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ABSTRACT

Oikonomou, Vangelis, P. V..

PhD, Computer Science Department, University of loannina, Greece.
July, 2010.

Title: Bayesian Methods for Biomedical Signal and Image Processing.
Thesis Supervisor: Konstantinos Blekas.

This thesis is focused on the study and the development of intelligent methods for
the processing of biomedical signal and image. Biomedical signals belong to the class of
sequential data, i.e. data that are evolved in time or space. Their structure is complex
and can be obtained in serial or batch mode. Finally, biomedical signals contain hidden
characteristics and their detection constitutes a difficult task. All the above properties
although bring some serious obstacles during the study of these signals, are issues of great
research interest and challenges, in the sense of becoming the seeds of building effective
and innovative mechanisms and tools for biomedical data analysis. Moreover, the necessity
of these methods is further amplified with the fact that biomedical signals belongs to the
kind of data from the real world applications. Under these prism, analyzing these pieces
of information may significantly affect the human life, improve the understanding of the
human body, as well as may become a light to the discovery of new perceptions and
achievements within the medical world.

The scope of this thesis is to study and present powerful statistical models that incor-
porate various interesting properties of biomedical signals, such as spatial and temporal
correlations between, their time-varying nature, and their environment, in order to achieve
the improvement of the fidelity of analysis and the decision making procedure. A desired
feature of the models that are presented thought this thesis is to describe the signal with a
single and less complex, but powerful and efficient, formulation in a way of increasing their
generalization capabilities. One such representation is the sparse representation, which
constitutes a modern tendency to the statistical data analysis community with many
applications to several others fields, such the Biomedical Engineering, Biology, Machine
Learning etc. Variations of the generalized linear regression model and the state - space
models, such as the Kalman Filter, are the main stochastic models that are presented
for analyzing electroencephalograms, and time series from the heart and from function
Magnetic Resonance Imaging.

In chapter 2 and 3, basic notions about the nature of data and problems that results
from this are given. Biomedical signals that are studied in this thesis are derived from

viil



the brain and the heart. In chapter 2 basic information about these two organs is given
as well as information about the mechanism that generated the corresponding biomedical
signals. For the study of these signals probabilistic models are used in conjunction with the
Bayesian framework. Thus, basic tools from statistics and machine learning are presented,
since these tools will be used to learn model parameters. Also, a review of various general
approaches, used in biomedical signal community, is performed. In chapter 3, a description
of various probabilistic models is given. More specifically, the linear regression model, the
state-space model and the autoregressive model are presented. These models will be used
latter in this thesis. Furthermore, a description of various preprocessing steps in the
analysis of fMRI data is given.

In chapter 4, a method for the enhancement of epileptic spikes is proposed. Epileptic
spikes are observed in the electroencephalogram. To deal with the non stationarity of
EEG signal, a time - varying autoregressive model (TVAR) is used. The TVAR model
parameters are estimated with the help of the Kalman Filter. The experimental results
have shown that the proposed method is able to reduce the false alarms while at the same
time keep at acceptable level the loose of true spikes.

One important aspect that must be taken into account is that the biomedical signal
is observed with noise. The origin of noise can be some malfunction of hardware or other
physiological process of the human body. In chapter 5, a method is proposed to remove
the noise for the observations. This is achieved by using a useful prior over the signal of
interest. The prior is characterized for its smooth nature and is based on the laplacian
operator. Then, adopting the Bayesian framework the model parameters are estimated.
The proposed method is used for the estimation of Event Related Potentials (observed
in EEG) and the removal of drift from time series that described the heart rhythm. The
results have shown accurate estimation of these two signals.

In chapter 6, a method is proposed for the analysis of fMRI time series when the noise
is non - stationary. The basic building block of this method is a probabilistic approach
of the linear regression model. A sparse representation is used for the weights of the
linear regression model through a sparse prior. Sparsity can improve pattern recognition,
compression, and noise reduction among others. The noise term of the linear regression
model is non stationary and consists from two components, one component originates
from the time series while the other from the images. Two versions of this model are used
to describe the time series. The first is based on a voxel-by-voxel analysis of fMRI data
and the second is based on a simultaneous use of all data. Both approaches are used an
extended design matrix to model the drift component, while for the estimation procedure
the Variational Bayesian Methodology is adopted resulting in two iterative algorithms.
The results, based on real and simulated data, have shown the usefulness of the proposed
methods to find the activated brain areas.

The time series arising from fMRI experiments contains correlation between them
when come out from adjacent brain areas. In chapter 7, we proposed a method that take
into account this information. More specifically, a probabilistic linear regression model

X



with sparse and spatial properties is proposed. This is achieved by proposing an enhanced
version of Gibbs distribution for the prior distribution of weights. The potential function
of the Gibbs distribution is of specific purpose and has two components, one to model
the sparsity between the weights of one time series and the other to model the spatial
correlation between weights that belongs to adjacent time series. To perform inference
over model parameters the Maximum A Posteriori (MAP) estimation framework is used.
Also, an alternative view of the proposed model, using the Expectation - Maximization
(EM) algorithm, is presented. The results, based on real and simulated data, have shown
the ability of the proposed method to detect accurately the activated brain areas.

In chapter 8, we proposed a new probabilistic mixture modeling approach for cluster-
ing fMRI time series based on linear regression models where each cluster is described
as a linear regression model. A sparse representation of every cluster regression model
is used through the use of an appropriate sparse prior over the regression coefficients.
Enforcing sparsity is a fundamental regularization principle and has been used to tackle
several problems, such as model order selection. Also, spatial properties of data have
been incorporated to the mixture model through the notion of Markov Random Field
(MRF). Furthermore, to avoid sensitivity of the design matrix to the choice of kernel
matrix, we have used a kernel composite design matrix constructed as linear combination
of Gaussian kernel matrices with different scaling parameter. The clustering procedure is
formulated as a Maximum A Posteriori (MAP) estimation problem where the Expectation
- Maximization (EM) algorithm constitutes a powerful framework for solving it. To avoid
problems with the initialization of the algorithm, an incremental strategy for building
the mixture model is presented. Experiments using artificial and real fMRI dataset have
shown that the proposed method offers very promising results with an excellent behavior
in difficult and noisy environments.



EKTETAMENH [IEPIAHUH STA EAAHNIKA

Evdyyeroc Owovéouou tou [Taviou xar tne Batac.

PhD, Turua Iinpogopuxrc, Tavemotiulo Iwavvivey, Todiiog, 2010.

Tithoc: Mretliavéc Mébodol Avdhuone xar Enelepyactac Blotatpixold LAuatoc xou Euxdvac.
EnBrénovrac: Kwvotavtivoc Mriéxac.

H napovoa Statpl3n eotidletal otny UeAETN xot avdnTuln eupuiy uebddwy enelepyaatog
Bolatpxol onudtog xou exxdvac. Tao Prolateixd orjuata mou avahbovTtal aviXouy oTnv
TEPLOY N TV YeoVixd UeTafarldueva dedouévmy xaldec anotehovy axohoubiec TLUwY 6To
xpovo. H Boun toug elvar mohdmhoxn xou un euddxplty, evdd umopel vo eugaviovtal
oetploxd 1 ualxd. Télog, Ta Prolateixd oruata TEPLEYOUY XPUUUEVA YOUEAXTNELOTIXE XL 1)
aviyveuot| Toug arotehel pia enirovr Stadixaoto. O topandve WBLaLTepdTNTES, ToE’ OAN TNHY
Suoxohlo mou emLpépouy, yenlouv WLalTEpOL EPELYNTIXOY EVBLAPEPOVTOC BTNV EMLGTNUOVLXY
XOLYOTNTA X0 TPOPOSOTOVY ATOTEAEGUATLXE TNV UEAETT XOL AVITTUEN XALVOTOUWY EQYUAELWY
xaL unyoviouedy enelepyaotog Blotatpixdy onudtwy. Mditoto n avayxoatdtnta tov uehddwy
AUTOV EVIoYVETAL axdua TeploadTepo, xalde ta Blolatpxd ofuata anoteloly dedouéva
Tou TpayUoTixoy xécuou. H e€aywyn yvodong mou tpoxUnTtel ano tny avaiuor Toug UTopel
VoL TPOGQEREL onuavTXd otny Behtiwon tne avlpodmivng Lwng, oTny xallTeRT XaTavonon
NS AetToupylag Tou avlpdmvou oduaTog ahhd xol 6TV avaxdAudr vEwY avTAfPewy xoL
EMLTEUYUATOY TOU LATEXOU XOGUOL.

Yxomoc tne StatplPric elvol 1 UEAETY Xl XATAOXELT| LOVTEAWY Tou Oa AaufBdvouyv unddn
WBLOTNTES TWVY PLOlATEXGY ONUATOVY, OTWS 0L Y WELXES XAl YPOVIXES ECUPTATELS TOU UTEPY 0LV
UETALY QUTAY, 1 Ypovxh UeTofBANTOTNTE Toug, oL To TeplB3dilov mou AouPdvovtal, Ue
ot6y0 TNV Bertinon TS MOTHTNTAS NG AVIAUGNS TOUC %ol TNV ATOTEAEOUATIXY eCaywY
OLUTERUOUATWY UE TO UlXpOTERO dUVATO o@dAua. "Evoac emnAéov 6TdY0C TV TPOTELVOUEVKDY
uovtéhwy elvol vo mapayOel pLo amotekeouotixy xoL eV pNoTY AVATOEdGTAGT, TOU GRUNTOC
YL SLEUXOALYOT) TNC TEPALTERL AVAALONC AUEAVOVTAS TAUTOYPOVA TNV YEVLXEUTIXY) LXAVOTNTA.
Mo tétolo avamapdotaon elval 1 opotyy avarapdotaon 1 onola anoTtelel wa oUyypovn
TAOT TNE OTATLOTLXNC AVAALGTS BEDOUEVWY UE TAOUGLES XAl EVOLAPEPOVCES EQUPUOYES OTNY
Tatpuery Teyvohoyla, v Blohoyla, xafde xav oe dhhoug touelc tne emothunc. Iho
CUYXEXQPLUEVD, TROTELVOVTOL TOUEUANAYES TOU YaUULXOU UOVTIEAOU TOALYSPOUNONS XAl TV
piktpwv Kalman, yior tnv enelepyacio NAEXTROEYXEQUNOYPAPHUATOS, YPOVOCELPDY TOU
TEPLYPAPOLY TOV pLBUSG TNS XaESLaxic AeLtToupYlac, Xal YPOVOGELPGY TOU TEOEPYOVTUL OTO
ebvee Aettoupyxol yoayvntixol ocuvtoviouol (fMRI). T v uehétn twv uoviélov o
Y avanTuEn Twv akyoplBuwy enthéyOnxe to Mreuliavé mhalolo epyaotoc.
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Apyixd, oto xepdhata 2 xou 3, tapouctdlovTtal Bacixéc €VVoLes TNS PUOTNE TV SESOUEVKY
%ol ToV TEoBANUdTLwY Tou amoppéouv amd outd. To waTpd oruata Tou uekeTolvTal
TEOEPYOVTAL ATtH TOV EYXEPARO XaL TNHY xoEdLd. 110 Xe@dhato 2 TopéyovTal BaoLXES EVVOLES
XL YAPAXTNELOTIXS TANpogopiec Tou ayetilovtal ue to Suo autd avipdriva dpyavo xabde
enlong xou Ue Tov TPdTO TapAYWYNS TwV avTlioTolywy onudTtewy Toug. oty avanapdotaon
xal eMeCepyaoia AUTGOY TOY ONUATWY YENOULOTOLOUVTOL XUplKS TLHAVOTIXY TAQUUETOLXS
uovtélo oe éva Mrebllavd mialoto avdntuéne. 'Etol, napovoidlovtol Baoixd Hewpnrtixd
epyohela TNS ETLOTNUOVIXAC TEPLOYAC TNS OTATLOTIXAS XaL TNS Unyavixrc udfnone (machine
learning), ta onola Ba ypnotuonotnfoldy ot dadixacto exnaidevons TwV TUPAUETEWY TOU
uovtéhou. Erniong, emtedeltar ula evpltepn avaoxonnor Bacixdy apydy xoL UebodohoyLdy
ToL ypenotdorolovvtol 6Ty enelepyaotio BlolaTpixol 6UaTOC Xal EXOVIS. LTo Xe@dalo 3
TEPLYPAPOVTOL ELOAYWYIXES EVVOLEC TOU APOEOVY Td GTOYAGTIXE LovTéNa Tou fa yenouuonotnholy
otny mapovoa dtatelt]. Ilo ouyxexpluéva, tapouvotdlovtal To YpauuLxd UoVTELO TaAvSpdunoT),
T0 state - space UOVTENO, 0L TO LOVTENO AUTOGUGYETLONS XAOOC %ol ULlal TLHAVOTLXT| AVATOPAoTAO
autol. Télog, dlvetar uta yevixn meplypagr Twv BRudtov mou agopoly TNV GTATLOTLXY
avdhuon yeovooep®dy and exdveg fMRI

Yto xegdhato 4, mpotelveton uia uéhodoc mou aQopd THY EVIOYLOTN TV ETANTTIXGY
Suvauxdyv (epileptic EEG spike) mou moapopatnpodvial 0to NAEXTPOEYXEQANOYEAQN UL,
ue otoyo TNV Slexdiuvor e Sadixactog aviyveuoy touc. T vo avtiuetoniotel n un
otaoluoTnTa (nonstationarity) Tou NAEXTEOEYXEPUNOYPAPALUTOS Y PNOLLOTOLELTAL TO YPOVLXS
uetaParlduevo Lovtého autoouoyétione (time varying autoregressive model), ot napduetpot
TOU OTOlOV EXTLUOVVTAL UE TNV Yprion Ty @ltpwy Kalman. Ta nelpauatxd anoteréouata
oy ToAU evBappuVTLXY, xaBOC TPoGREPOLY oNuavTXT UelwoT Tou TAR0oUS TwY Aaviaouévwy
tpoedonoioewy (false alarms) mou agopody Ty eudvion evoc emhnrTixol SuvauLxou.

‘Eva onuavtixd otolyelo xotd tny M tov Blotatpixdy onudteny etvat to Hopufddeg
TeplBdihov. O B6puBoc unopel va mpoépyetal amo SucAelToupyiec ToU LAXOU 1 and dAheg
AeLtovpyiec Tou aVBPOTLYOU GAOUATOC ToL GLUBALVOLY TaUTdYEOVA UE TN MidN Tou 6ruaTog
eVOLUEPOVTOC. XT0 Xe@dhato 5 mpotelvetal wa uéBodoc mou awopd v avéxtnon (h v
extiunon) Tou ofuatoc evdlapépovtoc dtay autd mapatnpeitar uéoa oe éva HopuPddec
repBdrrov. T vo Ty eniteudn autod Tou 6TdYOU YENOLUOTOELTOL ULl XUTIAANAT EX TV
TpoTépwy xatavour (prior distribution) ndvw oto ofjua evdagépovtoc. Kabde n embuunty
WibtnTa Tou ouatog elval auTh TNg opakdTnTac (smoothness) eqapudletal uLa xoTtavoun,
mou yoapaxtnplletal yio TV ouahdtnta tne (smoothness prior). T v extiunon tov
TORAUETPWY TOU UOVTEROL ypTotuornoleitol Ul mpoceyyLotixl) Mrebliavi| uebodoroyia, Tou
xahkeltow Variational Bayesian. To npotelvéuevo Uovtého ypnoLLonolelTal YL TNy EXTUNOT
TEOXANTAOY duvauxdv oyetldueva ue éva yeyovos (Event Related Potentials) xou yia tnyv
agaipeon tou drift (ouotatixd Touv ofuatoc mou euavileTal OoTIC YAUNAES GUYVOTNATES)
and ypovooelpéc Tou exppdlovy Ty uetafAntétnTa Tou xopdiaxol pufuol (Heart Rate
Variability).

Yto xepdhato 6 mpotelvetar ulo wEBodog mou oyetiletal Ue TNV avEaAUGY YPOVOCELPMY
Tou mpogpyovtal and exéves hettoupyxol payynuxol ouvtoviopol (fMRI). To Baowxd
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UOVTELO TNV AVAAUGT) AUTOU TOL ELBOUC YPOVOTELPMY ELVAL TO YROUUIXO LOVTENO TOALVOPOUNCTC
%l 0 6XOTHC TNS avEALGTS elval 0 XaBopLEUAS TWV TEPLOY GV EVERYOTOLNGTS TOU EYXEQIIOU
xatd TNV Sdpxela evoc epebilouatoc. H uébodog nou npotelvetal haufdver unddr yapaxtneloTixd
TWVY YPOVOCEPW®Y, OTWS 1 UN oTaTtludtnTa Tou Boplfou xabde xal 1 napovstio tou drift.
Meletdrol ) amOTEAECUATIXOTNTA BUO YRAUULXODY LOVTEAWY TAALYSEOUNOTC YL TNV AVAAUGT)
Twv Ypovooelp®y. To mp®hTo UOVIEND YENOLUOTOLELTAL YLt AVAAUGT ULIC YPOVOOELRHC
xdfe @opd. To deltepo UoVTIELO Aoufdvel LTOYN OAEC TIC YPOVOOELREC UE OTOTEAECUA
VO €YOUUE ULl YWEOYEOVLXT avaALGT, Twv Ypovooele®y. Ko ta duo uovtéha mapéyouv
QPALY) AVAUTAPIOTUOY, TWV YPOVOCELPOY UECK ULIC EX TWV TEOTEPWY XATAVOUNS oEALOU
timou (sparse prior) ota Bden (¥ cuvieleotéc Tahydpdunonc) Tou YpauuLxol UovTENOUL.
[ v extiunon Twv tapauétony Tou wovtéhou yernotuornoteltal 1 Variational Bayesian
uebodoloyla.

O ypovooelpéc Tou TPOoEpYOVTUL ATO EXOVEC AELTOLEYLXOU UOYVNTLXOU GUVTOVLGUOU
Topouotdlouy Ywpexéc e€apTRoelc AOYw NS PUOLOAOYLUC TOU eYXEQIAOL. XT0 xe@dhalo T
TpotelveTal éva 6UVOETO Ypauuixd LovTéro TaALvdEduUNoNS EUTAOUTILOVTAC TO UE OTUAVTIXES
LBLOTNTES O TPOEPYOVTAL AT TLS YWELXES EEAPTAOELS AVAUETH GTLC YPOVOGELRES XoH(DS Xal
QEOLY} OVATAREGTACT TOU GUYARTNOLAXOU UOVTEAOU TepLYpd®phc. AUTO ETLTUYYAVETAL UE TN
XeNoN XATIAANANG EX TWV TEOTEQWY XATAVOUNS OTA BAET TOU YEoUUIXoU) UOVTIEAOU ToU
Baotletal oto povtého MRF (Markov Random Field). ITio ouyxexpuuéva tpotetvetat uia
ouvletn Gibbs xatavoun n omola evonuUATGOVEL TS SUO TOEATAVK BLOTNTES GTO UOVTERO.
XATAAANAT Yot TO TpoBAnua wog. Axohoubeiton To Mretllavé mhaiolo dpdong. Ta Bden tou
UOVTELOU EXTLLOUYTAL UEGK TNE UEYLOTOTONGNS NS EX TV UoTépwY mthavopdvelas (Max-
imum A Posteriori) mapdyovtoc enavainnuxolc tinouc. Evvahaxtixd, 1 npotetvéuevn
uebodoloyla umopel va mpooeyylotel axoloubdvtoag tov alydplbuo Expectation - Max-
imization (EM) av fewpnoovue ta Bden wc xpuuuéves uetafintéc. To mepduato mou
dielhylnoav 1600 oe TeEYVNTA 660 XAl oe TEoyUATIXd Sedouéva HTay TOAY oNUAVTIXE Xal
aveSELZay TN yenowdTnTa Tne uebddou, oe olyxpLon Ue dAlec uebddoug tne BiBAoypaplog.

Yto xepdhao 8 mapouoidletol to medBinua e avdivone fMRI dedouévwv we éva
Te6Bhnua ouadonoinone (clustering). T tov oxond autd ypnoionoteitar éva uxtd
UOVTELO YPUUULXADY TaALVdpoUnTdY, 6Tou xdbe oudda (cluster) neplypdpetol Ue éva LOVTEND
Yeopuxfic makvdpéunone (linear regression model). Ou xatvotoulec Tne mpoTELVOUEVNC
uefodohoylac evronilovtar ot e€rc onuelo: Apywxd ylvetol 1 undbeorn 6Tl n TAnpogopla
TNC ETETAC TNS oUddac mou avixel xdfe ypovooelpd elval uia tuyata UETABANTH 1 TWUY
e omolag e€aptdtol and TN eupUTERY YELTOVLd GTnyv onola PBploxetol Tdvew oTo YdpTn
evepyonoinone. 'Eto, epapudlovtac Mapxoftavd Tuyale [edia (Markov Random Fields)
xou v xatavoun Gibbs mdvw oTic eTix€TeC, EMTUYYAVETUL O EUTAOUTLOUOS TOU ULXTOU
UOVTEAOU UE TS YWEIXES LBLOTNTES TOL UTAEYOLY Xal 6T QUG TwV BESOUEVLY TOL TROBAAUATOC.
[ vo eCoopahioTtel Ul TEPLOGATERD YEVIXELUEYT] IXavOTNTA ot %dfe ouddo mepLoyy) Tou
xaTaoxeLALETAL YpNoLUoTOoLELTOL Uta 0paLoy TUTOU avaTopdoTacT) TOU YRUUULXOU LOVTEAOU
TOALVOPOUNCNC UE XUTAAANAT 0paLY) XATAYOUT| 6TOUC oLYVTEAESTESC xdbe ouddac. Téhog, yia
Tov mivaxa oyedlaong mpotelvetal Evag ypauuixoc cuvduaoUsS and Tivaxes oyedlaong ue
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['xoouotavée ouvapTHoELS TURTVOL TOU €YOLY dLaPOPETLXT| TapdueTeo dlaonopdc. Me Tov
TPOTO aUTH ETLTUYYAvETaL 1) eEdherdn Toug TpoPriuatoc Tng e€dptnone and TNy TaPdUETPO
Slaomopdc, 1 onolaenneedlel oe onuovtixd Balud to xatdhinho talplacuo Twv dedouévoy
xal xot’ eméxToon To anotéhecua tng ouadornoinone. Ernlong, mpotelvetan ulor audntixny
XoTaoXeDT TOL UXTOU LovTELoU epapublovtag uto ouveyr Saduxaocta didornaonc (split-
ting), xafde xat éva xpLtfipLlo Tepuatiopoy ue Bdon to Pubud cuoyétione. 'Etol, mapdhinia
Tpotelvetal xat 1 e¥peaY) TOU XATIAANAOU aptBuoy TwV ouddwy, To onolo aroTeAel xat éva
TOA) onuavTXd TEoBANU 6Ny ouadorolon.
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CHAPTER 1

INTRODUCTION

Many functions of the human body are associated with signals of electrical, chemical or
acoustic origin. Such signals carry information which may not be obvious but it is hidden
in the structure of the signal. This information must be decoded before the signals provide
us with some meaningful interpretation. The signals reflect properties of associated biolog-
ical systems and their analysis have been found to be helpful in explaining and identifying
various pathological conditions. The decoding process is sometimes straightforward and
may involve very limited manual effort such as visual inspection. However, the complex-
ity of the signal is quite often considerable and therefore Biomedical Signal Processing
becomes an important tool for extracting clinically significant information hidden in the
signal. Biomedical Signal Processing is an interdisciplinary field since knowledge from
various scientific topics is required.

Biomedical Signal Processing plays a crucial role in many aspects of human life. The
analysis of biomedical signals is the central part of automated medical systems, aiming
at finding disorders of human body. Also, biomedical signals play significant role to the
design of Human - Computer Interfaces (HCI) and Brain - Computer Interfaces (BCI).
Recent development in technology allow monitoring physiological processes inside our
body, for which no natural interfaces exist. In particular, we can measure blood pressure,
heart rate variability, muscular activity, and brain activity in efficient and noninvasive
ways. It is natural to assume that such information can be used in a useful way for the
human. Nowadays, this information is used to treat various pathophysiological disorders
of human body, to understand the underlying mechanism of the human body, to design
machines which communicate with humans. Machines, based mostly on brain signals, have
developed for a variety of applications ranging from assistive technologies for patients with
motor disabilities, to entertainment devices.

Biomedical signals are observations of physiological activities of organisms, ranging
from gene and protein sequences, to neural and cardiac rhythms, to tissue and organ
images. The processing of biomedical signal aims at extracting useful information from
it. Biomedical signals carry information that is useful for the understanding of mechanisms
underlying the behavior of living systems. However, such information is difficult to be



obtained directly from the raw recorded signals. In most of the cases, it is masked by
other biomedical signals which occur at the same time or buried in some additive noise.
For such reasons, processing is usually required to enhance the relevant information and
to extract from it parameters which quantify the behavior of the biological system under
study, mainly for physiologic studies, or to define the degree of pathology for routine
clinical procedures (diagnosis, therapy, rehabilitation or monitoring).

In the beginning, biomedical signals have been assessed manually leading to unreliable
diagnostic conclusions. A fundamental goal of biomedical signal processing is to reduce the
subjectivity of the manual measurements. The introduction of computer-based methods
helps to objectively quantify the various characteristics of signals. Those improve accuracy
of measurements and their reproducibility.

In addition, biomedical signal processing can be used to develop methods for feature
extraction to help characterize and understand the information obtained from a signal.
Such feature extraction methods can be designed to mimic the manual measurements, but
can also designed to extract information which can not be extracted by visual examination.
For example, small variations in the heart rate that cannot be perceived by the human eye
have been found to contain valuable clinical information when quantified using a signal
processing method.

In many cases, the recorded signal is corrupted by different types of noise and interfer-
ence, sometimes originating from another physiological process of the body. For example,
such situations may arise when the ocular activity interferes with the desired brain ac-
tivity, when the electrodes are poorly attached to the body, or when external sources
degrade the signal such as the 50/60 Hz powerline interference. Hence, signal denoising
represents a crucial objective of biomedical signal processing.

Certain diagnostic procedures required the recording of signals for large time. Such
situations may arise, for example when we record brain signals to study the brain function
during sleep or when we study disturbances of the heart rhythm. Also, in many cases this
procedure involves many channels. All these result to huge data size fill up the hard disk.
Transmission of biomedical signals across public networks is another application which
involve the size of biomedical data. For all these situations, data compression of digital
biomedical signals is essential. General purpose methods of data compression do not
perform particularly well since the characteristics of biomedical signals are not exploited.

Finally, signal modeling and simulation is another important field of research in
biomedical signal processing. This helps us to better understand physiological processes.
With suitable defined model it is possible to create signals which resemble the true signals.
For example, models have been created for the head and the brain to localize sources of
the neural activity. Signal modeling is also part of the branch of signal processing called
"model - based signal processing”, where algorithm development is based on the opti-
mization of an appropriately selected performance function. Algorithms for processing
biomedical signals constitute the central core of any medical system responsible for ther-
apy, monitoring and diagnosis.



Several signal processing techniques can be used to analyze biomedical signals. These
techniques can be performed either on time- or frequency-domain of the signal. Even if
it is possible to deal with continuous time waveforms, it is usually convenient to convert
them into a digital form before processing. The general framework for biomedical signal
processing is presented in Fig. 1.1. First, the setup of the experiment must be carry out.
Then, the acquisition of the signal is performed. After that, some preprocessing steps,
such as filtering, are performed. Then, the signal is analyzed to obtain useful information
and perform the physiological interpretation of the signal i.e. pathological or normal
condition of the subject. This thesis deals with the last three stages of the framework.
The preprocessing stage aims at making the signal of interest suitable for the subsequent
analysis. At the end of the preprocessing stage we obtain a signal which contains the
desired information of our experiment. The statistical analysis stage includes the analysis
of the signal to obtain useful information related to the experiment. This stage includes
the use of a model to explain the signal. Finally, the interpretation of the results is
performed with the help of a medical expert.

A useful class of methods to process signals is the model - based approach, which is
adopted in this thesis. A model is a simplified mathematical representation of a signal.
Also, it depends on some parameters which are unknown and usually are estimated using
the observations of the experiment. Learning the model parameters can be done by
minimizing (or maximizing) an objective function, which in most cases, is a function of
the unknown parameters. The model-based approach to analyze a signal can be thought
as a compact scheme consisting of three main parts:

e The model,
e The objective function,
e The learning process.

The model formalizes the prior knowledge about the process that generates the observa-
tions. The objective function is related to a function with respect to model parameters
that takes into account some natural constraints of the problem and the parameters. The
learning process offers an optimization framework for the objective function where the
estimation of the model parameters is performed. For example, a regression problem can
be described with the linear regression model. Least Squares play the role of the objec-
tive function that can minimized with a local optimization algorithm such as Newton,
Gradient Descent, etc. In this way, the model parameters will be estimated.

The mathematical treatment of the models and algorithms in this thesis is based on
the Bayesian Framework. This means that all the results are treated with probability
distributions, which helps in modeling the uncertainties in the model and the physical
randomness. Also, in the Bayesian Framework we are able to introduce constraints on
our model or prior knowledge about it with an elegant and natural way using appropriate
prior distributions. Bayesian analysis of data has been greatly facilitated in the last decade
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by advances in computing power and improved scope for estimation via iterative sampling
methods. The Bayesian approach allows to make probability statements about the model
parameters and has a single tool, Bayes’ theorem, which is used in all situations. Also,
has a straightforward way of dealing with nuisance parameters, while the Bayes’ theorem
gives the way to find the predictive distribution of future observations. But, while it
is easy to write the formula for the posterior distribution, a closed form exists only for
simple cases, such as for a normal sample with a normal prior. In that case approximation

techniques are applied.

1.1 Thesis Contribution

This thesis aims at providing innovative and efficient probabilistic models for biomedical
signal processing. Throughout this thesis the target of methods which are proposed, is
to incorporate appropriate medical knowledge and natural constraints of the problem to
their body, so to become more effective and with more accurate results. This is achieved
through the Bayesian Framework that supply a rich platform to naturally treat the phys-
ical properties of biomedical signals. This resulting probabilistic environment provides
us with a way to introduce constraints into our problem through the use of prior distri-
butions, to obtain an estimate of model parameters through their posterior distribution,
and to predict future behavior through the predictive distribution. The use of constraints
inside a stochastic model expands the capabilities of the model leading to the design of
more complex and flexible models for the description of the signal. Since our goal is to
create general - purpose methodologies, the proposed models are not restricted only to
biomedical signals, but they can be applied to other application areas with sequential
data such as image processing, computer vision, video analysis, bioinformatics, etc.

Chapters 2 and 3 provide introductory material for the rest of this thesis. More specif-
ically, in chapter 2 we present the physiology and properties of biomedical signals which
are used in this thesis. Also, a description of the basic tool used in this thesis, the Bayesian
Framework, is provided. In addition, methods, that help us to make inference in a model,
are described. In chapter 3, the basic model of this thesis, the linear regression model,
is explained, as well as extensions of it. Furthermore, a description of the autoregressive
model is provided since this model will be used in conjunction with the linear model.

In chapter 4, we present a methodology for epileptic spike enhancement in electroen-
cephalographic (EEG) recordings. The goal of this method is to enhance the epileptic
spikes so their detection be more easily performed. To achieve this the time varying au-
toregressive model (TVAR) is used. Using the Kalman Filter we can obtain estimates of
the time varying AR coefficients and an enhanced version, with respect to the epileptic
spikes, of the EEG signal. The results indicate that the proposed methodology reduce
significantly the number of false alarms. Also, the proposed model can be used for time
varying spectrum estimation.

In chapter 5, a method for the recovery of a biomedical signal from a noisy environment



is proposed. The method is based on the model - based approach, where the signal
is modeled through the use of a smoothness prior while the statistics of the noise are
unknown. To make inference about the unknown quantities of the model, the Variational
Bayesian Framework is used. The proposed method was applied for the estimation of
Event Related Potentials and for the removal of the drift from Heart Rate Variability
time series.

In chapter 6, two algorithms are proposed to deal with the non stationarity of the
noise in the fMRI data. The first algorithm is based on the temporal analysis of the data
and it is is based on the linear regression model, while the second algorithm is based on
the spatio - temporal analysis where a spatio - temporal version of the linear model is
used. Both algorithms estimate the variance of the noise across the images and the voxels.
In the linear model, an extended design matrix is used to deal with the presence of the
drift in the fMRI time series. To estimate the regression parameters of the GLM as well
as the variance components of the noise, the Variational Bayesian (VB) Methodology is
employed.

In chapter 7, an advanced Bayesian framework is presented for the analysis of func-
tional Magnetic Resonance Imaging (fMRI) data that simultaneously employs both spatial
and sparse properties. The basic building block of our method is the general linear re-
gression model (GML) that constitutes a well-known probabilistic approach. By treating
regression coefficients as random variables, we can apply an enhanced Gibbs distribution
function that captures spatial constrains and at the same time allows sparse representa-
tion of fMRI time series. The proposed scheme is described as a maximum a posteriori
(MAP) approach, where the known Expectation Maximization (EM) algorithm is applied
offering closed form update equations for the model parameters.

In chapter 8, a new probabilistic mixture modeling approach is proposed for cluster-
ing fMRI time series based on linear regression models where each cluster is described
as a linear regression model. A sparse representation of every cluster regression model
is used through the use of an appropriate sparse prior over the regression coefficients.
Enforcing sparsity is a fundamental regularization principle and has been used to tackle
several problems, such as model order selection. Also, spatial properties of data have
been incorporated to the mixture model through the notion of Markov Random Field
(MRF). Furthermore, to avoid sensitivity of the design matrix to the choice of kernel
matrix, we have used a kernel composite design matrix constructed as linear combination
of Gaussian kernel matrices with different scaling parameter. The clustering procedure is
formulated as a Maximum A Posteriori (MAP) estimation problem where the Expectation
- Maximization (EM) algorithm constitutes a powerful framework for solving it. To avoid
problems with the initialization of the algorithm, an incremental strategy for building
the mixture model is presented. Experiments using artificial and real fMRI dataset have
shown that the proposed method offers very promising results with an excellent behavior
in difficult and noisy environments.

Finally, at chapter 9, concluding remarks and future direction of the proposed methods



are provided.



CHAPTER 2

BIOMEDICAL SICNAL PROCESSING

In this chapter we provide information about the physiology and the properties of biomed-
ical signals which are used in this thesis. Also, the problems that we challenge, when these
signals are analyzed, are described. Furthermore, details about the Bayesian Framework is
provided, since it is the basic tool for the analysis of the models that are described in latter
chapters. In addition, information about two methods, the Expectation - Maximization
algorithm and the Variational Bayesian Methodology, are provided. These methods help
us to make inference in a Bayesian approach of a problem.

2.1 Physiology of the brain

The human brain is the center of the human nervous system and a very complex organ.
Enclosed in the cranium, it has the same general structure as the brains of the others
mammals, but it larger from the brain of mammals with equivalent body size. Most of
the expansion comes from the cerebral cortex, a convoluted layer of neural tissue that
covers the surface of the forebrain. The cerebral cortex is symmetric, with left and right
hemispheres and each hemisphere is divided into four parts, the frontal lobe, parietal lobe,
temporal lobe and occipital lobe (see Fig. 2.1). This categorization does not actually arise
from the structure of the brain itself, the lobes are named after the bones of the skull
that overlie them.

The function of the cortex can be divided in three functional categories of areas. One
consists of the primary sensory area, which receive information from the sensory nerves.
Primary sensory area include the visual area of the occipital lobe, the auditory area in the
temporal lobe and the somatosensory area of the parietal lobe. The second category is the
primary motor area, which occupies the rear portion of the frontal lobe, directly in front
of the somatosensory area. The primary motor area is responsible for the planning and
execution of movements. Finally, the third category consists of the remaining parts of the
cortex, which are called the association areas. These areas receive information from the
sensory areas and are involved in the complex process that we call perception, thought



Figure 2.1: The four brain lobes (reprinted from wikipedia)

and decision making. Information about the structure and function of the human brain
comes from a variety of methods known as functional neuroimaging. Functional neu-
roimaging is a general term for several brain imaging methods such as positron emission
tomography (PET), single photon emission tomography (SPET), electroencephalography
(EEG), magnetoencephalography (MEG) and functional Magnetic Resonance Imaging
(fMRI) (for overview see [140, 142, 143, 9, 24, 25, 54]). All these methods, although are
based in different principles, aim to reveal the function of the brain.

The nervous system gathers, communicate and processes information from various
part of the body and assures that the responses are handled rapidly and accurately. The
nervous system is divided into the central nervous system (CNS), consisting from the
brain and the spinal cord, and the peripheral nervous system (PNS), connecting the parts
of CNS to the body organs and sensory systems. The two systems are integrated because
information from the PNS is sent for processing to the CNS, and responses are sent by
the PNS to the organs of the body. The nerves transmitting information from the body
to the CNS are called sensory nerves, while the nerves transmitting information from the
CNS are called motor nerves.

The basic functional unit of the nervous system is the neuron, which transmit infor-
mation to and from the brain. Neurons can be classified into three categories according
to their functionality: sensory neurons, connected to sensor organs, motor neurons, con-
nected to muscles, and interneurons, connected to other neurons. The neuron consists of
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Figure 2.2: Main parts of a neuron.

the cell body, the dendrites and the axon (Fig. 2.2). Dendrites can consist of thousands
of branches, where each branch receive information from another signal. The axon is
usually a single branch responsible to transmit the information of the neuron to other
parts of the nervous system. The transmission of information between the neurons take
place at the synapse. The synapse is the part where one neuron contact to the other. The
information is transmitted between the various part of the nervous system as an electrical
or chemical signal. The currents generated by a single neuron are too weak to be detected
noninvasively. However, the currents of individual neurons add up and the simultaneous
activation of a population of neurons can result in a current that is large enough to be
detectable on the surface of the brain. The recording of this electrical activity of the brain
produces the electroencephalogram.

2.2 functional Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a medical imaging technique used to visualize the
internal structure of the body. MRI provides much greater contrast between the different
soft tissues of the body than computed tomography (CT) does. This fact makes MRI
useful in neurological (brain), musculoskeletal, cardiovascular, and oncological (cancer)
imaging. MRI uses a powerful magnetic field to align the nuclear magnetization of (usu-
ally) hydrogen atoms in water in the body. Radio frequency (RF) fields are used to
systematically alter the alignment of this magnetization. This causes the hydrogen nuclei
to produce a magnetic field detectable by the scanner. This signal can be manipulated
by additional magnetic fields to build up enough information to construct an image of
the body. An image can be constructed because the protons in different tissues return to
their equilibrium state at different rates, which is a difference that can be detected. By
changing the parameters on the MRI scanner, this effect is used to create contrast between
different types of body tissue or between other properties, as in fMRI and diffusion MRI.

functional Magnetic Resonance Imaging (fMRI) is a type of specialized MRI scan. Tt
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measures the hemodynamic response (change in blood flow) related to neural activity in
the brain. Since the 1990s, fMRI has become the dominated imaging technique in the
brain mapping area due to its relatively low invasiveness, absence of radiation exposure
and wide availability. The physical basis, which make the fMRI possible, is the Nuclear
Magnetic Resonance (NMR) phenomenon. This phenomenon was discovered around 1920
and 1930. The magnetic field inside the scanner affects the magnetic nuclei of atoms.
Normally, atomic nuclei are randomly oriented, but under the magnetic field the nuclei
become aligned with the direction of the field. When the magnetic field is large enough,
the tiny magnetic signals from the nuclei add up resulting in a signal that is large enough
to measure. In fMRI it is the magnetic signal from hydrogen nuclei in water that is
detected. The key to MRI is that the signal from hydrogen nuclei varies in strength
depending on the surrounding area. This provides a means of discriminating between
grey matter, white matter and cerebral spinal fluid in structural images of the brain. The
fMRI is based on the observation that when neural activity increases there is an increased
demand for oxygen, which leads in an increase in blood flow in regions of increased neural
activity.

It is known that changes in blood flow and blood oxygenation in the brain (collectively
known as hemodynamics) are closely linked to neural activity. When the nerve cells
are active their consumption of oxygen is increased. The local response to the oxygen
consumption is to increase blood flow to regions of increased neural activity, which occurs
after a delay of approximately 15 seconds. This hemodynamic response rises to a peak
over 45 seconds, before falling back to baseline. This leads to local changes in the relative
concentration of oxyhemoglobin and deoxyhemoglobin and changes in local cerebral blood
volume (CBV) and cerebral blood flow (CBF).

Blood Oxygen Level Dependent (BOLD) is the MRI contrast of blood deoxyhe-
moglobin. Through the hemodynamic response, blood releases oxygen to active neurons
at a greater rate than to inactive neurons. Hemoglobin is diamagnetic when oxygenated
but paramagnetic when deoxygenated. The magnetic resonance (MR) signal of blood is
therefore slightly different depending on the level of oxygenation. Higher BOLD signal
intensities arise from increases in the concentration of oxygenated hemoglobin since the
blood magnetic susceptibility now more closely matches the tissue magnetic susceptibility.
By collecting data in an MRI scanner with sequence parameters sensitive to changes in
magnetic susceptibility one can assess changes in BOLD contrast. These changes can be
either positive or negative depending upon the relative changes in both CBF and oxygen
consumption. Increases in CBF that outstrip changes in oxygen consumption will lead
to increased BOLD signal, conversely decreases in CBF that outstrip changes in oxygen
consumption will cause decreased BOLD signal intensity. The signal difference is very
small, but given many repetitions of a thought, action or experience, statistical methods
can be used to determine the areas of the brain which reliably show more of this differ-
ence as a result, and therefore which areas of the brain are active during that thought,
action or experience. The BOLD signal is an indirect indicator of the brain activity and
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an important question is how well it corresponds to the neural activity, which in general
is taken as the definition of brain activity. In [109] show that the neural activity of the
brain is well correlated to the blood oxygenation.

The ultimate goal of fMRI data analysis is to detect correlations between brain ac-
tivation and the task the subject performs during the scan. The BOLD signature of
activation is relatively weak, so other sources of noise in the acquired data must be care-
fully controlled. This means that a series of preprocessing steps must be performed on the
acquired images before the actual statistical search for task-related activation can begin.

For a typical fMRI scan, the 3D volume of the subject’s head is imaged every one or
two seconds, producing a few hundred to a few thousand complete images per scanning
session. The nature of MRI is such that these images are acquired in Fourier transform
space, so they must be transformed back to image space to be useful. Because of practical
limitations of the scanner the Fourier samples are not acquired on a grid, and scanner
imperfections like thermal drift and spike noise introduce additional distortions. Small
motions on the part of the subject and the subject’s pulse and respiration will also affect
the images.

The most common situation is that the researcher uses a pulse sequence supplied
by the scanner vendor, such as an echo-planar imaging (EPI) sequence that allows for
relatively rapid acquisition of many images [54, 24, 25]. Software in the scanner platform
itself then performs the reconstruction of images from Fourier transform space. During
this stage some information is lost (specifically the complex phase of the reconstructed
signal). Some types of artifacts, for example spike noise, become more difficult to remove
after reconstruction, but if the scanner is working well these artifacts are thought to
be relatively unimportant. After reconstruction the fMRI data consists a series of 3D
images of the brain. The most common corrections performed on these images are motion
correction and correction for physiological effects. Outlier correction and spatial and/or
temporal filtering may also be performed. A variety of methods are used to correlate these
voxel time series with the task in order to produce maps of task-dependent activation. In
Fig. 2.3 we see a diagram describing the overall procedure in the analysis of fMRI data,
from the design of the experiment until the physiological interpretation of the data.

2.3 fMRI data analysis

In this section we will provide the general scheme for the analysis of fMRI data since this
task covers a large part of this thesis.

2.3.1 Experimental design

The choice of the experimental design when setting up a fMRI study depends on the
expected results and the target of the research. Two basic types of setups are used when
concerning the appropriate and suitable designs: block design, event-related design [24, 25|
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or a combination of these two. All these designs have their weaknesses and strengths which
should be considered when choosing the design.

Block design

In block design studies the activating stimuli are presented continuously during some time
interval that is called a block. The blocks of activating stimuli are usually alternating
with the so called baseline or resting blocks. During the baseline block no stimuli are
presented. One active block may be consisted of only one long stimulus or several similar
stimuli presented rapidly. It is also possible to study different stimuli by presenting each
stimuli type in its own block. Therefore, several type of blocks might belong in one study
and the order of the blocks may alternate randomly. The duration of the blocks may also
vary.

Block designs are still in use nowadays. One reason for this is probably better signal-
to-noise ratio (SNR) due to bigger amount of data to be averaged. This also ensures
better detection power, to locate active cortical regions. The weakness of block designs is
the poor estimation efficiency to estimate the hemodynamic response for a single stimulus.
This is basically due to fast presenting rate of the stimuli so the responses overlap with
each other. This overlapping is proved to be nonlinear, which complicates the estimation
of the shape of the hemodynamic response. Block designs are also experimentally less
demanding than more flexible designs. The possible inaccuracies in the experiment design
are less serious in block designs than in event-related designs because the responses in one
block are averaged.

Event-related design

In PET studies only block designs can be assessed because of the relatively long half-life
of the used radioactive tracers. In fMRI, however, the origin of the response to a stimulus
can be related to the cerebral hemodynamic changes, and these changes are detectable
within seconds of the stimulus onset. The relatively fast response to stimuli enables the
use of brief stimuli in studies of brain function.

In event-related design a brief stimuli are presented randomly. The term event related
derives from electrophysiology and measuring the event-related potentials (ERPs). The
design and the presentation of stimuli in fMRI is quite similar to technique used in mea-
suring the ERPs. The stimuli are no longer presented in blocks of similar stimuli but one
type of stimuli can be randomized so that different types of stimuli alter with each other
and with baseline. The presentation rate may also vary i.e. a stimulus may occur twice
a second or twice a minute. Event-related design has many virtues compared to block
design. When the stimuli are presented in blocks, the subject’s cognitive behavior may
disrupt the response because the subject can guess when the next stimulus is presented
and what kind of stimulus it is. The randomization of the stimuli prevents this kind of
problems and also habituation. The responses can be post hoc categorized according to
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Figure 2.4: Preprocessing steps.

subjects performance and hence it is possible to study the difference between different re-
sponses caused by similar stimuli. Another advance of the event-related designs compared
to block design is the ability to use the so called oddball-paradigm and study unpredicted
stimuli. The advantages of the event-related design over block design encouraged research
groups to study and compare the results obtained with both these design types [24, 25].

2.3.2 Preprocessing of fMRI data

Before analyzing the fMRI data several preprocessing steps can be applied in order steps
to remove artifacts and validate the assumptions of the model [54, 24, 25, 108]. The main
goals of data preprocessing are: a) to minimize the influence of the data acquisition and
physiological artifacts, b) to validate the statistical assumptions and ¢) to standardize
the brain regions across subjects. During the analysis of fMRI data is is assumed that all
the voxels of the brain are acquired simultaneously and that each data point in a specific
voxel’s time series consists of a signal from that voxel (i.e. the participant does not move
across measurements). Finally, all brains are assumed to be registered, so that each voxel
is located in the same anatomical region for all subjects. However, these assumptions don’t
hold in reality and there is a need to make them more suitable for the statistical model.
The major steps of preprocessing are: slice timing correction, realignment, coregistration
of images, normalization, spatial smoothing and temporal filtering.

Slice timing correction

When analyzing 3D fMRI data it is typically assumed that the whole brain is measured
simultaneously. However, this is not the case because the brain volume consists from mul-
tiple slices that are acquired sequentially, and therefore at different time points. Similar
time points from different slices are shifted relative to one another. Slice time correction
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involves the correction of shift so that one can assume they are measured simultaneously.
This is achieved by Fourier transforming each voxel’s time series into the frequency do-
main, applying a phase shift to the data, and then applying the inverse Fourier transform
to recover the corrected data. However, in the above solution there is a problem due to
head motion. In SPM package [105] there is a note that this step will be remove in future.

Motion correction

An important issue involved in any fMRI study is proper handling of any subject move-
ment that may have taken place during data acquisition. When movement occurs, the
signal from a specific voxel is contaminated by the signal from neighboring voxels. The
first step for motion correction is to find the best possible alignment between the input
image and some target image. Usually, motion correction methods assume that the shape
of the head does not change shape. This means that the correction involves only trans-
lations and rotations (rigid - body transformation). However, non - rigid shape changes
can be occur in the brain tissue, for example due to the pulsation of the blood stream.

Coregistration and Normalization

fMRI data provides little anatomical detail. This is problem in the case we want to inter-
pret the analysis results. To overcome this problem we need to map the results from the
obtained fMRI data onto high resolution structural MR images. The process of aligning
structural and functional images is called coregistration [54, 24, 25] and is performed using
a rigid - body or an affine transformation. Also, individual brains have different shapes
and features but there exists similarities between the brains. Normalization [54, 24, 25]
attempts to register each brain anatomy to a common space defined by a template brain
(e.g. the Talairach or Montreal Neurological Institute (MNI) brain). During the normal-
ization non linear transformations are used to match the local features.

Spatial smoothing

It is useful to spatially smoothed the fMRI data prior to statistical analysis. There are
several reasons why there is need to smooth the data. First, small amounts of smoothing
improves the signal to noise ratio. The second reason is that the smoothing improve
the quality of the data for statistical analysis by making them more appropriate for the
model. A common approach to smooth the fMRI data is to blur them with a Gaussian
filter [54, 24, 25]. The disadvantage of spatial smoothing is that we don’t know if the size
of the filter is the appropriate. Also, smoothing can also cause the merging of brain regions
that are functionally different. These problems guide many researchers to investigate ways
of combining spatial information in more sophisticated ways than simple blurring.
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Figure 2.5: An example unfiltered time series from an activated voxel (reprinted from
[24]).

Temporal filtering

Temporal filtering, instead of working in each image, such as the spatial smoothing, works
in each voxel’s time series. The main point of temporal filtering is to remove the unwanted
components of a time series, without damaging the signal of interest. For example, if we
applied a stimulation for 30 sec, followed by 30 sec rest, and this pattern is applied
many times then the signal of interest is close to a square waveform of 60 sec period.
Temporal filtering will attempt to remove components of the time series that are more
slowly (high pass filtering) or more quickly varying (low pass filtering) than this 60 sec
periodic signal. In Fig. 2.5, we show an example time series, decomposed into the various
signal components. Temporal filtering is carried out using linear filters, such as FIR filter
for high pass filtering and a Gaussian filter for low pass filtering [54, 24, 25]. We must
have in mind that most statistical models are applied directly on voxel time series, so
many aspects of temporal filtering can be incorporated into the statistical model [32].

While all the preprocessing steps outlined above are essential to the analysis of fMRI
data, there is need to be a clear understanding of the effects they have on both the
spatial and temporal correlation structure. More generally, it is necessary to study the
interactions among the individual preprocessing steps. For example, is it better to perform
slice timing correction first or realignment, and how this will impact the resulting data
Ideally we want a model for both [108]. In last years there is a growing interest for
generative models that incorporate many multiple steps at once.
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Figure 2.6: The international 10-20 system seen from (A) left and (B) above the head.
(reprinted from [8])

2.4 Electroencephalogram

The electroencephalography concerns the recording and the interpretation of the elec-
troencephalogram. Electroencephalogram (EEG) is a record of the electric signal gen-
erated by the cooperative action of brain cells, or more precisely, the time course of
extracellular field potentials generated by their synchronous action. EEG can be mea-
sured by means of electrodes placed on the scalp or directly on the cortex. EEG recorded
in the absence of an external stimulus is called spontaneous EEG, while if it is generated
as a response to external or internal stimulus will be called event-related potential (ERP).

The EEG recording is obtained through electrodes located on the scalp, where some
of them are used as references. Reference electrodes are either located on the scalp or on
other parts of the body, e.g., the ear lobes. To ensure reproducibility among studies an
international system for electrode placement, the 10-20 international system [9], has been
defined (Fig. 2.6). It is based on anatomical location and on percentage of distance among
these points giving the 10 or 20% in the system name. The original 10-20 system has only
nineteen electrodes but has been extended to accommodate more than 200 electrodes.
In this system the electrodes’ locations are related to specific brain areas. For example,
electrodes C3 and C4 are above the motor cortex. Each EEG signal can therefore be
correlated to an underlying brain area. Of course this is only a broad approximation that
depends on the accuracy of the electrode’s placement.

The electroencephalogram can be roughly defined as the signal which corresponds
to the mean electrical activity of the brain in different locations of the head. More
specifically, it is the sum of the extracellular current flows in a large group of neurons.
It can be acquired using either intracranial electrodes inside the brain or scalp electrodes
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on the surface of the head [9]. The EEG has been found to be a valuable tool in the
diagnosis of numerous brain disorders. Nowadays, the EEG recording is a routine clinical
procedure and is widely regarded as the physiological ”gold standard” to monitor and
quantify levels of drowsiness and wakefulness but also for detection of epileptic spikes and
seizures and generally for the diagnosis of epilepsy [20]. The electric activity of the brain
is usually divided into three categories: 1) bioelectric events produced by single neurons,
2) spontaneous activity, and 3) evoked potentials. EEG spontaneous activity is measured
on the scalp or on the brain. Clinically meaningfull frequencies lie between 0.1Hz and
100Hz. In more restricted sense, the frequency range is classified into several frequency
components, or delta rhythm (§: 0.5-4Hz), theta rhythm (f: 4-8Hz), alpha rhythm (a:
8-13Hz), beta rhythm (g: 13-30Hz), and gamma rhythm (v: 30-60Hz) [9].

The properties of the EEG signal are complex [9, 19], due to the intricate neural
system. Traditionally, the spontaneous EEG is characterized as a linear stochastic pro-
cess with similarities to noise. From the signal processing view, EEG has the following
properties [19]: (a) Noisy and pseudo-stochastic: The EEG is often between 10-300uV,
which is easily affected by various physiological and electrical noises. Meanwhile, arte-
facts from electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG),
and recording systems can also contaminate the signals. Even the EEG shows a high de-
gree of randomness and nonstationarity. (b) Time-varying and nonstationary: EEG is not
a stationary process; it varies with the physiological states. The waveforms may include a
complex of regular sinusoidal waves, irregular spikes/polyspikes, or spindles/polyspindles.
In most pathological conditions, such as epileptic seizures, the EEG may show evident sin-
gularity or nonstationarity. In practice, EEG is considered as a stationary process over a
relatively short period (approximately 3.5sec for routine spontaneous EEG) [18]. (¢) High
nonlinearity: Although the traditional linear models of EEG still play significant roles in
EEG analysis and diagnosis, EEG is a nonlinear process [10]. This kind of nonlinearity
is also time-, state-, and site-dependent [15].

One of the most important challenges of EEG analysis is the quantification of the
manifestations of epilepsy [9, 19]. The main goal is to establish a correlation between the
EEG and clinical or pharmacological conditions. One of the possible approaches is based
on the properties of the inter-ictal EEG (electrical activity measured between seizures),
which typically consists of linear stochastic background fluctuations interspersed with
transient nonlinear spikes, sharp waves or spikes-and-wave complexes [20]. These transient
potentials originate as a result of a simultaneous pathological discharge of neurons within
a volume of at least several mm3. The traditional definition of a spike is based on
its amplitude, duration, sharpness, and emergence from its background [21]. However,
automatic epileptic spike detection systems based on this direct approach suffer from
false detections in the presence of numerous types of artefacts and non-epileptic transients
[20, 21]. This shortcoming is particularly acute for long-term EEG monitoring of epileptic
patients, which became common in 1980s [22, 23]. In Fig. (2.7) we see an EEG segment
contains four epileptic spikes.
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Figure 2.7: EEG signal contains four spikes.

There has also been a challenge to find functional cerebral activation indices for cog-
nitive processes involved in a given task. The EEG is a continuous measure over time and
can be used to study ongoing activity in the brain while subjects perform long-lasting
and/or variable tasks. The alpha rhythm of the EEG is predominantly observed over the
posterior cortex [17]. This rhythm correlates with relaxation, and for this reason it has
been interpreted as a sign of inhibition of activity in the areas over which it has been
recorded. Activation of the cortex causes a desynchronization of the alpha band, i.e. its
amplitude decreases, while alpha synchronization denotes the increase of alpha activity
([13, 12]. When alpha desynchronization or synchronization is related to an internally
or externally paced event, it is called as event-related desynchronization (ERD) [11] or
event-related synchronization (ERS), respectively. The quantification of ERD/ERS re-
quires the comparison of two different experimental conditions. ERD and ERS are defined
as the relative difference in the EEG alpha power between the reference recorded before
each event and the actual event. ERD/ERS is, thus, a 'within-subject’ measure of cortical
activation and is expressed as a percentage. ERD and ERS can be either externally (by
stimuli) or internally (by voluntary behavior) paced and they have a specific topographi-
cal distribution depending upon the state of the brain, stimulus paradigm and modality
[12]. ERD has been observed e.g. during complex auditory stimulation [16], during cog-
nitive and attentional tasks, and during voluntary movement tasks [11]. The ERD/ERS
of the lower alpha frequencies (8-10 Hz) has been claimed to reflect non-specific cognitive
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Figure 2.8: ERD/ERS signal.

functions, such as sustained attention, while that of the upper alpha frequencies (10-12
Hz) appears to reflect stimulus-related, i.e. task-specific cognitive processes. An example
of EEG segment where we wish to find the ERD/ERS phenomenon is shown in Fig. (2.8).

Event-related potentials

Event-related potentials (ERPs) are the changes of spontaneous EEG activity related
to a specific event [145]. ERPs triggered by particular stimuli, visual (VEP), auditory
(AEP), or somatosensory (SEP), are called evoked potentials (EP). It is assumed that
ERPs are generated by activation of specific neural populations, time-locked to the stim-
ulus, or that they occur as the result of reorganization of ongoing EEG activity. The
basic problem in analysis of ERPs is their detection within the larger EEG activity. ERP
amplitudes are an order of magnitude smaller than that of the ongoing EEG. Averaging
is a common technique in ERP analysis; it makes possible the reduction of background
EEG noise. However, assumptions underlying the averaging procedure, namely (1) the
background noise is a random process, (2) the ERP is deterministic and repeatable, and
(3) EEG and ERP are independent, are not well justified. The ERP pattern depends on
the nature of the stimulation, placement of the recording electrode, and the actual state
of the brain. ERPs are usually described in terms of the amplitudes and latencies of their
characteristic waves [176]. In Fig. (2.9) we see two trials of ERPs signal from channel Pz.
The stimuli is presented at the time instant equal to 1 sec. At this time we also observe
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Figure 2.9: Two ERPs signals.

the distortion at the baseline.

2.5 Electrocardiogram and Heart Rate Variability

The electrical activity of the heart can be characterized by measurements acquired at the
cellular level or from the body surface. The electrocardiogram (ECG) describes the elec-
trical activity of the heart recorded by electrodes placed on the body surface. The voltage
variations measured by the electrodes are caused by the action potentials of the cardiac
cells. The resulting heartbeat is recorded to the ECG and consist of a series of waveforms
whose morphology and timing convey information which are used for diagnosing diseases
that are reflected by changes of the heart’s electrical activity. In Fig. 2.10 a segment of
ECG signal and the characteristics of a heart beat are illustrated.

The Heart Rate Variability (HRV) signal is obtained from the electrocardiogram
(ECG) and describes the variations between consecutive cardiac beats. Studies have
shown that this signal originates from the Autonomous Nervous System (ANS) [1]. Also,
the HRV signal is strongly connected to respiration and blood pressure [2]. Thus the HRV
signal can be used as a quantitative marker of the ANS and HRV parameters are used
to evaluate the clinical condition of subjects in normal or pathological conditions. The
HRV analysis methods can be divided into time-domain, frequency-domain, and nonlin-
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Figure 2.11: (a) HRV time series (b) Spectrum of HRV time series

ear methods [3]. The analysis of HRV is performed by studying various measures of the
signal such as the standard deviation between two normal beats (SDNN) and the power
spectral density (PSD) [4, 5]. However, the HRV signal contains artefacts which can be
originate from other physiological processes, such as the breathing pattern of a human,
or technical dysfunctions, such as QRS misdetection [6, 7]. These artefacts distort the
HRYV signal leading in erroneous calculations of various statistical measures. Usually, the
HRYV signal contains two oscillating components, the Low Frequency (LF) components
and the High Frequency (HF) component. The LF component appears in the frequency
range 0.05 - 0.2 Hz and the HF component appears in the frequency range 0.2-0.4 Hz. In
Fig. (2.11) we see an example of HRV time series and the PSD of it.
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2.6 Machine Learning approaches for signal processing

2.6.1 Bayesian inference

Bayesian inference provides a mathematical framework that can be used for modeling,
where the uncertainties of the system are taken into account and the decisions are made
according to logical principles. These main tools are random variables, the probability
distributions and the rules of probability calculus.

Consider a dataset contains N samples, Y = {y, })_,, where we assume a distribution
over them p(y,|6), where 0 is the set of parameters which are unknown and must be
estimated. The choice of this distribution is very important since it must suite with the
nature and particular characteristics of the observations. By assuming independent and
identically distributed (i.i.d.) samples, a classical prcedure for estimating the parame-
ter is through the Maximum Likelihood (ML) framework, where we maximize the joint
probability of measurements, also called likelihood function:

N
L(0) = p(Y']0) = [ [ p(yxl0)
n=1
For analytical purposes, it is easier to work with the logarithm of the likelihood function,
because the logarithm is monotonically increasing, and thus maximizing the log-likelihood
is equivalent to maximizing the likelihood. We can write more formal the ML estimation
procedure as:

N
Oy, = arg méix{logp(YW)} = arg moaXZ log p(yn|0).
n=1

The difference between the Bayesian inference and the ML method is that the former
consider the parameters 6 as a random variable. Then, the posterior distribution of
parameters is computed by using the Bayes’ rule:

p(Y[0)p(0)
p(Y)

where p(f) is the prior distribution, which models the prior beliefs of parameters before

p(O]Y) = (2.1)

we observe any measurement and p(Y') is a normalization constant, independent of the
parameter. In most situations the normalization constant is left out and since the mea-
surements are conditionally independent given the parameters, the posterior distribution

for parameters is written as:

N

p(OY) < p(V10)p(0) = | [T plyalt)]|p(6) (2:2)

n=1

Now, that we have obtained the posterior distribution, we can use the most probable
value as an estimate for parameters (Maximum A Posteriori estimate), which is given
by the maximum of the posterior. Also, a candidate estimate is the posterior mean of
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parameters (MMSE estimate). There are many ways of choosing the point estimate from
the distribution and the best way depends on the assumed loss function [40]. It is easy to
see that ML estimate is equivalent to a MAP estimate when it is assume a uniform prior
distribution over the parameter 6.

The basic components of a Bayesian model is the prior model encapsulating a prelim-
inary knowledge of the shape and the range values of the parameters and the likelihood

as a function.

Prior distribution The prior information consists of beliefs about the possible and im-
possible parameters values and their relative likelihoods before anything has been
seen. The prior distribution is a mathematical representation of this information:

p(0) = Information on parameter 6 before arises any observations.

The lack of prior information can be expressed by using a non-informative prior
[125, 121].

Likelihood function Between the measurements and the parameters there is a noisy or
inaccurate relationship. This relationship is modeled using the likelihood distribu-
tion:

p(y|@) = Distribution of observation y given the parameter 6.

Posterior Posterior distribution is the conditional distribution of parameters given the
observation y and represents the information that we have after the observation y
has been obtained. It can be computed by using the Bayes’ rule:

p(y|0)p(9)
plly) = =5~
p(y)
where the normalization constant is given by:

ply) = / p(y10)p(6)do. (2.4)

In the case we have multiple observations Y = {y,}» | which are conditionally

(2.3)

independent, the posterior distribution becomes:

p(01Y) o | [T p(yal6)]p(6) (2.5

where the normalization term can be computed by integrating the right hand side
over . If parameters are discrete variables then the integration is replaced by
summation.

Predictive posterior distribution The predictive distribution is the distribution of
the new observation yx.:

P(ynlyn, - yw) = /p(YN+1|9)p(9|Y1, e, yw)do. (2.6)

The predictive distribution can be used for computing the probability distribution
of the (N + 1) observation, which has not been observed yet.
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Maximum A Posteriori estimation

In the case we have a prior distribution over the parameters a simple approach is to use the
Maximum A Posteriori (MAP) estimator. The MAP estimator is obtained by performing
the following maximization:

Orrap = arg max{log p(Y'|0) + log p(f)} . (2.7)

This estimator chooses the model with highest posterior probability density (the posterior
mode). This approach provides us with point estimates, which contain the prior informa-
tion, and can be seen as a penalized maximum likelihood estimator in the classical sense
[121]. We can observe that as the sample size goes to infinity, N — oo, the likelihood
function dominates over the prior distribution p(#). Therefore, the MAP estimator is
asymptotically equivalent to the ML estimator [121].

2.6.2 Expectation Maximization (EM) algorithm

The Expectation-Maximization (EM) algorithm introduced by Dempster et al [205] is a
general method to solve ML estimation problems. The EM algorithm is the basis of many
learning algorithms [45]. The objective of the algorithm is to maximize the likelihood of
the observed data in the presence of hidden variables. Let us denote the observed data
by y, the hidden variables by x and the parameters of the model by #. Maximizing the
likelihood as a function of # is equivalent to maximizing the log-likelihood:

L(9) = log p(y|6) = log / p(y. x/0)dx (2.8)

Using any distribution ¢ over the hidden variables, we can obtain a lower bound on L:

log/p(y,XW) = 10g/q(X)de

q(x)
p(y,x[0)
> /Q(X) log de
= /q(X) logp(y,X|9)dX—/q(X) log q(x)dx (2.9)
= F(q,0). (2.10)

The EM algorithm alternates between maximizing F' with respect to the distribution ¢
and the parameters 6, respectively, holding the other fixed.

E-step: g1 < argmax, F(q, 0%) (2.11)
M-step: 0¥ < argmaxy F(qgy1,0) (2.12)

It is easy to show that the maximum in the E-step results when ¢ is exactly the poste-
rior distribution of the hidden variables x, ¢(x) = p(x|y, #¥), at which point the bound
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becomes an equality F(gr,1,0%) = L(0*¥). The maximum in the M-step is obtained by
maximizing the first term in Eq. (2.9), since the entropy of ¢ does not depend on 6:

M-step: 6" « argmgx/p(x|y,9k) log p(y, x|0)dx (2.13)

At each iteration the EM algorithm guarantees that the log-likelihood does not de-
creased, L(0*1) — L(6") > 0. From Bayes’ rule we have that:

log p(x|y,0""") = logp(y,x|0"") — logp(y|0"")
= logp(y,x|0"") — L(0"t") (2.14)

Taking the expectation with respect to ¢(x) = p(x|y, 6%) we obtain:
< logp(x|y,0") >,=< log p(y, x|0"") >, —L(0") (2.15)

since < L(0") >,= L(6"") because L(#""') does not depends from hidden variables.
The same holds for the term L(6"), i.e.

< logp(x|y,0") >,=<logp(y,x|0") >, —L(6") (2.16)
From the above two equation we can obtain:

LO™) - L(#) = — <logp(x|y,0""") >, + <logp(x[y, ) >,
+ < log p(y,x|0"") >, — < logp(y, x|0") >, (2.17)

From the M - step, we have < logp(y,x|0™) >, — < logp(y,x|0") >,> 0. Also, the
difference — < logp(x|y,0"™) >, + < logp(x|y,0") >, is the KL divergence between
the distribution p(x|y, #"*') and p(x|y,#") and is greater or equal to zero. So, in each
iteration of the EM we have L(6"™!) — L(#%) > 0.

The EM algorithm performs the M - step based on the ML estimator. However, we
can change slightly this step to include the prior distribution of the parameters. Based
on the MAP learning approach and the EM algorithm we are able to derive an EM-MAP
algorithm [42] where the M-step of the classical EM is replaced by:

M-step: 0" < arg max { log p(f) + /p(x|y, 0%)log p(y, x|9)dx} (2.18)

2.6.3 Variational Bayesian methodology

Variational Bayesian (VB) methodology is an approximate inference technique that pro-
ceeds by assuming an arbitrary approximation for the posterior distribution and inference
is made using a EM-like algorithm. A brief introduction of the VB methodology follows.
For more information on this subject one can see at [42, 45].
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Assuming an arbitrary distribution for the hidden variables x and the model param-
eters 0 q(x, 6) the log of the evidence or the marginal likelihood can be written as:

logp(y) = / q(x,0) log p(y)dfdx

= /q(x, 0) log (p(y)w)dﬁdx

Py, %.0)
e X0
= [t 0ytog DT v

= /q(x,H)log f](x 0))d9d

+/ (x,0)log (( 9|9)>d9d

= Fg,x,0) + KL(q(x, 0)|[p(x,0ly)). (2.19)

Maximizing F'(¢q,x, 6) is equivalent to minimizing the KL divergence between the true
posterior and the arbitrary distribution ¢(-), which can be used as an approximation to
the true posterior. The variational free energy F'(q,x,0) is evaluated as:

p(y,x,0)
Flq,x,0) = / x, 0) log =22 d0dx
(¢,x,0) q(x,0)log 1.0)

_ . 0) log PY1%: Op(x,0) 1
= /q( ,0) log 1.0 dfd

_ / 4(x, 0) log p(y|x, 8)dfdx

_ / ¢(x, 0) log Zgz ngedx

= < ]_ng(y|xa 9) >Q(x90)
_KL{a(x 0)|[p(x, 0)), (2.20)

where < - >/ ¢) is the expectation with respect to the approximate posterior of the
parameters x and . We mention here that the KL divergence in Eq. (2.19) is between
the approximate posterior of parameters and the true posterior, while in Eq. (2.20) is
between the approximate posterior of the parameters and the prior of the parameters.
The goal in a variational approach is to choose a suitable form of ¢(x,#) so that the
lower bound can be evaluated. In general, we choose a family of ¢-distributions and we
seek the best approximation within this family by maximizing the lower bound. Since
the true log-likelihood is independent of ¢ this is equivalent to the minimization of the
KL divergence. The KL divergence between the two distributions ¢(x, ) and p(x, |y) is
minimized when ¢(x, #) = p(x, 8|y) and, thus, the optimal solution for ¢(x,#) is the true
posterior. This solution does not simplify the problem, so to make progress we consider a
more restricted range of g-distribution. One approach is to consider a parametric form for
q(x,0) such that ¢(x,6, ¢) is governed by a set of parameters ¢ [41]. We then minimize
the KL divergence with respect to ¢, finding the best approximation within this family.
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An alternative approach is to restrict the functional form of ¢(x,8) by assuming that it
factorizes over the component variables in x, 0 [42]:

a(x,0) = q(x) [ J (%), (2.21)

Minimizing the KL divergence over all the factorial distributions ¢(x) and ¢;(6;), we
obtain:

q(x) o< exp < Inp(y,x,0) >q0), (2.22)
qi(0;) o< exp <Inp(y,x,0) >qx)q(04:)5 (2.23)

where < - >, denotes expectation with respect to the distribution ¢(-). The above two
equations consist the VB - E step and VB - M step respectively.

2.6.4 Sampling techniques

As we have seen the Bayesian inference includes calculations of very complicated inte-
grals. A class of methods, that is used to calculate such integrals, is based on sampling
techniques. These methods are applied to the computation of the evidence, the marginal
density and moments and expectations. One such approach is the Monte Carlo integration
method [177, 178].

The Monte Carlo integration method estimates the expectation of a function ¢(y)
under a probability distribution p(y), by taking samples {y™}Y_: y™ ~ p(y). An
unbiased estimate, &, of the expectation of ¢(y) under p(y), using N samples is given by:

~

= / B()p(y)dy

(2.24)

Q
==
(1=
=
%A
2

The Monte Carlo method returns more accurate and reliable estimates the more samples
are taken. In cases where we can not produces samples from p(y), we can use another
probability distribution ¢(y), where we can perform sampling, and correct for this by
weighting the samples accordingly. This method is called importance sampling [177, 178].
The estimator is given by:

= ¢(y)zLy§q(y)dy

q(y
| X
~ 2 wely™) (2.25)
n=1
where w™ are called the importance weights and are given by:
(n)
w® = p<y( )). (2.26)
q(y™)
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Extension of the above approaches is the Markov Chain Monte Carlo techniques [177,
178]. Sampling methods based on the Markov Chains were first developed for applications
in statistical physics. The classic paper of Metropolis [212] introduced what is now known
as Metropolis algorithm. This method was popularized for Bayesian applications in the
influential paper of Geman and Geman [98], who applied in image processing problems.

MCMC is Monte Carlo integration using Markov Chains [177]. As described above,
Monte Carlo integration draw samples from the required distribution, and then forms
sample averages to approximate expectations. Markov Chain Monte Carlo draws these
samples by a more clever way based on Markov Chain. Suppose we generate a sequence
of random variables {xg, 21, - ,zx} such that at each time ¢t > 0 the next sample z;; is
sampled from a distribution k(z;41|z;) which depends only on the current state. We see
that the next state does not depends further form the history of sequence given the current
state. This sequence is called Markov Chain and k(-|-) is the transition kernel of the chain.
It can be shown that after the passing of time the chain will forget the initial state and
the transition kernel will converge to a unique stationary distribution f(-), which does not
depends on time or the initial state [177]. Thus as time increases the samples {z;} will
look like samples from f(-). Assuming that the converge to the stationary distribution is

achieved after m iterations then we can obtain the samples {z;,t = m,--- , N} giving the
estimator:
R 1 N
= . 2.27
b= 3 et 221

Eq. (2.27) show how a Markov Chain is used to compute the expectation when we
have obtain the stationary distribution f(-). Now, the interesting part is how to construct
a Markov Chain where its stationary distribution is precisely our distribution of interest
p().
A useful method for this purpose is the Metropolis - Hastings (MH) algorithm [177].
For the MH algorithm at each time ¢, the next state x;.; is chosen by first sampling
a candidate point y from a proposal distribution ¢(-|z;). The candidate point is then
accepted with probability

M) (2.28)

a(zy,y) = min <1’ p(x)q(y|ze)

If the candidate is accepted then the next state becomes x;,; = y else the chain remains

at the current state, xy,; = 4.

2.6.5 Mixture models

A mixture model is a linear combination of probability density functions of different
sources and it is formulated as:

p(y|©) = mp(yl0) (2.29)
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where K is the number of mixture components, 7, are the mixing weights, p(y|f;) are
the component density functions with parameters 0, and © = {m, 0, }X | is the set of
parameters. Obviously, the component densities may be of different parametric form.
The mixing coefficients 7, must satisfy the constraints:

0<m <1 (2.30)
and
K
d m=1 (2.31)
k=1
Suppose we have a set of observations Y = {y,,n = 1---, N} and we want to model it

with a mixture model. Assuming that the samples are drawn independently the likelihood
of the data is given by:

N K
p(r10) =TT (3 mww(y1on) (2.32)
n=1 k=1
By taking the logarithm we obtain:
logp(Y]©) = Z logz Tp(y |0) (2.33)
n=1

Maximizing the above log-likelihood function is a difficult problem because the logarithm
acts to summation and not directly over the Gaussian density. To overcome this problem
the EM algorithm provides a useful framework for solving the optimization problem.

Let us introduce a binary vector z of dimension K x 1 where a particular element of this
2 is equal to 1 and all others elements are zero. The values of z; satisfy two conditions:
2z € {0,1} and Z,f:l 2z = 1. It is easy to see that there is K different conditions for
the vector z depending to which element is nonzero. The marginal distribution of z is
specified in term of mixing coefficients:

plze =1) =7

Because the z is a binary variable we have

K
z) = H T
k=1
Now, the conditional distribution of y given a particular element of z is:

p(ylz = 1) = p(y|0k)

which can also be written as:



The joint distribution of y and z is given by p(y|z)p(z). Also, we can find the marginal
distribution of y by summing the joint distribution over the z:

= Zp(y|z)p(z) = ZMP(YW)
2 k=1

In the case we have many observations y,,n = 1,---, N, then for every observation y,
there is a corresponding variable z,,. Now, to apply the EM algorithm we must define the
complete data which in our study is the observed data y,,n =1,---, N and the indicator
variables z,,n = 1---, N, which plays the role of hidden variables. The likelihood of the
complete data is:

N K
p({yn,zn}lel{mﬂk}f:l)ZHH ¢y ]0k)]

Taking the logarithm we obtain

N K
log p({yn: zn i [{m 013 (1) = DY zar{log mi + log p(y|0x)}
n=1 k=1
We observe now, that the logarithm acts directly to the distribution, which leads to a
simpler solution. In the E-step we need to find the posterior of the hidden variables,
p{za 3 [{yn}Y_,,00), using the current model parameter values ©0 = {7 91K
Using the Bayes theorem we have:

4 AN 0y _ PUntnsil{zalis 1O D)p{zn}n10)
p({ n}nzl‘{yn n= 1?0 ) ({yn 1|9(t)

H Hk 1 7Tk p(an(t )]Z"k
n=1 1?17% p(xn|9 )

_ HH[ 7rkp}’n|9() )]Z”’“ (2.34)

(t
n=1 k=1 Zk 17Tk p<Yn‘9 )

We can see that the posterior of the hidden variables is a product of N multinomial
distributions and the expectation of hidden variables in that case is given by:

m p(ynw”))
Zk 17Tk p(Yﬂ‘e )

Calculating the expected log-likelihood of the complete data we have:

E{(zuk)} = (2.35)

N K
B,y {logp({yn 2 )i 100} =33 Bz Hlogm + log p(yal6y”)}  (2.36)

n=1 k=1

The M - step of the algorithm consist from the maximization of the above expected log-
likelihood with respect to the model parameters. Assuming that the components follow
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the Gaussian distribution, 9,(:“) = {m,(:H), ZSH)}, and maximizing the expected log-
likelihood of the complete data with respect to model parameters we obtain:

N
1
(t+1)
m{/" = E;E{znk}yn (2.37)
N
S = LS Bl (v — mi) (v — my)” (2.38)
’ Nk n=1
N,
Wz(f+1) _ Wk (2.39)

where N, = 25:1 E{znr}. When we perform the optimization over mixing coefficients,
we must take into account the constraints by using Lagrange multipliers.

2.7 Useful priors distributions for modeling specific properties

2.7.1 Sparse priors

Let assume that we have a vector of weights w = {wy,---,w,} which plays the role
of model parameters. In many situations we aim at obtaining a sparse configuration
of this vector, i.e most of the weights to be set to zero. The sparsity is a very helpful
property, since the processing is faster and simpler in a sparse representation where few
coefficients reveal the information we are looking for. From a signal processing perspective,
the sparsity has found many applications, for example in signal compression and signal
denoising [214]. In Bayesian inference, the sparsity is achieved through sparse priors which
help us:

to automatically adjust the order of the model,

to reduce the complexity of the model and its decision part,

to compute more easily the output of the model since few weights are non zero,

and to determine which components of the model are relevant with the data, which
may be very useful in many applications.

A natural choice of a sparse prior distribution for the weights w is a hierarchical prior
described below. More specifically, the weights w are treated as a random variables that

follow a Gaussian distribution with zero mean and variance ai_l,z' =1,---,p:
p
p(wla) = [ N(0,a;71). (2.40)
i=1

The parameters a; are called hyperparameters and control the prior distribution of the
parameter vector w. Hierarchical priors are often designed using conjugate distributions
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[44]. This happens for analytical eases and because the previous knowledge can be readily
expressed. The empirical Bayes refers to the practice of optimizing the hyperparameters
of the priors, so as to maximize the marginal distribution of the dataset. This practice
is suboptimal since it ignores the uncertainty of the hyperparameters. Alternatively, a
more robust approach is to define priors over the hyperparameters. This leads us to a
full Bayesian model. The prior distribution over each hyperparameter a; is a gamma
distribution:

p(a;) = I'(as; ba,, ca;)- (2.41)

The prior over one weight w; depends on the hyperparameter a;. The ”true” prior is
given by integrating over the hyperparameter:

pw;) = / p(w; | a;)p(a;)da;. (2.42)
Making the above integration we obtain for the parameter prior:

1 w?

(w;) o< (— - _Z)_(caﬁé)
plwi) o< (5= + 3

(2.43)

which is the kernel of a Student-t density. If we allow ¢,, — 0 and b,, — oo then we

obtain the hyperprior:

p(a;) l, (2.44)

a;

which is an noninformative prior[125]. Now, the true prior for one weight, w;, is

p(w;) o ﬁ (2.45)

and for all parameters:

p(w) H 1. : (2.46)

i=1 il
This prior is recognized as sparse due to heavy tail and the sharp peak at zero [34, 157]. In
Fig. (2.12) plots of the Student’s t pdf using v degrees of freedom are shown together with
a plot of the Gaussian distribution. It is easy to observe that most of mass is concentrated
around the point z = 0. Also, as the degrees of freedom are increased the distribution
resembles the Gaussian distribution.
Another way to declare the sparsity over the weights w is to use a Laplacian distribu-

tion over them:

p(w|a) = Ziw eXp{—aZ |w;| } (2.47)

where « is the regularization parameter. However, this prior leads to a nonlinear opti-
mization problem. To overcome this problem we use the Fan’s approximation [158]:

: (2.48)
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Figure 2.12: The Student’s t pdf plots using 0.1, 1 and 10 degrees of freedom.

where |w;| # 0 is a local approximation of |w;|, such that |w; — ;| < e. The quantity € is
a small positive constant. Using the above approximation the prior distribution over the
weights takes the following form:

p(w|a) = ZL exp{—aw’Lw}, (2.49)

w

where L = [ﬁ, |u”)_12\’ R \w_1p|] This prior has been used in [158] for image denoising and
wavelet coefficients thresholding. Also, in the same work an extension, based on the use
of multiple precision components, is presented. Because in most of the cases, priors of
this kind are used in an iterative fashion, we can use as local approximation of |w;|, the

estimated weight |w;| of the previous iteration.

2.7.2 Spatial priors

There are problems where the data are spatially related to each other. A characteristic
example is in the task of image analysis, where, apart from the intensity values, pixels
positions constitute a significant piece of information that must be taken into account.
The Markov Random Field (MRF) is a valuable tool to exploit the spatial characteristics
of an image or the correlation between features in a classification problem. MRFs have
found many application in image analysis, i.e. image denoising,image segmentation, and
machine learning, i.e. classification and clustering problems.

In an MRF, the sites in S, where S is the set of sites, are related to each other via a
neighborhood system, which is defined as N' = {N;,i = 1,--- , N}, where N is the set of
sites neighboring i, i ¢ N; and i € N; & j € N;. A random field X said to be an MRF
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on S with respect to a neighborhood system AN if and only if

P(x)>0,xe X (2.50)
P(zi|lzs—gy) = P(zi|zn,) (2.51)

Note, the neighbourhood system can be multi-dimensional. The above property means
that the probability in the site i depends only from the neighborhood (local characteristics
of the field). It is easy to observe that the MRF is a generalization of the Markov process
in which the time index is replaced by the space. According to the Hammersley-Clifford
theorem [100], an MRF can equivalently be characterized by a Gibbs distribution. Thus,

P(x) = %exp{—U(X)} (2.52)

where
Z=> exp{-U(x)} (2.53)
xeX
is a normalizing constant called the partition function, and U(x) is an energy function of
the form
Ulx) =) _Velx) (2.54)
ceC
which is a sum of clique potentials V.(x) over all possible cliques. A clique ¢ is defined
as a subset of sites in S in which every pair of distinct sites are neighbours, except for
single-site cliques. The value of V.(x) depends on the local configuration on clique ¢. For
more detail on MRF and Gibbs distribution see [100].
The properties of the distribution with respect to the neighborhood depends from the
functional form of the potential function V.(x) [104]. An important special case arises
when we consider cliques up to size two. Then the energy function takes the form:

Ux) =Y Vi(z)+ Y Y Valayzy). (2.55)

i€S €S ilEM

The first summation . ¢
moment is excluded for the subsequent analysis. The interesting part is the second sum-

Vi(z;) does not include any spatial information and for the

mation ), ¢ > v, Va(®i, 7y) which includes spatial information through the inner sum-
mation. The potential function Va(z;, 2, ) specifies the relation between x; and z,. In the
literature many functional forms of this potential have been proposed, see for example
[104]. A widely used function for this potential is:

Valirs,a0) = (i — )" (256)

Another function, which is robust to outliers, is:

B 1
It

(wi—z )2

Va(wi, ;) (2.57)
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Figure 2.13: MRF example: Given the grey nodes, the black node is conditionally inde-

O

pendent of all other nodes.

2.8 Transform - based signal processing

The purpose of a transform is to describe a signal or a system in terms of a combination
of a set of elementary simple signals (such as sinusoidal signals) that lend themselves to
relatively easy analysis, interpretation and manipulation. Transform-based signal pro-
cessing methods include Fourier transform, Laplace transform, z-transform and wavelet
transforms. The most widely applied signal transform is the Fourier transform, which is
effectively a form of vibration analysis, in that a signal is expressed in terms of a combina-
tion of the sinusoidal vibrations that make up the signal. Fourier transform is employed
in a wide range of applications, including popular music coders, noise reduction and fea-
ture extraction for pattern recognition. The Laplace transform, and its discrete-time
version the z-transform, are generalizations of the Fourier transform. The wavelets are
multi-resolution transforms in which a signal is described in terms of a combination of ele-
mentary waves of different durations. The set of basis functions in a wavelet is composed
of contractions and dilations of a single elementary wave. This allows non-stationary
events of various durations in a signal to be identified and analyzed.

A transform is an operation that performs on a signal. Also, a transform can have
an inverse, which restores the original values and it can be thought of a different way of
representing the same information. A natural question is, Why would we do this? One
answer is so that we can analyze the transformed signal, for example to compress it. The
discrete cosine transform have been used effectively to alter a signal for storing it in a
compact form. Sometimes transforms are performed because things are easier to do in
the transformed domain.
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2.8.1 Fourier transform

Under mild conditions, the Fourier Transform describes a signal z(¢) as a linear superpo-
sition of sines and cosines characterized by their frequency f:

x(t) = / X (f)eItaf (2.58)

where

X(f) = / x(t)e It dt (2.59)

are complex valued coefficients that give the relative contribution of each frequency f.
Equation (2.59) is the continuous Fourier Transform of the signal z(¢). It can be seen as

an inner product of the signal x(¢) with the complex sinusoidal functions e=?7/t i.e.
X(f) =< x(t),e 2t > (2.60)
Its inverse transform is given by Eq. (2.58) and since the mother functions e/t are

orthogonal, the Fourier Transform is nonredundant and unique.

2.8.2 Wavelet transform

A wavelet family 1), is a set of elemental functions generated by dilations and translations
of a unique admissible mother wavelet 1 (t):

ey (2.61)

Yaplt) = lal 20 (—

where a,b € R, a # 0, are the scale and translation parameters respectively. The mother
wavelet is limited in time domain, has zero mean and is normalized. As a increases the
wavelet becomes more narrow and by varying b, the mother wavelet is displaced in time.
Thus, the wavelet family gives a unique pattern and its replicas at different scales and with
variable localization in time. The continuous wavelet transform of a signal z(t) € L*(R)
(finite energy signals) is defined as the correlation between the signal and the wavelet
functions 1, i.e.

o0

Wya(a,b) = [a] 3 / (1)

—00

t—a

Jdt =< x(t), Yoy > (2.62)

where * denotes complex conjugation. Then, the different correlations < x(t), 1., >
indicates how precisely the wavelet function locally fits the signal at every scale a. Since
the correlation is made with different scales of a single function, instead of with complex
sinusoids characterized by their frequencies, wavelets give a time-scale representation.

The inverse wavelet transform is:

| e [ L t—ay . d
x(t):C—w/O /_Oowwx(a,b)|a| 51) b“)dba_‘; (2.63)
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where

|\ 2
Cy = / de < 00 (2.64)
0 W

U(w) is the Fourier Transform of the mother function (%).

The above wavelet transform is called Continuous Wavelet Transform because can
operate at every scale, from that of the original signal up to some maximum scale that
is determined by trading off our need for detailed analysis with available computational
power. Calculating wavelet coefficients at every possible scale is time consuming. How-
ever, if we choose scales and positions based on powers of two then our analysis will be
much more efficient and just as accurate. We obtain such an analysis from the discrete
wavelet transform (DWT) [151].

The general scheme of Transform - based signal processing methods is illustrated in
Fig. (2.15). First the signal is transformed into the new domain through the transform
matrix A. Then, in the new domain coefficients an operation, linear or non-linear f(-),
is performed. After that, the modified coefficients is transformed back into the original
domain. For example, in wavelet denoising approach the signal is transformed into the
wavelet domain and a thresholding operation is performed over wavelet coefficients which
are transformed back into the original domain producing the new signal with the desired
properties. Transform-based methods have been found many applications in biomedical
signal processing [144].

2.9 Principal Component Analysis

Principal Component Analysis (PCA) is a tool in modern data analysis, where its ap-
plication range from neuroscience to computer graphic. It is a simple, non-parametric
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Figure 2.15: General scheme of Transform-based methods

method for extracting useful information from complex dataset. PCA help us to reduce
the complexity of the original dataset and to reveal the structures that underlie it. It is
also known as the Karhunen-Loéve transform [45, 129]. In PCA we seek a linear trans-
formation of the original dataset into a new dataset, where principal components with
larger associated variance represent important structure of the dataset.

Consider the dataset of observations y,,,n = 1,---, N, where y,, is a vector of dimen-
sion D x 1. The goal in the PCA is to find a projection of the data onto a space with
smaller dimensionality than the original, M < D, while at the same time the variance of
the projected data is maximized. First, we consider the projection onto a one dimensional
space. We can define the direction of this space using a vector u; of dimension D x 1 with
the constraint u] u; = 1 (i.e. is the unit vector). Each data point is then projected onto
the new space given the value uly,. Now the variance of the projected data is given by

N
1 _ _
Var(u{}’n) - N Z(U{Yn - u{X)T(u{Yn - u{)’) = u{zul
n=1
where § = -y, is the mean of the data and ¥ = ~(¥n — ¥)"(yn — §) is the data
covariance.
Now, we want to maximize var(uly,) with respect to u; subject to the constraint
T o .
uyu; =1, 1ie.

max u; Xu; s.t. uju; = 1.
u

Introducing the Lagrange multiplier A\; and performing the resulting unconstrained max-
imization we obtain the solution:
2111 = )\1111.

It is easy to see from the above equation that the vector u; is an eigenvector of the
covariance matrix ¥ and A; the corresponding eigenvalue, which is also the variance
of ul'y,. So, to obtain the maximun variance the vector u; must be the eigenvector of
matrix 3 with the largest eigenvalue. We continue in the same way to introduce additional
components until to use M eigenvectors, having in mind that each new direction maximize
the projected variance, as before, while is orthogonal to the directions that have been
already added. The appropriate choice of M is a difficult problem, however there are two
simple approaches to choose M. The first approach is to choose M such that a large
fraction d of the total variance is taken into account. Usually, the d is between 70% and
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90%. The second approach is to examine the eigenvalue spectrum and see if there is a point
where the values fall sharply before stay at small values [175]. We see that PCA is related
to eigendecomposition of a matrix, which is symmetric and positive definite. When these
properties are violated then the Singular Value Decomposition could be used to obtain a
similar procedure. Finally, there is an extension of PCA based in probabilistic formulation
of the problem [45]. This extension gives us the ability to determine the dimension, M,
of the new space in a more flexible way by adopting the Bayesian Framework. Also, the
use of EM algorithm provides us with an efficient approach in term of computational
complexity, especially in high dimensional spaces [45]. As expected PCA has long history
to the analysis of Biomedical Signals. It has been used for EEG monitoring [174], ERP
analysis [120] and fMRI data analysis [47].

2.10 Independent Component Analysis

Consider the dataset of observations y,,n =1,---, N, where y, is a vector of dimension
D x 1, we have D signals observed in time points n. In ICA we assume that each vector
yn is a linear mixture of K unknown sources:

X, = As,

where the matrix of mixing coefficients A is unknown. The goal in ICA is to find the
sources s, or to find the inverse of matrix A. The sources are independently distributed
with marginal distributions p(s,) = pi(sg)). Following [152], we derive the ICA under
the ML principle, where we assume that the number of observed signals is equal to the
number of sources, K = D. The probability of the observations and sources given the
matrix A is:

N

p<{YHaSn}7]¥:1‘A> = Hp(yn‘sn,A)p(Sn)

= H 0(yn — Asy)p(sn)

n=1
Performing the marginalization with respect to the sources we obtain the likelihood func-

tion for a single data point x,,:

1 _
p(ya|A) = WP(A V)
D

= prZ Ay

The log-likelihood of the mixing coefficients is:

K D
=log [W|+) logp()_ Wyl (2.65)

i=1 j=1
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where we have made the convention W = A To find the optimum matrix W we

maximize the log-likelihood with respect to it. The gradient is given by:

dl _
W (W +zy,

where we have define a; = Zle Wijy,(lj), o(a;) = dk’%;(zi)) and z; = ¢(a;). We can see that
parameters a; are the reconstructed sources. Since, we want to maximize the likelihood

we adapt the matrix W by making small steps of the form:
AW < (W 1T 4 2yl

Until now, we have not discuss the function ¢ which defines the assumed prior distribution
of sources. A popular choice is to use the tanh function. To conclude, the algorithm to
find the independent components has three steps:

e Calculate an estimation sources through the mapping: a = Wx.
e Calculate a nonlinear mappping of the estimated sources z; = ¢(a;).
e adjust the matrix W through AW oc [W1T + zy ™.

The above exposition of the ICA is based on the ML principle, however similar algo-
rithms for ICA can be obtained by adopting other criteria for the independence. A useful
introduction in ICA is presented [147], where a fast algorithm to perform ICA is also
given. As expected Bayesian formulations of ICA - like model are presented to the liter-
ature [150, 148, 149]. From the perspective of biomedical signal processing the ICA has
found many application among them to study the brain dynamics through EEG signals
[118, 119] to identify the activated brain’s areas in fMRI analysis [48] and to estimate the
ERP signal from the EEG measurements [146]. A overview of ICA applied to EEG data
is shown in Fig. (2.16). First the EEG data are decomposed in independent components,
then by visual inspection some of these components are removed since contain artefacts
(for example eyes blink), and finally the artifact-free EEG signals, is obtained by mixing
and projecting back onto the scalp channels selected non-artifactual ICA components.
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Figure 2.16: Schematic overview of ICA applied to EEG data. (Figure reprinted from
[119] )
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CHAPTER 3

STATISTICAL MODELS FOR SEQUENTIAL DATA

Sequential data arise in many fields of engineering, physics and statistics. The data may
either be a time series, or a sequence generated by a 1-dimensional spatial process, e.g.,
biosequences. One may be interested either in online analysis, where the data arrives in
real-time, or in offline analysis, where all the data has already been collected. Also, the
analysis of dynamic phenomena is a common problem related to sequential data. A time
varying system can be represented through a dynamic model, defined by an observable
component and unobservable state. The hidden state represents the desired information
that we want to extrapolate.

In this chapter, we provide material related to the linear regression model. More
specifically, the various components of the linear model, such as the design matrix and
the weights (or regression coefficients), are described. In addition, information about
the state-space model is provided. The state-space model is an extension of the linear
model, which help us to include into our analysis data that have dynamic nature or arise
sequentially. Finally, the autoregressive model is described. This model help us to analyze
the correlation structure of a time series.

3.1 General Linear Model (GLM)

In the General Linear Model (GLM), the observations y = {yi,- - ,yn} of an experiment
are described as a linear combination of some predictors given by the equation:

y=®dw+e. (3.1)

where ® is the design matrix of size N x p and it is assumed to be known for the
problem under study, w is the vector of weights of the linear combination and has size
p x 1 and e is the additive noise assumed to be zero mean and Gaussian distributed,
p(e) = N(0,C_'), where C_! is the inverse precision (covariance) matrix. The form of
this matrix defined the properties of the additive noise. Usually, we assume that the error
samples are independent and identically distributed (i.i.d), in that case a simple approach
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is to assumed C_! = AI. Also, more general forms can be used such as a diagonal precision
matrix, where we use for each observations y, a separate precision \,. This form of the
precision matrix help to use in indirect way more useful distributions such as the Student
- t distribution [138]. Finally, the autoregressive (AR) model can be alternatively used
to describe the autocorrelation between the error samples, where it can be written in the
general form of the additive noise.

3.1.1 Design matrix

In this section the role of the design matrix and the various form of it will be described.
The design matrix has the following general form:

P1(x1)  ga(x1) - Bp(xa)
B B 2

P1(xn) Pa(xn) o0 Pp(xn)

where {x,}Y_; are the input variables and ¢;,7 = 1,---,p are the basis functions, both,
the input variables and the basis functions, are assumed to be known. According to the
linear model described previously each observation vy, is described as a linear combination
of p basis functions:

Yn = ij¢j(xn) + En = wTd)(Xn) + €n. (33)
j=1

We see that the basis functions describe the relationship between the observations and the
input variables. In the literature many forms for the basis functions have been proposed.
In the case where a linear relationship between the observations and the input variables
is assumed then the basis functions take the form ¢(x,) = x,,. It is important to observe
here that, by using non linear functions we allow the model to be also non linear to the
input variables while we keep the linearity with respect to the weights.

One possible choice is to use polynomial basis functions where the basis function has
the form of powers of the input variables, i.e. ¢;(z) = z7. One other choice of basis
functions is the Gaussian basis functions

6w) = exp { ~ L1 (3.4)

252

where p; are the locations of the basis functions in the input space and s* their scale.
Another possibility is the sigmoidal basis function of the form:

T — I

where o () is the logistic sigmoid function given by:

B 1

~ 1+exp(—a)’

o(a) (3.6)
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Finally, another possible set of basis functions is the Fourier basis functions and the
wavelet basis functions. The construction of the design matrix is not restricted only to
the approach that we have described previously. The design matrix can have many other
regressors (columns of the design matrix) related to the problem under study as we will
see in latter chapter of this thesis.

3.1.2 Maximum Likelihood (ML) parameter estimation of the GLM

Assuming that the noise follows white Gaussian distribution, i.e. e ~ N(0, AI), then the
likelihood of the observations y is given by:

plyw. ) = (o) e { - Dy - ewl) (3.7

Based on the above formulation, the training of the GLM becomes a maximum likelihood
(ML) estimation problem for the regression model parameters © = {w, A}, in the sense
of maximizing the log-likelihood function given by

N A
Lun(©) = logply;w, ) = { 5 log A — Slly — @wl|*} . (3.8)

Setting the partial derivatives of the above function. with respect to the parameters,
equal to zero, the following update rules for the model parameters are obtained

w = (®7®) ey (3.9)
A = N (3.10)
ly — ®w|]* '

We want to mention here that we have make the assumption that the matrix ®7® is
invertible, which this is happened only when the design matrix ® is of full rank. A
practical solution to this problem is to use a few columns on the design matrix which
means that only few weights will be estimated.

3.2 State-Space Models

A useful family of models to study sequential data is the state-space model. In any state-
space model three components play the most important role: the initial density p(w;), the
transition density of the states p(x;|w;_1) and the observation density p(y;|w;). Suppose
that the densities are the same for all time. There are many state-space models, the
most known are the Hidden Markov Models (HMMs) and the Kalman Filters (KF). A
state-space model is a model of how w; generates y; and w;;; and our goal is to infer
Wit = {W1, W, -, Wi} given yiy = {y1,¥2, ", ¥}

A graphical representation of a state-space model is illustrated in Fig. (3.1). In next
two sections we will present the HMM and the KF. Also, in the KF model an inference
procedure is provided for the states estimation.
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5

Figure 3.1: Graphical representation of a state-space model.

3.3 Hidden Markov Models

Consider a system which may be described as being in one of a set of NV different states,
1,892, ,Sn as depicted in Fig. (3.2). At discrete times, the system changes state (it
can also remain in the same state) according to a set of probabilities associated with the
state. We denote the time points, where the state changes, ast = 1,2, - -, also we denote
the state at time ¢ as ¢;. A full description of the system requires the current state as well
as all previous states. However, in our exposition we will use only the first order Markov
chain, which means that the current state and the previous state are used to describe the
system:

P(q = sjla; = si, q4—2 = 5k, -+ ) = Pqr = sjlq; = si) (3.11)
Furthermore we only consider those systems that the right hand side of (3.11) is indepen-
dent of the time, i.e. the state transition probabilities does not change with time. The
state transition probabilities aj; has the form

aij = P(g = sjlq-1 = 5i),1 <i,j <N. (3.12)
Since the a;; are probabilities they subject to the following constraints:
aij Z 0

N
Zaij = 1

J=1

The above stochastic model is an observable Markov model since the output of the
process is the set of states at each time instant and each state corresponds to an observable
event. We will try to explain the above statistical model through an example. Probably
the reader is familiar with foootball games. When a team plays a game the outcome (or
observations) is being one of the following:

e State 1: Draw (D)
e State 2: Loose (L)

e State 3: Win (W)
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Figure 3.2: A simple Markov Model with 3 states.

In a year a team plays a number of games. Let us assume that we are at game number ¢
and that the matrix of state transition probabilities is

04 0.3 0.3
A={a;} =102 06 02 (3.13)
0.1 0.1 0.8

Given that the outcome of the game 1 (¢ = 1) is Win we can ask the question: What
is the probability that the team’s results for the next 7 games will be "W-W-D-D-W-L-
W?”?7 This question can be stated more formally as: What is the probability to observe
the sequence o = {s3, s3, s3, S1, 51, S3, S2, S3} given the model M. This probability can be
evaluated as:
P(o|M) = P(s3, 83,83, 51, 51, 83, 52, 53| M)

= P(s3]s2)P(sa|s3P(s3|s1)P(s1|s1)P(s1|s3)P(s3|s3)P(s3|s3)P(s3)

= (2303201301103103303373

= (0.2)(0.1)(0.3)(0.4)(0.1)(0.8)(0.8)1

= 1.536 x 107"

where 7; are the initial state probabilities:
7Tz:P<Q1:31);1§Z§N

In the above Markov model, the state corresponded to an observable event. This model
is too restrictive to be applicable in many problems. Hidden Markov Model (HMM) is an
extension of classical MC, where the states are not deterministic but are stochastic
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Figure 3.3: Graphical representation of a Hidden Markov Model.

A hidden Markov model is a bivariate discrete time process {o, s, },t > 0, where s; is a
Markov chain (sequence of states) and, conditional on this Markov chain, o; is a sequence
of independent random variables such that the conditional distribution of 0; only depends
on s;. The dependence structure of an HMM can be represented by a graphical model as
in Fig. (3.3). According to the above, the complete likelihood of a sequence of length T’
is given by:

T

p(01,05, -+ 07,51, 52, -+, s7) = p(s1)p(or|s1) [ [ p(silse-1)plors1) (3.14)
t=2

where p(s1) is the prior probability of the first state, p(s;|s;_1) denotes the transition prob-
abilities from state s;_; to s, and p(o|s;) are the emission probabilities for each symbol at
each state. We can find the probability of observing the sequence 01,09, -, or by sum-
ming over all possible hidden state, p(O = {01, 09, -+ ,0r}) = ZQ:{SI’S%___’ST} (0, Q).

A HMM is described by the following features:

e the number of states in the model,S = {S, S5, -, Sn}
e the number of different observations symbols (alphabet), V' = {vy,v9, -+ ,on

o the state transition probabilities, A = {a;;},ai; = P(qi11 = sjlq = s;) and 3, a;; =
1

e the emission probabilities in state j, C' = {c;i},c;r = p(vilsj)
e the initial state probabilities 7;, pi; = P(¢1 = s;),1 <i < N and >, pi; = 1

A complete specification of a HMM requires specification of the number of hidden states
and observation symbols, and the specification of the three probability measures, A =
(A,C, 7). In the HMM literature there are three basic issues:

Problem 1 Given the observation sequence o and a model A, how we efficiently compute
the likelihood P(o|)\) (forward backward algorithm).

Problem 2 Given the observation sequence o and the model A\, how do we define the
most probable path of states (Viterbi algorithm).
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Problem 3 How do we estimate the model parameters A\. Under the ML estimation
framework the Baum - Welch algorithm can be applied. Also, an alternative frame-
work is the EM algorithm which reach the same update rules for model parameters.

Extensions of HMMs are presented in [156]. The HMMs have found many interesting ap-
plications in biomedicine, especially in bioinformatics [153, 154]. An extension of HMMs,
when we have continuous evolution, is the Kalman Filter, which is presented at the next
section.

3.4 Kalman Filters

The Kalman Filter (KF) is a powerful tool in the analysis of the evolution of a dynamical
model in time. The filter provides with a flexible manner to obtain recursive estimation
of the parameters, which are optimal in the mean square error sense. The properties of
KF along with the simplicity of the derived equations make it valuable in the analysis of
signals. In this section an overview of the Kalman Filter, its properties and its applications
are presented.

The Kalman Filter is an estimator with interesting properties like optimality in the
Minimum Mean Square Error (MMSE). After its discovery in 1960 [160], this estima-
tor has been used in many fields of engineering such as control theory, communication
systems, speech processing, biomedical signal processing, etc. An analogous estimator
has been proposed for the smoothing problem [161], which includes three different types
of smoothers, namely fixed-lag, fixed-point and fixed interval [162, 163]. The difference
between the two estimators, the Kalman Filter and the Kalman Smoother, it is related
on how they use the observations to perform estimation. The Kalman Filter uses only
the past and the present observations to perform estimation, while the Kalman Smoother
uses also the future observations for the estimation. This means that the Kalman Filter
is used for on - line processing while the Kalman Smoother for batch processing. The
derivations of these two estimators is presented in [40, 164, 165]. Both estimators are
recursive in nature. This means that the estimate of the present state is updated using
the previous state only and not the entire past states. The Kalman Filter is not only an
estimator but also a learning method [45, 164]. The observations are used to learn the
states of the model. The Kalman Filter is also a computational tool and some problems
may exist due to the finite precision arithmetic of the computers.

The Kalman Filter and the Kalman Smoother have been extensively used in biomedical
signal processing. The general idea is to propose a model for the observations, in most
cases linear, where some parameters must be estimated. To be able to apply the Kalman
Filter or the Kalman Smoother the model for the observations must be written in a
state-space form. A state-space model is represented by two equations: One equation,
which describes the evolution of the parameters, and another equation, which describes
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the relation of the parameters with the observations:

W = Awt_1+vt (315)
yi = Cwite (3.16)

These two equations represent a state-space model. In the above model w; is the states
vector in time t of dimension p x 1, y; is the vector of observations of dimension M x 1,
v; is the state noise with zero mean and covariance matrix C,, e; is the observation
noise with zero mean and covariance matrix C, , A is the state transition matrix of
dimension p x p and C is the observation matrix of dimension M x p. All the noise
processes are assumed to be independent between the time instants. In the above model
the matrices A and C are assumed to be known, as well as the covariance matrices C,
and C,. However, in reality we are not able to know exactly the above matrices. In that
case some assumptions are considered for the model. For example we can assume that
the evolution of the parameters is a random walk procedure [166], i.e. A = I, where
I is the identity matrix, or we restrict the matrix A to be a diagonal one [170]. Also,
these matrices can be estimated through an estimation procedure like the EM algorithm
(168, 169].

In [167] the authors proposed a non linear model for the electrocardiogram (ECG)
signal. They use the model for ECG denoising and compression. To estimate the model
parameters they use a modified version of the Kalman Filter, the Extended Kalman
Filter (EKF) [165]. In [171] the authors use the Kalman Filter to detect and extract
periodic noise from the ECG. In [172] they assumed that the Evoked Potentials in the
Electroencephalogram can be represented as a linear combination of basis functions. The
coefficients of the basis functions are assumed to change with time. This assumption lead
to the use of the Kalman Filter to estimate the coefficients of the basis functions.

Besides these applications of the Kalman Filter and the Kalman Smoother for Biomed-
ical Signal Processing, there is a particular application which has been attracted special
interest, especially because at the end a time varying spectrum is obtained. This applica-
tion concerns the use of parametric models such as the AR and ARMA models. The time
varying autoregressive (TVAR) model is an AR model where the AR coefficients evolve
in time. The parametric spectrum analysis is used to overcome the limited frequency res-
olution of FFT based methods. The spectral density can be calculated at each frequency
point using the model parameters. The TVAR model has been used for EEG spike de-
tection [170], for time varying - spectrum estimation of Event Related Synchronization
(ERS) and Desynchronization (ERD) [168], for the calculation of coherence in the analysis
of biomedical signals such EEG and ECG [84] and for time varying spectrum estimation
of intracranial pressure signals from patients with traumatic brain injury [173]. In the
above studies the TVAR coefficients have been estimated using the Kalman Filter or the
Kalman Smoother, while in [168] the EM algorithm is used to estimate the parameters of
the model.

The Kalman filtering problem is stated as follows:
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Figure 3.4: Graphical representation of the Kalman Filter.

e Use the entire observed data, Y = {yi,y2, - ,¥x} , find for each £ > 1 the
minimum mean-square error estimate of the state wy.

The problem is called filtering if ¢ = k, prediction if ¢ > k and smoothing if 1 < ¢ < k.
The joint probability distribution of states and observations is given by:

T
p(yilswily) = p(w)p(yilw) [ [ p(yilwi)p(wilwi ) (3.17)
=2
and a graphical model for the above factorization is given in Fig. 3.4. We can see that is
the same model as in the case of HMM.
The MMSE estimator of w; based on observed data Y can be calculated sequentially
using the following set of equations:

W1 = Awyg, (3.18)
Py = ATPy_A+C,, (3.19)
K, = PuC"(C.+C"Py_,C)7 ", (3.20)
wye = Wy + Ki(yr — Cwya), (3.21)
Py = (I—-KC)Py_;. (3.22)

with initial condition wyjo = p and Pjo = X, where p and ¥ are the initial conditions for
the states. For more information on how these equations have been derived the interested
reader can look in [40, 165]. Of course the above set of equations is not in the most
general form. Extensions can be made by letting the state and transition matrices to be
time varying, as well as the covariance matrix of the noise processes.

From these equations we can observe how the Kalman Filter is working. To estimate
the current state wy; a prediction step to obtain the predictive state wy;_; based only on
the previous state w;_j,—; is performed. After that a correction step takes place using
the present observation y; and the predictive state. Also, we can observe that the update
equation for the covariance matrix Py is calculated as the difference of two matrices. This
can lead to numerical problems and destroy the symmetry of the matrix. To avoid these
problems the update equation of covariance P, can be replaced with the so called Joseph
form [163]:

Py = (I — K,C)Py1(I — K,C)" + K,C K/ . (3.23)
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3.4.1 Kalman Smoother and EM

Until now we have present the solution to the filtering problem. However, in some cases
we have all the available data, Y = {y1,y2, -+ ,yx}, before the estimation of states. In
that case we deal with the smoothing problem.

Jt—l = Ptfl\tflATPt_,lut,la (324)
Wik = W1+ J1(Wioig — AW1p-1), (3.25)
Pk = P+ Jia(Pyx — Pt\tfl)Jt:I:y (3.26)

The derivation of those equations is explained in [165]. The equations of Kalman Filter,
together with the above smoothing equations, consist the Kalman Smoother. In general
to apply the Kalman Filter or the Kalman Smoother to a model, we must write the
model in a state U space form. After that the above equations can be applied easily.
However, there are several parameters which are assumed known before the application
of the update equations. These parameters are the covariance matrix of noise processes,
C. and C,, the state transiotion matrix A, the observation matrix C' and the initial
conditions, p and X, i.e. 0 = {C,,C,, A,C,u,x}. To find the model parameters 6
the EM algorithm can be used, where the states consist the hidden variables. The EM
algorithm is an iterative scheme consisting of two steps, the E-step and the M-step. In
the E-step the expected values of the hidden variables are evaluated and in the M-step the
maximization is performed with respect to the model parameters. To perform the E-step
the expected complete log-likelihood, £ = 5{ log p(Y, Wi.k|K); 9|Y}, must be calculated.
The expected likelihood depends on three quantities:

Wik = 5{wt|Y}, (3.27)
St,t—1|K = g{th£1|Y} = Pt,t—1|K + thngll‘K' (329)

The first two quantities can be calculated using the Kalman Smoother equations, while
for the calculation of the last quantity we can use the following equation:

Py k= Ji1Pyk- (3.30)

The joint log - likelihood of the complete data {wq, {w;, y;} <} can be written as:
1 _ 1
£ o= —&{wo— WS (wo )} — S log 3]

K

_ L Te-1(q _ K
;S{Q(yt Cw,) ' C. (y; — Cwy) } 5 log |C|

K
1 K
_ Zg{é(wt — Aw,)TC (w, — Awt,l)T} — S loglCy|  (331)
t=1

53



The M - step involves direct differentiation of £ with respect to the parameters 6. The
estimates for model parameters # are given by:

N N .
Apew = [Zst,t—HN} [Zst—HN} (332)
t=2 t=2

T
1
C, = N_1 ; <St\N — AnewSti—1 N — St,t—1|NAz;ew =+ AnewSﬂNAz;ew) (3.33)
N N .
Cnew = [ZYth\ﬁN} |:Z St\N:| (334)
t=1 t=1
|
Ce = N Z(YthT - Cnewwt\NYtT) (335)
t=1
Wy = Wiy (3.36)
¥ = Pyn (3.37)

The EM algorithm is consisted of two iterative steps. First applied the Kalman Smoother,
using the parameters from previous step, to obtained the expected statistics, and then
maximize the expected log - likelihood with respect to the parameters. These two step
applied iteratively until the convergence of the likelihood.

3.5 AR and ARMA models
3.5.1 AR model

The autoregressive (AR) model is used in a diverse area of applications such as data fore-
casting, speech coding and recognition, model - based spectral analysis, signal restoration
and biomedical signal processing and analysis. The AR model is also known as linear
prediction model [113]. With the AR model we assume that the observed data have been
generated by the difference equation:

p

yln] = alkly[n — k] + e[n], (3.38)
k=1
where y[n] is the observed data, e[n] is the driving noise, and the a[k] are the AR coeffi-
cients. The driving noise e[n] is a zero mean white noise process with variance o2, and p
is the order of the model. This model is usually abbreviated as AR(p). When the model
of y[n] is an AR(p) model then the Power Spectrum Density (PSD) is given by [159]:

0.2

PAR(f) = ‘1 _ ;ZZl ae[k]efjgﬂ-fﬂg' (339)

Thus, to find the PSD of an AR model we need to know the AR coefficients as well as
the variance of the driving noise.
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It is useful to derive the probability distribution of the AR model in more compact
form since this will help us to include the AR model in probabilistic models more easily.

For a signal block of N samples [z[0], z[1],-- ,z[N — 1]] the N error equations can be
written as:
el ][ owlol ] [ w1 wl=2h w3l e ylepl ] [alo]]
e[l] yl1] y[0] yI=1] =2 y[l =l all]
3 | = wB | —| vl y[0] y[=1] y[2 =7l al3]
elN=1]  WIN-1]  WwIN-1 y[N=2] y[N=3] --- y[N—p—1]] Lalp],
(3.40)
where [y[—1],y[—2],y[-3], - ,y[—p]] are the initial conditions. The above set of equa-

tions can be written in vector/matrix form:
e=y — Ya. (3.41)

The pdf of the signal y given the AR coefficients and the initial conditions is equal to
the pdf of the driving noise e. Assuming that the driving noise follows a white Gaussian
distribution with zero mean and variance o the pdf of the signal y is given:

p(yla) = ( ! )m exp{ - 2(172 (y — Ya)'(y — Ya)}- (3.42)

2
2mo;

The Eq. (3.40) can be written in an alternative form as

eﬂ —alp] fa[p[;]l} faH 1[ | 0 0 O Eq[fp] |

e[l 0 —a - —al2] —all 1 0 O —p+1

[ e[3] ]:[ 0 0 o —al2 —afl] 1 - o] [Z[—;H}] (3.43)
1

e[N—1] 0 0 0 - —ap] —afp—1] - —a]

In vector/matrix notation we have:

e =Ay. (3.44)
Using the above equation we can write the pdf of the signal x in an alternative form:
(vla) = ( ! )m { L yTATA } (3.45)
a) = — . .
p(y 2moz)  OPUT 552V y

The above two versions of the AR process pdf will be used latter in this thesis.

3.5.2 ARMA model

An extension of the AR model is the Autoregressive Moving Average (ARMA) model. In
this model the time series is described:

p q

yln] = alklyln — K]+ bllleln — 1] + e[n]. (3.46)

k=1

It is easy to see that this model has two parts, the AR part and MA part, hence the name
ARMA. In the above equation p is the order of the AR part and ¢ is the order of the MA
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part. This model is usually abbreviated as ARMA(p,q). When the model of y[n] is an
ARMA(p, ¢) model then the PSD is given by [159]:

_ o (L 3L, bie

P — - .
ARMA(f) Oc ‘1 — ZZ:1 a[k]e—g%rfk‘Z

(3.47)

3.6 Gaussian Processes

A Gaussian process is a generalization of the Gaussian probability distribution. Whereas

a probability distribution describes random variables which are scalars or vectors (for

multivariate distributions), a stochastic process governs the properties of functions. A

Gaussian process is a collection of random variables, any finite number of which have a
joint Gaussian distribution [179].

A Gaussian process is completely specified by its mean and covariance functions. We

define mean function m(x) and the covariance function k(x,x) of a real process f(x) as:

m(x) = E{f(x)}, (3.48)

k(x,x) = E{(f(x) =m(x))(f(x) —m(x))}. (3.49)

where x is the input vector and £{-} denotes the expectation. A Gaussian process can

be writen as:

f(x) ~ GP(m(x), k(x,x)) (3.50)

The random variables represent the value of the function f(x) at location x. Often,
Gaussian processes are defined over time, i.e. where the index set of the random variables
is time.

The linear regression model can be seen as a GGaussian process. Assume that we have
f(x) = ¢(x)Tw where over the weights we have the prior w ~ N(0,%,). Then for the
mean and the covariance we have:

m(x) = E{f(x)}=d(x)E{w} =0, (3.51)
k(x,x) = E{(f(x) —m(x)(f(x) —m(x))} = E{f(x)f(x)}
= px)E{ww Ip(x) = p(x)Sud(x). (3.52)

3.7 Bayesian networks

Bayesian inference is fairly simple when it involves small number of variables. However,
it becomes much more complex when we want to do inference with many variables. In
such problems the Bayesian networks provide a solution by adopting the Markov condi-
tion in order to represent the problem in a more efficient way. Bayesian networks are a
combination of two areas: graph theory and probability theory.

A Bayesian network is a specific type of probabilistic graphical model called direct
acyclic graph (DAG), where all the edges of the graph are directed and there are no
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Figure 3.5: A Bayesian network.

cycles. It is a graphical model that efficiently encodes the joint probability distribution
for a large set of variables. More formally, a Bayesian network for a set of variables
x = {z1, %9, -+ ,x,} consists of a network structure S that encodes a set of conditional
independence assertions about variables in x, and a set P of local probability distributions
associated with each variables. Together, these components define the joint distribution
for x. The nodes in S are in one - to - one correspondence with the variables in x. Given
the structure S, the joint distribution for x is given by:

n

p(x) = [ [ p(z:lpaz:)

=1

where pa(z;) denotes the parents of variable z;. The joint probability of all variables is
the product of the probabilities of each variable given its parents.

In Fig. 3.5 a Bayesian network is depicted. The set of edges is E' = {(x2, 71), (72, x3) }.
This is a DAG since there are no undirected edges and cycles. Further, since x; and x,
are conditionally independent of each other we have:p(x;|z2, x3) = p(z1|zs). Similar con-
clusions can be drawn about the variable x,. Finally, the joint distribution, as factorized
by this Bayesian network, is given by: p(z1, za, x3) = p(z1|x2)p(x2)p(23]22).

There are three main tasks concern a Bayesian network: 1) inferring unobserved vari-
ables, 2) learning the model parameters and 3) learning the structure of the network.
Efficient algorithms exist that perform inference and learning in Bayesian networks [45].
Also, Bayesian networks are used to model sequences of variables (e.g. speech signals or
protein sequences), in that case are called dynamic Bayesian networks. Bayesian networks
have recently been introduced as a tool for determining the dependencies between brain
regions from fMRI data [215, 216].

3.8 Statistical analysis of fMRI time series

After the preprocessing of the fMRI data to meet the requirements of model assumptions,
the statistical analysis is performed. In the statistical analysis, there is need to describe
the data and based on this description to make a decision about the state of brain regions
(activated or not). In the literature two approaches are use to for the description of the
data. The first is the model -based approach, where a generative model is used to describe
the data. The learning task is to estimate the model that optimally fit the data. These
approaches use mainly the Generalized Linear Model (GLM) [26]. The second approach
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is data driven and to this approach the Independent Component Analysis (ICA) and the
Principal Component Analysis (PCA) [47, 48, 49] belong. The data driven approaches
do not assume a particular model. The general idea of PCA and ICA approaches is
to decompose the dataset in principal or independent components and then to find a
empirical relation of components with the activated area. However, the need to explore
whole datasets leads to high computational costs. On the other hand, the model based
approaches make an assumption for the generative model. Usually, they require less
computational effort. In this thesis the generative model approach is adopted.

3.8.1 Modeling the response to the stimulus

In this section, we will describe the model for the brain response in the presence of a
stimuli. In most cases the relationship between stimuli and BOLD response, z(t), is
modeled using a linear time invariant (LTT) system, where the stimulus, s(¢), acts as the
input to the system and the HRF, h(t), as the impulse response function. So, the BOLD
response can be written as:

x(t) = /000 h(u)s(t — u)du. (3.53)

In the literature there exist many works which are concerned with the finding of the HRF.
These works includes convolutive models, temporal basis functions, FIR models and non
linear models [24, 25]. However, a simple and elegant approach, which is justifies by many
studies [26, 24, 28], is to model the HRF with the difference of two gamma functions. This
formulation of HRF captures the small dip after the HRF return to zero.

3.8.2 Data analysis

After the determination of the HRF and hence the BOLD signal, the time series of a voxel
can be described by:
y=®dw+e. (3.54)

where y is the N x 1 vector of voxel’s time series, ® is a known design matrix of size
N x p depending from the experiment, w is the p x 1 vector of magnitudes response (or
regression weights since we have a linear regression model) and e is the N x 1 vector of
noise.

After the determination of the model, we need a method to obtain estimates of weights
w. A useful, simple and widely accepted approach is the method of Ordinary Least
Squares (OLS) [40]. In this method the weights w are found by minimizing the residuals
sum-of-squares. In that case the estimates w are obtained by:

w=(®7®) 1oy . (3.55)

We want to mention here that we have make the assumption that the matrix ®7® is
invertible, which it is if, and only if, the design matrix ® is of full rank. Also, for the
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Figure 3.6: An example of statistical map.

GLM, the LS estimates are the ML estimates, and are the Best Linear Unbiased Estimates
(BLUE) [40]. Tt can be shown that the parameters estimates are normally distributed: if
the design matrix is of full rank then W ~ A (w,o?(®7®)~!). This result will be used
latter in the detection analysis.

After the estimation procedure, we need to use a statistic to explore the existence of
an effect or not (activation or not). In neuroimaging studies two statistics have been used
extensively: the t-statistics and the posterior distribution [53], which are based on the
classical and the Bayesian approach, respectively.

In the classical approach the estimate of the parameters w is used to calculate a
t-statistic for each voxel. The t-statistic is defined as:

c'w

t= W’ (3.56)
where w is the estimate of the parameters w, Cg is the covariance of the estimate w and
c is the contrast vector which specifies particular differences between the parameters w.
Then, these values of t-statistic are mapped on one brain image to produce the statistical
parametric map (SPM) [54]. An image of t-values from an acoustic experiment is shown in
Fig. 3.6. We can observe in this example that large values of t-statistic are concentrated
at the auditory cortex, something that we expect due to the acoustic stimulus.

Under the Bayesian perspective, we can create maps of the brain based on the posterior
distribution. A map of the activation regions on the brain can be obtained by computing
the posterior probability that a voxel is activated or the probability that an effect is
greater than some threshold value. Once, we obtain the mean and the covariance of the
posterior distribution of the parameters w, we can calculate the posterior probability,
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given the effect size 7, using the following equation:

7—ch‘sr)

VeI Cge
where U(-) is the normal cumulative distribution function (CDF), while W and Cgy are the
mean and the covariance of the posterior distribution of the parameters w. Then, these

pp=1- \If( (3.57)

values of posterior probabilities are mapped on one brain image to produce the posterior
probabilities map (PPM) [54]. The major difference between the two statistics is that the
t - statistic has uniform specificity over all voxels [28]. For the OLS estimates of weights,
we have Cg = 0?(®7®)~! for both procedures, SPM and PPM.
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CHAPTER 4

EEG SPIKE DETECTION USING KALMAN
FILTERING T'ECHNIQUES

4.1 Introduction

In this chapter we present a methodology for epileptic spike enhancement in electroen-
cephalographic (EEG) recordings. The proposed approach takes advantage of the non
stationarity nature of the EEG signal using a time varying autoregressive (TVAR) model.
The time varying coefficients of AR model are estimated using the Kalman Filter. The
results show considerably improvement in signal - to - noise ratio and significant reduction
of the number of false positives. The general procedure of our approach is shown in Fig.
(4.1). The EEG signal is fed to a KF, then on the output of KF a detection procedure
is performed to provide us with a desicion. An EEG signal which contains four spikes is
shown in Fig. (4.2).

Electroencephalography (EEG) is one of the clinical tools used in diagnosis, moni-
toring and management of neurophysiological disorders related to epilepsy. Epilepsy is
characterized by sudden recurrent and transient disturbances of mental function and/or
movements of body due to excessive discharge of brain. The presence of epileptiform
activity in the EEG confirms the diagnosis of epilepsy which sometimes can be confused
with other disorders producing similar seizure - like activity [60].

During the seizures (ictal activity) the scalp EEG of patients who suffer from epilepsy
is usually characterized by high amplitude synchronized periodic waveforms reflecting ab-
normal discharge of a large groups of neurons. Between, before or after seizures (interictal
activity), the EEG might contain occasional epileptiform transient waveforms. As a re-
sult relatively short recordings can still be useful in the diagnosis of epilepsy [61]. These
transient waveforms, isolated spikes, sharp waves and spike wave complexes are clearly
distinguished from background activity. More specifically, spikes are defined as having
duration from 20 - 70 ms, while sharp waves have duration from 70 - 200 ms. On the other
hand, spike and wave complexes are defined as spikes followed by slow waves and have
duration from 150 - 350 ms [62, 63]. Throughout this paper, no distinction is made among
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Figure 4.1: General Procedure for epileptic spike detection.
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Figure 4.2: EEG signal which contains four spikes.

spike, sharp waves and spike - wave complexes and therefore they are collectively termed
spikes. In general, the detection of epilepsy includes visual scanning of EEG recordings
for spike by an experienced EEGer. This process, however, is time consuming, especially
in the case of long recordings [62, 64]. In addition, the detection of epileptiform activity
in the EEG is far from straightforward due to the variety of morphology of spikes and
their similarities to waves which are part of the background activity and to artefacts (i.e.
muscle activity, eye blinking activity, etc.) [21].

Several methods for spike detection have been proposed based on single and multi-
channel approaches. Those methods can be classified into five categories: (a) methods
based on traditional recognition techniques, known as mimetic techniques [65, 66, 67],
(b) methods using template matching algorithms [68], (¢) methods based on parametric
approaches [69], (d) methods based on artificial neural networks (ANNs) [61, 62, 63, 64,
70, 71, 72, 73, 74, 75, 76] and (e) methods utilizing knowledge-based rules [64, 77, 78, 79].
The methods belonging to the first category imitate the visual analysis followed by an
expert. In particular, the features of EEG waveforms, such as duration, slope, sharpness,
and amplitude, are compared with values which are provided by the experts. In the second
category template matching is used for a priori known spike waveforms. The user selects
manually spikes from a set of test data, which are averaged to create a template. Recent
approaches use wavelets. The EEG signal is filtered using wavelets to obtain features of
the signal energy which are used in the detection of spikes. The methods belonging to the
third category assume local stationarity of the background activity and use single-channel
or multichannel predictive filtering. Spikes are detected as deviation from stationarity.
Implicit in these approaches is that non-stationarity behaviour comes only from Spikes.
In the fourth category ANNs are used to recognize patterns, which are learnt by the net-
work during the training phase. Supervised and unsupervised ANNs have been used in
the diagnosis of epilepsy, either to study sleep behaviour, to detect seizures, to predict
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seizures or to classify and analyze waveforms in the EEG recordings. The majority of
the methods, mainly those belonging to the first two categories treat single channel data
only. In the fifth category, knowledge-based reasoning in addition to the above mentioned
methods is widely used. This arises from the need to incorporate knowledge of the experts
which takes the form of rules including temporal rules. Essentially, the spike detection
problem can be simply transfered to the detection of the presence of spikes in the multi-
channel EEG recording with high sensitivity and selectivity. That is, a high proportion
of true events must be detected with a minimum number of false detections.

Thus, a balance must be obtained between having high sensitivity and high selectivity.
It is relatively easy to adjust system parameters to obtain performance where all spikes
are found in a given patient but this would usually be accompanied by an unacceptably
large number of false detections. On the other hand, it is also relatively easy to have a
system with very low false detection rate but then this would usually be accompanied
by an unacceptably large number of missed events. Many researchers argue that it is
better to have a high sensitivity, minimize missed events and suffer more false detections
which can be checked by the EEGer rather than missing events altogether. If we look at
the system from the point of view of minimizing the number of false detections then the
number of missed events will increase. However, if possible spikes can be enhanced prior
to the use of a spike detector it should be possible to increase the sensitivity minimizing
missed events, while maintaining the selectivity at a satisfactory level.

Thereby, a spike enhancer would not be a detector but would simply aim to enhance
anything vaguely spike like. This means that real spikes, as well as spike like artefacts
and background will be enhanced, i.e. a large number of unwanted waveforms will be
enhanced along with real spikes. This is quite acceptable as long as the spike detection
system has high selectivity. To our knowledge, there exist only a few methods that per-
form spike enhancement. James et al. [80] make use of multireference adaptive noise
cancelling (MRANC) in which the background EEG on adjacent channels in the multi-
channel EEG recording is used to adaptively cancel the background EEG on the channel
under investigation. In addition, adaptive noise cancelling has been applied to enhance
somatosensory evoked potentials [81] and in cancelling the presence of EOG in the EEG
[82]. The above methods assumed that EEG signal is a stationary one. However, it is well
known that EEG contains non - stationarities. In chapter we propose a novel method for
EEG spike enhancement, which combines the AR model with the KF.

4.2 Methodology

4.2.1 Time - Varying Autoregressive Model

Let the vector y be the one channel EEG signal. We assume that the EEG can be modeled
by an autoregressive model (AR). In general, AR model found many applications in EEG
analysis [83, 84], although EEG is a nonstationary signal. It can be described with the
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following equation:
p

y(t) = s(i)y(t —i) +v(t), (4.1)

i=1

where p is the order of the model, s(i) the AR parameters, y(¢) the observations and v(t)
the Gaussian noise with zero mean and variance o2 ji.e. v(t) ~ N(0,0?). Since the EEG
is non - stationary signal we let the AR parameters to vary in time:

se(D)y(t — 1) + v(t), (4.2)

Ms

=1
or in vector notation:

y(t) = C(t)"s(t) +u(t), (4.3)

where C(t) = [y(t — 1),y(t — 2),---,y(t — p)]T is a pxl vector containing the p past
observations. The vector s(t) = [s;(1),- -, s;(p)]” contains the AR parameters and varies
in time according to:

s(t) = As(t — 1) + w(?), (4.4)

where w(t) is Gaussian noise with zero mean and covariance (). This describes an autore-
gressive model for the EEG signal with time varying coefficient in a state - space form.
To estimate those coefficients we use the Kalman Filter approach (as described in chapter
3), which provides us with the set of equations:

§t71(t) _ Agtfl(t _ 1), (
Ptt_l — APtt—llAT + Q, (
§'(t) = §H )+ EMB(yH) - CH)'s (- 1)), (
P = (I-K@®)C®)" )P/, (
K(t) = PTICHR+CH)PTCM) (

i N
© o0 g O ot
—_— — ~— — —

where R = o%. The signal that is used to the detection procedure is z(t) = C§'(¢),t =
1,---,T.

4.2.2 Detection step

After the KF step, peaks from the output of the filter which are higher than a predefined
threshold are considered as an indication of the existence of an epileptic spike at that
location in the time series. In any spike detection algorithm the threshold is optimized
to minimize missing of true peaks, while keeping the number of falsely detected peaks
within a reasonable limit. For the proposed method the threshold value is chosen as:

Th = )\% tzl b(y,) (4.10)

where b(y;) is a segment of background EEG activity, NV is the length of the segment and
A is a scaling factor.
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Table 4.1: The characteristics of the EEG segments used in the evaluation of our method-
ology

Patient | Duration (sec) | # Epileptic Spikes
patient 1 60 44
patient 2 20 31
patient 3 20 35
patient 4 20 18
patient 5 30 25
patient 6 20 19
patient 7 20 9
patient 8 30 17
patient 9 30 47
patient 10 20 16
patient 11 40 16
patient 12 40 24
patient 13 40 32

4.3 Experimental results

4.3.1 Dataset description

All EEGs were recorded by placing electrodes on the scalp according to the International
10-20 system [85]. Sixteen channels were recorded from five bipolar montages where each
electrode is referenced to an adjacent electrode. The EEGs are acquired while the patient
is awake but resting and include periods of eyes open, eyes closed, hyperventilation and
photic stimulation. Amplification was provided by Medelec Profile EEG machine. In
order to reduce undesired noise, the recordings were sampled at 256 Hz and bandpass
filtered from 1.6 - 7T0Hz with 12 bit resolution. Our methodology was tested on the EEG’s
of 13 patients who were diagnosed with epilepsy or were under evaluation at the University
Hospital of Toannina, Greece. Segments of EEG were chosen from each patient, containing
spikes identified by an expert neurologist who had access to the full multichannel EEG
i.e. could rate spikes based on spatial and temporal contextual information. Table 4.1
summarises the EEG characteristics of each patient.

4.3.2 Choice of the parameters

Special attention must be paid in the choice of parameters entering our methodology.
Those parameters are: the variance of observation noise, the variance of the state noise,
the order, p, of the time varying AR model and the matrix A. The form of matrix A
reflects the correlation of coefficients between them and between different time instants.
We assume that there is no correlation between the coefficients in time instant n, with
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those in time instant n — 1. In addition, we assume a low degree of correlation between
AR coefficients in adjusted time instants. Thus, the diagonal elements of A must have
values << 1. We choose matrix A as:

0.1 --- 0
A= : .o
0 --- 0.1
The order of the AR model is p = 15 [69]. The variance of the observation noise, R,

is R = 1.5 x (mean absolute value of the EEG signal). The covariance matrix, @, of the
the state noise is chosen as:

0.1 --- 0
0 --- 0.1

Those values appeared to give the best results and have been chosen after long exper-
imentation. In all experiments the raw signal has been normalized in the range [—1, 1].

4.3.3 Evaluation

Theoretically SNR at time ¢ is defined as the ratio between the amplitude of the signal
at time ¢ and the standard deviation of the noise. Such a time dependent definition is
not particularly useful in neurophysiology, where SNR can be viewed as a single number
which characterizes the noisiness of a spike train. In our problem the signal and noise
are represented by the spikes and the background EEG, respectively. So SNR can be
defined as the ratio of the peak-to-peak value to the root mean square (RMS) value of
the background EEG for a number of samples on either side of the spike, excluding the
spike itself (Fig. 4.3).

The spike is initially identified by the location of its maximum peak. A typical duration
of 135 ms is assumed for a spike, which corresponds to 35 samples at a sampling rate
256 samples per second. The minimum sample within the range +17 samples from the
maximum peak is chosen to be the minimum peak of the spike and the peak - to - peak
value Sy, is calculated accordingly. Finally, 35 samples (135 ms) on either side side of a
32 sample spike are chosen to describe the background EEG and its RMS value, Bryss,
is calculated. Thus, SNR. is defined as:

SNR = S (4.11)

Brus
Using this SN R definition the primary performance index used is the percentage increase

in SN R defined as:
in efined as SNR... — SNR.,

SNRold

where subscripts "old” and "new” refer to before and after filtering respectively.

ASNR =

-100%, (4.12)
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Figure 4.3: The SNR is defined as the ratio of peak-to-peak amplitude of the spike to the
RMS of 35 samples on either side of the spike

Table 4.2 shows the average achieved increase of SNR for each patient. We can see
that the proposed approach enhances considerably the epileptic spike with respect to
background EEG activity. Fig. 4.4 depicts a segment of raw EEG signal, which contains
a noisy spike, the signal after KF processing and the signal after AR processing. It is
clear that in this case the AR processing produces a noisy signal, which make hard the
detection of the spike. In contrast, the KF efficiently cancels the background activity
and noise to produce a clear spike. Fig. 4.5 depicts spikes with low amplitude, compared
to background activity. As we observe the KF was able to clearly distinguish the low
amplitude spike (third and fifth spike) from background activity in contrast to AR. A
different situation can be seen in Fig. 4.6. In this case we observe that the raw EEG
signal contains spikes that are close to each other. The output of AR processing is noisy,
especially in the time points from ¢ = 800 — 1000.

A spike enhancer would not be a detector but would simply aim to enhance anything
vaguely spike like. The aim of a spike enhancer is to maximize the selectivity (i.e. to
decrease false detections). The lack of a proper definition of a spike other than ” transients”
clearly distinguished from background activity means that what constitutes the ideal spike
varies. Using the above definition and making use of expert’s knowledge we select as
scaling factor A = 1.5.

In Fig. 4.7 the signal before and after preprocessing is shown, as well as the attenuation
of the background process after the application of KF. By a more carefull investigation of
the signal after processing we can observe that the false detections have been considerably
reduced.

The performance of our methodology is evaluated in terms of specificity and sensitivity.
Table 4.3 shows the four possibilities which exist for each decision made by the system.
In the case of a true positive the system identifies an EEG segment as spike which was
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Table 4.2: Comparison of average ( % ) increase in SNR between Kalman Filter and
inverse AR filtering

Patient | Kalman Filter | Inverse AR Filter
patient 1 111.89 28.33
patient 2 58.14 24.71
patient 3 53.05 16.27
patient 4 63.53 -12.56
patient 5 139.06 30.12
patient 6 163 32.52
patient 7 145.45 -7.07
patient 8 44.97 21.38
patient 9 373.54 -11.58
patient 10 58.48 28.27
patient 11 167.23 -11.2
patient 12 221.13 -12.62
patient 13 137.85 26.96
Average 133.64 11.81
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Figure 4.4: (a) raw EEG signal (b) signal after KF processing (c) signal after AR pro-
cessing
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Figure 4.5: (a) raw EEG signal (b) signal after KF processing (c) signal after AR pro-
cessing
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Figure 4.6: (a) raw EEG signal (b) signal after KF processing (c) signal after AR pro-
cessing
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Figure 4.7: (a) raw EEG signal and (b) signal after KF processing

Table 4.3: Confusion Matrix
System = spike System = no - spike

Label = spike | True Positive (TP) | False Negative (FN)
Label = no-spike | Fasle Positive (FP) | True Negative (TN)

annotated such as by the expert. A false positive is the detection of a spike which is
annotated as normal by the expert. A false negative indicates that the system has missed
a spike. Finally, in the case of a true negative the system and the expert both agree that
the EEG segment is normal. In table 4.4 the results from the detection procedure are
shown. As we can see the use of a spike enhancer decreases the false detections.

In Fig. 4.8 the Power Spectral Density of an EEG segment using Welch’s averaged,
modified periodogram method with window length equal to 512 is shown. As we can see
in Fig. (4.8a) the signal before KF enhancement exists a lobe in the frequency range from
50 - 80 Hz. This frequency range corresponds to EEG components that are irrelevant
to the spike components. The application of KF in the EEG signal attenuates these
components as we observe in Fig. (4.8b). Based in this observation we can conclude that
the application of KF corresponds to a low pass filter.

Table 4.4: Detection Perfomance
FN| FP | TP

without enhancer | 38 | 1425 | 295
with enhancer 49 | 680 | 284
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Figure 4.8: (a) PSD before KF preprocessing and (b) PSD after KF preprocessing

4.4 Discussion and Conclusion

In this chapter we have presented a methodology for EEG recordings spike enhancement.
It is based on the assumption that EEG consists of an underlying background activity,
which is assumed to be stationary, and superimposed transient non - stationarities. The
method uses a time varying AR model for the enhancement of spikes. The parameters
of the model are estimated by Kalman filter. The use of time vaying AR model enhance
spikes. The sensitivity of the detection process was increased compared to the case without
any preprocessing stage, i.e. when the raw EEG is used as input in detection stage.
However, further analysis is required for the classification of the enhanced transients into
epileptic spikes or other events.

Using the time varying AR model allows the EEG to be modeled as a time - varying
process. Using this formulation we are able to enhance existing spikes and other events
which are similar to spikes. Usually the published works on spike detection use a pre-
processing stage to enhance spikes in EEG recordings [62]. However, only in [80] spike
enhancement is explicitly addressed. They use Multireference Adaptive Noise Cancelling
(MRANC). The EEG on nearby channels in the multichannel EEG recordings is used
adaptively to cancel the background activity. The MRANC uses spatial and temporal
information to enhance the spikes but as reported in [80] the presence of signal crosstalk
between the primary and reference channel affects its performance. Another factor affect-
ing MRANC is the correlation between the noise source in different channels. In contrast,
our method uses the temporal information and the time varying nature of EEG compo-
nents to enhance the spikes. With the use of the Kalman Filter we are able to suppress
the background activity. Issues related to the correlation between noise or signal crosstalk
do not enter the proposed approach.

One factor affecting the performance of our method is the variance of background
activity compared to the amplitude of the spike. Spikes having similar amplitude with
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Figure 4.9: (a) Raw EEG segment (b) EEG segment after processing

the background EEG are supressed. This is shown in Figure 4.9, where a spike exists in
t = 400 and its amplitude is less than the background activity. This happens because
apart from the spike detection on a single channel itself, other contextual information
is also used by the expert when he classifies events as epileptic or non epileptic. This
information is related to other channel activity which takes places at the same time. The
proposed method doesn’t take advantage of the spatial information but "inspects” each
recording channel individually.

Our future work will focus on the use of such information in making the final diagnosis.
Specifically, the use of multichannel information guides us to extend the Kalman Filter
to the multichannel case. Another approach is the use of spatial combiner which utilizes
the epileptic spikes across channels to detect the presence of epileptic events. However,
such information must be included in an automated diagnosis system. More specifically,
Kalman filtering must be applied in multichannel recordings. Alternatively, diagnosis
must be assisted by a module which combines information about epileptic spikes from
different channels.
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CHAPTER 5

BIOMEDICAL SIGNAL DENOISING USING THE
VARIATIONAL BAYESIAN APPROACH WITH
APPLICATIONS TO ERP ESTIMATION AND

HRV ANALYSIS

5.1 Introduction

In this chapter a Bayesian approach is proposed for the removal of the noise in biomedical
signals. The biomedical signal is assumed to be smooth and it is observed with additive
noise. The smoothness over the signal is achieved through a capable smoothness prior,
while the statistics of the noise are unknown and must be estimated. The estimation is
based on an hierarchical approach. The hyperparameters, which contain the degree of
smoothness of the signal and the noise statistics, and the signal, are estimated using the
Variational Bayesian (VB) Methodology. Results for single trial Event Related Potential
(ERP) estimation are presented. The performance of the proposed method is evaluated in
simulated and real ERP data and compared to the well known wavelet denoising approach
and the Generalized Cross - Validation (GCV) criterion. The use of the proposed method
results in a 4% increase in the classification rate. Also, the proposed method is used to
estimate and remove the trend from Heart Rate Variability (HRV) signals.

Biomedical Signal Denoising attempts to improve one or more perceptual aspects of the
signals corrupted by noise [110, 111]. Denoising is refereed to the process of recovering the
clean signal from noisy observations. The removal of noise is a crucial step for any system
which processes biomedical signals. The accuracy of all subsequent steps, e.g. detection,
classification, etc., strongly depends on the quality of the noise reduction process. For
example in [170] the authors use signal enhancement techniques for the detection of spike
waves in the Electroencephalogram (EEG). However, signal denoising is not only met in
biomedical signals. Denoising of a signal in a noisy environment can be employed for other
types of signals such as speech signals [113]. In general, Signal denoising is related to the
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Figure 5.1: Raw EEG signal ( or noisy ERP signal) and the estimated ERP signal using
the wavelet denoising approach.

type of noise, the way the noise interacts with the signal and the number of available
channels. To understand better the process of denoising we present an example based
on the single trial ERP analysis. The ERP is the electric activity of the brain due to a
stimulation. The measured responses can be considered as a combination of the brain
activity due to stimulation plus the brain activity not related to the stimulation. The
ERP is usually considered as transient - like smooth waveforms which are dominated by
low frequencies [172]. A common approach to denoise the single trial ERP is to construct
a filter and filter out the unwanted contribution of the on-going background activity of
the brain. Digital filters can be used for this purpose. However, this approach presents
two major drawbacks. First, the spectrum of the ERP must be completely known and
secondly, the spectrum of the EP and the noise are usually overlapped. In this case the
Wiener filter can be used. Using the Wiener filter the covariance matrix of the EP and
the noise must be known a priori. The covariance of the noise can be estimated from EEG
segments before the stimulation. However, the estimation of ERP covariance is a difficult
task. Now, the problem is to proposed an accurate model for the covariance matrix of
ERP. In our method we propose a simple and elegant structure for the covariance matrix
of the clean signal through the prior distribution. In Fig. (5.1) a trial of EEG signal is
shown. This EEG signal was obtained during the presence of a stimulus and can be also
called the noisy ERP signal, since contains the EEG activity due to the stimulus plus the
EEG activity unrelated to stimulus. The goal of denoising an ERP signal is to remove
the irrelevant EEG activity and to recover the ERP signal. In Fig. (5.1), the recovered
ERP signal using the wavelet denoising approach is shown.

Two general approaches are followed in biomedical signal denoising. The first is the
model-based approach, where a model is used to explain the data. The model is fit to
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the data and the model parameters are estimated. The wavelet denoising [114, 115] and
the linear model [116, 117] belong to this approach. The second approach is data driven
and to this approach the Independent Component Analysis (ICA) [118] and the Principal
Component Analysis (PCA) [120] belong.

In this chapter the model-based approach is adopted and the linear model is used due
to its simplicity and its analytical expressions. The linear model finds many applications
in biomedical signal processing, since, it has been used in the analysis of fMRI data [26]
and in the estimation of Event Related Potentials (ERPs) [116]. When the linear model
is used in a problem we face two problems. The first is related to the design matrix
which is used and the second to the use of "best” parameters of the linear model. In
most cases the design matrix is determined by the problem under discussion. Finding
the optimal parameters values is related with the estimation framework. Two general
schemes can be applied. The classical inference framework and the Bayesian inference
framework [40]. In our approach we adopt the Bayesian framework since we can use prior
knowledge in the estimation procedure through the prior distribution. In the Bayesian
framework the most valuable quantity is the posterior distribution. In some cases the
posterior distribution cannot be evaluated analytically and approximation techniques can
be used such as the Variational Bayesian (VB)[45, 42], the Empirical Bayes (EB), the
Laplace Approximation [45] and the Markov Chain Monte Carlo (MCMC). However, in
the Laplace approximation the Gaussian assumption is based on the large data limit
and the obtained posterior is poorly represented for small datasets, besides that we need
many operations to compute the derivatives of the Hessian [42]. Similarly, in the MCMC
methods the number of samples required for accurate estimates is infeasible large [42].
In addition, the absence of a global measure to ascertain whether the Markov Chain has
reached equilibrium is a problem [42]. On the contrast the VB methodology is an efficient
computational method since it results in closed form solutions and a universally accepted
criterion exists to stop the process, which is the convergence of the variational bound.
There exist similarities between the VB and EB methodologies, but the EB methodology
results from a ML estimation procedure [45, 121].

In this chapter we present a method for the recovery of a biomedical signal which is
observed in noise. The model we use is the additive one. To obtain a meaningful solu-
tion we need to impose some restrictions about the signal smoothness. The smoothness
property is often used in biomedical signal processing, for example in [50] for fMRI data
analysis, in [117] for ERP estimation and in [122] for the detrending of Heart Rate Vari-
ability (HRV) signal. In the Bayesian framework this property can be embedded through
the use of a capable prior distribution [123, 124]. For the noise two cases are considered:
the white Gaussian and the colored Gaussian noise. To estimate the various quantities of
this model the VB methodology is used. The innovation of our work is related to the way
we estimate the smoothness of the signal and the statistics of the noise. The proposed
method provides with simultaneous estimation of the signal smoothness and the noise
statistics within the same estimation framework. This feature avoids the visual tuning of
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the smoothness parameter as it is proposed in [122]. Also, for the smoothness parameter
we obtain a posterior distribution in contradiction to [117, 50] where point estimates for
the smoothness parameter are provided through the GCV criterion. Finally, the trans-
formation of the resulting equations into the Fourier Domain, using the Discrete Fourier
Transform (DFT), provides with efficient computational algorithms. What makes our
approach different from others [117, 50, 122] is that all model parameters are estimated
simultaneously into the same estimation framework. This is described for two cases: (a)
white Gaussian noise and (b) colored Gaussian noise.

The chapter is organized as follows. First, the Bayesian model is described. Second,
the VB methodology is applied to obtain the posterior distributions of the model. Next,
the proposed algorithms are applied in simulated and real datasets. In the simulated
datasets, first the numerical simulations and the evaluation metrics are described. After
that, a comparison of the proposed algorithms with the Generalized Cross U Validation
(GCV) approach and the wavelet denoising is performed. In the real datasets, we applied
the proposed algorithms in two cases: ERP estimation in EEG signal and removal of
the trend in HRV signals, and compare to the wavelet denoising. Finally, the results are
discussed along with the future work.

5.2 Methodology

We consider a signal s(k) corrupted by additive Gaussian noise n(k). The raw signal
(observations) can be expressed as:

y(k) = s(k) +n(k), (5.1)

where k is the index sample (or time), k = 1,---, N, with N being the number of samples.
Eq. 5.1 can be written in vector notation:

y =s+n, (5.2)

wherey = [y(1), y(2), -, y(N)], s = [s(1), 5(2), -+ , s(N)] and 0 = [n(1),n(2), - -, n(N)]
The signal s is uncorrelated to the noise. The problem is to estimate the signal s given
the observations y. The ML solution in this problem is meaningless because the ML es-
timator corresponds to the observations. To obtain a meaningful solution regularization
is required. The constraint is chosen ad hoc or it is based on some a priori informa-
tion. In our study, the signal is constrained to be smooth. This means that we expect
neighborhood samples of the signal to have similar values, i.e. the signal s has high corre-
lation. This property is useful when we study biomedical signals. Since we use a Bayesian
approach, the smoothness property must be introduced to our model through the prior
distribution. For this reason we choose the smoothness prior [123]. However, the use of
smoothness prior introduces a new parameter (see below) into our model, which enforces
the use of a hierarchical Bayesian model to deal with it. We mention here that the term
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smoothness refers to temporal smoothness. In the next sections we will present the ap-
plication of the VB methodology in the cases of white Gaussian and Colored Gaussian
noise.

5.2.1 White Gaussian Noise

The smoothness prior over the signal s is given as:

p(s|a) o (%)N/Q exp{ — %STLTLS}. (5.3)

This prior has been used to estimate the trend in HRV and fMRI time series [50, 122]
and to estimate the ERP signal [117]. The matrix L is a discrete approximation of the
d-th derivative operator. The noise is assumed to be white Gaussian, i.e.

p(n|A) = (%) e exp{ - %nTn}. (5.4)

where \ is the precision of the noise (inverse variance). Due to this assumption, the
likelihood of the observations, given the signal s and the noise precision A, is:

pils ) = (o) e { - S -9y - 9)}. (5.5)

Finally, we assume that a and A are Gamma variables:

p(a) = D(a;ba,ca), (5.6)
p(A) = T(Abx,en), (5.7)

where - )
F(:r;b,c):m " exp{—g}. (5.8)

The choice of Gamma distribution is based on the fact that the Gaussian and Gamma
distributions are conjugates [125]. We observe that the prior over the signal is not com-
pletely known but depends on the parameter o, which is unknown and must be estimated.
The same happens with the parameter A. Since we assume that the signal is uncorrelated
to the noise, the join prior of our model can be written as:

p(s, a, A) = p(s|a)p(a)p(A). (5.9)

In the case, where the parameters o and A are known, an estimate of the signal can be
obtained as:
§ = AMaLTL + \I) 'y, (5.10)

where I is the identity matrix. The above estimator is the MAP estimator of the proposed
model. The use of the MAP estimator assumes that the values of the parameters oo and A
are known. However, in our problem these parameters are unknown and must be estimated
using the observations. There exist several methods which address the estimation of those
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parameters: the evidence based approach [33, 152], the integration method [126], and the
ensemble learning or VB methodology [42, 148, 152]. The above methods are based on a
Bayesian treatment of the problem. Approaches outside the Bayesian framework can be
also used such as the generalized cross validation criterion [50, 124].

In our study to perform inference about the signal s and the parameters o and A we
use the VB methodology (see Chapter 2). We approximate the true posterior with the
factorized distribution:

q(s, o, Aly) = q(s)a(a)q(N). (5.11)
Applying the VB methodology the Equations (5.12)-(5.19) are obtained: The posterior
over the signal s is a Gaussian distribution with mean and covariance given by:

§ = MGy, (5.12)
C, = (GL'L+ )7L (5.13)
The posterior over the parameter A is a Gamma distribution with parameters:
% = %(yTy —2y"s + trace(C, + 88"), (5.14)
/ N
o = Hton (5.15)
A= by (5.16)
The posterior over the parameter « is a Gamma distribution with parameters:
i = %(tmce(LTL(Cs +887)), (5.17)
/ N
Ca = 5 T (5.18)
& = b, (5.19)

The algorithm consists of the iterative application of the Equations (5.12)-(5.19) until the
convergence of the variational bound. This algorithm is called VarWhite. The variational
bound is given by:

F(g.5,0,0) = (logp(yls, 2) ) = KL(q(s)|p(s)))
~KL(gW)llp(V)) ~ K L(g(@)Ip(a))), (5.20)

where:

~

N 1 1
KL{g(s)||p(s)) = 5 logd —log|Csl + 3 <dLTLCS> + %ATLTLé, (5.21)
KL(g(M)[p(\)) = (cy — 1)T(c)) —logby — ¢ +logT(cy) + logT(cy) +

’ ’

/ / b
cxloghy — (ex — 1)(W(cy) + logby) + b—i, (5.22)
KL(g()|lp(e))) = (ca = 1)¥(c,) —logh, — ¢, +logT(c,) +log T(ca) +
: L bt
cologba — (ca — 1)(T(c,) + logh. ) + an, (5.23)
N . A
<logp(y|s, )\)> = 5 log A — 5 (yTy — 2y"'s + trace(Cq + ééT)> (5.24)
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The calculation of the KL divergence for various distributions is explained in [45].

5.2.2 Colored Gaussian Noise

In this section the previous model is extended in the case of colored Gaussian noise, i.e.
a stationary process which follows the Gaussian distribution with full covariance. This
extension makes the proposed model more robust since it includes the previous model
as a special case and it can be used in cases where the noise is described as colored
Gaussian. For example in ERP estimation the background EEG is better modeled by a
colored Gaussian distribution [117]. The observation model is given by Eq. (5.2), the
prior of the clean signal by Eq. (5.3) and the hyperprior for o by Eq. (5.6). We make
the same assumptions about these parameters as in the case of the white noise. The
noise is assumed to be colored Gaussian with zero mean and covariance matrix C,. The
parameters in this case are the signal s, the parameter o and the inverse covariance of
the noise, R = C_!. For the covariance of the noise we use as prior the Wishart density
(125, 127, 128]

p(R) =W(ry, B,). (5.25)

The prior over the parameters can be written as:
p(s, o, R) = p(s|a)p(a)p(R). (5.26)

We can apply the VB methodology as in the case of the white Gaussian noise. The
posterior is approximated by ¢(s, a, R|y) = ¢(s|a)q(a)g(R). The approximate posteriors

in this case are:

q(s) = N(8,GCy), (5.27)

g(@) = T(oby,c,), (5.28)

Q(R) - W(T‘,B), (529)

(5.30)

where:

C, = (AL"L+R)7Y, (5.31)
§ = C.Ry, (5.32)
bi' = %(tmce(LTL<ssT>>>, (5.33)
Coa = ngca, (5.34)
ro= rnp+l (5.35)
B — Bp+((y—<s>)(y—<s>)T)+Cs. (5.36)
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The required moments are easily evaluated as:

<s> = §, (5.37)
<ssT> = C,+e7, (5.38)
& = b, (5.39)
R = rB7L (5.40)

The algorithm consists of the iterative application of Equations (5.31) - (5.36) until con-
vergence of the variational bound. The algorithm is called VarColored. The variational
bound is given by:

F(g5,0,0) = (logp(yls, \) ) = KL(q(s)|p(s)))
~KL((R)|Ip(R)) — KL(q()[p(e))), (541)

In the above equation the KL divergence for the signal s and the parameter a are the
same as in the white noise case. For the other quantities we have:

KIR)p®) = "2 =200 B) - 2=, B,) -
+gtmce{BpB} + log %, (5.42)
(yls.R)) = %L(r, B) - %{R(@— <s>)y-<s>)+C)}. (5.43)

The terms Z(r,B) and Z(r,,B,) and are the normalized quantities of the posterior and
prior distribution of , which are Wishart distributions. The terms L(r,B) and L(r,, B,)
are given as:

L(r,B) = /log\R\W(r,B)dR, (5.44)
L(r,,B,) = /log|R|W(rp,Bp)dR, (5.45)

which can be seen as the expectation of the quantity log |R| with respect to the posterior
and the prior distributions of the noise precision matrix R.

5.2.3 Stationarity assumptions

The stationarity of the proposed estimator for the signal s is depended on its prior and
more specifically on the structure of the matrix L. Because the signal is considered finite
and includes N samples, the stationarity depends on the conditions at the beginning and
at the end of the signal [123]. Assuming that the signal vanishes outside its domain i.e.
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y(—1) = y(N 4+ 1) = 0, the matrix L for d = 2 becomes:

(5.46)

This choice of such matrix gives a non stationary prior for the signal s, because the matrix

L”L takes the following form:

3
—4
1

L'L =

0

—4
6
—4

0

0

—4
1

0 0
0 0
0 0
6 —4

—4 5

(5.47)

This type of prior can be used when the signal vanishes at the boundaries. When the

signal is extended periodically outside its domain, i.e. y(—1) = y(N) and y(N+1) = y(1),

the matrix L is:

and the matrix LTL is:

L'L =

which is a circulant one.

—4

1

0

1
0

—4
1

6

—4

—4
6

(5.48)

(5.49)

In this case we can assume that the prior of the signal is

stationary, due to the asymptotic equivalence between the circulant and Toeplitz matrices

[129]. In the case we assume the stationary prior for the signal s, we can write the

equations for both algorithms, VarWhite and VarColored, in the Fourier domain to reduce
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the computational complexity. Another factor that affects the stationarity of the estimator
of s is the statistical properties of the noise. If the noise is assumed to be non stationary
then the estimator of s is non stationary, even if we assume stationary prior for the signal.
This is due to the iterative nature of the algorithm. Assuming non stationary noise with
non particular structure of the covariance N? parameters for the noise, when we have N
data samples, need to be estimated. In our case, to reduce the number of parameters, we
assume that the noise is stationary.

5.2.4 Equations in the frequency domain

Assuming stationary prior for the signal s and stationary noise n the VarWhite and
VarColored algorithms can be written in the Fourier Domain. The resulting equations for
the VarWhite algorithm are:

vy
S(f) = X+d\L(f)|2’f L N (5.50)
1

Pi(f) = m,lea“',]\f (5.51)
N %{;(\L(f)|2Ps(f)+%|L(f)\2\5(f)|2>}+i (5.52)
¢ = ngca (5.53)
a = b.c, (5.54)

= %{%;mﬂf—%;wu)sm

" 1 , 1

+ 3R+ IS R (5.55)
A = g—l—g (5.56)
Y (5.57)

where Y (f) and S(f) are the DFT (Discrete Fourier Transform) coefficients of the vectors
y and §, and P;(f) are the eigenvalues of the covariance matrix Cs. The algorithm in the
Fourier Domain consists of Eqs. (5.50)-(5.57). This algorithm is called VarWhiteFFT.
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The equations for the VarColored algorithm are:

R(NY(S)

RO (5.58)
PO = mgrergp TN (5.59
A P OGRS OIE GRS D
Co = gﬂa (5.61)
o = b, (5.62)
BU) = B+ V() = SNPN+P(LT =1 N (563)
o=+l (5.64)
R(f) = ﬁ,le,m,i\f (5.65)

where R(f) , B(f) and B,(f) are the eigenvalues of the matrices R , B and B, , re-
spectively. The algorithm in the Fourier domain consists of Egs. (5.58)-(5.65), and it is
called VarColoredFFT. In Eqgs. (5.36) and (5.63) the second term is an approximation
for the cross correlation matrix between the vectors y and s. However, since the quantity
(y —s)"(y — s) is a rank one approximation, this makes it a very unstable term. On the
other hand the term w is a good approximation for the cross correlation sequence
from which we construct the cross correlation matrix. Thus, in the time domain the quan-
tity (y —s)” (y — s) is replaced by a Toeplitz matrix, which is constructed using the cross

correlation sequence. This sequence can be obtained by the inverse Fourier transform of
Y ())-SHI?
~ .

5.3 Experimental results

5.3.1 Experiments using simulated signals

The electrophysiologic signal is constructed as a superposition of two Guassian compo-
nents. Random fluctuation is introduced on the peaks position to simulate the latency
variability. The matrix L describes the smoothness of the signal and it is an approximation
of the d" derivative. We test the proposed algorithms using as values of d = 2,4 and 6
(low d corresponds to smooth signal and high d in a "spiky” signal). The value of d deter-
mines the extent of the smoothness. Unlike the other quantities of the proposed model,
d is difficult to be addressed in a theoretical basis. In the literature the choice of d is left
to the user [117].

We compare the VarWhiteFFT algorithm with the generalized cross validation (GCV)
criterion [124] and the wavelet denoising approach. From all the wavelet transforms, the
Discrete Wavelet Transform (DWT) is the most widely used. However, the DWT presents
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a serious drawback in the estimation of ERP [114, 130], since it is shift invariant. To
overcome this problem the Stationary Wavelet Transform (SWT) can be utilized. We
use the biorthogonal mother wavelet (bior4.4) since we are interested in the morphology
and the latency of the peaks [114]. The EEG signal is decomposed into five levels and
soft thresholding is used. The thresholding rule is the ’sqtwolog’ according to the wavelet
toolbox of Matlab and level dependent estimation of level noise is applied. In the GCV
approach the signal of interest is estimated as:

Saov = <%LTL + I) _1}’ = S(9)y, (5.66)

where ¢ = §. To estimate the signal the parameter ¢ is needed. This is accomplished by
minimizing the GCV criterion with respect to the parameter ¢ . The GCV criterion is
given by the equation:

GCV(¢) = wly —sl”__ (5.67)
(+trace(I — S(¢)))?
To quantify the performance we calculate the SNR enhancement as:
Isl*

where s is the trial and § is the corresponding estimate. To simulate M trials we generate
M ERP waveforms and M realizations of noise for each SNR level. The simulated noisy
trials are obtained by adding the noise to the ERP trials.

We apply the VarWhiteFFT algorithm in noisy ERP where the noise is white gaussian.
The VarWhiteFFT algorithm is initialized using noninformative priors, b, = by = 10% and
Co = cx = 1075, The SNRout for SNR = 5, 3, 1, 0 dB using the VarWhiteFFT algorithm,
the wavelet denoising and the GCV approach is calculated. SNR = 0 dB corresponds to
realistic situations [131]. For GCV and VarWhiteFFT we use d = 2,4,6 and the obtained
results are shown in Table 1. The best results are obtained when the VarWhiteFFT is
used. A simulated ERP, a noisy ERP and the estimates are shown in Fig. 1 for SNR = 0
dB. The GCV and the VarWhiteFFT estimates present larger oscillations in the range of
samples 150-256 than the wavelet denoising. The GCV and the VarWhiteFFT estimate
better the simulated ERP in the range of samples 50-150. This is due to the fact that
GCV and VarWhiteFFT assume that the ERP is stationary, in contrast to the wavelet
denoising which assumes that the ERP is a non stationary signal.

In the colored noise case the VarColoredFF'T algorithm is used and it is initialized
using the noninformative prior for the parameter o , i.e. b, = 10° and ¢, = 107%. For the
prior of the noise we set r, = 0 and B, = 0 giving the improper prior p(R) |R|’%.
We test the VarColoredFFT for input SNR = 5, 3, 1, 0 dB using low and high pass colored
Gaussian noise. To create low pass noise an AR model of order 4 with AR coefficients |
1, 1.5084, -0.1584, -0.3109, -0.0510 | is used, while the AR coefficients for the high pass
noise are [ 1, -1.5084, 0.1584, 0.3109, 0.0510]. In Table 5.2 we observe that the wavelet
denoising approach presents better results compared to VarColoredFFT in the case of low
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Table 5.1: SN Rout for different SN Rin in white gaussian noise case

d=2 d=4 d=6
SNR | VAR GCV VAR GCV VAR GCV WAV

18.3572 | 18.2973 || 17.9238 | 18.3428 || 15.5130 | 17.8851 || 14.1441
16.3498 | 16.2325 || 15.9253 | 16.1731 || 13.5032 | 15.5807 || 13.4763
14.6461 | 14.3728 || 14.1853 | 14.0988 || 11.5614 | 13.3881 || 12.8611
13.8054 | 13.4427 || 13.1249 | 13.1329 || 10.5247 | 12.4918 || 12.3807

S = W ot

Amplitude

Amplitude

Figure 5.2: (a) Simulated and noisy ERP and (b) Estimation using the GCV, VarWhit-
eFFT and Wavelet denoising approaches
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Table 5.2: SN Rout for different SN Rin in colored low pass noise

SNR | VarColoredFFT (d = 2) | VarColoredFFT (d = 4) | VarColoredFFT (d =6) | WAV
5 1.7643 13.5873 9.8299 13.9089
3 1.5652 12.1169 8.2163 12.7115
1 1.8186 10.5174 6.4513 11.6976
0 1.5985 9.3108 5.4439 10.5134

Table 5.3: SN Rout for different SN Rin in colored high pass noise

SNR | VarColoredFFT (d = 2) | VarColoredFFT (d = 4) | VarColoredFFT (d =6) | WAV
) 0.6734 40.2934 36.2906 18.4265
3 0.7746 38.8252 34.8002 17.9421
1 0.8722 37.6405 33.2309 17.9271
0 1.0071 36.3522 32.4469 18.4125

pass noise. The best results for the VarColoredFFT are obtained for d = 4. In Table
5.3 the results in the case of high pass colored noise are shown. The VarColoredFFT
approach presents much better results than the wavelet denoising. In Fig. 2 a trial of
high pass noisy ERP along with the estimates obtained from the VarColoredFFT and the
wavelet denoising are shown. In the next sections, results using real datasets are provided.
However, in these sections we do not use the GCV approach since the GCV criterion is
derived under the white noise assumption, while the noise in the real dataset is colored.

5.3.2 Application to Event Related Potential (ERP) estimation

We have used EEG data recorded during a go/nogo visual categorization task using nat-
ural photographs. This dataset has been used to study brain dynamics in [132]. Subjects
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:
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(a) (b)

Figure 5.3: (a) Simulated and noisy ERP and (b) Estimation using the VarColoredFFT
and Wavelet denoising approaches
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Figure 5.4: Raw trials in the case of (a) target and (b) non target.

were presented with pictures which either contained or did not contain animal images. In
the presence of an animal in the picture a button was pressed by the subject. The data
have been processed using Independent Component Analysis (ICA) to remove muscle ac-
tivity, eye blink etc. [132]. In our study the ICA - preprocessed data, derived from the
Pz channel, are used. The dataset includes 14 subjects and consists of 4276 ERPs, where
2150 belong to the target case while the rest 2126 belong to the non target case.

The dataset has been processed using the wavelet denoising and the VarColoredFFT
approach with d = 4. The VarColoredFFT algorithm is initialized using b, = 10° and
co = 10% while for the covariance matrix of the noise improper prior is used. These values
for the parameters of the prior of the smoothness parameter have provided the best results.
In Figs. (5.4) - (5.6) ERP images of raw and processed trials from one subject for the
target and the non target case are shown. The ERP image is a visualization tool which
gives the ability to see the evolution of ERP in a trial-by-trial basis [119]. Besides the ERP
image, we show the mean of trials from each method. It is obvious that both approaches
produce a cleaner ERP signal than the raw ERP. Also, it is clear that features of ERP,
such as the latency and the amplitude of latency, are more identifiable in the denoised
data.

Besides the visual comparison of the two methods, we also present results for the
classification of an ERP into target and non-target cases. The input of the classifier is a
dataset of features. The features are extracted from raw ERPs and denoised ERPs. For
the denoising of raw ERPs we have used the proposed approach and the wavelet analysis.
We note here that the dataset from each subject has been processed separately. The
classification procedure is based on two characteristics of the ERP: the latency and the
amplitude of the P300 wave. These features are extracted and used as input to a quadratic
discriminant classifier. The latency is taken as the maximum amplitude in a pre-specified
window. In our case this window is 300-600ms from the onset of the stimulus. The dataset
have been processed using 10 times fold cross validation. The mean classification rates
were 63.4857 +/- 6.3096, 67.2993 + /- 7.3435 and 67.3457 +/- 7.5096 using the raw ERPs
and the denoised ERPs extracted using the proposed approach and wavelet denoising.
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Figure 5.5: Estimated trials in the case of (a) target and (b) non target using the Var-
ColoredFF'T approach.
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Figure 5.6: Estimated trials in the case of (a) target and (b) non target using the Wavelet
denoising approach.
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Table 5.4: Classification rates of ERPs in target and non target cases for each subject.

Raw EEG ( % ) | VarColored ( % ) | Wavelet Denoising (% )
Subject 1 68,25 72,54 74,91
Subject 2 65,30 70,64 71,84
Subject 3 72,37 76,43 77,12
Subject 4 64,82 66,33 68,21
Subject 5 57,40 62,78 53,51
Subject 6 64,33 69,21 67,42
Subject 7 54,73 52,19 58,41
Subject 8 61,20 69,07 65,32
Subject 9 76,54 73,71 75,40
Subject 10 64,82 76,26 72,13
Subject 11 58,58 55,67 57,82
Subject 12 61,02 68,14 68,27
Subject 13 65,22 69,65 73,39
Subject 14 54,22 59,57 59,09
Mean classification rate 63,48 67,30 67,35

We observe an increase on the classification rate 4% using the proposed approach and
wavelet denoising. While the changes in the classification rate of the two approaches,
VarColoredF'TT and wavelet denoising, cannot be considered statistical significant in the
whole dataset, the two approaches present different behavior as it is shown in Table 5.4.

5.3.3 Application to HRV time series analysis

The proposed approaches are employed for detrending HRV time series. HRV is used as
a quantitative marker of the autonomous nervous system activity. The HRV time series
contain components, which are related to slow linear or more complex trends. These
effects can cause distortion on the subsequent processing such as time - frequency or
spectral analysis. Our application has been inspired by the work proposed in [122]. In
this work the authors used the smoothness prior to estimate the trend in the HRV time
series and subtract it from them. This results to a detrended HRV time series. However,
the value of the parameter o was based on visual analysis of the time series. This is a
serious drawback of the proposed algorithm. To estimate the parameter a the generalized
cross validation criterion can be used. However, the GCV criterion assumes that the
noise is white Gaussian, something that is not always true. In this chapter we use the
VarColored algorithm to estimate the trend in a HRV time series.

The HRV time series have been extracted from the MIT/BIH Arrhythmia Database
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[133].  All records are utilized. The HRV time series have been processed using the
VarColoredFFT algorithm and the wavelet denoising. After trend removal, an analysis
is performed in the detrended HRV time series using time domain measures and spectral
analysis. Before the detrending an impulse rejection filter is applied as described in [134].
The wavelet db3 and level equal to 6 are used [134]. Also, the thresholding rule is the
'sqtwolog’ according to the wavelet toolbox of Matlab and level dependent estimation of
level noise is applied. Finally, soft thresholding is used. The VarColoredFFT algorithm
is initialized by using b, = 10° and ¢, = 10° for the smoothness parameter while for the
covariance matrix of the noise improper prior is used.

The time domain measures used in our study are: the standard deviation of all RR
intervals (SDNN) and the root mean square of differences of successive RR intervals
(RMSSD) [135]. In Tables 5.5 and 5.6 the calculated measures are provided for the
original HRV time series and the detrended HRV time series using the VarColoredFFT
algorithm and the wavelet denoising approach. It is obvious that both approaches pro-
duce a significant change in the value of SDNN of original HRV time series. However,
the VarColoredFFT approach tends to leave unchanged the RMSSD measure compared
to the wavelet denoising approach. The detrending using the VarColoredFFT approach
has a strong effect on the SDNN measure and only a small effect in the RMSSD measure
which describes the short term RR variability. In contrast, the wavelet denoising has
strong effect on both measures. To show that the two approaches, the proposed approach
and the wavelet denoising, present statistically different results in terms of RMSSD and
SDNN measures we perform t-tests [136]. The first t-test is related to the SDNN measure.
Comparing the difference between the two approaches we have found that at 95% confi-
dence level, the confidence interval is [4.0085, 16.3014], which does not include the zero
value, and thus, the observed difference is statistically different with respect to the SDNN
measure. The second t-test is related to the RMSDD measure. At 95% confidence level,
the confidence interval is [4.8093, 20.6733], which indicated that the observed difference is
statistical significant in term of RMSSD measure. Finally, a visual example of two records
from the database (records 100 and 200) is shown in Fig. (5.7). In this figure, the HRV
time series of the record and the estimated trends using the VarColoredFF'T algorithm
and the wavelet denoising approach are shown. It is obvious that both approaches are
able to extract efficiently the trend.

5.4 Discussion

In this chapter we propose a new approach to estimate a biomedical signal contaminated
by gaussian noise, either white or colored. More specifically we explore the smoothness
of a biomedical signal. To incorporate the smoothness property in a Bayesian framework
the smoothness prior is used. The proposed approach has been applied to estimate ERP
potentials observed in noise and for detrending HRV time series. The results indicate the
usefulness of the proposed approaches.

91



Table 5.5: RMSSD measure for all records of the MIT/BIH Arrythmia database.

Record Raw time series (msec) | VarFFTColored (msec) | Wavelet (msec)
100 30.5676 30.5651 29.2378
101 39.0460 39.0418 38.5431
102 35.9438 35.9433 34.4788
103 32.5482 32.5422 32.1019
104 51.6978 51.6974 51.3571
105 22.5530 22.5502 21.4233
106 434.7516 434.7488 417.4801
107 30.1195 30.1188 29.4943
108 83.3694 83.3623 78.5698
109 36.8545 36.8516 29.0798
111 34.2006 34.1967 34.1119
112 17.5951 17.5915 17.3631
113 92.6397 92.6365 91.8428
114 109.2839 109.2817 76.0988
115 72.2478 72.2429 72.0577
116 18.6094 18.6078 17.4881
117 34.7143 34.7065 34.5804
118 71.5364 71.5298 40.1229
119 299.1581 299.1572 297.8358
121 19.5878 19.5732 19.5341
122 19.0312 19.0145 19.0124
123 103.4247 103.4227 103.0032
124 56.3651 56.3598 47.4654
200 260.7571 260.7564 260.4236
201 365.6437 365.6367 342.6606
202 208.2037 208.1961 138.8792
203 265.6832 265.6814 265.6476
205 26.1472 26.1372 17.7047
207 217.3939 217.3676 60.1048
208 188.9911 188.9900 188.9573
209 56.1245 56.1165 43.7349
210 159.5481 159.5471 157.4235
212 26.2510 26.2462 25.9468
213 25.3431 25.3428 24.4440
214 145.6556 145.6534 105.4569
215 43.9616 43.9607 35.6157
217 71.6366 71.6345 64.6255
219 220.9104 220.9058 220.3093
220 48.7048 48.6998 35.8222
221 272.4356 272.4347 272.4343
222 244.7885 244.7832 230.2498
223 86.8727 86.8694 67.3661
228 313.4371 313.4368 301.6098
230 28.5564 28.5368 28.2740
231 84.3748 84.2361 57.5353
232 143.9505 143.9482 62.2999
233 217.5260 217.5258 217.5076
234 17.8362 J2 17.8252 17.3143

Mean value 114.3037 114.2961 101.5548




Table 5.6: SDNN measure for all records of the MIT/BIH Arrythmia database.

Record Raw time series (msec) | VarFFTColored (msec) | Wavelet (msec)
100 36.8123 30.6589 29.1539
101 66.2710 43.2582 43.1299
102 29.0400 28.5746 27.9368
103 45.8076 40.4292 39.5033
104 36.2572 36.1162 35.8876
105 33.9255 21.7845 21.7154
106 260.9793 246.9869 235.2391
107 27.3528 27.0460 26.6920
108 98.5885 69.4819 67.2474
109 35.7987 30.5343 26.9596
111 37.7138 29.3101 29.6689
112 20.6286 13.0407 13.4732
113 94.3495 89.0375 89.0424
114 114.2124 80.8855 59.8151
115 85.8584 81.1964 80.4174
116 22.6307 14.0928 13.8859
117 39.6789 34.0083 31.4574
118 72.4890 51.0061 32.3252
119 176.5624 175.4097 174.8878
121 81.6542 27.3789 28.1441
122 39.8915 26.7308 27.6931
123 116.3484 113.7811 110.8904
124 77.1935 48.4703 43.4958
200 150.1990 144.5702 144.0939
201 347.5576 273.6207 240.5611
202 283.5881 147.8009 110.2574
203 198.9309 194.6069 194.4783
205 51.0154 32.6703 15.5988
207 290.0354 167.4336 50.3120
208 118.6269 114.5910 114.7254
209 77.4221 58.8256 39.0359
210 109.5262 108.4588 107.6870
212 40.2068 33.1682 33.5011
213 18.2943 16.2163 15.8691
214 102.4272 99.7495 82.6180
215 35.2039 34.6407 31.6939
217 58.1727 53.4981 49.6686
219 168.7913 155.5955 151.4202
220 59.6947 45.8786 34.4981
221 182.3230 178.9202 179.2007
222 214.3801 198.5178 181.2579
223 63.6052 53.9069 44.7834
228 177.9545 176.1317 170.4996
230 86.0102 46.9280 47.1409
231 312.8586 166.8755 126.9590
232 134.5248 132.4360 57.5120
233 124.1067 123.6997 123.6493
234 27.3740 J3 20.7194 15.5568

Mean value 105.8932 86.2225 76.0675




T
Original
Wayw Den
WarColoredFFT

Ll

Original
Wav Den
WarColoredFFT [

09

|

RR (sec)
RR (sec)

|

. . . . L . . L L L . L L . L
200 400 BO0 800 1000 1200 1400 1600 1800 2000 2200 500 1000 1500 2000 2500
Beat Mo Beat No

(a) (b)
Figure 5.7: (a) Record 100 and (b) Record 200.

The Bayesian approach provides with the ability to use the prior knowledge of our
problem through the prior distribution. Sometimes the prior distribution is not com-
pletely known but it comes in a parameterized form, one such example is the smoothness
prior. These parameters of the prior distribution can be estimated within the Bayesian
framework and they are called hyperparameters. To estimate the hyperparameters the
Variational Bayesian Methodology is used. However, besides the VB approach, the hy-
perparameters can be estimated using the Empirical Bayes or the GCV criterion. The
major difference between the EB and the VB is in the way that they estimate the hyper-
parameters. The EB approach is based on the ML estimation while the VB approach is
based on the Bayesian estimation. This means that the EB provides with point estimates
for the hyperparameters, while the VB approach provides with a posterior distribution
for the hyperparameters. This means that the EB approach does not take into account
the variability of the hyperparameters.

Another approach for the estimation of the hyperparameters is the GCV framework.
We have observed in our experiments that in the case of the white gaussian noise the
proposed approach and the GCV method result in similar performance. However, there
exist some differences. In the Bayesian approach we know the assumptions, which does
not happen in the GCV approach. Also, when we use multiple regularization parameters,
we can handle them very easily in the Bayesian approach. However, there is not a widely
used methodology where the GCV criterion is used to handle multiple regularization
parameters. Finally, the GCV criterion has been developed under the assumption that the
error follows a gaussian distribution. This means that we must expect low performance
when the error follows a different distribution other than the gaussian. To conclude,
the Bayesian approach provides with a structured way to estimate the regularization
parameters, especially, in the case of multiple parameters.

The proposed algorithms can be applied in the wavelet domain. However, this implies
that high correlation between the wavelet coefficients must exist. There is no evidence that
something like that happens. The proposed algorithms assume global smoothness of the
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signal. Assuming local smoothness may be more appropriate for the wavelet coefficients
and could be examined in future study.

In simulated experiments we compared the proposed algorithms, VarWhiteFFT and
VarColoredFF'T, with wavelet denoising. We observe that the VarWhiteFFT outperforms
the wavelet denoising in terms of the SNR enhancement. In the case of colored noise we
distinguish two cases: low pass and high pass noise. In the low pass case the wavelet
denoising provides better results than the VarColoredFFT. In the case of high pass noise
the VarColoredFF'T presents better results compared to wavelet denoising. In the ERP
estimation we showed that both methods present similar results. Besides the application
of the proposed approaches in the ERP data, we use them for detrending of the HRV time
series. In the HRV detrending we have shown that the use of VarColoredFFT to estimate
the trend provides with the ability to remove the VLF components of the time series.
Also, the method described in [17] for the detrending of the HRV time series can present
computational problems since large matrices must be inverted [33]. The VarColoredFFT
algorithm avoids this problem since the Fourier Domain is used.

Extensions of the proposed approaches in the Bayesian framework are straightforward.
These extensions will help to explore the smoothness of a signal under different conditions.
For example, in the case where we assume that the noise is not Gaussian but has impulsive
nature, we can use a Gaussian mixture model with 2 components to model the impulsive
nature of the noise [137, 138]. This will lead to a robust smoothing algorithm. The
robustness in that case is given in terms of outliers rejection in the estimation procedure.
Also, one obvious extension of the proposed approach is to use multiple parameters .
This results to a non stationary prior [139] for the signal and we can explore the local
smoothness of it. Finally, a third extension can be a combination of the above: the study
of local smoothness of the signal in impulsive noise environment.

5.5 Conclusions

In this chapter we present a model for the estimation of a biomedical signal when this sig-
nal is contaminated by noise. More specifically we address the estimation of the smooth-
ness of a biomedical signal. The smoothness property contains the highly correlated
components of the signal. This property can be incorporated into a Bayesian framework
by using the smoothness prior. This prior leads to the use of hierarchical modeling of
the problem under discussion. To deal with the estimation of hyperparameters the VB
methodology has been used. The VB methodology provides with closed form solutions
and a convergence criterion to stop the process. The proposed approaches have been
applied to the estimation of ERP and to the detrending of the HRV time series.
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CHAPTER 6

BAYESIAN METHODS FOR FMRI TIME SERIES
ANALYSIS USING A NON-STATIONARY NOISE
MODEL

6.1 Introduction

In this chapter, a Bayesian framework is presented for the analysis of fMRI data. The
Bayesian framework is not new in fMRI data analysis. Many works have been published
in this area. These works addressed several issues in the fMRI data analysis. In [30] the
authors use the Bayesian framework to estimate the parameters of the GLM. However,
in their analysis they use noninformative prior over the parameters of the GLM. This
type of prior is used since there is no prior knowledge about the parameters. In [31]
the authors are concentrated mostly to the estimation of the noise, which is modeled
using an AR (autoregressive) model, rather than to the estimation of the parameters of
the GLM. In [32] a Bayesian approach is presented which determines the design matrix
in a flexible (automatic) way. To do that they assume sparsity over the parameters of
GLM. The sparsity has been modeled by an hierarchical prior which is called Automatic
Relevance Determination (ARD) [33]. However, in the estimation of the hyperparameters
they use an ML (Maximum Likelihood) principle. This approach does not take into
account the variability of the hyperparameters. To address it a full Bayesian approach
must be used [34]. All the above works assume that the noise is temporal stationary
and it is modeled using an AR model or a Gaussian distribution with zero mean and

variance o2

. However, the fMRI time series contains temporal non-stationarities which
can be caused by subject movements, neurophysiological processes, or inaccuracies of the
model [35, 36, 37], which in our study are described by the noise. The work presented in
[35] is based on the weighted least squares (WLS) estimator, where the weighting matrix
contains the non-stationarities of the noise. However, this matrix is calculated outside the
estimation procedure. A Bayesian extension of the above work in presented in [37], but

the estimation of the weighting matrix is confusing since it does not fit to the iterative
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nature of the proposed algorithm. Finally, Bayesian approaches using the spatial domain
are presented in [38, 39], but, these approaches assume temporal stationarity.

In this chapter two algorithms are presented for the statistical analysis of the fMRI
time series. The first algorithm is based on a voxel-by-voxel analysis of the data and it
is based on the Generalized Linear Model (GLM). From the other, the second algorithm
process all the voxels simultaneously and uses a spatio-temporal version of the GLM.
Both algorithms estimate the variance of the noise across the images and the voxels and
use a flexible design matrix to model the drift, as described in [32]. The use of the
Bayesian approach is twofold in our study. First, to introduce any prior knowledge about
the problem and second, to determine automatically the design matrix of the experiment.
These two goals can be achieved through the choice of the prior distribution. The objective
in a Bayesian approach is to obtain the posterior distribution and to make inference about
the parameters of the GLM. However, this is not an easy task as multiple integrations
are involved, which are intractable, and approximate approaches must be used. For this
reason in this study the Variational Bayesian (VB) Methodology is adopted to make
inference. The main advantage of the VB methodology is the closed form solutions that
we obtain, as well as a criterion to assume convergence. The use of an extended design
matrix allows the simultaneous estimation of the drift with the magnitude of the BOLD
response and the spatial characteristics of the noise. This allows to better understand
how the detection of activated regions of the brain depends on both the drift and the
noise. The performance of the proposed algorithms (under the assumption of different
noise models) is compared with the weighted least squares (WLS) method. Results using
simulated and real data indicate the superiority of the proposed approach compared to
the WLS method taking into account the complex noise structure of the fMRI time series.

In next sections the proposed algorithms for the analysis of the fMRI time series are
presented. Also, results for both algorithms and the WLS method are given in the results
section using simulated and real fMRI data. Finally, a discussion of the obtained results
is presented in the discussion section.

6.2 Methodology

6.2.1 Voxel-by-Voxel analysis

The first algorithm performs a voxel-by-voxel analysis in the sense of treating each voxel
independently on the others and is described by:

y = Xw +e, (6.1)

where y is the fMRI time series (or voxel), X is the design matrix, w is the vector of
regression coefficients and e is the vector of noise term.
The sparsity is a very helpful property since the processing is faster and simpler in

a sparse representation where few coefficients reveal the information we are looking for.
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Hence, sparse priors help us to determine the model order in an automatic way and reduce
the complexity of the model. In our study the sparsity of the parameters is explored, hence
a natural choice for the prior distribution is the ARD prior [43]. More specifically, the
parameter vector w is treated as a random variable with Gaussian prior of zero mean and

variance a; ' for each element in the vector w:

P
p(wla) = [ NV(0,a;). (6.2)
i=1
where p is the length of the vector w.

The noise in the fMRI data consists mainly of two components: a slow time - varying
component, known as drift, and a high pass component, which in most cases is usually
modeled by a white Gaussian distribution with zero mean and variance 2. The drift
can be removed by high pass filtering or by introducing low frequency drift terms into
the linear model. In our approach we adopt the second approach since it provides us
with an estimation of the drift simultaneously with the effect of the BOLD response.
Thus, the noise term e in Eq. (6.1) is related with the high pass component. From
now the term ”noise” is used to describe the high pass component. Traditionally, the
noise is modeled as a stationary process. To overcome this restriction we assume that
the noise is described by a non stationary model with time - varying variance. Also, we
assume that the overall variance in a particular voxel is affected by the variance of each
image in a multiplicative fashion. This means that the noise is modeled as a Gaussian
distribution with zero mean and precision matrix (inverse covariance) SV, where (3 is
the overall variance of a voxel and the matrix V contains the scaling parameters v, i.e.
p(e) = N(0,(BV)™!). The scaling parameters v,, n = 1,---, N describe the variance
of n-th image which is unknown. In this study two algorithms for the estimation of the
parameters w and the scaling parameters v,,, are proposed. The main difference is found
on the noise model. The first algorithm is based on a temporal model for the noise, while
the second algorithm is based on a spatio - temporal model.

The overall precision (inverse variance) /3 of the noise follows a Gamma distribution:

p(B) = Gamma(B; b, c). (6.3)

Also, each scaling parameter v, follows a Gamma distribution. This means that the
distribution for the diagonal matrix V is given by:

p(V) = H Gamma(vy,; by, ¢,). (6.4)

n=1

In the above equations the Gamma distribution for a random variable x is given by:

1 zb T
Gamma(z;b, c) = o) e exp{ - B} (6.5)

where b and ¢ is the scale and the shape of the Gamma distribution, respectively. We use
the Gamma distribution for the noise components for two reasons: First, this distribution
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is conjugate to the Gaussian distribution, which helps us in the derivation of closed
form solutions, and second it places the positivity restriction on the overall variance and
the scaling parameters. Each parameter a;, which controls the prior distribution of the
parameters w, follows a Gamma distribution, so the overall prior over all a; is a product
of Gamma distributions given by:

pla) = HGamma(ai; bas Ca)- (6.6)

i=1

The likelihood of the data is given by:

N

| BV

p(ylw, 3, V) = enE
exp{ — Dy~ Xw)"Vi(y ~ Xw) )} (6.7
_ AL e
(on)¥
exp { Dy~ Xw)"Vi(y ~Xw)}. (6.5)

The prior over the parameters {w,a, V, 5} is given by:

p(w,a,V,B) = p(wla)p(a)p(V)p(s) (6.9)
= p(WIa)Hp(ai)Hp(vn)p(ﬁ)- (6.10)

To apply the VB methodology we need to define an approximate posterior based on one
factorization over the parameters {w,a, V,5}. In our study we choose the following

factorization:
N

a(w,a,V, ) = q(wla) ] [a(a) [ T a(va)a(B): (6.11)

i=1 n=1
Applying the VB methodology, and taking into account the above factorization, the
following posteriors are obtained:

g(w) = N(w,Cy), (6.12)
q(B) = Gamma(B;V,c), (6.13)
p
q(a) = H Gammal(a; b:w c;i), (6.14)
z]:vl
p(V) = H Gamma(vy; b;n, c;n), (6.15)
n=1
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where

Cw = (BXTVX4+A), (6.16)
w = (BXTVX+A)'pX"Vy, (6.17)
1 1 1
E:: ?@+C“MD+E’ (6.18)
: 1
v = 3 + Cq, (6.19)
;i = by cy, (6.20)
1 1 T ol
7 = ;(y—Xw) V(y - Xw)
by 2
. 1

—HMXTVXCWy+E, (6.21)
, N
g = 3 +c, (6.22)
B = byey, (6.23)
1 B ) . . 1
’ 1
G = 3 + ¢y, (6.25
Up = by, Cp, (6.26)

In the above equations the matrix A is a diagonal matrix with the mean of parameters
a; in its main diagonal and the matrix V is also a diagonal matrix with the mean of
the scaling parameters v,, in its main diagonal. The algorithm consists from the iterative
application of Eqgs. (6.16) - (6.26). This algorithm is called STNS (Sparse Temporal Non
Stationary).

6.2.2 Simultaneously analysis of all voxels

In the above algorithm each voxel has been processed independently on the others. An
extension of the above approach is to treat simultaneously all the voxels from one slice.
This means that a spatio - temporal model must be used. We note here that the term
"spatial” refers mainly to the noise model. Collecting all the voxels in one matrix, and
using the fact that the design matrix is the same across the voxels, the fMRI dataset can
be described by the following spatio - temporal linear model:

Y = XW + E, (6.27)
where Y = [y1, -+ ,yr] is a NxT matrix containing all the voxels, E = [e,--- ,er]| is
a NxT matrix containing the noise, W = [wy, -+, wy] is a pxT matrix containing the

regression parameters of all voxels and X is the Nxp design matrix. The number N is
the length of each voxel, while the number 7' is the number of voxels. Also, the dataset
has been derived using N images.
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The regression parameters are independent between the voxels. The probability dis-
tribution in that case is given by:

T
p(W) =[] p(wo). (6.28)
t=1
Each regression parameter in a voxel is independent from the others a priori. This as-
sumption is included in the proposed model through the prior distribution, which is called
the ARD prior and is given as:

p p
p(wila,) = H (wik|aw) = H N(0 (6.29)
k=1 k=1
A Gamma distribution is used for each parameter ay:
p
H Qi bk Ctk (6-30)
where a; = [ay, aw, - - -, agp) 1S & vector containing the hyperparameters of the ARD prior

at the ¢t-th voxel. We assume a matrix Gaussian distribution for the noise given as:
p(E) = N0, V1, B™). (6.31)

The matrix V is a NxN diagonal precision matrix and each element in the main diagonal
describes the precision (inverse variance) in each image (slice of fMRI volume image).
The matrix B is a TxT diagonal precision matrix and each diagonal element describes
the precision in each voxel. The distribution of the noise for the ¢-th voxel is a Gaussian

distribution given as:

p(et) = N(O, (BtV)il). (632)
Also, in the proposed model the precision component of each image {vy, vy, -+ ,vx} and
the precision component of each voxel {1, B2, - - - , B} must be estimated, this means that

we must place a prior distribution over each precision component. The prior distribution
that is often used for a precision component is the Gamma distribution [45]. So, the prior
over each precision component for each voxel is given as:

p(Br) = T(Bi; bg cp,), t=1,---, T, (6.33)

and for each image precision component:
p(vn) :P(vn;bvnac’un)a ’I’I,Zl, 7N' (634)

The prior of all model parameters becomes:

p(W. {0 {8 1 {adily) = [ [ p(wilap(a)

[T [T p(vn). (6.35)
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Each voxel is independent from the others given the parameters {X, W,V B}, so the

likelihood of the observations Y can be written as:

T
p(Y|X, W, V,B) = [[pm|X, wi, B, V). (6.36)
Using the following factorization of the posterior:
T
q(W, {8} izrs {on}nrs {ad i [Y) = HQ(Wt\at)‘J(at) :
t=1
N T
[T a(wn)- ] a(3) (6.37)
n=1 t=1
and applying the VB methodology we obtain the posterior distributions:
q(wy) = N(w,Cy,),t=1,---,T, (6.38)
P
q(a) = H (aupi byys i)yt =1, T, (6.39)
q(ﬁt) F(ﬁt;b:/jtaclﬁt)at - 17 7T7 640)
q(vn) = T(vp; b;n,c;n),n =1,---,N, 6.41)
where
Cw, = (}XTVX+A,5)—1, (6.42)
w, = (BXTVX+A)'BXVy, (6.43)
1 1 1
- = = Cw 6.44
btp 2( + t(p p)) btp ( )
/ 1
‘b = 3 + Cp, 6.45)
a/tp = btpctpa (646)
1 1 .
% = 5(}% - th)TV(yt — Xwy)
Bt
1
+tr(XTVXCy,) + T (6.47)
Bt
/ N
Co = o T Cpu (6.48)
B = by, (6.49)
1 1 - Ao 1
b/_ = 5(}’5]3}’71 - QYEBWXH =+ XZGXn) + b_a (650)
/ T
Con = 5 + Cu,s (6.51)
by = by Cy . (6.52)
In the above equations the matrices At, t=1,---,T are pxp diagonal matrices having
the parameters dy, G, - , Gy in the main diagonal. The matrix B is a TxT diagonal
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matrix containing in the main diagonal the mean of the precision components for each
voxel, Bt, t=1,---,T, and the matrix V is a NxN diagonal matrix containing in the
main diagonal the mean of the precision components for each image, v,, n =1,---, N.
The quantity G is calculated as follows:

T
G=> BCuw, +WW)). (6.53)
t=1

Also, in the above equations y; describes the ¢-th voxel (¢-th column of the data matrix
Y), while y,, describes the n-th image (n-th row of the data matrix Y). The vector x,, is
the n-th row of the design matrix X. The algorithm consists of the iterative application
of Eqgs. (6.42)-(6.53). First, the Eqs. (6.42)-(6.49) and (6.53) are applied over all voxels
to obtain the estimates of the regression parameters and the precision component for
each voxel. Also, in this step the quantity G is calculated. Then, Eqgs. (6.50)-(6.52)
are applied to estimate the precision component of each image. This algorithm is called
SSTNS (Sparse Spatio - Temporal Non Stationary).

6.2.3 Construction of the design matrix

The construction of the design matrix is crucial for the statistical analysis of fMRI data.
The design matrix usually contains regressors related to the experiment plus the mean
constant. In a block related experiment, which we study in this chapter, the design matrix
has one regressor for the BOLD response plus the mean constant. This is the minimum
number of regressors that the design matrix must contain to obtain an accurate analysis
of the fMRI data. However, we can use an extended design matrix containing regressors
related to other components of the fMRI time series than activation like drift terms [32]
and movement effects [38]. In our study we adopt the idea of extended design matrix.

The drift in fMRI time series is described by polynomial [46], spline [50], wavelet
[51, 52] and Gaussian basis functions [32]. In our approach we use Gaussian basis functions
to model the drift. Using wavelets or splines a different configuration of the GLM is
needed, which is out of the scope of this work. To remove the drift from the fMRI time
series, we can estimate it and then substract it from the fMRI time series to perform
the estimation of the GLM parameters. However, this approach does not give us any
understanding on the effect of drift removal on the estimation of the GLM parameters.
To overcome this inconsistency we can include the drift into the GLM model through
the use of an extended design matrix. The extended design matrix contains regressors to
model the drift of the fMRI time series. According to the above observations the extended
design matrix has the form:

X:[Xl}{g XNS].],

where x,,, n = 1,---, N are the regressors obtained from the Gaussian basis functions,
in the same way as described in [32], s is the BOLD response and 1 is a vector with 1s.
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6.3 Experimental results

The proposed algorithms are compared with the WLS approach using two statistics: the
conventional t - test and the PPM. The two proposed algorithms and the WLS approach
are applied on simulated and real fMRI data. For the WLS approach the design matrix
has two regressors: one for the BOLD response and one for the mean. For the initialization
of the proposed algorithms we set the scale and the shape of each Gamma distribution
to 105 and 107°, respectively. The free energy is used to assume convergence in the VB
algorithms. The proposed algorithms are terminated when the relative change in free
energy drops below 0.02.

6.3.1 Experiments with simulated fMRI data

0.5 J \ //

Amplitude
°
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-05k
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Samples

(a) The drift signal used for the cre-
ation of the simulated data.

No of image

(b) The main diagonal (scaling param-
eters) of the noise covariance matrix,

without considering the overall vari-
ance, used for the creation of the sim-
ulated data.

Figure 6.1: The drift signal and the main diagonal of the noise covariance matrix used
for the creation of the simulated data.

The model used to create the simulated fMRI time series is described by y = as+Kb + e.
The fMRI time series have been modeled as the BOLD response plus a constant mean plus
a drift term plus the noise to simulate the activated voxels, while for the non activated
voxels the BOLD response is absent. The noise comes from a Gaussian distribution with
zero mean and covariance 07V, where V is a diagonal matrix (shown in Fig. 6.1(b))
and simulates the matrix of scaling parameters and ¢? simulates the overall variance of
the voxel. The matrix K is a design matrix used to create the simulated time series. The
size of K is N x 2 and it has two regressors, one for the BOLD response and one the mean
constant. The vector b is the vector of simulated coefficients and has size 2 x 1. The
first element of the vector b is responsible for the BOLD response and takes two values,

zero for the non activated voxels and one for the activated. The second element of the
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vector b is responsible for the mean constant and in our simulated experiments is equal
to 100. The drift s (see Fig. 6.1(a)) is extracted from real fMRI data. The parameter «
controls the amplitude of the drift in the simulated time series. We compare the proposed
algorithms with the WLS approach for different values of the parameter o and the overall
variance o%. For each pair values of parameters a and o7 we create 2000 fMRI time series,
1000 of them correspond to activated voxels, while the other 1000 correspond to the non
activated voxels.

The detection performance of the two proposed algorithms is compared to the one of
WLS approach in terms of t-statistic. The comparison is performed using the receiver
operatic characteristic (ROC) analysis. ROC analysis reflects the ability of the processing
method to detect most of the real activations while minimizing the detections of false
activations. In ROC analysis, two values must be computed the true positive ratio (TPR)
and the false positive ratio (FPR). The ROC curve is a plot of TPR versus FPR under
different threshold ratio. In Fig. 7.3 the ROC curves of the three methods for various pair
values of parameters v and of are shown. To produce these ROC curves the t-statistic
is used. We observe that when the drift is not very obvious inside the fMRI times series
(small «) the WLS approach and the SSTNS algorithm present similar behavior, and
both result to superior performance compared to STNS algorithm. As the drift tends
to become more obvious inside the fMRI time series we observe that the performance
of WLS deteriorates and the STNS algorithm results better performance than the WLS.
Finally, in all cases we observe that the SSTNS algorithm results into better performance
than the other two methods. In Table 6.1 the area under each ROC curve is presented,
which verifies the aforementioned visual inspected results.

In Table 6.2 the mean value of the estimated overall variance for each approach for the
2000 Monte Carlo simulations is presented. It is shown how the drift affects the estimation
procedure of the WLS. The WLS method does not take into account the presence of the
drift and this results to a deteriorated estimation of the overall variance which at the
end affects the calculation of t-statistic. When the drift is small inside the fMRI time
series the best results are obtained by the WLS method, while as the drift becomes larger
the SSTNS algorithm leads to the best results. Also, we can observe that the SSTNS
algorithm is the most stable as it does not present strong fluctuations for different o and
o? values.

Table 6.1: Area under curve for STNS, SSTNS and WLS
WLS | STNS | SSTNS

a=1 ]0.9876 | 0.9812 | 0.9892
o?=4|a=5 |0.9803 | 0.9882 | 0.9917
a =10 | 0.9356 | 0.9832 | 0.9883
a=1 |0.9438 | 0.9220 | 0.9421
o?=9|a=5 |0.9324 | 0.9392 | 0.9503
a =10 | 0.8904 | 0.9239 | 0.9423
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Figure 6.2: ROC curves, using various values of the parameters o and o7, for STNS,
SSTNS and WLS approaches in the case of simulated data
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Table 6.2: Estimated overall variances
WLS STNS SSTNS

a=1 |4.2239 | 21676 | 5.5617
o?=4|a=5 | 185887 | 3.9322 | 5.5771
a =10 | 63.7429 | 6.2939 | 5.5239
a=1 |87925 |4.9365 | 9.6499
o?=9|a=5 |23.1096 | 6.6947 | 9.6312
a =10 | 68.2391 | 10.7487 | 9.6408

The aforementioned results show how the drift affects the estimation procedure when
the GLM is used with the non stationary noise model. The STNS algorithm is based solely
in temporal information while a spatio - temporal extension of it is the SSTNS algorithm.
Comparing these two methods we observe that the SSTNS is superior to STNS. This is
something expected since the SSTNS algorithm uses more information for the estimation
of the scaling parameters. Using the STNS method we try to estimate 2N+3 parameters
from N observations. This is a very difficult problem and constraints must be imposed.
In our study the constraints are introduced into our model through the prior distribution.
The STNS method process one voxel at a time, while the SSTNS processes all voxels
simultaneously.

6.3.2 Experiment with real fMRI data

The proposed algorithms are validated on a block design real fMRI data. This fMRI
experiment was designed for auditory processing task on a healthy volunteer. It consisted
of 96 acquisitions. The acquisitions were made in blocks of 6, giving 16 blocks of 42sec
duration. The condition for successive blocks alternated between rest and auditory stim-
ulation, starting with rest. Auditory stimulation was performed with bi-syllabic words
presented binaurally at a rate of 60 words per minute. The functional data starts at
acquisition 16. Due to T1 effects the first two blocks were discarded. The whole brain
BOLD/EPI images were acquired on a modified 2T Siemens MAGNETOM Vision system.
Each acquisition consisted of 64 slices (6x64x64, 3mm x 3mm x 3mm voxels). Acquisition
lasted 6.05sec, with the scan to scan repetition time set to 7sec. After preprocessing,
functional images consisted of 68 slices (79x95x68, 2mm x 2mm x 2mm voxles). The data
have been downloaded from [55].

The PPMs enable Bayesian inference about specific effect in neuroimaging and are
images of the probability that an activation exceeds some specified threshold [54]. In
the PPMs two thresholds must be defined. The first and most important is the vy (see
Eq. (3.57)) and it is the effect size threshold. This defines what we mean by the term
“activation”. The second threshold defines the probability the voxel has to exceed in
order to be displayed. This threshold is called the probability threshold [54].

The PPMs of slice 30 for each method are shown in Fig. 6.3. These PPMs were derived
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for effect size threshold equal to 0.5 and probability threshold equal to 1 — % The WLS is
a technique based on classical inference and the use of PPM for it may be a little confusing.
However, it is well known that under Gaussian errors and assuming uniformative prior
we can obtain an estimator identical to WLS based on the Bayesian framework [30].
Thus, in our experiments we use this fact to obtain a posterior distribution for the WLS.
This posterior distribution is a Gaussian distribution with mean (X7 V1 X) X"V .y
and covariance 02, XTV 41, X. We see that all approaches detect the activation on the
acoustic cortex. However, we see that the WLS and the STNS methods produce activation
in regions not related to the experiment. In Fig. 6.4 the scaling parameters of each image,
estimated by the SSTNS and by the residuals of the LS approach, are depicted. We observe
that when the stimulus starts or ends, there exists an increase of the scaling parameter in
these images. This observation has been also reported in [35, 38]. This effect can arise by
the presence of motion artefacts or by the true properties of the hemodynamic response
that are not captured by the design matrix. This problem can be addressed by using an
appropriate noise model, such as the one presented in this chapter, or by integrating the
temporal derivatives of hrf (hemodynamic response function) in the design matrix. We
observe that the proposed algorithms take into account this inconsistency of the GLM.

(a) WLS (b) STNS (c) SSTNS

Figure 6.3: PPMs for y =0.5 and pr =1 — % The activated regions are shown in white
color with an arrow. The background image describes the mean brain activation.

6.4 Discussion

We have proposed two algorithms for the detection of activated regions of the brain using
a modified GLM. Inside the fMRI time series exists many components such as the BOLD
response, the drift and high frequency noise. In our study, the BOLD response and the
drift were modeled through the use of an extended design matrix. This matrix contains
additional regressors to model the drift. The noise was modeled by a non stationary
model. After the construction of the linear model inference for the regression parameters
and the noise is carried out. For this reason the VB methodology is used.

The two algorithms have been applied to simulated and real fMRI data and compared
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Figure 6.4: (a) Estimated scaling parameter for each image (time instant) using the
SSTNS and WLS approaches, and (b) BOLD response.

to the WLS approach. The results have shown the superiority of the proposed algorithms
when the drift is present in the fMRI time series. The two algorithms have simultaneously
estimated the drift, the BOLD response and the noise, in contrast to the WLS approach
[35] or the Bayesian extension of it [37] where a high pass filter has been applied to remove
the drift.

A critical assumption of the proposed algorithms is the noise model. In our study
the noise model consists from two components interacting in a multiplicative way. This
means that voxels with high overall variance will present a larger increase of an artefact
than the voxels with low overall variance. An alternative to the multiplicative model is
the additive noise model, where the two components interact additively. In [35] the two
models are studied in the context of the fMRI analysis. The main conclusion of [35] is
that in most cases the noise components can be well modeled by the multiplicative noise
model.

An obvious way to remove the drift from the fMRI time series is to apply a high pass
filter. However, this approach suffers from the following limitations: First, the cut off
frequency of the filter must be known a priori, Second the filter is the same for all voxels,
and third the drift in that case is assumed to be a stationary signal. In our study the
drift is assumed to be non stationary and the width of the Gaussian basis functions is
the only easily tuned parameter. The width must be greater than the duration of one
block of activation. The aim of this restriction is to avoid modeling incorrectly the BOLD
response as drift term. In the future we intend to study the additive model as the noise
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process in the analysis of fMRI data. Also, more complicated priors over the regression
parameters can be used to take into account the spatial characteristics. Finally, modeling
the drift using splines [50] or the wavelet domain [51] are possible extensions of this work.

In addition, the proposed algorithms can be modified in order to be applied in real
- time for the detection of activated regions. This modification can be done in two
ways: The first approach is similar to the one proposed in [56, 57| for the GLM. In this
case an incremental form of the equations of the proposed algorithms could be obtained.
However, in that case the properties of the VB algorithm, such as the convergence, are
lost. The second approach is based on an online version of the VB framework [58]. In
general, the real-time fMRI data analysis is a very consuming procedure, particularly due
to the preprocessing steps of MR images. To reduce the time of fMRI processing parallel
computing or a computer - cluster can be employed as reported in [56, 57]. To conclude,
the proposed algorithms can be modified for real-time fMRI time series but it is expected
that this modification would deteriorate the detection performance. Finally, concerning
the computational requirements of the proposed algorithms, the most time consuming
operation is the calculation of the covariance matrix of the regression parameters, since
it involves the calculation of an inverse matrix. All the other operations are related to
multiplications and additions.

Another modification concerns the use of non linear forward model. More specifically,
the proposed algorithms are based on the linear forward model. However, easily can be
extended to the non linear forward model in the same spirit as have been done in [59].
Chappell et al [59] use the VB framework to estimate the parameters of the non - linear
forward model. However, to obtain a useful algorithm at the end, they resort to linearize
the likehood term through Taylor expansion. This fact results in no VB algorithm, which
the main consequence is that the guarantee of convergence can no longer apply [59]. Also,
it is questionable how good is the Taylor approximation for each problem under study.

6.5 Conclusions

The analysis of the fMRI data using the GLM is based on two steps. The first step is
related to the estimation of the parameters of the GLM, while the second step is related
to the detection of activated regions based on the previous step. In this chapter two
methods for the estimation of parameters w of the GLM are proposed: one based on
temporal formulation, and one based on a spatio - temporal formulation of the problem.
Also, other components of the fMRI time series such as the drift, are incorporated into
the estimation procedure through an extended design matrix. These two algorithms
are applied in simulated and real fMRI data, and compared to the WLS algorithm. The
simulated experiments have shown that the proposed methods outperform the WLS when
the drift is present inside the fMRI time series. While, the experiments based on real fMRI
data have shown that the proposed methods can be used in cases where the properties
of the true hemodynamic response is not modeled correctly from the design matrix. As
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we observe incorrect modeling of the timing of the hemodynamic response results in an

increase of variance in the particular image.
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CHAPTER 7

A SPARSE AND SPATIALLY CONSTRAINED
GENERATIVE REGRESSION MODEL FOR FMRI
DATA ANALYSIS

7.1 Introduction

In this chapter we present an advanced Bayesian framework for the analysis of functional
Magnetic Resonance Imaging (fMRI) data that simultaneously employs both spatial and
sparse properties. The basic building block of our method is the general linear model
(GML) that constitutes a well-known probabilistic approach. By treating regression coef-
ficients as random variables, we can apply an enhanced Gibbs distribution function that
captures spatial constrains and at the same time allows sparse representation of fMRI
time series. The proposed scheme is described as a maximum a posteriori (MAP) ap-
proach, where the known Expectation Maximization (EM) algorithm is applied offering
closed form update equations for the model parameters. We have demonstrated that
our method produces improved performance and functional activation detection in both
simulated data and real applications.

A significant drawback of the basic GLM approach is that spatial and temporal prop-
erties of fMRI data are not taken into account. However, the fMRI data are biologically
generated by structures that involve spatial properties, since adjacent voxels tend to have
similar activation level [86]. Moreover, the produced activation maps contain many small
activation islands and so there is a need for spatial regularization. Another desirable
property is to handle temporal correlations derived from neural, physiological and phys-
ical sources [38] and have a mechanism that can automatically address the model order.
The latter is a very important issue in many model based applications including regres-
sion. If the order of the regression model is too large it may overfit the observations and

does not generalize well, while if it is too small it might miss trends in the data [87].

112



Within the literature there are several methods that include either spatial correlations,
or sparse properties into the estimation procedure, but only a few of them have inves-
tigated the simultaneous incorporation of both features. Spatial characteristics of fMRI
have been proposed through the use of Markov Random Fields (MRF) priors [88, 89],
mixture models [90], autoregressive (AR) spatial models [31, 39], or a Laplacian affin-
ity matrix [38]. On the other hand, sparse models for fMRI data analysis have been
developed, covering sparseness over regression coefficients of GLM [32, 37, 52], over the
coefficients of spatio-temporal AR models [39], the weights on the space domain of images
[92], through the use of elastic nets [93], or by converting the estimation problem into a
linear programming problem [91]. Training of the above methods is performed by either
Markov Chain Monte Carlo (MCMC), or Variational Bayes (VB) framework. A more
compact methodology has been been presented in [180] that address both spatial and
sparse capabilities in an hierarchical framework. In particular, the image of the regression
coefficients is first decomposed using wavelets, and then a sparse prior is applied over the
wavelet coefficients. An alternative approach has been presented in [95] where the regres-
sion coefficients are indirectly spatially smoothed using an Ising prior over their indicator
variables. Finally, a recent work is described in [96], that applies a multivariate Laplacian
prior over coefficients written as a scale mixture following by a spatial distribution on an
auxiliary variable, that allows a spatio-temporal smoothing of data.

In this chapter we propose an advanced Bayesian framework that simultaneously em-
ploys both spatial and sparse properties in a more systematic way. The contribution of
this chapter is two-fold. First, we provide directly the regression coefficients with the
desired two properties by considering an enhanced prior distribution. Additionally, we
manage to establish an efficient EM-based framework with closed-form update equations
for the model parameters that facilitates the learning procedure.

More specifically, the general-purpose GLM is used for fMRI time series modeling.
The key aspect of our method is the enhanced exploitation of the Markov Random Fields
[97, 98] by using an effective Gibbs potential function. Traditionally, Gibbs distribution is
used for addressing only spatial correlations. In our study we present a modification of the
potential function that, apart from spatial, it is able to simultaneously impose sparseness
based on the Relevance Vector Machine (RVM)[87]. A maximum a posteriori expectation
maximization algorithm (MAP-EM) [205] is applied next to train this model and estimate
its parameters. This is very efficient since it leads to update rules in closed form during
the M-step and improves data fitting. The performance of the proposed methodology is
quantitatively and qualitatively evaluated using a variety of simulated and real datasets.
Comparison has been made using the typical maximum likelihood (ML) and the spatially
variant GLM methods without sparseness. We also present some visualizable examples

of the performance of our approach on real applications of block design and event related
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cases.

In section 7.2 we briefly describe the basic GLM framework and show how we can
introduce a Gibbs prior so as to allow spatial correlations. The proposed simultaneous
sparse spatial regression model is then presented in section 7.3 together with the MAP-
based learning procedure. In section 7.4 a view of the proposed model in the spirit of EM
algorithm is provided. To assess the performance of the proposed methodology we present
in section 7.5 numerical experiments with artificial and real fMRI datasets. Finally, in

section 7.6 we give conclusions and suggestions for future research.

7.2 A spatially variant linear regression model

7.2.1 Background

Suppose we are given a set of N time-series Y = {y;...,yn}, where each observation
yn is a sequence of M values over time, i.e. y, = {yum}¥_,. The application of the
Generalized Linear Model (GLM) assumes that the fMRI time series y,, are described
with the following manner:

Vo =®w, +e,, (7.1)

where @ is the design matrix of size M x D and w,, is the vector of the D regression coef-
ficients which are unknown and must be estimated. The last term e,, is a M-dimensional
vector determining the model error. In most cases temporal correlations exist over the
fMRI time series that arise from neural, physiological and physical sources, and unmod-
eled neuronal activity [24, 25]. In order to model them we can apply an auto-regressive
(AR) process [31, 39]. Note that long range correlations can be additionally included by
using an appropriate extension of the design matrix [24, 32]. According to an AR, process

of order p, the error term e, can be written as:
e, =E. &, +e, (7.2)

where E,, is an M x p matrix containing past error samples, &, is the vector of the p
AR coefficients and ¢, is an i.i.d. M-length zero mean Gaussian vector with a precision
(inverse variance) A,, i.e. &, ~ N(0,\ 'T). Alternatively we can consider the next
formulation:

E.e, = cn (7.3)

where E,, is a M x M upper diagonal matrix containing the AR coefficients. From this
scheme we obtain the distribution of error as e, ~ N(0, (A\,ELZE,)~1). Both versions of
the AR model will help us to write the likelihood in a more convenient way.

The design matrix ® contains some explanatory variables (or effects) that describe

various experimental factors. Its construction is crucial for the statistical analysis of fMRI
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data. The number of regressors (columns of the design matrix) depends on the experiment
and on the problem formulation in order to address several factors of the fMRI time series
such as long range correlations and movement effects [32, 38]. During the experimental
study we have considered various cases related to the design matrix.

In fMRI data analysis the goal is to find the involvement of experimental factors in
the generation process of time series through the estimation of coefficients w,,. Following
Eq. 7.1 and since ®w,, is deterministic we can model the sequence y, with a normal

distribution
p(Yn‘Wna Ans 571) = N((I)Wm (Anagan)il) . (7'4)

Thus, the problem can be viewed as a maximum likelihood (ML) estimation problem for
the model parameters © = {w,,, A\, &, }_,. The log-likelihood function can be written in

two equivalent forms using Eqs. (7.2) and (7.3), respectively:

M An 9
{5 log X = SZalyn — @wa)} | (7:5)

WE

N
Lur(©) = Y logp(yulWa, An,6a) =
n=1

1

3
Il

M A,
{7 log A — 5[y — W, - En§n||2}7..6)

WE

N
Lur(©) = Y logp(yulWa, An,6a) =
n=1

1

3
Il

The maximization procedure leads to the following rules that are iteratively applied®:

w, = (®'ElE,.®)'®"E By, , (7.7)

A M

)\n = = ~ ) (78)
”':'Tl<yn - q)wn>”2

7.2.2 GLM with MRF-based spatial prior

The GLM framework does not support inference about the spatial aspects of functional
anatomy. A common technique dealing with this subject is by performing a preprocessing
step with a Gaussian filter to smooth the fMRI signal [25]. However, this may cause
the construction of overestimated activated maps with a loss of local information. An-
other difficulty is the selection of the Gaussian window size that may deteriorate the
performance.

The Bayesian formulation offers a natural platform for automatically incorporating
spatial properties. This can be accomplished through the use of a Gibbs prior distribution
over the voxel coefficients. Introducing of such prior constrains the local characteristics
of the voxels and the brain response based on the notion of Markov random field (MRF)
(97, 98, 100]. It must be noted that Gibbs spatial priors have been successfully applied
to the task of image segmentation, see for example [101, 102, 103].

lwe apply the Eq. 7.5 for the regression coefficients w, and the Eq. 7.6 for the AR coefficients &,
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The Gibbs density function for the n-th voxel takes the following form:

p(walB2) = Z(50) exp{—5 Vi, (W)} (7.10)

The function V' denotes the clique potential function within the neighborhood N,, of n-th

voxel. In our case we have selected the next potential

Viva(Wn) = B > llwa — wi])? (7.11)

k€N,

where 3, is the regularization parameter. The neighborhood N, is the set of voxels that
are horizontally, vertically or diagonally adjacent to the voxel n, having a cardinality |N,|.
Finally, the first term Z of Eq. 7.10 is the normalization factor and can be written as

Z(By) x INnl/2 1 addition, a Gamma, prior is imposed on the regularization parameter

B, as well as the noise precision A, of the form

p(Bn) = Gamma(B,|bs,cs) B tembebn (7.12)
p(\n) = Gamma(\,|by, cy) ox A te™ (7.13)

The estimation problem is now formulated as a maximum a posteriori (MAP) frame-
work, in the sense of maximizing the posterior density of model parameters © = {w,,, 8., An, & 1.
The MAP log-likelihood function is given by:

N

Luap(®) = > { 108 P(Yn Wiy An, ) + log{p(wn\ﬁn)p(ﬁn)p(An)}}
n=1
N
> {51080 — =3 IZn(yn — @wa) |2 + S log B, —
Bn
T3 Iwa = Wil + G(B) + G | (7.14)
kENy,
where function G() has the following form?

G(z) = ¢, logx — byx . (7.15)

By taking the partial derivatives of function Ly;sp with respect to model parameters the

next updated rules are obtained

W, = (\®EIE,®+ B,) '(A\®"E]E,y + BW,) , (7.16)
N |Nn| + 2Cﬁ
ﬁn = ~ ~ s (717)
D ken, Wi — Wi |? + 205
' M2
- + 20 (7.18)

HEn(Yn - q)VAVn)HQ + 2b/\ ’

2We follow the methodology described in [87] where the maximization is made over a logarithmic scale
using that p(logz) = zp(z) .
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where B, = >, cn (Bn + Be)I and BW,, = >,y (Bn + Br)wy, that correspond to the
effect of neighbors of n-th voxel to the computation of its regression coefficients. Note
that the update equation for the AR coefficients &, is the same as in the ML case (Eq. 7.9).
The above learning scheme can be incorporated in an Expectation-Maximization (EM)
framework [205]. In particular, during the E-step the expectation of the hidden variables
(w,,) are computed (Eq. 7.16) and use them next for updating the model parameters £,
&, and A, during the M-step (Eqs. 7.17, 7.9 and 7.18, respectively). This spatially variant

regression model will be referred next as SVGLM.

7.3 Simultaneous Sparse and Spatial GLM

A desired property of the linear regression model is to offer an automatic mechanism that
will zero out the coefficients which are not significant and maintain only large coefficients
that are considered significant according to the model. Moreover, an important issue
when using the regression model is how to define its order D. The appropriate value
of D depends on the shape of data to be fitted, that is models of smaller order lead to
underfitting, while large values of D may lead to overfitting. It is well known that both
cases may lead to serious deterioration of the fitting performance. The problem can be
tackled using the Bayesian regularization method that has been successfully employed in
the Relevance Vector Machine (RVM) model [87].

In order to simultaneously capture both spatial and sparse properties, the Gibbs dis-
tribution function needs to be reformulated. This can be accomplished by using the
following Gibbs density function

P(WalBns 2ny ) = Z(Bry 2n, ) €XP ( — %{V]%) (Wn) + V]\(,i) (wn)}> ) (7.19)

The first term in the exponential part of the above function is the sparse term used for

describing local relationships of the n-th voxel coefficients. This can be expressed as

where A, is a diagonal matrix containing the D elements of the hyperparameter vector

an = (Qp1,---,a,p)’. In addition, a Gamma prior is imposed on the hyperparameters
Qpd
D D
plan) = [ Gamma(onglba, ca) o [ ] agy e teont | (7.21)
d=1 d=1

In this way, a two-stage hierarchical prior is achieved which is actually a Student-t distri-
bution with heavy tails [87]. Sparsity is obtained since this scheme enforces most ayq to

be large, thus the corresponding coefficients w,q are set zero and finally eliminated.
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The second term of the exponential part of the proposed Gibbs function (Eq. 7.19)
captures the spatial correlation and is responsible for the clique potential of the n-th
voxel:

Vi (wa) = Bu Y zarllwn — wi® . (7.22)

kENn

In comparison with the potential function of the SVGLM method (Eq. 7.10), this formu-
lation provides a variation in the neighbors’ contribution to the calculation of the clique
potential value, as reflected by the parameters z,,. Experiments have shown that the
introduction of such weights can increase the flexibility of spatial modeling and can be
proved advantageous in cases around the borders of activation regions (edges). It must be
noted that in the literature there are other model-based methods that embody the same
desired property around edges, see for example [104]. However, they are not possible to
offer closed form update rules such as in our case. Finally, the first term Z of Eq. 7.19

acts as a normalization factor and can be expressed as:

Z(Bns 2ny 0m) o B2 T Z,I/QH Ve (7.23)
k€N,

We also assume that the regularization parameter f3,, the noise precision A, and
the weights z,, are variables following the Gamma distribution. Based on the above
formulation, the data analysis problem can be treated as a maximum a posteriori (MAP)
approach for the set of regression model variables © = {w,,, 8., &, A, 20, @ }Y_;. The

MAP log-likelihood function can be given as:

N

LMAP(@) = Z { 10gp(Yn|wm é-na )\n) + 1Og{p(wn|5na Zn, O‘n)p(ﬁn)p()‘n)p(zn)p(an)}}

n=1

Il
M=

M - 1
{— log A = S Zyn — Bw) |2 = Swh Ayw, -

212 2

O S cualiw = wil + P hog g, LS tog 2+
keNn keNn

_Zlogand +G(B) +GAn) + Y Glzm) + ZG (Ctng) } . (7.24)
— keEN,

Setting the partial derivatives with respect to regression coefficients equal to zero the

following closed form update rule is obtained

= (\M@TELEL® + BZ, + An) (M BTE By, + BZW,) . (T.25)

n

where the matrices BZ,, and BZW,, are

BZ, = Z (Bnznk + Brzien)I , and BZW,, = Z (Bnznk + Brzkn) Wi - (7.26)

kEN, kEN,
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Figure 7.1: Graphical representation of the proposed model.

For the rest three model variables {5, z,, a,, } we also produce update equations

3 |Nn| + 265
o = P : 7.97
! ZkENn 'ZﬂkHWn - Wk”2 + 2()5 ( )

1+2

é’nk = —~ - +A Cz : (728)

B[ W, — Wi |2 + 20,

1+2
G # : (7.20)
Wng + 2ba

while the AR coefficients &, and the noise precision A, have the same form as previously
defined (Eq. 7.9 and Eq. 7.18, respectively).

Again, the whole procedure can be incorporated in an EM framework by treating the
regression coefficients as hidden variables. In this way, their expectation is computed
in the E-step governed by Eq. 7.25, while the maximization of the complete-data MAP
log-likelihood function is performed during the M-step giving update equations for model
parameters (Eqs. 7.27-7.29). The above scheme is iteratively applied until the convergence
of the MAP function. We call this method SSGLM. Following Eq. 7.24 it is easy to see that
when a,q = 0 the proposed method is reduced to the previously described SVGLM (setting
also z,, = 1) keeping only the spatial component. On the opposite case, when 3, = 0
or z,, = 0 it maintains only the sparse part and becomes equivalent to the RVM-based
sparse regression modeling [87]. A graphical representation of the proposed method is
presented in Fig. 7.1. In the Appendix A we present an EM-based alternative description
of the above model where we obtain the marginal distribution of the observations y, by

integrating out the regression coefficients w,, and treating them as hidden variables.

119



7.4 EM-based model estimation framework

In the previous analysis the regression coefficients {w,, }_, have been treated as model pa-

rameters. However, following the same strategy as the RVM methodology [87], we can in-

tegrated them out and obtain a reduced model with less parameters © = {,, Zuk, Ond, An, En Joy

The marginal log-likelihood for each voxel n can be obtained by the following integration

logp(yn|6n; Znky Qnd, 571) = log/p(yn|wn; )\m §n>p<wn‘6m Znk) and>dwn . (730)

Since both densities are known (Eqs. 7.4 and 7.19), we can easily found the marginal
log-likelihood

D
N, 1 1
1ng(}’n|5naznka O‘ndagn) X | 2n| 1Og Bn — 5 Z logznk - 5 ;log e

keN,
1 M 1
3 log |S,| + > log \, — a{mnSnmn —~yiErEy, -
Bn Z kWL Wi (7.31)
k€N,
where
m, = (\®E'E,®+BZ,+A,) ' O\® E'E,y,+BIW,), (7.32)
S, = (WM®EE,®+BZ,+A,)"! (7.33)
Therefore, the MAP log-likelihood function is written as
N D
Imap(©) = > { 108 P(Yn|Bns 20y 0ny €n) + G(Bn) + GAn) + Y Glznk) ZG(and)} . (7.34)
n=1 keEN, d=1

The maximization of the above function can be done either directly by taking the partial
derivatives and find the updated rules, or by following the EM-MAP framework, that we
adopt here. According to the EM algorithm, the regression coefficients w,, are treated as
hidden variables where their expectation is calculated at the E-step (Eq. 7.25). Equation
7.24 describes the complete data MAP log-likelihood function. During the M-step the
expectation of this function is maximized, where the expectation is made with respect
to the posterior distribution of regression coefficients w,. Notice here that this posterior
can be considered as Gaussian with mean m,, and covariance S,,. By setting the partial

derivatives with respect to model parameters equal to zero, the next update rules are

120



obtained

o |Nn‘ —|—205

ke, inkgwn\yn,gn{ﬂwn - Wk||2} + 24
14 2,
énk = - + 2c , (736)
Bngwn|yn,0n{”Wn — WkH2} + 2bz
14 2¢,
OAénd = + 2¢ , (737)
5wn|yn,9n{wid} + 2b,
\ M+ 2
A = + 2¢y , 7.38)
5wn|yn,en{HEn(yn — <I>wn)|y2} + 2,
& = (EIE) "Enfuyiynnn { 1Bn(yn — @wa) 2} . 739

which are iteratively applied. The above expectations can be easily calculated using that

an|Yny‘9n{wn} = my,, (740)

7.5 Experimental results

We have tested the proposed method (SSGLM) using various simulated and real datasets.
Comparison has been made with two versions of the spatially variant GLM: the simplest
one (SVGLM) as described at section 7.2.2 and those (SVGLM-2) obtained by ignoring
the sparse term of the Gibbs distribution function of the SSGLM method. The difference
of both versions is found on the enforcement of parameters z,; in the case of SVGLM-2,
in an attempt to provide a weighting scheme for the clique potential function. The aim
of this study is to evaluate the usefulness of these parameters. All methods are initialized
with the same strategy. First, the ML estimates of the regression coefficients w, are
obtained (Eq. 7.7) and then are used for initializing the rest model parameters &,, A, 3y,
Zkn, and a,y, according to Eqgs. 7.9, 7.18 and 7.27-7.29, respectively. It must be noted that
in the case of SSGLM method, since there is a dependency between parameters [, and
Zkn, We use the Eq. 7.17 (instead of the Eq. 7.27). During the experiments all Gamma
parameters were set equal to 0.5, except for the sparse responsible parameters {b,, ¢, }

that were set as b, = ¢, = 107® making them non-informative, as suggested in [87].

7.5.1 Experiments with simulated data

The simulated datasets used in our experiments were created according to the following

generation mechanism. We used a design matrix with two pre-specified regressors. The

121



-0,

0 10 20 30 40 50 60 70 80
Time

(a) (b) (c)

Figure 7.2: Simulated data generation features: (a) Bold signal, (b) random and (c)
circular shaped image of activated areas.

first one was responsible for the BOLD signal (s) of length M = 84 and has been derived
by a real experiment found on the SPM package shown in Fig. 7.2(a), while the second
one being a constant of ones. Then, we constructed an image with the activated areas
where the pixel intensities correspond to the value of the first coefficient (w,;). In our
study we have used two such simulated images of size 80 x 80 with two different shapes
of activation: circular (Fig. 7.2(b)) and random® (Fig. 7.2(c)). The second coefficient
wyo had a constant value equal to 100. The time series data (y,) were finally calculated
by using the generative equation of GLM (Eq. 7.1) with an additive Gaussian noise of
various signal-to-noise-ratio (SNR) levels. The noise was constructed according to an AR
model of order p = 3 whose coefficients &, took the values &, = (1 —0.8 0.6 —0.4)", that

were the same used in [31]. Finally, the SNR value was calculated as follows:

SNR = 10log —>° (7.42)

=10log ———— :
(1/2n)

where s is the BOLD signal (Fig.7.2(a)).

Two evaluation criteria were used during the experiments.

e The Area Under Curve (AUC) of the Receiver Operating Curve (ROC) based on
t-statistic calculations. ROC curves were generated by considering a voxel to be
active if its effect size is greater than a predefined threshold. In our experiments the
above threshold varied from the minimum to the maximum value of the t-statistic
as calculated by each method. ROC analysis reflects the ability of the method to

detect the real activations, while minimizing the detections of false activations.

e The normalized mean square error (NMSE), between the estimated (w,;) and the

3Tt has been created by sampling from an MRF model using a Gibbs sampler and has been obtained
from [102]
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Table 7.1: Comparative results for simulated data in various noisy environments.
circular-shaped areas

AUC NMSE

SNR | SSGLM SVGLM-2 SVGLM | SSGLM SVGLM-2 SVGLM
0 0.9989 0.9990 0.9990 | 0.0680 0.2431 0.2537
-2 0.9985 0.9990 0.9990 | 0.0952 0.2858 0.3015
-4 0.9987 0.9989 0.9989 | 0.1497 0.3312 0.3542
-6 0.9972 0.9985 0.9983 | 0.2218 0.3730 0.4054
-8 0.9934 0.9982 0.9976 | 0.3027 0.4081 0.4517
-10 | 0.9818 0.9974 0.9962 | 0.4114 0.4394 0.4961

random-shaped areas

AUC NMSE

SNR | SSGLM SVGLM-2 SVGLM | SSGLM SVGLM-2 SVGLM
0 0.9845 0.9813 0.9864 | 0.2015 0.2145 0.2211
-2 0.9841 0.9712 0.9737 | 0.2247 0.2421 0.2712
-4 0.9824 0.9627 0.9641 0.2547 0.2871 0.3190
-6 0.9777 0.9460 0.9445 | 0.3027 0.3431 0.3724
-8 0.9715 0.9257 0.9248 | 0.3631 0.4076 0.4329
-10 | 0.9594 0.9075 0.9005 | 0.4323 0.4814 0.4904

true (wy1) coefficients responsible for the BOLD signal which are known:

NMSEI — 27];[:1(@”1 _ wTLl)Q

N
anl w?Ll

NMSE measures the quality of the curve fitting procedure.

(7.43)

For every noise realization (SNR value), we performed 50 different runs of each compar-
ative method and the mean values of AUC and NMSE measurements were calculated.
Moreover, during the experiments with simulated data we have used a design matrix (®)
with four columns (D = 4): one for the BOLD signal, two others for the time and the
dispersion derivatives, and a last column with ones for the constant term.

We present in Table 7.1 the comparative results in terms of the above two criteria
for several SINR values. As it is obvious, the proposed method improves the quality of
fitting process (NMSE quantity), as well as the activation detection ability (AUC quan-
tity). This is more apparent in random-shaped areas and in lower values of examined
SNR values. An example of the obtained ROC curves by three methods is displayed in
Fig. 7.3, giving the ability of the SSGLM to detect larger real activations (sensitivity) and
simultaneously reduce the detection of false positive activations (specificity). However, its
calculated AUC values are slightly worst than those of its spatially constrained peers dur-

ing experiments with circular regions that has much smoother borders. Between the two
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Figure 7.3: Example of ROC curves created by the estimates of SSGLM, SVGLM-2 and
SVGLM methods for two different SNR values.

spatially-constrained methods, the SVGLM-2 had better performance in all cases. The
introduction of the parameters z,; in the potential function of the SVGLM-2 (Eq. 7.22)
gives better detection capability and fitting accuracy. In addition it manages to improve
the effect of over-smoothing at the boundaries of activation regions that happens with
the simple SVGML method. Finally, the proposed approach SSGLM not only supports
this property, but also achieves enhanced activation detection capabilities by making the
distinguish between activated and non-activated areas more significant. This behavior
is shown in Figure 7.4 that presents the produced BOLD contrast images of three com-

parative methods when studying the simulated data with random-shaped regions for two
different SNR values.

7.5.2 Experiments with real fMRI data

The proposed approach was also evaluated in a variety of real applications. For any
selected dataset we followed the standard preprocessing steps of the SPM package, i.e.
realignment, segmentation, and spatial normalization, without performing the spatial
smoothing step. Data are then scaled by means of their mean value, as described in
[180], and finally were high pass filtered using a set of discrete cosine basis functions. Our
method (SSGLM) was compared with the spatially variant (SVGLM), as well as with
the maximum-likelihood (ML) approach. In the latter case (ML), time-series are initially
spatially smoothed. During all experiments we have chosen an AR model of order p = 3

as was suggested in [31].
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(a) SNR = -10 dB

Figure 7.4: The estimated BOLD contrast by three comparative methods in simulated
data with random shaped activated areas.

Block design fMRI data

At first we have studied a real block design fMRI dataset? designed for auditory processing
task on a healthy volunteer. Its functional images consisted of M = 68 slices (79 x 95 x 68,
2mm x 2mm x 2mm voxels). Experiments were made with the slice 29 of this dataset.
We have used two regressors (D = 2) for the design matrix, one for the BOLD response
and another having constant values of ones for modeling the mean brain activity. Figure
(7.5) illustrates the images of the BOLD contrast produced by the three comparative
approaches. All methods show maximum BOLD signals at the expected areas of the
auditory cortex. However the SSGLM approach is significantly biased to these areas and
suppress more efficiently the weights of the rest of the brain giving a cleaner activation
pattern.

In order to perform a more comprehensive study, further experiments are made on
this slice. In particular, we find it useful to visually inspect the resulting activation maps
obtained by the ¢-test. In Fig. 7.6 the SPMs of each method are shown, calculated without
(Fig. 7.6(a)), or with setting a threshold® (Fig. 7.6(b)) on t-values. It is interesting to

observe that both maps produced by SSGLM are very similar achieving less sensitivity

Tt was downloaded from the SPM web page http://www.fil.ion.ucl.ac.uk/spm/
>The significance level was set to 0.05, which gives a threshold value ty = 1.66.
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SSGLM SVGLM ML

Figure 7.5: BOLD contrast images estimated by three methods in real block design ex-

periment.

SSGLM SVGLM ML

Figure 7.6: Statistical parametric maps (SPMs) of comparative methods based on t-values
(a) without and (b) with setting a threshold value.
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Figure 7.7: (a) Plots (in logarithmic scale) of the estimated number of activated voxels in
terms of threshold value used for producing the SPMs. (b) Plots of the t-values of SPMs
and (c) plots of the posterior values of PPMs as computed by the SSGLM (thick line)
and the SVGLM method (thin line).

to the threshold value. This is more apparent in Fig. 7.7(a) where we plot the estimated
size (number of voxels) of activated areas by each method in terms of the threshold value
(obtained with a varying significance level from 0.0001 to 0.5). The same observation
is made by plotting the calculated ¢-values of the SSGLM and the SVGLM methods in
Fig. 7.7 (b). As it is obvious the distinction between the activated and non activated
areas becomes much cleaner in the SSGLM plot. The above observation is very important
from a clinical perspective, since in the standard fMRI analysis methods the activation
boundary varies significantly with the smoothing and the statistical threshold used. This
dependence complicates clinical decisions based on fMRI results [106]. This problem is
alleviated by our methodology which does not require smoothing and produces results
that are very insensitive to the threshold choice.

Similar observations are obtained by studying the posterior probability maps (PPM)
of brain activity, displayed in Fig. 7.8 without (a) or with setting a threshold® (b).
Again the SSGLM method produced much smoother and cleaner areas, while the rest
methods showed almost similar results. Finally, in Fig.7.7(c) we plot the calculated PPM
values of the SSGLM and the SVGLM methods. The distinguish between activated and
non activated areas is more obvious in our method. Moreover, by comparing all different
activation maps which can be obtained (Figs. 7.5, 7.6, 7.8) it is interesting to observe that
the proposed method maintains similar behavior regarding the same estimated activation

areas.

6We have used the threshold value ppy = 1 — 1/M as suggested in [54]
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SSGLM

Figure 7.8: Posterior Probability Maps (PPMs) of three comparative methods (a) without
and (b) with setting a threshold value.

Event related design fMRI data

Additional experiments were made considering event related cases. At first we have used
a public available dataset obtained from the SPM web page designed for face recognition
using grayscale images of faces, where we have selected the slice 18 for study. The contrast
vector was set as ¢ = [1, 1,1, 1, 0] that describes the response to the presentation of a face
image. We have used a design matrix that consists of five (D = 5) regressors related to 4
types of events. In particular, the first four regressors indicate the presence of a face and
have been convolved with a ”"canonical” HRF, while the last one is the constant term.
Figure 7.9 presents the produced maps of (a) the BOLD signal, (b) the SPMs (b) and
(c) the PPMs. As it is obvious, all methods show large responses in the occipital lobe.
However, the SSGLM method produces more localized and less dispersed activation areas.

In the second event related experiment we analyzed fMRI data consisted of images ac-
quired from a motor event related paradigm available at the affiliated University Hospital
of Toannina. During this experiment patients with RLS (restless legs syndrome) performed
random and spontaneous limb movements evoked by sensory leg uneasiness. These move-
ments were used to create the indicator vector in our modeling that was convolved next
with the hemodynamic response function (HRF) in order to provide the BOLD signal.
The design matrix had four columns (D = 4): the BOLD signal, its time and dispersion
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Figure 7.9: Images of (a) the BOLD contrasts, (b) the SPMs and (c) the PPMs estimated
by three methods in a real event related experiment.
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Figure 7.10: Created images of the (a) BOLD contrasts, (b) SPMs and (¢) PPMs produced
by three methods in the real motor event related experiment.

derivatives, and a constant.

In our study we examined the main effect (leg movement vs rest) which means that
the contrast vector has the form ¢ = [1,0,0,0]. Maps of the estimated BOLD contrasts,
the SPMs and the PPMs, are shown in Fig. 7.10 for the slice 54 of the dataset. All the
methods revealed similar brain activated regions related with motor function such as: a)
the supplementary motor area b) the primary motor areas (precentral gyrus) and c) the
superior parietal lobe. In comparison with the other approaches, the SSGLM method
provides contrast maps where even a simple visual inspection reveals localized maxima in
good agreement with the current knowledge of the locations and extent of motor circuitry.

The other approaches need further thresholding in order to detect activated areas.
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7.6 Conclusions

In fMRI data analysis, the spatial extension of the hemodynamic response in a neighbor-
hood of voxels introduces a significant weakness for the detection process of the activated
areas. Moreover, the presence of temporal correlations deteriorates the performance. In
this work we present an advanced method to tackle these two problems by efficiently incor-
porating both spatial correlations and sparse properties. This is done by using a powerful
prior over the regression coefficients based on Markov Random Fields (MRFs) modeling
and Relevance Vector Machines (RVMs). Training of the proposed model is achieved
through a maximum a posteriori (MAP) framework that allows the EM algorithm to be
effectively used for estimating the model parameters providing update rules in closed form.
Experiments on artificial and real datasets have demonstrated the ability of the method
to improve the detection performance and robustness, especially in noisy environments,
and to enhance the estimation accuracy. Our method showed a reduced sensitivity to
the threshold value of the produced statistical map without needing to make multiple
comparisons. Our future research study is focused to three directions: a) to examine
the appropriateness of other types of sparse priors [107], b) to try alternative potential
functions of the Gibbs distribution and c) to assume a Student-t distribution instead
of Gaussian for modeling the excitation noise aiming to achieve more robust statistical

inference and handle more efficiently outlying observations [208].
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CHAPTER &

CLUSTERINCG FMRI TIME-SERIES BY USING A
MIXTURE OF REGRESSION MODELS WITH
SPATIAL AND SPARSE PROPERTIES

8.1 Introduction

Classification and clustering methods can be used for the determination of fMRI time
series into activated or non activated. However, the classification methods meet an obsta-
cle: they require a training set. This is not an easy task since the fMRI response depends
on many experimental factors such the image acquisition parameters, paradigm design,
subject and region of the brain activated. On the other hand setting the problem as a
clustering problem seems to be more natural. In the literature they are plenty of works
in this direction [182, 184, 185, 186, 187, 188, 189, 190, 191]. Clustering is the process to
divide a set of samples into groups (called clusters) so that samples from the same cluster
to be similar each other while samples belong to different clusters to be dissimilar. It is
a common technique for statistical data analysis used in many fields, including machine
learning, data mining, pattern recognition, image analysis and bioinformatics [192, 45].

Two major classes of clustering methods are the distance - based methods and the
model - based methods [192]. The first category assumes a weak structure of the data,
while the second category assumes a compact and informative structure. Distance-based
methods, such as the well-known k-means algorithm, usually require the number of clus-
ters to be known a priori. However, model-based methods can incorporate prior knowledge
more naturally into the clustering approach which can help us to estimate the number of
clusters.

Probabilistic mixture modeling is a well established model-based approach for clus-
tering that offers many advantages. One such advantage is that it provides a natural

platform to evaluate the quality of the clustering solution [45]. Clustering time-series is a
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special case of clustering in which the available data have one or both of the following two
features: first they are of very large dimension and second they are not of equal length and
thus conventional clustering methods cannot straightforwardly be applied. In such cases
it is natural to initially fit the available data with a parametric model and then to cluster
based on that model. Through the literature there are different types of models that have
been used for time series clustering [193]. Among them, Hidden Markov Models [194],
polynomial and spline regression models [195, 196], mixtures of ARMA models [197, 198]
and mixtures of Gaussian processes [199] are commonly used models. The main drawback
of these methods is that they do not automatically address the problem of model order
selection, which is very important in regression. If the order of the regressor model is too
large, it overfits the observations and does not generalize well. On the other hand if it is
too small, it might miss trends in the data.

fMRI belongs to the spatiotemporal class of data that capture both spatial and tem-
poral properties of data [200]. Clustering such kind of data must consider how to group
voxels into spatial regions where voxels exhibit similar temporal behavior. But this is
not a problem rather a challenge. In such cases it is important to measure both the
temporal characteristics of the grouped voxels and simultaneously to accurately classify
voxels in groups of similar temporal behavior. Thus, for this type of data, determining
class membership, apart from the distance between the coefficients of the model, it is also
beneficial to use spatial constraints. Such constraints must capture our prior knowledge
that adjacent voxels most likely belong to the same class and have the same label.

From the fMRI data analysis perspective, in the literature many works have been
presented about the clustering of fMRI time series. In most of them the clustering pro-
cedure is made using raw data or features that are extracted from the fMRI signals
(182, 184, 185, 186, 187, 188, 189, 190, 191]. Mixture models have been recently to the
task of clustering [191, 90]. In [202] a mixture of General Linear Regression models
(GLMs) is used that takes into account the spatial correlation of voxels using a spatial
prior based on the distances between voxels and cluster centers. Recently, in [203] a mix-
ture of linear regression models is used, where spatial correlations among the time series
is achieved through Potts models over the hidden variables of the mixture model.

In this chapter we proposed a new probabilistic mixture modeling approach for clus-
tering fMRI time series based on linear regression models where each cluster is described
as a linear regression model. The innovation of the proposed method is found on three
issues. First, present a sparse representation of every cluster regression model through the
use of an appropriate sparse prior over the regression coefficients [87]. Enforcing sparsity
is a fundamental machine learning regularization principle and has been used to tackle
several problems, such as feature selection. The key idea behind use of sparse priors is

that we can obtain more flexible inference methods by employing models having initially
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many degrees of freedom than can be uniquely adapted to given data. In particular, in
sparse Bayesian regression a heavy tail prior is imposed to the coefficients of the regres-
sor. During training such prior will zero out the coefficients that are not significant and
maintain only a few large coefficients that are considered significant based on the train-
ing data. Spatial constraints of data have been also incorporated to the mixture model
through the notion of Markov Random Field (MRF). This is done by considering the class
labels parameter of each voxel as random variables that follows a Gibbs distribution so
as to achieve similar behavior in every voxel neighborhood. Special care is given during
the optimization procedure in order to meet the constraints of those parameters.

To avoid sensitivity of the design matrix to the choice of kernel matrix, we have used
a kernel composite design matrix constructed as linear combination of Gaussian kernel
matrices with different scaling parameter. Each kernel matrix has each own weight that
is unknown and must be estimated. During the learning process the constraints of these
kernel weights are also taken into account. The clustering procedure is formulated as a
Maximum A Posteriori (MAP) estimation problem where the Expectation - Maximization
(EM) algorithm constitutes a powerful framework for solving it. At the end of the training
phase, we select the cluster that is more similar to the BOLD signal according to the
Pearson correlation measure. An incremental strategy for building the mixture model is
also presented. The advantage of doing that is twofold: First, it makes the EM-based
learning procedure independent on initialization of model parameters. At the second level
it allows us to introduce a stopping criterion of the repeating splitting process based on
the correlation measurement. Intuitively, this can be seen as a model order selection
for the complexity of the mixture model. As experiments with artificial and real fMRI
dataset have shown, the proposed method offers very promising results with an excellent

behavior in difficult and noisy environments.

8.2 The mixture of linear regression models

Let Y = {y1,y2,- -+ ,¥n} be a set of N fMRI time series of equal length 7', where each
element y,, is a sequence of data points measured at 7' successive time instances x;, i.e.

Yn = {Yni}i=1,..,r- The linear regression model follows the next functional description
Vn=Xw+e (8.1)

where w is the vector of M unknown regression coefficients, while e is the noise term that
is assumed to be zero mean Gaussian with variance o2, i.e. € ~ AN(0,0%I). Finally, X is
the M-order design matrix of size T' x M where its construction plays an important role
for the data analysis. A typical design matrix scheme is by using the Vandermonde or

B-splines matrix dealing with polynomial or splines models, respectively [?]. However a
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more powerful strategy is to assume a kernel design matrix using an appropriate kernel
basis function over time instances {z;}I_,, such as the Gaussian kernel which is the most

commonly used

_ (21 — mp)°
KMy, ) = eXp(—T) :

However, selecting the proper value of the scalar parameter A is a significant issue since
it depends on the amount of local variations of the data.
According to this model, the conditional probability density of the sequence y, given

the set of model parameters § = {w, c?} is also of Gaussian form
p(yn|0) = N(Xw,0%I) .

In this study we consider the problem of clustering the set of time series Y into a set of K
clusters, in such a way that each cluster to contain similar time series, i.e. to have been
generated from the same linear regression model. Mixture modeling provides a natural
and powerful platform of establishing the clustering procedure based on linear regression

models. Tt is described with the following probability density:

flynl©) = Z%p (ynl6;) (8.2)

where 7; are the weights (prior probabilities) of every cluster that satisfy the constraints:
m; > 0 and Z]K:1 m; = 1. Following this scheme, each sequence y, is generated by
first selecting a cluster (or source) j according to probabilities 7; and then performing
a sampling based on the corresponding j-th linear regression model with parameters,
0; = {w;, UJQ-}, as described by the normal density function p(y,|0;) = N (Xw;, O'JQ-I).
Based on the above formulation, the clustering problem can be transformed into an
estimation problem for the model parameters by maximizing the data log-likelihood func-

tion
= log(3_ mp(yalé))}. (8.3)

The EM algorithm [205] constitutes an efficient method for applying to such ML esti-
mation problem. It consists of two main steps which are applied iteratively. The E-step
where the current posterior probabilities probabilities of time series to belong to each

cluster are calculated: (5.16)
. TiP\Yn|Uj
Znj Ip(.7|}’m@) = w )

and the M-step where the maximization of the expected complete log-likelihood (Q-

(8.4)

function) is performed with respect to model parameters,

Vo — Xw,||?
QR(e|ev) Z Z Zni{logm; — —Tlog ol — %} (8.5)
n=1 j=1 J
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The maximization leads to the following update rules:

N
Zn:l an

e A (8.6)
N N
w; = (Z zanTX)*lXTZ(znjyn), (8.7)
n=1 n=1
N 2
oj = TSN o . :
n=17%nj

After the convergence of the EM algorithm, the association of N observations with the

K clusters is done following the rule of the maximum posterior probability values.

8.3 Regression mixture modeling with spatial and sparse proper-
ties

The above structure of the linear regression mixture model for clustering fMRI data has
some limitations and is not capable of handling some important characteristics arisen
from the nature of the observations. In particular, the fmri data are structures that
involve spatial properties, since adjacent voxels tend to have similar activity behavior
[86]. Another desirable property is to handle temporal correlations derived from neural,
physiological and physical sources [38] and have a mechanism that can automatically
address the model order. Bayesian framework allows the incorporation of all these features
through the use of appropriate prior distributions over the model parameters that act as
useful constraints.

In order to capture spatial properties we can consider that the probabilities m,; of
each fMRI sequence y,, to belong to the j-th cluster are additional model parameters that

satisfy the constraints m,; > 0 and Z]K:1 7n; = 1. The mixture model is now modified as

f(¥al©) = anjp(yn\ﬁj). (8.9)

where the total set of parameters are © = {{m,;}2_;,0;}/~,. We can handle the local
characteristics of the voxels using the Markov Random Fields (MRF) since they have suc-
cessfully applied to computer vision applications, such as the task of image segmentation
[201]. In particular, we can assume the Gibbs prior distribution [98, 100] over the set of

voxel labels IT = {m, })"_, having a density function

p(IT) = Zexp{~ > Vi, (D} (5.10)
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The function Vy, (II) denotes the clique potential function of the labels of the n-th time

series vectors, where in our study it takes the following form:

VNn(H) = Z Zﬁj(ﬂ'nj —7Tm]‘)2. (8].].)

meN, j=1

The neighborhood N, around the n-th voxel is the set of eight (8) voxels that are hor-
izontally, diagonally or vertically adjacent. We also assume that every cluster has its
own regularization parameter 3; providing us with a way to enforce different degree of
smoothness at each cluster. Finally, the term Z is the normalizing factor that is analogous
to Z oc H]K:l BN

An important role in using a regression model is how to estimate its order M. This
affects the vector of the regression coefficients w;. The appropriate value of M depends
on the shape of data to be fitted, where models of small order may lead to underfitting
while large values of M may become responsible for data overfitting. As a results this
phenomenon deteriorates significantly the clustering performance. A solution to this
problem can be given using the Bayesian regularization framework that penalizes models
of large order [87]. In particular, we can initially assume large value of order M and impose
a heavy tailed prior distribution p(w;) over the regression coefficients. After training only
a part of them will become active while most of them will be zero out.

The sparsity of the regression coefficients w; can be achieved in an hierarchical way

by considering first a zero-mean Gaussian distribution over them
M
p(wjlay) = N(w;|0, A7) = [ N(wl0,a5") (8.12)
=1

where A; is a diagonal matrix containing the M components of the hyperparameter vec-
tor a; = (aj1,...,ajm). At a second level, a Gamma prior distribution is imposed on

hyperparameters o

M M
ploy) = [ Dlaulb,e) o [[ ol exp oot . (8.13)
=1 =1

The above two-stage hierarchical sparse prior is actually the Student’s-t distribution en-
forcing most of the values a;; to be large and thus eliminating the effect of the corre-
sponding coefficients wj; by setting to zero. In such way the regression model order for
every cluster is automatically selected and overfitting is avoided.

As mentioned before, the construction of the design matrix X is a crucial part of the
regression model. In our case we have considered that each cluster has its own design

matrix X; written as a mixture of kernel matrices[206, 204]

S
Xj = Z UjsXs
s=1
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where X is the kernel matrices with scalar parameter \;. The weights u;, satisfy the
constraints u;, > 0 and Zle ujs = 1. This scheme performs an inference from a pool of
S kernel functions which are combined into a composite space. Every candidate kernel
matrix X, has its own scale parameter A\, value. The parameters v, must be estimated in
order to obtain the weighted scheme of the kernel combination that better suits to every
cluster.

From the above analysis, the clustering procedure becomes a Maximum-A-Posteriori
(MAP) estimation problem, where the log-likelihood of the model (Eq. 8.3) is augmented
with two penalty terms: a) one that corresponds to the prior for the labels II (spatial
constraints) and b) another one that corresponds to the sparse prior for the regression

coefficients w; (sparse constraints)

K

N K

Laap(0) =) log{D " mp(ynlt;)} +log p(I)+ > _ {logp(w;|ay)+log p(ar;)} . (8.14)
n=1 j=1 j=1

The application of the EM algorithm to the MAP estimation problem requires the

conditional expectation values z,; of the hidden variables to be computed during the

E-step

At the M-step, the maximization of the the expected value of the MAP log-likelihood of

the complete data is performed:

(8.15)

S 1 Iy — X,
Qe1e") = 3 > aflogmy — STlogof - =—3—0) (8.16)
n=1 j=1 J
K q
— logﬂj — Bj Z <7Tnj — 7ij)2 — Z§WfA]W] +
meN, j=1

M

Z{(b —1)log o — cayy} -

1=1
By setting the partial derivatives of the above () function with respect to label parameters

mn; equal to zero, we obtain the following quadratic equation:

1
263,|NL|

where < 7,; > is the mean value of the j-th cluster’s probabilities of the spatial neighbors

wij— < Tpj > Tpj — 0, (8.17)

of the n-th voxel, i.e. < m,; >= ﬁ Z Tmj- The above quadratic expression has two
mGNn
roots, where we select only the root with the positive sign since it yields the constraint

Uy Z 0:

< Tpj > +\/< Mo > +iaeg2ng
5 :

(8.18)

7Tnj =
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However, these values do not satisfy the constraints 0 < m,; < 1 and Z]I.(:Nrnj =1,
and there is a need to project them on their constraint convex hull. For this purpose an
efficient convex quadratic programming method is used as presented in [201].

For the rest model parameters §; = {w;, aj,aj?} the update rules can be easily ob-

tained as
N 1 11 N
o - (Sl ba sl B(Sam)  en
1+ 2¢
;= —— 8.20
Wil w?l +2b ( )
N
nj n = X, w; 2
TZn:l Z”j

Finally, the parameters u;, of the kernel composite design matrix are obtained after

solving the following optimization problem:

T Ty N oy >
Tyei T1¢i 1. — onTICi n=1*njYn _ ,
max {uj K Kyu; —2u; Ky, ~ , s.t. ujs =1 and u;s > 0 .
d n=1%nj s—1

The matrix K/, is derived by rearranging the terms in the linear regression model as

describe below: ;
s=1

At the end of the learning process the activation map of the brain is constructed.
In particular, we initially select the cluster A that best match with the BOLD regressor
(which is known before the data analysis) among the K mixture components. This is
done following the Pearson correlation measurement between each cluster’s estimated
mean value (X;w;) and the BOLD regressor, which is in fact the cosine similarity. The
set of voxels that belong to this cluster h draw the brain activation region, while all the

rest voxels from different clusters assign the non-activation region.

8.3.1 Incremental learning

A drawback of the EM algorithm is its sensitivity to the initialization of the model param-
eters due to its local nature. Improper initialization may lead to poor local maxima of the
log-likelihood that sequentially affects the quality of the clustering solution. A solution
is to test several initial values and select the one set of values that reach the maximum
log-likelihood function value after running one-step of the EM algorithm. However, other
more advanced methods have been recently presented about incrementally building Gaus-
sian mixture models [207, 209, 210]. We have adopted such scheme in our approach and
have developed a framework that iteratively adds a new component to the mixture by

performing a component split procedure.
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Initially, we start with a model having one component that comes from a single linear
regression model. Let now assume that we have already constructed a mixture f; of k

linear regression components
k
Fr(y:l®8) =D mip(y:16;) - (8.23)
j=1

The component j* which is more similar to the BOLD regressor is then selected for
splitting and a new component k + 1 is generated. For initializing its parameters we

perform the following steps:

e Among the time series that currently belong to the selected for splitting cluster j*,

find a small percentage of the worst fitted cases and calculate their mean value 7.

e Fit a regression model to the this mean sequence 7, and obtain initial values for
the new component’s regression coefficients wy1, regularization parameter o1, =

2 . . 2 . . .
1/wi,,, and noise variance o, ;. The kernel weights of the design matrix Xy, are

equivalent, i.e. ugi1s=1/8S.

{Wn,j* }old

e The label parameters are initialized as m, 41 = {7, - }"" = S

Subsequently, the EM algorithm can be applied for estimating the parameters ©,,; of
the new mixture model.

The splitting procedure is responsible for adding one linear regression component at
a time. Intuitively thinking, it can be seen as a pruning mechanism that is repeated until
found the cluster that best describes the BOLD effect in terms of its curve representation
and also its homogeneous appearance. For terminating the procedure we have used the
criterion of the percentage of the correlation increase between two successive steps. When
this percentage becomes very small the incremental training process is terminated. In this
case the mixture increment from Oy to ©,; does not offer any significant improvement
to the correlation criterion, and thus the best found cluster from the previous step is the

final solution.

8.4 Experimental results

The proposed method have been tested using simulated and real fMRI data. We have
compared the proposed mixture model with spatial and spatial properties (SSRM), using
both the incremental (iISSRM) and the regular version, with the ML regression mixture
(MLRM) approach. The MLRM approach is similar to the SSRM. The only difference
is that the estimation of regression coefficients of each component is based on the ML

principle (i.e. we have not used the sparse prior over the regression coefficients). The
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matrices X, s = 1,---,5, where S = 10, were created by using Gaussian kernels for
different values of the width parameter \; varying from 0.1 to 2 with step 0.2. In all
experiments, first we applied the incremental version of the algorithm to determine among
others the number of clusters and then we applied the SSRM and the MLRM algorithms
using this number.

To initialize all the algorithms, expect the iSSRM, the following procedure is adopted.
First, we select randomly K time series, one for each cluster, from the dataset. Then, the
ML learning rule is applied in each regression model to estimate the regression coefficients.
After that the parameters a;; can be estimated as a;; = w%?l’ where 7 is the cluster and [
the corresponding regressor. The mixing probabilities ,; are initially set to % and the
parameters u;, are initially set to é Finally, two steps of the EM algorithm were executed
to improve the estimation of model parameters and to evaluate the loglikelihood. This
approach is applied for one hundred different trials and the solution with the maximum
log-likelihood value is selected for initializing the parameters of EM algorithm.

In experiments, the design matrix of each cluster X; has two components, one compo-
nent which comes out from the combination of kernel matrices and one component which
is common in all cluster and it is the BOLD regressor, X; = [X§F> bT]. This slightly
different design matrix from that described previously does not change at all the pro-
posed model. It must be only taken into account when the estimation of parameters u;
is performed. In that case the term w,b must be removed for the observations y,, where

w, denotes the corresponding weight to the BOLD regressor.

8.4.1 Experiments using simulated fMRI data

In experiments with simulated fMRI data we create 3-D dataset of time series from a linear
regression model where the design matrix was known as well as the regression coefficients.
In these time series we have added white gaussian noise of various SNR levels. The SNR
is defined between the BOLD regressor and the white gaussian noise component of the
model. The spatial correlation between the time series is achieved through the regression
coefficients. The regression coefficients of the BOLD regressor have a spatial pattern
which is drawn in Fig. 8.1a. The BOLD regressor, which is used to model the neural
activity, is shown in Fig. 8.1b. Also, in the time series we have added a slow varying
component to model the drift in the fMRI time series (Fig. 8.1c).

To quantify the performance and measure the quality of the clustering, we have used

two criteria:

e the Performance (success rate), which is the percentage of correctly classified time
series and quantifies the ability of the method to assign each time series to the

correct cluster.
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(a) (b) (c)

Figure 8.1: (a) Spatial pattern of time series (black : non - activation, white: activation),
(b) BOLD regressor and (c) Drift component

e the normalized mutual information (NMI), which is an information theoretic mea-
sure based on the mutual information of the true labeling (€2) and the clustering

(C') normalized by their entropies:

1(9,0)

NMIEC) = oy + mH(O) 2

(8.24)

We have compared the iSSRM and the SSRM algorithms with the MLRM algorithm.
The SSRM and the MLRM algorithm assumed that the number of cluster is known. To
define the number of clusters we use first the iSSRM algorithm which provides us with
the estimated number of clusters, then this number is used to the others algorithms.
The results are shown in Table (8.1), we can see that the iISSRM algorithm present
better performance from the other algorithms, in terms of the classification error and the
mutual information. Comparing the iSSRM and the SSRM algorithms we can see that the
incremental version provides better results from the SSRM. Since the difference of these
two algorithms is on the initialization strategy of the EM algorithm, we can concluded
that the initialization is responsible for the difference in the results. Finally, in Fig. 8.2
we shown an example of the clustering in the case of —8 dB. We provide the activation
of each method as well as the classification error of them. It is obvious the ability of the
iSSRM and SSRM algorithms to fill the holes that are observed in the MLRM algorithm.

To shown the usefulness of the proposed approach in the construction of design matrix
we compare the iSSRM algorithm with a version of SSRM with out using a combination
of matrices but only one of them (we called this method sRM). In our experiments the ex-
tended design matrix X; was constructed as a combination of 10 design matrices (R = 10)
(based on the idea of kernels) F,,r = 1,---,10. In Table 8.2 we shown the results for
iSSRM and the sRM algorithms. The sRM algorithm has been run 10 times with a differ-
ent design matrix F, and we have choose the best results. Again, the iSSRM algorithm

presents better performance in terms of classification error and mutual information.
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Table 8.1: Comparative results for simulated data in various noisy environments.
Performance NMI

SNR | iSSRM SSRM MLRM | iSSRM SSRM MLRM
0 0.9989 1.0000 1.0000 | 0.9937 1.0000 1.0000
-2 109993 0.9999 0.9999 | 0.9956 0.9993 0.9989
-4 1 09983 0.9983 0.9967 | 0.9864 0.9862 0.9751
-6 | 0.9901 0.9688 0.9827 | 0.9380 0.8945 0.8973
-8 1 09713 0.9049 0.9466 | 0.8513 0.7237 0.7468
-10 | 0.9456 0.8296 0.8862 | 0.7515 0.5458 0.5565
-12 | 0.8384 0.8961 0.8075 | 0.5621 0.6310 0.3705
-14 | 0.8035 0.7870 0.6571 | 0.4648 0.4138 0.1436

Classification error: 0.9735 Classification Error: 0.9717 Classification Error: 0.9476

iSSRM SSRM MLRM

Figure 8.2: Activation patterns using (a) iSSRM, (b) SSRM and (¢) MLRM

Table 8.2: Comparative results for simulated data in various noisy environments.

‘ ‘ Performance ‘ NMI ‘
SNR |iSSRM sRM ( A) |iSSRM sRM ( \)
0 1.0000  0.9405 (0.1) | 1.0000 0.7926 (0.1)
-2 1 0.9998 0.9386 (0.1) | 0.9986 0.7872 (0.1)
-4 1 0.9979 0.9152 (0.1) | 0.9836 0.7144 (0.1)
-6 | 0.9897 0.7677 (0.9) | 0.9366 0.4488 (0.9)
-8 1 0.9730 0.7129 (1.7) | 0.8578 0.3658 (1.7)
-10 | 0.9507 0.6592 (1.7) | 0.7687 0.2870 (1.7)
-12 | 0.8589 0.6793 (1.3) | 0.5980 0.2949 (1.3)
-14 | 0.7804 0.6475 (0.5) | 0.4307 0.2366 (0.5)

143



-1.409

Criterion
log-likelihood

. . . . _1.4125 . . . . .
1 1.5 2 25 3 35 4 1 1.5 2 25 3 35 4
Iteration Iteration

(a) (b)
Figure 8.3: Termination criterion (SNR=-14dB).

In Fig. 8.3 we provide the termination criterion with respect to the iteration of the
incremental algorithm. Also, in the same figure the log-likelihood is given. These results
have been obtained from a dataset where the SNR was -14 dB. We can observe that at
every step of the incremental algorihm the log-likelihood is always increased while the
termination criterion converges after few iterations. This is more obvious in Fig. 8.4
where images of the clustering procedure for the same dataset are provided. We see
that the increase of number clusters from K = 3 to K = 4 does not provide any new

information.

8.4.2 Experiments using real fMRI data

We have applied the iSSRM, SSRM and the MLRM algorithms using real fMRI data
concerns block design and event related experiments. In both datasets, we followed the
standard preprocessing steps of the SPM package, i.e. realignment, segmentation, nor-
malization and spatial smoothing steps. Data are then scaled by using the global mean
value of all time series as a factor. Finally, each time series was then high pass filtered
using a set of discrete cosine basis functions. At first we have studied a real block design
fMRI dataset! designed for auditory processing task on a healthy volunteer. Its functional
images consisted of M = 68 slices (79 x 95 x 68, 2mm x 2mm x 2mm voxels). Experi-
ments were made with the slice 29 of this dataset. We have applied the iSSRM algorithm,
which provides us with the number of clusters. After that, the SSRJM and the MLRM
algorithms have been applied.

The results of clustering are shown in Fig. 8.5. The images show the position of

clusters inside the brain. Also, an activation map is provided, which is produces by

1Tt was downloaded from the SPM web page http://www.fil.ion.ucl.ac.uk/spm/
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(c) K=4 (d) K=5

Figure 8.4: Clustering results (SNR=-14 dB).
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adopting an analysis based on the GLM. More specifically in our case the activation map
produces by using the spatial method described in [213]. We can observe that there is one
cluster that coincides with the activation region which is the auditory cortex. Comparing
the clustering results with the activation map we can observe that there is great similarity
between the cluster responsible for activation and the strength of the regression coefficient.

In Fig. 8.6 we depict the center of each cluster with the BOLD response, also we
provide the correlation coefficients of each center cluster with the BOLD response. This
is shown for all the methods. We see that the iSSRM algorithm provides us with a cluster
center which is more correlated to the BOLD response than the others algorithms.

In event related experiments we analyzed fMRI data consisted of images acquired from
a motor event related paradigm available at the affiliated University Hospital of Ioannina.
During this experiment patients with RLS (restless legs syndrome) performed random
and spontaneous limb movements evoked by sensory leg uneasiness. These movements
were used to create the indicator vector in our modeling that was convolved next with
the hemodynamic response function (HRF) in order to provide the BOLD signal. In Fig.
8.7 we show the clustering results together with the activation map. Similar observations,
just like the auditory experiment, can be done here. All methods provides us with the
cluster related to the primary motor region and supplementary motor areas of the brain.
We can observe the similarity between the cluster of activation and the activation map.
Also, in Fig. 8.8 we depict the center of each cluster with the BOLD response, in addition

the correlation coefficients of each center cluster with the BOLD response are provided.

8.5 Conclusions

In this chapter, we proposed a probabilistic mixture modeling approach for the clustering
of fMRI time series. More, specifically a mixture of linear regression models with sparse
and spatial properties is presented. Sparse priors are placed on the weights of each linear
regression model helping us to deal with problem of model order selection. Also, spatial
priors are used on the mixing coefficients to take into account the spatial correlation
between the voxels. This is achieved by using a Gibbs distribution. Furthermore, to
avoid sensitivity of the design matrix to the choice of kernel matrix, we have used a kernel
composite design matrix constructed as linear combination of Gaussian kernel matrices
with different scaling parameter. Our future research study is focused to three directions:
a) to examine the appropriateness of other types of sparse priors [107], b) to try alternative
potential functions of the Gibbs distribution and ¢) to try different approaches for learning

the design matrix [211].
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ML-RM activation map

Figure 8.5: Images of voxels clustering (auditory experiment).
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Figure 8.6: Center clusters (auditory experiment).
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iSSRM SSRM

ML-RM activation map

Figure 8.7: Images of voxels clustering (motor experiment).
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iSSRM

SSRM

MLRM

Figure 8.8: Center clusters (motor experiment).
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CHAPTER 9

CONCLUSIONS

In this thesis we have studied the linear regression model and the time varying autore-
gressive model and its applications on problems of biomedical signal processing. The time
varying autoregressive model was proposed for the enhancement of epileptic EEG spikes,
while variations of the linear regression model were proposed for the analysis of fMRI
time series, the estimation of ERPs and the drift removal from HRV time series. More,
specifically a model, based on the smoothness prior, was proposed for the estimation of
a signal inside a noisy environment. For the estimation procedure we adopted the Vari-
ational Bayesian Methodology and the proposed model was used to find the ERPs and
the drift inside the HRV time series. Next, two algorithms, using the linear regression
model, were proposed for the analysis of fMRI time series. In these algorithms, we have
focused on issues concerning the noise model. The noise decomposed into two compo-
nents, one component originates for the time series, while the other originates from the
images. Furthermore, the linear regression model with sparse and spatial properties was
used for the analysis of fMRI time series. To include these properties into the model an
enhanced version of the Gibbs distribution was used. Finally, we proposed a clustering
technique for fMRI time series. An extended version of mixture modeling, based on the
linear regression model and the Gibbs distribution, was proposed for the clustering. Also,
an incremental algorithm was derived based on the above mixture models.

In chapter 4, the time varying autoregressive model was used for the enhancement of
epileptic spikes. This model was represented in the form of a state-space model, and then
the Kalman Filter was used to estimate the autoregressive coefficients. The results were
indicated that the proposed method is able to enhance the epileptic spikes in terms of
SNR. Also, when the proposed method is used as a preprocessing step into a detection
procedure, is able to reduce the false alarms while keep at acceptable level the loose of
epileptic spikes.

In chapter 5, we proposed a method for the recovery of biomedical signal from a noisy
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environment. More specifically, we assumed that the signal of interest was smooth. This
assumption guided us to proposed the smoothness prior for the signal. The noise was
studied in two cases: white gaussian noise and colored Gaussian noise. To estimate the
various model parameters we adopt a probabilistic approach based on the Variational
Bayesian Methodology. This approach uses an approximate posterior, instead of the true,
helping us to obtained closed form solutions. The results had shown the usefulness of the
proposed method comparing to the wavelet denoising approach and the generalized cross
validation criterion. The proposed method was applied to estimate the ERPs from the
EEG signal and the drift inside the HRV time series.

In chapter 6, two methods were proposed to find the activation of brain using fMRI
time series. More specifically, the linear regression model was used and the variance of
the noise was decomposed into two components, one across time - series and the other
across images. Again, the Variational Bayesian Methodology was used for the estimation
procedure of various model parameters. The results shown the ability of the proposed
methods to find accurately the brain activation.

In chapter 7, we extended our study in the analysis of fMRI time series by introducing
spatial properties into the linear regression model. More specifically, an enhance prior
distribution, based on Gibbs distribution, was proposed. This prior includes simultane-
ously sparse and spatial properties into the linear regression model. Experiments were
performed using real and simulated data. The results indicated the superiority of the
proposed method.

In chapter 8, a clustering method, based on mixture modeling, was proposed for the
analysis of fMRI time series. The proposed mixture model uses spatial over the mixing
probabilities to take into account the correlation between adjacent fMRI time series. Also,
the mixture components are based on linear regression models which help us to model
better the time series and confront the large dimension of time series. Furthermore, an
incremental algorithm based on mixture modeling was proposed for the clustering of fMRI
time series. The incremental algorithm help us to confront the problem of ill-balanced
data observe in fMRI time series.

In future work, it would be interesting to study the enhancement of epileptic spikes
using multichannel recordings. This will help us to include spatial information into the
model. Also, a method, based on the EM algorithm, where the model parameters will be
estimated from the data it would be useful, especially for automatic monitoring of EEG
signal. In the signal estimation method of chapter 5, we could extended the model by using
a non stationary smoothness prior or by adopting other noise distributions such as the
Student’s t - distribution. However, these extensions to be computationally efficient will
be needed to resort into approximation techniques to estimate the posterior covariance.

In chapter 6, the drift was modeled by using Gaussian basis functions with fixed the
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scale parameter. An extension of this approach is to use other basis functions for the drift.
In addition, we could use a learning procedure for the design matrix as that described
in chapter 8 to avoid the need to make assumptions about the scale parameter. Also, a
similar learning procedure should be examined in conjunction with the linear regression
model of chapter 7. Finally, in the model of chapter 8 it would be useful to examine other
distribution component than the gaussian in the clustering of time series.

In the analysis of fMRI time series, it would be interesting to construct generative
models that include more preprocessing steps into the same framework. This will help to
better understand how the various components and properties of fMRI time series interact
each other. One crucial aspect in the analysis of fMRI time series is the estimation of
HRF during the analysis of time series and how this affects the subsequent analysis of
data. Finally, the use of multiple imaging techniques, to overcome the limitations of
each method, is very appealing. For example, EEG and fMRI data can be collected
simultaneously. Merging these two techniques we hope to get the best of both worlds. In
this direction new models will be constructed to explain the observations.

Furthermore, the use of proposed models is not restricted only to problems that were
described in this thesis. For example, the clustering method that was described in chapter
8 can be easily applied in the analysis of other biomedical signals such as the clustering
of ERPs. Besides the classification results that we obtain due to the clustering, we also
obtain time series which corresponds to the means of each cluster. These time series
can be used as regressors into a linear regression model and we could applied a similar

procedure, as that of the statistical analysis of fMRI data, to obtain statistical brain maps
based on ERPs.
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