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1 Introduction

Systematic reviews and meta-analyses have been established as an integral part of
comparative effectiveness research and are used worldwide by health-care
agencies (e.g. National Institute for Health and Clinical Excellence (NICE) or
Agency for Healthcare Research and Quality (AHRQ)) to inform policy-making. A
major advantage of meta-analysis is that usually it outperforms any single study
in terms of statistical power. Thus, it has become a highly valuable tool
particularly when individual studies are inconclusive (1).

The usefulness of meta-analysis goes beyond the synthesis of relative effects for
comparing two interventions for a specific clinical condition and outcome; it can
be also employed for the investigation of characteristics that may affect the
treatment effects (2,3). More specifically, substantial clinical and methodological
discrepancies across the studies of a meta-analysis may cause differences between
the study-specific true underlying effects. Such differences, known as heterogeneity,
can be accounted for in a meta-analysis as additional variation across studies on
the top of random error. This variation is reflected in the estimated summary
relative effect as the between-study variance, which refers to the deviation of the
study-specific underlying treatment effects from their common mean (4).
Heterogeneity can sometimes be explained using meta-regression models, which
are extensions of the meta-analysis model that incorporate covariates (5,6).
Nevertheless, associations between such study-specific characteristics and relative
effects cannot always be explored adequately within a meta-analysis due to the
small number of included studies. Therefore, meta-epidemiological research uses
collections of many meta-analyses to assess the possible effect of several factors
using a wide range of studies typically collected as part of individual meta-

analyses (7,8).



Introduction | 13

Meta-regression and meta-epidemiology approaches in the context of pairwise
meta-analysis (comparing only two interventions) are well-known methodologies.
However, the development of a more complex evidence synthesis tool, which
enables the simultaneous comparison of three or more competing interventions,
requires the adaptation of these methods into its framework. This tool, known as
network meta-analysis (NMA) (also called mixed-treatment comparison or multiple-
treatment meta-analysis), synthesizes data from a set of studies, which may
compare the same or different sets of treatments for a common clinical outcome.
NMA integrates direct (from individual studies directly comparing interventions)
with indirect evidence (information on a treatment effect via a connected indirect
root) to infer about the relative effect of any pair of treatments included in the
network (9-11). This allows us to compare treatments that have not been directly
compared in any of the individual studies and also network estimates usually have
increased precision compared to the respective direct estimates. Furthermore, the
inclusion of all competing treatments in the same meta-analytic model allows the
estimation of their relative ranking (12), which provides a concise summary of the
findings and can be used to inform decision-making.

This introductory Chapter offers a brief overview of the available meta-analytic
methods for pairwise meta-analysis. It also presents meta-regression models,
which allow the relative effects to differ according to the values of a covariate.
Next, it describes meta-epidemiological models that synthesize parameters across

different meta-analyses. The last Section outlines the objectives of this Thesis.

1.1 Models for pairwise meta-analysis

1.1.1 Basic concepts of pairwise meta-analysis

Consider that a systematic review includes S eligible studies and each study i

(i =1,..,5) has estimated a relative effect y;, called also the observed effect of study
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i, between two competing interventions X and Y with (observed) variance s?. The
true underlying effects 6; of the studies can be modeled either under the fixed effect
or the random effects assumption (4,13,14). The former assumption implies that the
study-specific underlying effects 8; are identical, hence
0; = u

where u is the true summary relative effect of treatment X vs. Y. On the other
hand, the random effects assumption allows the underlying effects to differ across
studies so that

0; = u+5; (1.1)
The random effects §; are assumed to share a common (usually normal)
distribution with zero mean and variance the heterogeneity parameter v, namely

8;~N(0,72) (1.2)
and reflect the deviation of each 6; from their common mean u. Equations (1.1)
and (1.2) can be written equivalently as

0;~N(u, %) (1.3)
Setting % = 0 or §; = 0 renders the random effects model as a fixed effect model.
Pairwise meta-analysis can be fitted either as a linear or a hierarchical model. Both
approaches as described in the following Section.
Note that throughout this Thesis bold letters represent matrices and regular letters
represent scalars. Also, there is distinction between lowercase and uppercase

letters.

1.1.2 Modeling approach for pairwise meta-analysis

Pairwise meta-analysis as a linear model

In terms of linear regression and using matrix notation the meta-analysis model
can be described as

y=Xute+é (1.4)
where, y = (y4, ..., y5)T and & = (84, ..., 85)T. The vector of the random error terms

€ = (&, ..., &)" is assumed normally distributed with
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£~N(0,s%)
(s? = diag(s?, ...,s%)). The matrix X = (1, ...,1) is the design matrix and p = p is the
summary effect. The model of Equation (1.4) assumes that variances are known
and equal to their sample counterparts. Also, the random effects §; are assumed

independent from the random errors ¢;.

Pairwise meta-analysis as a hierarchical model

A hierarchical model for pairwise meta-analysis can be constructed assuming that
yi~N(8;,s) (1.5)

and then employing Equation (1.3). Note that hierarchical models for meta-

analysis are often fitted in a Bayesian framework; in this case prior distributions

are necessary for p and 2.

Alternatively, Equation (1.5) can be replaced by arm-level likelihoods. These

likelihoods are presented below for the two most common types of outcome data:

- For a dichotomous outcome the number of events in each study arm r;x and r;y
(for treatments X and Y respectively) of study i is assumed to follow a binomial
distribution

Tix~Bin(mix, nix)

Tiy~Bin(my, niy)
with probability of experiencing an event m;x and m;y respectively. The n;x and
n;y are the total number of participants in each arm.

- Continuous outcomes are usually modelled by assuming a normal distribution
for each arm-specific mean score m;y, m;y

mix~N(@ix, i)

My ~N(@iy, 05)

. . sd? sd? .
with means @y, @,y and variances o7 = =%, 05 = =X (sdy is the standard

Jnix’ vy
deviation of the observations in arm k of study i).

Then, the true probabilities m;x, 7;y and the true means ¢;x, ¢;y are parameterized

using a link function to derive the underlying relative effect sizes 6;. For example,
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the log-odds ratio or the mean difference of X vs. Y can be estimated using the
logit() or identity function respectively
6; = logit(mx) — logit(m;y)
0; = 0ix — Piv
An overview of all possible likelihoods and link functions for any type of data can

be found in Dias et al. (15).

(1.6)

1.2 Models incorporating covariates for pairwise meta-analysis

In the presence of important heterogeneity, conclusions formed on the basis of the
summary effect might be misleading. However, heterogeneity often can be
explained by differences in several characteristics across the studies of a
systematic review. If information on such study-specific characteristics is
available, it can be incorporated in the analysis via a meta-regression model as
described below (6).

Consider p different characteristics z;y, ..., z;, that differ in every study i and are
possible explanatory variables for heterogeneity. These variables can be binary,
categorical or continuous and are added as extra linear terms in Equation (1.1).
The meta-regression model including p covariates would be

p
0 =1 +6+ ) By 17)
=1

where the superscript (*) denotes that the parameters from this model are
different from the parameters of the model without covariates.

Each coefficient ; (j = 1,...,p) shows the change, on average, in the summary
effect u*, if z; increases one unit and z, ..., Zj_4, Zj41, ..., Z, Te€main constant. The
summary effect u* estimated from this model corresponds to studies for which all
covariates are equal to zero. We assume

87 ~N(0,7*2)
Then, Equations (1.4) and (1.5), depending on the fitting approach (linear or

hierarchical model), are modified into
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yox(E) et 19

1 “Z1ua1 Z1p -
(with X* = ( P ) w=u,B=(p-.Bp) )and

1 Zs1 = Zgp
yi~N(8;,s?)

(with 6; ~N (u*, t*%)) respectively.
If the selected explanatory variables are indeed factors that cause heterogeneity,
the estimated between-study variance i*? is expected to be smaller than that
estimated from the model without covariates (i.e. £** < £2). Note that the use of
fixed effect meta-regression is not recommended, since it is not reasonable to
assume that the total amount of statistical heterogeneity is explained (16).
Meta-regression models aim to identify factors acting as effect modifiers; that is
study-level characteristics that affect the results of the individual studies.
However, meta-regression can be subject to false-positive findings, particularly
when a large number of explanatory variables has been selected. For this reason
the potential effect modifiers should be specified a priori based on the clinical
experience and understanding of the researchers.
Despite its usefulness, meta-regression is not free of limitations. A major drawback
is that, in the absence of many studies or in the presence of extreme heterogeneity,
the regression coefficients cannot be estimated adequately due to low power (17).
Existing guidance suggests that performing meta-regression requires at least ten
studies for each included covariate to ensure that coefficients could be estimated
with sufficient power (13). In addition, meta-regression is observational evidence,
since the benefits of randomization are not preserved when associations are
investigated across the studies. Thus, any meta-regression analysis suffers from
the potential biases of other observational studies, such as confounding. An
extended discussion on all stengths and limitations of meta-rergession is available

in Thompson et al. (16).
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1.3 Models synthesizing parameters across pairwise meta-analyses

The low power of meta-regression implies that, when only few studies are
available, it may fail to detect associations between study-level characteristics and
treatment effects (13). However, the impact of such characteristics on relative
effects is very often not specific to a single meta-analysis, but affects any meta-
analysis irrespective of the interventions or the outcomes of interest across many
research areas. Meta-epidemiology exploits this fact to overcome the lack of power
of meta-regression and explores the impact of possible effect modifiers using
collections of meta-analyses (7,8).

For example, the appropriate blinding of patients is supposed an important trial
characteristic that strengthens the validity of findings. This implies that studies, in
which blinding has not been conducted adequately might give different results
from studies, in which patients have been blinded properly. If there are no reasons
to believe that blinding impacts in a different way (in magnitude and direction)
across a range of clinical outcomes (e.g. when active treatments are compared to a
control), information on blinding can be synthesized across all meta-analyses
evaluating such outcomes. This approach would give a summary estimate of the
impact of blinding on treatment effects pertaining to the entire collection of meta-
analyses. This estimate would be more precise compared to any coefficient
estimated from a single meta-regression.

Quantitative synthesis of results assumes that the parameters (e.g. coefficients
from meta-regression models) showing the effect of the characteristic of interest
are comparable across meta-analyses and aims to estimate a common summary
parameter.

Consider again the zy, ..., z, explanatory variables that may act as effect modifiers
in a collection of M meta-analyses. Either a one-stage or a two-stage approach can
be employed. The latter approach initially applies a meta-regression model (see

Section 1.2) within each meta-analysis m (m = 1,..., M) separately to estimate the
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set of p meta-analysis-specific coefficients B, 1,..,Bmp. Then, the estimated
coefficients Bm’j (j =1,..,p) are synthesized across the M meta-analyses using
standard meta-analytic methods (see Section 1.1). A random effects model can be
employed to allow for between-meta-analysis variability in the estimated
coefficients. On the other hand, the one-stage approach estimates simultaneously
in the same model both the meta-analysis-specific coefficients and their summary
coefficient (18). The advantage of using this approach is that meta-analyses with
few studies can borrow strength from larger meta-analyses and in this way the
summary parameters might be estimated with increased precision.

The one-stage meta-epidemiological model can be constructed by extending
Equation (1.1) into

p
O = tm + O + Z[(ijvemu + ﬁr’n,j)zmij] (1.9)

j=1
with
:Br,n,jNN(O' wjz)

The parameters B; are the mean summary coefficient for all M meta-analyses that
shows how the underlying treatment effects change for one unit increase in each
covariate z;. The superscript (') shows that the parameters in the above equation
are different from the respective parameters in Equations (1.1) or (1.7). The 3, ; are
assumed random effects to allow for variability in the regression coefficients
between the different meta-analyses. This variability is reflected by the parameter
w7 that represents the between-meta-analysis variance of their common mean for
each characteristic j. A fixed effect model for the regression coefficients can be
derived by setting every f,, ; = 0. A less restrictive meta-epidemiological model
has been suggested by Welton et al. (18), which allows for between-study variance
in the regression coefficietns as well as for uncertainty in the estimation of the
overall coefficients across meta-anlayses. Following Welton et al., Equation (1.9)

would be
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D

Omi = tm + O + Z[(Bjm;em” + B + Vm,ij)Zm,ij]
=

with

Ymij~N©O,u}) , Bm,;~N(0,®})

and
Boverall N (B, V)

An important constraint of the meta-epidemiological models in the selection of
meta-analyses is that they need to be independent (i.e. to include different sets of
individual studies) to avoid correlation between the meta-analysis-specific
coefficients.

Note that usually meta-epidemiological studies do not investigate simultaneously
(in the same model) many characteristics, but only one or two (i.e. p = 1,2).
Synthesizing jointly many covariates across a collection of meta-analyses would
mitigate the benefits of meta-epidemiology, since the increase in power compared

to a single meta-regression model might be only minor.

1.4 Objectives & outline of the Thesis

The increasing number of competing interventions in many medical fields and the
advantages of analyzing simultaneously all available evidence (as outlined at the
beginning of this Chapter) have made NMA a popular statistical tool (19-22).
However, the lack of a user-friendly implementation framework has rendered it to
be a privilege of researchers with strong statistical and computational skills.
Consequently, less advanced software options and easily-understood tools for the
evaluation of assumptions and presentation of results are necessary to make NMA
accessible to non-statisticians. In addition, the properties of the various different
approaches are still under investigation and the appropriate conduct of NMA is

very often doubtful. Thus, empirical studies using networks of interventions are
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needed to evaluate the validity of conclusions drawn from NMA in the literature
as well as to explore different characteristics that may affect NMA results.
However, accounting for the potential of biased effect sizes in the context of NMA
might be challenging. This is because the inclusion of covariates in NMA models
requires assumptions about the direction of bias for the different treatment
comparisons. The aim of this Thesis is to address the above described issues and
contribute to improved conduct and reporting of future NMA.

The rest of the Thesis is structured as follows. Chapter 2 initially provides an
overview of NMA methodology and the existing software options for fitting the
various NMA models. Then, it introduces a series of new or modified graphical
presentation tools, which I developed and implemented in the STATA software
(23), for addressing the different steps of the analysis. Chapter 3 describes a
database of published networks of interventions that I compiled for the conduct of
two empirical analyses. Chapter 4 describes how meta-regression and meta-
epidemiology methods can be extended in the framework of NMA and presents
different possible assumptions that can be employed for the regression
coefficients. I refer to these methods as network meta-regression and network meta-
epidemiology respectively. Finally, Chapter 5 presents applications of network
meta-epidemiology and network meta-regression, through which I investigated
the impact of five study characteristics on NMA results. It also describes a case
study that I conducted in order to exemplify how different assumptions about the

direction of bias can be modeled.






2 Methodology & software for network
meta-analysis

2.1 Introduction

NMA can be seen from several perspectives which are, in principal, equivalent,
but differ with respect to the ease of implementation in standard software
packages. All approaches are based on the idea of indirect and mixed comparisons
that were first introduced as a valid statistical tool by Bucher et al. (9) for the case
of only three competing interventions X,Y,Z. The method implies that the
summary relative effect YZ (i.e. Y vs. Z) can be estimated indirectly (I) by
subtracting the direct (D) relative effects XZ and XY

Avz = iRz — fixy (2.1)
and its variance is the sum of the respective variances

Dyz = Uxz + Dy 22)
Then, a mixed estimate (M) YZ can be derived as the weighted average of the

direct and indirect treatment effects

1 .p 1
5 +
£y Uyz EY] Uyz

with variance
YrTT T (24)

In all above Equations the superscripts D, I and M denote the type of each relative
effect estimate (i.e. direct, indirect and mixed respectively).

Extending this idea to a larger network of interventions (with more than three
competing treatments) allows the incorporation of several indirect estimates from

different roots into the network estimates.
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Indirect and mixed comparisons rely on the fundamental assumption of
transitivity, which suggests that one can learn about the relative effect of Y vs. Z via
X. This implies that the common comparator treatment X is similar (e.g.
administered the same way and in similar populations) in the XY and XZ studies
(11,24). Alternative equivalent interpretations of transitivity are that ‘the missing
arms are missing at random’ from all included studies or that all competing
treatments in the network should be ‘jointly randomizable’. Missing at random
means that the choice of treatment arms in studies should be independent of their
effectiveness (25). The notion of jointly randomizable treatments implies that one
could imagine a clinically meaningful randomized controlled trial (RCT)
comparing simultaneously all treatments (11). Transitivity can be assessed
statistically by comparing the distribution of potential effect modifiers across the
available direct comparisons in the network, when such information is available
(26). If the distributions are not similar between two or more pairwise
comparisons, the transitivity assumption would be probably violated leading to
invalid indirect and mixed estimates.

At the level of model parameters, transitivity is reflected by the consistency
equations

Uyz = Uxz — Uxy (2-5)

which imply that direct and indirect evidence in the network are in agreement
regarding the true (summary) underlying relative effects. If the comnsistency
assumption does not hold in parts or in the entire network, the results of NMA
might be questionable (24,27). However, alternative NMA models have been
developed that relax the consistency equations and allow for extra variability (on
the top of heterogeneity) in the network due to potential inconsistency (25,28,29).
These models are usually called inconsistency models.

The following Section (2.2) presents currently available methods for fitting a
NMA, while Section 2.3 describes different approaches for evaluating
heterogeneity and inconsistency in the network. Section 2.4 introduces a series of

new or modified graphical tools that I developed to aid the presentation and
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interpretation of data and findings from NMA. Then, Section 2.5 provides an
overview of the available software options for NMA and describes the routines I

developed for the implementation of the new graphical tools in STATA (23).

2.2 Models for network meta-analysis

2.2.1 Basic concepts of network meta-analysis

Consider a network that involves T competing interventions and S studies
providing information for CP direct comparisons between pairs XY (X,Y =
{1,...,T} with X #Y) of treatments. NMA models are extensions of the pairwise
meta-analysis models (see Section 1.1) that can estimate more than one single
summary effect pyy assuming consistency. Equation (2.5) suggests that only T — 1

basic comparisons or basic parameters are sufficient for the estimation of the relative
effects for all C = (g) possible comparisons in the network. All other functional

comparisons can be estimated as a linear function of the elements of the vector
containing the basic parameters, which is denoted with g = (uy, ..., iy_1)7. In
general, the choice of the basic comparisons is arbitrary and usually does not affect
the results. The only restriction is that every treatment X € {1,...,T} should be
expressed via at least one basic parameter (31). However, it has been shown that
computationally some parameterizations may not work (30).

The inclusion of studies with more than two treatment arms must account for the
correlation between both the observed and the underlying relative effects from
such studies. Within a k-arm study i (with k = 1, ..., K;, K; = 2 the number of arms
in study i), consistency holds implicitly and consequently only a subset of K; — 1
relative effects need to be included in the NMA model from this study. Thus, the

variance-covariance matrix of the vector containing the observed relative effects

Yi = (3’i1: "-:yi(Kl-—l))T would be
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5i21 COU()’iL)’i(Ki—D)

2 _
S

COV()’ip)’i(Ki—n) Siz(l(i—l)

and the respective matrix for the underlying effects 8; = (6y4, ..., 0; Ki_l))T

151 COV(eiL 9i(1(i—1))
2 . . .
Ti . .

(2.6)

Cov(eillei(l(i—l)) le(i—l
The off-diagonal elements in s and t7 contain the covariance terms between
observed and true relative effects respectively within study i and the diagonal
elements the variances of the respective relative effects in y; and 6;. The variances
Tf, ..., Tg,—1 are the comparison-specific heterogeneity parameters representing the

between-study variance for each of the (K; —1) € € comparison. Similarly to

pairwise meta-analysis, the random effects &; = (8;y, ..., 5i(Ki_1))Tare assumed to
be normally distributed with 8;~N(0,7?) and 7° = diag(t?). Note that setting
72 = 0 or §; = 0 gives the fixed effect NMA model.

The several modeling strategies for NMA presented below differ mainly in the
way multi-arm studies are treated and in the implementation of the consistency

assumption.

2.2.2 Modeling approach for network meta-analysis

Network meta-analysis as a ‘multivariate meta-regression” model

The first approach suggests that NMA can be considered as a standard meta-
regression model (see Section 1.2) that treats the different treatment comparisons
in the network as covariates (32). Specifically, to allow for multiple treatment
comparisons and multiple study arms the meta-regression model of Equation (1.4)

would be

y=Xu+e+48
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with y=(y4,..,¥5), 6 =(84,..,65) and &= (gq,...,&). Each vector g =
(sil, ...,ei(Kl._l))T) contains the random error terms for study i (i = 1,...,5) and is
assumed to follow a multivariate normal distribution &;~N(0, s7).

Note that y;, §; and g; are vectors reduced to scalars for each two-arm study i.
Each (K; — 1) x (T — 1) matrix X; is the contribution of the study i to the design
matrix X = (Xq,...,Xs)T (of dimension [Yi_,(K; —1)] X (T —1)). This matrix
contains values Xik—vp = —1,0,1 (with b =1,...,T — 1) and expresses the linear
relationships between the K; — 1 study-specific comparisons and the T — 1 basic
comparisons based on the consistency equations (Equation (2.5)). This meta-
regression model has been called also multivariate meta-regression model (33),
because the inclusion of multi-arm studies requires assuming multivariate
distributions for the parameters representing random errors and random effects.
Graph-theoretical methods have been recently applied in the context of NMA (34).
This approach is based on the analogy between electrical and treatment networks
to perform a fixed effect NMA and is totally equivalent to the above meta-
regression model for NMA. An extension to random effects has been developed
by adjusting the variances within multi-arm studies as if the elements of y; were

independent (35).

Network meta-analysis as a “two-stage meta-regression’ model

The above meta-regression model can be equivalently fitted using a two-stage
approach (29,36,37). At the first stage of this approach a pairwise meta-analysis
model (see Section 1.1) is used to derive the available direct relative effects for
each pairwise comparison.

Multi-arm studies, if present, should be pooled separately. More specifically,
consider that each k-arm study has a specific study design g; that is a specific set of
treatments being compared. Suppose that a network is consisted of G different
study designs and each design g includes S; (g =1,...,G) studies with K,

treatment arms. Then, the vector of the direct (D) summary relative effects
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T
ny = (,ufg,..., ,u?Kg_l) g) derived from all S, studies with design g can be

estimated by replacing Equation (1.1) with

07 = Xighy + 6, 2.7)

PR A
\COU(Qig1,9ig(Kg—1)) [TFKg—l)g]z /
1 .. 1

Note that X;, = ( ) isa (K, — 1) x (K, — 1) design matrix. Then, Equation
1 .. 1

2 2
where 82)~N (0, [13] ), [Tlg)] =

(1.4) becomes

Yo =Xghg + &5 + 83
T
with  y, = (ylg, ...,ysg) , Xy = (Xlg, ...,ngg), o) = (ng, ...,6’S’g), gy =
(sll’g, . s?g) and sg ~N(O0, s?g). Note that the direct relative effects ufy, ..., ,u?Kg_l) p
are correlated within each design g with K; > 2. The design-specific direct

estimates P = ([’,ill’ , ...,ﬁg)T with estimated variance-covariance matrix PP =
diag (ﬁll’ R ﬁg ) are used as input data at the second stage of the analysis, so that
pP =XPu + &V (2.8)
with eV = (&}, ..., €¥) and g5 ~N(0, DY) being the random error terms of the direct
estimates for design g compared to the true network (N) relative effects u =
(1, r tr—1)T. The design matrix X? = (X?,...,X2) in this model is constructed
similarly to X (defined in the previous approach); it expresses the linear
relationship between the direct comparisons of design g and the basic
comparisons according to the consistency equations (Equation (2.5)).
In summary, this approach first uses the observed relative effects of the studies

Y1, -, Ys, to estimate the direct treatment effects separately for each design g.

Then, at the second stage it pools the direct estimates ﬁ’f , ...,ﬁg across all study
designs to obtain the network estimates. Additional details and examples for this

approach can be found in Lu et al. (36) and Krahn et al. (29).



Methodology & software for network meta-anlaysis | 29

Network meta-analysis as a hierarchical model

Moving into a hierarchical model a multivariate normal likelihood would be
assumed on the observed relative effects for each study i

yi~N(8;,57) (2.9)
The underlying effects are expressed through

0~N(w;, T7) (2.10)
where u; = (,ul, s ,uKl._l)T is the vector including the network (true) relative
effects for all XY comparisons modelled for study i (38,39).
For example, suppose a three-arm trial comparing treatments A, B and C. If the AB

and AC comparisons are selected to be modelled, Equation (2.10) would be

(9AB) ~N (.UAB) Tap cov(0ap, bac)
) 2
QAC Uac COU(QABIQAC) Tac

Similarly to pairwise meta-analysis (see Section 1.1) arm-specific likelihoods can
be employed for every study arm 1, ..., K; instead of the normal likelihood for the

observed effects assumed in Equation (2.9) (15).

Network meta-analysis as a multivariate meta-analysis model

An alternative approach treats the T — 1 basic comparisons as different outcomes
reported in studies and fits NMA using the methodology of pairwise meta-
analysis for multiple outcomes (33) (see Jackson et al. (40) and Mavridis et al. (41)
for a review on multivariate meta-analysis). This method requires a reference
intervention X common to all studies and takes as basic parameters-outcomes all
XY comparisons withY = 1,...,T (Y # X) (33). An X arm with minimal information
needs to be imputed for studies not evaluating the reference intervention X. In this
way consistency is imposed in the model by assuming that the reference arm is
missing at random, when it is not evaluated in a study. Then, the model is
described by Equation (1.4) as in the multivariate meta-regression approach.

The difference between this and the multivariate meta-regression approach is that

here the K; —1 study-specific comparisons modelled for each study i are
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necessarily a subset of the T — 1 basic parameters; elements of y; corresponding to
comparisons not reported in study i are filled with missing values. Also, the
elements of each matrix X; in this model do not express the consistency equations
but are equal to 1 for comparisons evaluated in study i and missing values

otherwise.

2.3 Approaches for evaluating heterogeneity & inconsistency in

network meta-analysis

The distinction between heterogeneity and inconsistency in NMA is not always
straightforward; both terms refer to additional variation in the treatment effects
that cannot be explained by chance. Inconsistency can be considered as a special
form of heterogeneity. More specifically, heterogeneity refers to the between-study
disagreement within each comparison in the network and inconsistency the
between-source disagreement (direct and indirect evidence) across the different
comparisons (11,42).

There are two general types of inconsistency; the loop inconsistency and the design
inconsistency. Loop inconsistency considers the possible differences between direct
and indirect (or between the several indirect) estimates. The notion of study
design (see Section 2.2.2) implies that inconsistency might be also present because
of differences between the estimates from studies with different designs; hence the
design inconsistency.

The following Sections briefly describe the most commonly used assumptions and
approaches that can be employed to assess the presence and the level of
heterogeneity and inconsistency in a network of interventions.

It is important to note that the statistical tests for heterogeneity and inconsistency
that follow often have limited power to detect them as statistically significant even
when they are present. Therefore, conclusions regarding the presence of

heterogeneity and/or inconsistency should not be based solely on the statistical
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significance of the related parameters, but also considering their magnitude and

the respective confidence interval (CI).

2.3.1 Assumptions and measures for heterogeneity

Assumptions for heterogeneity

Between-study variance is usually assumed common across all comparisons in a

network, namely 12y =12 for every X,Y €{1,..,T} (X #Y). In this case the
2
covariance of the underlying effects within a study is % due to the consistency

equations (43) and Equation (2.6) becomes
TZ
/ 7\

Models that allow for different heterogeneity parameters across the different
comparisons have been developed as well (33,44). This alternative assumption
suggests that

2%y — thz| < 187 < Itky + 137

which results again from the consistency equations (Equation (2.5)).

Assessing heterogeneity using predictive intervals

The impact of heterogeneity (either common (72) or comparison-specific (tzy)) on
the treatment effects can be evaluated by estimating the predictive intervals (PI) of
the estimated summary effects (45). A PI is the interval within which the estimate

of a future study is expected to lie (46,47) and for the relative effect X vs. Y can be

Axy = tgf‘/f)%y + Uxy

derived by the formula
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where tg; is the 100 (1 — %) % percentile of the t-distribution. A common arbitrary

choice for the degrees of freedom for a single pairwise meta-analysis is df = S — 2
(with S the total number of studies). For the case of network meta-analysis, I
suggest modifying this into df = S — C? — 1 (with C? the total number of available
direct comparisons in the network) (45,48). In terms of a hierarchical model the PI
for the relative effect uyy can be derived assuming that

uxy” ~N (xy, T)Z(Y) (2.11)
new

where uyy” is the relative effect of X vs. Y expected in a future study.

Pairwise relative effects for which the PI shows highly increased uncertainty
compared to the respective confidence/credible interval (CI/Crl) might be
affected substantially by the heterogeneity. For these comparisons conclusions

should be drawn with greater caution.

Assessing heterogeneity using empirical distributions

The interpretation of the magnitude of the heterogeneity parameter estimate £2 (or
t%y) requires consideration of the setting of the studies, such as the outcome and
the type of treatment comparison they evaluate. For dichotomous outcomes
empirical distributions of the heterogeneity have been developed for different
types of meta-analyses (49). Comparing the estimated between-study variance
with the corresponding empirical distribution can give insight on whether %2

reflects unimportant or substantial heterogeneity.

Assessing heterogeneity using Q-statistics

In pairwise meta-analysis the Q-test is one of the most common tools for the
assessment of heterogeneity. A Q statistic for heterogeneity (H) in NMA could be
derived as the sum of all comparison-specific Q within each study design g (29,37),

hence
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where
Sg

0= (v, 1) @8)" (v, - 13)
i=1

with y; the vector of observed effects for each study in design g and Dy the

variance-covariance matrix of the direct summary effects fiy (see Section 2.2.2).
The statistic Qy is assumed to follow a x? distribution with ¥5_; [(Zfﬁ (K — 1)) -
(Kg - 1)] degrees of freedom (where S;,, K, are the number of studies and

treatmetns respectively in design g).

Assessing heterogeneity using the I> measure

The I? measure can be employed to estimate the proportion of variability in a
meta-analysis that cannot be explained by random error (50). The extension of I?
into the context of multivariate meta-analysis (51) enabled the adaption of this
multivariate definition into NMA (52). This definition is based on the multivariate
version of R? for heterogeneity (51) assuming the T — 1 basic comparisons being
different outcomes. The R? in this case reflects the inflation in the volumes of the
normal approximations to the confidence/credible regions for all relative effect

parameters between a fixed effect and a random effects model.

2.3.2 Approaches for evaluating inconsistency locally

Local approaches for inconsistency aim to assess whether different pieces of
evidence are in agreement for a specific comparison in the network informed
either from a single loop or from the entire network. They consider as a measure
of inconsistency for any XY comparison the absolute difference between two
estimated effects from different sources (i.e. between direct and indirect or
between indirect from different roots), commonly called an inconsistency factor (IF).

Then, they infer about inconsistency based on the magnitude, the statistical
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significance and the CI of the estimated inconsistency factors considering also the

clinical setting and outcome.

Loop-specific approach for inconsistency

The loop-specific approach evaluates inconsistency separately in every closed loop of
evidence (triangular, quadratic or higher order loops) (27). In a network with L
total number of loops (excluding loops that include nested loops of lower order)

the inconsistency factor within each loop ! (I = 1, ..., L) is estimated as

~ A Al
o = |afy - il (2.12)
with variance
~ A A1
v(WY) = DRy + 9% (2.13)

for any XY comparison in the loop. The superscripts D and I; denote the direct and

indirect estimates respectively. Note that for each XY comparison there is one
direct estimate common to all loops (i.e. fizy = - = fixk), whereas different loops
may give different indirect estimates (i.e. Ay, # - # f}%). The indirect effect and
its variance ﬁﬁ(ly, ﬁ)l(ly are estimated separately for each [ loop by Equations (2.1) and
(2.2) respectively. The choice of the comparison within each loop does not affect
the results; for example if | = XYZ, then WY = W[4 = w)/% = w,.

The null hypothesis Hy: w; = 0 is assessed using the following z-statistic

XY

Wi
z=——~N(0,1)

/V(Wf”)

Note that this approach as well as the next two approches for assessing local

(2.14)

inconsistency do not account for the correlation induced by multi-arm trials. More

(k

specifically, each k-arm study is treated as kXT_l) independent two-arm studies.

‘Composite test” for inconsistency

The composite test for inconsistency extends this method and incorporates the entire

network to allow also for discrepancies between the several indirect estimates
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from different routes (53). More specifically, if a network provides a direct and F
indirect estimates from independent indirect roots for a XY comparison, these can
be synthesized into their weighted average A, using Equation (2.3). The
discrepancy between the F + 1 sources of evidence can be assessed by the statistic
1 d 1 2
. . i
Uxy = =5 (Agy — %y)? + Z N (I’lX]y - Ii)nfly)
Vxy = !

j=1"XY

which follows a y2 distribution under the null hypothesis Hy: 12, = fi, = - =

Al AM
Uxy = Uxy-

Node-splitting & back calculation approaches for inconsistency

The node-splitting and back-calculation approaches are similar to the previous
method but differ in the way the indirect effects are estimated (54). The former
excludes one direct comparison at a time. Then, the network estimate for the
excluded comparison XY based on the rest of the network is the indirect estimate
%y coming from the synthesis of all available indirect evidence.

The back-calculation method is equivalent to the node-splitting but the indirect

effect estimate and its variance are derived by solving Equations (2.3) and (2.4)

into
~M AD
Al = (HXY #XY> 5
XY —\aM ~ &D XY
Uxy VUxy
and

1 1 1

Oy 0% Oy
For both methods Equations (2.12), (2.13) and (2.14) can be employed to estimate
the statistical significance of the inconsistency factor w*" for every comparison XY
in the network. In case these methods are fitted in a Bayesian framework the
presence of inconsistency can be judged by comparing the posterior distributions

of the direct and indirect estimates for every comparison XY
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‘Net-heat” approach for inconsistency

Finally, the net-heat approach uses the model of Equation (2.8) for the estimation of
the design-specific contribution to inconsistency using the following Q statistic for
inconsistency (IN)

0%, = (A2 — x2m)" ®)~*(a2 - X2R) (2.15)
(with ¥ the variance-covariance matrix of the network estimates i) (see Section
2.2.2). Under the null hypothesis of consistency Qf is assumed to follow a y?
distribution with S; — K, + 1 degrees of freedom. Large values of Qj} correspond
to designs that might be important sources of inconsistency. Then, estimating each
Q) after taking one design out at a time can further reveal designs that cause
inconsistency in other parts of the network (29). This approach differs from the
aforementioned approaches in the sense that it does not focus on the inconsistency
for a specific comparison in the network but rather looks at all the comparisons in

a specific design.

2.3.3 Approaches for evaluating inconsistency globally

Global approaches for inconsistency include inconsistency models (i.e. models that
relax the consistency equations) as well as measures for inconsistency, such as Q
and [? statistics. Three inconsistency models have been suggested so far in the
literature; the Lu & Ades model (25) and the design-by-treatment interaction model
(28,29,52) and the unrelated mean effects model (55).

The Lu & Ades model

The Lu & Ades inconsistency model (25) can be constructed by adding an
additional linear term in the consistency equations (Equation (2.5)) in every loop
for which there is potential for inconsistency

Uyz = Uxz — Uxy T W,



Methodology & software for network meta-anlaysis | 37

The total number of inconsistency factors required in the model is C® — T + 1. In
the presence of multi-arm trials this number might need modification subtracting
“the number of independent inconsistency relations in which the corresponding
parameters are supported by no more than two independent sources of evidence”. For an
extended discussion on the parameterization of the model see Lu et al. (25,28).
The rest of the model remains the same as the consistency NMA model (see
Section 2.2).
The inconsistency factors can be assumed fixed or random parameters in analogy
to the fixed and random effects models. A random inconsistency model assumes
that

w;~N(0,0?) (2.16)
where o2 is the inconsistency variance. Large w; suggest important inconsistency
in the [ loop. Comparing o% and 72 might reveal how much inconsistency exists
compared to heterogeneity. The statistical significance of all w; jointly can be

assessed using a y? test.

The design-by-treatment interaction model

This model is an extension of the Lu & Ades model that accounts also for design
inconsistency (i.e. disagreement between different study designs). The maximum
number of potential inconsistencies (i.e. required inconsistency factors) in a
network according to this model is 22=1 C{ —T+1 with C? the number of
independent comparisons within each design g; that is C; = K; — 1. Then, the

consistency equations (Equation (2.5)) are modified into

— loop des
Hyz = Hxz —Hxy TW,  tw

where the parameter WlLOOp reflects the potential loop inconsistency and w® the
potential design inconsistency in the [ loop (I = XYZ). There might be loops

op

requiring the addition of either only Wllo or only wi®S. However, the distinction

between loop and design inconsistency is not always straightforward.
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The unrelated mean effects model

The unrelated mean effects model is an inconsistency model that totally omits the
consistency equations (Equation (2.5)) and renders the NMA model into a series of
pairwise meta-analyses sharing a common heterogeneity parameter. Usually this
model is compared with a model assuming consistency for model fit and
parsimony as well as the magnitude of heterogeneity (see Section 2.2). If the
inconsistency model fits the data better or presents lower heterogeneity, this is an

indication that consistency might not be plausible (55).

Assessing inconsistency using Q-statistics

Following the definition of Qy for heterogeneity in NMA, a Q;y for inconsistency

would be the sum of all design-specific contributions to inconsistency, hence

G
Qv = z Q}qN ~)(éf
g=1

where Qj} is given by Equation (2.15) and df = X5_,(S; — 1) — T + 1 (29,36,37).

Assessing inconsistency using the I> measure

The 17 statistic for inconsistency is estimated similarly to that for heterogeneity in
NMA, which has been presented in the previous Section. In the case of
inconsistency the respective R* would express the inflation in the volumes of the
normal approximations to the confidence/credible regions for all relative effect

parameters between a consistency and an inconsistency effects model.

2.4 New graphical tools for presenting data, assumptions & results

NMA has been criticized for the increased complexity of the evidence base,
assumptions and results, which is induced by the presence of multiple treatment

comparisons. Various graphical tools have been suggested for presenting the
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findings and evaluating assumptions in pairwise meta-analysis (56,57). Adapting
these tools into the context of NMA and using them to draw meaningful
conclusions requires several modifications or extensions. In this section, I
introduce a series of new or modified graphs aiming to make the outputs from
NMA well-understandable to researchers that are less familiar with advanced
statistical methods. To enhance the use and interpretation of each suggested

graphical summary, I use examples of published NMA.

2.4.1 Presenting the evidence base

Network plot/diagram

A graphical illustration of the set of competing interventions along with the
available direct pairwise comparisons can be provided by the network plot, called
also network diagram. It consists of nodes representing the eligible interventions
and edges linking pairs of nodes if the corresponding treatments are compared in
at least one individual study.

I employ weighting schemes for nodes and/or edges to reveal differences between
the included treatments and direct comparisons. For example, the least and most
studied interventions can be identified by weighting the size of nodes according to
the number of studies evaluating them or the number of participants allocated to
each treatment arm. Weighting the thickness of edges according to the distribution
of potential effect modifiers, such as baseline risk or study duration, can be the
tirst step for the evaluation of transitivity.

Figure 2.1 shows the plot of a network that compares 13 treatments and placebo
for acute mania in terms of efficacy (58). The graph shows that Olanzapine is the
active treatment evaluated in most studies, while suggests only small differences
in the average control group risk (CGR) across the direct comparisons (active

treatment vs. placebo).
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Similar to pairwise meta-analysis, interpretation of results from NMA should
always be in light of the quality of the available evidence (59). The inclusion of
individual studies with design limitations can mitigate the validity of findings. I
suggest plotting the network with colored edges to identify comparisons that
might be more prone to biased summary estimates. Usually, studies are classified
as being of low, unclear or high risk of bias (RoB) according to a specific design
characteristic (allocation concealment, blinding, etc.) (59). Alternatively,
researchers may be willing to use more levels of study classification. The
comparison-specific level of overall design limitations can be estimated as a
function (e.g. average, weighted average, mode, etc.) of the respective study-

specific levels.

Haloperidol

Lamotrigine

Lithium

Olanzapine

Paliperidon Ziprasidone

Topiramate

—

Quetipaine Ripseridone

Placebo

Figure 2.1. Network plot of a network comparing the effectiveness of 13 treatments and placebo for
acute mania. Edges connecting active treatments with placebo are weighted according to the mean
control group risk of the respective direct comparison, while edges connecting two active
treatments have been given minimal weight. Nodes are weighted according to the number of
studies evaluating each intervention.

In Figure 2.2 the acute mania network is presented with color-adjusted edges with
respect to the appropriate conduct of allocation concealment. In six comparisons
the majority of studies have been assessed as being at low RoB (green lines) and in

the rest of comparisons at unclear RoB.
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Haloperidol Divalproex

Lamotrigine, o Carbamazpine
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Quetipaine Ripseridone

Figure 2.2. Network plot of a network comparing the effectiveness of 13 treatments and placebo for
acute mania with color-adjusted edges. Edges are colored according to the adequacy of allocation
concealment estimated as the weighted average of the study-specific bias levels with weights the
inverse of study variances. Yellow edges represent direct comparisons with unclear average level
of bias and green edges represent comparisons with low average level of bias.

Contribution plot

Constructing the evidence base of a network of trials needs careful consideration
of the eligibility criteria for interventions and studies. Often researchers include in
the analysis interventions that might be not of direct interest but provide useful

indirect evidence, such as placebo or standard care. The inclusion of such
interventions is valuable only when the risk of introducing intransitivity and
inconsistency does not outweigh their contribution in the estimation. In addition,
such information can be useful for drawing conclusions regarding the quality of
evidence (60). I developed the contribution plot or contribution matrix, which can
help in making these judgments. This matrix plot shows the percentage
contribution of each direct piece of evidence in the network estimates and in the
entire network. The weight of each available direct comparison in the network
estimates can be estimated using the weighted least squares solution of Equation

(2.8)
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a=[(x")' (") x| () (0°) R
where Ji is the vector of network estimates for the basic parameters and @iV =
@y, ..,aY) the vector of the network estimates for all possible pairwise
comparisons C. The design matrix XV contains the linear relationships between the
C comparisons and the basic parameters through the consistency equations
(Equation (2.5)). The (C? x X¢_,[K, — 1]) matrix
H = |(x) (") x°| (x°) (")
known as the hat matrix (61), maps the direct estimates to the network estimates
for the basic comparisons.
An ‘extended” hat matrix, which maps the direct estimates into network estimates
for all C pairwise comparisons, so as
iV = H'aP

can be estimated as

H* =XV [(x")" (3) " xV| (xM)" (™) (2.17)
where $P* is the extended P” matrix with imputed large variances (e.g. 10*) for
those C — C? comparisons that are not reported in any study.
To facilitate the interpretation of the elements of the H* matrix, I ignore the
different study designs; in this way all studies reporting the same direct
comparisons are synthesized irrespective of their design. Then, H* is of dimension
(C x €P) and each element h.,4 (c=1,..,Candd =1, ..., CD) represents the weight
of the column-defining direct comparison in the row-defining network estimate. I

express the weights of each row as percentages

|hcal

h.q% =
CT 7 | + -+ |heeo|

and then the percentage contribution of the direct comparison d to the entire
network is

Zgzl Ihcdl
Y62 X8 [heal

Figure 2.3 presents the contribution plot of a network evaluating the relative

heq [%N] =

effectiveness of four different percutaneous coronary interventions for non-acute
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coronary artery disease (62). The graph shows that the comparison of bare-metal
stents vs. percutaneous transluminal balloon coronary angioplasty is the most
frequent in the network (33 studies). However, the comparison of bare-metal
stents vs. drug-eluting stent has the highest percentage contribution overall in the
network (31.2%).

Direct comparisons in the network

BMSvsDES BMSvsMT BMSvsPTCA MTvsPTCA

Mixed estimates

BMSvsDES 100.0
BMSvsMT 68.0 16.0 16.0
BMSvsPTCA 295 41.0 295
MTvsPTCA 281 281 437

Indirect estimates

Network meta-analysis estimates

DESvsMT 457 37.0 87 8.7

DESvsPTCA 414 17.3 24 1 17.3

Entire network 31.2 296 20.2 19.0
Included studies 16 3 33 10

Figure 2.3. Contribution plot of a network comparing the effectiveness of four different
percutaneous coronary interventions for non-acute coronary artery disease. The numbers are the
percentage contributions of the column-defining direct comparisons to the row-defining network
estimates. The size of the circles is proportional to these percentages. (MT = medical therapy, PTCA
= percutaneous transluminal balloon coronary angioplasty, BMS = bare-metal stents, DES = drug
eluting stents)

2.4.2 Presenting the assumptions

The evaluation of both homogeneity and consistency is crucial when undertaking
a NMA. Section 2.3 describes several approaches that aim to assess whether
important heterogeneity or inconsistency can be present in a network of
interventions. Some of these methods can be summarized in the presentation of a
single value (e.g. the p-value of a y? test or the value of the I? measure). However,

other approaches need to provide more information to derive an overall inference,
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if possible, for the network. Summarizing this information in a single forest plot
may offer a straightforward way to get a first impression whether the two
assumptions are likely to hold (63).

More specifically, in this Section I focus on two approaches; the assessment of
heterogeneity based on PI (see Section 2.3.1) and the loop-specific approach for
evaluating inconsistency (see Section 2.3.2). In Figure 2.4 and Figure 2.5
respectively, I present examples of forest plots including the results from these

two methods.

Predictive intervals plot

The graph in Figure 2.4 corresponds to a star-shaped network including six
biologic agents for rheumatoid arthritis compared directly only with placebo (64).
The between-study variance (7%) was estimated 0.26 and according to the mean
summary relative effects (black circles) all six active treatments seem more
effective than placebo. I used colored horizontal lines to represent the PIs for all
pairwise comparisons by extending the lines that correspond to the ClIs. The plot
suggests that only for the comparison of infliximab versus placebo the PI does not
support the statistically significant effect due to the additional uncertainty

anticipated in future studies.

Inconsistency plot

The forest plot in Figure 2.5 shows the inconsistency results for all loops based on
the loop-specific approach (see Section 2.3.2) for the acute mania network (see
Section 2.4.1). To facilitate the interpretation of the IFs, I re-expressed them in the
effect size scale. This means that the squares in the plot represent the ratio of odds
ratios (ROR) between direct and indirect estimates (ROR}" = exp(#W{*")). Only one
(ARI-HAL-LITH-QUE) of the 21 loops in the network seems to be marginally
subject to statistically significant inconsistency. However, the limited power of the

test for inconsistency implies that non-significant but large RORs in magnitude or
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with large CI (depending on the clinical setting and outcome) should be explored
as well. I truncated all CI in Figure 2.5 to the null value, since absolute values of
the IFs are estimated and thus RORs smaller than 1 are difficult to interpret.

Note that in this graph I assumed a common heterogeneity for the entire network
(2% = 0.07), which was derived after performing NMA with the multivariate meta-
analysis approach (see Section 2.2.2). Alternative options would be to assume a
common heterogeneity within each loop but different between loops or a different
heterogeneity for each pairwise comparison. These different assumptions about
heterogeneity as well as the use of different methods to estimate the 72 might

impact on the inconsistency results (65).

Comparison | OR (95%CI) (95%PI)
I
ABA vs PLA I - 3.38(1.99,5.75) (1.01,11.36)
ADA | —+—— 3.67 (2.37,5.68) (1.14,11.81)
ANA T t 1.67 (0.78,3.57) (0.44,6.39)
ETA | ' - y 4.26(2.18,8.34) (1.17,15.46)
INF ' . y 2.48(1.12,547 0.63,9.70)5
RIT | - 4.90 (2.33,10.31) (1.29,18.58)
I
I
ADA vs ABA * .08 (0.55,2.16) (0.30,3.98
ANA * I' 0.49(0.20,1.25) (0.12,2.12
ETA ~* 1.26 (0.54,2.97) (0.31,5.15
INF + y 0.73(0.28,1.90) (0.17,3.21
RIT —e .45(0.58,3.61) (0.34,6.17
|
I
ANA  vs ADA ' . ¥ 0.46 (0.19,1.09) (0.11,1.88)
ETA ™ 1.16 (0.53,2.58) (0.30,4.54
INF — 0.68 (0.27,1.66) (0.16,2.84
RIT I - 1.34 (0.56,3.17) (0.33,5.48
I
ETA  vs ANA i + 2.55(0.94,6.94) (0.56,11.56)
INF ' —* 1.48 {0_50,4 41; 20_31,7_20
RIT I - 2.94(1.01,8.49) (0.62,13.95)
I
INF vs ETA — 0.58 20 21,1 62; 20 13,2 68;
RIT e 1.15(0.42,3.13) (0.25,5.22
I
RIT vs INF : * 1.98 (0.67,5.88) (0.41,9.57)
I
|
| | | \ | |
0.1 05 1 3 10 18

Figure 2.4. Predictive interval plot of a network network comparing the effectiveness of six biologic
agents and placebo for rheumatoid arthritis. The circles are the summary odds ratios (OR), the
black horizontal lines their confidence intervals (CI) and the blue lines the respective oredictive
intervals (PI). The red dashed line is the line of no effect (OR=1). (PLA = placebo, ABA = abatacept,
ADA = adalimumab, ANA = anakinra, ETA = etanercept, INF = infliximab, RIT = rituximab)
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95%CI
Loop ROR (truncated)

CARB-DIV-PLA
CARB-DIV-HAL-OLA

3.462 (1.00,17.24)
2.992 (1.00,36.41)

ARI-HAL-LITH-QUE I — 2.602 (1.07,6.32)
ARI-HAL-LITH-OLA — - 2.064 (1.00,5.72)
LITH-OLA-PLA —-— 1.931 (1.00,4.59)
LITH-PLA-QUE :—I— 1.773 (1.00,3.22)
CARB-HAL-PLA " 1.718 (1.00,12.31)
ASE-OLA-PLA — 1.689 (1.00,3.41)
HAL-PLA-QUE — 1.608 (1.00,3.10)
PAL-PLA-QUE — 1.608 (1.00,2.83)
OLA-PLA-RIS —— 1.589 (1.00,2.75)
DIV-LITH-OLA :—-— 1.586 (1.00,4.91)
HAL-OLA-RIS - 1.519 (1.00,3.21)
ARI-HAL-PLA 5 = 1.416 (1.00,2.22)
DIV-OLA-PLA il 1.407 (1.00,2.26)
ARI-LITH-PLA Hill— 1.384 (1.00,2.51)
HAL-LITH-OLA-QUE H— 1.261 (1.00,3.86)
HAL-PLA-ZIP 1.224 (1.00,2.14)
DIV-LITH-PLA 1.106 (1.00,2.69)
HAL-OLA-PLA 1.068 (1.00,1.80)
HAL-PLA-RIS 1.017 (1.00,1.87)

T | T T
2 5 15 40

[y

Figure 2.5. Inconsistency plot of a network comparing the effectiveness of 13 treatments and
placebo for acute mania. A common heterogeneity 2 = 0.07 has been assumed for all loops
estimated from the restricted maximum likelihood method.

2.4.3 Presenting the results

A major advantage of NMA is that provides estimates of relative effects for all
possible comparisons between pairs of treatments. However, in the presence of
many competing treatments the presentation of all pairwise estimates becomes
cumbersome and not very helpful in drawing conclusions regarding which
treatments seem to work best. Thus, the relative ranking of treatments is often
used as a supplementary output to facilitate the identification of treatments that

perform well enough with respect to the studied outcome.

Ranking plots for a sinlge outcome using probabilities

There are several methods to estimate the ranking of treatments, which may

sometimes give different results. One of the most common approaches is to
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estimate the probabilities for each treatment being ranked at a specific place (12).
Such probabilities can be estimated either within a Bayesian environment using
Markov Chain Monte Carlo (MCMC) simulations or in a frequentist framework
using resampling methods (e.g. bootstrap methodology (66)). Treatments are
ranked according to their relative effects versus a common reference in each cycle
and the probability for treatment t (t =1,..,T) being ranked rt (r=1,..,T)

would be

# simulations (t =)
Pre =

total # simulations

Inference on the treatment ranking should account for the uncertainty in ranking
by incorporating the estimated probabilities for all possible ranks. These are often
presented with a probability curve for each treatment, called also rankograms
(Figure 2.6). To summarize all p,, and get the relative ranking of treatments
cumulative ranking probabilities can be employed. These are given by the formula

CDrt = P1¢ + T Dt

and express the probability for treatment t being within the first r places. Then,
the surface under the cumulative ranking curves (SUCRA) is used as a relative ranking
measure; larger areas under the curve corresponding to better treatments. Figure
2.7 shows an example of these graphs for the rheumatoid arthritis network where
the relative ranking of two different NMA models is compared; the standard
hierarchical NMA model (Section 2.2.2) and a model controlling for differences in
precision across studies (see Section 5.5 for a description of the model). The figure
suggests that accounting for the impact of small-study effects minimizes the
differences in effectiveness between the treatments and assigns to them less
distinct ranks. The surface under these curves can be expressed also as a
percentage

Y71 cPre
SUCRA; = ———
foT-1
which is interpreted as the percentage of effectiveness/safety of a treatment

ranked always first without any uncertainty.
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An alternative ranking measure is the mean rank, which is the weighted average of
all possible ranks with weights the ranking probabilities

mry = Xl-1(Pre X 1)
The mathematical relationship between SUCRAs and mean ranks is expressed by

the equation

@T—-1)xmr,—T
T-1

This implies that mean rank is equivalent to SUCRA and give the same relative

SUCRA, =

ranking results. Note that I provide the proof of the above equation in the

Appendix.
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Figure 2.6. Probability ranking curves (rankograms) of a network network comparing the
effectiveness of six biologic agents and placebo for rheumatoid arthritis. The horizontal axis
contains the possible ranks in the network and the vertical axis the ranking probabilities.

Ranking plot for a single outcome using multidimensional scaling

I also suggest a different approach to estimate the treatment ranking using
Multidimensional Scaling (MDS) techniques (67). To apply this method, I treat the
NMA summary estimates between all pairs of interventions as proximity data

with aim to reveal their latent structure.
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Figure 2.7. Cumulative probability ranking curves of a network comparing the effectiveness of six
biologic agents and placebo for rheumatoid arthritis. The horizontal axis contains the possible
ranks in the network and the vertical axis the cumulative ranking probabilities. Larger areas under
the curve correspond to more effective treatments.

In this way the absolute value of the network estimate |fyy| (X,Y = 1, ...,T) defines
the dissimilarity between the two treatments (X,Y) with |fixy| = 0. I weight the
absolute effects sizes by their inverse standard errors or variances to ensure that
the assumption of a common distribution between the elements of the matrix is
plausible. Assuming that the rank of the treatments is the only dimension
underlying the outcome the purpose of the MDS would be to reduce the T X T
matrix into a T X 1 vector. This vector involves the set of distances being as close
as possible to the observed dissimilarities (i.e. relative effects) and would
represent the treatment relative ranking. The scatterplot in Figure 2.8 presents the
relative ranking of treatments for the rheumatoid arthritis network using the
estimated MDS dimension. There are small differences in the ranking of
treatments between the SUCRA (or mean ranks) and the MDS in the four best

treatments.
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Figure 2.8. Ranking scatterplot of a network network comparing the effectiveness of six biologic
agents and placebo for rheumatoid arthritis. Treatments have been ranked using multidimensional
scaling (MDS) methods. Blue triangles represent treatments for which MDS and ranking
probabilities give different order. More effective treatments lie in the right upper corner.

Cluster ranking plot for two outcomes

In a decision-making context, recommending a specific interventon for a clinical
condition should consider more than one outcome. For instance, highly effective
treatments sometimes have serious adverse events. Methods for analysing jointly
multiple outcomes are well-established for pairwise meta-analyses (40,41) and
have been extended into the context of NMA (68,69). However, to date there is no
available methodology to estimate a single treatment relative ranking
incorporating information for more than one outcomes.

I suggest the use of two-dimensional plots as a possible tool suitable to draw
inference for the relative ranking of treatments based on two (competing)
outcomes. More specifically, I plot the values of a relative ranking measure (e.g.
SUCRA, mean ranks or MDS dimension) for two outcomes jointly in a system of
co-ordinate axes. I additionally employ clustering methods to form meaningful
groups of treatments with respect to their performance on both outcomes. Cluster
analysis aims to group different objects based on their characteristics in a way to

result in high association within each cluster but in low association between
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clusters (70). The two-dimensional plot for the acute mania network is presented
in Figure 2.9, where the ranking results for efficacy and acceptability have been
put together. According to the graph the best group of studies considering both

outcomes includes 7 treatments.
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Figure 2.9. Two-dimensional ranking plot of a network comparing 13 treatments and placebo for
acute mania in terms of efficacy and acceptability. Treatments that perform well on both outcomes
lie in the right upper corner. Treatments have been grouped using clustering methods and
different colors represent the different treatment groups.

2.5 Software options for network meta-analysis

The rapid development of NMA methodology underlines the need for flexible and
user-friendly software options that would facilitate the appropriate conduct and
comprehensive reporting of the analysis. In recent years, the hierarchical model
fitted within a Bayesian framework has been the most popular approach for NMA
(20,22); the reason is that until recently software to fit non-Bayesian approaches
could not properly handle the inclusion of multi-arm trials or fit inconsistency

models. Consequently, researchers not familiar with Bayesian methods and
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software environment avoided applications of NMA. The development of new
graphical presentation tools (see Section 2.4) can aid the ease of presentation and
interpretation of NMA, particularly when they are implemented in conventional
software.

The two following Sections (2.5.1 and 2.5.2) provide an overview of the available
software options for fitting the NMA models and evaluating the required
assumptions. Then, Section 2.5.3 describes a series of eight STATA routines that I

developed suitable to produce the graphs described in Section 2.4 (45).

2.5.1 Software for performing network meta-analysis

All approaches to NMA presented in Section 2.2.2 can be performed, in theory, in
many statistical packages. However, the variety of software options is, in practice,
limited due to lack of readily available routines suitable for NMA. The most
popular packages in research related to NMA are BUGS (i.e. WinBUGS,
OpenBUGS)/JAGS (71), STATA (23) and R (72); SAS (73) is less frequently used
and thus is not considered in this section. Another software package developed
specifically for NMA is the GeMTC (30). All software options for fitting each
modeling approach for NMA (that require no self-programming by the user) are

described below.

Performing indirect comparisons

Indirect comparisons can be performed either using the indirect command in
STATA (74) or the ITC software (ITC=indirect treatment comparison) available
from the Canadian Agency for Drugs and Technologies in Health (CADTH) (75).
Figure 2.10 shows the dialog box of the STATA command.
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(3] indirect 100 - Indirect Mela—an_ =10

Pocling Model

0 (©) Effect/SE ® Fixed
Vars for Efects: theta, lowerCl, upperCl, in that order (©) Random
E‘ [T Table
Labels for Data: [EleForn
Trials Var: E Statistic
[T] Treatments [7] Effect Label:

vs

Order for comparisons

The varable which tracks the order in which the comparisons will be done. The result
of meta-analysis of all the trials where VAR = 0 will be compared with the result of meta-
analysis of all the trials where VAR = 1. The result of this comparison will be compared
with the result of meta-analysis of all the trials where the selected VAR = 2,...

Order Var: Iz‘

o

Figure 2.10. Dialog box of the indirect command in STATA.

Fitting network meta-analysis as a multivariate meta-regression model

This approach for NMA can be fitted using any software routine able to perform
meta-regression. However, conventional routines developed for standard meta-
regression in pairwise meta-analysis fail to model properly multi-arm studies and
can be employed only for a subset of networks (with only two-arm studies). Such
routines are the metareg command in STATA (76), the metafor (77) and meta
(78) packages in R or codes in BUGS provided in Dias et al. (79).

The inherent correlation in multi-arm trials can be incorporated in the estimation
by routines developed for multivariate meta-analysis that allow for covariates.
Both the mvmeta command in STATA (33,80) and the mvmeta package in R
(81,82) can be used but only STATA can impose the assumption of a common
heterogeneity across comparisons. Note that the STATA mvmeta command can be
used either as a standalone command or via the package network in STATA
(available from http:/ /www.mrc-bsu.cam.ac.uk/IW_Stata/meta).

The use of graph-theoretical methods in NMA has been implemented in the

netmeta package in R (35).
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Fitting network meta-analysis as a two-stage meta-regression model

R functions are also available for fitting the meta-regression model for NMA in

two stages as described in Section 2.2.2. and can be found in Lu et al. (36) and

Krahn et al. (29).

Fitting network meta-analysis as a hierarchical model

The hierarchical model can be fitted in Bayesian environment using BUGS codes
available online from the Integrating Multiple Meta-Analysis project (IMMA,
University of loannina) and the Multi-Parameter Evidence Synthesis program
(MPES, University of Bristol) at www.mtm.uoi.gr and www.bris.ac.uk/social-
community-medicine/projects/mpes. Several BUGS codes are also provided in
Dias et al. (15). Alternatively, the hierarchical model can be fitted by the GeMTC

software.

Fitting network meta-analysis as a multivariate meta-analysis model

The last approach that treats NMA as a multivariate meta-analysis model can be
performed using the mvmeta command in STATA (33,80) and the mvmeta
package in R (81,82) with only STATA allowing for a common heterogeneity

across Comparisons.

2.5.2 Software for evaluating assumptions

This section focuses on the methods presented in Section 2.3 for the evaluation of

heterogeneity and inconsistency in a network of interventions.

Assessing heterogeneity using predictive intervals

To enable the estimation of PI for every pairwise relative effect of a NMA in

STATA, I developed the intervalplot command (45). The command should be
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run after performing NMA with the mvmeta command (as a multivariate meta-
analysis model, see Section 2.2.2). The command can be used also via a dialog box
(Figure 2.11). Alternatively, PI can be estimated by fitting the hierarchical model
in BUGS (Equation (2.11)) using the codes provided at www.mtm.uoi.gr.

Assessing heterogeneity using Q-statistics

The Q-statistics for heterogeneity in NMA have been implemented in the R

function given by Krahn et al. (29) and in the netmeta package in R (35).

|-=] Metwork Meta-Analysis - Confidence and Predictive Interval Plot vl.U‘I-EIEu

Type of Input [ Predictions Other Options:

@ :Summary effects and SE stored after () Summary effects and SEstored [ oo [T Range of Yaxs:

running the mvmeta command as varables in a dataset
log scale

Input Variables [T %-znds labels:

(@) Variables specifying effects and SE

|z| [ %-eds title:

Variables specfying effects and CI
- pectying [l Comparisone title

Values title:
[] Treatment Labels Reference treatment: O

Graph Options:
[] Separate 18 by trestment [ Cl % level: [ No values [ Size of symbols
[C] No effect line at [ No effect line options:

Size of text:
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[ oK J[ Cencel [ Submt ]

Figure 2.11. Dialog box of the intervalplot command in STATA.

Performing the loop-specific approach for inconsistency

I implemented the loop-specific approach for inconsistency in STATA by
programming the ifplot command (45). An equivalent ifplot function in R is
available from www.mtm.uoi.gr. The two routines can incorporate different
assumptions about the heterogeneity; different heterogeneities across the direct
comparisons, a common heterogeneity within each loop, a common heterogeneity
for the entire network (65). The STATA command is available also in a dialog box
(Figure 2.12). Box 2.1 describes how the command identifies the existing

triangular and quadtratic loops in a network.
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Figure 2.12. Dialog box of the i fplot command in STATA.

Box 2.1. Algorithm used in the ifplot STATA command to identify the available triangular and
quadratic loops.

1.
2.

Identify the total number of treatments (T)

Identify the available direct comparisons (C”) between pairs of treatments (t;4,t,4) with
d=1,..,C0and t;4,t,q=1,..,T, t14 # taq

For every (t;4,t54), create a 1 X 2 matrix Ty, ,+,, = (t14,t24)

For T>k>j>i>1, if the matrices T;; Tjy Ty, exist, create a 1X 6 matrix T;j;, =
(Tij Thao Tise)

ForT>z>k>j>i>1,

if the matrices Ty, Tjx, Ti 5, T}, €Xist, create a 1 X 8 matrix T, = (T,-J-, TjwTys T,

if the matrices T, T 5, Ty, 5, T €Xist, create a 1 X 8 matrix T, = (T,-J-, Tj, Ty, T,-‘k)

J’
if the matrices Ty, Tjx, Tj, T; , €Xist, create a 1 X 8 matrix T, = (T,-‘k, Tj1Tj,Ti,

if the matrices Ty, Ty, T, T;j exist, create a 1 X 8 matrix T, = (Ti‘k, Ty, T, T,-J-)

For T >k >j >i > 1, if the matrix T, exists, create a dummy variable representing the
loopi—j—k

ForT >z >k >j>i>1,if the matrix T;;; , exists, create a dummy variable representing

theloopi—j—k—2z

Performing the ‘node-splitting” approach for inconsistency

The node-splitting method has been implemented into the network package in

STATA and the GeMTC software. Relevant BUGS codes can be found also online

at www.bris.ac.uk/social-community-medicine/ projects/ mpes.

Performing the ‘net-heat” approach for inconsistency

The net-heat approach can be conducted through the R function in Krahn et al.

(29) and the netmeta package in R (35).
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Fitting the Lu & Ades inconsistency model

The parameterization of the Lu & Ades model can be done automatically only in

the GEMTC software.

Fitting the design-by-treatment inconsistency model

The design-by-treatment model can be performed in STATA (mvmeta command
(80)) and the parameterization can be done automatically via the network

package (available from http:/ /www.mrc-bsu.cam.ac.uk/IW_Stata/meta).

Assessing inconsistency using Q-statistics

The Q-statistics for inconsistency can be estimated by the netmeta package in R
(35) and the mvmeta command in STATA (commonly known as the y?-test for

the IF) (80).

2.5.3 Implementation of the new graphical presentation tools in STATA

I implemented all graphical tools described in Section 2.4 in STATA with the
development of the package network graphs, available from www.mtm.uoi.gr.
The most important features of the commands are presented below. Additional
details can be found in Chaimani et al. (45) as well as in the help files. Also, the
codes of the STATA commands are available online and can be obtained by
downloading the .ado files from mtm.uoi.gr/images/network_graphs.rar.

The networkplot command can be used to create network diagrams. I allow
several weighting schemes for nodes and edges (Figure 2.1) via the options
nodeweight () and edgeweight () respectively. In the default graph, both
nodes and edges are weighted according to the number of studies including each
intervention and direct comparison respectively. I incorporated the use of colored

edges with the option edgecolor () (Figure 2.2). To plot all the treatmetns in a
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circle, I used the algorithm provided in Box 2.2. The command can be used also

via a dialog box (Figure 2.13).

Box 2.2. Algorithm used in the networkplot command to plot all competing treatments of a
network in a circle.

1. Identify the total number of treatments (T)
2. Assume that all treatments lie on a circle with centre (x,y) = (0,0) and radius equal to 1.
3. Divide the circle in T equal radians and calculate the central angle formed by each pair of

21
treatments as a® = .

4. Specify the coordinates (x,y) for every treatment t = 1, ..., T using the following rule:
- Fort =1, (x[1],y[1]) = (1,0)
- Fort=2,..,T, (x[t],y[t]) = ((t — 1) cos[a®’], (t — 1)sin[a"])
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Varables specifying the treatments:

=]

Weighting Options: Coloring Options: By Options:
[ No Weights [ Color for Edges:  [] Color for Nodes: Levels:
[] Weight for Edges:  tethad: (@ common Colors of By:

[] Weight for Nodes:  tethod: by Pool Method “wheight for Color:
Cther Options:

[ Pattem for Edges: [ Scale for Edges:

[ Scale for Modes:  [] Option for Plot Region:

] Aspect ratio: [ Title:

Figure 2.13. Dialog box of the networkplot command in STATA.

The netweight command estimates the weight of each direct comparison in the
network estimates and creates the contribution plot (Figure 2.3). In Box 2.3, I
provide the algorithm I used to define the basic comparisons and the design
matrix. This is more challenging when there is not a reference treatment compared
to any other treatment in the network. I have incorporated several assumptions for
the comparison-specific heterogeneities. More specifically, the options fixed,
random or tau2 (#) can be added to specify that direct summary effects would
be estimated assuming a fixed effect model, a comparison-specific random effects
[default] model or a common heterogeneity for all comparisons, if this is already

known (see also Sections 2.2.2 and 2.4.1). I added the option bargraph (), which
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presents the comparison-specific contributions for every network estimate in a bar
graph; the bars are colored according to a specific characteristic of each direct
comparison (e.g. the average risk of bias of the studies (60)). The dialog box of the

command is presented in Figure 2.14.

Box 2.3. Algorithm used in the netweight command to choose the basic comparisons properly
and create the design matrix for any network.

1. Identify the total number of treatments (T)

2. Identify the available direct comparisons (C”) between pairs of treatments (t,4,t,4) with
d=1,..,CPand ty4,tr,g =1,...,T, tiq # trg

3. Choose the basic comparisons (b = 1,...,T — 1

tyy 1
(o1

| :

\thD cP
t,ep CP

- Forevery BD[i, 1] = BD[i — 1,1] (i = 1,...,2CP), delete the i*" row.

(
- For every BD[i,2] = BD[i — 1,2] (i = 1,...,2CP), delete the i*" row.
— Set the remaining comparisons (B) in the second column of the matrix BD as basic

~

using the following steps:

Create the 2C° x 2 matrix BD =

N

comparisons.
- If B<T-1,add (any) T — 1 — B comparisons in the set of basic comparisons (B).
4. Define the entries in the design matrix using the following steps:

— Create the T —1 dummy variables Ctyptayr =1 Ctyptyp TEPTESENtinG the b =1, ..., B basic
comparisons with t;,,t,, the two treatments compared in each comparison b and set
them O.

— For every possible comparison in the network (observed or unobserved) (C), replace the
elements of the respective row in the design matrix (X) based on the consistency
equations using the procedure:

i If (t1q,t2q) = (i top), s€t Cp ) p, iNTOW A
ii. ForT>k>j>i>1,
if (t14,t24) = (i, k) & ¢j = 0, replacec;; = 1
if (t14,t24) = (i,k) & ¢;j = 1, replace ¢;j, = 1
iii. ForT>k>j>i>1,
if (t14,t24) = (i,j) & ¢;, = 0, replace ¢;, = 1
if (t14,t24) = (i,j) & ¢; = 1, replace ¢, = —1
iv. ForT>k>j>i>1,
if (t14,t24) = (. k) & ¢;, = 0, replace ¢;; = —1
if (t14,t240) = (k) & ¢;j = —1, replace ¢;), = 1
v. Identify the comparisons that need more than three non-zero entries in the design
matrix
vi. Create dummy variables that represent functions of two basic comparisons
vili.  Use the steps (i-iv) to define the functional dummy variables
vili.  Express the variables in (vi) via the basic comparisons
ix. Repeat the steps (vi-viii) until all comparisons are expressed through the basic
comparions
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5] Network Meta-Analysis - Contribution Plot v1.2 EEI—

Variables specifying effect and SE: Heterogeneity Options:

I E| [] Heterogeneity Assumption: Walue:
Variables specifying the treatments: @ random fixed network

[] No table

[C1Ne ¥ matrze [~] No W matrze [—] No ¥ matrec ] Mo H matrix
Graph Options:

[ No plat [ Scale: [C] Aspect ratio: [F] Coler:
[ Mo values [ Title:
[] Mo studies

Bar Graph Optione:
[] Bar graph: by Fool kethod Wwheight for Color:

[ Lewels: [T Colars for bars: Order

(

Figure 2.14. Dialog box of the netweight command in STATA.

The intervalplot command (Figure 2.11) is suitable to produce a forest plot
showing the estimated relative effects with their CI. I allowed plotting the PI
simultaneously with the CI via the option predictions (Figure 2.4), while the
option eform can be used to produce the plot in logarithmic scale. Note that the
command should be used directly after using the mvmeta command specifying
the option mvmetaresults.

I enabled drawing a forest plot including the estimated inconsistency factors from
the loop-specific approach in STATA (Figure 2.5) with the ifplot command
(Figure 2.12), which identifies all triangular and quadratic loops in the network
(Box 2.1). The three different assumptions for heterogeneity (comparison-specific,
loop-specific [default], network-specific) can be specified in the option tau2 (). To
produce the graph in logarithmic scale plotting the exp(w/"), the eform option
can be employed again. Different estimators for heterogeneity are possible when
loop-specific heterogeneity is assumed.

For drawing rankograms and cumulative ranking probability curves, I developed
the sucra command. The option mvmetaresults is necessary to specify that the
ranking probabilities have been derived from the mvmeta command (other input
formats are also possible). The relative ranking results from two different analyses

can be plotted jointly using the option compare (). Note that the output of the
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command provides also the mean ranks on the top of the SUCRA percentages.

Figure 2.15 shows also the dialog box of the command.

=] Network Meta-Analysis - Probability Ranking Plots vm‘ [

@ (©) Columns of the treatment by () Ranking probabilities in a tx
from the mvmeta command ranking probabilities matrix file as saved from WinBUGS

[ Treatmert Labels: [ Compare models
Variables of Ranking Probabilities: Comparator Set of Probabilities: [] Rankograms
Prefix of variables: Frefix of variables: [ No table
[ No plat
Reverse order

hrzatment-rank
Graph Options:

[] Name of model 1:
[ Color of model 1:
[ Pattem of model 1:
[ Title:

Figure 2.15. Dialog box of the sucra command in STATA.

I implemented the use of the MDS approach for treatment ranking in the mdsrank
command, which can produce the scatterplot of Figure 2.8. The option
best (max |max) specifies whether larger [default] or smaller values of the MDS
dimension correspond to better treatments with respect to the studied outcome.

The dialog box of the command is shown in Figure 2.16.

"] Network Meta-Analysis - MDS for Relative Ranking v1.0 (s=21]si= e

Variables specifying effect and SE: [ Treatment Labels:

[+

Variables specifying the treatments: — Best Treatment Option:
lz‘ @ max () min [ No plat

[ Scatterplot options:

Figure 2.16. Dialog box of the mdsrank command in STATA.

The last command in my package is the clusterank command, which is
suitable to create a two-dimensional ranking plot for drawing conclusions based
on two outcomes allowing for grouping the treatments with clustering methods

(Figure 2.9). These clustering methods are described in Box 2.4. Again the option
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best (max |max) can be added to show whether larger [default] of smaller values
in both dimensions represent more beneficial treatments. The command can be

used also via the dialog of Figure 2.17.

Box 2.4. Measures used in the clusterank command to choose the metric and linkage method as
well as the optimal number of clusters.

The competing treatments of a network are grouped using a hierarchical agglomerative
clustering method. Different metrics (Euclidean, squared Euclidean, absolute-value distance,
etc.) and linkage methods (single, average, weighted, complete, ward, centroid, median) are
evaluated (1). The choice of the appropriate metric and linkage criterion is driven from the
cophenetic correlation coefficient, which measures how faithfully the output dendrogram
represents the dissimilarities among observations (2). The optimal level of dendrogram and the
optimal number of resulting partitions are chosen using an internal cluster validation measure
based on a value of ‘clustering gain’. This measure has been designed to have a maximum
value when intra-cluster similarity is maximized and inter-cluster similarity is eliminated (3).
More details on these methods are available in the papers:

1. Kaufman L, Rousseeuw PJ. Finding groups in data: An introduction to cluster analysis. New
York: Wiley, 1990.

2. Handl ], Knowles J, Kell DB. Computational cluster validation in post-genomic data analysis.
Bioinformatics 2005; 21: 3201-3212.

3. Jung Y, Park H, Du D. A decision criterion for the optimal number of clusters in hierarchical
clustering. ] Global Optimazation 2003; 25: 91-111.

— .
] Network Meta-Analysis - Two-dimensional Ranking Plot v1.0 (852s]s= s e
Variables specifying relative Clustering Options:
ranking for outcomes 1 and 2: @) Best linkage and @ Optimal number
|z| distance metric of clusters

Variable specifying ) Userdefined ) User-defined
the treatments {optional): Lirk age method: Mumber of cluzsters:

Best Treatment Option: Distance metric: [[] Dendrogram

@ max () min
[ Scatterplot options:

(0K J[ Cancel ][ Submt |

Figure 2.17. Dialog box of the clusterank command in STATA.

2.6 Discussion

The continuing development of new methodologies for NMA has resolved several

issues of the early approaches and established it as a useful evidence synthesis tool
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in comparative effectiveness research. However, the debate for the potential of
NMA to yield valid findings and inform decision-making is still on-going (83).
This skepticism around NMA may be partly explained by the lack of user-friendly
software environment that would simplify the procedure of the analysis and
would make it more comprehensible to a wider audience.

The availability of new software options implemented in conventional statistical
packages (e.g. STATA or R), which are used routinely in the conduct of pairwise
meta-analysis, will possibly bring researchers a step further to demystify this
complex statistical tool. In addition, the recent publication of some well-described
application (84,85) and tutorial papers (10,11,86) might familiarize researchers
with the pitfalls of each approach and the foundamental issues related to the

validity and interpretation of NMA results.






3 Characteristics of published networks of
interventions

3.1 Introduction

The various approaches to fit a NMA are essentially equivalent; however certain
network characteristics sometimes may restrict the choice of the method of
analysis. For example, networks that include multi-arm studies require the use of
multivariate methods and until recently could be analyzed only as a hierarchical
model fitted in Bayesian environment. Also, inconsistency can be assessed
statistically only in networks with closed loops; in star-shaped networks (where all
treatments are compared directly only with a common comparator intervention)
researchers might be able only to assess intransitivity relying on clinical and
epidemiological criteria (e.g. comparability of populations across comparisons).
Hence, it is interesting to explore how the new methodologies for performing
NMA and evaluating assumptions (see Chapter 2) have been employed by
researchers undertaking NMA and indirect comparisons.

The fact that NMA is a relatively new statistical tool implies the need for several
empirical and simulation studies to investigate the properties of each approach.
Such studies should be ideally planned based on the characteristics of real
networks of interventions. An overview of the characteristics of published
networks of interventions is a useful resource of information for methodologists
that aim to update the current knowledge on appraising NMA methods.

This Chapter focuses on a description of a database I compiled, which consists of
88 published networks of interventions. Sections 3.2 and 3.3 present the selection
process of the networks including search strategy and eligibility criteria as well as

the descriptive analyses. Then, Section 3.4 shows the results and describes the
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most important size, clinical and methodological characteristics of the identified

networks.

3.2 Selection process of published networks

I searched for networks of randomized controlled trials (RCTs) published until
March 2011 in Medline via PubMed using the following code: “(network OR
mixed treatment* OR multiple treatment®* OR mixed comparison®* OR indirect
comparison* OR umbrella OR simultaneous comparison*) AND (meta-analysis)”.

Networks needed to include at least three competing interventions and been
analyzed using a valid indirect comparison method or NMA; hence I excluded
networks analyzed with the ‘naive approach’ (i.e. comparison of single arms
pooled across studies) (31,87). Networks that did not report the method of analysis
were considered eligible if the presented indirect estimates were in agreement
with that derived from the Bucher method (9). Meta-analyses including
observational or diagnostic test accuracy studies were excluded. Finally, I
excluded networks in which the number of studies did not exceed the number of
competing treatments to ensure that enough information would be available for

each comparison (i.e. relative effects would be estimable).

3.3 Data extraction & analyses

For every included network, information was extracted on the name of first
author, journal, year of publication, primary outcome, number of included studies,
competing interventions and control intervention (i.e. an inactive intervention or
standard care). Arm-level outcome data were extracted, when they were available,
or study-level otherwise for the primary outcome of each network. For networks

that did not define clearly the primary outcome, the outcome reported first in the
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manuscript was taken as such. I requested the required outcome data from the
authors of the networks, when they were not available in the publication.
I classified the networks into star-shaped and full (i.e. with at least one closed
loop) networks. The network (primary) outcomes were considered as being
harmful or beneficial as well as objective, semi-objective or subjective according to
the criteria described in Turner et al. (49). The included networks were further
classified into three categories depending on the type of treatment comparison.
Following Turner et al., these categories of comparisons were defined using the
scheme described below:
- Pharmacological vs. control. Networks including only pharmacological
treatments as well as a control intervention.
- Pharmacological vs. pharmacological. Networks including only pharmacological
treatments and no ‘obvious’ control intervention.
- Non-pharmacological vs. any intervention. Networks with at least one non-
pharmacological intervention.
The modeling approach to NMA and the method to evaluate inconsistency were
also recorded. All available methods are described in detail in Sections 2.2.2, 2.3.2
and 2.3.3. Finally, data extraction included information on the type of outcome
data (dichotomous, continuous, time-to-event, rates) and the effect size that was
used to synthesize them (odds ratio (OR), risk ratio (RR), risk difference,
standardized mean difference (SMD), mean difference (MD), ratio of means,
hazard ratio (HR)).
Descriptive and frequency statistics were estimated for publication, size, clinical
and methodological characteristics. Analyses considered star and full networks
both separately and jointly, when possible. The prevalence of each modeling
approach for indirect comparisons or NMA and evaluation of inconsistency was
estimated exploring its possible association with size characteristics (number of
included studies, treatments, participants, etc.). Continuous characteristics are
reported in terms of median numbers with the respective interquartile range

(IQR). Subsequently, I conducted two empirical analyses that used this network
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collection; the first investigated the impact of four RoB items (random sequence
generation, allocation concealment, blinding of participants, blinding of outcome
assessors) on treatment effects and the second the impact of study precision. These
studies are described explicitly in Sections 5.4 and 5.5 respectively. Note that
three-treatment networks were not included in the descriptive analyses since the
characteristics of such networks have been explored in previous studies (27,88).

However, they were considered eligible for the empirical analyses.

3.4 Results

3.4.1 Identified networks

The search identified 890 relevant abstracts; 276 of them were assessed as
potentially eligible and their full articles were screened. After excluding
duplicated publications, 145 networks met all the inclusion criteria; 102 (70%)
were full and 43 (30%) star networks. Finally, 20 star and 68 full networks, for
which outcome data were obtained, were included in the database. The full
selection process of the networks is summarized in the flow chart of Figure 3.1.
Figure 3.2 and Figure 3.3 show the increase in network publications over time and

the seven most popular journals in the area of NMA respectively.

3.4.2 Size characteristics of networks

In a total of 88 networks, the median number of studies and treatments per
network were 21.5 (IQR:13-37.5) and 6 (IQR:4-9) respectively. The identified full
networks included, on average, more studies and competing interventions than
the star networks (Table 3.1). In a subset of 82 networks (that reported the number

of participants in each study) the median sample size per network was 7729
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890 abstracts
identified 614 excluded:

no interventions evaluated
2 treatments compared
no indirect comparisons

124 excluded: 276 full articles discussing/commentary

11 comments/letters/case series
78 no/naive indirect comparisons
13 studies = treatments
4 methodological
10 not only RCTs
3 diagnostics/genetics

5 not meta-analyses 152\ netNoks

39 excluded:
2 subsets of larger networks
5 duplicated publication
32 data not available

113 networks

| 32 star networks || 81 fullnetworks

12 with 3 treatments )4 N 13 with 3 treatments

[ 20 with > 4 treatments | | 68 with 2 4 treatments |

Figure 3.1. Selection process of published networks of interventions.

(IQR:3,043-24,987), while in 80 networks (that reported the number of participants
in each arm) the median sample size per comparison was 577 (IQR:208-1,707). Star
networks appeared overall being more compact than full networks including
fewer direct comparisons, but with larger number of studies and participants per

comparison.

1997
2000
2002
2003
2005
2006
2007
2008
2009
2010

2011
(until March)
T

0 5 10 15 20 25
I Full Networks Star Networks

Figure 3.2. Number of eligible published networks by year.
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Figure 3.3. Number of eligible published networks by journal. (BMJ=British Medical Journal,
CMRO=Current Medical Research and Opinion, JAMA= Journal of the American Medical
Association, BMC= BioMed Central, JCE= Journal of Clinical Epidemiology, CDSR= Cochrane
Database of Systematic Reviews, HT A= Health Technology Assessment)

The presence of multi-arm studies was also examined in the 68 full networks. At

least one three-arm study was included in 56 (82%) of them and at least one four-

arm trial in 18 (26%). The total number of closed loops in these networks was 426

and the median number of loops per network was 4 (IQR:2-9).

Table 3.1. Size characteristics of the networks. Medians with interquartile ranges (in parentheses)
are reported. Numbers in square brackets show the number of networks reporting the respective

information.
Characteristics Full networks Star networks Full & star networks
Number of studies per
network f P 22 (13-38.5) [68] 18.5 (12.5-29) [20] 21.5 (13-37.5) [88]
Number of treatments
per network 6 (4-9) [68] 5 (4-7) [20] 6 (4-9) [88]
Sample size per 8,491 (4,587-27,659) 2,995 (1,829-12,499) 7,729 (3,043-24,987)
network [62] [20] [82]
Sample size per 576 (185-1,785) [61] 600 (366-1,217) [19] 577 (208-1,707) [80]
comparison
Number of studies per

comparison

2 (1-4) [68]

3 (2-6) [20]

2 (1-4) [88]
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3.4.3 Clinical characteristics of networks

Out of the total 88 included networks, more than one in two networks (58
networks, 66%) had a harmful primary outcome, while in nearly half of the
networks (36 networks, 41%) the primary outcome was subjective (Table 3.2).
More frequently networks (60 networks, 68%) measured dichotomous primary
outcomes and less often continuous (19 networks, 22%) or other types of
outcomes.

Regarding the type of treatment comparison, 61 networks (69%) were classified in
the category of pharmacological vs. control followed by 14 (16%) networks in the
group of non-pharmacological vs. any intervention. In 48 (55%) networks the
control intervention was placebo and in 7 (8%) an alternative non-active

intervention.

Table 3.2. Clinical characteristics of the networks. Total numbers and the respective percentages
are reported.

Full networks  Star networks Full & star networks

Objective 20 (30%) 7 (35%) 27 (31%)
Type of outcome Semi-objective 24 (35%) 1 (5%) 25 (28%)
Subjective 24 (35%) 12 (60%) 36 (41%)
Dichotomous 45 (66%) 15 (75%) 60 (68%)
Continuous 16 (24%) 3 (15%) 19 (22%)
Type of data Time-to-event 5 (7%) 2 (10%) 7 (8%)
Rate 2 (3%) 0 2 (2%)
Odds ratio 29 (42%) 2 (10%) 31 (35%)
Risk ratio 17 (25%) 13 (65%) 30 (34%)
Risk difference 1 (1%) 0 1(1%)
Hazard ratio 5 (7%) 2 (10%) 7 (8%)
Effect measure oy 1t 2 (3%) 0 2 (2%)
Mean Difference 11 (16%) 2 (10%) 13 (15%)
Standardized 5 (7%) 1(5%) 6 (7%)

mean difference

3.4.4 Methodological characteristics of networks

The most popular approach to NMA was the hierarchical model fitted within a

Bayesian environment (43 networks, 49%) followed by the meta-regression
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approach (assuming univariate distributions) (17 networks, 19%) and Bucher’s
method (16 networks, 18%) (see Section 2.2 for a description of the methods). The
choice of the analysis method for indirect comparisons varied according to the
network structure. More specifically, the hierarchical model was employed in 36
(53%) full networks and 7 (35%) star networks, the meta-regression approach in 15
(22%) full and 2 (30%) stars and the Bucher’s method in 12 (18%) full and 4 (20%)
star networks. There were also 13 (15%) networks (9% of the full and 35% of the
stars) that did not report the method of analysis.

Figure 3.4 shows that the hierarchical model started being the most popular
method for NMA since 2009, whereas the majority of networks published earlier
employed the Bucher’s method. However, the number of networks not reporting
the method of analysis did not appear to be declining over years (e.g. 17% in 2007,
18% in the first three months of 2011). In addition, 41 full networks (60%) did not
report whether and how the presence of inconsistency was assessed and 5 full
networks (7%) used inappropriate methods for the evaluation of inconsistency.
These findings raise concerns about the proper application of the methodologies in

a respectable proportion of publications.

1997
2000
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2003

2004

2005 | BN

2006 [ D

2007 [ D

2008 ||

2009 [ B
2010 I

2011 I
(until March)‘ ‘ ‘ : ‘ :

0 5 10 15 20 25

I Hierarchical model Meta-regression
I Bucher's method [ Not reported

Figure 3.4. Number of eligible published networks by year and method of analysis.
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3.5 Conclusions

This compilation of networks of interventions demonstrates that the advantages of
NMA and the many available treatment options for almost any healthcare
condition have increased its acceptance by the medical research community. The
observed variation in the choice of the method of analysis can be partly explained
by the stucture of the networks (e.g. differences between full and star-spahed
networks).

The typical network of this database is a full network that includes 22 studies and
compares 5 pharmacological treatments vs. a control intervention with respect to a
dichotomous subjective outcome.

The findings of this network collection might be limited by the lack of a thorough
search strategy; namely I used only one database (i.e. PubMed) and a not very
sensitive search algorithm. However, the included networks cover a wide range of
medical fields and the aforementioned systematic review process gave comparable
results with two recently published systematic reviews that collected networks of
interventions (19-21). An extended version of this database that included

networks published until the end of 2012 yielded similar conclusions (22).






4 Methodology for network meta-regression &
network meta-epidemiology

4.1 Introduction

Patient characteristics might differ across studies and/or pairwise comparisons
challenging the assumptions of homogeneity (13) and transitivity (11,26)
respectively. These discrepancies can be seen as differences in the distribution of
potential effect modifiers within and across the pairwise comparisons in a network
of interventions.

It is often the case that the estimated heterogeneity or inconsistency in a network
of interventions can be explained using a network meta-regression model; that is a
NMA model that incorporates one or more covariates. Standard meta-regression
models for pairwise meta-analysis often lack of power to detect associations
between treatment effects and study-level characteristics (17). An advantage of
network meta-regression is the potential to borrow strength across the different
comparisons, when such an assumption is reasonable; in this way the regression
coefficients are estimated with increased power.

Meta-epidemiological methods rely on the comparability of the impact of effect
modifiers across different meta-analyses (in terms of magnitude and direction) to
overcome the issue of low power. In this way, a sizable amount of data is expected
to be available allowing the adequate estimation of a relationship between
treatment effects and several characteristics. A description of models that pool
parameters across many pairwise meta-analyses can be found in Section 1.3.
However, considering that these parameters are constant or even related over a
range of meta-analyses from different clinical fields sometimes might not be a

plausible assumption.
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Data from networks of interventions usually involve a larger evidence base and
may offer a promising alternative way to investigate the mechanisms of effect
modification and bias in meta-epidemiological research; this methodology may be
called network meta-epidemiology (89). Pooling parameters (e.g. regression
coefficients) across many network meta-analyses can accommodate the
assumption for these parameters being more similar within a network rather than
across networks (89,90).

The following Section describes how the NMA models of Section 2.2.2 can be
modified to incorporate one or more covariates as well as different assumptions
for the regression coefficients that have been suggested in the literature. Then,
Section 4.3 describes how the estimated coefficients can be pooled across several

networks of interventions to derive an overall parameter of effect modification.

4.2 Models & assumptions for network meta-regression

4.2.1 Models for network meta-analysis incorporating covariates

The network meta-regression models are extensions of the standard NMA models
that account for the impact of one or more covariates on the treatment effects
estimates. More specifically, consider that p characteristics have been specified a
priori as potential effect modifiers in a network of interventions. The extension of

each NMA approach into a network meta-regression model is described below.

Network meta-regression model for the ‘multivariate meta-regression” approach

When NMA is fitted as a multivariate meta-regression model the incorporation of
covariates requires the extension of the design matrix X. More specifically,
according to Section 2.2.2 in a standard NMA model the entries of the design

matrix express the comparison(s) being made in each sudy via the consistency
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equations; hence the estimated coefficients from this model represent the network
estimates of the relative effects. Network meta-regression aims further to estimate
how these relative effects may change for different values of the characteristics of
interest. This implies that an additional set of covariates should be included in the
design matrix expressing these characteristics for every study in the network. In
this way an additioanl set of coefficients can be estimated showing how each
characteristic affects the relative effects. The extended design matrix that
incorporates also information on p study-level characteristics that may act as effect

modifiers is a matrix of dimension [Zle(l(i — 1)] X [(T—-1) x (p+1)] denoted
with X* = (X, z,). The z, = (z;, ...,z,-p)T is the sub-matrix that contains for each

study i (i = 1,...,5) the values of the covariates

1 T-1 1 T-1
Zi11y s Zi11 s 0 Zitps 0 Zidp

Zip = : (4.1)

Zi(ki= 1)1 0 Ei 110+ Zi = pr 0 ZiK -1
(K; the number of arms in study i) representing the p characteristics for each basic
comparison. Note that for the basic comparisons not reported in the study i (with
Xik~1p =0, b=1,..,T =1 the basic comparisons), the respective covariates

Z&Ki_l) ; are zero as well for every j = 1, ..., p. Then, Equation (1.8) becomes

y=X*<‘;;)+£*+6*

where p* = (ui, ..., 4u7_1 )7 is the vector of the summary effects when all p

covariates are equal to zero and f = (Bl, ...,ﬂp)T. Each vector B; = (,8]-1, ...,B]-T"l)T
contains the comparison-specific coefficients corresponding to the characteristic j.
Also, & = (83, ...,65) and " = (&}, ..., €5) with £ ~N(0,s?).

The network estimates fi* derived from this model account for the impact of the p

characteristics. The random effects §; are assumed again normally distributed

8;~N(0,7*%) with t** = diag(‘tl’-*z) and

TIZ cov(@i*l, 9;(1(1-—1))
: : 4.2)
* * %2
cov(871,Oix,-1)) Tki-1
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When differences in the p characteristics across studies explain the between-study
variance, it is expected that the estimated heterogeneity of the network meta-

regression model would be smaller than that of the standard NMA model (i.e.

2 <t2orthy <tk forX,Y =1,..,T,X £Y).

Network meta-regression as a hierarchical model

Fitting network meta-regression as a hierarchical model requires the addition of a
regression term in Equation (2.10) assuming that

yi~N(0;,57)
and

Hl- = 0: +ZipBi (43)

where 8; = (01, .., 0i,-1) + Bi = (Biv - Bip) + By = (B} ﬁjf‘i‘l)T and z, is
defined in (4.1) but here includes only the covariates that correspond to the K; — 1
comparisons modelled for study i. Similarly, the subscript i in the vector of
coefficients in the above Equation denotes that B; contains the comparison-specific
coefficients for the K; —1 comparisons. Equation (4.3) implies that every true
underlying effect 6, (k = 1,...,K; — 1) of study i is different by B units compared
to a study in which the covariate representing the characteristic j for comparison k
is equal to 0.
The study-specific underlying effects 8; = (67, ..., Ek(Ki—1))T are assumed normally
distributed

0;~N(uj,7}) (4.4)
with mean pj = (y, ...,/,t}}i_l)T the vector of the summary effects. The variance-

covariance matrix T is described by Equation (4.2).

Network meta-regression model for the multivariate meta-analysis approach

Using the multivariate meta-analysis approach, the network meta-regression

model can be constructed similarly to the case of multivariate meta-regression
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approach. The two models differ only in the definition of the basic parameters
b=1,.., T —1 expressed in u* and the elements of the design matrix X =
(X4, ..., X5)T. The definition of these matrices is described in Section 2.2.2. Under
this approach, when x;;, is a missing value (i.e. the basic comparison b is not

reported in study i), zf; (j = 1, ..., p) will be missing as well.

The three approaches presented above for fitting a network meta-regression
model are equivalent and the estimated coefficients are expected to be similar
between them. The ‘two-stage approach’ is not considered in this Section for
fitting network meta-regression, since it would probably give regression
coefficients not comparable to those derived from the three above methods. This is
because the coefficients would be estimated only at the first stage of the analysis as
well as due to the fact that they would be both comparison-specific and design-

specific.

Similarly to the case of pairwise meta-analysis, caution is needed in the choice of
the p characteristics that define the z, matrix. Due to the limited power of any
meta-regression model only a small subset of the total number of potential effect
modifiers should be included in the model. A rule of thumb is to allow one
covariate for every 10 studies in a pairwise comparison (13). However, the power
to detect associations between study-level characteristics and treatment effects also

depends on the size of the studies and the amount of heterogeneity (17).

4.2.2 Assumptions for the regression coefficients in network meta-regression

The network meta-regression models presented above would give estimates for a

set of C = (g

be employed for the comparison-specific coefficients of each j characteristic (91).

) coefficients " for each characteristic j. Different assumptions can
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The plausibility of these assumptions in a network of interventions depends on the
clinical setting and outcome as well as on the nature of each characteristic j.

For example, suppose that baseline severity is a potential effect modifier in a
network comparing active treatments either with placebo or with each other. It
might be reasonable to assume that differences in baseline severity across studies
impact similarly in all comparisons of active treatments vs. placebo. This
assumption can be reflected in a network meta-regression model by using identical
or exchangeable coefficients for all these comparisons. On the other hand, one may
believe that baseline severity affects in a different way head-to-head comparisons
(with respect to magnitude and direction); in that case the respective coefficients
for this type of comparisons could be assumed independent from the coefficients
corresponding to comparisons of active treatments vs. placebo.

All possible assumptions about the regression coefficients are described in detail

below.

Independent comparison-specific coefficients

The weaker assumption for the elements for the comparison-specific coefficients is
assuming them as being fixed effects and totally independent, hence B # B/* for
every X,Y,Z =1,..,T withX # Y # Z. The drawback of this approach is that in the
presence of very few studies for one or more comparisons the model would fail to
estimate adequately the respective 7 and the estimated coefficients would have

extreme uncertainty.

Exchangeable comparison-specific coefficients

Alternatively, if it is clinically meaningful, all comparison-specific coefficients for
the j study characteristic can be treated as random effects sharing a common
distribution, hence

B ~N(B;, &) (4-5)
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with mean B; and between-comparison variance ¢7. This exchangeability
assumption implies that all B* are related but does not impose any further

constraints on their estimation.

Consistent comparison-specific coefficients

The comparison-specific coefficients can be further restricted by forcing them to
satisfy the consistency equations (Equation (2.5)), namely

17 = B - g 1o
Although this assumption might be stronger than the previous two (i.e.
independent or exchangeable coefficients), it is often considered as being more
reasonable; this is because it reflects the belief that the same assumption (i.e.
consistency) should underlie both relative effects and regression coefficients. Then,

three further assumptions are possible for the basic coefficients; these are the

coefficients corresponding to the basic parameters P = }“ wheret = 1, ..., T with

t+X:
- Independent basic coefficients
ﬁfl * ﬁfz for every by,b, = 1,...,T — 1 with by # b,
- Exchangeable basic coefficients
BP~N(B;,¢7)
- Identical basic coefficients
Bfl = sz for every by, b, = 1,..,T — 1
Note that in this case Equation (4.6) gives that all non-basic coefficients are 0.
The assumption of the consistent coefficients has been exemplified recently by
Achana et al. (92) for the application of network meta-regression with control
group risk as covariate. The idea was that the ‘unobserved” control group risk in
studies that do not include a control arm is ‘missing at random’ (which is implied

by the transitivity assumption) and it can be estimated using information from

studies that include the control intervention assuming consistency in coefficients.
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Identical comparison-specific coefficients

The last possible assumption that can be employed in a network meta-regression
model is to assume that all comparison-specific coefficients are identical, which
means that

i =B 47)
This assumption might be quite strong; however it can be plausible in cases where
the impact of characteristic j does not depend on the treatments being compared,
such as the impact of study design limitations (e.g. lack of blinding). The
drawback of this model is that it does not allow for between-comparison variation.
Nevertheless, it is advantageous compared to all previous assumptions with

respect to the precision of estimating the coefficient B;.

4.3 Models & assumptions for network meta-epidemiology

Network meta-epidemiology is the analogy to conventional meta-epidemiology
(see Section 1.3) when the synthesis of parameters (e.g. regression coefficients) is
performed across networks of interventions instead of pairwise meta-analyses.
More specifically, consider that network meta-regression has been performed in N
available networks for the same j = 1, ...,p characteristics using the methodology
of Section 4.2. Then, from each network a coefficient B}1 with n = 1, ..., N has been
estimated and all these network-specific coefficients are assumed comparable with
each other; that means that the impact of characteristic j on the treatment effects is
assumed independent of the treatment comparison being made, the clinical
condition of interest and the studied outcome. Note that deriving the parameters
Bl requires that the comparison-specific coefficients ' within each network
should be assumed either exchangeable (Equation (4.5)) or identical (Equation
(4.7)). Otherwise each network would give a set of coefficients pertaining only to
specific treatment comparisons and pooling these sets of coefficients would be

meaningless.
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Similarly to conventional meta-epidemiology, network meta-epidemiology can be
performed either in one or in two stages (see Section 1.1), but here the unit of
analysis is the network. Using a one-stage network meta-epidemiological model
has the advantage of borrowing strength across networks. In this way, the
estimated overall coefficient is usually estimated with increased precision
compared to the two-stage analysis. The one-stage model is constructed as an

extension of the network meta-regression models as described below.

4.3.1 Models synthesizing parameters across network meta-analyses

Network meta-epidemiology using the ‘multivariate meta-regression” or the ‘multivariate

meta-analysis” approach

The synthesis of regression coefficients using any of the two approaches is
performed by extending Equation (1.9) into

I \
;1,1 Xn,l'znrip /ﬁ’ + goverall ;l,l
t | = : | Pn1 ™71 [+ (4.8)
!

nSy XnSp Zn,s,p \B;t,p +}3§verall / nSn

where S, is the total number of studies in each network n withn =1, ..., N (N the
total number of networks) and BfV"* (j = 1, ...,p) is the overall coefficient showing
the impact of the j characteristic on treatment effects and is assumed to pertain to
the entire network collection. A normal distribution is assumed for the vector of
coefficients B;, = (3;1,1' s B;Lp), namely

Br~N(0,w?)

Note that the definition of the basic parameters expressed in u; and the design
matrix X, = (Xn,1' ---'Xn,s,,) depends on the choice between the two approaches

(see Section 2.2.2).
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Network meta-epidemiology as a hierarchical model

Alternatively, the network meta-regression hierarchical model can be extended to
allow for one additional hierarchy. In this case Equations (4.3) and (4.4) would be
0 =0 +2n5 X B
On,i~N(Hn i, T;Lz,i)
with
Bl ~N(Boverall 4,2y
The vector Beverall = (pyverall ...,Bg”em”) contains the overall coefficients for the

p characteristics and w? is the variance-covariance matrix of these coefficients.

Both approaches can assume that the network-specific coefficients are fixed and
identical by setting w? = 0.

As already mentioned in Section 1.3 for conventional meta-epidemiology, network
meta-epidemiology can result in valuable benefit in the precision of coefficients
only when a small number of characteristics (usually only 1 or 2) are included in

the model.

4.4 Discussion

The presence of heterogeneity and/or inconsistency in a network of interventions
raises concerns for the validity and applicability of the findings. The exploration of
the possible sources for this observed extra variability within and across the
pairwise comparisons should consider several patient and study characteristics
that may act as effect modifiers.

The impact of these characteristics on the treatment effects can be explored via
network meta-regression and different assumptions for the coefficients can be
employed. The choice of the model assumption should be based primarily on
clinical criteria; considering, for example, whether it is clinically meaningful to

assume a common regression coefficient across all comparisons in the network. On
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the other hand, computational reasons may imply the use of strong assumptions
since for comparisons with very few studies the regression coefficients might not
be estimable.

To date some empirical and simulation studies have been conducted to investigate
the  properties of the methodology for network  meta-analysis
(19,20,22,27,65,88,89,93,94). However, designing simulation studies based on
networks of interventions is a computationally intensive procedure and only
three-treatment networks have been simulated so far. Network meta-
epidemiology can be considered as a valuable alternative to investigate several
factors that might affect the results of NMA under certain conditions.

The exploration of heterogeneity and inconsistency can be an important source of
imformation for decision-making. Protocols for NMA should consider network
meta-regression as an additional analysis to investigate the impact of potential
effect modifiers. However, researchers should be aware of the lack of power of the
methodology and interpret the results always with a clinical insight and in light of

the empirical evidence.






5 Assessing the impact of study characteristics in
network meta-analysis results

5.1 Introduction

Several empirical studies have examined the possible association between the
estimated treatment effects and the size of the trials suggesting that small studies
tend to give larger effect estimates than do larger studies (95-98). Such a
phenomenon, which is usually called small-study effects, is quite frequent in
evidence synthesis and can be caused by several reasons.

A possible explanation is that small studies without significant treatment effects
are less likely to be published, causing publication bias. An associated to publication
bias reason for small-study effects, especially for secondary or safety outcomes is
selective outcome reporting (i.e. selectively presenting only the significant results
derived from a study). Genuine heterogeneity between small and large trials
might also play a role (99,100); for example small studies are more likely to recruit
high-risk patients that may benefit more from the treatment (101). In addition,
study size (measured by sample size or precision) is often considered as a proxy
for the quality of trials and any discrepancies between smaller and larger trials
may be attributable to differences in study design. For instance, the lack of
appropriate allocation concealment and blinding have been found to be associated
with effect size in individual trials and meta-analyses (102-105).

For pairwise meta-analysis several regression-based methods have been suggested
for investigating the association between treatment effect estimates and study size,
which have been evaluated in empirical and simulation studies (96,106-108).
These methods model the relationship between effect sizes and a measure of their

precision, such as the variance, the standard error or a function of them. However,
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these approaches are limited, as any meta-regression model is, by the lack of
power to detect existing associations in the presence of few studies and substantial
heterogeneity (17,109).

The presence of small-study effects in NMA can be assessed graphically by
extending the standard funnel plot to allow the incorporation of multiple
treatment comparisons (45,110). Network meta-regression models (see Section 4.2)
can be used also to extend the statistical models accounting for small-study effects
into the context of NMA. Models that account for the impact of other study
characteristics on NMA results have been suggested in the literature as well
(90,111-113). An important fact of the network meta-regression models that aim to
control for potentially biased treatment effects is that they require making
assumptions about the directionality of bias. This may be less problematic when
analysing star-shaped networks; in these networks the common comparator
intervention is usually an inactive or old intervention and it is not expected to be
favored when bias is present.

The aim of this Chapter is to investigate whether certain characteristics of study
design impact on the treatment effects estimated from NMA. The following
Section describes a new graphical tool that I developed, known also as comparison-
adjusted funnel plot, for assessing the presence of small-study effects in a network
of interventions simultaneously for all direct comparisons. In Section 5.3, I provide
a framework on how the network meta-regression models can incorporate
different assumptions for the direction of potential bias due to differences in study
design. In Sections 5.4 and 5.5, I use the methodology of network meta-
epidemiology to evaluate the effect of four RoB items (random sequence
generation, allocation concealment, blinding of participants, blinding of outcome
assessors) and study precision in a collection of star-shaped networks (part of the
database described in Chapter 3); the advantage of including only star network is
that they do not require making strong assumptions about directionality of bias
(89). Finally, Section 5.6 presents a case study, in which I explored the presence of

small-study effects in two full networks (110).
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5.2 A new graphical tool for assessing small-study effects in

network meta-analysis

The presence of small-study effects in a pairwise meta-analysis is commonly
assessed graphically using funnel plots, which are scatterplots of the observed
relative effects in studies versus a measure of study precision. When the points in
a funnel plot lie symmetrically around the summary effect, the assumption of no
differences between small and large studies is likely to hold.

In a NMA that involves multiple treatment comparisons, putting all studies
together in a single funnel plot is not helpful since there are multiple summary
effects. Studies within each pairwise comparison form a comparison-specific
reference line of symmetry that represents the respective summary effect. Hence,
using conventional funnel plots, symmetry could only be judged separately for
each available direct comparison. However, very often there are few studies per
comparison (e.g. less than 10) and asymmetry cannot be assessed adequately. The
inclusion of all studies of a NMA in a funnel plot needs somehow to account for
the fact that different set of studies evaluate different treatment comparisons. To
resolve this issue, I developed the comparison-adjusted funnel plot, in which the
horizontal axis is modified to contain the value (y;xy — figy) for every study i in
the network comparing any treatments X and Y (where y;xy the observed relative
effect in study i) (45,110). Similarly to the standard funnel plot, the direct estimate
fi%y should more appropriately be derived from the fixed effect model; that is
because the random effects model gives relatively more weight to small studies,
which is undesirable when small-study effects are likely to operate.

It is important to note that the comparison-adjusted funnel plot can yield
meaningful conclusions only if all comparisons have been defined in a consistent
direction; for example active treatment vs. inactive, newer treatment vs. older,
sponsored treatment vs. non-sponsored, etc. Then, a symmetrical plot around the

zero line suggests the absence of small-study effects in the network.



90 | A new graphical tool for assessing small-study effects in network meta-analysis

Figure 5.1 shows an example comparison-adjusted funnel plot for the rheumatoid
arthritis network described in Section 2.4 (64). This is a star-shaped network and
all comparisons in the graph have been estimated as placebo vs. active treatment.
The graph indicates a tendency of small studies to show the active treatments
more effective than the respective summary effect for each pairwise comparison

(since y;xy — fixy < 0 for small studies).
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Figure 5.1. Comparison-adjusted funnel plot of a network network comparing the effectiveness of
six biologic agents and placebo for rheumatoid arthritis. The dashed red line represents the null
hypothesis that the observed effects in studies and the respective summary effects are in
agreement. Points with different colors correspond to different pairwise comparisons.

I implemented the comparison-adjusted funnel plot can in STATA via the
netfunnel command, which is included in the network graphs package (see
also Section 2.5.3). By default, the command estimates the observed effects for all
comparisons as ‘treatment earlier in alphabetical or numerical order vs. treatment
later in the order’. This means that researchers should consider this direction when
they assign names or codes to the competing treatments. Alternatively, adding the
option noalphabetical specifies that the observed relative effects have been
estimated a priori in a consistent direction; in this case the relative effects are not

rearranged based on the treatment names. Also, the option bycomparison can be
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used to present the different comparisons with different colors. Note that the

command can be used also via a dialog box (Figure 5.2).

5] Network Mata-Analysis - Comparison-Adjusted Funnel Plot v1.1 Elﬂlg

Variables specifying effect and SE: Graph Options:
| E [ No alphabetical order  [] By comparison

Variables specifying the treatments: ] Additional plot:
E [ *Scatterplot options:
Heterogeneity Assumption:

@ foced ) andom *All options allowed in scatter command

Options for axes:

[ ¥-zds labels: [ ¥ title:
[ Y-mds labels: [ Y-mms title:
([ OKk J[ Canced ][ Submt ]

Figure 5.2. Dialog box of the net funnel command in STATA.

5.3 Modeling the direction of potential bias in network

meta-regression

5.3.1 Assumptions underlying network meta-regression when accounting for the

impact of small-study effects

To develop all models provided in this Section, I rely on the assumption that the

mechanism causing small-study effects is the same across treatment comparisons

(110). This assumption implies that:

- If small-study effects are the consequence of differences in quality or, in
general, due to clinical and methodological heterogeneity between smaller and

larger studies, this possibly applies to any trial comparing a control
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intervention (that is no treatment, placebo or standard care) versus an active
(experimental) intervention.

- Similarly, when small-study effects are explained by publication bias or
selective outcome reporting, this is likely to affect an entire research field
exaggerating the effect of experimental interventions compared with controls.
The magnitude of bias, though, might be different depending on the
experimental comparator treatment.

Applying the above scenarios in the case of head-to-head trials requires stronger

but reasonable assumptions; for example newer or sponsored treatments are often

expected to be favored when compared with older or non-sponsored treatments
respectively.

A major advantage of these assumptions is that the impact of study design

characteristics (e.g. study size and RoB items) can be assessed with increased

precision within a network of interventions rather than by looking at each

pairwise treatment comparison separately.

5.3.2 Possible assumptions about the direction of potential bias

An overview of the network meta-regression models and the possible
assumptions for the comparison-specific coefficients is available in Section 4.2.

The presence of multiple treatment comparisons in a network of trials implies the
need to distinguish in each comparison the ‘favored” arm from those that are not
favored to ensure a meaningful interpretation of the estimated coefficients. For
example, suppose a harmful dichotomous outcome. Drawing a funnel plot with a
consistent direction for all effect sizes (e.g. favored vs. non-favored intervention)
can reveal whether the summary effect indeed seems to exaggerate the effect of
the treatment assumed favored; in that case missing studies are expected to lie on
the right hand side of the graph. To make this distinction between the favored and

non-favored interventions, I use a (dummy) direction variable as described below.
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Note that in this Chapter all presented and applied network meta-regression
models include only one covariate and follow the approach of the hierarchical
model; this means that p = 1 and z;, = z;; = ;. | write each covariate z;yy in this
matrix as

Zixy = Zixy X dixy 6.1
where zjy, is the part of the covariate that represents the study characteristic of
interest (e.g. a measure of study precision) and d;xy is the direction variable that
takes values 1, 0 or -1 depending on the type of outcome and on whether
treatment X or Y is expected to be favored by the effect of z/y,. More specifically,
for a harmful outcome

doos = { 1, VY isexpected to be favored
WY 7 1-1, X is expected to be favored

while for beneficial outcomes

dovs = { 1, X is expected to be favored
WY 7 l-1, Y is expected to be favored

The definition of d;xy reflects the prior belief regarding which is the favored
treatment in every comparison.

On the top of giving fixed values to the direction variable, I also employ a
probabilistic approach to allows for some level of uncertainty in the prior belief
about the favored treatment (112). In this case d;yy would be 1 or 0 with some
unknown probability Pyxy and can be estimated as

doo = { bxy, X is expected to be favored
WY 7 |=bxy, Y is expected to be favored

with

bxy~Bernoulli(Pyy)
where Pyy is the probability of the treatment assumed to be favored being indeed
favored.
I combine both the fixed and the probabilistic direction approaches with several
assumptions about the directionality of bias. These include the following
scenarios:
- The covariate z;yy only impacts comparisons of control versus active (experimental)

interventions (‘active-favored’). This scenario might be more plausible when
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small-study effects are caused either by publication bias or by differences in
study quality; in both cases the effect of active interventions is expected to be
exaggerated.

- The covariate zjyy, impacts every comparison favoring the newer treatments (‘new-
favored’). In this scenario, the potential for small-study effects is allowed also in
the head-to-head comparisons, where the newer treatment between X and Y is
expected to be favored. The definition of newer and older treatments can be
based on the date of licensing or on the publication of the first trial evaluating
each treatment. The control intervention (no treatment, placebo or standard
care) is considered here the older treatment in the network. In case that
treatments X and Y are equally new, then d;xy = 0 (i.e. bias is not likely to
operate in this comparison).

- The covariate z(y, impacts every comparison favoring the sponsored treatments
(‘sponsored-favored’). This scenario is similar to the previous, but assumes that in
each comparison XY the sponsored treatment is expected to be favored, while
if no information about sponsoring is available, then d;xy = 0.

- The covariate zjy, impacts every comparison favoring either the sponsored or the
newer treatments (‘sponsored/new-favored’). This is a combination of the two
previous scenarios. More specifically, in every XY comparison the sponsored
treatment is expected to be favored, if information about sponsorship exists, or
the newer treatment otherwise.

Then, I infer about whether the employed scenario is likely to hold based on the
sign of the coefficients fxy. The way that I have defined the direction variable to
take values 1 or -1 implies that a positive coefficient By, suggests that the direction
of prior belief seems plausible, whereas a negative By, suggests that small-study
effects are more likely to operate in the opposite direction. Note that all
assumptions presented in Section 4.2.2 can be employed to model the comparison-
specific coefficients Syy.

It is important to note that the potential for bias in a network of interventions

depends on the clinical setting. There might be several types of bias working with
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unknown mechanisms; such biases could not be accounted for in a statistical

model.

5.4 A network meta-epidemiological study assessing the impact of

trial design limitations

5.4.1 Selection of networks of interventions

A detailed description of the search strategy and the selection process for
networks of interventions published until March 2011 is available in Section 3.2. In
this network meta-epidemiological study, which investigated the impact of RoB
components, I considered only star-shaped networks. All types of outcome
measures (dichotomous, continuous, etc.) and effect sizes (OR, MD, etc.) appeared

in the individual studies were eligible.

5.4.2 Data extraction

The extracted data from the included networks are presented in detail in Section
3.3. In addition to the outcome data, RoB information was extracted from each
network regarding the appropriate conduct of four items; random sequence
generation, allocation concealment, blinding of participants and blinding of
outcome assessors. If such information was not available, it was sought from the
authors of each network publication. For networks for which RoB data could not
be obtained either from the published paper or from the authors, this was assessed
by two reviewers independently for every included RCT based on the Cochrane
RoB Tool (59). All studies were classified into three categories; being at low, high

or unclear RoB according to following criteria (59):
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Random generation of allocation sequence. Methods that were considered adequate
to suggest the random sequence generation included coin tossing, random
number table, dice throwing, computer random number generator, restricted
randomization methods (minimization technique, random permuted blocks,
etc.) or equivalent. Trials that used other inappropriate methods were
considered as being at high RoB. Studies were classified into the unclear RoB
group when no or insufficient information was provided from the publications
to allow judgment of low or high risk.

Allocation concealment. Appropriate methods of allocation concealment
implying that both participants and investigators were not likely to foresee the
treatment assignment included sequentially numbered opaque and sealed
envelopes, central allocation, sequentially numbered drug containers of
identical appearance or equivalent. High RoB was assumed for trials using any
other non-adequate method and unclear RoB for trials that did not describe the
employed method explicitly.

Blinding of participants & outcome assessors. Studies were considered as being at
low RoB when the authors described the study as double-blinded and reported
the use of identical pills, identical containers, etc. For networks with hard (e.g.
death) or objective (e.g. lab outcomes) outcomes all trials were classified into
the low risk category regarding the blinding of outcome assessors. Studies
described as double-blinded without providing further details on how
blinding was achieved were classified into the unclear risk category. For
networks with self-assessed outcomes the judgment for blinding of

participants and blinding of outcome assessors was the same.

Any disagreements between the two reviewers were resolved by discussion.

5.4.3 Statistical analysis

I initially analyzed each network including at least ten studies (to ensure sufficient

power of meta-regression (13)) using a hierarchical NMA model (see Section 2.2.2)
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and network meta-regression (see Section 4.2) models assuming a common
heterogeneity parameter (72) across all comparisons. I used arm-level outcome
data in the analyses when they were available and study-level data otherwise.

The covariate zjy, in Equation (5.1) was an indicator variable, which showed
whether study i was assessed being at high, unclear or low RoB. More specifically,
I defined z, as

2t = {O , study i is at low RoB
¥Y 711, study i is at high/unclear RoB

The fixed direction approach was used for the direction variable d;yxy, which was
combined with the “active-favored” assumption; that is the only sensible direction
scenario in star-shaped networks.

The comparison-specific coefficients Byy within each star network were assumed
to be identical implying that the impact of each bias component was similar
irrespective of the active treatment being compared with the control intervention
(i.e. the common comparator intervention). I also employed the exchangeable
coefficients assumption as a sensitivity analysis to allow for variability in the bias
parameters across the different comparisons (see Section 4.2.2). For every network
n a positive coefficient B, suggested that studies at high or unclear RoB tended to
estimate larger treatment effects than low-risk studies favoring the active
treatments.

After analyzing each network separately, I used a network meta-epidemiological
model to link all the network-specific coefficients B, (n =1,...,N). This model
allowed for between-network variability assuming that all B, share a common
normal distribution, hence B,~N(B, w?). As a sensitivity analysis, the assumption
of a common overall coefficient across networks (B,, = B) was employed as well. A
detailed description of these models can be found in Section 4.3 and a graphical
representation for the case of three networks in Figure 5.3. In this way networks
including few studies borrowed strength from the larger networks and the overall
coefficient B attained increased precision.

To ensure the comparability of bias parameters across the NMA and yield a

meaningful overall B, I synthesized in the network meta-epidemiological model
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only networks using the same effect size measure; this was OR for dichotomous
outcomes, MD for continuous and HR for time-to-event outcomes. Networks
using different effect sizes (RR, SMD, etc.) were analysed only separately.

The association between the four RoB items and the relative treatment effects was
measured as the ratio of odds ratios (ROR) for dichotomous outcomes, which is

estimated as exp(B,,) within each network or exp(B) across networks.

@ ot

Figure 5.3. Graphical representation of the network meta-epidemiological model (three-network
example). Stochastic nodes (associated with distributions) and deterministic nodes (logical
functions of parameters) are presented in oval shapes and data are presented in rectangular
shapes. Single-line arrows represent distributions and double-line arrows represent logical
functions.

5.4.4 Subgroup & sensitivity analyses

I classified the included meta-analyses according to their primary outcome into
mortality and non-mortality networks and I also synthesized the two subgroups
separately using the network meta-epidemiological model (103).

An additional analysis was performed to check the sensitivity of results to
different criteria for RoB classification that might have been used by the original

authors of the publications. Therefore, this sensitivity analysis included only
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networks for which RoB data were not available (in the published networks or
after request from the authors) and thus were extracted from the two reviewers
using the criteria described in Section 5.4.2. A second sensitivity analysis aimed to
check whether the type of competing interventions affected the results by

excluding the networks with non-pharmacological interventions.

5.4.5 Model selection & implementation

I used the deviance information criterion (DIC) as measure of model parsimony
and I considered a three-unit decrease in DIC to suggest a better compromise
between model fit and complexity (114).

All applied models were fitted in WinBUGS 1.4.3 (71) using Markov chain Monte
Carlo simulations. Normal vague prior distributions N(0,10*) were given to the
basic parameters pyy, the network-specific and overall mean coefficients, B, and B,
and the effect of the control intervention (e.g. logit(m;x) or ¢;x in Equation (1.6))
for networks for which arm-level data were used. A half-normal prior distribution
was assumed for the heterogeneity standard deviation, T~N(0,1) witht > 0 and a
uniform U(0,3) for the between-network standard deviation w in the network
meta-epidemiological model. Two alternative prior distributions were employed
for the between-network variability as sensitivity analysis; a uniform U(0,10) on w
and a normal N (0,103) on In(w).

For all analyses two Markov chains were run after a burn-in period of 10,000
simulations. Achievement of convergence was judged by a visual inspection of the
two chains. Results are reported in terms of posterior medians with 95% credible

intervals (Crl).
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5.4.6 Results

Eligible networks

The selection process (Figure 3.1) identified 32 eligible star-shaped networks that
involved 613 individual trials. The characteristics of the eligible networks are
presented in Table 5.1 and the judgment about the RoB of the included studies in
each network in Table 5.8. The independent network-specific meta-regression
analysis included 22 networks, which included at least ten studies (545 trials in
total); thus 22 network-specific coefficients B, were obtained.

The network meta-epidemiological model included 20 star networks (after
excluding networks with overlapping studies) reporting dichotomous outcomes
measured with OR, whereas the remaining networks were not synthesized due to
the small number of networks suitable to be linked together; those were 5 star
networks with continuous data, 4 with time-to-event data, 1 with rate data and 2

measuring dichotomous outcomes with RR.

Accounting for the impact of risk of bias components

The estimated network-specific coefficients B, ..., B, suggested that none of the
four RoB items substantially affected the treatment effects derived from network
meta-analysis. From the 22 star networks included in the independent meta-
regression analyses, 55%, 60%, 56% and 61% yielded positive coefficients for
random sequence generation, allocation concealment, blinding of participants and
blinding of outcome assessors respectively (Table 5.3). However, none of these
coefficients reached statistical significance. Differences in study design with
respect to the four bias items did not appear to explain the estimated
heterogeneity in the networks; the relative change in heterogeneity standard
deviation () did not exceed the 3.5% of the estimated heterogeneity from the

NMA model without covariates for any of the networks.
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Similar results were derived from the network meta-epidemiological model that
linked 20 networks with dichotomous data. The four overall coefficients (B)
showing the estimated association between random sequence generation,
allocation concealment, blinding of participants and outcome assessors (assuming
fixed coefficients within networks and exchangeable across networks) and
treatment effects are presented in Figure 5.4. The graph does not suggest a
tendency of high or unclear risk studies to estimate larger treatment effects
compared to low risk trials. The between-network standard deviation estimates
(w) were (on log(OR) scale) 0.91 with Crl (0.75,1.09) for random sequence
generation, 0.98 (0.83,1.18) for allocation concealment, 1.16 (0.95,1.43) for blinding
of participants and 1.15 (0.83,1.60) for blinding of outcome assessors. Assuming a
fixed coefficient across networks without accounting for the variability across
networks did not alter substantially the results of the network meta-regression

model.

3 Studies
RoB item Subgroup Low risk / Total ROR 95% Crl
|
Sequence  Non-Mortality Networks ~ 84/254 —0—{— 0.86 (0.67,1.10)
Generation  Mortality Networks 44123 . 1.02  (0.56,2.10)
All Networks 128/377 — 0.91 (0.75,1.09)
|
|
|
Allocation Non-Mortality Networks ~ 72/254 —— 1.02  (0.78,1.34)
Concealment Mortality Networks 34/123 * 095 (0.57.1.79)
All Networks 106/377 —q—l 0.98 (0.83,1.18)
|
I
Blinding of  Non-Mortality Networks ~ 124/254 S 1.15 (0.86,1.60)
Patients Mortality Networks 80/123 : * 1.18 (0.47,3.21)
All Networks 204/377 —:—0— 1.16  (0.95,1.43)
|
I
Blinding of  Non-Mortality Networks ~ 143/254 e 1.15 (0.83,1.59)
Outcome Mortality Networks 123/123 |
Assessors Al Networks 266/377 — 1.15  (0.83,1.60)
|
I l\ I I I
ROR 0.5 1 15 2 25

Figure 5.4. Overall ratios of odds ratios (ROR) for each risk of bias component derived from the
joint analysis. Results are reported also in subgroups of mortality and non-mortality networks.
Outcome assessors were defined as being blinded for all mortality networks. (CrI=Credible
Interval)



Table 5.1. Characteristics of eligible star-shaped networks

Ne:gork Reference Studies Treatments Control Topic & Outcome Effect Measure
1 Abdullah 2008 18 8 Placebo effectiveness in chronic asthma (oral Odds ratio
corticosteroids elimination)
effectiveness of phosphodiesterase-5
2 Berner 2006 14 4 Placebo (PDE_.S) inhibitors f or erectile Mean difference
dysfunction (International Index of
Erectile Function (IIEF) score)
effectiveness of beta-lactams for the
3 Edwards 2009 30 4 Imipenem/Cilastatin  treatment of hospitalized patients with Odds ratio
infection (clinical response)
Evening NPH . . . . .
4 Fakhoury 2008 5 3 (neutral p%otamine reducing weight gen 1 patients with Mean difference
Hagedorn) type 2 diabetes
&
antibiotic prophylaxis in
5 Gafter-Gvili 2005 37 5 Placebo neutroneutropenic patients (all-cause Odds ratio
mortality)
effectiveness of bisphosphonates in the
6 Jansen 2011 8 6 Placebo prevention of vertebral fractures (new Odds ratio
vertebral fractures)
” Kumar 2010 6 3 Melphe.llan + first.-line therapy for patients With Hazard ratio
Prednisone multiple myeloma (overall survival)
effectiveness of medium or low dose
8 Lim 2003 5 3 Placebo aspirin in preventing occlusion of vein Odds ratio
grafts (one or more occlusions)
9 Lim 2009 13 3 No Treatment/ Non-Small Cell Lung Cancgr Hazard ratio
Placebo chemotherapy (overall survival)
effectiveness for prevention of venous
10 Loke 2011 9 3 Enoxaparin thromboembolism (total venous Odds ratio
thromboembolisms (VTE))
effectiveness of interventions for
11 Maas 2009 14 3 Control prevention of asthma in children at high Odds ratio

risk (current diagnosis of asthma in




12

13

14

15

16

17

18

19

20

21

22

Makani 2011

Mason 2004

McLeod 2007

Mills 2008

Mills 2009

Mills 2009

Mills 2011

Moreno 2009

Nelson 2006

Peterson 2008

Piccini 2009

25

29

19

14

58

50

26

17

7

13

CCB (calcium

channel blocker)

Placebo

Placebo

Placebo

Interferon-A

Amphotericin B

Deoxycholate

Control

Placebo

Placebo

Placebo

Placebo

childhood)
effectiveness of renin-angiotensin
system blockade on calcium channel
blocker-associated peripheral edema
(incidence)
effectiveness of topical Non-aspirin,
Non-steroidal Anti-inflammatory Drugs
(NSAIDs) for acute pain (50% or more
pain reduction)
effectiveness of drugs for the treatment
of ankylosing spondylitis (Assessment
in Ankylosing Spondylitis (ASAS 20) -
20% improvement at 12 weeks)
effectiveness of statins in cardiovascular
disease (mortality)
relative effectiveness of new therapies
for metastatic renal cell cancer
(Progression-free survival)
effectiveness of antifungal treatments
for invasive Candida infections (all-
cause mortality)
effectiveness of statins for
cardiovascular disease (all-cause
mortality)

effectiveness of antidepressants

effectiveness of non-hormonal therapies

for menopausal hot flashes
effectiveness of treatments for adults
with attention-deficit hyperactivity
disorder (clinical response)
effectiveness of treatments for the
prevention of recurrent atrial fibrillation
(recurrence)

Odds ratio

Odds ratio

Odds ratio

Odds ratio

Hazard ratio

Odds ratio

Odds ratio

Standardized
mean difference

Mean difference

Risk ratio

Odds ratio




23

24

25

26

27

28

29

30

31

32

Playford 2006

Quilici 2008

Rheims 2011

Rice 1999

Singh 2009

Stettler 2006

Sultana 2008

Uthman 2010

Welton 2008

Yazdanpanah
2004

7

7

58

15

27

10

11

14

13

14

20

Placebo

Placebo

Placebo

No intervention

Placebo

Placebo
Gemcitabine
Placebo
Placebo

Dual therapy

antifungal agents for preventing fungal
infections in liver transplant recipients
(total mortality)
effectiveness of the non-ergot-derived
dopamine agonists in restless legs
syndrome (Clinical Global Impressions
Improvement (CGI-I) scale responders)
effectiveness of antiepileptic drugs in
adult refractory partial epilepsy
(response)
effectiveness of nurse-delivered
interventions on smoking behaviour in
adults (smoking cessation)
effectiveness of biologics for
rheumatoid arthritis (American College
of Rheumatology Criteria (ACR50 - 50%
improvement
effectiveness of drug eluting stents in
patients with and without diabetes (in-
stent restenosis)
effectiveness of treatments for advanced
pancreatic cancer (overall survival)
effectiveness for treating anxiety
disorders in children and adolescents
(improvement)
antiviral treatments for influenza A & B
(patients without symptoms)
effectiveness of antiretroviral
combination therapy (progression to
AIDS or death)

Odds ratio

Odds ratio

Risk ratio

Odds ratio

Odds ratio

Rate ratio

Hazard ratio

Odds ratio

Odds ratio

Odds ratio
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Accounting for the impact of the RoB items did not appear to influence model

parsimony in both independent and meta-epidemiological analyses; differences

in DIC were smaller that the three-unit threshold which can suggest

improvement in model parsimony (Table 5.4).

Table 5.2. Number of studies assessed as being at low, unclear and high risk of bias for each star
network (L=low, U=unclear, H=high).

Random Sequence Allocation Blinding Blinding of
Network : . .
D Generation Concealment of participants outcome assessors
L u H L u H L u H L U H
1 2 16 - - 18 - 5 13 - 5 13 -
2 1 13 - 1 13 - 2 11 - 2 11 -
3 4 25 1 3 26 1 1 10 19 2 10 18
4 2 3 - 4 1 - - - 5 - - 5
5 13 24 - 10 25 2 14 - 23 37 - -
6 3 5 - 2 6 6 2 - 8 - -
7 6 - - 2 4 - - 6 - 6 - -
8 - 5 - - 5 - 5 - - 5 - -
9 3 30 - 14 19 - - 33 - 33 - -
10 7 2 - 7 2 - 9 - - 9 - -
11 9 5 - 14 - - 2 3 9 13 - 1
12 6 19 1 24 10 15 - 9 16 -
13 6 23 - 5 24 - 13 16 - 11 18 -
14 3 5 - 2 6 - 8 - - 1 6 1
15 8 10 1 9 1 9 15 1 3 19 - -
16 5 - - 1 4 - - 5 - - 5 -
17 4 8 2 3 10 1 1 3 10 14 - -
18 22 36 15 43 58 - - 58 - -
19 1 49 - - 50 - 18 32 - 17 33 -
20 15 11 1 11 - 16 10 - 16 10 -
21 1 15 1 4 13 - 11 6 - 9 8 -
22 7 - - 4 3 - 7 - - 6 - 1
23 2 5 - 2 5 - 5 - 2 3 4
24 4 3 - 4 3 - 5 2 - 5 2 -
25 12 46 - 12 46 - 21 37 - 21 37 -
26 5 8 2 3 10 2 - - 15 10 - 5
27 7 20 - 11 16 - 20 6 1 21 5 1
28 6 4 - 6 4 - 8 - 2 8 2 -
29 6 5 - 8 3 - 11 - - 11 - -
30 7 7 - 2 12 - 6 8 - 9 6 -
31 4 9 - 3 10 - 7 6 - 7 6 -
32 5 9 6 8 - 7 6 1 14 - -
Total 186 420 7 173 425 15 291 231 90 389 192 32
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I compared the relative ranking of interventions within each network between

the standard NMA model without covariates and the meta-epidemiological

model. Small differences in the ranking of treatments were present in three, two

and one network when the results accounted for the impact of blinding of

participants, blinding of outcome assessors or sequence generation and allocation

concealment respectively.

Table 5.3. Network-specific coefficients from the separate analysis. Missing values are for
networks in which all studies are at low or unclear/high RoB.

Random

Blinding of

Network sequence Allocation Blinding outcome Measure of
ID . Concealment of participants Effect
generation assessors
1 12.68 2.14 2.14
(0.52,237.46) (0.16,24.29) (0.16,24.29)
3 0.88(0.37,1.99) 1.17 (0.46,2.86) 1.39 (0.33,6.11) 1.36 (0.33,5.64)
5 1.62 (0.57,5.37) 1.73 (0.55,5.53) 1.40 (0.47,4.06) -
11 1.03 (0.62,1.68) 1.77 (0.84,3.63)  1.75 (0.67,4.90)
12 0.73(0.49,1.07)  1.15(0.66,1.99) 1.01 (0.62,1.55) 1.08 (0.68,1.65)
13 0.41(0.11,1.65)  1.36 (0.33,6.49) 1.00 (0.23,4.57)  2.18 (0.54,9.58) .
15 1.04 (0.53,1.62)  0.95(0.53,1.77)  0.95 (0.58,1.95) - Ratio of
17 1.11(0.36,3.25)  0.92 (0.41,2.08) - - odds ratios
18 1.06 (0.81,1.32)  0.96 (0.77,1.19) 1.27 (0‘95,1.82) -
26 0.61 (0.23,1.65)  1.03 (0.33,3.22) 1.31 (0.53,3.35)
27 1.68 (0.89,3.25)  2.10 (0.954.66) 1.65(0.82,3.35) 1.65 (0.75,3.71)
30 0.84 (0.13,4.85) 1.28(0.23,9.03) 0.92 (0.31,3.32) 0.51 (0.18,1.26)
31 0.54 (0.31,0.94) 0.61 (0.31,1.13) 0.57 (0.24,1.27)  0.57 (0.24,1.28)
32 0.82(0.551.25)  0.82(0.55,1.22)  0.97 (0.61,1.60) -
21 0.76 (0.19,3.13)  1.06 (0.57,2.08) 1.14 (0.64,1.92) 1.21(0.68,2.01) Ratio of risk
25 1.34(0.94,1.92)  0.86 (0.58,1.26)  0.97 (0.68,1.38)  0.97 (0.68,1.38) ratios
0.86 0.66 1.09 Ratio of rate
28 0.94(0.10,9.30) (0.05,15.03) (0.02,17.12) (0.04,27.11) ratios
9 1.09 (0.81,1.51)  1.09(0.90,1.31) - - Ratio of
29 0.92 (0.68,1.26)  1.01 (0.76,1.36) - - hazard ratios
Difference of
-0.03 -0.01 standardized
19 0.02(-0-26,0.32) ) (-0.15,0.10) (-0.14,0.11) mean
differences
0.72 0.19 0.19 .
2 073 (200347) 5 003.49) (-1.78,2.16) (-1.78,2.16) lefgj:fle of
0.41 0.68 0.68 .
20 0.07 (-0.97,1.16) (:0.65,1.57) (:0.38,1.82) (:0.38,1.82) differences
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Table 5.4. DIC values of the applied models for star networks. Missing values are for networks in
which all studies are at low or unclear/high RoB.

Modelwith ~ Modelwith — \ /el wign ~ Model with
Network Model allocation random blinding of blinding of
ID w1th.o ut concealment sequence participant outcome
covariates . generation as . assessors as
as covariate . as covariate .
covarlate covariate

1 72.23 - 71.10 70.52 70.52
2 18.73 20.07 20.06 20.29 20.29
3 101.76 102.29 102.69 102.17 102.10
5 142.99 148.38 147.21 148.93 -
9 4416 44 .88 4471 - -
11 41.63 - 43.62 40.97 4243
12 81.45 83.03 80.63 83.61 83.28
13 112.63 112.70 114.20 112.76 111.71
15 63.36 67.90 67.48 67.28 -
17 40.48 42.57 42.60 - -
18 218.3 228.77 229.36 225.04 -
19 48.44 - 50.19 50.25 50.22
20 43.25 43.59 43.83 42.87 42.87
21 27.78 28.52 29.28 28.55 28.36
25 82.72 83.42 81.89 84.33 84.31
26 55.7 56.40 56.59 - 56.27
27 100.72 100.27 100.21 101.05 100.94
28 5.62 7.49 7.48 7.45 7.50
29 13.91 15.72 15.40 - -
30 54.27 54.46 54.46 54.82 54.30
31 41.61 40.47 37.87 41.11 41.21
32 38.97 40.21 40.36 41.54 -

Subgroup & sensitivity analyses

Figure 5.4 shows that when the networks were analysed in subgroups of
mortality and non-mortality outcomes the results remained similar to the
primary analysis.

The meta-epidemiological model that included only the 12 networks for which
risk of data were not available from the publications but extracted according to
the criteria of Section 5.4.2 gave RORs close to those from the model including all
20 networks; 0.83 (0.63,1.12) for random sequence generation, 0.97 (0.74, 1.30) for
allocation concealment, 1.07 (0.80, 1.46) for blinding of participants and 1.22 (0.83,
1.88) for blinding of outcome assessors. This means that the potentially different

criteria used by the authors for the RoB assessment did not affect the results.
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Excluding 2 networks that compared non-pharmacological intervention did not

alter the results of the primary analysis.

5.5 A network meta-epidemiological study assessing the impact of

small-study effects

5.5.1 Selection of networks of interventions & data extraction

I also used the collection of star networks assembled as described in Section 5.4 to
investigate the impact of small-study effects on NMA results. Subsequently, I
used an enriched database with all full networks including at least 4 competing
treatments in a sensitivity analysis. These full networks were compiled according
to Section 3.2 with the additional inclusion criterion of including an ‘obvious’

control intervention; that is no treatment, placebo or standard care.

5.5.2 Statistical analysis

The process of analysis was similar to that described in Section 5.4.3, namely I
analyzed the networks both independently and then synthesized them in a
network meta-epidemiological model. I also used the same criteria to define the
eligible networks for each type of meta-regression analysis.
The network meta-regression model that accounted for the impact of small-study
effects on the results included as covariate the variance of the observed relative
effects (e.g. logOR, MD, logHR) in individual studies. This means that

Zixy = Sixy
where for networks with arm-level dichotomous data

) 1 1 1 1
Sxyy=—+——-+—+
Tix MNix —Tix Tiy Ny Ty
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Formulae for estimating the variance of other effect sizes (RR, MD, etc.) can be
found in Borenstein et al. (115,116). Using this covariate in every network n and
the ‘active-favored’ definition for d;yy in Equation (5.1), a positive network-
specific coefficient B, suggested that small studies tended to estimate larger
treatment effects in favor of active treatments than larger studies. Note that study
variance was selected for the primary analysis because a simulation study
suggested that using this measure is less likely to give biased estimates compared
to other measures of study precision (96).

A limitation of this approach for dichotomous outcomes is the inherent
correlation between OR and its variance. This phenomenon, known as ‘regression
to the mean’, will suggest the presence of small-study effects even when such an
association does not truly exist. However, the use of the exact binomial

likelihood, whenever arm-level data were available, mitigates this dependence.

5.5.3 Sensitivity analyses

I used alternative measures of study precision (standard error, inverse variance
and square root of inverse variance) as covariates in sensitivity analyses. The
impact of trial sample size on treatment effects was assessed using the enriched
database with the full networks. I defined the studies as small if they included
less than 200 participants (following Zhang et al. (117)) and less than 300
participants using the criteria described in the following Section. Then, I used a
binary covariate taking values 1 and 0 to indicate that each study was small or
large, respectively.

Considering that the exchangeability assumption might be violated by networks
resulting in very small or large coefficients, such networks were excluded in a
sensitivity analysis. To check whether different effect sizes were affected more by
small-study effects, I alao used the network meta-epidemiological model on the

RR scale instead of the OR scale.
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5.5.4 Definition of small studies

The number of participants that might constitute a small RCT was defined based
on previously suggested criteria by Niiesch et al. (95) and Zhang et al. (117).
More specifically, I considered a trial being large if it could attain 80% power to
detect a ‘moderate’ effect size. The definition of a moderate effect size for
continuous outcomes is not straightforward as it depends on the measurement
scale. In the case of dichotomous outcomes, I defined a moderate OR as the 1st
quartile from the distribution of the summary pairwise In(OR) derived from the
star networks with dichotomous beneficial outcomes. The rationale for this
arbitrary choice was that the majority of star networks were expected to have
estimated ‘large’ treatment effects due to the nature of the comparisons (i.e.
active-experimental vs. control interventions). Then, a control group risk (pyx) was
further assumed by taking the mean log(odds) from all control groups included
in these networks. The total number of participants that a trial needed to detect

this reduction in risk was calculated using the formula (118)

s (Zay22(1 — P) + z5\/px (1 — px) + oy (1 — py))z (5.2)
= 7

N

Ty

where A = |:l—X - is the required absolute risk reduction, p = (;—X+ Z—Y) /2,
X X Y

ny

Zgs2 = 1.96 for a two-sided significance level at @ = 5% and zz = 0.84 for 80%

power.

5.5.5 Model selection & implementation

All applied models were fitted in WinBUGS 1.4.3 (71). For a description of the
prior distributions, the assessment of convergences and the measures used for

model selection see Section 5.4.5.
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5.5.6 Results

Eligible networks

A description of the eligible star-shaped networks for this study is given in
Section 5.4.6. The selection process further identified 48 full networks that met all
inclusion criteria, which involved 934 RCTs; 34 full networks with dichotomous
data that used OR and 13 full networks with continuous outcomes that used MD
were synthesized with the network meta-epidemiological model as a sensitivity
analysis. After excluding networks with overlapping studies, the aforementioned
full networks were combined with 18 dichotomous and 2 continuous star
networks respectively. The 7 networks with time-to-event data (3 full and 4 star
networks) were not synthesized because of their small number. The

characteristics of the included full networks are available in Table 5.5.

Accounting for the impact of small-study effects

Out of the 22 networks that included 10 or more studies 18 (81.8%) gave positive
coefficients (B,) suggesting that smaller studies tend to show the active
treatments more effective or safer (compared to the control) than do larger. Eight
of these positive coefficients as well as one from the four negatives were large in
magnitude and also statistically significant (Table 5.6). Improvement in model
parsimony after controlling for the impact of small-study effects was present in 4
networks with significant positive coefficients, where the DIC was considerably
reduced.

Differences in precision across studies appeared to partly explain the estimated
heterogeneity in 9 (40.9%) networks; the relative drop in heterogeneity standard
deviation (r) ranged from 7.1% to 39.5% compared to the NMA without
covariates. 9 from the remaining networks resulted in a relative increase from

1.4% to 9.1% (Figure 5.5).
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Figure 5.5. Comparison of (a) the heterogeneity standard deviations, and (b) the summary relative
effect sizes of all treatments vs. control for all networks with at least 10 studies between the model
without covariates and the model controlling for small-study effects. The green dashed lines
represent equality of effects between the two models.

Figure 5.5 presents the change in all relative effects (active vs. control) of the 22
networks between the model without covariates and the model controlling for
small-study effects. According to the graph most relative effects were reduced
after including study variance as covariate suggesting that small studies might
exaggerate the effect of active treatments when they are compared to the control.
Note that I transformed all relative effects in this graph so as positive values
show the active treatments more effective/safer than the control.

The network meta-epidemiological analysis yielded compatible findings with the
independent analyses. The overall summary ROR estimated from the model that
assumed exchangeability across networks was 1.84 (1.09,3.32) with between-
network standard deviation (w) equal to 0.83 (0.41,1.48) (Figure 5.6). When a
fixed coefficient B was estimated without allowing for variability across
networks, the summary ROR was smaller in magnitude but more precise (1.38
with Crl 1.11 to 1.70). The DIC of the network meta-epidemiological model was
1276, which was considerably smaller than the sum of DICs from the respective
models without covariates (1291). This implies that the models accounting for

small-study effects might be more parsimonious. In 3 of the networks included in
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the meta-epidemiological analysis treatment ranking changed when small-study
effects were taken into account. In these networks, the control intervention was

placed in a higher rank when the network meta-regression model was applied.

m Jointly @® Separately
Network ID ROR (95% Crl) ROR (95% Crl)
i ——
1 : - 4.88 (1.58,16.53) 9.90 (2.64,48.72)
3 *.74’—#' 0.58 (0.25,1.43)  0.40(0.17,0.96)
"7
5 [ — 2.65(1.41,5.61) 2.93(1.45,7.05)
6 —e 1.79 (0.28,11.80)
8 : . 2.49 (0.50,16.20)
10 T 1.67 (0.28,9.76)
11 ' > _ . 1.99 (0.52,8.60) 2.47(0.22,28.13)
12 . a— 1.35(0.73,2.64) 1.26(0.66,2.63)
I
13 ! [ — ——— 3.08 (1.17,9.22)  4.43(1.29,17.50)
14 i 2 2.19 (0.50,11.79)
17 — 1.25(0.46,3.37)  1.00(0.29,3.52)
J
18 —— 1.09 (0.83,1.46)  1.07(0.81,1.43)
22 T - 2.17 (0.70,9.37)
23 ! * 2.52 (0.53,16.59)
24 —® 1.53 (0.26,8.04)
26 * 1.19 (0.29,4.43)  0.56 (0.06,4.86)
27 f———— 3.95 (1.40,12.69) 7.07 (1.89,28.13)
30 | S — —— 3.13(1.20,9.84)  4.71(1.37,21.91)
31 —— 0.88(0.30,2.33)  0.57(0.16,1.88)
32 :;4_: 1.21 (0.59,2.61)  1.07 (0.49,2.56)
]
i
Overall | —e— 1.83 (1.09,3.32)
T T I T T T T T
ROR g1 05 115 3 5 710

Figure 5.6. Network-specific small-study effect coefficients for all networks with dichotomous
data based on separate and meta-epidemiological analyses. (CrI=Credible Interval)

Definition of small studies for the sensitivity analysis

Based on the approach described in Section 5.4.4 an OR=1.88 was considered as a
moderate effect size and assuming a control group risk of 36% the required
absolute reduction in risk (D) was 16%. Then, Equation (5.2) gives that a trial
should include 300 participants to estimate this risk reduction with 80% power
(two-sided a = 5%). Thus, the threshold of 300 was used to distinguish between
small and large trials in the sensitivity analysis that considered the sample size as

explanatory variable.



Table 5.5. Characteristics of eligible full networks for the sensitivity analysis.

Network Reference Studies Treatments Control Topic & Outcome Effect
ID Measure
1 Ades 2010 15 9 Placebo effectiveness Qf antipsychotic treatments for Odds ratio
schizophrenia (relapse)
2 AnOth;(l)sll; tawee 11 4 Placebo chronic prostatitis (pain score) di?f/[eeri?lce
3 Ara 2009 12 5 Placebo adverse eYent (t%‘eatm'ent related) le.ading to Odds ratio
drug discontinuation (no. of patients)
4 Baker 2009 39 8 Placebo exacer%ﬁﬁiglf;%eiz:sec}(‘é‘g‘%gzit)md“’e Odds ratio
5 Ballesteros 2005 9 4 Placebo effectiveness of antidepressants in dysthymia Odds ratio
6 Bangalore 2011 49 8 Placebo association between .antihyperter.lsive drugs Odds ratio
and cancer risk (cancer risk)
effectiveness for the treatment of psoriasis
7 Bansback 2009 22 8 Placebo (Psoriasis Area & Severity Index (PASI) 75 Odds ratio
response score)
effectiveness of topical therapies for scalp
8 Bottomley 2011 10 7 Placebo psoriasis in adults (Investigator Global Odds ratio
Assessment (IGA) response after 4 weeks)
effectiveness for the prevention of Non-aspirin,
Non-steroidal Anti-inflammatory Drugs .
? Brown 2006 40 6 Placebo NSAID induced GI toxicity (seriou}sl Indfced Odds ratio
Gastrointestinal (GI) complications)
effectiveness of treatments for chronic Mean
10 Buscemi 2007 54 4 Placebo insomnia in adults (sleep onset latency - sleep diff
. ifference
diary)
prophylaxis against Pneumocystis carinii in
11 Bucher 1997 18 4 Aerosol.iz.ed ‘ Human Immunodeficiency Virus (HIV). Odds ratio
pentamidine infected patients (number of Pseudocystis
Carinii pneumonia)
effectiveness of antihypertensive on incidence
12 Elliott 2007 22 6 Placebo of diabetes mellitus (proportion of patients Odds ratio

who developed diabetes)
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Table 5.6. Network-specific coefficients and DIC values from the separate network meta-
regression analyses for small-study effects.

Network Small-study Measure of bIc (.)f mode]  DIC of mo.del with

ID effects RORs effect w1th.out study variance as

covariates covariate
1 9.87 (2.66,49.90) 72.23 63.27
3 0.40 (0.17,0.97) 18.73 20.05
5 2.10 (1.08,4.44) 101.76 101.55
11 2.48 (0.24,27.66) 142.99 136.65
12 1.26 (0.66,2.61) 44.16 40.64
13 4.71 (1.48,17.81) 41.63 42.97
15 1.35(0.79,2.41) Ratio of odds 81.45 82.67
17 0.99 (0.28,3.53) ratios 112.63 114.6
18 1.07 (0.80,1.43) 63.36 62.99
26 0.57 (0.06,4.85) 40.48 42.62
27 6.96 (1.88,27.39) 218.3 219.62
30 4.66 (1.34,22.20) 48.44 45.12
31 0.57 (0.16,1.88) 43.25 44.89
32 1.07 (0.50,2.56) 27.78 25.82
21 6.96 (1.04,47.47) Ratio of risk 82.72 81.86
25 210 (0.97,4.44) ratios 55.7 56.47
28 104 (0.84,130)  Ratioof rate 100.72 100.25
ratios
9 4.06 (1.28,12.43) Ratio of 5.62 7.51
29 2.44(0.00,110.95)  hazard ratios 13.91 15.50
Difference of
19 456 (063858  Standardized 54.27 53.1
mean
differences

2 0.48 (-0.86,1.84) Difference of 41.61 42.66
20 0.05(042,049) g ol 38.97 41.04

Sensitivity analyses

The model that used the standard error of the observed effects as covariate

instead of the variance resulted in similar but less precise estimates of the

1

summary ROR (2.01 with CrI 1.02 to 12.22). The alternative models using the —

Sixy

and the 21

Sixy

as measure of study precision gave summary ROR estimates close

to 1; however the DIC of these two models suggested that they might be much
worse than the primary model in terms of model parsimony. One (ID=1) out of

the 20 star networks of the network meta-epidemiological analysis gave a quite
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larger coefficient compared to the other networks. When I excluded this network,
the estimated summary ROR slightly reduced into 1.62 (1.00,2.86). Using the RR
as effect measure (instead of OR) did not materially change the results of primary
analysis.

The inclusion of the full networks with dichotomous outcomes increased the
precision of the analysis and resulted in a summary ROR equal to 1.88 (1.43,2.51).
In the analysis that examined the effect of the total study sample size, I used the
enriched database. The thresholds of 200 and 300 participants used to distinguish
between small and large studies yielded overall RORs of 1.26 (1.10,1.46) and 1.13
(1.00,1.28) respectively. The meta-epidemiological model that synthesized the 15
networks (13 full and 2 star networks) with continuous outcomes resulted in an
overall coefficient (difference of MD) equal to 0.02 (-0.34,2.38).

Changing prior distributions for the between-networks standard deviation

parameter w (Section 5.4.5) gave similar results to the primary analysis.

Association between study precision & risk of bias items

I further used the RoB information described in Section 5.4.2 and Table 5.2 to
check whether small studies were more prone to be designed improperly. Figure
5.7 presents for each RoB item the distribution of study variance for low and
high/unclear risk studies. The graph suggests that for blinding of participants
and blinding of outcome assessors, studies with larger variances are more often
appropriately blinded than studies with smaller variances. On the other hand,
less precise studies appear to be more often at low RoB with respect to the
conduct of random sequence generation and allocation concealment. These
tindings imply that in this network collection larger studies seem to have been
conducted more appropriately than small studies prior to the treatment

allocation but not after that point.
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Figure 5.7. Histograms showing the distribution of the study variances (variance of logOR in
horizontal axis) by risk ob bias category for sequence generation (a), allocation concealment (b)
and blinding of patients (c) and outcome assessors (d).

5.6 A case study exploring the impact of study precision in full
networks

5.6.1 Motivating examples

To exemplify the methods of this Section, I used two full networks both
evaluating typically secondary (safety) outcomes; these are failure of vascular
graft or arterial patency with aspirin, dipyridamole or placebo, and incidence of
diabetes with antihypertensive drugs. Such outcomes are more likely to be
subject to selective reporting, which might cause the presence of small-study
effects in a meta-analysis. In both networks there are trials not including placebo
(i.e. the control intervention) and assumptions based on the novelty or
sponsorship (Section 5.3) of treatments need to be employed for these studies.

Note that substantial heterogeneity is present in both networks, while the
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diabetes network has also a couple of inconsistent loops. All these factors imply
that small-study effects are expectable in some of the pairwise comparisons. The

two examples are described below.

Failure of vascular graft or arterial patency

The first network consists of 31 studies that assess the safety of aspirin,
dipyridamole and placebo regarding the failure of vascular graft or arterial
patency (119). The network plot is presented in Figure 5.8 and the data are
available in Table 5.7. Figure 5.9 shows the contour-enhanced funnel plots for
the three pairwise comparisons in the network, which appear quite asymmetric;
particularly the plot corresponding to the comparison aspirin versus placebo. The
shaded contours in these graphs serve as a way to figure out whether the
asymmetry can be explained by publication bias (when missing studies lie in
regions with p>0.05) or by other reasons such as heterogeneity (when missing
studies lie in regions with p<0.05) (120). Note that no statistically significant
inconsistency was found in the network by comparing the direct and indirect

estimates.

Aspirin ACE inhibitors

Diuretics

CcCcB

Placebo

Aspirin+Dipyridamole

b-blockers

(@) (b)
Figure 5.8. Network plots for (a) first and (b) second network examples. The size of the nodes is
proportional to the number of studies that evaluate each intervention, and the thickness of the
lines to the frequency of each comparison in the network. (CCB=calcium-channel blockers,
ARB=angiotensin-receptor blockers, ACE=angiotensin-converting enzyme)
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More specifically, the direct OR estimate of dipyridamole vs. aspirin was 0.92
(0.45, 1.90) and 1.29 (0.47, 2.81) from the 4 two-arm and the 6 three-arm studies
respectively and the indirect estimate 1.32 (0.77, 2.29) (favoring placebo).

Table 5.7. Outcome data for the network comparing placebo, aspirin, aspirin+dipyridamole with
respect to the failure of vascular graft or arterial patency.

Study Placebo Aspirin Aspirin+Dipyridamole
events total events total events total
1 18 51 10 47 15 49
2 47 153 37 155 35 162
3 114 671 85 676 83 668
4 39 100 16 100 23 100
5 12 17 2 16 6 16
6 12 100 6 100 0 100
7 22 64 - - 20 60
8 27 317 - - 26 313
9 6 40 - - 10 41
10 15 55 - - 8 55
11 37 160 - - 33 160
12 81 205 - - 37 202
13 9 30 - - 4 18
14 20 63 - - 17 62
15 24 64 - - 8 61
16 27 46 - - 13 47
17 14 35 - - 21 34
18 15 68 - - 11 72
19 13 189 - - 6 187
20 86 263 - - 86 286
21 15 32 - - 4 33
22 12 50 - - 15 50
23 19 31 - - 7 22
24 13 67 - - 15 132
25 16 71 15 71 - -
26 15 31 6 29 - -
27 17 69 7 68 - -
28 47 213 24 215 - -
29 28 150 19 148 - -
30 18 25 6 19 - -
31 11 45 2 47 - -

Incidence of diabetes

The second network includes 22 studies and compares the safety of 5
antihypertensive drugs and placebo for incidence of diabetes mellitus (121). The
presence of few studies in each direct comparison (Table 5.8) does not allow

making judgments about asymmetry in conventional funnel plots.
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Aspirin vs. Placebo Dipyridamole+Aspirin vs. Placebo
|

|
b}
\d
|
|
|
|
|
|
|
|

Dipyridamole+Aspirin vs. Aspirin

Standard error of studies

@  Studies

—— Fitted line

fiyy of unadjusted
model

p<1%
1% <p < 5%
B 5<p<10%
. U p>10%

2 4
Observed relative effects in studies

Figure 5.9. Contour-enhanced funnel plots for the first network example by comparison. Points
represent the log(OR) derived from all available direct estimates versus their standard errors.
Shaded contours correspond to levels of statistical significance defined by the p-value of a z-test
for log(OR). Red solid lines are the estimated regression lines and black dashed lines represent
the summary comparison-specific log(OR) estimated from the network meta-analysis model
without covariates.

The comparison-adjusted funnel plot in Figure 5.10 shows all comparisons as
older versus newer treatment assuming that angiotensin receptor blockers (ARB)
is the newest treatment, followed by angiotensin-converting enzyme (ACE),
calcium-channel blockers (CCB), b-blockers and diuretics (assumed equally new)
and then placebo. In this graph missing points on the right of the 0 value suggest
that small studies favoring the older interventions are missing. The graph seems
symmetric implying the absence of small-study effects. However, there might be
other mechanisms of bias directionality operating and masking the association
between relative effects and study precision when a consistent direction (old vs.
new) is assumed. Note also that incidence of diabetes is not very often a pre-
specified outcome in trials comparing antihypertensive drugs (121); an earlier
NMA that compared the same treatments identified 5 studies reporting the

outcome of efficacy but not on incidence of diabetes (122).
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Table 5.8. Outcome data for the network comparing placebo and 5 antihypertensives with respect
to incidence of diabetes.

Study Placebo Diuretics . ACE CCB ARB p-blockers
inhibitors
events total events total events total events total events total events total
1 45 410 32 202 70 405
2 302 6766 119 4096 154 3954
3 8 196 1 196
4 200 2826 138 2800
5 567 7072 799 7040
6 337 5183 380 5230
7 202 2721 163 2715
8 489 2646 449 2623
9 20 424 29 416
10 154 4870 177 4841
11 75 3272 86 3297
12 155 2883 102 2837
13 176 2511 136 2508
14 569 8098 665 8078
15 242 4020 320 3979
16 34 2213 43 1081 37 1102
17 216 5095 251 5059
18 399 3472 335 3432
19 115 2175 93 2167
20 118 1578 140 1631
21 93 1970 95 1965 97 1960
22 845 5074 690 5087
0 KN
FARN
/ | \
// I \\
, ‘.. \\
- 1 // | % \\
= 7 .'*' \
.:_, ,/ - ® | \
£ / ' e
S ’ ° | \
@ / | \
u— | \
2 I B
e 2 / - l AN
@ / | \
% // I e * .
2 / ¢ \
(?)' // : \\
| \\
3 / _ l \
2 : 5 :

) Newer treatment safer than

comparison-average

Older treatment safer thany
comparison-average

Yixy — ﬂ)?y

Figure 5.10. Comparison-adjusted funnel plot for the network comparing placebo and 5
antihypertensives with respect to incidence of diabetes. The red solid line is the estimated

regression line.
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5.6.2 Methods

The methods I used to investigate the possible presence of small-study effects in
both examples are presented explicitly in Section 5.3. I used the variance of the
observed effects in studies as explanatory variable in the network meta-
regression models controlling for differences in precision across studies. I
employed different assumptions about the direction of small-study effects (see

Section 5.3) as well as about the respective coefficients (Section 4.2.2).

5.6.3 Model selection and implementation

All applied models were fitted in WinBUGS 1.4.3 (71). Vague normal prior
distributions N(0,10*) were assumed for the network-specific coefficients B, and
the comparison-specific coefficients Byy. A half-normal prior distribution was
employed for both the heterogeneity standard deviation and the coefficients’
standard deviation, hence 7,¢9~N(0,1) with 7,¢ > 0. Alternative priors for 7 (a
log-normal distribution log(7) ~N(0,10%) and a uniform 7~U(0,10)) were used as
sensitivity analysis. A non-informative prior distribution Beta(1,1) was assumed
for the probability Pyy in the probabilistic direction approach reflecting the
absence of strong prior belief for the direction of small-study effects. 100,000
simulations were run with a burn-in period of 30,000 draws and convergence was
assessed by visual inspection of three Markov Chains with different initial
values.

The parsimony and fit of all models was evaluated using the DIC (see Section
5.4.5) and the values of the posterior mean of the residual deviance D (114). D is a

measure of model fit and should approximate the number of data points.
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5.6.4 Results

Failure of vascular graft or arterial patency

The positive and statistically significant regression coefficients B (Table 5.10)
from all network meta-regression models for this network suggest that there is an
association between study precision and relative effects; less precise studies gave
on average larger treatment effects than more precise studies. Table 5.9 shows
also that model fit and parsimony were improved after the adjustment according
to the DIC and D values. The slight reduction in the between-study standard
deviation () implies that heterogeneity can be explained partly from differences
in precision across studies. All network meta-regression models gave similar
results regarding the summary ORs, which show the active interventions less
effective compared to the model without covariates.

The model that assumed consistency in the regression coefficients (Model 1.6)
suggested that small studies tended to favor the active treatments when these are
compared with placebo. According to the magnitude of the coefficients this
association was larger for the comparison with aspirin rather than dipyridamole.
The negative and non-significant coefficient fyy suggests that dipyridamole is not
favored over aspirin when compared with each other (Table 5.10). The
probabilistic model yielded similar conclusions giving posterior probabilities of
85% and 75% for aspirin and aspirin+dipyridamole being favored over placebo
from small studies respectively. The  posterior probability  for
aspirint+dipyridamole being favored over aspirin monotherapy in small studies
was 50%.

Meta-regression models using the standard error or the inverse of variance as
covariate showed poorer model parsimony (i.e. larger DIC) and thus were not
further investigated.

It is interesting that the DICs of the unrelated mean effects model (see Section
2.3.3) and the consistency model without covariates were the same; this implies

that the consistency assumption might be plausible in this network. However, the
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comparability of the direct and indirect estimates was improved after including
study variance as covariate. This was explored by excluding the direct evidence
about dipyridamole vs. aspirin; hence the four head-to-head trials comparing the
two active treatments and the three-arm placebo-controlled studies after selecting
randomly one of their two active treatment arms. This approach gave an indirect
OR for dipyridamole vs. aspirin 1.32 (0.77,2.29). Analysing this dataset with the
‘new favored’ meta-regression model (with exchangeable coefficients) resulted in
an OR estimate 1.17 (0.64,2.09), which is closer to the respective direct estimate
(OR=0.92 with CrI from 0.45 to 1.90).

Table 5.9. Posterior medians and 95% credible intervals for the odds ratios (OR) and
heterogeneity () for the first network example. DIC and posterior mean residual deviance (D) are
also reported. (A=aspirin, A+D=aspirin+dipyridamole, P=placebo)

Model Assumptions DIC Dt OR,,.p OR(4spywsp  ORiDyvsa T
. 0.46 0.54 121 0.50

11 No covariates 1309755 031,062) (040071) (0.861.72) (0.31,0.76)
‘active-favored’

1.2 & identical 1148  66.2 075 0-90 1.20 0.36
conffiiort (0.53,1.09)  (0.66,1.26)  (0.90,1.61)  (0.20,0.58)
‘active-favored’

0.76 0.89 117 0.36

1.3 ig&i&iﬁeable 155 662 053112) (0.65124) (0.89,1.88) (0.2,0.58)
‘new-favored’

14 & identical 1152 667 0.67 091 1.35 0.35
ooffiai (0.49,093) (0.67,1.25) (1.02,1.82) (0.19,0.57)
‘new-favored’

0.54 0.82 1.52 0.35

15 igfcigz‘r‘f;able 158 668 39074y (0.591.15) (1.082.18) (0.19,0.57)

‘active-favored” (for

basic coefficients) 0.78 0.87 1.11 0.37
1.6 & consistent 1164 663 (054116) (0.631.24) (0.77,1.60) (0.20,0.58)

coefficients

probabilistic ‘new-

favored’ 0.67 0.84 1.25 0.32
L7 & identical 149 645 047096) (0.61,1.14) (0.90,1.72) (0.160.54)

coefficients

1Should be compared with the 68 data points.
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Table 5.10. Posterior medians and 95% credible intervals for small-study effects mean (B) and

comparison-specific coefficients (8) and coefficients” variance (€) (in log(OR) scale) for the first
network example. (A=aspirin, A+D=aspirin+dipyridamole, P=placebo)

Model Assumptions B 4 Biavsp Buspywse  Ba+pywsa
L gcféve—{gvolred' 261
. identica - - - -
coefficients (1.40,4.02)
‘active-favored’
13 & 2.62 0.53 2.76 2.47 0
) exchangeable (0.96,4.47) (0.02,1.94) (1.42,4.33) (1.19,4.02)
coefficients
o ol o3
. identica - - - -
coefficients (1.32,3.62)
‘new-favored’
15 & 2.37 0.46 247 2.37 2.26
) exchangeable (0.93,3.88) (0.02,1.76) (1.27,3.86) (1.18,3.83) (0.34,3.89)
coefficients
‘active-favored’
(for basic 3.03 2.28 0.71
1.6 coefficients) - -
& consistent (1.46,4.76) (0.98,4.02) (-2.57,1.19)
coefficients
probabilistic
17 ‘new-favored’ 2.69 ) i i i
’ & identical (1.42,4.10)
coefficients

Incidence of diabetes

I excluded one study (123) from this network for being associated with very poor
model fit compared to the other studies. More specifically, the standard error of
the remaining 21 studies ranged between 0.06 and 0.30, whereas the standard
error of that study was 1.07. When the study by Lindholm et al. was excluded the
posterior mean deviance of the NMA model was D=49.2 closer to the 46 data
points than the posterior deviance of the full dataset (D=53.2 compared to 48 data
points). The remaining 21 studies were included in all analyses and involved 29
comparisons.

Table 5.11 shows the results of all applied models for this network. The models
assuming identical comparison-specific coefficients (Models 2.2-2.5) suggest that
small studies tend to exaggerate the safety of placebo or of the older treatments.

However, there is large uncertainty and the estimated coefficients are not
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statistically significant. The disagreement between the ‘sponsored-favored” and the
‘sponsored/new-favored” models (opposite sign of the estimated coefficients)
implies the presence of a possible interaction between the direction of small-
study effects and study sponsorship. When the comparison-specific coefficients

were assumed exchangeable the results did not change materially.

Table 5.11. Posterior medians and 95% credible intervals for heterogeneity () and small-study
effects coefficients (B) in log(OR) scale for the second network example. DIC and posterior mean
residual deviance (D) are also reported.

Model Assumptions DIC Dt (3 B

21 No covariates 86.1 49.2 0 (? 610323) -
‘active-favored’ 0.12 -6.69

22 & identical coefficients O+ 470 (0.05,0.22) (-13.59,0.15)
‘new-favored’ 0.12 -4.51

2.3 & identical coefficients >0 ¥0(0.05,022) (:9.45,0.41)
‘sponsored-favored’ 0.13 10.55

24 & identical coefficients 8.1 475 (0.06,0.24) (-4.27,27.71)
‘sponsored/new-favored’ 0.11 -6.40

25 & identical coefficients 838 471 (0.05,0.21) (-12.03,-0.80)
‘active-favored” (for
basic coefficients) 0.11

2.6 & consistent 86.3 478 (0.04,0.21) )
coefficients

2.7 &Szpsogliofjja:(ged 831 462 0.1 Bipon=4.16 (9.80,18.92)

: sroups by ' “(0.04020)  By,,=-6.88 (-12.50,-1.25)

sponsoring

28 ‘sponsored/new-favored’ 808 464 0.10 B22000=7.59 (-8.82,23.82)

) & subgroups by year ' ' (0.03,0.19)  B<2000=-6.90 (-12.40,-1.37)

probabilistic _ 3

2.9 ‘sponsored/new-favored” 841  45.7 0.10 B>2000=6.69 (-34.05,48.61)

& subgroups by year (0.03,0.19)  B<z000=-9-45(-23.39,10.36)

1Should be compared with the 46 data points.

These findings imply that there might not be a “fixed pattern” in the direction of

small-study effects. In this case the assumption of identical or exchangeable
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coefficients might not be reasonable. I employed the consistent coefficients model
(Model 2.6) to explore this possibility. Despite the increased uncertainty of the
tive basic coefficients of the active treatments versus placebo, their different signs
suggest that assuming a consistent direction of small-study effects might not be

applicable for this network (Table 5.12).

Table 5.12. Posterior medians and 95% credible intervals for small-study effects coefficients (from
Model 2.6) in log(OR) scale for the second network example. (ARB=angiotensin-receptor
blockers, ACE=angiotensin converting-enzyme, BB=p-blockers, CCB=calcium-channel blockers,
D=diuretics, P=placebo)

Bsevsp -6.26 (-15.77,3.49)
Bovsp -5.28 (-12.71,2.07)
Bccavsp -9.53(-43.84,26.61)
Bacevsp 18.77 (-11.58,48.78)
Barpvsp 3.30 (-21.47,29.59)

I incorporated the possible interaction between direction and sponsorship (i.e.
that direction might be different between sponsored and non-sponsored studies)
in an alternative model (Model 2.7) that estimated two different (fixed)
coefficients B,y and By, . The first coefficient (Bsy,,) accounted for small-study
effects in all sponsored studies assuming that the sponsored treatments are
favored; the second (By,,,) controlled for small-study effects in all non-sponsored
studies assuming that newer treatments are favored. This model gave a negative
and statistically significant coefficient B, =-6.88 (-12.5,-1.25) suggesting that
small trials tend to show the older treatments safer than do the larger trials.
However, such an association was not confirmed for the sponsored studies as the
coefficient B),, was estimated with large uncertainty. Since these studies involve
21 treatment comparisons, possibly the observed wuncertainty is not the
consequence of low power. The findings of this model can be attributed to the
presence of selective reporting bias; this might be an issue more often for non-
sponsored trials which, unlike sponsored studies, do not necessarily follow a
registered protocol. An alternative explanation which seems more plausible is

that sponsored studies are, on average, newer trials; hence not as prone as non-
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sponsored studies to substantial variability in study design between small and
large trials.

This was investigated by fitting a model with two fixed coefficients B.,y09 and
B:2000 for studies published before and after 2000 respectively (Model 2.8). Note
that all trials published after 2000 were sponsored. The comparison-adjusted
funnel of Figure 5.11 shows separately the two subgroups with their regression
lines. The estimated coefficients (Table 5.11) from this model suggest that small-
study effects are more likely to operate in older trials, while the direction of bias
might not be constant over time. These findings are further supported by the
probabilistic model (Model 2.9). More specifically, the posterior probability that
studies before 2000 tend to favor the older treatments and placebo is 66%,
whereas the probability for studies after 2000 of favoring the newer and

sponsored treatments is 39%.

Standard error of studies (s;yy)

Newer treatment more safe than Older treatment more safe than
comparison-average comparison-average

9]
Yixy — Hxy

Figure 5.11. Comparison-adjusted funnel plot for the network comparing placebo and 5
antihypertensives with respect to incidence of diabetes in two subgroups; for studies published
before and after 2000.

It is interesting that the meta-regression models that consider the year of
publication of the included studies are the best models in terms of model fit and

parsimony. Also, these two models have lower heterogeneity compared to any



132 | A case study exploring the impact of study precision in full networks

other model; 23% relative drop in heterogeneity compared to the model without
covariates. The differences in relative ranking between Model 2.8 and the model
without covariates are presented in Figure 5.12. According to the estimated
cumulative probability curves, after the accounting for the impact of small-study
effects B-blockers and ARB appear slightly less safe, whereas placebo, diuretics
and ACE inhibitors appear a bit safer. However, there were no important
differences in the relative ranking and the relative effects as estimated from the

two models.

00 02 04 06 08 10

Cumulative Probability
00 02 04 06 08 10
00 02 04 06 08 10

1 2 3 4 5 6
Placebo

Cumulative Probability
00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10

CCB ACE ARB

Figure 5.12. Plots of the cumulative ranking curves for antihypertensive drugs. The black solid
lines correspond to the estimates from the model without covariates (Model 2.1) and the dashed
lines to Model 2.8.

I evaluated the presence of inconsistency in the network using the loop-specific
approach (see Section 2.3.2), which resulted in two loops (placebo versus p-
blockers versus ACE inhibitors and placebo versus -blockers versus ARB) with
statistically significant inconsistency. The two inconsistency factors were 0.82
(0.28,1.36) and 0.71 (0.18,1.24) respectively. To explore whether differences in
precision across studies can partly explain the inconsistency in these loops, I
applied an unrelated mean effects model accounting for small-study effects
similar to Model 2.8 (using the sponsored/new assumption and considering the

subgroups before and after 2000). Then, using the direct and indirect estimates
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from this model, inconsistency became statistically non-significant in the two
loops with inconsistency factors 0.12 (-0.19,0.43) and 0.14 (-0.35,0.64) respectively.
This means that disagreement between direct and indirect estimates may be
attributed to some degree to differences between small and large trials as well as
between old and new studies.

It is possible that the observed discrepancies in estimation between older and
newer studies are caused by other trial characteristics related to the year of
publication. For example, studies published before and after 2000 probably differ
with respect to the criteria used for the diagnosis of diabetes. More specifically, in
1999 the diagnostic criterion changed from > 7.8 mmol/L glucose level to > 7.0
mmol/L. Identifying possible explanations requires examination of the study
protocols and evaluation of the quality of studies. However, the inclusion of only
21 trials does not allow the adequate investigation of multiple interactions

between several study characteristics.

Sensitivity analyses

To check the sensitivity of results to the choice of prior distribution for the
heterogeneity parameter, I performed additional analyses for all models with
identical comparison-specific coefficients. When I assumed a uniform U(0,10)
prior on 7, the results were similar to the primary analysis regarding the
estimated parameters and fit of the different models. The use of a log-normal
distribution (i.e. log(r) ~N(0,10%)) resulted in a slight reduction in the

heterogeneity standard deviation (from 0.01 to 0.02 units).

5.7 Discussion

This Chapter illustrates the use of network meta-regression and network meta-
epidemiology to investigate the impact of five trial characteristics (four RoB

components and study precision) on treatment effect estimates. All applied
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models require assumptions for the direction of bias. These assumptions are
simplified in the meta-epidemiological studies, where I considered primarily
only star-shaped networks. I exemplify the several possible assumptions for a full
network in the case study of Section 5.6.

I did not find the inappropriate conduct of random sequence generation,
allocation concealment, blinding of participants and blinding of outcome
assessors to influence substantially the estimated relative effects in trials. A recent
study that synthesized data from seven (standard) meta-epidemiological studies
resulted in stronger associations (105). The different findings between the two
studies might be due to differences in power (31% more trials in Savovic et al.).
An alternative explanation could be the fact that NMA is a time-consuming and
resource-demanding procedure; hence researchers undertake NMA mainly in
areas where they expect to find many high-quality trials. This is in agreement
with the fact that very few studies were assessed at high RoB for the four RoB
components (see Table 5.2). This apparent lack of association could be also
attributed to random misclassification because of the different criteria the original
authors of the networks may have used to evaluate the RoB in individual trials.
However, the sensitivity analysis that considered only networks, for which RoB
data were extracted subsequently using the criteria of Section 5.4.2, did not yield
different results from the primary analysis. Another reason that may explain this
finding is that the RoB assessement relies also on the quality of reporting. For
example, older studies might be more likely to be classified at high/unlear RoB
due to poor reporting of the methods.

In this empirical study, trials being at high or unclear RoB were assumed to have
similar effect modification due to their design limitations. The use of weaker
assumptions is possible via models that assign a probability to the unclear
studies of being at high RoB (112). However, the absence of many high risk
studies in this database did not allow the use of such probabilistic models, since
they would have very limited power in the estimation of coefficients. Study

precision sometimes is considered as a proxy for study quality, if information of
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RoB characteristics is not available. Nevertheless, this network collection did not
confirm a clear association between study precision and the four RoB items,
which was suggested by Nuesch et al. (95) and Kjaergard et al. (124). In addition,
other types of biases (e.g. attrition bias or selective outcome reporting), which
were not taken into account in the analyses, may operate as well.

I found a strong association between study precision and treatment effects for
dichotomous outcomes using the same collection of star-shaped networks. This
implies that important differences in the distribution of study precision across
comparisons within a network can cause intransitivity and/or inconsistency.
Hence, researchers should routinely consider the differences in precision across
studies in the evaluation of transitivity and exploration of inconsistency. The use
of star networks in this empirical study makes the evaluation of statistical
inconsistency impossible.

Although continuous outcomes might be expected more often to be subject to
selective outcome reporting (i.e. continuous measures are more frequently used
for subjective and secondary outcomes), small-study effects did not appear to
affect the treatment effects for such outcomes. This finding might be explained by
limited power (only 16 networks with continuous outcomes were synthesized) or
by the presence of larger heterogeneity across the different continuous outcome
measures.

Accounting for the potential of biased treatment effects within a full network
requires stronger assumptions for the direction of bias. Models assuming that
bias favors one of the treatments in each comparison with an unknown
probability can be employed, if there is no prior belief about the direction of bias.
I found presence of small-study effects in both examples of full networks. In the
network of incidence of diabetes the direction of bias did not consistently favor
the newer or older interventions in all studies. However, since information on
other trial characteristics was not available, study precision and year of
publication partly explained the estimated heterogeneity and inconsistency in

this network.
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Despite the above findings, exploration of heterogeneity and inconsistency
should not be based solely on the investigation of differences in precision across
studies (99). Other trial characteristics associated with both study size or study
precision and relative effects may operate as well. For example, small and large
trials can be different with respect to their design limitations, population baseline
severity of disease or other characteristics. When such information is not readily
available, study precision may be used as a good proxy for these characteristics.
However, this was not the case in my empirical studies, where study precision
was not clearly associated with the four studied RoB items. Also, information
from trial registries can be used to identify unpublished studies to explore
whether small-study effects are caused by publication bias (96,125).

The findings of this Chapter illustrate that NMA may suffer the same biases as
pairwise meta-analysis. However, the presence of multiple treatment
comparisons in NMA is likely to differentiate the mechanisms of bias within the
same network and this should be taken into account in the analysis. In the
presence of small-study effects, results should be presented using the relative
effects from network meta-regression models (extrapolated to the largest study in
the network) (113). Other approaches, such as selection models (126), can be
employed, if small-study effects are caused by publication bias.

Both the empirical and case studies that I conducted highlight that there is large
potential for drawing misleading conclusions when the impact of several factors
is ignored in a NMA. Therefore, an overall final judgement of the quality of
evidence and the risk for several types of bias is crucial for the interpretation of

the results (60).



6 Summary

6.1 Summary

Systematic reviews and meta-analyses have been established as an integral part
of comparative effectiveness research and are widely used by international
health-care institutions to inform policy-making. However, the increasing
number of competing interventions in many medical fields has led to the
development of NMA. This new evidence synthesis tool integrates direct with
indirect evidence to infer about the relative effect of any pair of treatments
included in the network. In this way, network estimates usually have increased
precision in comparison to the respective direct estimates, while inference can be
drawn also for comparisons not evaluated in individual studies. The inclusion of
all competing treatments in the same meta-analytic model allows the estimation
of their relative ranking. These advantages have rendered NMA an increasingly
popular statistical tool.

NMA can be seen from several perspectives that are, in principal, equivalent, but
differ with respect to the ease of implementation in standard software packages.
All approaches rely on the fundamental assumption of transitivity, which
suggests that the common comparator treatment X is similar (e.g. administered
the same way and in similar populations) in the XY and XZ studies. At the level
of model parameters transitivity is reflected by the consistency equations, which
imply that direct and indirect evidence in the network are in agreement
regarding the true (summary) underlying relative effects. If the consistency
assumption does not hold in parts or in the entire network, the results of NMA
might be questionable.

The rapid development of NMA methodology underlines the need for flexible

and user-friendly software options that would facilitate the appropriate conduct
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and comprehensive reporting of the analysis. To aid the ease of presentation and
interpretation of NMA, I developed new and modified existing graphical
presentation tools, which I implemented in the STATA software. These graphs
can be used to present the complex evidence base, assumptions and results from
NMA and aim to make these outputs understandable to researchers that are less
familiar with advanced statistical methods.

The fact that NMA is a relatively new statistical tool implies the need for several
empirical and simulation studies to investigate the properties of each approach.
An overview of the characteristics of published networks of interventions is a
useful resource of information for methodologists that aim to update the current
knowledge on appraising NMA methods. To this end, I compiled networks of
interventions published until March 2011. This collection demonstrates that the
advantages of NMA have increased its acceptance by the medical research
community. Also, it suggests that the observed variation in the choice of the
method of analysis can be partly explained by the size characteristics of the
networks. The typical network of this database includes 22 studies and compares
5 pharmacological treatments vs. a control intervention with respect to a
dichotomous subjective outcome.

Heterogeneity and inconsistency can be seen as differences in the potential effect
modifiers within and across the pairwise comparisons in a network of
interventions. It is often the case that the estimated heterogeneity or
inconsistency in a network of interventions can be explained using a network
meta-regression model; that is a NMA model that incorporates one or more
covariates. A usual issue of any meta-regression model is the lack of power to
detect associations between treatment effects and study-level characteristics. To
date, researchers have usually relied on the comparability of effect modification
parameters, in terms of both magnitude and direction, across different meta-
analyses to overcome the issue of low power. In this way, they expect that a
sizable amount of data would be available to allow the adequate estimation of a

relationship between treatment effects and other factors. Data from networks of
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interventions usually involve a larger evidence base and may offer a promising
alternative way to investigate the mechanisms of effect modification and bias in
network meta-epidemiological research. Pooling parameters across many
network meta-analyses can accommodate the assumption for these parameters
being more similar within a network rather than across networks.

Several empirical studies have examined the possible association between the
estimated treatment effects and the size of the trials suggesting that small studies
tend to give larger effect estimates than do larger studies. Such a phenomenon,
which is usually called small-study effects, is quite frequent in evidence synthesis
research and can be caused by several reasons, such as publication bias, selective
outcome reporting, differences in study quality or genuine heterogeneity. To
assess graphically the presence of small-study effects in NMA, I extended the
standard funnel plot to allow the incorporation of multiple treatment
comparisons. Network meta-regression models can be used also to extend the
statistical models accounting for small-study effects into the context of NMA. An
important issue of the network meta-regression models that aim to control for
potentially biased treatment effects is that they require making assumptions
about the directionality of bias. This may be less problematic when analysing
star-shaped networks; in these networks the common comparator intervention is
usually an inactive or old intervention and it is not expected to be favored when
bias is present. Inference on the plausibility of the assumed direction of bias is
based on the estimated coefficients.

I investigated the impact of five trial characteristics (four RoB components and
study precision) on treatment effect estimates using the methodology of network
meta-regression and meta-epidemiology on a collection of 32 star-shaped
networks. In this analysis, inadequate random sequence generation, allocation
concealment, blinding of participants and blinding of outcome assessors were not
found to influence substantially the estimated relative effects in trials. Study

precision sometimes is considered as a proxy for study quality, if information of
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RoB characteristics is not available. Nevertheless, my network collection did not
confirm a clear association between study precision and the four RoB items.

I found a strong association between study precision and treatment effects for
dichotomous outcomes using the same collection of star-shaped networks. This
implies that important differences in the distribution of study precision across
comparisons within a network may cause intransitivity and/or inconsistency.
Additional empirical studies are necessary to confirm such a conclusion.
However, this finding implies that researchers should routinely consider the
differences in precision across studies in the evaluation of transitivity and
exploration of inconsistency. Although continuous outcomes might be expected
more often to be subject to selective outcome reporting (i.e. continuous measures
are more frequently used for subjective and secondary outcomes), small-study
effects did not appear to affect the treatment effects for such outcomes.
Accounting for the potential of biased treatment effects within a full network
requires stronger assumptions for the direction of bias. I exemplified such
assumptions using two full networks both evaluating typically secondary (safety)
outcomes; these are failure of vascular graft or arterial patency with aspirin,
dipyridamole or placebo, and incidence of diabetes with antihypertensive drugs.
I also employed models assuming that bias favors one of the treatments in each
comparison with an unknown probability, when there is not prior belief about
the direction of bias. I found presence of small-study effects in both examples. In
the network of incidence of diabetes the direction of bias did not consistently
favor the newer or older interventions in all studies. However, since information
on other trial characteristics was not available, study precision and year of
publication partly explained the estimated heterogeneity and inconsistency in
this network.

Despite the above findings, exploration of heterogeneity and inconsistency
should not be based solely on the investigation of differences in precision across
studies. Other trial characteristics associated with both study size or study

precision and relative effects may operate as well. For example, small and large
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trials can be different with respect to their design limitations, population baseline
severity of disease or other characteristics. Also, information from trial registries
can be used to identify unpublished studies to explore whether small-study
effects are caused by publication bias.

The findings of this Thesis illustrate that NMA may suffer the same biases as
pairwise meta-analysis. However, the presence of multiple treatment
comparisons in NMA is likely to differentiate the mechanisms of bias within the
same network and this should be taken into account in the analysis. The
empirical and case studies that I present in Chapter 5 highlight that there is large
potential for drawing misleading conclusions when the impact of several factors
is ignored in a NMA. Therefore, an overall final judgment of the quality of
evidence and the risk for several types of bias is crucial for the interpretation of

the results.

6.2 Ilepi\nyn

Ot ovotpatikég avaokommoelg KAt ol Heta-avalvoelg €xoov kabiepwbel g
avaroonacto KOPPATL OtV €pebva  IOL OXeTI(eTal pe TV OLYKPLTIKY
arnotedeopatikomta tev Oepamewwv (comparative effectiveness research).
ZOYKeKPLPéVA, XP1OLHOIO00VTAl ITAEOV eDPLmG Ao diedvelg opyaviopovg vyetag
pe okomo va ovpPdailovv otn SApOPP®OT MOATIKNG yla T Onpoola vyeld.
[Tapoha, avtd o oovexmg aviavopevog apldpog ToV aviaymvioTikov Oeparmetmv
o¢ TIOA\OVG TOpELG TNG LATPIKNG 001 yNOE OV avAIToudn g pera-avarloong 01k Towv
(MAA) (network meta-analysis), yvoot] Kat g peta-avaAvorn MTOAATADY
napepPacev. H peta-avalvon diktdov oovbétet 1o odvolo tng mAnpogopiag
IOV MIOPEL VA IIPOEPYETAL €iTe APEOA AIO HPEPOVOPEVEG Heleteg eite éppeoa
Xprowporowwvtag peleteg moov oovdéovtatl oe éva diktvo Oepareiwv. Me avtov

TOV TPOTO Ot ekTipnoetg g MAA ovvrOwg etvat mo axkpiPeig anod tig avriorotyeg
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APEOEG EKTIPNOELG, £V® HIIOPOLV va eSax0odVv OLPIEPACPATA Yl TI) OXETIKI)
aroteheopanikomta Oepametwv mov dev €xovov ovykpel oe KdAmola peAETn.
Emiong, Tto yeyovog OTL OAeg ol aviaymviotikég Oeparieieg ovykpivotat
Tavtoxpova oto 100 oTatTioTko poviedo Otvel T dvvatotnra va extipndetl n
oxetkn katatadr) tovg. Ta mieovektpata avta £xoov kataotoet ) MAA eva
IOAD dNPOPINEG OTATIOTIKO EPYAAELO.

H MAA propet va npooeyyloTel arno dla@opeTiKEG OIMTIKEG Y@OVIEG, Ol Omoieg elvat
Oewpntika wo0odovapeg, ala Stagepovv oty dovatotntd £QAPHOYNG TOLS OTd
oov10n Aoylopwka. ‘ONeg ot ipooeyyioelg Paoiovtat ot Oepehddn vobeon tng
perafatikotyTag (transitivity), moo vrayopevet 0Tt 1) Kowvr) Beparneia X etvat opola
(rL.Y. xopnyettat pe Tov 1d10 tpodmo oe opotovg mAndoopong) otig pedeteg XY xat
oTg peleteg XZ. Xe eminedo MAPAPETPOV TOL HMOVTEAOD, 1 HETAPATIKOTNTA
ek@paletal peow TRV §l0woeV  ovvémeiag  (consistency equations), 1o
ODVEIIAYOVTAl OTL Ol (PECT HANPOPOPIa COPP®VEL Pe TNV EUHEOT), OOOV APOPU
OTIG ‘TIPAYHATIKEG OLVOIITIKEG OXETIKEG EMOPAOELS. AV 1) vrobeor THG ovVETelag dev
toyvet oto SikTLo, Ta anotehéopata g MAA mbavov va pnyv eivat adomota.

H paydata avamrtodn g pebodoroyiag yia t MAA vnoypappilet v avaykn
Yla eDENIKTEG KAl PIAIKEG OTO XPIO0TH) eMAOYEG AOYIOpKOL Tov Oa dievkoAvvoov
Vv KAatdMnAn Oeayoyr] KAt T KATAvonT] ava@opd Thg dvalvong.
ITpoxkepévoo va ovvelo@épem OtV €LKOALA Thg Iapovoiaong Kat eppnveiag g
MAA, avértoa katvodpia 1) Tpororoinod 1181 vIdpxovia ypagnpdatd, Tda onoia
ékava dabeopa oto evpv Koo npoypappatifovtag ta oto Aoyopikd STATA.
Avtd ta ypagnpata pmopovv va ypnotporowfodv yia v mapovotaong g
ITOAOIINOKNG Pdong dedopévav, TV DIIOBEcEMV KAl T®V AIOTEAEOPUAT®OV ATIO 1)
MAA. Zxomog toog eivat va kdavoov ) Stadwkaota g MAA mo xatavontr) o
EPELVITEG XWPLG LOYVPEG OTATIOTIKEG YVAOOELG KA IKAVOTITEG.

To yeyovog ot 1 MAA eivat éva OXeTIKA KAlVOLPLO OTATIOTIKO ePYaAelo
ODVETIAYETAL TV AVAYKI Y1d EQUIEIPIKEG PEAETEG KA PEAETEG TIPOCOPOIMONG OV
Oa Otepevvodv Tig W010TNTEG TV Otapopetikwv pebodwv. H emoxommnon tov

XAPAKTNPOTIK®V  Onpootevpéveoy  Oiktoav Oepameimv  etvat xprjown mOnym)
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AN POQOPNO1G Y EPEDVITEG IOV OKOIIELOLV Va avapadpioovy v vIAPXOLOA
YV®OOT] 000V agopd otny arnotipnon tov pebodwv tmg MAA. I'ia to okono avtov,
dnuovpynoa pla ooAAoyr) OKTOL®WV Oepalleldv MOL ONPOOCIELTNKAV HEXPL TO
Maptio too 2011. H 06ANoyr) avtr) deiyver ott ta mheovextrjpata g MAA £xoov
aodroet Vv armodoxr] TG Ao TNV AIPLKI) €PELVNTIKY Kowotnta. Ermiong,
ovotrvel 0Tt ol Olagopég mov mapdatnpoovviat oty emoyr] tng pebodov
avalvong propet va e€nyndet pepkwg amno dagopeg oto peyedog xat T dopr| Twv
dwrtowv. Eva tomxko dixktoo g Paong avtrg meplapPaver 22 peléteg xat
OLYKpPLVEL 5 pappakevTIkéG Deparieieg evavtt pag Oeparieiag eEAeyXov OXETIKA e
pia S1YOTONI) DITOKEIPEVIKT) £KPaoT).

H erepoyévein (heterogeneity) xat n acovvémeia (inconsistency) epgavifoviat wg
dagpopeg otovg mbavovg tpornonoutég enidpaong (effect modifiers) péoa xat
AVAPEoa OTIg OLKPLOELg O va OlKTLo Deparelmv. Zoy VA DIIAPYXOVV MEPUITOOELS
IOV 1] EKTIHMPEVI] ETEPOYEVELD 1) aovveneld o éva diktvo pmopet va eSnyndet
Xpnowpornowwvtag pera-ralivdpounon oixroov (network meta-regression), dnAadr
é¢va poviédo MAA moo meplhapPavel emeSnynuatikeg petaPAntég (covariates).
Eva obvnOeg {tpa g peta-maAvdopnong etvat 1 ENewyrn enapkovg 1oxbLog
Yl TOV EVIOMOPO OXE0E®V avdapeod otV emidpaon tov Oepameimv kat
XAPAKTNPLOTIK®OV TOV PEAET®V. MeXpt Onpepa ot epedvnTég yid va SErmepacony To
npoPAnpa  aovto, oovrfeg Paocifoviat Ot OCOYKPLOIHOTNTA IHAPAPETP®Y,
Aappdvovrtag vnmoyr to péyebog xat v katevOovor) g enidpaong, avdapeoa oe
dagpopetikég peta-avalvoelg. Me avtov tov tpomo, avapévoov ott Ba €xoov
dabeopa apxeta 6edopeva 1ov Oa eMTPENOVY ENAPKI) EKTIPN O THG OXEONG TOV
Oepamnevtikov emdpaoe®v pe dallovg mapayovieg. Ta Sedopéva Oiktv®V
Oepanewwv oovvnBwg ovvenayovrar peyalvtepn Paon Oedopévev €tol 1owg
IIPOOPEPOLY  EVA  DIIOOXOHEVO eVAANAKTIKO peocOo yia 11 Olepevvnon 1oV
PNXaviopov mOaveov OLOTNHATIKOV OQAANPATOV 0T UETA-EMONpUIoAoy1KY épevva
oikrdwv (network meta-epidemiology). H obvOeon napapétpewv ano moleg MAA
propet va voootnpifel v vmobeon OTL Ol NAPAMPETPOL ALTOL elval Mo Opolot

péoa oto 1810 diktvo apd avapeoa ota Giktod.
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Aldopeg eprielpikeg peleteg éxoov efetaoet v mbavi) oxeon petald tev
EKTIHOHEVOV OeparedTIK®V emOpACE®V KAl KAl TOL HeyE0oug TV HEAET®V,
OLOTHVOVTAG OTL Ol PIKPOTEPEG PEAETEG £XOLV TNV TAON va dlvovv peyalvtepeg
emdpdoelg amod Tig peyalvtepeg peAéteg. ADTO TO @aivopevo, mov ovviBwg
ovopadetat emidpacy TV pikpwv peletwv (small-study effects) eivatr apketa ooxvo
OTI§ PETA-AaVAALOelg KAt propet va IMmpoxAnOel amo moAleg attieg, Onmg To
OLOTNHATIKO  o@dAua Onuooievong (publication bias), 1 emlexTiky avagpopa
anotedeoparov (selective outcome reporting), Owagopég oty mowTNTA TOV
pedetov 1 etepoyevela. Ilpoxeipévoo va xataomjom Oovat TV yPAPIK:)
aStoAoynorn g napovoiag emdpaocng pikpwv pedetov ot MAA, enéktewva ta
oovi)On oyxetka ypagnpata (funnel plot) wote va evoopatmoovv TG
dagpopetikég ovykpioelg Oepamneiwv. Moviéha peta-maAtvOpopnong OKTOGV
PIopovyV, &Imong, vda xpnowpornoufovv yla vd EMEKTELVOLV Ta LIAPXOVIA
OTATIOTIKA HOVTEAA IO AApPAvovy vIoYrn TV emdpaot] TV HIKP®V HEAETOV
oto miaiow g MAA. Eva onpaviiko Jmpa IOV HOVIEA®V HETA-
naAwvdpopnong OKTOo®V mov okoredovv va dopbwcovv mbavag eopalpeveg
EKTIPNOELG emMOPAoe®V elval OTL AIATOLV Tr XPNon ovoobeoswv yla v
katevOvvon ToL opalpatog. Avteg ot viobéoelg iomg etvatl Atyotepo 10YVPEG OV
MEPUIT®OL TOV OKTOWV Oe OXIpa aoteplov, kabwg oe avtd ta diktoa 1 Kowr)
napepPaon etvatr oovfwg pua avevepyr) 1) nalwa Oepamneta mov Oev avapévetat
va eovoettat AOy® OOCTNHATIKGOV OQPalpdatev. Ta copmepaocpata 0oov agopd
otV owmotr) emhoyr) vnobeong yla v katevbovon tov opdApartog Paocifovrat
OTOLG EKTIPMOPEVOVG ODVTEAEOTEG ATIO 1) PETA-TIANLVOPOHNON).

Atepedvnoa v enidpaon mévie YAPAKTINPOTIKOV TOV HEAET®V (TEOOAPMV
otolyelwv oxedtaopod TV peletov (RoB items) xat v axkpifeia tovg (study
precision)) otig Oepamevtikeg emdpaoelg xprnoponomvag ) pedodoloyia peta-
naAvOpopnong Kat peta-emdnpoloyiag Siktoewv oe pia ovAloyr) 32 diktd®V-
acteP®V. XTIV avAalvon aoTr, 1 pn-KatdAnAn owedayoyr) g Onprovpyiag
Toxatag aAlnlooyiag, TG AMOKPLYIG TG KATAVOUNG, NG TLPAOIIOINONG TOV

ODPHETEXOVIOV KAl TG TOPAOIIOINONG T®V aStohoyntav g ekPaong (random
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sequence generation, allocation concealment, blinding of participants and
blinding of outcome assessors) Oe @dvnke va emnpedlel ONUAVTIKA TA
anoteAéopata tov amnotedecpatav tmg MAA. TToAég @opég 1o peyebog tov
peAetav Bempettal wg MPOPAEITIKOG IAPAYOVTAG Yid TV IOLOTTA TOVG, OTav Oev
DIIAPXEL TANPOPOPLA OXETIKA He TNV KATAANANAOT)TA TOL OXeOLWAOHOD TOUG,
[Tapoha avtd, 1 ooykekpipevy Paon Owtowv Oepaneiwv mov dnupiovpynoa dev
emPePainoe Sexabapa ) oLoXETION PeTASL OWOTOL OXedLAOPOD Kat peyédoug Tov
HPeEAETQV.

Xpnowonowvtag Vv idta ocoAAoyr) OIKTO®V-aoTePL®V, PPIKA 10X0PI) CLOXETION
avapeoa oty akpifela 1ov peletwv xat otg Oepamevtikeg emdpdoelg. To
yeyovog avtd 1owg Oelyvel OTL ONPAVIIKEG OlAPOPEG OTNV KATAVOHL TG
d1aoIopdg T®V EKTIPNOE®V ATIO TI§ HEPOVMHEVEG PEAETEG AVAPEDA OTIG OVYKPLOELG
evog d1ktvoL prmopel va amnelirjoet v vnobeon g petafatikotntag xatr/1 mg
ovvénelag. Ileploootepeg epmelpkég peléteg Ba mpémer va SeSaxbovv ya va
emPePaimbel to napamnave copnépaopa. Ot epevvnteg Opmg Oa mpemnet navta va
Aappdvoov vrnoyn v emidpaon 1OV PIKP®V HEAET®V Katd TNV aSloAoynon g
petapankomntag xat 1 Olepevvnon tg aovvenelas. ITapolo mov ot ocvveyxeig
ekaoelg avapévovtatl va elvat o oLXVA AVTIKEIHEVO TIG EMAEKTIKIG AVAPOPAS
AIIOTEAEOPATOV (O10TL OLVEXT| PETPA EMOPAONG XPIOHOIOOLVTAL IO CLXVA Yld
DITOKELPEVIKEG KAt devTepevovTeg ekPdoelg), e Ppebnke onpavtikn) enidpaon T®v
HIKP®OV pHeEAeT®V Ot TETO0L e1dovg dedopéva.

H 6wopbwon tov amotedeopdtov yia mbavov eo@alpéveg eKTIPNoelg o€ &va
‘mr)peg’ Sixtoo Oepamewwv (full network) amattel 1 xprion mwo oOxLPOV
vroféoemVv yla v Katedfovon Tov CLOTPIATIKOL OPAAPATOG. AlepedVI|OA aLTEG
T1g vrobEoelg xpnotponotwvtag Svo M P SIKTLA ITOL ASLOAOYOLY BeLTEPEBOVOES
ekPaoelg (aogpdAewa). Ov exPacelg avtég elvat amotoyxlia ToL  ayyelakov
HOOXELPATOG 1] APTNPELAKNG Patotntag pe xpnon aompivng, Suroptdapoing i
EIKOVIKOD  QAPHAKOL, KAl 1 OLXVOINTA €ep@AvViong Too OwaPrt) pe
avtneptaoka gappaka. Emmpoobeta, ypnopomnoinoa poviela moo vmobétoov

Ot pa Oepareia evvoettat pe pia ayveoty) mOavotnTa oty IEPUITOOT oL eV
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vIapyetl woxovpr mnemnoidnon yw v katevbovorn tov opdaipatog. Kat ota 6vo
napadetypata PprKa Iapovoia emoépaong IOV HIKPOV PEAETOV. 210 SIKTDO TG
eppaviong owaPnn n emidpaon avtr) Oev €DVOOLOE MAVIA TIG VEOTEPES 1) TIG
alotepeg Oepareieg oe OAeg T1g peAeteg. [Tapola avtda, epooov dev vmnpyav
OANPOQopieg yla GAA  YAPAKTNPOTIKA TV HeAet®wv, To peyebog xat n
Xpovoloyia Onpooievong Pavnkav va enyoovv PEPIK®S TV ETEPOYEVELD KAl TNV
aovvénewa oto OIKTLOo.

[Tapa ta mapandave anoteAéopatda, 1 OlepedVNON TNG €TEPOYEVELAG KAl TG
aovvénewag de Oa mpenet va Paocifetat povo otov €Aeyyo TOL OlAPOPETIKOL
peyédoog Tov peletav. ANa xapaxktnplotkd mov oxetifovrat xat pe to peyedog
1] TV akpifela Tov pedetwv Kat Tig Oeprevtikég emdpaoelg iomg va Aettovpyovv
eriong g tporomnowteg emidpaong. [a mapddetypa, ot pikpeg ot pKpoOTEPES
peNéteg pmopel va Stagepovv amo Tig HeydADTeEPeG OTO OXeOIAOHO, TO PAOKO
kivoovo (baseline risk), 11 aMa yapaxtnpiotikd. Emiong ot xataypagég tov
Toxatonompévey peletov Oa mpémet va eAéyxovidil yld TOV €VIOMORO Wi
dNpOolELPEVOVY PEAET®V TIOL PITOPEl VA MPOKANOLV TV emidpaon T®vV PIKP®V
PEAETOV PEO® OPAApatog dnpooievong.

Ta evpovpara g napovoag dwatpiPrg tovifoov 61t MAA ovyva ndoyet amno ta
0l oLOTPATIKA OQAApATAa He TNV damAr peta-avalvon (pairwise meta-
analysis). ITapoAa avtd, 1 apoooia MOA®V OLAPOPETIKOV COYKPLOEDV PETASD
Oepaneiwv etvatr mbavo va Stagpopomnotel To prnYaviopo dpdong TaV OPANPATOV
avtev péoa oto id1o diktvo. To yeyovog avto Oa mpénet va AapPdavetatl vnoyn)
otV avalvon. Ot epmelpikeg Kat ot pepovopéveg peleteg (case studies) moo
napovolalm oto kKepdlato 5 deiyvoov oOtt vmdpyet peydin mbavotnta
dte€aywyr|g mapanm\avnTik®v OLPIEPACPAT®V OTav dayvoeltat 1) emidpaon
dagpopwv napayoviov oe pra MAA. I'ia to Aoyo aotov, eivat HOND ONpAvVIKO
Yld TV EPHUNVEIT TOV AIIOTEAEOPATOV VA IIPAYHATONOLEITAl Pld YEVIKI] KpPion
00OV a@OopPd OtV MOLOTNTA TOV dedopevmv Kat To kivovovo yia diagopa &idn

OPANHATGOV.



Appendix

A. Proof of the mathematical relationship between SUCRA and

mean rank

T-1lc T—r)Xx
SUCRA, = % = SUCRA, = 2 [( ) p”] mry = Z(prt xT)

Subtracting the two above equations gives that

r, — SUCRA, = Z (7= 7=5) xpre| = %i[(r —1) X py]

T
= SUCRAt = mTt 1 z (T - 1) X prt] mrt + T (mrt Z pr)

T
= SUCRAt =mr; + mx (mrt - 1)
Q@T—-1)xmr,—T
= SUCRA,; = 71

B. WinBUGS codes

Network meta-epidemilogical model accounting for small-study effects linking

networks with dichotomous arm-level data

nn=number of networks
ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment

= oS o S R S S

model {
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for (z in 1l:nn) {

for(i in l:ns[z]) {

wlz,1,1]<- 0

thetalz,1i,t[z,1,1]]<- 0

mulz,i] ~ dnorm(0,.0001)

for (k in 1:nafz,1i]) {
rl{z,i,tlz,1i,k]]~dbin(plz,1i,t(z,i,k]],nl[z,i,t[z,1i,k]])}
logit(plz,i,tlz,1,1]1])<- mulz,i]

for (k in 2:nafz,1i]) {

lamda.1l[z,1i, k]<— equals(r(z,i,tlz,1,k]11,0)

lamda.2([z,1i,k]<- equals(n[z,i,tlz,1i,k]],rlz,1i,tlz,1i,k]l])
lamda.3[z,1i,k]<- equals(r[z,i,tl[z,1,1]1]1,0)

lamda.4([z,i,k]<- equals(n[z,i,tlz,1,1]1],rlz,1i,tlz,1i,111)
lamda.a[z,1i,k]<- max(lamda.l[z,i,k],lamda.2([z,1i,k])
lamda.b[z,1i,k]<- max(lamda.3[z,1i,k],lamda.4(z,1i,k])
lamda([z,i,k]<-max(lamda.az,1i,k],lamda.b[z,i,k])

var[z i,k]<-
1/(r[z,1,t[z,1,k]]+(0.5*1lamda[z,1,k]))+1/(r[z,1i,t[z,1,1]]+(0.5*1lamda(z, 1
k] +1/( [ Illt[zlilk]]_
r{z,i,tlz,1i,k]]1+(0.5*1lamda(z,1i,k]))+1/(n[z,1i,t[z,1,1]]-
r(z,i,t[z,1,1]1+(0.5*1lamda[z,1i,k]))

logit(plz,i,tlz,1i,k]])<- mulz,i] + thetallz,i,tlz,i,k]]
I[{z,i,k]<-0.5*(ind[z,1i,k]-ind[z,1i,1])

thetal[z,i,t[z,1i,k]]<- thetalz,i,t[z,i,k]] + Blz]*var[z,i,k]*I[z,1i,k]

thetalz,i,t[z,1i,k]] ~ dnorm(md[z,i,t[z,i,k]],precd[z,i,t[z,i,k]ﬂ

precd[z,i,t[z,1,k]]1<- prec[z] *2*(k-1)/k

md[z,i,t[z,i,k]]<-d[z,t[z,1i,k]]- [z t{z,i,1]]1+sw(z,1, k]

wlz,i,k]<- (thetalz,i,tlz,1i, k]] - d[ tlz,1i,k]1] + dl[z,tl[z,1i,11])
swlz,1i,k]l<- sum(w[z,i,1:k=-11)/( )1}

tau[z] ~ dnorm(0,1)I(0,)

precl[z]<- 1/pow(taulz],2)

diz,ref[z]]<- 0

for(k in 1:(reflz]l-1)) {d[z,k] ~ dnorm(0,.0001)}
for(k in (refl[z]+1):nt[z]) {d[z,k] ~ dnorm(0,.0001)}
B[z] ~ dnorm(Boverall, W)}

Boverall ~ dnorm(0,.0001)

W<- 1/ (prec.Boverall*prec.Boverall)

prec.Boverall ~ dunif (0, 3)

for (z in 1l:nn) {for(i in 1l:ns([z]) {for (k in l:naflz,i]) {
Darm([z,i,k]<--2*(r[z,i,t[z,1i,k]]

*log(nlz,i,tlz,i,k]]1*plz,1i,tlz,1,k] i, tlz,i,kl1])+(nlz,1i,tlz,1,k]] -
rlz,i,tlz,1i,k]1])*log((n[z,1i,tlz,1i,k i, tlz,1i,k1]*
plz,i,tlz,1,k11)/(nlz,1i,tlz,1,k]]- tlz,i,k11)))}

z
)

/rlz,
I-nlz,
[z, 1
1)1}

}

]
]
r
Dstudy[z,i]<- sum(Darm[z,i,1l:na[z,1]
Dnetwork[z]<- sum(Dstudyl[z,l:ns[z]])
D.bar<- sum(Dnetwork([])

}
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Network meta-regression accounting for small-study effects in full networks

(Section 5.6)

Example 1. Failure of vascular graft or arterial patency

Model 1.1: No covariates

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment

H= = K S

model {

for(i in 1l:ns) {

wli,1]1<- 0

thetali,t[i,1]1]<- 0

##binomial likelihood

for (k in 1:nafil]) {r[i,t(i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}
##parameterization

logit(p[i,t[i,1]1])<- uli]

for (k in 2:nafi]) {
logit(pli,t[i,k]])<- ul[i] + thetali,t[i, k]]
thetal[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])

md[i,t[i,k]]<- d[tl[i,k]] - d[t[i,1]] + swli,k]

w[i,k]<- thetali,t[i,k]] - d[t[l k]] + d[t[i,1]]

wli,k]<- sum(w[i,1: k 11)/ (k-1)

precd[i,t[i,k]]<- prec *2*( k 1)/k }}

##priors

for (i in 1:ns) {uf[i] ~ dnorm(0, .0001)}

tau ~ dnorm(0,1)I(0,)

prec<- 1/pow(tau, 2)

dlref] <= 0

for(k in 1:(ref-1)) {d[k] ~ dnorm(0, .0001)}
)

for(k in (ref+1l):nt) {d[k] ~ dnorm(0,.0001)}
#ffestimates

for(i in 1:(nt—1)) {

for (j in (i+1) :nt) {

OR[j,1]1<- exp(d[ ] - d[i])

LOR[],1]1<- d[3j] - d[i] }}

##ranking

for(k in 1l:nt) {

order[k]<- rank(d[], k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effective[k]<-equals (order[k],1)

for(j in 1l:nt) {

effectiveness[k,j]<- equals(order[k],J)

cumeffectiveness|[k,j]<- sum(effectiveness[k,1:3]) 1}}

for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness([k,1l:(nt-1)]) /(nt-1)}
##model fit

for(i in 1l:ns) {

for (k in 1l:nafi]) {
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Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/
rli,tli,k]])+(n[i,t[i,k]] - rl[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]*
pli,tli,k11)/(nli,tli,k]]- r[i,tli, k11))) }
D[1]<- sum(Darm[i,l:na[i]]) }

]

D.bar<- sum(D]
}

)

Model 1.2: ‘Active-favored’ & identical coefficients

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment
I='direction variable'

P E E

model {

for(i in 1l:ns) {
w[i,1]<- 0
thetali,t[i,1]1]<- 0
##binomial likelihood

for (k in 1l:nafi]) {rl[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[1i,t[1i,k]])}

f#parameterization
logit(p[i,t[i,1]1])<- uli]
for (k in 2:nafi]) {

lamda.1[1i, k]<— equals(r[i,t[i,k]]1,0)
lamda.2[1i,k]<- equals(n[i,t[i,k]],r[i,tl[i,k]])
lamda.3[1i,k]<- equals(r[i,t[i,1]11,0)
lamda.4[1i,k]<- equals(n[i,t[i,1]1],r[i,t[i,1]11])
lamda.a[i, k]<- max(lamda.1l[i,k],lamda.2[i,k])
lamda.b[i, k]<- max(lamda.3[i,k],lamda.4[i,k])
lamda[i, k]<-max (lamda.a[i, k], lamda.b[i,k])

var[i, k]<-

1/(rli,t[i,k]]1+(0.5%1lamda[i, k]))+1/(r[i,t[i,1]11+(0.5%lamda[1i,k])

,tli,kl11-r[i,t[i,k]]+(0.5*lamdali, k]))+1/(n[i,t[i,1]1]-
r{i,t[i,1]]+(0.5*lamdali, k]))
I[i,k]<-0.5*%(2[i,1]1-2[1i,k])

logit (pl[i,t[i,k]])<- u[i] + thetalli,t[i

k]]
thetall[i,t[i,k]]1<- thetali,t[i,k]] + B*var[l,k]* [i, k]
thetali,t[i,k]] ~ dnorm(md[i,t([i,k]],precd[i,t[i,k]])
md[i,t[i,k]]1<- d[t[i,k]] - d[t[i,1]] + sw[i, k]
w[i,k]<- thetal[i,t([i,k]] - d[t[i,k]] + d[t[i,1]]

wli,k]<- sum(w[i,1:k-11)/(k-1)
precd[i,t[i,k]]<- prec *2*(k-1)/k }}
##priors
for (i in 1l:ns) {u[l[i] ~ dnorm(0, .0001)}
tau ~ dnorm(0,1)I(0,)
prec<- 1/pow (tau,2)
B ~ dnorm(0,0.0001)
dlref] <- 0
for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)}
for(k in (ref+1l):nt) {d[k] ~ dnorm(0,.0001)
##estimates
for(i in 1:(nt—1)) {
for (3 in (i+1) :nt) {

R[j,1]<- exp(d [ ] - dlil])
LOR[]/ i]<- d[j] - d[i] }}

}

)+1/ (n[1
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##ranking

for(k in 1l:nt) {

order[k]<- rank(d[],k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effective[k]<-equals (order[k],1)

for(j in l:nt) {

effectiveness[k, j]<- equals (order[k],])

cumeffectiveness|k,jl<- sum(effectiveness[k,1:3]) }}

for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1l:(nt-1)]) /(nt-1)}
##model fit

for(i in 1l:ns) {for (k in 1:naf[i]) {
Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,tl[i,k]]l*pl[i,tl[i,k]]1/
r{i,tli,k]])+(nli,t[i,k]] - rli,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]*
pli,tli,k1])/ (n[i, (i, k]]- rli,t(i,k1]))) }
D[i]<- sum(Darm[i,l:nal[i]]) }

1)

D.bar<- sum(D|[
}

Model 1.3: ‘Active-favored’ & exchangeable coefficients

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment
I="'direction variable'

H= FH FH o K

model {

for(i in 1l:ns) {

wli,1l]<- 0

thetali,t[i,1]1]<- 0

##binomial likelihood

for (k in l:na[i]) {r[i,t[i,k]] ~ dbin(pl[i,tl[i,k]],nli,tli,k]11)}
##parameterization

logit (p[i,t[i,1]1])<- uli]

for (k in 2:naf[i]) {

lamda.1l[i,k]<- equals(r[i,t[i,k]1]1,0)

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]])
lamda.3[i,k]<- equals(r[i,t[i,111,0)

lamda.4[i,k]<- equals(n[i,t[i,1]1],r[i,t[i,111)
lamda.a[i,k]<- max(lamda.l[i,k],lamda.2[1i,k])
lamda.b[i, k]<- max(lamda.3[i,k],lamda.4([i,k])

lamda[i, k]<-max (lamda.a[i,k],lamda.b[i,k])

var[i,k]<-
1/(r[i,t[i,k]11+(0.5*1lamdai,k]))+1/(r[i,t[1,1]]1+(0.5*1lamdai,k]))+1/(n[1
t[i,k]]—r[i,t[i,k]]+(0-5*lamda[ ])) /(n[i,t[i,l]]-

r{i,t[i,1]]1+(0.5*1lamdali, k]))
I[i,k1<=-0.5*(Z[1i,1]1-2[1i,k])
logit(pli,t[i,k]])<- ul[i] + thetalli,tl[i,k]]

thetal[i,t([i,k]]<- thetali,t[i,k]] + betalt[i,1],t[i,k]]*var([i,k]*I[1i,k]
thetali,t[i,k]] ~ dnorm(md[i,t[i, k]
md[i,t[1i,k]]<- d[t[i,k]] - d[t[i,1]
wl[i,k]<- thetali,t[i, k] - d[t[l k
wli,k]<- sum(w[i,1: k 11)/ (k-1)
precd[i,t[i,k]]<- prec *2*(k-1)/k }}
##priors

],precd([i, t[i,k]])
+ swli, k]
] + dltli,1]]

[ERE—
—
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for (i in 1:ns) {u[li] ~ dnorm(0, .0001)}

tau ~ dnorm(0,1)I(0,)

prec<- 1/pow(tau,2)

betal2,3] <= 0

for (j in 2:nt) {betall,j] ~ dnorm(B, prec.B) }

B ~ dnorm(0,0.0001)

prec.B <- 1/ (sigma*sigma)

sigma ~ dnorm(0,1)I(0,)

dlref] <= 0

for(k in 1l:(ref-1)) {d[k] ~ dnorm(0,.0001)}
)

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)}

##estimates

for(i in 1:(nt-1)) {for (j in (i+1) :nt) {
OR[J,1]<- exp(d[j] - d[i])

LOR[],1]1<- d[3j] - d[i] }}

##ranking

for(k in l:nt) {

order[k]<- rank(d[],k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effectivel[k]<-equals (order[k],1)

for(j in 1l:nt) {

effectiveness|[k,j]<- equals(order[k],J)

cumeffectiveness[k,j]<- sum(effectiveness[k,1:3]) 1}}

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness([k,1l: (nt-1)1) /(nt-1)}
##model fit

for(i in 1l:ns) {for (k in 1:naf[i]) {

Darm[i, k]<- -2*( r{i,tli,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/
r{i,tli,k]])+n[i,tli,k]] - rli,tl[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]*
pli,tli,k]]) / nli,tli,k]]- rli,tli,k]]))) }

D[i]<- sum/( Darm[l l:naflil]) }

D.bar<- sum(D[])
}

Model 1.4: ‘New-favored’ & identical coefficients

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment
I='direction variable'

R E T T

model {

for(i in 1l:ns) {

wli,1l]<- 0

thetali,t[i,1]1]<- 0

##binomial likelihood

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],nli,tli, k]11)}
##parameterization

logit(p[i,tli,1]1])<- uli]

for (k in 2: na[']) {

lamda.1l[i,k]<- equals(r[i,t[i,k]],0)

lamda.2[1i k] - equals(n[i,t[i,k]],r[i,t[i,k]])
lamda. 3[1,k] - equals(r[i,t[i,111,0)
lamda.4[i,k]<- equals(n[i,t[i,1]1],r[di,tldi,1]1])
lamda.a[i, k]<- max(lamda.1l[i, k],lamda.2[i,k])
lamda.b[i, k]<- max(lamda.3[i,k],lamda.4[1i k])
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lamda[i, k]<-max (lamda.al[i, k], lamda.b[i, k])
var([i,k]<-

1/(r[i,t[i,k]11+(0. 5*lamda[1,k]))+l/(r[i,t[i,l]]+(O.5*lamda[i,k]))
+1/(n[i,t[i,k]]l-r[i,t[i,k]]1+(0.5*1lamdali,k]))+1/(n[i,t[i,1]]-
r[i,t[i,l]]+(0.5*lamda[ k1))

I[i,k]1<-0.5*(z[i,1]1-2[1, k])

logit(pli,t[i

[
[1,k]]1)<- u[i] + thetalli,t[i,k]]

thetall[i, t[i, k]

]

k]1<- thetali,t[i,k]] + B*var[i,k]l*I[i, k]
thetali,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,tli,k]])
md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i, k]
w[i,k]<- thetali,t[i,k]] - d[t[l k]] + d[t[i,1]]

wli,k]<- sum(w[i,1: k 11)/ (k-1)
precd[i,t[i,k]]<- prec *2*(k-1)/k }}
##priors
for (i in 1:ns) {u[i] ~ dnorm(0, .0001)}
tau ~ dnorm(0,1)I(0,)
prec<- 1/pow (tau,2)

B ~ dnorm(0,0.0001)

dlref] <= 0

for(k in 1: (ref-1)) {d[k] ~ dnorm(0, .0001)}
)

for(k in (ref+l):nt) {d[k] ~ dnorm(0,.0001)}

f#estimates

for(i in 1:(nt-1)) {

for (j in (i+1):nt) {
R[j,1]<- exp(d[j] - d[i])
LOR[,1]<- d[j] - d[i] }}
##ranking

for(k in 1l:nt) {

order[k]<- rank(d[], k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)"' if the outcome is positive
most.effective[k]<-equals (order[k],1)

for(j in 1l:nt) {

effectiveness[k,j]<- equals(order[k], )

cumeffectiveness[k, j]<- sum(effectiveness[k,1:3]) 1}}

for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1l:(nt-1)]) /(nt-1)}
##model fit

for(i in 1l:ns) {
for (k in 1l:nafi]) {
Darm[i, k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,tli,k]]/
r{i,tli,k]])+(nli,tli,k]] - rli,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]*
pli,tli,k11)/(n[i,t(i,k]]- rli,t[i,k]1]))) }
D[i]<- sum(Darm[i,1l:n [1]]) }

1)

D.bar<- sum (D[
}

Model 1.5: '‘New favored’ & exchangeable coefficients

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment
='direction variable'

H= o H S

model {
for(i in 1l:ns) {
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w[i,1l]<- 0

thetali,t[i,1]]1<- 0

##binomial likelihood

for (k in 1l:nafli]) {rl[i,tli,k]] ~ dbin(pli,t[i,k]],n[i,t[i,k]])}
##parameterization

logit(p[i,tli,1]])<- uli]

for (k in 2:nafli]) |

lamda.1[1i, k]<— equals(r[i,t[i,k]],0)

lamda.2[i,k]<- equals(n[i,t[i,k]],r[di,tli,k]])

lamda.3[i,k]<- equals(r[i,t[i,1]1],0)

lamda.4[i,k]<- equals(n[i,t[i,1]],r[di,tldi,1]1])

lamda.a[i, k]<- max(lamda.1l[i, k], lamda 2[1i,k])

lamda.b[i, k]<- max(lamda.3[i,k],lamda.4[1i,k])

lamda[i, k]<-max (lamda.a[i, k], lamda.b[i, k])

var[i, k]<-
1/(r[i,t[1,k]]+(0.5*1lamda[i,k]))+1/(r[i,t[1,1]]+(0.5*1lamda[i,k]))+1/(n[1
t[i,k]]—r[i,t[i,k]]+(O.5*lamda[ ]))+1/(n[i,t[i,1]]—

r[i,t[i,1]1]+(0.5*1lamda[i,k]))
I[i,k]<-0.5%(Z[1i,1]1-2[1i,k])
1

logit(p[i,t([i,

k]])<- ul[i] + thetal[i,t[i,k]]
thetal[i,t[i,k]]<- theta[i,t[i,k]] + betal[t[i,1],t[i,k]]*var[i,k]*I[1i,k]
thetali,t[i,k]] ~ dnorm(md[i,t[i, k]],precd[i,t[i,k]])
md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + swli, k]
wli,k]<- thetali,t[i,k]] - d[ [i,k]] + d[t[i,1]]
wli,k]<- sum(w[i,1:k-11)/(k-1)
precd[i,t[i,k]]<- prec *2*(k-1)/k }}
##priors
for (i in 1l:ns) {uf[i] ~ dnorm(0, .0001)}

tau ~ dnorm(0,1)I(0,)

prec<- 1/pow(tau, 2)

for(i in 1:(nt-1)) {

for (j in (i+1) :nt) {

betal[i,j] ~ dnorm(B, prec.B) }}

B ~ dnorm(0,0.0001)

prec.B <- 1/ (sigma*sigma)

sigma ~ dnorm(0,1)I(0,)

dlref] <= 0

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)}
)

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)}

##estimates

for(i in 1:(nt-1)) {

for (j in (i+1):nt) {
OR[]J,1]<- exp(d[j] - dl[il])
LOR[],1]1<- d[3j] - d[i] }}
##ranking

for(k in 1l:nt) {

order[k]<- rank(d[], k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effective[k]<-equals (order[k],1)

for(j in l:nt) {

effectiveness[k,j]<- equals (order[k],Jj)

cumeffectiveness|[k,jl<- sum(effectiveness[k,1:3]) }}

for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1l: (nt-1)1) /(nt-1)}
##model fit

for(i in 1l:ns) {for (k in 1l:naf[i]) {

Darm[i, k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,tli,k]]1/
rli,tli,k]])+(n[i,t[i,k]] - rli,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]"*
p[i,t[i,k]])/(n[ tli,k]]- rli,tli,k]]))) }

D[i]<- sum(Darm[i,l:na[i]]) }

D.bar<- sum(D[])
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Model 1.6: ‘Active-favored’ (for the basic coefficietns) & consistent
coefficients

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment
I='direction variable'

H= = T S S S S

model {

for(i in 1l:ns) {

w(i,1]<- 0

thetali,t[i,1]1]<- 0

##binomial likelihood

for (k in 1l:nafli]) {xr[i,tl[i,k]] ~ dbin(pl[i,tli,k]],n[i,tl[i,k]])}
##parameterization

logit(p(i,t[i,1]1])<- uli]

for (k in 2:nafi]) {

lamda.1l[i,k]<- equals(r[i,t[i,k]]1,0)

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]])

lamda.3[1i,k]<- equals(r[i,t[i,111,0)

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]11)

lamda.a[i, k]<- max(lamda.l[i, k], lamda 2[1i,k])

lamda.b[i, k]<- max(lamda.3[i,k],lamda.4[i,k])

lamda[i, k]<-max (lamda.a[i,k],lamda.b[i, k])

var[i, k]<-
1/(r[i,t[i,k]1]1+(0.5*1lamda[i,k]))+1/(r[i,t[1,1]]+(0.5*1lamdai,k]))+1/(n[1

,t[i,k]]-r[i,t[i,k]]+(0-5*lamda[ k]))+ /(n[i,t[i,l]]-
r[i,t[i,111+(0.5*1lamdali, k]))

I[i,k]1<-0.5*(2[i,11-2[1i,k])

logit (p[i,t[i,k]])<- ul[i] + thetal[i,t[i,k]]

thetall[i,t[i,k]]<- thetali,t[i,k]] + betallt[i,k]]*var[i,k]l*I[i,k]
thetal[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])
md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]

wli,k]<- thetali,t[i,k]] - d[t[l k]l + d[t[i,1]]

wli,k]<- sum(w[i,1: k 11)/ (k-1)
precd[i,t[i,k]]<- prec *2*(k-1)/k }}

#H#priors

for (i in 1:ns) {uf[i] ~ dnorm(0, .0001)}

tau ~ dnorm(0,1)I(0,)
prec<- 1/pow(tau, 2)
for(i in 1:(nt—1)) {
for (3 in (i+1l) :nt){
betali,j] <- betal[j
betal[l] <= 0

for (3 in 2:nt) {betal[j] ~ dnorm(0,0.0001)}
dlref] <= 0

for(k in 1:(ref-1)) {d[k] ~ dnorm(0, .0001)}
for(k in (ref+1l):nt) {d[k] ~ dnorm(0,.0001)

—

] - betal[i] }} # consistency assumption in betas

}

##festimates
for(i in 1:(nt—l)) {
for (3 in (i+1) :nt) |

R[J,1]<- exp(d [ 1 - dlil])
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LOR[],1]1<- d[3j] - d[i] }}

##ranking

for(k in 1:nt) {

order[k]<- rank(d[],k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effective[k]<-equals (order[k],1)

for(j in 1l:nt) {

effectiveness[k,j]<- equals (order[k],]j)

cumeffectiveness|[k,j]<- sum(effectiveness[k,1:3]) }}

for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness([k,1l:(nt-1)1) /(nt-1)}
##model fit

for(i in 1l:ns) {for (k in 1:naf[i]) {

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/
rli,t[i,k1])+(nli,t(1i,k]] - r[i,t[i,k]])*log((n[i,t(i,k]]-n[i,t[i,k]]*
pli,tli, k1) /(n[i,t[i,k]]- r[i,t[i,k]1]))) }

D[i]<- sum(Darm[l l:naflil]) }

D.bar<- sum(D[])
}

Model 1.7: Probabilistic ‘new-favored’ & identical coefficients

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment
I="'direction variable'

model {

for(i in 1:ns) {

wli,1]1<- 0

thetali,t[i,1]1]<- O

bli,1] <- 0

##binomial likelihood

for (k in 1:naf[il) {r(i,t[i,k]] ~ dbin(pl[i,tl[i,k]1]1,nli,tli,k]1]1)}
##parameterization

logit(p[i,t[i,1]1])<- uli]

for (k in 2:naf[i]) {

lamda.1[1i, k]<— equals(r[i,t[i,k]]1,0)
lamda.2[1i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]])
lamda.3[1i,k]<- equals(r[i,t[i,111,0)
lamda.4[i,k]<- equals(n[i,t[i,11],r[i,t[i,1]11])
lamda.a[i, k]<- max(lamda.1l[i, k], lamda 2[1i,k])
lamda.b[i, k]<- max(lamda.3[i,k],lamda.4[i,k])
lamda[i, k]<-max (lamda.a[i, k], lamda.b[i,k])

var[i, k]<-

1/(r(i,t[i,k]]1+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*%1lamdali,k]))+1/(n[i

t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[di,1]]-
r[{i,t[i1,1]1]1+(0.5*1lamdali, k]))

I[1,k]1<-0.5*(Z2[1,11-21[1,k])

logit(pli,tli,k]])<- uli] + thetalli,tli,k]]
thetal[i,t[i,k]]<- thetali,t[i,k]] + B*var[i,k]*x[i,t[i,k]]
x[1,t[i,k]1<- bli,t[i,k]]*I[i,k] # probabilistic direction
thetali,tli,k]] ~ dnorm(md[i,t[i,k]],precd[i,tli,k]])
md[i,t[i,k]]<- d[t[i,k]] - d[ [1,1]1]1 + swli, k]
wl[i,k]<- thetal[i,t([i,k]] - d[t[i,k]] + d[t[i,1]]

wli,k]<- sum(w[i,1: k 11)/ (k-1)
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precd[i,t[i,k]]<- prec *2*(k-1)/k }}
##priors

for (i in 1:ns) {uf[i] ~ dnorm(0, .0001)}
tau ~ dnorm(0,1)I(0,)

prec<- 1/pow(tau,2)

B ~ dnorm(0,0.0001)

for (i in 1:6) {b[i,2] ~ dbern(Pl)} # 3-arm trials
for (i in 1:6) {b[i,3] ~ dbern(P2)}

for (1 in 7:10) {b[i,3] ~ dbern(P3)} # head-to-head

for (i in 11:24) {b[i,3] ~ dbern(P2)} # placebo-controlled
for (i in 25:31) {b[i,2] ~ dbern(Pl)}

Pl ~ dbeta(l,1) # favoring A compared to P

P2 ~ dbeta(l,1) # favoring D compared to P

P3 ~ dbeta(l,1) # favoring D compared to A

dl{ref] <= 0
for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)}
)

for(k in (ref+1l):nt) {d[k] ~ dnorm(0,.0001)}

f#estimates

for(i in 1:(nt-1)) {

for (j in (i+1):nt) {
R[j,1]<- exp(d[j] - d[i])
LOR[j,1i]<- d[j] - d[i] }}
##ranking

for(k in 1l:nt) {

order[k]<- rank(d[], k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effective[k]<-equals (order[k],1)

for(j in 1l:nt) {

effectiveness|[k,j]<- equals(order[k], )

cumeffectiveness[k, j]<- sum(effectiveness[k,1:3]) 1}}

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1l:(nt-1)]) /(nt-1)}
##model fit
for(i in 1l:ns)
for (k in 1l:na

[1]
Darm[i, k]<- =-2%*

{
i]) |

( rfi,tli,k]] *log(n[i,t[i,k]1*p[i,t[i,k]]/
[ [i

[i [

[i

)

[
r{i,tli,k]])+(nli,tli,k]] - rli,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]*
pli,tli,k11)/(n[i,t kll- rli,t[i,k]11))) }
D[i]<- sum(Darm[i,1: [1]]) }
]

D.bar<- sum (D[

}

Example 2. Incidence of Diabetes
Model 2.1: No covariates

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment

HH= H o

model {

for(i in 1l:ns) {
w(i,1]<= 0
thetal[i,t[i,1]1]1<- O
##binomial likelihood
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for (k in 1:naflil]) {r[i,tli,k]] ~ dbin(pl[i,tli,k]],n[i,tli,k]1])}
##parameterization
logit(pl[i,tli,1]1])<- uli]

for (k in 2:nafli]) {
logit(pli,tl[i,k]])<- u[i] + thetali,tli,k]]
thetali,t[i,k]] ~ dnorm(md[i,t[1i, k]],precd[i,t[i,k]])
md[i,t[1i,k]]<- d[t[i,k]] - d[ [1,11] + sw[i, k]
w[i,k]<- thetali,t[i,k]] - d[ [1,k]] + dlt[i,1]]
wli,k]<- sum(w[i,1: k 11)/ (k-1)

)

precd[i,t[i,k]]<- prec *2*(k-1)/k }}

##priors

for (i in 1:ns) {u[i] ~ dnorm(0, .0001)}

tau ~ dnorm(0,1)I(0,)

prec<- 1/pow (tau,2)

dlref] <= 0

for(k in 1l:(ref-1)) {d[k] ~ dnorm(0,.0001)}
)

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)}

##estimates

for(i in 1:(nt-1)) {

for (j in (i+1) :nt) {
R[j,i]<- exp(d[j] - d[i])
LOR[J,1i]<= d[j] - d[i] }}
##ranking

for(k in 1l:nt) {

order [k]<- rank(d[], k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effective[k]<-equals (order[k],1)

for(j in 1l:nt) {

effectiveness[k,j]<- equals(order[k],J)

cumeffectiveness[k,j]<- sum(effectiveness[k,1:3]) 1}}

for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1l: (nt-1)1) /(nt-1)}
##model fit

for(i in 1l:ns) {
for (k in 1l:nafi]) {
Darm[i, k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,tli,k]]1/
r{i,tli,k]])+n[i,t[i,k]] - rli,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]*
pli,tli,k11)/(n{i,t(i,k]]- x[i,tli,k11))) }
D[i]<- sum(Darm[i,l:na[i]]) }

]

D.bar<- sum (D]
}

Model 2.2: Active favored only - Fixed coefficient

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment
I='direction variable'

e E T

model {

for(i in 1l:ns) {

w[i,1l]<- 0

thetali,t[i,1]1]<- 0

##binomial likelihood

for (k in 1:nalil) {rl[i,t[i,k]] ~ dbin(pl[i,t[i, k1], n[i,t[i, k]]1)}
##parameterization
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logit(pl[i,t[i,1]1])<- uli]
for (k in 2:nafli]) {

lamda.l[i, k]<- equals(r[i,t[i,k]],0)
lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]])
lamda.3[1i,k]<- equals(r[i,t[i,111,0)
lamda.4[i,k]<- equals(n[i,t[i,1]1],r[i,t[di,1]1])
lamda.a[i,k]<- max(lamda.l[i,k],lamda.2[1i,k])
lamda.b[i, k]<- max(lamda.3[i,k],lamda.4([1i,k])
lamda[i, k]<-max (lamda.a[i, k],lamda.b[i, k])

var([i,k]<-
1/(r[i,t[1i,k]]1+(0.5*1lamda[i,k]))+1/(r[i,t[1,1]]1+(0.5*1lamda[i,k]))+1/(n[1
tli,k]]-r[i,t[i,k]]+(0.5*1lamdali,k]))+ /(n[i,t[i,l]]—
r[i,t[i,1]]+(0.5*1lamda[i,k]))

logit (p[i,t[i,k]])<- u[i] + thetal[i,t[i,k]]

I[i,k]1<-0.5*(Z[1,1]1-2([1i,k])

thetal[i,t[i,k]]<- thetali,t[i,k]] + B*var[i,k]*I[1i,k]

thetali,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,tl[i,k]])

md[i,t[i,k]]<- d[t[i,k]] - dA[t[i,1]] + sw[i,k]
wl[i,k]<- thetali,t[i,k]] - d[t[l k]l + d[t[i,1]]
wli,k]<- sum(w[i,1: k 11)/ (k-1)

precd[i,t[i,k]]<- prec *2*(k-1)/k }}

##priors

for (i in 1:ns) {u[i] ~ dnorm(0, .0001)}

tau ~ dnorm(0,1)I(0,)

prec<- 1/pow(tau, 2)

B ~ dnorm(0,0.0001)

dlref] <= 0

for(k in 1: (ref-1)) {d[k] ~ dnorm(0,.0001)}
)

for(k in (ref+l):nt) {d[k] ~ dnorm(0,.0001)}

##estimates

for(i in 1:(nt-1)) {for (j in (i+1l):nt) {
OR[§,1i]<- exp(d[j] - d[il])

LOR[§,i]<- d[j] - d[i] }}

##ranking

for(k in 1l:nt) {

order[k]<- rank(d[], k) # this is when the outcome is negative #
change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effective[k]<-equals (order[k],1)

for(j in 1l:nt) {

effectiveness[k,j]<- equals(order[k], )

cumeffectiveness[k, j]<- sum(effectivenessl[k,1:3]) 1}}

for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness([k,1l:(nt-1)]) /(nt-1)}
##model fit

for(i in 1l:ns) {for (k in 1l:naf[i]) {
Darm[i, k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,tli,k]]/
r{i,tli,k]])+(nli,tli, k1] - rli,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]*
pli,tli,k11)/(nli,t[i,k]]1- rli,t[i,k]1]))) }
D[i]<- sum(Darm[i,l:nal[i]]) }

1)

D.bar<- sum (D[
}

Model 2.3: ‘New-favored’ & identical coefficients

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms

H= =



160 | WinBUGS codes

# ref=reference treatment
# I='direction variable'

model {

for(i in 1:ns) {

w[i,1]<- 0

thetali,t[i,1]1]<- 0

##binomial likelihood

for (k in 1l:nafli]) {rl[i,tli,k]] ~ dbin(pli,t[i,k]],n[i,t[i,k]])}
##parameterization

logit(p[i,tli,1]])<- uli]

for (k in 2:nafli]) {

lamda.1l[1i, k]<— equals(r[i,t(i,k]],0)

lamda.2[i,k]<- equals(n[i,t[i,k]],r[di,tli,k]])

lamda.3[i,k]<- equals(r[i,t[i,1]1],0)

lamda.4[i,k]<- equals(n[i,t[i,1]],r[di,t(di,1]1])

lamda.a[i, k]<- max(lamda.1l[i,k],lamda.2[1i,k])

lamda.b[i, k]<- max(lamda.3[i,k],lamda.4[1i,k])

lamda[i, k]<-max (lamda.a[i, k], lamda.b[i,k])

var[i, k]<-
1/(r[i,t[1,k]1]+(0.5*1lamda[i,k]))+1/(r[1i,t[1,1]]+(0.5*1lamda[i,k]))
+1/(n[i,tli,k])-rli,t[i,k]]+(0.5*%1lamda (i, k]))+1/(n[di,t[i,1]]-
r[i,t[l,l]]+(0.5*lamda[ i,k1))

I[1,k]1<=-0.5*(Z[1,1]1-2[1,k])

logit(pli,tl[i,k]])<- uli] + thetalli,t[i,k]]
thetal[i,t[i,k]]<- thetali,t[i,k]] + B*var[l,k]* [i, k]
thetali,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])
md[i,t[i,k]]1<- d[t[i,k]] - d[t[i,1]] + sw[i, k]

wl[i,k]<- thetali,t[i,k]] - d[t[i,k]] + d[t[i,1]]

wli,k]<- sum(w[i,1:k-11)/(k-1)

precd[i,t[i,k]]<- prec *2*(k-1)/k }}

##priors

for (i in 1l:ns) {uf[i] ~ dnorm(0,.0001)}

tau ~ dnorm(0,1)I(0,)

prec<- 1/pow (tau, 2)

B ~ dnorm(0,0.0001)

dlref] <= 0

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)}
)

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)}

##estimates

for(i in 1:(nt-1)) {for (j in (i+1) :nt) {
OR[]J,1]<- exp(d[j] - dl[il])

LOR[],1]1<- d[3j] - d[i] }}

##ranking

for(k in 1l:nt) {

order[k]<- rank(d[], k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effectivel[k]<-equals (order[k],1)

for(j in l:nt) {

effectiveness[k,j]<- equals (order[k],Jj)

cumeffectiveness|[k,jl<- sum(effectiveness[k,1:3]) }}
for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness([k,1l: (nt-1)1) /(nt-1)}
##model fit
for(i in 1l:ns) {for (k in 1l:nafi]) {
Darm([i,k]<- =-2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/
rii,tli,k]])+(nli,tli,k]] - rli,tli,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]*
pli,tli,k11)/(n[i,tli,k]]- rli,tli,k]11))) }

[

D[i1]<- sum(Darm[i, 1 nal[il]l]) 1}
D.bar<- sum(D[])
}
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Model 2.4: ‘Sponsored-favored’ & identical coefficients
ns=number of studies

r=number of events

n=sample size

t=treatment

nt=number of treatments

na=number of arms

ref=reference treatment

='direction variable'

H= = T S S

model {

for(i in 1:ns) {

wli,1l]<- O

theta[i,t[i,1]]1<- O

##binomial likelihood

for (k in 1l:naflil]) {r[i,tli,k]]
##parameterization

~ dbin(pli,t[i,k]],n

[i,t[i,k]])}

k1))

logit(p[i,t[1,1]])<- uli]
for (k in 2:nafi]) {
lamda.1l[i,k]<- equals(r[i,t[i,k]]1,0)
lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]])
lamda.3[1i,k]<- equals(r[i,t[i,11]1,0)
lamda.4[i, k]<- equals(n [1,t[i,l]],r[i,t[i,l]])
lamda.a[i,k]<- max(lamda.l[i,k],lamda.2[i,k])
lamda.b[i, k]<- max(lamda.3[i,k],lamda.4([i,k])
lamda[i, k]<-max (lamda.a[i,k],lamda.b[i, k])
var([i, k]<-
1/(x[i,t[i,k]11+(0.5*1lamda[i,k]))+1/(r[i,t[1i,1]]+(0.5*1lamdali,
+1/(nfi,tli,k]]-r[i,tli,k]]+(0.5*%lamda i, k]))+1/(n[i,E[1,1]]-
r[i,t[i,l]]+(0.5*lamda[ kl))
I[1i,k]1<=-0.5*(Zz[1,11-2[41,k])
logit(pli,t[i,k]1]1)<- u[i] + thetalli,tl[i,k]]
thetall[i,t[i,k]]<- thetali,t[i,k]] + B*var[i,k]*I[i,k]
theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])
md[i,t[i,k]]<- dlt[i,k]] - dA[t[i,1]] + sw[i,k]
w[i,k]<- thetali,t[i,k]] - d[t[l k]l + d[t[i,1]]
wli,kl<- sum(w[i,1: K- 11)/ (k-1)
precd[i,t[i,k]]<- prec *2*(k-1)/k }}
##priors
for (i in 1:ns) {ul[i] ~ dnorm(0, .0001)}
tau ~ dnorm(0,1)I(0,)
prec<- 1/pow(tau, 2)
B ~ dnorm(0,0.0001)
dl{ref] <= 0
for(k in 1:(ref-1)) {d[k] ~ dnorm(0, .0001)}
for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)}
#ffestimates
for(i in 1l:(nt-1)) {for (j in (i+1l):nt) {
R[j,i]<- exp(d[j] - d[i])
LOR[],1]<- d[3] - d[i] }}

##ranking

for(k in 1l:nt) {
order[k]<- rank(d[], k)
# change to 'order[k]<- nt+l-rank(d[],
most.effectivel[k]<-equals (order[k],1)
for(j in l:nt) {

effectiveness[k,j]<- equals(order[k],J)
cumeffectiveness|k,jl<- sum(effectivenessl[k,1:73])

k) '

H}

# this is when the outcome is negative
if the outcome is positive
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for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1l: (nt-1)1) /(nt-1)}
##model fit

for(i in 1l:ns) {for (k in 1:naf[i]) {

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/
rli,tli,k]])+(n[i,t[i,k]] - rl[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]*
pli,tli, k1) /(n[i,tl[i,k]]- r[i,t[i,k]1]1))) }

D[i]<- sum(Darm[l l:naflil]) }

D.bar<- sum(D[])

}

Model 2.5: ‘Sponsored/New-favored’ & identical coefficients

# ns=number of studies

# r=number of events

# n=sample size

# t=treatment

# nt=number of treatments

# na=number of arms

# ref=reference treatment

# I='direction variable'

model {

for(i in 1l:ns) {

w[i,1]<- 0

thetali,t[i,1]1]<- 0

##binomial likelihood

for (k in 1:naf[i]) {r[i,t[i,k]] ~ dbin(p[i,tl[i,k]],n[i,t[i,k]])}

##parameterization
logit(p[i,t[i,1]1])<- uli]
for (k in 2:nali]) {

lamda.1[1i, k]<— equals(r[i,t[i,k]],0)
lamda.2[1i,k]<- equals(n[i,t[i,k]],r[i,tl[i,k]])
lamda.3[1i,k]<- equals(r[i,t[i,111,0)
lamda.4[i,k]<- equals(n[i,t[i,11],r[i,t[i,1]11])
lamda.a[i, k]<- max(lamda.1l[i,k],lamda.2[i,k])
lamda.b[i, k]<- max(lamda.3[i,k],lamda.4[i,k])
lamda[i, k]<-max (lamda.a[i,k],lamda.b[i,k])

var[i, k]<-

1/(rli,t[i,k]11+(0.5%lamda[i, k]))+1/(r[i,t[i,1]1]1+(0.5*lamdali,k

,tli,kl11-r[i,t[i,k]]+(0.5*lamdali, k]))+1/(n[i,t[i,1]1]-
r{i,t[i,1]]1+(0.5*lamdali, k]))
I[i,k]<-0.5*%(Z[i,1]1-2[i,k])

logit(pl[i,tl[d,

k]11)<-= ul[i] + thetalli,t[i,k]]
thetall[i,t[i,k]]1<- thetali,t[i,k]] + B*var[l,k]* [i, k]
thetali,t[i,k]] ~ dnorm(md[i,t([i,k]],precd[i,t[i,k]])
md[i,t[i,k]]1<- d[t[i,k]] - d[t[i,1]] + sw[i, k]
wl[i,k]<- thetali,t[i,k]] - d[t[i,k]] + d[t[i,1]]
wli,k]l<- sum(w[i,1:k-11)/(k-1)
precd[i,t[i,k]]<- prec *2*(k-1)/k }}
##priors
for (i in 1l:ns) {u[l[i] ~ dnorm(0, .0001)}

tau ~ dnorm(0,1)I(0,)

prec<- 1/pow (tau,2)

B ~ dnorm(0,0.0001)

dlref] <- 0

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)}
for(k in (ref+1l):nt) {d[k] ~ dnorm(0,.0001)
##estimates

for(i in 1:(nt-1)) {for (j in (i+1) :nt) {

}

y+1/(n[i
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OR[J,1]<- exp(d[j] - d[i])

LOR[],1]1<- d[3] - d[i] }}

##ranking

for(k in 1l:nt) {

order[k]<- rank(d[],k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effective[k]<-equals (order[k],1)

for(j in 1l:nt) {

effectiveness[k, j]<- equals (order[k],])

cumeffectiveness|k,jl<- sum(effectiveness[k,1:3]) }}

for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1l:(nt-1)]1) /(nt-1)}
##model fit
for(i in 1l:ns) {
for (k in 1:naf[i]) {

Darm[i, k]<- —2*( rii,t[i,k]] *log(n[i,tl[i,k]]*pli,tl[i,k]]1/
[ [i

[ [i

[

[
rii,t[i,k]1])+(n[i,t k]l - rli,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]*
pli,tli,k]11)/(n[i,t kl1l- r[i,t[i,k]11))) }
m[i,1l:n [l]]) }
]

D[i]<- sum(Dar
D.bar<- sum (D[

}

)

Model 2.6: ‘Active-favored’ (for the basic coefficients) & consistent
coefficients

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment
='direction variable'

H= FH H

model {

for(i in 1l:ns) {

wli,1]1<= 0

thetali,t[i,1]1]<- 0

##binomial likelihood

for (k in l:na[i]) {r[i,t[i,k]] ~ dbin(pl[i,tl[i,k]],nli,tli,k]11)}
##parameterization

logit (p[i,t[i,1]1])<- uli]

for (k in 2:nafi]) {

lamda.1l[i,k]<- equals(r[i,t[i,k]]1,0)

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]])
lamda.3[i,k]<- equals(r[i,t[i,111,0)

lamda.4[i,k]<- equals(n[i,t[i,1]1],r[i,t[i,111)
lamda.a[i,k]<- max(lamda.l[i,k],lamda.2[1i,k])
lamda.b[i, k]<- max(lamda.3[i,k],lamda.4([1i,k])

lamda[i, k]<-max (lamda.a[i,k],lamda.b[i, k])

var([i,k]<-
1/(r[i,t[i,k]]1+(0.5*1lamdali,k]))+1/(r[i,t[1,1]1]1+(0.5*1lamdai,k]))+1/(n[1
t[i,k]]—r[i,t[i,k]]+(0-5*lamda[ ])) /(n[i,t[i,l]]-

r[{i,t[1,111+(0.5*1lamdali, k]))

I[1i,k]1<-0.5*(Zz[1,11-21[1,k])

logit(pli,tli,k]])<- uli] + thetalli,tl[i,k]]

thetal[i,t[i,k]]<- thetal[i,t[i,k]] + betallt[i,k]]*var[i,k]*I[1,k]
thetali,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,tli,k]l])
md[i,t[i1,k]]1<- d[t[i,k]] - d[t[i,1]] + swl[i,k]
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wl[i,k]<- thetali,t[i,k]] -

daft[i,k]] + d[t[i,1]]
wl[i,k]<- sum(w[i,1l:k-17)/ (k-1)
-1)

precd[i,t[i,k]]<- prec *2*(k /k 1}

##priors

for (i in 1:ns) {u[i] ~ dnorm(0, .0001)}

tau ~ dnorm(0,1)I(0,)

prec<- 1/pow (tau,2)

for(i in 1:(nt-1)) {

for (j in (i+1) :nt){

beta[i,j] <- betal[j] - betal[i] }} # consistency assumption in betas
betal[l] <= 0

for (j in 2:nt) {betal[j] ~ dnorm(0,0.0001)}

dlref] <= 0
for(k in 1l:(ref-1)) {d[k] ~ dnorm(0,.0001)}
)

for(k in (ref+1):nt) {d[k] ~ dnorm(0, .0001)}

##estimates

for(i in 1:(nt-1)) {for (j in (i+1) :nt) {
OR[J,1]<- exp(d[j] - d[i])

LOR[],1i]<- d[j] - d[i] }}

##ranking

for(k in 1l:nt) {

order [k]<- rank(d[], k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effectivel[k]<-equals (order[k],1)

for(j in 1l:nt) {

effectiveness[k,j]<- equals(order[k],J)

cumeffectiveness[k,j]<- sum(effectiveness[k,1:3]) 1}}
for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1l: (nt-1)1) /(nt-1)}
##model fit
for(i in 1:ns) {for (k in 1l:na[i]) {
Darm([i, k]<- —2*( rii,t[i,k]] *log(n[i,t[i,k]]*pli,tli,k]]/
r{i,tli,kl1])+(nli,t[i,k]] - r[i,tl[i,k]])*log((n[i,t[i,k]l]l-n[i,t[i,k]]*
pli,tli,k1]) / nfi,t[i,k]]- rli,tl[i,k]]))) }

[1

D[i]<- sum(Darm[i, 1 nali]]) 1}
D.bar<- sum(D[])
}

Model 2.7: ‘Sponsored/new-favored’ & subgroups by sponsoring

ns=number of studies

r=number of events

n=sample size

t=treatment

nt=number of treatments

na=number of arms

ref=reference treatment

I='direction variable'

s=shows sponsored and non-sponsored studies

S oS = S S SR R e 36

model {

for(i in 1l:ns) {

w[i,1l]<- 0

thetali,t[i,1]1]<- 0

##binomial likelihood

for (k in 1:nafli]) {rli,tli,k]] ~ doin(pli,tl[i,k]],n[i,t[i,k]I])}
##parameterization

logit(pl[i,tli,1]1])<- uli]

for (k in 2:nafi]) {

lamda.1l[i,k]<- equals(r[i,t[i,k]],0)
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lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,tli,k]l])
lamda.3[i,k]<- equals(r[i,t[i,1]],0)
lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,tli,1]11)
lamda.a[i, k]<- max(lamda.1l[i, k], lamda 2[1,k])
lamda.b[i, k]<- max(lamda.3[i,k],lamda.4([1i,k])
lamda[i, k]<-max (lamda.a[i, k], lamda.b[i,k])
var([i,k]<-
1/(r[i,t[1,k]]1+(0.5*1lamda[i,k]))+1/(r[i,t[1,1]]+
t(i,k]]-r(i,t[i,k]]+(0.5*1lamda[i,k]))+ /(n
r{i,t[i,1]]1+(0.5*1lamda(i, k]))
I[i,k]1<=-0.5*(Zz[1i,11-2([1i,k])

logit(pli,

thetalli,t[i,k]]<- thetal[i,t[i,k]] + B[s[i

different betas for #sponsored and non-sponsored studies
thetali,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,tl[i,k]])

md[i,t[i,k]]<- d[t[i,k]] - dlt[i,1]] + sw[i, K]

w[i,k]<- thetali,t[i,k]] - d[t[l k1]l + d[t[i,1]1]
wli,k]<- sum(w[i,1: k 11)/ (k-1)

precd[i,t[i,k]]<- prec *2*(k-1)/k }}

##priors

for (i in 1l:ns) {uf[i] ~ dnorm(0, .0001)}

tau ~ dnorm(0,1)I

u
(
prec<- 1/pow (tau, 2
for (i in 1:2) { B

tli,k]])<- uli]

[
0,)
)
[

+ thetalli,t

i] ~ dnorm(0,0.0001)

}

[i,k]]
]1*var[i, k]*

dlref] <= 0

for(k in 1:(ref-1)) {d[k] ~ dnorm(0, .0001)}
for(k in (ref+l):nt) {d[k] ~ dnorm(0,.0001)}
##estimates

for(i in 1:(nt-1)) {for (j in (i+1l):nt) {
R[j,1]<- exp(d[j] - d[i])

LOR[J,1i]<= d[j] - dIli]l }}

##ranking

for(k in 1l:nt) {

order [k]<- rank(d[], k)
change to 'order[k]<- nt+l-rank(d[],

#

most.effective[k]<-equals (order[k],1)
for(j in 1l:nt) {
effectiveness|[k,j]<- equals(order[k], )

cumeffectiveness[k, j]<- sum(effectiveness[k,1:3])

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectivenessl[k,1:

##model fit

for(i in 1l:ns)
Darm[i, k]<- =-2%*

{
(
[i
[i
[
)

for (k in 1l:nafi]) {
rlii,t[i,k]]
- rli,tli,k]])*log((n[i,t[i,k]]

*log(n[i,t

(i, k]1*pli,tli,k]1]/
-n[i,tli,k]]*

rli,tli,k]])+(n[i,t[i,k]]
pli,tli,k11)/(n[i,t[i,k]]- rli,t[i, k11)))
D[i]<- sum(Darm[i,l:nal[i]]) }

]

D.bar<- sum (D[

}

Model 2.8:

#
#
#
#
#
#
#
#

ns=number of studies
r=number of events
n=sample size
t=treatment

nt=number of treatments
na=number of arms
ref=reference treatment
I='direction variable'

‘Sponsored/new-favored’

(0.5*lamdal1i,
[llt[lll]]_

k]1))+1/(n[1

# two

# this is when the outcome is negative

k)

if the outcome is positive

}

& subgroups by year

/(nt-1)}
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# y=shows studies published before and after 2000

model {

for(i in 1:ns) {

w[i,1]<- 0

thetali,t[i,1]1]<- 0

##binomial likelihood

for (k in 1:nafli]) {r[i,tli,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}
##parameterization

logit(p[i,tli,1]1])<- uli]

for (k in 2:nafli]) {

lamda.1l[1i, k]<— equals(r[i,tl[i,k]],0)

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,tldi,k]])

lamda.3[i,k]<- equals(r[i,t[i,1]1],0)

lamda.4[i,k]<- equals(n[i,t[i,1]],r[di,tldi,1]1])

lamda.a[i, k]<- max(lamda.1l[i, k], lamda 2[1i,k])

lamda.b[i, k]<- max(lamda.3[i,k],lamda.4[1i,k])

lamda[i, k]<-max (lamda.a[i, k], lamda.b[i, k])

var[i, k]<-
1/(r[i,t[1,k]1]+(0.5*1lamda[i,k]))+1/(r[i,t[1,1]]+(0.5*1lamdali,k]))
+1/(n[i,t[i,k]]-r[i,t[i,k]]+(0.5*1lamdali,k]))+1/(n[i,t[1,1]]-
r{i,t[i,1]1] (O.5*lamda[ k1))

I[i,k]1<=-0.5*(Z[41i,1]1-2[1, k])

<
logit(pli,tli,k]])<- uli] + thetalli,tli,k]]
thetal[i,t[i,k]]<- thetali,t[i,k]] + Blylill*var[i,k]l*I[1i,k] # two
different betas for #studies published before and after 2000

thetal[i,t[i,k]] ~ dnorm(md[i,t([i,k]],precd[i,t[i,k]])
md[i,t[i,k]]1<- d[t[i,k]] - d[t[i,1]] + sw[i, k]
w[i,k]<- thetali,t([i,k]] - d[t[i,k]] + d[t[i,1]]

wli,k]<- sum(w[i,1:k-11)/(k-1)

precd[i,t[i,k]]<- prec *2*(k-1)/k }}

##priors

for (i in 1l:ns) {u[i] ~ dnorm(0, .0001)}

tau ~ dnorm(0,1)I(0,)

prec<- 1/pow (tau, 2)

for (i in 1:2) { B[i] ~ dnorm(0,0.0001) }

dlref] <= 0

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)}
)

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)}

##estimates

for(i in 1:(nt-1)) {for (j in (i+1) :nt) {
OR[]J,1]<- exp(d[j] - dl[il])

LOR[],1]1<- d[3j] - d[i] }}

##ranking

for(k in 1l:nt) {

order[k]<- rank(d[], k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effectivel[k]<-equals (order[k],1)

for(j in l:nt) {

effectiveness[k,j]<- equals (order[k],Jj)

cumeffectiveness|[k,jl<- sum(effectiveness[k,1:3]) }}
for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness([k,1l: (nt-1)1) /(nt-1)}
##model fit
for(i in 1l:ns) {for (k in 1l:nafi]) {
Darm([i,k]<- =-2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/
rli,tli,kl])+(nli,tli,k]] -rli,tli,kl])*log((n[i,t[i,k]]l-n[i,t[i,k]]*
pli,tli,k11)/(n[i,tli,k]]- rli,tli,k]11))) }

[

D[i1]<- sum(Darm[i, 1 nal[il]l]) 1}
D.bar<- sum(D[])
}
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Model 2.9: Probabilistic ‘Sponsored/new-favored’ & subgroup by year

ns=number of studies

r=number of events

n=sample size

t=treatment

nt=number of treatments
na=number of arms

ref=reference treatment
='direction variable'
y=published before or after 2000

H= = T e S S S S

model {

for(i in 1l:ns) {

w(i,1]<-= 0

theta[i,t[i,1]]1<- O

bli,1]1<-0

##binomial likelihood

for (k in 1:nafil]) {r([i,t[i,k]] ~ dbin(pli,t[i,k]],n[i,tli,k]1]1)}
##parameterization

logit (p[i,t[i,1]1])<- uli]

for (k in 2:nafi]) {

lamda.1l[i,k]<- equals(r[i,t[i,k]]1,0)

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]])
lamda.3[1i,k]<- equals(r[i,t[i,111,0)

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,111)
lamda.a[i, k]<- max(lamda.1l[i, k], lamda 2[1i,k])
lamda.b[i, k]<- max(lamda.3[i,k],lamda.4[i,k])

lamda[i, k]<-max (lamda.a[i,k],lamda.b[i, k])

var[i, k]<-
1/(r[i,t[i,k]1]1+(0.5*1lamdai,k]))+1/(r[i,t[1,1]]+(0.5*1lamdai,k]))+1/(n[1
tli,k]]-r[i,t[i,k]]1+(0.5*1lamdai,k]))+ /(n[i,t[i,l]]-

r[{i,t[i,1]11+(0.5*1lamda[i, k]))
T[i,kl<- (y[il1-1.5)*(Z2[i,1]1-Z[1i,k]) # assumption of opposite direction
for # studies before and after 2000
logit (p[i,t[i,k]])<- ul[i] + thetal[i,t[i,k]]
thetall[i,t[i,k]]<- thetali,t[i,k]] + betaly[ill*var[i,k]*x[i,t([i,k]] #
two different betas # for studies before and after 2000
x[1i,t[i,k]]1<- b[i,t[i,k]]*I[i,Kk] # probabilistic direction
thetali,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])
md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i, k]
wli,k]<- thetali,t[i,k]] - d[t[l k1] + d[t[i,1]]
wli,k]l<- sum(w[i,1: k 11)/ (k-1)
precd[i,t[i,k]]<- prec *2*(k-1)/k }}
#H#priors
for (i in 1:ns) {uf[i] ~ dnorm(0, .0001)}
tau ~ dnorm(0,1)I(0,)
prec<- 1/pow(tau, 2)
for (i in 1:2) {betal[i] ~ dnorm(0,0.001) }
Bl <- -beta[l] # (notation) opposite direction should give
opposite betas
B2 <- betal2]
for (i in 1l:ns) {

for (k in 2:nafi]) {
bli,t[i,k]] ~ dbern(P[y[i]]) }}
for (i in 1:2) {P[i] ~ dbeta(l,1) }

dlref] <= 0
for(k in 1:(ref-1)) {d[k] ~ dnorm(0, .0001)}
)

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)}
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##estimates

for(i in 1:(nt-1)) {for (j in (i+1) :nt) {
OR[J,1]<- exp(d[j] - d[i])

LOR[3F,1]<- d[j] - d[i] }}

##ranking

for(k in l:nt) {

order[k]<- rank(d[],k) # this is when the outcome is negative

# change to 'order[k]<- nt+l-rank(d[],k)' if the outcome is positive
most.effective[k]<-equals (order[k],1)

for(j in 1l:nt) {

effectiveness[k,j]<- equals (order[k],Jj)

cumeffectiveness|[k,j]<- sum(effectiveness[k,1:3]) }}
for(k in 1l:nt) { SUCRA[k]<- sum(cumeffectiveness([k,1l:(nt-1)]1) /(nt-1)}
##model fit
for(i in 1l:ns) {for (k in 1:naf[i]) {
Darm[i,k]<- =-2*( r[i,t[i,k]] *log(n[i,t[i,k]]*pli,tli,k]]/
r{i,tli, k1) +(nli,tl[i,k]] - r[i,tli,k]])*log((n[i,t[i,k]l]l-n[i,t[i,k]]*
pli,tli,k11)/(n[i,t[i,k]]- rli,t(i,k]1]))) }

[

D[i]<- sum(Darm[i,l:na[i]]) }
D.bar<- sum(D[])
}
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