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Abstra
tOikonomou, Vangelis, P. V..PhD, Computer S
ien
e Department, University of Ioannina, Gree
e.July, 2010.Title: Bayesian Methods for Biomedi
al Signal and Image Pro
essing.Thesis Supervisor: Konstantinos Blekas.This thesis is fo
used on the study and the development of intelligent methods forthe pro
essing of biomedi
al signal and image. Biomedi
al signals belong to the 
lass ofsequential data, i.e. data that are evolved in time or spa
e. Their stru
ture is 
omplexand 
an be obtained in serial or bat
h mode. Finally, biomedi
al signals 
ontain hidden
hara
teristi
s and their dete
tion 
onstitutes a diÆ
ult task. All the above propertiesalthough bring some serious obsta
les during the study of these signals, are issues of greatresear
h interest and 
hallenges, in the sense of be
oming the seeds of building e�e
tiveand innovative me
hanisms and tools for biomedi
al data analysis. Moreover, the ne
essityof these methods is further ampli�ed with the fa
t that biomedi
al signals belongs to thekind of data from the real world appli
ations. Under these prism, analyzing these pie
esof information may signi�
antly a�e
t the human life, improve the understanding of thehuman body, as well as may be
ome a light to the dis
overy of new per
eptions anda
hievements within the medi
al world.The s
ope of this thesis is to study and present powerful statisti
al models that in
or-porate various interesting properties of biomedi
al signals, su
h as spatial and temporal
orrelations between, their time-varying nature, and their environment, in order to a
hievethe improvement of the �delity of analysis and the de
ision making pro
edure. A desiredfeature of the models that are presented thought this thesis is to des
ribe the signal with asingle and less 
omplex, but powerful and eÆ
ient, formulation in a way of in
reasing theirgeneralization 
apabilities. One su
h representation is the sparse representation, whi
h
onstitutes a modern tenden
y to the statisti
al data analysis 
ommunity with manyappli
ations to several others �elds, su
h the Biomedi
al Engineering, Biology, Ma
hineLearning et
. Variations of the generalized linear regression model and the state - spa
emodels, su
h as the Kalman Filter, are the main sto
hasti
 models that are presentedfor analyzing ele
troen
ephalograms, and time series from the heart and from fun
tionMagneti
 Resonan
e Imaging.In 
hapter 2 and 3, basi
 notions about the nature of data and problems that resultsfrom this are given. Biomedi
al signals that are studied in this thesis are derived fromviii



the brain and the heart. In 
hapter 2 basi
 information about these two organs is givenas well as information about the me
hanism that generated the 
orresponding biomedi
alsignals. For the study of these signals probabilisti
 models are used in 
onjun
tion with theBayesian framework. Thus, basi
 tools from statisti
s and ma
hine learning are presented,sin
e these tools will be used to learn model parameters. Also, a review of various generalapproa
hes, used in biomedi
al signal 
ommunity, is performed. In 
hapter 3, a des
riptionof various probabilisti
 models is given. More spe
i�
ally, the linear regression model, thestate-spa
e model and the autoregressive model are presented. These models will be usedlatter in this thesis. Furthermore, a des
ription of various prepro
essing steps in theanalysis of fMRI data is given.In 
hapter 4, a method for the enhan
ement of epilepti
 spikes is proposed. Epilepti
spikes are observed in the ele
troen
ephalogram. To deal with the non stationarity ofEEG signal, a time - varying autoregressive model (TVAR) is used. The TVAR modelparameters are estimated with the help of the Kalman Filter. The experimental resultshave shown that the proposed method is able to redu
e the false alarms while at the sametime keep at a

eptable level the loose of true spikes.One important aspe
t that must be taken into a

ount is that the biomedi
al signalis observed with noise. The origin of noise 
an be some malfun
tion of hardware or otherphysiologi
al pro
ess of the human body. In 
hapter 5, a method is proposed to removethe noise for the observations. This is a
hieved by using a useful prior over the signal ofinterest. The prior is 
hara
terized for its smooth nature and is based on the lapla
ianoperator. Then, adopting the Bayesian framework the model parameters are estimated.The proposed method is used for the estimation of Event Related Potentials (observedin EEG) and the removal of drift from time series that des
ribed the heart rhythm. Theresults have shown a

urate estimation of these two signals.In 
hapter 6, a method is proposed for the analysis of fMRI time series when the noiseis non - stationary. The basi
 building blo
k of this method is a probabilisti
 approa
hof the linear regression model. A sparse representation is used for the weights of thelinear regression model through a sparse prior. Sparsity 
an improve pattern re
ognition,
ompression, and noise redu
tion among others. The noise term of the linear regressionmodel is non stationary and 
onsists from two 
omponents, one 
omponent originatesfrom the time series while the other from the images. Two versions of this model are usedto des
ribe the time series. The �rst is based on a voxel-by-voxel analysis of fMRI dataand the se
ond is based on a simultaneous use of all data. Both approa
hes are used anextended design matrix to model the drift 
omponent, while for the estimation pro
edurethe Variational Bayesian Methodology is adopted resulting in two iterative algorithms.The results, based on real and simulated data, have shown the usefulness of the proposedmethods to �nd the a
tivated brain areas.The time series arising from fMRI experiments 
ontains 
orrelation between themwhen 
ome out from adja
ent brain areas. In 
hapter 7, we proposed a method that takeinto a

ount this information. More spe
i�
ally, a probabilisti
 linear regression modelix



with sparse and spatial properties is proposed. This is a
hieved by proposing an enhan
edversion of Gibbs distribution for the prior distribution of weights. The potential fun
tionof the Gibbs distribution is of spe
i�
 purpose and has two 
omponents, one to modelthe sparsity between the weights of one time series and the other to model the spatial
orrelation between weights that belongs to adja
ent time series. To perform inferen
eover model parameters the Maximum A Posteriori (MAP) estimation framework is used.Also, an alternative view of the proposed model, using the Expe
tation - Maximization(EM) algorithm, is presented. The results, based on real and simulated data, have shownthe ability of the proposed method to dete
t a

urately the a
tivated brain areas.In 
hapter 8, we proposed a new probabilisti
 mixture modeling approa
h for 
luster-ing fMRI time series based on linear regression models where ea
h 
luster is des
ribedas a linear regression model. A sparse representation of every 
luster regression modelis used through the use of an appropriate sparse prior over the regression 
oeÆ
ients.Enfor
ing sparsity is a fundamental regularization prin
iple and has been used to ta
kleseveral problems, su
h as model order sele
tion. Also, spatial properties of data havebeen in
orporated to the mixture model through the notion of Markov Random Field(MRF). Furthermore, to avoid sensitivity of the design matrix to the 
hoi
e of kernelmatrix, we have used a kernel 
omposite design matrix 
onstru
ted as linear 
ombinationof Gaussian kernel matri
es with di�erent s
aling parameter. The 
lustering pro
edure isformulated as a Maximum A Posteriori (MAP) estimation problem where the Expe
tation- Maximization (EM) algorithm 
onstitutes a powerful framework for solving it. To avoidproblems with the initialization of the algorithm, an in
remental strategy for buildingthe mixture model is presented. Experiments using arti�
ial and real fMRI dataset haveshown that the proposed method o�ers very promising results with an ex
ellent behaviorin diÆ
ult and noisy environments.
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Áñ÷éêÜ, ó�á êåöÜëáéá 2 êáé 3, ðáñïõóéÜæïí�áé âáóéêÝò Ýííïéåò �çò öýóçò �ùí äåäïìÝíùíêáé �ùí ðñïâëçìÜ�ùí ðïõ áðïññÝïõí áðü áõ�Ü. Ôá éá�ñéêÜ óÞìá�á ðïõ ìåëå�ïýí�áéðñïÝñ÷ïí�áé áðü �ïí åãêÝöáëï êáé �çí êáñäéÜ. Ó�ï êåöÜëáéï 2 ðáñÝ÷ïí�áé âáóéêÝò Ýííïéåòêáé ÷áñáê�çñéó�éêÜ ðëçñïöïñßåò ðïõ ó÷å�ßæïí�áé ìå �á äõï áõ�Ü áíèñþðéíá üñãáíá êáèþòåðßóçò êáé ìå �ïí �ñüðï ðáñáãùãÞò �ùí áí�ßó�ïé÷ùí óçìÜ�ùí �ïõò. �éá �çí áíáðáñÜó�áóçêáé åðåîåñãáóßá áõ�þí �ùí óçìÜ�ùí ÷ñçóéìïðïéïýí�áé êõñßùò ðéèáíï�éêÜ ðáñáìå�ñéêÜìïí�Ýëá óå Ýíá Ìðåûæéáíü ðëáßóéï áíÜð�õîçò. ¸�óé, ðáñïõóéÜæïí�áé âáóéêÜ èåùñç�éêÜåñãáëåßá �çò åðéó�çìïíéêÞò ðåñéï÷Þò �çò ó�á�éó�éêÞò êáé �çò ìç÷áíéêÞò ìÜèçóçò (ma
hinelearning), �á ïðïßá èá ÷ñçóéìïðïéçèïýí ó�ç äéáäéêáóßá åêðáßäåõóçò �ùí ðáñáìÝ�ñùí �ïõìïí�Ýëïõ. Åðßóçò, åðé�åëåß�áé ìéá åõñý�åñç áíáóêüðçóç âáóéêþí áñ÷þí êáé ìåèïäïëïãéþíðïõ ÷ñçóéìïðïéïýí�áé ó�çí åðåîåñãáóßá âéïúá�ñéêïý óÞìá�ïò êáé åéêüíáò. Ó�ï êåöÜëáéï 3ðåñéãñÜöïí�áé åéóáãùãéêÝò Ýííïéåò ðïõ áöïñïýí �á ó�ï÷áó�éêÜ ìïí�Ýëá ðïõ èá ÷ñçóéìïðïéçèïýíó�çí ðáñïýóá äéá�ñéâÞ. �éï óõãêåêñéìÝíá, ðáñïõóéÜæïí�áé �ï ãñáììéêü ìïí�Ýëï ðáëéíäñüìçóç,�ï state - spa
e ìïí�Ýëï, êáé �ï ìïí�Ýëï áõ�ïóõó÷Ý�éóçò êáèþò êáé ìéá ðéèáíï�éêÞ áíáðáñÜó�áóçáõ�ïý. ÔÝëïò, äßíå�áé ìéá ãåíéêÞ ðåñéãñáöÞ �ùí âçìÜ�ùí ðïõ áöïñïýí �çí ó�á�éó�éêÞáíÜëõóç ÷ñïíïóåéñþí áðü åéêüíåò fMRI.Ó�ï êåöÜëáéï 4, ðñï�åßíå�áé ìéá ìÝèïäïò ðïõ áöïñÜ �Þí åíßó÷õóç �ùí åðéëçð�éêþíäõíáìéêþí (epilepti
 EEG spike) ðïõ ðáñáñá�çñïýí�áé ó�ï çëåê�ñïåãêåöáëïãñÜöçìá,ìå ó�ü÷ï �çí äéåêüëõíóç �çò äéáäéêáóßáò áíé÷íåõóÞ �ïõò. �éá íá áí�éìå�ùðéó�åß ç ìçó�áóéìü�ç�á (nonstationarity) �ïõ çëåê�ñïåãêåöáëïãñáöÞìá�ïò ÷ñçóéìïðïéåß�áé �ï ÷ñïíéêÜìå�áâáëëüìåíï ìïí�Ýëï áõ�ïóõó÷Ý�éóçò (time varying autoregressive model), ïé ðáñÜìå�ñïé�ïõ ïðïßïõ åê�éìïýí�áé ìå �çí ÷ñÞóç �ùí ößë�ñùí Kalman. Ôá ðåéñáìá�êÜ áðï�åëÝóìá�áÞ�áí ðïëý åíèáññõí�éêÜ, êáèþò ðñïóöÝñïõí óçìáí�éêÞ ìåßùóç �ïõ ðëÞèïõò �ùí ëáíèáóìÝíùíðñïåéäïðïéÞóåùí (false alarms) ðïõ áöïñïýí �çí åìöÜíéóç åíüò åðéëçð�éêïý äõíáìéêïý.¸íá óçìáí�éêü ó�ïé÷åßï êá�Ü �çí ëÞøç �ùí âéïéá�ñéêþí óçìÜ�ùí åéíáé �ï èïñõâþäåòðåñéâÜëëïí. Ï èüñõâïò ìðïñåß íá ðñïÝñ÷å�áé áðï äõóëåé�ïõñãßåò �ïõ õëéêïý Þ áðü Üëëåòëåé�ïõñãßåò �ïõ áíèñþðéíïõ óþìá�ïò ðïõ óõìâáßíïõí �áõ�ü÷ñïíá ìå �ç ëÞøç �ïõ óÞìá�ïòåíäéáöÝñïí�ïò. Ó�ï êåöÜëáéï 5 ðñï�åßíå�áé ìéá ìÝèïäïò ðïõ áöïñÜ �çí áíÜê�çóç (Þ �çíåê�ßìçóç) �ïõ óÞìá�ïò åíäéáöÝñïí�ïò ü�áí áõ�ü ðáñá�çñåß�áé ìÝóá óå Ýíá èïñõâþäåòðåñéâÜëëïí. �éá íá �çí åðß�åõîç áõ�ïý �ïõ ó�ü÷ïõ ÷ñçóéìïðïåß�áé ìéá êá�Üëëçëç åê �ùíðñï�Ýñùí êá�áíïìÞ (prior distribution) ðÜíù ó�ï óÞìá åíäéáöÝñïí�ïò. Êáèþò ç åðéèõìç�Þéäéü�ç�á �ïõ óÞìá�ïò åßíáé áõ�Þ �çò ïìáëü�ç�áò (smoothness) åöáñìüæå�áé ìéá êá�áíïìÞ,ðïõ ÷áñáê�çñßæå�áé ãéá �çí ïìáëü�ç�á �çò (smoothness prior). �éá �çí åê�ßìçóç �ùíðáñáìÝ�ñùí �ïõ ìïí�Ýëïõ ÷ñçóéìïðïéåß�áé ìéá ðñïóåããéó�éêÞ ÌðåûæéáíÞ ìåèïäïëïãßá, ðïõêáëåß�áé Variational Bayesian. Ôï ðñï�åéíüìåíï ìïí�Ýëï ÷ñçóéìïðïéåß�áé ãéá �çí åê�ßìçóçðñïêëç�þí äõíáìéêþí ó÷å�éæüìåíá ìå Ýíá ãåãïíüò (Event Related Potentials) êáé ãéá �çíáöáßñåóç �ïõ drift (óõó�á�éêü �ïõ óÞìá�ïò ðïõ åìöáíßæå�áé ó�éò ÷áìçëÝò óõ÷íü�ç�åò)áðü ÷ñïíïóåéñÝò ðïõ åêöñÜæïõí �çí ìå�áâëç�ü�ç�á �ïõ êáñäéáêïý ñõèìïý (Heart RateVariability).Ó�ï êåöÜëáéï 6 ðñï�åßíå�áé ìéá ìÝèïäïò ðïõ ó÷å�ßæå�áé ìå �çí áíÜëõóç ÷ñïíïóåéñþíðïõ ðñïÝñ÷ïí�áé áðü åéêüíåò ëåé�ïõñãéêïý ìáãíç�éêïý óõí�ïíéóìïý (fMRI). Ôï âáóéêüxii



ìïí�Ýëï ó�çí áíÜëõóç áõ�ïý �ïõ åßäïõò ÷ñïíïóåéñþí åßíáé �ï ãñáììéêü ìïí�Ýëï ðáëéíäñüìçóçòêáé ï óêïðüò �çò áíÜëõóçò åßíáé ï êáèïñéóìüò �ùí ðåñéï÷þí åíåñãïðïßçóçò �ïõ åãêåöÜëïõêá�Ü �çí äÜñêåéá åíüò åñåèßóìá�ïò. Ç ìÝèïäïò ðïõ ðñï�åßíå�áé ëáìâÜíåé õðüøç ÷áñáê�çñéó�éêÜ�ùí ÷ñïíïóåéñùí, üðùò ç ìç ó�á�éìü�ç�á �ïõ èïñýâïõ êáèþò êáé ç ðáñïõóßá �ïõ drift.Ìåëå�Ü�áé ç áðï�åëåóìá�éêü�ç�á äõï ãñáììéêþí ìïí�Ýëùí ðáëéíäñüìçóçò ãéá �çí áíÜëõóç�ùí ÷ñïíïóåéñþí. Ôï ðñþ�ï ìïí�Ýëï ÷ñçóéìïðïéåß�áé ãéá áíÜëõóç ìéáò ÷ñïíïóåéñÜòêÜèå öïñÜ. Ôï äåý�åñï ìïí�Ýëï ëáìâÜíåé õðüøç üëåò �éò ÷ñïíïóåéñÝò ìå áðï�Ýëåóìáíá Ý÷ïõìå ìéá ÷ùñï÷ñïíéêÞ áíÜëõóç �ùí ÷ñïíïóåéñþí. Êáé �á äõï ìïí�Ýëá ðáñÝ÷ïõíáñáéÞ áíáðáñÜó�áóç �ùí ÷ñïíïóåéñþí ìÝóù ìéáò åê �ùí ðñï�Ýñùí êá�áíïìÞò áñáéïý�ýðïõ (sparse prior) ó�á âÜñç (Þ óõí�åëåó�Ýò ðáëéíäñüìçóçò) �ïõ ãñáììéêïý ìïí�Ýëïõ.�éá �çí åê�ßìçóç �ùí ðáñáìÝ�ñùí �ïõ ìïí�Ýëïõ ÷ñçóéìïðïéåß�áé ç Variational Bayesianìåèïäïëïãßá.Ïé ÷ñïíïóåéñÝò ðïõ ðñïÝñ÷ïí�áé áðü åéêüíåò ëåé�ïõñãéêïý ìáãíç�éêïý óõí�ïíéóìïýðáñïõóéÜæïõí ÷ùñéêÝò åîáñ�Þóåéò ëüãù �çò öõóéïëïãßáò �ïõ åãêåöÜëïõ. Ó�ï êåöÜëáéï 7ðñï�åßíå�áé Ýíá óýíèå�ï ãñáììéêü ìïí�Ýëï ðáëéíäñüìçóçò åìðëïõ�ßæïí�áò �ï ìå óçìáí�éêÝòéäéü�ç�åò ðïõ ðñïÝñ÷ïí�áé áðü �éò ÷ùñéêÝò åîáñ�Þóåéò áíÜìåóá ó�éò ÷ñïíïóåéñÝò êáèþò êáéáñáéÞ áíáðáñÜó�áóç �ïõ óõíáñ�çóéáêïý ìïí�Ýëïõ ðåñéãñáöÞò. Áõ�ü åðé�õã÷Üíå�áé ìå �ç÷ñÞóç êá�Üëëçëçò åê �ùí ðñï�Ýñùí êá�áíïìÞò ó�á âÜñç �ïõ ãñáììéêïý ìïí�Ýëïõ ðïõâáóßæå�áé ó�ï ìïí�Ýëï MRF (Markov Random Field). �éï óõãêåêñéìÝíá ðñï�åßíå�áé ìéáóýíèå�ç Gibbs êá�áíïìÞ ç ïðïßá åíóùìá�þíåé �éò äõï ðáñáðÜíù éäéü�ç�åò ó�ï ìïí�Ýëï.êá�Üëëçëç ãéá �ï ðñüâëçìá ìáò. Áêïëïõèåß�áé �ï Ìðåûæéáíü ðëáßóéï äñÜóçò. Ôá âÜñç �ïõìïí�Ýëïõ åê�éìïýí�áé ìÝóù �çò ìåãéó�ïðïßçóçò �çò åê �ùí õó�Ýñùí ðéèáíïöÜíåéáò (Max-imum A Posteriori) ðáñÜãïí�áò åðáíáëçð�éêïýò �ýðïõò. Åííáëáê�éêÜ, ç ðñï�åéíüìåíçìåèïäïëïãßá ìðïñåß íá ðñïóåããéó�åß áêïëïõèþí�áò �ïí áëãüñéèìï Expe
tation - Max-imization (EM) áí èåùñçóïõìå �á âÜñç ùò êñõììÝíåò ìå�áâëç�Ýò. Ôá ðåéñÜìá�á ðïõäéåîÞ÷èçóáí �üóï óå �å÷íç�Ü üóï êáé óå ðñáãìá�éêÜ äåäïìÝíá Þ�áí ðïëý óçìáí�éêÜ êáéáíÝäåéîáí �ç ÷ñçóéìü�ç�á �çò ìåèüäïõ, óå óýãêñéóç ìå Üëëåò ìåèüäïõò �çò âéâëéïãñáößáò.Ó�ï êåöÜëáéï 8 ðáñïõóéÜæå�áé �ï ðñüâëçìá �çò áíÜëõóçò fMRI äåäïìÝíùí ùò Ýíáðñüâëçìá ïìáäïðïßçóçò (
lustering). �éá �ïí óêïðü áõ�ü ÷ñçóéìïðïéåß�áé Ýíá ìéê�üìïí�Ýëï ãñáììéêþí ðáëéíäñïìç�þí, üðïõ êÜèå ïìÜäá (
luster) ðåñéãñÜöå�áé ìå Ýíá ìïí�ÝëïãñáììéêÞò ðáëéíäñüìçóçò (linear regression model). Ïé êáéíï�ïìßåò �çò ðñï�åéíüìåíçòìåèïäïëïãßáò åí�ïðßæïí�áé ó�á åîÞò óçìåßá: Áñ÷éêÜ ãßíå�áé ç õðüèåóç ü�é ç ðëçñïöïñßá�çò å�éêÝ�áò �çò ïìÜäáò ðïõ áíÞêåé êÜèå ÷ñïíïóåéñÜ åßíáé ìéá �õ÷áßá ìå�áâëç�Þ ç �éìÞ�çò ïðïßáò åîáñ�Ü�áé áðü �ç åõñý�åñç ãåé�ïíéÜ ó�çí ïðïßá âñßóêå�áé ðÜíù ó�ï ÷Üñ�çåíåñãïðïßçóçò. ¸�óé, åöáñìüæïí�áò ÌáñêïâéáíÜ Ôõ÷áßá �åäßá (Markov Random Fields)êáé �çí êá�áíïìÞ Gibbs ðÜíù ó�éò å�éêÝ�åò, åðé�õã÷Üíå�áé ï åìðëïõ�éóìüò �ïõ ìéê�ïýìïí�Ýëïõ ìå �éò ÷ùñéêÝò éäéü�ç�åò ðïõ õðÜñ÷ïõí êáé ó�ç öýóç �ùí äåäïìÝíùí �ïõ ðñïâëÞìá�ïò.�éá íá åîáóöáëéó�åß ìéá ðåñéóóü�åñï ãåíéêåõìÝíç éêáíü�ç�á óå êÜèå ïìÜäá ðåñéï÷Þ ðïõêá�áóêåõÜæå�áé ÷ñçóéìïðïéåß�áé ìéá áñáéïý �ýðïõ áíáðáñÜó�áóç �ïõ ãñáììéêïý ìïí�Ýëïõðáëéíäñüìçóçò ìå êá�Üëëçëç áñáéÞ êá�áíïìÞ ó�ïõò óõí�åëåó�Ýò êÜèå ïìÜäáò. ÔÝëïò, ãéá�ïí ðßíáêá ó÷åäßáóçò ðñï�åßíå�áé Ýíáò ãñáììéêüò óõíäõáóìüò áðü ðßíáêåò ó÷åäßáóçò ìåxiii



�êáïõóéáíÝò óõíáñ�Þóåéò ðõñÞíá ðïõ Ý÷ïõí äéáöïñå�éêÞ ðáñÜìå�ñï äéáóðïñÜò. Ìå �ïí�ñüðï áõ�ü åðé�õã÷Üíå�áé ç åîÜëåéøç �ïõò ðñïâëÞìá�ïò �çò åîÜñ�çóçò áðü �çí ðáñÜìå�ñïäéáóðïñÜò, ç ïðïßáåðçñåÜæåé óå óçìáí�éêü âáèìü �ï êá�Üëëçëï �áßñéáóìá �ùí äåäïìÝíùíêáé êá�' åðÝê�áóç �ï áðï�Ýëåóìá �çò ïìáäïðïßçóçò. Åðßóçò, ðñï�åßíå�áé ìéá áõîç�éêÞêá�áóêåýç �ïõ ìéê�ïý ìïí�Ýëïõ åöáñìüæïí�áò ìéá óõíå÷Þ äéáäéêáóßá äéÜóðáóçò (split-ting), êáèþò êáé Ýíá êñé�Þñéï �åñìá�éóìïý ìå âÜóç �ï âáèìü óõó÷Ý�éóçò. ¸�óé, ðáñÜëëçëáðñï�åßíå�áé êáé ç åýñåóç �ïõ êá�Üëëçëïõ áñéèìïý �ùí ïìÜäùí, �ï ïðïßï áðï�åëåß êáé Ýíáðïëý óçìáí�éêü ðñüâëçìá ó�çí ïìáäïðïßóç.
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Chapter 1 Introdu
tion
Many fun
tions of the human body are asso
iated with signals of ele
tri
al, 
hemi
al ora
ousti
 origin. Su
h signals 
arry information whi
h may not be obvious but it is hiddenin the stru
ture of the signal. This information must be de
oded before the signals provideus with some meaningful interpretation. The signals re
e
t properties of asso
iated biolog-i
al systems and their analysis have been found to be helpful in explaining and identifyingvarious pathologi
al 
onditions. The de
oding pro
ess is sometimes straightforward andmay involve very limited manual e�ort su
h as visual inspe
tion. However, the 
omplex-ity of the signal is quite often 
onsiderable and therefore Biomedi
al Signal Pro
essingbe
omes an important tool for extra
ting 
lini
ally signi�
ant information hidden in thesignal. Biomedi
al Signal Pro
essing is an interdis
iplinary �eld sin
e knowledge fromvarious s
ienti�
 topi
s is required.Biomedi
al Signal Pro
essing plays a 
ru
ial role in many aspe
ts of human life. Theanalysis of biomedi
al signals is the 
entral part of automated medi
al systems, aimingat �nding disorders of human body. Also, biomedi
al signals play signi�
ant role to thedesign of Human - Computer Interfa
es (HCI) and Brain - Computer Interfa
es (BCI).Re
ent development in te
hnology allow monitoring physiologi
al pro
esses inside ourbody, for whi
h no natural interfa
es exist. In parti
ular, we 
an measure blood pressure,heart rate variability, mus
ular a
tivity, and brain a
tivity in eÆ
ient and noninvasiveways. It is natural to assume that su
h information 
an be used in a useful way for thehuman. Nowadays, this information is used to treat various pathophysiologi
al disordersof human body, to understand the underlying me
hanism of the human body, to designma
hines whi
h 
ommuni
ate with humans. Ma
hines, based mostly on brain signals, havedeveloped for a variety of appli
ations ranging from assistive te
hnologies for patients withmotor disabilities, to entertainment devi
es.Biomedi
al signals are observations of physiologi
al a
tivities of organisms, rangingfrom gene and protein sequen
es, to neural and 
ardia
 rhythms, to tissue and organimages. The pro
essing of biomedi
al signal aims at extra
ting useful information fromit. Biomedi
al signals 
arry information that is useful for the understanding of me
hanismsunderlying the behavior of living systems. However, su
h information is diÆ
ult to be1



obtained dire
tly from the raw re
orded signals. In most of the 
ases, it is masked byother biomedi
al signals whi
h o

ur at the same time or buried in some additive noise.For su
h reasons, pro
essing is usually required to enhan
e the relevant information andto extra
t from it parameters whi
h quantify the behavior of the biologi
al system understudy, mainly for physiologi
 studies, or to de�ne the degree of pathology for routine
lini
al pro
edures (diagnosis, therapy, rehabilitation or monitoring).In the beginning, biomedi
al signals have been assessed manually leading to unreliablediagnosti
 
on
lusions. A fundamental goal of biomedi
al signal pro
essing is to redu
e thesubje
tivity of the manual measurements. The introdu
tion of 
omputer-based methodshelps to obje
tively quantify the various 
hara
teristi
s of signals. Those improve a

ura
yof measurements and their reprodu
ibility.In addition, biomedi
al signal pro
essing 
an be used to develop methods for featureextra
tion to help 
hara
terize and understand the information obtained from a signal.Su
h feature extra
tion methods 
an be designed to mimi
 the manual measurements, but
an also designed to extra
t information whi
h 
an not be extra
ted by visual examination.For example, small variations in the heart rate that 
annot be per
eived by the human eyehave been found to 
ontain valuable 
lini
al information when quanti�ed using a signalpro
essing method.In many 
ases, the re
orded signal is 
orrupted by di�erent types of noise and interfer-en
e, sometimes originating from another physiologi
al pro
ess of the body. For example,su
h situations may arise when the o
ular a
tivity interferes with the desired brain a
-tivity, when the ele
trodes are poorly atta
hed to the body, or when external sour
esdegrade the signal su
h as the 50/60 Hz powerline interferen
e. Hen
e, signal denoisingrepresents a 
ru
ial obje
tive of biomedi
al signal pro
essing.Certain diagnosti
 pro
edures required the re
ording of signals for large time. Su
hsituations may arise, for example when we re
ord brain signals to study the brain fun
tionduring sleep or when we study disturban
es of the heart rhythm. Also, in many 
ases thispro
edure involves many 
hannels. All these result to huge data size �ll up the hard disk.Transmission of biomedi
al signals a
ross publi
 networks is another appli
ation whi
hinvolve the size of biomedi
al data. For all these situations, data 
ompression of digitalbiomedi
al signals is essential. General purpose methods of data 
ompression do notperform parti
ularly well sin
e the 
hara
teristi
s of biomedi
al signals are not exploited.Finally, signal modeling and simulation is another important �eld of resear
h inbiomedi
al signal pro
essing. This helps us to better understand physiologi
al pro
esses.With suitable de�ned model it is possible to 
reate signals whi
h resemble the true signals.For example, models have been 
reated for the head and the brain to lo
alize sour
es ofthe neural a
tivity. Signal modeling is also part of the bran
h of signal pro
essing 
alled"model - based signal pro
essing", where algorithm development is based on the opti-mization of an appropriately sele
ted performan
e fun
tion. Algorithms for pro
essingbiomedi
al signals 
onstitute the 
entral 
ore of any medi
al system responsible for ther-apy, monitoring and diagnosis. 2



Several signal pro
essing te
hniques 
an be used to analyze biomedi
al signals. Thesete
hniques 
an be performed either on time- or frequen
y-domain of the signal. Even ifit is possible to deal with 
ontinuous time waveforms, it is usually 
onvenient to 
onvertthem into a digital form before pro
essing. The general framework for biomedi
al signalpro
essing is presented in Fig. 1.1. First, the setup of the experiment must be 
arry out.Then, the a
quisition of the signal is performed. After that, some prepro
essing steps,su
h as �ltering, are performed. Then, the signal is analyzed to obtain useful informationand perform the physiologi
al interpretation of the signal i.e. pathologi
al or normal
ondition of the subje
t. This thesis deals with the last three stages of the framework.The prepro
essing stage aims at making the signal of interest suitable for the subsequentanalysis. At the end of the prepro
essing stage we obtain a signal whi
h 
ontains thedesired information of our experiment. The statisti
al analysis stage in
ludes the analysisof the signal to obtain useful information related to the experiment. This stage in
ludesthe use of a model to explain the signal. Finally, the interpretation of the results isperformed with the help of a medi
al expert.A useful 
lass of methods to pro
ess signals is the model - based approa
h, whi
h isadopted in this thesis. A model is a simpli�ed mathemati
al representation of a signal.Also, it depends on some parameters whi
h are unknown and usually are estimated usingthe observations of the experiment. Learning the model parameters 
an be done byminimizing (or maximizing) an obje
tive fun
tion, whi
h in most 
ases, is a fun
tion ofthe unknown parameters. The model-based approa
h to analyze a signal 
an be thoughtas a 
ompa
t s
heme 
onsisting of three main parts:
• The model,
• The obje
tive fun
tion,
• The learning pro
ess.The model formalizes the prior knowledge about the pro
ess that generates the observa-tions. The obje
tive fun
tion is related to a fun
tion with respe
t to model parametersthat takes into a

ount some natural 
onstraints of the problem and the parameters. Thelearning pro
ess o�ers an optimization framework for the obje
tive fun
tion where theestimation of the model parameters is performed. For example, a regression problem 
anbe des
ribed with the linear regression model. Least Squares play the role of the obje
-tive fun
tion that 
an minimized with a lo
al optimization algorithm su
h as Newton,Gradient Des
ent, et
. In this way, the model parameters will be estimated.The mathemati
al treatment of the models and algorithms in this thesis is based onthe Bayesian Framework. This means that all the results are treated with probabilitydistributions, whi
h helps in modeling the un
ertainties in the model and the physi
alrandomness. Also, in the Bayesian Framework we are able to introdu
e 
onstraints onour model or prior knowledge about it with an elegant and natural way using appropriateprior distributions. Bayesian analysis of data has been greatly fa
ilitated in the last de
ade3



Figure 1.1: Biomedi
al Signal Pro
essing framework.
4



by advan
es in 
omputing power and improved s
ope for estimation via iterative samplingmethods. The Bayesian approa
h allows to make probability statements about the modelparameters and has a single tool, Bayes' theorem, whi
h is used in all situations. Also,has a straightforward way of dealing with nuisan
e parameters, while the Bayes' theoremgives the way to �nd the predi
tive distribution of future observations. But, while itis easy to write the formula for the posterior distribution, a 
losed form exists only forsimple 
ases, su
h as for a normal sample with a normal prior. In that 
ase approximationte
hniques are applied.1.1 Thesis ContributionThis thesis aims at providing innovative and eÆ
ient probabilisti
 models for biomedi
alsignal pro
essing. Throughout this thesis the target of methods whi
h are proposed, isto in
orporate appropriate medi
al knowledge and natural 
onstraints of the problem totheir body, so to be
ome more e�e
tive and with more a

urate results. This is a
hievedthrough the Bayesian Framework that supply a ri
h platform to naturally treat the phys-i
al properties of biomedi
al signals. This resulting probabilisti
 environment providesus with a way to introdu
e 
onstraints into our problem through the use of prior distri-butions, to obtain an estimate of model parameters through their posterior distribution,and to predi
t future behavior through the predi
tive distribution. The use of 
onstraintsinside a sto
hasti
 model expands the 
apabilities of the model leading to the design ofmore 
omplex and 
exible models for the des
ription of the signal. Sin
e our goal is to
reate general - purpose methodologies, the proposed models are not restri
ted only tobiomedi
al signals, but they 
an be applied to other appli
ation areas with sequentialdata su
h as image pro
essing, 
omputer vision, video analysis, bioinformati
s, et
.Chapters 2 and 3 provide introdu
tory material for the rest of this thesis. More spe
if-i
ally, in 
hapter 2 we present the physiology and properties of biomedi
al signals whi
hare used in this thesis. Also, a des
ription of the basi
 tool used in this thesis, the BayesianFramework, is provided. In addition, methods, that help us to make inferen
e in a model,are des
ribed. In 
hapter 3, the basi
 model of this thesis, the linear regression model,is explained, as well as extensions of it. Furthermore, a des
ription of the autoregressivemodel is provided sin
e this model will be used in 
onjun
tion with the linear model.In 
hapter 4, we present a methodology for epilepti
 spike enhan
ement in ele
troen-
ephalographi
 (EEG) re
ordings. The goal of this method is to enhan
e the epilepti
spikes so their dete
tion be more easily performed. To a
hieve this the time varying au-toregressive model (TVAR) is used. Using the Kalman Filter we 
an obtain estimates ofthe time varying AR 
oeÆ
ients and an enhan
ed version, with respe
t to the epilepti
spikes, of the EEG signal. The results indi
ate that the proposed methodology redu
esigni�
antly the number of false alarms. Also, the proposed model 
an be used for timevarying spe
trum estimation.In 
hapter 5, a method for the re
overy of a biomedi
al signal from a noisy environment5



is proposed. The method is based on the model - based approa
h, where the signalis modeled through the use of a smoothness prior while the statisti
s of the noise areunknown. To make inferen
e about the unknown quantities of the model, the VariationalBayesian Framework is used. The proposed method was applied for the estimation ofEvent Related Potentials and for the removal of the drift from Heart Rate Variabilitytime series.In 
hapter 6, two algorithms are proposed to deal with the non stationarity of thenoise in the fMRI data. The �rst algorithm is based on the temporal analysis of the dataand it is is based on the linear regression model, while the se
ond algorithm is based onthe spatio - temporal analysis where a spatio - temporal version of the linear model isused. Both algorithms estimate the varian
e of the noise a
ross the images and the voxels.In the linear model, an extended design matrix is used to deal with the presen
e of thedrift in the fMRI time series. To estimate the regression parameters of the GLM as wellas the varian
e 
omponents of the noise, the Variational Bayesian (VB) Methodology isemployed.In 
hapter 7, an advan
ed Bayesian framework is presented for the analysis of fun
-tional Magneti
 Resonan
e Imaging (fMRI) data that simultaneously employs both spatialand sparse properties. The basi
 building blo
k of our method is the general linear re-gression model (GML) that 
onstitutes a well-known probabilisti
 approa
h. By treatingregression 
oeÆ
ients as random variables, we 
an apply an enhan
ed Gibbs distributionfun
tion that 
aptures spatial 
onstrains and at the same time allows sparse representa-tion of fMRI time series. The proposed s
heme is des
ribed as a maximum a posteriori(MAP) approa
h, where the known Expe
tation Maximization (EM) algorithm is appliedo�ering 
losed form update equations for the model parameters.In 
hapter 8, a new probabilisti
 mixture modeling approa
h is proposed for 
luster-ing fMRI time series based on linear regression models where ea
h 
luster is des
ribedas a linear regression model. A sparse representation of every 
luster regression modelis used through the use of an appropriate sparse prior over the regression 
oeÆ
ients.Enfor
ing sparsity is a fundamental regularization prin
iple and has been used to ta
kleseveral problems, su
h as model order sele
tion. Also, spatial properties of data havebeen in
orporated to the mixture model through the notion of Markov Random Field(MRF). Furthermore, to avoid sensitivity of the design matrix to the 
hoi
e of kernelmatrix, we have used a kernel 
omposite design matrix 
onstru
ted as linear 
ombinationof Gaussian kernel matri
es with di�erent s
aling parameter. The 
lustering pro
edure isformulated as a Maximum A Posteriori (MAP) estimation problem where the Expe
tation- Maximization (EM) algorithm 
onstitutes a powerful framework for solving it. To avoidproblems with the initialization of the algorithm, an in
remental strategy for buildingthe mixture model is presented. Experiments using arti�
ial and real fMRI dataset haveshown that the proposed method o�ers very promising results with an ex
ellent behaviorin diÆ
ult and noisy environments.Finally, at 
hapter 9, 
on
luding remarks and future dire
tion of the proposed methods6



are provided.
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Chapter 2 Biomedi
al Signal Pro
essing
In this 
hapter we provide information about the physiology and the properties of biomed-i
al signals whi
h are used in this thesis. Also, the problems that we 
hallenge, when thesesignals are analyzed, are des
ribed. Furthermore, details about the Bayesian Framework isprovided, sin
e it is the basi
 tool for the analysis of the models that are des
ribed in latter
hapters. In addition, information about two methods, the Expe
tation - Maximizationalgorithm and the Variational Bayesian Methodology, are provided. These methods helpus to make inferen
e in a Bayesian approa
h of a problem.2.1 Physiology of the brainThe human brain is the 
enter of the human nervous system and a very 
omplex organ.En
losed in the 
ranium, it has the same general stru
ture as the brains of the othersmammals, but it larger from the brain of mammals with equivalent body size. Most ofthe expansion 
omes from the 
erebral 
ortex, a 
onvoluted layer of neural tissue that
overs the surfa
e of the forebrain. The 
erebral 
ortex is symmetri
, with left and righthemispheres and ea
h hemisphere is divided into four parts, the frontal lobe, parietal lobe,temporal lobe and o

ipital lobe (see Fig. 2.1). This 
ategorization does not a
tually arisefrom the stru
ture of the brain itself, the lobes are named after the bones of the skullthat overlie them.The fun
tion of the 
ortex 
an be divided in three fun
tional 
ategories of areas. One
onsists of the primary sensory area, whi
h re
eive information from the sensory nerves.Primary sensory area in
lude the visual area of the o

ipital lobe, the auditory area in thetemporal lobe and the somatosensory area of the parietal lobe. The se
ond 
ategory is theprimary motor area, whi
h o

upies the rear portion of the frontal lobe, dire
tly in frontof the somatosensory area. The primary motor area is responsible for the planning andexe
ution of movements. Finally, the third 
ategory 
onsists of the remaining parts of the
ortex, whi
h are 
alled the asso
iation areas. These areas re
eive information from thesensory areas and are involved in the 
omplex pro
ess that we 
all per
eption, thought8



Figure 2.1: The four brain lobes (reprinted from wikipedia)and de
ision making. Information about the stru
ture and fun
tion of the human brain
omes from a variety of methods known as fun
tional neuroimaging. Fun
tional neu-roimaging is a general term for several brain imaging methods su
h as positron emissiontomography (PET), single photon emission tomography (SPET), ele
troen
ephalography(EEG), magnetoen
ephalography (MEG) and fun
tional Magneti
 Resonan
e Imaging(fMRI) (for overview see [140, 142, 143, 9, 24, 25, 54℄). All these methods, although arebased in di�erent prin
iples, aim to reveal the fun
tion of the brain.The nervous system gathers, 
ommuni
ate and pro
esses information from variouspart of the body and assures that the responses are handled rapidly and a

urately. Thenervous system is divided into the 
entral nervous system (CNS), 
onsisting from thebrain and the spinal 
ord, and the peripheral nervous system (PNS), 
onne
ting the partsof CNS to the body organs and sensory systems. The two systems are integrated be
auseinformation from the PNS is sent for pro
essing to the CNS, and responses are sent bythe PNS to the organs of the body. The nerves transmitting information from the bodyto the CNS are 
alled sensory nerves, while the nerves transmitting information from theCNS are 
alled motor nerves.The basi
 fun
tional unit of the nervous system is the neuron, whi
h transmit infor-mation to and from the brain. Neurons 
an be 
lassi�ed into three 
ategories a

ordingto their fun
tionality: sensory neurons, 
onne
ted to sensor organs, motor neurons, 
on-ne
ted to mus
les, and interneurons, 
onne
ted to other neurons. The neuron 
onsists of9



Figure 2.2: Main parts of a neuron.the 
ell body, the dendrites and the axon (Fig. 2.2). Dendrites 
an 
onsist of thousandsof bran
hes, where ea
h bran
h re
eive information from another signal. The axon isusually a single bran
h responsible to transmit the information of the neuron to otherparts of the nervous system. The transmission of information between the neurons takepla
e at the synapse. The synapse is the part where one neuron 
onta
t to the other. Theinformation is transmitted between the various part of the nervous system as an ele
tri
alor 
hemi
al signal. The 
urrents generated by a single neuron are too weak to be dete
tednoninvasively. However, the 
urrents of individual neurons add up and the simultaneousa
tivation of a population of neurons 
an result in a 
urrent that is large enough to bedete
table on the surfa
e of the brain. The re
ording of this ele
tri
al a
tivity of the brainprodu
es the ele
troen
ephalogram.2.2 fun
tional Magneti
 Resonan
e ImagingMagneti
 resonan
e imaging (MRI) is a medi
al imaging te
hnique used to visualize theinternal stru
ture of the body. MRI provides mu
h greater 
ontrast between the di�erentsoft tissues of the body than 
omputed tomography (CT) does. This fa
t makes MRIuseful in neurologi
al (brain), mus
uloskeletal, 
ardiovas
ular, and on
ologi
al (
an
er)imaging. MRI uses a powerful magneti
 �eld to align the nu
lear magnetization of (usu-ally) hydrogen atoms in water in the body. Radio frequen
y (RF) �elds are used tosystemati
ally alter the alignment of this magnetization. This 
auses the hydrogen nu
leito produ
e a magneti
 �eld dete
table by the s
anner. This signal 
an be manipulatedby additional magneti
 �elds to build up enough information to 
onstru
t an image ofthe body. An image 
an be 
onstru
ted be
ause the protons in di�erent tissues return totheir equilibrium state at di�erent rates, whi
h is a di�eren
e that 
an be dete
ted. By
hanging the parameters on the MRI s
anner, this e�e
t is used to 
reate 
ontrast betweendi�erent types of body tissue or between other properties, as in fMRI and di�usion MRI.fun
tional Magneti
 Resonan
e Imaging (fMRI) is a type of spe
ialized MRI s
an. It10



measures the hemodynami
 response (
hange in blood 
ow) related to neural a
tivity inthe brain. Sin
e the 1990s, fMRI has be
ome the dominated imaging te
hnique in thebrain mapping area due to its relatively low invasiveness, absen
e of radiation exposureand wide availability. The physi
al basis, whi
h make the fMRI possible, is the Nu
learMagneti
 Resonan
e (NMR) phenomenon. This phenomenon was dis
overed around 1920and 1930. The magneti
 �eld inside the s
anner a�e
ts the magneti
 nu
lei of atoms.Normally, atomi
 nu
lei are randomly oriented, but under the magneti
 �eld the nu
leibe
ome aligned with the dire
tion of the �eld. When the magneti
 �eld is large enough,the tiny magneti
 signals from the nu
lei add up resulting in a signal that is large enoughto measure. In fMRI it is the magneti
 signal from hydrogen nu
lei in water that isdete
ted. The key to MRI is that the signal from hydrogen nu
lei varies in strengthdepending on the surrounding area. This provides a means of dis
riminating betweengrey matter, white matter and 
erebral spinal 
uid in stru
tural images of the brain. ThefMRI is based on the observation that when neural a
tivity in
reases there is an in
reaseddemand for oxygen, whi
h leads in an in
rease in blood 
ow in regions of in
reased neurala
tivity.It is known that 
hanges in blood 
ow and blood oxygenation in the brain (
olle
tivelyknown as hemodynami
s) are 
losely linked to neural a
tivity. When the nerve 
ellsare a
tive their 
onsumption of oxygen is in
reased. The lo
al response to the oxygen
onsumption is to in
rease blood 
ow to regions of in
reased neural a
tivity, whi
h o

ursafter a delay of approximately 15 se
onds. This hemodynami
 response rises to a peakover 45 se
onds, before falling ba
k to baseline. This leads to lo
al 
hanges in the relative
on
entration of oxyhemoglobin and deoxyhemoglobin and 
hanges in lo
al 
erebral bloodvolume (CBV) and 
erebral blood 
ow (CBF).Blood Oxygen Level Dependent (BOLD) is the MRI 
ontrast of blood deoxyhe-moglobin. Through the hemodynami
 response, blood releases oxygen to a
tive neuronsat a greater rate than to ina
tive neurons. Hemoglobin is diamagneti
 when oxygenatedbut paramagneti
 when deoxygenated. The magneti
 resonan
e (MR) signal of blood istherefore slightly di�erent depending on the level of oxygenation. Higher BOLD signalintensities arise from in
reases in the 
on
entration of oxygenated hemoglobin sin
e theblood magneti
 sus
eptibility now more 
losely mat
hes the tissue magneti
 sus
eptibility.By 
olle
ting data in an MRI s
anner with sequen
e parameters sensitive to 
hanges inmagneti
 sus
eptibility one 
an assess 
hanges in BOLD 
ontrast. These 
hanges 
an beeither positive or negative depending upon the relative 
hanges in both CBF and oxygen
onsumption. In
reases in CBF that outstrip 
hanges in oxygen 
onsumption will leadto in
reased BOLD signal, 
onversely de
reases in CBF that outstrip 
hanges in oxygen
onsumption will 
ause de
reased BOLD signal intensity. The signal di�eren
e is verysmall, but given many repetitions of a thought, a
tion or experien
e, statisti
al methods
an be used to determine the areas of the brain whi
h reliably show more of this di�er-en
e as a result, and therefore whi
h areas of the brain are a
tive during that thought,a
tion or experien
e. The BOLD signal is an indire
t indi
ator of the brain a
tivity and11



an important question is how well it 
orresponds to the neural a
tivity, whi
h in generalis taken as the de�nition of brain a
tivity. In [109℄ show that the neural a
tivity of thebrain is well 
orrelated to the blood oxygenation.The ultimate goal of fMRI data analysis is to dete
t 
orrelations between brain a
-tivation and the task the subje
t performs during the s
an. The BOLD signature ofa
tivation is relatively weak, so other sour
es of noise in the a
quired data must be 
are-fully 
ontrolled. This means that a series of prepro
essing steps must be performed on thea
quired images before the a
tual statisti
al sear
h for task-related a
tivation 
an begin.For a typi
al fMRI s
an, the 3D volume of the subje
t's head is imaged every one ortwo se
onds, produ
ing a few hundred to a few thousand 
omplete images per s
anningsession. The nature of MRI is su
h that these images are a
quired in Fourier transformspa
e, so they must be transformed ba
k to image spa
e to be useful. Be
ause of pra
ti
allimitations of the s
anner the Fourier samples are not a
quired on a grid, and s
annerimperfe
tions like thermal drift and spike noise introdu
e additional distortions. Smallmotions on the part of the subje
t and the subje
t's pulse and respiration will also a�e
tthe images.The most 
ommon situation is that the resear
her uses a pulse sequen
e suppliedby the s
anner vendor, su
h as an e
ho-planar imaging (EPI) sequen
e that allows forrelatively rapid a
quisition of many images [54, 24, 25℄. Software in the s
anner platformitself then performs the re
onstru
tion of images from Fourier transform spa
e. Duringthis stage some information is lost (spe
i�
ally the 
omplex phase of the re
onstru
tedsignal). Some types of artifa
ts, for example spike noise, be
ome more diÆ
ult to removeafter re
onstru
tion, but if the s
anner is working well these artifa
ts are thought tobe relatively unimportant. After re
onstru
tion the fMRI data 
onsists a series of 3Dimages of the brain. The most 
ommon 
orre
tions performed on these images are motion
orre
tion and 
orre
tion for physiologi
al e�e
ts. Outlier 
orre
tion and spatial and/ortemporal �ltering may also be performed. A variety of methods are used to 
orrelate thesevoxel time series with the task in order to produ
e maps of task-dependent a
tivation. InFig. 2.3 we see a diagram des
ribing the overall pro
edure in the analysis of fMRI data,from the design of the experiment until the physiologi
al interpretation of the data.2.3 fMRI data analysisIn this se
tion we will provide the general s
heme for the analysis of fMRI data sin
e thistask 
overs a large part of this thesis.2.3.1 Experimental designThe 
hoi
e of the experimental design when setting up a fMRI study depends on theexpe
ted results and the target of the resear
h. Two basi
 types of setups are used when
on
erning the appropriate and suitable designs: blo
k design, event-related design [24, 25℄12



Figure 2.3: Overall s
heme in fMRI analysis.
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or a 
ombination of these two. All these designs have their weaknesses and strengths whi
hshould be 
onsidered when 
hoosing the design.Blo
k designIn blo
k design studies the a
tivating stimuli are presented 
ontinuously during some timeinterval that is 
alled a blo
k. The blo
ks of a
tivating stimuli are usually alternatingwith the so 
alled baseline or resting blo
ks. During the baseline blo
k no stimuli arepresented. One a
tive blo
k may be 
onsisted of only one long stimulus or several similarstimuli presented rapidly. It is also possible to study di�erent stimuli by presenting ea
hstimuli type in its own blo
k. Therefore, several type of blo
ks might belong in one studyand the order of the blo
ks may alternate randomly. The duration of the blo
ks may alsovary.Blo
k designs are still in use nowadays. One reason for this is probably better signal-to-noise ratio (SNR) due to bigger amount of data to be averaged. This also ensuresbetter dete
tion power, to lo
ate a
tive 
orti
al regions. The weakness of blo
k designs isthe poor estimation eÆ
ien
y to estimate the hemodynami
 response for a single stimulus.This is basi
ally due to fast presenting rate of the stimuli so the responses overlap withea
h other. This overlapping is proved to be nonlinear, whi
h 
ompli
ates the estimationof the shape of the hemodynami
 response. Blo
k designs are also experimentally lessdemanding than more 
exible designs. The possible ina

ura
ies in the experiment designare less serious in blo
k designs than in event-related designs be
ause the responses in oneblo
k are averaged.Event-related designIn PET studies only blo
k designs 
an be assessed be
ause of the relatively long half-lifeof the used radioa
tive tra
ers. In fMRI, however, the origin of the response to a stimulus
an be related to the 
erebral hemodynami
 
hanges, and these 
hanges are dete
tablewithin se
onds of the stimulus onset. The relatively fast response to stimuli enables theuse of brief stimuli in studies of brain fun
tion.In event-related design a brief stimuli are presented randomly. The term event relatedderives from ele
trophysiology and measuring the event-related potentials (ERPs). Thedesign and the presentation of stimuli in fMRI is quite similar to te
hnique used in mea-suring the ERPs. The stimuli are no longer presented in blo
ks of similar stimuli but onetype of stimuli 
an be randomized so that di�erent types of stimuli alter with ea
h otherand with baseline. The presentation rate may also vary i.e. a stimulus may o

ur twi
ea se
ond or twi
e a minute. Event-related design has many virtues 
ompared to blo
kdesign. When the stimuli are presented in blo
ks, the subje
t's 
ognitive behavior maydisrupt the response be
ause the subje
t 
an guess when the next stimulus is presentedand what kind of stimulus it is. The randomization of the stimuli prevents this kind ofproblems and also habituation. The responses 
an be post ho
 
ategorized a

ording to14



Sli
e time 
orre
tionMotion Corre
tionCoregistration and NormalizationSpatial �lteringTemporal �lteringFigure 2.4: Prepro
essing steps.subje
ts performan
e and hen
e it is possible to study the di�eren
e between di�erent re-sponses 
aused by similar stimuli. Another advan
e of the event-related designs 
omparedto blo
k design is the ability to use the so 
alled oddball-paradigm and study unpredi
tedstimuli. The advantages of the event-related design over blo
k design en
ouraged resear
hgroups to study and 
ompare the results obtained with both these design types [24, 25℄.2.3.2 Prepro
essing of fMRI dataBefore analyzing the fMRI data several prepro
essing steps 
an be applied in order stepsto remove artifa
ts and validate the assumptions of the model [54, 24, 25, 108℄. The maingoals of data prepro
essing are: a) to minimize the in
uen
e of the data a
quisition andphysiologi
al artifa
ts, b) to validate the statisti
al assumptions and 
) to standardizethe brain regions a
ross subje
ts. During the analysis of fMRI data is is assumed that allthe voxels of the brain are a
quired simultaneously and that ea
h data point in a spe
i�
voxel's time series 
onsists of a signal from that voxel (i.e. the parti
ipant does not movea
ross measurements). Finally, all brains are assumed to be registered, so that ea
h voxelis lo
ated in the same anatomi
al region for all subje
ts. However, these assumptions don'thold in reality and there is a need to make them more suitable for the statisti
al model.The major steps of prepro
essing are: sli
e timing 
orre
tion, realignment, 
oregistrationof images, normalization, spatial smoothing and temporal �ltering.Sli
e timing 
orre
tionWhen analyzing 3D fMRI data it is typi
ally assumed that the whole brain is measuredsimultaneously. However, this is not the 
ase be
ause the brain volume 
onsists from mul-tiple sli
es that are a
quired sequentially, and therefore at di�erent time points. Similartime points from di�erent sli
es are shifted relative to one another. Sli
e time 
orre
tion15



involves the 
orre
tion of shift so that one 
an assume they are measured simultaneously.This is a
hieved by Fourier transforming ea
h voxel's time series into the frequen
y do-main, applying a phase shift to the data, and then applying the inverse Fourier transformto re
over the 
orre
ted data. However, in the above solution there is a problem due tohead motion. In SPM pa
kage [105℄ there is a note that this step will be remove in future.Motion 
orre
tionAn important issue involved in any fMRI study is proper handling of any subje
t move-ment that may have taken pla
e during data a
quisition. When movement o

urs, thesignal from a spe
i�
 voxel is 
ontaminated by the signal from neighboring voxels. The�rst step for motion 
orre
tion is to �nd the best possible alignment between the inputimage and some target image. Usually, motion 
orre
tion methods assume that the shapeof the head does not 
hange shape. This means that the 
orre
tion involves only trans-lations and rotations (rigid - body transformation). However, non - rigid shape 
hanges
an be o

ur in the brain tissue, for example due to the pulsation of the blood stream.Coregistration and NormalizationfMRI data provides little anatomi
al detail. This is problem in the 
ase we want to inter-pret the analysis results. To over
ome this problem we need to map the results from theobtained fMRI data onto high resolution stru
tural MR images. The pro
ess of aligningstru
tural and fun
tional images is 
alled 
oregistration [54, 24, 25℄ and is performed usinga rigid - body or an aÆne transformation. Also, individual brains have di�erent shapesand features but there exists similarities between the brains. Normalization [54, 24, 25℄attempts to register ea
h brain anatomy to a 
ommon spa
e de�ned by a template brain(e.g. the Talaira
h or Montreal Neurologi
al Institute (MNI) brain). During the normal-ization non linear transformations are used to mat
h the lo
al features.Spatial smoothingIt is useful to spatially smoothed the fMRI data prior to statisti
al analysis. There areseveral reasons why there is need to smooth the data. First, small amounts of smoothingimproves the signal to noise ratio. The se
ond reason is that the smoothing improvethe quality of the data for statisti
al analysis by making them more appropriate for themodel. A 
ommon approa
h to smooth the fMRI data is to blur them with a Gaussian�lter [54, 24, 25℄. The disadvantage of spatial smoothing is that we don't know if the sizeof the �lter is the appropriate. Also, smoothing 
an also 
ause the merging of brain regionsthat are fun
tionally di�erent. These problems guide many resear
hers to investigate waysof 
ombining spatial information in more sophisti
ated ways than simple blurring.
16



Figure 2.5: An example un�ltered time series from an a
tivated voxel (reprinted from[24℄).Temporal �lteringTemporal �ltering, instead of working in ea
h image, su
h as the spatial smoothing, worksin ea
h voxel's time series. The main point of temporal �ltering is to remove the unwanted
omponents of a time series, without damaging the signal of interest. For example, if weapplied a stimulation for 30 se
, followed by 30 se
 rest, and this pattern is appliedmany times then the signal of interest is 
lose to a square waveform of 60 se
 period.Temporal �ltering will attempt to remove 
omponents of the time series that are moreslowly (high pass �ltering) or more qui
kly varying (low pass �ltering) than this 60 se
periodi
 signal. In Fig. 2.5, we show an example time series, de
omposed into the varioussignal 
omponents. Temporal �ltering is 
arried out using linear �lters, su
h as FIR �lterfor high pass �ltering and a Gaussian �lter for low pass �ltering [54, 24, 25℄. We musthave in mind that most statisti
al models are applied dire
tly on voxel time series, somany aspe
ts of temporal �ltering 
an be in
orporated into the statisti
al model [32℄.While all the prepro
essing steps outlined above are essential to the analysis of fMRIdata, there is need to be a 
lear understanding of the e�e
ts they have on both thespatial and temporal 
orrelation stru
ture. More generally, it is ne
essary to study theintera
tions among the individual prepro
essing steps. For example, is it better to performsli
e timing 
orre
tion �rst or realignment, and how this will impa
t the resulting dataIdeally we want a model for both [108℄. In last years there is a growing interest forgenerative models that in
orporate many multiple steps at on
e.17



Figure 2.6: The international 10-20 system seen from (A) left and (B) above the head.(reprinted from [8℄)2.4 Ele
troen
ephalogramThe ele
troen
ephalography 
on
erns the re
ording and the interpretation of the ele
-troen
ephalogram. Ele
troen
ephalogram (EEG) is a re
ord of the ele
tri
 signal gen-erated by the 
ooperative a
tion of brain 
ells, or more pre
isely, the time 
ourse ofextra
ellular �eld potentials generated by their syn
hronous a
tion. EEG 
an be mea-sured by means of ele
trodes pla
ed on the s
alp or dire
tly on the 
ortex. EEG re
ordedin the absen
e of an external stimulus is 
alled spontaneous EEG, while if it is generatedas a response to external or internal stimulus will be 
alled event-related potential (ERP).The EEG re
ording is obtained through ele
trodes lo
ated on the s
alp, where someof them are used as referen
es. Referen
e ele
trodes are either lo
ated on the s
alp or onother parts of the body, e.g., the ear lobes. To ensure reprodu
ibility among studies aninternational system for ele
trode pla
ement, the 10-20 international system [9℄, has beende�ned (Fig. 2.6). It is based on anatomi
al lo
ation and on per
entage of distan
e amongthese points giving the 10 or 20% in the system name. The original 10-20 system has onlynineteen ele
trodes but has been extended to a

ommodate more than 200 ele
trodes.In this system the ele
trodes' lo
ations are related to spe
i�
 brain areas. For example,ele
trodes C3 and C4 are above the motor 
ortex. Ea
h EEG signal 
an therefore be
orrelated to an underlying brain area. Of 
ourse this is only a broad approximation thatdepends on the a

ura
y of the ele
trode's pla
ement.The ele
troen
ephalogram 
an be roughly de�ned as the signal whi
h 
orrespondsto the mean ele
tri
al a
tivity of the brain in di�erent lo
ations of the head. Morespe
i�
ally, it is the sum of the extra
ellular 
urrent 
ows in a large group of neurons.It 
an be a
quired using either intra
ranial ele
trodes inside the brain or s
alp ele
trodes18



on the surfa
e of the head [9℄. The EEG has been found to be a valuable tool in thediagnosis of numerous brain disorders. Nowadays, the EEG re
ording is a routine 
lini
alpro
edure and is widely regarded as the physiologi
al "gold standard" to monitor andquantify levels of drowsiness and wakefulness but also for dete
tion of epilepti
 spikes andseizures and generally for the diagnosis of epilepsy [20℄. The ele
tri
 a
tivity of the brainis usually divided into three 
ategories: 1) bioele
tri
 events produ
ed by single neurons,2) spontaneous a
tivity, and 3) evoked potentials. EEG spontaneous a
tivity is measuredon the s
alp or on the brain. Clini
ally meaningfull frequen
ies lie between 0.1Hz and100Hz. In more restri
ted sense, the frequen
y range is 
lassi�ed into several frequen
y
omponents, or delta rhythm (Æ: 0.5-4Hz), theta rhythm (�: 4-8Hz), alpha rhythm (�:8-13Hz), beta rhythm (�: 13-30Hz), and gamma rhythm (
: 30-60Hz) [9℄.The properties of the EEG signal are 
omplex [9, 19℄, due to the intri
ate neuralsystem. Traditionally, the spontaneous EEG is 
hara
terized as a linear sto
hasti
 pro-
ess with similarities to noise. From the signal pro
essing view, EEG has the followingproperties [19℄: (a) Noisy and pseudo-sto
hasti
: The EEG is often between 10-300ìV,whi
h is easily a�e
ted by various physiologi
al and ele
tri
al noises. Meanwhile, arte-fa
ts from ele
tro
ardiogram (ECG), ele
troo
ulogram (EOG), ele
tromyogram (EMG),and re
ording systems 
an also 
ontaminate the signals. Even the EEG shows a high de-gree of randomness and nonstationarity. (b) Time-varying and nonstationary: EEG is nota stationary pro
ess; it varies with the physiologi
al states. The waveforms may in
lude a
omplex of regular sinusoidal waves, irregular spikes/polyspikes, or spindles/polyspindles.In most pathologi
al 
onditions, su
h as epilepti
 seizures, the EEG may show evident sin-gularity or nonstationarity. In pra
ti
e, EEG is 
onsidered as a stationary pro
ess over arelatively short period (approximately 3.5se
 for routine spontaneous EEG) [18℄. (
) Highnonlinearity: Although the traditional linear models of EEG still play signi�
ant roles inEEG analysis and diagnosis, EEG is a nonlinear pro
ess [10℄. This kind of nonlinearityis also time-, state-, and site-dependent [15℄.One of the most important 
hallenges of EEG analysis is the quanti�
ation of themanifestations of epilepsy [9, 19℄. The main goal is to establish a 
orrelation between theEEG and 
lini
al or pharma
ologi
al 
onditions. One of the possible approa
hes is basedon the properties of the inter-i
tal EEG (ele
tri
al a
tivity measured between seizures),whi
h typi
ally 
onsists of linear sto
hasti
 ba
kground 
u
tuations interspersed withtransient nonlinear spikes, sharp waves or spikes-and-wave 
omplexes [20℄. These transientpotentials originate as a result of a simultaneous pathologi
al dis
harge of neurons withina volume of at least several mm3. The traditional de�nition of a spike is based onits amplitude, duration, sharpness, and emergen
e from its ba
kground [21℄. However,automati
 epilepti
 spike dete
tion systems based on this dire
t approa
h su�er fromfalse dete
tions in the presen
e of numerous types of artefa
ts and non-epilepti
 transients[20, 21℄. This short
oming is parti
ularly a
ute for long-term EEG monitoring of epilepti
patients, whi
h be
ame 
ommon in 1980s [22, 23℄. In Fig. (2.7) we see an EEG segment
ontains four epilepti
 spikes. 19
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Figure 2.7: EEG signal 
ontains four spikes.There has also been a 
hallenge to �nd fun
tional 
erebral a
tivation indi
es for 
og-nitive pro
esses involved in a given task. The EEG is a 
ontinuous measure over time and
an be used to study ongoing a
tivity in the brain while subje
ts perform long-lastingand/or variable tasks. The alpha rhythm of the EEG is predominantly observed over theposterior 
ortex [17℄. This rhythm 
orrelates with relaxation, and for this reason it hasbeen interpreted as a sign of inhibition of a
tivity in the areas over whi
h it has beenre
orded. A
tivation of the 
ortex 
auses a desyn
hronization of the alpha band, i.e. itsamplitude de
reases, while alpha syn
hronization denotes the in
rease of alpha a
tivity([13, 12℄. When alpha desyn
hronization or syn
hronization is related to an internallyor externally pa
ed event, it is 
alled as event-related desyn
hronization (ERD) [11℄ orevent-related syn
hronization (ERS), respe
tively. The quanti�
ation of ERD/ERS re-quires the 
omparison of two di�erent experimental 
onditions. ERD and ERS are de�nedas the relative di�eren
e in the EEG alpha power between the referen
e re
orded beforeea
h event and the a
tual event. ERD/ERS is, thus, a 'within-subje
t' measure of 
orti
ala
tivation and is expressed as a per
entage. ERD and ERS 
an be either externally (bystimuli) or internally (by voluntary behavior) pa
ed and they have a spe
i�
 topographi-
al distribution depending upon the state of the brain, stimulus paradigm and modality[12℄. ERD has been observed e.g. during 
omplex auditory stimulation [16℄, during 
og-nitive and attentional tasks, and during voluntary movement tasks [11℄. The ERD/ERSof the lower alpha frequen
ies (8-10 Hz) has been 
laimed to re
e
t non-spe
i�
 
ognitive20
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Figure 2.8: ERD/ERS signal.fun
tions, su
h as sustained attention, while that of the upper alpha frequen
ies (10-12Hz) appears to re
e
t stimulus-related, i.e. task-spe
i�
 
ognitive pro
esses. An exampleof EEG segment where we wish to �nd the ERD/ERS phenomenon is shown in Fig. (2.8).Event-related potentialsEvent-related potentials (ERPs) are the 
hanges of spontaneous EEG a
tivity relatedto a spe
i�
 event [145℄. ERPs triggered by parti
ular stimuli, visual (VEP), auditory(AEP), or somatosensory (SEP), are 
alled evoked potentials (EP). It is assumed thatERPs are generated by a
tivation of spe
i�
 neural populations, time-lo
ked to the stim-ulus, or that they o

ur as the result of reorganization of ongoing EEG a
tivity. Thebasi
 problem in analysis of ERPs is their dete
tion within the larger EEG a
tivity. ERPamplitudes are an order of magnitude smaller than that of the ongoing EEG. Averagingis a 
ommon te
hnique in ERP analysis; it makes possible the redu
tion of ba
kgroundEEG noise. However, assumptions underlying the averaging pro
edure, namely (1) theba
kground noise is a random pro
ess, (2) the ERP is deterministi
 and repeatable, and(3) EEG and ERP are independent, are not well justi�ed. The ERP pattern depends onthe nature of the stimulation, pla
ement of the re
ording ele
trode, and the a
tual stateof the brain. ERPs are usually des
ribed in terms of the amplitudes and laten
ies of their
hara
teristi
 waves [176℄. In Fig. (2.9) we see two trials of ERPs signal from 
hannel Pz.The stimuli is presented at the time instant equal to 1 se
. At this time we also observe21
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Figure 2.9: Two ERPs signals.the distortion at the baseline.2.5 Ele
tro
ardiogram and Heart Rate VariabilityThe ele
tri
al a
tivity of the heart 
an be 
hara
terized by measurements a
quired at the
ellular level or from the body surfa
e. The ele
tro
ardiogram (ECG) des
ribes the ele
-tri
al a
tivity of the heart re
orded by ele
trodes pla
ed on the body surfa
e. The voltagevariations measured by the ele
trodes are 
aused by the a
tion potentials of the 
ardia

ells. The resulting heartbeat is re
orded to the ECG and 
onsist of a series of waveformswhose morphology and timing 
onvey information whi
h are used for diagnosing diseasesthat are re
e
ted by 
hanges of the heart's ele
tri
al a
tivity. In Fig. 2.10 a segment ofECG signal and the 
hara
teristi
s of a heart beat are illustrated.The Heart Rate Variability (HRV) signal is obtained from the ele
tro
ardiogram(ECG) and des
ribes the variations between 
onse
utive 
ardia
 beats. Studies haveshown that this signal originates from the Autonomous Nervous System (ANS) [1℄. Also,the HRV signal is strongly 
onne
ted to respiration and blood pressure [2℄. Thus the HRVsignal 
an be used as a quantitative marker of the ANS and HRV parameters are usedto evaluate the 
lini
al 
ondition of subje
ts in normal or pathologi
al 
onditions. TheHRV analysis methods 
an be divided into time-domain, frequen
y-domain, and nonlin-22
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(a) (b)Figure 2.10: (a) ECG segment 
ontains four beats (b) Chara
teristi
s of a heart beat.
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(a) (b)Figure 2.11: (a) HRV time series (b) Spe
trum of HRV time seriesear methods [3℄. The analysis of HRV is performed by studying various measures of thesignal su
h as the standard deviation between two normal beats (SDNN) and the powerspe
tral density (PSD) [4, 5℄. However, the HRV signal 
ontains artefa
ts whi
h 
an beoriginate from other physiologi
al pro
esses, su
h as the breathing pattern of a human,or te
hni
al dysfun
tions, su
h as QRS misdete
tion [6, 7℄. These artefa
ts distort theHRV signal leading in erroneous 
al
ulations of various statisti
al measures. Usually, theHRV signal 
ontains two os
illating 
omponents, the Low Frequen
y (LF) 
omponentsand the High Frequen
y (HF) 
omponent. The LF 
omponent appears in the frequen
yrange 0.05 - 0.2 Hz and the HF 
omponent appears in the frequen
y range 0.2-0.4 Hz. InFig. (2.11) we see an example of HRV time series and the PSD of it.
23



2.6 Ma
hine Learning approa
hes for signal pro
essing2.6.1 Bayesian inferen
eBayesian inferen
e provides a mathemati
al framework that 
an be used for modeling,where the un
ertainties of the system are taken into a

ount and the de
isions are madea

ording to logi
al prin
iples. These main tools are random variables, the probabilitydistributions and the rules of probability 
al
ulus.Consider a dataset 
ontains N samples, Y = {yn}Nn=1, where we assume a distributionover them p(yn|�), where � is the set of parameters whi
h are unknown and must beestimated. The 
hoi
e of this distribution is very important sin
e it must suite with thenature and parti
ular 
hara
teristi
s of the observations. By assuming independent andidenti
ally distributed (i.i.d.) samples, a 
lassi
al pr
edure for estimating the parame-ter is through the Maximum Likelihood (ML) framework, where we maximize the jointprobability of measurements, also 
alled likelihood fun
tion:L(�) = p(Y |�) = N
∏n=1

p(yn|�)For analyti
al purposes, it is easier to work with the logarithm of the likelihood fun
tion,be
ause the logarithm is monotoni
ally in
reasing, and thus maximizing the log-likelihoodis equivalent to maximizing the likelihood. We 
an write more formal the ML estimationpro
edure as: �ML = argmax� {log p(Y |�)} = argmax� N
∑n=1

log p(yn|�).The di�eren
e between the Bayesian inferen
e and the ML method is that the former
onsider the parameters � as a random variable. Then, the posterior distribution ofparameters is 
omputed by using the Bayes' rule:p(�|Y ) = p(Y |�)p(�)p(Y ) (2.1)where p(�) is the prior distribution, whi
h models the prior beliefs of parameters beforewe observe any measurement and p(Y ) is a normalization 
onstant, independent of theparameter. In most situations the normalization 
onstant is left out and sin
e the mea-surements are 
onditionally independent given the parameters, the posterior distributionfor parameters is written as:p(�|Y ) ∝ p(Y |�)p(�) = [

N
∏n=1

p(yn|�)]p(�) (2.2)Now, that we have obtained the posterior distribution, we 
an use the most probablevalue as an estimate for parameters (Maximum A Posteriori estimate), whi
h is givenby the maximum of the posterior. Also, a 
andidate estimate is the posterior mean of24



parameters (MMSE estimate). There are many ways of 
hoosing the point estimate fromthe distribution and the best way depends on the assumed loss fun
tion [40℄. It is easy tosee that ML estimate is equivalent to a MAP estimate when it is assume a uniform priordistribution over the parameter �.The basi
 
omponents of a Bayesian model is the prior model en
apsulating a prelim-inary knowledge of the shape and the range values of the parameters and the likelihoodas a fun
tion.Prior distribution The prior information 
onsists of beliefs about the possible and im-possible parameters values and their relative likelihoods before anything has beenseen. The prior distribution is a mathemati
al representation of this information:p(�) = Information on parameter � before arises any observations.The la
k of prior information 
an be expressed by using a non-informative prior[125, 121℄.Likelihood fun
tion Between the measurements and the parameters there is a noisy orina

urate relationship. This relationship is modeled using the likelihood distribu-tion: p(y|�) = Distribution of observation y given the parameter �.Posterior Posterior distribution is the 
onditional distribution of parameters given theobservation y and represents the information that we have after the observation yhas been obtained. It 
an be 
omputed by using the Bayes' rule:p(�|y) = p(y|�)p(�)p(y) (2.3)where the normalization 
onstant is given by:p(y) = ∫ p(y|�)p(�)d�. (2.4)In the 
ase we have multiple observations Y = {yn}Nn=1 whi
h are 
onditionallyindependent, the posterior distribution be
omes:p(�|Y ) ∝ [

N
∏n=1

p(yn|�)]p(�) (2.5)where the normalization term 
an be 
omputed by integrating the right hand sideover �. If parameters are dis
rete variables then the integration is repla
ed bysummation.Predi
tive posterior distribution The predi
tive distribution is the distribution ofthe new observation yN+1:p(yN+1|y1; · · · ;yN) = ∫ p(yN+1|�)p(�|y1; · · · ;yN)d�. (2.6)The predi
tive distribution 
an be used for 
omputing the probability distributionof the (N + 1)th observation, whi
h has not been observed yet.25



Maximum A Posteriori estimationIn the 
ase we have a prior distribution over the parameters a simple approa
h is to use theMaximum A Posteriori (MAP) estimator. The MAP estimator is obtained by performingthe following maximization:�MAP = argmax� {log p(Y |�) + log p(�)} . (2.7)This estimator 
hooses the model with highest posterior probability density (the posteriormode). This approa
h provides us with point estimates, whi
h 
ontain the prior informa-tion, and 
an be seen as a penalized maximum likelihood estimator in the 
lassi
al sense[121℄. We 
an observe that as the sample size goes to in�nity, N → ∞, the likelihoodfun
tion dominates over the prior distribution p(�). Therefore, the MAP estimator isasymptoti
ally equivalent to the ML estimator [121℄.2.6.2 Expe
tation Maximization (EM) algorithmThe Expe
tation-Maximization (EM) algorithm introdu
ed by Dempster et al [205℄ is ageneral method to solve ML estimation problems. The EM algorithm is the basis of manylearning algorithms [45℄. The obje
tive of the algorithm is to maximize the likelihood ofthe observed data in the presen
e of hidden variables. Let us denote the observed databy y, the hidden variables by x and the parameters of the model by �. Maximizing thelikelihood as a fun
tion of � is equivalent to maximizing the log-likelihood:L(�) = log p(y|�) = log

∫ p(y;x|�)dx (2.8)Using any distribution q over the hidden variables, we 
an obtain a lower bound on L:
log

∫ p(y;x|�) = log

∫ q(x)p(y;x|�)q(x) dx
≥

∫ q(x) log p(y;x|�)q(x) dx
=

∫ q(x) log p(y;x|�)dx− ∫ q(x) log q(x)dx (2.9)
= F (q; �). (2.10)The EM algorithm alternates between maximizing F with respe
t to the distribution qand the parameters �, respe
tively, holding the other �xed.E-step: qk+1 ← argmaxq F (q; �k) (2.11)M-step: �k+1 ← argmax� F (qk+1; �) (2.12)It is easy to show that the maximum in the E-step results when q is exa
tly the poste-rior distribution of the hidden variables x, q(x) = p(x|y; �k), at whi
h point the bound26



be
omes an equality F (qk+1; �k) = L(�k). The maximum in the M-step is obtained bymaximizing the �rst term in Eq. (2.9), sin
e the entropy of q does not depend on �:M-step: �k+1 ← argmax� ∫ p(x|y; �k) log p(y;x|�)dx (2.13)At ea
h iteration the EM algorithm guarantees that the log-likelihood does not de-
reased, L(�t+1)− L(�t) ≥ 0. From Bayes' rule we have that:
log p(x|y; �t+1) = log p(y;x|�t+1)− log p(y|�t+1)

= log p(y;x|�t+1)− L(�t+1) (2.14)Taking the expe
tation with respe
t to q(x) = p(x|y; �k) we obtain:< log p(x|y; �t+1) >q=< log p(y;x|�t+1) >q −L(�t+1) (2.15)sin
e < L(�t+1) >q= L(�t+1) be
ause L(�t+1) does not depends from hidden variables.The same holds for the term L(�t), i.e.< log p(x|y; �t) >q=< log p(y;x|�t) >q −L(�t) (2.16)From the above two equation we 
an obtain:L(�t+1)− L(�t) = − < log p(x|y; �t+1) >q + < log p(x|y; �t) >q
+ < log p(y;x|�t+1) >q − < log p(y;x|�t) >q (2.17)From the M - step, we have < log p(y;x|�t+1) >q − < log p(y;x|�t) >q≥ 0. Also, thedi�eren
e − < log p(x|y; �t+1) >q + < log p(x|y; �t) >q is the KL divergen
e betweenthe distribution p(x|y; �t+1) and p(x|y; �t) and is greater or equal to zero. So, in ea
hiteration of the EM we have L(�t+1)− L(�t) ≥ 0.The EM algorithm performs the M - step based on the ML estimator. However, we
an 
hange slightly this step to in
lude the prior distribution of the parameters. Basedon the MAP learning approa
h and the EM algorithm we are able to derive an EM-MAPalgorithm [42℄ where the M-step of the 
lassi
al EM is repla
ed by:M-step: �k+1 ← argmax� {

log p(�) + ∫ p(x|y; �k) log p(y;x|�)dx} (2.18)2.6.3 Variational Bayesian methodologyVariational Bayesian (VB) methodology is an approximate inferen
e te
hnique that pro-
eeds by assuming an arbitrary approximation for the posterior distribution and inferen
eis made using a EM-like algorithm. A brief introdu
tion of the VB methodology follows.For more information on this subje
t one 
an see at [42, 45℄.
27



Assuming an arbitrary distribution for the hidden variables x and the model param-eters � q(x; �) the log of the eviden
e or the marginal likelihood 
an be written as:
log p(y) =

∫ q(x; �) log p(y)d�dx
=

∫ q(x; �) log (p(y)p(y;x; �)p(y;x; �))d�dx
=

∫ q(x; �) log p(y;x; �)p(x; �|y) d�dx
=

∫ q(x; �) log p(y;x; �)q(x; �) d�dx
+

∫ q(x; �) log q(x; �)p(x; �|y)d�dx
= F (q;x; �) +KL(q(x; �)||p(x; �|y)): (2.19)Maximizing F (q;x; �) is equivalent to minimizing the KL divergen
e between the trueposterior and the arbitrary distribution q(·), whi
h 
an be used as an approximation tothe true posterior. The variational free energy F (q;x; �) is evaluated as:F (q;x; �) =

∫ q(x; �) log p(y;x; �)q(x; �) d�dx
=

∫ q(x; �) log p(y|x; �)p(x; �)q(x; �) d�dx
=

∫ q(x; �) log p(y|x; �)d�dx
−
∫ q(x; �) log q(x; �)p(x; �)d�dx

= < log p(y|x; �) >q(x;�)
−KL(q(x; �)||p(x; �)); (2.20)where < · >q(x;�) is the expe
tation with respe
t to the approximate posterior of theparameters x and �. We mention here that the KL divergen
e in Eq. (2.19) is betweenthe approximate posterior of parameters and the true posterior, while in Eq. (2.20) isbetween the approximate posterior of the parameters and the prior of the parameters.The goal in a variational approa
h is to 
hoose a suitable form of q(x; �) so that thelower bound 
an be evaluated. In general, we 
hoose a family of q-distributions and weseek the best approximation within this family by maximizing the lower bound. Sin
ethe true log-likelihood is independent of q this is equivalent to the minimization of theKL divergen
e. The KL divergen
e between the two distributions q(x; �) and p(x; �|y) isminimized when q(x; �) = p(x; �|y) and, thus, the optimal solution for q(x; �) is the trueposterior. This solution does not simplify the problem, so to make progress we 
onsider amore restri
ted range of q-distribution. One approa
h is to 
onsider a parametri
 form forq(x; �) su
h that q(x; �; �) is governed by a set of parameters � [41℄. We then minimizethe KL divergen
e with respe
t to �, �nding the best approximation within this family.28



An alternative approa
h is to restri
t the fun
tional form of q(x; �) by assuming that itfa
torizes over the 
omponent variables in x; � [42℄:q(x; �) = q(x)∏i qi(�i): (2.21)Minimizing the KL divergen
e over all the fa
torial distributions q(x) and qi(�i), weobtain: q(x) ∝ exp < ln p(y;x; �) >q(�); (2.22)qi(�i) ∝ exp < ln p(y;x; �) >q(x)q(�k 6=i); (2.23)where < · >q(·) denotes expe
tation with respe
t to the distribution q(·). The above twoequations 
onsist the VB - E step and VB - M step respe
tively.2.6.4 Sampling te
hniquesAs we have seen the Bayesian inferen
e in
ludes 
al
ulations of very 
ompli
ated inte-grals. A 
lass of methods, that is used to 
al
ulate su
h integrals, is based on samplingte
hniques. These methods are applied to the 
omputation of the eviden
e, the marginaldensity and moments and expe
tations. One su
h approa
h is the Monte Carlo integrationmethod [177, 178℄.The Monte Carlo integration method estimates the expe
tation of a fun
tion �(y)under a probability distribution p(y), by taking samples {y(n)}Nn=1: y(n) ∼ p(y). Anunbiased estimate, �̂, of the expe
tation of �(y) under p(y), using N samples is given by:�̂ =

∫ �(y)p(y)dy
≈ 1N N

∑n=1

�(y(n)) (2.24)The Monte Carlo method returns more a

urate and reliable estimates the more samplesare taken. In 
ases where we 
an not produ
es samples from p(y), we 
an use anotherprobability distribution q(y), where we 
an perform sampling, and 
orre
t for this byweighting the samples a

ordingly. This method is 
alled importan
e sampling [177, 178℄.The estimator is given by: �̂ =

∫ �(y)p(y)q(y)q(y)dy
≈ 1N N

∑n=1

w(n)�(y(n)) (2.25)where w(n) are 
alled the importan
e weights and are given by:w(n) = p(y(n))q(y(n)) . (2.26)29



Extension of the above approa
hes is the Markov Chain Monte Carlo te
hniques [177,178℄. Sampling methods based on the Markov Chains were �rst developed for appli
ationsin statisti
al physi
s. The 
lassi
 paper of Metropolis [212℄ introdu
ed what is now knownas Metropolis algorithm. This method was popularized for Bayesian appli
ations in thein
uential paper of Geman and Geman [98℄, who applied in image pro
essing problems.MCMC is Monte Carlo integration using Markov Chains [177℄. As des
ribed above,Monte Carlo integration draw samples from the required distribution, and then formssample averages to approximate expe
tations. Markov Chain Monte Carlo draws thesesamples by a more 
lever way based on Markov Chain. Suppose we generate a sequen
eof random variables {x0; x1; · · · ; xN} su
h that at ea
h time t ≥ 0 the next sample xt+1 issampled from a distribution k(xt+1|xt) whi
h depends only on the 
urrent state. We seethat the next state does not depends further form the history of sequen
e given the 
urrentstate. This sequen
e is 
alled Markov Chain and k(·|·) is the transition kernel of the 
hain.It 
an be shown that after the passing of time the 
hain will forget the initial state andthe transition kernel will 
onverge to a unique stationary distribution f(·), whi
h does notdepends on time or the initial state [177℄. Thus as time in
reases the samples {xt} willlook like samples from f(·). Assuming that the 
onverge to the stationary distribution isa
hieved after m iterations then we 
an obtain the samples {xt; t = m; · · · ; N} giving theestimator: �̂ =
1N −m N

∑t=m+1

�(xt). (2.27)Eq. (2.27) show how a Markov Chain is used to 
ompute the expe
tation when wehave obtain the stationary distribution f(·). Now, the interesting part is how to 
onstru
ta Markov Chain where its stationary distribution is pre
isely our distribution of interestp(·).A useful method for this purpose is the Metropolis - Hastings (MH) algorithm [177℄.For the MH algorithm at ea
h time t, the next state xt+1 is 
hosen by �rst samplinga 
andidate point y from a proposal distribution q(·|xt). The 
andidate point is thena

epted with probability a(xt; y) = min
(

1; p(y)q(xt|y)p(xt)q(y|xt)). (2.28)If the 
andidate is a

epted then the next state be
omes xt+1 = y else the 
hain remainsat the 
urrent state, xt+1 = xt.2.6.5 Mixture modelsA mixture model is a linear 
ombination of probability density fun
tions of di�erentsour
es and it is formulated as: p(y|Θ) =
K
∑k=1

�kp(y|�k) (2.29)30



where K is the number of mixture 
omponents, �k are the mixing weights, p(y|�k) arethe 
omponent density fun
tions with parameters �k and Θ = {�k; �k}Kk=1 is the set ofparameters. Obviously, the 
omponent densities may be of di�erent parametri
 form.The mixing 
oeÆ
ients �k must satisfy the 
onstraints:
0 ≤ �k ≤ 1 (2.30)and K
∑k=1

�k = 1 (2.31)Suppose we have a set of observations Y = {yn; n = 1 · · · ; N} and we want to model itwith a mixture model. Assuming that the samples are drawn independently the likelihoodof the data is given by: p(Y |Θ) =
N
∏n=1

(

K
∑k=1

�kp(y|�k)) (2.32)By taking the logarithm we obtain:
log p(Y |Θ) =

N
∑n=1

log
K
∑k=1

�kp(y|�k) (2.33)Maximizing the above log-likelihood fun
tion is a diÆ
ult problem be
ause the logarithma
ts to summation and not dire
tly over the Gaussian density. To over
ome this problemthe EM algorithm provides a useful framework for solving the optimization problem.Let us introdu
e a binary ve
tor z of dimensionK×1 where a parti
ular element of thiszk is equal to 1 and all others elements are zero. The values of zk satisfy two 
onditions:zk ∈ {0; 1} and ∑Kk=1 zk = 1. It is easy to see that there is K di�erent 
onditions forthe ve
tor z depending to whi
h element is nonzero. The marginal distribution of z isspe
i�ed in term of mixing 
oeÆ
ients:p(zk = 1) = �kBe
ause the z is a binary variable we havep(z) = K
∏k=1

�zkkNow, the 
onditional distribution of y given a parti
ular element of z is:p(y|zk = 1) = p(y|�k)whi
h 
an also be written as: p(y|z) = K
∏k=1

[p(y|�k)]zk31



The joint distribution of y and z is given by p(y|z)p(z). Also, we 
an �nd the marginaldistribution of y by summing the joint distribution over the z:p(y) = ∑z p(y|z)p(z) = K
∑k=1

�kp(y|�k)In the 
ase we have many observations yn; n = 1; · · · ; N , then for every observation ynthere is a 
orresponding variable zn. Now, to apply the EM algorithm we must de�ne the
omplete data whi
h in our study is the observed data yn; n = 1; · · · ; N and the indi
atorvariables zn; n = 1 · · · ; N , whi
h plays the role of hidden variables. The likelihood of the
omplete data is: p({yn; zn}Nn=1|{�k; �k}Kk=1) =
N
∏n=1

K
∏k=1

�znkk [p(y|�k)]znkTaking the logarithm we obtain
log p({yn; zn}Nn=1|{�k; �k}Kk=1) =

N
∑n=1

K
∑k=1

znk{log �k + log p(y|�k)}We observe now, that the logarithm a
ts dire
tly to the distribution, whi
h leads to asimpler solution. In the E-step we need to �nd the posterior of the hidden variables,p({zn}Nn=1|{yn}Nn=1; �(t)), using the 
urrent model parameter values Θ(t) = {�(t)k ; �(t)k }Kk=1.Using the Bayes theorem we have:p({zn}Nn=1|{yn}Nn=1; �(t)) =
p({yn}Nn=1|{zn}Nn=1;Θ(t))p({zn}Nn=1|�(t))p({yn}Nn=1|�(t))

=
N
∏n=1

∏Kk=1[�(t)k p(yn|�(t)k )]znk
∑Kk=1 �(t)k p(xn|�(t)k )

=

N
∏n=1

K
∏k=1

[ �(t)k p(yn|�(t)k )
∑Kk=1 �(t)k p(yn|�(t)k )

]znk (2.34)We 
an see that the posterior of the hidden variables is a produ
t of N multinomialdistributions and the expe
tation of hidden variables in that 
ase is given by:E{(znk)} = �(t)k p(yn|�(t)k ))
∑Kk=1 �(t)k p(yn|�(t)k )

. (2.35)Cal
ulating the expe
ted log-likelihood of the 
omplete data we have:E{zn}Nn=1
{log p({yn; zn}Nn=1|�(t))} = N

∑n=1

K
∑k=1

E{znk}{log �k + log p(yn|�(t)k )} (2.36)The M - step of the algorithm 
onsist from the maximization of the above expe
ted log-likelihood with respe
t to the model parameters. Assuming that the 
omponents follow32



the Gaussian distribution, �(t+1)k = {m(t+1)k ;�(t+1)k }, and maximizing the expe
ted log-likelihood of the 
omplete data with respe
t to model parameters we obtain:m(t+1)k =
1Nk N

∑n=1

E{znk}yn (2.37)�(t+1)k =
1Nk N

∑n=1

E{znk}(yn −mk)(yn −mk)T (2.38)�(t+1)k =
NkN (2.39)where Nk =

∑Nn=1E{znk}. When we perform the optimization over mixing 
oeÆ
ients,we must take into a

ount the 
onstraints by using Lagrange multipliers.2.7 Useful priors distributions for modeling spe
i�
 properties2.7.1 Sparse priorsLet assume that we have a ve
tor of weights w = {w1; · · · ; wp} whi
h plays the roleof model parameters. In many situations we aim at obtaining a sparse 
on�gurationof this ve
tor, i.e most of the weights to be set to zero. The sparsity is a very helpfulproperty, sin
e the pro
essing is faster and simpler in a sparse representation where few
oeÆ
ients reveal the information we are looking for. From a signal pro
essing perspe
tive,the sparsity has found many appli
ations, for example in signal 
ompression and signaldenoising [214℄. In Bayesian inferen
e, the sparsity is a
hieved through sparse priors whi
hhelp us:
• to automati
ally adjust the order of the model,
• to redu
e the 
omplexity of the model and its de
ision part,
• to 
ompute more easily the output of the model sin
e few weights are non zero,
• and to determine whi
h 
omponents of the model are relevant with the data, whi
hmay be very useful in many appli
ations.A natural 
hoi
e of a sparse prior distribution for the weights w is a hierar
hi
al priordes
ribed below. More spe
i�
ally, the weights w are treated as a random variables thatfollow a Gaussian distribution with zero mean and varian
e a−1i ; i = 1; · · · ; p:p(w|a) = p

∏i=1

N(0; a−1i ): (2.40)The parameters ai are 
alled hyperparameters and 
ontrol the prior distribution of theparameter ve
tor w. Hierar
hi
al priors are often designed using 
onjugate distributions33



[44℄. This happens for analyti
al eases and be
ause the previous knowledge 
an be readilyexpressed. The empiri
al Bayes refers to the pra
ti
e of optimizing the hyperparametersof the priors, so as to maximize the marginal distribution of the dataset. This pra
ti
eis suboptimal sin
e it ignores the un
ertainty of the hyperparameters. Alternatively, amore robust approa
h is to de�ne priors over the hyperparameters. This leads us to afull Bayesian model. The prior distribution over ea
h hyperparameter ai is a gammadistribution: p(ai) = Γ(ai; bai ; 
ai). (2.41)The prior over one weight wi depends on the hyperparameter ai. The "true" prior isgiven by integrating over the hyperparameter:p(wi) = ∫ p(wi | ai)p(ai)dai: (2.42)Making the above integration we obtain for the parameter prior:p(wi) ∝ ( 1bai + w2i
2

)−(
ai+ 1

2
) (2.43)whi
h is the kernel of a Student-t density. If we allow 
ai → 0 and bai → ∞ then weobtain the hyperprior: p(ai) ∝ 1ai ; (2.44)whi
h is an noninformative prior[125℄. Now, the true prior for one weight, wi, isp(wi) ∝ 1

|wi| ; (2.45)and for all parameters: p(w) ∝
p
∏i=1

1

|wi| : (2.46)This prior is re
ognized as sparse due to heavy tail and the sharp peak at zero [34, 157℄. InFig. (2.12) plots of the Student's t pdf using � degrees of freedom are shown together witha plot of the Gaussian distribution. It is easy to observe that most of mass is 
on
entratedaround the point x = 0. Also, as the degrees of freedom are in
reased the distributionresembles the Gaussian distribution.Another way to de
lare the sparsity over the weights w is to use a Lapla
ian distribu-tion over them: p(w|�) = 1Zw exp{−� p
∑i=1

|wi|} (2.47)where � is the regularization parameter. However, this prior leads to a nonlinear opti-mization problem. To over
ome this problem we use the Fan's approximation [158℄:
|wi| ≈ 1

2
|w̃i|+ 1

2

w2i
|w̃i| (2.48)34



−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 
Student (ν=10)
Student (ν=1)
Student (ν=0.1)
Gaussian

Figure 2.12: The Student's t pdf plots using 0.1, 1 and 10 degrees of freedom.where |w̃i| 6= 0 is a lo
al approximation of |wi|, su
h that |wi− w̃i| < �. The quantity � isa small positive 
onstant. Using the above approximation the prior distribution over theweights takes the following form:p(w|�) = 1Zw exp{−�wTLw}, (2.49)where L = [ 1
|w̃1|

; 1
|w̃2|

; · · · ; 1
|w̃p| ]. This prior has been used in [158℄ for image denoising andwavelet 
oeÆ
ients thresholding. Also, in the same work an extension, based on the useof multiple pre
ision 
omponents, is presented. Be
ause in most of the 
ases, priors ofthis kind are used in an iterative fashion, we 
an use as lo
al approximation of |wi|, theestimated weight |ŵi| of the previous iteration.2.7.2 Spatial priorsThere are problems where the data are spatially related to ea
h other. A 
hara
teristi
example is in the task of image analysis, where, apart from the intensity values, pixelspositions 
onstitute a signi�
ant pie
e of information that must be taken into a

ount.The Markov Random Field (MRF) is a valuable tool to exploit the spatial 
hara
teristi
sof an image or the 
orrelation between features in a 
lassi�
ation problem. MRFs havefound many appli
ation in image analysis, i.e. image denoising,image segmentation, andma
hine learning, i.e. 
lassi�
ation and 
lustering problems.In an MRF, the sites in S, where S is the set of sites, are related to ea
h other via aneighborhood system, whi
h is de�ned as N = {Ni; i = 1; · · · ; N}, where Ni is the set ofsites neighboring i, i =∈ Ni and i ∈ Nj ⇔ j ∈ Ni. A random �eld X said to be an MRF35



on S with respe
t to a neighborhood system N if and only ifP (x) > 0;x ∈ X (2.50)P (xi|xS−{i}) = P (xi|xNi) (2.51)Note, the neighbourhood system 
an be multi-dimensional. The above property meansthat the probability in the site i depends only from the neighborhood (lo
al 
hara
teristi
sof the �eld). It is easy to observe that the MRF is a generalization of the Markov pro
essin whi
h the time index is repla
ed by the spa
e. A

ording to the Hammersley-Cli�ordtheorem [100℄, an MRF 
an equivalently be 
hara
terized by a Gibbs distribution. Thus,P (x) = 1Z exp{−U(x)} (2.52)where Z =
∑x∈X exp{−U(x)} (2.53)is a normalizing 
onstant 
alled the partition fun
tion, and U(x) is an energy fun
tion ofthe form U(x) = ∑
∈C V
(x) (2.54)whi
h is a sum of 
lique potentials V
(x) over all possible 
liques. A 
lique 
 is de�nedas a subset of sites in S in whi
h every pair of distin
t sites are neighbours, ex
ept forsingle-site 
liques. The value of V
(x) depends on the lo
al 
on�guration on 
lique 
. Formore detail on MRF and Gibbs distribution see [100℄.The properties of the distribution with respe
t to the neighborhood depends from thefun
tional form of the potential fun
tion V
(x) [104℄. An important spe
ial 
ase ariseswhen we 
onsider 
liques up to size two. Then the energy fun
tion takes the form:U(x) = ∑i∈S V1(xi) +∑i∈S ∑i′∈Ni V2(xi; xi′ ). (2.55)The �rst summation ∑i∈S V1(xi) does not in
lude any spatial information and for themoment is ex
luded for the subsequent analysis. The interesting part is the se
ond sum-mation∑i∈S ∑i′∈Ni V2(xi; xi′ ) whi
h in
ludes spatial information through the inner sum-mation. The potential fun
tion V2(xi; xi′ ) spe
i�es the relation between xi and xi′ . In theliterature many fun
tional forms of this potential have been proposed, see for example[104℄. A widely used fun
tion for this potential is:V2(xi; xi′ ) = (xi − xi′ )2. (2.56)Another fun
tion, whi
h is robust to outliers, is:V2(xi; xi′ ) = 1

1 + 1
(xi−xi′ )2 . (2.57)36



Figure 2.13: MRF example: Given the grey nodes, the bla
k node is 
onditionally inde-pendent of all other nodes.2.8 Transform - based signal pro
essingThe purpose of a transform is to des
ribe a signal or a system in terms of a 
ombinationof a set of elementary simple signals (su
h as sinusoidal signals) that lend themselves torelatively easy analysis, interpretation and manipulation. Transform-based signal pro-
essing methods in
lude Fourier transform, Lapla
e transform, z-transform and wavelettransforms. The most widely applied signal transform is the Fourier transform, whi
h ise�e
tively a form of vibration analysis, in that a signal is expressed in terms of a 
ombina-tion of the sinusoidal vibrations that make up the signal. Fourier transform is employedin a wide range of appli
ations, in
luding popular musi
 
oders, noise redu
tion and fea-ture extra
tion for pattern re
ognition. The Lapla
e transform, and its dis
rete-timeversion the z-transform, are generalizations of the Fourier transform. The wavelets aremulti-resolution transforms in whi
h a signal is des
ribed in terms of a 
ombination of ele-mentary waves of di�erent durations. The set of basis fun
tions in a wavelet is 
omposedof 
ontra
tions and dilations of a single elementary wave. This allows non-stationaryevents of various durations in a signal to be identi�ed and analyzed.A transform is an operation that performs on a signal. Also, a transform 
an havean inverse, whi
h restores the original values and it 
an be thought of a di�erent way ofrepresenting the same information. A natural question is, Why would we do this? Oneanswer is so that we 
an analyze the transformed signal, for example to 
ompress it. Thedis
rete 
osine transform have been used e�e
tively to alter a signal for storing it in a
ompa
t form. Sometimes transforms are performed be
ause things are easier to do inthe transformed domain.
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2.8.1 Fourier transformUnder mild 
onditions, the Fourier Transform des
ribes a signal x(t) as a linear superpo-sition of sines and 
osines 
hara
terized by their frequen
y f :x(t) = ∫ X(f)ei2�ftdf (2.58)where X(f) = ∫ x(t)e−i2�ftdt (2.59)are 
omplex valued 
oeÆ
ients that give the relative 
ontribution of ea
h frequen
y f .Equation (2.59) is the 
ontinuous Fourier Transform of the signal x(t). It 
an be seen asan inner produ
t of the signal x(t) with the 
omplex sinusoidal fun
tions e−i2�ft, i.e.X(f) =< x(t); e−i2�ft > (2.60)Its inverse transform is given by Eq. (2.58) and sin
e the mother fun
tions e−i2�ft areorthogonal, the Fourier Transform is nonredundant and unique.2.8.2 Wavelet transformA wavelet family  a;b is a set of elemental fun
tions generated by dilations and translationsof a unique admissible mother wavelet  (t): a;b(t) = |a|− 1

2 (t− ab ) (2.61)where a; b ∈ R, a 6= 0, are the s
ale and translation parameters respe
tively. The motherwavelet is limited in time domain, has zero mean and is normalized. As a in
reases thewavelet be
omes more narrow and by varying b, the mother wavelet is displa
ed in time.Thus, the wavelet family gives a unique pattern and its repli
as at di�erent s
ales and withvariable lo
alization in time. The 
ontinuous wavelet transform of a signal x(t) ∈ L2(R)(�nite energy signals) is de�ned as the 
orrelation between the signal and the waveletfun
tions  a;b i.e.W x(a; b) = |a|− 1

2

∫ ∞

−∞

x(t) ∗
(t− ab )dt =< x(t);  a;b > (2.62)where ∗ denotes 
omplex 
onjugation. Then, the di�erent 
orrelations < x(t);  a;b >indi
ates how pre
isely the wavelet fun
tion lo
ally �ts the signal at every s
ale a. Sin
ethe 
orrelation is made with di�erent s
ales of a single fun
tion, instead of with 
omplexsinusoids 
hara
terized by their frequen
ies, wavelets give a time-s
ale representation.The inverse wavelet transform is:x(t) = 1C ∫ ∞

0

∫ ∞

−∞

W x(a; b)|a|− 1

2 (t− ab )dbdaa2 (2.63)38



(a) (b)Figure 2.14: Time-frequen
y tile allo
ation of the two transforms: (a) Fourier transformand (b) wavelet transform.where C =

∫ ∞

0

|Ψ(!)|2! d! <∞ (2.64)
Ψ(!) is the Fourier Transform of the mother fun
tion  (t).The above wavelet transform is 
alled Continuous Wavelet Transform be
ause 
anoperate at every s
ale, from that of the original signal up to some maximum s
ale thatis determined by trading o� our need for detailed analysis with available 
omputationalpower. Cal
ulating wavelet 
oeÆ
ients at every possible s
ale is time 
onsuming. How-ever, if we 
hoose s
ales and positions based on powers of two then our analysis will bemu
h more eÆ
ient and just as a

urate. We obtain su
h an analysis from the dis
retewavelet transform (DWT) [151℄.The general s
heme of Transform - based signal pro
essing methods is illustrated inFig. (2.15). First the signal is transformed into the new domain through the transformmatrix A. Then, in the new domain 
oeÆ
ients an operation, linear or non-linear f(·),is performed. After that, the modi�ed 
oeÆ
ients is transformed ba
k into the originaldomain. For example, in wavelet denoising approa
h the signal is transformed into thewavelet domain and a thresholding operation is performed over wavelet 
oeÆ
ients whi
hare transformed ba
k into the original domain produ
ing the new signal with the desiredproperties. Transform-based methods have been found many appli
ations in biomedi
alsignal pro
essing [144℄.2.9 Prin
ipal Component AnalysisPrin
ipal Component Analysis (PCA) is a tool in modern data analysis, where its ap-pli
ation range from neuros
ien
e to 
omputer graphi
. It is a simple, non-parametri
39



Figure 2.15: General s
heme of Transform-based methodsmethod for extra
ting useful information from 
omplex dataset. PCA help us to redu
ethe 
omplexity of the original dataset and to reveal the stru
tures that underlie it. It isalso known as the Karhunen-Loève transform [45, 129℄. In PCA we seek a linear trans-formation of the original dataset into a new dataset, where prin
ipal 
omponents withlarger asso
iated varian
e represent important stru
ture of the dataset.Consider the dataset of observations yn; n = 1; · · · ; N , where yn is a ve
tor of dimen-sion D × 1. The goal in the PCA is to �nd a proje
tion of the data onto a spa
e withsmaller dimensionality than the original, M < D, while at the same time the varian
e ofthe proje
ted data is maximized. First, we 
onsider the proje
tion onto a one dimensionalspa
e. We 
an de�ne the dire
tion of this spa
e using a ve
tor u1 of dimension D×1 withthe 
onstraint uT1 u1 = 1 (i.e. is the unit ve
tor). Ea
h data point is then proje
ted ontothe new spa
e given the value uT1 yn. Now the varian
e of the proje
ted data is given byvar(uT1 yn) = 1N N
∑n=1

(uT1 yn − uT1 �x)T (uT1 yn − uT1 �y) = uT1�u1where �y =
∑Nn=1 yn is the mean of the data and � = 1N (yn − �y)T (yn − �y) is the data
ovarian
e.Now, we want to maximize var(uT1 yn) with respe
t to u1 subje
t to the 
onstraintuT1 u1 = 1, i.e.

maxu1

uT1�u1 s.t. uT1 u1 = 1.Introdu
ing the Lagrange multiplier �1 and performing the resulting un
onstrained max-imization we obtain the solution: �u1 = �1u1.It is easy to see from the above equation that the ve
tor u1 is an eigenve
tor of the
ovarian
e matrix � and �1 the 
orresponding eigenvalue, whi
h is also the varian
eof uT1 yn. So, to obtain the maximun varian
e the ve
tor u1 must be the eigenve
tor ofmatrix� with the largest eigenvalue. We 
ontinue in the same way to introdu
e additional
omponents until to useM eigenve
tors, having in mind that ea
h new dire
tion maximizethe proje
ted varian
e, as before, while is orthogonal to the dire
tions that have beenalready added. The appropriate 
hoi
e of M is a diÆ
ult problem, however there are twosimple approa
hes to 
hoose M . The �rst approa
h is to 
hoose M su
h that a largefra
tion d of the total varian
e is taken into a

ount. Usually, the d is between 70% and40



90%. The se
ond approa
h is to examine the eigenvalue spe
trum and see if there is a pointwhere the values fall sharply before stay at small values [175℄. We see that PCA is relatedto eigende
omposition of a matrix, whi
h is symmetri
 and positive de�nite. When theseproperties are violated then the Singular Value De
omposition 
ould be used to obtain asimilar pro
edure. Finally, there is an extension of PCA based in probabilisti
 formulationof the problem [45℄. This extension gives us the ability to determine the dimension, M ,of the new spa
e in a more 
exible way by adopting the Bayesian Framework. Also, theuse of EM algorithm provides us with an eÆ
ient approa
h in term of 
omputational
omplexity, espe
ially in high dimensional spa
es [45℄. As expe
ted PCA has long historyto the analysis of Biomedi
al Signals. It has been used for EEG monitoring [174℄, ERPanalysis [120℄ and fMRI data analysis [47℄.2.10 Independent Component AnalysisConsider the dataset of observations yn; n = 1; · · · ; N , where yn is a ve
tor of dimensionD × 1, we have D signals observed in time points n. In ICA we assume that ea
h ve
toryn is a linear mixture of K unknown sour
es:xn = Asnwhere the matrix of mixing 
oeÆ
ients A is unknown. The goal in ICA is to �nd thesour
es sn or to �nd the inverse of matrix A. The sour
es are independently distributedwith marginal distributions p(sn) = pi(s(i)n ). Following [152℄, we derive the ICA underthe ML prin
iple, where we assume that the number of observed signals is equal to thenumber of sour
es, K = D. The probability of the observations and sour
es given thematrix A is: p({yn; sn}Nn=1|A) =

N
∏n=1

p(yn|sn;A)p(sn)
=

N
∏n=1

Æ(yn −Asn)p(sn)Performing the marginalization with respe
t to the sour
es we obtain the likelihood fun
-tion for a single data point xn:p(yn|A) =
1

|A|p(A−1yn)
=

1

|A| K
∏i=1

p( D
∑j=1

A−1ij y(j)n )The log-likelihood of the mixing 
oeÆ
ients is:
L = log |W|+ K

∑i=1

log p( D
∑j=1

Wijy(j)n ) (2.65)41



where we have made the 
onvention W = A−1. To �nd the optimum matrix W wemaximize the log-likelihood with respe
t to it. The gradient is given by:dLdW = [W−1]T + zyTnwhere we have de�ne ai = ∑Dj=1Wijy(j)n , �(ai) = d log pi(zi))dzi and zi = �(ai). We 
an see thatparameters ai are the re
onstru
ted sour
es. Sin
e, we want to maximize the likelihoodwe adapt the matrix W by making small steps of the form:
∆W ∝ [W−1]T + zyTn .Until now, we have not dis
uss the fun
tion � whi
h de�nes the assumed prior distributionof sour
es. A popular 
hoi
e is to use the tanh fun
tion. To 
on
lude, the algorithm to�nd the independent 
omponents has three steps:

• Cal
ulate an estimation sour
es through the mapping: a =Wx.
• Cal
ulate a nonlinear mappping of the estimated sour
es zi = �(ai).
• adjust the matrix W through ∆W ∝ [W−1]T + zyT .The above exposition of the ICA is based on the ML prin
iple, however similar algo-rithms for ICA 
an be obtained by adopting other 
riteria for the independen
e. A usefulintrodu
tion in ICA is presented [147℄, where a fast algorithm to perform ICA is alsogiven. As expe
ted Bayesian formulations of ICA - like model are presented to the liter-ature [150, 148, 149℄. From the perspe
tive of biomedi
al signal pro
essing the ICA hasfound many appli
ation among them to study the brain dynami
s through EEG signals[118, 119℄ to identify the a
tivated brain's areas in fMRI analysis [48℄ and to estimate theERP signal from the EEG measurements [146℄. A overview of ICA applied to EEG datais shown in Fig. (2.16). First the EEG data are de
omposed in independent 
omponents,then by visual inspe
tion some of these 
omponents are removed sin
e 
ontain artefa
ts(for example eyes blink), and �nally the artifa
t-free EEG signals, is obtained by mixingand proje
ting ba
k onto the s
alp 
hannels sele
ted non-artifa
tual ICA 
omponents.
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Figure 2.16: S
hemati
 overview of ICA applied to EEG data. (Figure reprinted from[119℄ )
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Chapter 3Statisti
al models for sequential data
Sequential data arise in many �elds of engineering, physi
s and statisti
s. The data mayeither be a time series, or a sequen
e generated by a 1-dimensional spatial pro
ess, e.g.,biosequen
es. One may be interested either in online analysis, where the data arrives inreal-time, or in o�ine analysis, where all the data has already been 
olle
ted. Also, theanalysis of dynami
 phenomena is a 
ommon problem related to sequential data. A timevarying system 
an be represented through a dynami
 model, de�ned by an observable
omponent and unobservable state. The hidden state represents the desired informationthat we want to extrapolate.In this 
hapter, we provide material related to the linear regression model. Morespe
i�
ally, the various 
omponents of the linear model, su
h as the design matrix andthe weights (or regression 
oeÆ
ients), are des
ribed. In addition, information aboutthe state-spa
e model is provided. The state-spa
e model is an extension of the linearmodel, whi
h help us to in
lude into our analysis data that have dynami
 nature or arisesequentially. Finally, the autoregressive model is des
ribed. This model help us to analyzethe 
orrelation stru
ture of a time series.3.1 General Linear Model (GLM)In the General Linear Model (GLM), the observations y = {y1; · · · ; yN} of an experimentare des
ribed as a linear 
ombination of some predi
tors given by the equation:y = �w + e . (3.1)where � is the design matrix of size N × p and it is assumed to be known for theproblem under study, w is the ve
tor of weights of the linear 
ombination and has sizep × 1 and e is the additive noise assumed to be zero mean and Gaussian distributed,p(e) = N (0;C−1e ), where C−1e is the inverse pre
ision (
ovarian
e) matrix. The form ofthis matrix de�ned the properties of the additive noise. Usually, we assume that the errorsamples are independent and identi
ally distributed (i.i.d), in that 
ase a simple approa
h44



is to assumed C−1e = �I. Also, more general forms 
an be used su
h as a diagonal pre
isionmatrix, where we use for ea
h observations yn a separate pre
ision �n. This form of thepre
ision matrix help to use in indire
t way more useful distributions su
h as the Student- t distribution [138℄. Finally, the autoregressive (AR) model 
an be alternatively usedto des
ribe the auto
orrelation between the error samples, where it 
an be written in thegeneral form of the additive noise.3.1.1 Design matrixIn this se
tion the role of the design matrix and the various form of it will be des
ribed.The design matrix has the following general form:� =











�1(x1) �2(x1) · · · �p(x1)�1(x2) �2(x2) · · · �p(x2)

· · · · · · · · · · · ·�1(xN ) �2(xN) · · · �p(xN)










, (3.2)where {xn}Nn=1 are the input variables and �j; j = 1; · · · ; p are the basis fun
tions, both,the input variables and the basis fun
tions, are assumed to be known. A

ording to thelinear model des
ribed previously ea
h observation yn is des
ribed as a linear 
ombinationof p basis fun
tions: yn =

p
∑j=1

wj�j(xn) + en = wTφ(xn) + en. (3.3)We see that the basis fun
tions des
ribe the relationship between the observations and theinput variables. In the literature many forms for the basis fun
tions have been proposed.In the 
ase where a linear relationship between the observations and the input variablesis assumed then the basis fun
tions take the form φ(xn) = xn. It is important to observehere that, by using non linear fun
tions we allow the model to be also non linear to theinput variables while we keep the linearity with respe
t to the weights.One possible 
hoi
e is to use polynomial basis fun
tions where the basis fun
tion hasthe form of powers of the input variables, i.e. �j(x) = xj. One other 
hoi
e of basisfun
tions is the Gaussian basis fun
tions�j(x) = exp
{

− (x− �j)2
2s2 }, (3.4)where �j are the lo
ations of the basis fun
tions in the input spa
e and s2 their s
ale.Another possibility is the sigmoidal basis fun
tion of the form:�j(x) = �(x− �js ), (3.5)where �(�) is the logisti
 sigmoid fun
tion given by:�(�) = 1

1 + exp(−�) . (3.6)45



Finally, another possible set of basis fun
tions is the Fourier basis fun
tions and thewavelet basis fun
tions. The 
onstru
tion of the design matrix is not restri
ted only tothe approa
h that we have des
ribed previously. The design matrix 
an have many otherregressors (
olumns of the design matrix) related to the problem under study as we willsee in latter 
hapter of this thesis.3.1.2 Maximum Likelihood (ML) parameter estimation of the GLMAssuming that the noise follows white Gaussian distribution, i.e. e ∼ N(0; �I), then thelikelihood of the observations y is given by:p(y;w; �) = ( �
2�)N=2 exp{− �

2
‖y −�w‖2} (3.7)Based on the above formulation, the training of the GLM be
omes a maximum likelihood(ML) estimation problem for the regression model parameters Θ = {w; �}, in the senseof maximizing the log-likelihood fun
tion given byLML(Θ) = log p(y;w; �) = {N

2
log �− �

2
‖y −�w‖2} . (3.8)Setting the partial derivatives of the above fun
tion. with respe
t to the parameters,equal to zero, the following update rules for the model parameters are obtainedŵ = (�T�)−1�Ty , (3.9)�̂ =

N
‖y−�ŵ‖2 . (3.10)We want to mention here that we have make the assumption that the matrix �T� isinvertible, whi
h this is happened only when the design matrix � is of full rank. Apra
ti
al solution to this problem is to use a few 
olumns on the design matrix whi
hmeans that only few weights will be estimated.3.2 State-Spa
e ModelsA useful family of models to study sequential data is the state-spa
e model. In any state-spa
e model three 
omponents play the most important role: the initial density p(w1), thetransition density of the states p(xt|wt−1) and the observation density p(yt|wt). Supposethat the densities are the same for all time. There are many state-spa
e models, themost known are the Hidden Markov Models (HMMs) and the Kalman Filters (KF). Astate-spa
e model is a model of how wt generates yt and wt+1 and our goal is to inferw1:t = {w1;w2; · · · ;wt} given y1:t = {y1;y2; · · · ;yt}.A graphi
al representation of a state-spa
e model is illustrated in Fig. (3.1). In nexttwo se
tions we will present the HMM and the KF. Also, in the KF model an inferen
epro
edure is provided for the states estimation.46



wt−1 wt
yt−1 yt

... ...
Figure 3.1: Graphi
al representation of a state-spa
e model.3.3 Hidden Markov ModelsConsider a system whi
h may be des
ribed as being in one of a set of N di�erent states,s1; s2; · · · ; sN as depi
ted in Fig. (3.2). At dis
rete times, the system 
hanges state (it
an also remain in the same state) a

ording to a set of probabilities asso
iated with thestate. We denote the time points, where the state 
hanges, as t = 1; 2; · · · , also we denotethe state at time t as qt. A full des
ription of the system requires the 
urrent state as wellas all previous states. However, in our exposition we will use only the �rst order Markov
hain, whi
h means that the 
urrent state and the previous state are used to des
ribe thesystem: P (qt = sj|qt = si; qt−2 = sk; · · · ) = P (qt = sj|qt = si) (3.11)Furthermore we only 
onsider those systems that the right hand side of (3.11) is indepen-dent of the time, i.e. the state transition probabilities does not 
hange with time. Thestate transition probabilities aji has the formaij = P (qt = sj|qt−1 = si); 1 ≤ i; j ≤ N . (3.12)Sin
e the aij are probabilities they subje
t to the following 
onstraints:aij ≥ 0N

∑j=1

aij = 1The above sto
hasti
 model is an observable Markov model sin
e the output of thepro
ess is the set of states at ea
h time instant and ea
h state 
orresponds to an observableevent. We will try to explain the above statisti
al model through an example. Probablythe reader is familiar with foootball games. When a team plays a game the out
ome (orobservations) is being one of the following:
• State 1: Draw (D)
• State 2: Loose (L)
• State 3: Win (W) 47



Figure 3.2: A simple Markov Model with 3 states.In a year a team plays a number of games. Let us assume that we are at game number tand that the matrix of state transition probabilities isA = {aij} = 





0:4 0:3 0:3
0:2 0:6 0:2
0:1 0:1 0:8 (3.13)Given that the out
ome of the game 1 (t = 1) is Win we 
an ask the question: Whatis the probability that the team's results for the next 7 games will be "W-W-D-D-W-L-W"? This question 
an be stated more formally as: What is the probability to observethe sequen
e o = {s3; s3; s3; s1; s1; s3; s2; s3} given the modelM. This probability 
an beevaluated as:P (o|M) = P (s3; s3; s3; s1; s1; s3; s2; s3|M)

= P (s3|s2)P (s2|s3P (s3|s1)P (s1|s1)P (s1|s3)P (s3|s3)P (s3|s3)P (s3)
= a23a32a13a11a31a33a33�3
= (0:2)(0:1)(0:3)(0:4)(0:1)(0:8)(0:8)1
= 1:536× 10−4where �i are the initial state probabilities:�i = P (q1 = si); 1 ≤ i ≤ N .In the above Markov model, the state 
orresponded to an observable event. This modelis too restri
tive to be appli
able in many problems. Hidden Markov Model (HMM) is anextension of 
lassi
al MC, where the states are not deterministi
 but are sto
hasti
48
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Figure 3.3: Graphi
al representation of a Hidden Markov Model.A hidden Markov model is a bivariate dis
rete time pro
ess {ot; st}; t ≥ 0, where st is aMarkov 
hain (sequen
e of states) and, 
onditional on this Markov 
hain, ot is a sequen
eof independent random variables su
h that the 
onditional distribution of ot only dependson st. The dependen
e stru
ture of an HMM 
an be represented by a graphi
al model asin Fig. (3.3). A

ording to the above, the 
omplete likelihood of a sequen
e of length Tis given by:p(o1; o2; · · · ; oT ; s1; s2; · · · ; sT ) = p(s1)p(o1|s1) T

∏t=2

p(st|st−1)p(ot|st) (3.14)where p(s1) is the prior probability of the �rst state, p(st|st−1) denotes the transition prob-abilities from state st−1 to st, and p(ot|st) are the emission probabilities for ea
h symbol atea
h state. We 
an �nd the probability of observing the sequen
e o1; o2; · · · ; oT by sum-ming over all possible hidden state, p(O = {o1; o2; · · · ; oT}) = ∑Q={s1;s2;··· ;sT } p(O;Q).A HMM is des
ribed by the following features:
• the number of states in the model,S = {S1; S2; · · · ; SN}
• the number of di�erent observations symbols (alphabet), V = {v1; v2; · · · ; vN
• the state transition probabilities, A = {aij},aij = P (qt+1 = sj|qt = si) and ∑j aij =
1

• the emission probabilities in state j, C = {
jk},
jk = p(vk|sj)
• the initial state probabilities �i, pii = P (q1 = si); 1 ≤ i ≤ N and ∑i pii = 1A 
omplete spe
i�
ation of a HMM requires spe
i�
ation of the number of hidden statesand observation symbols, and the spe
i�
ation of the three probability measures, � =

(A;C; �). In the HMM literature there are three basi
 issues:Problem 1 Given the observation sequen
e o and a model �, how we eÆ
iently 
omputethe likelihood P (o|�) (forward ba
kward algorithm).Problem 2 Given the observation sequen
e o and the model �, how do we de�ne themost probable path of states (Viterbi algorithm).49



Problem 3 How do we estimate the model parameters �. Under the ML estimationframework the Baum - Wel
h algorithm 
an be applied. Also, an alternative frame-work is the EM algorithm whi
h rea
h the same update rules for model parameters.Extensions of HMMs are presented in [156℄. The HMMs have found many interesting ap-pli
ations in biomedi
ine, espe
ially in bioinformati
s [153, 154℄. An extension of HMMs,when we have 
ontinuous evolution, is the Kalman Filter, whi
h is presented at the nextse
tion.3.4 Kalman FiltersThe Kalman Filter (KF) is a powerful tool in the analysis of the evolution of a dynami
almodel in time. The �lter provides with a 
exible manner to obtain re
ursive estimationof the parameters, whi
h are optimal in the mean square error sense. The properties ofKF along with the simpli
ity of the derived equations make it valuable in the analysis ofsignals. In this se
tion an overview of the Kalman Filter, its properties and its appli
ationsare presented.The Kalman Filter is an estimator with interesting properties like optimality in theMinimum Mean Square Error (MMSE). After its dis
overy in 1960 [160℄, this estima-tor has been used in many �elds of engineering su
h as 
ontrol theory, 
ommuni
ationsystems, spee
h pro
essing, biomedi
al signal pro
essing, et
. An analogous estimatorhas been proposed for the smoothing problem [161℄, whi
h in
ludes three di�erent typesof smoothers, namely �xed-lag, �xed-point and �xed interval [162, 163℄. The di�eren
ebetween the two estimators, the Kalman Filter and the Kalman Smoother, it is relatedon how they use the observations to perform estimation. The Kalman Filter uses onlythe past and the present observations to perform estimation, while the Kalman Smootheruses also the future observations for the estimation. This means that the Kalman Filteris used for on - line pro
essing while the Kalman Smoother for bat
h pro
essing. Thederivations of these two estimators is presented in [40, 164, 165℄. Both estimators arere
ursive in nature. This means that the estimate of the present state is updated usingthe previous state only and not the entire past states. The Kalman Filter is not only anestimator but also a learning method [45, 164℄. The observations are used to learn thestates of the model. The Kalman Filter is also a 
omputational tool and some problemsmay exist due to the �nite pre
ision arithmeti
 of the 
omputers.The Kalman Filter and the Kalman Smoother have been extensively used in biomedi
alsignal pro
essing. The general idea is to propose a model for the observations, in most
ases linear, where some parameters must be estimated. To be able to apply the KalmanFilter or the Kalman Smoother the model for the observations must be written in astate-spa
e form. A state-spa
e model is represented by two equations: One equation,whi
h des
ribes the evolution of the parameters, and another equation, whi
h des
ribes50



the relation of the parameters with the observations:wt = Awt−1 + vt (3.15)yt = Cwt + et (3.16)These two equations represent a state-spa
e model. In the above model wt is the statesve
tor in time t of dimension p× 1, yt is the ve
tor of observations of dimension M × 1,vt is the state noise with zero mean and 
ovarian
e matrix Cv, et is the observationnoise with zero mean and 
ovarian
e matrix Ce , A is the state transition matrix ofdimension p × p and C is the observation matrix of dimension M × p. All the noisepro
esses are assumed to be independent between the time instants. In the above modelthe matri
es A and C are assumed to be known, as well as the 
ovarian
e matri
es Cvand Ce. However, in reality we are not able to know exa
tly the above matri
es. In that
ase some assumptions are 
onsidered for the model. For example we 
an assume thatthe evolution of the parameters is a random walk pro
edure [166℄, i.e. A = I, whereI is the identity matrix, or we restri
t the matrix A to be a diagonal one [170℄. Also,these matri
es 
an be estimated through an estimation pro
edure like the EM algorithm[168, 169℄.In [167℄ the authors proposed a non linear model for the ele
tro
ardiogram (ECG)signal. They use the model for ECG denoising and 
ompression. To estimate the modelparameters they use a modi�ed version of the Kalman Filter, the Extended KalmanFilter (EKF) [165℄. In [171℄ the authors use the Kalman Filter to dete
t and extra
tperiodi
 noise from the ECG. In [172℄ they assumed that the Evoked Potentials in theEle
troen
ephalogram 
an be represented as a linear 
ombination of basis fun
tions. The
oeÆ
ients of the basis fun
tions are assumed to 
hange with time. This assumption leadto the use of the Kalman Filter to estimate the 
oeÆ
ients of the basis fun
tions.Besides these appli
ations of the Kalman Filter and the Kalman Smoother for Biomed-i
al Signal Pro
essing, there is a parti
ular appli
ation whi
h has been attra
ted spe
ialinterest, espe
ially be
ause at the end a time varying spe
trum is obtained. This appli
a-tion 
on
erns the use of parametri
 models su
h as the AR and ARMA models. The timevarying autoregressive (TVAR) model is an AR model where the AR 
oeÆ
ients evolvein time. The parametri
 spe
trum analysis is used to over
ome the limited frequen
y res-olution of FFT based methods. The spe
tral density 
an be 
al
ulated at ea
h frequen
ypoint using the model parameters. The TVAR model has been used for EEG spike de-te
tion [170℄, for time varying - spe
trum estimation of Event Related Syn
hronization(ERS) and Desyn
hronization (ERD) [168℄, for the 
al
ulation of 
oheren
e in the analysisof biomedi
al signals su
h EEG and ECG [84℄ and for time varying spe
trum estimationof intra
ranial pressure signals from patients with traumati
 brain injury [173℄. In theabove studies the TVAR 
oeÆ
ients have been estimated using the Kalman Filter or theKalman Smoother, while in [168℄ the EM algorithm is used to estimate the parameters ofthe model.The Kalman �ltering problem is stated as follows:51
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Figure 3.4: Graphi
al representation of the Kalman Filter.
• Use the entire observed data, Y = {y1;y2; · · · ;yk} , �nd for ea
h k ≥ 1 theminimum mean-square error estimate of the state wt.The problem is 
alled �ltering if t = k, predi
tion if t > k and smoothing if 1 ≤ t < k.The joint probability distribution of states and observations is given by:p(yNt=1;wNt=1) = p(w1)p(y1|w1)

T
∏t=2

p(yt|wt)p(wt|wt−1) (3.17)and a graphi
al model for the above fa
torization is given in Fig. 3.4. We 
an see that isthe same model as in the 
ase of HMM.The MMSE estimator of wt based on observed data Y 
an be 
al
ulated sequentiallyusing the following set of equations:wt|t−1 = Awt|t−1, (3.18)Pt|t−1 = ATPt|t−1A +Cv, (3.19)Kt = Pt|t−1CT (Ce + CTPt|t−1C)−1, (3.20)wt|t = wt|t−1 +Kt(yt − Cwt|t−1), (3.21)Pt|t = (I −KtC)Pt|t−1. (3.22)with initial 
ondition w1|0 = � and P1|0 = Σ, where � and Σ are the initial 
onditions forthe states. For more information on how these equations have been derived the interestedreader 
an look in [40, 165℄. Of 
ourse the above set of equations is not in the mostgeneral form. Extensions 
an be made by letting the state and transition matri
es to betime varying, as well as the 
ovarian
e matrix of the noise pro
esses.From these equations we 
an observe how the Kalman Filter is working. To estimatethe 
urrent state wt|t a predi
tion step to obtain the predi
tive state wt|t−1 based only onthe previous state wt−1|t−1 is performed. After that a 
orre
tion step takes pla
e usingthe present observation yt and the predi
tive state. Also, we 
an observe that the updateequation for the 
ovarian
e matrix Pt|t is 
al
ulated as the di�eren
e of two matri
es. This
an lead to numeri
al problems and destroy the symmetry of the matrix. To avoid theseproblems the update equation of 
ovarian
e Pt|t 
an be repla
ed with the so 
alled Josephform [163℄: Pt|t = (I −KtC)Pt|t−1(I −KtC)T +KtCeKTt . (3.23)52



3.4.1 Kalman Smoother and EMUntil now we have present the solution to the �ltering problem. However, in some 
aseswe have all the available data, Y = {y1;y2; · · · ;yK}, before the estimation of states. Inthat 
ase we deal with the smoothing problem.Jt−1 = Pt−1|t−1ATP−1t−1|t−1, (3.24)wt−1|K = wt−1|t−1 + Jt−1(wt−1|K − Awt−1|t−1), (3.25)Pt−1|K = Pt−1|t−1 + Jt−1(Pt|K − Pt|t−1)JTt−1. (3.26)The derivation of those equations is explained in [165℄. The equations of Kalman Filter,together with the above smoothing equations, 
onsist the Kalman Smoother. In generalto apply the Kalman Filter or the Kalman Smoother to a model, we must write themodel in a state � spa
e form. After that the above equations 
an be applied easily.However, there are several parameters whi
h are assumed known before the appli
ationof the update equations. These parameters are the 
ovarian
e matrix of noise pro
esses,Ce and Cv, the state transiotion matrix A, the observation matrix C and the initial
onditions, � and Σ, i.e. � = {Ce;Cv; A; C; �;Σ}. To �nd the model parameters �the EM algorithm 
an be used, where the states 
onsist the hidden variables. The EMalgorithm is an iterative s
heme 
onsisting of two steps, the E-step and the M-step. Inthe E-step the expe
ted values of the hidden variables are evaluated and in the M-step themaximization is performed with respe
t to the model parameters. To perform the E-stepthe expe
ted 
omplete log-likelihood, L = E
{

log p(Y;w1:K|K); �|Y}, must be 
al
ulated.The expe
ted likelihood depends on three quantities:wt|K = E
{wt|Y}, (3.27)St|K = E
{wtwTt |Y}

= Pt|K +wt|KwTt|K , (3.28)St;t−1|K = E
{wtwTt−1|Y}

= Pt;t−1|K +wt|KwTt−1|K. (3.29)The �rst two quantities 
an be 
al
ulated using the Kalman Smoother equations, whilefor the 
al
ulation of the last quantity we 
an use the following equation:Pt;t−1|K = Jt−1Pt|K. (3.30)The joint log - likelihood of the 
omplete data {w0; {wt;yt}Kt=1} 
an be written as:
L = −1

2
E
{

(w0 − �)TΣ−1(w0 − �)T}− 1

2
log |Σ|

−
K
∑t=1

E
{1

2
(yt − Cwt)TC−1e (yt − Cwt)T}− K

2
log |Ce|

−
K
∑t=1

E
{1

2
(wt −Awt−1)

TC−1v (wt − Awt−1)
T}− K

2
log |CV | (3.31)53



The M - step involves dire
t di�erentiation of L with respe
t to the parameters �. Theestimates for model parameters � are given by:Anew =
[

N
∑t=2

St;t−1|N][ N
∑t=2

St−1|N]−1 (3.32)Cv =
1N − 1

T
∑t=2

(St|N − AnewSt;t−1|N − St;t−1|NATnew + AnewSt|NATnew) (3.33)Cnew =
[

N
∑t=1

ytwTt|N][ N
∑t=1

St|N]−1 (3.34)Ce =
1N N
∑t=1

(ytyTt − Cnewwt|NyTt ) (3.35)w0 = w1|N (3.36)
Σ = P1|N (3.37)The EM algorithm is 
onsisted of two iterative steps. First applied the Kalman Smoother,using the parameters from previous step, to obtained the expe
ted statisti
s, and thenmaximize the expe
ted log - likelihood with respe
t to the parameters. These two stepapplied iteratively until the 
onvergen
e of the likelihood.3.5 AR and ARMA models3.5.1 AR modelThe autoregressive (AR) model is used in a diverse area of appli
ations su
h as data fore-
asting, spee
h 
oding and re
ognition, model - based spe
tral analysis, signal restorationand biomedi
al signal pro
essing and analysis. The AR model is also known as linearpredi
tion model [113℄. With the AR model we assume that the observed data have beengenerated by the di�eren
e equation:y[n] = p

∑k=1

a[k]y[n− k] + e[n], (3.38)where y[n] is the observed data, e[n] is the driving noise, and the a[k] are the AR 
oeÆ-
ients. The driving noise e[n] is a zero mean white noise pro
ess with varian
e �2e , and pis the order of the model. This model is usually abbreviated as AR(p). When the modelof y[n] is an AR(p) model then the Power Spe
trum Density (PSD) is given by [159℄:PAR(f) = �2e
|1−∑pk=1 a[k]e−j2�fk|2 . (3.39)Thus, to �nd the PSD of an AR model we need to know the AR 
oeÆ
ients as well asthe varian
e of the driving noise. 54



It is useful to derive the probability distribution of the AR model in more 
ompa
tform sin
e this will help us to in
lude the AR model in probabilisti
 models more easily.For a signal blo
k of N samples [x[0]; x[1]; · · · ; x[N − 1]] the N error equations 
an bewritten as:














e[0]e[1]e[3]
· · ·e[N − 1]
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


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=
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








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









a[0]a[1]a[3]
· · ·a[p]













(3.40)where [y[−1]; y[−2]; y[−3]; · · · ; y[−p]] are the initial 
onditions. The above set of equa-tions 
an be written in ve
tor/matrix form:e = y −Ya. (3.41)The pdf of the signal y given the AR 
oeÆ
ients and the initial 
onditions is equal tothe pdf of the driving noise e. Assuming that the driving noise follows a white Gaussiandistribution with zero mean and varian
e �2e the pdf of the signal y is given:p(y|a) = ( 1

2��2e )N=2 exp{− 1

2�2e (y−Ya)T (y −Ya)}. (3.42)The Eq. (3.40) 
an be written in an alternative form as
[ e[0]e[1]e[3]

···e[N−1]

]

=

[−a[p] −a[p−1] ··· −a[1] 1 ··· 0 0 0
0 −a[p] ··· −a[2] −a[1] 1 ··· 0 0
0 0 ··· ··· −a[2] −a[1] 1 ··· 0
··· ··· ··· ··· ··· ··· ··· ··· ···
0 0 0 ··· −a[p] −a[p−1] ··· −a[1] 1

][ y[−p]y[−p+1]y[−p+2]
···y[N−1]

] (3.43)In ve
tor/matrix notation we have: e = Ay. (3.44)Using the above equation we 
an write the pdf of the signal x in an alternative form:p(y|a) = ( 1

2��2e )N=2 exp{− 1

2�2e yTATAy}. (3.45)The above two versions of the AR pro
ess pdf will be used latter in this thesis.3.5.2 ARMA modelAn extension of the AR model is the Autoregressive Moving Average (ARMA) model. Inthis model the time series is des
ribed:y[n] = p
∑k=1

a[k]y[n− k] + q
∑l=1

b[l]e[n− l] + e[n]. (3.46)It is easy to see that this model has two parts, the AR part and MA part, hen
e the nameARMA. In the above equation p is the order of the AR part and q is the order of the MA55



part. This model is usually abbreviated as ARMA(p; q). When the model of y[n] is anARMA(p; q) model then the PSD is given by [159℄:PARMA(f) = �2e |1 +∑ql=1 b[l]e−j2�fl|2
|1−∑pk=1 a[k]e−j2�fk|2 . (3.47)3.6 Gaussian Pro
essesA Gaussian pro
ess is a generalization of the Gaussian probability distribution. Whereasa probability distribution des
ribes random variables whi
h are s
alars or ve
tors (formultivariate distributions), a sto
hasti
 pro
ess governs the properties of fun
tions. AGaussian pro
ess is a 
olle
tion of random variables, any �nite number of whi
h have ajoint Gaussian distribution [179℄.A Gaussian pro
ess is 
ompletely spe
i�ed by its mean and 
ovarian
e fun
tions. Wede�ne mean fun
tion m(x) and the 
ovarian
e fun
tion k(x;x′

) of a real pro
ess f(x) as:m(x) = E{f(x)}, (3.48)k(x;x′

) = E{(f(x)−m(x))(f(x′

)−m(x′

))}. (3.49)where x is the input ve
tor and E{·} denotes the expe
tation. A Gaussian pro
ess 
anbe writen as: f(x) ∼ GP (m(x); k(x;x′

)) (3.50)The random variables represent the value of the fun
tion f(x) at lo
ation x. Often,Gaussian pro
esses are de�ned over time, i.e. where the index set of the random variablesis time.The linear regression model 
an be seen as a Gaussian pro
ess. Assume that we havef(x) = �(x)Tw where over the weights we have the prior w ∼ N (0;Σw). Then for themean and the 
ovarian
e we have:m(x) = E{f(x)} = �(x)E{w} = 0, (3.51)k(x;x′

) = E{(f(x)−m(x))(f(x′

)−m(x′

))} = E{f(x)f(x′

)}
= �(x)E{wwT}�(x′

) = �(x)Σw�(x′

). (3.52)3.7 Bayesian networksBayesian inferen
e is fairly simple when it involves small number of variables. However,it be
omes mu
h more 
omplex when we want to do inferen
e with many variables. Insu
h problems the Bayesian networks provide a solution by adopting the Markov 
ondi-tion in order to represent the problem in a more eÆ
ient way. Bayesian networks are a
ombination of two areas: graph theory and probability theory.A Bayesian network is a spe
i�
 type of probabilisti
 graphi
al model 
alled dire
ta
y
li
 graph (DAG), where all the edges of the graph are dire
ted and there are no56



x1 x2 x3Figure 3.5: A Bayesian network.
y
les. It is a graphi
al model that eÆ
iently en
odes the joint probability distributionfor a large set of variables. More formally, a Bayesian network for a set of variablesx = {x1; x2; · · · ; xn} 
onsists of a network stru
ture S that en
odes a set of 
onditionalindependen
e assertions about variables in x, and a set P of lo
al probability distributionsasso
iated with ea
h variables. Together, these 
omponents de�ne the joint distributionfor x. The nodes in S are in one - to - one 
orresponden
e with the variables in x. Giventhe stru
ture S, the joint distribution for x is given by:p(x) = n
∏i=1

p(xi|pa(xi))where pa(xi) denotes the parents of variable xi. The joint probability of all variables isthe produ
t of the probabilities of ea
h variable given its parents.In Fig. 3.5 a Bayesian network is depi
ted. The set of edges is E = {(x2; x1); (x2; x3)}.This is a DAG sin
e there are no undire
ted edges and 
y
les. Further, sin
e x1 and x2are 
onditionally independent of ea
h other we have:p(x1|x2; x3) = p(x1|x2). Similar 
on-
lusions 
an be drawn about the variable x2. Finally, the joint distribution, as fa
torizedby this Bayesian network, is given by: p(x1; x2; x3) = p(x1|x2)p(x2)p(x3|x2).There are three main tasks 
on
ern a Bayesian network: 1) inferring unobserved vari-ables, 2) learning the model parameters and 3) learning the stru
ture of the network.EÆ
ient algorithms exist that perform inferen
e and learning in Bayesian networks [45℄.Also, Bayesian networks are used to model sequen
es of variables (e.g. spee
h signals orprotein sequen
es), in that 
ase are 
alled dynami
 Bayesian networks. Bayesian networkshave re
ently been introdu
ed as a tool for determining the dependen
ies between brainregions from fMRI data [215, 216℄.3.8 Statisti
al analysis of fMRI time seriesAfter the prepro
essing of the fMRI data to meet the requirements of model assumptions,the statisti
al analysis is performed. In the statisti
al analysis, there is need to des
ribethe data and based on this des
ription to make a de
ision about the state of brain regions(a
tivated or not). In the literature two approa
hes are use to for the des
ription of thedata. The �rst is the model -based approa
h, where a generative model is used to des
ribethe data. The learning task is to estimate the model that optimally �t the data. Theseapproa
hes use mainly the Generalized Linear Model (GLM) [26℄. The se
ond approa
h57



is data driven and to this approa
h the Independent Component Analysis (ICA) and thePrin
ipal Component Analysis (PCA) [47, 48, 49℄ belong. The data driven approa
hesdo not assume a parti
ular model. The general idea of PCA and ICA approa
hes isto de
ompose the dataset in prin
ipal or independent 
omponents and then to �nd aempiri
al relation of 
omponents with the a
tivated area. However, the need to explorewhole datasets leads to high 
omputational 
osts. On the other hand, the model basedapproa
hes make an assumption for the generative model. Usually, they require less
omputational e�ort. In this thesis the generative model approa
h is adopted.3.8.1 Modeling the response to the stimulusIn this se
tion, we will des
ribe the model for the brain response in the presen
e of astimuli. In most 
ases the relationship between stimuli and BOLD response, x(t), ismodeled using a linear time invariant (LTI) system, where the stimulus, s(t), a
ts as theinput to the system and the HRF, h(t), as the impulse response fun
tion. So, the BOLDresponse 
an be written as: x(t) = ∫ ∞

0

h(u)s(t− u)du: (3.53)In the literature there exist many works whi
h are 
on
erned with the �nding of the HRF.These works in
ludes 
onvolutive models, temporal basis fun
tions, FIR models and nonlinear models [24, 25℄. However, a simple and elegant approa
h, whi
h is justi�es by manystudies [26, 24, 28℄, is to model the HRF with the di�eren
e of two gamma fun
tions. Thisformulation of HRF 
aptures the small dip after the HRF return to zero.3.8.2 Data analysisAfter the determination of the HRF and hen
e the BOLD signal, the time series of a voxel
an be des
ribed by: y = �w + e . (3.54)where y is the N × 1 ve
tor of voxel's time series, � is a known design matrix of sizeN × p depending from the experiment, w is the p× 1 ve
tor of magnitudes response (orregression weights sin
e we have a linear regression model) and e is the N × 1 ve
tor ofnoise.After the determination of the model, we need a method to obtain estimates of weightsw. A useful, simple and widely a

epted approa
h is the method of Ordinary LeastSquares (OLS) [40℄. In this method the weights w are found by minimizing the residualssum-of-squares. In that 
ase the estimates ŵ are obtained by:ŵ = (�T�)−1�Ty . (3.55)We want to mention here that we have make the assumption that the matrix �T� isinvertible, whi
h it is if, and only if, the design matrix � is of full rank. Also, for the58
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al map.GLM, the LS estimates are the ML estimates, and are the Best Linear Unbiased Estimates(BLUE) [40℄. It 
an be shown that the parameters estimates are normally distributed: ifthe design matrix is of full rank then ŵ ∼ N (w; �2(�T�)−1). This result will be usedlatter in the dete
tion analysis.After the estimation pro
edure, we need to use a statisti
 to explore the existen
e ofan e�e
t or not (a
tivation or not). In neuroimaging studies two statisti
s have been usedextensively: the t-statisti
s and the posterior distribution [53℄, whi
h are based on the
lassi
al and the Bayesian approa
h, respe
tively.In the 
lassi
al approa
h the estimate of the parameters w is used to 
al
ulate at-statisti
 for ea
h voxel. The t-statisti
 is de�ned as:t = 
T ŵ√
TCŵ
 ; (3.56)where ŵ is the estimate of the parameters w, Cŵ is the 
ovarian
e of the estimate ŵ and
 is the 
ontrast ve
tor whi
h spe
i�es parti
ular di�eren
es between the parameters w.Then, these values of t-statisti
 are mapped on one brain image to produ
e the statisti
alparametri
 map (SPM) [54℄. An image of t-values from an a
ousti
 experiment is shown inFig. 3.6. We 
an observe in this example that large values of t-statisti
 are 
on
entratedat the auditory 
ortex, something that we expe
t due to the a
ousti
 stimulus.Under the Bayesian perspe
tive, we 
an 
reate maps of the brain based on the posteriordistribution. A map of the a
tivation regions on the brain 
an be obtained by 
omputingthe posterior probability that a voxel is a
tivated or the probability that an e�e
t isgreater than some threshold value. On
e, we obtain the mean and the 
ovarian
e of theposterior distribution of the parameters w, we 
an 
al
ulate the posterior probability,59



given the e�e
t size 
, using the following equation:pp = 1−Ψ
( 
 − 
T ŵ√
TCŵ
); (3.57)where Ψ(·) is the normal 
umulative distribution fun
tion (CDF), while ŵ and Cŵ are themean and the 
ovarian
e of the posterior distribution of the parameters w. Then, thesevalues of posterior probabilities are mapped on one brain image to produ
e the posteriorprobabilities map (PPM) [54℄. The major di�eren
e between the two statisti
s is that thet - statisti
 has uniform spe
i�
ity over all voxels [28℄. For the OLS estimates of weights,we have Cŵ = �2(�T�)−1 for both pro
edures, SPM and PPM.
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Chapter 4EEG spike dete
tion using KalmanFiltering Te
hniques
4.1 Introdu
tionIn this 
hapter we present a methodology for epilepti
 spike enhan
ement in ele
troen-
ephalographi
 (EEG) re
ordings. The proposed approa
h takes advantage of the nonstationarity nature of the EEG signal using a time varying autoregressive (TVAR) model.The time varying 
oeÆ
ients of AR model are estimated using the Kalman Filter. Theresults show 
onsiderably improvement in signal - to - noise ratio and signi�
ant redu
tionof the number of false positives. The general pro
edure of our approa
h is shown in Fig.(4.1). The EEG signal is fed to a KF, then on the output of KF a dete
tion pro
edureis performed to provide us with a desi
ion. An EEG signal whi
h 
ontains four spikes isshown in Fig. (4.2).Ele
troen
ephalography (EEG) is one of the 
lini
al tools used in diagnosis, moni-toring and management of neurophysiologi
al disorders related to epilepsy. Epilepsy is
hara
terized by sudden re
urrent and transient disturban
es of mental fun
tion and/ormovements of body due to ex
essive dis
harge of brain. The presen
e of epileptiforma
tivity in the EEG 
on�rms the diagnosis of epilepsy whi
h sometimes 
an be 
onfusedwith other disorders produ
ing similar seizure - like a
tivity [60℄.During the seizures (i
tal a
tivity) the s
alp EEG of patients who su�er from epilepsyis usually 
hara
terized by high amplitude syn
hronized periodi
 waveforms re
e
ting ab-normal dis
harge of a large groups of neurons. Between, before or after seizures (interi
tala
tivity), the EEG might 
ontain o

asional epileptiform transient waveforms. As a re-sult relatively short re
ordings 
an still be useful in the diagnosis of epilepsy [61℄. Thesetransient waveforms, isolated spikes, sharp waves and spike wave 
omplexes are 
learlydistinguished from ba
kground a
tivity. More spe
i�
ally, spikes are de�ned as havingduration from 20 - 70 ms, while sharp waves have duration from 70 - 200 ms. On the otherhand, spike and wave 
omplexes are de�ned as spikes followed by slow waves and haveduration from 150 - 350 ms [62, 63℄. Throughout this paper, no distin
tion is made among61



Figure 4.1: General Pro
edure for epilepti
 spike dete
tion.
62



0 100 200 300 400 500 600 700 800
−80

−60

−40

−20

0

20

40

60

80

100

120

Sample #

A
m

pl
itu

de

Spike

Spike

Spike
Spike

Figure 4.2: EEG signal whi
h 
ontains four spikes.spike, sharp waves and spike - wave 
omplexes and therefore they are 
olle
tively termedspikes. In general, the dete
tion of epilepsy in
ludes visual s
anning of EEG re
ordingsfor spike by an experien
ed EEGer. This pro
ess, however, is time 
onsuming, espe
iallyin the 
ase of long re
ordings [62, 64℄. In addition, the dete
tion of epileptiform a
tivityin the EEG is far from straightforward due to the variety of morphology of spikes andtheir similarities to waves whi
h are part of the ba
kground a
tivity and to artefa
ts (i.e.mus
le a
tivity, eye blinking a
tivity, et
.) [21℄.Several methods for spike dete
tion have been proposed based on single and multi-
hannel approa
hes. Those methods 
an be 
lassi�ed into �ve 
ategories: (a) methodsbased on traditional re
ognition te
hniques, known as mimeti
 te
hniques [65, 66, 67℄,(b) methods using template mat
hing algorithms [68℄, (
) methods based on parametri
approa
hes [69℄, (d) methods based on arti�
ial neural networks (ANNs) [61, 62, 63, 64,70, 71, 72, 73, 74, 75, 76℄ and (e) methods utilizing knowledge-based rules [64, 77, 78, 79℄.The methods belonging to the �rst 
ategory imitate the visual analysis followed by anexpert. In parti
ular, the features of EEG waveforms, su
h as duration, slope, sharpness,and amplitude, are 
ompared with values whi
h are provided by the experts. In the se
ond
ategory template mat
hing is used for a priori known spike waveforms. The user sele
tsmanually spikes from a set of test data, whi
h are averaged to 
reate a template. Re
entapproa
hes use wavelets. The EEG signal is �ltered using wavelets to obtain features ofthe signal energy whi
h are used in the dete
tion of spikes. The methods belonging to thethird 
ategory assume lo
al stationarity of the ba
kground a
tivity and use single-
hannelor multi
hannel predi
tive �ltering. Spikes are dete
ted as deviation from stationarity.Impli
it in these approa
hes is that non-stationarity behaviour 
omes only from Spikes.In the fourth 
ategory ANNs are used to re
ognize patterns, whi
h are learnt by the net-work during the training phase. Supervised and unsupervised ANNs have been used inthe diagnosis of epilepsy, either to study sleep behaviour, to dete
t seizures, to predi
t63



seizures or to 
lassify and analyze waveforms in the EEG re
ordings. The majority ofthe methods, mainly those belonging to the �rst two 
ategories treat single 
hannel dataonly. In the �fth 
ategory, knowledge-based reasoning in addition to the above mentionedmethods is widely used. This arises from the need to in
orporate knowledge of the expertswhi
h takes the form of rules in
luding temporal rules. Essentially, the spike dete
tionproblem 
an be simply transfered to the dete
tion of the presen
e of spikes in the multi-
hannel EEG re
ording with high sensitivity and sele
tivity. That is, a high proportionof true events must be dete
ted with a minimum number of false dete
tions.Thus, a balan
e must be obtained between having high sensitivity and high sele
tivity.It is relatively easy to adjust system parameters to obtain performan
e where all spikesare found in a given patient but this would usually be a

ompanied by an una

eptablylarge number of false dete
tions. On the other hand, it is also relatively easy to have asystem with very low false dete
tion rate but then this would usually be a

ompaniedby an una

eptably large number of missed events. Many resear
hers argue that it isbetter to have a high sensitivity, minimize missed events and su�er more false dete
tionswhi
h 
an be 
he
ked by the EEGer rather than missing events altogether. If we look atthe system from the point of view of minimizing the number of false dete
tions then thenumber of missed events will in
rease. However, if possible spikes 
an be enhan
ed priorto the use of a spike dete
tor it should be possible to in
rease the sensitivity minimizingmissed events, while maintaining the sele
tivity at a satisfa
tory level.Thereby, a spike enhan
er would not be a dete
tor but would simply aim to enhan
eanything vaguely spike like. This means that real spikes, as well as spike like artefa
tsand ba
kground will be enhan
ed, i.e. a large number of unwanted waveforms will beenhan
ed along with real spikes. This is quite a

eptable as long as the spike dete
tionsystem has high sele
tivity. To our knowledge, there exist only a few methods that per-form spike enhan
ement. James et al. [80℄ make use of multireferen
e adaptive noise
an
elling (MRANC) in whi
h the ba
kground EEG on adja
ent 
hannels in the multi-
hannel EEG re
ording is used to adaptively 
an
el the ba
kground EEG on the 
hannelunder investigation. In addition, adaptive noise 
an
elling has been applied to enhan
esomatosensory evoked potentials [81℄ and in 
an
elling the presen
e of EOG in the EEG[82℄. The above methods assumed that EEG signal is a stationary one. However, it is wellknown that EEG 
ontains non - stationarities. In 
hapter we propose a novel method forEEG spike enhan
ement, whi
h 
ombines the AR model with the KF.4.2 Methodology4.2.1 Time - Varying Autoregressive ModelLet the ve
tor y be the one 
hannel EEG signal. We assume that the EEG 
an be modeledby an autoregressive model (AR). In general, AR model found many appli
ations in EEGanalysis [83, 84℄, although EEG is a nonstationary signal. It 
an be des
ribed with the64



following equation: y(t) = p
∑i=1

s(i)y(t− i) + v(t); (4.1)where p is the order of the model, s(i) the AR parameters, y(t) the observations and v(t)the Gaussian noise with zero mean and varian
e �2 ,i.e. v(t) ∼ N(0; �2). Sin
e the EEGis non - stationary signal we let the AR parameters to vary in time:y(t) = p
∑i=1

st(i)y(t− i) + v(t); (4.2)or in ve
tor notation: y(t) = C(t)T s(t) + v(t); (4.3)where C(t) = [y(t − 1); y(t − 2); · · · ; y(t − p)]T is a px1 ve
tor 
ontaining the p pastobservations. The ve
tor s(t) = [st(1); · · · ; st(p)]T 
ontains the AR parameters and variesin time a

ording to: s(t) = As(t− 1) +w(t); (4.4)where w(t) is Gaussian noise with zero mean and 
ovarian
e Q. This des
ribes an autore-gressive model for the EEG signal with time varying 
oeÆ
ient in a state - spa
e form.To estimate those 
oeÆ
ients we use the Kalman Filter approa
h (as des
ribed in 
hapter3), whi
h provides us with the set of equations:ŝt−1(t) = Aŝt−1(t− 1); (4.5)P t−1t = AP t−1t−1AT +Q; (4.6)ŝt(t) = ŝt−1(t) +K(t)(y(t)− C(t)T ŝt−1(t− 1)); (4.7)P tt = (I −K(t)C(t)T )P t−1t ; (4.8)K(t) = P t−1t C(t)(R + C(t)TP t−1t C(t))−1; (4.9)where R = �2. The signal that is used to the dete
tion pro
edure is z(t) = C ŝt(t); t =
1; · · · ; T .4.2.2 Dete
tion stepAfter the KF step, peaks from the output of the �lter whi
h are higher than a prede�nedthreshold are 
onsidered as an indi
ation of the existen
e of an epilepti
 spike at thatlo
ation in the time series. In any spike dete
tion algorithm the threshold is optimizedto minimize missing of true peaks, while keeping the number of falsely dete
ted peakswithin a reasonable limit. For the proposed method the threshold value is 
hosen as:Th = � 1N N

∑t=1

b(yt) (4.10)where b(yt) is a segment of ba
kground EEG a
tivity, N is the length of the segment and� is a s
aling fa
tor. 65



Table 4.1: The 
hara
teristi
s of the EEG segments used in the evaluation of our method-ology Patient Duration (se
) # Epilepti
 Spikespatient 1 60 44patient 2 20 31patient 3 20 35patient 4 20 18patient 5 30 25patient 6 20 19patient 7 20 9patient 8 30 17patient 9 30 47patient 10 20 16patient 11 40 16patient 12 40 24patient 13 40 324.3 Experimental results4.3.1 Dataset des
riptionAll EEGs were re
orded by pla
ing ele
trodes on the s
alp a

ording to the International10-20 system [85℄. Sixteen 
hannels were re
orded from �ve bipolar montages where ea
hele
trode is referen
ed to an adja
ent ele
trode. The EEGs are a
quired while the patientis awake but resting and in
lude periods of eyes open, eyes 
losed, hyperventilation andphoti
 stimulation. Ampli�
ation was provided by Medele
 Pro�le EEG ma
hine. Inorder to redu
e undesired noise, the re
ordings were sampled at 256 Hz and bandpass�ltered from 1.6 - 70Hz with 12 bit resolution. Our methodology was tested on the EEG'sof 13 patients who were diagnosed with epilepsy or were under evaluation at the UniversityHospital of Ioannina, Gree
e. Segments of EEG were 
hosen from ea
h patient, 
ontainingspikes identi�ed by an expert neurologist who had a

ess to the full multi
hannel EEGi.e. 
ould rate spikes based on spatial and temporal 
ontextual information. Table 4.1summarises the EEG 
hara
teristi
s of ea
h patient.4.3.2 Choi
e of the parametersSpe
ial attention must be paid in the 
hoi
e of parameters entering our methodology.Those parameters are: the varian
e of observation noise, the varian
e of the state noise,the order, p, of the time varying AR model and the matrix A. The form of matrix Are
e
ts the 
orrelation of 
oeÆ
ients between them and between di�erent time instants.We assume that there is no 
orrelation between the 
oeÆ
ients in time instant n, with66



those in time instant n − 1. In addition, we assume a low degree of 
orrelation betweenAR 
oeÆ
ients in adjusted time instants. Thus, the diagonal elements of A must havevalues << 1. We 
hoose matrix A as:A =







0:1 · · · 0... . . . ...
0 · · · 0:1 




:The order of the AR model is p = 15 [69℄. The varian
e of the observation noise, R,is R = 1.5 x (mean absolute value of the EEG signal). The 
ovarian
e matrix, Q, of thethe state noise is 
hosen as: Q =







0:1 · · · 0... . . . ...
0 · · · 0:1 




:Those values appeared to give the best results and have been 
hosen after long exper-imentation. In all experiments the raw signal has been normalized in the range [−1; 1].4.3.3 EvaluationTheoreti
ally SNR at time t is de�ned as the ratio between the amplitude of the signalat time t and the standard deviation of the noise. Su
h a time dependent de�nition isnot parti
ularly useful in neurophysiology, where SNR 
an be viewed as a single numberwhi
h 
hara
terizes the noisiness of a spike train. In our problem the signal and noiseare represented by the spikes and the ba
kground EEG, respe
tively. So SNR 
an bede�ned as the ratio of the peak-to-peak value to the root mean square (RMS) value ofthe ba
kground EEG for a number of samples on either side of the spike, ex
luding thespike itself (Fig. 4.3).The spike is initially identi�ed by the lo
ation of its maximum peak. A typi
al durationof 135 ms is assumed for a spike, whi
h 
orresponds to 35 samples at a sampling rate256 samples per se
ond. The minimum sample within the range ±17 samples from themaximum peak is 
hosen to be the minimum peak of the spike and the peak - to - peakvalue Spp is 
al
ulated a

ordingly. Finally, 35 samples (135 ms) on either side side of a32 sample spike are 
hosen to des
ribe the ba
kground EEG and its RMS value, BRMS,is 
al
ulated. Thus, SNR is de�ned as:SNR =

SppBRMS : (4.11)Using this SNR de�nition the primary performan
e index used is the per
entage in
reasein SNR de�ned as:
∆SNR =

SNRnew − SNRoldSNRold · 100%; (4.12)where subs
ripts "old" and "new" refer to before and after �ltering respe
tively.67



Figure 4.3: The SNR is de�ned as the ratio of peak-to-peak amplitude of the spike to theRMS of 35 samples on either side of the spikeTable 4.2 shows the average a
hieved in
rease of SNR for ea
h patient. We 
an seethat the proposed approa
h enhan
es 
onsiderably the epilepti
 spike with respe
t toba
kground EEG a
tivity. Fig. 4.4 depi
ts a segment of raw EEG signal, whi
h 
ontainsa noisy spike, the signal after KF pro
essing and the signal after AR pro
essing. It is
lear that in this 
ase the AR pro
essing produ
es a noisy signal, whi
h make hard thedete
tion of the spike. In 
ontrast, the KF eÆ
iently 
an
els the ba
kground a
tivityand noise to produ
e a 
lear spike. Fig. 4.5 depi
ts spikes with low amplitude, 
omparedto ba
kground a
tivity. As we observe the KF was able to 
learly distinguish the lowamplitude spike (third and �fth spike) from ba
kground a
tivity in 
ontrast to AR. Adi�erent situation 
an be seen in Fig. 4.6. In this 
ase we observe that the raw EEGsignal 
ontains spikes that are 
lose to ea
h other. The output of AR pro
essing is noisy,espe
ially in the time points from t = 800− 1000.A spike enhan
er would not be a dete
tor but would simply aim to enhan
e anythingvaguely spike like. The aim of a spike enhan
er is to maximize the sele
tivity (i.e. tode
rease false dete
tions). The la
k of a proper de�nition of a spike other than "transients"
learly distinguished from ba
kground a
tivity means that what 
onstitutes the ideal spikevaries. Using the above de�nition and making use of expert's knowledge we sele
t ass
aling fa
tor � = 1:5.In Fig. 4.7 the signal before and after prepro
essing is shown, as well as the attenuationof the ba
kground pro
ess after the appli
ation of KF. By a more 
arefull investigation ofthe signal after pro
essing we 
an observe that the false dete
tions have been 
onsiderablyredu
ed.The performan
e of our methodology is evaluated in terms of spe
i�
ity and sensitivity.Table 4.3 shows the four possibilities whi
h exist for ea
h de
ision made by the system.In the 
ase of a true positive the system identi�es an EEG segment as spike whi
h was68



Table 4.2: Comparison of average ( % ) in
rease in SNR between Kalman Filter andinverse AR �ltering Patient Kalman Filter Inverse AR Filterpatient 1 111.89 28.33patient 2 58.14 24.71patient 3 53.05 16.27patient 4 63.53 -12.56patient 5 139.06 30.12patient 6 163 32.52patient 7 145.45 -7.07patient 8 44.97 21.38patient 9 373.54 -11.58patient 10 58.48 28.27patient 11 167.23 -11.2patient 12 221.13 -12.62patient 13 137.85 26.96Average 133.64 11.81
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Figure 4.4: (a) raw EEG signal (b) signal after KF pro
essing (
) signal after AR pro-
essing
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Figure 4.5: (a) raw EEG signal (b) signal after KF pro
essing (
) signal after AR pro-
essing
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Figure 4.6: (a) raw EEG signal (b) signal after KF pro
essing (
) signal after AR pro-
essing
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Figure 4.7: (a) raw EEG signal and (b) signal after KF pro
essingTable 4.3: Confusion MatrixSystem = spike System = no - spikeLabel = spike True Positive (TP) False Negative (FN)Label = no-spike Fasle Positive (FP) True Negative (TN)annotated su
h as by the expert. A false positive is the dete
tion of a spike whi
h isannotated as normal by the expert. A false negative indi
ates that the system has misseda spike. Finally, in the 
ase of a true negative the system and the expert both agree thatthe EEG segment is normal. In table 4.4 the results from the dete
tion pro
edure areshown. As we 
an see the use of a spike enhan
er de
reases the false dete
tions.In Fig. 4.8 the Power Spe
tral Density of an EEG segment using Wel
h's averaged,modi�ed periodogram method with window length equal to 512 is shown. As we 
an seein Fig. (4.8a) the signal before KF enhan
ement exists a lobe in the frequen
y range from50 - 80 Hz. This frequen
y range 
orresponds to EEG 
omponents that are irrelevantto the spike 
omponents. The appli
ation of KF in the EEG signal attenuates these
omponents as we observe in Fig. (4.8b). Based in this observation we 
an 
on
lude thatthe appli
ation of KF 
orresponds to a low pass �lter.Table 4.4: Dete
tion Perfoman
eFN FP TPwithout enhan
er 38 1425 295with enhan
er 49 680 284
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Figure 4.8: (a) PSD before KF prepro
essing and (b) PSD after KF prepro
essing4.4 Dis
ussion and Con
lusionIn this 
hapter we have presented a methodology for EEG re
ordings spike enhan
ement.It is based on the assumption that EEG 
onsists of an underlying ba
kground a
tivity,whi
h is assumed to be stationary, and superimposed transient non - stationarities. Themethod uses a time varying AR model for the enhan
ement of spikes. The parametersof the model are estimated by Kalman �lter. The use of time vaying AR model enhan
espikes. The sensitivity of the dete
tion pro
ess was in
reased 
ompared to the 
ase withoutany prepro
essing stage, i.e. when the raw EEG is used as input in dete
tion stage.However, further analysis is required for the 
lassi�
ation of the enhan
ed transients intoepilepti
 spikes or other events.Using the time varying AR model allows the EEG to be modeled as a time - varyingpro
ess. Using this formulation we are able to enhan
e existing spikes and other eventswhi
h are similar to spikes. Usually the published works on spike dete
tion use a pre-pro
essing stage to enhan
e spikes in EEG re
ordings [62℄. However, only in [80℄ spikeenhan
ement is expli
itly addressed. They use Multireferen
e Adaptive Noise Can
elling(MRANC). The EEG on nearby 
hannels in the multi
hannel EEG re
ordings is usedadaptively to 
an
el the ba
kground a
tivity. The MRANC uses spatial and temporalinformation to enhan
e the spikes but as reported in [80℄ the presen
e of signal 
rosstalkbetween the primary and referen
e 
hannel a�e
ts its performan
e. Another fa
tor a�e
t-ing MRANC is the 
orrelation between the noise sour
e in di�erent 
hannels. In 
ontrast,our method uses the temporal information and the time varying nature of EEG 
ompo-nents to enhan
e the spikes. With the use of the Kalman Filter we are able to suppressthe ba
kground a
tivity. Issues related to the 
orrelation between noise or signal 
rosstalkdo not enter the proposed approa
h.One fa
tor a�e
ting the performan
e of our method is the varian
e of ba
kgrounda
tivity 
ompared to the amplitude of the spike. Spikes having similar amplitude with72
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Figure 4.9: (a) Raw EEG segment (b) EEG segment after pro
essingthe ba
kground EEG are supressed. This is shown in Figure 4.9, where a spike exists int = 400 and its amplitude is less than the ba
kground a
tivity. This happens be
auseapart from the spike dete
tion on a single 
hannel itself, other 
ontextual informationis also used by the expert when he 
lassi�es events as epilepti
 or non epilepti
. Thisinformation is related to other 
hannel a
tivity whi
h takes pla
es at the same time. Theproposed method doesn't take advantage of the spatial information but "inspe
ts" ea
hre
ording 
hannel individually.Our future work will fo
us on the use of su
h information in making the �nal diagnosis.Spe
i�
ally, the use of multi
hannel information guides us to extend the Kalman Filterto the multi
hannel 
ase. Another approa
h is the use of spatial 
ombiner whi
h utilizesthe epilepti
 spikes a
ross 
hannels to dete
t the presen
e of epilepti
 events. However,su
h information must be in
luded in an automated diagnosis system. More spe
i�
ally,Kalman �ltering must be applied in multi
hannel re
ordings. Alternatively, diagnosismust be assisted by a module whi
h 
ombines information about epilepti
 spikes fromdi�erent 
hannels.
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Chapter 5Biomedi
al Signal Denoising using theVariational Bayesian Approa
h withAppli
ations to ERP Estimation andHRV Analysis
5.1 Introdu
tionIn this 
hapter a Bayesian approa
h is proposed for the removal of the noise in biomedi
alsignals. The biomedi
al signal is assumed to be smooth and it is observed with additivenoise. The smoothness over the signal is a
hieved through a 
apable smoothness prior,while the statisti
s of the noise are unknown and must be estimated. The estimation isbased on an hierar
hi
al approa
h. The hyperparameters, whi
h 
ontain the degree ofsmoothness of the signal and the noise statisti
s, and the signal, are estimated using theVariational Bayesian (VB) Methodology. Results for single trial Event Related Potential(ERP) estimation are presented. The performan
e of the proposed method is evaluated insimulated and real ERP data and 
ompared to the well known wavelet denoising approa
hand the Generalized Cross - Validation (GCV) 
riterion. The use of the proposed methodresults in a 4% in
rease in the 
lassi�
ation rate. Also, the proposed method is used toestimate and remove the trend from Heart Rate Variability (HRV) signals.Biomedi
al Signal Denoising attempts to improve one or more per
eptual aspe
ts of thesignals 
orrupted by noise [110, 111℄. Denoising is refereed to the pro
ess of re
overing the
lean signal from noisy observations. The removal of noise is a 
ru
ial step for any systemwhi
h pro
esses biomedi
al signals. The a

ura
y of all subsequent steps, e.g. dete
tion,
lassi�
ation, et
., strongly depends on the quality of the noise redu
tion pro
ess. Forexample in [170℄ the authors use signal enhan
ement te
hniques for the dete
tion of spikewaves in the Ele
troen
ephalogram (EEG). However, signal denoising is not only met inbiomedi
al signals. Denoising of a signal in a noisy environment 
an be employed for othertypes of signals su
h as spee
h signals [113℄. In general, Signal denoising is related to the74
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Estimated ERP signalFigure 5.1: Raw EEG signal ( or noisy ERP signal) and the estimated ERP signal usingthe wavelet denoising approa
h.type of noise, the way the noise intera
ts with the signal and the number of available
hannels. To understand better the pro
ess of denoising we present an example basedon the single trial ERP analysis. The ERP is the ele
tri
 a
tivity of the brain due to astimulation. The measured responses 
an be 
onsidered as a 
ombination of the braina
tivity due to stimulation plus the brain a
tivity not related to the stimulation. TheERP is usually 
onsidered as transient - like smooth waveforms whi
h are dominated bylow frequen
ies [172℄. A 
ommon approa
h to denoise the single trial ERP is to 
onstru
ta �lter and �lter out the unwanted 
ontribution of the on-going ba
kground a
tivity ofthe brain. Digital �lters 
an be used for this purpose. However, this approa
h presentstwo major drawba
ks. First, the spe
trum of the ERP must be 
ompletely known andse
ondly, the spe
trum of the EP and the noise are usually overlapped. In this 
ase theWiener �lter 
an be used. Using the Wiener �lter the 
ovarian
e matrix of the EP andthe noise must be known a priori. The 
ovarian
e of the noise 
an be estimated from EEGsegments before the stimulation. However, the estimation of ERP 
ovarian
e is a diÆ
ulttask. Now, the problem is to proposed an a

urate model for the 
ovarian
e matrix ofERP. In our method we propose a simple and elegant stru
ture for the 
ovarian
e matrixof the 
lean signal through the prior distribution. In Fig. (5.1) a trial of EEG signal isshown. This EEG signal was obtained during the presen
e of a stimulus and 
an be also
alled the noisy ERP signal, sin
e 
ontains the EEG a
tivity due to the stimulus plus theEEG a
tivity unrelated to stimulus. The goal of denoising an ERP signal is to removethe irrelevant EEG a
tivity and to re
over the ERP signal. In Fig. (5.1), the re
overedERP signal using the wavelet denoising approa
h is shown.Two general approa
hes are followed in biomedi
al signal denoising. The �rst is themodel-based approa
h, where a model is used to explain the data. The model is �t to75



the data and the model parameters are estimated. The wavelet denoising [114, 115℄ andthe linear model [116, 117℄ belong to this approa
h. The se
ond approa
h is data drivenand to this approa
h the Independent Component Analysis (ICA) [118℄ and the Prin
ipalComponent Analysis (PCA) [120℄ belong.In this 
hapter the model-based approa
h is adopted and the linear model is used dueto its simpli
ity and its analyti
al expressions. The linear model �nds many appli
ationsin biomedi
al signal pro
essing, sin
e, it has been used in the analysis of fMRI data [26℄and in the estimation of Event Related Potentials (ERPs) [116℄. When the linear modelis used in a problem we fa
e two problems. The �rst is related to the design matrixwhi
h is used and the se
ond to the use of "best" parameters of the linear model. Inmost 
ases the design matrix is determined by the problem under dis
ussion. Findingthe optimal parameters values is related with the estimation framework. Two generals
hemes 
an be applied. The 
lassi
al inferen
e framework and the Bayesian inferen
eframework [40℄. In our approa
h we adopt the Bayesian framework sin
e we 
an use priorknowledge in the estimation pro
edure through the prior distribution. In the Bayesianframework the most valuable quantity is the posterior distribution. In some 
ases theposterior distribution 
annot be evaluated analyti
ally and approximation te
hniques 
anbe used su
h as the Variational Bayesian (VB)[45, 42℄, the Empiri
al Bayes (EB), theLapla
e Approximation [45℄ and the Markov Chain Monte Carlo (MCMC). However, inthe Lapla
e approximation the Gaussian assumption is based on the large data limitand the obtained posterior is poorly represented for small datasets, besides that we needmany operations to 
ompute the derivatives of the Hessian [42℄. Similarly, in the MCMCmethods the number of samples required for a

urate estimates is infeasible large [42℄.In addition, the absen
e of a global measure to as
ertain whether the Markov Chain hasrea
hed equilibrium is a problem [42℄. On the 
ontrast the VB methodology is an eÆ
ient
omputational method sin
e it results in 
losed form solutions and a universally a

epted
riterion exists to stop the pro
ess, whi
h is the 
onvergen
e of the variational bound.There exist similarities between the VB and EB methodologies, but the EB methodologyresults from a ML estimation pro
edure [45, 121℄.In this 
hapter we present a method for the re
overy of a biomedi
al signal whi
h isobserved in noise. The model we use is the additive one. To obtain a meaningful solu-tion we need to impose some restri
tions about the signal smoothness. The smoothnessproperty is often used in biomedi
al signal pro
essing, for example in [50℄ for fMRI dataanalysis, in [117℄ for ERP estimation and in [122℄ for the detrending of Heart Rate Vari-ability (HRV) signal. In the Bayesian framework this property 
an be embedded throughthe use of a 
apable prior distribution [123, 124℄. For the noise two 
ases are 
onsidered:the white Gaussian and the 
olored Gaussian noise. To estimate the various quantities ofthis model the VB methodology is used. The innovation of our work is related to the waywe estimate the smoothness of the signal and the statisti
s of the noise. The proposedmethod provides with simultaneous estimation of the signal smoothness and the noisestatisti
s within the same estimation framework. This feature avoids the visual tuning of76



the smoothness parameter as it is proposed in [122℄. Also, for the smoothness parameterwe obtain a posterior distribution in 
ontradi
tion to [117, 50℄ where point estimates forthe smoothness parameter are provided through the GCV 
riterion. Finally, the trans-formation of the resulting equations into the Fourier Domain, using the Dis
rete FourierTransform (DFT), provides with eÆ
ient 
omputational algorithms. What makes ourapproa
h di�erent from others [117, 50, 122℄ is that all model parameters are estimatedsimultaneously into the same estimation framework. This is des
ribed for two 
ases: (a)white Gaussian noise and (b) 
olored Gaussian noise.The 
hapter is organized as follows. First, the Bayesian model is des
ribed. Se
ond,the VB methodology is applied to obtain the posterior distributions of the model. Next,the proposed algorithms are applied in simulated and real datasets. In the simulateddatasets, �rst the numeri
al simulations and the evaluation metri
s are des
ribed. Afterthat, a 
omparison of the proposed algorithms with the Generalized Cross � Validation(GCV) approa
h and the wavelet denoising is performed. In the real datasets, we appliedthe proposed algorithms in two 
ases: ERP estimation in EEG signal and removal ofthe trend in HRV signals, and 
ompare to the wavelet denoising. Finally, the results aredis
ussed along with the future work.5.2 MethodologyWe 
onsider a signal s(k) 
orrupted by additive Gaussian noise n(k). The raw signal(observations) 
an be expressed as:y(k) = s(k) + n(k), (5.1)where k is the index sample (or time), k = 1; · · · ; N , with N being the number of samples.Eq. 5.1 
an be written in ve
tor notation:y = s + n, (5.2)where y = [y(1); y(2); · · · ; y(N)], s = [s(1); s(2); · · · ; s(N)] and n = [n(1); n(2); · · · ; n(N)].The signal s is un
orrelated to the noise. The problem is to estimate the signal s giventhe observations y. The ML solution in this problem is meaningless be
ause the ML es-timator 
orresponds to the observations. To obtain a meaningful solution regularizationis required. The 
onstraint is 
hosen ad ho
 or it is based on some a priori informa-tion. In our study, the signal is 
onstrained to be smooth. This means that we expe
tneighborhood samples of the signal to have similar values, i.e. the signal s has high 
orre-lation. This property is useful when we study biomedi
al signals. Sin
e we use a Bayesianapproa
h, the smoothness property must be introdu
ed to our model through the priordistribution. For this reason we 
hoose the smoothness prior [123℄. However, the use ofsmoothness prior introdu
es a new parameter (see below) into our model, whi
h enfor
esthe use of a hierar
hi
al Bayesian model to deal with it. We mention here that the term77



smoothness refers to temporal smoothness. In the next se
tions we will present the ap-pli
ation of the VB methodology in the 
ases of white Gaussian and Colored Gaussiannoise.5.2.1 White Gaussian NoiseThe smoothness prior over the signal s is given as:p(s|�) ∝ ( �
2�)N=2 exp{− �

2
sTLTLs}. (5.3)This prior has been used to estimate the trend in HRV and fMRI time series [50, 122℄and to estimate the ERP signal [117℄. The matrix L is a dis
rete approximation of thed-th derivative operator. The noise is assumed to be white Gaussian, i.e.p(n|�) = ( �

2�)N=2 exp{− �
2
nTn}. (5.4)where � is the pre
ision of the noise (inverse varian
e). Due to this assumption, thelikelihood of the observations, given the signal s and the noise pre
ision �, is:p(y|s; �) = ( �

2�)N=2 exp{− �
2
(y − s)T (y− s)}. (5.5)Finally, we assume that � and � are Gamma variables:p(�) = Γ(�; b�; 
�), (5.6)p(�) = Γ(�; b�; 
�), (5.7)where

Γ(x; b; 
) = 1

Γ(
) x(
−1)b
 exp
{

− xb}. (5.8)The 
hoi
e of Gamma distribution is based on the fa
t that the Gaussian and Gammadistributions are 
onjugates [125℄. We observe that the prior over the signal is not 
om-pletely known but depends on the parameter �, whi
h is unknown and must be estimated.The same happens with the parameter �. Sin
e we assume that the signal is un
orrelatedto the noise, the join prior of our model 
an be written as:p(s; �; �) = p(s|�)p(�)p(�). (5.9)In the 
ase, where the parameters � and � are known, an estimate of the signal 
an beobtained as: ŝ = �(�LTL+ �I)−1y; (5.10)where I is the identity matrix. The above estimator is the MAP estimator of the proposedmodel. The use of the MAP estimator assumes that the values of the parameters � and �are known. However, in our problem these parameters are unknown and must be estimatedusing the observations. There exist several methods whi
h address the estimation of those78



parameters: the eviden
e based approa
h [33, 152℄, the integration method [126℄, and theensemble learning or VB methodology [42, 148, 152℄. The above methods are based on aBayesian treatment of the problem. Approa
hes outside the Bayesian framework 
an bealso used su
h as the generalized 
ross validation 
riterion [50, 124℄.In our study to perform inferen
e about the signal s and the parameters � and � weuse the VB methodology (see Chapter 2). We approximate the true posterior with thefa
torized distribution: q(s; �; �|y) = q(s)q(�)q(�). (5.11)Applying the VB methodology the Equations (5.12)-(5.19) are obtained: The posteriorover the signal s is a Gaussian distribution with mean and 
ovarian
e given by:ŝ = �̂Csy, (5.12)Cs = (�̂LTL+ �̂I)−1. (5.13)The posterior over the parameter � is a Gamma distribution with parameters:
1b′� =

1

2

(yTy − 2yT s+ tra
e(Cs + ŝŝT ), (5.14)
′� =
N
2

+ 
�, (5.15)�̂ = b′�
′�. (5.16)The posterior over the parameter � is a Gamma distribution with parameters:
1b′� =

1

2

(tra
e(LTL(Cs + ŝŝT )), (5.17)
′� =
N
2

+ 
�, (5.18)�̂ = b′�
′�. (5.19)The algorithm 
onsists of the iterative appli
ation of the Equations (5.12)-(5.19) until the
onvergen
e of the variational bound. This algorithm is 
alled VarWhite. The variationalbound is given by:F (q; s; �; �) = 〈

log p(y|s; �)〉−KL(q(s)||p(s)))
−KL(q(�)||p(�)))−KL(q(�)||p(�))), (5.20)where: KL(q(s)||p(s))) =
N
2
log �̂− 1

2
log |Cs|+ 1

2

(�̂LTLCs)+
�̂
2
ŝTLTLŝ, (5.21)KL(q(�)||p(�))) = (
′� − 1)Ψ(
′�)− log b′� − 
′� + log Γ(
′�) + log Γ(
�) +
� log b� − (
� − 1)(Ψ(
′�) + log b′�) + b′�
′�b� , (5.22)KL(q(�)||p(�))) = (
′� − 1)Ψ(
′�)− log b′� − 
′� + log Γ(
′�) + log Γ(
�) +
� log b� − (
� − 1)(Ψ(
′�) + log b′�) + b′�
′�b� , (5.23)

〈

log p(y|s; �)〉 =
N
2
log �̂− �̂

2

(yTy − 2yTs+ tra
e(Cs + ŝŝT )). (5.24)79



The 
al
ulation of the KL divergen
e for various distributions is explained in [45℄.5.2.2 Colored Gaussian NoiseIn this se
tion the previous model is extended in the 
ase of 
olored Gaussian noise, i.e.a stationary pro
ess whi
h follows the Gaussian distribution with full 
ovarian
e. Thisextension makes the proposed model more robust sin
e it in
ludes the previous modelas a spe
ial 
ase and it 
an be used in 
ases where the noise is des
ribed as 
oloredGaussian. For example in ERP estimation the ba
kground EEG is better modeled by a
olored Gaussian distribution [117℄. The observation model is given by Eq. (5.2), theprior of the 
lean signal by Eq. (5.3) and the hyperprior for � by Eq. (5.6). We makethe same assumptions about these parameters as in the 
ase of the white noise. Thenoise is assumed to be 
olored Gaussian with zero mean and 
ovarian
e matrix Cn. Theparameters in this 
ase are the signal s, the parameter � and the inverse 
ovarian
e ofthe noise, R = C−1n . For the 
ovarian
e of the noise we use as prior the Wishart density[125, 127, 128℄ p(R) =W (rp;Bp). (5.25)The prior over the parameters 
an be written as:p(s; �;R) = p(s|�)p(�)p(R). (5.26)We 
an apply the VB methodology as in the 
ase of the white Gaussian noise. Theposterior is approximated by q(s; �;R|y) = q(s|�)q(�)q(R). The approximate posteriorsin this 
ase are: q(s) = N (ŝ;Cs), (5.27)q(�) = Γ(�; b′�; 
′�), (5.28)q(R) = W (r;B), (5.29)(5.30)where: Cs = (�̂LTL+ R̂)−1, (5.31)ŝ = CsR̂y, (5.32)
1b′� =

1

2

(tra
e(LTL〈ssT〉)), (5.33)
′� =
N
2

+ 
�, (5.34)r = rp + 1, (5.35)B = Bp + (

(y− < s >)(y− < s >)T)+Cs. (5.36)
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The required moments are easily evaluated as:< s > = ŝ, (5.37)
〈ssT〉 = Cs + ŝŝT , (5.38)�̂ = b′�
′�, (5.39)R̂ = rB−1. (5.40)The algorithm 
onsists of the iterative appli
ation of Equations (5.31) - (5.36) until 
on-vergen
e of the variational bound. The algorithm is 
alled VarColored. The variationalbound is given by:F (q; s; �; �) = 〈

log p(y|s; �)〉−KL(q(s)||p(s)))
−KL(q(R)||p(R)))−KL(q(�)||p(�))), (5.41)In the above equation the KL divergen
e for the signal s and the parameter � are thesame as in the white noise 
ase. For the other quantities we have:KL(q(R)||p(R)) =
r −N − 1

2
L(r;B)− rp −N − 1

2
L(rp;Bp)− rN

2

+
r
2
tra
e{BpB}

+ log
Z(rp;Bp)Z(r;B)

, (5.42)
〈p(y|s;R)

〉

=
1

2
L(r;B)− 1

2

{R̂(

(y− < s >)(y− < s >)T +Cs)} . (5.43)The terms Z(r;B) and Z(rp;Bp) and are the normalized quantities of the posterior andprior distribution of , whi
h are Wishart distributions. The terms L(r;B) and L(rp;Bp)are given as: L(r;B) =

∫

log |R|W (r;B)dR, (5.44)L(rp;Bp) =

∫

log |R|W (rp;Bp)dR, (5.45)whi
h 
an be seen as the expe
tation of the quantity log |R| with respe
t to the posteriorand the prior distributions of the noise pre
ision matrix R.5.2.3 Stationarity assumptionsThe stationarity of the proposed estimator for the signal s is depended on its prior andmore spe
i�
ally on the stru
ture of the matrix L. Be
ause the signal is 
onsidered �niteand in
ludes N samples, the stationarity depends on the 
onditions at the beginning andat the end of the signal [123℄. Assuming that the signal vanishes outside its domain i.e.
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y(−1) = y(N + 1) = 0, the matrix L for d = 2 be
omes:
L =





















2 −1 0 0 · · · 0

−1 2 1 0 · · · 0

0 −1 2 −1 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2





















(5.46)
This 
hoi
e of su
h matrix gives a non stationary prior for the signal s, be
ause the matrixLTL takes the following form:

LTL =





























5 −4 1 0 0 · · · 0 0

−4 6 −4 1 0 · · · 0 0

1 −4 6 −4 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 1 −4 6 −4
0 0 · · · 0 0 1 −4 5





























: (5.47)
This type of prior 
an be used when the signal vanishes at the boundaries. When thesignal is extended periodi
ally outside its domain, i.e. y(−1) = y(N) and y(N+1) = y(1),the matrix L is: L =















2 −1 0 0 · · · −1
−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0

· · · · · · · · · · · · · · · · · ·
−1 · · · 0 0 −1 2















(5.48)and the matrix LTL is:
LTL =





























6 −4 1 0 0 · · · 1 −4
−4 6 −4 1 0 · · · 0 1

1 −4 6 −4 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · 0 0 1 −4 6 −4
−4 1 · · · 0 0 1 −4 6





























(5.49)
whi
h is a 
ir
ulant one. In this 
ase we 
an assume that the prior of the signal isstationary, due to the asymptoti
 equivalen
e between the 
ir
ulant and Toeplitz matri
es[129℄. In the 
ase we assume the stationary prior for the signal s, we 
an write theequations for both algorithms, VarWhite and VarColored, in the Fourier domain to redu
e82



the 
omputational 
omplexity. Another fa
tor that a�e
ts the stationarity of the estimatorof s is the statisti
al properties of the noise. If the noise is assumed to be non stationarythen the estimator of s is non stationary, even if we assume stationary prior for the signal.This is due to the iterative nature of the algorithm. Assuming non stationary noise withnon parti
ular stru
ture of the 
ovarian
e N2 parameters for the noise, when we have Ndata samples, need to be estimated. In our 
ase, to redu
e the number of parameters, weassume that the noise is stationary.5.2.4 Equations in the frequen
y domainAssuming stationary prior for the signal s and stationary noise n the VarWhite andVarColored algorithms 
an be written in the Fourier Domain. The resulting equations forthe VarWhite algorithm are:S(f) =
�̂Y (f)�̂+ �̂|L(f)|2 ; f = 1; · · · ; N (5.50)Ps(f) =

1�̂+ �̂|L(f)|2 ; f = 1; · · · ; N (5.51)
1b′� =

1

2

{

N
∑f=1

(

|L(f)|2Ps(f) + 1N |L(f)|2|S(f)|2)}+
1b� (5.52)
′� =

N
2

+ 
� (5.53)�̂ = b′�
′� (5.54)
1b′� =

1

2

{ 1N N
∑f=1

|Y (f)|2 − 2N N
∑f=1

Y ∗(f)S(f)
+

N
∑f=1

(Ps(f) + 1N |S(f)|2)}+
1b� (5.55)
′� =

N
2

+ 
� (5.56)�̂ = b′�
′�; (5.57)where Y (f) and S(f) are the DFT (Dis
rete Fourier Transform) 
oeÆ
ients of the ve
torsy and ŝ, and Ps(f) are the eigenvalues of the 
ovarian
e matrix Cs. The algorithm in theFourier Domain 
onsists of Eqs. (5.50)-(5.57). This algorithm is 
alled VarWhiteFFT.
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The equations for the VarColored algorithm are:S(f) =
R(f)Y (f)R(f) + �̂|L(f)|2 ; f = 1; · · · ; N (5.58)Ps(f) =

1R(f) + �̂|L(f)|2 ; f = 1; · · · ; N (5.59)
1b′� =

1

2

{

N
∑f=1

(

|L(f)|2Ps(f) + 1N |L(f)|2|S(f)|2)}+
1b� (5.60)
′� =

N
2

+ 
� (5.61)�̂ = b′�
′� (5.62)B(f) = Bp(f) + |Y (f)− S(f)|2=N + Ps(f); f = 1; · · · ; N (5.63)r′ = rp + 1 (5.64)R(f) =
1B(f) ; f = 1; · · · ; N (5.65)where R(f) , B(f) and Bp(f) are the eigenvalues of the matri
es R , B and Bp , re-spe
tively. The algorithm in the Fourier domain 
onsists of Eqs. (5.58)-(5.65), and it is
alled VarColoredFFT. In Eqs. (5.36) and (5.63) the se
ond term is an approximationfor the 
ross 
orrelation matrix between the ve
tors y and ŝ. However, sin
e the quantity

(y− s)T (y − s) is a rank one approximation, this makes it a very unstable term. On theother hand the term |Y (f)−S(f)|2N is a good approximation for the 
ross 
orrelation sequen
efrom whi
h we 
onstru
t the 
ross 
orrelation matrix. Thus, in the time domain the quan-tity (y− s)T (y − s) is repla
ed by a Toeplitz matrix, whi
h is 
onstru
ted using the 
ross
orrelation sequen
e. This sequen
e 
an be obtained by the inverse Fourier transform of
|Y (f)−S(f)|2N .5.3 Experimental results5.3.1 Experiments using simulated signalsThe ele
trophysiologi
 signal is 
onstru
ted as a superposition of two Guassian 
ompo-nents. Random 
u
tuation is introdu
ed on the peaks position to simulate the laten
yvariability. The matrix L des
ribes the smoothness of the signal and it is an approximationof the dth derivative. We test the proposed algorithms using as values of d = 2,4 and 6(low d 
orresponds to smooth signal and high d in a "spiky" signal). The value of d deter-mines the extent of the smoothness. Unlike the other quantities of the proposed model,d is diÆ
ult to be addressed in a theoreti
al basis. In the literature the 
hoi
e of d is leftto the user [117℄.We 
ompare the VarWhiteFFT algorithm with the generalized 
ross validation (GCV)
riterion [124℄ and the wavelet denoising approa
h. From all the wavelet transforms, theDis
rete Wavelet Transform (DWT) is the most widely used. However, the DWT presents84



a serious drawba
k in the estimation of ERP [114, 130℄, sin
e it is shift invariant. Toover
ome this problem the Stationary Wavelet Transform (SWT) 
an be utilized. Weuse the biorthogonal mother wavelet (bior4.4) sin
e we are interested in the morphologyand the laten
y of the peaks [114℄. The EEG signal is de
omposed into �ve levels andsoft thresholding is used. The thresholding rule is the 'sqtwolog' a

ording to the wavelettoolbox of Matlab and level dependent estimation of level noise is applied. In the GCVapproa
h the signal of interest is estimated as:ŝGCV =
(��LTL+ I)−1y = S(�)y, (5.66)where � = �� . To estimate the signal the parameter � is needed. This is a

omplished byminimizing the GCV 
riterion with respe
t to the parameter � . The GCV 
riterion isgiven by the equation: GCV (�) = 1N ‖y − s‖2

( 1N tra
e(I− S(�)))2 . (5.67)To quantify the performan
e we 
al
ulate the SNR enhan
ement as:SNRout = 10 log
‖s‖2
‖s− ŝ‖2 , (5.68)where s is the trial and ŝ is the 
orresponding estimate. To simulate M trials we generateM ERP waveforms and M realizations of noise for ea
h SNR level. The simulated noisytrials are obtained by adding the noise to the ERP trials.We apply the VarWhiteFFT algorithm in noisy ERP where the noise is white gaussian.The VarWhiteFFT algorithm is initialized using noninformative priors, b� = b� = 106 and
� = 
� = 10−6. The SNRout for SNR = 5, 3, 1, 0 dB using the VarWhiteFFT algorithm,the wavelet denoising and the GCV approa
h is 
al
ulated. SNR = 0 dB 
orresponds torealisti
 situations [131℄. For GCV and VarWhiteFFT we use d = 2,4,6 and the obtainedresults are shown in Table 1. The best results are obtained when the VarWhiteFFT isused. A simulated ERP, a noisy ERP and the estimates are shown in Fig. 1 for SNR = 0dB. The GCV and the VarWhiteFFT estimates present larger os
illations in the range ofsamples 150-256 than the wavelet denoising. The GCV and the VarWhiteFFT estimatebetter the simulated ERP in the range of samples 50-150. This is due to the fa
t thatGCV and VarWhiteFFT assume that the ERP is stationary, in 
ontrast to the waveletdenoising whi
h assumes that the ERP is a non stationary signal.In the 
olored noise 
ase the VarColoredFFT algorithm is used and it is initializedusing the noninformative prior for the parameter � , i.e. b� = 106 and 
� = 10−6. For theprior of the noise we set rp = 0 and Bp = 0 giving the improper prior p(R) ∝ |R|−N+1

2 .We test the VarColoredFFT for input SNR = 5, 3, 1, 0 dB using low and high pass 
oloredGaussian noise. To 
reate low pass noise an AR model of order 4 with AR 
oeÆ
ients [1, 1.5084, -0.1584, -0.3109, -0.0510 ℄ is used, while the AR 
oeÆ
ients for the high passnoise are [ 1, -1.5084, 0.1584, 0.3109, 0.0510℄. In Table 5.2 we observe that the waveletdenoising approa
h presents better results 
ompared to VarColoredFFT in the 
ase of low85



Table 5.1: SNRout for di�erent SNRin in white gaussian noise 
ased=2 d=4 d=6SNR VAR GCV VAR GCV VAR GCV WAV5 18.3572 18.2973 17.9238 18.3428 15.5130 17.8851 14.14413 16.3498 16.2325 15.9253 16.1731 13.5032 15.5807 13.47631 14.6461 14.3728 14.1853 14.0988 11.5614 13.3881 12.86110 13.8054 13.4427 13.1249 13.1329 10.5247 12.4918 12.3807

(a) (b)Figure 5.2: (a) Simulated and noisy ERP and (b) Estimation using the GCV, VarWhit-eFFT and Wavelet denoising approa
hes
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Table 5.2: SNRout for di�erent SNRin in 
olored low pass noiseSNR VarColoredFFT (d = 2) VarColoredFFT (d = 4) VarColoredFFT (d = 6) WAV5 1.7643 13.5873 9.8299 13.90893 1.5652 12.1169 8.2163 12.71151 1.8186 10.5174 6.4513 11.69760 1.5985 9.3108 5.4439 10.5134Table 5.3: SNRout for di�erent SNRin in 
olored high pass noiseSNR VarColoredFFT (d = 2) VarColoredFFT (d = 4) VarColoredFFT (d = 6) WAV5 0.6734 40.2934 36.2906 18.42653 0.7746 38.8252 34.8002 17.94211 0.8722 37.6405 33.2309 17.92710 1.0071 36.3522 32.4469 18.4125pass noise. The best results for the VarColoredFFT are obtained for d = 4. In Table5.3 the results in the 
ase of high pass 
olored noise are shown. The VarColoredFFTapproa
h presents mu
h better results than the wavelet denoising. In Fig. 2 a trial ofhigh pass noisy ERP along with the estimates obtained from the VarColoredFFT and thewavelet denoising are shown. In the next se
tions, results using real datasets are provided.However, in these se
tions we do not use the GCV approa
h sin
e the GCV 
riterion isderived under the white noise assumption, while the noise in the real dataset is 
olored.5.3.2 Appli
ation to Event Related Potential (ERP) estimationWe have used EEG data re
orded during a go/nogo visual 
ategorization task using nat-ural photographs. This dataset has been used to study brain dynami
s in [132℄. Subje
ts

(a) (b)Figure 5.3: (a) Simulated and noisy ERP and (b) Estimation using the VarColoredFFTand Wavelet denoising approa
hes 87



(a) (b)Figure 5.4: Raw trials in the 
ase of (a) target and (b) non target.were presented with pi
tures whi
h either 
ontained or did not 
ontain animal images. Inthe presen
e of an animal in the pi
ture a button was pressed by the subje
t. The datahave been pro
essed using Independent Component Analysis (ICA) to remove mus
le a
-tivity, eye blink et
. [132℄. In our study the ICA - prepro
essed data, derived from thePz 
hannel, are used. The dataset in
ludes 14 subje
ts and 
onsists of 4276 ERPs, where2150 belong to the target 
ase while the rest 2126 belong to the non target 
ase.The dataset has been pro
essed using the wavelet denoising and the VarColoredFFTapproa
h with d = 4. The VarColoredFFT algorithm is initialized using b� = 106 and
� = 106 while for the 
ovarian
e matrix of the noise improper prior is used. These valuesfor the parameters of the prior of the smoothness parameter have provided the best results.In Figs. (5.4) - (5.6) ERP images of raw and pro
essed trials from one subje
t for thetarget and the non target 
ase are shown. The ERP image is a visualization tool whi
hgives the ability to see the evolution of ERP in a trial-by-trial basis [119℄. Besides the ERPimage, we show the mean of trials from ea
h method. It is obvious that both approa
hesprodu
e a 
leaner ERP signal than the raw ERP. Also, it is 
lear that features of ERP,su
h as the laten
y and the amplitude of laten
y, are more identi�able in the denoiseddata.Besides the visual 
omparison of the two methods, we also present results for the
lassi�
ation of an ERP into target and non-target 
ases. The input of the 
lassi�er is adataset of features. The features are extra
ted from raw ERPs and denoised ERPs. Forthe denoising of raw ERPs we have used the proposed approa
h and the wavelet analysis.We note here that the dataset from ea
h subje
t has been pro
essed separately. The
lassi�
ation pro
edure is based on two 
hara
teristi
s of the ERP: the laten
y and theamplitude of the P300 wave. These features are extra
ted and used as input to a quadrati
dis
riminant 
lassi�er. The laten
y is taken as the maximum amplitude in a pre-spe
i�edwindow. In our 
ase this window is 300-600ms from the onset of the stimulus. The datasethave been pro
essed using 10 times fold 
ross validation. The mean 
lassi�
ation rateswere 63.4857 +/- 6.3096, 67.2993 +/- 7.3435 and 67.3457 +/- 7.5096 using the raw ERPsand the denoised ERPs extra
ted using the proposed approa
h and wavelet denoising.88



(a) (b)Figure 5.5: Estimated trials in the 
ase of (a) target and (b) non target using the Var-ColoredFFT approa
h.

(a) (b)Figure 5.6: Estimated trials in the 
ase of (a) target and (b) non target using the Waveletdenoising approa
h.
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Table 5.4: Classi�
ation rates of ERPs in target and non target 
ases for ea
h subje
t.Raw EEG ( % ) VarColored ( % ) Wavelet Denoising (% )Subje
t 1 68,25 72,54 74,91Subje
t 2 65,30 70,64 71,84Subje
t 3 72,37 76,43 77,12Subje
t 4 64,82 66,33 68,21Subje
t 5 57,40 62,78 53,51Subje
t 6 64,33 69,21 67,42Subje
t 7 54,73 52,19 58,41Subje
t 8 61,20 69,07 65,32Subje
t 9 76,54 73,71 75,40Subje
t 10 64,82 76,26 72,13Subje
t 11 58,58 55,67 57,82Subje
t 12 61,02 68,14 68,27Subje
t 13 65,22 69,65 73,39Subje
t 14 54,22 59,57 59,09Mean 
lassi�
ation rate 63,48 67,30 67,35We observe an in
rease on the 
lassi�
ation rate 4% using the proposed approa
h andwavelet denoising. While the 
hanges in the 
lassi�
ation rate of the two approa
hes,VarColoredFTT and wavelet denoising, 
annot be 
onsidered statisti
al signi�
ant in thewhole dataset, the two approa
hes present di�erent behavior as it is shown in Table 5.4.5.3.3 Appli
ation to HRV time series analysisThe proposed approa
hes are employed for detrending HRV time series. HRV is used asa quantitative marker of the autonomous nervous system a
tivity. The HRV time series
ontain 
omponents, whi
h are related to slow linear or more 
omplex trends. Thesee�e
ts 
an 
ause distortion on the subsequent pro
essing su
h as time - frequen
y orspe
tral analysis. Our appli
ation has been inspired by the work proposed in [122℄. Inthis work the authors used the smoothness prior to estimate the trend in the HRV timeseries and subtra
t it from them. This results to a detrended HRV time series. However,the value of the parameter � was based on visual analysis of the time series. This is aserious drawba
k of the proposed algorithm. To estimate the parameter � the generalized
ross validation 
riterion 
an be used. However, the GCV 
riterion assumes that thenoise is white Gaussian, something that is not always true. In this 
hapter we use theVarColored algorithm to estimate the trend in a HRV time series.The HRV time series have been extra
ted from the MIT/BIH Arrhythmia Database90



[133℄. All re
ords are utilized. The HRV time series have been pro
essed using theVarColoredFFT algorithm and the wavelet denoising. After trend removal, an analysisis performed in the detrended HRV time series using time domain measures and spe
tralanalysis. Before the detrending an impulse reje
tion �lter is applied as des
ribed in [134℄.The wavelet db3 and level equal to 6 are used [134℄. Also, the thresholding rule is the'sqtwolog' a

ording to the wavelet toolbox of Matlab and level dependent estimation oflevel noise is applied. Finally, soft thresholding is used. The VarColoredFFT algorithmis initialized by using b� = 106 and 
� = 106 for the smoothness parameter while for the
ovarian
e matrix of the noise improper prior is used.The time domain measures used in our study are: the standard deviation of all RRintervals (SDNN) and the root mean square of di�eren
es of su

essive RR intervals(RMSSD) [135℄. In Tables 5.5 and 5.6 the 
al
ulated measures are provided for theoriginal HRV time series and the detrended HRV time series using the VarColoredFFTalgorithm and the wavelet denoising approa
h. It is obvious that both approa
hes pro-du
e a signi�
ant 
hange in the value of SDNN of original HRV time series. However,the VarColoredFFT approa
h tends to leave un
hanged the RMSSD measure 
omparedto the wavelet denoising approa
h. The detrending using the VarColoredFFT approa
hhas a strong e�e
t on the SDNN measure and only a small e�e
t in the RMSSD measurewhi
h des
ribes the short term RR variability. In 
ontrast, the wavelet denoising hasstrong e�e
t on both measures. To show that the two approa
hes, the proposed approa
hand the wavelet denoising, present statisti
ally di�erent results in terms of RMSSD andSDNN measures we perform t-tests [136℄. The �rst t-test is related to the SDNN measure.Comparing the di�eren
e between the two approa
hes we have found that at 95% 
on�-den
e level, the 
on�den
e interval is [4.0085, 16.3014℄, whi
h does not in
lude the zerovalue, and thus, the observed di�eren
e is statisti
ally di�erent with respe
t to the SDNNmeasure. The se
ond t-test is related to the RMSDD measure. At 95% 
on�den
e level,the 
on�den
e interval is [4.8093, 20.6733℄, whi
h indi
ated that the observed di�eren
e isstatisti
al signi�
ant in term of RMSSD measure. Finally, a visual example of two re
ordsfrom the database (re
ords 100 and 200) is shown in Fig. (5.7). In this �gure, the HRVtime series of the re
ord and the estimated trends using the VarColoredFFT algorithmand the wavelet denoising approa
h are shown. It is obvious that both approa
hes areable to extra
t eÆ
iently the trend.5.4 Dis
ussionIn this 
hapter we propose a new approa
h to estimate a biomedi
al signal 
ontaminatedby gaussian noise, either white or 
olored. More spe
i�
ally we explore the smoothnessof a biomedi
al signal. To in
orporate the smoothness property in a Bayesian frameworkthe smoothness prior is used. The proposed approa
h has been applied to estimate ERPpotentials observed in noise and for detrending HRV time series. The results indi
ate theusefulness of the proposed approa
hes. 91



Table 5.5: RMSSD measure for all re
ords of the MIT/BIH Arrythmia database.Re
ord Raw time series (mse
) VarFFTColored (mse
) Wavelet (mse
)100 30.5676 30.5651 29.2378101 39.0460 39.0418 38.5431102 35.9438 35.9433 34.4788103 32.5482 32.5422 32.1019104 51.6978 51.6974 51.3571105 22.5530 22.5502 21.4233106 434.7516 434.7488 417.4801107 30.1195 30.1188 29.4943108 83.3694 83.3623 78.5698109 36.8545 36.8516 29.0798111 34.2006 34.1967 34.1119112 17.5951 17.5915 17.3631113 92.6397 92.6365 91.8428114 109.2839 109.2817 76.0988115 72.2478 72.2429 72.0577116 18.6094 18.6078 17.4881117 34.7143 34.7065 34.5804118 71.5364 71.5298 40.1229119 299.1581 299.1572 297.8358121 19.5878 19.5732 19.5341122 19.0312 19.0145 19.0124123 103.4247 103.4227 103.0032124 56.3651 56.3598 47.4654200 260.7571 260.7564 260.4236201 365.6437 365.6367 342.6606202 208.2037 208.1961 138.8792203 265.6832 265.6814 265.6476205 26.1472 26.1372 17.7047207 217.3939 217.3676 60.1048208 188.9911 188.9900 188.9573209 56.1245 56.1165 43.7349210 159.5481 159.5471 157.4235212 26.2510 26.2462 25.9468213 25.3431 25.3428 24.4440214 145.6556 145.6534 105.4569215 43.9616 43.9607 35.6157217 71.6366 71.6345 64.6255219 220.9104 220.9058 220.3093220 48.7048 48.6998 35.8222221 272.4356 272.4347 272.4343222 244.7885 244.7832 230.2498223 86.8727 86.8694 67.3661228 313.4371 313.4368 301.6098230 28.5564 28.5368 28.2740231 84.3748 84.2361 57.5353232 143.9505 143.9482 62.2999233 217.5260 217.5258 217.5076234 17.8362 17.8252 17.3143Mean value 114.3037 114.2961 101.554892



Table 5.6: SDNN measure for all re
ords of the MIT/BIH Arrythmia database.Re
ord Raw time series (mse
) VarFFTColored (mse
) Wavelet (mse
)100 36.8123 30.6589 29.1539101 66.2710 43.2582 43.1299102 29.0400 28.5746 27.9368103 45.8076 40.4292 39.5033104 36.2572 36.1162 35.8876105 33.9255 21.7845 21.7154106 260.9793 246.9869 235.2391107 27.3528 27.0460 26.6920108 98.5885 69.4819 67.2474109 35.7987 30.5343 26.9596111 37.7138 29.3101 29.6689112 20.6286 13.0407 13.4732113 94.3495 89.0375 89.0424114 114.2124 80.8855 59.8151115 85.8584 81.1964 80.4174116 22.6307 14.0928 13.8859117 39.6789 34.0083 31.4574118 72.4890 51.0061 32.3252119 176.5624 175.4097 174.8878121 81.6542 27.3789 28.1441122 39.8915 26.7308 27.6931123 116.3484 113.7811 110.8904124 77.1935 48.4703 43.4958200 150.1990 144.5702 144.0939201 347.5576 273.6207 240.5611202 283.5881 147.8009 110.2574203 198.9309 194.6069 194.4783205 51.0154 32.6703 15.5988207 290.0354 167.4336 50.3120208 118.6269 114.5910 114.7254209 77.4221 58.8256 39.0359210 109.5262 108.4588 107.6870212 40.2068 33.1682 33.5011213 18.2943 16.2163 15.8691214 102.4272 99.7495 82.6180215 35.2039 34.6407 31.6939217 58.1727 53.4981 49.6686219 168.7913 155.5955 151.4202220 59.6947 45.8786 34.4981221 182.3230 178.9202 179.2007222 214.3801 198.5178 181.2579223 63.6052 53.9069 44.7834228 177.9545 176.1317 170.4996230 86.0102 46.9280 47.1409231 312.8586 166.8755 126.9590232 134.5248 132.4360 57.5120233 124.1067 123.6997 123.6493234 27.3740 20.7194 15.5568Mean value 105.8932 86.2225 76.067593



(a) (b)Figure 5.7: (a) Re
ord 100 and (b) Re
ord 200.The Bayesian approa
h provides with the ability to use the prior knowledge of ourproblem through the prior distribution. Sometimes the prior distribution is not 
om-pletely known but it 
omes in a parameterized form, one su
h example is the smoothnessprior. These parameters of the prior distribution 
an be estimated within the Bayesianframework and they are 
alled hyperparameters. To estimate the hyperparameters theVariational Bayesian Methodology is used. However, besides the VB approa
h, the hy-perparameters 
an be estimated using the Empiri
al Bayes or the GCV 
riterion. Themajor di�eren
e between the EB and the VB is in the way that they estimate the hyper-parameters. The EB approa
h is based on the ML estimation while the VB approa
h isbased on the Bayesian estimation. This means that the EB provides with point estimatesfor the hyperparameters, while the VB approa
h provides with a posterior distributionfor the hyperparameters. This means that the EB approa
h does not take into a

ountthe variability of the hyperparameters.Another approa
h for the estimation of the hyperparameters is the GCV framework.We have observed in our experiments that in the 
ase of the white gaussian noise theproposed approa
h and the GCV method result in similar performan
e. However, thereexist some di�eren
es. In the Bayesian approa
h we know the assumptions, whi
h doesnot happen in the GCV approa
h. Also, when we use multiple regularization parameters,we 
an handle them very easily in the Bayesian approa
h. However, there is not a widelyused methodology where the GCV 
riterion is used to handle multiple regularizationparameters. Finally, the GCV 
riterion has been developed under the assumption that theerror follows a gaussian distribution. This means that we must expe
t low performan
ewhen the error follows a di�erent distribution other than the gaussian. To 
on
lude,the Bayesian approa
h provides with a stru
tured way to estimate the regularizationparameters, espe
ially, in the 
ase of multiple parameters.The proposed algorithms 
an be applied in the wavelet domain. However, this impliesthat high 
orrelation between the wavelet 
oeÆ
ients must exist. There is no eviden
e thatsomething like that happens. The proposed algorithms assume global smoothness of the94



signal. Assuming lo
al smoothness may be more appropriate for the wavelet 
oeÆ
ientsand 
ould be examined in future study.In simulated experiments we 
ompared the proposed algorithms, VarWhiteFFT andVarColoredFFT, with wavelet denoising. We observe that the VarWhiteFFT outperformsthe wavelet denoising in terms of the SNR enhan
ement. In the 
ase of 
olored noise wedistinguish two 
ases: low pass and high pass noise. In the low pass 
ase the waveletdenoising provides better results than the VarColoredFFT. In the 
ase of high pass noisethe VarColoredFFT presents better results 
ompared to wavelet denoising. In the ERPestimation we showed that both methods present similar results. Besides the appli
ationof the proposed approa
hes in the ERP data, we use them for detrending of the HRV timeseries. In the HRV detrending we have shown that the use of VarColoredFFT to estimatethe trend provides with the ability to remove the VLF 
omponents of the time series.Also, the method des
ribed in [17℄ for the detrending of the HRV time series 
an present
omputational problems sin
e large matri
es must be inverted [33℄. The VarColoredFFTalgorithm avoids this problem sin
e the Fourier Domain is used.Extensions of the proposed approa
hes in the Bayesian framework are straightforward.These extensions will help to explore the smoothness of a signal under di�erent 
onditions.For example, in the 
ase where we assume that the noise is not Gaussian but has impulsivenature, we 
an use a Gaussian mixture model with 2 
omponents to model the impulsivenature of the noise [137, 138℄. This will lead to a robust smoothing algorithm. Therobustness in that 
ase is given in terms of outliers reje
tion in the estimation pro
edure.Also, one obvious extension of the proposed approa
h is to use multiple parameters .This results to a non stationary prior [139℄ for the signal and we 
an explore the lo
alsmoothness of it. Finally, a third extension 
an be a 
ombination of the above: the studyof lo
al smoothness of the signal in impulsive noise environment.5.5 Con
lusionsIn this 
hapter we present a model for the estimation of a biomedi
al signal when this sig-nal is 
ontaminated by noise. More spe
i�
ally we address the estimation of the smooth-ness of a biomedi
al signal. The smoothness property 
ontains the highly 
orrelated
omponents of the signal. This property 
an be in
orporated into a Bayesian frameworkby using the smoothness prior. This prior leads to the use of hierar
hi
al modeling ofthe problem under dis
ussion. To deal with the estimation of hyperparameters the VBmethodology has been used. The VB methodology provides with 
losed form solutionsand a 
onvergen
e 
riterion to stop the pro
ess. The proposed approa
hes have beenapplied to the estimation of ERP and to the detrending of the HRV time series.
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Chapter 6Bayesian Methods for fMRI Time SeriesAnalysis using a Non-Stationary NoiseModel
6.1 Introdu
tionIn this 
hapter, a Bayesian framework is presented for the analysis of fMRI data. TheBayesian framework is not new in fMRI data analysis. Many works have been publishedin this area. These works addressed several issues in the fMRI data analysis. In [30℄ theauthors use the Bayesian framework to estimate the parameters of the GLM. However,in their analysis they use noninformative prior over the parameters of the GLM. Thistype of prior is used sin
e there is no prior knowledge about the parameters. In [31℄the authors are 
on
entrated mostly to the estimation of the noise, whi
h is modeledusing an AR (autoregressive) model, rather than to the estimation of the parameters ofthe GLM. In [32℄ a Bayesian approa
h is presented whi
h determines the design matrixin a 
exible (automati
) way. To do that they assume sparsity over the parameters ofGLM. The sparsity has been modeled by an hierar
hi
al prior whi
h is 
alled Automati
Relevan
e Determination (ARD) [33℄. However, in the estimation of the hyperparametersthey use an ML (Maximum Likelihood) prin
iple. This approa
h does not take intoa

ount the variability of the hyperparameters. To address it a full Bayesian approa
hmust be used [34℄. All the above works assume that the noise is temporal stationaryand it is modeled using an AR model or a Gaussian distribution with zero mean andvarian
e �2. However, the fMRI time series 
ontains temporal non-stationarities whi
h
an be 
aused by subje
t movements, neurophysiologi
al pro
esses, or ina

ura
ies of themodel [35, 36, 37℄, whi
h in our study are des
ribed by the noise. The work presented in[35℄ is based on the weighted least squares (WLS) estimator, where the weighting matrix
ontains the non-stationarities of the noise. However, this matrix is 
al
ulated outside theestimation pro
edure. A Bayesian extension of the above work in presented in [37℄, butthe estimation of the weighting matrix is 
onfusing sin
e it does not �t to the iterative96



nature of the proposed algorithm. Finally, Bayesian approa
hes using the spatial domainare presented in [38, 39℄, but, these approa
hes assume temporal stationarity.In this 
hapter two algorithms are presented for the statisti
al analysis of the fMRItime series. The �rst algorithm is based on a voxel-by-voxel analysis of the data and itis based on the Generalized Linear Model (GLM). From the other, the se
ond algorithmpro
ess all the voxels simultaneously and uses a spatio-temporal version of the GLM.Both algorithms estimate the varian
e of the noise a
ross the images and the voxels anduse a 
exible design matrix to model the drift, as des
ribed in [32℄. The use of theBayesian approa
h is twofold in our study. First, to introdu
e any prior knowledge aboutthe problem and se
ond, to determine automati
ally the design matrix of the experiment.These two goals 
an be a
hieved through the 
hoi
e of the prior distribution. The obje
tivein a Bayesian approa
h is to obtain the posterior distribution and to make inferen
e aboutthe parameters of the GLM. However, this is not an easy task as multiple integrationsare involved, whi
h are intra
table, and approximate approa
hes must be used. For thisreason in this study the Variational Bayesian (VB) Methodology is adopted to makeinferen
e. The main advantage of the VB methodology is the 
losed form solutions thatwe obtain, as well as a 
riterion to assume 
onvergen
e. The use of an extended designmatrix allows the simultaneous estimation of the drift with the magnitude of the BOLDresponse and the spatial 
hara
teristi
s of the noise. This allows to better understandhow the dete
tion of a
tivated regions of the brain depends on both the drift and thenoise. The performan
e of the proposed algorithms (under the assumption of di�erentnoise models) is 
ompared with the weighted least squares (WLS) method. Results usingsimulated and real data indi
ate the superiority of the proposed approa
h 
ompared tothe WLS method taking into a

ount the 
omplex noise stru
ture of the fMRI time series.In next se
tions the proposed algorithms for the analysis of the fMRI time series arepresented. Also, results for both algorithms and the WLS method are given in the resultsse
tion using simulated and real fMRI data. Finally, a dis
ussion of the obtained resultsis presented in the dis
ussion se
tion.6.2 Methodology6.2.1 Voxel-by-Voxel analysisThe �rst algorithm performs a voxel-by-voxel analysis in the sense of treating ea
h voxelindependently on the others and is des
ribed by:y = Xw + e; (6.1)where y is the fMRI time series (or voxel), X is the design matrix, w is the ve
tor ofregression 
oeÆ
ients and e is the ve
tor of noise term.The sparsity is a very helpful property sin
e the pro
essing is faster and simpler ina sparse representation where few 
oeÆ
ients reveal the information we are looking for.97



Hen
e, sparse priors help us to determine the model order in an automati
 way and redu
ethe 
omplexity of the model. In our study the sparsity of the parameters is explored, hen
ea natural 
hoi
e for the prior distribution is the ARD prior [43℄. More spe
i�
ally, theparameter ve
tor w is treated as a random variable with Gaussian prior of zero mean andvarian
e a−1i for ea
h element in the ve
tor w:p(w|a) = p
∏i=1

N(0; a−1i ): (6.2)where p is the length of the ve
tor w.The noise in the fMRI data 
onsists mainly of two 
omponents: a slow time - varying
omponent, known as drift, and a high pass 
omponent, whi
h in most 
ases is usuallymodeled by a white Gaussian distribution with zero mean and varian
e �2. The drift
an be removed by high pass �ltering or by introdu
ing low frequen
y drift terms intothe linear model. In our approa
h we adopt the se
ond approa
h sin
e it provides uswith an estimation of the drift simultaneously with the e�e
t of the BOLD response.Thus, the noise term e in Eq. (6.1) is related with the high pass 
omponent. Fromnow the term "noise" is used to des
ribe the high pass 
omponent. Traditionally, thenoise is modeled as a stationary pro
ess. To over
ome this restri
tion we assume thatthe noise is des
ribed by a non stationary model with time - varying varian
e. Also, weassume that the overall varian
e in a parti
ular voxel is a�e
ted by the varian
e of ea
himage in a multipli
ative fashion. This means that the noise is modeled as a Gaussiandistribution with zero mean and pre
ision matrix (inverse 
ovarian
e) �V, where � isthe overall varian
e of a voxel and the matrix V 
ontains the s
aling parameters vn, i.e.p(e) = N(0; (�V)−1). The s
aling parameters vn; n = 1; · · · ; N des
ribe the varian
eof n-th image whi
h is unknown. In this study two algorithms for the estimation of theparameters w and the s
aling parameters vn, are proposed. The main di�eren
e is foundon the noise model. The �rst algorithm is based on a temporal model for the noise, whilethe se
ond algorithm is based on a spatio - temporal model.The overall pre
ision (inverse varian
e) � of the noise follows a Gamma distribution:p(�) = Gamma(�; b; 
): (6.3)Also, ea
h s
aling parameter vn follows a Gamma distribution. This means that thedistribution for the diagonal matrix V is given by:p(V) =

N
∏n=1

Gamma(vn; bv; 
v): (6.4)In the above equations the Gamma distribution for a random variable x is given by:Gamma(x; b; 
) = 1

Γ(
) x(
−1)b
 exp
{

− xb}: (6.5)where b and 
 is the s
ale and the shape of the Gamma distribution, respe
tively. We usethe Gamma distribution for the noise 
omponents for two reasons: First, this distribution98



is 
onjugate to the Gaussian distribution, whi
h helps us in the derivation of 
losedform solutions, and se
ond it pla
es the positivity restri
tion on the overall varian
e andthe s
aling parameters. Ea
h parameter ai, whi
h 
ontrols the prior distribution of theparameters w, follows a Gamma distribution, so the overall prior over all ai is a produ
tof Gamma distributions given by:p(a) = p
∏i=1

Gamma(ai; ba; 
a): (6.6)The likelihood of the data is given by:p(y|w; �;V) =
| �V | 12
(2�)N2 ·
exp

{

− �
2
(y−Xw)TV(y−Xw)

} (6.7)
=

� N
2

∏Nn=1 v 1

2n
(2�)N2 ·

exp
{

− �
2
(y−Xw)TV(y−Xw)

}: (6.8)The prior over the parameters {w; a;V; �} is given by:p(w; a;V; �) = p(w|a)p(a)p(V)p(�) (6.9)
= p(w|a) p

∏i=1

p(ai) N
∏n=1

p(vn)p(�): (6.10)To apply the VB methodology we need to de�ne an approximate posterior based on onefa
torization over the parameters {w; a;V; �}. In our study we 
hoose the followingfa
torization: q(w; a;V; �) = q(w|a) p
∏i=1

q(ai) N
∏n=1

q(vn)q(�): (6.11)Applying the VB methodology, and taking into a

ount the above fa
torization, thefollowing posteriors are obtained:q(w) = N(ŵ;Cw); (6.12)q(�) = Gamma(�; b′; 
′); (6.13)q(a) =

p
∏i=1

Gamma(ai; b′ai ; 
′ai); (6.14)p(V) =

N
∏n=1

Gamma(vn; b′vn ; 
′vn); (6.15)
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where Cw = (�̂XT V̂X+ Â)−1; (6.16)ŵ = (�̂XT V̂X+ Â)−1�̂XT V̂y; (6.17)
1b′ai =

1

2
(ŵ2i +Cw(i; i)) + 1ba ; (6.18)
′ai =

1

2
+ 
a; (6.19)âi = b′ai
′ai ; (6.20)

1b′� =
1

2
(y −Xw)T V̂(y−Xw)

+tr(XT V̂XCw) + 1b ; (6.21)
′� =
N
2

+ 
; (6.22)�̂ = b′�
′�; (6.23)
1bvn =

�̂
2
(yn −Xnw)2 + tr(�̂CwXTnXn) + 1bv ; (6.24)
vn =

1

2
+ 
v; (6.25)v̂n = bvn
vn : (6.26)In the above equations the matrix Â is a diagonal matrix with the mean of parametersai in its main diagonal and the matrix V̂ is also a diagonal matrix with the mean ofthe s
aling parameters vn in its main diagonal. The algorithm 
onsists from the iterativeappli
ation of Eqs. (6.16) - (6.26). This algorithm is 
alled STNS (Sparse Temporal NonStationary).6.2.2 Simultaneously analysis of all voxelsIn the above algorithm ea
h voxel has been pro
essed independently on the others. Anextension of the above approa
h is to treat simultaneously all the voxels from one sli
e.This means that a spatio - temporal model must be used. We note here that the term"spatial" refers mainly to the noise model. Colle
ting all the voxels in one matrix, andusing the fa
t that the design matrix is the same a
ross the voxels, the fMRI dataset 
anbe des
ribed by the following spatio - temporal linear model:Y = XW +E; (6.27)where Y = [y1; · · · ;yT ] is a NxT matrix 
ontaining all the voxels, E = [e1; · · · ; eT ] isa NxT matrix 
ontaining the noise, W = [w1; · · · ;wT ] is a pxT matrix 
ontaining theregression parameters of all voxels and X is the Nxp design matrix. The number N isthe length of ea
h voxel, while the number T is the number of voxels. Also, the datasethas been derived using N images. 100



The regression parameters are independent between the voxels. The probability dis-tribution in that 
ase is given by: p(W) =
T
∏t=1

p(wt): (6.28)Ea
h regression parameter in a voxel is independent from the others a priori. This as-sumption is in
luded in the proposed model through the prior distribution, whi
h is 
alledthe ARD prior and is given as:p(wt|at) = p
∏k=1

p(wtk|atk) = p
∏k=1

N(0; a−1tk ): (6.29)A Gamma distribution is used for ea
h parameter atk:p(at) = p
∏k=1

Γ(atk; btk; 
tk): (6.30)where at = [at1; at2; · · · ; atp] is a ve
tor 
ontaining the hyperparameters of the ARD priorat the t-th voxel. We assume a matrix Gaussian distribution for the noise given as:p(E) = N(0;V−1;B−1): (6.31)The matrix V is a NxN diagonal pre
ision matrix and ea
h element in the main diagonaldes
ribes the pre
ision (inverse varian
e) in ea
h image (sli
e of fMRI volume image).The matrix B is a TxT diagonal pre
ision matrix and ea
h diagonal element des
ribesthe pre
ision in ea
h voxel. The distribution of the noise for the t-th voxel is a Gaussiandistribution given as: p(et) = N(0; (�tV)−1): (6.32)Also, in the proposed model the pre
ision 
omponent of ea
h image {v1; v2; · · · ; vN} andthe pre
ision 
omponent of ea
h voxel {�1; �2; · · · ; �T}must be estimated, this means thatwe must pla
e a prior distribution over ea
h pre
ision 
omponent. The prior distributionthat is often used for a pre
ision 
omponent is the Gamma distribution [45℄. So, the priorover ea
h pre
ision 
omponent for ea
h voxel is given as:p(�t) = Γ(�t; b�t; 
�t); t = 1; · · · ; T; (6.33)and for ea
h image pre
ision 
omponent:p(vn) = Γ(vn; bvn ; 
vn); n = 1; · · · ; N: (6.34)The prior of all model parameters be
omes:p(W; {vn}Nn=1; {�t}Tt=1; {at}Tt=1) =

T
∏t=1

p(wt|at)p(at)T
∏t=1

p(�t) N
∏n=1

p(vn): (6.35)101



Ea
h voxel is independent from the others given the parameters {X;W;V;B}, so thelikelihood of the observations Y 
an be written as:p(Y|X;W;V;B) = T
∏t=1

p(yt|X;wt; �t;V): (6.36)Using the following fa
torization of the posterior:q(W; {�t}Tt=1; {vn}Nn=1; {at}Tt=1|Y) =

T
∏t=1

q(wt|at)q(at) ·N
∏n=1

q(vn) · T
∏t=1

q(�t); (6.37)and applying the VB methodology we obtain the posterior distributions:q(wt) = N(ŵt; Cwt); t = 1; · · · ; T; (6.38)q(at) =
P
∏p=1

Γ(atp; b′tp; 
′tp); t = 1; · · · ; T; (6.39)q(�t) = Γ(�t; b′�t; 
′�t); t = 1; · · · ; T; (6.40)q(vn) = Γ(vn; b′vn ; 
′vn); n = 1; · · · ; N; (6.41)where Cwt = (�̂tXT V̂X+ Ât)−1; (6.42)ŵt = (�̂tXT V̂X+ Ât)−1�̂tXT V̂yt; (6.43)
1b′tp =

1

2
(ŵ2tp +Cwt(p; p)) + 1btp ; (6.44)
′tp =

1

2
+ 
tp; (6.45)âtp = btp
tp; (6.46)

1b′�t =
1

2
(yt −Xwt)T V̂(yt −Xwt)

+tr(XT V̂XCwt) + 1b�t ; (6.47)
′�t =
N
2

+ 
�t; (6.48)�̂t = b′�t
′�t; (6.49)
1b′vn =

1

2
(yTn B̂yn − 2yTn B̂Ŵxn + xTnGxn) + 1bvn ; (6.50)
′vn =
T
2
+ 
vn ; (6.51)v̂n = b′vn
′vn : (6.52)In the above equations the matri
es Ât; t = 1; · · · ; T are pxp diagonal matri
es havingthe parameters ât1; ât2; · · · ; âtp in the main diagonal. The matrix B̂ is a TxT diagonal102



matrix 
ontaining in the main diagonal the mean of the pre
ision 
omponents for ea
hvoxel, �̂t; t = 1; · · · ; T , and the matrix V̂ is a NxN diagonal matrix 
ontaining in themain diagonal the mean of the pre
ision 
omponents for ea
h image, v̂n; n = 1; · · · ; N .The quantity G is 
al
ulated as follows:G =
T
∑t=1

�t(Cwt + ŵtŵTt ): (6.53)Also, in the above equations yt des
ribes the t-th voxel (t-th 
olumn of the data matrixY), while yn des
ribes the n-th image (n-th row of the data matrix Y). The ve
tor xn isthe n-th row of the design matrix X. The algorithm 
onsists of the iterative appli
ationof Eqs. (6.42)-(6.53). First, the Eqs. (6.42)-(6.49) and (6.53) are applied over all voxelsto obtain the estimates of the regression parameters and the pre
ision 
omponent forea
h voxel. Also, in this step the quantity G is 
al
ulated. Then, Eqs. (6.50)-(6.52)are applied to estimate the pre
ision 
omponent of ea
h image. This algorithm is 
alledSSTNS (Sparse Spatio - Temporal Non Stationary).6.2.3 Constru
tion of the design matrixThe 
onstru
tion of the design matrix is 
ru
ial for the statisti
al analysis of fMRI data.The design matrix usually 
ontains regressors related to the experiment plus the mean
onstant. In a blo
k related experiment, whi
h we study in this 
hapter, the design matrixhas one regressor for the BOLD response plus the mean 
onstant. This is the minimumnumber of regressors that the design matrix must 
ontain to obtain an a

urate analysisof the fMRI data. However, we 
an use an extended design matrix 
ontaining regressorsrelated to other 
omponents of the fMRI time series than a
tivation like drift terms [32℄and movement e�e
ts [38℄. In our study we adopt the idea of extended design matrix.The drift in fMRI time series is des
ribed by polynomial [46℄, spline [50℄, wavelet[51, 52℄ and Gaussian basis fun
tions [32℄. In our approa
h we use Gaussian basis fun
tionsto model the drift. Using wavelets or splines a di�erent 
on�guration of the GLM isneeded, whi
h is out of the s
ope of this work. To remove the drift from the fMRI timeseries, we 
an estimate it and then substra
t it from the fMRI time series to performthe estimation of the GLM parameters. However, this approa
h does not give us anyunderstanding on the e�e
t of drift removal on the estimation of the GLM parameters.To over
ome this in
onsisten
y we 
an in
lude the drift into the GLM model throughthe use of an extended design matrix. The extended design matrix 
ontains regressors tomodel the drift of the fMRI time series. A

ording to the above observations the extendeddesign matrix has the form: X = [x1 x2 · · · xN s 1];where xn; n = 1; · · · ; N are the regressors obtained from the Gaussian basis fun
tions,in the same way as des
ribed in [32℄, s is the BOLD response and 1 is a ve
tor with 1s.103



6.3 Experimental resultsThe proposed algorithms are 
ompared with the WLS approa
h using two statisti
s: the
onventional t - test and the PPM. The two proposed algorithms and the WLS approa
hare applied on simulated and real fMRI data. For the WLS approa
h the design matrixhas two regressors: one for the BOLD response and one for the mean. For the initializationof the proposed algorithms we set the s
ale and the shape of ea
h Gamma distributionto 106 and 10−6, respe
tively. The free energy is used to assume 
onvergen
e in the VBalgorithms. The proposed algorithms are terminated when the relative 
hange in freeenergy drops below 0.02.6.3.1 Experiments with simulated fMRI data

(a) The drift signal used for the 
re-ation of the simulated data. (b) The main diagonal (s
aling param-eters) of the noise 
ovarian
e matrix,without 
onsidering the overall vari-an
e, used for the 
reation of the sim-ulated data.Figure 6.1: The drift signal and the main diagonal of the noise 
ovarian
e matrix usedfor the 
reation of the simulated data.The model used to 
reate the simulated fMRI time series is des
ribed by y = �s+Kb+ e.The fMRI time series have been modeled as the BOLD response plus a 
onstant mean plusa drift term plus the noise to simulate the a
tivated voxels, while for the non a
tivatedvoxels the BOLD response is absent. The noise 
omes from a Gaussian distribution withzero mean and 
ovarian
e �2
1V1, where V1 is a diagonal matrix (shown in Fig. 6.1(b))and simulates the matrix of s
aling parameters and �2

1 simulates the overall varian
e ofthe voxel. The matrix K is a design matrix used to 
reate the simulated time series. Thesize of K is N×2 and it has two regressors, one for the BOLD response and one the mean
onstant. The ve
tor b is the ve
tor of simulated 
oeÆ
ients and has size 2 × 1. The�rst element of the ve
tor b is responsible for the BOLD response and takes two values,zero for the non a
tivated voxels and one for the a
tivated. The se
ond element of the104



ve
tor b is responsible for the mean 
onstant and in our simulated experiments is equalto 100. The drift s (see Fig. 6.1(a)) is extra
ted from real fMRI data. The parameter �
ontrols the amplitude of the drift in the simulated time series. We 
ompare the proposedalgorithms with the WLS approa
h for di�erent values of the parameter � and the overallvarian
e �2
1 . For ea
h pair values of parameters � and �2

1 we 
reate 2000 fMRI time series,1000 of them 
orrespond to a
tivated voxels, while the other 1000 
orrespond to the nona
tivated voxels.The dete
tion performan
e of the two proposed algorithms is 
ompared to the one ofWLS approa
h in terms of t-statisti
. The 
omparison is performed using the re
eiveroperati
 
hara
teristi
 (ROC) analysis. ROC analysis re
e
ts the ability of the pro
essingmethod to dete
t most of the real a
tivations while minimizing the dete
tions of falsea
tivations. In ROC analysis, two values must be 
omputed the true positive ratio (TPR)and the false positive ratio (FPR). The ROC 
urve is a plot of TPR versus FPR underdi�erent threshold ratio. In Fig. 7.3 the ROC 
urves of the three methods for various pairvalues of parameters � and �2
1 are shown. To produ
e these ROC 
urves the t-statisti
is used. We observe that when the drift is not very obvious inside the fMRI times series(small �) the WLS approa
h and the SSTNS algorithm present similar behavior, andboth result to superior performan
e 
ompared to STNS algorithm. As the drift tendsto be
ome more obvious inside the fMRI time series we observe that the performan
eof WLS deteriorates and the STNS algorithm results better performan
e than the WLS.Finally, in all 
ases we observe that the SSTNS algorithm results into better performan
ethan the other two methods. In Table 6.1 the area under ea
h ROC 
urve is presented,whi
h veri�es the aforementioned visual inspe
ted results.In Table 6.2 the mean value of the estimated overall varian
e for ea
h approa
h for the2000 Monte Carlo simulations is presented. It is shown how the drift a�e
ts the estimationpro
edure of the WLS. The WLS method does not take into a

ount the presen
e of thedrift and this results to a deteriorated estimation of the overall varian
e whi
h at theend a�e
ts the 
al
ulation of t-statisti
. When the drift is small inside the fMRI timeseries the best results are obtained by the WLS method, while as the drift be
omes largerthe SSTNS algorithm leads to the best results. Also, we 
an observe that the SSTNSalgorithm is the most stable as it does not present strong 
u
tuations for di�erent � and�2

1 values. Table 6.1: Area under 
urve for STNS, SSTNS and WLSWLS STNS SSTNS�2
1 = 4

� = 1 0.9876 0.9812 0.9892� = 5 0.9803 0.9882 0.9917� = 10 0.9356 0.9832 0.9883�2
1 = 9

� = 1 0.9438 0.9220 0.9421� = 5 0.9324 0.9392 0.9503� = 10 0.8904 0.9239 0.9423105
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Table 6.2: Estimated overall varian
esWLS STNS SSTNS�2
1 = 4

� = 1 4.2239 2.1676 5.5617� = 5 18.5887 3.9322 5.5771� = 10 63.7429 6.2939 5.5239�2
1 = 9

� = 1 8.7925 4.9365 9.6499� = 5 23.1096 6.6947 9.6312� = 10 68.2391 10.7487 9.6408The aforementioned results show how the drift a�e
ts the estimation pro
edure whenthe GLM is used with the non stationary noise model. The STNS algorithm is based solelyin temporal information while a spatio - temporal extension of it is the SSTNS algorithm.Comparing these two methods we observe that the SSTNS is superior to STNS. This issomething expe
ted sin
e the SSTNS algorithm uses more information for the estimationof the s
aling parameters. Using the STNS method we try to estimate 2N+3 parametersfrom N observations. This is a very diÆ
ult problem and 
onstraints must be imposed.In our study the 
onstraints are introdu
ed into our model through the prior distribution.The STNS method pro
ess one voxel at a time, while the SSTNS pro
esses all voxelssimultaneously.6.3.2 Experiment with real fMRI dataThe proposed algorithms are validated on a blo
k design real fMRI data. This fMRIexperiment was designed for auditory pro
essing task on a healthy volunteer. It 
onsistedof 96 a
quisitions. The a
quisitions were made in blo
ks of 6, giving 16 blo
ks of 42se
duration. The 
ondition for su

essive blo
ks alternated between rest and auditory stim-ulation, starting with rest. Auditory stimulation was performed with bi-syllabi
 wordspresented binaurally at a rate of 60 words per minute. The fun
tional data starts ata
quisition 16. Due to T1 e�e
ts the �rst two blo
ks were dis
arded. The whole brainBOLD/EPI images were a
quired on a modi�ed 2T Siemens MAGNETOM Vision system.Ea
h a
quisition 
onsisted of 64 sli
es (6x64x64, 3mm x 3mm x 3mm voxels). A
quisitionlasted 6.05se
, with the s
an to s
an repetition time set to 7se
. After prepro
essing,fun
tional images 
onsisted of 68 sli
es (79x95x68, 2mm x 2mm x 2mm voxles). The datahave been downloaded from [55℄.The PPMs enable Bayesian inferen
e about spe
i�
 e�e
t in neuroimaging and areimages of the probability that an a
tivation ex
eeds some spe
i�ed threshold [54℄. Inthe PPMs two thresholds must be de�ned. The �rst and most important is the 
 (seeEq. (3.57)) and it is the e�e
t size threshold. This de�nes what we mean by the term"a
tivation". The se
ond threshold de�nes the probability the voxel has to ex
eed inorder to be displayed. This threshold is 
alled the probability threshold [54℄.The PPMs of sli
e 30 for ea
h method are shown in Fig. 6.3. These PPMs were derived107



for e�e
t size threshold equal to 0.5 and probability threshold equal to 1− 1N . The WLS isa te
hnique based on 
lassi
al inferen
e and the use of PPM for it may be a little 
onfusing.However, it is well known that under Gaussian errors and assuming uniformative priorwe 
an obtain an estimator identi
al to WLS based on the Bayesian framework [30℄.Thus, in our experiments we use this fa
t to obtain a posterior distribution for the WLS.This posterior distribution is a Gaussian distribution with mean (XTVwlsX)−1XTVwlsyand 
ovarian
e �2wlsXTVwlsX. We see that all approa
hes dete
t the a
tivation on thea
ousti
 
ortex. However, we see that the WLS and the STNS methods produ
e a
tivationin regions not related to the experiment. In Fig. 6.4 the s
aling parameters of ea
h image,estimated by the SSTNS and by the residuals of the LS approa
h, are depi
ted. We observethat when the stimulus starts or ends, there exists an in
rease of the s
aling parameter inthese images. This observation has been also reported in [35, 38℄. This e�e
t 
an arise bythe presen
e of motion artefa
ts or by the true properties of the hemodynami
 responsethat are not 
aptured by the design matrix. This problem 
an be addressed by using anappropriate noise model, su
h as the one presented in this 
hapter, or by integrating thetemporal derivatives of hrf (hemodynami
 response fun
tion) in the design matrix. Weobserve that the proposed algorithms take into a

ount this in
onsisten
y of the GLM.
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tivation.
6.4 Dis
ussionWe have proposed two algorithms for the dete
tion of a
tivated regions of the brain usinga modi�ed GLM. Inside the fMRI time series exists many 
omponents su
h as the BOLDresponse, the drift and high frequen
y noise. In our study, the BOLD response and thedrift were modeled through the use of an extended design matrix. This matrix 
ontainsadditional regressors to model the drift. The noise was modeled by a non stationarymodel. After the 
onstru
tion of the linear model inferen
e for the regression parametersand the noise is 
arried out. For this reason the VB methodology is used.The two algorithms have been applied to simulated and real fMRI data and 
ompared108



Figure 6.4: (a) Estimated s
aling parameter for ea
h image (time instant) using theSSTNS and WLS approa
hes, and (b) BOLD response.to the WLS approa
h. The results have shown the superiority of the proposed algorithmswhen the drift is present in the fMRI time series. The two algorithms have simultaneouslyestimated the drift, the BOLD response and the noise, in 
ontrast to the WLS approa
h[35℄ or the Bayesian extension of it [37℄ where a high pass �lter has been applied to removethe drift.A 
riti
al assumption of the proposed algorithms is the noise model. In our studythe noise model 
onsists from two 
omponents intera
ting in a multipli
ative way. Thismeans that voxels with high overall varian
e will present a larger in
rease of an artefa
tthan the voxels with low overall varian
e. An alternative to the multipli
ative model isthe additive noise model, where the two 
omponents intera
t additively. In [35℄ the twomodels are studied in the 
ontext of the fMRI analysis. The main 
on
lusion of [35℄ isthat in most 
ases the noise 
omponents 
an be well modeled by the multipli
ative noisemodel.An obvious way to remove the drift from the fMRI time series is to apply a high pass�lter. However, this approa
h su�ers from the following limitations: First, the 
ut o�frequen
y of the �lter must be known a priori, Se
ond the �lter is the same for all voxels,and third the drift in that 
ase is assumed to be a stationary signal. In our study thedrift is assumed to be non stationary and the width of the Gaussian basis fun
tions isthe only easily tuned parameter. The width must be greater than the duration of oneblo
k of a
tivation. The aim of this restri
tion is to avoid modeling in
orre
tly the BOLDresponse as drift term. In the future we intend to study the additive model as the noise109



pro
ess in the analysis of fMRI data. Also, more 
ompli
ated priors over the regressionparameters 
an be used to take into a

ount the spatial 
hara
teristi
s. Finally, modelingthe drift using splines [50℄ or the wavelet domain [51℄ are possible extensions of this work.In addition, the proposed algorithms 
an be modi�ed in order to be applied in real- time for the dete
tion of a
tivated regions. This modi�
ation 
an be done in twoways: The �rst approa
h is similar to the one proposed in [56, 57℄ for the GLM. In this
ase an in
remental form of the equations of the proposed algorithms 
ould be obtained.However, in that 
ase the properties of the VB algorithm, su
h as the 
onvergen
e, arelost. The se
ond approa
h is based on an online version of the VB framework [58℄. Ingeneral, the real-time fMRI data analysis is a very 
onsuming pro
edure, parti
ularly dueto the prepro
essing steps of MR images. To redu
e the time of fMRI pro
essing parallel
omputing or a 
omputer - 
luster 
an be employed as reported in [56, 57℄. To 
on
lude,the proposed algorithms 
an be modi�ed for real-time fMRI time series but it is expe
tedthat this modi�
ation would deteriorate the dete
tion performan
e. Finally, 
on
erningthe 
omputational requirements of the proposed algorithms, the most time 
onsumingoperation is the 
al
ulation of the 
ovarian
e matrix of the regression parameters, sin
eit involves the 
al
ulation of an inverse matrix. All the other operations are related tomultipli
ations and additions.Another modi�
ation 
on
erns the use of non linear forward model. More spe
i�
ally,the proposed algorithms are based on the linear forward model. However, easily 
an beextended to the non linear forward model in the same spirit as have been done in [59℄.Chappell et al [59℄ use the VB framework to estimate the parameters of the non - linearforward model. However, to obtain a useful algorithm at the end, they resort to linearizethe likehood term through Taylor expansion. This fa
t results in no VB algorithm, whi
hthe main 
onsequen
e is that the guarantee of 
onvergen
e 
an no longer apply [59℄. Also,it is questionable how good is the Taylor approximation for ea
h problem under study.6.5 Con
lusionsThe analysis of the fMRI data using the GLM is based on two steps. The �rst step isrelated to the estimation of the parameters of the GLM, while the se
ond step is relatedto the dete
tion of a
tivated regions based on the previous step. In this 
hapter twomethods for the estimation of parameters w of the GLM are proposed: one based ontemporal formulation, and one based on a spatio - temporal formulation of the problem.Also, other 
omponents of the fMRI time series su
h as the drift, are in
orporated intothe estimation pro
edure through an extended design matrix. These two algorithmsare applied in simulated and real fMRI data, and 
ompared to the WLS algorithm. Thesimulated experiments have shown that the proposed methods outperform the WLS whenthe drift is present inside the fMRI time series. While, the experiments based on real fMRIdata have shown that the proposed methods 
an be used in 
ases where the propertiesof the true hemodynami
 response is not modeled 
orre
tly from the design matrix. As110



we observe in
orre
t modeling of the timing of the hemodynami
 response results in anin
rease of varian
e in the parti
ular image.
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Chapter 7A sparse and spatially 
onstrainedgenerative regression model for fMRIdata analysis
7.1 Introdu
tionIn this 
hapter we present an advan
ed Bayesian framework for the analysis of fun
tionalMagneti
 Resonan
e Imaging (fMRI) data that simultaneously employs both spatial andsparse properties. The basi
 building blo
k of our method is the general linear model(GML) that 
onstitutes a well-known probabilisti
 approa
h. By treating regression 
oef-�
ients as random variables, we 
an apply an enhan
ed Gibbs distribution fun
tion that
aptures spatial 
onstrains and at the same time allows sparse representation of fMRItime series. The proposed s
heme is des
ribed as a maximum a posteriori (MAP) ap-proa
h, where the known Expe
tation Maximization (EM) algorithm is applied o�ering
losed form update equations for the model parameters. We have demonstrated thatour method produ
es improved performan
e and fun
tional a
tivation dete
tion in bothsimulated data and real appli
ations.A signi�
ant drawba
k of the basi
 GLM approa
h is that spatial and temporal prop-erties of fMRI data are not taken into a

ount. However, the fMRI data are biologi
allygenerated by stru
tures that involve spatial properties, sin
e adja
ent voxels tend to havesimilar a
tivation level [86℄. Moreover, the produ
ed a
tivation maps 
ontain many smalla
tivation islands and so there is a need for spatial regularization. Another desirableproperty is to handle temporal 
orrelations derived from neural, physiologi
al and phys-i
al sour
es [38℄ and have a me
hanism that 
an automati
ally address the model order.The latter is a very important issue in many model based appli
ations in
luding regres-sion. If the order of the regression model is too large it may over�t the observations anddoes not generalize well, while if it is too small it might miss trends in the data [87℄.112



Within the literature there are several methods that in
lude either spatial 
orrelations,or sparse properties into the estimation pro
edure, but only a few of them have inves-tigated the simultaneous in
orporation of both features. Spatial 
hara
teristi
s of fMRIhave been proposed through the use of Markov Random Fields (MRF) priors [88, 89℄,mixture models [90℄, autoregressive (AR) spatial models [31, 39℄, or a Lapla
ian aÆn-ity matrix [38℄. On the other hand, sparse models for fMRI data analysis have beendeveloped, 
overing sparseness over regression 
oeÆ
ients of GLM [32, 37, 52℄, over the
oeÆ
ients of spatio-temporal AR models [39℄, the weights on the spa
e domain of images[92℄, through the use of elasti
 nets [93℄, or by 
onverting the estimation problem into alinear programming problem [91℄. Training of the above methods is performed by eitherMarkov Chain Monte Carlo (MCMC), or Variational Bayes (VB) framework. A more
ompa
t methodology has been been presented in [180℄ that address both spatial andsparse 
apabilities in an hierar
hi
al framework. In parti
ular, the image of the regression
oeÆ
ients is �rst de
omposed using wavelets, and then a sparse prior is applied over thewavelet 
oeÆ
ients. An alternative approa
h has been presented in [95℄ where the regres-sion 
oeÆ
ients are indire
tly spatially smoothed using an Ising prior over their indi
atorvariables. Finally, a re
ent work is des
ribed in [96℄, that applies a multivariate Lapla
ianprior over 
oeÆ
ients written as a s
ale mixture following by a spatial distribution on anauxiliary variable, that allows a spatio-temporal smoothing of data.In this 
hapter we propose an advan
ed Bayesian framework that simultaneously em-ploys both spatial and sparse properties in a more systemati
 way. The 
ontribution ofthis 
hapter is two-fold. First, we provide dire
tly the regression 
oeÆ
ients with thedesired two properties by 
onsidering an enhan
ed prior distribution. Additionally, wemanage to establish an eÆ
ient EM-based framework with 
losed-form update equationsfor the model parameters that fa
ilitates the learning pro
edure.More spe
i�
ally, the general-purpose GLM is used for fMRI time series modeling.The key aspe
t of our method is the enhan
ed exploitation of the Markov Random Fields[97, 98℄ by using an e�e
tive Gibbs potential fun
tion. Traditionally, Gibbs distribution isused for addressing only spatial 
orrelations. In our study we present a modi�
ation of thepotential fun
tion that, apart from spatial, it is able to simultaneously impose sparsenessbased on the Relevan
e Ve
tor Ma
hine (RVM)[87℄. A maximum a posteriori expe
tationmaximization algorithm (MAP-EM) [205℄ is applied next to train this model and estimateits parameters. This is very eÆ
ient sin
e it leads to update rules in 
losed form duringthe M -step and improves data �tting. The performan
e of the proposed methodology isquantitatively and qualitatively evaluated using a variety of simulated and real datasets.Comparison has been made using the typi
al maximum likelihood (ML) and the spatiallyvariant GLM methods without sparseness. We also present some visualizable examplesof the performan
e of our approa
h on real appli
ations of blo
k design and event related113




ases.In se
tion 7.2 we brie
y des
ribe the basi
 GLM framework and show how we 
anintrodu
e a Gibbs prior so as to allow spatial 
orrelations. The proposed simultaneoussparse spatial regression model is then presented in se
tion 7.3 together with the MAP-based learning pro
edure. In se
tion 7.4 a view of the proposed model in the spirit of EMalgorithm is provided. To assess the performan
e of the proposed methodology we presentin se
tion 7.5 numeri
al experiments with arti�
ial and real fMRI datasets. Finally, inse
tion 7.6 we give 
on
lusions and suggestions for future resear
h.7.2 A spatially variant linear regression model7.2.1 Ba
kgroundSuppose we are given a set of N time-series Y = {y1 : : : ;yN}, where ea
h observationyn is a sequen
e of M values over time, i.e. yn = {ynm}Mm=1. The appli
ation of theGeneralized Linear Model (GLM) assumes that the fMRI time series yn are des
ribedwith the following manner: yn = �wn + en , (7.1)where � is the design matrix of sizeM ×D and wn is the ve
tor of the D regression 
oef-�
ients whi
h are unknown and must be estimated. The last term en is a M -dimensionalve
tor determining the model error. In most 
ases temporal 
orrelations exist over thefMRI time series that arise from neural, physiologi
al and physi
al sour
es, and unmod-eled neuronal a
tivity [24, 25℄. In order to model them we 
an apply an auto-regressive(AR) pro
ess [31, 39℄. Note that long range 
orrelations 
an be additionally in
luded byusing an appropriate extension of the design matrix [24, 32℄. A

ording to an AR pro
essof order p, the error term en 
an be written as:en = En�n + "n (7.2)where En is an M × p matrix 
ontaining past error samples, �n is the ve
tor of the pAR 
oeÆ
ients and "n is an i.i.d. M -length zero mean Gaussian ve
tor with a pre
ision(inverse varian
e) �n, i.e. "n ∼ N (0; �−1n I). Alternatively we 
an 
onsider the nextformulation: �nen = "n (7.3)where �n is a M ×M upper diagonal matrix 
ontaining the AR 
oeÆ
ients. From thiss
heme we obtain the distribution of error as en ∼ N (0; (�n�Tn�n)−1). Both versions ofthe AR model will help us to write the likelihood in a more 
onvenient way.The design matrix � 
ontains some explanatory variables (or e�e
ts) that des
ribevarious experimental fa
tors. Its 
onstru
tion is 
ru
ial for the statisti
al analysis of fMRI114



data. The number of regressors (
olumns of the design matrix) depends on the experimentand on the problem formulation in order to address several fa
tors of the fMRI time seriessu
h as long range 
orrelations and movement e�e
ts [32, 38℄. During the experimentalstudy we have 
onsidered various 
ases related to the design matrix.In fMRI data analysis the goal is to �nd the involvement of experimental fa
tors inthe generation pro
ess of time series through the estimation of 
oeÆ
ients wn. FollowingEq. 7.1 and sin
e �wn is deterministi
 we 
an model the sequen
e yn with a normaldistribution p(yn|wn; �n; �n) = N (�wn; (�n�Tn�n)−1) . (7.4)Thus, the problem 
an be viewed as a maximum likelihood (ML) estimation problem forthe model parameters Θ = {wn; �n; �n}Nn=1. The log-likelihood fun
tion 
an be written intwo equivalent forms using Eqs. (7.2) and (7.3), respe
tively:LML(Θ) =

N
∑n=1

log p(yn|wn; �n; �n) = N
∑n=1

{M
2

log �n − �n
2
‖�n(yn −�wn)‖2} , (7.5)LML(Θ) =

N
∑n=1

log p(yn|wn; �n; �n) = N
∑n=1

{M
2

log �n − �n
2
‖yn −�wn −En�n‖2} .(7.6)The maximization pro
edure leads to the following rules that are iteratively applied1:ŵn = (�T�Tn�n�)−1�T�Tn�nyn , (7.7)�̂n =

M
‖�n(yn −�ŵn)‖2 , (7.8)�̂n = (ETnEn)−1En(yn −�ŵn) . (7.9)7.2.2 GLM with MRF-based spatial priorThe GLM framework does not support inferen
e about the spatial aspe
ts of fun
tionalanatomy. A 
ommon te
hnique dealing with this subje
t is by performing a prepro
essingstep with a Gaussian �lter to smooth the fMRI signal [25℄. However, this may 
ausethe 
onstru
tion of overestimated a
tivated maps with a loss of lo
al information. An-other diÆ
ulty is the sele
tion of the Gaussian window size that may deteriorate theperforman
e.The Bayesian formulation o�ers a natural platform for automati
ally in
orporatingspatial properties. This 
an be a

omplished through the use of a Gibbs prior distributionover the voxel 
oeÆ
ients. Introdu
ing of su
h prior 
onstrains the lo
al 
hara
teristi
sof the voxels and the brain response based on the notion of Markov random �eld (MRF)[97, 98, 100℄. It must be noted that Gibbs spatial priors have been su

essfully appliedto the task of image segmentation, see for example [101, 102, 103℄.1we apply the Eq. 7.5 for the regression 
oeÆ
ients wn and the Eq. 7.6 for the AR 
oeÆ
ients �n115



The Gibbs density fun
tion for the n-th voxel takes the following form:p(wn|�n) = Z(�n) exp{−1
2
VNn(wn)} . (7.10)The fun
tion V denotes the 
lique potential fun
tion within the neighborhood Nn of n-thvoxel. In our 
ase we have sele
ted the next potentialVNn(wn) = �n ∑k∈Nn ‖wn −wk‖2 , (7.11)where �n is the regularization parameter. The neighborhood Nn is the set of voxels thatare horizontally, verti
ally or diagonally adja
ent to the voxel n, having a 
ardinality |Nn|.Finally, the �rst term Z of Eq. 7.10 is the normalization fa
tor and 
an be written asZ(�n) ∝ � |Nn|=2n . In addition, a Gamma prior is imposed on the regularization parameter�n as well as the noise pre
ision �n of the formp(�n) = Gamma(�n|b�; 
�) ∝ �
�−1n e−b��n , (7.12)p(�n) = Gamma(�n|b�; 
�) ∝ �
�−1n e−b��n . (7.13)The estimation problem is now formulated as a maximum a posteriori (MAP) frame-work, in the sense of maximizing the posterior density of model parametersΘ = {wn; �n; �n; �n}Nn=1.The MAP log-likelihood fun
tion is given by:LMAP (Θ) =

N
∑n=1

{

log p(yn|wn; �n; �n) + log{p(wn|�n)p(�n)p(�n)}}
=

N
∑n=1

{M
2

log �n −−�n
2
‖�n(yn −�wn)‖2 + |Nn|

2
log �n −�n

2

∑k∈Nn ‖wn −wk‖2 +G(�n) +G(�n)} . (7.14)where fun
tion G() has the following form2G(x) = 
x log x− bxx . (7.15)By taking the partial derivatives of fun
tion LMAP with respe
t to model parameters thenext updated rules are obtainedŵn = (�n�T�Tn�n�+Bn)−1(�n�T�Tn�ny +BWn) , (7.16)�̂n =
|Nn|+ 2
�

∑k∈Nn ‖ŵn − ŵk‖2 + 2b� , (7.17)�̂n =
M + 2
�

‖�n(yn −�ŵn)‖2 + 2b� , (7.18)2We follow the methodology des
ribed in [87℄ where the maximization is made over a logarithmi
 s
aleusing that p(log x) = xp(x) . 116



where Bn =
∑k∈Nn(�n + �k)I and BWn =

∑k∈Nn(�n + �k)wk that 
orrespond to thee�e
t of neighbors of n-th voxel to the 
omputation of its regression 
oeÆ
ients. Notethat the update equation for the AR 
oeÆ
ients �n is the same as in the ML 
ase (Eq. 7.9).The above learning s
heme 
an be in
orporated in an Expe
tation-Maximization (EM)framework [205℄. In parti
ular, during the E-step the expe
tation of the hidden variables(wn) are 
omputed (Eq. 7.16) and use them next for updating the model parameters �n,�n and �n during the M-step (Eqs. 7.17, 7.9 and 7.18, respe
tively). This spatially variantregression model will be referred next as SVGLM.7.3 Simultaneous Sparse and Spatial GLMA desired property of the linear regression model is to o�er an automati
 me
hanism thatwill zero out the 
oeÆ
ients whi
h are not signi�
ant and maintain only large 
oeÆ
ientsthat are 
onsidered signi�
ant a

ording to the model. Moreover, an important issuewhen using the regression model is how to de�ne its order D. The appropriate valueof D depends on the shape of data to be �tted, that is models of smaller order lead tounder�tting, while large values of D may lead to over�tting. It is well known that both
ases may lead to serious deterioration of the �tting performan
e. The problem 
an beta
kled using the Bayesian regularization method that has been su

essfully employed inthe Relevan
e Ve
tor Ma
hine (RVM) model [87℄.In order to simultaneously 
apture both spatial and sparse properties, the Gibbs dis-tribution fun
tion needs to be reformulated. This 
an be a

omplished by using thefollowing Gibbs density fun
tionp(wn|�n; zn; �n) = Z(�n; zn; �n) exp (− 1

2

{V (1)Nn (wn) + V (2)Nn (wn)}) . (7.19)The �rst term in the exponential part of the above fun
tion is the sparse term used fordes
ribing lo
al relationships of the n-th voxel 
oeÆ
ients. This 
an be expressed asV (1)Nn (wn) = wTnAnwn , (7.20)where An is a diagonal matrix 
ontaining the D elements of the hyperparameter ve
tor�n = (�n1; : : : ; �nD)T . In addition, a Gamma prior is imposed on the hyperparameters�nd p(�n) = D
∏d=1

Gamma(�nd|b�; 
�) ∝ D
∏d=1

�
�−1nd e−b��nd . (7.21)In this way, a two-stage hierar
hi
al prior is a
hieved whi
h is a
tually a Student-t distri-bution with heavy tails [87℄. Sparsity is obtained sin
e this s
heme enfor
es most �nd tobe large, thus the 
orresponding 
oeÆ
ients wnd are set zero and �nally eliminated.117



The se
ond term of the exponential part of the proposed Gibbs fun
tion (Eq. 7.19)
aptures the spatial 
orrelation and is responsible for the 
lique potential of the n-thvoxel: V (2)Nn (wn) = �n ∑k∈Nn znk‖wn −wk‖2 . (7.22)In 
omparison with the potential fun
tion of the SVGLM method (Eq. 7.10), this formu-lation provides a variation in the neighbors' 
ontribution to the 
al
ulation of the 
liquepotential value, as re
e
ted by the parameters znk. Experiments have shown that theintrodu
tion of su
h weights 
an in
rease the 
exibility of spatial modeling and 
an beproved advantageous in 
ases around the borders of a
tivation regions (edges). It must benoted that in the literature there are other model-based methods that embody the samedesired property around edges, see for example [104℄. However, they are not possible too�er 
losed form update rules su
h as in our 
ase. Finally, the �rst term Z of Eq. 7.19a
ts as a normalization fa
tor and 
an be expressed as:Z(�n; zn; �n) ∝ � |Nn|=2n ∏k∈Nn z1=2nk D
∏d=1

�1=2nd . (7.23)We also assume that the regularization parameter �n, the noise pre
ision �n andthe weights znk are variables following the Gamma distribution. Based on the aboveformulation, the data analysis problem 
an be treated as a maximum a posteriori (MAP)approa
h for the set of regression model variables Θ = {wn; �n; �n; �n; zn; �n}Nn=1. TheMAP log-likelihood fun
tion 
an be given as:LMAP (Θ) =

N
∑n=1

{

log p(yn|wn; �n; �n) + log{p(wn|�n; zn; �n)p(�n)p(�n)p(zn)p(�n)}}
=

N
∑n=1

{M
2

log �n − �n
2
‖�n(yn −�wn)‖2 − 1

2
wTnAnwn −�n

2

∑k∈Nn znk‖wn −wk‖2 + |Nn|
2

log �n + 1

2

∑k∈Nn log znk +
1

2

D
∑d=1

log�nd +G(�n) +G(�n) + ∑k∈NnG(znk) + D
∑d=1

G(�nd)} . (7.24)Setting the partial derivatives with respe
t to regression 
oeÆ
ients equal to zero thefollowing 
losed form update rule is obtainedŵn = (�n�T�Tn�n�+BZn +An)−1(�n�T�Tn�nyn +BZWn) , (7.25)where the matri
es BZn and BZWn areBZn =
∑k∈Nn(�nznk + �kzkn)I , and BZWn =

∑k∈Nn(�nznk + �kzkn)wk . (7.26)118
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Figure 7.1: Graphi
al representation of the proposed model.For the rest three model variables {�n; zn; �n} we also produ
e update equations�̂n =
|Nn|+ 2
�

∑k∈Nn znk‖ŵn − ŵk‖2 + 2b� , (7.27)ẑnk =
1 + 2
z�̂n‖ŵn − ŵk‖2 + 2bz , (7.28)�̂nd =

1 + 2
aŵ2nd + 2ba , (7.29)while the AR 
oeÆ
ients �n and the noise pre
ision �n have the same form as previouslyde�ned (Eq. 7.9 and Eq. 7.18, respe
tively).Again, the whole pro
edure 
an be in
orporated in an EM framework by treating theregression 
oeÆ
ients as hidden variables. In this way, their expe
tation is 
omputedin the E-step governed by Eq. 7.25, while the maximization of the 
omplete-data MAPlog-likelihood fun
tion is performed during the M-step giving update equations for modelparameters (Eqs. 7.27-7.29). The above s
heme is iteratively applied until the 
onvergen
eof the MAP fun
tion. We 
all this method SSGLM. Following Eq. 7.24 it is easy to see thatwhen and = 0 the proposed method is redu
ed to the previously des
ribed SVGLM (settingalso znk = 1) keeping only the spatial 
omponent. On the opposite 
ase, when �n = 0or znk = 0 it maintains only the sparse part and be
omes equivalent to the RVM-basedsparse regression modeling [87℄. A graphi
al representation of the proposed method ispresented in Fig. 7.1. In the Appendix A we present an EM-based alternative des
riptionof the above model where we obtain the marginal distribution of the observations yn byintegrating out the regression 
oeÆ
ients wn and treating them as hidden variables.
119



7.4 EM-based model estimation frameworkIn the previous analysis the regression 
oeÆ
ients {wn}Nn=1 have been treated as model pa-rameters. However, following the same strategy as the RVM methodology [87℄, we 
an in-tegrated them out and obtain a redu
ed model with less parametersΘ = {�n; znk; �nd; �n; �n}Nn=1.The marginal log-likelihood for ea
h voxel n 
an be obtained by the following integration
log p(yn|�n; znk; �nd; �n) = log

∫ p(yn|wn; �n; �n)p(wn|�n; znk; �nd)dwn . (7.30)Sin
e both densities are known (Eqs. 7.4 and 7.19), we 
an easily found the marginallog-likelihood
log p(yn|�n; znk; �nd; �n) ∝ |Nn|

2
log �n − 1

2

∑k∈Nn log znk − 1

2

D
∑d=1

log�nd −
1

2
log |Sn|+ M

2
log �n − 1

2
{mnSnmn − �nyTn�Tn�nyn −�n ∑k∈Nn znkwTkwk} , (7.31)where mn = (�n�T�Tn�n� +BZn +An)−1(�n�T�Tn�nyn +BZWn) , (7.32)Sn = (�n�T�Tn�n� +BZn +An)−1 . (7.33)Therefore, the MAP log-likelihood fun
tion is written aslmap(Θ) =

N
∑n=1

{

log p(yn|�n; zn; �n; �n) +G(�n) +G(�n) + ∑k∈NnG(znk) + D
∑d=1

G(�nd)} . (7.34)The maximization of the above fun
tion 
an be done either dire
tly by taking the partialderivatives and �nd the updated rules, or by following the EM-MAP framework, that weadopt here. A

ording to the EM algorithm, the regression 
oeÆ
ients wn are treated ashidden variables where their expe
tation is 
al
ulated at the E-step (Eq. 7.25). Equation7.24 des
ribes the 
omplete data MAP log-likelihood fun
tion. During the M-step theexpe
tation of this fun
tion is maximized, where the expe
tation is made with respe
tto the posterior distribution of regression 
oeÆ
ients wn. Noti
e here that this posterior
an be 
onsidered as Gaussian with mean mn and 
ovarian
e Sn. By setting the partialderivatives with respe
t to model parameters equal to zero, the next update rules are
120



obtained �̂n =
|Nn|+ 2
�

∑k∈Nn ẑnkEwn|yn;�n{‖wn −wk‖2}+ 2
� , (7.35)ẑnk =
1 + 2
z�̂nEwn|yn;�n{‖wn −wk‖2}+ 2bz , (7.36)�̂nd =

1 + 2
a
Ewn|yn;�n{w2nd}+ 2ba , (7.37)�̂n =

M + 2
�
Ewn|yn;�n{‖�n(yn −�wn)‖2}+ 2b� , (7.38)�̂n = (ETnEn)−1EnEwn|yn;�n{‖�n(yn −�wn)‖2} , (7.39)whi
h are iteratively applied. The above expe
tations 
an be easily 
al
ulated using that
Ewn|yn;�n{wn} = mn , (7.40)
Ewn|yn;�n{wwTn} = Sn +mnmTn . (7.41)7.5 Experimental resultsWe have tested the proposed method (SSGLM) using various simulated and real datasets.Comparison has been made with two versions of the spatially variant GLM: the simplestone (SVGLM) as des
ribed at se
tion 7.2.2 and those (SVGLM-2) obtained by ignoringthe sparse term of the Gibbs distribution fun
tion of the SSGLM method. The di�eren
eof both versions is found on the enfor
ement of parameters znk in the 
ase of SVGLM-2,in an attempt to provide a weighting s
heme for the 
lique potential fun
tion. The aimof this study is to evaluate the usefulness of these parameters. All methods are initializedwith the same strategy. First, the ML estimates of the regression 
oeÆ
ients wn areobtained (Eq. 7.7) and then are used for initializing the rest model parameters �n, �n, �n,zkn and anp, a

ording to Eqs. 7.9, 7.18 and 7.27-7.29, respe
tively. It must be noted thatin the 
ase of SSGLM method, sin
e there is a dependen
y between parameters �n andzkn, we use the Eq. 7.17 (instead of the Eq. 7.27). During the experiments all Gammaparameters were set equal to 0:5, ex
ept for the sparse responsible parameters {b�; 
�}that were set as b� = 
� = 10−8 making them non-informative, as suggested in [87℄.7.5.1 Experiments with simulated dataThe simulated datasets used in our experiments were 
reated a

ording to the followinggeneration me
hanism. We used a design matrix with two pre-spe
i�ed regressors. The121
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)Figure 7.2: Simulated data generation features: (a) Bold signal, (b) random and (
)
ir
ular shaped image of a
tivated areas.�rst one was responsible for the BOLD signal (s) of length M = 84 and has been derivedby a real experiment found on the SPM pa
kage shown in Fig. 7.2(a), while the se
ondone being a 
onstant of ones. Then, we 
onstru
ted an image with the a
tivated areaswhere the pixel intensities 
orrespond to the value of the �rst 
oeÆ
ient (wn1). In ourstudy we have used two su
h simulated images of size 80 × 80 with two di�erent shapesof a
tivation: 
ir
ular (Fig. 7.2(b)) and random3 (Fig. 7.2(
)). The se
ond 
oeÆ
ientwn2 had a 
onstant value equal to 100. The time series data (yn) were �nally 
al
ulatedby using the generative equation of GLM (Eq. 7.1) with an additive Gaussian noise ofvarious signal-to-noise-ratio (SNR) levels. The noise was 
onstru
ted a

ording to an ARmodel of order p = 3 whose 
oeÆ
ients �n took the values �n = (1 −0:8 0:6 −0:4)T , thatwere the same used in [31℄. Finally, the SNR value was 
al
ulated as follows:SNR = 10 log
sT sM(1=�n) (7.42)where s is the BOLD signal (Fig.7.2(a)).Two evaluation 
riteria were used during the experiments.

• The Area Under Curve (AUC) of the Re
eiver Operating Curve (ROC) based ont-statisti
 
al
ulations. ROC 
urves were generated by 
onsidering a voxel to bea
tive if its e�e
t size is greater than a prede�ned threshold. In our experiments theabove threshold varied from the minimum to the maximum value of the t-statisti
as 
al
ulated by ea
h method. ROC analysis re
e
ts the ability of the method todete
t the real a
tivations, while minimizing the dete
tions of false a
tivations.
• The normalized mean square error (NMSE), between the estimated (ŵn1) and the3It has been 
reated by sampling from an MRF model using a Gibbs sampler and has been obtainedfrom [102℄
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Table 7.1: Comparative results for simulated data in various noisy environments.
ir
ular-shaped areasAUC NMSESNR SSGLM SVGLM-2 SVGLM SSGLM SVGLM-2 SVGLM0 0.9989 0.9990 0.9990 0.0680 0.2431 0.2537-2 0.9985 0.9990 0.9990 0.0952 0.2858 0.3015-4 0.9987 0.9989 0.9989 0.1497 0.3312 0.3542-6 0.9972 0.9985 0.9983 0.2218 0.3730 0.4054-8 0.9934 0.9982 0.9976 0.3027 0.4081 0.4517-10 0.9818 0.9974 0.9962 0.4114 0.4394 0.4961random-shaped areasAUC NMSESNR SSGLM SVGLM-2 SVGLM SSGLM SVGLM-2 SVGLM0 0.9845 0.9813 0.9864 0.2015 0.2145 0.2211-2 0.9841 0.9712 0.9737 0.2247 0.2421 0.2712-4 0.9824 0.9627 0.9641 0.2547 0.2871 0.3190-6 0.9777 0.9460 0.9445 0.3027 0.3431 0.3724-8 0.9715 0.9257 0.9248 0.3631 0.4076 0.4329-10 0.9594 0.9075 0.9005 0.4323 0.4814 0.4904true (!n1) 
oeÆ
ients responsible for the BOLD signal whi
h are known:NMSE =

∑Nn=1(ŵn1 − !n1)2
∑Nn=1 !2n1 . (7.43)NMSE measures the quality of the 
urve �tting pro
edure.For every noise realization (SNR value), we performed 50 di�erent runs of ea
h 
ompar-ative method and the mean values of AUC and NMSE measurements were 
al
ulated.Moreover, during the experiments with simulated data we have used a design matrix (�)with four 
olumns (D = 4): one for the BOLD signal, two others for the time and thedispersion derivatives, and a last 
olumn with ones for the 
onstant term.We present in Table 7.1 the 
omparative results in terms of the above two 
riteriafor several SNR values. As it is obvious, the proposed method improves the quality of�tting pro
ess (NMSE quantity), as well as the a
tivation dete
tion ability (AUC quan-tity). This is more apparent in random-shaped areas and in lower values of examinedSNR values. An example of the obtained ROC 
urves by three methods is displayed inFig. 7.3, giving the ability of the SSGLM to dete
t larger real a
tivations (sensitivity) andsimultaneously redu
e the dete
tion of false positive a
tivations (spe
i�
ity). However, its
al
ulated AUC values are slightly worst than those of its spatially 
onstrained peers dur-ing experiments with 
ir
ular regions that has mu
h smoother borders. Between the two123
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SSGLM
SVGLM−2
SVGLMFigure 7.3: Example of ROC 
urves 
reated by the estimates of SSGLM, SVGLM-2 andSVGLM methods for two di�erent SNR values.spatially-
onstrained methods, the SVGLM-2 had better performan
e in all 
ases. Theintrodu
tion of the parameters znk in the potential fun
tion of the SVGLM-2 (Eq. 7.22)gives better dete
tion 
apability and �tting a

ura
y. In addition it manages to improvethe e�e
t of over-smoothing at the boundaries of a
tivation regions that happens withthe simple SVGML method. Finally, the proposed approa
h SSGLM not only supportsthis property, but also a
hieves enhan
ed a
tivation dete
tion 
apabilities by making thedistinguish between a
tivated and non-a
tivated areas more signi�
ant. This behavioris shown in Figure 7.4 that presents the produ
ed BOLD 
ontrast images of three 
om-parative methods when studying the simulated data with random-shaped regions for twodi�erent SNR values.7.5.2 Experiments with real fMRI dataThe proposed approa
h was also evaluated in a variety of real appli
ations. For anysele
ted dataset we followed the standard prepro
essing steps of the SPM pa
kage, i.e.realignment, segmentation, and spatial normalization, without performing the spatialsmoothing step. Data are then s
aled by means of their mean value, as des
ribed in[180℄, and �nally were high pass �ltered using a set of dis
rete 
osine basis fun
tions. Ourmethod (SSGLM) was 
ompared with the spatially variant (SVGLM), as well as withthe maximum-likelihood (ML) approa
h. In the latter 
ase (ML), time-series are initiallyspatially smoothed. During all experiments we have 
hosen an AR model of order p = 3as was suggested in [31℄.
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80(a) SNR = -10 dBFigure 7.4: The estimated BOLD 
ontrast by three 
omparative methods in simulateddata with random shaped a
tivated areas.Blo
k design fMRI dataAt �rst we have studied a real blo
k design fMRI dataset4 designed for auditory pro
essingtask on a healthy volunteer. Its fun
tional images 
onsisted ofM = 68 sli
es (79×95×68,
2mm × 2mm × 2mm voxels). Experiments were made with the sli
e 29 of this dataset.We have used two regressors (D = 2) for the design matrix, one for the BOLD responseand another having 
onstant values of ones for modeling the mean brain a
tivity. Figure(7.5) illustrates the images of the BOLD 
ontrast produ
ed by the three 
omparativeapproa
hes. All methods show maximum BOLD signals at the expe
ted areas of theauditory 
ortex. However the SSGLM approa
h is signi�
antly biased to these areas andsuppress more eÆ
iently the weights of the rest of the brain giving a 
leaner a
tivationpattern.In order to perform a more 
omprehensive study, further experiments are made onthis sli
e. In parti
ular, we �nd it useful to visually inspe
t the resulting a
tivation mapsobtained by the t-test. In Fig. 7.6 the SPMs of ea
h method are shown, 
al
ulated without(Fig. 7.6(a)), or with setting a threshold5 (Fig. 7.6(b)) on t-values. It is interesting toobserve that both maps produ
ed by SSGLM are very similar a
hieving less sensitivity4It was downloaded from the SPM web page http://www.�l.ion.u
l.a
.uk/spm/5The signi�
an
e level was set to 0:05, whi
h gives a threshold value t0 = 1:66.125
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ontrast images estimated by three methods in real blo
k design ex-periment.
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al parametri
 maps (SPMs) of 
omparative methods based on t-values(a) without and (b) with setting a threshold value.
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(a) (b) (
)Figure 7.7: (a) Plots (in logarithmi
 s
ale) of the estimated number of a
tivated voxels interms of threshold value used for produ
ing the SPMs. (b) Plots of the t-values of SPMsand (
) plots of the posterior values of PPMs as 
omputed by the SSGLM (thi
k line)and the SVGLM method (thin line).to the threshold value. This is more apparent in Fig. 7.7(a) where we plot the estimatedsize (number of voxels) of a
tivated areas by ea
h method in terms of the threshold value(obtained with a varying signi�
an
e level from 0:0001 to 0:5). The same observationis made by plotting the 
al
ulated t-values of the SSGLM and the SVGLM methods inFig. 7.7 (b). As it is obvious the distin
tion between the a
tivated and non a
tivatedareas be
omes mu
h 
leaner in the SSGLM plot. The above observation is very importantfrom a 
lini
al perspe
tive, sin
e in the standard fMRI analysis methods the a
tivationboundary varies signi�
antly with the smoothing and the statisti
al threshold used. Thisdependen
e 
ompli
ates 
lini
al de
isions based on fMRI results [106℄. This problem isalleviated by our methodology whi
h does not require smoothing and produ
es resultsthat are very insensitive to the threshold 
hoi
e.Similar observations are obtained by studying the posterior probability maps (PPM)of brain a
tivity, displayed in Fig. 7.8 without (a) or with setting a threshold6 (b).Again the SSGLM method produ
ed mu
h smoother and 
leaner areas, while the restmethods showed almost similar results. Finally, in Fig.7.7(
) we plot the 
al
ulated PPMvalues of the SSGLM and the SVGLM methods. The distinguish between a
tivated andnon a
tivated areas is more obvious in our method. Moreover, by 
omparing all di�erenta
tivation maps whi
h 
an be obtained (Figs. 7.5, 7.6, 7.8) it is interesting to observe thatthe proposed method maintains similar behavior regarding the same estimated a
tivationareas.6We have used the threshold value pp0 = 1− 1=M as suggested in [54℄
127
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90(b)Figure 7.8: Posterior Probability Maps (PPMs) of three 
omparative methods (a) withoutand (b) with setting a threshold value.Event related design fMRI dataAdditional experiments were made 
onsidering event related 
ases. At �rst we have useda publi
 available dataset obtained from the SPM web page designed for fa
e re
ognitionusing grays
ale images of fa
es, where we have sele
ted the sli
e 18 for study. The 
ontrastve
tor was set as 
 = [1; 1; 1; 1; 0] that des
ribes the response to the presentation of a fa
eimage. We have used a design matrix that 
onsists of �ve (D = 5) regressors related to 4types of events. In parti
ular, the �rst four regressors indi
ate the presen
e of a fa
e andhave been 
onvolved with a "
anoni
al" HRF, while the last one is the 
onstant term.Figure 7.9 presents the produ
ed maps of (a) the BOLD signal, (b) the SPMs (b) and(
) the PPMs. As it is obvious, all methods show large responses in the o

ipital lobe.However, the SSGLM method produ
es more lo
alized and less dispersed a
tivation areas.In the se
ond event related experiment we analyzed fMRI data 
onsisted of images a
-quired from a motor event related paradigm available at the aÆliated University Hospitalof Ioannina. During this experiment patients with RLS (restless legs syndrome) performedrandom and spontaneous limb movements evoked by sensory leg uneasiness. These move-ments were used to 
reate the indi
ator ve
tor in our modeling that was 
onvolved nextwith the hemodynami
 response fun
tion (HRF) in order to provide the BOLD signal.The design matrix had four 
olumns (D = 4): the BOLD signal, its time and dispersion128
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)Figure 7.9: Images of (a) the BOLD 
ontrasts, (b) the SPMs and (
) the PPMs estimatedby three methods in a real event related experiment.
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)Figure 7.10: Created images of the (a) BOLD 
ontrasts, (b) SPMs and (
) PPMs produ
edby three methods in the real motor event related experiment.derivatives, and a 
onstant.In our study we examined the main e�e
t (leg movement vs rest) whi
h means thatthe 
ontrast ve
tor has the form 
 = [1; 0; 0; 0]. Maps of the estimated BOLD 
ontrasts,the SPMs and the PPMs, are shown in Fig. 7.10 for the sli
e 54 of the dataset. All themethods revealed similar brain a
tivated regions related with motor fun
tion su
h as: a)the supplementary motor area b) the primary motor areas (pre
entral gyrus) and 
) thesuperior parietal lobe. In 
omparison with the other approa
hes, the SSGLM methodprovides 
ontrast maps where even a simple visual inspe
tion reveals lo
alized maxima ingood agreement with the 
urrent knowledge of the lo
ations and extent of motor 
ir
uitry.The other approa
hes need further thresholding in order to dete
t a
tivated areas.
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7.6 Con
lusionsIn fMRI data analysis, the spatial extension of the hemodynami
 response in a neighbor-hood of voxels introdu
es a signi�
ant weakness for the dete
tion pro
ess of the a
tivatedareas. Moreover, the presen
e of temporal 
orrelations deteriorates the performan
e. Inthis work we present an advan
ed method to ta
kle these two problems by eÆ
iently in
or-porating both spatial 
orrelations and sparse properties. This is done by using a powerfulprior over the regression 
oeÆ
ients based on Markov Random Fields (MRFs) modelingand Relevan
e Ve
tor Ma
hines (RVMs). Training of the proposed model is a
hievedthrough a maximum a posteriori (MAP) framework that allows the EM algorithm to bee�e
tively used for estimating the model parameters providing update rules in 
losed form.Experiments on arti�
ial and real datasets have demonstrated the ability of the methodto improve the dete
tion performan
e and robustness, espe
ially in noisy environments,and to enhan
e the estimation a

ura
y. Our method showed a redu
ed sensitivity tothe threshold value of the produ
ed statisti
al map without needing to make multiple
omparisons. Our future resear
h study is fo
used to three dire
tions: a) to examinethe appropriateness of other types of sparse priors [107℄, b) to try alternative potentialfun
tions of the Gibbs distribution and 
) to assume a Student-t distribution insteadof Gaussian for modeling the ex
itation noise aiming to a
hieve more robust statisti
alinferen
e and handle more eÆ
iently outlying observations [208℄.
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Chapter 8Clustering fMRI time-series by using amixture of regression models withspatial and sparse properties
8.1 Introdu
tionClassi�
ation and 
lustering methods 
an be used for the determination of fMRI timeseries into a
tivated or non a
tivated. However, the 
lassi�
ation methods meet an obsta-
le: they require a training set. This is not an easy task sin
e the fMRI response dependson many experimental fa
tors su
h the image a
quisition parameters, paradigm design,subje
t and region of the brain a
tivated. On the other hand setting the problem as a
lustering problem seems to be more natural. In the literature they are plenty of worksin this dire
tion [182, 184, 185, 186, 187, 188, 189, 190, 191℄. Clustering is the pro
ess todivide a set of samples into groups (
alled 
lusters) so that samples from the same 
lusterto be similar ea
h other while samples belong to di�erent 
lusters to be dissimilar. It isa 
ommon te
hnique for statisti
al data analysis used in many �elds, in
luding ma
hinelearning, data mining, pattern re
ognition, image analysis and bioinformati
s [192, 45℄.Two major 
lasses of 
lustering methods are the distan
e - based methods and themodel - based methods [192℄. The �rst 
ategory assumes a weak stru
ture of the data,while the se
ond 
ategory assumes a 
ompa
t and informative stru
ture. Distan
e-basedmethods, su
h as the well-known k-means algorithm, usually require the number of 
lus-ters to be known a priori. However, model-based methods 
an in
orporate prior knowledgemore naturally into the 
lustering approa
h whi
h 
an help us to estimate the number of
lusters.Probabilisti
 mixture modeling is a well established model-based approa
h for 
lus-tering that o�ers many advantages. One su
h advantage is that it provides a naturalplatform to evaluate the quality of the 
lustering solution [45℄. Clustering time-series is a132



spe
ial 
ase of 
lustering in whi
h the available data have one or both of the following twofeatures: �rst they are of very large dimension and se
ond they are not of equal length andthus 
onventional 
lustering methods 
annot straightforwardly be applied. In su
h 
asesit is natural to initially �t the available data with a parametri
 model and then to 
lusterbased on that model. Through the literature there are di�erent types of models that havebeen used for time series 
lustering [193℄. Among them, Hidden Markov Models [194℄,polynomial and spline regression models [195, 196℄, mixtures of ARMA models [197, 198℄and mixtures of Gaussian pro
esses [199℄ are 
ommonly used models. The main drawba
kof these methods is that they do not automati
ally address the problem of model ordersele
tion, whi
h is very important in regression. If the order of the regressor model is toolarge, it over�ts the observations and does not generalize well. On the other hand if it istoo small, it might miss trends in the data.fMRI belongs to the spatiotemporal 
lass of data that 
apture both spatial and tem-poral properties of data [200℄. Clustering su
h kind of data must 
onsider how to groupvoxels into spatial regions where voxels exhibit similar temporal behavior. But this isnot a problem rather a 
hallenge. In su
h 
ases it is important to measure both thetemporal 
hara
teristi
s of the grouped voxels and simultaneously to a

urately 
lassifyvoxels in groups of similar temporal behavior. Thus, for this type of data, determining
lass membership, apart from the distan
e between the 
oeÆ
ients of the model, it is alsobene�
ial to use spatial 
onstraints. Su
h 
onstraints must 
apture our prior knowledgethat adja
ent voxels most likely belong to the same 
lass and have the same label.From the fMRI data analysis perspe
tive, in the literature many works have beenpresented about the 
lustering of fMRI time series. In most of them the 
lustering pro-
edure is made using raw data or features that are extra
ted from the fMRI signals[182, 184, 185, 186, 187, 188, 189, 190, 191℄. Mixture models have been re
ently to thetask of 
lustering [191, 90℄. In [202℄ a mixture of General Linear Regression models(GLMs) is used that takes into a

ount the spatial 
orrelation of voxels using a spatialprior based on the distan
es between voxels and 
luster 
enters. Re
ently, in [203℄ a mix-ture of linear regression models is used, where spatial 
orrelations among the time seriesis a
hieved through Potts models over the hidden variables of the mixture model.In this 
hapter we proposed a new probabilisti
 mixture modeling approa
h for 
lus-tering fMRI time series based on linear regression models where ea
h 
luster is des
ribedas a linear regression model. The innovation of the proposed method is found on threeissues. First, present a sparse representation of every 
luster regression model through theuse of an appropriate sparse prior over the regression 
oeÆ
ients [87℄. Enfor
ing sparsityis a fundamental ma
hine learning regularization prin
iple and has been used to ta
kleseveral problems, su
h as feature sele
tion. The key idea behind use of sparse priors isthat we 
an obtain more 
exible inferen
e methods by employing models having initially133



many degrees of freedom than 
an be uniquely adapted to given data. In parti
ular, insparse Bayesian regression a heavy tail prior is imposed to the 
oeÆ
ients of the regres-sor. During training su
h prior will zero out the 
oeÆ
ients that are not signi�
ant andmaintain only a few large 
oeÆ
ients that are 
onsidered signi�
ant based on the train-ing data. Spatial 
onstraints of data have been also in
orporated to the mixture modelthrough the notion of Markov Random Field (MRF). This is done by 
onsidering the 
lasslabels parameter of ea
h voxel as random variables that follows a Gibbs distribution soas to a
hieve similar behavior in every voxel neighborhood. Spe
ial 
are is given duringthe optimization pro
edure in order to meet the 
onstraints of those parameters.To avoid sensitivity of the design matrix to the 
hoi
e of kernel matrix, we have useda kernel 
omposite design matrix 
onstru
ted as linear 
ombination of Gaussian kernelmatri
es with di�erent s
aling parameter. Ea
h kernel matrix has ea
h own weight thatis unknown and must be estimated. During the learning pro
ess the 
onstraints of thesekernel weights are also taken into a

ount. The 
lustering pro
edure is formulated as aMaximum A Posteriori (MAP) estimation problem where the Expe
tation - Maximization(EM) algorithm 
onstitutes a powerful framework for solving it. At the end of the trainingphase, we sele
t the 
luster that is more similar to the BOLD signal a

ording to thePearson 
orrelation measure. An in
remental strategy for building the mixture model isalso presented. The advantage of doing that is twofold: First, it makes the EM-basedlearning pro
edure independent on initialization of model parameters. At the se
ond levelit allows us to introdu
e a stopping 
riterion of the repeating splitting pro
ess based onthe 
orrelation measurement. Intuitively, this 
an be seen as a model order sele
tionfor the 
omplexity of the mixture model. As experiments with arti�
ial and real fMRIdataset have shown, the proposed method o�ers very promising results with an ex
ellentbehavior in diÆ
ult and noisy environments.8.2 The mixture of linear regression modelsLet Y = {y1;y2; · · · ;yN} be a set of N fMRI time series of equal length T , where ea
helement yn is a sequen
e of data points measured at T su

essive time instan
es xl, i.e.yn = {ynl}l=1;··· ;T . The linear regression model follows the next fun
tional des
riptionyn = Xw + e (8.1)where w is the ve
tor ofM unknown regression 
oeÆ
ients, while e is the noise term thatis assumed to be zero mean Gaussian with varian
e �2, i.e. e ∼ N (0; �2I). Finally, X isthe M -order design matrix of size T ×M where its 
onstru
tion plays an important rolefor the data analysis. A typi
al design matrix s
heme is by using the Vandermonde orB-splines matrix dealing with polynomial or splines models, respe
tively [?℄. However a134



more powerful strategy is to assume a kernel design matrix using an appropriate kernelbasis fun
tion over time instan
es {xl}Tl=1, su
h as the Gaussian kernel whi
h is the most
ommonly used K�(xl; xk) = exp(−(xl − xk)2
2� ) .However, sele
ting the proper value of the s
alar parameter � is a signi�
ant issue sin
eit depends on the amount of lo
al variations of the data.A

ording to this model, the 
onditional probability density of the sequen
e yn giventhe set of model parameters � = {w; �2} is also of Gaussian formp(yn|�) = N (Xw; �2I) .In this study we 
onsider the problem of 
lustering the set of time series Y into a set of K
lusters, in su
h a way that ea
h 
luster to 
ontain similar time series, i.e. to have beengenerated from the same linear regression model. Mixture modeling provides a naturaland powerful platform of establishing the 
lustering pro
edure based on linear regressionmodels. It is des
ribed with the following probability density:f(yn|Θ) =

K
∑j=1

�jp(yn|�j) , (8.2)where �j are the weights (prior probabilities) of every 
luster that satisfy the 
onstraints:�j ≥ 0 and ∑Kj=1 �j = 1. Following this s
heme, ea
h sequen
e yn is generated by�rst sele
ting a 
luster (or sour
e) j a

ording to probabilities �j and then performinga sampling based on the 
orresponding j-th linear regression model with parameters,�j = {wj; �2j}, as des
ribed by the normal density fun
tion p(yn|�j) = N (Xwj; �2j I).Based on the above formulation, the 
lustering problem 
an be transformed into anestimation problem for the model parameters by maximizing the data log-likelihood fun
-tion L(Θ) =

N
∑n=1

log{
K
∑j=1

�jp(yn|�j)}. (8.3)The EM algorithm [205℄ 
onstitutes an eÆ
ient method for applying to su
h ML esti-mation problem. It 
onsists of two main steps whi
h are applied iteratively. The E-stepwhere the 
urrent posterior probabilities probabilities of time series to belong to ea
h
luster are 
al
ulated: znj = p(j|yn;Θ) =
�jp(yn|�j)f(yn|Θ)

, (8.4)and the M-step where the maximization of the expe
ted 
omplete log-likelihood (Q-fun
tion) is performed with respe
t to model parameters,Q(Θ|Θ(t)) = N
∑n=1

K
∑j=1

znj{log �j − 1

2
T log �2j − ‖yn −Xwj‖2

2�2j } (8.5)135



The maximization leads to the following update rules:�j =

∑Nn=1 znjN , (8.6)wj = (

N
∑n=1

znjXTX)−1XT N
∑n=1

(znjyn), (8.7)�2j =

∑Nn=1 znj‖yn −Xwj‖2T ∑Nn=1 znj . (8.8)After the 
onvergen
e of the EM algorithm, the asso
iation of N observations with theK 
lusters is done following the rule of the maximum posterior probability values.8.3 Regression mixture modeling with spatial and sparse proper-tiesThe above stru
ture of the linear regression mixture model for 
lustering fMRI data hassome limitations and is not 
apable of handling some important 
hara
teristi
s arisenfrom the nature of the observations. In parti
ular, the fmri data are stru
tures thatinvolve spatial properties, sin
e adja
ent voxels tend to have similar a
tivity behavior[86℄. Another desirable property is to handle temporal 
orrelations derived from neural,physiologi
al and physi
al sour
es [38℄ and have a me
hanism that 
an automati
allyaddress the model order. Bayesian framework allows the in
orporation of all these featuresthrough the use of appropriate prior distributions over the model parameters that a
t asuseful 
onstraints.In order to 
apture spatial properties we 
an 
onsider that the probabilities �nj ofea
h fMRI sequen
e yn to belong to the j-th 
luster are additional model parameters thatsatisfy the 
onstraints �nj ≥ 0 and ∑Kj=1 �nj = 1. The mixture model is now modi�ed asf(yn|Θ) =

K
∑j=1

�njp(yn|�j). (8.9)where the total set of parameters are Θ = {{�nj}Nn=1; �j}Kj=1. We 
an handle the lo
al
hara
teristi
s of the voxels using the Markov Random Fields (MRF) sin
e they have su
-
essfully applied to 
omputer vision appli
ations, su
h as the task of image segmentation[201℄. In parti
ular, we 
an assume the Gibbs prior distribution [98, 100℄ over the set ofvoxel labels Π = {�n}Nn=1 having a density fun
tionp(Π) = 1Z exp{−
N
∑n=1

VNn(Π)} . (8.10)136



The fun
tion VNn(Π) denotes the 
lique potential fun
tion of the labels of the n-th timeseries ve
tors, where in our study it takes the following form:VNn(Π) = ∑m∈Nn K
∑j=1

�j(�nj − �mj)2. (8.11)The neighborhood Nn around the n-th voxel is the set of eight (8) voxels that are hor-izontally, diagonally or verti
ally adja
ent. We also assume that every 
luster has itsown regularization parameter �j providing us with a way to enfor
e di�erent degree ofsmoothness at ea
h 
luster. Finally, the term Z is the normalizing fa
tor that is analogousto Z ∝ ∏Kj=1 �Nj .An important role in using a regression model is how to estimate its order M . Thisa�e
ts the ve
tor of the regression 
oeÆ
ients wj. The appropriate value of M dependson the shape of data to be �tted, where models of small order may lead to under�ttingwhile large values of M may be
ome responsible for data over�tting. As a results thisphenomenon deteriorates signi�
antly the 
lustering performan
e. A solution to thisproblem 
an be given using the Bayesian regularization framework that penalizes modelsof large order [87℄. In parti
ular, we 
an initially assume large value of orderM and imposea heavy tailed prior distribution p(wj) over the regression 
oeÆ
ients. After training onlya part of them will be
ome a
tive while most of them will be zero out.The sparsity of the regression 
oeÆ
ients wj 
an be a
hieved in an hierar
hi
al wayby 
onsidering �rst a zero-mean Gaussian distribution over themp(wj|αj) = N(wj|0;A−1j ) =
M
∏l=1

N(wjl|0; �−1jl ) , (8.12)where Aj is a diagonal matrix 
ontaining the M 
omponents of the hyperparameter ve
-tor αj = (aj1; : : : ; ajM). At a se
ond level, a Gamma prior distribution is imposed onhyperparameters �jl p(�j) = M
∏l=1

Γ(�jl|b; 
) ∝ M
∏l=1

�b−1jl exp−
�jl . (8.13)The above two-stage hierar
hi
al sparse prior is a
tually the Student's-t distribution en-for
ing most of the values �jl to be large and thus eliminating the e�e
t of the 
orre-sponding 
oeÆ
ients wjl by setting to zero. In su
h way the regression model order forevery 
luster is automati
ally sele
ted and over�tting is avoided.As mentioned before, the 
onstru
tion of the design matrix X is a 
ru
ial part of theregression model. In our 
ase we have 
onsidered that ea
h 
luster has its own designmatrix Xj written as a mixture of kernel matri
es[206, 204℄Xj = S
∑s=1

ujsXs137



where Xs is the kernel matri
es with s
alar parameter �s. The weights ujs satisfy the
onstraints ujs ≥ 0 and ∑Ss=1 ujs = 1. This s
heme performs an inferen
e from a pool ofS kernel fun
tions whi
h are 
ombined into a 
omposite spa
e. Every 
andidate kernelmatrixXs has its own s
ale parameter �s value. The parameters ujs must be estimated inorder to obtain the weighted s
heme of the kernel 
ombination that better suits to every
luster.From the above analysis, the 
lustering pro
edure be
omes a Maximum-A-Posteriori(MAP) estimation problem, where the log-likelihood of the model (Eq. 8.3) is augmentedwith two penalty terms: a) one that 
orresponds to the prior for the labels Π (spatial
onstraints) and b) another one that 
orresponds to the sparse prior for the regression
oeÆ
ients wj (sparse 
onstraints)
LMAP (Θ) =

N
∑n=1

log{
K
∑j=1

�njp(yn|�j)}+log p(Π)+ K
∑j=1

{

log p(wj|αj)+log p(αj)} . (8.14)The appli
ation of the EM algorithm to the MAP estimation problem requires the
onditional expe
tation values znj of the hidden variables to be 
omputed during theE-step znj = P (j|yn;Θ) =
�njp(yn|�j)f(yn|Θ)

. (8.15)At the M-step, the maximization of the the expe
ted value of the MAP log-likelihood ofthe 
omplete data is performed:Q(Θ|Θ(t)) =

N
∑n=1

K
∑j=1

znj{log �nj − 1

2
T log �2j − ‖yn −Xjwj‖2�2j } (8.16)

− log �j − �j ∑m∈Nn(�nj − �mj)2 − K
∑j=1

1

2
wTj Ajwj +M

∑l=1

{(b− 1) log�jl − 
�jl} .By setting the partial derivatives of the above Q fun
tion with respe
t to label parameters�nj equal to zero, we obtain the following quadrati
 equation:�2nj− < �nj > �nj − 1

2�j|Nn|znj = 0 , (8.17)where < �nj > is the mean value of the j-th 
luster's probabilities of the spatial neighborsof the n-th voxel, i.e. < �nj >= 1
|Nn| ∑m∈Nn �mj. The above quadrati
 expression has tworoots, where we sele
t only the root with the positive sign sin
e it yields the 
onstraint�ij ≥ 0: �nj = < �nj > +

√< �2nj > + 2
|Nn|znj

2
. (8.18)138



However, these values do not satisfy the 
onstraints 0 ≤ �nj ≤ 1 and ∑Kj=1 �nj = 1,and there is a need to proje
t them on their 
onstraint 
onvex hull. For this purpose aneÆ
ient 
onvex quadrati
 programming method is used as presented in [201℄.For the rest model parameters �j = {wj;αj; �2j} the update rules 
an be easily ob-tained as wj =
[(

N
∑n=1

znj) 1�2jXTj Xj +Aj]−1 1�2jXTj ( N
∑n=1

znjyn) (8.19)�jl =
1 + 2
w2jl + 2b (8.20)�2j =

∑Nn=1 znj‖yn −Xjwj‖2T ∑Nn=1 znj . (8.21)Finally, the parameters ujr of the kernel 
omposite design matrix are obtained aftersolving the following optimization problem:
maxuj {uTjKjwTKjwuj − 2uTjKjwT ∑Nn=1 znjyn

∑Nn=1 znj }, s.t. S
∑s=1

ujs = 1 and ujs ≥ 0 .The matrix Kjw is derived by rearranging the terms in the linear regression model asdes
ribe below: Xjwj = (

S
∑s=1

ujsXs)wj = Kjwuj. (8.22)At the end of the learning pro
ess the a
tivation map of the brain is 
onstru
ted.In parti
ular, we initially sele
t the 
luster h that best mat
h with the BOLD regressor(whi
h is known before the data analysis) among the K mixture 
omponents. This isdone following the Pearson 
orrelation measurement between ea
h 
luster's estimatedmean value (Xjwj) and the BOLD regressor, whi
h is in fa
t the 
osine similarity. Theset of voxels that belong to this 
luster h draw the brain a
tivation region, while all therest voxels from di�erent 
lusters assign the non-a
tivation region.8.3.1 In
remental learningA drawba
k of the EM algorithm is its sensitivity to the initialization of the model param-eters due to its lo
al nature. Improper initialization may lead to poor lo
al maxima of thelog-likelihood that sequentially a�e
ts the quality of the 
lustering solution. A solutionis to test several initial values and sele
t the one set of values that rea
h the maximumlog-likelihood fun
tion value after running one-step of the EM algorithm. However, othermore advan
ed methods have been re
ently presented about in
rementally building Gaus-sian mixture models [207, 209, 210℄. We have adopted su
h s
heme in our approa
h andhave developed a framework that iteratively adds a new 
omponent to the mixture byperforming a 
omponent split pro
edure. 139



Initially, we start with a model having one 
omponent that 
omes from a single linearregression model. Let now assume that we have already 
onstru
ted a mixture fk of klinear regression 
omponents fk(yi|Θk) = k
∑j=1

�jp(yi|�j) . (8.23)The 
omponent j∗ whi
h is more similar to the BOLD regressor is then sele
ted forsplitting and a new 
omponent k + 1 is generated. For initializing its parameters weperform the following steps:
• Among the time series that 
urrently belong to the sele
ted for splitting 
luster j∗,�nd a small per
entage of the worst �tted 
ases and 
al
ulate their mean value y∗.
• Fit a regression model to the this mean sequen
e y∗ and obtain initial values forthe new 
omponent's regression 
oeÆ
ients wk+1, regularization parameter �k+1;l =
1=w2k+1;l and noise varian
e �2k+1. The kernel weights of the design matrix Xk+1 areequivalent, i.e. uk+1;s = 1=S.
• The label parameters are initialized as �n;k+1 = {�n;j∗}new =

{�n;j∗}old
2Subsequently, the EM algorithm 
an be applied for estimating the parameters Θk+1 ofthe new mixture model.The splitting pro
edure is responsible for adding one linear regression 
omponent ata time. Intuitively thinking, it 
an be seen as a pruning me
hanism that is repeated untilfound the 
luster that best des
ribes the BOLD e�e
t in terms of its 
urve representationand also its homogeneous appearan
e. For terminating the pro
edure we have used the
riterion of the per
entage of the 
orrelation in
rease between two su

essive steps. Whenthis per
entage be
omes very small the in
remental training pro
ess is terminated. In this
ase the mixture in
rement from Θk to Θk+1 does not o�er any signi�
ant improvementto the 
orrelation 
riterion, and thus the best found 
luster from the previous step is the�nal solution.8.4 Experimental resultsThe proposed method have been tested using simulated and real fMRI data. We have
ompared the proposed mixture model with spatial and spatial properties (SSRM), usingboth the in
remental (iSSRM) and the regular version, with the ML regression mixture(MLRM) approa
h. The MLRM approa
h is similar to the SSRM. The only di�eren
eis that the estimation of regression 
oeÆ
ients of ea
h 
omponent is based on the MLprin
iple (i.e. we have not used the sparse prior over the regression 
oeÆ
ients). The140



matri
es Xs; s = 1; · · · ; S, where S = 10, were 
reated by using Gaussian kernels fordi�erent values of the width parameter �s varying from 0.1 to 2 with step 0.2. In allexperiments, �rst we applied the in
remental version of the algorithm to determine amongothers the number of 
lusters and then we applied the SSRM and the MLRM algorithmsusing this number.To initialize all the algorithms, expe
t the iSSRM, the following pro
edure is adopted.First, we sele
t randomly K time series, one for ea
h 
luster, from the dataset. Then, theML learning rule is applied in ea
h regression model to estimate the regression 
oeÆ
ients.After that the parameters ajl 
an be estimated as �jl = 1w2jl , where j is the 
luster and lthe 
orresponding regressor. The mixing probabilities �nj are initially set to 1K and theparameters ujs are initially set to 1S . Finally, two steps of the EM algorithm were exe
utedto improve the estimation of model parameters and to evaluate the loglikelihood. Thisapproa
h is applied for one hundred di�erent trials and the solution with the maximumlog-likelihood value is sele
ted for initializing the parameters of EM algorithm.In experiments, the design matrix of ea
h 
luster Xj has two 
omponents, one 
ompo-nent whi
h 
omes out from the 
ombination of kernel matri
es and one 
omponent whi
his 
ommon in all 
luster and it is the BOLD regressor, Xj = [X(F )j bT ]. This slightlydi�erent design matrix from that des
ribed previously does not 
hange at all the pro-posed model. It must be only taken into a

ount when the estimation of parameters ujsis performed. In that 
ase the term wpb must be removed for the observations yn wherewp denotes the 
orresponding weight to the BOLD regressor.8.4.1 Experiments using simulated fMRI dataIn experiments with simulated fMRI data we 
reate 3-D dataset of time series from a linearregression model where the design matrix was known as well as the regression 
oeÆ
ients.In these time series we have added white gaussian noise of various SNR levels. The SNRis de�ned between the BOLD regressor and the white gaussian noise 
omponent of themodel. The spatial 
orrelation between the time series is a
hieved through the regression
oeÆ
ients. The regression 
oeÆ
ients of the BOLD regressor have a spatial patternwhi
h is drawn in Fig. 8.1a. The BOLD regressor, whi
h is used to model the neurala
tivity, is shown in Fig. 8.1b. Also, in the time series we have added a slow varying
omponent to model the drift in the fMRI time series (Fig. 8.1
).To quantify the performan
e and measure the quality of the 
lustering, we have usedtwo 
riteria:
• the Performan
e (su

ess rate), whi
h is the per
entage of 
orre
tly 
lassi�ed timeseries and quanti�es the ability of the method to assign ea
h time series to the
orre
t 
luster. 141
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) Drift 
omponent
• the normalized mutual information (NMI), whi
h is an information theoreti
 mea-sure based on the mutual information of the true labeling (Ω) and the 
lustering(C) normalized by their entropies:NMI(Ω; C) = I(Ω; C)

(H(Ω) +H(C))=2 . (8.24)We have 
ompared the iSSRM and the SSRM algorithms with the MLRM algorithm.The SSRM and the MLRM algorithm assumed that the number of 
luster is known. Tode�ne the number of 
lusters we use �rst the iSSRM algorithm whi
h provides us withthe estimated number of 
lusters, then this number is used to the others algorithms.The results are shown in Table (8.1), we 
an see that the iSSRM algorithm presentbetter performan
e from the other algorithms, in terms of the 
lassi�
ation error and themutual information. Comparing the iSSRM and the SSRM algorithms we 
an see that thein
remental version provides better results from the SSRM. Sin
e the di�eren
e of thesetwo algorithms is on the initialization strategy of the EM algorithm, we 
an 
on
ludedthat the initialization is responsible for the di�eren
e in the results. Finally, in Fig. 8.2we shown an example of the 
lustering in the 
ase of −8 dB. We provide the a
tivationof ea
h method as well as the 
lassi�
ation error of them. It is obvious the ability of theiSSRM and SSRM algorithms to �ll the holes that are observed in the MLRM algorithm.To shown the usefulness of the proposed approa
h in the 
onstru
tion of design matrixwe 
ompare the iSSRM algorithm with a version of SSRM with out using a 
ombinationof matri
es but only one of them (we 
alled this method sRM). In our experiments the ex-tended design matrixXj was 
onstru
ted as a 
ombination of 10 design matri
es (R = 10)(based on the idea of kernels) Fr; r = 1; · · · ; 10. In Table 8.2 we shown the results foriSSRM and the sRM algorithms. The sRM algorithm has been run 10 times with a di�er-ent design matrix Fr and we have 
hoose the best results. Again, the iSSRM algorithmpresents better performan
e in terms of 
lassi�
ation error and mutual information.142



Table 8.1: Comparative results for simulated data in various noisy environments.Performan
e NMISNR iSSRM SSRM MLRM iSSRM SSRM MLRM0 0.9989 1.0000 1.0000 0.9937 1.0000 1.0000-2 0.9993 0.9999 0.9999 0.9956 0.9993 0.9989-4 0.9983 0.9983 0.9967 0.9864 0.9862 0.9751-6 0.9901 0.9688 0.9827 0.9380 0.8945 0.8973-8 0.9713 0.9049 0.9466 0.8513 0.7237 0.7468-10 0.9456 0.8296 0.8862 0.7515 0.5458 0.5565-12 0.8384 0.8961 0.8075 0.5621 0.6310 0.3705-14 0.8035 0.7870 0.6571 0.4648 0.4138 0.1436
Classification error: 0.9735
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tivation patterns using (a) iSSRM, (b) SSRM and (
) MLRM
Table 8.2: Comparative results for simulated data in various noisy environments.Performan
e NMISNR iSSRM sRM ( � ) iSSRM sRM ( � )0 1.0000 0.9405 (0.1) 1.0000 0.7926 (0.1)-2 0.9998 0.9386 (0.1) 0.9986 0.7872 (0.1)-4 0.9979 0.9152 (0.1) 0.9836 0.7144 (0.1)-6 0.9897 0.7677 (0.9) 0.9366 0.4488 (0.9)-8 0.9730 0.7129 (1.7) 0.8578 0.3658 (1.7)-10 0.9507 0.6592 (1.7) 0.7687 0.2870 (1.7)-12 0.8589 0.6793 (1.3) 0.5980 0.2949 (1.3)-14 0.7804 0.6475 (0.5) 0.4307 0.2366 (0.5)
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(a) (b)Figure 8.3: Termination 
riterion (SNR=-14dB).In Fig. 8.3 we provide the termination 
riterion with respe
t to the iteration of thein
remental algorithm. Also, in the same �gure the log-likelihood is given. These resultshave been obtained from a dataset where the SNR was -14 dB. We 
an observe that atevery step of the in
remental algorihm the log-likelihood is always in
reased while thetermination 
riterion 
onverges after few iterations. This is more obvious in Fig. 8.4where images of the 
lustering pro
edure for the same dataset are provided. We seethat the in
rease of number 
lusters from K = 3 to K = 4 does not provide any newinformation.8.4.2 Experiments using real fMRI dataWe have applied the iSSRM, SSRM and the MLRM algorithms using real fMRI data
on
erns blo
k design and event related experiments. In both datasets, we followed thestandard prepro
essing steps of the SPM pa
kage, i.e. realignment, segmentation, nor-malization and spatial smoothing steps. Data are then s
aled by using the global meanvalue of all time series as a fa
tor. Finally, ea
h time series was then high pass �lteredusing a set of dis
rete 
osine basis fun
tions. At �rst we have studied a real blo
k designfMRI dataset1 designed for auditory pro
essing task on a healthy volunteer. Its fun
tionalimages 
onsisted ofM = 68 sli
es (79 × 95 × 68, 2mm × 2mm × 2mm voxels). Experi-ments were made with the sli
e 29 of this dataset. We have applied the iSSRM algorithm,whi
h provides us with the number of 
lusters. After that, the SSRJM and the MLRMalgorithms have been applied.The results of 
lustering are shown in Fig. 8.5. The images show the position of
lusters inside the brain. Also, an a
tivation map is provided, whi
h is produ
es by1It was downloaded from the SPM web page http://www.�l.ion.u
l.a
.uk/spm/144
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adopting an analysis based on the GLM. More spe
i�
ally in our 
ase the a
tivation mapprodu
es by using the spatial method des
ribed in [213℄. We 
an observe that there is one
luster that 
oin
ides with the a
tivation region whi
h is the auditory 
ortex. Comparingthe 
lustering results with the a
tivation map we 
an observe that there is great similaritybetween the 
luster responsible for a
tivation and the strength of the regression 
oeÆ
ient.In Fig. 8.6 we depi
t the 
enter of ea
h 
luster with the BOLD response, also weprovide the 
orrelation 
oeÆ
ients of ea
h 
enter 
luster with the BOLD response. Thisis shown for all the methods. We see that the iSSRM algorithm provides us with a 
luster
enter whi
h is more 
orrelated to the BOLD response than the others algorithms.In event related experiments we analyzed fMRI data 
onsisted of images a
quired froma motor event related paradigm available at the aÆliated University Hospital of Ioannina.During this experiment patients with RLS (restless legs syndrome) performed randomand spontaneous limb movements evoked by sensory leg uneasiness. These movementswere used to 
reate the indi
ator ve
tor in our modeling that was 
onvolved next withthe hemodynami
 response fun
tion (HRF) in order to provide the BOLD signal. In Fig.8.7 we show the 
lustering results together with the a
tivation map. Similar observations,just like the auditory experiment, 
an be done here. All methods provides us with the
luster related to the primary motor region and supplementary motor areas of the brain.We 
an observe the similarity between the 
luster of a
tivation and the a
tivation map.Also, in Fig. 8.8 we depi
t the 
enter of ea
h 
luster with the BOLD response, in additionthe 
orrelation 
oeÆ
ients of ea
h 
enter 
luster with the BOLD response are provided.8.5 Con
lusionsIn this 
hapter, we proposed a probabilisti
 mixture modeling approa
h for the 
lusteringof fMRI time series. More, spe
i�
ally a mixture of linear regression models with sparseand spatial properties is presented. Sparse priors are pla
ed on the weights of ea
h linearregression model helping us to deal with problem of model order sele
tion. Also, spatialpriors are used on the mixing 
oeÆ
ients to take into a

ount the spatial 
orrelationbetween the voxels. This is a
hieved by using a Gibbs distribution. Furthermore, toavoid sensitivity of the design matrix to the 
hoi
e of kernel matrix, we have used a kernel
omposite design matrix 
onstru
ted as linear 
ombination of Gaussian kernel matri
eswith di�erent s
aling parameter. Our future resear
h study is fo
used to three dire
tions:a) to examine the appropriateness of other types of sparse priors [107℄, b) to try alternativepotential fun
tions of the Gibbs distribution and 
) to try di�erent approa
hes for learningthe design matrix [211℄.
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Chapter 9 Con
lusions
In this thesis we have studied the linear regression model and the time varying autore-gressive model and its appli
ations on problems of biomedi
al signal pro
essing. The timevarying autoregressive model was proposed for the enhan
ement of epilepti
 EEG spikes,while variations of the linear regression model were proposed for the analysis of fMRItime series, the estimation of ERPs and the drift removal from HRV time series. More,spe
i�
ally a model, based on the smoothness prior, was proposed for the estimation ofa signal inside a noisy environment. For the estimation pro
edure we adopted the Vari-ational Bayesian Methodology and the proposed model was used to �nd the ERPs andthe drift inside the HRV time series. Next, two algorithms, using the linear regressionmodel, were proposed for the analysis of fMRI time series. In these algorithms, we havefo
used on issues 
on
erning the noise model. The noise de
omposed into two 
ompo-nents, one 
omponent originates for the time series, while the other originates from theimages. Furthermore, the linear regression model with sparse and spatial properties wasused for the analysis of fMRI time series. To in
lude these properties into the model anenhan
ed version of the Gibbs distribution was used. Finally, we proposed a 
lusteringte
hnique for fMRI time series. An extended version of mixture modeling, based on thelinear regression model and the Gibbs distribution, was proposed for the 
lustering. Also,an in
remental algorithm was derived based on the above mixture models.In 
hapter 4, the time varying autoregressive model was used for the enhan
ement ofepilepti
 spikes. This model was represented in the form of a state-spa
e model, and thenthe Kalman Filter was used to estimate the autoregressive 
oeÆ
ients. The results wereindi
ated that the proposed method is able to enhan
e the epilepti
 spikes in terms ofSNR. Also, when the proposed method is used as a prepro
essing step into a dete
tionpro
edure, is able to redu
e the false alarms while keep at a

eptable level the loose ofepilepti
 spikes.In 
hapter 5, we proposed a method for the re
overy of biomedi
al signal from a noisy151



environment. More spe
i�
ally, we assumed that the signal of interest was smooth. Thisassumption guided us to proposed the smoothness prior for the signal. The noise wasstudied in two 
ases: white gaussian noise and 
olored Gaussian noise. To estimate thevarious model parameters we adopt a probabilisti
 approa
h based on the VariationalBayesian Methodology. This approa
h uses an approximate posterior, instead of the true,helping us to obtained 
losed form solutions. The results had shown the usefulness of theproposed method 
omparing to the wavelet denoising approa
h and the generalized 
rossvalidation 
riterion. The proposed method was applied to estimate the ERPs from theEEG signal and the drift inside the HRV time series.In 
hapter 6, two methods were proposed to �nd the a
tivation of brain using fMRItime series. More spe
i�
ally, the linear regression model was used and the varian
e ofthe noise was de
omposed into two 
omponents, one a
ross time - series and the othera
ross images. Again, the Variational Bayesian Methodology was used for the estimationpro
edure of various model parameters. The results shown the ability of the proposedmethods to �nd a

urately the brain a
tivation.In 
hapter 7, we extended our study in the analysis of fMRI time series by introdu
ingspatial properties into the linear regression model. More spe
i�
ally, an enhan
e priordistribution, based on Gibbs distribution, was proposed. This prior in
ludes simultane-ously sparse and spatial properties into the linear regression model. Experiments wereperformed using real and simulated data. The results indi
ated the superiority of theproposed method.In 
hapter 8, a 
lustering method, based on mixture modeling, was proposed for theanalysis of fMRI time series. The proposed mixture model uses spatial over the mixingprobabilities to take into a

ount the 
orrelation between adja
ent fMRI time series. Also,the mixture 
omponents are based on linear regression models whi
h help us to modelbetter the time series and 
onfront the large dimension of time series. Furthermore, anin
remental algorithm based on mixture modeling was proposed for the 
lustering of fMRItime series. The in
remental algorithm help us to 
onfront the problem of ill-balan
eddata observe in fMRI time series.In future work, it would be interesting to study the enhan
ement of epilepti
 spikesusing multi
hannel re
ordings. This will help us to in
lude spatial information into themodel. Also, a method, based on the EM algorithm, where the model parameters will beestimated from the data it would be useful, espe
ially for automati
 monitoring of EEGsignal. In the signal estimation method of 
hapter 5, we 
ould extended the model by usinga non stationary smoothness prior or by adopting other noise distributions su
h as theStudent's t - distribution. However, these extensions to be 
omputationally eÆ
ient willbe needed to resort into approximation te
hniques to estimate the posterior 
ovarian
e.In 
hapter 6, the drift was modeled by using Gaussian basis fun
tions with �xed the152



s
ale parameter. An extension of this approa
h is to use other basis fun
tions for the drift.In addition, we 
ould use a learning pro
edure for the design matrix as that des
ribedin 
hapter 8 to avoid the need to make assumptions about the s
ale parameter. Also, asimilar learning pro
edure should be examined in 
onjun
tion with the linear regressionmodel of 
hapter 7. Finally, in the model of 
hapter 8 it would be useful to examine otherdistribution 
omponent than the gaussian in the 
lustering of time series.In the analysis of fMRI time series, it would be interesting to 
onstru
t generativemodels that in
lude more prepro
essing steps into the same framework. This will help tobetter understand how the various 
omponents and properties of fMRI time series intera
tea
h other. One 
ru
ial aspe
t in the analysis of fMRI time series is the estimation ofHRF during the analysis of time series and how this a�e
ts the subsequent analysis ofdata. Finally, the use of multiple imaging te
hniques, to over
ome the limitations ofea
h method, is very appealing. For example, EEG and fMRI data 
an be 
olle
tedsimultaneously. Merging these two te
hniques we hope to get the best of both worlds. Inthis dire
tion new models will be 
onstru
ted to explain the observations.Furthermore, the use of proposed models is not restri
ted only to problems that weredes
ribed in this thesis. For example, the 
lustering method that was des
ribed in 
hapter8 
an be easily applied in the analysis of other biomedi
al signals su
h as the 
lusteringof ERPs. Besides the 
lassi�
ation results that we obtain due to the 
lustering, we alsoobtain time series whi
h 
orresponds to the means of ea
h 
luster. These time series
an be used as regressors into a linear regression model and we 
ould applied a similarpro
edure, as that of the statisti
al analysis of fMRI data, to obtain statisti
al brain mapsbased on ERPs.
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