · · · 0:1 




:The order of the AR model is p = 15 [69℄. The variane of the observation noise, R,is R = 1.5 x (mean absolute value of the EEG signal). The ovariane matrix, Q, of thethe state noise is hosen as: Q =







0:1 · · · 0... . . . ...
0 · · · 0:1 




:Those values appeared to give the best results and have been hosen after long exper-imentation. In all experiments the raw signal has been normalized in the range [−1; 1].4.3.3 EvaluationTheoretially SNR at time t is de�ned as the ratio between the amplitude of the signalat time t and the standard deviation of the noise. Suh a time dependent de�nition isnot partiularly useful in neurophysiology, where SNR an be viewed as a single numberwhih haraterizes the noisiness of a spike train. In our problem the signal and noiseare represented by the spikes and the bakground EEG, respetively. So SNR an bede�ned as the ratio of the peak-to-peak value to the root mean square (RMS) value ofthe bakground EEG for a number of samples on either side of the spike, exluding thespike itself (Fig. 4.3).The spike is initially identi�ed by the loation of its maximum peak. A typial durationof 135 ms is assumed for a spike, whih orresponds to 35 samples at a sampling rate256 samples per seond. The minimum sample within the range ±17 samples from themaximum peak is hosen to be the minimum peak of the spike and the peak - to - peakvalue Spp is alulated aordingly. Finally, 35 samples (135 ms) on either side side of a32 sample spike are hosen to desribe the bakground EEG and its RMS value, BRMS,is alulated. Thus, SNR is de�ned as:SNR =

SppBRMS : (4.11)Using this SNR de�nition the primary performane index used is the perentage inreasein SNR de�ned as:
∆SNR =

SNRnew − SNRoldSNRold · 100%; (4.12)where subsripts "old" and "new" refer to before and after �ltering respetively.67



Figure 4.3: The SNR is de�ned as the ratio of peak-to-peak amplitude of the spike to theRMS of 35 samples on either side of the spikeTable 4.2 shows the average ahieved inrease of SNR for eah patient. We an seethat the proposed approah enhanes onsiderably the epilepti spike with respet tobakground EEG ativity. Fig. 4.4 depits a segment of raw EEG signal, whih ontainsa noisy spike, the signal after KF proessing and the signal after AR proessing. It islear that in this ase the AR proessing produes a noisy signal, whih make hard thedetetion of the spike. In ontrast, the KF eÆiently anels the bakground ativityand noise to produe a lear spike. Fig. 4.5 depits spikes with low amplitude, omparedto bakground ativity. As we observe the KF was able to learly distinguish the lowamplitude spike (third and �fth spike) from bakground ativity in ontrast to AR. Adi�erent situation an be seen in Fig. 4.6. In this ase we observe that the raw EEGsignal ontains spikes that are lose to eah other. The output of AR proessing is noisy,espeially in the time points from t = 800− 1000.A spike enhaner would not be a detetor but would simply aim to enhane anythingvaguely spike like. The aim of a spike enhaner is to maximize the seletivity (i.e. toderease false detetions). The lak of a proper de�nition of a spike other than "transients"learly distinguished from bakground ativity means that what onstitutes the ideal spikevaries. Using the above de�nition and making use of expert's knowledge we selet assaling fator � = 1:5.In Fig. 4.7 the signal before and after preproessing is shown, as well as the attenuationof the bakground proess after the appliation of KF. By a more arefull investigation ofthe signal after proessing we an observe that the false detetions have been onsiderablyredued.The performane of our methodology is evaluated in terms of spei�ity and sensitivity.Table 4.3 shows the four possibilities whih exist for eah deision made by the system.In the ase of a true positive the system identi�es an EEG segment as spike whih was68



Table 4.2: Comparison of average ( % ) inrease in SNR between Kalman Filter andinverse AR �ltering Patient Kalman Filter Inverse AR Filterpatient 1 111.89 28.33patient 2 58.14 24.71patient 3 53.05 16.27patient 4 63.53 -12.56patient 5 139.06 30.12patient 6 163 32.52patient 7 145.45 -7.07patient 8 44.97 21.38patient 9 373.54 -11.58patient 10 58.48 28.27patient 11 167.23 -11.2patient 12 221.13 -12.62patient 13 137.85 26.96Average 133.64 11.81
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Figure 4.4: (a) raw EEG signal (b) signal after KF proessing () signal after AR pro-essing
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Figure 4.6: (a) raw EEG signal (b) signal after KF proessing () signal after AR pro-essing
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Figure 4.7: (a) raw EEG signal and (b) signal after KF proessingTable 4.3: Confusion MatrixSystem = spike System = no - spikeLabel = spike True Positive (TP) False Negative (FN)Label = no-spike Fasle Positive (FP) True Negative (TN)annotated suh as by the expert. A false positive is the detetion of a spike whih isannotated as normal by the expert. A false negative indiates that the system has misseda spike. Finally, in the ase of a true negative the system and the expert both agree thatthe EEG segment is normal. In table 4.4 the results from the detetion proedure areshown. As we an see the use of a spike enhaner dereases the false detetions.In Fig. 4.8 the Power Spetral Density of an EEG segment using Welh's averaged,modi�ed periodogram method with window length equal to 512 is shown. As we an seein Fig. (4.8a) the signal before KF enhanement exists a lobe in the frequeny range from50 - 80 Hz. This frequeny range orresponds to EEG omponents that are irrelevantto the spike omponents. The appliation of KF in the EEG signal attenuates theseomponents as we observe in Fig. (4.8b). Based in this observation we an onlude thatthe appliation of KF orresponds to a low pass �lter.Table 4.4: Detetion PerfomaneFN FP TPwithout enhaner 38 1425 295with enhaner 49 680 284
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Figure 4.8: (a) PSD before KF preproessing and (b) PSD after KF preproessing4.4 Disussion and ConlusionIn this hapter we have presented a methodology for EEG reordings spike enhanement.It is based on the assumption that EEG onsists of an underlying bakground ativity,whih is assumed to be stationary, and superimposed transient non - stationarities. Themethod uses a time varying AR model for the enhanement of spikes. The parametersof the model are estimated by Kalman �lter. The use of time vaying AR model enhanespikes. The sensitivity of the detetion proess was inreased ompared to the ase withoutany preproessing stage, i.e. when the raw EEG is used as input in detetion stage.However, further analysis is required for the lassi�ation of the enhaned transients intoepilepti spikes or other events.Using the time varying AR model allows the EEG to be modeled as a time - varyingproess. Using this formulation we are able to enhane existing spikes and other eventswhih are similar to spikes. Usually the published works on spike detetion use a pre-proessing stage to enhane spikes in EEG reordings [62℄. However, only in [80℄ spikeenhanement is expliitly addressed. They use Multireferene Adaptive Noise Canelling(MRANC). The EEG on nearby hannels in the multihannel EEG reordings is usedadaptively to anel the bakground ativity. The MRANC uses spatial and temporalinformation to enhane the spikes but as reported in [80℄ the presene of signal rosstalkbetween the primary and referene hannel a�ets its performane. Another fator a�et-ing MRANC is the orrelation between the noise soure in di�erent hannels. In ontrast,our method uses the temporal information and the time varying nature of EEG ompo-nents to enhane the spikes. With the use of the Kalman Filter we are able to suppressthe bakground ativity. Issues related to the orrelation between noise or signal rosstalkdo not enter the proposed approah.One fator a�eting the performane of our method is the variane of bakgroundativity ompared to the amplitude of the spike. Spikes having similar amplitude with72
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Figure 4.9: (a) Raw EEG segment (b) EEG segment after proessingthe bakground EEG are supressed. This is shown in Figure 4.9, where a spike exists int = 400 and its amplitude is less than the bakground ativity. This happens beauseapart from the spike detetion on a single hannel itself, other ontextual informationis also used by the expert when he lassi�es events as epilepti or non epilepti. Thisinformation is related to other hannel ativity whih takes plaes at the same time. Theproposed method doesn't take advantage of the spatial information but "inspets" eahreording hannel individually.Our future work will fous on the use of suh information in making the �nal diagnosis.Spei�ally, the use of multihannel information guides us to extend the Kalman Filterto the multihannel ase. Another approah is the use of spatial ombiner whih utilizesthe epilepti spikes aross hannels to detet the presene of epilepti events. However,suh information must be inluded in an automated diagnosis system. More spei�ally,Kalman �ltering must be applied in multihannel reordings. Alternatively, diagnosismust be assisted by a module whih ombines information about epilepti spikes fromdi�erent hannels.
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Chapter 5Biomedial Signal Denoising using theVariational Bayesian Approah withAppliations to ERP Estimation andHRV Analysis
5.1 IntrodutionIn this hapter a Bayesian approah is proposed for the removal of the noise in biomedialsignals. The biomedial signal is assumed to be smooth and it is observed with additivenoise. The smoothness over the signal is ahieved through a apable smoothness prior,while the statistis of the noise are unknown and must be estimated. The estimation isbased on an hierarhial approah. The hyperparameters, whih ontain the degree ofsmoothness of the signal and the noise statistis, and the signal, are estimated using theVariational Bayesian (VB) Methodology. Results for single trial Event Related Potential(ERP) estimation are presented. The performane of the proposed method is evaluated insimulated and real ERP data and ompared to the well known wavelet denoising approahand the Generalized Cross - Validation (GCV) riterion. The use of the proposed methodresults in a 4% inrease in the lassi�ation rate. Also, the proposed method is used toestimate and remove the trend from Heart Rate Variability (HRV) signals.Biomedial Signal Denoising attempts to improve one or more pereptual aspets of thesignals orrupted by noise [110, 111℄. Denoising is refereed to the proess of reovering thelean signal from noisy observations. The removal of noise is a ruial step for any systemwhih proesses biomedial signals. The auray of all subsequent steps, e.g. detetion,lassi�ation, et., strongly depends on the quality of the noise redution proess. Forexample in [170℄ the authors use signal enhanement tehniques for the detetion of spikewaves in the Eletroenephalogram (EEG). However, signal denoising is not only met inbiomedial signals. Denoising of a signal in a noisy environment an be employed for othertypes of signals suh as speeh signals [113℄. In general, Signal denoising is related to the74
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Estimated ERP signalFigure 5.1: Raw EEG signal ( or noisy ERP signal) and the estimated ERP signal usingthe wavelet denoising approah.type of noise, the way the noise interats with the signal and the number of availablehannels. To understand better the proess of denoising we present an example basedon the single trial ERP analysis. The ERP is the eletri ativity of the brain due to astimulation. The measured responses an be onsidered as a ombination of the brainativity due to stimulation plus the brain ativity not related to the stimulation. TheERP is usually onsidered as transient - like smooth waveforms whih are dominated bylow frequenies [172℄. A ommon approah to denoise the single trial ERP is to onstruta �lter and �lter out the unwanted ontribution of the on-going bakground ativity ofthe brain. Digital �lters an be used for this purpose. However, this approah presentstwo major drawbaks. First, the spetrum of the ERP must be ompletely known andseondly, the spetrum of the EP and the noise are usually overlapped. In this ase theWiener �lter an be used. Using the Wiener �lter the ovariane matrix of the EP andthe noise must be known a priori. The ovariane of the noise an be estimated from EEGsegments before the stimulation. However, the estimation of ERP ovariane is a diÆulttask. Now, the problem is to proposed an aurate model for the ovariane matrix ofERP. In our method we propose a simple and elegant struture for the ovariane matrixof the lean signal through the prior distribution. In Fig. (5.1) a trial of EEG signal isshown. This EEG signal was obtained during the presene of a stimulus and an be alsoalled the noisy ERP signal, sine ontains the EEG ativity due to the stimulus plus theEEG ativity unrelated to stimulus. The goal of denoising an ERP signal is to removethe irrelevant EEG ativity and to reover the ERP signal. In Fig. (5.1), the reoveredERP signal using the wavelet denoising approah is shown.Two general approahes are followed in biomedial signal denoising. The �rst is themodel-based approah, where a model is used to explain the data. The model is �t to75



the data and the model parameters are estimated. The wavelet denoising [114, 115℄ andthe linear model [116, 117℄ belong to this approah. The seond approah is data drivenand to this approah the Independent Component Analysis (ICA) [118℄ and the PrinipalComponent Analysis (PCA) [120℄ belong.In this hapter the model-based approah is adopted and the linear model is used dueto its simpliity and its analytial expressions. The linear model �nds many appliationsin biomedial signal proessing, sine, it has been used in the analysis of fMRI data [26℄and in the estimation of Event Related Potentials (ERPs) [116℄. When the linear modelis used in a problem we fae two problems. The �rst is related to the design matrixwhih is used and the seond to the use of "best" parameters of the linear model. Inmost ases the design matrix is determined by the problem under disussion. Findingthe optimal parameters values is related with the estimation framework. Two generalshemes an be applied. The lassial inferene framework and the Bayesian infereneframework [40℄. In our approah we adopt the Bayesian framework sine we an use priorknowledge in the estimation proedure through the prior distribution. In the Bayesianframework the most valuable quantity is the posterior distribution. In some ases theposterior distribution annot be evaluated analytially and approximation tehniques anbe used suh as the Variational Bayesian (VB)[45, 42℄, the Empirial Bayes (EB), theLaplae Approximation [45℄ and the Markov Chain Monte Carlo (MCMC). However, inthe Laplae approximation the Gaussian assumption is based on the large data limitand the obtained posterior is poorly represented for small datasets, besides that we needmany operations to ompute the derivatives of the Hessian [42℄. Similarly, in the MCMCmethods the number of samples required for aurate estimates is infeasible large [42℄.In addition, the absene of a global measure to asertain whether the Markov Chain hasreahed equilibrium is a problem [42℄. On the ontrast the VB methodology is an eÆientomputational method sine it results in losed form solutions and a universally aeptedriterion exists to stop the proess, whih is the onvergene of the variational bound.There exist similarities between the VB and EB methodologies, but the EB methodologyresults from a ML estimation proedure [45, 121℄.In this hapter we present a method for the reovery of a biomedial signal whih isobserved in noise. The model we use is the additive one. To obtain a meaningful solu-tion we need to impose some restritions about the signal smoothness. The smoothnessproperty is often used in biomedial signal proessing, for example in [50℄ for fMRI dataanalysis, in [117℄ for ERP estimation and in [122℄ for the detrending of Heart Rate Vari-ability (HRV) signal. In the Bayesian framework this property an be embedded throughthe use of a apable prior distribution [123, 124℄. For the noise two ases are onsidered:the white Gaussian and the olored Gaussian noise. To estimate the various quantities ofthis model the VB methodology is used. The innovation of our work is related to the waywe estimate the smoothness of the signal and the statistis of the noise. The proposedmethod provides with simultaneous estimation of the signal smoothness and the noisestatistis within the same estimation framework. This feature avoids the visual tuning of76



the smoothness parameter as it is proposed in [122℄. Also, for the smoothness parameterwe obtain a posterior distribution in ontradition to [117, 50℄ where point estimates forthe smoothness parameter are provided through the GCV riterion. Finally, the trans-formation of the resulting equations into the Fourier Domain, using the Disrete FourierTransform (DFT), provides with eÆient omputational algorithms. What makes ourapproah di�erent from others [117, 50, 122℄ is that all model parameters are estimatedsimultaneously into the same estimation framework. This is desribed for two ases: (a)white Gaussian noise and (b) olored Gaussian noise.The hapter is organized as follows. First, the Bayesian model is desribed. Seond,the VB methodology is applied to obtain the posterior distributions of the model. Next,the proposed algorithms are applied in simulated and real datasets. In the simulateddatasets, �rst the numerial simulations and the evaluation metris are desribed. Afterthat, a omparison of the proposed algorithms with the Generalized Cross � Validation(GCV) approah and the wavelet denoising is performed. In the real datasets, we appliedthe proposed algorithms in two ases: ERP estimation in EEG signal and removal ofthe trend in HRV signals, and ompare to the wavelet denoising. Finally, the results aredisussed along with the future work.5.2 MethodologyWe onsider a signal s(k) orrupted by additive Gaussian noise n(k). The raw signal(observations) an be expressed as:y(k) = s(k) + n(k), (5.1)where k is the index sample (or time), k = 1; · · · ; N , with N being the number of samples.Eq. 5.1 an be written in vetor notation:y = s + n, (5.2)where y = [y(1); y(2); · · · ; y(N)], s = [s(1); s(2); · · · ; s(N)] and n = [n(1); n(2); · · · ; n(N)].The signal s is unorrelated to the noise. The problem is to estimate the signal s giventhe observations y. The ML solution in this problem is meaningless beause the ML es-timator orresponds to the observations. To obtain a meaningful solution regularizationis required. The onstraint is hosen ad ho or it is based on some a priori informa-tion. In our study, the signal is onstrained to be smooth. This means that we expetneighborhood samples of the signal to have similar values, i.e. the signal s has high orre-lation. This property is useful when we study biomedial signals. Sine we use a Bayesianapproah, the smoothness property must be introdued to our model through the priordistribution. For this reason we hoose the smoothness prior [123℄. However, the use ofsmoothness prior introdues a new parameter (see below) into our model, whih enforesthe use of a hierarhial Bayesian model to deal with it. We mention here that the term77



smoothness refers to temporal smoothness. In the next setions we will present the ap-pliation of the VB methodology in the ases of white Gaussian and Colored Gaussiannoise.5.2.1 White Gaussian NoiseThe smoothness prior over the signal s is given as:p(s|�) ∝ ( �
2�)N=2 exp{− �

2
sTLTLs}. (5.3)This prior has been used to estimate the trend in HRV and fMRI time series [50, 122℄and to estimate the ERP signal [117℄. The matrix L is a disrete approximation of thed-th derivative operator. The noise is assumed to be white Gaussian, i.e.p(n|�) = ( �

2�)N=2 exp{− �
2
nTn}. (5.4)where � is the preision of the noise (inverse variane). Due to this assumption, thelikelihood of the observations, given the signal s and the noise preision �, is:p(y|s; �) = ( �

2�)N=2 exp{− �
2
(y − s)T (y− s)}. (5.5)Finally, we assume that � and � are Gamma variables:p(�) = Γ(�; b�; �), (5.6)p(�) = Γ(�; b�; �), (5.7)where

Γ(x; b; ) = 1

Γ() x(−1)b exp
{

− xb}. (5.8)The hoie of Gamma distribution is based on the fat that the Gaussian and Gammadistributions are onjugates [125℄. We observe that the prior over the signal is not om-pletely known but depends on the parameter �, whih is unknown and must be estimated.The same happens with the parameter �. Sine we assume that the signal is unorrelatedto the noise, the join prior of our model an be written as:p(s; �; �) = p(s|�)p(�)p(�). (5.9)In the ase, where the parameters � and � are known, an estimate of the signal an beobtained as: ŝ = �(�LTL+ �I)−1y; (5.10)where I is the identity matrix. The above estimator is the MAP estimator of the proposedmodel. The use of the MAP estimator assumes that the values of the parameters � and �are known. However, in our problem these parameters are unknown and must be estimatedusing the observations. There exist several methods whih address the estimation of those78



parameters: the evidene based approah [33, 152℄, the integration method [126℄, and theensemble learning or VB methodology [42, 148, 152℄. The above methods are based on aBayesian treatment of the problem. Approahes outside the Bayesian framework an bealso used suh as the generalized ross validation riterion [50, 124℄.In our study to perform inferene about the signal s and the parameters � and � weuse the VB methodology (see Chapter 2). We approximate the true posterior with thefatorized distribution: q(s; �; �|y) = q(s)q(�)q(�). (5.11)Applying the VB methodology the Equations (5.12)-(5.19) are obtained: The posteriorover the signal s is a Gaussian distribution with mean and ovariane given by:ŝ = �̂Csy, (5.12)Cs = (�̂LTL+ �̂I)−1. (5.13)The posterior over the parameter � is a Gamma distribution with parameters:
1b′� =

1

2

(yTy − 2yT s+ trae(Cs + ŝŝT ), (5.14)′� =
N
2

+ �, (5.15)�̂ = b′�′�. (5.16)The posterior over the parameter � is a Gamma distribution with parameters:
1b′� =

1

2

(trae(LTL(Cs + ŝŝT )), (5.17)′� =
N
2

+ �, (5.18)�̂ = b′�′�. (5.19)The algorithm onsists of the iterative appliation of the Equations (5.12)-(5.19) until theonvergene of the variational bound. This algorithm is alled VarWhite. The variationalbound is given by:F (q; s; �; �) = 〈

log p(y|s; �)〉−KL(q(s)||p(s)))
−KL(q(�)||p(�)))−KL(q(�)||p(�))), (5.20)where: KL(q(s)||p(s))) =
N
2
log �̂− 1

2
log |Cs|+ 1

2

(�̂LTLCs)+
�̂
2
ŝTLTLŝ, (5.21)KL(q(�)||p(�))) = (′� − 1)Ψ(′�)− log b′� − ′� + log Γ(′�) + log Γ(�) +� log b� − (� − 1)(Ψ(′�) + log b′�) + b′�′�b� , (5.22)KL(q(�)||p(�))) = (′� − 1)Ψ(′�)− log b′� − ′� + log Γ(′�) + log Γ(�) +� log b� − (� − 1)(Ψ(′�) + log b′�) + b′�′�b� , (5.23)

〈

log p(y|s; �)〉 =
N
2
log �̂− �̂

2

(yTy − 2yTs+ trae(Cs + ŝŝT )). (5.24)79



The alulation of the KL divergene for various distributions is explained in [45℄.5.2.2 Colored Gaussian NoiseIn this setion the previous model is extended in the ase of olored Gaussian noise, i.e.a stationary proess whih follows the Gaussian distribution with full ovariane. Thisextension makes the proposed model more robust sine it inludes the previous modelas a speial ase and it an be used in ases where the noise is desribed as oloredGaussian. For example in ERP estimation the bakground EEG is better modeled by aolored Gaussian distribution [117℄. The observation model is given by Eq. (5.2), theprior of the lean signal by Eq. (5.3) and the hyperprior for � by Eq. (5.6). We makethe same assumptions about these parameters as in the ase of the white noise. Thenoise is assumed to be olored Gaussian with zero mean and ovariane matrix Cn. Theparameters in this ase are the signal s, the parameter � and the inverse ovariane ofthe noise, R = C−1n . For the ovariane of the noise we use as prior the Wishart density[125, 127, 128℄ p(R) =W (rp;Bp). (5.25)The prior over the parameters an be written as:p(s; �;R) = p(s|�)p(�)p(R). (5.26)We an apply the VB methodology as in the ase of the white Gaussian noise. Theposterior is approximated by q(s; �;R|y) = q(s|�)q(�)q(R). The approximate posteriorsin this ase are: q(s) = N (ŝ;Cs), (5.27)q(�) = Γ(�; b′�; ′�), (5.28)q(R) = W (r;B), (5.29)(5.30)where: Cs = (�̂LTL+ R̂)−1, (5.31)ŝ = CsR̂y, (5.32)
1b′� =

1

2

(trae(LTL〈ssT〉)), (5.33)′� =
N
2

+ �, (5.34)r = rp + 1, (5.35)B = Bp + (

(y− < s >)(y− < s >)T)+Cs. (5.36)
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The required moments are easily evaluated as:< s > = ŝ, (5.37)
〈ssT〉 = Cs + ŝŝT , (5.38)�̂ = b′�′�, (5.39)R̂ = rB−1. (5.40)The algorithm onsists of the iterative appliation of Equations (5.31) - (5.36) until on-vergene of the variational bound. The algorithm is alled VarColored. The variationalbound is given by:F (q; s; �; �) = 〈

log p(y|s; �)〉−KL(q(s)||p(s)))
−KL(q(R)||p(R)))−KL(q(�)||p(�))), (5.41)In the above equation the KL divergene for the signal s and the parameter � are thesame as in the white noise ase. For the other quantities we have:KL(q(R)||p(R)) =
r −N − 1

2
L(r;B)− rp −N − 1

2
L(rp;Bp)− rN

2

+
r
2
trae{BpB}

+ log
Z(rp;Bp)Z(r;B)

, (5.42)
〈p(y|s;R)

〉

=
1

2
L(r;B)− 1

2

{R̂(

(y− < s >)(y− < s >)T +Cs)} . (5.43)The terms Z(r;B) and Z(rp;Bp) and are the normalized quantities of the posterior andprior distribution of , whih are Wishart distributions. The terms L(r;B) and L(rp;Bp)are given as: L(r;B) =

∫

log |R|W (r;B)dR, (5.44)L(rp;Bp) =

∫

log |R|W (rp;Bp)dR, (5.45)whih an be seen as the expetation of the quantity log |R| with respet to the posteriorand the prior distributions of the noise preision matrix R.5.2.3 Stationarity assumptionsThe stationarity of the proposed estimator for the signal s is depended on its prior andmore spei�ally on the struture of the matrix L. Beause the signal is onsidered �niteand inludes N samples, the stationarity depends on the onditions at the beginning andat the end of the signal [123℄. Assuming that the signal vanishes outside its domain i.e.
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y(−1) = y(N + 1) = 0, the matrix L for d = 2 beomes:
L =





















2 −1 0 0 · · · 0

−1 2 1 0 · · · 0

0 −1 2 −1 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2





















(5.46)
This hoie of suh matrix gives a non stationary prior for the signal s, beause the matrixLTL takes the following form:

LTL =





























5 −4 1 0 0 · · · 0 0

−4 6 −4 1 0 · · · 0 0

1 −4 6 −4 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 1 −4 6 −4
0 0 · · · 0 0 1 −4 5





























: (5.47)
This type of prior an be used when the signal vanishes at the boundaries. When thesignal is extended periodially outside its domain, i.e. y(−1) = y(N) and y(N+1) = y(1),the matrix L is: L =















2 −1 0 0 · · · −1
−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0

· · · · · · · · · · · · · · · · · ·
−1 · · · 0 0 −1 2















(5.48)and the matrix LTL is:
LTL =





























6 −4 1 0 0 · · · 1 −4
−4 6 −4 1 0 · · · 0 1

1 −4 6 −4 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · 0 0 1 −4 6 −4
−4 1 · · · 0 0 1 −4 6





























(5.49)
whih is a irulant one. In this ase we an assume that the prior of the signal isstationary, due to the asymptoti equivalene between the irulant and Toeplitz matries[129℄. In the ase we assume the stationary prior for the signal s, we an write theequations for both algorithms, VarWhite and VarColored, in the Fourier domain to redue82



the omputational omplexity. Another fator that a�ets the stationarity of the estimatorof s is the statistial properties of the noise. If the noise is assumed to be non stationarythen the estimator of s is non stationary, even if we assume stationary prior for the signal.This is due to the iterative nature of the algorithm. Assuming non stationary noise withnon partiular struture of the ovariane N2 parameters for the noise, when we have Ndata samples, need to be estimated. In our ase, to redue the number of parameters, weassume that the noise is stationary.5.2.4 Equations in the frequeny domainAssuming stationary prior for the signal s and stationary noise n the VarWhite andVarColored algorithms an be written in the Fourier Domain. The resulting equations forthe VarWhite algorithm are:S(f) =
�̂Y (f)�̂+ �̂|L(f)|2 ; f = 1; · · · ; N (5.50)Ps(f) =

1�̂+ �̂|L(f)|2 ; f = 1; · · · ; N (5.51)
1b′� =

1

2

{

N
∑f=1

(

|L(f)|2Ps(f) + 1N |L(f)|2|S(f)|2)}+
1b� (5.52)′� =

N
2

+ � (5.53)�̂ = b′�′� (5.54)
1b′� =

1

2

{ 1N N
∑f=1

|Y (f)|2 − 2N N
∑f=1

Y ∗(f)S(f)
+

N
∑f=1

(Ps(f) + 1N |S(f)|2)}+
1b� (5.55)′� =

N
2

+ � (5.56)�̂ = b′�′�; (5.57)where Y (f) and S(f) are the DFT (Disrete Fourier Transform) oeÆients of the vetorsy and ŝ, and Ps(f) are the eigenvalues of the ovariane matrix Cs. The algorithm in theFourier Domain onsists of Eqs. (5.50)-(5.57). This algorithm is alled VarWhiteFFT.
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The equations for the VarColored algorithm are:S(f) =
R(f)Y (f)R(f) + �̂|L(f)|2 ; f = 1; · · · ; N (5.58)Ps(f) =

1R(f) + �̂|L(f)|2 ; f = 1; · · · ; N (5.59)
1b′� =

1

2

{

N
∑f=1

(

|L(f)|2Ps(f) + 1N |L(f)|2|S(f)|2)}+
1b� (5.60)′� =

N
2

+ � (5.61)�̂ = b′�′� (5.62)B(f) = Bp(f) + |Y (f)− S(f)|2=N + Ps(f); f = 1; · · · ; N (5.63)r′ = rp + 1 (5.64)R(f) =
1B(f) ; f = 1; · · · ; N (5.65)where R(f) , B(f) and Bp(f) are the eigenvalues of the matries R , B and Bp , re-spetively. The algorithm in the Fourier domain onsists of Eqs. (5.58)-(5.65), and it isalled VarColoredFFT. In Eqs. (5.36) and (5.63) the seond term is an approximationfor the ross orrelation matrix between the vetors y and ŝ. However, sine the quantity

(y− s)T (y − s) is a rank one approximation, this makes it a very unstable term. On theother hand the term |Y (f)−S(f)|2N is a good approximation for the ross orrelation sequenefrom whih we onstrut the ross orrelation matrix. Thus, in the time domain the quan-tity (y− s)T (y − s) is replaed by a Toeplitz matrix, whih is onstruted using the rossorrelation sequene. This sequene an be obtained by the inverse Fourier transform of
|Y (f)−S(f)|2N .5.3 Experimental results5.3.1 Experiments using simulated signalsThe eletrophysiologi signal is onstruted as a superposition of two Guassian ompo-nents. Random utuation is introdued on the peaks position to simulate the latenyvariability. The matrix L desribes the smoothness of the signal and it is an approximationof the dth derivative. We test the proposed algorithms using as values of d = 2,4 and 6(low d orresponds to smooth signal and high d in a "spiky" signal). The value of d deter-mines the extent of the smoothness. Unlike the other quantities of the proposed model,d is diÆult to be addressed in a theoretial basis. In the literature the hoie of d is leftto the user [117℄.We ompare the VarWhiteFFT algorithm with the generalized ross validation (GCV)riterion [124℄ and the wavelet denoising approah. From all the wavelet transforms, theDisrete Wavelet Transform (DWT) is the most widely used. However, the DWT presents84



a serious drawbak in the estimation of ERP [114, 130℄, sine it is shift invariant. Tooverome this problem the Stationary Wavelet Transform (SWT) an be utilized. Weuse the biorthogonal mother wavelet (bior4.4) sine we are interested in the morphologyand the lateny of the peaks [114℄. The EEG signal is deomposed into �ve levels andsoft thresholding is used. The thresholding rule is the 'sqtwolog' aording to the wavelettoolbox of Matlab and level dependent estimation of level noise is applied. In the GCVapproah the signal of interest is estimated as:ŝGCV =
(��LTL+ I)−1y = S(�)y, (5.66)where � = �� . To estimate the signal the parameter � is needed. This is aomplished byminimizing the GCV riterion with respet to the parameter � . The GCV riterion isgiven by the equation: GCV (�) = 1N ‖y − s‖2

( 1N trae(I− S(�)))2 . (5.67)To quantify the performane we alulate the SNR enhanement as:SNRout = 10 log
‖s‖2
‖s− ŝ‖2 , (5.68)where s is the trial and ŝ is the orresponding estimate. To simulate M trials we generateM ERP waveforms and M realizations of noise for eah SNR level. The simulated noisytrials are obtained by adding the noise to the ERP trials.We apply the VarWhiteFFT algorithm in noisy ERP where the noise is white gaussian.The VarWhiteFFT algorithm is initialized using noninformative priors, b� = b� = 106 and� = � = 10−6. The SNRout for SNR = 5, 3, 1, 0 dB using the VarWhiteFFT algorithm,the wavelet denoising and the GCV approah is alulated. SNR = 0 dB orresponds torealisti situations [131℄. For GCV and VarWhiteFFT we use d = 2,4,6 and the obtainedresults are shown in Table 1. The best results are obtained when the VarWhiteFFT isused. A simulated ERP, a noisy ERP and the estimates are shown in Fig. 1 for SNR = 0dB. The GCV and the VarWhiteFFT estimates present larger osillations in the range ofsamples 150-256 than the wavelet denoising. The GCV and the VarWhiteFFT estimatebetter the simulated ERP in the range of samples 50-150. This is due to the fat thatGCV and VarWhiteFFT assume that the ERP is stationary, in ontrast to the waveletdenoising whih assumes that the ERP is a non stationary signal.In the olored noise ase the VarColoredFFT algorithm is used and it is initializedusing the noninformative prior for the parameter � , i.e. b� = 106 and � = 10−6. For theprior of the noise we set rp = 0 and Bp = 0 giving the improper prior p(R) ∝ |R|−N+1

2 .We test the VarColoredFFT for input SNR = 5, 3, 1, 0 dB using low and high pass oloredGaussian noise. To reate low pass noise an AR model of order 4 with AR oeÆients [1, 1.5084, -0.1584, -0.3109, -0.0510 ℄ is used, while the AR oeÆients for the high passnoise are [ 1, -1.5084, 0.1584, 0.3109, 0.0510℄. In Table 5.2 we observe that the waveletdenoising approah presents better results ompared to VarColoredFFT in the ase of low85



Table 5.1: SNRout for di�erent SNRin in white gaussian noise ased=2 d=4 d=6SNR VAR GCV VAR GCV VAR GCV WAV5 18.3572 18.2973 17.9238 18.3428 15.5130 17.8851 14.14413 16.3498 16.2325 15.9253 16.1731 13.5032 15.5807 13.47631 14.6461 14.3728 14.1853 14.0988 11.5614 13.3881 12.86110 13.8054 13.4427 13.1249 13.1329 10.5247 12.4918 12.3807

(a) (b)Figure 5.2: (a) Simulated and noisy ERP and (b) Estimation using the GCV, VarWhit-eFFT and Wavelet denoising approahes
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Table 5.2: SNRout for di�erent SNRin in olored low pass noiseSNR VarColoredFFT (d = 2) VarColoredFFT (d = 4) VarColoredFFT (d = 6) WAV5 1.7643 13.5873 9.8299 13.90893 1.5652 12.1169 8.2163 12.71151 1.8186 10.5174 6.4513 11.69760 1.5985 9.3108 5.4439 10.5134Table 5.3: SNRout for di�erent SNRin in olored high pass noiseSNR VarColoredFFT (d = 2) VarColoredFFT (d = 4) VarColoredFFT (d = 6) WAV5 0.6734 40.2934 36.2906 18.42653 0.7746 38.8252 34.8002 17.94211 0.8722 37.6405 33.2309 17.92710 1.0071 36.3522 32.4469 18.4125pass noise. The best results for the VarColoredFFT are obtained for d = 4. In Table5.3 the results in the ase of high pass olored noise are shown. The VarColoredFFTapproah presents muh better results than the wavelet denoising. In Fig. 2 a trial ofhigh pass noisy ERP along with the estimates obtained from the VarColoredFFT and thewavelet denoising are shown. In the next setions, results using real datasets are provided.However, in these setions we do not use the GCV approah sine the GCV riterion isderived under the white noise assumption, while the noise in the real dataset is olored.5.3.2 Appliation to Event Related Potential (ERP) estimationWe have used EEG data reorded during a go/nogo visual ategorization task using nat-ural photographs. This dataset has been used to study brain dynamis in [132℄. Subjets

(a) (b)Figure 5.3: (a) Simulated and noisy ERP and (b) Estimation using the VarColoredFFTand Wavelet denoising approahes 87



(a) (b)Figure 5.4: Raw trials in the ase of (a) target and (b) non target.were presented with pitures whih either ontained or did not ontain animal images. Inthe presene of an animal in the piture a button was pressed by the subjet. The datahave been proessed using Independent Component Analysis (ICA) to remove musle a-tivity, eye blink et. [132℄. In our study the ICA - preproessed data, derived from thePz hannel, are used. The dataset inludes 14 subjets and onsists of 4276 ERPs, where2150 belong to the target ase while the rest 2126 belong to the non target ase.The dataset has been proessed using the wavelet denoising and the VarColoredFFTapproah with d = 4. The VarColoredFFT algorithm is initialized using b� = 106 and� = 106 while for the ovariane matrix of the noise improper prior is used. These valuesfor the parameters of the prior of the smoothness parameter have provided the best results.In Figs. (5.4) - (5.6) ERP images of raw and proessed trials from one subjet for thetarget and the non target ase are shown. The ERP image is a visualization tool whihgives the ability to see the evolution of ERP in a trial-by-trial basis [119℄. Besides the ERPimage, we show the mean of trials from eah method. It is obvious that both approahesprodue a leaner ERP signal than the raw ERP. Also, it is lear that features of ERP,suh as the lateny and the amplitude of lateny, are more identi�able in the denoiseddata.Besides the visual omparison of the two methods, we also present results for thelassi�ation of an ERP into target and non-target ases. The input of the lassi�er is adataset of features. The features are extrated from raw ERPs and denoised ERPs. Forthe denoising of raw ERPs we have used the proposed approah and the wavelet analysis.We note here that the dataset from eah subjet has been proessed separately. Thelassi�ation proedure is based on two harateristis of the ERP: the lateny and theamplitude of the P300 wave. These features are extrated and used as input to a quadratidisriminant lassi�er. The lateny is taken as the maximum amplitude in a pre-spei�edwindow. In our ase this window is 300-600ms from the onset of the stimulus. The datasethave been proessed using 10 times fold ross validation. The mean lassi�ation rateswere 63.4857 +/- 6.3096, 67.2993 +/- 7.3435 and 67.3457 +/- 7.5096 using the raw ERPsand the denoised ERPs extrated using the proposed approah and wavelet denoising.88



(a) (b)Figure 5.5: Estimated trials in the ase of (a) target and (b) non target using the Var-ColoredFFT approah.

(a) (b)Figure 5.6: Estimated trials in the ase of (a) target and (b) non target using the Waveletdenoising approah.
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Table 5.4: Classi�ation rates of ERPs in target and non target ases for eah subjet.Raw EEG ( % ) VarColored ( % ) Wavelet Denoising (% )Subjet 1 68,25 72,54 74,91Subjet 2 65,30 70,64 71,84Subjet 3 72,37 76,43 77,12Subjet 4 64,82 66,33 68,21Subjet 5 57,40 62,78 53,51Subjet 6 64,33 69,21 67,42Subjet 7 54,73 52,19 58,41Subjet 8 61,20 69,07 65,32Subjet 9 76,54 73,71 75,40Subjet 10 64,82 76,26 72,13Subjet 11 58,58 55,67 57,82Subjet 12 61,02 68,14 68,27Subjet 13 65,22 69,65 73,39Subjet 14 54,22 59,57 59,09Mean lassi�ation rate 63,48 67,30 67,35We observe an inrease on the lassi�ation rate 4% using the proposed approah andwavelet denoising. While the hanges in the lassi�ation rate of the two approahes,VarColoredFTT and wavelet denoising, annot be onsidered statistial signi�ant in thewhole dataset, the two approahes present di�erent behavior as it is shown in Table 5.4.5.3.3 Appliation to HRV time series analysisThe proposed approahes are employed for detrending HRV time series. HRV is used asa quantitative marker of the autonomous nervous system ativity. The HRV time seriesontain omponents, whih are related to slow linear or more omplex trends. Thesee�ets an ause distortion on the subsequent proessing suh as time - frequeny orspetral analysis. Our appliation has been inspired by the work proposed in [122℄. Inthis work the authors used the smoothness prior to estimate the trend in the HRV timeseries and subtrat it from them. This results to a detrended HRV time series. However,the value of the parameter � was based on visual analysis of the time series. This is aserious drawbak of the proposed algorithm. To estimate the parameter � the generalizedross validation riterion an be used. However, the GCV riterion assumes that thenoise is white Gaussian, something that is not always true. In this hapter we use theVarColored algorithm to estimate the trend in a HRV time series.The HRV time series have been extrated from the MIT/BIH Arrhythmia Database90



[133℄. All reords are utilized. The HRV time series have been proessed using theVarColoredFFT algorithm and the wavelet denoising. After trend removal, an analysisis performed in the detrended HRV time series using time domain measures and spetralanalysis. Before the detrending an impulse rejetion �lter is applied as desribed in [134℄.The wavelet db3 and level equal to 6 are used [134℄. Also, the thresholding rule is the'sqtwolog' aording to the wavelet toolbox of Matlab and level dependent estimation oflevel noise is applied. Finally, soft thresholding is used. The VarColoredFFT algorithmis initialized by using b� = 106 and � = 106 for the smoothness parameter while for theovariane matrix of the noise improper prior is used.The time domain measures used in our study are: the standard deviation of all RRintervals (SDNN) and the root mean square of di�erenes of suessive RR intervals(RMSSD) [135℄. In Tables 5.5 and 5.6 the alulated measures are provided for theoriginal HRV time series and the detrended HRV time series using the VarColoredFFTalgorithm and the wavelet denoising approah. It is obvious that both approahes pro-due a signi�ant hange in the value of SDNN of original HRV time series. However,the VarColoredFFT approah tends to leave unhanged the RMSSD measure omparedto the wavelet denoising approah. The detrending using the VarColoredFFT approahhas a strong e�et on the SDNN measure and only a small e�et in the RMSSD measurewhih desribes the short term RR variability. In ontrast, the wavelet denoising hasstrong e�et on both measures. To show that the two approahes, the proposed approahand the wavelet denoising, present statistially di�erent results in terms of RMSSD andSDNN measures we perform t-tests [136℄. The �rst t-test is related to the SDNN measure.Comparing the di�erene between the two approahes we have found that at 95% on�-dene level, the on�dene interval is [4.0085, 16.3014℄, whih does not inlude the zerovalue, and thus, the observed di�erene is statistially di�erent with respet to the SDNNmeasure. The seond t-test is related to the RMSDD measure. At 95% on�dene level,the on�dene interval is [4.8093, 20.6733℄, whih indiated that the observed di�erene isstatistial signi�ant in term of RMSSD measure. Finally, a visual example of two reordsfrom the database (reords 100 and 200) is shown in Fig. (5.7). In this �gure, the HRVtime series of the reord and the estimated trends using the VarColoredFFT algorithmand the wavelet denoising approah are shown. It is obvious that both approahes areable to extrat eÆiently the trend.5.4 DisussionIn this hapter we propose a new approah to estimate a biomedial signal ontaminatedby gaussian noise, either white or olored. More spei�ally we explore the smoothnessof a biomedial signal. To inorporate the smoothness property in a Bayesian frameworkthe smoothness prior is used. The proposed approah has been applied to estimate ERPpotentials observed in noise and for detrending HRV time series. The results indiate theusefulness of the proposed approahes. 91



Table 5.5: RMSSD measure for all reords of the MIT/BIH Arrythmia database.Reord Raw time series (mse) VarFFTColored (mse) Wavelet (mse)100 30.5676 30.5651 29.2378101 39.0460 39.0418 38.5431102 35.9438 35.9433 34.4788103 32.5482 32.5422 32.1019104 51.6978 51.6974 51.3571105 22.5530 22.5502 21.4233106 434.7516 434.7488 417.4801107 30.1195 30.1188 29.4943108 83.3694 83.3623 78.5698109 36.8545 36.8516 29.0798111 34.2006 34.1967 34.1119112 17.5951 17.5915 17.3631113 92.6397 92.6365 91.8428114 109.2839 109.2817 76.0988115 72.2478 72.2429 72.0577116 18.6094 18.6078 17.4881117 34.7143 34.7065 34.5804118 71.5364 71.5298 40.1229119 299.1581 299.1572 297.8358121 19.5878 19.5732 19.5341122 19.0312 19.0145 19.0124123 103.4247 103.4227 103.0032124 56.3651 56.3598 47.4654200 260.7571 260.7564 260.4236201 365.6437 365.6367 342.6606202 208.2037 208.1961 138.8792203 265.6832 265.6814 265.6476205 26.1472 26.1372 17.7047207 217.3939 217.3676 60.1048208 188.9911 188.9900 188.9573209 56.1245 56.1165 43.7349210 159.5481 159.5471 157.4235212 26.2510 26.2462 25.9468213 25.3431 25.3428 24.4440214 145.6556 145.6534 105.4569215 43.9616 43.9607 35.6157217 71.6366 71.6345 64.6255219 220.9104 220.9058 220.3093220 48.7048 48.6998 35.8222221 272.4356 272.4347 272.4343222 244.7885 244.7832 230.2498223 86.8727 86.8694 67.3661228 313.4371 313.4368 301.6098230 28.5564 28.5368 28.2740231 84.3748 84.2361 57.5353232 143.9505 143.9482 62.2999233 217.5260 217.5258 217.5076234 17.8362 17.8252 17.3143Mean value 114.3037 114.2961 101.554892



Table 5.6: SDNN measure for all reords of the MIT/BIH Arrythmia database.Reord Raw time series (mse) VarFFTColored (mse) Wavelet (mse)100 36.8123 30.6589 29.1539101 66.2710 43.2582 43.1299102 29.0400 28.5746 27.9368103 45.8076 40.4292 39.5033104 36.2572 36.1162 35.8876105 33.9255 21.7845 21.7154106 260.9793 246.9869 235.2391107 27.3528 27.0460 26.6920108 98.5885 69.4819 67.2474109 35.7987 30.5343 26.9596111 37.7138 29.3101 29.6689112 20.6286 13.0407 13.4732113 94.3495 89.0375 89.0424114 114.2124 80.8855 59.8151115 85.8584 81.1964 80.4174116 22.6307 14.0928 13.8859117 39.6789 34.0083 31.4574118 72.4890 51.0061 32.3252119 176.5624 175.4097 174.8878121 81.6542 27.3789 28.1441122 39.8915 26.7308 27.6931123 116.3484 113.7811 110.8904124 77.1935 48.4703 43.4958200 150.1990 144.5702 144.0939201 347.5576 273.6207 240.5611202 283.5881 147.8009 110.2574203 198.9309 194.6069 194.4783205 51.0154 32.6703 15.5988207 290.0354 167.4336 50.3120208 118.6269 114.5910 114.7254209 77.4221 58.8256 39.0359210 109.5262 108.4588 107.6870212 40.2068 33.1682 33.5011213 18.2943 16.2163 15.8691214 102.4272 99.7495 82.6180215 35.2039 34.6407 31.6939217 58.1727 53.4981 49.6686219 168.7913 155.5955 151.4202220 59.6947 45.8786 34.4981221 182.3230 178.9202 179.2007222 214.3801 198.5178 181.2579223 63.6052 53.9069 44.7834228 177.9545 176.1317 170.4996230 86.0102 46.9280 47.1409231 312.8586 166.8755 126.9590232 134.5248 132.4360 57.5120233 124.1067 123.6997 123.6493234 27.3740 20.7194 15.5568Mean value 105.8932 86.2225 76.067593



(a) (b)Figure 5.7: (a) Reord 100 and (b) Reord 200.The Bayesian approah provides with the ability to use the prior knowledge of ourproblem through the prior distribution. Sometimes the prior distribution is not om-pletely known but it omes in a parameterized form, one suh example is the smoothnessprior. These parameters of the prior distribution an be estimated within the Bayesianframework and they are alled hyperparameters. To estimate the hyperparameters theVariational Bayesian Methodology is used. However, besides the VB approah, the hy-perparameters an be estimated using the Empirial Bayes or the GCV riterion. Themajor di�erene between the EB and the VB is in the way that they estimate the hyper-parameters. The EB approah is based on the ML estimation while the VB approah isbased on the Bayesian estimation. This means that the EB provides with point estimatesfor the hyperparameters, while the VB approah provides with a posterior distributionfor the hyperparameters. This means that the EB approah does not take into aountthe variability of the hyperparameters.Another approah for the estimation of the hyperparameters is the GCV framework.We have observed in our experiments that in the ase of the white gaussian noise theproposed approah and the GCV method result in similar performane. However, thereexist some di�erenes. In the Bayesian approah we know the assumptions, whih doesnot happen in the GCV approah. Also, when we use multiple regularization parameters,we an handle them very easily in the Bayesian approah. However, there is not a widelyused methodology where the GCV riterion is used to handle multiple regularizationparameters. Finally, the GCV riterion has been developed under the assumption that theerror follows a gaussian distribution. This means that we must expet low performanewhen the error follows a di�erent distribution other than the gaussian. To onlude,the Bayesian approah provides with a strutured way to estimate the regularizationparameters, espeially, in the ase of multiple parameters.The proposed algorithms an be applied in the wavelet domain. However, this impliesthat high orrelation between the wavelet oeÆients must exist. There is no evidene thatsomething like that happens. The proposed algorithms assume global smoothness of the94



signal. Assuming loal smoothness may be more appropriate for the wavelet oeÆientsand ould be examined in future study.In simulated experiments we ompared the proposed algorithms, VarWhiteFFT andVarColoredFFT, with wavelet denoising. We observe that the VarWhiteFFT outperformsthe wavelet denoising in terms of the SNR enhanement. In the ase of olored noise wedistinguish two ases: low pass and high pass noise. In the low pass ase the waveletdenoising provides better results than the VarColoredFFT. In the ase of high pass noisethe VarColoredFFT presents better results ompared to wavelet denoising. In the ERPestimation we showed that both methods present similar results. Besides the appliationof the proposed approahes in the ERP data, we use them for detrending of the HRV timeseries. In the HRV detrending we have shown that the use of VarColoredFFT to estimatethe trend provides with the ability to remove the VLF omponents of the time series.Also, the method desribed in [17℄ for the detrending of the HRV time series an presentomputational problems sine large matries must be inverted [33℄. The VarColoredFFTalgorithm avoids this problem sine the Fourier Domain is used.Extensions of the proposed approahes in the Bayesian framework are straightforward.These extensions will help to explore the smoothness of a signal under di�erent onditions.For example, in the ase where we assume that the noise is not Gaussian but has impulsivenature, we an use a Gaussian mixture model with 2 omponents to model the impulsivenature of the noise [137, 138℄. This will lead to a robust smoothing algorithm. Therobustness in that ase is given in terms of outliers rejetion in the estimation proedure.Also, one obvious extension of the proposed approah is to use multiple parameters .This results to a non stationary prior [139℄ for the signal and we an explore the loalsmoothness of it. Finally, a third extension an be a ombination of the above: the studyof loal smoothness of the signal in impulsive noise environment.5.5 ConlusionsIn this hapter we present a model for the estimation of a biomedial signal when this sig-nal is ontaminated by noise. More spei�ally we address the estimation of the smooth-ness of a biomedial signal. The smoothness property ontains the highly orrelatedomponents of the signal. This property an be inorporated into a Bayesian frameworkby using the smoothness prior. This prior leads to the use of hierarhial modeling ofthe problem under disussion. To deal with the estimation of hyperparameters the VBmethodology has been used. The VB methodology provides with losed form solutionsand a onvergene riterion to stop the proess. The proposed approahes have beenapplied to the estimation of ERP and to the detrending of the HRV time series.
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Chapter 6Bayesian Methods for fMRI Time SeriesAnalysis using a Non-Stationary NoiseModel
6.1 IntrodutionIn this hapter, a Bayesian framework is presented for the analysis of fMRI data. TheBayesian framework is not new in fMRI data analysis. Many works have been publishedin this area. These works addressed several issues in the fMRI data analysis. In [30℄ theauthors use the Bayesian framework to estimate the parameters of the GLM. However,in their analysis they use noninformative prior over the parameters of the GLM. Thistype of prior is used sine there is no prior knowledge about the parameters. In [31℄the authors are onentrated mostly to the estimation of the noise, whih is modeledusing an AR (autoregressive) model, rather than to the estimation of the parameters ofthe GLM. In [32℄ a Bayesian approah is presented whih determines the design matrixin a exible (automati) way. To do that they assume sparsity over the parameters ofGLM. The sparsity has been modeled by an hierarhial prior whih is alled AutomatiRelevane Determination (ARD) [33℄. However, in the estimation of the hyperparametersthey use an ML (Maximum Likelihood) priniple. This approah does not take intoaount the variability of the hyperparameters. To address it a full Bayesian approahmust be used [34℄. All the above works assume that the noise is temporal stationaryand it is modeled using an AR model or a Gaussian distribution with zero mean andvariane �2. However, the fMRI time series ontains temporal non-stationarities whihan be aused by subjet movements, neurophysiologial proesses, or inauraies of themodel [35, 36, 37℄, whih in our study are desribed by the noise. The work presented in[35℄ is based on the weighted least squares (WLS) estimator, where the weighting matrixontains the non-stationarities of the noise. However, this matrix is alulated outside theestimation proedure. A Bayesian extension of the above work in presented in [37℄, butthe estimation of the weighting matrix is onfusing sine it does not �t to the iterative96



nature of the proposed algorithm. Finally, Bayesian approahes using the spatial domainare presented in [38, 39℄, but, these approahes assume temporal stationarity.In this hapter two algorithms are presented for the statistial analysis of the fMRItime series. The �rst algorithm is based on a voxel-by-voxel analysis of the data and itis based on the Generalized Linear Model (GLM). From the other, the seond algorithmproess all the voxels simultaneously and uses a spatio-temporal version of the GLM.Both algorithms estimate the variane of the noise aross the images and the voxels anduse a exible design matrix to model the drift, as desribed in [32℄. The use of theBayesian approah is twofold in our study. First, to introdue any prior knowledge aboutthe problem and seond, to determine automatially the design matrix of the experiment.These two goals an be ahieved through the hoie of the prior distribution. The objetivein a Bayesian approah is to obtain the posterior distribution and to make inferene aboutthe parameters of the GLM. However, this is not an easy task as multiple integrationsare involved, whih are intratable, and approximate approahes must be used. For thisreason in this study the Variational Bayesian (VB) Methodology is adopted to makeinferene. The main advantage of the VB methodology is the losed form solutions thatwe obtain, as well as a riterion to assume onvergene. The use of an extended designmatrix allows the simultaneous estimation of the drift with the magnitude of the BOLDresponse and the spatial harateristis of the noise. This allows to better understandhow the detetion of ativated regions of the brain depends on both the drift and thenoise. The performane of the proposed algorithms (under the assumption of di�erentnoise models) is ompared with the weighted least squares (WLS) method. Results usingsimulated and real data indiate the superiority of the proposed approah ompared tothe WLS method taking into aount the omplex noise struture of the fMRI time series.In next setions the proposed algorithms for the analysis of the fMRI time series arepresented. Also, results for both algorithms and the WLS method are given in the resultssetion using simulated and real fMRI data. Finally, a disussion of the obtained resultsis presented in the disussion setion.6.2 Methodology6.2.1 Voxel-by-Voxel analysisThe �rst algorithm performs a voxel-by-voxel analysis in the sense of treating eah voxelindependently on the others and is desribed by:y = Xw + e; (6.1)where y is the fMRI time series (or voxel), X is the design matrix, w is the vetor ofregression oeÆients and e is the vetor of noise term.The sparsity is a very helpful property sine the proessing is faster and simpler ina sparse representation where few oeÆients reveal the information we are looking for.97



Hene, sparse priors help us to determine the model order in an automati way and reduethe omplexity of the model. In our study the sparsity of the parameters is explored, henea natural hoie for the prior distribution is the ARD prior [43℄. More spei�ally, theparameter vetor w is treated as a random variable with Gaussian prior of zero mean andvariane a−1i for eah element in the vetor w:p(w|a) = p
∏i=1

N(0; a−1i ): (6.2)where p is the length of the vetor w.The noise in the fMRI data onsists mainly of two omponents: a slow time - varyingomponent, known as drift, and a high pass omponent, whih in most ases is usuallymodeled by a white Gaussian distribution with zero mean and variane �2. The driftan be removed by high pass �ltering or by introduing low frequeny drift terms intothe linear model. In our approah we adopt the seond approah sine it provides uswith an estimation of the drift simultaneously with the e�et of the BOLD response.Thus, the noise term e in Eq. (6.1) is related with the high pass omponent. Fromnow the term "noise" is used to desribe the high pass omponent. Traditionally, thenoise is modeled as a stationary proess. To overome this restrition we assume thatthe noise is desribed by a non stationary model with time - varying variane. Also, weassume that the overall variane in a partiular voxel is a�eted by the variane of eahimage in a multipliative fashion. This means that the noise is modeled as a Gaussiandistribution with zero mean and preision matrix (inverse ovariane) �V, where � isthe overall variane of a voxel and the matrix V ontains the saling parameters vn, i.e.p(e) = N(0; (�V)−1). The saling parameters vn; n = 1; · · · ; N desribe the varianeof n-th image whih is unknown. In this study two algorithms for the estimation of theparameters w and the saling parameters vn, are proposed. The main di�erene is foundon the noise model. The �rst algorithm is based on a temporal model for the noise, whilethe seond algorithm is based on a spatio - temporal model.The overall preision (inverse variane) � of the noise follows a Gamma distribution:p(�) = Gamma(�; b; ): (6.3)Also, eah saling parameter vn follows a Gamma distribution. This means that thedistribution for the diagonal matrix V is given by:p(V) =

N
∏n=1

Gamma(vn; bv; v): (6.4)In the above equations the Gamma distribution for a random variable x is given by:Gamma(x; b; ) = 1

Γ() x(−1)b exp
{

− xb}: (6.5)where b and  is the sale and the shape of the Gamma distribution, respetively. We usethe Gamma distribution for the noise omponents for two reasons: First, this distribution98



is onjugate to the Gaussian distribution, whih helps us in the derivation of losedform solutions, and seond it plaes the positivity restrition on the overall variane andthe saling parameters. Eah parameter ai, whih ontrols the prior distribution of theparameters w, follows a Gamma distribution, so the overall prior over all ai is a produtof Gamma distributions given by:p(a) = p
∏i=1

Gamma(ai; ba; a): (6.6)The likelihood of the data is given by:p(y|w; �;V) =
| �V | 12
(2�)N2 ·
exp

{

− �
2
(y−Xw)TV(y−Xw)

} (6.7)
=

� N
2

∏Nn=1 v 1

2n
(2�)N2 ·

exp
{

− �
2
(y−Xw)TV(y−Xw)

}: (6.8)The prior over the parameters {w; a;V; �} is given by:p(w; a;V; �) = p(w|a)p(a)p(V)p(�) (6.9)
= p(w|a) p

∏i=1

p(ai) N
∏n=1

p(vn)p(�): (6.10)To apply the VB methodology we need to de�ne an approximate posterior based on onefatorization over the parameters {w; a;V; �}. In our study we hoose the followingfatorization: q(w; a;V; �) = q(w|a) p
∏i=1

q(ai) N
∏n=1

q(vn)q(�): (6.11)Applying the VB methodology, and taking into aount the above fatorization, thefollowing posteriors are obtained:q(w) = N(ŵ;Cw); (6.12)q(�) = Gamma(�; b′; ′); (6.13)q(a) =

p
∏i=1

Gamma(ai; b′ai ; ′ai); (6.14)p(V) =

N
∏n=1

Gamma(vn; b′vn ; ′vn); (6.15)
99



where Cw = (�̂XT V̂X+ Â)−1; (6.16)ŵ = (�̂XT V̂X+ Â)−1�̂XT V̂y; (6.17)
1b′ai =

1

2
(ŵ2i +Cw(i; i)) + 1ba ; (6.18)′ai =

1

2
+ a; (6.19)âi = b′ai′ai ; (6.20)

1b′� =
1

2
(y −Xw)T V̂(y−Xw)

+tr(XT V̂XCw) + 1b ; (6.21)′� =
N
2

+ ; (6.22)�̂ = b′�′�; (6.23)
1bvn =

�̂
2
(yn −Xnw)2 + tr(�̂CwXTnXn) + 1bv ; (6.24)vn =

1

2
+ v; (6.25)v̂n = bvnvn : (6.26)In the above equations the matrix Â is a diagonal matrix with the mean of parametersai in its main diagonal and the matrix V̂ is also a diagonal matrix with the mean ofthe saling parameters vn in its main diagonal. The algorithm onsists from the iterativeappliation of Eqs. (6.16) - (6.26). This algorithm is alled STNS (Sparse Temporal NonStationary).6.2.2 Simultaneously analysis of all voxelsIn the above algorithm eah voxel has been proessed independently on the others. Anextension of the above approah is to treat simultaneously all the voxels from one slie.This means that a spatio - temporal model must be used. We note here that the term"spatial" refers mainly to the noise model. Colleting all the voxels in one matrix, andusing the fat that the design matrix is the same aross the voxels, the fMRI dataset anbe desribed by the following spatio - temporal linear model:Y = XW +E; (6.27)where Y = [y1; · · · ;yT ] is a NxT matrix ontaining all the voxels, E = [e1; · · · ; eT ] isa NxT matrix ontaining the noise, W = [w1; · · · ;wT ] is a pxT matrix ontaining theregression parameters of all voxels and X is the Nxp design matrix. The number N isthe length of eah voxel, while the number T is the number of voxels. Also, the datasethas been derived using N images. 100



The regression parameters are independent between the voxels. The probability dis-tribution in that ase is given by: p(W) =
T
∏t=1

p(wt): (6.28)Eah regression parameter in a voxel is independent from the others a priori. This as-sumption is inluded in the proposed model through the prior distribution, whih is alledthe ARD prior and is given as:p(wt|at) = p
∏k=1

p(wtk|atk) = p
∏k=1

N(0; a−1tk ): (6.29)A Gamma distribution is used for eah parameter atk:p(at) = p
∏k=1

Γ(atk; btk; tk): (6.30)where at = [at1; at2; · · · ; atp] is a vetor ontaining the hyperparameters of the ARD priorat the t-th voxel. We assume a matrix Gaussian distribution for the noise given as:p(E) = N(0;V−1;B−1): (6.31)The matrix V is a NxN diagonal preision matrix and eah element in the main diagonaldesribes the preision (inverse variane) in eah image (slie of fMRI volume image).The matrix B is a TxT diagonal preision matrix and eah diagonal element desribesthe preision in eah voxel. The distribution of the noise for the t-th voxel is a Gaussiandistribution given as: p(et) = N(0; (�tV)−1): (6.32)Also, in the proposed model the preision omponent of eah image {v1; v2; · · · ; vN} andthe preision omponent of eah voxel {�1; �2; · · · ; �T}must be estimated, this means thatwe must plae a prior distribution over eah preision omponent. The prior distributionthat is often used for a preision omponent is the Gamma distribution [45℄. So, the priorover eah preision omponent for eah voxel is given as:p(�t) = Γ(�t; b�t; �t); t = 1; · · · ; T; (6.33)and for eah image preision omponent:p(vn) = Γ(vn; bvn ; vn); n = 1; · · · ; N: (6.34)The prior of all model parameters beomes:p(W; {vn}Nn=1; {�t}Tt=1; {at}Tt=1) =

T
∏t=1

p(wt|at)p(at)T
∏t=1

p(�t) N
∏n=1

p(vn): (6.35)101



Eah voxel is independent from the others given the parameters {X;W;V;B}, so thelikelihood of the observations Y an be written as:p(Y|X;W;V;B) = T
∏t=1

p(yt|X;wt; �t;V): (6.36)Using the following fatorization of the posterior:q(W; {�t}Tt=1; {vn}Nn=1; {at}Tt=1|Y) =

T
∏t=1

q(wt|at)q(at) ·N
∏n=1

q(vn) · T
∏t=1

q(�t); (6.37)and applying the VB methodology we obtain the posterior distributions:q(wt) = N(ŵt; Cwt); t = 1; · · · ; T; (6.38)q(at) =
P
∏p=1

Γ(atp; b′tp; ′tp); t = 1; · · · ; T; (6.39)q(�t) = Γ(�t; b′�t; ′�t); t = 1; · · · ; T; (6.40)q(vn) = Γ(vn; b′vn ; ′vn); n = 1; · · · ; N; (6.41)where Cwt = (�̂tXT V̂X+ Ât)−1; (6.42)ŵt = (�̂tXT V̂X+ Ât)−1�̂tXT V̂yt; (6.43)
1b′tp =

1

2
(ŵ2tp +Cwt(p; p)) + 1btp ; (6.44)′tp =

1

2
+ tp; (6.45)âtp = btptp; (6.46)

1b′�t =
1

2
(yt −Xwt)T V̂(yt −Xwt)

+tr(XT V̂XCwt) + 1b�t ; (6.47)′�t =
N
2

+ �t; (6.48)�̂t = b′�t′�t; (6.49)
1b′vn =

1

2
(yTn B̂yn − 2yTn B̂Ŵxn + xTnGxn) + 1bvn ; (6.50)′vn =
T
2
+ vn ; (6.51)v̂n = b′vn′vn : (6.52)In the above equations the matries Ât; t = 1; · · · ; T are pxp diagonal matries havingthe parameters ât1; ât2; · · · ; âtp in the main diagonal. The matrix B̂ is a TxT diagonal102



matrix ontaining in the main diagonal the mean of the preision omponents for eahvoxel, �̂t; t = 1; · · · ; T , and the matrix V̂ is a NxN diagonal matrix ontaining in themain diagonal the mean of the preision omponents for eah image, v̂n; n = 1; · · · ; N .The quantity G is alulated as follows:G =
T
∑t=1

�t(Cwt + ŵtŵTt ): (6.53)Also, in the above equations yt desribes the t-th voxel (t-th olumn of the data matrixY), while yn desribes the n-th image (n-th row of the data matrix Y). The vetor xn isthe n-th row of the design matrix X. The algorithm onsists of the iterative appliationof Eqs. (6.42)-(6.53). First, the Eqs. (6.42)-(6.49) and (6.53) are applied over all voxelsto obtain the estimates of the regression parameters and the preision omponent foreah voxel. Also, in this step the quantity G is alulated. Then, Eqs. (6.50)-(6.52)are applied to estimate the preision omponent of eah image. This algorithm is alledSSTNS (Sparse Spatio - Temporal Non Stationary).6.2.3 Constrution of the design matrixThe onstrution of the design matrix is ruial for the statistial analysis of fMRI data.The design matrix usually ontains regressors related to the experiment plus the meanonstant. In a blok related experiment, whih we study in this hapter, the design matrixhas one regressor for the BOLD response plus the mean onstant. This is the minimumnumber of regressors that the design matrix must ontain to obtain an aurate analysisof the fMRI data. However, we an use an extended design matrix ontaining regressorsrelated to other omponents of the fMRI time series than ativation like drift terms [32℄and movement e�ets [38℄. In our study we adopt the idea of extended design matrix.The drift in fMRI time series is desribed by polynomial [46℄, spline [50℄, wavelet[51, 52℄ and Gaussian basis funtions [32℄. In our approah we use Gaussian basis funtionsto model the drift. Using wavelets or splines a di�erent on�guration of the GLM isneeded, whih is out of the sope of this work. To remove the drift from the fMRI timeseries, we an estimate it and then substrat it from the fMRI time series to performthe estimation of the GLM parameters. However, this approah does not give us anyunderstanding on the e�et of drift removal on the estimation of the GLM parameters.To overome this inonsisteny we an inlude the drift into the GLM model throughthe use of an extended design matrix. The extended design matrix ontains regressors tomodel the drift of the fMRI time series. Aording to the above observations the extendeddesign matrix has the form: X = [x1 x2 · · · xN s 1];where xn; n = 1; · · · ; N are the regressors obtained from the Gaussian basis funtions,in the same way as desribed in [32℄, s is the BOLD response and 1 is a vetor with 1s.103



6.3 Experimental resultsThe proposed algorithms are ompared with the WLS approah using two statistis: theonventional t - test and the PPM. The two proposed algorithms and the WLS approahare applied on simulated and real fMRI data. For the WLS approah the design matrixhas two regressors: one for the BOLD response and one for the mean. For the initializationof the proposed algorithms we set the sale and the shape of eah Gamma distributionto 106 and 10−6, respetively. The free energy is used to assume onvergene in the VBalgorithms. The proposed algorithms are terminated when the relative hange in freeenergy drops below 0.02.6.3.1 Experiments with simulated fMRI data

(a) The drift signal used for the re-ation of the simulated data. (b) The main diagonal (saling param-eters) of the noise ovariane matrix,without onsidering the overall vari-ane, used for the reation of the sim-ulated data.Figure 6.1: The drift signal and the main diagonal of the noise ovariane matrix usedfor the reation of the simulated data.The model used to reate the simulated fMRI time series is desribed by y = �s+Kb+ e.The fMRI time series have been modeled as the BOLD response plus a onstant mean plusa drift term plus the noise to simulate the ativated voxels, while for the non ativatedvoxels the BOLD response is absent. The noise omes from a Gaussian distribution withzero mean and ovariane �2
1V1, where V1 is a diagonal matrix (shown in Fig. 6.1(b))and simulates the matrix of saling parameters and �2

1 simulates the overall variane ofthe voxel. The matrix K is a design matrix used to reate the simulated time series. Thesize of K is N×2 and it has two regressors, one for the BOLD response and one the meanonstant. The vetor b is the vetor of simulated oeÆients and has size 2 × 1. The�rst element of the vetor b is responsible for the BOLD response and takes two values,zero for the non ativated voxels and one for the ativated. The seond element of the104



vetor b is responsible for the mean onstant and in our simulated experiments is equalto 100. The drift s (see Fig. 6.1(a)) is extrated from real fMRI data. The parameter �ontrols the amplitude of the drift in the simulated time series. We ompare the proposedalgorithms with the WLS approah for di�erent values of the parameter � and the overallvariane �2
1 . For eah pair values of parameters � and �2

1 we reate 2000 fMRI time series,1000 of them orrespond to ativated voxels, while the other 1000 orrespond to the nonativated voxels.The detetion performane of the two proposed algorithms is ompared to the one ofWLS approah in terms of t-statisti. The omparison is performed using the reeiveroperati harateristi (ROC) analysis. ROC analysis reets the ability of the proessingmethod to detet most of the real ativations while minimizing the detetions of falseativations. In ROC analysis, two values must be omputed the true positive ratio (TPR)and the false positive ratio (FPR). The ROC urve is a plot of TPR versus FPR underdi�erent threshold ratio. In Fig. 7.3 the ROC urves of the three methods for various pairvalues of parameters � and �2
1 are shown. To produe these ROC urves the t-statistiis used. We observe that when the drift is not very obvious inside the fMRI times series(small �) the WLS approah and the SSTNS algorithm present similar behavior, andboth result to superior performane ompared to STNS algorithm. As the drift tendsto beome more obvious inside the fMRI time series we observe that the performaneof WLS deteriorates and the STNS algorithm results better performane than the WLS.Finally, in all ases we observe that the SSTNS algorithm results into better performanethan the other two methods. In Table 6.1 the area under eah ROC urve is presented,whih veri�es the aforementioned visual inspeted results.In Table 6.2 the mean value of the estimated overall variane for eah approah for the2000 Monte Carlo simulations is presented. It is shown how the drift a�ets the estimationproedure of the WLS. The WLS method does not take into aount the presene of thedrift and this results to a deteriorated estimation of the overall variane whih at theend a�ets the alulation of t-statisti. When the drift is small inside the fMRI timeseries the best results are obtained by the WLS method, while as the drift beomes largerthe SSTNS algorithm leads to the best results. Also, we an observe that the SSTNSalgorithm is the most stable as it does not present strong utuations for di�erent � and�2

1 values. Table 6.1: Area under urve for STNS, SSTNS and WLSWLS STNS SSTNS�2
1 = 4

� = 1 0.9876 0.9812 0.9892� = 5 0.9803 0.9882 0.9917� = 10 0.9356 0.9832 0.9883�2
1 = 9

� = 1 0.9438 0.9220 0.9421� = 5 0.9324 0.9392 0.9503� = 10 0.8904 0.9239 0.9423105
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Table 6.2: Estimated overall varianesWLS STNS SSTNS�2
1 = 4

� = 1 4.2239 2.1676 5.5617� = 5 18.5887 3.9322 5.5771� = 10 63.7429 6.2939 5.5239�2
1 = 9

� = 1 8.7925 4.9365 9.6499� = 5 23.1096 6.6947 9.6312� = 10 68.2391 10.7487 9.6408The aforementioned results show how the drift a�ets the estimation proedure whenthe GLM is used with the non stationary noise model. The STNS algorithm is based solelyin temporal information while a spatio - temporal extension of it is the SSTNS algorithm.Comparing these two methods we observe that the SSTNS is superior to STNS. This issomething expeted sine the SSTNS algorithm uses more information for the estimationof the saling parameters. Using the STNS method we try to estimate 2N+3 parametersfrom N observations. This is a very diÆult problem and onstraints must be imposed.In our study the onstraints are introdued into our model through the prior distribution.The STNS method proess one voxel at a time, while the SSTNS proesses all voxelssimultaneously.6.3.2 Experiment with real fMRI dataThe proposed algorithms are validated on a blok design real fMRI data. This fMRIexperiment was designed for auditory proessing task on a healthy volunteer. It onsistedof 96 aquisitions. The aquisitions were made in bloks of 6, giving 16 bloks of 42seduration. The ondition for suessive bloks alternated between rest and auditory stim-ulation, starting with rest. Auditory stimulation was performed with bi-syllabi wordspresented binaurally at a rate of 60 words per minute. The funtional data starts ataquisition 16. Due to T1 e�ets the �rst two bloks were disarded. The whole brainBOLD/EPI images were aquired on a modi�ed 2T Siemens MAGNETOM Vision system.Eah aquisition onsisted of 64 slies (6x64x64, 3mm x 3mm x 3mm voxels). Aquisitionlasted 6.05se, with the san to san repetition time set to 7se. After preproessing,funtional images onsisted of 68 slies (79x95x68, 2mm x 2mm x 2mm voxles). The datahave been downloaded from [55℄.The PPMs enable Bayesian inferene about spei� e�et in neuroimaging and areimages of the probability that an ativation exeeds some spei�ed threshold [54℄. Inthe PPMs two thresholds must be de�ned. The �rst and most important is the  (seeEq. (3.57)) and it is the e�et size threshold. This de�nes what we mean by the term"ativation". The seond threshold de�nes the probability the voxel has to exeed inorder to be displayed. This threshold is alled the probability threshold [54℄.The PPMs of slie 30 for eah method are shown in Fig. 6.3. These PPMs were derived107



for e�et size threshold equal to 0.5 and probability threshold equal to 1− 1N . The WLS isa tehnique based on lassial inferene and the use of PPM for it may be a little onfusing.However, it is well known that under Gaussian errors and assuming uniformative priorwe an obtain an estimator idential to WLS based on the Bayesian framework [30℄.Thus, in our experiments we use this fat to obtain a posterior distribution for the WLS.This posterior distribution is a Gaussian distribution with mean (XTVwlsX)−1XTVwlsyand ovariane �2wlsXTVwlsX. We see that all approahes detet the ativation on theaousti ortex. However, we see that the WLS and the STNS methods produe ativationin regions not related to the experiment. In Fig. 6.4 the saling parameters of eah image,estimated by the SSTNS and by the residuals of the LS approah, are depited. We observethat when the stimulus starts or ends, there exists an inrease of the saling parameter inthese images. This observation has been also reported in [35, 38℄. This e�et an arise bythe presene of motion artefats or by the true properties of the hemodynami responsethat are not aptured by the design matrix. This problem an be addressed by using anappropriate noise model, suh as the one presented in this hapter, or by integrating thetemporal derivatives of hrf (hemodynami response funtion) in the design matrix. Weobserve that the proposed algorithms take into aount this inonsisteny of the GLM.
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6.4 DisussionWe have proposed two algorithms for the detetion of ativated regions of the brain usinga modi�ed GLM. Inside the fMRI time series exists many omponents suh as the BOLDresponse, the drift and high frequeny noise. In our study, the BOLD response and thedrift were modeled through the use of an extended design matrix. This matrix ontainsadditional regressors to model the drift. The noise was modeled by a non stationarymodel. After the onstrution of the linear model inferene for the regression parametersand the noise is arried out. For this reason the VB methodology is used.The two algorithms have been applied to simulated and real fMRI data and ompared108



Figure 6.4: (a) Estimated saling parameter for eah image (time instant) using theSSTNS and WLS approahes, and (b) BOLD response.to the WLS approah. The results have shown the superiority of the proposed algorithmswhen the drift is present in the fMRI time series. The two algorithms have simultaneouslyestimated the drift, the BOLD response and the noise, in ontrast to the WLS approah[35℄ or the Bayesian extension of it [37℄ where a high pass �lter has been applied to removethe drift.A ritial assumption of the proposed algorithms is the noise model. In our studythe noise model onsists from two omponents interating in a multipliative way. Thismeans that voxels with high overall variane will present a larger inrease of an artefatthan the voxels with low overall variane. An alternative to the multipliative model isthe additive noise model, where the two omponents interat additively. In [35℄ the twomodels are studied in the ontext of the fMRI analysis. The main onlusion of [35℄ isthat in most ases the noise omponents an be well modeled by the multipliative noisemodel.An obvious way to remove the drift from the fMRI time series is to apply a high pass�lter. However, this approah su�ers from the following limitations: First, the ut o�frequeny of the �lter must be known a priori, Seond the �lter is the same for all voxels,and third the drift in that ase is assumed to be a stationary signal. In our study thedrift is assumed to be non stationary and the width of the Gaussian basis funtions isthe only easily tuned parameter. The width must be greater than the duration of oneblok of ativation. The aim of this restrition is to avoid modeling inorretly the BOLDresponse as drift term. In the future we intend to study the additive model as the noise109



proess in the analysis of fMRI data. Also, more ompliated priors over the regressionparameters an be used to take into aount the spatial harateristis. Finally, modelingthe drift using splines [50℄ or the wavelet domain [51℄ are possible extensions of this work.In addition, the proposed algorithms an be modi�ed in order to be applied in real- time for the detetion of ativated regions. This modi�ation an be done in twoways: The �rst approah is similar to the one proposed in [56, 57℄ for the GLM. In thisase an inremental form of the equations of the proposed algorithms ould be obtained.However, in that ase the properties of the VB algorithm, suh as the onvergene, arelost. The seond approah is based on an online version of the VB framework [58℄. Ingeneral, the real-time fMRI data analysis is a very onsuming proedure, partiularly dueto the preproessing steps of MR images. To redue the time of fMRI proessing parallelomputing or a omputer - luster an be employed as reported in [56, 57℄. To onlude,the proposed algorithms an be modi�ed for real-time fMRI time series but it is expetedthat this modi�ation would deteriorate the detetion performane. Finally, onerningthe omputational requirements of the proposed algorithms, the most time onsumingoperation is the alulation of the ovariane matrix of the regression parameters, sineit involves the alulation of an inverse matrix. All the other operations are related tomultipliations and additions.Another modi�ation onerns the use of non linear forward model. More spei�ally,the proposed algorithms are based on the linear forward model. However, easily an beextended to the non linear forward model in the same spirit as have been done in [59℄.Chappell et al [59℄ use the VB framework to estimate the parameters of the non - linearforward model. However, to obtain a useful algorithm at the end, they resort to linearizethe likehood term through Taylor expansion. This fat results in no VB algorithm, whihthe main onsequene is that the guarantee of onvergene an no longer apply [59℄. Also,it is questionable how good is the Taylor approximation for eah problem under study.6.5 ConlusionsThe analysis of the fMRI data using the GLM is based on two steps. The �rst step isrelated to the estimation of the parameters of the GLM, while the seond step is relatedto the detetion of ativated regions based on the previous step. In this hapter twomethods for the estimation of parameters w of the GLM are proposed: one based ontemporal formulation, and one based on a spatio - temporal formulation of the problem.Also, other omponents of the fMRI time series suh as the drift, are inorporated intothe estimation proedure through an extended design matrix. These two algorithmsare applied in simulated and real fMRI data, and ompared to the WLS algorithm. Thesimulated experiments have shown that the proposed methods outperform the WLS whenthe drift is present inside the fMRI time series. While, the experiments based on real fMRIdata have shown that the proposed methods an be used in ases where the propertiesof the true hemodynami response is not modeled orretly from the design matrix. As110



we observe inorret modeling of the timing of the hemodynami response results in aninrease of variane in the partiular image.
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Chapter 7A sparse and spatially onstrainedgenerative regression model for fMRIdata analysis
7.1 IntrodutionIn this hapter we present an advaned Bayesian framework for the analysis of funtionalMagneti Resonane Imaging (fMRI) data that simultaneously employs both spatial andsparse properties. The basi building blok of our method is the general linear model(GML) that onstitutes a well-known probabilisti approah. By treating regression oef-�ients as random variables, we an apply an enhaned Gibbs distribution funtion thataptures spatial onstrains and at the same time allows sparse representation of fMRItime series. The proposed sheme is desribed as a maximum a posteriori (MAP) ap-proah, where the known Expetation Maximization (EM) algorithm is applied o�eringlosed form update equations for the model parameters. We have demonstrated thatour method produes improved performane and funtional ativation detetion in bothsimulated data and real appliations.A signi�ant drawbak of the basi GLM approah is that spatial and temporal prop-erties of fMRI data are not taken into aount. However, the fMRI data are biologiallygenerated by strutures that involve spatial properties, sine adjaent voxels tend to havesimilar ativation level [86℄. Moreover, the produed ativation maps ontain many smallativation islands and so there is a need for spatial regularization. Another desirableproperty is to handle temporal orrelations derived from neural, physiologial and phys-ial soures [38℄ and have a mehanism that an automatially address the model order.The latter is a very important issue in many model based appliations inluding regres-sion. If the order of the regression model is too large it may over�t the observations anddoes not generalize well, while if it is too small it might miss trends in the data [87℄.112



Within the literature there are several methods that inlude either spatial orrelations,or sparse properties into the estimation proedure, but only a few of them have inves-tigated the simultaneous inorporation of both features. Spatial harateristis of fMRIhave been proposed through the use of Markov Random Fields (MRF) priors [88, 89℄,mixture models [90℄, autoregressive (AR) spatial models [31, 39℄, or a Laplaian aÆn-ity matrix [38℄. On the other hand, sparse models for fMRI data analysis have beendeveloped, overing sparseness over regression oeÆients of GLM [32, 37, 52℄, over theoeÆients of spatio-temporal AR models [39℄, the weights on the spae domain of images[92℄, through the use of elasti nets [93℄, or by onverting the estimation problem into alinear programming problem [91℄. Training of the above methods is performed by eitherMarkov Chain Monte Carlo (MCMC), or Variational Bayes (VB) framework. A moreompat methodology has been been presented in [180℄ that address both spatial andsparse apabilities in an hierarhial framework. In partiular, the image of the regressionoeÆients is �rst deomposed using wavelets, and then a sparse prior is applied over thewavelet oeÆients. An alternative approah has been presented in [95℄ where the regres-sion oeÆients are indiretly spatially smoothed using an Ising prior over their indiatorvariables. Finally, a reent work is desribed in [96℄, that applies a multivariate Laplaianprior over oeÆients written as a sale mixture following by a spatial distribution on anauxiliary variable, that allows a spatio-temporal smoothing of data.In this hapter we propose an advaned Bayesian framework that simultaneously em-ploys both spatial and sparse properties in a more systemati way. The ontribution ofthis hapter is two-fold. First, we provide diretly the regression oeÆients with thedesired two properties by onsidering an enhaned prior distribution. Additionally, wemanage to establish an eÆient EM-based framework with losed-form update equationsfor the model parameters that failitates the learning proedure.More spei�ally, the general-purpose GLM is used for fMRI time series modeling.The key aspet of our method is the enhaned exploitation of the Markov Random Fields[97, 98℄ by using an e�etive Gibbs potential funtion. Traditionally, Gibbs distribution isused for addressing only spatial orrelations. In our study we present a modi�ation of thepotential funtion that, apart from spatial, it is able to simultaneously impose sparsenessbased on the Relevane Vetor Mahine (RVM)[87℄. A maximum a posteriori expetationmaximization algorithm (MAP-EM) [205℄ is applied next to train this model and estimateits parameters. This is very eÆient sine it leads to update rules in losed form duringthe M -step and improves data �tting. The performane of the proposed methodology isquantitatively and qualitatively evaluated using a variety of simulated and real datasets.Comparison has been made using the typial maximum likelihood (ML) and the spatiallyvariant GLM methods without sparseness. We also present some visualizable examplesof the performane of our approah on real appliations of blok design and event related113



ases.In setion 7.2 we briey desribe the basi GLM framework and show how we anintrodue a Gibbs prior so as to allow spatial orrelations. The proposed simultaneoussparse spatial regression model is then presented in setion 7.3 together with the MAP-based learning proedure. In setion 7.4 a view of the proposed model in the spirit of EMalgorithm is provided. To assess the performane of the proposed methodology we presentin setion 7.5 numerial experiments with arti�ial and real fMRI datasets. Finally, insetion 7.6 we give onlusions and suggestions for future researh.7.2 A spatially variant linear regression model7.2.1 BakgroundSuppose we are given a set of N time-series Y = {y1 : : : ;yN}, where eah observationyn is a sequene of M values over time, i.e. yn = {ynm}Mm=1. The appliation of theGeneralized Linear Model (GLM) assumes that the fMRI time series yn are desribedwith the following manner: yn = �wn + en , (7.1)where � is the design matrix of sizeM ×D and wn is the vetor of the D regression oef-�ients whih are unknown and must be estimated. The last term en is a M -dimensionalvetor determining the model error. In most ases temporal orrelations exist over thefMRI time series that arise from neural, physiologial and physial soures, and unmod-eled neuronal ativity [24, 25℄. In order to model them we an apply an auto-regressive(AR) proess [31, 39℄. Note that long range orrelations an be additionally inluded byusing an appropriate extension of the design matrix [24, 32℄. Aording to an AR proessof order p, the error term en an be written as:en = En�n + "n (7.2)where En is an M × p matrix ontaining past error samples, �n is the vetor of the pAR oeÆients and "n is an i.i.d. M -length zero mean Gaussian vetor with a preision(inverse variane) �n, i.e. "n ∼ N (0; �−1n I). Alternatively we an onsider the nextformulation: �nen = "n (7.3)where �n is a M ×M upper diagonal matrix ontaining the AR oeÆients. From thissheme we obtain the distribution of error as en ∼ N (0; (�n�Tn�n)−1). Both versions ofthe AR model will help us to write the likelihood in a more onvenient way.The design matrix � ontains some explanatory variables (or e�ets) that desribevarious experimental fators. Its onstrution is ruial for the statistial analysis of fMRI114



data. The number of regressors (olumns of the design matrix) depends on the experimentand on the problem formulation in order to address several fators of the fMRI time seriessuh as long range orrelations and movement e�ets [32, 38℄. During the experimentalstudy we have onsidered various ases related to the design matrix.In fMRI data analysis the goal is to �nd the involvement of experimental fators inthe generation proess of time series through the estimation of oeÆients wn. FollowingEq. 7.1 and sine �wn is deterministi we an model the sequene yn with a normaldistribution p(yn|wn; �n; �n) = N (�wn; (�n�Tn�n)−1) . (7.4)Thus, the problem an be viewed as a maximum likelihood (ML) estimation problem forthe model parameters Θ = {wn; �n; �n}Nn=1. The log-likelihood funtion an be written intwo equivalent forms using Eqs. (7.2) and (7.3), respetively:LML(Θ) =

N
∑n=1

log p(yn|wn; �n; �n) = N
∑n=1

{M
2

log �n − �n
2
‖�n(yn −�wn)‖2} , (7.5)LML(Θ) =

N
∑n=1

log p(yn|wn; �n; �n) = N
∑n=1

{M
2

log �n − �n
2
‖yn −�wn −En�n‖2} .(7.6)The maximization proedure leads to the following rules that are iteratively applied1:ŵn = (�T�Tn�n�)−1�T�Tn�nyn , (7.7)�̂n =

M
‖�n(yn −�ŵn)‖2 , (7.8)�̂n = (ETnEn)−1En(yn −�ŵn) . (7.9)7.2.2 GLM with MRF-based spatial priorThe GLM framework does not support inferene about the spatial aspets of funtionalanatomy. A ommon tehnique dealing with this subjet is by performing a preproessingstep with a Gaussian �lter to smooth the fMRI signal [25℄. However, this may ausethe onstrution of overestimated ativated maps with a loss of loal information. An-other diÆulty is the seletion of the Gaussian window size that may deteriorate theperformane.The Bayesian formulation o�ers a natural platform for automatially inorporatingspatial properties. This an be aomplished through the use of a Gibbs prior distributionover the voxel oeÆients. Introduing of suh prior onstrains the loal harateristisof the voxels and the brain response based on the notion of Markov random �eld (MRF)[97, 98, 100℄. It must be noted that Gibbs spatial priors have been suessfully appliedto the task of image segmentation, see for example [101, 102, 103℄.1we apply the Eq. 7.5 for the regression oeÆients wn and the Eq. 7.6 for the AR oeÆients �n115



The Gibbs density funtion for the n-th voxel takes the following form:p(wn|�n) = Z(�n) exp{−1
2
VNn(wn)} . (7.10)The funtion V denotes the lique potential funtion within the neighborhood Nn of n-thvoxel. In our ase we have seleted the next potentialVNn(wn) = �n ∑k∈Nn ‖wn −wk‖2 , (7.11)where �n is the regularization parameter. The neighborhood Nn is the set of voxels thatare horizontally, vertially or diagonally adjaent to the voxel n, having a ardinality |Nn|.Finally, the �rst term Z of Eq. 7.10 is the normalization fator and an be written asZ(�n) ∝ � |Nn|=2n . In addition, a Gamma prior is imposed on the regularization parameter�n as well as the noise preision �n of the formp(�n) = Gamma(�n|b�; �) ∝ ��−1n e−b��n , (7.12)p(�n) = Gamma(�n|b�; �) ∝ ��−1n e−b��n . (7.13)The estimation problem is now formulated as a maximum a posteriori (MAP) frame-work, in the sense of maximizing the posterior density of model parametersΘ = {wn; �n; �n; �n}Nn=1.The MAP log-likelihood funtion is given by:LMAP (Θ) =

N
∑n=1

{

log p(yn|wn; �n; �n) + log{p(wn|�n)p(�n)p(�n)}}
=

N
∑n=1

{M
2

log �n −−�n
2
‖�n(yn −�wn)‖2 + |Nn|

2
log �n −�n

2

∑k∈Nn ‖wn −wk‖2 +G(�n) +G(�n)} . (7.14)where funtion G() has the following form2G(x) = x log x− bxx . (7.15)By taking the partial derivatives of funtion LMAP with respet to model parameters thenext updated rules are obtainedŵn = (�n�T�Tn�n�+Bn)−1(�n�T�Tn�ny +BWn) , (7.16)�̂n =
|Nn|+ 2�

∑k∈Nn ‖ŵn − ŵk‖2 + 2b� , (7.17)�̂n =
M + 2�

‖�n(yn −�ŵn)‖2 + 2b� , (7.18)2We follow the methodology desribed in [87℄ where the maximization is made over a logarithmi saleusing that p(log x) = xp(x) . 116



where Bn =
∑k∈Nn(�n + �k)I and BWn =

∑k∈Nn(�n + �k)wk that orrespond to thee�et of neighbors of n-th voxel to the omputation of its regression oeÆients. Notethat the update equation for the AR oeÆients �n is the same as in the ML ase (Eq. 7.9).The above learning sheme an be inorporated in an Expetation-Maximization (EM)framework [205℄. In partiular, during the E-step the expetation of the hidden variables(wn) are omputed (Eq. 7.16) and use them next for updating the model parameters �n,�n and �n during the M-step (Eqs. 7.17, 7.9 and 7.18, respetively). This spatially variantregression model will be referred next as SVGLM.7.3 Simultaneous Sparse and Spatial GLMA desired property of the linear regression model is to o�er an automati mehanism thatwill zero out the oeÆients whih are not signi�ant and maintain only large oeÆientsthat are onsidered signi�ant aording to the model. Moreover, an important issuewhen using the regression model is how to de�ne its order D. The appropriate valueof D depends on the shape of data to be �tted, that is models of smaller order lead tounder�tting, while large values of D may lead to over�tting. It is well known that bothases may lead to serious deterioration of the �tting performane. The problem an betakled using the Bayesian regularization method that has been suessfully employed inthe Relevane Vetor Mahine (RVM) model [87℄.In order to simultaneously apture both spatial and sparse properties, the Gibbs dis-tribution funtion needs to be reformulated. This an be aomplished by using thefollowing Gibbs density funtionp(wn|�n; zn; �n) = Z(�n; zn; �n) exp (− 1

2

{V (1)Nn (wn) + V (2)Nn (wn)}) . (7.19)The �rst term in the exponential part of the above funtion is the sparse term used fordesribing loal relationships of the n-th voxel oeÆients. This an be expressed asV (1)Nn (wn) = wTnAnwn , (7.20)where An is a diagonal matrix ontaining the D elements of the hyperparameter vetor�n = (�n1; : : : ; �nD)T . In addition, a Gamma prior is imposed on the hyperparameters�nd p(�n) = D
∏d=1

Gamma(�nd|b�; �) ∝ D
∏d=1

��−1nd e−b��nd . (7.21)In this way, a two-stage hierarhial prior is ahieved whih is atually a Student-t distri-bution with heavy tails [87℄. Sparsity is obtained sine this sheme enfores most �nd tobe large, thus the orresponding oeÆients wnd are set zero and �nally eliminated.117



The seond term of the exponential part of the proposed Gibbs funtion (Eq. 7.19)aptures the spatial orrelation and is responsible for the lique potential of the n-thvoxel: V (2)Nn (wn) = �n ∑k∈Nn znk‖wn −wk‖2 . (7.22)In omparison with the potential funtion of the SVGLM method (Eq. 7.10), this formu-lation provides a variation in the neighbors' ontribution to the alulation of the liquepotential value, as reeted by the parameters znk. Experiments have shown that theintrodution of suh weights an inrease the exibility of spatial modeling and an beproved advantageous in ases around the borders of ativation regions (edges). It must benoted that in the literature there are other model-based methods that embody the samedesired property around edges, see for example [104℄. However, they are not possible too�er losed form update rules suh as in our ase. Finally, the �rst term Z of Eq. 7.19ats as a normalization fator and an be expressed as:Z(�n; zn; �n) ∝ � |Nn|=2n ∏k∈Nn z1=2nk D
∏d=1

�1=2nd . (7.23)We also assume that the regularization parameter �n, the noise preision �n andthe weights znk are variables following the Gamma distribution. Based on the aboveformulation, the data analysis problem an be treated as a maximum a posteriori (MAP)approah for the set of regression model variables Θ = {wn; �n; �n; �n; zn; �n}Nn=1. TheMAP log-likelihood funtion an be given as:LMAP (Θ) =

N
∑n=1

{

log p(yn|wn; �n; �n) + log{p(wn|�n; zn; �n)p(�n)p(�n)p(zn)p(�n)}}
=

N
∑n=1

{M
2

log �n − �n
2
‖�n(yn −�wn)‖2 − 1

2
wTnAnwn −�n

2

∑k∈Nn znk‖wn −wk‖2 + |Nn|
2

log �n + 1

2

∑k∈Nn log znk +
1

2

D
∑d=1

log�nd +G(�n) +G(�n) + ∑k∈NnG(znk) + D
∑d=1

G(�nd)} . (7.24)Setting the partial derivatives with respet to regression oeÆients equal to zero thefollowing losed form update rule is obtainedŵn = (�n�T�Tn�n�+BZn +An)−1(�n�T�Tn�nyn +BZWn) , (7.25)where the matries BZn and BZWn areBZn =
∑k∈Nn(�nznk + �kzkn)I , and BZWn =

∑k∈Nn(�nznk + �kzkn)wk . (7.26)118
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Figure 7.1: Graphial representation of the proposed model.For the rest three model variables {�n; zn; �n} we also produe update equations�̂n =
|Nn|+ 2�

∑k∈Nn znk‖ŵn − ŵk‖2 + 2b� , (7.27)ẑnk =
1 + 2z�̂n‖ŵn − ŵk‖2 + 2bz , (7.28)�̂nd =

1 + 2aŵ2nd + 2ba , (7.29)while the AR oeÆients �n and the noise preision �n have the same form as previouslyde�ned (Eq. 7.9 and Eq. 7.18, respetively).Again, the whole proedure an be inorporated in an EM framework by treating theregression oeÆients as hidden variables. In this way, their expetation is omputedin the E-step governed by Eq. 7.25, while the maximization of the omplete-data MAPlog-likelihood funtion is performed during the M-step giving update equations for modelparameters (Eqs. 7.27-7.29). The above sheme is iteratively applied until the onvergeneof the MAP funtion. We all this method SSGLM. Following Eq. 7.24 it is easy to see thatwhen and = 0 the proposed method is redued to the previously desribed SVGLM (settingalso znk = 1) keeping only the spatial omponent. On the opposite ase, when �n = 0or znk = 0 it maintains only the sparse part and beomes equivalent to the RVM-basedsparse regression modeling [87℄. A graphial representation of the proposed method ispresented in Fig. 7.1. In the Appendix A we present an EM-based alternative desriptionof the above model where we obtain the marginal distribution of the observations yn byintegrating out the regression oeÆients wn and treating them as hidden variables.
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7.4 EM-based model estimation frameworkIn the previous analysis the regression oeÆients {wn}Nn=1 have been treated as model pa-rameters. However, following the same strategy as the RVM methodology [87℄, we an in-tegrated them out and obtain a redued model with less parametersΘ = {�n; znk; �nd; �n; �n}Nn=1.The marginal log-likelihood for eah voxel n an be obtained by the following integration
log p(yn|�n; znk; �nd; �n) = log

∫ p(yn|wn; �n; �n)p(wn|�n; znk; �nd)dwn . (7.30)Sine both densities are known (Eqs. 7.4 and 7.19), we an easily found the marginallog-likelihood
log p(yn|�n; znk; �nd; �n) ∝ |Nn|

2
log �n − 1

2

∑k∈Nn log znk − 1

2

D
∑d=1

log�nd −
1

2
log |Sn|+ M

2
log �n − 1

2
{mnSnmn − �nyTn�Tn�nyn −�n ∑k∈Nn znkwTkwk} , (7.31)where mn = (�n�T�Tn�n� +BZn +An)−1(�n�T�Tn�nyn +BZWn) , (7.32)Sn = (�n�T�Tn�n� +BZn +An)−1 . (7.33)Therefore, the MAP log-likelihood funtion is written aslmap(Θ) =

N
∑n=1

{

log p(yn|�n; zn; �n; �n) +G(�n) +G(�n) + ∑k∈NnG(znk) + D
∑d=1

G(�nd)} . (7.34)The maximization of the above funtion an be done either diretly by taking the partialderivatives and �nd the updated rules, or by following the EM-MAP framework, that weadopt here. Aording to the EM algorithm, the regression oeÆients wn are treated ashidden variables where their expetation is alulated at the E-step (Eq. 7.25). Equation7.24 desribes the omplete data MAP log-likelihood funtion. During the M-step theexpetation of this funtion is maximized, where the expetation is made with respetto the posterior distribution of regression oeÆients wn. Notie here that this posterioran be onsidered as Gaussian with mean mn and ovariane Sn. By setting the partialderivatives with respet to model parameters equal to zero, the next update rules are
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obtained �̂n =
|Nn|+ 2�

∑k∈Nn ẑnkEwn|yn;�n{‖wn −wk‖2}+ 2� , (7.35)ẑnk =
1 + 2z�̂nEwn|yn;�n{‖wn −wk‖2}+ 2bz , (7.36)�̂nd =

1 + 2a
Ewn|yn;�n{w2nd}+ 2ba , (7.37)�̂n =

M + 2�
Ewn|yn;�n{‖�n(yn −�wn)‖2}+ 2b� , (7.38)�̂n = (ETnEn)−1EnEwn|yn;�n{‖�n(yn −�wn)‖2} , (7.39)whih are iteratively applied. The above expetations an be easily alulated using that
Ewn|yn;�n{wn} = mn , (7.40)
Ewn|yn;�n{wwTn} = Sn +mnmTn . (7.41)7.5 Experimental resultsWe have tested the proposed method (SSGLM) using various simulated and real datasets.Comparison has been made with two versions of the spatially variant GLM: the simplestone (SVGLM) as desribed at setion 7.2.2 and those (SVGLM-2) obtained by ignoringthe sparse term of the Gibbs distribution funtion of the SSGLM method. The di�ereneof both versions is found on the enforement of parameters znk in the ase of SVGLM-2,in an attempt to provide a weighting sheme for the lique potential funtion. The aimof this study is to evaluate the usefulness of these parameters. All methods are initializedwith the same strategy. First, the ML estimates of the regression oeÆients wn areobtained (Eq. 7.7) and then are used for initializing the rest model parameters �n, �n, �n,zkn and anp, aording to Eqs. 7.9, 7.18 and 7.27-7.29, respetively. It must be noted thatin the ase of SSGLM method, sine there is a dependeny between parameters �n andzkn, we use the Eq. 7.17 (instead of the Eq. 7.27). During the experiments all Gammaparameters were set equal to 0:5, exept for the sparse responsible parameters {b�; �}that were set as b� = � = 10−8 making them non-informative, as suggested in [87℄.7.5.1 Experiments with simulated dataThe simulated datasets used in our experiments were reated aording to the followinggeneration mehanism. We used a design matrix with two pre-spei�ed regressors. The121
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80(a) (b) ()Figure 7.2: Simulated data generation features: (a) Bold signal, (b) random and ()irular shaped image of ativated areas.�rst one was responsible for the BOLD signal (s) of length M = 84 and has been derivedby a real experiment found on the SPM pakage shown in Fig. 7.2(a), while the seondone being a onstant of ones. Then, we onstruted an image with the ativated areaswhere the pixel intensities orrespond to the value of the �rst oeÆient (wn1). In ourstudy we have used two suh simulated images of size 80 × 80 with two di�erent shapesof ativation: irular (Fig. 7.2(b)) and random3 (Fig. 7.2()). The seond oeÆientwn2 had a onstant value equal to 100. The time series data (yn) were �nally alulatedby using the generative equation of GLM (Eq. 7.1) with an additive Gaussian noise ofvarious signal-to-noise-ratio (SNR) levels. The noise was onstruted aording to an ARmodel of order p = 3 whose oeÆients �n took the values �n = (1 −0:8 0:6 −0:4)T , thatwere the same used in [31℄. Finally, the SNR value was alulated as follows:SNR = 10 log
sT sM(1=�n) (7.42)where s is the BOLD signal (Fig.7.2(a)).Two evaluation riteria were used during the experiments.

• The Area Under Curve (AUC) of the Reeiver Operating Curve (ROC) based ont-statisti alulations. ROC urves were generated by onsidering a voxel to beative if its e�et size is greater than a prede�ned threshold. In our experiments theabove threshold varied from the minimum to the maximum value of the t-statistias alulated by eah method. ROC analysis reets the ability of the method todetet the real ativations, while minimizing the detetions of false ativations.
• The normalized mean square error (NMSE), between the estimated (ŵn1) and the3It has been reated by sampling from an MRF model using a Gibbs sampler and has been obtainedfrom [102℄
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Table 7.1: Comparative results for simulated data in various noisy environments.irular-shaped areasAUC NMSESNR SSGLM SVGLM-2 SVGLM SSGLM SVGLM-2 SVGLM0 0.9989 0.9990 0.9990 0.0680 0.2431 0.2537-2 0.9985 0.9990 0.9990 0.0952 0.2858 0.3015-4 0.9987 0.9989 0.9989 0.1497 0.3312 0.3542-6 0.9972 0.9985 0.9983 0.2218 0.3730 0.4054-8 0.9934 0.9982 0.9976 0.3027 0.4081 0.4517-10 0.9818 0.9974 0.9962 0.4114 0.4394 0.4961random-shaped areasAUC NMSESNR SSGLM SVGLM-2 SVGLM SSGLM SVGLM-2 SVGLM0 0.9845 0.9813 0.9864 0.2015 0.2145 0.2211-2 0.9841 0.9712 0.9737 0.2247 0.2421 0.2712-4 0.9824 0.9627 0.9641 0.2547 0.2871 0.3190-6 0.9777 0.9460 0.9445 0.3027 0.3431 0.3724-8 0.9715 0.9257 0.9248 0.3631 0.4076 0.4329-10 0.9594 0.9075 0.9005 0.4323 0.4814 0.4904true (!n1) oeÆients responsible for the BOLD signal whih are known:NMSE =

∑Nn=1(ŵn1 − !n1)2
∑Nn=1 !2n1 . (7.43)NMSE measures the quality of the urve �tting proedure.For every noise realization (SNR value), we performed 50 di�erent runs of eah ompar-ative method and the mean values of AUC and NMSE measurements were alulated.Moreover, during the experiments with simulated data we have used a design matrix (�)with four olumns (D = 4): one for the BOLD signal, two others for the time and thedispersion derivatives, and a last olumn with ones for the onstant term.We present in Table 7.1 the omparative results in terms of the above two riteriafor several SNR values. As it is obvious, the proposed method improves the quality of�tting proess (NMSE quantity), as well as the ativation detetion ability (AUC quan-tity). This is more apparent in random-shaped areas and in lower values of examinedSNR values. An example of the obtained ROC urves by three methods is displayed inFig. 7.3, giving the ability of the SSGLM to detet larger real ativations (sensitivity) andsimultaneously redue the detetion of false positive ativations (spei�ity). However, itsalulated AUC values are slightly worst than those of its spatially onstrained peers dur-ing experiments with irular regions that has muh smoother borders. Between the two123
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SVGLMFigure 7.3: Example of ROC urves reated by the estimates of SSGLM, SVGLM-2 andSVGLM methods for two di�erent SNR values.spatially-onstrained methods, the SVGLM-2 had better performane in all ases. Theintrodution of the parameters znk in the potential funtion of the SVGLM-2 (Eq. 7.22)gives better detetion apability and �tting auray. In addition it manages to improvethe e�et of over-smoothing at the boundaries of ativation regions that happens withthe simple SVGML method. Finally, the proposed approah SSGLM not only supportsthis property, but also ahieves enhaned ativation detetion apabilities by making thedistinguish between ativated and non-ativated areas more signi�ant. This behavioris shown in Figure 7.4 that presents the produed BOLD ontrast images of three om-parative methods when studying the simulated data with random-shaped regions for twodi�erent SNR values.7.5.2 Experiments with real fMRI dataThe proposed approah was also evaluated in a variety of real appliations. For anyseleted dataset we followed the standard preproessing steps of the SPM pakage, i.e.realignment, segmentation, and spatial normalization, without performing the spatialsmoothing step. Data are then saled by means of their mean value, as desribed in[180℄, and �nally were high pass �ltered using a set of disrete osine basis funtions. Ourmethod (SSGLM) was ompared with the spatially variant (SVGLM), as well as withthe maximum-likelihood (ML) approah. In the latter ase (ML), time-series are initiallyspatially smoothed. During all experiments we have hosen an AR model of order p = 3as was suggested in [31℄.
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7.6 ConlusionsIn fMRI data analysis, the spatial extension of the hemodynami response in a neighbor-hood of voxels introdues a signi�ant weakness for the detetion proess of the ativatedareas. Moreover, the presene of temporal orrelations deteriorates the performane. Inthis work we present an advaned method to takle these two problems by eÆiently inor-porating both spatial orrelations and sparse properties. This is done by using a powerfulprior over the regression oeÆients based on Markov Random Fields (MRFs) modelingand Relevane Vetor Mahines (RVMs). Training of the proposed model is ahievedthrough a maximum a posteriori (MAP) framework that allows the EM algorithm to bee�etively used for estimating the model parameters providing update rules in losed form.Experiments on arti�ial and real datasets have demonstrated the ability of the methodto improve the detetion performane and robustness, espeially in noisy environments,and to enhane the estimation auray. Our method showed a redued sensitivity tothe threshold value of the produed statistial map without needing to make multipleomparisons. Our future researh study is foused to three diretions: a) to examinethe appropriateness of other types of sparse priors [107℄, b) to try alternative potentialfuntions of the Gibbs distribution and ) to assume a Student-t distribution insteadof Gaussian for modeling the exitation noise aiming to ahieve more robust statistialinferene and handle more eÆiently outlying observations [208℄.
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Chapter 8Clustering fMRI time-series by using amixture of regression models withspatial and sparse properties
8.1 IntrodutionClassi�ation and lustering methods an be used for the determination of fMRI timeseries into ativated or non ativated. However, the lassi�ation methods meet an obsta-le: they require a training set. This is not an easy task sine the fMRI response dependson many experimental fators suh the image aquisition parameters, paradigm design,subjet and region of the brain ativated. On the other hand setting the problem as alustering problem seems to be more natural. In the literature they are plenty of worksin this diretion [182, 184, 185, 186, 187, 188, 189, 190, 191℄. Clustering is the proess todivide a set of samples into groups (alled lusters) so that samples from the same lusterto be similar eah other while samples belong to di�erent lusters to be dissimilar. It isa ommon tehnique for statistial data analysis used in many �elds, inluding mahinelearning, data mining, pattern reognition, image analysis and bioinformatis [192, 45℄.Two major lasses of lustering methods are the distane - based methods and themodel - based methods [192℄. The �rst ategory assumes a weak struture of the data,while the seond ategory assumes a ompat and informative struture. Distane-basedmethods, suh as the well-known k-means algorithm, usually require the number of lus-ters to be known a priori. However, model-based methods an inorporate prior knowledgemore naturally into the lustering approah whih an help us to estimate the number oflusters.Probabilisti mixture modeling is a well established model-based approah for lus-tering that o�ers many advantages. One suh advantage is that it provides a naturalplatform to evaluate the quality of the lustering solution [45℄. Clustering time-series is a132



speial ase of lustering in whih the available data have one or both of the following twofeatures: �rst they are of very large dimension and seond they are not of equal length andthus onventional lustering methods annot straightforwardly be applied. In suh asesit is natural to initially �t the available data with a parametri model and then to lusterbased on that model. Through the literature there are di�erent types of models that havebeen used for time series lustering [193℄. Among them, Hidden Markov Models [194℄,polynomial and spline regression models [195, 196℄, mixtures of ARMA models [197, 198℄and mixtures of Gaussian proesses [199℄ are ommonly used models. The main drawbakof these methods is that they do not automatially address the problem of model orderseletion, whih is very important in regression. If the order of the regressor model is toolarge, it over�ts the observations and does not generalize well. On the other hand if it istoo small, it might miss trends in the data.fMRI belongs to the spatiotemporal lass of data that apture both spatial and tem-poral properties of data [200℄. Clustering suh kind of data must onsider how to groupvoxels into spatial regions where voxels exhibit similar temporal behavior. But this isnot a problem rather a hallenge. In suh ases it is important to measure both thetemporal harateristis of the grouped voxels and simultaneously to aurately lassifyvoxels in groups of similar temporal behavior. Thus, for this type of data, determininglass membership, apart from the distane between the oeÆients of the model, it is alsobene�ial to use spatial onstraints. Suh onstraints must apture our prior knowledgethat adjaent voxels most likely belong to the same lass and have the same label.From the fMRI data analysis perspetive, in the literature many works have beenpresented about the lustering of fMRI time series. In most of them the lustering pro-edure is made using raw data or features that are extrated from the fMRI signals[182, 184, 185, 186, 187, 188, 189, 190, 191℄. Mixture models have been reently to thetask of lustering [191, 90℄. In [202℄ a mixture of General Linear Regression models(GLMs) is used that takes into aount the spatial orrelation of voxels using a spatialprior based on the distanes between voxels and luster enters. Reently, in [203℄ a mix-ture of linear regression models is used, where spatial orrelations among the time seriesis ahieved through Potts models over the hidden variables of the mixture model.In this hapter we proposed a new probabilisti mixture modeling approah for lus-tering fMRI time series based on linear regression models where eah luster is desribedas a linear regression model. The innovation of the proposed method is found on threeissues. First, present a sparse representation of every luster regression model through theuse of an appropriate sparse prior over the regression oeÆients [87℄. Enforing sparsityis a fundamental mahine learning regularization priniple and has been used to takleseveral problems, suh as feature seletion. The key idea behind use of sparse priors isthat we an obtain more exible inferene methods by employing models having initially133



many degrees of freedom than an be uniquely adapted to given data. In partiular, insparse Bayesian regression a heavy tail prior is imposed to the oeÆients of the regres-sor. During training suh prior will zero out the oeÆients that are not signi�ant andmaintain only a few large oeÆients that are onsidered signi�ant based on the train-ing data. Spatial onstraints of data have been also inorporated to the mixture modelthrough the notion of Markov Random Field (MRF). This is done by onsidering the lasslabels parameter of eah voxel as random variables that follows a Gibbs distribution soas to ahieve similar behavior in every voxel neighborhood. Speial are is given duringthe optimization proedure in order to meet the onstraints of those parameters.To avoid sensitivity of the design matrix to the hoie of kernel matrix, we have useda kernel omposite design matrix onstruted as linear ombination of Gaussian kernelmatries with di�erent saling parameter. Eah kernel matrix has eah own weight thatis unknown and must be estimated. During the learning proess the onstraints of thesekernel weights are also taken into aount. The lustering proedure is formulated as aMaximum A Posteriori (MAP) estimation problem where the Expetation - Maximization(EM) algorithm onstitutes a powerful framework for solving it. At the end of the trainingphase, we selet the luster that is more similar to the BOLD signal aording to thePearson orrelation measure. An inremental strategy for building the mixture model isalso presented. The advantage of doing that is twofold: First, it makes the EM-basedlearning proedure independent on initialization of model parameters. At the seond levelit allows us to introdue a stopping riterion of the repeating splitting proess based onthe orrelation measurement. Intuitively, this an be seen as a model order seletionfor the omplexity of the mixture model. As experiments with arti�ial and real fMRIdataset have shown, the proposed method o�ers very promising results with an exellentbehavior in diÆult and noisy environments.8.2 The mixture of linear regression modelsLet Y = {y1;y2; · · · ;yN} be a set of N fMRI time series of equal length T , where eahelement yn is a sequene of data points measured at T suessive time instanes xl, i.e.yn = {ynl}l=1;··· ;T . The linear regression model follows the next funtional desriptionyn = Xw + e (8.1)where w is the vetor ofM unknown regression oeÆients, while e is the noise term thatis assumed to be zero mean Gaussian with variane �2, i.e. e ∼ N (0; �2I). Finally, X isthe M -order design matrix of size T ×M where its onstrution plays an important rolefor the data analysis. A typial design matrix sheme is by using the Vandermonde orB-splines matrix dealing with polynomial or splines models, respetively [?℄. However a134



more powerful strategy is to assume a kernel design matrix using an appropriate kernelbasis funtion over time instanes {xl}Tl=1, suh as the Gaussian kernel whih is the mostommonly used K�(xl; xk) = exp(−(xl − xk)2
2� ) .However, seleting the proper value of the salar parameter � is a signi�ant issue sineit depends on the amount of loal variations of the data.Aording to this model, the onditional probability density of the sequene yn giventhe set of model parameters � = {w; �2} is also of Gaussian formp(yn|�) = N (Xw; �2I) .In this study we onsider the problem of lustering the set of time series Y into a set of Klusters, in suh a way that eah luster to ontain similar time series, i.e. to have beengenerated from the same linear regression model. Mixture modeling provides a naturaland powerful platform of establishing the lustering proedure based on linear regressionmodels. It is desribed with the following probability density:f(yn|Θ) =

K
∑j=1

�jp(yn|�j) , (8.2)where �j are the weights (prior probabilities) of every luster that satisfy the onstraints:�j ≥ 0 and ∑Kj=1 �j = 1. Following this sheme, eah sequene yn is generated by�rst seleting a luster (or soure) j aording to probabilities �j and then performinga sampling based on the orresponding j-th linear regression model with parameters,�j = {wj; �2j}, as desribed by the normal density funtion p(yn|�j) = N (Xwj; �2j I).Based on the above formulation, the lustering problem an be transformed into anestimation problem for the model parameters by maximizing the data log-likelihood fun-tion L(Θ) =

N
∑n=1

log{
K
∑j=1

�jp(yn|�j)}. (8.3)The EM algorithm [205℄ onstitutes an eÆient method for applying to suh ML esti-mation problem. It onsists of two main steps whih are applied iteratively. The E-stepwhere the urrent posterior probabilities probabilities of time series to belong to eahluster are alulated: znj = p(j|yn;Θ) =
�jp(yn|�j)f(yn|Θ)

, (8.4)and the M-step where the maximization of the expeted omplete log-likelihood (Q-funtion) is performed with respet to model parameters,Q(Θ|Θ(t)) = N
∑n=1

K
∑j=1

znj{log �j − 1

2
T log �2j − ‖yn −Xwj‖2

2�2j } (8.5)135



The maximization leads to the following update rules:�j =

∑Nn=1 znjN , (8.6)wj = (

N
∑n=1

znjXTX)−1XT N
∑n=1

(znjyn), (8.7)�2j =

∑Nn=1 znj‖yn −Xwj‖2T ∑Nn=1 znj . (8.8)After the onvergene of the EM algorithm, the assoiation of N observations with theK lusters is done following the rule of the maximum posterior probability values.8.3 Regression mixture modeling with spatial and sparse proper-tiesThe above struture of the linear regression mixture model for lustering fMRI data hassome limitations and is not apable of handling some important harateristis arisenfrom the nature of the observations. In partiular, the fmri data are strutures thatinvolve spatial properties, sine adjaent voxels tend to have similar ativity behavior[86℄. Another desirable property is to handle temporal orrelations derived from neural,physiologial and physial soures [38℄ and have a mehanism that an automatiallyaddress the model order. Bayesian framework allows the inorporation of all these featuresthrough the use of appropriate prior distributions over the model parameters that at asuseful onstraints.In order to apture spatial properties we an onsider that the probabilities �nj ofeah fMRI sequene yn to belong to the j-th luster are additional model parameters thatsatisfy the onstraints �nj ≥ 0 and ∑Kj=1 �nj = 1. The mixture model is now modi�ed asf(yn|Θ) =

K
∑j=1

�njp(yn|�j). (8.9)where the total set of parameters are Θ = {{�nj}Nn=1; �j}Kj=1. We an handle the loalharateristis of the voxels using the Markov Random Fields (MRF) sine they have su-essfully applied to omputer vision appliations, suh as the task of image segmentation[201℄. In partiular, we an assume the Gibbs prior distribution [98, 100℄ over the set ofvoxel labels Π = {�n}Nn=1 having a density funtionp(Π) = 1Z exp{−
N
∑n=1

VNn(Π)} . (8.10)136



The funtion VNn(Π) denotes the lique potential funtion of the labels of the n-th timeseries vetors, where in our study it takes the following form:VNn(Π) = ∑m∈Nn K
∑j=1

�j(�nj − �mj)2. (8.11)The neighborhood Nn around the n-th voxel is the set of eight (8) voxels that are hor-izontally, diagonally or vertially adjaent. We also assume that every luster has itsown regularization parameter �j providing us with a way to enfore di�erent degree ofsmoothness at eah luster. Finally, the term Z is the normalizing fator that is analogousto Z ∝ ∏Kj=1 �Nj .An important role in using a regression model is how to estimate its order M . Thisa�ets the vetor of the regression oeÆients wj. The appropriate value of M dependson the shape of data to be �tted, where models of small order may lead to under�ttingwhile large values of M may beome responsible for data over�tting. As a results thisphenomenon deteriorates signi�antly the lustering performane. A solution to thisproblem an be given using the Bayesian regularization framework that penalizes modelsof large order [87℄. In partiular, we an initially assume large value of orderM and imposea heavy tailed prior distribution p(wj) over the regression oeÆients. After training onlya part of them will beome ative while most of them will be zero out.The sparsity of the regression oeÆients wj an be ahieved in an hierarhial wayby onsidering �rst a zero-mean Gaussian distribution over themp(wj|αj) = N(wj|0;A−1j ) =
M
∏l=1

N(wjl|0; �−1jl ) , (8.12)where Aj is a diagonal matrix ontaining the M omponents of the hyperparameter ve-tor αj = (aj1; : : : ; ajM). At a seond level, a Gamma prior distribution is imposed onhyperparameters �jl p(�j) = M
∏l=1

Γ(�jl|b; ) ∝ M
∏l=1

�b−1jl exp−�jl . (8.13)The above two-stage hierarhial sparse prior is atually the Student's-t distribution en-foring most of the values �jl to be large and thus eliminating the e�et of the orre-sponding oeÆients wjl by setting to zero. In suh way the regression model order forevery luster is automatially seleted and over�tting is avoided.As mentioned before, the onstrution of the design matrix X is a ruial part of theregression model. In our ase we have onsidered that eah luster has its own designmatrix Xj written as a mixture of kernel matries[206, 204℄Xj = S
∑s=1

ujsXs137



where Xs is the kernel matries with salar parameter �s. The weights ujs satisfy theonstraints ujs ≥ 0 and ∑Ss=1 ujs = 1. This sheme performs an inferene from a pool ofS kernel funtions whih are ombined into a omposite spae. Every andidate kernelmatrixXs has its own sale parameter �s value. The parameters ujs must be estimated inorder to obtain the weighted sheme of the kernel ombination that better suits to everyluster.From the above analysis, the lustering proedure beomes a Maximum-A-Posteriori(MAP) estimation problem, where the log-likelihood of the model (Eq. 8.3) is augmentedwith two penalty terms: a) one that orresponds to the prior for the labels Π (spatialonstraints) and b) another one that orresponds to the sparse prior for the regressionoeÆients wj (sparse onstraints)
LMAP (Θ) =

N
∑n=1

log{
K
∑j=1

�njp(yn|�j)}+log p(Π)+ K
∑j=1

{

log p(wj|αj)+log p(αj)} . (8.14)The appliation of the EM algorithm to the MAP estimation problem requires theonditional expetation values znj of the hidden variables to be omputed during theE-step znj = P (j|yn;Θ) =
�njp(yn|�j)f(yn|Θ)

. (8.15)At the M-step, the maximization of the the expeted value of the MAP log-likelihood ofthe omplete data is performed:Q(Θ|Θ(t)) =

N
∑n=1

K
∑j=1

znj{log �nj − 1

2
T log �2j − ‖yn −Xjwj‖2�2j } (8.16)

− log �j − �j ∑m∈Nn(�nj − �mj)2 − K
∑j=1

1

2
wTj Ajwj +M

∑l=1

{(b− 1) log�jl − �jl} .By setting the partial derivatives of the above Q funtion with respet to label parameters�nj equal to zero, we obtain the following quadrati equation:�2nj− < �nj > �nj − 1

2�j|Nn|znj = 0 , (8.17)where < �nj > is the mean value of the j-th luster's probabilities of the spatial neighborsof the n-th voxel, i.e. < �nj >= 1
|Nn| ∑m∈Nn �mj. The above quadrati expression has tworoots, where we selet only the root with the positive sign sine it yields the onstraint�ij ≥ 0: �nj = < �nj > +

√< �2nj > + 2
|Nn|znj

2
. (8.18)138



However, these values do not satisfy the onstraints 0 ≤ �nj ≤ 1 and ∑Kj=1 �nj = 1,and there is a need to projet them on their onstraint onvex hull. For this purpose aneÆient onvex quadrati programming method is used as presented in [201℄.For the rest model parameters �j = {wj;αj; �2j} the update rules an be easily ob-tained as wj =
[(

N
∑n=1

znj) 1�2jXTj Xj +Aj]−1 1�2jXTj ( N
∑n=1

znjyn) (8.19)�jl =
1 + 2w2jl + 2b (8.20)�2j =

∑Nn=1 znj‖yn −Xjwj‖2T ∑Nn=1 znj . (8.21)Finally, the parameters ujr of the kernel omposite design matrix are obtained aftersolving the following optimization problem:
maxuj {uTjKjwTKjwuj − 2uTjKjwT ∑Nn=1 znjyn

∑Nn=1 znj }, s.t. S
∑s=1

ujs = 1 and ujs ≥ 0 .The matrix Kjw is derived by rearranging the terms in the linear regression model asdesribe below: Xjwj = (

S
∑s=1

ujsXs)wj = Kjwuj. (8.22)At the end of the learning proess the ativation map of the brain is onstruted.In partiular, we initially selet the luster h that best math with the BOLD regressor(whih is known before the data analysis) among the K mixture omponents. This isdone following the Pearson orrelation measurement between eah luster's estimatedmean value (Xjwj) and the BOLD regressor, whih is in fat the osine similarity. Theset of voxels that belong to this luster h draw the brain ativation region, while all therest voxels from di�erent lusters assign the non-ativation region.8.3.1 Inremental learningA drawbak of the EM algorithm is its sensitivity to the initialization of the model param-eters due to its loal nature. Improper initialization may lead to poor loal maxima of thelog-likelihood that sequentially a�ets the quality of the lustering solution. A solutionis to test several initial values and selet the one set of values that reah the maximumlog-likelihood funtion value after running one-step of the EM algorithm. However, othermore advaned methods have been reently presented about inrementally building Gaus-sian mixture models [207, 209, 210℄. We have adopted suh sheme in our approah andhave developed a framework that iteratively adds a new omponent to the mixture byperforming a omponent split proedure. 139



Initially, we start with a model having one omponent that omes from a single linearregression model. Let now assume that we have already onstruted a mixture fk of klinear regression omponents fk(yi|Θk) = k
∑j=1

�jp(yi|�j) . (8.23)The omponent j∗ whih is more similar to the BOLD regressor is then seleted forsplitting and a new omponent k + 1 is generated. For initializing its parameters weperform the following steps:
• Among the time series that urrently belong to the seleted for splitting luster j∗,�nd a small perentage of the worst �tted ases and alulate their mean value y∗.
• Fit a regression model to the this mean sequene y∗ and obtain initial values forthe new omponent's regression oeÆients wk+1, regularization parameter �k+1;l =
1=w2k+1;l and noise variane �2k+1. The kernel weights of the design matrix Xk+1 areequivalent, i.e. uk+1;s = 1=S.
• The label parameters are initialized as �n;k+1 = {�n;j∗}new =

{�n;j∗}old
2Subsequently, the EM algorithm an be applied for estimating the parameters Θk+1 ofthe new mixture model.The splitting proedure is responsible for adding one linear regression omponent ata time. Intuitively thinking, it an be seen as a pruning mehanism that is repeated untilfound the luster that best desribes the BOLD e�et in terms of its urve representationand also its homogeneous appearane. For terminating the proedure we have used theriterion of the perentage of the orrelation inrease between two suessive steps. Whenthis perentage beomes very small the inremental training proess is terminated. In thisase the mixture inrement from Θk to Θk+1 does not o�er any signi�ant improvementto the orrelation riterion, and thus the best found luster from the previous step is the�nal solution.8.4 Experimental resultsThe proposed method have been tested using simulated and real fMRI data. We haveompared the proposed mixture model with spatial and spatial properties (SSRM), usingboth the inremental (iSSRM) and the regular version, with the ML regression mixture(MLRM) approah. The MLRM approah is similar to the SSRM. The only di�ereneis that the estimation of regression oeÆients of eah omponent is based on the MLpriniple (i.e. we have not used the sparse prior over the regression oeÆients). The140



matries Xs; s = 1; · · · ; S, where S = 10, were reated by using Gaussian kernels fordi�erent values of the width parameter �s varying from 0.1 to 2 with step 0.2. In allexperiments, �rst we applied the inremental version of the algorithm to determine amongothers the number of lusters and then we applied the SSRM and the MLRM algorithmsusing this number.To initialize all the algorithms, expet the iSSRM, the following proedure is adopted.First, we selet randomly K time series, one for eah luster, from the dataset. Then, theML learning rule is applied in eah regression model to estimate the regression oeÆients.After that the parameters ajl an be estimated as �jl = 1w2jl , where j is the luster and lthe orresponding regressor. The mixing probabilities �nj are initially set to 1K and theparameters ujs are initially set to 1S . Finally, two steps of the EM algorithm were exeutedto improve the estimation of model parameters and to evaluate the loglikelihood. Thisapproah is applied for one hundred di�erent trials and the solution with the maximumlog-likelihood value is seleted for initializing the parameters of EM algorithm.In experiments, the design matrix of eah luster Xj has two omponents, one ompo-nent whih omes out from the ombination of kernel matries and one omponent whihis ommon in all luster and it is the BOLD regressor, Xj = [X(F )j bT ]. This slightlydi�erent design matrix from that desribed previously does not hange at all the pro-posed model. It must be only taken into aount when the estimation of parameters ujsis performed. In that ase the term wpb must be removed for the observations yn wherewp denotes the orresponding weight to the BOLD regressor.8.4.1 Experiments using simulated fMRI dataIn experiments with simulated fMRI data we reate 3-D dataset of time series from a linearregression model where the design matrix was known as well as the regression oeÆients.In these time series we have added white gaussian noise of various SNR levels. The SNRis de�ned between the BOLD regressor and the white gaussian noise omponent of themodel. The spatial orrelation between the time series is ahieved through the regressionoeÆients. The regression oeÆients of the BOLD regressor have a spatial patternwhih is drawn in Fig. 8.1a. The BOLD regressor, whih is used to model the neuralativity, is shown in Fig. 8.1b. Also, in the time series we have added a slow varyingomponent to model the drift in the fMRI time series (Fig. 8.1).To quantify the performane and measure the quality of the lustering, we have usedtwo riteria:
• the Performane (suess rate), whih is the perentage of orretly lassi�ed timeseries and quanti�es the ability of the method to assign eah time series to theorret luster. 141
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• the normalized mutual information (NMI), whih is an information theoreti mea-sure based on the mutual information of the true labeling (Ω) and the lustering(C) normalized by their entropies:NMI(Ω; C) = I(Ω; C)

(H(Ω) +H(C))=2 . (8.24)We have ompared the iSSRM and the SSRM algorithms with the MLRM algorithm.The SSRM and the MLRM algorithm assumed that the number of luster is known. Tode�ne the number of lusters we use �rst the iSSRM algorithm whih provides us withthe estimated number of lusters, then this number is used to the others algorithms.The results are shown in Table (8.1), we an see that the iSSRM algorithm presentbetter performane from the other algorithms, in terms of the lassi�ation error and themutual information. Comparing the iSSRM and the SSRM algorithms we an see that theinremental version provides better results from the SSRM. Sine the di�erene of thesetwo algorithms is on the initialization strategy of the EM algorithm, we an onludedthat the initialization is responsible for the di�erene in the results. Finally, in Fig. 8.2we shown an example of the lustering in the ase of −8 dB. We provide the ativationof eah method as well as the lassi�ation error of them. It is obvious the ability of theiSSRM and SSRM algorithms to �ll the holes that are observed in the MLRM algorithm.To shown the usefulness of the proposed approah in the onstrution of design matrixwe ompare the iSSRM algorithm with a version of SSRM with out using a ombinationof matries but only one of them (we alled this method sRM). In our experiments the ex-tended design matrixXj was onstruted as a ombination of 10 design matries (R = 10)(based on the idea of kernels) Fr; r = 1; · · · ; 10. In Table 8.2 we shown the results foriSSRM and the sRM algorithms. The sRM algorithm has been run 10 times with a di�er-ent design matrix Fr and we have hoose the best results. Again, the iSSRM algorithmpresents better performane in terms of lassi�ation error and mutual information.142



Table 8.1: Comparative results for simulated data in various noisy environments.Performane NMISNR iSSRM SSRM MLRM iSSRM SSRM MLRM0 0.9989 1.0000 1.0000 0.9937 1.0000 1.0000-2 0.9993 0.9999 0.9999 0.9956 0.9993 0.9989-4 0.9983 0.9983 0.9967 0.9864 0.9862 0.9751-6 0.9901 0.9688 0.9827 0.9380 0.8945 0.8973-8 0.9713 0.9049 0.9466 0.8513 0.7237 0.7468-10 0.9456 0.8296 0.8862 0.7515 0.5458 0.5565-12 0.8384 0.8961 0.8075 0.5621 0.6310 0.3705-14 0.8035 0.7870 0.6571 0.4648 0.4138 0.1436
Classification error: 0.9735
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Table 8.2: Comparative results for simulated data in various noisy environments.Performane NMISNR iSSRM sRM ( � ) iSSRM sRM ( � )0 1.0000 0.9405 (0.1) 1.0000 0.7926 (0.1)-2 0.9998 0.9386 (0.1) 0.9986 0.7872 (0.1)-4 0.9979 0.9152 (0.1) 0.9836 0.7144 (0.1)-6 0.9897 0.7677 (0.9) 0.9366 0.4488 (0.9)-8 0.9730 0.7129 (1.7) 0.8578 0.3658 (1.7)-10 0.9507 0.6592 (1.7) 0.7687 0.2870 (1.7)-12 0.8589 0.6793 (1.3) 0.5980 0.2949 (1.3)-14 0.7804 0.6475 (0.5) 0.4307 0.2366 (0.5)
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(a) (b)Figure 8.3: Termination riterion (SNR=-14dB).In Fig. 8.3 we provide the termination riterion with respet to the iteration of theinremental algorithm. Also, in the same �gure the log-likelihood is given. These resultshave been obtained from a dataset where the SNR was -14 dB. We an observe that atevery step of the inremental algorihm the log-likelihood is always inreased while thetermination riterion onverges after few iterations. This is more obvious in Fig. 8.4where images of the lustering proedure for the same dataset are provided. We seethat the inrease of number lusters from K = 3 to K = 4 does not provide any newinformation.8.4.2 Experiments using real fMRI dataWe have applied the iSSRM, SSRM and the MLRM algorithms using real fMRI dataonerns blok design and event related experiments. In both datasets, we followed thestandard preproessing steps of the SPM pakage, i.e. realignment, segmentation, nor-malization and spatial smoothing steps. Data are then saled by using the global meanvalue of all time series as a fator. Finally, eah time series was then high pass �lteredusing a set of disrete osine basis funtions. At �rst we have studied a real blok designfMRI dataset1 designed for auditory proessing task on a healthy volunteer. Its funtionalimages onsisted ofM = 68 slies (79 × 95 × 68, 2mm × 2mm × 2mm voxels). Experi-ments were made with the slie 29 of this dataset. We have applied the iSSRM algorithm,whih provides us with the number of lusters. After that, the SSRJM and the MLRMalgorithms have been applied.The results of lustering are shown in Fig. 8.5. The images show the position oflusters inside the brain. Also, an ativation map is provided, whih is produes by1It was downloaded from the SPM web page http://www.�l.ion.ul.a.uk/spm/144
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adopting an analysis based on the GLM. More spei�ally in our ase the ativation mapprodues by using the spatial method desribed in [213℄. We an observe that there is oneluster that oinides with the ativation region whih is the auditory ortex. Comparingthe lustering results with the ativation map we an observe that there is great similaritybetween the luster responsible for ativation and the strength of the regression oeÆient.In Fig. 8.6 we depit the enter of eah luster with the BOLD response, also weprovide the orrelation oeÆients of eah enter luster with the BOLD response. Thisis shown for all the methods. We see that the iSSRM algorithm provides us with a lusterenter whih is more orrelated to the BOLD response than the others algorithms.In event related experiments we analyzed fMRI data onsisted of images aquired froma motor event related paradigm available at the aÆliated University Hospital of Ioannina.During this experiment patients with RLS (restless legs syndrome) performed randomand spontaneous limb movements evoked by sensory leg uneasiness. These movementswere used to reate the indiator vetor in our modeling that was onvolved next withthe hemodynami response funtion (HRF) in order to provide the BOLD signal. In Fig.8.7 we show the lustering results together with the ativation map. Similar observations,just like the auditory experiment, an be done here. All methods provides us with theluster related to the primary motor region and supplementary motor areas of the brain.We an observe the similarity between the luster of ativation and the ativation map.Also, in Fig. 8.8 we depit the enter of eah luster with the BOLD response, in additionthe orrelation oeÆients of eah enter luster with the BOLD response are provided.8.5 ConlusionsIn this hapter, we proposed a probabilisti mixture modeling approah for the lusteringof fMRI time series. More, spei�ally a mixture of linear regression models with sparseand spatial properties is presented. Sparse priors are plaed on the weights of eah linearregression model helping us to deal with problem of model order seletion. Also, spatialpriors are used on the mixing oeÆients to take into aount the spatial orrelationbetween the voxels. This is ahieved by using a Gibbs distribution. Furthermore, toavoid sensitivity of the design matrix to the hoie of kernel matrix, we have used a kernelomposite design matrix onstruted as linear ombination of Gaussian kernel matrieswith di�erent saling parameter. Our future researh study is foused to three diretions:a) to examine the appropriateness of other types of sparse priors [107℄, b) to try alternativepotential funtions of the Gibbs distribution and ) to try di�erent approahes for learningthe design matrix [211℄.
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Chapter 9 Conlusions
In this thesis we have studied the linear regression model and the time varying autore-gressive model and its appliations on problems of biomedial signal proessing. The timevarying autoregressive model was proposed for the enhanement of epilepti EEG spikes,while variations of the linear regression model were proposed for the analysis of fMRItime series, the estimation of ERPs and the drift removal from HRV time series. More,spei�ally a model, based on the smoothness prior, was proposed for the estimation ofa signal inside a noisy environment. For the estimation proedure we adopted the Vari-ational Bayesian Methodology and the proposed model was used to �nd the ERPs andthe drift inside the HRV time series. Next, two algorithms, using the linear regressionmodel, were proposed for the analysis of fMRI time series. In these algorithms, we havefoused on issues onerning the noise model. The noise deomposed into two ompo-nents, one omponent originates for the time series, while the other originates from theimages. Furthermore, the linear regression model with sparse and spatial properties wasused for the analysis of fMRI time series. To inlude these properties into the model anenhaned version of the Gibbs distribution was used. Finally, we proposed a lusteringtehnique for fMRI time series. An extended version of mixture modeling, based on thelinear regression model and the Gibbs distribution, was proposed for the lustering. Also,an inremental algorithm was derived based on the above mixture models.In hapter 4, the time varying autoregressive model was used for the enhanement ofepilepti spikes. This model was represented in the form of a state-spae model, and thenthe Kalman Filter was used to estimate the autoregressive oeÆients. The results wereindiated that the proposed method is able to enhane the epilepti spikes in terms ofSNR. Also, when the proposed method is used as a preproessing step into a detetionproedure, is able to redue the false alarms while keep at aeptable level the loose ofepilepti spikes.In hapter 5, we proposed a method for the reovery of biomedial signal from a noisy151



environment. More spei�ally, we assumed that the signal of interest was smooth. Thisassumption guided us to proposed the smoothness prior for the signal. The noise wasstudied in two ases: white gaussian noise and olored Gaussian noise. To estimate thevarious model parameters we adopt a probabilisti approah based on the VariationalBayesian Methodology. This approah uses an approximate posterior, instead of the true,helping us to obtained losed form solutions. The results had shown the usefulness of theproposed method omparing to the wavelet denoising approah and the generalized rossvalidation riterion. The proposed method was applied to estimate the ERPs from theEEG signal and the drift inside the HRV time series.In hapter 6, two methods were proposed to �nd the ativation of brain using fMRItime series. More spei�ally, the linear regression model was used and the variane ofthe noise was deomposed into two omponents, one aross time - series and the otheraross images. Again, the Variational Bayesian Methodology was used for the estimationproedure of various model parameters. The results shown the ability of the proposedmethods to �nd aurately the brain ativation.In hapter 7, we extended our study in the analysis of fMRI time series by introduingspatial properties into the linear regression model. More spei�ally, an enhane priordistribution, based on Gibbs distribution, was proposed. This prior inludes simultane-ously sparse and spatial properties into the linear regression model. Experiments wereperformed using real and simulated data. The results indiated the superiority of theproposed method.In hapter 8, a lustering method, based on mixture modeling, was proposed for theanalysis of fMRI time series. The proposed mixture model uses spatial over the mixingprobabilities to take into aount the orrelation between adjaent fMRI time series. Also,the mixture omponents are based on linear regression models whih help us to modelbetter the time series and onfront the large dimension of time series. Furthermore, aninremental algorithm based on mixture modeling was proposed for the lustering of fMRItime series. The inremental algorithm help us to onfront the problem of ill-balaneddata observe in fMRI time series.In future work, it would be interesting to study the enhanement of epilepti spikesusing multihannel reordings. This will help us to inlude spatial information into themodel. Also, a method, based on the EM algorithm, where the model parameters will beestimated from the data it would be useful, espeially for automati monitoring of EEGsignal. In the signal estimation method of hapter 5, we ould extended the model by usinga non stationary smoothness prior or by adopting other noise distributions suh as theStudent's t - distribution. However, these extensions to be omputationally eÆient willbe needed to resort into approximation tehniques to estimate the posterior ovariane.In hapter 6, the drift was modeled by using Gaussian basis funtions with �xed the152



sale parameter. An extension of this approah is to use other basis funtions for the drift.In addition, we ould use a learning proedure for the design matrix as that desribedin hapter 8 to avoid the need to make assumptions about the sale parameter. Also, asimilar learning proedure should be examined in onjuntion with the linear regressionmodel of hapter 7. Finally, in the model of hapter 8 it would be useful to examine otherdistribution omponent than the gaussian in the lustering of time series.In the analysis of fMRI time series, it would be interesting to onstrut generativemodels that inlude more preproessing steps into the same framework. This will help tobetter understand how the various omponents and properties of fMRI time series interateah other. One ruial aspet in the analysis of fMRI time series is the estimation ofHRF during the analysis of time series and how this a�ets the subsequent analysis ofdata. Finally, the use of multiple imaging tehniques, to overome the limitations ofeah method, is very appealing. For example, EEG and fMRI data an be olletedsimultaneously. Merging these two tehniques we hope to get the best of both worlds. Inthis diretion new models will be onstruted to explain the observations.Furthermore, the use of proposed models is not restrited only to problems that weredesribed in this thesis. For example, the lustering method that was desribed in hapter8 an be easily applied in the analysis of other biomedial signals suh as the lusteringof ERPs. Besides the lassi�ation results that we obtain due to the lustering, we alsoobtain time series whih orresponds to the means of eah luster. These time seriesan be used as regressors into a linear regression model and we ould applied a similarproedure, as that of the statistial analysis of fMRI data, to obtain statistial brain mapsbased on ERPs.
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