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1 Introduction 

 

 

Systematic reviews and meta-analyses have been established as an integral part of 

comparative effectiveness research and are used worldwide by health-care 

agencies (e.g. National Institute for Health and Clinical Excellence (NICE) or 

Agency for Healthcare Research and Quality (AHRQ)) to inform policy-making. A 

major advantage of meta-analysis is that usually it outperforms any single study 

in terms of statistical power. Thus, it has become a highly valuable tool 

particularly when individual studies are inconclusive (1).  

The usefulness of meta-analysis goes beyond the synthesis of relative effects for 

comparing two interventions for a specific clinical condition and outcome; it can 

be also employed for the investigation of characteristics that may affect the 

treatment effects (2,3). More specifically, substantial clinical and methodological 

discrepancies across the studies of a meta-analysis may cause differences between 

the study-specific true underlying effects. Such differences, known as heterogeneity, 

can be accounted for in a meta-analysis as additional variation across studies on 

the top of random error. This variation is reflected in the estimated summary 

relative effect as the between-study variance, which refers to the deviation of the 

study-specific underlying treatment effects from their common mean (4).  

Heterogeneity can sometimes be explained using meta-regression models, which 

are extensions of the meta-analysis model that incorporate covariates (5,6). 

Nevertheless, associations between such study-specific characteristics and relative 

effects cannot always be explored adequately within a meta-analysis due to the 

small number of included studies. Therefore, meta-epidemiological research uses 

collections of many meta-analyses to assess the possible effect of several factors 

using a wide range of studies typically collected as part of individual meta-

analyses (7,8). 
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Meta-regression and meta-epidemiology approaches in the context of pairwise 

meta-analysis (comparing only two interventions) are well-known methodologies. 

However, the development of a more complex evidence synthesis tool, which 

enables the simultaneous comparison of three or more competing interventions, 

requires the adaptation of these methods into its framework. This tool, known as 

network meta-analysis (NMA) (also called mixed-treatment comparison or multiple-

treatment meta-analysis), synthesizes data from a set of studies, which may 

compare the same or different sets of treatments for a common clinical outcome. 

NMA integrates direct (from individual studies directly comparing interventions) 

with indirect evidence (information on a treatment effect via a connected indirect 

root) to infer about the relative effect of any pair of treatments included in the 

network (9–11). This allows us to compare treatments that have not been directly 

compared in any of the individual studies and also network estimates usually have 

increased precision compared to the respective direct estimates.  Furthermore, the 

inclusion of all competing treatments in the same meta-analytic model allows the 

estimation of their relative ranking (12), which provides a concise summary of the 

findings and can be used to inform decision-making.    

This introductory Chapter offers a brief overview of the available meta-analytic 

methods for pairwise meta-analysis. It also presents meta-regression models, 

which allow the relative effects to differ according to the values of a covariate. 

Next, it describes meta-epidemiological models that synthesize parameters across 

different meta-analyses. The last Section outlines the objectives of this Thesis. 

 

1.1 Models for pairwise meta-analysis 

 

1.1.1 Basic concepts of pairwise meta-analysis 

 

Consider that a systematic review includes   eligible studies and each study   

(       ) has estimated a relative effect   , called also the observed effect of study
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 , between two competing interventions   and   with (observed) variance   
 . The 

true underlying effects    of the studies can be modeled either under the fixed effect 

or the random effects assumption (4,13,14). The former assumption implies that the 

study-specific underlying effects    are identical, hence 

      

where   is the true summary relative effect of treatment   vs.  . On the other 

hand, the random effects assumption allows the underlying effects to differ across 

studies so that 

        (1.1)  

The random effects    are assumed to share a common (usually normal) 

distribution with zero mean and variance the heterogeneity parameter   , namely 

           (1.2)  

and reflect the deviation of each    from their common mean  . Equations (1.1) 

and (1.2) can be written equivalently as 

            (1.3) 

Setting      or      renders the random effects model as a fixed effect model. 

Pairwise meta-analysis can be fitted either as a linear or a hierarchical model. Both 

approaches as described in the following Section.  

Note that throughout this Thesis bold letters represent matrices and regular letters 

represent scalars. Also, there is distinction between lowercase and uppercase 

letters.  

 

1.1.2 Modeling approach for pairwise meta-analysis 

 

Pairwise meta-analysis as a linear model 

In terms of linear regression and using matrix notation the meta-analysis model 

can be described as 

         (1.4)  

where,            
  and            

 . The vector of the random error terms 

           
  is assumed normally distributed with 
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(          
      

  ). The matrix           is the design matrix and     is the 

summary effect. The model of Equation (1.4) assumes that variances are known 

and equal to their sample counterparts. Also, the random effects    are assumed 

independent from the random errors   . 

 

Pairwise meta-analysis as a hierarchical model 

A hierarchical model for pairwise meta-analysis can be constructed assuming that  

          
   (1.5) 

and then employing Equation (1.3). Note that hierarchical models for meta-

analysis are often fitted in a Bayesian framework; in this case prior distributions 

are necessary for   and   . 

Alternatively, Equation (1.5) can be replaced by arm-level likelihoods. These 

likelihoods are presented below for the two most common types of outcome data: 

- For a dichotomous outcome the number of events in each study arm      and     

(for treatments   and   respectively) of study   is assumed to follow a binomial 

distribution  

                 

                 
  

with probability of experiencing an event     and     respectively. The     and 

    are the total number of participants in each arm. 

- Continuous outcomes are usually modelled by assuming a normal distribution 

for each arm-specific mean score    ,      

             
   

             
   

  

with means     ,     and variances    
  

    
 

√   
,    

  
    

 

√   
  (     is the standard 

deviation of the observations in arm   of study  ).  

Then, the true probabilities    ,     and the true means    ,     are parameterized 

using a link function to derive the underlying relative effect sizes   . For example,
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the log-odds ratio or the mean difference of   vs.   can be estimated using the 

         or identity function respectively 

                         

           
(1.6)  

An overview of all possible likelihoods and link functions for any type of data can 

be found in Dias et al. (15). 

 

1.2 Models incorporating covariates for pairwise meta-analysis  

 

In the presence of important heterogeneity, conclusions formed on the basis of the 

summary effect might be misleading. However, heterogeneity often can be 

explained by differences in several characteristics across the studies of a 

systematic review. If information on such study-specific characteristics is 

available, it can be incorporated in the analysis via a meta-regression model as 

described below (6).  

Consider   different characteristics           that differ in every study   and are 

possible explanatory variables for heterogeneity. These variables can be binary, 

categorical or continuous and are added as extra linear terms in Equation (1.1). 

The meta-regression model including   covariates would be 

  
       

  ∑     

 

   

 (1.7) 

where the superscript ( ) denotes that the parameters from this model are 

different from the parameters of the model without covariates. 

Each coefficient    (       ) shows the change, on average, in the summary 

effect   , if    increases one unit and                     remain constant. The 

summary effect    estimated from this model corresponds to studies for which all 

covariates are equal to zero.  We assume 

  
             

Then, Equations (1.4) and (1.5), depending on the fitting approach (linear or 

hierarchical model), are modified into 
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    (
  

 
*        (1.8) 

(with    (
        

    
        

+,       ,   (       )
 
) and 

       
    

     

(with   
           ) respectively. 

If the selected explanatory variables are indeed factors that cause heterogeneity, 

the estimated between-study variance  ̂   is expected to be smaller than that 

estimated from the model without covariates (i.e.  ̂    ̂ ). Note that the use of 

fixed effect meta-regression is not recommended, since it is not reasonable to 

assume that the total amount of statistical heterogeneity is explained (16). 

Meta-regression models aim to identify factors acting as effect modifiers; that is 

study-level characteristics that affect the results of the individual studies. 

However, meta-regression can be subject to false-positive findings, particularly 

when a large number of explanatory variables has been selected. For this reason 

the potential effect modifiers should be specified a priori based on the clinical 

experience and understanding of the researchers.   

Despite its usefulness, meta-regression is not free of limitations. A major drawback 

is that, in the absence of many studies or in the presence of extreme heterogeneity, 

the regression coefficients cannot be estimated adequately due to low power (17). 

Existing guidance suggests that performing meta-regression requires at least ten 

studies for each included covariate to ensure that coefficients could be estimated 

with sufficient power (13). In addition, meta-regression is observational evidence, 

since the benefits of randomization are not preserved when associations are 

investigated across the studies. Thus, any meta-regression analysis suffers from 

the potential biases of other observational studies, such as confounding. An 

extended discussion on all stengths and limitations of meta-rergession is available 

in Thompson et al. (16). 
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1.3 Models synthesizing parameters across pairwise meta-analyses 

 

The low power of meta-regression implies that, when only few studies are 

available, it may fail to detect associations between study-level characteristics and 

treatment effects (13). However, the impact of such characteristics on relative 

effects is very often not specific to a single meta-analysis, but affects any meta-

analysis irrespective of the interventions or the outcomes of interest across many 

research areas. Meta-epidemiology exploits this fact to overcome the lack of power 

of meta-regression and explores the impact of possible effect modifiers using 

collections of meta-analyses (7,8).  

For example, the appropriate blinding of patients is supposed an important trial 

characteristic that strengthens the validity of findings. This implies that studies, in 

which blinding has not been conducted adequately might give different results 

from studies, in which patients have been blinded properly. If there are no reasons 

to believe that blinding impacts in a different way (in magnitude and direction) 

across a range of clinical outcomes (e.g. when active treatments are compared to a 

control), information on blinding can be synthesized across all meta-analyses 

evaluating such outcomes. This approach would give a summary estimate of the 

impact of blinding on treatment effects pertaining to the entire collection of meta-

analyses. This estimate would be more precise compared to any coefficient 

estimated from a single meta-regression. 

Quantitative synthesis of results assumes that the parameters (e.g. coefficients 

from meta-regression models) showing the effect of the characteristic of interest 

are comparable across meta-analyses and aims to estimate a common summary 

parameter.  

Consider again the         explanatory variables that may act as effect modifiers 

in a collection of   meta-analyses. Either a one-stage or a two-stage approach can 

be employed.  The latter approach initially applies a meta-regression model (see 

Section 1.2) within each meta-analysis   (       ) separately to estimate the 
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set of   meta-analysis-specific coefficients            . Then, the estimated 

coefficients  ̂    (       ) are synthesized across the   meta-analyses using 

standard meta-analytic methods (see Section 1.1). A random effects model can be 

employed to allow for between-meta-analysis variability in the estimated 

coefficients. On the other hand, the one-stage approach estimates simultaneously 

in the same model both the meta-analysis-specific coefficients and their summary 

coefficient (18). The advantage of using this approach is that meta-analyses with 

few studies can borrow strength from larger meta-analyses and in this way the 

summary parameters might be estimated with increased precision.  

The one-stage meta-epidemiological model can be constructed by extending 

Equation (1.1) into 

    
    

      
  ∑[(  

            
 )     ]

 

   

 (1.9)  

with  

    
        

     

The parameters    are the mean summary coefficient for all   meta-analyses that 

shows how the underlying treatment effects change for one unit increase in each 

covariate   . The superscript ( ) shows that the parameters in the above equation 

are different from the respective parameters in Equations (1.1) or (1.7). The     
  are 

assumed random effects to allow for variability in the regression coefficients 

between the different meta-analyses. This variability is reflected by the parameter 

  
  that represents the between-meta-analysis variance of their common mean for 

each characteristic  . A fixed effect model for the regression coefficients can be 

derived by setting every     
   . A less restrictive meta-epidemiological model 

has been suggested by Welton et al. (18), which allows for between-study variance 

in the regression coefficietns as well as for uncertainty in the estimation of the 

overall coefficients across meta-anlayses. Following Welton et al., Equation (1.9) 

would be 
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  ∑[(  

            
       )     ]

 

   

   

with 

            
       ,        

        
     

 

and 

  
                   

 An important constraint of the meta-epidemiological models in the selection of 

meta-analyses is that they need to be independent (i.e. to include different sets of 

individual studies) to avoid correlation between the meta-analysis-specific 

coefficients.  

Note that usually meta-epidemiological studies do not investigate simultaneously 

(in the same model) many characteristics, but only one or two (i.e.      ). 

Synthesizing jointly many covariates across a collection of meta-analyses would 

mitigate the benefits of meta-epidemiology, since the increase in power compared 

to a single meta-regression model might be only minor.    

 

1.4 Objectives & outline of the Thesis 

 

The increasing number of competing interventions in many medical fields and the 

advantages of analyzing simultaneously all available evidence (as outlined at the 

beginning of this Chapter) have made NMA a popular statistical tool (19–22). 

However, the lack of a user-friendly implementation framework has rendered it to 

be a privilege of researchers with strong statistical and computational skills. 

Consequently, less advanced software options and easily-understood tools for the 

evaluation of assumptions and presentation of results are necessary to make NMA 

accessible to non-statisticians. In addition, the properties of the various different 

approaches are still under investigation and the appropriate conduct of NMA is 

very often doubtful. Thus, empirical studies using networks of interventions are 
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needed to evaluate the validity of conclusions drawn from NMA in the literature 

as well as to explore different characteristics that may affect NMA results. 

However, accounting for the potential of biased effect sizes in the context of NMA 

might be challenging. This is because the inclusion of covariates in NMA models 

requires assumptions about the direction of bias for the different treatment 

comparisons. The aim of this Thesis is to address the above described issues and 

contribute to improved conduct and reporting of future NMA.  

The rest of the Thesis is structured as follows. Chapter 2 initially provides an 

overview of NMA methodology and the existing software options for fitting the 

various NMA models. Then, it introduces a series of new or modified graphical 

presentation tools, which I developed and implemented in the STATA software 

(23), for addressing the different steps of the analysis. Chapter 3 describes a 

database of published networks of interventions that I compiled for the conduct of 

two empirical analyses. Chapter 4 describes how meta-regression and meta-

epidemiology methods can be extended in the framework of NMA and presents 

different possible assumptions that can be employed for the regression 

coefficients. I refer to these methods as network meta-regression and network meta-

epidemiology respectively. Finally, Chapter 5 presents applications of network 

meta-epidemiology and network meta-regression, through which I investigated 

the impact of five study characteristics on NMA results. It also describes a case 

study that I conducted in order to exemplify how different assumptions about the 

direction of bias can be modeled. 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

2 Methodology & software for network             

meta-analysis 

 

 

2.1 Introduction 

 

NMA can be seen from several perspectives which are, in principal, equivalent, 

but differ with respect to the ease of implementation in standard software 

packages. All approaches are based on the idea of indirect and mixed comparisons 

that were first introduced as a valid statistical tool by Bucher et al. (9) for the case 

of only three competing interventions      . The method implies that the 

summary relative effect    (i.e.   vs.  ) can be estimated indirectly ( ) by 

subtracting the direct ( ) relative effects    and    

 ̂  
   ̂  

   ̂  
  (2.1) 

and its variance is the sum of the respective variances 

 ̂  
   ̂  

   ̂  
  (2.2) 

Then, a mixed estimate ( )     can be derived as the weighted average of the 

direct and indirect treatment effects 

 ̂  
  

 
 ̂  

  ̂  
  

 
 ̂  

  ̂  
 

 
 ̂  

  
 

 ̂  
 

 (2.3)  

with variance 

 ̂  
  

 

 
 ̂  

  
 

 ̂  
 

 
(2.4) 

In all above Equations the superscripts  ,   and   denote the type of each relative 

effect estimate (i.e. direct, indirect and mixed respectively). 

Extending this idea to a larger network of interventions (with more than three 

competing treatments) allows the incorporation of several indirect estimates from 

different roots into the network estimates. 
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Indirect and mixed comparisons rely on the fundamental assumption of 

transitivity, which suggests that one can learn about the relative effect of   vs.   via 

 . This implies that the common comparator treatment   is similar (e.g. 

administered the same way and in similar populations) in the    and    studies 

(11,24). Alternative equivalent interpretations of transitivity are that „the missing 

arms are missing at random‟ from all included studies or that all competing 

treatments in the network should be „jointly randomizable‟. Missing at random 

means that the choice of treatment arms in studies should be independent of their 

effectiveness (25). The notion of jointly randomizable treatments implies that one 

could imagine a clinically meaningful randomized controlled trial (RCT) 

comparing simultaneously all treatments (11). Transitivity can be assessed 

statistically by comparing the distribution of potential effect modifiers across the 

available direct comparisons in the network, when such information is available 

(26). If the distributions are not similar between two or more pairwise 

comparisons, the transitivity assumption would be probably violated leading to 

invalid indirect and mixed estimates.  

At the level of model parameters, transitivity is reflected by the consistency 

equations 

            (2.5) 

which imply that direct and indirect evidence in the network are in agreement 

regarding the true (summary) underlying relative effects. If the consistency 

assumption does not hold in parts or in the entire network, the results of NMA 

might be questionable (24,27). However, alternative NMA models have been 

developed that relax the consistency equations and allow for extra variability (on 

the top of heterogeneity) in the network due to potential inconsistency (25,28,29). 

These models are usually called inconsistency models. 

The following Section (2.2) presents currently available methods for fitting a 

NMA, while Section 2.3 describes different approaches for evaluating 

heterogeneity and inconsistency in the network. Section 2.4 introduces a series of 

new or modified graphical tools that I developed to aid the presentation and 
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interpretation of data and findings from NMA. Then, Section 2.5 provides an 

overview of the available software options for NMA and describes the routines I 

developed for the implementation of the new graphical tools in STATA (23).  

 

2.2 Models for network meta-analysis 

 

2.2.1 Basic concepts of network meta-analysis 

 

Consider a network that involves   competing interventions and   studies 

providing information for    direct comparisons between pairs    (    

{     } with    ) of treatments. NMA models are extensions of the pairwise 

meta-analysis models (see Section 1.1) that can estimate more than one single 

summary effect     assuming consistency. Equation (2.5) suggests that only     

basic comparisons or basic parameters are sufficient for the estimation of the relative 

effects for all   (
 
 
) possible comparisons in the network. All other functional 

comparisons can be estimated as a linear function of the elements of the vector 

containing the basic parameters, which is denoted with               
 . In 

general, the choice of the basic comparisons is arbitrary and usually does not affect 

the results. The only restriction is that every treatment   {     } should be 

expressed via at least one basic parameter (31). However, it has been shown that 

computationally some parameterizations may not work (30). 

The inclusion of studies with more than two treatment arms must account for the 

correlation between both the observed and the underlying relative effects from 

such studies. Within a  -arm study   (with         ,      the number of arms 

in study  ), consistency holds implicitly and consequently only a subset of      

relative effects need to be included in the NMA model from this study. Thus, the 

variance-covariance matrix of the vector containing the observed relative effects 

   (              )
 
  would be 
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  (

   
     (            )

   
   (            )          

 
)   

and the respective matrix for the underlying effects    (              )
 
 

  
  (

  
     (            )

   
   (            )       

 
) (2.6)  

The off-diagonal elements in   
  and   

  contain the covariance terms between 

observed and true relative effects respectively within study   and the diagonal 

elements the variances of the respective relative effects in    and   . The variances 

  
         

  are the comparison-specific heterogeneity parameters representing the 

between-study variance for each of the          comparison. Similarly to 

pairwise meta-analysis, the random effects    (              )
 
are assumed to 

be normally distributed with            and           
  . Note that setting 

     or      gives the fixed effect NMA model. 

The several modeling strategies for NMA presented below differ mainly in the 

way multi-arm studies are treated and in the implementation of the consistency 

assumption. 

 

2.2.2 Modeling approach for network meta-analysis 

 

Network meta-analysis as a „multivariate meta-regression‟ model 

The first approach suggests that NMA can be considered as a standard meta-

regression model (see Section 1.2) that treats the different treatment comparisons 

in the network as covariates (32).  Specifically, to allow for multiple treatment 

comparisons and multiple study arms the meta-regression model of Equation (1.4) 

would be 
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with            ,             and            . Each vector    

(              )
 

) contains the random error terms for study   (       ) and is 

assumed to follow a multivariate normal distribution          
  . 

Note that   ,    and    are vectors reduced to scalars for each two-arm study  . 

Each              matrix    is the contribution of the study   to the design 

matrix            
  (of dimension  ∑           

        ). This matrix 

contains values                  (with          ) and expresses the linear 

relationships between the      study-specific comparisons and the     basic 

comparisons based on the consistency equations (Equation (2.5)). This meta-

regression model has been called also multivariate meta-regression model (33), 

because the inclusion of multi-arm studies requires assuming multivariate 

distributions for the parameters representing random errors and random effects. 

Graph-theoretical methods have been recently applied in the context of NMA (34). 

This approach is based on the analogy between electrical and treatment networks 

to perform a fixed effect NMA and is totally equivalent to the above meta-

regression model for NMA. An extension to random effects has been developed 

by adjusting the variances within multi-arm studies as if the elements of    were 

independent (35).      

 

Network meta-analysis as a „two-stage meta-regression‟ model 

The above meta-regression model can be equivalently fitted using a two-stage 

approach (29,36,37). At the first stage of this approach a pairwise meta-analysis 

model (see Section 1.1) is used to derive the available direct relative effects for 

each pairwise comparison.  

Multi-arm studies, if present, should be pooled separately. More specifically, 

consider that each  -arm study has a specific study design  ; that is a specific set of 

treatments being compared. Suppose that a network is consisted of   different 

study designs and each design   includes    (       ) studies with    

treatment arms. Then, the vector of the direct ( ) summary relative effects 
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  (   

     (    ) 
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 derived from all    studies with design   can be 

estimated by replacing Equation (1.1) with 

   
       

     
  (2.7) 

where    
   (  [  
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Note that     (
   
   
   

+ is a (    )  (    ) design matrix. Then, Equation 

(1.4) becomes 

       
    

    
    

with    (   
      

)
 

,    (          ),   
  (   

       

 ),   
  

(   

       

 ) and     
         

  . Note that the direct relative effects    
     (    ) 

  

are correlated within each design   with     . The design-specific direct 

estimates  ̂  ( ̂ 
     ̂ 

 )
 
 with estimated variance-covariance matrix  ̂  

      ̂ 
     ̂ 

   are used as input data at the second stage of the analysis, so that 

 ̂         (2.8) 

with    (  
      

 ) and   
       ̂ 

   being the random error terms of the direct 

estimates for design   compared to the true network ( ) relative effects   

           
 . The design matrix    (  

      
 ) in this model is constructed 

similarly to   (defined in the previous approach); it expresses the linear 

relationship between the direct comparisons of design   and the basic 

comparisons according to the consistency equations (Equation (2.5)). 

In summary, this approach first uses the observed relative effects of the studies 

   
      

 to estimate the direct treatment effects separately for each design  . 

Then, at the second stage it pools the direct estimates  ̂ 
     ̂ 

  across all study 

designs to obtain the network estimates. Additional details and examples for this 

approach can be found in Lu et al. (36) and Krahn et al. (29).  
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Network meta-analysis as a hierarchical model 

Moving into a hierarchical model a multivariate normal likelihood would be 

assumed on the observed relative effects for each study     

          
   (2.9) 

The underlying effects are expressed through  

          
   (2.10) 

where    (          )
 
 is the vector including the network (true) relative 

effects for all    comparisons modelled for study   (38,39).  

For example, suppose a three-arm trial comparing treatments  ,   and  . If the    

and    comparisons are selected to be modelled, Equation (2.10) would be  

(
   

   
*   ((

   

   
)  (

   
             

               
 )+  

Similarly to pairwise meta-analysis (see Section 1.1) arm-specific likelihoods can 

be employed for every study arm        instead of the normal likelihood for the 

observed effects assumed in Equation (2.9) (15). 

 

Network meta-analysis as a multivariate meta-analysis model 

An alternative approach treats the     basic comparisons as different outcomes 

reported in studies and fits NMA using the methodology of pairwise meta-

analysis for multiple outcomes  (33) (see Jackson et al. (40) and Mavridis et al. (41) 

for a review on multivariate meta-analysis). This method requires a reference 

intervention   common to all studies and takes as basic parameters-outcomes all 

   comparisons with         (   ) (33). An   arm with minimal information 

needs to be imputed for studies not evaluating the reference intervention  . In this 

way consistency is imposed in the model by assuming that the reference arm is 

missing at random, when it is not evaluated in a study. Then, the model is 

described by Equation (1.4) as in the multivariate meta-regression approach. 

The difference between this and the multivariate meta-regression approach is that 

here the      study-specific comparisons modelled for each study   are
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necessarily a subset of the     basic parameters; elements of    corresponding to 

comparisons not reported in study   are filled with missing values. Also, the 

elements of each matrix    in this model do not express the consistency equations 

but are equal to 1 for comparisons evaluated in study   and missing values 

otherwise.     

 

2.3 Approaches for evaluating heterogeneity & inconsistency in 

network meta-analysis 

 

The distinction between heterogeneity and inconsistency in NMA is not always 

straightforward; both terms refer to additional variation in the treatment effects 

that cannot be explained by chance. Inconsistency can be considered as a special 

form of heterogeneity. More specifically, heterogeneity refers to the between-study 

disagreement within each comparison in the network and inconsistency the 

between-source disagreement (direct and indirect evidence) across the different 

comparisons (11,42). 

There are two general types of inconsistency; the loop inconsistency and the design 

inconsistency. Loop inconsistency considers the possible differences between direct 

and indirect (or between the several indirect) estimates. The notion of study 

design (see Section 2.2.2) implies that inconsistency might be also present because 

of differences between the estimates from studies with different designs; hence the 

design inconsistency. 

The following Sections briefly describe the most commonly used assumptions and 

approaches that can be employed to assess the presence and the level of 

heterogeneity and inconsistency in a network of interventions.   

It is important to note that the statistical tests for heterogeneity and inconsistency 

that follow often have limited power to detect them as statistically significant even 

when they are present. Therefore, conclusions regarding the presence of 

heterogeneity and/or inconsistency should not be based solely on the statistical 
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significance of the related parameters, but also considering their magnitude and 

the respective confidence interval (CI). 

 

2.3.1 Assumptions and measures for heterogeneity 

 

Assumptions for heterogeneity 

Between-study variance is usually assumed common across all comparisons in a 

network, namely    
     for every     {     } (   ). In this case the 

covariance of the underlying effects within a study is 
  

 
 due to the consistency 

equations (43) and Equation (2.6) becomes  

  
  

(

 
 

   
  

 
   
  

 
   

)

 
 

   

Models that allow for different heterogeneity parameters across the different 

comparisons have been developed as well (33,44). This alternative assumption 

suggests that  

|   
     

 |     
      

     
     

which results again from the consistency equations (Equation (2.5)). 

 

Assessing heterogeneity using predictive intervals 

The impact of heterogeneity (either common (  ) or comparison-specific (   
 )) on 

the treatment effects can be evaluated by estimating the predictive intervals (PI) of 

the estimated summary effects (45). A PI is the interval within which the estimate 

of a future study is expected to lie (46,47) and for the relative effect   vs.   can be 

derived by the formula 

 ̂      
 √ ̂  

   ̂    
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where    
  is the    (  

 

 
)  percentile of the  -distribution. A common arbitrary 

choice for the degrees of freedom for a single pairwise meta-analysis is        

(with   the total number of studies). For the case of network meta-analysis, I 

suggest modifying this into           (with    the total number of available 

direct comparisons in the network) (45,48). In terms of a hierarchical model the PI 

for the relative effect     can be derived assuming that  

   
             

   (2.11) 

where    
    is the relative effect of   vs.   expected in a future study. 

Pairwise relative effects for which the PI shows highly increased uncertainty 

compared to the respective confidence/credible interval (CI/CrI) might be 

affected substantially by the heterogeneity. For these comparisons conclusions 

should be drawn with greater caution. 

 

Assessing heterogeneity using empirical distributions 

The interpretation of the magnitude of the heterogeneity parameter estimate  ̂  (or 

 ̂  
 ) requires consideration of the setting of the studies, such as the outcome and 

the type of treatment comparison they evaluate. For dichotomous outcomes 

empirical distributions of the heterogeneity have been developed for different 

types of meta-analyses (49). Comparing the estimated between-study variance 

with the corresponding empirical distribution can give insight on whether  ̂  

reflects unimportant or substantial heterogeneity. 

 

Assessing heterogeneity using Q-statistics 

In pairwise meta-analysis the  -test is one of the most common tools for the 

assessment of heterogeneity. A   statistic for heterogeneity ( ) in NMA could be 

derived as the sum of all comparison-specific   within each study design   (29,37), 

hence 

   ∑   
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where 

   ∑(     ̂ 
 )

 
( ̂ 

 )
  

(     ̂ 
 )

  

   

 

with     the vector of observed effects for each study in design   and  ̂ 
  the 

variance-covariance matrix of the direct summary effects  ̂ 
  (see Section 2.2.2). 

The statistic    is assumed to follow a    distribution with ∑ *(∑       
  

   
)   

   

(    )+ degrees of freedom (where   ,    are the number of studies and 

treatmetns respectively in design  ).  

 

Assessing heterogeneity using the I2 measure 

The    measure can be employed to estimate the proportion of variability in a 

meta-analysis that cannot be explained by random error (50). The extension of    

into the context of multivariate meta-analysis (51) enabled the adaption of this 

multivariate definition into NMA (52). This definition is based on the multivariate 

version of    for heterogeneity (51) assuming the     basic comparisons being 

different outcomes. The    in this case reflects the inflation in the volumes of the 

normal approximations to the confidence/credible regions for all relative effect 

parameters between a fixed effect and a random effects model. 

 

2.3.2 Approaches for evaluating inconsistency locally 

 

Local approaches for inconsistency aim to assess whether different pieces of 

evidence are in agreement for a specific comparison in the network informed 

either from a single loop or from the entire network. They consider as a measure 

of inconsistency for any    comparison the absolute difference between two 

estimated effects from different sources (i.e. between direct and indirect or 

between indirect from different roots), commonly called an inconsistency factor (IF). 

Then, they infer about inconsistency based on the magnitude, the statistical 
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significance and the CI of the estimated inconsistency factors considering also the 

clinical setting and outcome.  

 

Loop-specific approach for inconsistency 

The loop-specific approach evaluates inconsistency separately in every closed loop of 

evidence (triangular, quadratic or higher order loops) (27). In a network with   

total number of loops (excluding loops that include nested loops of lower order) 

the inconsistency factor within each loop   (       ) is estimated as 

 ̂ 
   | ̂  

   ̂  
  | (2.12) 

with variance   

   ̂ 
     ̂  

   ̂  
   (2.13) 

for any    comparison in the loop. The superscripts   and    denote the direct and 

indirect estimates respectively. Note that for each    comparison there is one 

direct estimate common to all loops (i.e.  ̂  
      ̂  

  ), whereas different loops 

may give different indirect estimates (i.e.  ̂  
      ̂  

  ). The indirect effect and 

its variance  ̂  
  ,  ̂  

   are estimated separately for each   loop by Equations (2.1) and 

(2.2) respectively. The choice of the comparison within each loop does not affect 

the results; for example if      , then  ̂ 
    ̂ 

    ̂ 
    ̂ .   

The null hypothesis         is assessed using the following  -statistic 

  
 ̂ 

  

√   ̂ 
   

        
(2.14) 

Note that this approach as well as the next two approches for assessing local 

inconsistency do not account for the correlation induced by multi-arm trials. More 

specifically, each  -arm study is treated as 
       

 
 independent two-arm studies.  

 

„Composite test‟ for inconsistency 

The composite test for inconsistency extends this method and incorporates the entire 

network to allow also for discrepancies between the several indirect estimates 
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from different routes (53). More specifically, if a network provides a direct and   

indirect estimates from independent indirect roots for a    comparison, these can 

be synthesized into their weighted average  ̂  
  using Equation (2.3). The 

discrepancy between the     sources of evidence can be assessed by the statistic 

    
 

 ̂  
 

  ̂  
   ̂  

    ∑
 

 ̂  

  
( ̂  

  
  ̂  

 )
 

 

   

  

which follows a   
  distribution under the null hypothesis     ̂  

   ̂  
     

 ̂  
    ̂  

 . 

 

Node-splitting & back calculation approaches for inconsistency 

The node-splitting and back-calculation approaches are similar to the previous 

method but differ in the way the indirect effects are estimated (54). The former 

excludes one direct comparison at a time. Then, the network estimate for the 

excluded comparison    based on the rest of the network is the indirect estimate 

 ̂  
  coming from the synthesis of all available indirect evidence. 

The back-calculation method is equivalent to the node-splitting but the indirect 

effect estimate and its variance are derived by solving Equations (2.3) and (2.4) 

into   

 ̂  
  (

 ̂  
 

 ̂  
  

 ̂  
 

 ̂  
 )  ̂  

   

and 

 

 ̂  
  

 

 ̂  
  

 

 ̂  
   

For both methods Equations (2.12), (2.13) and (2.14) can be employed to estimate 

the statistical significance of the inconsistency factor  ̂   for every comparison    

in the network. In case these methods are fitted in a Bayesian framework the 

presence of inconsistency can be judged by comparing the posterior distributions 

of the direct and indirect estimates for every comparison   .  
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„Net-heat‟ approach for inconsistency 

Finally, the net-heat approach uses the model of Equation (2.8) for the estimation of 

the design-specific contribution to inconsistency using the following   statistic for 

inconsistency (  ) 

   
 

 ( ̂ 
    

  ̂)
 
  ̂   ( ̂ 

    
  ̂) (2.15) 

(with  ̂ the variance-covariance matrix of the network estimates  ̂) (see Section 

2.2.2). Under the null hypothesis of consistency    
 

 is assumed to follow a    

distribution with         degrees of freedom. Large values of    
 

 correspond 

to designs that might be important sources of inconsistency. Then, estimating each 

   
 

 after taking one design out at a time can further reveal designs that cause 

inconsistency in other parts of the network (29). This approach differs from the 

aforementioned approaches in the sense that it does not focus on the inconsistency 

for a specific comparison in the network but rather looks at all the comparisons in 

a specific design. 

 

2.3.3 Approaches for evaluating inconsistency globally 

 

Global approaches for inconsistency include inconsistency models (i.e. models that 

relax the consistency equations) as well as measures for inconsistency, such as   

and    statistics. Three inconsistency models have been suggested so far in the 

literature; the Lu & Ades model (25) and the design-by-treatment interaction model 

(28,29,52) and the unrelated mean effects model (55).  

 

The Lu & Ades model 

The Lu & Ades inconsistency model (25) can be constructed by adding an 

additional linear term in the consistency equations (Equation (2.5)) in every loop 

for which there is potential for inconsistency  
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The total number of inconsistency factors required in the model is       . In 

the presence of multi-arm trials this number might need modification subtracting 

“the number of independent inconsistency relations in which the corresponding 

parameters are supported by no more than two independent sources of evidence”. For an 

extended discussion on the parameterization of the model see Lu et al. (25,28).  

The rest of the model remains the same as the consistency NMA model (see 

Section 2.2). 

The inconsistency factors can be assumed fixed or random parameters in analogy 

to the fixed and random effects models. A random inconsistency model assumes 

that 

           (2.16) 

where    is the inconsistency variance. Large    suggest important inconsistency 

in the   loop. Comparing    and    might reveal how much inconsistency exists 

compared to heterogeneity. The statistical significance of all    jointly can be 

assessed using a    test. 

 

The design-by-treatment interaction model 

This model is an extension of the Lu & Ades model that accounts also for design 

inconsistency (i.e. disagreement between different study designs). The maximum 

number of potential inconsistencies (i.e. required inconsistency factors) in a 

network according to this model is ∑   
  

        with   
  the number of 

independent comparisons within each design  ; that is   
      . Then, the 

consistency equations (Equation (2.5)) are modified into 

              
       

      

where the parameter   
    

 reflects the potential loop inconsistency and    
    the 

potential design inconsistency in the   loop (     ). There might be loops 

requiring the addition of either only   
    

 or only   
   . However, the distinction 

between loop and design inconsistency is not always straightforward. 
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The unrelated mean effects model 

The unrelated mean effects model is an inconsistency model that totally omits the 

consistency equations (Equation (2.5)) and renders the NMA model into a series of 

pairwise meta-analyses sharing a common heterogeneity parameter. Usually this 

model is compared with a model assuming consistency for model fit and 

parsimony as well as the magnitude of heterogeneity (see Section 2.2). If the 

inconsistency model fits the data better or presents lower heterogeneity, this is an 

indication that consistency might not be plausible (55). 

 

Assessing inconsistency using Q-statistics 

Following the definition of    for heterogeneity in NMA, a     for inconsistency 

would be the sum of all design-specific contributions to inconsistency, hence 

    ∑    
 

 

   

    
    

where    
 

 is given by Equation (2.15) and    ∑        
        (29,36,37).  

 

Assessing inconsistency using the I2 measure 

The    statistic for inconsistency is estimated similarly to that for heterogeneity in 

NMA, which has been presented in the previous Section. In the case of 

inconsistency the respective    would express the inflation in the volumes of the 

normal approximations to the confidence/credible regions for all relative effect 

parameters between a consistency and an inconsistency effects model. 

 

2.4 New graphical tools for presenting data, assumptions & results  

 

NMA has been criticized for the increased complexity of the evidence base, 

assumptions and results, which is induced by the presence of multiple treatment 

comparisons. Various graphical tools have been suggested for presenting the 
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findings and evaluating assumptions in pairwise meta-analysis (56,57). Adapting 

these tools into the context of NMA and using them to draw meaningful 

conclusions requires several modifications or extensions. In this section, I 

introduce a series of new or modified graphs aiming to make the outputs from 

NMA well-understandable to researchers that are less familiar with advanced 

statistical methods. To enhance the use and interpretation of each suggested 

graphical summary, I use examples of published NMA.  

 

2.4.1 Presenting the evidence base 

 

Network plot/diagram 

A graphical illustration of the set of competing interventions along with the 

available direct pairwise comparisons can be provided by the network plot, called 

also network diagram. It consists of nodes representing the eligible interventions 

and edges linking pairs of nodes if the corresponding treatments are compared in 

at least one individual study.  

I employ weighting schemes for nodes and/or edges to reveal differences between 

the included treatments and direct comparisons. For example, the least and most 

studied interventions can be identified by weighting the size of nodes according to 

the number of studies evaluating them or the number of participants allocated to 

each treatment arm. Weighting the thickness of edges according to the distribution 

of potential effect modifiers, such as baseline risk or study duration, can be the 

first step for the evaluation of transitivity.  

Figure 2.1 shows the plot of a network that compares 13 treatments and placebo 

for acute mania in terms of efficacy (58). The graph shows that Olanzapine is the 

active treatment evaluated in most studies, while suggests only small differences 

in the average control group risk (CGR) across the direct comparisons (active 

treatment vs. placebo).   
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Similar to pairwise meta-analysis, interpretation of results from NMA should 

always be in light of the quality of the available evidence (59). The inclusion of 

individual studies with design limitations can mitigate the validity of findings. I 

suggest plotting the network with colored edges to identify comparisons that 

might be more prone to biased summary estimates.  Usually, studies are classified 

as being of low, unclear or high risk of bias (RoB) according to a specific design 

characteristic (allocation concealment, blinding, etc.) (59). Alternatively, 

researchers may be willing to use more levels of study classification. The 

comparison-specific level of overall design limitations can be estimated as a 

function (e.g. average, weighted average, mode, etc.) of the respective study-

specific levels.  

 
Figure 2.1. Network plot of a network comparing the effectiveness of 13 treatments and placebo for 
acute mania. Edges connecting active treatments with placebo are weighted according to the mean 
control group risk of the respective direct comparison, while edges connecting two active 
treatments have been given minimal weight. Nodes are weighted according to the number of 
studies evaluating each intervention.    

 

In Figure 2.2 the acute mania network is presented with color-adjusted edges with 

respect to the appropriate conduct of allocation concealment. In six comparisons 

the majority of studies have been assessed as being at low RoB (green lines) and in 

the rest of comparisons at unclear RoB.  
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Figure 2.2. Network plot of a network comparing the effectiveness of 13 treatments and placebo for 
acute mania with color-adjusted edges. Edges are colored according to the adequacy of allocation 
concealment estimated as the weighted average of the study-specific bias levels with weights the 
inverse of study variances. Yellow edges represent direct comparisons with unclear average level 
of bias and green edges represent comparisons with low average level of bias. 

 

Contribution plot 

Constructing the evidence base of a network of trials needs careful consideration 

of the eligibility criteria for interventions and studies. Often researchers include in 

the analysis interventions that might be not of direct interest but provide useful 

indirect evidence, such as placebo or standard care. The inclusion of such 

interventions is valuable only when the risk of introducing intransitivity and 

inconsistency does not outweigh their contribution in the estimation. In addition, 

such information can be useful for drawing conclusions regarding the quality of 

evidence (60). I developed the contribution plot or contribution matrix, which can 

help in making these judgments. This matrix plot shows the percentage 

contribution of each direct piece of evidence in the network estimates and in the 

entire network. The weight of each available direct comparison in the network 

estimates can be estimated using the weighted least squares solution of Equation 

(2.8) 

 ̂     ̂   
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where  ̂ is the vector of network estimates for the basic parameters and  ̂  

  ̂ 
     ̂ 

   the vector of the network estimates for all possible pairwise 

comparisons  . The design matrix    contains the linear relationships between the 

  comparisons and the basic parameters through the consistency equations 

(Equation (2.5)). The (   ∑        
   ) matrix 

  *(  )
 
( ̂ )

  
  + (  )

 
( ̂ )

  
  

known as the hat matrix (61), maps the direct estimates to the network estimates 

for the basic comparisons. 

An „extended‟ hat matrix, which maps the direct estimates into network estimates 

for all   pairwise comparisons, so as  

 ̂     ̂   

can be estimated as 

     *(  )
 
( ̂  )

  
  + (  )

 
( ̂  )

  
 (2.17) 

where  ̂   is the extended  ̂  matrix with imputed large variances (e.g.    ) for 

those      comparisons that are not reported in any study.  

To facilitate the interpretation of the elements of the    matrix, I ignore the 

different study designs; in this way all studies reporting the same direct 

comparisons are synthesized irrespective of their design. Then,    is of dimension 

       and each element     (        and         ) represents the weight 

of the column-defining direct comparison in the row-defining network estimate. I 

express the weights of each row as percentages 

     
     

              
  

and then the percentage contribution of the direct comparison   to the entire 

network is  

        
∑       

   

∑ ∑       
   

  

   

  

Figure 2.3 presents the contribution plot of a network evaluating the relative 

effectiveness of four different percutaneous coronary interventions for non-acute 
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coronary artery disease (62). The graph shows that the comparison of bare-metal 

stents vs. percutaneous transluminal balloon coronary angioplasty is the most 

frequent in the network (33 studies). However, the comparison of bare-metal 

stents vs. drug-eluting stent has the highest percentage contribution overall in the 

network (31.2%).  

 
Figure 2.3. Contribution plot of a network comparing the effectiveness of four different 
percutaneous coronary interventions for non-acute coronary artery disease. The numbers are the 
percentage contributions of the column-defining direct comparisons to the row-defining network 
estimates. The size of the circles is proportional to these percentages. (MT = medical therapy, PTCA 
= percutaneous transluminal balloon coronary angioplasty, BMS = bare-metal stents, DES = drug 
eluting stents)  

 

2.4.2 Presenting the assumptions 

 

The evaluation of both homogeneity and consistency is crucial when undertaking 

a NMA. Section 2.3 describes several approaches that aim to assess whether 

important heterogeneity or inconsistency can be present in a network of 

interventions. Some of these methods can be summarized in the presentation of a 

single value (e.g. the  -value of a    test or the value of the    measure). However, 

other approaches need to provide more information to derive an overall inference, 
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if possible, for the network. Summarizing this information in a single forest plot 

may offer a straightforward way to get a first impression whether the two 

assumptions are likely to hold (63). 

More specifically, in this Section I focus on two approaches; the assessment of 

heterogeneity based on PI (see Section 2.3.1) and the loop-specific approach for 

evaluating inconsistency (see Section 2.3.2). In Figure 2.4 and Figure 2.5 

respectively, I present examples of forest plots including the results from these 

two methods.  

 

Predictive intervals plot 

The graph in Figure 2.4 corresponds to a star-shaped network including six 

biologic agents for rheumatoid arthritis compared directly only with placebo (64). 

The between-study variance (  ) was estimated 0.26 and according to the mean 

summary relative effects (black circles) all six active treatments seem more 

effective than placebo. I used colored horizontal lines to represent the PIs for all 

pairwise comparisons by extending the lines that correspond to the CIs. The plot 

suggests that only for the comparison of infliximab versus placebo the PI does not 

support the statistically significant effect due to the additional uncertainty 

anticipated in future studies.  

 

Inconsistency plot 

The forest plot in Figure 2.5 shows the inconsistency results for all loops based on 

the loop-specific approach (see Section 2.3.2) for the acute mania network (see 

Section 2.4.1). To facilitate the interpretation of the IFs, I re-expressed them in the 

effect size scale. This means that the squares in the plot represent the ratio of odds 

ratios (ROR) between direct and indirect estimates (    
        ̂ 

   ). Only one 

(ARI-HAL-LITH-QUE) of the 21 loops in the network seems to be marginally 

subject to statistically significant inconsistency. However, the limited power of the 

test for inconsistency implies that non-significant but large RORs in magnitude or 
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with large CI (depending on the clinical setting and outcome) should be explored 

as well. I truncated all CI in Figure 2.5 to the null value, since absolute values of 

the IFs are estimated and thus RORs smaller than 1 are difficult to interpret. 

Note that in this graph I assumed a common heterogeneity for the entire network 

( ̂      ), which was derived after performing NMA with the multivariate meta-

analysis approach (see Section 2.2.2). Alternative options would be to assume a 

common heterogeneity within each loop but different between loops or a different 

heterogeneity for each pairwise comparison. These different assumptions about 

heterogeneity as well as the use of different methods to estimate the    might 

impact on the inconsistency results (65).     

 

 
Figure 2.4. Predictive interval plot of a network network comparing the effectiveness of six biologic 
agents and placebo for rheumatoid arthritis. The circles are the summary odds ratios (OR), the 
black horizontal lines their confidence intervals (CI) and the blue lines the respective oredictive 
intervals (PI). The red dashed line is the line of no effect (OR=1). (PLA = placebo, ABA = abatacept, 
ADA = adalimumab, ANA = anakinra, ETA = etanercept, INF = infliximab, RIT = rituximab) 
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Figure 2.5. Inconsistency plot of a network comparing the effectiveness of 13 treatments and 
placebo for acute mania. A common heterogeneity  ̂       has been assumed for all loops 
estimated from the restricted maximum likelihood method. 

 

2.4.3 Presenting the results 

 

A major advantage of NMA is that provides estimates of relative effects for all 

possible comparisons between pairs of treatments. However, in the presence of 

many competing treatments the presentation of all pairwise estimates becomes 

cumbersome and not very helpful in drawing conclusions regarding which 

treatments seem to work best. Thus, the relative ranking of treatments is often 

used as a supplementary output to facilitate the identification of treatments that 

perform well enough with respect to the studied outcome.  

 

Ranking plots for a sinlge outcome using probabilities 

There are several methods to estimate the ranking of treatments, which may 

sometimes give different results. One of the most common approaches is to 



Methodology & software for network meta-anlaysis|47 

 

 

estimate the probabilities for each treatment being ranked at a specific place (12). 

Such probabilities can be estimated either within a Bayesian environment using 

Markov Chain Monte Carlo (MCMC) simulations or in a frequentist framework 

using resampling methods (e.g. bootstrap methodology (66)). Treatments are 

ranked according to their relative effects versus a common reference in each cycle 

and the probability for treatment   (       ) being ranked  th (       ) 

would be 

    
                   

                   
  

Inference on the treatment ranking should account for the uncertainty in ranking 

by incorporating the estimated probabilities for all possible ranks. These are often 

presented with a probability curve for each treatment, called also rankograms 

(Figure 2.6). To summarize all     and get the relative ranking of treatments 

cumulative ranking probabilities can be employed. These are given by the formula 

                

and express the probability for treatment   being within the first   places. Then, 

the surface under the cumulative ranking curves (SUCRA) is used as a relative ranking 

measure; larger areas under the curve corresponding to better treatments. Figure 

2.7 shows an example of these graphs for the rheumatoid arthritis network where 

the relative ranking of two different NMA models is compared; the standard 

hierarchical NMA model (Section 2.2.2)  and a model controlling for differences in 

precision across studies (see Section 5.5 for a description of the model). The figure 

suggests that accounting for the impact of small-study effects minimizes the 

differences in effectiveness between the treatments and assigns to them less 

distinct ranks. The surface under these curves can be expressed also as a 

percentage 

       
∑     

   
   

   
  

which is interpreted as the percentage of effectiveness/safety of a treatment 

ranked always first without any uncertainty. 
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An alternative ranking measure is the mean rank, which is the weighted average of 

all possible ranks with weights the ranking probabilities 

     ∑         
     

The mathematical relationship between SUCRAs and mean ranks is expressed by 

the equation 

       
            

   
  

This implies that mean rank is equivalent to SUCRA and give the same relative 

ranking results. Note that I provide the proof of the above equation in the 

Appendix. 

 

 
Figure 2.6. Probability ranking curves (rankograms) of a network network comparing the 
effectiveness of six biologic agents and placebo for rheumatoid arthritis. The horizontal axis 
contains the possible ranks in the network and the vertical axis the ranking probabilities. 

 

Ranking plot for a single outcome using multidimensional scaling 

I also suggest a different approach to estimate the treatment ranking using 

Multidimensional Scaling (MDS) techniques (67). To apply this method, I treat the 

NMA summary estimates between all pairs of interventions as proximity data 

with aim to reveal their latent structure. 
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Figure 2.7. Cumulative probability ranking curves of a network comparing the effectiveness of six 
biologic agents and placebo for rheumatoid arthritis. The horizontal axis contains the possible 
ranks in the network and the vertical axis the cumulative ranking probabilities. Larger areas under 
the curve correspond to more effective treatments. 

 

In this way the absolute value of the network estimate   ̂    (         ) defines 

the dissimilarity between the two treatments (   ) with   ̂     . I weight the 

absolute effects sizes by their inverse standard errors or variances to ensure that 

the assumption of a common distribution between the elements of the matrix is 

plausible. Assuming that the rank of the treatments is the only dimension 

underlying the outcome the purpose of the MDS would be to reduce the     

matrix into a     vector. This vector involves the set of distances being as close 

as possible to the observed dissimilarities (i.e. relative effects) and would 

represent the treatment relative ranking. The scatterplot in Figure 2.8 presents the 

relative ranking of treatments for the rheumatoid arthritis network using the 

estimated MDS dimension. There are small differences in the ranking of 

treatments between the SUCRA (or mean ranks) and the MDS in the four best 

treatments. 
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Figure 2.8. Ranking scatterplot of a network network comparing the effectiveness of six biologic 
agents and placebo for rheumatoid arthritis. Treatments have been ranked using multidimensional 
scaling (MDS) methods. Blue triangles represent treatments for which MDS and ranking 
probabilities give different order. More effective treatments lie in the right upper corner.  

 

Cluster ranking plot for two outcomes 

In a decision-making context, recommending a specific interventon for a clinical 

condition should consider more than one outcome. For instance, highly effective 

treatments sometimes have serious adverse events. Methods for analysing jointly 

multiple outcomes are well-established for pairwise meta-analyses (40,41) and 

have been extended into the context of NMA (68,69). However, to date there is no 

available methodology to estimate a single treatment relative ranking 

incorporating information for more than one outcomes. 

I suggest the use of two-dimensional plots as a possible tool suitable to draw 

inference for the relative ranking of treatments based on two (competing) 

outcomes. More specifically, I plot the values of a relative ranking measure (e.g. 

SUCRA, mean ranks or MDS dimension) for two outcomes jointly in a system of 

co-ordinate axes. I additionally employ clustering methods to form meaningful 

groups of treatments with respect to their performance on both outcomes. Cluster 

analysis aims to group different objects based on their characteristics in a way to 

result in high association within each cluster but in low association between 
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clusters (70). The two-dimensional plot for the acute mania network is presented 

in Figure 2.9, where the ranking results for efficacy and acceptability have been 

put together. According to the graph the best group of studies considering both 

outcomes includes 7 treatments.  

 

 
Figure 2.9. Two-dimensional ranking plot of a network comparing 13 treatments and placebo for 
acute mania in terms of efficacy and acceptability. Treatments that perform well on both outcomes 
lie in the right upper corner. Treatments have been grouped using clustering methods and 
different colors represent the different treatment groups.  
 

2.5 Software options for network meta-analysis 

 

The rapid development of NMA methodology underlines the need for flexible and 

user-friendly software options that would facilitate the appropriate conduct and 

comprehensive reporting of the analysis. In recent years, the hierarchical model 

fitted within a Bayesian framework has been the most popular approach for NMA 

(20,22); the reason is that until recently software to fit non-Bayesian approaches 

could not properly handle the inclusion of multi-arm trials or fit inconsistency 

models. Consequently, researchers not familiar with Bayesian methods and
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software environment avoided applications of NMA. The development of new 

graphical presentation tools (see Section 2.4) can aid the ease of presentation and 

interpretation of NMA, particularly when they are implemented in conventional 

software. 

The two following Sections (2.5.1 and 2.5.2) provide an overview of the available 

software options for fitting the NMA models and evaluating the required 

assumptions. Then,  Section 2.5.3 describes a series of eight STATA routines that I 

developed suitable to produce the graphs described in Section 2.4 (45).  

 

2.5.1 Software for performing network meta-analysis 

 

All approaches to NMA presented in Section 2.2.2 can be performed, in theory, in 

many statistical packages. However, the variety of software options is, in practice, 

limited due to lack of readily available routines suitable for NMA. The most 

popular packages in research related to NMA are BUGS (i.e. WinBUGS, 

OpenBUGS)/JAGS (71), STATA (23) and R (72); SAS (73) is less frequently used 

and thus is not considered in this section. Another software package developed 

specifically for NMA is the GeMTC (30). All software options for fitting each 

modeling approach for NMA (that require no self-programming by the user) are 

described below. 

 

Performing indirect comparisons 

Indirect comparisons can be performed either using the indirect command in 

STATA (74) or the ITC software (ITC=indirect treatment comparison) available 

from the Canadian Agency for Drugs and Technologies in Health (CADTH) (75). 

Figure 2.10 shows the dialog box of the STATA command.  
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Figure 2.10. Dialog box of the indirect command in STATA. 

 

Fitting network meta-analysis as a multivariate meta-regression model 

This approach for NMA can be fitted using any software routine able to perform 

meta-regression. However, conventional routines developed for standard meta-

regression in pairwise meta-analysis fail to model properly multi-arm studies and 

can be employed only for a subset of networks (with only two-arm studies). Such 

routines are the metareg command in STATA (76), the metafor (77) and meta 

(78) packages in R or codes in BUGS provided in Dias et al. (79).  

The inherent correlation in multi-arm trials can be incorporated in the estimation 

by routines developed for multivariate meta-analysis that allow for covariates. 

Both the mvmeta command in STATA (33,80) and the mvmeta package in R 

(81,82) can be used but only STATA can impose the assumption of a common 

heterogeneity across comparisons. Note that the STATA mvmeta command can be 

used either as a standalone command or via the package network in STATA 

(available from http://www.mrc-bsu.cam.ac.uk/IW_Stata/meta). 

The use of graph-theoretical methods in NMA has been implemented in the 

netmeta package in R (35). 
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Fitting network meta-analysis as a two-stage meta-regression model 

R functions are also available for fitting the meta-regression model for NMA in 

two stages as described in Section 2.2.2. and can be found in Lu et al. (36) and 

Krahn et al. (29).  

 

Fitting network meta-analysis as a hierarchical model 

The hierarchical model can be fitted in Bayesian environment using BUGS codes 

available online from the Integrating Multiple Meta-Analysis project (IMMA, 

University of Ioannina) and the Multi-Parameter Evidence Synthesis program 

(MPES, University of Bristol) at www.mtm.uoi.gr and www.bris.ac.uk/social-

community-medicine/projects/mpes. Several BUGS codes are also provided in 

Dias et al. (15). Alternatively, the hierarchical model can be fitted by the GeMTC 

software.  

 

Fitting network meta-analysis as a multivariate meta-analysis model 

The last approach that treats NMA as a multivariate meta-analysis model can be 

performed using the mvmeta command in STATA (33,80) and the mvmeta 

package in R (81,82) with only STATA allowing for a common heterogeneity 

across comparisons. 

 

2.5.2 Software for evaluating assumptions 

 

This section focuses on the methods presented in Section 2.3 for the evaluation of 

heterogeneity and inconsistency in a network of interventions. 

 

Assessing heterogeneity using predictive intervals 

To enable the estimation of PI for every pairwise relative effect of a NMA in 

STATA, I developed the intervalplot command (45). The command should be 
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run after performing NMA with the mvmeta command (as a multivariate meta-

analysis model, see Section 2.2.2). The command can be used also via a dialog box 

(Figure 2.11). Alternatively, PI can be estimated by fitting the hierarchical model 

in BUGS (Equation (2.11)) using the codes provided at www.mtm.uoi.gr.  

 
Assessing heterogeneity using Q-statistics 

The  -statistics for heterogeneity in NMA have been implemented in the R 

function given by Krahn et al. (29) and in the netmeta package in R (35). 

 

 
Figure 2.11. Dialog box of the intervalplot command in STATA. 

 

Performing the loop-specific approach for inconsistency 

I implemented the loop-specific approach for inconsistency in STATA by 

programming the ifplot command (45). An equivalent ifplot function in R is 

available from www.mtm.uoi.gr. The two routines can incorporate different 

assumptions about the heterogeneity; different heterogeneities across the direct 

comparisons, a common heterogeneity within each loop, a common heterogeneity 

for the entire network (65). The STATA command is available also in a dialog box 

(Figure 2.12). Box 2.1 describes how the command identifies the existing 

triangular and quadtratic loops in a network. 
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Figure 2.12. Dialog box of the ifplot command in STATA. 

 

Box 2.1. Algorithm used in the ifplot STATA command to identify the available triangular and 

quadratic loops. 

 

 

 

 

 

 

 

 

 

 

Performing the node-splitting approach for inconsistency 

Performing the „node-splitting‟ approach for inconsistency 

The node-splitting method has been implemented into the network package in 

STATA and the GeMTC software. Relevant BUGS codes can be found also online 

at www.bris.ac.uk/social-community-medicine/projects/mpes.  

 

Performing the „net-heat‟ approach for inconsistency 

The net-heat approach can be conducted through the R function in Krahn et al. 

(29) and the netmeta package in R (35). 

1. Identify the total number of treatments ( ) 

2. Identify the available direct comparisons (  ) between pairs of treatments           with 

         and               ,          

3. For every          , create a     matrix         
            

4. For          , if the matrices                exist, create a     matrix        

(              ) 

5. For            ,  

if the matrices                     exist, create a     matrix          (                   ) 

if the matrices                     exist, create a     matrix          (                   ) 

if the matrices                     exist, create a     matrix          (                   ) 

if the matrices                     exist, create a     matrix          (                   ) 

6. For          , if the matrix        exists, create a dummy variable representing the 

loop       

7. For            , if the matrix          exists, create a dummy variable representing 

the loop         
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Fitting the Lu & Ades inconsistency model 

The parameterization of the Lu & Ades model can be done automatically only in 

the GEMTC software. 

 

Fitting the design-by-treatment inconsistency model 

The design-by-treatment model can be performed in STATA (mvmeta command 

(80)) and the parameterization can be done automatically via the network 

package (available from http://www.mrc-bsu.cam.ac.uk/IW_Stata/meta).  

 

Assessing inconsistency using Q-statistics 

The  -statistics for inconsistency can be estimated by the netmeta package in R 

(35) and the mvmeta command in STATA (commonly known as the   -test for 

the IF) (80). 

 

2.5.3 Implementation of the new graphical presentation tools in STATA 

 

I implemented all graphical tools described in Section 2.4 in STATA with the 

development of the package network_graphs, available from www.mtm.uoi.gr. 

The most important features of the commands are presented below. Additional 

details can be found in Chaimani et al. (45) as well as in the help files. Also, the 

codes of the STATA commands are available online and can be obtained by 

downloading the .ado files from mtm.uoi.gr/images/network_graphs.rar. 

The networkplot command can be used to create network diagrams. I allow 

several weighting schemes for nodes and edges (Figure 2.1) via the options 

nodeweight() and edgeweight() respectively. In the default graph, both 

nodes and edges are weighted according to the number of studies including each 

intervention and direct comparison respectively. I incorporated the use of colored 

edges with the option edgecolor() (Figure 2.2). To plot all the treatmetns in a 
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circle, I used the algorithm provided in Box 2.2. The command can be used also 

via a dialog box (Figure 2.13). 

 
Box 2.2. Algorithm used in the networkplot command to plot all competing treatments of a 

network in a circle. 

 

 

 

 

 

 

 
Figure 2.13. Dialog box of the networkplot command in STATA. 

 

The netweight command estimates the weight of each direct comparison in the 

network estimates and creates the contribution plot (Figure 2.3). In Box 2.3, I 

provide the algorithm I used to define the basic comparisons and the design 

matrix. This is more challenging when there is not a reference treatment compared 

to any other treatment in the network. I have incorporated several assumptions for 

the comparison-specific heterogeneities. More specifically, the options fixed, 

random or tau2(#) can be added to specify that direct summary effects would 

be estimated assuming a fixed effect model, a comparison-specific random effects 

[default] model or a common heterogeneity for all comparisons, if this is already 

known (see also Sections 2.2.2 and 2.4.1). I added the option bargraph(), which 

1. Identify the total number of treatments ( ) 

2. Assume that all treatments lie on a circle with centre             and radius equal to 1. 

3. Divide the circle in   equal radians and calculate the central angle formed by each pair of 

treatments as    
  

 
  

4. Specify the coordinates       for every treatment         using the following rule: 

− For    ,                   

− For        ,             (                          ) 
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presents the comparison-specific contributions for every network estimate in a bar 

graph; the bars are colored according to a specific characteristic of each direct 

comparison (e.g. the average risk of bias of the studies (60)).  The dialog box of the 

command is presented in Figure 2.14. 

  

Box 2.3. Algorithm used in the netweight command to choose the basic comparisons properly 
and create the design matrix for any network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Identify the total number of treatments ( ) 

2. Identify the available direct comparisons (  ) between pairs of treatments           with 

         and               ,          

3. Choose the basic comparisons (         ) using the following steps: 

− Create the       matrix    

(

 
 

    
    
  

      

      )

 
 

 

− For every                   (         ), delete the     row. 

− For every                   (         ), delete the     row. 

− Set the remaining comparisons ( ) in the second column of the matrix    as basic 

comparisons. 

− If      , add (any)       comparisons in the set of basic comparisons ( ).  

4. Define the entries in the design matrix using the following steps: 

− Create the     dummy variables         
           

 representing the         basic 

comparisons with          the two treatments compared in each comparison   and set 

them 0. 

− For every possible comparison in the network (observed or unobserved) ( ), replace the 

elements of the respective row in the design matrix ( ) based on the consistency 

equations using the procedure: 

i. If                    , set         
 in row   

ii. For          ,  

if                 &       , replace        

if                 &       , replace        

iii. For          ,  

if                 &       , replace        

if                 &       , replace         

iv. For          ,  

if                 &       , replace         

if                 &        , replace        

v. Identify the comparisons that need more than three non-zero entries in the design 

matrix 

vi. Create dummy variables that represent functions of two basic comparisons 

vii. Use the steps (i-iv) to define the functional dummy variables 

viii. Express the variables in (vi) via the basic comparisons 

ix. Repeat the steps (vi-viii) until all comparisons are expressed through the basic 

comparions 
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Figure 2.14. Dialog box of the netweight command in STATA. 

 

The intervalplot command (Figure 2.11) is suitable to produce a forest plot 

showing the estimated relative effects with their CI. I allowed plotting the PI 

simultaneously with the CI via the option predictions (Figure 2.4), while the 

option eform can be used to produce the plot in logarithmic scale. Note that the 

command should be used directly after using the mvmeta command specifying 

the option mvmetaresults. 

I enabled drawing a forest plot including the estimated inconsistency factors from 

the loop-specific approach in STATA (Figure 2.5) with the ifplot command 

(Figure 2.12), which identifies all triangular and quadratic loops in the network 

(Box 2.1). The three different assumptions for heterogeneity (comparison-specific, 

loop-specific [default], network-specific) can be specified in the option tau2(). To 

produce the graph in logarithmic scale plotting the        
   , the eform option 

can be employed again. Different estimators for heterogeneity are possible when 

loop-specific heterogeneity is assumed. 

For drawing rankograms and cumulative ranking probability curves, I developed 

the sucra command. The option mvmetaresults is necessary to specify that the 

ranking probabilities have been derived from the mvmeta command (other input 

formats are also possible). The relative ranking results from two different analyses 

can be plotted jointly using the option compare(). Note that the output of the 
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command provides also the mean ranks on the top of the SUCRA percentages. 

Figure 2.15 shows also the dialog box of the command. 

 

 
Figure 2.15. Dialog box of the sucra command in STATA. 

 

I implemented the use of the MDS approach for treatment ranking in the mdsrank 

command, which can produce the scatterplot of Figure 2.8. The option 

best(max|max) specifies whether larger [default] or smaller values of the MDS 

dimension correspond to better treatments with respect to the studied outcome. 

The dialog box of the command is shown in Figure 2.16. 

 

 
Figure 2.16. Dialog box of the mdsrank command in STATA. 

 

The last command in my package is the clusterank command, which is 

suitable to create a two-dimensional ranking plot for drawing conclusions based 

on two outcomes allowing for grouping the treatments with clustering methods 

(Figure 2.9). These clustering methods are described in Box 2.4. Again the option
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best(max|max) can be added to show whether larger [default] of smaller values 

in both dimensions represent more beneficial treatments. The command can be 

used also via the dialog of Figure 2.17.  

 
Box 2.4. Measures used in the clusterank command to choose the metric and linkage method as 
well as the optimal number of clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17. Dialog box of the clusterank command in STATA. 

 

2.6 Discussion 

 

The continuing development of new methodologies for NMA has resolved several 

issues of the early approaches and established it as a useful evidence synthesis tool 

The competing treatments of a network are grouped using a hierarchical agglomerative 

clustering method. Different metrics (Euclidean, squared Euclidean, absolute-value distance, 

etc.) and linkage methods (single, average, weighted, complete, ward, centroid, median) are 

evaluated (1). The choice of the appropriate metric and linkage criterion is driven from the 

cophenetic correlation coefficient, which measures how faithfully the output dendrogram 

represents the dissimilarities among observations (2). The optimal level of dendrogram and the 

optimal number of resulting partitions are chosen using an internal cluster validation measure 

based on a value of „clustering gain‟. This measure has been designed to have a maximum 

value when intra-cluster similarity is maximized and inter-cluster similarity is eliminated (3). 

More details on these methods are available in the papers: 

1. Kaufman L, Rousseeuw PJ. Finding groups in data: An introduction to cluster analysis. New 

York: Wiley, 1990.  

2. Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic data analysis. 

Bioinformatics 2005; 21: 3201-3212. 

3. Jung Y, Park H, Du D. A decision criterion for the optimal number of clusters in hierarchical 

clustering. J Global Optimazation 2003; 25: 91-111. 
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in comparative effectiveness research. However, the debate for the potential of 

NMA to yield valid findings and inform decision-making is still on-going (83). 

This skepticism around NMA may be partly explained by the lack of user-friendly 

software environment that would simplify the procedure of the analysis and 

would make it more comprehensible to a wider audience. 

The availability of new software options implemented in conventional statistical 

packages (e.g. STATA or R), which are used routinely in the conduct of pairwise 

meta-analysis, will possibly bring researchers a step further to demystify this 

complex statistical tool. In addition, the recent publication of some well-described 

application (84,85) and tutorial papers (10,11,86) might familiarize researchers 

with the pitfalls of each approach and the foundamental issues related to the 

validity and interpretation of NMA results.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

3 Characteristics of published networks of 

interventions 

 

 

3.1 Introduction 

 

The various approaches to fit a NMA are essentially equivalent; however certain 

network characteristics sometimes may restrict the choice of the method of 

analysis. For example, networks that include multi-arm studies require the use of 

multivariate methods and until recently could be analyzed only as a hierarchical 

model fitted in Bayesian environment. Also, inconsistency can be assessed 

statistically only in networks with closed loops; in star-shaped networks (where all 

treatments are compared directly only with a common comparator intervention) 

researchers might be able only to assess intransitivity relying on clinical and 

epidemiological criteria (e.g. comparability of populations across comparisons). 

Hence, it is interesting to explore how the new methodologies for performing 

NMA and evaluating assumptions (see Chapter 2) have been employed by 

researchers undertaking NMA and indirect comparisons.   

The fact that NMA is a relatively new statistical tool implies the need for several 

empirical and simulation studies to investigate the properties of each approach. 

Such studies should be ideally planned based on the characteristics of real 

networks of interventions. An overview of the characteristics of published 

networks of interventions is a useful resource of information for methodologists 

that aim to update the current knowledge on appraising NMA methods.  

This Chapter focuses on a description of a database I compiled, which consists of 

88 published networks of interventions. Sections 3.2 and 3.3 present the selection 

process of the networks including search strategy and eligibility criteria as well as 

the descriptive analyses. Then, Section 3.4 shows the results and describes the
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most important size, clinical and methodological characteristics of the identified 

networks.    

 

3.2 Selection process of published networks 

 

I searched for networks of randomized controlled trials (RCTs) published until 

March 2011 in Medline via PubMed using the following code: “(network OR 

mixed treatment* OR multiple treatment* OR mixed comparison* OR indirect 

comparison* OR umbrella OR simultaneous comparison*) AND (meta-analysis)”. 

Networks needed to include at least three competing interventions and been 

analyzed using a valid indirect comparison method or NMA; hence I excluded 

networks analyzed with the „naive approach‟ (i.e. comparison of single arms 

pooled across studies) (31,87). Networks that did not report the method of analysis 

were considered eligible if the presented indirect estimates were in agreement 

with that derived from the Bucher method (9). Meta-analyses including 

observational or diagnostic test accuracy studies were excluded. Finally, I 

excluded networks in which the number of studies did not exceed the number of 

competing treatments to ensure that enough information would be available for 

each comparison (i.e. relative effects would be estimable).   

 

3.3 Data extraction & analyses 

 

For every included network, information was extracted on the name of first 

author, journal, year of publication, primary outcome, number of included studies, 

competing interventions and control intervention (i.e. an inactive intervention or 

standard care). Arm-level outcome data were extracted, when they were available, 

or study-level otherwise for the primary outcome of each network. For networks 

that did not define clearly the primary outcome, the outcome reported first in the 



Characteristics of published networks of interventions|67 

 

 

manuscript was taken as such. I requested the required outcome data from the 

authors of the networks, when they were not available in the publication. 

I classified the networks into star-shaped and full (i.e. with at least one closed 

loop) networks. The network (primary) outcomes were considered as being 

harmful or beneficial as well as objective, semi-objective or subjective according to 

the criteria described in Turner et al. (49). The included networks were further 

classified into three categories depending on the type of treatment comparison. 

Following Turner et al., these categories of comparisons were defined using the 

scheme described below: 

- Pharmacological vs. control. Networks including only pharmacological 

treatments as well as a control intervention. 

- Pharmacological vs. pharmacological. Networks including only pharmacological 

treatments and no „obvious‟ control intervention.  

- Non-pharmacological vs. any intervention. Networks with at least one non-

pharmacological intervention.  

The modeling approach to NMA and the method to evaluate inconsistency were 

also recorded. All available methods are described in detail in Sections 2.2.2, 2.3.2 

and 2.3.3. Finally, data extraction included information on the type of outcome 

data (dichotomous, continuous, time-to-event, rates) and the effect size that was 

used to synthesize them (odds ratio (OR), risk ratio (RR), risk difference, 

standardized mean difference (SMD), mean difference (MD), ratio of means, 

hazard ratio (HR)).  

Descriptive and frequency statistics were estimated for publication, size, clinical 

and methodological characteristics. Analyses considered star and full networks 

both separately and jointly, when possible. The prevalence of each modeling 

approach for indirect comparisons or NMA and evaluation of inconsistency was 

estimated exploring its possible association with size characteristics (number of 

included studies, treatments, participants, etc.). Continuous characteristics are 

reported in terms of median numbers with the respective interquartile range 

(IQR). Subsequently, I conducted two empirical analyses that used this network
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collection; the first investigated the impact of four RoB items (random sequence 

generation, allocation concealment, blinding of participants, blinding of outcome 

assessors) on treatment effects and the second the impact of study precision. These 

studies are described explicitly in Sections 5.4 and 5.5 respectively. Note that 

three-treatment networks were not included in the descriptive analyses since the 

characteristics of such networks have been explored in previous studies (27,88). 

However, they were considered eligible for the empirical analyses.  

 

3.4 Results 

  

3.4.1 Identified networks 

 

The search identified 890 relevant abstracts; 276 of them were assessed as 

potentially eligible and their full articles were screened. After excluding 

duplicated publications, 145 networks met all the inclusion criteria; 102 (70%) 

were full and 43 (30%) star networks. Finally, 20 star and 68 full networks, for 

which outcome data were obtained, were included in the database. The full 

selection process of the networks is summarized in the flow chart of Figure 3.1. 

Figure 3.2 and Figure 3.3 show the increase in network publications over time and 

the seven most popular journals in the area of NMA respectively. 

  

3.4.2 Size characteristics of networks 

 

In a total of 88 networks, the median number of studies and treatments per 

network were 21.5 (IQR:13-37.5) and 6 (IQR:4-9) respectively. The identified full 

networks included, on average, more studies and competing interventions than 

the star networks (Table 3.1). In a subset of 82 networks (that reported the number 

of participants in each study) the median sample size per network was 7729  
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Figure 3.1. Selection process of published networks of interventions. 

 

(IQR:3,043-24,987), while in 80 networks (that reported the number of participants 

in each arm) the median sample size per comparison was 577 (IQR:208-1,707). Star 

networks appeared overall being more compact than full networks including 

fewer direct comparisons, but with larger number of studies and participants per 

comparison. 

 

 

Figure 3.2. Number of eligible published networks by year. 
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Figure 3.3. Number of eligible published networks by journal. (BMJ=British Medical Journal, 
CMRO=Current Medical Research and Opinion, JAMA= Journal of the American Medical 
Association, BMC= BioMed Central, JCE= Journal of Clinical Epidemiology, CDSR= Cochrane 
Database of Systematic Reviews, HTA= Health Technology Assessment) 

 

The presence of multi-arm studies was also examined in the 68 full networks. At 

least one three-arm study was included in 56 (82%) of them and at least one four-

arm trial in 18 (26%). The total number of closed loops in these networks was 426 

and the median number of loops per network was 4 (IQR:2-9).    

 

Table 3.1. Size characteristics of the networks. Medians with interquartile ranges (in parentheses) 
are reported. Numbers in square brackets show the number of networks reporting the  respective 
information.  

Characteristics Full networks Star networks Full & star networks 

Number of studies per 
network 

22 (13-38.5) [68] 18.5 (12.5-29) [20] 21.5 (13-37.5) [88] 

Number of treatments 
per network 

6 (4-9) [68] 5 (4-7) [20] 6 (4-9) [88] 

Sample size per 
network 

8,491 (4,587–27,659) 
[62] 

2,995 (1,829–12,499) 
[20] 

7,729 (3,043–24,987) 
[82] 

Sample size per 
comparison 

576 (185–1,785) [61] 600 (366–1,217) [19] 577 (208–1,707) [80] 

Number of studies per 
comparison 

2 (1–4) [68] 3 (2–6) [20] 2 (1–4) [88] 
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3.4.3 Clinical characteristics of networks 

 

Out of the total 88 included networks, more than one in two networks (58 

networks, 66%) had a harmful primary outcome, while in nearly half of the 

networks (36 networks, 41%) the primary outcome was subjective (Table 3.2). 

More frequently networks (60 networks, 68%) measured dichotomous primary 

outcomes and less often continuous (19 networks, 22%) or other types of 

outcomes.  

Regarding the type of treatment comparison, 61 networks (69%) were classified in 

the category of pharmacological vs. control followed by 14 (16%) networks in the 

group of non-pharmacological vs. any intervention. In 48 (55%) networks the 

control intervention was placebo and in 7 (8%) an alternative non-active 

intervention.    

 

Table 3.2. Clinical characteristics of the networks. Total numbers and the respective percentages 
are reported. 

  Full networks Star networks Full & star networks 

Type of outcome 

Objective 20 (30%) 7 (35%) 27 (31%) 
Semi-objective 24 (35%) 1 (5%) 25 (28%) 
Subjective 24 (35%) 12 (60%) 36 (41%) 

Type of data 

Dichotomous 45 (66%) 15 (75%) 60 (68%) 
Continuous 16 (24%) 3 (15%) 19 (22%) 
Time-to-event 5 (7%) 2 (10%) 7 (8%) 
Rate 2 (3%) 0 2 (2%) 

Effect measure 

Odds ratio 29 (42%) 2 (10%) 31 (35%) 
Risk ratio 17 (25%) 13 (65%) 30 (34%) 
Risk difference 1 (1%) 0 1 (1%) 
Hazard ratio 5 (7%) 2 (10%) 7 (8%) 
Rate ratio 2 (3%) 0 2 (2%) 
Mean Difference 11 (16%) 2 (10%) 13 (15%) 

Standardized 
mean difference 

5 (7%) 1 (5%) 6 (7%) 

 

3.4.4 Methodological characteristics of networks 

 

The most popular approach to NMA was the hierarchical model fitted within a 

Bayesian environment (43 networks, 49%) followed by the meta-regression 
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approach (assuming univariate distributions) (17 networks, 19%) and Bucher‟s 

method (16 networks, 18%) (see Section 2.2 for a description of the methods). The 

choice of the analysis method for indirect comparisons varied according to the 

network structure. More specifically, the hierarchical model was employed in 36 

(53%) full networks and 7 (35%) star networks, the meta-regression approach in 15 

(22%) full and 2 (30%) stars and the Bucher‟s method in 12 (18%) full and 4 (20%) 

star networks. There were also 13 (15%) networks (9% of the full and 35% of the 

stars) that did not report the method of analysis. 

Figure 3.4 shows that the hierarchical model started being the most popular 

method for NMA since 2009, whereas the majority of networks published earlier 

employed the Bucher‟s method. However, the number of networks not reporting 

the method of analysis did not appear to be declining over years (e.g. 17% in 2007, 

18% in the first three months of 2011). In addition, 41 full networks (60%) did not 

report whether and how the presence of inconsistency was assessed and 5 full 

networks (7%) used inappropriate methods for the evaluation of inconsistency. 

These findings raise concerns about the proper application of the methodologies in 

a respectable proportion of publications.  

 

 

Figure 3.4. Number of eligible published networks by year and method of analysis. 
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3.5 Conclusions 

 

This compilation of networks of interventions demonstrates that the advantages of 

NMA and the many available treatment options for almost any healthcare 

condition have increased its acceptance by the medical research community. The 

observed variation in the choice of the method of analysis can be partly explained 

by the stucture of the networks (e.g. differences between full and star-spahed 

networks).  

The typical network of this database is a full network that includes 22 studies and 

compares 5 pharmacological treatments vs. a control intervention with respect to a 

dichotomous subjective outcome.  

The findings of this network collection might be limited by the lack of a thorough 

search strategy; namely I used only one database (i.e. PubMed) and a not very 

sensitive search algorithm. However, the included networks cover a wide range of 

medical fields and the aforementioned systematic review process gave comparable 

results with two recently published systematic reviews that collected networks of 

interventions (19–21). An extended version of this database that included 

networks published until the end of 2012 yielded similar conclusions (22).     



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 Methodology for network meta-regression & 

network meta-epidemiology 

 

 

4.1 Introduction 

 

Patient characteristics might differ across studies and/or pairwise comparisons 

challenging the assumptions of homogeneity (13) and transitivity (11,26) 

respectively. These discrepancies can be seen as differences in the distribution of 

potential effect modifiers within and across the pairwise comparisons in a network 

of interventions.  

It is often the case that the estimated heterogeneity or inconsistency in a network 

of interventions can be explained using a network meta-regression model; that is a 

NMA model that incorporates one or more covariates. Standard meta-regression 

models for pairwise meta-analysis often lack of power to detect associations 

between treatment effects and study-level characteristics (17). An advantage of 

network meta-regression is the potential to borrow strength across the different 

comparisons, when such an assumption is reasonable; in this way the regression 

coefficients are estimated with increased power. 

Meta-epidemiological methods rely on the comparability of the impact of effect 

modifiers across different meta-analyses (in terms of magnitude and direction) to 

overcome the issue of low power. In this way, a sizable amount of data is expected 

to be available allowing the adequate estimation of a relationship between 

treatment effects and several characteristics. A description of models that pool 

parameters across many pairwise meta-analyses can be found in Section 1.3.  

However, considering that these parameters are constant or even related over a 

range of meta-analyses from different clinical fields sometimes might not be a 

plausible assumption. 
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Data from networks of interventions usually involve a larger evidence base and 

may offer a promising alternative way to investigate the mechanisms of effect 

modification and bias in meta-epidemiological research; this methodology may be 

called network meta-epidemiology (89). Pooling parameters (e.g. regression 

coefficients) across many network meta-analyses can accommodate the 

assumption for these parameters being more similar within a network rather than 

across networks (89,90). 

The following Section describes how the NMA models of Section 2.2.2 can be 

modified to incorporate one or more covariates as well as different assumptions 

for the regression coefficients that have been suggested in the literature. Then, 

Section 4.3 describes how the estimated coefficients can be pooled across several 

networks of interventions to derive an overall parameter of effect modification.   

 

4.2 Models & assumptions for network meta-regression 

 

4.2.1 Models for network meta-analysis incorporating covariates 

 

The network meta-regression models are extensions of the standard NMA models 

that account for the impact of one or more covariates on the treatment effects 

estimates. More specifically, consider that   characteristics have been specified a 

priori as potential effect modifiers in a network of interventions. The extension of 

each NMA approach into a network meta-regression model is described below. 

 

Network meta-regression model for the „multivariate meta-regression‟ approach 

When NMA is fitted as a multivariate meta-regression model the incorporation of 

covariates requires the extension of the design matrix  . More specifically, 

according to Section 2.2.2 in a standard NMA model the entries of the design 

matrix express the comparison(s) being made in each sudy via the consistency 
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equations; hence the estimated coefficients from this model represent the network 

estimates of the relative effects. Network meta-regression aims further to estimate 

how these relative effects may change for different values of the characteristics of 

interest. This implies that an additional set of covariates should be included in the 

design matrix expressing these characteristics for every study in the network. In 

this way an additioanl set of coefficients can be estimated showing how each 

characteristic affects the relative effects. The extended design matrix that 

incorporates also information on   study-level characteristics that may act as effect 

modifiers is a matrix of dimension [∑        
   ]                denoted 

with    (    ). The    (         )
 
 is the sub-matrix that contains for each 

study   (       ) the values of the covariates 

    (

    
        

          
        

   

 
         
             

               
             

   
) (4.1)  

(   the number of arms in study  ) representing the   characteristics for each basic 

comparison. Note that for the basic comparisons not reported in the study   (with 

           ,           the basic comparisons), the respective covariates 

         
   are zero as well for every        . Then, Equation (1.8) becomes  

    (
  

 
*          

where       
        

     is the vector of the summary effects when all   

covariates are equal to zero and   (       )
 
. Each vector    (  

      
   )

 
 

contains the comparison-specific coefficients corresponding to the characteristic  . 

Also,       
      

    and       
      

   with    
        

  .  

The network estimates  ̂  derived from this model account for the impact of the   

characteristics. The random effects   
  are assumed again normally distributed 
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When differences in the   characteristics across studies explain the between-study 

variance, it is expected that the estimated heterogeneity of the network meta-

regression model would be smaller than that of the standard NMA model (i.e. 

       or    
  

    
  for              ). 

 

Network meta-regression as a hierarchical model 

Fitting network meta-regression as a hierarchical model requires the addition of a 

regression term in Equation (2.10) assuming that 

          
     

and 

     
        (4.3)  

where    (            )
 
,    (         )

 
,     (  

      
    

)
 

 and     is 

defined in (4.1) but here includes only the covariates that correspond to the      

comparisons modelled for study  . Similarly, the subscript   in the vector of 

coefficients in the above Equation denotes that    contains the comparison-specific 

coefficients for the      comparisons. Equation (4.3) implies that every true 

underlying effect     (          ) of study   is different by   
  units compared 

to a study in which the covariate representing the characteristic   for comparison   

is equal to 0. 

The study-specific underlying effects   
  (   

            
 )

 
 are assumed normally 

distributed  

  
      

    
  

   (4.4) 

with mean   
  (  

         
 )

 
 the vector of the summary effects.  The variance-

covariance matrix   
  

 is described by Equation (4.2).    

 

Network meta-regression model for the multivariate meta-analysis approach 

Using the multivariate meta-analysis approach, the network meta-regression 

model can be constructed similarly to the case of multivariate meta-regression 
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approach. The two models differ only in the definition of the basic parameters 

          expressed in    and the elements of the design matrix   

         
 . The definition of these matrices is described in Section 2.2.2. Under 

this approach, when      is a missing value (i.e. the basic comparison   is not 

reported in study  ),     
  (       ) will be missing as well.   

 

The three approaches presented above for fitting a network meta-regression 

model are equivalent and the estimated coefficients are expected to be similar 

between them. The „two-stage approach‟ is not considered in this Section for 

fitting network meta-regression, since it would probably give regression 

coefficients not comparable to those derived from the three above methods. This is 

because the coefficients would be estimated only at the first stage of the analysis as 

well as due to the fact that they would be both comparison-specific and design-

specific.  

 

Similarly to the case of pairwise meta-analysis, caution is needed in the choice of 

the   characteristics that define the    matrix. Due to the limited power of any 

meta-regression model only a small subset of the total number of potential effect 

modifiers should be included in the model. A rule of thumb is to allow one 

covariate for every 10 studies in a pairwise comparison (13). However, the power 

to detect associations between study-level characteristics and treatment effects also 

depends on the size of the studies and the amount of heterogeneity (17).  

 

4.2.2 Assumptions for the regression coefficients in network meta-regression 

 

The network meta-regression models presented above would give estimates for a 

set of   (
 
 
) coefficients   

   for each characteristic  . Different assumptions can 

be employed for the comparison-specific coefficients of each   characteristic (91). 
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The plausibility of these assumptions in a network of interventions depends on the 

clinical setting and outcome as well as on the nature of each characteristic  .  

For example, suppose that baseline severity is a potential effect modifier in a 

network comparing active treatments either with placebo or with each other. It 

might be reasonable to assume that differences in baseline severity across studies 

impact similarly in all comparisons of active treatments vs. placebo. This 

assumption can be reflected in a network meta-regression model by using identical 

or exchangeable coefficients for all these comparisons. On the other hand, one may 

believe that baseline severity affects in a different way head-to-head comparisons 

(with respect to magnitude and direction); in that case the respective coefficients 

for this type of comparisons could be assumed independent from the coefficients 

corresponding to comparisons of active treatments vs. placebo.   

All possible assumptions about the regression coefficients are described in detail 

below. 

 

Independent comparison-specific coefficients 

The weaker assumption for the elements for the comparison-specific coefficients is 

assuming them as being fixed effects and totally independent, hence   
     

   for 

every             with      . The drawback of this approach is that in the 

presence of very few studies for one or more comparisons the model would fail to 

estimate adequately the respective   
   and the estimated coefficients would have 

extreme uncertainty.  

 

Exchangeable comparison-specific coefficients 

Alternatively, if it is clinically meaningful, all comparison-specific coefficients for 

the   study characteristic can be treated as random effects sharing a common 

distribution, hence 

  
          

   (4.5) 



Methodology for network meta-regression & network meta-epidemiology|81 

 

 

with mean    and between-comparison variance   
 . This exchangeability 

assumption implies that all   
   are related but does not impose any further 

constraints on their estimation. 

 

Consistent comparison-specific coefficients 

The comparison-specific coefficients can be further restricted by forcing them to 

satisfy the consistency equations (Equation (2.5)), namely 

  
     

     
   (4.6) 

Although this assumption might be stronger than the previous two (i.e. 

independent or exchangeable coefficients), it is often considered as being more 

reasonable; this is because it reflects the belief that the same assumption (i.e. 

consistency) should underlie both relative effects and regression coefficients. Then, 

three further assumptions are possible for the basic coefficients; these are the 

coefficients corresponding to the basic parameters   
    

   where         with 

   : 

- Independent basic coefficients  

  
     

   for every               with        

- Exchangeable basic coefficients  

  
         

    

- Identical basic coefficients  

  
     

   for every                

Note that in this case Equation (4.6) gives that all non-basic coefficients are 0. 

The assumption of the consistent coefficients has been exemplified recently by 

Achana et al. (92) for the application of network meta-regression with control 

group risk as covariate. The idea was that the „unobserved‟ control group risk in 

studies that do not include a control arm is „missing at random‟ (which is implied 

by the transitivity assumption) and it can be estimated using information from 

studies that include the control intervention assuming consistency in coefficients. 
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Identical comparison-specific coefficients 

The last possible assumption that can be employed in a network meta-regression 

model is to assume that all comparison-specific coefficients are identical, which 

means that 

  
      (4.7) 

This assumption might be quite strong; however it can be plausible in cases where 

the impact of characteristic   does not depend on the treatments being compared, 

such as the impact of study design limitations (e.g. lack of blinding). The 

drawback of this model is that it does not allow for between-comparison variation. 

Nevertheless, it is advantageous compared to all previous assumptions with 

respect to the precision of estimating the coefficient   . 

 

4.3 Models & assumptions for network meta-epidemiology 

 

Network meta-epidemiology is the analogy to conventional meta-epidemiology 

(see Section 1.3) when the synthesis of parameters (e.g. regression coefficients) is 

performed across networks of interventions instead of pairwise meta-analyses. 

More specifically, consider that network meta-regression has been performed in   

available networks for the same         characteristics using the methodology 

of Section 4.2. Then, from each network a coefficient   
  with         has been 

estimated and all these network-specific coefficients are assumed comparable with 

each other; that means that the impact of characteristic   on the treatment effects is 

assumed independent of the treatment comparison being made, the clinical 

condition of interest and the studied outcome. Note that deriving the parameters 

  
  requires that the comparison-specific coefficients   

   within each network 

should be assumed either exchangeable (Equation (4.5)) or identical (Equation 

(4.7)). Otherwise each network would give a set of coefficients pertaining only to 

specific treatment comparisons and pooling these sets of coefficients would be 

meaningless.   
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Similarly to conventional meta-epidemiology, network meta-epidemiology can be 

performed either in one or in two stages (see Section 1.1), but here the unit of 

analysis is the network. Using a one-stage network meta-epidemiological model 

has the advantage of borrowing strength across networks. In this way, the 

estimated overall coefficient is usually estimated with increased precision 

compared to the two-stage analysis. The one-stage model is constructed as an 

extension of the network meta-regression models as described below. 

 

4.3.1 Models synthesizing parameters across network meta-analyses 

 

Network meta-epidemiology using the „multivariate meta-regression‟ or the „multivariate 

meta-analysis‟ approach 

The synthesis of regression coefficients using any of the two approaches is 

performed by extending Equation (1.9) into 

(

    
 

 
     

 
)  (

          

 
     

       

)

(

 
 

  
 

    
    

       

 
    

    
       

)

 
 

 (

    
 

 
     

 
) (4.8) 

where    is the total number of studies in each network   with         (  the 

total number of networks) and   
        (       ) is the overall coefficient showing 

the impact of the   characteristic on treatment effects and is assumed to pertain to 

the entire network collection. A normal distribution is assumed for the vector of 

coefficients   
  (    

        
 ), namely  

  
            

Note that the definition of the basic parameters expressed in   
  and the design 

matrix    (            
) depends on the choice between the two approaches 

(see Section 2.2.2). 
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Network meta-epidemiology as a hierarchical model 

Alternatively, the network meta-regression hierarchical model can be extended to 

allow for one additional hierarchy. In this case Equations (4.3) and (4.4) would be  

          
          

  

    
        

      
    

  

with 

  
                   

The vector          (  
            

       ) contains the overall coefficients for the 

  characteristics and    is the variance-covariance matrix of these coefficients. 

 

Both approaches can assume that the network-specific coefficients are fixed and 

identical by setting     . 

As already mentioned in Section 1.3 for conventional meta-epidemiology, network 

meta-epidemiology can result in valuable benefit in the precision of coefficients 

only when a small number of characteristics (usually only 1 or 2) are included in 

the model. 

 

4.4 Discussion 

 

The presence of heterogeneity and/or inconsistency in a network of interventions 

raises concerns for the validity and applicability of the findings. The exploration of 

the possible sources for this observed extra variability within and across the 

pairwise comparisons should consider several patient and study characteristics 

that may act as effect modifiers.  

The impact of these characteristics on the treatment effects can be explored via 

network meta-regression and different assumptions for the coefficients can be 

employed. The choice of the model assumption should be based primarily on 

clinical criteria; considering, for example, whether it is clinically meaningful to 

assume a common regression coefficient across all comparisons in the network. On 
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the other hand, computational reasons may imply the use of strong assumptions 

since for comparisons with very few studies the regression coefficients might not 

be estimable. 

To date some empirical and simulation studies have been conducted to investigate 

the properties of the methodology for network meta-analysis 

(19,20,22,27,65,88,89,93,94). However, designing simulation studies based on 

networks of interventions is a computationally intensive procedure and only 

three-treatment networks have been simulated so far. Network meta-

epidemiology can be considered as a valuable alternative to investigate several 

factors that might affect the results of NMA under certain conditions.   

The exploration of heterogeneity and inconsistency can be an important source of 

imformation for decision-making. Protocols for NMA should consider network 

meta-regression as an additional analysis to investigate the impact of potential 

effect modifiers. However, researchers should be aware of the lack of power of the 

methodology and interpret the results always with a clinical insight and in light of 

the empirical evidence.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 Assessing the impact of study characteristics in 

network meta-analysis results 

 

 

5.1 Introduction  

 

Several empirical studies have examined the possible association between the 

estimated treatment effects and the size of the trials suggesting that small studies 

tend to give larger effect estimates than do larger studies (95–98).  Such a 

phenomenon, which is usually called small-study effects, is quite frequent in 

evidence synthesis and can be caused by several reasons.  

A possible explanation is that small studies without significant treatment effects 

are less likely to be published, causing publication bias. An associated to publication 

bias reason for small-study effects, especially for secondary or safety outcomes is 

selective outcome reporting (i.e. selectively presenting only the significant results 

derived from a study). Genuine heterogeneity between small and large trials 

might also play a role (99,100); for example small studies are more likely to recruit 

high-risk patients that may benefit more from the treatment (101). In addition, 

study size (measured by sample size or precision) is often considered as a proxy 

for the quality of trials and any discrepancies between smaller and larger trials 

may be attributable to differences in study design. For instance, the lack of 

appropriate allocation concealment and blinding have been found to be associated 

with effect size in individual trials and meta-analyses (102–105).  

For pairwise meta-analysis several regression-based methods have been suggested 

for investigating the association between treatment effect estimates and study size, 

which have been evaluated in empirical and simulation studies (96,106–108). 

These methods model the relationship between effect sizes and a measure of their 

precision, such as the variance, the standard error or a function of them. However, 
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these approaches are limited, as any meta-regression model is, by the lack of 

power to detect existing associations in the presence of few studies and substantial 

heterogeneity (17,109).   

The presence of small-study effects in NMA can be assessed graphically by 

extending the standard funnel plot to allow the incorporation of multiple 

treatment comparisons (45,110). Network meta-regression models (see Section 4.2) 

can be used also to extend the statistical models accounting for small-study effects 

into the context of NMA. Models that account for the impact of other study 

characteristics on NMA results have been suggested in the literature as well  

(90,111–113). An important fact of the network meta-regression models that aim to 

control for potentially biased treatment effects is that they require making 

assumptions about the directionality of bias. This may be less problematic when 

analysing star-shaped networks; in these networks the common comparator 

intervention is usually an inactive or old intervention and it is not expected to be 

favored when bias is present. 

The aim of this Chapter is to investigate whether certain characteristics of study 

design impact on the treatment effects estimated from NMA. The following 

Section describes a new graphical tool that I developed, known also as comparison-

adjusted funnel plot, for assessing the presence of small-study effects in a network 

of interventions simultaneously for all direct comparisons. In Section 5.3, I provide 

a framework on how the network meta-regression models can incorporate 

different assumptions for the direction of potential bias due to differences in study 

design. In Sections 5.4 and 5.5, I use the methodology of network meta-

epidemiology to evaluate the effect of four RoB items (random sequence 

generation, allocation concealment, blinding of participants, blinding of outcome 

assessors) and study precision in a collection of star-shaped networks (part of the 

database described in Chapter 3); the advantage of including only star network is 

that they do not require making strong assumptions about directionality of bias 

(89). Finally, Section 5.6 presents a case study, in which I  explored the presence of 

small-study effects in two full networks (110). 
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5.2 A new graphical tool for assessing small-study effects in 

network meta-analysis 

 

The presence of small-study effects in a pairwise meta-analysis is commonly 

assessed graphically using funnel plots, which are scatterplots of the observed 

relative effects in studies versus a measure of study precision. When the points in 

a funnel plot lie symmetrically around the summary effect, the assumption of no 

differences between small and large studies is likely to hold.  

In a NMA that involves multiple treatment comparisons, putting all studies 

together in a single funnel plot is not helpful since there are multiple summary 

effects. Studies within each pairwise comparison form a comparison-specific 

reference line of symmetry that represents the respective summary effect. Hence, 

using conventional funnel plots, symmetry could only be judged separately for 

each available direct comparison. However, very often there are few studies per 

comparison (e.g. less than 10) and asymmetry cannot be assessed adequately. The 

inclusion of all studies of a NMA in a funnel plot needs somehow to account for 

the fact that different set of studies evaluate different treatment comparisons. To 

resolve this issue, I developed the comparison-adjusted funnel plot, in which the 

horizontal axis is modified to contain the value (      ̂  
   for every study   in 

the network comparing any treatments   and   (where      the observed relative 

effect in study  ) (45,110). Similarly to the standard funnel plot, the direct estimate 

 ̂  
  should more appropriately be derived from the fixed effect model; that is 

because the random effects model gives relatively more weight to small studies, 

which is undesirable when small-study effects are likely to operate.     

It is important to note that the comparison-adjusted funnel plot can yield 

meaningful conclusions only if all comparisons have been defined in a consistent 

direction; for example active treatment vs. inactive, newer treatment vs. older, 

sponsored treatment vs. non-sponsored, etc. Then, a symmetrical plot around the 

zero line suggests the absence of small-study effects in the network. 
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Figure 5.1 shows an example comparison-adjusted funnel plot for the rheumatoid 

arthritis network described in Section 2.4 (64). This is a star-shaped network and 

all comparisons in the graph have been estimated as placebo vs. active treatment. 

The graph indicates a tendency of small studies to show the active treatments 

more effective than the respective summary effect for each pairwise comparison 

(since       ̂     for small studies).  

 

 
Figure 5.1. Comparison-adjusted funnel plot of a network network comparing the effectiveness of 
six biologic agents and placebo for rheumatoid arthritis. The dashed red line represents the null 
hypothesis that the observed effects in studies and the respective summary effects are in 
agreement. Points with different colors correspond to different pairwise comparisons. 

 

I implemented the comparison-adjusted funnel plot can in STATA via the 

netfunnel command, which is included in the network_graphs package (see 

also Section 2.5.3). By default, the command estimates the observed effects for all 

comparisons as „treatment earlier in alphabetical or numerical order vs. treatment 

later in the order‟. This means that researchers should consider this direction when 

they assign names or codes to the competing treatments. Alternatively, adding the 

option noalphabetical specifies that the observed relative effects have been 

estimated a priori in a consistent direction; in this case the relative effects are not 

rearranged based on the treatment names. Also, the option bycomparison can be 



Assessing the impact of study characteristics in network meta-analysis results|91 

 

 

used to present the different comparisons with different colors. Note that the 

command can be used also via a dialog box (Figure 5.2).  

 

 
Figure 5.2. Dialog box of the netfunnel command in STATA. 

 

5.3 Modeling the direction of potential bias in network              

meta-regression 

 

5.3.1 Assumptions underlying network meta-regression when accounting for the 

impact of small-study effects 

 

To develop all models provided in this Section, I rely on the assumption that the 

mechanism causing small-study effects is the same across treatment comparisons 

(110). This assumption implies that: 

- If small-study effects are the consequence of differences in quality or, in 

general, due to clinical and methodological heterogeneity between smaller and 

larger studies, this possibly applies to any trial comparing a control
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intervention (that is no treatment, placebo or standard care) versus an active 

(experimental) intervention.  

- Similarly, when small-study effects are explained by publication bias or 

selective outcome reporting, this is likely to affect an entire research field 

exaggerating the effect of experimental interventions compared with controls. 

The magnitude of bias, though, might be different depending on the 

experimental comparator treatment. 

Applying the above scenarios in the case of head-to-head trials requires stronger 

but reasonable assumptions; for example newer or sponsored treatments are often 

expected to be favored when compared with older or non-sponsored treatments 

respectively.    

A major advantage of these assumptions is that the impact of study design 

characteristics (e.g. study size and RoB items) can be assessed with increased 

precision within a network of interventions rather than by looking at each 

pairwise treatment comparison separately. 

 

5.3.2 Possible assumptions about the direction of potential bias 

 

An overview of the network meta-regression models and the possible 

assumptions for the comparison-specific coefficients is available in Section 4.2. 

The presence of multiple treatment comparisons in a network of trials implies the 

need to distinguish in each comparison the „favored‟ arm from those that are not 

favored to ensure a meaningful interpretation of the estimated coefficients. For 

example, suppose a harmful dichotomous outcome. Drawing a funnel plot with a 

consistent direction for all effect sizes (e.g. favored vs. non-favored intervention) 

can reveal whether the summary effect indeed seems to exaggerate the effect of 

the treatment assumed favored; in that case missing studies are expected to lie on 

the right hand side of the graph. To make this distinction between the favored and 

non-favored interventions, I use a (dummy) direction variable as described below.          
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Note that in this Chapter all presented and applied network meta-regression 

models include only one covariate and follow the approach of the hierarchical 

model; this means that     and           . I write each covariate      in this 

matrix as 

         
       (5.1) 

where     
  is the part of the covariate that represents the study characteristic of 

interest (e.g. a measure of study precision) and      is the direction variable that 

takes values 1, 0 or -1 depending on the type of outcome and on whether 

treatment   or   is expected to be favored by the effect of     
 . More specifically, 

for a harmful outcome 

     ,
      
    

  
  is expected to be favored 

   is expected to be favored 

while for beneficial outcomes 

     ,
      
    

  
  is expected to be favored 

   is expected to be favored 

The definition of      reflects the prior belief regarding which is the favored 

treatment in every comparison.  

On the top of giving fixed values to the direction variable, I also employ a 

probabilistic approach to allows for some level of uncertainty in the prior belief 

about the favored treatment (112). In this case      would be 1 or 0 with some 

unknown probability     and can be estimated as 

     {
        
      

  
  is expected to be favored 

   is expected to be favored 

with 

                    

where     is the probability of the treatment assumed to be favored being indeed 

favored.  

I combine both the fixed and the probabilistic direction approaches with several 

assumptions about the directionality of bias. These include the following 

scenarios: 

- The covariate     
  only impacts comparisons of control versus active (experimental) 

interventions („active-favored‟). This scenario might be more plausible when 
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small-study effects are caused either by publication bias or by differences in 

study quality; in both cases the effect of active interventions is expected to be 

exaggerated. 

- The covariate     
  impacts every comparison favoring the newer treatments („new-

favored‟). In this scenario, the potential for small-study effects is allowed also in 

the head-to-head comparisons, where the newer treatment between   and   is 

expected to be favored. The definition of newer and older treatments can be 

based on the date of licensing or on the publication of the first trial evaluating 

each treatment. The control intervention (no treatment, placebo or standard 

care) is considered here the older treatment in the network. In case that 

treatments   and   are equally new, then        (i.e. bias is not likely to 

operate in this comparison). 

- The covariate     
  impacts every comparison favoring the sponsored treatments 

(„sponsored-favored‟). This scenario is similar to the previous, but assumes that in 

each comparison    the sponsored treatment is expected to be favored, while 

if no information about sponsoring is available, then       . 

- The covariate     
  impacts every comparison favoring either the sponsored or the 

newer treatments („sponsored/new-favored‟). This is a combination of the two 

previous scenarios. More specifically, in every    comparison the sponsored 

treatment is expected to be favored, if information about sponsorship exists, or 

the newer treatment otherwise. 

Then, I infer about whether the employed scenario is likely to hold based on the 

sign of the coefficients    . The way that I have defined the direction variable to 

take values 1 or -1 implies that a positive coefficient     suggests that the direction 

of prior belief seems plausible, whereas a negative     suggests that small-study 

effects are more likely to operate in the opposite direction. Note that all 

assumptions presented in Section 4.2.2 can be employed to model the comparison-

specific coefficients    . 

It is important to note that the potential for bias in a network of interventions 

depends on the clinical setting. There might be several types of bias working with 
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unknown mechanisms; such biases could not be accounted for in a statistical 

model.  

 

5.4 A network meta-epidemiological study assessing the impact of 

trial design limitations 

 

5.4.1 Selection of networks of interventions 

 

A detailed description of the search strategy and the selection process for 

networks of interventions published until March 2011 is available in Section 3.2. In 

this network meta-epidemiological study, which investigated the impact of RoB 

components, I considered only star-shaped networks. All types of outcome 

measures (dichotomous, continuous, etc.) and effect sizes (OR, MD, etc.) appeared 

in the individual studies were eligible.   

 

5.4.2 Data extraction 

 

The extracted data from the included networks are presented in detail in Section 

3.3. In addition to the outcome data, RoB information was extracted from each 

network regarding the appropriate conduct of four items; random sequence 

generation, allocation concealment, blinding of participants and blinding of 

outcome assessors. If such information was not available, it was sought from the 

authors of each network publication. For networks for which RoB data could not 

be obtained either from the published paper or from the authors, this was assessed 

by two reviewers independently for every included RCT based on the Cochrane 

RoB Tool (59). All studies were classified into three categories; being at low, high 

or unclear RoB according to following criteria (59): 
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- Random generation of allocation sequence. Methods that were considered adequate 

to suggest the random sequence generation included coin tossing, random 

number table, dice throwing, computer random number generator, restricted 

randomization methods (minimization technique, random permuted blocks, 

etc.) or equivalent. Trials that used other inappropriate methods were 

considered as being at high RoB. Studies were classified into the unclear RoB 

group when no or insufficient information was provided from the publications 

to allow judgment of low or high risk. 

- Allocation concealment. Appropriate methods of allocation concealment 

implying that both participants and investigators were not likely to foresee the 

treatment assignment included sequentially numbered opaque and sealed 

envelopes, central allocation, sequentially numbered drug containers of 

identical appearance or equivalent. High RoB was assumed for trials using any 

other non-adequate method and unclear RoB for trials that did not describe the 

employed method explicitly.  

- Blinding of participants & outcome assessors. Studies were considered as being at 

low RoB when the authors described the study as double-blinded and reported 

the use of identical pills, identical containers, etc. For networks with hard (e.g. 

death) or objective (e.g. lab outcomes) outcomes all trials were classified into 

the low risk category regarding the blinding of outcome assessors. Studies 

described as double-blinded without providing further details on how 

blinding was achieved were classified into the unclear risk category. For 

networks with self-assessed outcomes the judgment for blinding of 

participants and blinding of outcome assessors was the same.   

Any disagreements between the two reviewers were resolved by discussion. 

 

5.4.3 Statistical analysis 

 

I initially analyzed each network including at least ten studies (to ensure sufficient 

power of meta-regression (13)) using a hierarchical NMA model (see Section 2.2.2) 
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and network meta-regression (see Section 4.2) models assuming a common 

heterogeneity parameter (  ) across all comparisons. I used arm-level outcome 

data in the analyses when they were available and study-level data otherwise.  

The covariate     
  in Equation (5.1) was an indicator variable, which showed 

whether study   was assessed being at high, unclear or low RoB. More specifically, 

I defined     
  as 

    
  ,

   
   

  
     study   is at low RoB 

 study   is at high/unclear RoB 

The fixed direction approach was used for the direction variable     , which was 

combined with the „active-favored‟ assumption; that is the only sensible direction 

scenario in star-shaped networks.  

The comparison-specific coefficients     within each star network were assumed 

to be identical implying that the impact of each bias component was similar 

irrespective of the active treatment being compared with the control intervention 

(i.e. the common comparator intervention). I also employed the exchangeable 

coefficients assumption as a sensitivity analysis to allow for variability in the bias 

parameters across the different comparisons (see Section 4.2.2). For every network 

  a positive coefficient    suggested that studies at high or unclear RoB tended to 

estimate larger treatment effects than low-risk studies favoring the active 

treatments. 

After analyzing each network separately, I used a network meta-epidemiological 

model to link all the network-specific coefficients    (       ). This model 

allowed for between-network variability assuming that all    share a common 

normal distribution, hence           . As a sensitivity analysis, the assumption 

of a common overall coefficient across networks (    ) was employed as well. A 

detailed description of these models can be found in Section 4.3 and a graphical 

representation for the case of three networks in Figure 5.3. In this way networks 

including few studies borrowed strength from the larger networks and the overall 

coefficient   attained increased precision.  

To ensure the comparability of bias parameters across the NMA and yield a 

meaningful overall  , I synthesized in the network meta-epidemiological model 
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only networks using the same effect size measure; this was OR for dichotomous 

outcomes, MD for continuous and HR for time-to-event outcomes. Networks 

using different effect sizes (RR, SMD, etc.) were analysed only separately. 

The association between the four RoB items and the relative treatment effects was 

measured as the ratio of odds ratios (ROR) for dichotomous outcomes, which is 

estimated as         within each network or        across networks.  

 

 
Figure 5.3. Graphical representation of the network meta-epidemiological model (three-network 
example). Stochastic nodes (associated with distributions) and deterministic nodes (logical 
functions of parameters) are presented in oval shapes and data are presented in rectangular 
shapes. Single-line arrows represent distributions and double-line arrows represent logical 
functions.   

 

5.4.4 Subgroup & sensitivity analyses 

 

I classified the included meta-analyses according to their primary outcome into 

mortality and non-mortality networks and I also synthesized the two subgroups 

separately using the network meta-epidemiological model (103).  

An additional analysis was performed to check the sensitivity of results to 

different criteria for RoB classification that might have been used by the original 

authors of the publications. Therefore, this sensitivity analysis included only 
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networks for which RoB data were not available (in the published networks or 

after request from the authors) and thus were extracted from the two reviewers 

using the criteria described in Section 5.4.2. A second sensitivity analysis aimed to 

check whether the type of competing interventions affected the results by 

excluding the networks with non-pharmacological interventions.  

 

5.4.5 Model selection & implementation 

 

I used the deviance information criterion (DIC) as measure of model parsimony 

and I considered a three-unit decrease in DIC to suggest a better compromise 

between model fit and complexity (114).  

All applied models were fitted in WinBUGS 1.4.3 (71) using Markov chain Monte 

Carlo simulations. Normal vague prior distributions          were given to the 

basic parameters    , the network-specific and overall mean coefficients,    and  , 

and the effect of the control intervention (e.g.            or     in Equation (1.6)) 

for networks for which arm-level data were used. A half-normal prior distribution 

was assumed for the heterogeneity standard deviation,          with     and a 

uniform        for the between-network standard deviation   in the network 

meta-epidemiological model. Two alternative prior distributions were employed 

for the between-network variability as sensitivity analysis; a uniform         on   

and a normal          on       . 

For all analyses two Markov chains were run after a burn-in period of 10,000 

simulations. Achievement of convergence was judged by a visual inspection of the 

two chains.  Results are reported in terms of posterior medians with 95% credible 

intervals (CrI). 
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5.4.6 Results 

 

Eligible networks 

The selection process (Figure 3.1) identified 32 eligible star-shaped networks that 

involved 613 individual trials. The characteristics of the eligible networks are 

presented in Table 5.1 and the judgment about the RoB of the included studies in 

each network in Table 5.8. The independent network-specific meta-regression 

analysis included 22 networks, which included at least ten studies (545 trials in 

total); thus 22 network-specific coefficients    were obtained.  

The network meta-epidemiological model included 20 star networks (after 

excluding networks with overlapping studies) reporting dichotomous outcomes 

measured with OR, whereas the remaining networks were not synthesized due to 

the small number of networks suitable to be linked together; those were 5 star 

networks with continuous data, 4 with time-to-event data, 1 with rate data and 2 

measuring dichotomous outcomes with RR.  

 

Accounting for the impact of risk of bias components 

The estimated network-specific coefficients          suggested that none of the 

four RoB items substantially affected the treatment effects derived from network 

meta-analysis. From the 22 star networks included in the independent meta-

regression analyses, 55%, 60%, 56% and 61% yielded positive coefficients for 

random sequence generation, allocation concealment, blinding of participants and 

blinding of outcome assessors respectively (Table 5.3). However, none of these 

coefficients reached statistical significance. Differences in study design with 

respect to the four bias items did not appear to explain the estimated 

heterogeneity in the networks; the relative change in heterogeneity standard 

deviation ( ) did not exceed the 3.5% of the estimated heterogeneity from the 

NMA model without covariates for any of the networks. 
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Similar results were derived from the network meta-epidemiological model that 

linked 20 networks with dichotomous data. The four overall coefficients ( ) 

showing the estimated association between random sequence generation, 

allocation concealment, blinding of participants and outcome assessors (assuming 

fixed coefficients within networks and exchangeable across networks) and 

treatment effects are presented in Figure 5.4. The graph does not suggest a 

tendency of high or unclear risk studies to estimate larger treatment effects 

compared to low risk trials. The between-network standard deviation estimates 

( ) were (on          scale) 0.91 with CrI (0.75,1.09) for random sequence 

generation, 0.98 (0.83,1.18) for allocation concealment, 1.16 (0.95,1.43) for blinding 

of participants and 1.15 (0.83,1.60) for blinding of outcome assessors. Assuming a 

fixed coefficient across networks without accounting for the variability across 

networks did not alter substantially the results of the network meta-regression 

model.   

 

 
Figure 5.4. Overall ratios of odds ratios (ROR) for each risk of bias component derived from the 
joint analysis. Results are reported also in subgroups of mortality and non-mortality networks. 
Outcome assessors were defined as being blinded for all mortality networks. (CrI=Credible 
Interval) 



 

Table 5.1. Characteristics of eligible star-shaped networks 

 Network 
ID 

Reference Studies Treatments Control Topic & Outcome Effect Measure 

1 Abdullah 2008 18 8 Placebo 
effectiveness in chronic asthma (oral 

corticosteroids elimination) 
Odds ratio 

2 Berner 2006 14 4 Placebo 

effectiveness of phosphodiesterase-5 
(PDE-5) inhibitors for erectile 

dysfunction (International Index of 
Erectile Function (IIEF) score) 

Mean difference 

3 Edwards 2009 30 4 Imipenem/Cilastatin 
effectiveness of beta-lactams for the 

treatment of hospitalized patients with 
infection (clinical response) 

Odds ratio 

4 Fakhoury 2008 5 3 
Evening NPH  

(neutral protamine 
Hagedorn) 

reducing weight gain in patients with 
type 2 diabetes 

Mean difference 

5 Gafter-Gvili 2005 37 5 Placebo 
antibiotic prophylaxis in 

neutroneutropenic patients (all-cause 
mortality) 

Odds ratio 

6 Jansen 2011 8 6 Placebo 
effectiveness of bisphosphonates in the 
prevention of vertebral fractures (new 

vertebral fractures) 
Odds ratio 

7 Kumar 2010 6 3 
Melphalan + 
Prednisone 

first-line therapy for patients with 
multiple myeloma (overall survival) 

Hazard ratio 

8 Lim 2003 5 3 Placebo 
effectiveness of medium or low dose 

aspirin in preventing occlusion of vein 
grafts (one or more occlusions) 

Odds ratio 

9 Lim 2009 33 3 
No Treatment/ 

Placebo 
Non-Small Cell Lung Cancer 

chemotherapy (overall survival) 
Hazard ratio 

10 Loke 2011 9 3 Enoxaparin 
effectiveness for prevention of venous 

thromboembolism (total venous 
thromboembolisms (VTE)) 

Odds ratio 

11 Maas 2009 14 3 Control 
effectiveness of interventions for 

prevention of asthma in children at high 
risk (current diagnosis of asthma in 

Odds ratio 



 

 

 

childhood) 

12 Makani 2011 25 4 
CCB (calcium 

channel blocker) 

effectiveness of renin-angiotensin 
system blockade on calcium channel 
blocker-associated peripheral edema 

(incidence) 

Odds ratio 

13 Mason 2004 29 7 Placebo 

effectiveness of topical Non-aspirin, 
Non-steroidal Anti-inflammatory Drugs 
(NSAIDs) for acute pain  (50% or more 

pain reduction) 

Odds ratio 

14 McLeod 2007 8 4 Placebo 

effectiveness of drugs for the treatment 
of ankylosing spondylitis (Assessment 
in Ankylosing Spondylitis (ASAS 20) - 

20% improvement at 12 weeks) 

Odds ratio 

15 Mills 2008 19 5 Placebo 
effectiveness of statins in cardiovascular 

disease (mortality) 
Odds ratio 

16 Mills 2009 5 4 Interferon-A 
relative effectiveness of new therapies 

for metastatic renal cell cancer 
(Progression-free survival) 

Hazard ratio 

17 Mills 2009 14 5 
Amphotericin B 

Deoxycholate 

effectiveness of antifungal treatments 
for invasive Candida infections (all-

cause mortality) 
Odds ratio 

18 Mills 2011 58 7 Control 
effectiveness of statins for 

cardiovascular disease (all-cause 
mortality) 

Odds ratio 

19 Moreno 2009 50 13 Placebo effectiveness of antidepressants 
Standardized 

mean difference 

20 Nelson 2006 26 6 Placebo 
effectiveness of non-hormonal therapies 

for menopausal hot flashes 
Mean difference 

21 Peterson 2008 17 4 Placebo 
effectiveness of treatments for adults 
with attention-deficit hyperactivity 

disorder (clinical response) 
Risk ratio 

22 Piccini 2009 7 3 Placebo 
effectiveness of treatments for the 

prevention of recurrent atrial fibrillation 
(recurrence) 

Odds ratio 



  

23 Playford 2006 7 4 Placebo 
antifungal agents for preventing fungal 
infections in liver transplant recipients 

(total mortality) 
Odds ratio 

24 Quilici 2008 7 3 Placebo 

effectiveness of the non-ergot-derived 
dopamine agonists in restless legs 

syndrome (Clinical Global Impressions 
Improvement (CGI-I) scale responders) 

Odds ratio 

25 Rheims 2011 58 20 Placebo 
effectiveness of antiepileptic drugs in 

adult refractory partial epilepsy 
(response) 

Risk ratio 

26 Rice 1999 15 3 No intervention 
effectiveness of nurse-delivered 

interventions on smoking behaviour in 
adults (smoking cessation) 

Odds ratio 

27 Singh 2009 27 7 Placebo 

effectiveness of biologics for 
rheumatoid arthritis (American College 
of Rheumatology Criteria (ACR50 - 50% 

improvement 

Odds ratio 

28 Stettler 2006 10 3 Placebo 
effectiveness of drug eluting stents in 

patients with and without diabetes (in-
stent restenosis) 

Rate ratio 

29 Sultana 2008 11 5 Gemcitabine 
effectiveness of treatments for advanced 

pancreatic cancer (overall survival) 
Hazard ratio 

30 Uthman 2010 14 6 Placebo 
effectiveness for treating anxiety 

disorders in children and adolescents 
(improvement) 

Odds ratio 

31 Welton 2008 13 3 Placebo 
antiviral treatments for influenza A & B 

(patients without symptoms) 
Odds ratio 

32 
Yazdanpanah 

2004 
14 3 Dual therapy 

effectiveness of antiretroviral 
combination therapy (progression to 

AIDS or death) 
Odds ratio 
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Accounting for the impact of the RoB items did not appear to influence model 

parsimony in both independent and meta-epidemiological analyses; differences 

in DIC were smaller that the three-unit threshold which can suggest 

improvement in model parsimony (Table 5.4).  

 
Table 5.2. Number of studies assessed as being at low, unclear and high risk of bias for each star 
network (L=low, U=unclear, H=high). 

Network  
ID 

Random Sequence  
Generation 

Allocation 
Concealment 

Blinding  
of participants 

Blinding of 
outcome assessors 

L U H L U H L U H L U H 

1 2 16 - - 18 - 5 13 - 5 13 - 
2 1 13 - 1 13 - 2 11 - 2 11 - 
3 4 25 1 3 26 1 1 10 19 2 10 18 
4 2 3 - 4 1 - - - 5 - - 5 
5 13 24 - 10 25 2 14 - 23 37 - - 
6 3 5 - 2 6 - 6 2 - 8 - - 
7 6 - - 2 4 - - 6 - 6 - - 
8 - 5 - - 5 - 5 - - 5 - - 
9 3 30 - 14 19 - - 33 - 33 - - 
10 7 2 - 7 2 - 9 - - 9 - - 
11 9 5 - 14 - - 2 3 9 13 - 1 
12 6 19 - 1 24 - 10 15 - 9 16 - 
13 6 23 - 5 24 - 13 16 - 11 18 - 
14 3 5 - 2 6 - 8 - - 1 6 1 
15 8 10 1 9 1 9 15 1 3 19 - - 
16 5 - - 1 4 - - 5 - - 5 - 
17 4 8 2 3 10 1 1 3 10 14 - - 
18 22 36 - 15 43 - 58 - - 58 - - 
19 1 49 - - 50 - 18 32 - 17 33 - 
20 15 11 - 15 11 - 16 10 - 16 10 - 
21 1 15 1 4 13 - 11 6 - 9 8 - 
22 7 - - 4 3 - 7 - - 6 - 1 
23 2 5 - 2 5 - 5 - 2 3 4 - 
24 4 3 - 4 3 - 5 2 - 5 2 - 
25 12 46 - 12 46 - 21 37 - 21 37 - 
26 5 8 2 3 10 2 - - 15 10 - 5 
27 7 20 - 11 16 - 20 6 1 21 5 1 
28 6 4 - 6 4 - 8 - 2 8 2 - 
29 6 5 - 8 3 - 11 - - 11 - - 
30 7 7 - 2 12 - 6 8 - 9 6 - 
31 4 9 - 3 10 - 7 6 - 7 6 - 
32 5 9 - 6 8 - 7 6 1 14 - - 

Total 186 420 7 173 425 15 291 231 90 389 192 32 
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I compared the relative ranking of interventions within each network between 

the standard NMA model without covariates and the meta-epidemiological 

model.  Small differences in the ranking of treatments were present in three, two 

and one network when the results accounted for the impact of blinding of 

participants, blinding of outcome assessors or sequence generation and allocation 

concealment respectively. 

 

Table 5.3. Network-specific coefficients from the separate analysis. Missing values are for 

networks in which all studies are at low or unclear/high RoB.  

Network 
ID 

Random 
sequence 

generation 

Allocation 
Concealment 

Blinding 
of participants 

Blinding of 
outcome 
assessors 

Measure of 
Effect 

1 
12.68 

(0.52,237.46) 
- 

2.14 
(0.16,24.29) 

2.14 
(0.16,24.29) 

Ratio of 
odds ratios 

3 0.88 (0.37,1.99) 1.17 (0.46,2.86) 1.39 (0.33,6.11) 1.36 (0.33,5.64) 

5 1.62 (0.57,5.37) 1.73 (0.55,5.53) 1.40 (0.47,4.06) - 

11 1.03 (0.62,1.68) - 1.77 (0.84,3.63) 1.75 (0.67,4.90) 

12 0.73 (0.49,1.07) 1.15 (0.66,1.99) 1.01 (0.62,1.55) 1.08 (0.68,1.65) 

13 0.41 (0.11,1.65) 1.36 (0.33,6.49) 1.00 (0.23,4.57) 2.18 (0.54,9.58) 

15 1.04 (0.53,1.62) 0.95 (0.53,1.77) 0.95 (0.58,1.95) - 

17 1.11 (0.36,3.25) 0.92 (0.41,2.08) - - 

18 1.06 (0.81,1.32) 0.96 (0.77,1.19) 1.27 (0.95,1.82) - 

26 0.61 (0.23,1.65) 1.03 (0.33,3.22) - 1.31 (0.53,3.35) 

27 1.68 (0.89,3.25) 2.10 (0.95,4.66) 1.65 (0.82,3.35) 1.65 (0.75,3.71) 

30 0.84 (0.13,4.85) 1.28 (0.23,9.03) 0.92 (0.31,3.32) 0.51 (0.18,1.26) 

31 0.54 (0.31,0.94) 0.61 (0.31,1.13) 0.57 (0.24,1.27) 0.57 (0.24,1.28) 

32 0.82 (0.55,1.25) 0.82 (0.55,1.22) 0.97 (0.61,1.60) - 

21 0.76 (0.19,3.13) 1.06 (0.57,2.08) 1.14 (0.64,1.92) 1.21 (0.68,2.01) Ratio of risk 
ratios 25 1.34 (0.94,1.92) 0.86 (0.58,1.26) 0.97 (0.68,1.38) 0.97 (0.68,1.38) 

28 0.94 (0.10,9.30) 
0.86 

(0.05,15.03) 
0.66 

(0.02,17.12) 
1.09 

(0.04,27.11) 
Ratio of rate 

ratios 

9 1.09 (0.81,1.51) 1.09 (0.90,1.31) - - Ratio of 
hazard ratios 29 0.92 (0.68,1.26) 1.01 (0.76,1.36) - - 

19 0.02 (-0.26,0.32) - 
-0.03  

(-0.15,0.10) 
-0.01  

(-0.14,0.11) 

Difference of 
standardized 

mean 
differences 

2 0.73 (-2.01,3.47) 
0.72  

(-2.02,3.49) 
0.19  

(-1.78,2.16) 
0.19  

(-1.78,2.16) 
Difference of 

mean 
differences 20 0.07 (-0.97,1.16) 

0.41  
(-0.65,1.57) 

0.68  
(-0.38,1.82) 

0.68  
(-0.38,1.82) 
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Table 5.4. DIC values of the applied models for star networks. Missing values are for networks in 
which all studies are at low or unclear/high RoB.  

Network 
ID 

Model 
without 

covariates 

Model with 
allocation 

concealment 
as covariate 

Model with 
random 

sequence 
generation as 

covariate  

Model with 
blinding of 
participant 
as covariate 

Model with 
blinding of 

outcome 
assessors as 

covariate 

1 72.23 - 71.10 70.52 70.52 

2 18.73 20.07 20.06 20.29 20.29 

3 101.76 102.29 102.69 102.17 102.10 

5 142.99  148.38 147.21 148.93 - 

9 44.16 44.88 44.71 - - 

11 41.63 - 43.62 40.97 42.43 

12 81.45 83.03 80.63 83.61 83.28 

13 112.63 112.70 114.20 112.76 111.71 

15 63.36 67.90 67.48 67.28 - 

17 40.48 42.57 42.60 - - 

18 218.3 228.77 229.36 225.04 - 

19 48.44 - 50.19 50.25 50.22 

20 43.25 43.59 43.83 42.87 42.87 

21 27.78 28.52 29.28 28.55 28.36 

25 82.72 83.42 81.89 84.33 84.31 

26 55.7 56.40 56.59 - 56.27 

27 100.72 100.27 100.21 101.05 100.94 

28 5.62 7.49 7.48 7.45 7.50 

29 13.91 15.72 15.40 - - 

30 54.27  54.46 54.46 54.82 54.30 

31 41.61 40.47 37.87 41.11 41.21 

32 38.97  40.21 40.36 41.54 - 

  

Subgroup & sensitivity analyses 

Figure 5.4 shows that when the networks were analysed in subgroups of 

mortality and non-mortality outcomes the results remained similar to the 

primary analysis.  

The meta-epidemiological model that included only the 12 networks for which 

risk of data were not available from the publications but extracted according to 

the criteria of Section 5.4.2 gave RORs close to those from the model including all 

20 networks; 0.83 (0.63,1.12) for random sequence generation, 0.97 (0.74, 1.30) for 

allocation concealment, 1.07 (0.80, 1.46) for blinding of participants and 1.22 (0.83, 

1.88) for blinding of outcome assessors. This means that the potentially different 

criteria used by the authors for the RoB assessment did not affect the results.
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Excluding 2 networks that compared non-pharmacological intervention did not 

alter the results of the primary analysis. 

 

5.5 A network meta-epidemiological study assessing the impact of 

small-study effects 

 

5.5.1 Selection of networks of interventions & data extraction 

 

I also used the collection of star networks assembled as described in Section 5.4 to 

investigate the impact of small-study effects on NMA results. Subsequently, I 

used an enriched database with all full networks including at least 4 competing 

treatments in a sensitivity analysis. These full networks were compiled according 

to Section 3.2 with the additional inclusion criterion of including an „obvious‟ 

control intervention; that is no treatment, placebo or standard care.  

 

5.5.2 Statistical analysis 

 

The process of analysis was similar to that described in Section 5.4.3, namely I 

analyzed the networks both independently and then synthesized them in a 

network meta-epidemiological model. I also used the same criteria to define the 

eligible networks for each type of meta-regression analysis. 

The network meta-regression model that accounted for the impact of small-study 

effects on the results included as covariate the variance of the observed relative 

effects (e.g.      ,   ,      ) in individual studies. This means that  

    
      

   

where for networks with arm-level dichotomous data 
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Formulae for estimating the variance of other effect sizes (RR, MD, etc.) can be 

found in Borenstein et al. (115,116).  Using this covariate in every network   and 

the „active-favored‟ definition for      in Equation (5.1), a positive network-

specific coefficient    suggested that small studies tended to estimate larger 

treatment effects in favor of active treatments than larger studies. Note that study 

variance was selected for the primary analysis because a simulation study 

suggested that using this measure is less likely to give biased estimates compared 

to other measures of study precision (96). 

A limitation of this approach for dichotomous outcomes is the inherent 

correlation between OR and its variance. This phenomenon, known as „regression 

to the mean‟, will suggest the presence of small-study effects even when such an 

association does not truly exist. However, the use of the exact binomial 

likelihood, whenever arm-level data were available, mitigates this dependence. 

 

5.5.3 Sensitivity analyses 

 

I used alternative measures of study precision (standard error, inverse variance 

and square root of inverse variance) as covariates in sensitivity analyses. The 

impact of trial sample size on treatment effects was assessed using the enriched 

database with the full networks. I defined the studies as small if they included 

less than 200 participants (following Zhang et al. (117)) and less than 300 

participants using the criteria described in the following Section. Then, I used a 

binary covariate taking values 1 and 0 to indicate that each study was small or 

large, respectively.  

Considering that the exchangeability assumption might be violated by networks 

resulting in very small or large coefficients, such networks were excluded in a 

sensitivity analysis. To check whether different effect sizes were affected more by 

small-study effects, I alao used the network meta-epidemiological model on the 

RR scale instead of the OR scale. 
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5.5.4 Definition of small studies 

 

The number of participants that might constitute a small RCT was defined based 

on previously suggested criteria by Nüesch et al. (95) and Zhang et al. (117). 

More specifically, I considered a trial being large if it could attain 80% power to 

detect a „moderate‟ effect size. The definition of a moderate effect size for 

continuous outcomes is not straightforward as it depends on the measurement 

scale. In the case of dichotomous outcomes, I defined a moderate OR as the 1st 

quartile from the distribution of the summary pairwise        derived from the 

star networks with dichotomous beneficial outcomes. The rationale for this 

arbitrary choice was that the majority of star networks were expected to have 

estimated „large‟ treatment effects due to the nature of the comparisons (i.e. 

active-experimental vs. control interventions). Then, a control group risk (  ) was 

further assumed by taking the mean           from all control groups included 

in these networks. The total number of participants that a trial needed to detect 

this reduction in risk was calculated using the formula (118) 

    
(    √  ̅    ̅    √                 )

 

  
 (5.2) 

where   |
  

  
 

  

  
| is the required absolute risk reduction,  ̅  (

  

  
 

  

  
)   , 

          for a two-sided significance level at      and         for 80% 

power.  

 

5.5.5 Model selection & implementation 

 

All applied models were fitted in WinBUGS 1.4.3 (71). For a description of the 

prior distributions, the assessment of convergences and the measures used for 

model selection see Section 5.4.5. 
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5.5.6 Results 

 

Eligible networks 

A description of the eligible star-shaped networks for this study is given in 

Section 5.4.6. The selection process further identified 48 full networks that met all 

inclusion criteria, which involved 934 RCTs; 34 full networks with dichotomous 

data that used OR and 13 full networks with continuous outcomes that used MD 

were synthesized with the network meta-epidemiological model as a sensitivity 

analysis. After excluding networks with overlapping studies, the aforementioned 

full networks were combined with 18 dichotomous and 2 continuous star 

networks respectively. The 7 networks with time-to-event data (3 full and 4 star 

networks) were not synthesized because of their small number. The 

characteristics of the included full networks are available in Table 5.5.    

 

Accounting for the impact of small-study effects 

Out of the 22 networks that included 10 or more studies 18 (81.8%) gave positive 

coefficients (  ) suggesting that smaller studies tend to show the active 

treatments more effective or safer (compared to the control) than do larger. Eight 

of these positive coefficients as well as one from the four negatives were large in 

magnitude and also statistically significant (Table 5.6). Improvement in model 

parsimony after controlling for the impact of small-study effects was present in 4 

networks with significant positive coefficients, where the DIC was considerably 

reduced.  

Differences in precision across studies appeared to partly explain the estimated 

heterogeneity in 9 (40.9%) networks; the relative drop in heterogeneity standard 

deviation ( ) ranged from 7.1% to 39.5% compared to the NMA without 

covariates. 9 from the remaining networks resulted in a relative increase from 

1.4% to 9.1% (Figure 5.5).  
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Figure 5.5. Comparison of (a) the heterogeneity standard deviations, and (b) the summary relative 
effect sizes of all treatments vs. control for all networks with at least 10 studies between the model 
without covariates and the model controlling for small-study effects. The green dashed lines 
represent equality of effects between the two models. 

 

Figure 5.5 presents the change in all relative effects (active vs. control) of the 22 

networks between the model without covariates and the model controlling for 

small-study effects. According to the graph most relative effects were reduced 

after including study variance as covariate suggesting that small studies might 

exaggerate the effect of active treatments when they are compared to the control. 

Note that I transformed all relative effects in this graph so as positive values 

show the active treatments more effective/safer than the control.  

The network meta-epidemiological analysis yielded compatible findings with the 

independent analyses. The overall summary ROR estimated from the model that 

assumed exchangeability across networks was 1.84 (1.09,3.32) with between-

network standard deviation ( ) equal to 0.83 (0.41,1.48) (Figure 5.6). When a 

fixed coefficient   was estimated without allowing for variability across 

networks, the summary ROR was smaller in magnitude but more precise (1.38 

with CrI 1.11 to 1.70). The DIC of the network meta-epidemiological model was 

1276, which was considerably smaller than the sum of DICs from the respective 

models without covariates (1291). This implies that the models accounting for 

small-study effects might be more parsimonious. In 3 of the networks included in 
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the meta-epidemiological analysis treatment ranking changed when small-study 

effects were taken into account. In these networks, the control intervention was 

placed in a higher rank when the network meta-regression model was applied. 

 

 
Figure 5.6. Network-specific small-study effect coefficients for all networks with dichotomous 
data based on separate and meta-epidemiological analyses. (CrI=Credible Interval) 

 

Definition of small studies for the sensitivity analysis 

Based on the approach described in Section 5.4.4 an OR=1.88 was considered as a 

moderate effect size and assuming a control group risk of 36% the required 

absolute reduction in risk ( ) was 16%. Then, Equation (5.2) gives that a trial 

should include 300 participants to estimate this risk reduction with 80% power 

(two-sided     ). Thus, the threshold of 300 was used to distinguish between 

small and large trials in the sensitivity analysis that considered the sample size as 

explanatory variable. 

 

 

 



 

Table 5.5. Characteristics of eligible full networks for the sensitivity analysis. 

Network  
ID 

Reference Studies Treatments Control Topic & Outcome 
Effect  

Measure 

1 Ades 2010 15 9 Placebo 
effectiveness of antipsychotic treatments for 

schizophrenia (relapse) 
Odds ratio 

2 
Anothaisintawee  

2012 
11 4 Placebo chronic prostatitis (pain score) 

Mean  
difference 

3 Ara 2009 12 5 Placebo 
adverse event (treatment related) leading to 

drug discontinuation (no. of patients) 
Odds ratio 

4 Baker 2009 39 8 Placebo 
exacerbation episodes in Chronic Obstructive 

Pulmonary Disease (COPD>=1) 
Odds ratio 

5 Ballesteros 2005 9 4 Placebo effectiveness of antidepressants in dysthymia Odds ratio 

6 Bangalore 2011 49 8 Placebo 
association between antihypertensive drugs 

and cancer risk (cancer risk) 
Odds ratio 

7 Bansback 2009 22 8 Placebo 
effectiveness for the treatment of psoriasis 
(Psoriasis Area & Severity Index (PASI) 75 

response score) 
Odds ratio 

8 Bottomley 2011 10 7 Placebo 
effectiveness of topical therapies for scalp 

psoriasis in adults (Investigator Global 
Assessment (IGA) response after 4 weeks) 

Odds ratio 

9 Brown 2006 40 6 Placebo 

effectiveness for the prevention of Non-aspirin, 
Non-steroidal Anti-inflammatory Drugs 

NSAID induced GI toxicity (serious Induced 
Gastrointestinal (GI) complications) 

Odds ratio 

10 Buscemi 2007 54 4 Placebo 
effectiveness of treatments for chronic 

insomnia in adults (sleep onset latency - sleep 
diary) 

Mean  
difference 

11 Bucher 1997 18 4 
Aerosolized 
pentamidine 

prophylaxis against Pneumocystis carinii in 
Human Immunodeficiency Virus (HIV) 

infected patients (number of Pseudocystis 
Carinii pneumonia) 

Odds ratio 

12 Elliott 2007 22 6 Placebo 
effectiveness of antihypertensive on incidence 

of diabetes mellitus (proportion of patients 
who developed diabetes) 

Odds ratio 



 

 

 

13 
Goudswaard  

2004 
13 4 

Insulin 
once daily 

insulin therapies in patients with Type 2 
diabetes (HbA1c change) 

Mean  
difference 

14 Hofmeyr 2009 24 4 
Placebo/Othe

r 
uterotonics  

effectiveness for the prevention of postpartum 
hemorrhage (blood loss ≥ 1000 ml) 

Odds ratio 

15 Imamura 2010 38 13 No treatment 
effectiveness of non-surgical treatments for 

women with stress urinary incontinence (cure) 
Odds ratio 

16 Jansen 2006 12 4 
No 
self-

monitoring  

self-monitoring of glucose in type 2 diabetes 
mellitus (change in HbA1c level from baseline) 

Mean  
difference 

17 Lam 2007 12 7 
Medical 
therapy  

combined resynchronization and implantable 
defibrillator therapy in left ventricular 

dysfunction (all-cause mortality) 
Odds ratio 

18 Lapitan 2009 22 9 
Conservative 
interventions  

open retropubic colposuspension for urinary 
incontinence in women (number not cured 

within first year) 
Odds ratio 

19 Lu 2009 24 4 No contact smoking cessation Odds ratio 
20 Lu 2009 40 6 Placebo gastroesophageal reflux disease Odds ratio 

21 Macfayden 2005 13 4 No treatment 
persistent discharge for chronically discharging 

ears with underlying eardrum perforations 
(treatment failure) 

Odds ratio 

22 McDaid 2010 56 4 Placebo 

non-selective non-steroidal anti-inflammatory 
drugs (NSAIDs) for the  

reduction of morphine-related side  
effects after major surgery (24-hour morphine 

consumption) 

Mean  
difference 

23 Mills 2009 89 4 Control 
smoking Abstinence at approximately 4 weeks 

(post-target quit date (TQD)) 
Odds ratio 

24 Phung 2010 20 7 Placebo 
effectiveness of non-insulin anti-diabetic drugs 
added to metformin therapy (change in HbA1c 

level from baseline) 

Mean  
difference 

25 Phung 2011 13 4 
Control/ 
Placebo 

effectiveness of thromboprophylaxis strategies 
(deep venous thrombosis) 

Odds ratio 

26 Phung 2011 20 6 Control/ effectiveness of oral anti-diabetic drugs for the Odds ratio 



 

Placebo prevention of type 2 diabetes (new cases) 

27 Picard 2009 43 8 No treatment 
analgesic effectiveness of prophylactic 

interventions for the prevention of pain on 
injection with propofol (no pain) 

Odds ratio 

28 Playford 2004 10 5 Placebo 
antifungal agents for preventing fungal 

infections in solid organ transplant recipients 
(mortality) 

Odds ratio 

29 Pollock 2009 9 5 
No 

treatment/ 
Placebo 

recovery of postural control and lower limb 
function in patients with stroke (global 

dependency scale) 

Mean  
difference 

30 Psaty 1997 28 7 
Placebo/Untr

eated/ 
Usual care 

antihypertensive Therapy-Coronary heart 
disease (CHD) including fatal and nonfatal 

events 
Odds ratio 

31 Puhan 2009 34 5 Placebo 
exacerbation in patients with Chronic 

Obstructive Pulmonary Disease (COPD) 
Odds ratio 

32 Roskell 2011 12 10 Placebo 
effectiveness for the treatment of fibromyalgia 

(30% improvement in pain response) 
Odds ratio 

33 
Soares-Weiser 

2007 
14 8 Placebo 

pharmacological and/or psychosocial 
interventions for the prevention of relapse in 
people with bipolar disorder (admission to 

hospital) 

Odds ratio 

34 Stowe 2011 29 4 Placebo 
off-time reduction to levodopa therapy in 
Parkinson's Disease patients with motor 

complications 

Mean  
difference 

35 Thijs 2008 24 5 Placebo 
effectiveness of antiplatelet regimens in the 
prevention of serious vascular events after 

transient ischaemic attack or stroke 
Odds ratio 

36 Trikalinos 2009 63 4 
Medical 
therapy  

effectiveness of percutaneous coronary 
interventions for non-acute coronary  

artery disease (death) 
Odds ratio 

37 Tropeano 2011 28 6 Placebo 
decrease of carotid intima-media thickness 

(CIMT) 
Mean  

difference 

38 Tu 2010 28 6 
EMD + 

Bone Grafts 
treatment effectiveness of enamel matrix 

derivatives with other regenerative materials 
Mean  

difference 



 

 

 

for infrabony lesions (probing pocket depth 
reduction) 

39 
van der Valk 

2009 
24 9 Placebo 

effectiveness of drugs in patients with primary 
open-angle glaucoma or ocular hypertension 

(lowering intraocular pressure at though) 

Mean 
difference 

40 Virgili 2011 10 5 Control 
effectiveness of treatments for neovascular age-

related macular degeneration (visual acuity 
loss) 

Odds ratio 

41 Walsh 2010 75 9 Placebo 
Decayed, (missing), Filled tooth Surfaces 

(D(M)FS) caries increment (prevented fraction) 
Mean 

difference 

42 Wandel 2010 10 4 Placebo 
absolute pain intensity in patients with 

osteoarthritis of hip or knee 
Mean 

difference 

43 Wang 2010 43 9 
Standard 
catheter  

effectiveness of venous catheters for catheter-
related infections (colonization) 

Odds ratio 

44 Welton 2009 36 16 
Control 

(usual care) 
effectiveness of psychological interventions in 

coronary heart disease (total mortality) 
Odds ratio 

45 Wilhelmus 2000 60 24 Placebo 
effectiveness for dendritic or geographic 

Herpes Simplex Virus (HSV) epithelial keratitis 
(proportion healed) 

Odds ratio 

46 Woo 2010 19 10 Placebo 
relative efficacy of nucleotides in the treatment 
of chronic hepatitis B (Hepatitis B Virus (HBV) 

DNA levels) 
Odds ratio 

47 Yu 2006 14 6 Control 

effectiveness of inhaled anesthetics in reducing 
post-operative myocardial infractions after 

cardiac surgery (Acute Myocardial Infarction 
(AMI)) 

Odds ratio 
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Table 5.6. Network-specific coefficients and DIC values from the separate network meta-
regression analyses for small-study effects.  

Network 
ID 

Small-study 
effects RORs 

Measure of 
effect 

DIC of model 
 without  

covariates 

DIC of model with 

study variance as 

covariate 

1 9.87 (2.66,49.90) 

Ratio of odds 
ratios 

72.23 63.27 

3 0.40 (0.17,0.97) 18.73 20.05 

5 2.10 (1.08,4.44) 101.76 101.55 

11 2.48 (0.24,27.66) 142.99  136.65 

12 1.26 (0.66,2.61) 44.16 40.64 

13 4.71 (1.48,17.81) 41.63 42.97 

15 1.35 (0.79,2.41) 81.45 82.67 

17 0.99 (0.28,3.53) 112.63 114.6 

18 1.07 (0.80,1.43) 63.36 62.99 

26 0.57 (0.06,4.85) 40.48 42.62 

27 6.96 (1.88,27.39) 218.3 219.62 

30 4.66 (1.34,22.20) 48.44 45.12 

31 0.57 (0.16,1.88) 43.25 44.89 

32 1.07 (0.50,2.56) 27.78 25.82 

21 6.96 (1.04,47.47) Ratio of risk 
ratios 

82.72 81.86 

25 2.10 (0.97,4.44) 55.7 56.47 

28 1.04 (0.84,1.30) 
Ratio of rate 

ratios 
100.72 100.25 

9 4.06 (1.28,12.43) Ratio of 
hazard ratios 

5.62 7.51 

29 2.44 (0.00,110.95) 13.91 15.50 

19 4.56 (0.63,8.58) 

Difference of 
standardized 

mean 
differences 

54.27  53.1 

2 0.48 (-0.86,1.84) Difference of 
mean 

differences 

41.61 42.66 

20 0.05 (-0.42,0.49) 38.97  41.04 

 

Sensitivity analyses 

The model that used the standard error of the observed effects as covariate 

instead of the variance resulted in similar but less precise estimates of the 

summary ROR (2.01 with CrI 1.02 to 12.22). The alternative models using the 
 

    
  

and the √
 

    
    as measure of study precision gave summary ROR estimates close 

to 1; however the DIC of these two models suggested that they might be much 

worse than the primary model in terms of model parsimony. One (ID=1) out of 

the 20 star networks of the network meta-epidemiological analysis gave a quite 
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larger coefficient compared to the other networks. When I excluded this network, 

the estimated summary ROR slightly reduced into 1.62 (1.00,2.86). Using the RR 

as effect measure (instead of OR) did not materially change the results of primary 

analysis.  

The inclusion of the full networks with dichotomous outcomes increased the 

precision of the analysis and resulted in a summary ROR equal to 1.88 (1.43,2.51). 

In the analysis that examined the effect of the total study sample size, I used the 

enriched database. The thresholds of 200 and 300 participants used to distinguish 

between small and large studies yielded overall RORs of 1.26 (1.10,1.46) and 1.13 

(1.00,1.28) respectively. The meta-epidemiological model that synthesized the 15 

networks (13 full and 2 star networks) with continuous outcomes resulted in an 

overall coefficient (difference of MD) equal to 0.02 (-0.34,2.38).  

Changing prior distributions for the between-networks standard deviation 

parameter   (Section 5.4.5) gave similar results to the primary analysis.  

 

Association between study precision & risk of bias items 

I further used the RoB information described in Section 5.4.2 and Table 5.2 to 

check whether small studies were more prone to be designed improperly. Figure 

5.7 presents for each RoB item the distribution of study variance for low and 

high/unclear risk studies. The graph suggests that for blinding of participants 

and blinding of outcome assessors, studies with larger variances are more often 

appropriately blinded than studies with smaller variances. On the other hand, 

less precise studies appear to be more often at low RoB with respect to the 

conduct of random sequence generation and allocation concealment. These 

findings imply that in this network collection larger studies seem to have been 

conducted more appropriately than small studies prior to the treatment 

allocation but not after that point. 
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Figure 5.7. Histograms showing the distribution of the study variances (variance of       in 
horizontal axis) by risk ob bias category for sequence generation (a), allocation concealment (b) 
and blinding of patients (c) and outcome assessors (d). 

 

5.6 A case study exploring the impact of study precision in full 

networks 

 

5.6.1 Motivating examples 

 

To exemplify the methods of this Section, I used two full networks both 

evaluating typically secondary (safety) outcomes; these are failure of vascular 

graft or arterial patency with aspirin, dipyridamole or placebo, and incidence of 

diabetes with antihypertensive drugs. Such outcomes are more likely to be 

subject to selective reporting, which might cause the presence of small-study 

effects in a meta-analysis. In both networks there are trials not including placebo 

(i.e. the control intervention) and assumptions based on the novelty or 

sponsorship (Section 5.3) of treatments need to be employed for these studies. 

Note that substantial heterogeneity is present in both networks, while the 
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diabetes network has also a couple of inconsistent loops. All these factors imply 

that small-study effects are expectable in some of the pairwise comparisons. The 

two examples are described below.   

 

Failure of vascular graft or arterial patency 

The first network consists of 31 studies that assess the safety of aspirin, 

dipyridamole and placebo regarding the failure of vascular graft or arterial 

patency (119). The network plot is presented in Figure 5.8 and the data are 

available in Table 5.7.  Figure 5.9 shows the contour-enhanced funnel plots for 

the three pairwise comparisons in the network, which appear quite asymmetric; 

particularly the plot corresponding to the comparison aspirin versus placebo. The 

shaded contours in these graphs serve as a way to figure out whether the 

asymmetry can be explained by publication bias (when missing studies lie in 

regions with p>0.05) or by other reasons such as heterogeneity (when missing 

studies lie in regions with p<0.05) (120). Note that no statistically significant 

inconsistency was found in the network by comparing the direct and indirect 

estimates.  

 
Figure 5.8. Network plots for (a) first and (b) second network examples. The size of the nodes is 
proportional to the number of studies that evaluate each intervention, and the thickness of the 
lines to the frequency of each comparison in the network. (CCB=calcium-channel blockers, 
ARB=angiotensin-receptor blockers, ACE=angiotensin-converting enzyme) 
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More specifically, the direct OR estimate of dipyridamole vs. aspirin was 0.92 

(0.45, 1.90) and 1.29 (0.47, 2.81) from the 4 two-arm and the 6 three-arm studies 

respectively and the indirect estimate 1.32 (0.77, 2.29) (favoring placebo).  

 

Table 5.7. Outcome data for the network comparing placebo, aspirin, aspirin+dipyridamole with 
respect to the failure of vascular graft or arterial patency. 

Study Placebo Aspirin Aspirin+Dipyridamole 

 events total events total events total 

1 18 51 10 47 15 49 
2 47 153 37 155 35 162 
3 114 671 85 676 83 668 
4 39 100 16 100 23 100 
5 12 17 2 16 6 16 
6 12 100 6 100 0 100 
7 22 64 - - 20 60 
8 27 317 - - 26 313 
9 6 40 - - 10 41 
10 15 55 - - 8 55 
11 37 160 - - 33 160 
12 81 205 - - 37 202 
13 9 30 - - 4 18 
14 20 63 - - 17 62 
15 24 64 - - 8 61 
16 27 46 - - 13 47 
17 14 35 - - 21 34 
18 15 68 - - 11 72 
19 13 189 - - 6 187 
20 86 263 - - 86 286 
21 15 32 - - 4 33 
22 12 50 - - 15 50 
23 19 31 - - 7 22 
24 13 67 - - 15 132 
25 16 71 15 71 - - 
26 15 31 6 29 - - 
27 17 69 7 68 - - 
28 47 213 24 215 - - 
29 28 150 19 148 - - 
30 18 25 6 19 - - 
31 11 45 2 47 - - 

 

Incidence of diabetes 

The second network includes 22 studies and compares the safety of 5 

antihypertensive drugs and placebo for incidence of diabetes mellitus (121). The 

presence of few studies in each direct comparison (Table 5.8) does not allow 

making judgments about asymmetry in conventional funnel plots. 
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Figure 5.9. Contour-enhanced funnel plots for the first network example by comparison. Points 
represent the          derived from all available direct estimates versus their standard errors. 
Shaded contours correspond to levels of statistical significance defined by the p-value of a z-test 
for         . Red solid lines are the estimated regression lines and black dashed lines represent 
the summary comparison-specific          estimated from the network meta-analysis model 
without covariates. 

 

The comparison-adjusted funnel plot in Figure 5.10 shows all comparisons as 

older versus newer treatment assuming that angiotensin receptor blockers (ARB) 

is the newest treatment, followed by angiotensin-converting enzyme (ACE), 

calcium-channel blockers (CCB), b-blockers and diuretics (assumed equally new) 

and then placebo. In this graph missing points on the right of the 0 value suggest 

that small studies favoring the older interventions are missing. The graph seems 

symmetric implying the absence of small-study effects. However, there might be 

other mechanisms of bias directionality operating and masking the association 

between relative effects and study precision when a consistent direction (old vs. 

new) is assumed. Note also that incidence of diabetes is not very often a pre-

specified outcome in trials comparing antihypertensive drugs (121); an earlier 

NMA that compared the same treatments identified 5 studies reporting the 

outcome of efficacy but not on incidence of diabetes (122). 
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Table 5.8. Outcome data for the network comparing placebo and 5 antihypertensives with respect 
to incidence of diabetes. 

Study Placebo Diuretics 
ACE 

inhibitors 
CCB   ARB β-blockers 

 events total events total events total events total events total events total 

1     45 410 32 202   70 405 
2   302 6766 119 4096 154 3954     
3   8 196     1 196   
4   200 2826 138 2800       
5       567 7072   799 7040 
6     337 5183     380 5230 
7 202 2721       163 2715   
8 489 2646   449 2623       
9 20 424 29 416         
10 154 4870     177 4841     
11   75 3272       86 3297 
12 155 2883   102 2837       
13   176 2511   136 2508     
14       569 8098   665 8078 
15         242 4020 320 3979 
16 34 2213 43 1081       37 1102 
17       216 5095   251 5059 
18 399 3472   335 3432       
19 115 2175       93 2167   
20 118 1578 140 1631         
21     93 1970 95 1965   97 1960 
22       845 5074 690 5087   

 

 
Figure 5.10. Comparison-adjusted funnel plot for the network comparing placebo and 5 
antihypertensives with respect to incidence of diabetes. The red solid line is the estimated 
regression line. 
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5.6.2 Methods 

 

The methods I used to investigate the possible presence of small-study effects in 

both examples are presented explicitly in Section 5.3. I used the variance of the 

observed effects in studies as explanatory variable in the network meta-

regression models controlling for differences in precision across studies. I 

employed different assumptions about the direction of small-study effects (see 

Section 5.3) as well as about the respective coefficients (Section 4.2.2).  

 

5.6.3 Model selection and implementation 

 

All applied models were fitted in WinBUGS 1.4.3 (71). Vague normal prior 

distributions          were assumed for the network-specific coefficients    and 

the comparison-specific coefficients    . A half-normal prior distribution was 

employed for both the heterogeneity standard deviation and the coefficients‟ 

standard deviation, hence            with      . Alternative priors for   (a 

log-normal distribution                 and a uniform          ) were used as 

sensitivity analysis. A non-informative prior distribution           was assumed 

for the probability     in the probabilistic direction approach reflecting the 

absence of strong prior belief for the direction of small-study effects. 100,000 

simulations were run with a burn-in period of 30,000 draws and convergence was 

assessed by visual inspection of three Markov Chains with different initial 

values. 

The parsimony and fit of all models was evaluated using the DIC (see Section 

5.4.5) and the values of the posterior mean of the residual deviance  ̅ (114).  ̅ is a 

measure of model fit and should approximate the number of data points. 
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5.6.4 Results 

 

Failure of vascular graft or arterial patency 

The positive and statistically significant regression coefficients   (Table 5.10) 

from all network meta-regression models for this network suggest that there is an 

association between study precision and relative effects; less precise studies gave 

on average larger treatment effects than more precise studies. Table 5.9 shows 

also that model fit and parsimony were improved after the adjustment according 

to the DIC and  ̅ values. The slight reduction in the between-study standard 

deviation ( ) implies that heterogeneity can be explained partly from differences 

in precision across studies. All network meta-regression models gave similar 

results regarding the summary ORs, which show the active interventions less 

effective compared to the model without covariates. 

The model that assumed consistency in the regression coefficients (Model 1.6) 

suggested that small studies tended to favor the active treatments when these are 

compared with placebo. According to the magnitude of the coefficients this 

association was larger for the comparison with aspirin rather than dipyridamole. 

The negative and non-significant coefficient  ̂   suggests that dipyridamole is not 

favored over aspirin when compared with each other (Table 5.10). The 

probabilistic model yielded similar conclusions giving posterior probabilities of 

85% and 75% for aspirin and aspirin+dipyridamole being favored over placebo 

from small studies respectively. The posterior probability for 

aspirin+dipyridamole being favored over aspirin monotherapy in small studies 

was 50%.  

Meta-regression models using the standard error or the inverse of variance as 

covariate showed poorer model parsimony (i.e. larger DIC) and thus were not 

further investigated. 

It is interesting that the DICs of the unrelated mean effects model (see Section 

2.3.3) and the consistency model without covariates were the same; this implies 

that the consistency assumption might be plausible in this network. However, the 
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comparability of the direct and indirect estimates was improved after including 

study variance as covariate. This was explored by excluding the direct evidence 

about dipyridamole vs. aspirin; hence the four head-to-head trials comparing the 

two active treatments and the three-arm placebo-controlled studies after selecting 

randomly one of their two active treatment arms. This approach gave an indirect 

OR for dipyridamole vs. aspirin 1.32 (0.77,2.29). Analysing this dataset with the 

„new favored‟ meta-regression model (with exchangeable coefficients) resulted in 

an OR estimate 1.17 (0.64,2.09), which is closer to the respective direct estimate 

(OR=0.92 with CrI  from 0.45 to 1.90). 

 

Table 5.9. Posterior medians and 95% credible intervals for the odds ratios (OR) and 
heterogeneity (τ) for the first network example. DIC and posterior mean residual deviance ( ̅) are  
also reported. (A=aspirin, A+D=aspirin+dipyridamole, P=placebo) 

Model Assumptions  DIC  ̅1                                

1.1 No covariates 130.9 75.5 
0.46 

(0.31,0.62) 
0.54  

(0.40,0.71) 
1.21  

(0.86,1.72) 
0.50 

(0.31,0.76) 

1.2 
„active-favored‟ 
& identical 
coefficients 

114.8 66.2 
0.75 

(0.53,1.09) 
0.90  

(0.66,1.26) 
1.20  

(0.90,1.61) 
0.36 

(0.20,0.58) 

1.3 

„active-favored‟ 
& exchangeable 
coefficients 

115.5 66.2 
0.76 

(0.53,1.12) 
0.89 

(0.65,1.24) 
1.17 

(0.89,1.88) 
0.36 

(0.2,0.58) 

1.4 
„new-favored‟ 
& identical 
coefficients 

115.2 66.7 
0.67 

(0.49,0.93) 
0.91  

(0.67,1.25) 
1.35  

(1.02,1.82) 
0.35 

(0.19,0.57) 

1.5 

„new-favored‟ 

& exchangeable 
coefficients 

115.8 66.8 
0.54 

(0.39,0.74) 
0.82  

(0.59,1.15) 
1.52  

(1.08,2.18) 
0.35 

(0.19,0.57) 

1.6 

„active-favored‟ (for 

basic coefficients) 
& consistent 
coefficients 

116.4 66.3 
0.78 

(0.54,1.16) 
0.87  

(0.63,1.24) 
1.11  

(0.77,1.60) 
0.37 

(0.20,0.58) 

1.7 

probabilistic „new-
favored‟ 
& identical 
coefficients 

114.9 64.5 
0.67 

(0.47,0.96) 
0.84  

(0.61,1.14) 
1.25  

(0.90,1.72) 
0.32 

(0.16,0.54) 

1Should be compared with the 68 data points. 
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Table 5.10. Posterior medians and 95% credible intervals for small-study effects mean ( ̂) and 

comparison-specific coefficients ( ̂) and coefficients‟ variance ( ̂) (in          scale) for the first 
network example. (A=aspirin, A+D=aspirin+dipyridamole, P=placebo) 

Model Assumptions   ̂  ̂  ̂      ̂          ̂         

1.2 

„active-favored‟ 
& identical 
coefficients 

2.61 

(1.40,4.02) 
- - - - 

1.3 

„active-favored‟ 

& 
exchangeable 
coefficients 

2.62 

(0.96,4.47) 

0.53 

(0.02,1.94) 

2.76 

(1.42,4.33) 

2.47 

(1.19,4.02) 
0 

1.4 

„new-favored‟ 
& identical 
coefficients 

2.39 

(1.32,3.62) 
- - - - 

1.5 

„new-favored‟ 

& 
exchangeable 
coefficients 

2.37 

(0.93,3.88) 

0.46 

(0.02,1.76) 

2.47 

(1.27,3.86) 

2.37 

(1.18,3.83) 

2.26 

(0.34,3.89) 

1.6 

„active-favored‟ 
(for basic 
coefficients) 
& consistent 
coefficients 

- - 
3.03 

(1.46,4.76) 

2.28 

(0.98,4.02) 

-0.71  

(-2.57,1.19) 

1.7 

probabilistic 
„new-favored‟ 
& identical 
coefficients 

2.69 

(1.42,4.10) 
- - - - 

 

Incidence of diabetes 

I excluded one study (123) from this network for being associated with very poor 

model fit compared to the other studies. More specifically, the standard error of 

the remaining 21 studies ranged between 0.06 and 0.30, whereas the standard 

error of that study was 1.07. When the study by Lindholm et al. was excluded the 

posterior mean deviance of the NMA model was  ̅=49.2 closer to the 46 data 

points than the posterior deviance of the full dataset ( ̅=53.2 compared to 48 data 

points). The remaining 21 studies were included in all analyses and involved 29 

comparisons. 

Table 5.11 shows the results of all applied models for this network. The models 

assuming identical comparison-specific coefficients (Models 2.2-2.5) suggest that 

small studies tend to exaggerate the safety of placebo or of the older treatments. 

However, there is large uncertainty and the estimated coefficients are not 



Assessing the impact of study characteristics in network meta-analysis results|129 

 

 

statistically significant. The disagreement between the „sponsored-favored‟ and the 

„sponsored/new-favored‟ models (opposite sign of the estimated coefficients) 

implies the presence of a possible interaction between the direction of small-

study effects and study sponsorship. When the comparison-specific coefficients 

were assumed exchangeable the results did not change materially. 

 

Table 5.11. Posterior medians and 95% credible intervals for heterogeneity (τ) and small-study 

effects coefficients ( ̂) in          scale for the second network example. DIC and posterior mean 

residual deviance ( ̅) are also reported. 

Model Assumptions  DIC  ̅1  ̂  ̂ 

2.1 No covariates 86.1 49.2 
0.13 

(0.06,0.23) 
- 

2.2 
„active-favored‟ 
& identical coefficients 

84.7 47.6 
0.12 

(0.05,0.22) 
-6.69  

(-13.59,0.15) 

2.3 
„new-favored‟ 
& identical coefficients 

85.1 48.0 
0.12 

(0.05,0.22) 
-4.51  

(-9.45,0.41) 

2.4 
„sponsored-favored‟ 
& identical coefficients 

85.1 47.5 
0.13 

(0.06,0.24) 
10.55  

(-4.27,27.71) 

2.5 
„sponsored/new-favored‟ 

& identical coefficients 
83.8 47.1 

0.11 
(0.05,0.21) 

-6.40  
(-12.03,-0.80) 

2.6 

„active-favored‟ (for 

basic coefficients) 
& consistent 
coefficients 

86.3 47.8 
0.11 

(0.04,0.21) 
- 

2.7 

„sponsored-favored‟ 
& subgroups by 
sponsoring  

83.1 46.2 
0.11 

(0.04,0.20) 

     =4.16 (-9.80,18.92) 

    =-6.88 (-12.50,-1.25) 

2.8 
„sponsored/new-favored‟ 

& subgroups by year 
82.8 46.4 

0.10 
(0.03,0.19) 

B≥2000=7.59 (-8.82,23.82) 
B<2000=-6.90 (-12.40,-1.37) 

2.9 
probabilistic 
„sponsored/new-favored‟ 
& subgroups by year 

84.1 45.7 
0.10 

(0.03,0.19) 

      =6.69 (-34.05,48.61) 
      =-9.45(-23.39,10.36) 

1Should be compared with the 46 data points. 

 

These findings imply that there might not be a „fixed pattern‟ in the direction of 

small-study effects. In this case the assumption of identical or exchangeable 
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coefficients might not be reasonable. I employed the consistent coefficients model 

(Model 2.6) to explore this possibility. Despite the increased uncertainty of the 

five basic coefficients of the active treatments versus placebo, their different signs 

suggest that assuming a consistent direction of small-study effects might not be 

applicable for this network (Table 5.12). 

 

Table 5.12. Posterior medians and 95% credible intervals for small-study effects coefficients (from 
Model 2.6) in          scale for the second network example. (ARB=angiotensin-receptor 
blockers, ACE=angiotensin converting-enzyme, BB=β-blockers, CCB=calcium-channel blockers, 
D=diuretics, P=placebo) 

 ̂      -6.26 (-15.77,3.49) 

 ̂     -5.28 (-12.71,2.07) 

 ̂       -9.53(-43.84,26.61) 

 ̂       18.77 (-11.58,48.78) 

 ̂       3.30 (-21.47,29.59) 

 

I incorporated the possible interaction between direction and sponsorship (i.e. 

that direction might be different between sponsored and non-sponsored studies) 

in an alternative model (Model 2.7) that estimated two different (fixed) 

coefficients       and      . The first coefficient (     ) accounted for small-study 

effects in all sponsored studies assuming that the sponsored treatments are 

favored; the second (    ) controlled for small-study effects in all non-sponsored 

studies assuming that newer treatments are favored. This model gave a negative 

and statistically significant coefficient     =-6.88 (-12.5,-1.25) suggesting that 

small trials tend to show the older treatments safer than do the larger trials. 

However, such an association was not confirmed for the sponsored studies as the 

coefficient       was estimated with large uncertainty. Since these studies involve 

21 treatment comparisons, possibly the observed uncertainty is not the 

consequence of low power. The findings of this model can be attributed to the 

presence of selective reporting bias; this might be an issue more often for non-

sponsored trials which, unlike sponsored studies, do not necessarily follow a 

registered protocol. An alternative explanation which seems more plausible is 

that sponsored studies are, on average, newer trials; hence not as prone as non-
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sponsored studies to substantial variability in study design between small and 

large trials. 

This was investigated by fitting a model with two fixed coefficients        and 

       for studies published before and after 2000 respectively (Model 2.8). Note 

that all trials published after 2000 were sponsored. The comparison-adjusted 

funnel of Figure 5.11 shows separately the two subgroups with their regression 

lines. The estimated coefficients (Table 5.11) from this model suggest that small-

study effects are more likely to operate in older trials, while the direction of bias 

might not be constant over time. These findings are further supported by the 

probabilistic model (Model 2.9). More specifically, the posterior probability that 

studies before 2000 tend to favor the older treatments and placebo is 66%, 

whereas the probability for studies after 2000 of favoring the newer and 

sponsored treatments is 39%.  

  

 
Figure 5.11. Comparison-adjusted funnel plot for the network comparing placebo and 5 
antihypertensives with respect to incidence of diabetes in two subgroups; for studies published 
before and after 2000.  

 

It is interesting that the meta-regression models that consider the year of 

publication of the included studies are the best models in terms of model fit and 

parsimony. Also, these two models have lower heterogeneity compared to any 
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other model; 23% relative drop in heterogeneity compared to the model without 

covariates. The differences in relative ranking between Model 2.8 and the model 

without covariates are presented in Figure 5.12. According to the estimated 

cumulative probability curves, after the accounting for the impact of small-study 

effects β-blockers and ARB appear slightly less safe, whereas placebo, diuretics 

and ACE inhibitors appear a bit safer. However, there were no important 

differences in the relative ranking and the relative effects as estimated from the 

two models. 

 

 
Figure 5.12. Plots of the cumulative ranking curves for antihypertensive drugs. The black solid 
lines correspond to the estimates from the model without covariates (Model 2.1) and the dashed 
lines to Model 2.8. 

 

I evaluated the presence of inconsistency in the network using the loop-specific 

approach (see Section 2.3.2), which resulted in two loops (placebo versus β-

blockers versus ACE inhibitors and placebo versus β-blockers versus ARB) with 

statistically significant inconsistency. The two inconsistency factors were 0.82 

(0.28,1.36) and 0.71 (0.18,1.24) respectively. To explore whether differences in 

precision across studies can partly explain the inconsistency in these loops, I 

applied an unrelated mean effects model accounting for small-study effects 

similar to Model 2.8 (using the sponsored/new assumption and considering the 

subgroups before and after 2000). Then, using the direct and indirect estimates 
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from this model, inconsistency became statistically non-significant in the two 

loops with inconsistency factors 0.12 (-0.19,0.43) and 0.14 (-0.35,0.64) respectively. 

This means that disagreement between direct and indirect estimates may be 

attributed to some degree to differences between small and large trials as well as 

between old and new studies. 

It is possible that the observed discrepancies in estimation between older and 

newer studies are caused by other trial characteristics related to the year of 

publication. For example, studies published before and after 2000 probably differ 

with respect to the criteria used for the diagnosis of diabetes. More specifically, in 

1999 the diagnostic criterion changed from   7.8 mmol/L glucose level to   7.0 

mmol/L. Identifying possible explanations requires examination of the study 

protocols and evaluation of the quality of studies. However, the inclusion of only 

21 trials does not allow the adequate investigation of multiple interactions 

between several study characteristics.           

  

Sensitivity analyses 

To check the sensitivity of results to the choice of prior distribution for the 

heterogeneity parameter, I performed additional analyses for all models with 

identical comparison-specific coefficients. When I assumed a uniform         

prior on  , the results were similar to the primary analysis regarding the 

estimated parameters and fit of the different models. The use of a log-normal 

distribution (i.e.                ) resulted in a slight reduction in the 

heterogeneity standard deviation (from 0.01 to 0.02 units). 

 

5.7 Discussion 

 

This Chapter illustrates the use of network meta-regression and network meta-

epidemiology to investigate the impact of five trial characteristics (four RoB 

components and study precision) on treatment effect estimates. All applied
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models require assumptions for the direction of bias. These assumptions are 

simplified in the meta-epidemiological studies, where I considered primarily 

only star-shaped networks. I exemplify the several possible assumptions for a full 

network in the case study of Section 5.6. 

I did not find the inappropriate conduct of random sequence generation, 

allocation concealment, blinding of participants and blinding of outcome 

assessors to influence substantially the estimated relative effects in trials. A recent 

study that synthesized data from seven (standard) meta-epidemiological studies 

resulted in stronger associations (105). The different findings between the two 

studies might be due to differences in power (31% more trials in Savovic et al.). 

An alternative explanation could be the fact that NMA is a time-consuming and 

resource-demanding procedure; hence researchers undertake NMA mainly in 

areas where they expect to find many high-quality trials. This is in agreement 

with the fact that very few studies were assessed at high RoB for the four RoB 

components (see Table 5.2). This apparent lack of association could be also 

attributed to random misclassification because of the different criteria the original 

authors of the networks may have used to evaluate the RoB in individual trials. 

However, the sensitivity analysis that considered only networks, for which RoB 

data were extracted subsequently using the criteria of Section 5.4.2, did not yield 

different results from the primary analysis. Another reason that may explain this 

finding is that the RoB assessement relies also on the quality of reporting. For 

example, older studies might be more likely to be classified at high/unlear RoB 

due to poor reporting of the methods. 

In this empirical study, trials being at high or unclear RoB were assumed to have 

similar effect modification due to their design limitations. The use of weaker 

assumptions is possible via models that assign a probability to the unclear 

studies of being at high RoB (112). However, the absence of many high risk 

studies in this database did not allow the use of such probabilistic models, since 

they would have very limited power in the estimation of coefficients. Study 

precision sometimes is considered as a proxy for study quality, if information of 
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RoB characteristics is not available. Nevertheless, this network collection did not 

confirm a clear association between study precision and the four RoB items, 

which was suggested by Nuesch et al. (95) and Kjaergard et al. (124). In addition, 

other types of biases (e.g. attrition bias or selective outcome reporting), which 

were not taken into account in the analyses, may operate as well.  

I found a strong association between study precision and treatment effects for 

dichotomous outcomes using the same collection of star-shaped networks. This 

implies that important differences in the distribution of study precision across 

comparisons within a network can cause intransitivity and/or inconsistency. 

Hence, researchers should routinely consider the differences in precision across 

studies in the evaluation of transitivity and exploration of inconsistency. The use 

of star networks in this empirical study makes the evaluation of statistical 

inconsistency impossible. 

Although continuous outcomes might be expected more often to be subject to 

selective outcome reporting (i.e. continuous measures are more frequently used 

for subjective and secondary outcomes), small-study effects did not appear to 

affect the treatment effects for such outcomes. This finding might be explained by 

limited power (only 16 networks with continuous outcomes were synthesized) or 

by the presence of larger heterogeneity across the different continuous outcome 

measures.       

Accounting for the potential of biased treatment effects within a full network 

requires stronger assumptions for the direction of bias. Models assuming that 

bias favors one of the treatments in each comparison with an unknown 

probability can be employed, if there is no prior belief about the direction of bias. 

I found presence of small-study effects in both examples of full networks. In the 

network of incidence of diabetes the direction of bias did not consistently favor 

the newer or older interventions in all studies. However, since information on 

other trial characteristics was not available, study precision and year of 

publication partly explained the estimated heterogeneity and inconsistency in 

this network. 
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Despite the above findings, exploration of heterogeneity and inconsistency 

should not be based solely on the investigation of differences in precision across 

studies (99). Other trial characteristics associated with both study size or study 

precision and relative effects may operate as well. For example, small and large 

trials can be different with respect to their design limitations, population baseline 

severity of disease or other characteristics. When such information is not readily 

available, study precision may be used as a good proxy for these characteristics. 

However, this was not the case in my empirical studies, where study precision 

was not clearly associated with the four studied RoB items. Also, information 

from trial registries can be used to identify unpublished studies to explore 

whether small-study effects are caused by publication bias (96,125).     

The findings of this Chapter illustrate that NMA may suffer the same biases as 

pairwise meta-analysis. However, the presence of multiple treatment 

comparisons in NMA is likely to differentiate the mechanisms of bias within the 

same network and this should be taken into account in the analysis. In the 

presence of small-study effects, results should be presented using the relative 

effects from network meta-regression models (extrapolated to the largest study in 

the network) (113). Other approaches, such as selection models (126), can be 

employed, if small-study effects are caused by publication bias.  

Both the empirical and case studies that I conducted highlight that there is large 

potential for drawing misleading conclusions when the impact of several factors 

is ignored in a NMA.  Therefore, an overall final judgement of the quality of 

evidence and the risk for several types of bias is crucial for the interpretation of 

the results (60). 

 

 

 

 

 



 

6 Summary 

 

 

6.1 Summary 

 

Systematic reviews and meta-analyses have been established as an integral part 

of comparative effectiveness research and are widely used by international 

health-care institutions to inform policy-making. However, the increasing 

number of competing interventions in many medical fields has led to the 

development of NMA. This new evidence synthesis tool integrates direct with 

indirect evidence to infer about the relative effect of any pair of treatments 

included in the network. In this way, network estimates usually have increased 

precision in comparison to the respective direct estimates, while inference can be 

drawn also for comparisons not evaluated in individual studies. The inclusion of 

all competing treatments in the same meta-analytic model allows the estimation 

of their relative ranking. These advantages have rendered NMA an increasingly 

popular statistical tool. 

NMA can be seen from several perspectives that are, in principal, equivalent, but 

differ with respect to the ease of implementation in standard software packages. 

All approaches rely on the fundamental assumption of transitivity, which 

suggests that the common comparator treatment   is similar (e.g. administered 

the same way and in similar populations) in the    and    studies. At the level 

of model parameters transitivity is reflected by the consistency equations, which 

imply that direct and indirect evidence in the network are in agreement 

regarding the true (summary) underlying relative effects. If the consistency 

assumption does not hold in parts or in the entire network, the results of NMA 

might be questionable.  

The rapid development of NMA methodology underlines the need for flexible 

and user-friendly software options that would facilitate the appropriate conduct 
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and comprehensive reporting of the analysis.  To aid the ease of presentation and 

interpretation of NMA, I developed new and modified existing graphical 

presentation tools, which I implemented in the STATA software. These graphs 

can be used to present the complex evidence base, assumptions and results from 

NMA and aim to make these outputs understandable to researchers that are less 

familiar with advanced statistical methods. 

The fact that NMA is a relatively new statistical tool implies the need for several 

empirical and simulation studies to investigate the properties of each approach. 

An overview of the characteristics of published networks of interventions is a 

useful resource of information for methodologists that aim to update the current 

knowledge on appraising NMA methods. To this end, I compiled networks of 

interventions published until March 2011. This collection demonstrates that the 

advantages of NMA have increased its acceptance by the medical research 

community. Also, it suggests that the observed variation in the choice of the 

method of analysis can be partly explained by the size characteristics of the 

networks. The typical network of this database includes 22 studies and compares 

5 pharmacological treatments vs. a control intervention with respect to a 

dichotomous subjective outcome.  

Heterogeneity and inconsistency can be seen as differences in the potential effect 

modifiers within and across the pairwise comparisons in a network of 

interventions. It is often the case that the estimated heterogeneity or 

inconsistency in a network of interventions can be explained using a network 

meta-regression model; that is a NMA model that incorporates one or more 

covariates. A usual issue of any meta-regression model is the lack of power to 

detect associations between treatment effects and study-level characteristics. To 

date, researchers have usually relied on the comparability of effect modification 

parameters, in terms of both magnitude and direction, across different meta-

analyses to overcome the issue of low power. In this way, they expect that a 

sizable amount of data would be available to allow the adequate estimation of a 

relationship between treatment effects and other factors. Data from networks of 
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interventions usually involve a larger evidence base and may offer a promising 

alternative way to investigate the mechanisms of effect modification and bias in 

network meta-epidemiological research. Pooling parameters across many 

network meta-analyses can accommodate the assumption for these parameters 

being more similar within a network rather than across networks. 

Several empirical studies have examined the possible association between the 

estimated treatment effects and the size of the trials suggesting that small studies 

tend to give larger effect estimates than do larger studies.  Such a phenomenon, 

which is usually called small-study effects, is quite frequent in evidence synthesis 

research and can be caused by several reasons, such as publication bias, selective 

outcome reporting, differences in study quality or genuine heterogeneity. To 

assess graphically the presence of small-study effects in NMA, I extended the 

standard funnel plot to allow the incorporation of multiple treatment 

comparisons. Network meta-regression models can be used also to extend the 

statistical models accounting for small-study effects into the context of NMA. An 

important issue of the network meta-regression models that aim to control for 

potentially biased treatment effects is that they require making assumptions 

about the directionality of bias. This may be less problematic when analysing 

star-shaped networks; in these networks the common comparator intervention is 

usually an inactive or old intervention and it is not expected to be favored when 

bias is present. Inference on the plausibility of the assumed direction of bias is 

based on the estimated coefficients.  

I investigated the impact of five trial characteristics (four RoB components and 

study precision) on treatment effect estimates using the methodology of network 

meta-regression and meta-epidemiology on a collection of 32 star-shaped 

networks. In this analysis, inadequate random sequence generation, allocation 

concealment, blinding of participants and blinding of outcome assessors were not 

found to influence substantially the estimated relative effects in trials. Study 

precision sometimes is considered as a proxy for study quality, if information of 
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RoB characteristics is not available. Nevertheless, my network collection did not 

confirm a clear association between study precision and the four RoB items.  

I found a strong association between study precision and treatment effects for 

dichotomous outcomes using the same collection of star-shaped networks. This 

implies that important differences in the distribution of study precision across 

comparisons within a network may cause intransitivity and/or inconsistency. 

Αdditional empirical studies are necessary to confirm such a conclusion. 

However, this finding implies that researchers should routinely consider the 

differences in precision across studies in the evaluation of transitivity and 

exploration of inconsistency. Although continuous outcomes might be expected 

more often to be subject to selective outcome reporting (i.e. continuous measures 

are more frequently used for subjective and secondary outcomes), small-study 

effects did not appear to affect the treatment effects for such outcomes. 

Accounting for the potential of biased treatment effects within a full network 

requires stronger assumptions for the direction of bias. I exemplified such 

assumptions using two full networks both evaluating typically secondary (safety) 

outcomes; these are failure of vascular graft or arterial patency with aspirin, 

dipyridamole or placebo, and incidence of diabetes with antihypertensive drugs. 

I also employed models assuming that bias favors one of the treatments in each 

comparison with an unknown probability, when there is not prior belief about 

the direction of bias. I found presence of small-study effects in both examples. In 

the network of incidence of diabetes the direction of bias did not consistently 

favor the newer or older interventions in all studies. However, since information 

on other trial characteristics was not available, study precision and year of 

publication partly explained the estimated heterogeneity and inconsistency in 

this network.  

Despite the above findings, exploration of heterogeneity and inconsistency 

should not be based solely on the investigation of differences in precision across 

studies. Other trial characteristics associated with both study size or study 

precision and relative effects may operate as well. For example, small and large 
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trials can be different with respect to their design limitations, population baseline 

severity of disease or other characteristics. Also, information from trial registries 

can be used to identify unpublished studies to explore whether small-study 

effects are caused by publication bias. 

The findings of this Thesis illustrate that NMA may suffer the same biases as 

pairwise meta-analysis. However, the presence of multiple treatment 

comparisons in NMA is likely to differentiate the mechanisms of bias within the 

same network and this should be taken into account in the analysis. The 

empirical and case studies that I present in Chapter 5 highlight that there is large 

potential for drawing misleading conclusions when the impact of several factors 

is ignored in a NMA.  Therefore, an overall final judgment of the quality of 

evidence and the risk for several types of bias is crucial for the interpretation of 

the results. 

 

6.2 Περίληψη 

 

Οι συστηματικές ανασκοπήσεις και οι μετα-αναλύσεις έχουν καθιερωθεί ως 

αναπόσπαστο κομμάτι στην έρευνα που σχετίζεται με την συγκριτική 

αποτελεσματικότητα των θεραπειών (comparative effectiveness research). 

Συγκεκριμένα, χρησιμοποιούνται πλέον ευρέως από διεθνείς οργανισμούς υγείας 

με σκοπό να συμβάλλουν στη διαμόρφωση πολιτικής για τη δημόσια υγεία. 

Παρόλα, αυτά ο συνεχώς αυξανόμενος αριθμός των ανταγωνιστικών θεραπειών 

σε πολλούς τομείς της ιατρικής οδήγησε στην ανάπτυξη της μετα-ανάλυσης δικτύων 

(ΜΑΔ) (network meta-analysis), γνωστή και ως μετα-ανάλυση πολλαπλών 

παρεμβάσεων. Η μετα-ανάλυση δικτύων συνθέτει το σύνολο της πληροφορίας 

που μπορεί να προέρχεται είτε άμεσα από μεμονωμένες μελέτες είτε έμμεσα 

χρησιμοποιώντας μελέτες που συνδέονται σε ένα δίκτυο θεραπειών. Με αυτόν 

τον τρόπο οι εκτιμήσεις της ΜΑΔ συνήθως είναι πιο ακριβείς από τις αντίστοιχες
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άμεσες εκτιμήσεις, ενώ μπορούν να εξαχθούν συμπεράσματα για τη σχετική 

αποτελεσματικότητα θεραπειών που δεν έχουν συγκριθεί σε κάποια μελέτη. 

Επίσης, το γεγονός ότι όλες οι ανταγωνιστικές θεραπείες συγκρίνοται 

ταυτόχρονα στο ίδιο στατιστικό μοντέλο δίνει τη δυνατότητα να εκτιμηθεί η 

σχετική κατάταξή τους. Τα πλεονεκτήματα αυτά έχουν καταστήσει τη ΜΑΔ ένα 

πολύ δημοφιλές στατιστικό εργαλείο. 

Η ΜΑΔ μπορεί να προσεγγιστεί από διαφορετικές οπτικές γωνίες, οι οποίες είναι 

θεωρητικά ισοδύναμες, αλλά διαφέρουν στην δυνατότητα εφαρμογής τους στα 

συνήθη λογισμικά. Όλες οι προσεγγίσεις βασίζονται στη θεμελιώδη υπόθεση της 

μεταβατικότητας (transitivity), που υπαγορεύει ότι η κοινή θεραπεία   είναι όμοια 

(π.χ. χορηγείται με τον ίδιο τρόπο σε όμοιους πληθυσμούς) στις μελετες    και 

στις μελέτες   . Σε επίπεδο παραμέτρων του μοντέλου, η μεταβατικότητα 

εκφράζεται μέσω των εξισώσεων συνέπειας (consistency equations), που 

συνεπάγονται ότι οι άμεση πληροφορία συμφωνεί με την έμμεση, όσον αφορά 

στις „πραγματικές‟ συνοπτικές σχετικές επιδράσεις. Αν η υπόθεση της συνέπειας δεν 

ισχύει στο δίκτυο, τα αποτελέσματα της ΜΑΔ πιθανόν να μην είναι αξιόπιστα. 

Η ραγδαία ανάπτυξη της μεθοδολογίας για τη ΜΑΔ υπογραμμίζει την ανάγκη 

για ευέλικτες και φιλικές στο χρήστη επιλογές λογισμικού που θα διευκολύνουν 

την κατάλληλη διεξαγωγή και τη κατανοητή αναφορά της ανάλυσης.  

Προκειμένου να συνεισφέρω στην ευκολία της παρουσίασης και ερμηνείας της 

ΜΑΔ, ανέπτυξα καινούρια ή τροποποίησα ήδη υπάρχοντα γραφήματα, τα οποία 

έκανα διαθέσιμα στο ευρύ κοινό προγραμματίζοντας τα στο λογισμικό STATA. 

Αυτά τα γραφήματα μπορούν να χρησιμοποιηθούν για την παρουσίασης της 

πολύπλοκης βάσης δεδομένων, των υποθέσεων και των αποτελεσμάτων από τη 

ΜΑΔ. Σκοπός τους είναι να κάνουν τη διαδικασία της ΜΑΔ πιο κατανοητή σε 

ερευνητές χωρίς ισχυρές στατιστικές γνώσεις και ικανότητες. 

Το γεγονός ότι η ΜΑΔ είναι ένα σχετικά καινούριο στατιστικό εργαλείο 

συνεπάγεται την ανάγκη για εμπειρικές μελέτες και μελέτες προσομοίωσης που 

θα διερευνούν τις ιδιότητες των διαφορετικών μεθόδων. Η επισκόπηση των 

χαρακτηριστικών δημοσιευμένων δικτύων θεραπειών είναι χρήσιμη πηγή 
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πληροφόρησης για ερευνητές που σκοπεύουν να αναβαθμίσουν την υπάρχουσα 

γνώση όσον αφορά στην αποτίμηση των μεθόδων της ΜΑΔ. Για το σκοπό αυτόν, 

δημιούργησα μια συλλογή δικτύων θεραπειών που δημοσιέυτηκαν μέχρι το 

Μάρτιο του 2011. Η σθλλογή αυτή δείχνει ότι τα πλεονεκτήματα της ΜΑΔ έχουν 

αυξήσει την αποδοχή της από την ιατρική ερευνητική κοινότητα. Επίσης, 

συστήνει ότι οι διαφορές που παρατηρούνται στην επιλογή της μεθόδου 

ανάλυσης μπορεί να εξηγηθεί μερικώς από διαφορές στο μέγεθος και τη δομή των 

δικτύων. Ένα τυπικό δίκτυο της βάσης αυτής περιλαμβάνει 22 μελέτες και 

συγκρίνει 5 φαρμακευτικές θεραπείες έναντι μιας θεραπείας ελέγχου σχετικά με 

μια διχότομη υποκειμενική έκβαση. 

Η ετερογένεια (heterogeneity) και η ασυνέπεια (inconsistency) εμφανίζονται ως 

διαφορές στους πιθανούς τροποποιητές επίδρασης (effect modifiers) μέσα και 

ανάμεσα στις συκρίσεις σε ένα δίκτυο θεραπειών. Συχνά υπάρχουν περιπτώσεις 

που η εκτιμώμενη ετερογένεια ή ασυνέπεια σε ένα δίκτυο μπορεί να εξηγηθεί 

χρησιμοποιώντας μετα-παλινδρόμηση δικτύου (network meta-regression), δηλαδή 

ένα μοντέλο ΜΑΔ που περιλαμβάνει επεξηγηματικές μεταβλητές (covariates). 

Ένα σύνηθες ζήτημα της μετα-παλινδόμησης είναι η έλλειψη επαρκούς ισχύος 

για τον εντοπισμό σχέσεων ανάμεσα στην επίδραση των θεραπειών και 

χαρακτηριστικών των μελετών. Μέχρι σήμερα οι ερευνητές για να ξεπεράσουν το 

πρόβλημα αυτό, συνήθως βασίζονται στη συγκρισιμότητα παραμέτρων, 

λαμβάνοντας υπόψη το μέγεθος και την κατεύθυνση της επίδρασης, ανάμεσα σε 

διαφορετικές μετα-αναλύσεις. Με αυτόν τον τρόπο, αναμένουν ότι θα έχουν 

διαθέσιμα αρκετά δεδομένα που θα επιτρέπουν επαρκή εκτίμηση της σχέσης των 

θεραπευτικών επιδράσεων με άλλους παράγοντες. Τα δεδομένα δικτύων 

θεραπειών συνήθως συνεπάγονται μεγαλύτερη βάση δεδομένων έτσι ίσως 

προσφέρουν ένα υποσχόμενο εναλλακτικό μέσο για τη διερεύνηση των 

μηχανισμών πιθανών συστηματικών σφαλμάτων στη μετα-επιδημιολογική έρευνα 

δικτύων (network meta-epidemiology). Η σύνθεση παραμέτρων από πολλές ΜΑΔ 

μπορεί να υποστηρίξει την υπόθεση ότι οι παράμετροι αυτοί είναι πιο όμοιοι 

μέσα στο ίδιο δίκτυο παρά ανάμεσα στα δίκτυα. 
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Διάφορες εμπειρικές μελέτες έχουν εξετάσει την πιθανή σχέση μεταξύ των 

εκτιμώμενων θεραπευτικών επιδράσεων και και του μεγέθους των μελετών, 

συστήνοντας ότι οι μικρότερες μελέτες έχουν την τάση να δίνουν μεγαλύτερες 

επιδράσεις από τις μεγαλύτερες μελέτες. Αυτό το φαινόμενο, που συνήθως 

ονομάζεται επίδραση των μικρών μελετών (small-study effects) είναι αρκετά συχνό 

στις μετα-αναλύσεις και μπορεί να προκληθεί από πολλές αιτίες, όπως το 

συστηματικό σφάλμα δημοσίευσης (publication bias), η επιλεκτική αναφορά 

αποτελεσμάτων (selective outcome reporting), διαφορές στην ποιότητα των 

μελετών ή ετερογένεια. Προκειμένου να καταστήσω δυνατή την γραφική 

αξιολόγηση της παρουσίας επίδρασης μικρών μελετών στη ΜΑΔ, επέκτεινα τα 

συνήθη σχετικά γραφήματα (funnel plot) ώστε να ενσωματώσουν τις 

διαφορετικές συγκρίσεις θεραπειών. Μοντέλα μετα-παλινδρόμησης δικτύων 

μπορούν, επίσης, να χρησιμοποιηθούν για να επεκτείνουν τα υπάρχοντα 

στατιστικά μοντέλα που λαμβάνουν υπόψη την επίδραση των μικρών μελετών 

στο πλαίσιο της ΜΑΔ. Ένα σημαντικό ζήτημα των μοντέλων μετα-

παλινδρόμησης δικτύων που σκοπεύουν να διορθώσουν πιθανώς εσφαλμένες 

εκτιμήσεις επιδράσεων είναι ότι απαιτούν τη χρήση υποθέσεων για την 

κατεύθυνση του σφάλματος. Αυτές οι υποθέσεις ίσως είναι λιγότερο ισχυρές στην 

περίπτωση των δικτύων σε σχήμα αστεριού, καθώς σε αυτά τα δίκτυα η κοινή 

παρέμβαση είναι συνήθως μια ανενεργή ή παλιά θεραπεία που δεν αναμένεται 

να ευνοείται λόγω συστηματικών σφαλμάτων. Τα συμπεράσματα όσον αφορά 

στην σωστή επιλογή υπόθεσης για την κατεύθυνση του σφάλματος βασίζονται 

στους εκτιμώμενους συντελεστές από τη μετα-παλινδρόμηση. 

Διερεύνησα την επίδραση πέντε χαρακτηριστικών των μελετών (τεσσάρων 

στοιχείων σχεδιασμού των μελετών (RoB items) και την ακρίβειά τους (study 

precision)) στις θεραπευτικές επιδράσεις χρησιμοποιώντας τη μεθοδολογία μετα-

παλινδρόμησης και μετα-επιδημιολογίας δικτύων σε μια συλλογή 32 δικτύων-

αστεριών. Στην ανάλυση αυτή, η μη-κατάλληλη διεξαγωγή της δημιουργίας 

τυχαίας αλληλουχίας, της απόκρυψης της κατανομής, της τυφλοποίησης των 

συμμετεχόντων και της τυφλοποίησης των αξιολογητών της έκβασης (random 
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sequence generation, allocation concealment, blinding of participants and 

blinding of outcome assessors) δε φάνηκε να επηρεάζει σημαντικά τα 

αποτελέσματα των αποτελεσμάτων της ΜΑΔ. Πολλές φορές το μέγεθος των 

μελετών θεωρείται ως προβλεπτικός παράγοντας για την ποιότητά τους, όταν δεν 

υπάρχει πληροφορία σχετικά με την καταλληλότητα του σχεδιασμού τους. 

Παρόλα αυτά, η συγκεκριμένη βάση δικτύων θεραπειών που δημιούργησα δεν 

επιβεβαίωσε ξεκάθαρα τη συσχέτιση μεταξύ σωστού σχεδιασμού και μεγέθους των 

μελετών.  

Χρησιμοποιώντας την ίδια συλλογή δικτύων-αστεριών, βρήκα ισχυρή συσχέτιση 

ανάμεσα στην ακρίβεια των μελετών και στις θεραπευτικές επιδράσεις. Το 

γεγονός αυτό ίσως δείχνει ότι σημαντικές διαφορές στην κατανομή της 

διασποράς των εκτιμήσεων από τις μεμονωμένες μελέτες ανάμεσα στις συγκρίσεις 

ενός δικτύου μπορεί να απειλήσει την υπόθεση της μεταβατικότητας και/ή της 

συνέπειας. Περισσότερες εμπειρικές μελέτες θα πρέπει να διεξαχθούν για να 

επιβεβαιωθεί το παραπάνω συμπέρασμα. Οι ερευνητές όμως θα πρέπει πάντα να 

λαμβάνουν υπόψη την επίδραση των μικρών μελετών κατά την αξιολόγηση της 

μεταβατικότητας και τη διερεύνηση της ασυνέπειας. Παρόλο που οι συνεχείς 

εκβάσεις αναμένονται να είναι πιο συχνά αντικείμενο της επιλεκτικής αναφοράς 

αποτελεσμάτων (διότι συνεχή μέτρα επίδρασης χρησιμοποιούνται πιο συχνά για 

υποκειμενικές και δευτερεύοντες εκβάσεις), δε βρέθηκε σημαντική επίδραση των 

μικρών μελετών σε τέτοιου είδους δεδομένα. 

Η διόρθωση των αποτελεσμάτων για πιθανόν εσφαλμένες εκτιμήσεις σε ένα 

„πλήρες‟ δίκτυο θεραπειών (full network) απαιτεί τη χρήση πιο ισχυρών 

υποθέσεων για την κατεύθυνση του συστηματικού σφάλματος. Διερεύνησα αυτές 

τις υποθέσεις χρησιμοποιώντας δύο πλήρη δίκτυα που αξιολογούν δευτερεύουσες 

εκβάσεις (ασφάλεια). Οι εκβάσεις αυτές είναι: αποτυχία του αγγειακού 

μοσχεύματος ή αρτηριακής βατότητας με χρήση ασπιρίνης, διπυριδαμόλης ή 

εικονικού φάρμακου, και η συχνότητα εμφάνισης του διαβήτη με 

αντιϋπερτασικά φάρμακα. Επιπρόσθετα, χρησιμοποίησα μοντέλα που υποθέτουν 

ότι μια θεραπεία ευνοείται με μια άγνωστη πιθανότητα στην περίπτωση που δεν 
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υπάρχει ισχυρή πεποίθηση για την κατεύθυνση του σφάλματος. Και στα δύο 

παραδείγματα βρήκα παρουσία επίδρασης των μικρών μελετών. Στο δίκτυο της 

εμφάνισης διαβήτη η επίδραση αυτή δεν ευνοούσε πάντα τις νεότερες ή τις 

παλιότερες θεραπείες σε όλες τις μελέτες. Παρόλα αυτά, εφόσον δεν υπήρχαν 

πληροφορίες για άλλα χαρακτηριστικά των μελετών, το μέγεθος και η 

χρονολογία δημοσίευσης φάνηκαν να εξηγούν μερικώς την ετερογένεια και την 

ασυνέπεια στο δίκτυο. 

Παρά τα παραπάνω αποτελέσματα, η διερεύνηση της ετερογένειας και της 

ασυνέπειας δε θα πρέπει να βασίζεται μόνο στον έλεγχο του διαφορετικού 

μεγέθους των μελετών. Άλλα χαρακτηριστικά που σχετίζονται και με το μέγεθος 

ή την ακρίβεια των μελετών και τις θερπευτικές επιδράσεις ίσως να λειτουργούν 

επίσης ως τροποποιητές επίδρασης. Για παράδειγμα, οι μικρές οι μικρότερες 

μελέτες μπορεί να διαφέρουν από τις μεγαλύτερες στο σχεδιασμό, το βασικό 

κίνδυνο (baseline risk), ή άλλα χαρακτηριστικά. Επίσης, οι καταγραφές των 

τυχαιοποιημένων μελετών θα πρέπει να ελέγχονται για τον εντοπισμό μη 

δημοσιευμένων μελετών που μπορεί να προκαλούν την επίδραση των μικρών 

μελετών μέσω σφάλματος δημοσίευσης.             

Τα ευρύματα της παρούσας διατριβής τονίζουν ότι ΜΑΔ συχνά πάσχει από τα 

ίδια συστηματικά σφάλματα με την απλή μετα-ανάλυση (pairwise meta-

analysis). Παρόλα αυτά, η παρουσία πολλών διαφορετικών συγκρίσεων μεταξύ 

θεραπειών είναι πιθανό να διαφοροποιεί το μηχανισμό δράσης των σφαλμάτων 

αυτών μέσα στο ίδιο δίκτυο. Το γεγονός αυτό θα πρέπει να λαμβάνεται υπόψη 

στην ανάλυση. Οι εμπειρικές και οι μεμονωμένες μελέτες (case studies) που 

παρουσιάζω στο κεφάλαιο 5 δείχνουν ότι υπάρχει μεγάλη πιθανότητα 

διεξαγωγής παραπλανητικών συμπερασμάτων όταν αγνοείται η επίδραση 

διάφορων παραγόντων σε μια ΜΑΔ. Για το λόγο αυτόν, είναι πολύ σημαντικό 

για την ερμηνεία των αποτελεσμάτων να πραγματοποιείται μια γενική κρίση 

όσον αφορά στην ποιότητα των δεδομένων και το κίνδυνο για διάφορα είδη 

σφαλμάτων.  
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A. Proof of the mathematical relationship between SUCRA and 

mean rank 
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B. WinBUGS codes 

 

Network meta-epidemilogical model accounting for small-study effects linking 

networks with dichotomous arm-level data 

 

# nn=number of networks 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

 

model { 
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for (z in 1:nn) { 

for(i in 1:ns[z]) {  

w[z,i,1]<- 0 

theta[z,i,t[z,i,1]]<- 0 

mu[z,i] ~ dnorm(0,.0001)                                                 

for (k in 1:na[z,i]) {  

r[z,i,t[z,i,k]]~dbin(p[z,i,t[z,i,k]],n[z,i,t[z,i,k]])}                                                                   

logit(p[z,i,t[z,i,1]])<- mu[z,i] 

for (k in 2:na[z,i]) { 

lamda.1[z,i,k]<- equals(r[z,i,t[z,i,k]],0) 

lamda.2[z,i,k]<- equals(n[z,i,t[z,i,k]],r[z,i,t[z,i,k]]) 

lamda.3[z,i,k]<- equals(r[z,i,t[z,i,1]],0) 

lamda.4[z,i,k]<- equals(n[z,i,t[z,i,1]],r[z,i,t[z,i,1]]) 

lamda.a[z,i,k]<- max(lamda.1[z,i,k],lamda.2[z,i,k]) 

lamda.b[z,i,k]<- max(lamda.3[z,i,k],lamda.4[z,i,k]) 

lamda[z,i,k]<-max(lamda.a[z,i,k],lamda.b[z,i,k]) 

var[z,i,k]<-

1/(r[z,i,t[z,i,k]]+(0.5*lamda[z,i,k]))+1/(r[z,i,t[z,i,1]]+(0.5*lamda[z,i

,k]))+1/(n[z,i,t[z,i,k]]-

r[z,i,t[z,i,k]]+(0.5*lamda[z,i,k]))+1/(n[z,i,t[z,i,1]]-

r[z,i,t[z,i,1]]+(0.5*lamda[z,i,k]))    

logit(p[z,i,t[z,i,k]])<- mu[z,i] + theta1[z,i,t[z,i,k]] 

I[z,i,k]<-0.5*(ind[z,i,k]-ind[z,i,1]) 

theta1[z,i,t[z,i,k]]<- theta[z,i,t[z,i,k]] + B[z]*var[z,i,k]*I[z,i,k] 

theta[z,i,t[z,i,k]] ~ dnorm(md[z,i,t[z,i,k]],precd[z,i,t[z,i,k]]) 

precd[z,i,t[z,i,k]]<- prec[z] *2*(k-1)/k              

md[z,i,t[z,i,k]]<-d[z,t[z,i,k]]-d[z,t[z,i,1]]+sw[z,i,k]                                            

w[z,i,k]<- (theta[z,i,t[z,i,k]]  - d[z,t[z,i,k]] + d[z,t[z,i,1]])           

sw[z,i,k]<- sum(w[z,i,1:k-1])/(k-1)}} 

tau[z] ~ dnorm(0,1)I(0,)                                       

prec[z]<- 1/pow(tau[z],2) 

d[z,ref[z]]<- 0 

for(k in 1:(ref[z]-1)) {d[z,k] ~ dnorm(0,.0001)} 

for(k in (ref[z]+1):nt[z]) {d[z,k] ~ dnorm(0,.0001)} 

B[z] ~ dnorm(Boverall,W)} 

Boverall ~ dnorm(0,.0001) 

W<- 1/(prec.Boverall*prec.Boverall) 

prec.Boverall ~ dunif(0,3) 

for (z in 1:nn) {for(i in 1:ns[z]) {for (k in 1:na[z,i]) {    

Darm[z,i,k]<--2*(r[z,i,t[z,i,k]] 

*log(n[z,i,t[z,i,k]]*p[z,i,t[z,i,k]]/r[z,i,t[z,i,k]])+(n[z,i,t[z,i,k]] - 

r[z,i,t[z,i,k]])*log((n[z,i,t[z,i,k]]-n[z,i,t[z,i,k]]* 

p[z,i,t[z,i,k]])/(n[z,i,t[z,i,k]]- r[z,i,t[z,i,k]])))} 

Dstudy[z,i]<- sum(Darm[z,i,1:na[z,i]])} 

Dnetwork[z]<- sum(Dstudy[z,1:ns[z]])} 

D.bar<- sum(Dnetwork[]) 

} 
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Network meta-regression accounting for small-study effects in full networks 

(Section 5.6) 

 

Example 1. Failure of vascular graft or arterial patency  

 

Model 1.1: No covariates 

 

  

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

logit(p[i,t[i,k]])<- u[i] + theta[i,t[i,k]] 

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])                 

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]          

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2)   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) { 

for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) { 

for (k in 1:na[i]) {    
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Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 

 

  

Model 1.2: ‘Active-favored’ & identical coefficients 

  

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k]))+1/(n[i

,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + B*var[i,k]*I[i,k]  

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])                 

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]           

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k  }} 

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

B ~ dnorm(0,0.0001)   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) { 

for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   
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##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) {for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 

 

 

Model 1.3: ‘Active-favored’ & exchangeable coefficients 

  

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k]))+1/(n[i

,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + beta[t[i,1],t[i,k]]*var[i,k]*I[i,k]  

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]         

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 
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for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

beta[2,3] <- 0 

for (j in 2:nt) {beta[1,j] ~ dnorm(B, prec.B) }  

B ~ dnorm(0,0.0001) 

prec.B <- 1/(sigma*sigma) 

sigma ~ dnorm(0,1)I(0,)   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) {for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative  

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) {for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 

 

 

Model 1.4: ‘New-favored’ & identical coefficients 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 
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lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k])) 

+1/(n[i,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + B*var[i,k]*I[i,k]  

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]] - d[t[i,k]] + d[t[i,1]]           

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

B ~ dnorm(0,0.0001)   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) { 

for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) { 

for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 

 

 

Model 1.5: ‘New favored’ & exchangeable coefficients 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

 

model { 

for(i in 1:ns) {  
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w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k]))+1/(n[i

,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + beta[t[i,1],t[i,k]]*var[i,k]*I[i,k]  

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]] - d[t[i,k]] + d[t[i,1]]          

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

for(i in 1:(nt-1)) { 

for (j in (i+1):nt){ 

beta[i,j] ~ dnorm(B, prec.B) }}  

B ~ dnorm(0,0.0001) 

prec.B <- 1/(sigma*sigma) 

sigma ~ dnorm(0,1)I(0,)   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) { 

for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) {for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  
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} 

 

  

Model 1.6: ‘Active-favored’ (for the basic coefficietns) & consistent 

coefficients 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k]))+1/(n[i

,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + beta1[t[i,k]]*var[i,k]*I[i,k]  

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])  

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]          

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

for(i in 1:(nt-1)) { 

for (j in (i+1):nt){ 

beta[i,j] <- beta1[j] - beta1[i] }}  # consistency assumption in betas 

beta1[1] <- 0 

for (j in 2:nt) {beta1[j] ~ dnorm(0,0.0001)}   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) { 

for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 
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LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) {for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 

 

 

Model 1.7: Probabilistic ‘new-favored’ & identical coefficients 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0 

b[i,1] <- 0                                            

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k]))+1/(n[i

,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + B*var[i,k]*x[i,t[i,k]] 

x[i,t[i,k]]<- b[i,t[i,k]]*I[i,k] # probabilistic direction 

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]          

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 



Appendix|157  

 

 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

B ~ dnorm(0,0.0001) 

for (i in 1:6) {b[i,2] ~ dbern(P1)}     # 3-arm trials 

for (i in 1:6) {b[i,3] ~ dbern(P2)} 

for (i in 7:10) {b[i,3] ~ dbern(P3)}    # head-to-head 

for (i in 11:24) {b[i,3] ~ dbern(P2)}  # placebo-controlled 

for (i in 25:31) {b[i,2] ~ dbern(P1)} 

P1 ~ dbeta(1,1)  # favoring A compared to P 

P2 ~ dbeta(1,1)  # favoring D compared to P 

P3 ~ dbeta(1,1)  # favoring D compared to A 

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) { 

for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) { 

for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 

 

 

Example 2. Incidence of Diabetes 

 

Model 2.1: No covariates 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        
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for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

logit(p[i,t[i,k]])<- u[i] + theta[i,t[i,k]] 

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]] - d[t[i,k]] + d[t[i,1]]           

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2)   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) { 

for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) { 

for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 

 

 

Model 2.2: Active favored only - Fixed coefficient 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  
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logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k]))+1/(n[i

,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + B*var[i,k]*I[i,k]  

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]           

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

B ~ dnorm(0,0.0001)   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) {for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative # 

change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) {for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 

 

Model 2.3: ‘New-favored’ & identical coefficients 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 
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# ref=reference treatment 

# I='direction variable' 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k])) 

+1/(n[i,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + B*var[i,k]*I[i,k]  

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]           

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

B ~ dnorm(0,0.0001)   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) {for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) {for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[]) 

} 
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Model 2.4: ‘Sponsored-favored’ & identical coefficients 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k])) 

+1/(n[i,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + B*var[i,k]*I[i,k]  

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]           

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

B ~ dnorm(0,0.0001)   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) {for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   
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for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) {for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 

 

 

Model 2.5: ‘Sponsored/New-favored’ & identical coefficients 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k]))+1/(n[i

,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + B*var[i,k]*I[i,k]  

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]           

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

B ~ dnorm(0,0.0001)   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) {for (j in (i+1):nt) { 
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OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) { 

for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 

 

 

Model 2.6: ‘Active-favored’ (for the basic coefficients) & consistent 

coefficients 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k]))+1/(n[i

,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + beta1[t[i,k]]*var[i,k]*I[i,k]  

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    
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w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]           

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

for(i in 1:(nt-1)) { 

for (j in (i+1):nt){ 

beta[i,j] <- beta1[j] - beta1[i] }}  # consistency assumption in betas 

beta1[1] <- 0  

for (j in 2:nt) {beta1[j] ~ dnorm(0,0.0001)}   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) {for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) {for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

}  

 

 

Model 2.7: ‘Sponsored/new-favored’ & subgroups by sponsoring 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

# s=shows sponsored and non-sponsored studies 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 
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lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k]))+1/(n[i

,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + B[s[i]]*var[i,k]*I[i,k] # two 

different betas for #sponsored and non-sponsored studies 

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]           

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

for (i in 1:2) { B[i] ~ dnorm(0,0.0001) }   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) {for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) {for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 

 

Model 2.8: ‘Sponsored/new-favored’ & subgroups by year 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 
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# y=shows studies published before and after 2000 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0                                              

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k])) 

+1/(n[i,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<-0.5*(Z[i,1]-Z[i,k]) 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + B[y[i]]*var[i,k]*I[i,k] # two 

different betas for #studies published before and after 2000 

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])    

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]           

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

for (i in 1:2) { B[i] ~ dnorm(0,0.0001) }   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)} 

##estimates  

for(i in 1:(nt-1)) {for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative 

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) {for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] -r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 
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Model 2.9: Probabilistic ‘Sponsored/new-favored’ & subgroup by year 

 

# ns=number of studies 

# r=number of events 

# n=sample size 

# t=treatment 

# nt=number of treatments 

# na=number of arms 

# ref=reference treatment 

# I='direction variable' 

# y=published before or after 2000 

 

model { 

for(i in 1:ns) {  

w[i,1]<- 0 

theta[i,t[i,1]]<- 0 

b[i,1]<-0                                           

##binomial likelihood        

for (k in 1:na[i]) {r[i,t[i,k]] ~ dbin(p[i,t[i,k]],n[i,t[i,k]])}                                                   

##parameterization                  

logit(p[i,t[i,1]])<- u[i]                       

for (k in 2:na[i]) { 

lamda.1[i,k]<- equals(r[i,t[i,k]],0) 

lamda.2[i,k]<- equals(n[i,t[i,k]],r[i,t[i,k]]) 

lamda.3[i,k]<- equals(r[i,t[i,1]],0) 

lamda.4[i,k]<- equals(n[i,t[i,1]],r[i,t[i,1]]) 

lamda.a[i,k]<- max(lamda.1[i,k],lamda.2[i,k]) 

lamda.b[i,k]<- max(lamda.3[i,k],lamda.4[i,k]) 

lamda[i,k]<-max(lamda.a[i,k],lamda.b[i,k]) 

var[i,k]<-

1/(r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(r[i,t[i,1]]+(0.5*lamda[i,k]))+1/(n[i

,t[i,k]]-r[i,t[i,k]]+(0.5*lamda[i,k]))+1/(n[i,t[i,1]]-

r[i,t[i,1]]+(0.5*lamda[i,k])) 

I[i,k]<- (y[i]-1.5)*(Z[i,1]-Z[i,k]) # assumption of opposite direction  

for    # studies before and after 2000 

logit(p[i,t[i,k]])<- u[i] + theta1[i,t[i,k]] 

theta1[i,t[i,k]]<- theta[i,t[i,k]] + beta[y[i]]*var[i,k]*x[i,t[i,k]] # 

two different betas # for studies before and after 2000 

x[i,t[i,k]]<- b[i,t[i,k]]*I[i,k]  # probabilistic direction 

theta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],precd[i,t[i,k]])                

md[i,t[i,k]]<- d[t[i,k]] - d[t[i,1]] + sw[i,k]                                    

w[i,k]<- theta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]           

sw[i,k]<- sum(w[i,1:k-1])/(k-1) 

precd[i,t[i,k]]<- prec *2*(k-1)/k }}  

##priors 

for (i in 1:ns) {u[i] ~ dnorm(0,.0001)} 

tau ~ dnorm(0,1)I(0,)                                       

prec<- 1/pow(tau,2) 

for (i in 1:2) {beta[i] ~ dnorm(0,0.001) } 

B1 <- -beta[1]  # (notation) opposite direction should give 

opposite betas 

B2 <- beta[2] 

for (i in 1:ns) { 

for (k in 2:na[i]) { 

b[i,t[i,k]] ~ dbern(P[y[i]]) }} 

for (i in 1:2) {P[i] ~ dbeta(1,1) }   

d[ref] <- 0  

for(k in 1:(ref-1)) {d[k] ~ dnorm(0,.0001)} 

for(k in (ref+1):nt) {d[k] ~ dnorm(0,.0001)}
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##estimates  

for(i in 1:(nt-1)) {for (j in (i+1):nt) { 

OR[j,i]<- exp(d[j] - d[i]) 

LOR[j,i]<- d[j] - d[i] }}   

##ranking  

for(k in 1:nt) { 

order[k]<- rank(d[],k)  # this is when the outcome is negative  

# change to 'order[k]<- nt+1-rank(d[],k)' if the outcome is positive 

most.effective[k]<-equals(order[k],1) 

for(j in 1:nt) { 

effectiveness[k,j]<- equals(order[k],j) 

cumeffectiveness[k,j]<- sum(effectiveness[k,1:j]) }}   

for(k in 1:nt) { SUCRA[k]<- sum(cumeffectiveness[k,1:(nt-1)]) /(nt-1)}  

##model fit 

for(i in 1:ns) {for (k in 1:na[i]) {    

Darm[i,k]<- -2*( r[i,t[i,k]] *log(n[i,t[i,k]]*p[i,t[i,k]]/ 

r[i,t[i,k]])+(n[i,t[i,k]] - r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]* 

p[i,t[i,k]])/(n[i,t[i,k]]- r[i,t[i,k]]))) } 

D[i]<- sum(Darm[i,1:na[i]]) } 

D.bar<- sum(D[])  

} 
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