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Abstract

Giotis, Angelos. MSc, Computer Science Department, University of Ioannina, Greece.

October, 2012. Word spotting in handwritten text using contour-based models. Thesis

Supervisor: Christophoros Nikou.

The research topic of this dissertation addresses the problem of word spotting in

images of handwritten text. Relying on an object detection system in real images, local

contour features are extracted from segmented images of handwritten words and they

are incorporated into a learning framework which allows obtaining word-speci�c shapes.

The representative shape model of a word class is trained using a random subset of the

images belonging to that class. To accommodate both intra and inter-writer variability, a

statistical model of intra-class deformations is learnt using principal component analysis

(PCA). To identify a word instance, the model is �rstly matched to a presegmented test

image by a Hough-style voting scheme which determines its approximate position and

scale in the test image. Then, a non-rigid point set registration algorithm deforms the

model according to its learnt modes of variation to capture the shape of the unknown word.

Initially, the consistency of the modeling process is strengthened by training �ve randomly

selected models for each word class. Moreover, a principled approach for word model

creation is proposed, where the training set is no longer randomly or manually selected,

but similar words are grouped by applying the normalized cut clustering algorithm on

the training images of a particular word class. The resulting clusters determine both the

number of models to be used for a word class and which images are responsible for model

creation. An extensive experimental evaluation of the application of these models to word

spotting is �nally presented.
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ÅêôåíÞò Ðåñßëçøç óôá ÅëëçíéêÜ

Ãéþôçò ¢ããåëïò ôïõ Ðáýëïõ êáé ôçò Åëåõèåñßáò. Msc. ÔìÞìá ÐëçñïöïñéêÞò Ðáíåðéóôçìßïõ

Éùáííßíùí, Ïêôþâñéïò, 2012. ÕðÝñèåóç ðåñéãñáììÜôùí ãéá åíôïðéóìü ëÝîåùí óå åéêüíåò

÷åéñüãñáöùí êåéìÝíùí. ÅðéâëÝðùí: ×ñéóôüöïñïò Íßêïõ.

Ç ðáñïýóá åñãáóßá ðñáãìáôåýåôáé ôï ðñüâëçìá ôïõ åíôïðéóìïý ëÝîåùí óå åéêüíåò

÷åéñüãñáöùí êåéìÝíùí. Óôçñéæüìåíïé óå Ýíá óýóôçìá åíôïðéóìïý áíôéêåéìÝíùí óå öõóéêÝò

åéêüíåò, åîÜãïõìå ôïðéêÜ ÷áñáêôçñéóôéêÜ áðü ðåñéãñÜììáôá êáôáôåôìçìÝíùí åéêüíùí ðïõ

áíáðáñéóôïýí ìåìïíùìÝíåò ëÝîåéò. Óôç óõíÝ÷åéá, ôá ÷áñáêôçñéóôéêÜ áõôÜ åíóùìáôþíïíôáé

óå Ýíá óýóôçìá åêðáßäåõóçò ìå óôü÷ï ôç äçìéïõñãßá óõíüëùí ó÷çìÜôùí ðïõ ðåñéãñÜöïõí

ëÝîåéò. Áñ÷éêÜ, ãéá êÜèå êáôçãïñßá ëÝîåùí, Ýíá áíôéðñïóùðåõôéêü ìïíôÝëï åêðáéäåýåôáé

÷ñçóéìïðïéþíôáò Ýíá ôõ÷áßï õðïäýíïëï ôùí åéêüíùí ôïõ óõíüëïõ ôùí äåäïìÝíùí ôçò

êáôçãïñßáò. Ðñïêåßìåíïõ íá áíôéìåôùðéóôåß ç ìåôáâëçôüôçôá ôùí ãñáöéêþí ÷áñáêôÞñùí

áíÜìåóá óå äéáöïñåôéêïýò ãñáöåßò, êáèþò êáé ïé äéáöïñïðïéÞóåéò óôï ãñáöéêü ÷áñáêôÞñá

ãéá ôïí ßäéï ãñáöÝá, äçìéïõñãåßôáé Ýíá óôáôéóôéêü ìïíôÝëï ìå áíÜëõóç óå ðñùôåýïõóåò

óõíéóôþóåò. Ç áíß÷íåõóç ìéáò íÝáò ëÝîçò óå ìéá åéêüíá åðéôõã÷Üíåôáé ìå Ýíáí áëãüñéèìï

äýï âçìÜôùí. Óôï ðñþôï âÞìá, ç åõèõãñÜììéóç ôïõ ìïíôÝëïõ ìå ôá äåäïìÝíá ôçò íÝáò

åéêüíáò, ùò ðñïò ôç èÝóç êáé ôçí êëßìáêá, ãßíåôáé ìå Ýíáí áëãüñéèìï ðïõ âÜóßæåôáé óôï

ìåôáó÷çìáôéóìü Hough. Áêïëïýèùò ôï åõèõãñáììéóìÝíï ìïíôÝëï ðáñáìïñöþíåôáé ìå

Ýíáí áëãüñéèìï ìç ãñáììéêÞò õðÝñèåóçò óõíüëùí óçìåßùí ðïõ âåëôéóôïðïéåß ìéá óõíÜñôçóç

êüóôïõò ùò ðñïò ôéò ðáñáìÝôñïõò ôïõ ìåôáó÷çìáôéóìïý, ïé ïðïßåò ðåñéïñßæïíôáé áðü ôéò

ðñùôåýïõóåò óõíéóôþóåò ôïõ óõíüëïõ åêðáßäåõóçò. Ç óõíÝðåéá ôïõ ìïíôÝëïõ åíéó÷ýåôáé

óå ðñþôç öÜóç ìå ôçí åêðáßäåõóç ðÝíôå äéáöïñåôéêþí, ôõ÷áßá åðéëåãìÝíùí ìïíôÝëùí ãéá

êÜèå êáôçãïñßá ëÝîåùí. Óôç óõíÝ÷åéá, ï êáèïñéóìüò ôïõ áñéèìïý ôùí ìïíôÝëùí ðïõ

èá áðïôåëÝóïõí ôï óýíïëï åêðáßäåõóçò ãéá êÜèå êáôçãïñßá, áëëÜ êáé ôï ðïéåò áêñéâþò

åéêüíåò åßíáé ðéï áíôéðñïóùðåõôéêÝò ãéá íá óõììåôÝ÷ïõí óå áõôü ôï óýíïëï åêðáßäåõóçò,

ðñáãìáôïðïéåßôáé áðü ôïí áëãüñéèìï öáóìáôéêÞò ïìáäïðïßçóçò. ÔÝëïò, üëåò ïé åêäï÷Ýò

ôùí ìïíôÝëùí åëÝã÷ïíôáé óå åêôåíÞ ðåéñáìáôéêÞ áîéïëüãçóç ãéá ôïí åíôïðéóìü ëÝîåùí.
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Chapter 1

Introduction

1.1 Word spotting

1.2 Related work

1.3 Word query approach

1.4 Contribution

1.1 Word spotting

During the last two decades, the explosion of information has led to a need for indexing it.

If the required data is in machine readable form (ASCII), text retrieval engines are able

to deal with this matter. However, most of today's information is on paper or on videos

and not in machine readable format. Traditional Optical Character Recognition (OCR)

techniques which usually recognize words by processing letters indipendently [6], work

well with machine printed fonts against clean backgrounds. These methods are rather

ine�cient when applied to handwritten text, such as letters, manuscripts, or entire books

and sometimes even fail, in the case of historical documents where the quality is often

signi�cantly degraded due to faded ink, stained paper and other adverse factors.

The automatic recognition of handwritten text is a problem that still remains un-

solved [58], especially in the �eld of unconstrained handwriting recognition (HWR) where

high intra-writer and inter-writer variability exists. Given a page of handwritten text, a

common query for a user to ask is whether or not a word or words of interest appear on

that page. This allows the user to search through a set of documents for a subset that is

of most interest. This is the motivation behind the word spotting idea. Given a scanned

image of a handwritten document and a query that consists of either an actual example

from a collection of interest or it is arti�cially generated from an ASCII keyword, the
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word spotting problem asks if the image contains a handwritten image of the query word

and if so, at which particular location in the image that keyword exists.

There is a variety of applications on word spotting that require handwritten texts to

be available for searching and browsing:

• Detection of words in handwritten mails for document routing purposes.

{ Documents containing the word \urgent" might be given a higher priority.

{ Documents containing the word \cancelation" may be re-routed to the cus-

tomer service department.

{ Finding all occurrences of the word \complain" in the letters sent to a company

is crucial.

• Metadata extraction from document images for document categorization.

• Searching and indexing historical handwritten collections written by a single or few

authors.

{ Signi�cant factor for preserving the world's cultural heritage.

{ Great assistance is provided in searching and browsing such documents for

researchers and the public alike.

• Segmentation of images of historical documents into meaningful regions, which can

be improved with keyword spotting.

• Identi�cation of �gures and their corresponding captions.

{ Spotting the keyword \Fig.", like in [36].

• Accessibility of handwritten books through the Internet.

{ Google and Yahoo have already made an e�ort to incorporate this application

into their search engines [42].

The implementation of the word spotting procedure in general is not only cumbersome,

regarding computational costs, but it may also result in poor performance in detecting

keywords against irrelevant data, as a high separability between \interesting" and not

\interesting" words is essential. We refer the reader to [62] for a clear view about clusters

that contain \interesting" words.

Early work in information retrieval by Luhn [47] provides us a general idea of such

clusters. A plot of term frequencies, where terms are ordered by decreasing frequency

of occurrence, exhibits a distribution that is known as Zipf's law [77]. Speci�cally the

frequency of the kth most frequent term has a frequency that is f0=k, where f0 is the

frequency of the most frequent term. Luhn argued that index terms should be taken from

the middle of that distribution. Figure (1.1) shows an example of the actual distribution
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of term frequencies and the distribution predicted by Zipf. It seems that the large amount

of mass is concentrated in high-frequency terms and the long tail of the distribution to

the right, which continues beyond the shown range.

The reason is that terms with frequencies that are high (left side of the plot) are

often stop words, such as as \and", \the", etc., which do not carry any meaning. Terms

with very low frequencies are often sporadic, and are not descriptive of the content in the

collection. Terms that are descriptive of the content can often be found in the middle

of the plot. Their repeated, but not excessive use suggests that they are essential to

describe the content of the collection and should consequently be part of the index. In

the following section we review related work from this area.

Figure 1.1: Zipf's law. The plots show the actual distribution of term frequencies and the

prediction made with Zipf's law based on the actual frequency of the most frequent term. The

collection size is 21,324 words; only the left-hand portion of the graph is shown. Figure repro-

duced from [62].

1.2 Related work

Either as a pattern classi�cation task or as a content-based image retrieval (CBIR) pro-

cedure, the word spotting problem can be categorized into three main �elds:

• Word-based word spotting

• Line-based word spotting

• Document-based word spotting
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1.2.1 Word-based word spotting

In word-based keyword spotting, a �rst attempt to detect a word or a phrase in an image

was proposed in [11], [35], [39] for printed text, and later, in [50] for handwritten text.

However, the idea of spotting keywords has been proposed earlier in speech analysis [33].

These �rst attempts deemed single-word images and deployed techniques similar to Opti-

cal Character Recognition (OCR). Some methods make comparisons between individual

pixels of the query and the test image (or selected parts of it, called zones of interest

(ZOI)), while others calculate a global distance value between the two pixel sets. This

consists in matching an input image with one or multiple query images to determine a

similarity (distance) that might indicate a correspondence.

More speci�cally, two main types of approaches have been proposed in this context.

The �rst type uses holistic techniques where an image is described with a single feature

vector and a distance between vectors is de�ned. For example, Manmatha et al. [50]

use directly the image pixels as features and apply the Scott and Longuet-Higgins (SLH)

distance [69], which is invariant to a�ne transformations. Khoubyari and Hull showed

in [35] that Euclidean distance mapping (EDM) could be used to match printed words

but as it was later shown by Manmatha et al. [51] the handwriting �eld is much more

challenging and EDM is insu�cient for it. Interesting works in this approach include XOR

comparison [49] as well as the use of Hausdor� distance between connected components

[46]. More complex holistic features are the moments of the black pixels [5]. Zhang

et al. [75] employ a set of binary features called GSC (Gradient-Structural-Convexity)

and match them using a correlation like measure. Several binary GSC features are also

explored in [71] and [76]. Another interesting approach to holistic word recognition is

presented in [2] for historical handwritten manuscripts. It is based on matching word

contours instead of whole images or word pro�les. In contrast with our approach, which

will be presented in a following section, this method does not involve training. It rather

consists of robust extraction of closed word contours and the application of an elastic

contour matching technique proposed originally for general shapes [1]. Finally, holistic

word features in conjunction with a probabilistic annotation model are proposed in [63]

for historical handwritten documents. This �rst automatic retrieval system allows one to

spot arbitrary words. However, keywords that do not occur in the training set can't be

dealt with properly.

The second type of approaches describes a word image as a set of local features. For

instance, Leydier et al. [43] use the gradient angles as features and a cohesive elastic

distance. Similarly, an elastic matching procedure is used in [44] where di�erent pixelwise

gradient matchings are compared. Rothfeder et al. [67] use a corner detector and the sum

of Euclidian distances of corresponding keypoints (corner features) as an elastic distance

between corner positions. Furthermore, the state-of-the-art technique for computing the

distance is dynamic time warping (DTW) [61]. This is the most common local approach

where a word is represented as a sequence of features, extracted via a sliding window.

Comparing such sequences using DTW is one of the most commonly used word spotting
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methods. For this reason, a detailed reference is made to Rath et al. [62] where their

word matching approach with DTW is compared with a number of di�erent matching

techniques. In addition to their matching method, they present an integrated word spot-

ting system for indexing historical documents which provides us a clear view of the word

spotting problem in general.

Due to the great amount of variability in handwriting and the high noise levels in

historical documents, handwritten historical documents are currently transcribed by hand.

In essence, this means that each occurrence of a word in a corpus must be annotated. The

goal of the word spotting idea applied to handwritten documents, which is presented in

�gure 1.2, is to greatly reduce the amount of annotation work that has to be performed,

by grouping all words into clusters. First, a document is segmented into word images.

The idea of word spotting is to use image matching for calculating pairwise \distances"

between word images, which can be used to cluster all words occurring in a collection of

handwritten documents. Ideally, each cluster would contain all the words with a particular

annotation. Clusters that contain terms which are \interesting" for an index for the

document collection are selected and labeled manually. By assigning the cluster labels to

all word images contained in a cluster, a partial transcription of the document collection is

provided and in turn allows the creation of a partial index for the collection. Consequently,

a retrieval of text portions that contain only the manually assigned labels is feasible.

Figure 1.2: An illustration of the word spotting process. Documents are segmented and

distances between word images are calculated. After clustering the word images, some clusters

are manually labeled and can be used as index terms. Figure reproduced from [62].

At the heart of the word spotting idea is the word image matching algorithm. Its

accuracy and e�ciency determine the quality of the clustering and the size of the collection

that can be processed using the word spotting process. The approach to matching images
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using dynamic time warping of pro�les of the word images is discussed by Rath et al.

in [62]. DTW has been widely used to match 1-D signals in the speech processing, bio-

informatics and also the online handwriting communities. It can handle local distortions in

word images and is not restricted to a single global transform. Their method is compared

with a number of techniques referred already, including XOR, a�ne-corrected Euclidean

Distance Matching (EDM) [35], shape context [4], intensity correlation using sum of

squared distances, an a�ne matching point matching algorithm due to Scott and Longuet-

Higgins (SLH) [69] and a point correlation voting algorithm [67]. Moreover, a comparison

between GSC-based spotting and DTW is given in [72] and [76].

Apart from word pro�les used in [62], a variety of other features has been proposed

for DTW matching such as \eigenslits" (PCA projections of the image pixels) [73] or

contours [2]. These methods show relatively good accuracy and speed in applications

such as historical document retrieval. However, it is worth mentioning that these works,

except of [75] report results on test data by a single or few writers. Thus the generalization

capability of these approaches to more complex detection tasks is not clear. In [64],

Rodriguez-Serrano et al. propose a di�erent set of local gradient histogram features

for spotting handwritten text in realistic, unrestricted conditions where high variability

among writing styles and writers is present. This feature set is inspired by the SIFT

keypoint descriptor [45], which is basically a histogram of oriented gradients at localized

portions of an image. Their application of this idea for describing words consists in

generating a sequence of such descriptors by moving a sliding window from left to right

over the word image. In holistic approaches, similar features (GSC) have been proposed

in [76], although these are binary and applied globally to the image. Their method

instead, shows signi�cant improvements in unconstrained handwriting after comparing

these features with other state-of-the-art methods, both in a DTW-driven approach and

in a hidden Markov model-based word spotting system [7].

1.2.2 Line-based word spotting

In the methods presented in the previous section, word spotting is mostly applied after

segmenting the text into individual words. In the case though, where a document is

segmented into lines only, a number of di�erent approaches take place. A DTW-based

system that automatically spots occurrences of a known template word in each line of sev-

eral pages is examined in [38]. Unlike the sequence matching problem of DTW word-based

approaches mentioned so far, this algorithm solves a very expensive subsequence matching

problem. Since it does not perform segmentation, the word templates are hand gener-

ated. In addition, the technique requires multiple handpicked training samples for each

word and thus makes it impractical for automation. For general automatic segmentation-

dependent systems, a method is proposed in [9] that also takes the probability of a correct

segmentation into account.

A way to alleviate the segmentation problem for word spotting is to use a handwrit-

ten text line recognition system. Methods based on handwriting recognition have become
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fairly popular recently, especially those using Hidden Markov Models (HMM) [60]. For in-

stance, in [64], the local gradient histogram features are tested under such techniques. In

addition, a �rst systematic holistic word recognition approach is applied in [40] for hand-

written historical documents. Therein, a document is described using a HMM, where

words to be recognized represent hidden states. The state transition probabilities are es-

timated from word bigram frequencies. A bigram or digram is de�ned as every sequence

of two adjacent elements in a string of tokens, which are typically letters, syllables, or

words. They are n-grams for n = 2. The frequency distribution of bigrams in a string

is commonly used for simple statistical analysis of text in many applications, including

computational linguistics, cryptography and speech recognition. Other HMM implemen-

tations are examined in [10] for Arabic documents and in [25] for spotting arbitrary words

in handwritten text that do not necessarily belong to the training set. In [39], pseudo-2D

HMMs were investigated and Edwards et al. [17] proposed generalized HMMs where more

than one emission per each hidden state is allowed. Unsupervised adaptation of whole

word HMMs to a speci�c writer was proposed in [66] and in [57] the usage of the Fisher

Kernel of the HMM to estimate a good con�dence measure was discussed.

Neural Networks (NN) have also been used for keyword spotting in speech with the

form of bidirectional long short-term memory (BLSTM) NN [19], [74]. In the later, a

discriminative learning procedure that non-linearly maps speech features into an abstract

vector space is applied. By incorporating the outputs of a BLSTM network into the

speech features, the system is able to make use of past and future context for phoneme

predictions which overcomes the drawbacks of generative HMM modeling in speech de-

coding. Nevertheless, one node in the output layer of the neural network symbolizes one

keyword and is triggered when the word occurs in the input data. This makes it ine�-

cient for word spotting in handwritten text as the number of keywords to be spotted are

limited, the word has to be known beforehand and the keyword must occur in the training

set. Another novel word spotting method is proposed in [28] for handwritten text based

on BLSTM Neural Networks. A former implementation using these networks integrated

with the so-called CTC Token Passing algorithm for transcribing a portion of handwrit-

ten text was initially given in [31]. In [28] a new version of the CTC Token Passing

algorithm is proposed and applied for keyword spotting. Unlike the preliminary versions

of this system, presented in [26] and [27], the current one provides signi�cant extensions

regarding the underlying methodology as well as the experimental evaluation. The sys-

tem's applicability to both historical data and modern handwriting is demonstrated and

an extensive comparison with several reference systems is presented. A common DTW

algorithm and a modern HMM-based algorithm seem to be inferior to this approach in

terms of performance. Finally, a handwriting recognition system is used for testing the

performance of this method by producing an ASCII output on which the keyword search

is done.
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1.2.3 Document-based word spotting

In the case of completely unsegmented pages of handwritten text, a system can either

include a segmentation step as in [5], or follow a segmentation-free approach. In [68], a

codebook of shapes is used to create a compressed version of each document. This way a

keyword search is done using the stored shape codebook entries. Another segmentation-

free algorithm which performs spotting directly on lines of unsegmented text is presented

in [3] and it is compared with other segmentation-based techniques. This method performs

spotting and segmentation concurrently using a sliding window. Rather than a candidate

word image, an entire line image acts as input. The line is split into segments based on

an algorithm similar to the ligature-based segmentation algorithm which is used in [37].

All realistic combinations of adjacent connected components are considered as potential

areas where the desired word may appear. This approach searches a line thoroughly,

looking for a given word image, while keeping the number of evaluations manageable by

considering only a small subset of potential regions in the image. The spotting method

used to judge the performance of the algorithms presented in [3] is character-based, but

the results shown are independent of the actual spotting method used.

A common approach to segmentation-free word spotting is to consider the task as a

content-based image retrieval procedure where an input shape represents the word image.

This task usually results in a ranked list of word images that are similar to a query word

image. The query word image is �tted to the corresponding word images in the document

without any segmentation being involved, mostly treating the underlying problem as a

template matching. As mentioned in the word-based methods, Leydier et al. [44] use

di�erential features that are compared with a cohesive elastic matching technique, based

on zones of interest in order to match only the informative parts of the words. In the same

spirit with [44], a segmentation-free word spotting methodology is proposed in [30] which

permits a fast and e�ective retrieval relied on block-based document image descriptors.

These descriptors are used at a template matching process satisfying invariance in terms of

translation, rotation and scaling. Time expense improvement is also obtained by applying

the matching process only in salient regions of the image. Similar type of approaches to

[30] are presented in [43] and [53].

1.3 Word query

Before we introduce our word spotting approach in general, we would like to identify two

main types of word spotting approaches, depending on how the input is speci�ed:

• Query-by-string approaches

• Query-by-example approaches

Query-by-string approaches like in [10] and [17] are very similar to OCR-based Hand-

writing Recognition (HWR) systems. Character models are trained in advance and at
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query time the models of the characters forming the string are concatenated into a word

model and the probability of each word image is evaluated. Once trained, these methods

allow searching for every possible keyword. However, they present similar drawbacks to

HWR systems. Another query-by-string but not OCR-dependent approach is presented

in [16], for printed text. It does not require training, rather than determining an alphabet.

In query-by-example approaches as in [2], [38], [50], [61], [73] and [76], the input

is an image of the word and the output is a ranked list of word images according to

similarity in appearance between the query and the list's images. The search for a probe

keyword is subject to having a template image of this keyword available. While the result

is based on a distance measure between the query and all candidate word images, no

training is involved. Therefore, the performance is limited. In most of the related works

that perform well, the datasets contain words from a single or few writers which reduces

the variability in handwriting styles. Thus, it remains uncertain how these methods

would work in multi-writer conditions. In some cases, the e�ciency can be increased by

querying multiple times with di�erent images and combining the results. This inspired

Rodriguez-Serrano and Perronnin [65] to develop a statistical model that could boost

the performance by combining the di�erent queries into a single model. Their idea to

overcome the drawbacks of both approaches is to query by \word-class", instead of using

string and example queries. After selecting one or multiple examples from the desired

keyword and training a probabilistic model for this word, word candidates are detected

by evaluating the posterior probability of the candidate given the model.

1.4 Contribution

In the same spirit with [65], we propose a method for learning a prototypical shape of a

word class by using only a subset of images belonging to that class. Unlike the method

in [65], who made use of hidden Markov models (HMM) as a statistical tool to represent

words, we propose a way to build an explicit shape model directly from images, which

represents the whole word class. Our approach to the word spotting problem derives from

a technique for object detection in real images using contour segment networks. This

methodology was �rst developed in [24] where Ferrari et al. detect an object in real

cluttered images. However, instead of training an average shape, they use a hand-drawn

example as model. Their idea is to partition test image edges into contour segments and

incorporate them into a contour segment network (CSN), which allows in turn an object to

be detected by �nding paths through the network that resemble the hand-drawn model's

outlines. An improvement of the method is presented in [21], regarding the introduction

of deformable shape models, learnt from images. Also, an optimization of the CSN,

concerning feature extraction, is given in [20]. Finally, the whole object detection system

is integrated in [22], where class models are learnt directly from images and novel object

instances are localized up to their boundaries in the presence of intra-class variations,

clutter and scale changes.
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At the heart of our word spotting process lies the word matching algorithm. In order

to achieve a matching of high accuracy in unconstrained handwriting, we make use of

the technique in [22] and detect a keyword up to its boundaries. To accomplish this,

we �rst extract the boundaries of all training and testing words by applying a thinning

morphological operation. This implies that the word images have already been segmented

from a handwritten document and therefore renders our approach segmentation-based.

Subsequently, we train an average word formed by continuous connected curves (mean

shape), from a subset of word images that belong to the same class as well as a statistical

model of intra-class deformations. The only prerequisite for this learning stage is for the

word to be annotated by a bounding-box. In our case of pre-segmented word images,

this is unnecessary as the bounding box is set to be the whole image, thus covering the

signi�cant parts of the word. This learning procedure avoids the pairwise matching used

in previous approaches and it is computationally cheaper and more robust to clutter edge

pixels (edgels) due to the global view gained by considering all training images at once.

For real images, clutter is a kind of confusion in determining an object's presence in the

image or not, due to the fact that a portion of an object of the real world may be covered

by another object or missing. In our case of handwritten words, we consider clutter either

as information not relevant to the speci�c word, for instance segmentation errors, or as

parts of the word that do not reoccur among training samples, such as semicolons, full

stops and accents which are not deemed useful. Eventually, as intra-class deformations

are modeled and enforced at test time, the system is capable of accurately localizing the

complete boundaries of previously unseen keyword instances.

Motivated by the work of Ferrari et al. [22], we employ a similar framework to their

object detection system, so as to recognize handwritten words, in the presence of both

inter-writer and intra-writer variability for a particular word class. Our main contribution

is a technique for learning a representative shape of a word class using a random train

subset. Moreover, improved feature extraction is achieved by a word image preprocessing

step, which allows to capture high distinctiveness among writers and their writing styles.

Finally, an integrated learning method is presented where the training subset is no longer

randomly or manually selected. This is achieved by applying spectral clustering on each

training set which results into groups that specify both the number of models to be used for

a word class and which images are responsible for model creation. The models produced

by this learning process are also used for word spotting and an extensive experimental

evaluation is presented.

The rest of our work is structured as follows: In chapter 2, the theoretical background

is analyzed, with respect to the feature extraction from word images and their use for

training class-speci�c shapes. In chapter 3, we show in detail the learning algorithm of an

average shape that represents a word class. Chapter 4 includes the word image matching

algorithm. Finally, in chapter 5 we evaluate the performance of the word matching tech-

nique and we present an extensive experimental evaluation on word spotting as a pattern

classi�cation task.

18



Chapter 2

Word description using local contour

features

2.1 Introduction

2.2 Word image preprocessing

2.3 Feature extraction

2.4 Feature similarities - codebook

2.1 Introduction

In the present chapter, we present the theoretical background needed to describe the data

preprocessing stage for feature extraction in paragraph 2.2. Both training an average

shape (chapter 3) and matching it upon word images (chapter 4) rely on these features.

Apart from the local contour features, their properties, which make them attractive for

detecting novel word instances in the presence of intra-class variability and scale changes,

are also analyzed in paragraph 2.3. Finally, in paragraph 2.4 we show how these features

are organized into groups, composing a codebook of feature types useful for e�cient

matching.

2.2 Word image preprocessing

The keypoint to support boundary-level localization of a word instance in a test image

is to build an explicit shape model formed by continuous connected curves, completely

covering the word outlines. Therefore, the challenge is to determine which contour points

belong to the word-class boundaries, while discarding background and details speci�c to

19



individual instances, such as the extended parts of calligraphy letters or accents, as it

is depicted in �gure 2.1. These typically form the majority of points, yielding a poor

signal-to-noise ratio.

Figure 2.1: Three instances of the Greek word \ÓùêñÜôçò" (Socrates in English) written by

the same writer. The red areas indicate parts of the word speci�c to this particular writer which

are rarely repeated among instances.

2.2.1 Early processing

The �rst step to construct the contour features of Ferrari et al. [22] is to extract edgels

from a word image using the excellent Berkeley natural boundary detector [52] and to

chain them. The resulting edgel-chains are linked at their discontinuities and approxi-

mately straight segments are �t to them, using the technique described in [24]. Segments

are �t over individual egdel-chains and bridged across their links to form the image repre-

sentation on which our method relies, the countour segment network (CSN). This brings

robustness to the unavoidable broken edgel-chains, as we will present in the following

section according to Ferrari et al. [24].

However, to alleviate the errors of the underlying Berkeley edge detector, we extract

the skeleton of a word by applying a thinning morphological operation to the word images.

Since the data set used in our experiments consists of relatively clean, presegmented words,

the skeleton of foreground pixels results into edge-maps which can be used e�ciently for

further processing. In the following, we describe in detail how the thinning mechanism

works.

2.2.2 Thinning

Thinning is a morphological operation that is used to remove selected foreground pixels

from binary images, somewhat like erosion or opening. It can be used for several appli-
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cations, but we particularly use it for skeletonization. In this mode, it is commonly used

to tidy up the output of edge detectors by reducing all lines to single pixel thickness.

Thinning, is normally only applied to binary images and produces another binary image

as output. Like other morphological operators, the behavior of the thinning operation is

determined by a structuring element. The binary structuring elements used for thinning

are of the extended type described under the hit-or-miss transform (i.e. they can contain

both ones and zeros). The thinning of an image I by a structuring element J in terms of

the hit-or-miss transform is:

thin(I; J) = I − hit-or-miss(I; J);

where the subtraction is a logical operation de�ned by

X − Y = X ∩ NOT Y:

In mathematical morphology, hit-or-miss transform is an operation that detects a given

con�guration (or pattern) in a binary image, using the morphological erosion operator and

a pair of disjoint structuring elements. The result of the hit-or-miss transform is the set

of positions, where the �rst structuring element �ts in the foreground of the input image,

and the second structuring element misses it completely.

More formally, in binary morphology, an image is viewed as a subset of an Euclidean

space Rd or the integer grid Zd, for some dimension d. Let us denote this space or grid by

E. A structuring element is a simple, pre-de�ned shape, represented as a binary image,

used to probe another binary image, in morphological operations such as erosion, dilation,

opening, and closing.

De�nition 2.1. Let C and D be two structuring elements satisfying C ∩ D = ∅. The

pair (C;D) is sometimes called composite structuring element. The hit-or-miss transform

of a given image A by B = (C;D) is given by:

A⊙B = (A⊖ C) ∩ (AC ⊖D);

where ⊖ denotes the morphological erosion operator and AC is the set complement of A.

That is, a point x in E belongs to the hit-or-miss transform output if C translated to

x �ts in A, and D translated to x misses A (�ts the background of A).

The thinning operation is calculated by translating the origin of the structuring ele-

ment to each possible pixel position in the image, and at each such position comparing it

with the underlying image pixels. If the foreground and background pixels in the struc-

turing element exactly match foreground and background pixels in the image, then the

image pixel underneath the origin of the structuring element is set to background (zero).

Otherwise, it is left unchanged. Note that the structuring element must always have a

one or a blank at its origin if it is to have any e�ect. So far, the e�ects of a single pass

of a thinning operation over the image are described. In fact, the operator is normally
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applied repeatedly until it causes no further changes to the image, or else, until conver-

gence. Alternatively, in some applications such as pruning, the operations may only be

applied for a limited number of iterations.

The choice of structuring element determines under what situations a foreground pixel

will be set to background, and hence it determines the application for the thinning opera-

tion. In our case, we would like to reduce the thresholded output of an edge detector, for

instance our presegmented words, to lines of a single pixel thickness, while preserving the

full length of those lines (i.e. pixels at the extreme ends of lines should not be a�ected).

This is done by the procedure shown in algorithm 1.

Algorithm 1 Skeletonization by morphological thinning

1 Consider all pixels on the boundaries of foreground regions.

2 Delete any such point that has more than one foreground neighbor, as long as doing so

does not locally disconnect (i.e. split into two) the region containing that pixel.

3 Iterate until convergence.

This procedure erodes away the boundaries of foreground objects as much as possible,

but does not a�ect pixels at the ends of lines. In other words, pixels from a binary image

are removed, so that an object without holes shrinks to a minimally connected stroke and

an object with holes shrinks to a ring, halfway between the hold and outer boundary.

Two out of the eight structuring elements we use to achieve this e�ect are illustrated in

�gure 2.2. The rest elements result by applying the remaining six 90◦ rotations to each

one of them. The extracted connected skeleton from a binary image, as a result of this

thinning operation, is shown in �gure 2.3.

Figure 2.2: Structuring elements for skeletonization by morphological thinning. At each

iteration, the image is �rst thinned by the structuring element on the left, and then by the

structuring element on the right, and then with the remaining six 90◦ rotated versions of the

two elements. The process is repeated in cyclic way until thinning produces no further change.

As usual, the origin of the structuring element is at the center.
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Figure 2.3: Skeletonization example by morphological thinning of a simple binary shape, using

the structuring elements of �gure 2.2.

2.3 Feature extraction

The idea of relying on the object detection system of Ferrari et al. [22], in order to spot

handwritten words, is in
uenced by the fact that their system addresses several challenges:

• The image edges are not reliably extracted from word images in the segmentation

step.

• The contour of a desired word may be fragmented over several pieces and sometimes

parts are missing.

• Locally, edges lack speci�city and can be recognized only when put in the wider

context of the whole shape (word) [4].

• A deformable template word (mean shape) is required to handle variations among

instances within a word-class.

Before introducing the local features used in our approach, we analyze the contour segment

network [24] on which they are detected.

2.3.1 Linking edgel chains

After extracting the skeleton from a binary presegmented image using the aforementioned

thinning operation, the edgels comprising the skeleton are chained and a smoothing spline

curve is �t to each edgel-chain, providing estimates of the edgel's tangent orientations.

Since a contour may be broken into several edgel-chains, or it might have branchings

which are not captured by simple edgel-chaining, we link edgel-chains to counter these

issues with the following criterion:

Criterion 2.1. An edgel-chain c1 is linked to an edgel-chain c2 if any edgel of c2 lies within

a search area near an endpoint of c1 as it is illustrated in �gure 2.4. The search area is

an isosceles trapezium. The minor base rests on the endpoint of c1 and is perpendicular

to the curve's tangent orientation, while the height points away from c1.
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This criterion links c1 to edgel-chains lying in front of one of its endpoints, thereby

indicating that it could continue over c2. The trapezium shape expresses that the uncer-

tainty about the continuation of c1's location grows with the distance from the breakpoint.

Note how c1 can link either to an endpoint of c2, or to an interior edgel. The latter al-

lows to properly deal with T-junctions, as it records that the curve could continue in two

directions (�gure 2.4b). Besides, it is pointed out that it is not necessary for the end of

c1 to be oriented like the bit of c2 it links to, as in �gure 2.4(b). Tangent-discontinuous

links are also possible (�gure 2.4(c)).

These edgel-chain links are the backbone structure on which the contour segment

network will be built. To obtain the elements composing the network, namely, the contour

segments, each edgel chain is partitioned into roughly straight segments. In addition to

these regular segments, we also construct segments bridging over tangent-continuous links

between edgel-chains, as it is shown in �gure 2.4(d). The idea is to bridge the breaks in

the edges, thus recovering useful segments missed due to the breaks.

Figure 2.4: (a-c) Example links between edgel-chains. (a) Endpoint-to-endpoint link. (b)

Tangent-continuous T-junction link. (c) Tangent-discontinuous link. (d) A segment (marked

with an arc) bridging over link b). Figure reproduced from [24].

2.3.2 Contour segment network

Before explaining how to build the CSN, a few de�nitions are provided in line with Ferrari

et al. [24].

• Every segment is directed, in that it has a back and a front. This only serves to

di�erentiate the two endpoints, they have no semantic di�erence. As a convention,

the front of a segment is followed by the back of the next segment on the edgel-chain.

• every edgel-chain link is directed as well, meaning that the edgel-chain c1, on which

the trapezium search-area rests, is at the back, while the other edgel-chain c2 is

at the front. This also de�nes the front and back endpoints of a segment bridging

between two edgel-chains.
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• For clarity, we use the word links between edgel-chains, and connections between

segments.

The network is built by applying the following six rules, as it is presented in �gure

2.5. These rules connect the front of each segment to a set of segments, and its back

to another set of segments. Therefore, the network structure is unconstrained and its

complexity adapts to the image content.

1. The front of a segment is connected to the back of the next segment on the same

edgel-chain.

2. When two edgel-chains c1, c2 are linked at endpoints, the segment of c1 before the

link is connected to the segment of c2 after the link.

3. Consider a T-junction link (i. e. from an endpoint of c1 to the interior of c2). The

segment of c1 before the link is connected to the two segments of c2 with the closest

endpoints. As can be seen in �gure 2.53, this records that the contour continues in

both directions.

4. Let s be a segment bridging over a link from c1 to c2. The segment s is connected to

the segment of c2 coming after its front endpoint, and to the segment of c1 coming

before its back endpoint.

5. Two bridging segments which have consecutive endpoints on the same edgel-chain

are connected. Here, \consecutive" means that no other segment lies in between.

6. Consider a bridging segment s without front connection, because it covers the front

edgel-chain c2 until its end. If c2 is linked to another edgel-chain c3, then s is

connected to the segment of c3 coming after its front endpoint. A respective rule

applies if s lacks the back connection.

Figure 2.5: The six rules used in order to build the Contour Segment Network. They connect

(arrows) regular segments and bridging segments (marked with an arc). Rules 2-6 connect

segments over di�erent edgel-chains ci. Figure reproduced from [24].
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The above rules naturally connect two segments if the edges provide evidence that

they could be connected on an ideal edge-map, where all edges would be detected and

perfectly chained. Moreover, it is interesting to notice that the last three rules, dedicated

to bridging segments, create connections analog to those made by the �rst three rules for

regular segments. As a consequence, both types are treated consistently.

Since each edgel-chain is typically linked to several others, these rules generate a com-

plex branching structure, a network of connected segments. The systematic connections

across di�erent edgel-chains, together with the proper integration of bridging segments,

make the network robust to incomplete or broken edgel-chains. This is unnecessary for

the data set used in our experiments, as edge-maps resulting by applying thinning are

su�ciently connected. However, the connectivity between segments provided by the CSN,

allows an e�cient searching for paths through the network that resemble the model out-

lines, even in poorly segmented word images, such as handwritten historical document

images.

In the following, we summarize several advantages provided by operating on the con-

tour segment network, which motivate the local features proposed:

• Even when most of the image does not contain frequently repeated segments of the

word, among instances, only a limited number of segments is connected to a path

corresponding to a model outline. This greatly limits the choices to be made by the

matching step, thus making the computational complexity linear in the number of

test image segments.

• By connecting segments over edge discontinuities, the system is robust to interrup-

tions along the word contours and to short missing parts.

• The CSN includes paths going along the contour of the desired word.

2.3.3 Feature Description

The features that are used in our approach, belong to a family of local shape features

formed by chains of k connected roughly straight contour segments (kAS), or else paths

of length k through the CSN [20]. For several values of k, kAS can form various local

shape structures:

• Individual segments for k = 1,

• L, S shapes, 2-segment T , S, \ç" and other shapes for k = 2, as it illustrated in

�gure 2.7.

• C; Y; F; Z shapes, 3-segment T shapes and triangles for k = 3.

As k increases, features increase in complexity. On one hand, they become more and

more informative, whereas on the other hand, they gradually get less and less repeatable

across word instances. This means that the number of features covering partly boundary
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and partly clutter (i.e. parts of a word rarely repeated among instances) also grows with k,

actually faster than pure boundary ones, leaving a lower signal-to-noise ratio. Therefore,

for rather low values of k, kAS have an attractive intermediate complexity, o�ering a

convenient compromise:

• Simple enough to be detected repeatedly,

• yet complex enough to capture informative local word structures.

Depending on these intuitions, the local features we use are pairs of connected segments

(2AS). Each pair of connected segments forms one feature, called a PAS, for pair of

adjacent segments. A PAS feature P = (x; y; s; e; d) has:

1. a location (x; y) which consists of the mean over the two segment centers,

2. a scale s which is the distance between the segment centers,

3. a strength e as the average edge detector con�dence over the edgels, with values in

[0, 1] (in our case of thinned binary word images, e = 1) and

4. a descriptor d = (è1; è2; l1; l2; r), invariant to translation and scale changes.

The descriptor encodes the shape of the PAS, by the segments' orientations è1, è2
and lengths l1, l2 and the relative location vector r, going from the center of the �rst

segment to the center of the second (a stable way to derive the order of the segments in a

PAS is given in [20]. It is also interesting to notice that the PAS descriptor is of di�erent

nature than conventional local textured feature descriptors. Although this is irrelevant for

handwritten words, where texture cues do not provide signi�cant information, the PAS

descriptor encodes the geometric properties of the segments (orientation and length) and

of their spatial arrangement, due to the location vector r.

A number of example PAS features are illustrated in �gure 2.6, both for an edge-map

extracted from Berkeley's boundary detection algorithm and in the case of thinned word

images. First, these examples show that skeletonization by thinning has a positive impact

on a word image before detecting PAS features. The image noise levels decrease, as the

number of clutter PAS becomes smaller and PAS stemming from thinned images cover

mainly informative parts. This reduces the computational complexity of detecting them.

Moreover, as we can see in �gure 2.6, some PAS features, either derive from segments

which are adjacent on the same edgel-chain (PAS 2, 3, 5-10 in �gure 2.6(a) and PAS 2-8

in �gure 2.6(b)), or they consist of one segment at the end of an edgel-chain directed

towards another (PAS 1, 4 in �gure 2.6(a) and PAS 1 in �gure 2.6(b)). As two segments

from a pair are not limited to come from a single edgel-chain, but may come from adjacent

edgel-chains, the extraction of pairs is robust to the typical errors of the underlying edge

detector.

Below we summarize some attractive properties of PAS features:
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(a)

(b)

Figure 2.6: Examples of PAS features. (a) Ten PAS for the edge-map resulted after Berkeley's

edge detection [52], (b) Eight PAS detected on the same word image after thinning.

• Both lengths and relative location are normalized by the scale of the PAS, making

the descriptor and successively, the PAS feature, scale invariant.

• PAS can overlap, meaning that two di�erent PAS can share a common segment.

This way, the computational complexity of detecting them diminishes.

• They are robustly detected, as they connect segments even across gaps between

edgel chains.

• Since both PAS and their descriptors cover solely the two segments, the can cover

pure portion of an object boundary, without including clutter edges which often lie

in the vicinity.

• Their descriptors respect the nature of boundary fragments, to be one-dimensional

elements embedded in a 2D image, as opposed to local appearance features, whose

extent is a 2D patch.

• A correspondence between two PAS induces a translation and scale change. There-

fore, they can re readily used within a Hough-style voting scheme, not only for

object detection but also for word recognition.
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2.4 Feauture similarities - codebook

A 
exible measure to accommodate intra-class variability, initially proposed in [20] for

kAS, is the PAS dissimilarity measure. The dissimilarity D(P;Q) between the descriptors

dp, dq of two PAS P;Q is de�ned by:

D(dp; dq) = wr∥rp − rq∥+ w�

2∑
i=1

(D�(�
p
i ; �

q
i )) +

2∑
i=1

(| log(lpi=lqi )|) (2.1)

where the �rst term is the di�erence in the relative locations of the segments, D� ∈ [0; �=2]

measures the di�erence between segment orientations, and the last term accounts for the

di�erence in lengths. As segment lengths are often inaccurate, higher weight is given to

the two other terms of the dissimilarity measure. In all our experiments, the weights wr,

wè are �xed to the same values in accordance with Ferrari et al. [20] (wr = 4, w� = 2).

Finally, following the bag of features paradigm [14], [34], we construct a codebook

of PAS types, or a \visual vocabulary", each capturing a di�erent kind of local shape

structure, such as the L structures or small T-junctions mentioned before. The codebook

is created by clustering the PAS inside the training bounding boxes, in our case, the

whole word images, according to their descriptors. Apart from revealing the frequency at

which feature types occur, the codebook is convenient because it allows to avoid explicitly

comparing every test image features to every feature from the training images. Instead,

comparison to much fewer feature types su�ce.

For clustering, we use the following clique-partitioning (CP) approach:

• Let G be a complete graph whose nodes are the training PAS and arcs are weighted

by d − D(dp; dq). We partition G into cliques in order to maximize the sum of

intra-clique weights, using the CP approximation algorithm [23].

• Each resulting clique is a cluster of similar PAS.

The choice of CP instead of K-means, commonly used for building visual codebooks,

is appropriate in our context where the dissimilarity measure D makes the descriptor

space circular (D� terms). Moreover, the parameter d is relatively easy to set, because

it represents a rough indication of the acceptable intra-cluster dissimilarity (akin to the

kernel-width in mean-shift clustering [34]). K-means instead requires the number of clus-

ters as input, which is unknown a priori and varies from data set to data set. Experimental

results in [20] indicate that the exact choice of d has little impact on the overall system

performance.

For each cluster, the centermost PAS, minimizing the sum of dissimilarities to all

the others is selected as a representative. The codebook C = ti is the collection of the

descriptors of these centermost PAS, the PAS types ti, a number of which are illustrated

in �gure 2.7. A codebook is useful for e�cient matching, since all features similar to a

type are considered in correspondence. The codebook is class-speci�c and built form the

same images used later to train the average word.
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The whole procedure for describing a word by a set of PAS features is summarized in

algorithm 2:

Algorithm 2 Word description using PAS

1 Extract the skeleton of a presegmented word by applying thinning.

2 Chain the skeleton's edgels into edgel-chains and link these edgel-chains at their dis-

continuities.

3 Fit roughly straight segments to the edgel-chains and connect them along the edges

and across their links so as to form the contour segment network (CSN).

4 Derive PAS features by detecting paths of length 2 (PAS = kAS, for k = 2) through

the CSN.

5 De�ne a descriptor dp for a PAS P , essential for its reconstruction, as well as a dissim-

ilarity D(P;Q) between the descriptors dp, dq of two PAS P;Q.

6 Cluster a set of training PAS according to their descriptors and determine a represen-

tative PAS for each cluster, as the one minimizing the sum of dissimilarities to all

other PAS in the cluster.

7 Build a class-speci�c codebook of PAS types, composed of the descriptors of each

cluster's representative PAS.

Figure 2.7: The 15 most frequent PAS types from 38 thinned instances of the word \ÓùêñÜôçò"

(Socrates in English) used to train the average word.
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Chapter 3

Constructing the Word Model

3.1 Introduction

3.2 Learning Algorithm

3.1 Introduction

In the present chapter, the learning method of a prototype shape for a word class is

analyzed in paragraph 3.2. Its principal intra-class deformation modes are also presented,

given image windows W containing example word instances. Since the data set used in

our experiments consists of segmented words, W is set to be the whole word image.

3.2 Learning Algorithm

The challenge in training a mean shape is to discover which contour points belong to the

common class boundaries and to put them in full point-to-point correspondence across

the training examples. For instance, the basic outline of the word \ÓùêñÜôçò" (Socrates

in English) is more desirable than edges that di�erentiate characters and words in general,

among instances (�gure 2.1). The technique for building such a shape is composed of four

stages, as it is illustrated in �gure 3.1(b-e):

1. Determine model parts as PAS frequently reoccurring with similar locations, scales

and shapes (3.2.1).

2. Assemble an initial shape by selecting a particular PAS for each model part from

the training examples (3.2.2).

3. Re�ne the initial shape by iteratively matching it back to the training images (3.2.3).
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4. Learn a statistical model of intra-class deformations from the corresponded shape

instances produced by stage 3 (3.2.4).

The shape model output at the end of this procedure is composed of a prototype shape S,

which is a set of points in the image plane and a small number of n intra-class deformation

modes E1:n, so that new class members can be described as S + E1:n.

(a) (b)

(c)

(d)

(e)

Figure 3.1: Learning the shape model. (a) Six training examples (out of a total 38). (b)

Collection of parts (COP) model. (c) Occurrences selected to form the initial shape. (d) Re�ned

shape. (e) First two modes of variation (mean shape for b = 0).

3.2.1 Finding model parts

The �rst stage towards learning the model shape is to determine which PAS lie on bound-

aries, common across the word class, as opposed to those that lie on the background clutter

(i.e. segmentation errors) and those on details speci�c to individual training instances.

The basic idea is that a PAS belonging to the class boundaries will recur consistently
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across several training instances with a similar location, size, and shape. Although they

are numerous, PAS not belonging to the class boundaries are not correlated across dif-

ferent examples. In the following, we refer to any PAS or edgel not lying on the class

boundaries as clutter.

The procedure for �nding which PAS belong to the model's outlines consists of three

steps:

1. Windows alignment. Let a be the geometric mean of the aspect-ratios of the training

windows W (width over height). Each window is transformed to a canonical zero-

centered rectangle of height 1 and width a. This removes translation and scale

di�erences and cancels out word variations due to di�erent aspect-ratios. Therefore,

the learning task is reinforced, as PAS on the class boundaries are now better aligned.

2. Voting for model parts. Let Vi be a voting space associated with a PAS type ti.

There are |C| such voting spaces, all initially empty. Each voting space has three

dimensions:

• two for location (x; y) and

• one for size s.

Every PAS P = (x; y; s; d) from every training window casts votes as follows:

(a) P is soft-assigned to all types T within a dissimilarity threshold 
:

T = {tj|D(d; tj) < 
};

where d is the shape descriptor of P .

(b) For each assigned type tj ∈ T , a vote is casted in Vj at (x; y; s), namely, at the

location and size of P . The vote is weighted by e · (1−D(d; tj)=
, where e is

the edge strength of P .

Assigning P to multiple types T and weighting votes according to the similarity

1−D(d; tj)=
 reduce the sensitivity to the exact shape of P and the exact codebook

types. Also, weighting by edge strength allows to take into account the relevance

of the PAS, by means of how important it may be as a model part. Although this

might lead to better results over treating edgels as binary features as noticed in

[15] and [24], the thinned word images we use in our experiments are binary images

and thus e = 1. Essentially, each PAS votes for the existence of a part of the class

boundary with shape, location and size like its own. This is the best it can do from

its limited local perspective.

3. Detecting local maxima. All voting spaces are searched for local maxima. Each local

maximum yields a model part M = (x; y; s; �; d), with a speci�c location (x; y), size

s and shape d = ti (the PAS type corresponding to the voting space where M

was found). The value � of the local maximum measures the con�dence that the
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part belongs to the class boundaries. The (x; y; s) coordinates are relative to the

canonical window.

As it illustrated in �gure 3.2, recurring PAS among training instances of the same PAS

type, tend to form peaks in the voting space at di�erent locations. This occurs either

independently of size variations (3.2(a)), or due to scale changes (3.2(b)). Consequently,

the method allows for di�erent models parts with the same PAS type.

(a)

(b)

Figure 3.2: Finding model parts. Left: three training instances with two recurring PAS of the

same PAS type (parts of `Á' and `ç' in (a) and parts of `â' and `á' in (b)). Right: four slices of

the accumulator space for this PAS type (each slice corresponds to a di�erent size). (a) The two

recurring PAS form peaks at di�erent locations regardless of the scale. (b) The two recurring

PAS form peaks at di�erent locations and sizes.

The success of this procedure is partly attributed to adopting PAS as basic shape ele-

ments. A simpler alternative would be to use individual edgels. In that case, there would

be just one voting space, with two location dimensions and one orientation dimension. In

contrast, PAS bring two additional degrees of separation:

• the shape of the PAS, expressed as the assignments to codebook types and

• its size (relative to the window).
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Individual edgels have no size and the shape of a PAS is more distinctive than the ori-

entation of an edgel. As a consequence, it is very unlikely that a signi�cant number of

clutter PAS will accidentally have similar locations, sizes and shapes at the same time.

Hence, recurring PAS stemming from the desired class boundaries tend to form peaks in

the voting spaces, whereas clutter PAS do not.

Intra-class shape variability is addressed by two signi�cant factors:

• the soft-assign of PAS to types and

• a substantial spatial smoothing to the voting spaces before detecting local maxima.

This creates wide basins of attraction for PAS from di�erent training examples to ac-

cumulate evidence for the same part. We can a�ord this 
exibility while keeping a low

risk of accumulating clutter, because of the high separability provided by separate voting

spaces for di�erent codebook types. This yields the distinctiveness necessary to overcome

the poor signal-to-noise ratio, while allowing the 
exibility essential to accommodate for

intra-class shape variations.

The Hough-style voting procedure is similar in spirit to recent works on �nding fre-

quently recurring spatial con�gurations of local appearance features in unannotated im-

ages [29], [59], but it is specialized for the case when bounding-box annotation is available.

Finally, as the proposed methodology sees all training data at once, it reliably selects

parts and robustly estimates their locations, sizes and shapes. As another bene�t, the

complexity of the whole voting process is linear in the total number of PAS in the training

windows and therefore can learn from large sets e�ciently.

3.2.2 Assembling the initial model shape

The collection of parts learned so far captures class boundaries well and delivers a sense of

the general shape of the word class (�gure 3.1(b)). Most of the basic structure of a word

is included while details and background clutter is excluded. Relying on this collection-

of-parts (COP) model, one could attempt to detect a word instance in a test image, by

matching parts based on their descriptor and enforcing their spatial relationship. Earlier

approaches based on appearance features [18], [41] and on contour features [55], [70] are

able to localize such instances up to a bounding box which contains the word of interest.

However, this would be impractical for a word spotting task as the accuracy of the

matching outcome is far from su�cient, so as to classify a word into classes. The COP

model has no notion of shape at the global scale. It is a loose collection of parts learnt

rather independently, each focusing on its own local scale. In order to support localizing

word instances up to their boundaries, accurately and completely on novel test images,

a more globally consistent shape is needed. Ideally, its parts would be connected into a

whole shape featuring smooth, continuous lines.

The key idea for constructing such a shape lies on the fact that a model part occurs

several times on di�erent images, as it is depicted in �gure 3.3(a). These occurrences o�er
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slightly di�erent alternatives for the part's location, size and shape. We can assemble

variants of the model shape by selecting di�erent occurrences for each part. The basic

concept for obtaining a globally consistent shape is to pick one occurrence for each part so

as to form larger aggregates of connected occurrences (�gure 3.1(b)). The shape assembly

task is casted as a search for the assignment of parts to occurrences leading to the best

connected shape and the process is explained in detail in three steps:

(a)

(b)

Figure 3.3: Occurrences and connectedness. (a) A model part (above) and two of its occurrences

(below). (b) Two model parts with high connectedness (above) and two of their occurrences

which share a common segment (below).

1. Computing occurrences. A PAS P = (xp; yp; sp; dp) is an occurrence of model part

M = (xm; ym; sm; �m; dm) if they have similar location, scale and shape (�gure

3.3(a)). The following function measures the con�dence that P is an occurrence of

M (denoted M → P ):

conf(M → P ) = ep ·D(dm; dp) ·min
(
sm

sp
;
sp

sm

)
× exp(−

1
2�2

((xp−xm)2+(yp−ym)2)) (3.1)
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It takes into account P 's edge strength (�rst factor) and how close it is to M in

terms of shape, scale and location (second to last factors). The con�dence ranges

in [0,1] and P is deemed an occurrence of M if conf(M → P ) > �, with � being

a threshold. By analogy Mi → Pi denotes the occurrence of model segment Mi in

image segment Pi (with i ∈ {1; 2}).

2. Computing connectedness. As a PAS P is formed by two segments P1, P2, two

occurrences P , Q of di�erent model parts M , N might share a segment, as it shown

in �gure 3.3(b). This suggests that M;N explain connected portions of the class

boundaries and thus they should be connected in the model. As model parts occur

in several images, we estimate how likely it is for two parts to be connected in the

model, by how frequently their occurrences share segments.

Let the equivalence of segments Mi, Nj be

eq(Mi; Nj) =
∑

{P;Q| s∈P; s∈Q;Mi→s;Nj→s}

(conf(M → P ) + conf(N → Q)) (3.2)

The summation runs over all pairs of PAS P , Q sharing a segment s, where s is an

occurrence of both Mi and Nj (�gure 3.3(b)). Let the connectedness of M ,N be the

combined equivalence of their segments (for the best of the two possible segment

matchings):

conn(M;N) = max(eq(M1; N1) + eq(M2; N2); eq(M1; N2) + eq(M2; N1)) (3.3)

Two parts have high connectedness if their occurrences frequently share a segment.

Two parts sharing both segments have even higher connectedness, suggesting that

they explain the same portion of the class boundaries.

3. Assigning parts to occurrences. Let A(M) = P be a function assigning a PAS P

to each model part M . The problem is to �nd the mapping A that maximizes the

objective function:∑
M

conf(M → A(M)) + �
∑
M;N

conn(M;N) · 1(A(M);A(N))− �K (3.4)

where 1(a; b) = 1 if occurrences a, b come from the same image, and 0 otherwise; K

is the number of images contributing occurrences to A; �, � are prede�ned weights.

The �rst term prefers high con�dence occurrences. The second favors assigning

connected parts to connected occurrences, because occurrences of parts with high

connectedness are likely to be connected when they come from the same image (by

construction of function (3.3). The last term encourages selecting occurrences form

a few images, as occurrences from the same image �t together naturally. Over-

all, function (3.4) encourages the formation of aggregates of good con�dence and

properly connected occurrences.
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Algorithm 3 Assignment of model parts to occurrences

1 Assign the model part with the single most con�dent occurrence.

2 Consider the part most connected to those assigned so far and assign it to the occurrence

maximizing (3.4).

3 Iterate until all parts are assigned to an occurrence.

Optimizing (3.4) exactly is expensive, as the space of all assignments is huge. In prac-

tice, an approximation which brings satisfactory results is described in algorithm 3. This

way a well connected shape is built, where most segments �t together and form continuous

lines. The remaining discontinuities are smoothed out by the re�nement procedure in the

next section.

3.2.3 Model shape re�nement

The key idea to re�ne the initial model shape learnt in section 3.2.2 is to match it back

onto the training image windows W , by applying the deformable matching algorithm of

Chui and Rangarajan [12] (�gure 3.4(b)). This results in a backmatched shape for each

window, as it is presented in �gure 3.4(c)-top for several training images. An improved

shape is obtained by averaging these backmatched shapes as it is shown in �gure 3.4(c)-

bottom. The process is then iterated by alternating backmatching and averaging (�gure

3.4(d-e)). The whole procedure is described in the following four steps.

1. Sampling. Sample 100 equally spaced points from the initial model shape, generating

the point set S (�gure 3.4(a)).

2. Backmatching. Match S back to each training window w ∈ W by:

(a) Alignment. Translate, scale and stretch S so that its bounding-box (whole

image) aligns with w (�gure 3.4(b)-left). This provides the initialization for

the shape matcher.

(b) Shape matching. Let E be the point set consisting of the edgels inside w. Put

S and E in point-to-point correspondences using the non-rigid robust point

matcher TPS-RPM (Thin-Plate Spline Robust Point Matcher) described in

[12]. This estimates a TPS transformation from S to E, while rejecting edgels

not corresponding to any point of S. This is important, as only some edgels

lie on the object boundaries. The TPS-RPM method is analyzed in detail in

chapter 4 where it is reused to localize word instances up to their boundaries.

3. Averaging. Extract an average shape model at each backmatching step by applying

the following:
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• Align the backmatched shapes B = {Bi}i=1;:::;|W | using Cootes' variant of Pro-

crustes analysis [13], by translating, scaling and rotating each shape so that

the total sum of distances to the mean shape Â̄ is minimized:
∑
B∈B
|Bi − B̄|2.

• Update S by setting it to the mean shape: S ← B̄ (�gure 3.4(c)-bottom).

4. Iterate to step 2, using the updated model shape S (in our experiments, steps 2 and

3 are repeated two to three times).

Step 3 is possible because the backmatched shapes B are in point-to-point correspon-

dence, as they are di�erent TPS transformations of the same set S (�gure 3.4(c)-top).

This enables to de�ne B̄ as the coordinates of corresponding points averaged over all

Bi ∈ B. It also enables to analyze the variations in the point locations. The di�erences

remaining after alignment are due to non-rigid shape variations, which will be learnt in

section (3.2.4).

The alternation of backmatching and averaging results in a succession of better models

and better matches to the data, as the point correspondence cover more and more of the

class boundaries of the training instances (�gure 3.4(d-e)). Segments of the model shape

are moved, bent and stretched so as to form smooth, connected lines, thus recovering the

shape of the word-class well on a global scale. This is due to backmatching, which deforms

the initial shape onto the class boundaries of the training images, delivering natural, well

formed shapes. The averaging step then integrates them into a generic-looking shape and

smoothes out occasional inaccuracies of the individual backmatches (e.g. accents, commas

and calligraphy parts of letters).

The proposed technique can be seen as searching for the model shape that best explains

the training data, under the general assumption that TPS deformations account for the

di�erence between the model and the class boundaries of the training words. As it is

illustrated in �gure 3.4(e)-bottom, the running example improves further during the third

(and last) iteration, where the average shape is less noisy and more speci�c to the class

than that in previous iterations. The backmatched shapes also improve in the third

iteration, because matching is easier given a better model, providing in turn a better

average shape. This mutual help between backmatching and updating the model is the

key for the success of the procedure.

Finally, examples of other models evolving over the three stages of the learning process

are depicted in �gure 3.5. As it seems, model shape re�nement has a large positive impact.

Also, the number of di�erent instances per writer for a speci�c word class is of great

importance. This is explained by the re�ned shape shown in the last row of �gure 3.5 for

the word \añåôÞ" (virtue in English), which is more colorful (the �gure is better seen in

color) than the other two words. More speci�cally, the word class \añåôÞ" contains only

one instance per writer, as opposed to the other two classes which include three instances

per writer. Hence, the variability to be captured for this word is smaller, thus yielding

more accurate model parts and occurrences, which result into a better colored shape.
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(a) (b)

(c) (d)

(e)

Figure 3.4: Model shape re�nement. (a) Sampled points from the initial shape. (b) After

initializing backmatching by aligning the model with the image bounding-box (left), the model

deforms so as to match the image edgels (right). (c) The �rst, (d) second and (e) third iteration

of shape re�nement along with the corresponding average shape.

3.2.4 Learning shape deformations

Due to the backmatching of the model shape to each training image in the previous

section, examples of the variations within the desired word-class are provided. Since
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Figure 3.5: Evolution of shape models over the three stages of learning. Top row: model parts

(Section 3.2.1). Second row: initial shape (Section 3.2.2). Bottom row: re�ned shape (Section

3.2.3). The mean shape for the word \áñåôÞ" (virtue in English) is more intense than the other

two, due to lower intra-class variability.

these examples are in full point-to-point correspondence, we can learn a compact model

of the intra-class variations using the statistical shape analysis technique by Cootes et al.

[13]. The idea is to consider each example shape as a point in a 2p−D space (with p the

number of points on each shape) and model their distribution with Principal Component

Analysis (PCA). The eigenvectors returned by PCA represent modes of variation and the

associated eigenvalues �i their importance, namely, how much the example shapes deform

along them, as it is depicted in �gure 3.1(e).

By keeping only the n largest eigenvectors E1:n representing 95% of the total variance,

it is feasible to approximate the region in which the training examples lie by:

S + E1:n b; where:

• S is the mean shape,

• b is a vector representing shapes in the subspace spanned by E1:n and

• the ith component of b is bound by ±3
√
�i.

This de�nes the valid region of the shape space, containing shapes similar to the example

ones. Typically, n < 15 eigenvectors su�ce. The �rst two deformation modes for our

running example word \¢âäçñá" (Abdera in English) are shown in �gure 3.1(e). In

chapter 4, we take advantage of this deformation model to constrain the shape matcher

to search only inside the valid region.

It is interesting to mention that deformation is de�ned in terms of geometric transfor-

mation from the shape of an instance of the word class to another instance. This implies

that a non-rigid transformation is essential to map the shape of a word instance to an-

other one. Lastly, earlier works on these deformation models require either the example

shapes as input [32], or they need the point-to-point correspondences [13]. In contrast,

our method automatically learns shapes, correspondences and deformations given just

images of words.
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Chapter 4

Word Image Matching

4.1 Introduction

4.2 Integrated approach

4.3 Initialization by Hough voting

4.4 Word Matching by TPS-RPM

4.5 Scoring detections

4.1 Introduction

In this chapter, we describe the method for localizing the boundaries of previously unseen

word instances that belong to a speci�c word class. In paragraph 4.2, the way this problem

is addressed is introduced. An initialization for the shape matcher, by means of candidate

locations and scales of the desired word instance, inside its bounding box, is presented in

paragraph 4.3. The non-rigid point matching approach between word images is described

in detail in paragraph 4.4 and an evaluation of the matching outcome by scoring detections

is described in paragraph 4.5.

4.2 Integrated approach

The task of matching the shape model, learnt in chapter 3, to the test image edges,

presents several challenges:

• Segmentation errors may result in a cluttered word image where only a percentage

of total edges is deemed valid for further processing.
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• To handle both inter-writer and intra-writer variability for a word class, the shape

model must be deformed into the shape of the particular instance shown in the test

image.

In order to achieve this objective, the problem is decomposed into two stages:

1. Rough estimates for location and scale of the word instance are obtained using a

Hough-style voting scheme (section 4.3).

2. These estimates are then used to initialize the non-rigid shape matcher of Chui and

Rangarajan [12] (section 4.4).

The �rst stage greatly simpli�es the subsequent shape matching, as it lifts three degrees

of freedom, namely, translation and scale. The combination of the two stages enables

the matcher to operate in cluttered images, thus allowing to localize word boundaries.

Furthermore, in section 4.4, the matcher is constrained to explore only the region of the

shape space spanned by the training examples, thereby ensuring that output shapes are

similar to class members.

Finally, the data set used in our experiments consists of foreground edgels that prevail

against clutter. Hence, the bounding box is set to be the whole image as it covers mainly

informative parts of the word of interest. This implies that the �rst stage of estimating

the candidate location and scale of the word's center, inside the bounding box, is rather

redundant and therefore, the matching stage could already commence without initializa-

tion. Nevertheless, as it will be explained in section 4.5, possible locations and scales of

the desired word result into separate detections, from which we retain the one with the

highest score. This provides better results, contrary to those accrued by applying the

matcher without an initial location and scale of the word instance inside the test image.

4.3 Initialization by Hough Voting

In section 3.2.1 the shape of a word class is represented as a set of PAS parts, each with

a speci�c shape, location, size and con�dence. In the present section, these parts are

matched to PAS from a test word image, based on their shape descriptors. In particular,

a model part is deemed matched to an image PAS if their dissimilarity (2.1) is below a

threshold 
 (this is the same as used in section 3.2.1).

Since a pair of matched PAS induces a translation and scale transformation, each

match votes for the presence of a word instance at a particular location (word's center)

and scale. This is done through a Hough-style voting process, similar to the one used

in the learning stage, which is widely exploited in object detection tasks [41], [55], [70].

Each vote is weighed by:

• the shape similarity between the model part and test PAS,

• the edge strength of the PAS and
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• the con�dence of the part.

Local maxima in the voting space de�ne rough estimates of the location and scale of

candidate word instances. As it is shown in �gure 4.1(a) (the �gure is better seen in

color), the local maxima (red areas) denote the center of the word \¢âäçñá", which is

used as an initialization for the shape matcher (�gure 4.1(b)).

(a) (b)

(c) (d)

Figure 4.1: Word detection. (a) A local maximum in Hough space de�nes the word's center. (b)

Initialization of TPS-RPM by centering the model to the word's center. (c) The output shape

with unconstrained TPS-RPM. It captures the word relatively well, except for the letters `ä' and

`ñ', where it is strongly attracted by the edgel orientations. (d) Output of the shape-constrained

TPS-RPM. Now the word is more properly recovered.

This voting procedure generates 2 to 10 local maxima in a typical word image used

in our experiments, as the local features are not very distinctive on their own. Regarding

the problem complexity, this process does not make signi�cant improvements for the

data set used in our experiments. Nevertheless, for word images which derive from poor

segmentation, or images that contain unsegmented words (only bounding-box annotation),

the number of possible locations and scales a word instance could take place might vary

considerably. Hence, Hough voting acts as a focus of attention mechanism, drastically

reducing the complexity involved. This is more preferable than running the matcher

directly, without initialization.

4.4 Word Matching by TPS-RPM

For each initial location l and scale s found by Hough voting:

• A point set V is obtained by centering the model shape on l and rescaling it to s

and

• the point set X contains all image edge points within a larger rectangle of scale 1:8s

(�gure 4.1(b)).
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This larger rectangle is designed to contain the whole word, even when s is underestimated.

Any point outside this rectangle is ignored by the shape matcher. Given the initialization,

V is put in correspondence with the subset of X that lies on the word boundary. The

associated non-rigid transformation is estimated with the Thin-Plate Spline Robust Point

Matching (TPS-RPM) algorithm, which also rejects image points that do not correspond

to any model point. A brief summary of TPS-RPM is provided in this section and we

refer the reader to [12] for more details.

4.4.1 Soft-assign and deterministic annealing

TPS-RPM matches two point sets V = {��}�=1;:::;K and X = {xi}i=1;:::;N , by applying a

non-rigid TPS mapping parameterized by {d; w} to V . The thin plate spline is chosen

because it is the only spline that can be decomposed into a�ne and non-a�ne subspaces:

f(�) = �� · d+ �(��) · w (4.1)

where d is the a�ne component and w is a non-a�ne warping coe�cient, which is com-

bined with the TPS kernel �(��) to form the non-rigid warp.

In the meanwhile, TPS estimates both the correspondence matrixM = {m�i} between
V and X and the mapping {d; w} that minimize an objective function including:

1. the distance between points of X and their corresponding points of V after mapping

them by the TPS and

2. the regularization terms for the a�ne and warp components of the TPS.

This energy function is de�ned as follows:

E(M;d;w) =
K∑
�=1

N∑
i=1

m�i||xi − ��d− �(��)w||2 + � trace(wTΦw) (4.2)

where Φ is a K ×K matrix formed by the kernels �(��) and M always satis�es:

K+1∑
�=1

m�i = 1; ∀i ∈ {1; 2; : : : ; N};
N+1∑
i=1

m�i = 1; ∀� ∈ {1; 2; : : : ; K}; m�i ∈ [0; 1]:

In addition to the inner K ×N part, M has an extra row and an extra column to reject

points as unmatched (outliers).

Since neither the correspondence M nor the TPS mapping {d; w} are known before-

hand, TPS-RPM iteratively alternates between updating M , while keeping {d; w} �xed
and updating the mapping with M �xed. M is a continuous soft-assign matrix, allow-

ing the energy function to improve gradually during the optimization, without jumping

around in the space of binary (hard correspondence) permutation matrices (and outliers).

It is updated by settingm�i as a function of the distance between xi and ��, after mapping

by the TPS:

m�i =
1

T
exp

(
(xi − f(��; d; w))

T (xi − f(��; d; w))

2T

)
(4.3)
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where f(��; d; w) is the mapping of point �� by the TPS {d; w} and T is a temperature

parameter which will be explained later on.

The update of the mapping �ts a TPS between V and the current estimate Y =

{y�}�=1;:::;K of the corresponding points by minimizing the following energy function:

ETPS(f) =
K∑
�=1

||y� − f(��)||2 + �

∫ ∫ [(
@2f

@x2

)2

+ 2

(
@2f

@x@y

)2

+

(
@2f

@y2

)2
]
dxdy (4.4)

where � is a regularization parameter. For a �xed value of � there exists a unique mini-

mizer f which comprises of the matrices d and w, thus yielding equation (4.1). Each point

y� in y is a linear combination of all image points {xi}i=1;:::;N weighted by the soft-assign

values m�i:

y� =
N∑
i=1

m�ixi (4.5)

The TPS �tting maximizes the proximity between the points Y and the model points

V after TPS mapping, under the in
uence of the regularization terms, which penalize

local warpings w and deviations of d from the identity. The latter accounts for alleviating

the problem of unphysical re
ection mappings, which can 
ip the entire plane. Fitting

the TPS to V ↔ Y rather than to V ↔ X, allows to harvest the bene�ts of maintaining

a full soft-correspondence matrix M . Combining equations (4.2) and (4.5) and the newly

inserted regularization terms the �nal energy function to be minimized by the TPS is:

ETPS(d; w) = ||Y − V d− Φw||2 + �1 trace(w
TΦw) + �2 trace([d− I]T [d− I]) (4.6)

where Y and V are just concatenated versions of point coordinates y� and �� and �1, �2

are the control parameters of the last two terms.

The optimization procedure of TPS-RPM is embedded in a deterministic annealing

framework by introducing a temperature parameter T , which decreases at each iteration.

The entries of M are updated as it is denoted in equation (4.3) and then they are nor-

malized to ensure row and column summation to 1 [12]. Since the temperature T is the

bandwidth of the Gaussian kernel in (4.3), as it decreases M becomes less fuzzy, progres-

sively approaching a hard correspondence matrix. At the same time, the regularization

terms of the TPS are given less weight. This is done in the same spirit with the annealing

schedule on the correspondence, using a linear annealing schedule for the parameters �1

and �2 in (4.6) where:

• �i = �initi T , for i = 1; 2, instead of a �xed value and

• to provide more freedom for the a�ne transformation, �init2 is set to be much smaller

than �init1 .

Consequently, the TPS is rigid in the beggining and gets more and more deformable as

the iterations continue. These two phenomena enable TPS-RPM to �nd a good solution

even when given a rather poor initialization. At �rst, when the correspondence uncertainty
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is high, each y� essentially averages over a wide area of X around the TPS-mapped point

and the TPS is constrained to near-rigid transformations. This can be seen as a large

value of T in (4.3) generates similar valued m�i, which are then averaged by (4.5). As

the iterations continue and the temperature decreases, M looks less and less far and

pays increasing attention to the di�erences between matching options from X. Since the

uncertainty diminishes, it is safe to let the TPS looser, freeer to �t the details of X more

accurately. The whole process is also described in algorithm 4:

Algorithm 4 The TPS-RPM algorithm

1 Initialize parameters T , �1 and �2 of the deterministic annealing procedure.

2 Initialize parameters M , d and W of the alternating update step.

3 Deterministic Annealing

3.1 Alternating Update

(a) Update the correspondence matrix M using (4.3).

(b) Update the transformation parameters (d; w) by minimizing (4.4).

3.2 Iterate to step 3:1 until convergence.

4 Decrease T , �1 and �2.

5 Iterate to step 3 until T decreases no more.

Finally, the TPS-RPM technique is extended [22], by adding two terms to the objective

function:

1. the orientation di�erence between corresponding points and

2. the edge strength of matched image points.

These two terms improve the accuracy and stability of the method even when initialized

farther away form the best location and scale.

4.4.2 Constrained word matching

TPS-RPM treats all shapes according to the same generic TPS deformation model, simply

prefering smoother transformations such as low 2D curvature in w and low a�ne skew in

d. Two shapes with the same deformation energy are considered equivalent. This might

result in output shapes unlike any of the training examples. In this section, the TPS-RPM

is extended with the class-speci�c deformation model learned in section 3.2.4. In line with

Ferrari et al. [22], we constrain the optimization to explore only the valid region of the

shape space, containing shapes plausible for the class (de�ned by S, E1:n, �i from section

3.2.4).
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At each iteration of the TPS-RPM, the current shape estimate Y (equation (4.5)) is

projected inside the valid region, just before �tting the TPS. This amounts to:

1. Align Y and S with regard to translation, rotation and scale.

2. Project Y onto the subspace spanned by E1:n : b = E−1(Y − S), b(n+1):2p = 0.

3. Bound the �rst n components of b by ±3
√
�i.

4. Transform b back into the original space: Y c = S + E · b.

5. Apply the inverse of the transformation used in 1 to Y c.

The assignment Y ← Y c imposes hard constraints on the shape space. While this

guarantees output shapes similar to class members, it might sometimes be too restrictive.

To match a novel instance accurately, it could be necessary to move a little along some

dimensions of the shape space not recorded in the deformation model. The training data

cannot be assumed to present all possible intra-class variations. To overcome this issue,

a soft-constrained variant is proposed, where Y is attracted by the valid region, with a

force that decreases with temperature:

Y ← Y +
T

Tinit
(Y c − Y ).

This causes TPS-RPM to start fully constrained and then, as temperature decreases and

M looks for correspondences closer to the current estimates, later iterations are allowed to

apply small deformations beyond the valid region (typically along dimensions not in E1:n).

As a result, output shapes �t the image data more accurately, while still resembling class

members. This behaviour is inspired by the TPS-RPM, which also lets the TPS more

and more free as T decreases.

The proposed extension to TPS-RPM has a deep impact, in that it alters the search

through the transformation and correspondence spaces. Apart from improving accuracy,

it can help TPS-RPM to avoid local minima far from the correct solution, thus avoiding

signi�cant failures. Figure 4.1(d) shows the improvement provided by the constrained

shape matching, against the TPS-RPM with just the generic TPS model, as is illustrated

in �gure 4.1(c).

4.5 Scoring detections

Every local maximum in Hough space constitutes an initialization for the shape matching,

and results in di�erent shapes (detections) localized in the test image. In this section we

score the detections, making it possible to reject detections and to evaluate the detection

rate and false-positive rate of the word matching.

Each detection is scored by a weighted sum of four terms:
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1. The number of matched model points, i.e. for which a corresponding image point

has been found with good con�dence. According to Chui and Rangarajan [12], these

are all points �� with maxi=1;:::;N(m�i) > 1=N .

2. The sum of squared distances from the TPS-mapped model points to their corre-

sponding image points. This measure is made scale-invariant by normalizing by

the squared range r2 of the image point coordinates (width or height, whichever is

larger). Only matched model points are considered.

3. The deviation
∑

i;j∈{1;2}
(I(i; j)− d(i; j)=

√
|d|)2 of the a�ne component d of the TPS

from the identity I . The normalization by the determinant of d factors out devia-

tions due to scale changes.

4. The amount of the non-rigid warp w of the TPS trace(wTΦw)=r2, where Φ(a; b) ∝
||�� − �b||2log||�� − �b|| is the TPS kernel matrix.

This score integrates the information a matched shape provides. It is high when the

TPS �ts many (term 1) points well (term 2), without having to distort much (terms 3 and

4). In our current implementation, the relative weights between these terms have been

selected manually, they are the same for all classes, and remain �xed in all experiments.

As a �nal re�nement, if two detections overlap substantially, we remove the lower

scored one. Notice that the method can detect multiple instances of the same class in

an image. Since they appear as di�erent peaks in the Hough voting space, they result in

separate detections. This indicates that we should only keep the highest scored detection

for the presegmented words used in our experiments, as the nubmer of instances to be

detected is at most 1. Nevertheless, we retain the a�orementioned criterion, so as to

account for future choices of unsegmented images containing handwritten words.
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Chapter 5

Experimental Evaluation

5.1 Datasets and protocol

5.2 Intra-class word recognition

5.3 Word spotting using a vocabulary

5.4 Principled training

5.1 Datasets and protocol

Before evaluating the performance of the proposed word matching technique and its ap-

plication for word spotting, we �rst introduce the image data used in our experiments.

The datasets originate from the ICDAR'07 Handwriting Segmentation Contest and were

particularly used by Papavassiliou et al. [56] in both ICDAR'07 and ICDAR'09 contests.

The document images in the datasets cover a wide range of cases which occur in uncon-

strained handwriting. One type of such cases comes from 25 writers, who were asked to

copy a given text of approximately 150 words. The segmentation output of the algorithm

described in [56], on these document images, results into clean word images comprising

our training and testing datasets.

In order to train a class-speci�c model, we have manually annotated the words belong-

ing to a particular word class. This was carried out for 10 word classes, as it is shown in

Table 5.1. Each word class contains one to four instances per writer and thus the number

of words for a class varies from 25 to 100. The dataset comprising each class is split into

training and validation data. For each such split, we learn a model from the training data

and test it upon the validation data (cross validation). Initially, the training data consist

of 50% of the images belonging to each class. Hence, each class-speci�c model is trained

from a random sample containing half of the available images (Table 5.1). We iterate

this process �ve times, yielding �ve models per class, from di�erent training sets, in order
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to prove the stability of the learning process through a repeated random sub-sampling

validation. We refer to learning and testing on a particular split of the images as a trial.

Table 5.1 also illustrates a number of images that do not contain any instance of the

respective word class. These negative test sets are generated from a random sample of

words written by a speci�c writer and they are used to evaluate the e�ciency of our

method, in terms of detection rate (on validation data) against false positives, or else, it's

classi�cation capability. Both validation and negative test sets are equally distributed.

Finally, all experiments are run with the same parameters (no class-speci�c tuning is

applied).

Table 5.1: Number of images comprising training and validation data sets and number of

negative images used to evaluate the performance of word recognition.

word class training set validation set negative set

ÓùêñÜôçò 38 37 37

Äçìüêñéôïò 50 50 50

¢âäçñá 38 37 37

áñåôÞ 13 12 12

áãáèü 25 25 25

äéêáóôÞñéï 25 25 25

óïößá 13 12 12

ÈñÜêç 38 37 37

öéëïóïößá 25 25 25

ðáôÝñáò 25 25 25

A number of example images from the dataset used in our experiments after applying

thinning (section 2.2.2), is depicted in �gure 5.1 for our vocabulary, which consists of 10

word classes. Apart from the variability among writing styles, there also exist variations

with regard to scale, word ending characters, commas, etc.

5.2 Intra-class word recognition

The performance of the proposed word matching approach is initially estimated in terms of

how accurately it recovers the true class boundaries of previously unseen word instances.

For this estimation, the true boundaries of all word instances used in our experiments

have to be manually annotated. However, the thinning operation applied in the image

preprocessing step (section 2.2.2) alleviates this issue, as the words have already been

transformed to their outlines, thus yielding the desired ground-truth boundaries.

Assuming that Bgt expresses the ground-truth boundaries and that Bmodel consists of

the matched output points to a test image, the accuracy of the proposed method can be

quanti�ed by two measures:
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ÓùêñÜôçò Äçìüêñéôïò

¢âäçñá äéêáóôÞñéï

áãáèü áñåôÞ

óïößá ðáôÝñáò

öéëïóïößá ÈñÜêç

Figure 5.1: Example word images from the datasets used in our experiments.

1. Coverage is the percentage of points from Bgt closer than a threshold t from any

point of Bmodel.

2. Precision is the percentage of points from Bmodel closer than t from any point of

Bgt.

The measures are complementary and t is set to be 4% of the diagonal of the bounding-

box of Bgt. In other words, coverage captures how much of the word's boundaries has

been recovered by the algorithm, whereas precision denotes how much of the algorithm's

output lies on the word's boundaries (instead of background).

First, we match the models learnt for each class to the images of the validation dataset

and calculate the detection rate. Subsequently, we compute the detection rate against the

number of false positives, averaged on images contained in both validation and negative

sets (i.e. 37+37 = 74 test images for word class `ÓùêñÜôçò') of each class, as well as over

the �ve trials. This averaging process serves us to set a common reference point for our

comparisons, de�ned by the number of false positives per image (FPPI). Such a reference

point can be obtained by the process described by the following steps:
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1. Consider the scores S = {si} obtained after matching a model to both positive

(correct scores ) and negative (false scores) images.

2. Sort the scores si in ascending order and assign to each score the corresponding

threshold ti, for i = 1; : : : ; |S|.

3. For each threshold ti:

• Count the number of correct and false scores which are larger than ti, thus

yielding the detection rate and false positive rate at the speci�c threshold.

4. Determine the detection rate at a particular number of false positives per image, by

approximately �nding the threshold ti which is closest to that value and corresponds

to the desired detection rate.

The �rst row of Table 5.2 shows the mean value (accuracy percentage) of the coverage

and precision values for several word classes from our vocabulary, which consists of 10

word classes. This value is also averaged over trials and correct detections at 0:1 FPPI

(this is the reference point for all comparisons). These classes were selected on purpose, as

they represent most of the vocabulary's variability in terms of scale, letters of the alpha-

bet involved and more importantly, in terms of number of training instances per-writer.

Speci�cally, there are four instances per writer for the word `Äçìüêñéôïò' (Democritus

in English), three instances for the word `¢âäçñá', two for the word `áãáèü' (good in

English) and one for the word `óïößá' (wisdom in English).

Table 5.2: Accuracy of localized word boundaries for some word classes using 50% and 80% of

the dataset for training, respectively. Each entry is the average value of coverage and precision

over all trials and correct detections at 0:1 FPPI.

training set Äçìüêñéôïò ¢âäçñá áãáèü óïößá

50% 92.8% 91.06% 87.75% 92.21%

80% 94.32% 92.11% 88.96% 90.19%

To evaluate a detection up to a bounding-box, we adopt the standards of the PASCAL

challenge criterion, which is widely used in object detection tasks [22]:

Criterion 5.1. A detection upon a positive word image is counted as correct only if the

intersection-over-union (IoU) ratio between the detection's bounding-box and the ground-

truth's one overlap more than 50%. All other detections are counted as false positives.

The detection rate against the number of false positives, which was computed in the

previous step, is illustrated in �gure 5.2, for the same word classes used above to evaluate

the algorithm's accuracy. The vertical bars in each plot represent two standard deviations

of the detection rate from the mean value, calculated for the di�erent models.

Note that the system performs relatively well but for the word 'óïößá'. Although it

has a high accuracy (Table 5.2, top row), its detection rate is much lower compared to the

53



other words and the deviation from the mean value varies considerably. We assume that

this happens due to the limited number of instances written by each writer for word 'óïößá'

(only one instance per-writer). Using only half of the images to train a representative mean

shape for this particular class does not allow to capture various writing styles in novel

word instances, as the information stored in the deformation model is rather inadequate.

Furthermore, we are unable to properly learn a single writer if no instance is recorded for

him in the model.

Figure 5.2: Word recognition performance using 50% of the dataset for training.

To account for a higher degree of variability among writers and their writing styles,

we train new models using a random sample containing 80% of the available images,

for each word class. This does not necessarily suppress our system in terms of how

many images should be used for training in a word spotting application, as in realistic

handwriting conditions the number of instances per writer is usually abundant. The

current con�guration is related to the dataset used in the following experiments, which is

described in Table 5.3. No additional tuning is applied on the parameters.

For consistency reasons, we evaluate the accuracy of the proposed methodology with

regard to coverage and precision, for the previously used example word classes and we

use the same reference point of 0:1 FPPI. The bottom row of Table 5.2 shows the values

obtained by the new models using 80% of the dataset for training. The performance gets
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Table 5.3: Number of images comprising training and validation data sets and number of

negative images used to evaluate the performance of word recognition.

word class training set validation set negative set

ÓùêñÜôçò 60 15 15

Äçìüêñéôïò 80 20 20

¢âäçñá 60 15 15

áñåôÞ 20 5 5

áãáèü 40 10 10

äéêáóôÞñéï 40 10 10

óïößá 20 5 5

ÈñÜêç 60 15 15

öéëïóïößá 40 10 10

ðáôÝñáò 40 10 10

only 0:44% better on average over the four classes. A clearer view of the improvement

gained by the current �x for our trials, is seen in �gure 5.3, where the word `óïößá' is

now properly detected, thus verifying our prior assumption. In addition, the detection

capability is substantially improved for the other three word classes.

Figure 5.3: Word recognition performance using 80% of the dataset for training.
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These results can also be identi�ed more precisely in Table 5.4, through indices such

as the total detection rate (TDR) of the cross validation process, the detection rate at

0:1 FPPI (DR at 0:1 FPPI) and the false positive rate (FPR), all averaged over the �ve

trials. Table 5.4 also shows the results accrued from the previous trials (using 50% of

available images for training) on the same word classes. It is interesting to notice that

regardless of the improvement gained in detection rate for all classes, the false positive

rate for word `óïößá' still remains high, even though the number of negative images to be

tested is reduced (�ve for class `óïößá', as it is shown in Table 5.3). Since local maxima

are found in the Hough space, they lead to detections either on positive (validation set),

or on negative test images. Yet, as it will be explained in the next section, the scores of

false detections on negative images, are low enough, so as to allow discriminating them

among other classes and classify them properly in a word spotting task.

Table 5.4: Statistical comparison between the experimental setups using 50% and 80% of the

dataset for training.

Training images (%) Index Äçìüêñéôïò ¢âäçñá áãáèü óïößá

50

TDR 0.780 0.789 0.752 0.516

FPR 0.116 0.081 0.096 0.366

DR at 0.1 FPPI 0.780 0.773 0.752 0.433

80

TDR 0.840 0.853 0.800 0.760

FPR 0.190 0.093 0.080 0.340

DR at 0.1 FPPI 0.840 0.853 0.80 0.640

Finally, the negative test set, from which false positives may arise, consists of images

written only by a single writer. In order to strengthen the system's stability on recognizing

unknown word instances which do belong to a known word class, independently of negative

images, we extend the negative test sets by including all writers who contributed for

learning class-speci�c models. More speci�cally, we repeat the �ve trials which use random

subsets of 80% of the training images, 25 times, each time using a randomly selected

writer-speci�c negative test set. Then, we average the statistics produced by each set of

trials (5 trials per set) over all 5 × 25 trials and present the results for all classes of the

vocabulary in Table 5.5.

Table 5.5 also illustrates the weighted mean value of each index and its deviation,

averaged over all classes. Note that the weights used for TDR and FPR correspond to the

number of images in validation and negative sets, respectively. In contrast, the weights

used for DR at 0:1 FPPI correspond to the number of images in both data sets. Notice

again that the word `áñåôÞ' does not succeed a high detection rate due to the limited

number of training instances.
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Table 5.5: Total statistics for all word classes averaged on all trials and models using 80% of

the dataset for training and negative examples to account for false positives.

word class TDR FPR DR at 0.1 FPPI

ÓùêñÜôçò 0.987 0.403 0.960

Äçìüêñéôïò 0.860 0.246 0.848

¢âäçñá 0.880 0.192 0.861

áñåôÞ 0.640 0.318 0.574

áãáèü 0.820 0.240 0.808

äéêáóôÞñéï 0.920 0.324 0.899

óïößá 0.800 0.365 0.755

ÈñÜêç 0.880 0.440 0.855

öéëïóïößá 0.920 0.384 0.896

ðáôÝñáò 0.840 0.320 0.804

mean 0.874 0.317 0.850

std 0.090 0.074 0.103

5.3 Word spotting using a vocabulary

In the previous section, we investigated the conditions under which our system behaves

properly, with regard to it's ability of detecting novel keywords correctly. More precisely,

the number of images to be used for training a class-speci�c model is determined after

statistical comparisons between con�gurations using the 50% and 80% of the available

images. A repeated random sub-sample cross validation was used in order to evaluate the

system's word recognition performance. In addition, it's ability of discriminating correct

word instances against false ones, was examined thoroughly.

In this section, we assess the system's performance in a word spotting task by com-

bining the information provided by all models. Particularly, given an unknown word that

belongs to an already known (in our vocabulary) word class, the system matches the word

to all the class-speci�c models learnt and classi�es it to a particular word class according

to the following criterion:

• The class-speci�c model achieving the highest matching score with the keyword, is

the one specifying the keyword's original class.

The process is iterated �ve times (trials) to evaluate the system's consistency. Each word

is annotated by a ground-truth bounding-box, which denotes the class it belongs to, so as

to compare the retrieved data against the real data, for performance statistical extraction.

Note that the score of a model's detection inside a test images is de�ned by:

Sm = w1Ds + w2Os; where (5.1)

• Ds is the detection's weighted sum of the four terms, described in section 4.5,

• Os denotes the overlap percentage between the detected and the ground-truth

bounding boxes and
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• w1, w2 are normalized prede�ned weights with values 0:6 and 0:4 respectively.

The second term of equation (5.1) was added to tackle false detections caused by

models representing small words, such as `áñåôÞ' and `óïößá', which were located inside

larger ones, such as `ÄéêáóôÞñéï', `Äçìüêñéôïò' and `öéëïóïößá'. Although this may seem

visually peculiar, as these words di�er substantially, it was experimentally proven that

the second term suppresses the number of false positives caused by words of di�erent

sizes. After all, the matching process treats all words as shapes in the 2D space, without

involving any contextual information. Hence, the second term acts as a smoothness

measure of the scoring function. It's given less weight though, so as to let the �rst term

loose enough to decide more accurately the correct detections.

Before estimating the e�ciency of the proposed word spotting approach, we �rst in-

troduce some evaluation indices, which are widely used to measure the performance of

pattern classi�cation tasks. For such tasks, the terms true positives, true negatives, false

positives, and false negatives compare the results of the classi�er under testing them

against a ground-truth. The terms positive and negative refer to the classi�er's prediction

(sometimes known as the observation) and the terms true and false refer to whether that

prediction corresponds to the ground-truth (sometimes known as the expectation).

Following these de�nitions and the indices tp, fp for true and false positives respec-

tively, we de�ne:

Precision =
tp

tp+ fp
;

Recall =
tp

tp+ fn
;

where tp + fn is actually the total number of images comprising the incoming 
ow of

words. A measure that combines precision and recall is the harmonic mean of precision

and recall, the traditional F-measure or balanced F-score:

F = 2 · Precision · Recall
Precision+ Recall

:

The F-measure measures the e�ectiveness of retrieval with respect to a user who attaches

as much importance to recall as to precision.

To add some visual sense of the system's ability to discriminate words among word

classes we present the confusion matrices produced at each of the �ve trials. A confusion

matrix is a speci�c table layout that allows visualization of the performance of a supervised

learning algorithm, such as the proposed mean shape learning method. Each row of the

matrix represents the instances in a predicted class, while each column represents the

instances in an actual class. The name stems from the fact that it makes it easy to see if

the system is confusing two or more classes (i.e. commonly mislabeling one as another).

5.3.1 Word spotting using one model per class

Following the con�guration de�ned in section 5.2, we make use of the same models learnt

for each word class, using 80% of the available images. The test set consists of the words
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that were not used to train each class-speci�c model. As mentioned before, we match

the 10 models (one per word class) to a new word from the test set and predict the

word's original class by favoring the model which achieved the maximum score (among 10

scores). The whole process is iterated �ve times using the corresponding models of each

trial (section 5.2).

The confusion matrices for this �rst experimental setup are illustrated in �gure 5.4.

Each column's entry denotes the percentage of words retrieved by each class. In the

best case scenario the diagonal elements of the confusion matrix should be close to 100%.

Along with the confusion matrices �gure 5.4 shows the F-measure obtained by the system,

both for each single trial and on average over all trials.

Notice that in �gure 5.4(e) the model representing the word `ÓùêñÜôçò' overwhelms

the other models in terms of word retrieval. Not only it captures 100% of all instances

belonging to its word-class but it also confuses other words for `ÓùêñÜôçò'. This model

is not desirable for our system as we would like to capture as much valid information as

possible.

Word spotting using the best model

A way to achieve higher performance and counter issues such as the large number of false

positives accrued by overtrained models (model for word `ÓùêñÜôçò' of the �fth trial in

the previous section) is to pick the best model of the �ve models learnt so far for each

word class. To determine such a model, we take into account its overall behavior when

matching it upon a wide range of negative images. As it is shown in Table 5.5 in the

previous section, the total statistics accrued for all word classes are averaged on all trials

and models and all 25 writers are considered. By extracting the same statistics for all

word classes and writers before averaging them over the �ve models, we are able to trace

each model's performance and select the one with the highest value, for a particular word

class.

Table 5.6 shows the performance statistics with regard to the three indices used in

section 5.2 for the word `¢âäçñá'. The criterion we use for selecting the best model

lies at the detection rate at 0:1 FPPI, which for the case of the word `¢âäçñá' favors

the second model (trial 2). Although this model does not correspond to the lowest false

positive rate among the other models, it has a higher detection potential even when the

circumstances get worse, namely, a larger number of negative images arises, resulting to

more false positives. As mentioned in section 5.2, the detection rate at a speci�c threshold

is computed by counting the number of correct detections whose scores exceed the score

corresponding to that threshold. This implies that a high detection rate at this threshold

is equivalent to large scores, which allow us to properly distinguish a new word instance

from false scores in the decision step of the classi�cation task.

Based on this observation we apply word spotting in the same spirit with the con�g-

uration de�ned in the �rst experimental setup. Instead of iterating the process between

trials, we run the same experiment only once, using the previously de�ned best model in
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(a) F = 0.763 (b) F = 0.693

(c) F = 0.705 (d) F = 0.704

(e) F = 0.714

Figure 5.4: Confusion matrices for the �ve trials (a)-(e) of the �rst experimental setup and

corresponding F-measures. The average F-measure is 0.716.

a single trial. Again, the test set contains all class-speci�c words that were not used for

training the best models of each class. We de�ne this trial as the second experimental

setup.

In line with the previous experiments, we present the confusion matrix obtained by the

current run in �gure 5.5. Finally, the F-measure of this experiment is 0:765, which is al-
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most 5% better than the average F-measure gained in the previous set of experiments and

only 0:2% better than the best F-measure obtained by the �rst trial. Assuming a larger

variety of models trained for each word class (i.e. 10 models per class), this con�guration

might bring in more satisfactory results. However, the number of possible writing styles

to be captured by a single model is enormous, especially in unconstrained handwriting.

Hence, its e�ciency for word spotting is limited. Moreover, most of the computational

time has to be occupied by the cross-validation and statistical extraction presented in

section 5.2, which renders the current con�guration inappropriate for automation.

Table 5.6: Performance statistics for determining the best model for the word `¢âäçñá'. Each

model corresponds to a di�erent trial.

¢âäçñá TDR FPR DR at 0.1FPPI

model 1 0.866 0.125 0.848

model 2 0.933 0.248 0.906

model 3 0.933 0.218 0.903

model 4 0.801 0.208 0.784

model 5 0.866 0.160 0.861

F = 0.765

Figure 5.5: Confusion matrix of the single trial using the best model for each class (2nd

experimental setup).

5.3.2 Word spotting using more models concurrently

So far, we have trained a number of models for each word class and matched them indepen-

dently (one class-model per trial) to unknown words in order to classify them according

to the matching score. The idea is to combine the scores of separate models learnt for

the same word class and incorporate them in the decision step of the classi�cation task.

More speci�cally, we train again �ve models for each word class by using random samples

of a subset containing 80% of the training images. The rest 20% of the images is left out

for testing. Each sample is made up using 80% of the respective training subset, namely,
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each sample consists of 80%× 80% = 64% of the initial training images, but derives from

the speci�c randomly chosen subset.

Table 5.7: Number of images used to train each class-speci�c model (samples) from a subset of

80% of the total images.

word class training subset training sample test set

ÓùêñÜôçò 60 48 15

Äçìüêñéôïò 80 64 20

¢âäçñá 60 48 15

áñåôÞ 20 16 5

áãáèü 40 32 10

äéêáóôÞñéï 40 32 10

óïößá 20 16 5

ÈñÜêç 60 48 15

öéëïóïößá 40 32 25

ðáôÝñáò 40 32 25

Table 5.7 shows the current con�guration for a single trial of our experiment. The

reason we learn di�erent models from a subset of training images and not directly from the

initial set is to iterate the whole process �ve times for consistency reasons with the afore-

mentioned �rst experimental setup. Each iteration (trial) produces a di�erent training

subset of 80% of the training images from which a new group of �ve models is generated.

The rest 20% of the initial set is left out again for testing. The contribution of this con�g-

uration is that a new word of the testing set is matched concurrently to all �ve models for

each class (5× 10 = 50 total matches for every word) and therefore it has higher chances

to be classi�ed correctly.

In the same spirit with the �rst experimental setup, the performance of the classi�-

cation task is illustrated by the confusion matrices in �gure 5.6. The system performs

substantially better both in each separate trial and on average, as it can be seen from the

new F-measure values.

5.4 Principled training

The application of the proposed system for word spotting described in the previous section,

showed that the system's classi�cation capability improves considerably when querying

with multiple models per word class. However, the process analyzed in the third exper-

imental setup (section 5.3.2), requires a large amount of computational time, both for

training models representing each word class (5 models × 10 words = 50 models per

trial, or, 250 models for all trials) and more signi�cantly, for matching these models upon

new instances. Therefore, it imposes limits to the system's potential of extending to a

practical word spotting application, such as the o�-line handwritten word recognition [8].
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(a) F = 0.842 (b) F = 0.865

(c) F = 0.798 (d) F = 0.833

(e) F = 0.830

Figure 5.6: Confusion matrices for the �ve trials (a)-(e) of the third experimental setup. The

average F-measure is 0.834.

Moreover, the images comprising each training set are randomly selected from the initial

datasets and no additional information is used from the collection of images itself.

In the present section, we propose a structured approach for training a speci�c number

of models for each word class, so as to alleviate the computational time spent for model

creation and matching. The key point of our approach is to make use of the similarities

63



among images used for training and group them into clusters which de�ne the training

sets for our models. Such similarities can be obtained by pairwise matchings between all

images used for training. The process is described in detail in algorithm 5 for a particular

word class.

Algorithm 5 Spectral clustering of the training set for model determination.

1 Match all pairs (i; j) of training images using the unconstrained version of TPS-RPM,

which was employed in the model shape re�nement stage of the learning step (section

3.2.3).

2 Construct a similarity matrix W = {wij}, as follows:

• For each matched pair (i; j), assign to wij the matching score returned by

TPS-RPM.

3 Apply the normalized cut clustering algorithm [54] to W with the number of clusters

being de�ned by the user.

4 The resulting clusters correspond to the sets used for training the speci�c models.

A common choice for the weights of the similarity graph to be partitioned by the

normalized cut clustering algorithm is a Gaussian kernel with a standard deviation ó

which determines the neighborhood of each node of the graph under a speci�c threshold

�, which allows to assign zero weight to distant points. In our case, the nodes correspond to

the scores returned by TPS-RPM. The appropriate values for ó and � may be determined

by the following procedure:

• Select a particular value for ó and � based on the parameters used in the learning

process. For instance, � could be chosen to be equal to the dissimilarity threshold


 used in section 3.2.1 for �nding models parts.

• For the values selected in the previous step, apply the normalized cut clustering

algorithm to the a�nity matrix which consists of the weighted elements of W by

the Gaussian kernel (ó, �) and determine the class-speci�c models to be trained

from the resulting clusters.

• For these models apply a cross-validation scheme on the validation dataset which

was initially left out for testing.

• Iterate the whole process until the con�guration between ó and � lead to the best

results of the cross-validation procedure, and determine their values from this con-

�guration.

Nevertheless, such a procedure drains most of the proposed algorithm's (algorithm

5) computational time on training and testing for cross-validation. Hence, we omit this
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smoothness step of the similarity matrix W and use it directly for spectral clustering,

relying on the promising scores of the pairwise matching outcome. Note that the matrix

W should be symmetric. Due to the fact that an element wij might be slightly di�erent

from wji, as a result of di�erent non-rigid registrations of image I into an image J and

vice versa, we select their average value to represent the similarity of the corresponding

entries in W , meaning wij :=
wij+wji

2
.

Step 3 of algorithm 5 also requires the number of clusters k to be de�ned by the user.

Following the eigengap heuristic from the tutorial on spectral clustering of Luxburg et al.

[48], we can determine the number of clusters as follows:

• Let �1; : : : ; �n be the eigenvalues corresponding to the eigenvectors of the Laplacian

matrix.

• Select the number k such that all eigenvalues �1; : : : ; �k are very small, but �k+1 is

relatively large. In other words, there exists a gap (eigengap) between �k+1 and the

previous eigenvalues.

An example of the way the number of clusters is decided is illustrated in �gure 5.7 for

the words `áãáèü' and `áñåôÞ'. The initial training sets using 80% of the available images

for each class, contain 40 images for the word `áãáèü' and 20 for the word `áñåôÞ'. The

eigangaps shown in �gure 5.7 denote that the number of clusters should be two (25 and

15 images) and one (all 20 images) for the words `áãáèü' and `áñåôÞ', respectively. This

meets our expectations for these particular words and especially for the word `áñåôÞ', as

the number of instances per writer is two and one instance for the words `áãáèü' and

`áñåôÞ', respectively.

áãáèü áñåôÞ

Figure 5.7: Eigenvalues of the Laplacian matrix (normalized cut) based on the fully connected

graph for the words `áñåôÞ' and `áãáèü'.

In the same spirit with the experimental setups de�ned in the previous sections, we

implement the proposed clustering methodology on a random subset using 80% of the
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available images for training. This results into a number of training sets (clusters) from

which models are created. Again, the process is iterated �ve times for consistency, thus

yielding a di�erent number of models per class for each trial. Now, the number of models

to be used for word spotting and the images used for their creation is known beforehand.

To compare the current approach with the methods presented in section 5.4, we illustrate

the performance of the current experimental setup in �gure 5.8 though the confusion

matrices and the F-measure indices of each trial.

(a) F = 0.809 (b) F = 0.722

(c) F = 0.680 (d) F = 0.670

(e) F = 0.774

Figure 5.8: Confusion matrices for the �ve trials (a)-(e) of the 4th experimental setup. The

average F-measure is 0.731.
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It seems that the system performs almost 2% better than the �rst experimental setup,

almost 3% worse than the second and about 10% worse than the third experimental setup,

on average. This may be due to the nature of the problem of training a representative

model for a word class, in terms of capturing as much intra-class variability as possible.

The models generated from training sets containing similar images, record a lower de-

gree of variability in the deformation model than models which originate from randomly

selected images.

However, the variability to be obtained in the deformation model depends on the

clustering outcome, namely, on the number of clusters and the images contained in each

cluster. Regarding the spectral clustering algorithm, there are aspects that still remain

unexplored, such as smoothing the similarities to a certain degree in order to account for

higher inter and intra-writer variability.

Finally, according to the repeated random sub-sample validation task (section 5.2),

models are created using random samples of subsets of the available images for a word

class. This means that some images may never be selected in the validation sub-sample,

whereas others may be selected more than once. In other words, validation subsets may

overlap. By applying spectral clustering on all images belonging to a class, we can split the

dataset to a �xed number training and validation sets. Then, we can alternate between

training and validation sets in order to apply a more strati�ed k-fold cross validation

procedure, where the value of k corresponds to the number of folds, namely, the number

of clusters determined for spectral clustering. By these means, all images are considered

in a structured way.
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Chapter 6

Conclusion - Future Work

In the present dissertation, we have proposed a method for spotting keywords in segmented

images of handwritten text, using shapes as word class queries, built directly from images.

After determining the local contour features used to describe a word, we integrated them

into a leaning framework which generated class representative models from a random

subset of images belonging to that class. The performance of the proposed system in

categorizing unknown words to known word classes was evaluated using a vocabulary of

class-speci�c models. Moreover, a principled training approach was presented, in order to

determine the number of models to be used for word spotting and the images comprising

these models.

The presented methodology can be extended in several ways. In a segmentation-free

approach, the system is able to recognize word instances of an already trained class model

in a document image containing various words of di�erent sizes and writing styles. The

only prerequisite is that the training images should be annotated by their bounding boxes.

Moreover, instead of using PAS features [22] to describe words, one could use 3AS (kAS

for k = 3) [20] so as to capture more complex shapes of a word's characters. Hence, the

variability recorded in the deformation model could be raised signi�cantly.

Finally, the whole system was tested in a word spotting task using words inside a known

vocabulary. One possibility to classify a word that does not exist in the vocabulary (no

model is created for the class it belongs to), is to specify a threshold in the decision step

of the classi�cation process de�ned in sections 5.3 and 5.4. Scores that do not exceed

such a threshold represent words out of the vocabulary and can be used for training a

new model (increase the vocabulary's size).
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