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1. Introduction

1.1 Background to the research

Meta-analysis is the statistical technique that pools data from several trials in an effort
to increase power over the individual studies and in the hope of identifying patterns among
trial results or potential sources of disagreement among those results. However,
conventional meta-analytic models are restricted to pairwise comparisons, pooling results
only from studies that compare two interventions. It is very common in health-care
decision making to have more than two competing interventions. When multiple
interventions have been developed to address the same problem, their relative effectiveness
is a key concern for policy makers and practitioners who need to choose which specific
intervention to implement. There might be studies comparing pair or triplets of
interventions but it is impossible to find enough studies comparing all possible pairs of all
the available interventions referred to the same condition. In comparative effectiveness
reviews with more than two interventions, multiple separate and pairwise meta-analyses
need to be conducted. This becomes confusing and taking into account the results from all
the available comparisons would potentially lead to biased inferences (1). Moreover,
pairwise meta-analysis would not answer which treatment is better when there are no
studies directly comparing the treatments of interest. Network meta-analysis (NMA)
addresses this problem by extending conventional meta-analytic models to enable

comparisons between different sets of interventions to be combined in a single analysis.

When interventions are compared to a common treatment, e.g. placebo, it is possible to
compare them indirectly via this common comparator. This methodology has been
discussed in an early paper by Bucher et al (2). Suppose there are three treatments A, B
and C and there are no studies comparing directly treatments B and C, but both of them are
compared to a common comparator A. The true relative effects of the two treatments
versus the common comparator, B vs. A and C vs. A, may contribute to make inference on
the comparison C vs. B via the indirect comparison method. Although direct comparisons
are better than indirect ones in terms of statistical power and mean squared error (3),
studies have demonstrated that under certain circumstances the indirect comparison

provides less biased estimates than pairwise meta-analysis (3,4). Mills et al (5) showed via



a simulation study that indirect comparisons have low power when heterogeneity is

moderate to large.

Network meta-analysis is used to combine the results of clinical trials that undertake
different comparisons of treatments. When various treatment comparisons are connected in
a network these can be presented in a network diagram as long as every pairwise
comparison belongs to a chain that connects all treatments. A network of treatments should
be connected in the sense that at least one comparison or path exists between two
interventions in the network. If the comparisons from primary studies do not form a
connected network, then NMA cannot be applied. To visualise the available evidence
graphical representations can be used via network diagrams. The NMA methodology
synthesizes simultaneously evidence from a network of studies involving multiple
treatments. The relative effectiveness of each pair of interventions can then be estimated,
regardless of whether the two interventions were directly compared in any of the primary
studies. NMA is more advantageous of pairwise meta-analysis and indirect comparison as
we can draw inferences for the comparability between interventions not directly studied in
an individual clinical trial, and we are given the option to rank the interventions according

to their efficacy.

The ever-increasing number of alternative treatment options and the plethora of clinical
trials have increased the use of NMA the last fifteen years (6). Despite the advantages of
network meta-analysis, it is not yet a widely established approach of evidence synthesis in
the literature. Many review authors are sceptical towards the assumptions of the method
(7). The statistical expertise required in fitting the model, the presentation of complex
results in an understandable format and the evaluation of the risk of bias and the quality of
evidence in the network meta-analysis are far more challenging than in conventional meta-

analysis.

The potential utility of network meta-analysis and the generalisation of its results rest on
the validity of the required assumptions (8). As in the case of conventional meta-analysis,
the validity of NMA findings rests on the randomization process of the included RCTs and
preserves this within-study randomization (1,9). A possible violation of randomization
would arise if participants of treatment arm A of AB trial were directly compared with
those in arm C of BC trial in order to estimate the relative effect of A vs. C. It is not valid
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to compare individuals in different studies. The NMA model respects that participants are

randomized to interventions within a trial and not across trials (1,10,11).

Even if conventional meta-analysis and NMA use well-conducted randomized trials,
threats to the validity of the homogeneity assumption might arise. The assumption of
homogeneity is violated when there is excessive discrepancy among the study-specific
treatment effects in the sense that the discrepancy is greater than what one would expect
due to random error. A certain degree of variability in study estimates is almost always
present due to chance. Additional variability might occur due to many reasons such as
differences in the way studies are conducted and how the estimates are measured; this
additional variability is often termed heterogeneity. The estimation of the heterogeneity is
of interest and provides insight in the interpretation of the meta-analysis’ results. Several
methods have been suggested to quantify or express heterogeneity the properties of which

differ under several circumstances.

A key assumption in NMA is that the trials are exchangeable in the sense that they are
sufficiently similar regarding particular characteristics of the studies (1,10,12). The ability
to learn about a pairwise comparison via an intermediate treatment and make a valid
indirect comparison constitutes transitivity. The transitivity assumption is comparable to
the homogeneity assumption to a clinical and methodological way. In order that the
transitivity assumption holds the similarity of the distribution of the effect modifiers across
comparisons is required. The effect modifiers are study-level characteristics that influence
the relative effects of the interventions being compared. The ideal evidence would be to
use large, multi-arm trials that randomly allocate participants to all eligible interventions.
Multi-arm trials are by definition consistent and in case a treatment effect estimate for one
comparison is missing then it can be calculated from the remaining estimates. The
transitivity assumption implies that participants in the network could theoretically have

been randomized to any of the treatments in the network.

Some study-level characteristics vary across studies which is inevitable. These
variations can include, for example, the way in which an intervention is defined and
delivered or participant characteristics. The transitivity assumption holds when a) the
treatments are equivalent in the sense that they are given for the same condition, b) studies
are sufficiently similar in the sense that the effect modifiers are equally distributed, and c)

the missing arm in a study is missing at random suggesting that these arms are only
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unobserved. Transitivity assumes that observed and unobserved estimates do not differ

beyond what can be explained by heterogeneity.

Lack of transitivity in NMA can question the consistency of the underlying estimates
and the reliability of the results. It is therefore crucial to evaluate the consistency
assumption between the different sources of evidence before analysing them jointly.
Consistency refers to the extension of transitivity in network estimates, where direct and
indirect estimates obtained for the same comparison are in agreement (12,13).
Disagreement between direct and indirect estimates is called inconsistency. Note that the
distinction between transitivity and consistency is analogous to the one between
methodological and statistical heterogeneity in pairwise meta-analysis. Similarly to the
assumption of homogeneity, the assumption of consistency is violated in the presence of
important discrepancy, beyond what is expected by sampling error, between the overall

treatment effects of the different sources of evidence.

Consistency is a property of closed loops within networks, i.e. the paths that begin from
an intervention node and end to the same node via two or more intermediate interventions,
as well as entire networks. Consistency in individual loops can be measured by testing for
statistical differences between direct and indirect estimates. The assumption of consistency
can be statistically evaluated with several approaches in either certain parts of the network
(e.g. separating direct and indirect evidence (SIDE), loop-specific (LS), back-calculation)
or in the entire network (e.g. Lumley model, Lu and Ades (LA) model, design-by-
treatment interaction (DBT) model, comparing the model fit and parsimony from
consistency and inconsistency models) (9,13-18). Consistency should always be
statistically assessed and reported when network meta-analysis is used. However, statistical
tests are underpowered and high levels of heterogeneity can mask inconsistency
(12,13,16,19,20). A large heterogeneity in the treatment effects leads to greater uncertainty
in estimates of the mean effect sizes, and statistical inconsistency is less likely to be
detected. Finding no statistical evidence of inconsistency does not necessarily imply that a

network is consistent or that the transitivity assumption is valid.

The ability to detect inconsistency might depend on the estimation of the amount of
heterogeneity which can vary using different methods (e.g. DerSimonian and Laird,
restricted maximum likelihood etc.) (21). Similarly, different assumptions for the

heterogeneity, being the same or different in different parts of the same loop or the network
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of evidence, may impact on the detection of inconsistency. Inconsistency can be possibly
affected by the use of different effect measures. Empirical evidence suggests that ratio
measures are more homogeneous than absolute effect measures (22,23). These differences
depend on the extent of variation in baseline risk across studies. If these are substantially
different in different parts of a loop, then inconsistency may be greater for some effect
measures than others; if baseline risks vary substantially within each comparison, then
more or less heterogeneity may be present (22). Although there are strong indications that
the presence, magnitude and estimation method of heterogeneity might influence the
detection of inconsistency, this association has not been studied extensively. For instance,
the impact of two alternative methods to express uncertainty about the pairwise summary
effects (Wald type (Wt) and Knapp-Hartung (KH) method (24,25)) remains unclear. It has
been shown that the KH method outperforms Wt and that it is insensitive to the estimator
of the heterogeneity used (24,25). | anticipate that differences in the properties of the two

methods will impact on the estimation of inconsistency.

If the required assumptions for NMA are violated the results of a network meta-analysis
can be biased. Despite its importance, investigators commonly combine direct and indirect
evidence without evaluating the validity of the consistency assumption. A recent survey
showed that only 14% of the authors applying NMA have evaluated the assumption of
consistency, the 24% of whom have used inappropriate approaches (e.g. comparison of
direct estimates with NMA estimates) to evaluate consistency (6). Several reviews
evaluating NMAs and the validity of the prerequisite assumptions, highlighted the
importance of assessing and reporting the methods applied (4,6,14,26-29). Thus, there is
an urgent need to improve the quality of published NMAs with respect to the uptake,
application and reporting of methods to evaluate inconsistency. The poor quality might
also highlight that the methods for NMA are in development and there is a lack of

agreement on the methods that should be employed.

1.2 Justification for the research

The aim of this thesis is to evaluate the prevalence of inconsistency and the importance
of statistical considerations that might influence its detection. | explore the role of factors
that may impact on inferences about inconsistency. The factors that | explore are
associated with the amount of data available in the loop (e.g. number, size and distribution

of trials across comparisons, frequency of events), heterogeneity in the pairwise

Introduction



comparisons (magnitude and estimation method) and the method for inference about the
uncertainty in pairwise summary effects. | examine whether the different effect measures
for dichotomous outcome data are associated with differences in inconsistency, and |
evaluate whether different approaches to evaluate inconsistency impact on inferences on
the prevalence and magnitude of inconsistency. | evaluate inconsistency in 40 complex
networks of interventions (involving 303 closed loops) with dichotomous outcome data, at
least four treatments and at least one closed loop. | also conduct a simulation study
considering realistic scenarios and | estimate the properties (type | error, power and
coverage probability) for the test of consistency. The simulation scenarios are informed by
the previous empirical study with the large collection of 303 loops from published
networks of interventions (13), and a study about the empirical distribution of

heterogeneity on dichotomous outcomes (30).
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2. Heterogeneity and uncertainty in meta-analysis

2.1 Introduction

Meta-analysis is a technique that pools data from several trials and returns an overall
estimate of treatment effect size. It requires the studies whose data are pooled to be
‘similar’ in design and to provide sufficient information for computing estimates. A certain
degree of variability in study estimates is almost always present due to chance. Additional
variability might occur due to many reasons such as differences in the way studies are
conducted and how the estimates are measured; this additional variability is often termed
heterogeneity. There are three different types of heterogeneity: i) clinical heterogeneity,
which is referred to the variability in the participants, interventions, and outcomes, ii)
methodological heterogeneity, which reflects the variability in study design and risk of
bias, and iii) statistical heterogeneity, which is referred to the variability in the intervention
effects. In the next sections, 1 will refer to the statistical heterogeneity, which is a
consequence of clinical or methodological variability, or both, among trials, as

heterogeneity.

Heterogeneity refers to the variation across study-findings beyond random error and its
quantification is often of interest and improves the interpretation of results of a meta-
analysis. One of the most widely statistical methods used for meta-analysis is the inverse
variance method which uses the reciprocal of the within-study variance as weight. The
magnitude of the heterogeneity impacts on the estimation of the weights assigned to each
study and hence to the estimated variance of the overall treatment effect.

Several methods have been proposed to estimate the heterogeneity variance (72) and
they vary in popularity and complexity. The estimators for 72 are categorised to closed
form (non-iterative) and iterative methods. In contrast to closed form estimators, the
iterative methods require checking for convergence and run the risk of estimating 72
erroneously or failing to converge to a solution. The estimators can be generally
categorised to the method of moments approaches (e.g. DerSimonian and Laird (DL) (31),
and Paule and Mantel (PM) (32) methods), the maximum likelihood estimators (e.g.
maximum likelihood (ML) (33,34), and restricted maximum likelihood (REML) (33)
methods), the weighted least squares estimators (e.g. Sidik and Jonkman (SJ) (35) method),
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and the Bayes estimators (e.g. full Bayes (36) method). Veroniki et al. (37) describe in a
recent review all the existing methods in detail.

The uncertainty around the summary treatment effect can be estimated using a wide
variety of methods. The most popular categories of the confidence intervals (CIs) for the
summary treatment effect are the asymptotically normal-based CIs (e.g. Wald type (Wt)
(31)), the likelihood-based CIs (e.g. profile likelihood (34)), the CIs based on t-distribution
(e.g. Knapp and Hartung (KH) (38)), the quantile approximation CIs (39), and the Henmi
and Copas CIs (40). For a comparison of the methods see Sanchez-Meca and Marin-
Martinez, (25).

In this chapter | start with a short description of the statistical models for combining
studies in meta-analysis and the properties a good estimator should be associated with.
Then | present the most popular estimation methods for the heterogeneity and the
uncertainty of the summary treatment effect, which | also use in the empirical and

simulation studies for the evaluation of inconsistency (see chapter 4).

2.2 Models for meta-analysis

The main two models used to pool study results in the meta-analysis are the fixed-effect
(FE) and the random-effects (RE) models. The FE model assumes that all studies share the
same (fixed) true effect, i.e. there is one ‘true effect’ size and all differences in observed
effects are due to sampling error. In the RE model the effect sizes observed in the studies
represent a random sample from a particular distribution of the underlying treatment
effects. They are distributed around a mean with the width of the distribution describing
the degree of heterogeneity. The CIs around the summary effect obtained from a RE meta-
analysis describe the uncertainty in the location of the mean effect and its width depends
on the magnitude of the heterogeneity variance, the number of studies and the precision of
the individual study estimates (41). A RE model takes into account both within-study (v;)
and between-study (z?2) variation, in contrast to the FE model that accounts for within-
study variation only. It follows that in the presence of heterogeneity (z? > 0) the RE
model results in a wider CI compared to the FE model reflecting greater uncertainty around
the mean (42). When the heterogeneity equals to zero the RE model simplifies to the FE

model.

Heterogeneity and uncertainty in meta-analysis



Let y; be the observed relative treatment effect (e.g. log-odds ratio (LOR)) in study
i = 1,..k with v; its respective within-study variance, uzr the common mean under the FE

model and &; the random error in study i.
Yi = Urg T &
&~N(0,v;)
The summary treatment effect is estimated as

N Z{-‘—l YiWi FE
UFrE SE  wirs (2.1)

where w; ;. = 1/v; is the weight assigned to each study under the FE model.

Under the RE model ugg is the mean of the distribution of the underlying effects, §; is
the difference between the mean pg; and the underlying study-specific mean 9;, and 72 is

the variance of the random effects distribution.
yi=0;t¢
0; = ure + 6;
g~N(0,v;)
8;~N(0,72)

The estimated summary treatment effect fizz is computed as in (2.1) using the weights
under the RE model, w; gz = 1/(v; +72). In the next sections | will use the notation

dre(t?) to denote that the overall treatment effect depends on the estimated heterogeneity.

Both models are structured assuming that the within-study variances, v; are known.
Since v; are only estimated from the observed study data the distributions of the test

statistics discussed in the following sections are only approximated for large v; values.

2.3 Estimating the heterogeneity variance

2.3.1 Properties of a good estimation method

A good estimator should a) be unbiased, and b) have low mean square error (MSE).

Heterogeneity and uncertainty in meta-analysis
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Bias is the difference between the expected value of the estimator (or the mean of the

estimator) and its true value and is given by
Bias(t?) = E(¢?) — 1?2 = E(t%2 — 12).

Negatively or positively biased estimators lead to an under- or over-estimation of the
true heterogeneity variance, respectively. A good estimator should not only be unbiased,
but also remain unaffected as much as possible by sampling fluctuation (efficiency). The
MSE is commonly used as an efficiency measure and represents the squared distance

between the estimator and its true value:
MSE(£2) = E[(#2 — 12)2] = Var(£2) + (Bias(22))’
A N N 2
where Var(t?) = E [(12 — E(1?)) ]

If £2 is an unbiased estimator of 72 (E(£2) = t2), then the variance of this estimator is

bounded as Var(t?) > (IF(TZ))_l under the Cramer-Rao inequality, with I.(7?) the

Fisher information. The efficiency of an unbiased estimator is defined by (43-45):

N (IF(TZ))_l
) =i

A good estimator has e(£2) close to unity, with low variance. The efficiency of an
estimator is measured relative to other estimators and is called ‘relative efficiency’.
Consider for example two estimation methods that yield £Z and 2. If Var(£?) < Var(£3)
then %2 is said to be more efficient than %3, and the relative efficiency, e(#2,%2), of the
two unbiased estimators lies within the interval [0,1]. The relative efficiency e(£%, £2) is
generally defined as:

A2
e(i1,) = oz o

For unbiased estimators MSE (£2) = Var(#?) and the e(£2,£2) simplifies to the ratio of
the two variances. The MSE of the estimator is minimised relative to other estimators.
Good estimators should also have small type | error (rejecting the null hypothesis Hy: 72 =

0 when it is true) and high power (rejecting the null hypothesis when 72 = 0).

Heterogeneity and uncertainty in meta-analysis
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2.3.2 Estimation methods for the heterogeneity variance

DerSimonian and Laird (DL) method
The DL estimator is possibly the most frequently used as it is a closed form and simple
to implement method (31). The DL estimator can be obtained as:

( |

) Q - (k - 1)
75, = max+ 0, % 5
L koo 4=l Wi,FEJ
=1 i,FE k
' Yi=1 WiFE

where Q = Y, w; pg (y; — fpg)?. The estimated values of the heterogeneity might either
be negative setting therefore £3, equal to zero, or might be non-negative keeping the same
non-truncated value. While the method before truncation is unbiased under the
assumptions of the RE model, it has been shown that after truncating negative values to
zero it might produce biased estimators (46,47). Hence, under the assumptions of the RE
model the DL estimator might be positively biased over-estimating the true heterogeneity.
Bias inflates not only due to truncation, but also because weights are calculated from
within-study variances that are assumed fixed and known. As the size and number of
studies included in the meta-analysis decreases and the sampling variances increase the DL
estimator becomes more variable and truncation is more prevalent increasing bias. On the
other hand, as 72 deviates zero the truncation bias decreases since the possibility of finding

a negative £3, decrease.

Although £3, must be positively biased due to truncation, simulation studies suggest
that the DL method performs well for small or close to zero heterogeneity and large k
(21,46). 1t should be noted that the magnitude and direction of bias of the estimator
depends on the selection of the simulation scenarios. A general conclusion from the
published studies is that the estimation method underestimates the true heterogeneity when
it is large and particularly when the size and number of studies is relatively small
(21,35,46,48). This results in poor control of type | error and low coverage probability of
the underlying CIs (25,39,49). The method is associated with lower MSE than the SJ and
PM estimators in meta-analyses where the true heterogeneity is not too large (21). Jackson
et al. (50) suggested that the DL estimator is inefficient when the studies included in the

meta-analysis are of different sizes and particularly for large 2.

Heterogeneity and uncertainty in meta-analysis
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Paule-Mandel (PM) method
Paule and Mandel (32) proposed this method (PM) to estimate 72 by iterating the

generalised Q-statistic

R 2
Qgen = Zi'(=1 Wi,RE(yi - :uRE(TZ)) ~X/%—1 (2.1)

until Q4. equals to its expected value (E(Qgen) =k — 1) (47). The method is also known
as empirical Bayes estimator and has been discussed by Morris (51) with w; gz = 1/(7% +
v;). The process requires at each iteration step non-negative values, otherwise £3,, is set
equal to zero, and guaranties one solution of 75,, (52). When the normality assumption
does not hold it has been shown that the PM method is more robust for the estimation of 72
in contrast to the DL estimator that depends on large studies (52). The method mirrors the
REML estimation when the normality assumption holds (53). Many authors recommend

the use of £3,, because of its good properties (37,48,52).

An empirical study (48) showed that as heterogeneity increases £3,, becomes greater
than £5,. It has been suggested that the PM estimator is nearly unbiased for large number
(k =30) and size (arm sample size larger than 100 participants) of studies, and that
performs best in terms of bias among the DL, REML and PM methods (54). Sidik and
Jonkman (21) noted the methodological similarity between the SJ and PM estimators, and
stated that differences between the two estimates can largely be accounted for by the fact
that the SJ estimator is simplified to two-steps and that yields always positive
heterogeneity estimates. Generally the PM estimator has similar MSE with the SJ method
(21). More specifically when the heterogeneity variance is small the PM estimator has
slightly smaller MSE than the SJ method, whereas for large heterogeneity the PM
estimator has slightly larger MSE than the SJ method. It has been shown that the PM
method upwards bias for small k and 72, whereas for large k and 72 downwards bias
(21,55). Knapp and Hartung (38) in a comparison of the DL, REML and PM methods,
found that the PM estimator is less efficient than the DL and REML methods, and that it

does not perform well for small k.

Maximum Likelihood (ML) method

The ML method is asymptotically efficient but requires an iterative solution (33,34).
Setting the marginal distribution y;~N (u, v; + 72) the estimate £, is produced by the
log-likelihood function

Heterogeneity and uncertainty in meta-analysis
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2y _k _1yk ] 2y _ 1y @i-w?
InL(u,7%) = =2 In(2m) =S¥ In(v; +7°) =2 =1 (o)’

Setting partial derivatives with respect to u and 72 equal to zero and solving the
likelihood equations for the two parameters to be estimated, the ML estimators for u and
72 can be obtained by

k
A an N _ Zi=1WiREYi
Are (Thgy) = ~r .
i=1 Wi,RE

Zi'(=1 WiZ,RE ((Yi - ﬁRE(fI%/IL))Z - vi)

k 2
i=1 WiRE

2, = max< 0,

where w; pg = 1/(v; + T3,). An initial estimate of £y, can be decided a priori as a
plausible value of the heterogeneity variance or it can be estimated with any other
estimator or even it can be set zero. The ML estimates are obtained by iterating both £2,
and figg(t2,) until convergence. Each iteration step requires non-negativity and sets
negative estimated values equal to zero. Instead of the underlying procedure, the
maximisation of the likelihood can be performed using various techniques (e.g. Newton-
Raphson method, the simplex method etc.) with different convergence properties. It should
be noted that likelihood based methods are asymptotically unbiased with variance
approaching the Cramer-Rao lower bound. Hence, when k is large the maximum

likelihood estimators are fully efficient.

Simulation studies suggest that although the ML estimator has lower MSE across all
values of k and 72 than the DL and REML methods, the estimator exhibits a large amount
of negative bias as 72 increases when k and sample size are small to moderate (21,41,46).
Within-study variances v; are assumed to be known which may account for the negative
bias (21). The estimator also assumes effect estimates are normally distributed and there is
currently little evidence to suggest how the ML method performs under non-normal
conditions. It has been shown that the ML method has the smallest MSE in comparison to
the REML, SJ, and PM methods, but exhibits the largest amount of bias among them
(21,41). It is suggested to avoid applying the ML estimator due to substantial bias (46,54).

Heterogeneity and uncertainty in meta-analysis
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Restricted Maximum Likelihood (REML) method
The REML method is a well-known estimation technique and is produced by the log—
likelihood function (51)

2
N _ Kk gk 2y Ly (Yi_ﬁRE(%IZ\/IL)) 1 X 1
InL(7%) = = In(2m) — S X2 In(v; +7°) =2 =1 o) 2 ln( l=1_(vi+12))’

by setting the partial derivative with respect to 72 equal to zero. The REML estimator can

be obtained by:

2
Zi'(=1 Wi%}a)s(()’i‘ﬁRE(ﬁ?EML)) _Ui) 1

) )
Yi=1WiRE Y1 WiRE

y) —
Tremr = Maxio0,

where w; pp = 1/(v; + Tggpn) (21,31). Similarly, to ML method the REML estimator is
calculated by an iterative process that requires non-negativity at each iteration step with a

closed form initial estimate.

Simulation studies suggest that the REML method underestimates 72 especially when
the data is sparse and in such cases should probably be avoided (21,46). Is has been shown
that the method is less downwardly biased than the DL and ML estimators, but has greater
MSE (21,39). Viechtbauer (46) showed that the REML method is the best approach
compared to other methods, including DL and ML estimators, when large studies are
included in the meta-analysis. Knapp and Hartung (38) in a comparison of the DL, REML
and PM methods, found that the REML estimation is more efficient than the DL and PM
methids. Jackson et al. (50) investigated the asymptotic efficiency of the DL, ML and
REML methods and showed that for large 72 the DL and REML estimators are more
efficient. Although most simulation studies have shown that the REML estimation
produces superior results to the DL method, an empirical study including 920 Cochrane
reviews with dichotomous outcome data and meta-analyses including at least three studies
has shown that the magnitude of the REML estimator can be smaller or larger than the DL
method (56).

Sidik-Jonkman (SJ) method
Sidik and Jonkman (35) introduced a non-iterative estimation method of the
heterogeneity variance based on weighted least squares. To obtain the SJ estimator (known

also as model error variance estimator) we first calculate the values §; = 7; + 1 with

Heterogeneity and uncertainty in meta-analysis



15

f; = v;/t2 (assuming 2 # 0) and 2 = ¥¥_, (y; — ¥)? /k. The SJ estimation method can
be derived by setting the quantity ¥, §; 1(yi - ﬁ@,RE)Z equal to its expected value and

obtain
2 1 ok a-1 A 2
Is) =1 i=1G; (J’i - .Uq,RE) ; (2.2)

where 2 is an initial estimate of the heterogeneity variance and A4 rE = Y @i/
k g7t is the weighted random-effects pooled estimate. The method always yields a

positive estimate of the true heterogeneity variance.

The SJ estimator as already mentioned above has methodological similarities with the

PM method. Weights assigned to each study for 5, can be re-expressed as §; = #; + 1 =

£2(v; + 3)71, i.e. random effect weights as in the PM estimator multiplied by the constant

term £§. Thus, if the initial estimate of £, was defined as ¢§ = ¢, in the above equation

for 2§, (2.2), it can be rearranged into the form E(Qgen) = k — 1 which is identical to how
the PM estimator is derived. In practice, the SJ method differs from the PM estimator in

being always positive and non-iterative.

Simulation studies suggest that the SJ estimation method has smaller MSE and
substantially smaller bias than the DL estimator for large values of k and 72, whereas the
opposite occurs when k and 72 are small (35). Simulation studies have also suggested that
the SJ estimation method has the largest bias among the DL, ML, REML, and PM methods
for relatively small values of 72, whereas the magnitude of bias relative to the other
estimators tends to decrease as 72 increases (21,54). For large 72 the SJ and PM methods
are the best estimators in terms of bias according to Sidik and Jonkman (21). In agreement
to most simulation studies, an empirical study (56) showed that the SJ estimator produces

larger values than the DL method.

2.3.3 Assumptions made for the heterogeneity in an NMA model

In a pairwise meta-analysis we can either assume that trials estimate a single underlying
effect size (FE model) or that the study-specific underlying effect sizes are different but
drawn from the same distribution (RE model) with heterogeneity 2. Let 73y be the
heterogeneity in the Y vs. X comparison. Consider the network defined by two triangular
loops, ABC and BCD, informed by AB, AC, BC, BD and CD comparisons. An assumption is

that all studies share the same (fixed) parameter, i.e. there is one true effect size for each

Heterogeneity and uncertainty in meta-analysis
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comparison and all differences in observed effects are due to sampling error with 745 =
Tic = Thc = Thp = Tép =12 =0, where 135, Tic, Tic, Tép, and tép are the
heterogeneity variances in the Bvs. A, Cvs. A, Cvs. B, Bvs. D, and C vs. D comparisons,
respectively. Alternatively, we might assume that the true effect sizes differ implying that
the parameters of the underlying studies follow some distribution. Under the latter
scenario, it is common to assume that heterogeneity is the same for all comparisons being
made Tig = Tac = Tac = Thp = Tép = T2 = T2y, and call it common within-network
heterogeneity (72,,,) assumption. In case each comparison in the network is informed by a
single study t2,,, is set zero. Another assumption would be to allow all comparisons to
have a different amount of the heterogeneity tip # Tic # Tac # Tap # Tép, but the
consistency of NMA structure imposes some implicit constraints on the variances and
covariances of the random effects. Lu and Ades (57) discuss further these issues and
propose an approach to model the heterogeneity structure that is compatible with the
consistency assumptions. Finally, a frequent assumption is the common within-loop
heterogeneity (z,,,) in which all comparisons in a particular loop have the same amount
of heterogeneity; ABC loop: T3g = Tic = Thc = Tisop1, BCD loop: tfc = thp = 1ép =
Tfy0p2- ASSUMing a common within-loop heterogeneity allows comparisons that have been
addressed by only one study to ‘borrow strength’ from the rest of the comparisons included
in the loop. When all comparisons involved in a loop are informed by a single study then
T4,0p €quals zero. It should be noted that t7,,, may be different for the same comparison
when it is involved in different loops. The common within-loop heterogeneity assumption

can be made simultaneously within one analysis and is only reasonable in separate, loop-
specific, analyses (see section 3.5.1).

2.4 Estimating the uncertainty for the summary treatment effect

Apart from estimating the true summary treatment effect using a variety of methods it is
also important to quantify the uncertainty for the estimate, i.e. the CI for u. The CIs
produced by different methods are often compared in terms of a) coverage probability and
b) width.

The coverage probability of a CI for u is the proportion of times the interval comprises
the true overall treatment effect, P(u € CI). A good CI for a certain level of confidence

allows a small ‘room’ for u to vary. The greater the precision of u the narrower the CI. The
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most frequently encountered CIs to quantify the extent of the summary treatment effect are

described below.
2.4.1 Confidence Intervals for the summary treatment effect

Wald-type (Wt) Confidence Intervals
The Wt CI (31) is the most popular technique for establishing CIs for u. Assuming
wire = 1/(v; + t2) and var (figg (%)) = 1/ X w; gg, @ 95% CI is given by

figg(2?) £ 1.96 /Uar(ﬁRE(‘fz))-

The method has coverage probability considerably below 95%, unless a large number of
studies is included in the meta-analysis with a large study size and low or zero
heterogeneity (25,39,49). A simulation study examined the performance of the method
using a variety of estimators, including the DL, REML and SJ methods, and showed that
Wt depends on the estimator employed (25). The method performs poorly for small
samples (k < 16) (50). Normand (58) suggests the use of the method with the REML
estimator so as to take into account the loss in degrees of freedom caused by the estimation

of u.

Knapp-Hartung (KH) Confidence Intervals

The KH method was proposed by Hartung (59) and later discussed by Knapp and
Hartung (38), which relies on a t-distribution with k — 1 degrees of freedom and assumes a
weighted variance of u. Sidik and Jonkman (24) independently developed this approach as

well. Hartung (59) showed that the approximate distribution of the S statistic is

figg(£?) —

S = ~tr—1
’var(ﬁRE(fz))
A YA — —1
where var(ﬂRE(T )) = Qgen (k-1 Z{'c=1Wi,RE

with Qg.n, the generalised Q statistic as defined in (2.1). The approximate 95% CI for u is

fire (T2) £ ty—14/2 /Var(ﬂRE(fz))-
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The method is easy to implement and no iterative computation is required. This test was
proposed by Hartung (59) as it is not influenced by the magnitude of the heterogeneity
variance or the heterogeneity estimator in contrast to the standard test. In agreement,
Makambi (49) showed that KH is robust against changes in the magnitude of 72 and the
selection of estimator. Similarly, Sidik and Jonkman (60) employed different estimators
and showed that the coverage probability of the method is less affected by the estimator
than the Wald-type method. This is in agreement with Knapp and Hartung (38) who
showed that the use of different estimators makes little difference in practice. A simulation
study suggested (25) that the method has good properties with high coverage in general
and that it is insensitive to the number of trials. Higgins and Thompson (11) showed in
simulations that the KH method has more appropriate false positive rates than the standard
normal test. It has been also shown that the approach provides coverage close to the
nominal level (25,60) and that exhibits better control of type | error than the Wt method
with the DL estimator (49). Knapp and Hartung (38) suggested the use of the PM estimator
for the heterogeneity along with the KH method for obtaining CIs for u so as to get a

cohesive approach based on generalised Q.

2.5 Comparison of methods

The estimation of the heterogeneity using a variety of methods may lead to different
conclusions and the selection of an appropriate estimator for 72 is crucial. In this chapter |
show that no estimator is clearly best under all circumstances in terms of both bias and
efficiency. To select the most appropriate estimator one should consider whether a zero
value of heterogeneity is possible, the properties of the various estimators in terms of bias
and efficiency, and ease of application, which gives preference to closed form methods. It
should be also taken into account that the performance of an estimator depends on the
number and size of studies included the meta-analysis, as well as on the magnitude of the
true heterogeneity. Empirical studies have shown that the majority of the pairwise meta-
analyses are informed by less than ten studies (30,61) and that most meta-analyses with
dichotomous outcome data yield 2 < 0.4. In such cases, evidence from simulation studies
shows that the SJ method overestimates 72 (21,54); the ML method is associated with
substantial negative bias (21,54); REML estimation is less downwardly biased than the DL
and ML estimators with greater MSE though (21); and the PM estimator is less
downwardly biased than the DL or REML methods (54). An empirical study (62) showed

Heterogeneity and uncertainty in meta-analysis
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that non-negative methods perform well on average, but produce biased results for meta-
analyses with few studies where positive heterogeneity methods are to be preferred.
Novianti et al (63) compared in a simulation study for sequential meta-analysis among
others the DL, PM, REML and SJ estimators when true heterogeneity is zero and showed
that all methods overestimate 72 with the DL, PM and REML methods having the best
approximation of 2. Thompson and Sharp (41) as well as Viechtbauer (46) in a
comparison of various estimators including the DL, ML, and REML methods concluded
that the REML estimation is the most appropriate technique in terms of bias and efficiency.
Panityakul er al (54) applied a simulation study and suggested that the PM estimator is less
biased than the DL and REML methods. Empirical evidence illustrated that heterogeneity
might vary with different effect measures (22,23,64). It is therefore possible that the
performance of the estimators might differ according to the outcome data. Novianti et al
(63) recommended the use of PM estimators for both dichotomous and continuous
outcome data, while stated that REML for continuous data is a valid alternative as well.
With respect to CIs for the overall treatment effect the KH approach is recommended as
one of the best options. The KH method is the only method that has been suggested that
provides good coverage irrespectively to the heterogeneity and the number of studies
included in the meta-analysis (25,38). However, before these approaches can be
confidently used, a thorough investigation of all available methods for the estimation of 2
and CI for u using realistic scenarios informed by empirical evidence would be necessary
for completeness. A summary of the five heterogeneity estimators and the two methods for

the estimation of the uncertainty for the summary treatment effect is presented in Table 1.

In the following chapters I drop the subscript RE from figzz as every u is estimated in the

random effects model. In case this does not hold I will make this clear.

Heterogeneity and uncertainty in meta-analysis
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Table 1. Overview of the estimators for the heterogeneity (r?) and the methods to estimate the uncertainty of
the overall treatment effect according to simulation studies

Iterative | Positive/ . . .
Method Abpre [Closed Non- Simulation studies suggest that the
viation . method...
form negative

Estimators for the heterogeneity

Method of moments estimators

. . performs well for small or close to zero
DerSimonian Closed Non- 2 .
and Laird DL form neqative | © and large number (= 20) and size
g (= 160) of studies (21,46)
is generally less downwardly biased
than DL, it is easy to calculate, mirrors
Paule and . Non- more computationally intensive
PM Iterative .
Mandel negative | methods (e.g. REML), and does not
require distributional assumptions
(41,47)
Maximum Likelihood estimators
reveals substantial negative bias for
Maximum . Non- large 72 (2 = 0.5) which decreases as
- ML Iterative . . L
likelihood negative | number and size of studies increase
(21,41,46)
Restricted Non- is less downwardly biased than DL and
maximum REML | Iterative necative ML, and bias decreases as number and
likelihood g size of studies increase (21,46)
Model error variance estimator
2 2 >
Sidik and Closed N performs \_Nell for large ¢ (7% = 0_.5),
SJ Positive | but not suitable for small sample sizes
Jonkman form
(< 30) (21,54)
Estimation methods for the uncertainty of the overall treatment effect
Closed performs well for small 72 (t? < 0.5)
Wald-type Wt form - and large number (= 30) and size
(= 40) of studies (25,39,49)
performs well irrespectively the
Knapp- KH Closed i magnitude and estimator for the
Hartung form heterogeneity, as well as the number of
studies (25)
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3. Statistical approaches to evaluate the assumption of

consistency

3.1 Introduction

One of the key advantages of NMA is the appropriate modelling of studies with
multiple arms as all study arms can be included in contrast to pairwise meta-analysis that
forces separate comparisons (see Franchini et al. (65)). The estimates obtained from multi-
arm studies for different comparisons are correlated. Consider for example the three-arm
trial comparing interventions A, B, and C. The AB and AC comparisons use the same data
from participants in A and hence modelling AB and AC treatment effects is sufficient, as
the third contrast (BC) is calculated by the difference of the AB and AC treatment effects.

The NMA technique combines simultaneously both direct comparisons within trials and
indirect comparisons across trials. Before combining the results of direct and indirect
comparisons the extent to which they are in agreement with each other should be
examined. Inconsistency, the statistical disagreement of the information coming from
various sources of evidence, namely direct and indirect, can occur in NMA as the result of
intransitivity or by chance. It should be noted that multi-arm studies are inherently

consistent in an evidence loop, which might complicate the consistency assessment.

Several methodologies to evaluate consistency have been outlined in the literature (for a
review see NICE DSU Technical Support Document 4 (16)). The methods can be broadly
categorised into methods that detect local inconsistency at a specific part of the network
(e.g. a specific loop of evidence) and methods that evaluate global inconsistency for the
entire network (14,15,17,18). Methods in the former category are useful to locate sources
of inconsistency whereas methods in the latter category provide global tests. The
evaluation of inconsistency can be equivalently evaluated in either a Bayesian or a

frequentist setting.

The simplest and most popular statistical approach to evaluate the prevalence of
inconsistency is by contrasting direct and indirect information in a loop of evidence (2).
Investigators should interpret the results carefully as the method is associated with a
number of limitations (3,20). More sophisticated and appropriate approaches have been

presented for complex networks to evaluate local and global inconsistency and a recent
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review highlights their advantages and limitations (14). Dias et al. (15) suggested the node-
splitting approach to identify inconsistency between the evidence provided from direct
studies for a specific treatment comparison and the indirect evidence based on the entire
network after the comparison of interest has been removed. Various models have been
proposed to evaluate consistency in the entire network and to synthesise evidence so as to
reflect the extra variability beyond what is expected by heterogeneity or random error
(14,16). Lu and Ades (66) developed a statistical model to account for random
inconsistency in each closed loop of evidence in the network. The presence of studies with
multiple arms makes the results of the Lu and Ades model sensitive to their
parameterisation, and this prompted Higgins et al.(17) and White et al. (18) to introduce
the idea of design inconsistency and develop models that encompass the potential conflict
between studies including different sets of treatments, named ‘designs’. Krahn et al.(67)
and Jackson et al. (68) have also derived formulae for the Q-statistic and the I? metric for
inconsistency in the entire network. As several of these developments are new, they

haven’t been applied to more than a handful of networks.

3.2 Notation

Consider a network of evidence comprising of S treatments in the set 2 = {A,B,C, ...}
and K studies in total. Each study k = 1, ..., K compares a specific number of treatments
Sk. Studies that compare the same treatments belong to the same design d. Design d refers
to studies with Sy specific treatments in the set Q4 < 2 investigated in Nqy studies and the
network has in total D designs (d = 1,...,D). Let A be the arbitrarily chosen reference
treatment and M an index for any of the S-1 remaining treatments. | set y;, am the
observed effect size (e.g. LOR) of treatment M relative to treatment A in study k and
design d. Let also v, am be the variance of y, , am and piay the parameter for the ‘true’
relative treatment effect of M relative to A. Any parameter p,y that includes treatment A
is named basic parameter and all other parameters are named functional. Under the
assumption of consistency a functional parameter associated with treatment comparison
MX can be expressed via the consistency equation pyx = tax — Uam- 1T consistency does
not hold the functional parameters are subject to loop inconsistency and parameters that
can be estimated in different designs (e.g. uup estimated in AB and ABC studies) are
subject to design inconsistency. Loop inconsistency refers to the difference between direct

(e.0. umx) and indirect (e.g. uax — Ham) €Stimate for the same comparison. Design
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inconsistency refers to the difference in the relative effect of two treatments when this is
estimated in studies with different designs. | will term the amount of disagreement between
different sources of evidence inconsistency factor (IF). The IF parameters included in the
models below might be treated either as random effects assuming they all come from a
common normal distribution IF~N (0, 5?) with o2 the inconsistency variance, or as fixed

effects allowing different sources of evidence to differ by a fixed quantity.

3.3 Consistency model

The consistency (or NMA) model is defined as a multivariate random-effects meta-
analysis. The observed effect size y, , am Of treatment M relative to treatment A of study k

with design d is modelled under the consistency assumption as:

Yakam = Uam t 8axam + €axam (3.1)

The consistency model relies on the transitivity assumption and that the missing arms are
missing at random. Hence, White et al. (69) use the data augmentation technique and
impute data with a very small amount of information for designs that do not include the
reference treatment. The study random errors are normally distributed &4,~N(0, V),
where V. is the within-study variance-covariance matrix assumed to be known. Note that
for a two-arm study k the within-study variance-covariance matrix V; reduces to a 1x1
matrix including the sample variance of study k. In the general case that a study has S,
arms the dimension of V is (S, — 1) X (S, — 1). The study-specific RE are normally
distributed as shown below with T, being the between studies variance-covariance matrix

involving the heterogeneity variance for each treatment comparison:

2 .. 1%)2
6d,k~N 0, Tk = < )

t2/2 .. T1?

I discuss the structure of T}, in section 4.2.3 and the assumptions of the heterogeneity in
2.3.2.
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3.4 Models to evaluate global inconsistency

3.4.1 Design-by-treatment interaction (DBT)

The DBT method evaluates whether a network as a whole demonstrates inconsistency
by employing an extension of multivariate meta-regression that allows for different
treatment effects in studies with different designs (the ‘design-by-treatment interaction
approach’) (17,18). To exemplify the idea of the design-by-treatment interaction approach,
consider a network of evidence constructed from an ABC three-arm trial and an ABCD
four-arm trial. Both ABC and ABCD trials are inherently consistent. However, the two
studies are considered to have different designs and design inconsistency reflects the
possibility that they might give different estimates for the same comparisons the two
studies include (AB, AC and BC).

The inconsistency model is an extension of model (3.1) and is defined as a multivariate

random-effects meta-regression with additional covariates for the different designs:

Yakam = Uam T 1Fgam + Oaxam + Eakam- (3.2)

where [F; oy represents inconsistency in comparison AM for design d, which may
correspond to either design or loop inconsistency. As described in detail elsewhere (17,18)
not all possible IF; A\ covariates are required, since otherwise the model is over-
parameterised. The number of inconsistency factors depends on both the total number of
treatments in the network and the number of treatments in each design, and is defined as
dfper = 2a(Sq—1) — (S —1). The number of inconsistency terms dfpgr is the
difference in the number of parameters between the consistency and inconsistency models.
If any AM comparison can be estimated only via direct evidence and there are no multi-
arm studies involving both A and M treatments then inconsistency cannot be estimated and

I Set IFd,AM = 0
| assess the null hypothesis Hy: IF = 0 the y*-test with df,z; degrees of freedom:
WPBT = IF'S~1IF

where IF is the df,gr X 1 vector comprising the inconsistency terms and X is the dfpgr X
dfppr Vvariance-covariance matrix of 1F. The model accounts for possible correlations in

the likelihood in multi-arm trials and is insensitive to their parameterisation. Note that the
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WPBT statistic is equivalent to the Q-statistic for the evaluation of the assumption of

consistency as presented elsewhere (67).

3.4.2 Luand Ades (LA)

Lu and Ades (66) proposed a special case of the DBT model that accounts for
inconsistency in each loop of the network as long as this loop is not only informed by
multi-arm studies. This is because multi-arm studies are inherently consistent and therefore
loops informed by studies with multiple arms are not expected to show inconsistency. Lu
and Ades (66) implemented their model (LA) in a Bayesian framework assuming random
IF terms. As the LA model does not distinguish between different designs, | drop the
respective subscript. Suppose now MX comparison is included in a closed loop AMX, and
the study k compares all three treatments, then the observed treatment effect yj vx is

modelled as:

YVimx = Hax — Uam T+ Ok am + IFapx + Exam

where [Fyx measures the magnitude of inconsistency in the loop that MX belongs to. Let
N be the number of total distinct comparisons observed in the network and G the number
of functional parameters that indirectly are only estimated by multi-arm trials, then
dfia = N — (S —1) — G are the number of inconsistency factors in the network (see Lu
and Ades (66) for more details). | assess the null hypothesis Hy: IF = 0 using the y-test

with f degrees of freedom:
WA = IF'E~1IF

with X the df; 4 X df; 4 variance-covariance matrix of IF. The model provides a global test
for loop consistency in the entire network. The presence of multi-arm trials though might
complicate the consistency assessment. It is possible that differences in the
parameterisation of the multi-arm studies can yield different values for the IF parameters

with different W4 values and hence different inference on inconsistency.

3.4.3 Q-statistic and 1> measure for evaluating and measuring inconsistency

As in pairwise meta-analysis, one can employ the Q-statistics in NMA to infer about
homogeneity, consistency or both. The total variability in the entire network can be split
into the variation within (Qy..) and between (Q,,.) designs; these refer to heterogeneity

and inconsistency. Krahn et al. (67) used the decomposition of Cochran’s Q-test to
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evaluate the assumptions of consistency and homogeneity in the network. The
decomposition resembles the one used in the study-level subgroups in the context of
pairwise meta-analysis (70). The total network Q-statistic (Qy.;) IS separated into the

heterogeneity statistic (Qy,.;) and the inconsistency statistic (Q,.):

Qnet = Qret + Qunc

Under the homogeneity and consistency assumptions, the global Cochran’s Q-statistic
follows a XﬁfNet distribution with degrees of freedom the number of data points minus the
number of basic parameters (dfyer = Yh_1(Sx — 1) — (S —1)). The Qy, Statistic is
defined as the weighted sum of squared deviations of the observed treatment effects from
the consistent effect estimates. If we stack all observed treatment effects y, , 45 into the
vector y with length ¥X_, (S, — 1) and V is a block diagonal variance-covariance matrix

with blocks V; and fi the S — 1 estimates of the basic parameters, then
Qner = Y —XW)'V'(y — XP)

where X is a YX_,(S, — 1) x (S —1)design matrix that denotes the comparisons
presented in each element of y. The associated test examines whether the total variation
can be compatible with chance. To evaluate the heterogeneity within designs we use the

heterogeneity statistic defined as the sum of the within-design Q-statistics (Q&,;):

D D
Qnet = d_lQIl-iIet = Zd_l(yd — Xal)' V7' (Ya — Xally).

Using the fixed effect consistency model i, represents the (S; — 1) X 1 vector of the
treatment effects estimated in design d with S, treatments. Suppose design d includes K,
studies, then y, is a vector of length [K;(S; — 1)] and X, is the [K;(S; — 1)] X (Sq —
1) design matrix. The variance-covariance matrix V; is a [K;(Sg — 1)] X [K4(Sq — 1)]
block diagonal matrix containing the within-study variances and covariances of the
observed treatment effects included in design d. The Qy,, Statistic has approximately a
XﬁfHet distribution with dfy.. = X5_,(N4 — 1) (S; — 1). The between-designs Q-statistic
for inconsistency is a likelihood-ratio test statistic as shown by Lu et al.(71) and is defined

as
Qune = IF'Z71IF

Statistical approaches to evaluate the assumption of consistency
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where IF is the vector of inconsistency factors estimated from the DBT model and X is
their variance-covariance matrix. Under the consistency assumption the omnibus statistic

for inconsistency has approximately a Xczifosr distribution as the WPBT statistic. Although

Lu et al. (71) have shown that the Q,, statistic can be calculated fitting either FE or RE
model (assuming a common within-design heterogeneity) Rucker et al. recommended to
use the FE model(71) and Krahn et al.(67) suggested that using a FE model within designs
allows for better location of inconsistency.

Multivariate versions of the 12 statistics that can be used to measure both heterogeneity
and inconsistency have been suggested by White et al.(18), Rucker and Guido (72), and
Jackson et al. (68). Jackson et al. (68) defined three different I? statistics that describe
three different sources of variability:

( 1

|Urg,pBT|\2(5-1) . 5
('URE,CONl , defines I},

1
H — U 2(S-1) .
with R = { (1Urzconl , defines I3
|UFE,con| et

1
U 2(s-1) i
|UrE,DBT| , defines 11?1et Inc
\\|UFE,conl| ’

where |U| is the determinant of the estimated variance-covariance matrix of i, the
subscript CON refers to the consistency model, DBT to the inconsistency DBT model and
RE or FE to the random and fixed effects respectively. I?%,. describes the amount of
variability attributed to inconsistency rather than sampling error or heterogeneity, IZ,,
describes the amount of variability attributed to heterogeneity rather than sampling error
and Ife.mc describes the amount of variability attributed to heterogeneity and

inconsistency rather than sampling error.

3.5 Methods to evaluate local inconsistency

3.5.1 Loop-specific (LS) approach
The loop-specific (LS) method evaluates inconsistency in all closed loops of evidence
formed by three or four treatments within each network, by contrasting direct with indirect

estimates of a specific treatment effect. | call ‘triangular loops’ the closed paths involving
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three treatments and ‘quadrilateral loops’ the closed paths involving four treatments.
Bucher et al. (2) described the method in an early paper and I refer to it as the ‘loop-
specific’ approach. The LS method because of its simplicity and of not requiring

specialised software to compute is so far the most commonly applied approach.

Inconsistency can be evaluated as the disagreement between different sources of
evidence within a closed loop. In each network of treatments all triangular and
quadrilateral loops are identified. In each loop we can estimate the treatment effects of all
pairwise comparisons using conventional meta-analysis. As the LS method does not
distinguish between different designs, | drop the respective subscript. Consider for
example the triangular loop ABC formed by treatments A, B, C with available comparisons

AB, AC and BC. In the RE model the observed treatment effect y,, 45 is modeled as:

Yi,AB = MaB T+ Ok aB T EkAB

where &y 45 is a random effect for study k of B relative to A and ¢, 45 is the within-study

sampling error. Similarly, for the other two comparisons in the loop:

Yiac = Hac + Oxac + Exac

YkBc = UBc T+ OkBc t EkBC

To estimate all direct relative effects within the triangular loop ABC | perform a
random-effects meta-analysis for each available comparison. | discuss the assumptions
about the heterogeneity variances in section 2.3.3. Within each available loop, | evaluated
whether the consistency assumption holds. Since in a single loop there may be only one
inconsistency, the IF for the loop ABC is defined as (66,73)

ﬁﬁgc = lfgc — (Aac — Aap)|
with Var(IFxgc) = Var(igc) + Var(fiac) + Var(dap),

| use the ‘LS’ superscript to denote the method in which IF is estimated. The direction
of the estimated IF is irrelevant to the evaluation of inconsistency and only the magnitude
of its absolute value is of interest. | assess the null hypothesis Hy: IFagc = 0 using the z-
test (74):
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TFLS
whs. = —28C __ _N(0,1)

ABC =
. / Var(TF3c

A similar process is followed for all quadrilateral loops formed by four different head-
to-head comparisons. However, if the quadrilateral loop is formed by two or more
triangles, then only the triangles are evaluated. Since a multi-arm study is inherently
consistent in an evidence loop, different parameterizations of its arms causes complications in

the consistency assessment.

3.5.2 Separating one design from the rest (SODR)

The SODR method examines whether a specific design in the network can be
responsible for inconsistency. In particular, the method evaluates whether the effect size
for the same comparison differs when estimated using a particular study design b and other
designs in the network. To estimate inconsistency | ‘detach’ the N, studies of a specific
design b from the network; then | estimate the S, — 1 treatment effects from a) the N,
studies and b) the network without the N, studies assuming consistency. The difference
between the estimates is the magnitude of inconsistency for design b. The SODR method is
a special case of the DBT model that includes only one design inconsistency term IF;°PR
at the time; that corresponds to a vector with S, — 1 elements for the differences between
direct and indirect estimates for the comparisons it includes. If the detached design

includes treatments A, B and C then IF3°PR is the vector (IF; 337, IF;32™).

Consider we want to estimate SODR inconsistency for a specific design b that includes
the comparison AM. The observed treatment effect y, , oM accounting for possible design

inconsistency in b is modelled as

Yajam = Hatn + 8axam + IF5am: + €axam, for designd = b

_b .
Yakam = Ham T O8aram + Eqxam, fordesignd # b

where [F; S0 measures the magnitude of inconsistency for design d = b in comparison

AM. The parameter p;2 is the mean treatment effect of M relative to A that comes from
all available designs except design b whereas uap + IFS a5y is the mean treatment effect

for AM in design b. Note that this is different from the /F term included in the DBT
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approach that models inconsistency simultaneously for all designs. The number of
inconsistency factors included in the model depends on the number of treatments in the
detached design and is defined as dfsopr = S, — 1, with df denoting the degrees of
freedom. Note that dfs,pr Might be different for different designs.

In Table 2 | provide an illustrative example considering a network of three different sets
of studies: AB, ABC, and ABCD studies. Setting A the reference the possible SODR
inconsistencies are: design AB dfsopr = 1 (IFi5As), design ABC dfsopr = 2 (IFie¢ s
IF35eRc), and design ABCD dfsopr = 3 (IFzsepap [Fasepacs [Fascoap)- Note that

IF 068 ap is not estimable as no AD studies are available, so it should be omitted.

For each design d = b under the null hypothesis is Hy: IF;°°® = 0 an approximate test

can be obtained using the y*-test with p degrees of freedom as:
WbSODR — IFgODRlz—llFEODR

with ¥ the p X p variance-covariance matrix of IF3°PR. Note that SODR approach
accounts for possible correlations in the likelihood in studies with multiple arms and is

insensitive to their parameterisation.

Table 2. Consistency model and SODR method. Inconsistency is evaluated for designs AB, ABC and ABCD
using the SODR method. In all cases A is the reference treatment.

Study Type of study Model study-specific treatment effects

Consistency Model

1 AB YaB1,AB = HMaB + 0aB1,AB T €AB1,AB
ABC,2,AB ) EABC,2,AB
9 ABC (3’ C2, ) _ (.uAB) +( ABC,Z,AB) +( C2, )
YABC,2,AC Hac OABC2.AC €ABC,2,AC
YABCD,3,AB UaB 8aBCD,3,AB €ABCD,3,AB
3 ABCD YaBcp3AC | = | Hac |+ | SaBcp3ac |+ | €aBcD3AC
YABCD,3,AD HAD 8ABCD 3,AD €ABCD,3,AD
Separating design AB
_ ,,—AB SODR
1 AB YaB1,AB = Uap + 0aB1,aB T [F 5 AR + €aB1,AB
YABC,2,AB Hag® 8aBC,2,AB €ABC,2,AB
2 ABC =" + +
YABC,2,AC UxB OABC2.AC €ABC,2,AC
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—AB
YABCD,3,AB UaB 8aBCD,3,AB €ABCD,3,AB
3 ABCD YaBcp3Aac | = | uald® |+ | dascpsac | + | €aBcp3Ac
YABCD,3,AD L AB SABCD 3,AD €ABCD,3,AD
Separating design ABC
_ ,—ABC
1 AB YaB1,AB = Hap ~ + 0aB1,AB t €AB1,AB
—ABC SODR
YABC,2,AB UaB 0aBC,2,AB IFj5c AB
YaBczac/ — \ ,TABC + o) + JFSODR +
2 ABC o Hac ABC,2,AC 'ABC,AC
(fABc,z,AB)
€ABC,2,AC
—ABC
YABCD,3,AB HUaB 8aBCD,3,AB €ABCD,3,AB
3 ABCD YaBcp3Aac | = | uafBC | + | Sacpzac |+ | €aBcp3Ac
YABCD,3,AD Lz BBC 0ABCD3,AD €ABCD,3,AD
Separating design ABCD
_ . —ABCD
1 AB YAB,1,AB = HAB + 6aB,1,AB t €AB,1,AB
—ABCD
YABC,2,AB UaR 8aBC,2,AB €ABC,2,AB
2 ABC = Zagep | T s + ¢
YABC,2,AC Une ABC,2,AC ABC,2,AC
YABCD,3,AB
YABCD,3,AC | =
YABCD,3,AD
—ABCD SODR
3 ABCD UaB 6ABCD,3,AB IFgpcp,aB €ABCD,3,AB
- SODR
,uAéBCD + | daBcp3ac |+ IFjgcpac |+ | €ABCD3AC
—ABCD S SODR €ABCD,3,AD
HaD ABCD,3,AD IFpcp,ap

3.5.3 Separating indirect and direct evidence (SIDE)

The SIDE method has been presented and implemented in a Bayesian framework by
Dias et al. (15) with the name ‘node-splitting’. The method examines whether a particular
comparison might be associated with inconsistency, by separating the information of each
network estimate into two distinct parts: the direct and the indirect evidence. The same
process is repeated for all comparisons included in the network. Note that only
comparisons that belong to closed loops are susceptible for inconsistency in the SIDE
method. Suppose we want to separate comparison AX that belongs to at least one closed
loop. The observed treatment effect y, 4y accounting for possible inconsistency between

direct and indirect evidence for the AX comparison is modelled as
VieaM = Hans + Seam + IFAPE + & am, if study k includes A and M

VieaM = Manis + Seam + Exam If study k does not include M
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The parameter of interest 1F35°% measures the magnitude of inconsistency between the

direct and indirect evidence for the comparison AX. | will call a comparison ‘inconsistent’
when the direct evidence disagrees with that of the remaining network beyond chance. The
model above can also be seen as a special case of the LA model (and hence special case of

DBT) where only one IF term is estimated at a time. For each comparison AX under the

null hypothesis Hy: IF3:°F = 0 the approximate test can be obtained using the z-test:
TFSIDE
WiH = —=——=~N(0,1)

/VTir(ng{(DE

Note that if AX is part of a multi-arm study IF%P would be deferent depending on the
parameterization of the multi-arm studies. This will be illustrated by a simple example.
Consider one AB, one ABC and one AC study, as shown in Table 3 and let AB
comparison be separated. The choice of the reference treatment in this dataset determines
which comparisons from the three-arm study ABC will feature in the data. Let A be the
reference treatment then ABC study will contribute with y, »g and y, 5¢. There is no direct
evidence on the BC comparison, ug2® is not directly estimable and therefore inconsistency
IFJIPE is not identifiable in this case. If we choose B to be the reference treatment then
ABC study will contribute with y,g, and y,gc. Now we have all three comparisons

SIDE

informed directly and hence inconsistency IFg, " is identifiable. If BC studies were

present, inconsistency would be identifiable in both parameterisations but its estimates
would be different because the multi-arm study would provide information to only uz&8 or

only uz&# depending on the reference treatment.

Table 3. Evaluation of inconsistency for comparison AB using the SIDE method.

Study Type of study Model study-specific treatment effects

Reference Treatment A (parameterisation 1)

1 AB V1B = Hag® + O1a8 + IFAE + & B
~AB b} SIDE
Gine) = (1) (srae) + (787 +
2 ABC ' Hac 2,AB 0
(Sz,AB)
€2 AB
3 AC Vaac = Hac® + 83ac + €3ac
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with pag" + IFAR" = uag” — uye”

Reference Treatment B (parameterisation 2)

1 AB yiBa = Uga" + O1pa + IF3AE + &1 g
~BA ) SIDE

Gne) = (i) (sroe) + (787 +
2 ABC 2 UBC 2,BC 0

(52,BA)

€2,BC

3 AC = U8B 4 83 0c+ €

¥3,Aac = Hac 3,AC 3,AC

with pgi® + IFgi’* = ppe® — uad®

3.6 Comparison of approaches to evaluate inconsistency

One of the drawbacks of the LS method is that inferences in loops are not independent,
because different loops of the network share the same studies. To overcome this, Caldwell
et al.(75) introduced a chi-squared test for the special case that all loops in the network
share a single comparison. However, this can be applied only to specific parts of the
network, and again yields multiple tests if all pieces of the network need to be tested.
Another drawback of the LS approach is that indirect evidence is restricted to the
information provided from a single loop. It is preferable to compare the direct evidence
with the indirect estimate from the entire network, as is the approach taken in the SIDE
method proposed by Dias et al.(15). All three methods outlined above are sensitive to the
parameterization of multi-arm studies, and do not offer obvious ways to infer about
network consistency. The only method to identify local inconsistency that is insensitive to
the studies with multiple arms is the SODR method by Veroniki et al. (76). Among all the
methods, LS is to date the most popular approach to evaluate inconsistency (6).

When NMA is applied within a Bayesian framework, investigators often contrast
models with and without the consistency constraints with respect to fit and parsimony (77).
This provides a global test for the plausibility of consistency in the entire network, but
inferences are again sensitive to the parameterization of multi-arm studies. The DBT
model is the only model that provides an omnibus test, can be fit in a frequentist setting
and provides results insensitive to the parameterisation of multi-arm studies (17,18).
Models that do not account for design inconsistency (e.g. LA (66) and the one presented by

Lumley (78)) are special cases of the DBT model.
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4. Evaluation of inconsistency in networks of interventions

4.1 Introduction

The assessment of the consistency assumption is vital to ensure that the NMA results
are valid and interpreted appropriately. The need to define the levels of inconsistency in
real life data led empirical studies to examine the prevalence of inconsistency between
direct and indirect comparisons. Song et al.(29) carried out an empirical study applying the
Bucher method and assuming different heterogeneity parameters in every comparison
within each loop. They evaluated inconsistency in 112 loops of evidence formed by studies
comparing pairs of three treatments and concluded that inconsistency was prevalent in 14%
of the networks (29). In a response to comments on their article, Song et al. (79)
alternatively assumed that all comparisons within each triangular loop share the same
amount of heterogeneity and they observed that inconsistency was reduced to 12%. A
recent analysis of 94 three-treatment networks in Cochrane Reviews found statistically
significant inconsistency in 17% of the networks (19). However, no empirical evidence
exists so far regarding the prevalence of inconsistency in more complex networks,
primarily because no omnibus test was available until recently to evaluate the assumption
of consistency in a network as a whole. A general model to detect inconsistency has been
proposed, and called design-by-treatment interaction model (18) (see section 3.4.1).
Inconsistency can be viewed not only as the disagreement between direct and indirect
estimates in a loop, but also as the disagreement between studies involving different sets of

treatments.

In a network of trials the detection of inconsistency can be hampered by the presence of
heterogeneity. Large heterogeneity impacts on the uncertainty of the mean effect sizes, and
hence statistical inconsistency is less likely to be detected. The estimation of the
heterogeneity variance can vary using different methods (e.g. DL, REML (21)), which
subsequently affects the ability to detect inconsistency. Assumptions about the
heterogeneity being the same in different parts of the network or the same in the entire
network may similarly impact on the detection of inconsistency. However, as factors that
cause heterogeneity can also cause inconsistency, complete separation of the two is not
always possible. In summary, large heterogeneity increases the chances of inconsistency

being present, but decreases the chances of detecting it.
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Both the presence and the detection of inconsistency may be affected by the use of
different effect measures. Empirical studies have shown that ratio measures (odds ratio
(OR) and risk ratio (RR)) are less heterogeneous than absolute effect measures (such as
risk difference) and that the risk ratio for adverse outcomes is less likely to be
heterogeneous than that for beneficial outcomes (22,23). These differences depend on the
extent of variation in baseline risk across studies. If baseline risks are substantially
different in different parts of a loop, then the underlying inconsistency may be greater for
some effect measures than others; if baseline risks vary substantially within each
comparison, then more or less heterogeneity may be present, depending on the effect
measure. Caldwell et al. have also considered the choice of different effect measures in
network meta-analysis and concluded that the choice of measure should be based on
physiological understanding of the outcome and, if possible, after considering the model fit
(13,80).

The aim of this chapter is to evaluate empirically the prevalence of inconsistency in
published networks of interventions that compare at least four treatments, and to examine
the extent to which this is acknowledged by the authors of the NMAs. | further aim to
investigate the statistical considerations that might influence the statistical detection of
inconsistency in these complex networks of evidence. | also explore whether different
effect measures for dichotomous outcome data are associated with differences in
inconsistency, and whether different ways to estimate heterogeneity impact upon the
magnitude and detection of inconsistency. | explore the role of factors that may impact on
inferences about inconsistency in a simple loop of evidence for a dichotomous outcome.
The factors that | explore are associated with the amount of data available in the loop (such
as number, size and distribution of trials across comparisons, frequency of events), the
heterogeneity variance in the pairwise comparisons (presence or absence and estimation
method) and the method for inference about pairwise summary effects (Wt or KH). |
conduct a simulation study considering realistic scenarios and | evaluate the performance
of the test for the assumption of consistency. | select the simulation scenarios relying on

empirical findings (13,30).

Statistical approaches to evaluate the assumption of consistency
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4.2 Empirical study

4.2.1 Searching for network meta-analyses and data extraction

I searched in PubMed for research articles including networks with at least four
treatments and dichotomous primary outcomes. | searched for articles published between
March 1997 and February 2011 in which any form of indirect comparison was applied,
according to their titles or abstracts. | used the search code:

(network OR mixed treatment* OR multiple treatment* OR mixed
comparison* OR indirect comparison* OR umbrella OR simultaneous

comparison*) AND (meta-analysis)

In case | identified two or more networks on the same topic, I included only one in the
dataset and preferred to the larger one. | extracted data regarding the year of publication,
the methods applied for the indirect comparison, the number of trials and the number of
arms of each study, as well as the total number of interventions involved in each network.
From each network | extracted data for the primary outcome (as stated in the text or, if this
was unclear, defined as the first outcome presented). | preferred data presented in 2 x 2
tables rather than as effect sizes with their measure of uncertainty, when both formats were
reported. The extracted data include the name of each trial, as well as the number of
events, the sample size and the treatment in every arm of each trial included in the

network.

Two review authors (Areti Angeliki Veroniki and Georgia Salanti) independently
assessed each article for the evaluation of the assumption of consistency. Differences in
assessment results were discussed. For each network we extracted the statistical methods
used by the original authors to evaluate consistency. We considered inappropriate methods
a) the comparison of network estimates with the direct estimates, b) the informal
comparison of the results with previously conducted meta-analyses, and c¢) the informal

comparison of indirect estimates with the direct estimates.

4.2.2 Effect measures

I considered four effect measures for dichotomous outcomes: the OR, the risk difference
(RD), the risk ratio of beneficial outcomes (RRB) and the risk ratio for harmful outcomes
(RRH). The LS and DBT approaches were applied with OR, RRH, RRB, and RD

measures, whereas SIDE, SODR and LA approaches were applied using the OR scale.

Evaluation of inconsistency in networks of interventions
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4.2.3 Estimation of the heterogeneity
I made assumptions about the heterogeneity variances, and | address first the LS

approach. | used both common within-loop heterogeneity, leoopi and common within-

network heterogeneity, t2,,,, as already described in 2.3.3 section. In the DBT model |
assume that all comparisons in the network share the same heterogeneity variance t2,,,.
Suppose the total number of treatments included in a study k is Sy, the variance-covariance

matrix for the random effects has (S, — 1) X (S — 1) dimension and is given by

1 .. 1/2
1/2 .. 1

If the k™ study is a two-arm study then the between studies variance-covariance matrix

reduces to T, = 72,,,.

In general, when the number of studies included in the meta-analysis is large, the
heterogeneity parameter is more precisely estimated (70). Therefore, it is likely that £2,,, is
more precise than flzoop. Assuming a common heterogeneity variance impacts also on the

precision of the summary effects, and consequently on power for detecting inconsistency.
For example, it is possible that the heterogeneity in a specific loop ABC is smaller than the
heterogeneity in the rest of the network. Assuming the same heterogeneity in the network
will then decrease precision for the summary estimates of the ABC loop and may therefore
decrease the power to detect inconsistency. Similarly, assuming common within-network
heterogeneity introduces heterogeneity in loops involving comparisons informed by a
single study, decreasing the chance of identifying the presence of inconsistency. Although
the assumption of the common within-network heterogeneity can underestimate the
prevalence of substantial inconsistency, it allows for a more accurate representation of how
the effects are combined in a network meta-analysis. On the contrary, it is possible that the
common within-network heterogeneity increases precision for the summary estimates if the
heterogeneity in a specific loop is bigger than the heterogeneity in the rest of the network,

and hence statistical inconsistency can be evident.

| estimated inconsistency in a frequentist setting, where the heterogeneity 72 can be
estimated by a variety of methods. The performance of the different estimators can differ

in terms of bias and MSE, and they can over- or under-estimate the true heterogeneity

Statistical approaches to evaluate the assumption of consistency



39

variance (see section 2.3.1). As heterogeneity may affect the estimation of inconsistency, |
evaluated inconsistency using different estimators of 72. | applied the different estimation
methods using the OR effect measure. In the LS approach I used the DL (31), REML (51)
and SJ (35) methods. | included the DL method because it is the most popular estimator in
random-effects meta-analysis and is the default estimator in many meta-analysis’ software
(e.g. RevMan). | used the frequently applied REML method and the less popular SJ
estimator because they are associated with large differences in their properties. In the DBT,
SODR, SIDE and LA approaches only the DL, ML and REML estimators of the
heterogeneity are available. | applied the ML and REML methods in DBT model, since the
DL method is not appropriate when the augmentation technique is applied (18). For the
LA, SIDE and SODR | selected the REML method relying on simulation studies that
suggest the REML estimation as it performs better in terms of bias than the DL and ML

estimators (see section 2.3).

4.2.4 Comparison of the approaches for the evaluation of inconsistency and model
fit

For each network | estimated global inconsistency using the LA and DBT models and
local inconsistency using LS, SIDE and SODR methods using the RE model. Total

inconsistency and heterogeneity were also measured using I2.

The DBT model estimates inconsistency in the entire network, whereas the LS approach
evaluates each loop separately. It is therefore impossible to infer about the level of
agreement between the two methods. I arbitrarily considered a network to be inconsistent
under the loop-specific approach if at least 5% of its loops are inconsistent in order to

describe the comparative performance of the two methods.

Loop inconsistency refers to a difference between direct and indirect estimates for the
same comparison. However, the presence of multi-arm trials in a network of evidence
complicates the evaluation of loop inconsistency, since loops formed within multi-arm
trials are necessarily consistent. Consider for example a network comprising some AB
studies, some AC studies and some three-arm ABC studies. Note that only two of the three
possible treatment effects are sufficient to fully specify the results of the three-arm studies.
If the two effects include the BC comparison, then loop inconsistency might be observed

by contrasting it with an indirect estimate constructed from the other two groups of studies.
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On the other hand, if the two effects from the three-arm studies are AB and AC, then an
evaluation of inconsistency would not take place. I therefore exclude the comparison that is
most frequent within the loop and evaluate loop inconsistency in the LS method. This can
impact on the summary treatment effects though and hence on the evaluation of
inconsistency for a network with many multi-arm studies. The LA and SIDE approaches
are sensitive to the parameterisations of the multi-arm studies too. For LA and SIDE
approaches | examined all possible parameterisations to account for differences in the
results. In the LA model | considered a network inconsistent when it was found
inconsistent with at least one parameterisation. Similarly, in SIDE approach | considered
that a comparison is associated with inconsistency when it disagreed with the remaining
network in at least one parameterisation of the multi-arm studies. Among the different
W4 test values that appeared using different parameterisations of the multi-arm trials |
used the maximum W4, When estimating the heterogeneity in LA model | obtained a
range of values that resulted from all possible parameterisations for the multi-arm trials. In
all approaches | used fixed IF terms because there are often too few inconsistency
parameters to get a reliable estimate for the inconsistency variance o2. Note that the IF is
the logarithm of the ratio of odds ratios (ROR) from the two different sources of evidence
for the same comparison, i.e. ROR = exp(|IF|). When there is no evidence for

inconsistency the ROR is close to the unity.

I implemented LS method in software R 2.13.2 using the self-programmed routine
ifplot.fun, which is available online (in http://www.mtm.uoi.gr/ under ‘How to do an
MTM”). The four approaches LA, DBT, SODR, SIDE and I? measure were carried out in

software STATA using the mvmeta (69) command.

4.2.5 Description of database

The search initially identified 817 relevant articles and after the screening process |
ended up with 40 different networks. The full process is shown in the flow chart in Figure
1.

The original authors evaluated the assumption of inconsistency using appropriate
statistical methodology in 15 (38%) networks. Out of these 15 networks, inconsistency for
at least one comparison in the analysis was reported in 10 (67%). The most prevalent
method (18%) of evaluating inconsistency was the LS approach. A large proportion of

Statistical approaches to evaluate the assumption of consistency
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investigators (23%) seemed to be aware of the consistency assumption but used

inappropriate methods to evaluate it, such as comparisons of direct and network estimates

564 excluded:
no treatments
2 treatments
no indirect comparisons
discussing/commentary papers

138 included in database
(12 triangles. 44 star networks. 82 networks )

1 not meta-analysis l

(see Appendix Table 1).

817 abstracts
identified in
PubMed

253 full articles

115 excluded:
11 discussing/comments
letters/case series
66 no indirect comparisons
13 studies < nr of treatments

3 indirect in the naive
4 methodological. 10 not only RCTs [

2 diagnostics. 1 genetic

4 unclear comparisons

46 networks with
dichotomous data
(in the form of 2X2 table)

4 excluded:
no available data

42 networks with

dichotomous data

2 excluded:
duplicates

40 different networks with

dichotomous data

Figure 1. Flow chart of the process of selecting network meta-analysis articles

Twenty-five (63%) networks used OR, 13 (33%) used RR, one (2%) used all of the
three OR, RR and RD, and one (2%) used a hazard ratio. In only seven publications (18%)
the authors explain their choice of effect measure. Most networks had a subjective primary
outcome (43%), whereas 35% and 22% of the networks had semi-objective (e.g. cause-
specific mortality, major morbidity event etc.) and all-cause mortality outcomes

respectively.

The median number of studies per network is 23, ranging from 9 to 111. The median
number of trials per loop is 8 and the median loop sample size is 2196; the respective
median number of trials and sample size per comparison are 2 and 706. The number of
treatments compared ranged from 4 to 17 with a median of 6. The majority of the networks
(63%) compared pharmacological interventions vs. placebo. Multi-arm trials were included
in most networks (34 networks, 85%). Thirty-three networks included three-arm trials and
nine included four-arm trials. The number of included three-arm trials per network ranged
from 0 to 12, whereas the number of included four-arm trials ranged from O to 6. The total

number of loops obtained from the 40 networks is 303 and ranged from 1 to 70 per
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network. The characteristics of these networks are described in detail in Appendix Table 2.
The 40 relevant NMAs included 348 different comparisons and 362 different designs. Out
of the 362 designs 287 were designs including two-arm studies Each network included
between one and 42 comparisons that could be separated to estimate SIDE inconsistency
(median 10), and each comparison included between 1 and 47 studies (median 2). The
median number of designs per network where inconsistency can be evaluated was 8 and
ranged from 2 to 43, and each design was informed from 1 to 45 (median 1) studies. Most
networks included at least one comparison (36 networks, 90%) or at least one design (37
networks, 93%) informed by a single study. In one network (66) the only present loop was
informed by less than three independent comparisons and consequently the LA and SIDE

approaches were not applicable.
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Figure 2. Histograms for the 40 published networks of evidence: a) the within-loop heterogeneity (%), b) the
mean treatment effect in the absolute log odds-ratio scale (|[LOR|), and c¢) the number of trials (K) per meta-
analysis Heterogeneity is estimated with the DerSimonian and Laird method.

In Figure 2 | summarise some of the attributes of the 303 loops of 40 published
networks of interventions using the LOR scale. The majority of the pairwise meta-analyses

(93%) included fewer than ten trials, and the median |[LOR| was 0.32 with interquartile
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range (IQR) (0.13, 0.75). In 91% of the loops the rlzoop using the DL estimator is estimated

less than 0.5 and zero in 51% of the loops.
4.2.6 Models to evaluate global Inconsistency

Design-by-treatment interaction (DBT) model

In the DBT model the ML Wald tests for analyses of OR vyielded 8 inconsistent
networks out of the 40 networks (20%), whereas 11 (28%) of the networks were found to
display inconsistency when analysed using each of the three effect measures RRH, RRB
and RD (all pairwise comparisons between OR vs. RRH, RRB or RD for inconsistent
networks with the ML estimator using the McNemar test produced P = 0.371). The REML
Wald test indicated 5 (13%), 6 (15%), 7 (17%) and 5 (13%) inconsistent networks using
the OR, RRH, RRB and RD, respectively (all pairwise comparisons between OR vs. RRH
or RD for inconsistent networks with the REML estimator using the McNemar test
produced P = 1, whereas OR vs. RRB produced P = 0.617) (see Table 4 and Table 5).

Table 4. Number of consistent networks that become inconsistent when changing from one effect size to
another and vice versa, in the design-by-treatment interaction model and the restricted maximum likelihood
(REML) and maximum likelihood (ML) estimators of the heterogeneity. RD: risk difference measure, RRH:
risk ratio for harmful outcomes, RRB: risk ratio for beneficial outcomes, OR: odds ratio, C: consistent, I:
inconsistent

IFPBT estimated with ML

(o)
RRH RRB RD %6 of 40
networks
C | C | C |
Consistent 28 4 28 4 28 4 80%
S Inconsistent 1 7 1 7 1 7 20%
0,
% of 40 72% 28% 72% 28% 72% 28%
networks
IFPBTgstimated with REML
(o)
RRH RRB RD /6 of 40
networks
C | C | C |
Consistent 33 2 32 3 32 3 87%
S Inconsistent 1 4 1 4 3 2 13%
0,
% of 40 85% 15% 83% 17% 87% 13%
networks

Comparing the REML with the ML method, the former yielded fewer inconsistent
networks (13% to 17% depending on effect measure) than the latter (20% to 28%
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depending on effect measure), but there were no important differences (McNemar test
under the comparison of ML estimator versus the REML estimator; OR: P = 0.248, RRH.:
P = 0.074, RRB: P = 0.1336, RD: P = 0.041) (see Table 5). This is probably because the
ML method estimated slightly smaller values of the heterogeneity variance than the REML
in almost all networks and all effect sizes.

Table 5. Number of consistent networks that become Inconsistent and vice versa, when heterogeneity is
estimated with maximum likelihood (ML) or the restricted maximum likelihood (REML) method.
Inconsistency is investigated with the design-by-treatment interaction (DBT) model for all four effect sizes.

RD: risk difference measure, RRH: risk ratio for harmful outcomes, RRB: risk ratio for beneficial outcomes,
OR: odds ratio

IFPBT gstimated with ML
OR
Consistent Inconsistent % of 40 networks
Consistent 32 3 87%
N § Inconsistent 0 5 13%
> % of 40 networks 80% 20%
o RRH
= = Consistent 29 5 85%
= & Inconsistent 0 6 15%
B = " % of 40 networks 2% 28%
& RRB
§ - Consistent 29 4 83%
= 2‘: Inconsistent 0 7 17%
& % of 40 networks 72% 28%
= RD
Consistent 29 6 87%
a Inconsistent 0 5 13%
% of 40 networks 2% 28%

In Figure 3a and Figure 3b | present the heterogeneity estimates using ML and REML
methods in consistency (T&on) model against the DBT (Z5gt) model. Results are presented
on the OR effect measure. On average the consistency models display higher heterogeneity
than the DBT models, accounting probably for inconsistency in the data. Figure 3c shows
the differences in v/# values between DBT and consistency models estimated with REML
method and the OR. The consistency model yielded higher heterogeneity values in 26
(65%) networks compared to the DBT model with a mean relative change (mean((£3gt —
téon)/mean(t3pr, téon))) —0.71. The fact that the consistency model often yielded

higher heterogeneity estimates than the inconsistency model might indicate that the extra
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variability due to possible inconsistency in the former model is captured in the
heterogeneity. Large relative drops in heterogeneity can be seen as an alternative approach
to detect inconsistency. In Figure 3d | depict the relative change between consistency and
DBT model against the squared root of the P values for the inconsistency parameters
estimated in DBT model using the REML estimator and OR. The larger the heterogeneity

in the consistency model compared to Tpgr the more chances to find an inconsistent

network.
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Figure 3. Plot of heterogeneity estimates (£2) with maximum likelihood (ML) (panel a) and restricted
maximum likelihood (REML) (panel b) from the consistency (CON) model against heterogeneity estimates
from the design-by-treatment interaction (DBT) model along with the equality line. c) Bar plot of the
difference in the square root of the estimated heterogeneity standard deviation between consistency and DBT
model. Negative values show greater heterogeneity in CON model, whereas positive values show greater
heterogeneity in DBT model. Star points show the networks that were found inconsistent in DBT model
using REML method. b) Plot of the squared root of the P values of the inconsistency estimated in DBT
model against the relative change of the square root of the heterogeneity in the DBT model from the CON
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model. The horizontal blue dashed line represents the cut-off value P = 0.05. Note that 15 networks with
Tcon = 0 could not be presented in the plot. All plots are presented on the odds ratio scale.

For fourteen networks (35%) | could not find any indication in the published articles
that the authors evaluated the assumption of consistency. Four out of these networks were
found to be inconsistent when | applied the DBT model using the REML method and the
OR scale. A cause of concern is that one in three of the meta-analysis authors did not
examine consistency since conclusions from NMA may not be valid when the consistency

assumption does not hold.

Lu and Ades (LA) model

I applied the LA model in 39 networks in total. Inconsistency was prevalent in
maximum 7 (18%) networks when | applied different parameterisations of the multi-arm
studies (see also Appendix Table 8). A different parameterisation of the studies with
multiple arms impacts on the inference about inconsistency and the impact is more
pronounced when the network includes loops with comparisons informed by single studies
(e.g. network of Imamura (81), Elliott (82)). Different parameterisation of the multi-arm
studies impacts also on the estimation of heterogeneity in the LA model and | selected the
maximum Z{ 4 value (see the spread in the box plots presented in Figure 9). There is a large
variation in the estimation of 7;, though when the multi-arm studies are differently
parameterised. A large variability in the network might be expressed -either as
inconsistency or as heterogeneity when parameterising the multi-arm studies differently.
For example, in one parameterisation the network by Salliot 2011 (83) is suggested
consistent with 7, 4 = 0.14, whereas in another parameterisation the network is suggested

inconsistent with 7; 4, = 0.00 (see Figure 9).
4.2.7 Methods to evaluate local Inconsistency
Loop-specific (LS) method

Inconsistency using different effect measures for dichotomous data

Out of the total 303 loops identified in the 40 networks, 23 were found to be
inconsistent (8%) when analysed with OR, 26 (9%) with RRH, 29 (10%) with RRB and 29
(10%) as RD, for common within-loop heterogeneity (%;,,,) estimated using the DL
method. Table 6 provides these results along with results under the assumption of common

within-network heterogeneity (£2,,). Changing effect size when using flzoop, some
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consistent loops became inconsistent and vice versa. These changes were more often
observed between OR vs. RD and OR vs. RRB. Eleven (4%) consistent loops with OR
changed to inconsistent with RD, whereas 5 (2%) loops that deviate from consistency
using OR changed to consistent when RD was employed (see Table 6). The percentage of
inconsistent loops was comparable across the four effect measures (McNemar test when
f,0p Was used; OR vs. RRH: P = 0.505, OR vs. RRB: P =0.239, OR vs. RD: P = 0.211).
In Appendix Table 3 | provide the inconsistency estimates in all four scales for all loops,
along with their standard errors and WLS values.

Table 6. Number of consistent (C) and inconsistent (1) loops using different effect measures and assumptions

for the heterogeneity. | assume either common within-loop heterogeneity (£;,,) estimated with DerSimonian
and Laird method and network heterogeneity (7;,,) estimated with restricted maximum likelihood method.

IFS estimated with 2,,,,
0,
RRH RRB RD /°| of 303
00ps
C | C | C |
Consistent 274 6 268 12 269 11 92%
OR Inconsistent 3 20 6 17 5 18 8%
% of 303 loops  91% 9% 91% 9% 91% 9%
IF™S estimated with %2,
0,
RRH RRB RD /°| of 303
00ps
C | C | C |
Consistent 283 3 278 8 278 8 94%
OR Inconsistent 2 15 7 10 9 8 6%
% of 303 loops  94% 6% 94% 6% 95% 5%

The 40 network dataset included 203 loops with at least one comparison being informed
by a single study. Inconsistency was more likely to be found in these loops. For example,
in the network of Elliot (82) I identified two inconsistent loops using the OR scale, which
share the same comparison including only one study. It is possible that in such cases
inconsistency is introduced by this particular study. Of the 203 loops 19 (9%) were found
to be inconsistent with OR, whereas from the 100 remaining loops with comparisons
including two or more studies only 4 (4%) were inconsistent (P = 0.154). The respective

percentages of inconsistent loops for the other scales were 18 (9%) vs. 8 (8%) (P = 0.972)
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with RRH, 21 (10%) vs.8 (8%) (P =0.657) with RRB and 20 (10%) vs. 9 (9%) (P =0.977)
with RD.

A similar picture was observed assuming a common within-network heterogeneity
(£2,,,), although the total inconsistency rate dropped. Out of the 303 loops, | detected 16
(5%) inconsistent loops with OR, 19 (6%) with RRH, 18 (6%) with RRB and 16 (5%) with
RD (see Table 6). In Appendix Table 4 | provide the inconsistency estimates using the four
effect measures for all loops along with their standard errors and WS values. Again, there
were no important differences in inconsistency between the four effect measures
(McNemar test when £2,,, was used; OR vs. RRH: P = 0.371, OR vs. RRB: P = 0.789, OR
VS. RD: P =1).

Table 7. Number of consistent loops that become inconsistent in the loop-specific method (LS) when
applying the common within-loop heterogeneity (%,,,)) estimated with the DerSimonian and Laird method
and network heterogeneity (£2,,) estimated with the restricted maximum likelihood method. RD: risk

difference measure, RRH: risk ratio for harmful outcomes, RRB: risk ratio for beneficial outcomes, OR: odds
ratio.

IF"S estimated with 2f,,,
OR
Consistent Inconsistent % of 303 loops
Consistent 280 7 95%
g Inconsistent 0 16 5%
N,E % of 303 loops 92% 8%
() RRH
g Consistent 275 10 94%
.E § Inconsistent 3 16 6%
2 % of 303 loops 91% 9%
£ RRB
b " Consistent 273 13 94%
:r; § Inconsistent 2 16 6%
~ % of 303 loops 90% 10%
RD
Consistent 273 15 95%
nQ: Inconsistent 2 14 5%
% of 303 loops 90% 10%

Comparing the common within-loop and common within-network approaches |
concluded that there are important differences in the number of inconsistent loops between

the two methods, especially when OR, RRB or RD are applied (McNemar test when ffoop

Statistical approaches to evaluate the assumption of consistency



49

was used vs. when £2,,, was used; OR: P =0.023, RRH: P =0.096, RRB: P = 0.010,
RD: P =0.004). In Table 7 | provide the number of important IFXS using the four effect

measures assuming either 77, or 75,
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Figure 4. Two sided P values of IFtS (fourth-root scale) for OR vs. RD, OR vs. RRH and OR vs. RRB effect
measures with the DerSimonian and Laird method for 77,,, and the restricted maximum likelihood for 77,

The red solid diagonal line indicates equality, the blue dashed diagonal line is the regression line and the two
green dotted horizontal and vertical lines represent the P=0.05 threshold lines.

In Figure 2 the P values for the LS approach are presented for both rfoop and 72, for
the three pairs of effect measures; OR vs. RD, OR vs. RRH and OR vs. RRB. The two-sided
P values are displayed on the fourth root scale (23). Among all six panels, agreement
seems to be higher between OR and RRH as seen by less scatter around the equality line
and a smaller number of discordant points. This is likely to be due to most outcomes being
rare rather than common, so that OR is closer to RRH than to RRB. Heterogeneity
estimates are in better agreement between OR and RRH (for £2,,,: mean(|tézy — Térl/
T4r) =52%, mean(|tipp — T4rl/T5r) =63%, mean(|ti, — T4rl/T5R) =90%; for 1,
mean(|tggy — T6rl/T6R) =51%,

mean(|tggs — T5rl/T6r) =79%, mean(|tgp — 4rl/

Evaluation of inconsistency in networks of interventions



50

t3r) =97%). In general, no substantial differences in inconsistency were observed

between the effect measures.

Inconsistency using different estimators for the heterogeneity parameter
In Table 8 | present the number of inconsistent loops using three heterogeneity

estimators for 77,,,,: the DL, REML. SJ, and REML methods and the REML estimation for
12,,,. Results are presented on the OR effect measure. | observed that both the DL and
REML methods led to a greater number of inconsistent loops than the SJ method. This is
due to the differences in their properties. As already discussed in section Estimation
methods for the 2.3.2, in certain cases the DL and REML methods underestimate 72
whereas the SJ estimator overestimates 72. As noted earlier, | observed that inconsistency
was more frequent in loops that include comparisons informed by a single study (Table 8).
Using rlzoop 19 (9%) out of 203 loops with at least one comparison informed by one study
were found to be inconsistent with the DL estimation, whereas only 4 (4%) were
inconsistent of the remaining 100 loops (P =0.154). The respective percentages with the
REML and SJ estimators are 18 (9%) versus 3 (3%) (P =0.099) and 12 (6%) vs. 2 (2%)
(P =0.217). However, using t2,, the respective inconsistent loops were 4 (2%) vs. 12
(12%) (P =0.001) with the REML estimation. The evaluation of inconsistency assuming
72,,, and REML in comparisons described by a single study decreases the inconsistency
rate by 7% compared to 77,,,,. This is because the amount of within-network heterogeneity
in most inconsistent loops, and particularly those that include at least one comparison

informed by a single study, is larger than rfoop.

There was no evidence that inconsistency differs statistically among the three estimators
when assuming a common within-loop heterogeneity (comparison of inconsistent loops
with at least two studies per comparison: DL vs. REML: P =1, DL vs. SJ: P =0.679, SJ vs.
REML: P =1; comparison of inconsistent loops with at least one comparison informed by
a single study: DL vs. REML: P =1, DL vs. SJ: P =0.262, SJ vs. REML: P =0.343).
However, inconsistency differs substantially between the common within-loop and the
common within-network approach with the REML method (comparison of inconsistent
loops with at least two studies per comparison: P =0.035; comparison of inconsistent

loops with at least one comparison informed by a single study: P =0.003).
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Table 8. Frequency of Inconsistent loops (IL) using the DerSimonian and Laird (DL), restricted maximum
likelihood (REML) and Sidik-Jonkman (SJ) estimators for the heterogeneity. Inconsistency is estimated with
the log odds-ratio scale using the loop-specific approach for both common within-loop heterogeneity (f,zoop)
and network heterogeneity (22,,,). The number of IL is provided when %, or 2., is equal to zero, as well
as when the closed loop involves one study in at least one comparison.

. 2 Gha2 IL withl study in at
Estimator of t IL IL with Zj5,, = 0 least ane comparison
%lzoop
DL 23 (8%) 14 (5%) 19 (9%)
REML 21 (7%) 18 (6%) 18 (9%)
SJ 14 (5%) 5 (2%) 12 (6%)
Total loops 303 303 203
o
REML 17 (6%) 5 (2%) 5 (2%)
Total loops 303 303 203

1

estimated with REML
estimated with SJ

43210
4-32-10 1

2
loop

a2
Tioo ]
T

4 -3 2 1 0 1 4 3 -2 -1 0 1
tf,0, estimated with DL tinop estimated with DL

1

tfhop estimated with SJ
4 -3-2-10

4 -3 -2 -1 0 1
tio0p €stimated with REML

Figure 5. Comparison of the heterogeneity estimated with DerSimonian and Laird (DL), restricted maximum
likelihood (REML) and Sidik-Jonkman (SJ) methods; the heterogeneity is presented on the log scale when
applying the loop-specific approach (common within-loop heterogeneity variance, rfoop) in the 303 loops.
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In Figure 5 | compare the estimated heterogeneity on the log scale using the DL, REML
and SJ methods. | show that the SJ method is associated with larger values of

heterogeneity, leading to fewer inconsistent loops than the other two methods (see Table
8).

012345
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012345
PIFLS REML

0 1 2 3 4 0 1 2 3 4
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0004058

tfp0p Using SJ tf,0p UsiNg SJ

Figure 6. The left-hand side panels represent a plot of inconsistency estimate (TF-S) against the heterogeneity
(#2) and the right-hand side panels correspond to a plot of the P value of TF-S against £2. Inconsistency is
estimated using the common within-loop heterogeneity variance and the DerSimonian and Laird (DL),
restricted maximum likelihood (REML) and Sidik-Jonkman (SJ) methods.

For each loop, | compared the IFLS and its P value with the estimated heterogeneity for
each loop (%;,0p) Using the three estimators (see Figure 6). Irrespective of the estimation
method used, the magnitude of inconsistency increases slightly as the estimated
heterogeneity increases. Conversely, lower values of the heterogeneity are associated with
greater chances of identifying significant IFLS, though the correlation coefficients between
the P value or IFXS and the heterogeneity variance are very small (correlation coefficients
for TFLS versus £2: rp, = 0.14 1y, = 0.15, r5; = 0.29; correlation coefficients for P

Value Of IFLS Versus fz pL = 013, TYREML = 013, T‘S] = 004)
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Separating indirect and direct evidence (SODR) method

The detachment of 31 (9%) designs (total 362) suggested important disagreement
between those designs and the remaining network. In 16 (40%) networks 1 identified at
least one inconsistent design (see Appendix Table 6). The median number of inconsistent
designs per network was 2 and ranged from 0 to 4. In Table 9 | examine whether the
magnitude of estimated heterogeneity and the number of studies informing each design are
associated with more or less chances of identifying inconsistency. Although designs
informed by a single study reject more often the assumption of consistency, the percentage
of inconsistency did not significantly differ from designs informed by two or more studies
(19/188 (10%) vs. 12/174 (7%); P = 0.367). The total heterogeneity was estimated equal to
zero in the detachment of 117 (32%) designs after the detachment of the particular design
in 24 (60%) networks. Twelve (10%) out of the 117 designs were found inconsistent
(Table 9).

Table 9. Frequency of inconsistent designs and comparisons estimated using the SODR and SIDE methods.
The number of designs/comparisons is provided when £2 is equal to zero, as well as when a
design/comparison includes a single study. Comparisons that were found inconsistent with at least one

parameterisation of the multi-arm studies were classified as inconsistent in SIDE method.

SODR method

Designs . Designs
Designs 2=0 including a 'ndlljd"t]gda Total
single study sihgle study
and #2 =

. 105 0 0 331
Consistent (90%) 167 (90%) 46 (89%) (91%)
Inconsistent 12 19 (10%) 6 (11%) 31 (9%)

(10%)

117 0 0 362

Total (3206) 188 (52%) 52 (14%) (100%)
SIDE method
Comparisons Comparisons ~ Comparisons
Comparisons 52 _ o incIBdin a including a included in at Total
= sinale su?d single study least one
Jestty  and#2 =0 multi-arm trial

. 124 0 0 0 309
Consistent (87%) 109 (89%) 37 (86%) 182 (89%) (89%)

. 18 0 0 0 39
Inconsistent (13%) 14 (11%) 6 (14%) 23 (11%) (11%)

142 0 0 0 348
Total (36%) 123 (35%) 43 (12%) 205 (59%) (100%)
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In Figure 7a | compare the distribution of the heterogeneity estimates in SODR method
and | compare it to the heterogeneity estimated in the consistency model. In half of the
networks with global inconsistency the heterogeneity of the consistency model is larger
than the median ©2 from the SODR model, suggesting again that in those networks the
extra variability due to inconsistency might have inflated the heterogeneity parameter in
the consistency model. As presented in Figure 7a heterogeneity can drop substantially
when detaching some designs (see for example the network by Macfadyen 2005 (84)).
Given that the power of inconsistency tests is suspected to be low, monitoring changes in
heterogeneity might be used as an alternative; designs whose detachment leads to
important drops in heterogeneity are suspected for inconsistency.

Separating indirect and direct evidence (SIDE) method

Inconsistency was prevalent in 39 (11%) comparisons (total 348) that belonged to 19
(49%) different networks out of the total 39 (see Appendix Table 7). The number of
inconsistent comparisons per network ranged from 0 to 6 (median 2). In total 205 (59%)
comparisons were informed by at least one multi-arm study in 76 (22%) of which the
magnitude of heterogeneity changed when a multi-arm study was parameterised
differently. Inference about inconsistency changed in 16 comparisons (5%) when
parameterisation changed in multi-arm studies. Similarly to SODR method, inconsistency
did not change when | restricted the analysis to comparisons for which at least two studies
provide direct evidence (14/123 (11%) vs. 25/225(11%); P = 1) (Table 9). In Figure 7b 1
present the distribution of the heterogeneity estimated in SIDE method compared to the
network heterogeneity estimated in the consistency model. Again, the detachment of some
comparisons in networks can decrease heterogeneity a lot and this can be used as an

alternative to the test for inconsistency.
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Figure 7. Comparison of the estimated heterogeneity (£2) in SODR method (panel a) and SIDE method
(panel b) versus £2 in the consistency (NMA) model. Each boxplot represents the distribution of £2 when all
designs (panel a) or comparisons (panel b) of a network were detached. Numbers on the top of the boxplots
and red stars represent £2 in the consistency model. Note that in one network (66) inconsistency could not be
evaluated using the SIDE method. Circled boxplots are inconsistent networks in either LA or DBT models.
SODR: Separating one design from the rest, SIDE: separating indirect and direct evidence.

Comparison of approaches to evaluate inconsistency and distribution of 12 for
inconsistency

In Figure 8 | present the histogram of the absolute IFs as estimated in each approach
separately. To evaluate loop inconsistency using the LS method | used 303 closed loops of
evidence. The median inconsistency using the LS method and 7,,, with DL estimator was
ROR=1.40 with IQR (1.16, 2.20). For SODR method | separated 362 different designs
from their networks and | applied the SIDE method in 348 treatment comparisons. Figure
8b and Figure 8c show the histogram of the absolute /Fs as estimated using the SODR and
SIDE methods, respectively. Overall the evidence coming from different designs for the
same comparison disagreed with a median ROR 1.37 with IQR (1.14, 2.18). Similar results

were obtained with the SIDE method; direct and indirect evidence for the same comparison
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disagreed by a median ROR 1.44 with IQR (1.15, 2.16). Figure 8d and Figure 8e show the
histogram of the absolute IF's for the DBT and LA models, respectively. For the LA model
where different TF values can occur with different parameterisation of multi-arm studies |
display the maximum TF per loop. Overall the evidence coming from different designs was
found to disagree by a median ROR 1.49 with IQR (1.16, 2.84), whereas the LA model
showed that direct evidence disagreed to indirect one in a closed loop by median ROR 1.48
with IQR (1.22, 2.46).
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Figure 8. Histogram of the absolute values of the inconsistency factors (IF) for the OR effect measure
estimated using a) the LS method b) the SODR method, c¢) the SIDE method, d) the DBT model, and e) the
LA model. In (b) and (e) histograms | display the maximum IF in case of multiple IFs for the same loop or
comparison (due to different parameterisation of multi-arms studies).

In Table 10 | compare the number of inconsistent networks using the LA model and the
DBT model. Two networks were found to be inconsistent in the LA model, but consistent
with the DBT approach. This might be due to the differences in the estimation of the
heterogeneity and the fact that | used the maximum test value from the different
parameterisations of the multi-arm studies to infer about inconsistency in the LA model. In

Figure 9 | compare the heterogeneity as estimated with the DBT and LA models. For
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networks with non-negligible heterogeneity (e.g. £2>0.05) the estimate from the DBT
model is at the lower spectrum of values of 72 estimated with the LA method. This might

suggest that in these networks there is design inconsistency which is not accounted for in

the LA model and hence the variability associated with it is

encompassed in the

heterogeneity.
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Figure 9. Comparison of the estimated heterogeneity (£2) in Lu and Ades (LA) model and design-by-
treatment interaction (DBT) model. Each boxplot represents the estimates for £2 resulting from different
parameterisations of the multi-arm studies included in each of the 39 networks. For one network39
inconsistency could not be evaluated using the LA model. Red points are the estimates of £2 in DBT model.
Full circles denote inconsistent networks in both LA and DBT models and dashed circles denote inconsistent
networks in LA model only. Networks found inconsistency with at least one parameterisation of the multi-
arm studies were considered inconsistent.

Table 10. Number of consistent and inconsistent networks using the Lu and Ades (LA) and design-by-
treatment interaction (DBT) models. Networks that were found inconsistent with at least one
parameterisation of the multi-arm studies were classified as inconsistent in LA model. Note that in one
network (66) inconsistency could not be evaluated using the LA approach.

Lu and Ades model
_ Consistent Inconsistent Total
E 3 Consistent 32 2 34 (87%)
o g Inconsistent 0 5 5 (13%)
Total 32 (82%) 7 (18%) 39 (100%)
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In Figure 10 | present the distribution of 12, (median 50%, IQR(27%,71%)), I.;
(median 26%, IQR(0%,63%)), and I3, ;. (median 72%, IQR(46%,86%)).
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Figure 10. Histogram of the 1> values when accounting for a) inconsistency, b) heterogeneity and c) both
inconsistency and heterogeneity in the network.

4.3 Simulation study

4.3.1 Simulation study design

The simulation study was informed by our empirical study (for a description of the
dataset see section 4.2.5). | restricted our analysis to dichotomous outcome data measured
using a single scale as empirical evidence showed no differences in inconsistency using
different effect sizes (13). | selected OR due to its good mathematical properties (22,23).
Let us consider a three-treatment network ABC with AB, AC and BC trials. I assumed the
summary treatment effect for the AB comparison OR,g = 1/ exp(0.32) = 0.73 and for
the AC comparison OR,c =1. | computed the OR for BC comparison as:

ORgc = exp{log(ORAc) — log(ORAR) + IFL3:).
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| selected values IF&5. = {0,0.3,0.45,0.6,1} to cover a range of plausible values for
inconsistency as suggested by empirical data. | considered two different distributions for
heterogeneity that pertain to a subjective outcome (the most frequently reported outcome in
our data) and all-cause mortality for comparisons between pharmacological interventions
and placebo; according to (30) these are t2~LN(—2.13,1.58%) and 72~LN(—4.06,1.45%)
(median 72 = 0.02 with (IQR 0.01, 0.04)) (30).

Let k;, k, and k5 represent the number of studies included in the three comparisons AB,
AC and BC respectively, with k; =1,..,Kag, k; =1,...,Kac and k3 =1, ..., Kgc. |
examined both networks where all comparisons include the same number of trials Kyg =
Kpac = Kgc =K =1,...,7 (‘balanced’ direct comparisons) and networks where each
comparison is informed by a different number of trials with Kyg = 1, Kac = 4, Kgc = 7

(‘imbalanced’ direct comparisons).

For each combination of OR, IFLS., and 72 | simulated the trial-specific underlying

relative treatment effects from a normal distribution as:

LORAB’kl’VN(LORAB,TZ)
LORAC,ICZ "’N(LORA(:, Tz)
LORBC,k3 ~N(L0RB(:,T2).

I generated arm-level data for each trial k,, k, and k5. For an AB trial | assumed equal
trial sizes across arms: ny, = ngy, =n and | selected small, moderate and large trial
sizes sampled from n~U(20,50), n~U(50,150) and n~U(150,300), respectively. The
number of events per arm, denoted with 7,, and rg;, are drawn from the binomial

distributions:
Tak,~B(Mag, Pak,)

Tgk,~B (nB,kl' pB,kl)

where p, x, and pg ., are the probabilities of the outcome in each trial arm. To define these

probabilities I make assumptions about the average risk (AR) of the outcome in the trial

assuming both frequent and rare events. | simulated the AR from a uniform distribution as:

ARpg k., ~U(0.25,0.75), for frequent event rates
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ARpgx,~U(0.05,0.15), for rare event rates.
| obtained the event probabilities in the arms as the solution to the equations:

Pak, T DBk
ARpg, = %

pA,k1(1 - pB,k1)>
pB,k1(1 - pA,kl)

LORAB,k1 = log <

I then calculated the sample LOR and its variance as

TA k4 (nB,k1 - TB,k1)>

LORZB,kl = 10g<
Bk, (nA,k1 - rA,kl)

) 1 1 1 1
UAB k = + + +
Y Tak, Mak, —Tak, "Bk, MBk, — "Bk,

If the simulated number of events in one of the study arms is zero, | add 0.5 to the cells
of the 2 x 2 table. | repeated this process for all K,z trials and then | perform a random-
effects meta-analysis to obtain the summary effect size fiyg. | followed the same process

for comparisons AC and BC and then | estimate the inconsistency factor.

| also considered an extra scenario representing the ‘typical’ loop; that is a loop with the
characteristics most commonly encountered in our empirical study (13). Most three-
treatment loops (65%) had at least one comparison informed by a single trial and a median
sample size in the loop of 2310 participants. Based on the empirical distribution of trials in
triangular loops | generate data for frequent events, Kag = 1,Kac = 4,Kgc = 3, and

sample size per arm drawn from n~U(120,160).

For each scenario | analysed 1000 simulated triangular networks. Assuming 0.05 the
significance level, | estimated the power of the Wi5. test when true inconsistency was
present (P(|z| = 1.96|IFx5c # 0) and type | error when the null hypothesis was true
(P(|z| = 1.96|IFi5. = 0). | computed the coverage probability for the CI of
inconsistency, i.e. the probability that the estimated interval for IFLS included its true
value. | carried out the simulations in the freely available software R 2.15.2 using the self-
programmed sims.fun function, which is available online (in http://www.mtm.uoi.gr/ under

‘Material from Publications’).
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| estimated the uncertainty of the pairwise summary effects by employing four different
strategies: the Wald type method using DL estimator (WtDL), REML (WtREML) and PM
(WtPM) estimators for the heterogeneity and the Knapp-Hartung method with the DL
estimator (KHDL). The main two differences between the Wt and KH methods are a) the
Wt method estimates the variance of the overall treatment effect for a specific comparison,
e.g. AB, using the inverse of the sum of the study weights, whereas the KH method derives
the variance of the overall treatment effect as the ratio of a generalised Q statistic divided
by the product of the degrees of freedom (K45 — 1) and the sum of the random-effects
study weights (for more details see sections 2.3 and 2.4). When a comparison was
addressed by a single trial (so that the loop includes 3 trials in total) estimation of
heterogeneity is impossible. In these cases | used the fixed-effect model (by setting 72 =
0) and consequently all methods (WtDL, WIREML, WtPM and KHDL) would vyield

exactly the same results.

4.3.2 Estimation of the variance of inconsistency

In this section | explain how Var (TFL5) depends on the magnitude of the heterogeneity
as well as the number of trials included in the network. Without a loss of generalisation |
use the Wt approach. The variances of the direct mean treatment effects are functions of
the within-study variances 7, and the heterogeneity 2. Let K,5, K¢ and Ky trials inform
the AB, AC and BC comparisons respectively. Assuming the sampling variances are the

same for all trials (¥), the variance of inconsistency is obtained by

Var(TFise) = 0 (2= + =+ —) + 3¢2. (4.1)

AB  Kac Ksc

—

Formula (4.1) shows that Var(IF\5.) increases with the heterogeneity and decreases

with the number of the trials included in the network.

4.3.3 Typelerror

The relatively small number of trials included in each pairwise meta-analysis (fewer
than 7) and the magnitude of assumed heterogeneity for a subjective outcome (median
72 = 0.12) make bias and MSE for 72 comparable between the three estimators WtDL,
WtREML and WtPM. Type | error was therefore comparable between the WitDL,
WIREML and WtPM methods (data not shown) and | present results only from WtDL and
KHDL. Figure 11 and Figure 12 in display the estimated type | error for equal and
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different numbers of trials across comparisons. In general, type | error was close to the
nominal level for the WtDL method, but larger than 5% for many scenarios analysed with
KHDL. The KHDL method generally yielded smaller variances for IFS leading to larger
type | errors. Type | error converged to the nominal level more rapidly when 2 = 0 for
both the WtDL and KHDL methods. The overall type | error approached the nominal level
as the number of trials increases for the same trial size. In the current simulation scenarios,

I did not find important differences between the three estimators of 2.
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Figure 11. Type | error by sample size (n), frequency of events and loop sample size. Equal number of trials
per comparison (K, = K4c = Kgc = K = 1,...,7) is assumed in the presence (72 # 0) and absence (t2 = 0)
of heterogeneity. Circled points correspond to loops with single study for which a fixed-effects model is
employed. The region within the horizontal dotted lines defines the confidence interval for the 0.05 nominal
level. n: sample size, WtDL: Wald type method using the DerSimonian and Laird estimator, KHDL: Knapp
and Hartung method with DL estimator.
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In Table 11 I provide type I error values for various simulation scenarios. When the total
number of individuals included in the network ranges from 2400 to 3000, type | error lied
between 0.06-0.08. Type I error deviated from 0.05 considerably when an equal and small
number of trials is considered across comparisons for all trial sizes.

For rare events, type | error departed from 0.05 in a greater extent than it does for
frequent events. Type | error was lower than its nominal level in most cases for the WtDL
method especially when 2 = 0, probably due to overestimation of 72. The KHDL method
resulted again in considerably larger type | errors, which is probably due to the small
variances of the mean treatment effects. Type | error is closer to the nominal level for
WtDL when 72 # 0 for all sample sizes. All methods tend to improve their performance
with increasing total number of trials included in the entire network (see Figure 11 and
Figure 12).
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Table 11. Type I error, power and coverage probability by sample size (n) and number of trials (K). Results
are presented for frequent events and aggregated over different assumptions for heterogeneity and methods to
estimate the variances of the mean treatment effects. In bold | present results from loops in which the total
number of individuals is between 2400 and 3000.

Balanced Scenario (K 5 = K4¢c = Kgc = K) Imbalanced
Scenario

K=1 K=2 K=3 K=4 K=5 K=6 K=7 K,p=1

Kyc=4

Kp =7

Type I error (IFS= 0)
n~U(20,50) 0.07 0.07 006 0.04 005 0.05 0.04 0.06
n~U(50,150) 0.10 007 006 006 005 0.06 0.04 0.08
n~U(150,300) 0.13 0.07 005 006 006 0.04 0.05 0.06
Power (IFLS = 0.6)
n~U(20,50) 0.13 015 018 023 027 033 0.37 0.16
n~U(50,150) 0.25 030 042 052 062 070 0.76 0.32
n~U(150,300) 0.42 054 070 079 084 0.88 0.89 0.49
Coverage Probability (IFLS = 0.6)

n~U(20,50) 0.96 096 097 098 097 097 0.97 0.97
n~U(50,150) 0.95 096 097 09 096 096 0.96 0.95
n~U(150,300) 0.93 095 094 094 096 095 0.95 0.95

4.3.4 Statistical Power

In Figure 13 and Figure 14 present the power for IFLS = {0.3,0.45,0.6,1} for both
frequent and rare events when equal (Figure 13) and different (Figure 14) numbers of trials
are included in comparisons. The overall power increases both with the number of trials
included in each pairwise meta-analysis and with their sample size. Results were
aggregated over all estimation methods for heterogeneity and the different methods to
estimate the variance of the direct summary effects. In Table 11 | provide the power values
for various simulation scenarios when IFLS = 0.6 and frequent events are considered.
When the total number of individuals included in the network ranges from 2400 to 3000,
power ranged between 0.54 and 0.70 when an equal number of trials was assumed across
comparisons but dropped to 0.32 when each comparison had a different number of trials.
As can be seen in equation (4.1), the distribution of trials across comparisons affects the
estimation of the variance of IFXS. This has an impact on power and the test is more
powerful when trials are distributed uniformly across comparisons. The comparison of
frequent (Figure 13a) and rare (Figure 13b) events indicates that power is larger for
frequent events. Rare events were associated with larger variability for the pairwise
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summary treatment effects and hence the chances of identifying potentially important

inconsistency decrease. It should be noted that the first summary result of each power

curve pertains to the case where there is only one trial per comparison and heterogeneity is

set to be zero. This has an impact on monotonicity especially when IFS is low and sample

size is large.
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Figure 14.Power by magnitude of inconsistency factor (IF), frequency of events and loop sample size. |
assume different number of trials (K) per comparison (K, = 1, K4c = 4, Kgc = 7). Results are aggregated
over different assumptions for the heterogeneity and methods to estimate the variances of the mean treatment
effects.

In

Table 12 and Table 13 | present the power for the WtDL and KHDL methods. For
frequent events the power to detect inconsistency does not vary significantly with the
method used to estimate heterogeneity or to express uncertainty on the summary effects
although the KH method is marginally more powerful, especially in the absence of
heterogeneity. This is because, in many cases, the KH estimates smaller variances for
inconsistency compared with the Wt method. The median inconsistency standard error is
0.33 (IQR 0.21, 0.50) for the KHDL method and 0.40 (IQR 0.27, 0.57) for the WtDL
approach. These findings agree with a previous simulation study (25), which showed that
when heterogeneity is zero the KH method yields a smaller variance for the mean
treatment effects than the Wt method. As anticipated, when there is no heterogeneity, there
is less uncertainty associated with each pairwise effect and the power to detect

inconsistency increases for all 1FLS values.
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Table 12. Power of the WS test aggregated over sample size. WtDL: Wald type method with DerSimonian
and Laird (DL) estimator, KHDL: Knapp and Hartung method with DL estimator, IF: inconsistency factor

Heterogeneity No Heterogeneity
IFS 0.3 0.45 0.6 1 0.3 0.45 0.3 0.45
Frequent Events
WitDL 0.10 0.15 0.23 0.42 0.13 0.23 0.38 0.68

KHDL 0.11 0.17 0.24 0.42 0.19 0.31 0.44 0.73
Rare Events
WtDL 0.08 0.10 0.14 0.25 0.07 0.11 0.17 0.35

KHDL 0.11 0.12 0.16 0.28 0.12 0.17 0.25 0.44

The impact of heterogeneity is similar when the outcome is rare. Table 13 shows that
the advantage of KHDL method when heterogeneity is zero becomes more pronounced for
rare events. The WIREML and WtPM methods yielded similar power to WtDL.

Table 13. Power of the WS test aggregated over sample size and number of trials. Results are presented for

equal number of trials across comparisons. IF:S: inconsistency factor, WtDL: Wald type method with
DerSimonian and Laird (DL) estimator, KHDL.: the Knapp and Hartung method with DL estimator.

Heterogeneity No Heterogeneity
IFYS 0.3 0.45 0.6 1 0.3 0.45 0.6 1
Frequent Events
WtDL 0.17 0.26 0.36 0.59 0.20 0.38 0.52 0.77

KHDL 0.19 0.27 0.37 0.60 0.27 0.44 0.58 0.80
Rare Events
WitDL 0.10 0.15 0.21 0.38 0.09 0.16 0.25 0.49

KHDL 0.13 0.18 0.24 0.41 0.16 0.23 0.33 0.55

4.3.5 Coverage Probability and Bias

| assess how often the 95% CI for inconsistency included the assumed IF%S value used
to generate the data. | plot the coverage probability for the 95% CI of IFLS in Figure 15
and Figure 16. The coverage probability is close to the nominal level (95%) for most
settings. Rare events were associated with larger uncertainty and therefore provide higher
coverage than frequent events. In Table 11 | provide the coverage values for various
simulation scenarios when IFXS=0.6. When the total number of individuals included in the
network ranged from 2400 to 3000, coverage ranged from 95% to 96%. Coverage did not
change considerably when an equal or different number of trials is assumed across

comparisons.
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mean treatment effects. The region within the horizontal dotted lines defines the confidence interval for the
95% nominal level.

Statistical approaches to evaluate the assumption of consistency
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Figure 16. Coverage probabilities of the 95% confidence interval for the inconsistency factor (IF-S). |
assume different number of trials (K) per comparison (K45 = 1, K4 = 4, Kgc = 7). Results are aggregated
over different assumptions for the heterogeneity and methods to estimate the variances of the mean treatment
effects. The region within the horizontal dotted lines defines the confidence interval for the 95% nominal
level. The first summary result in each coverage probability line pertains to the case where there is a single
trial per comparison and a fixed-effects model is employed.

In Figure 17 and Figure 18 | present the average relative bias (|[TFXS — [FLS|/IFLS)
when IFLS > 0. Relative bias decreases with the total number of individuals included in

the network, the total number of trials, and the assumed IF*S value.

Table 14 and Table 15 present the coverage probability for the 95% CI of IFXS using
different methods to express uncertainty on the summary effects. The KHDL method
reduces slightly the chances of including the true inconsistency in the 95% CI of IFLS,

especially when 72 = 0, as the summary effects are more precise.

Evaluation of inconsistency in networks of interventions



70

R R
87 3 =
= v IFF=0.3 TN
A IFS=0.45
o IF¥=06 \
e [FLS=1
8| = N~U(20,50) o
X 3 = N~U(50,150) S
o ® s
=) - N~U(150,300) =
< >
& k<
@O e %
2 §- 2
T O &
< [0
¢ r
®
o
o
I I I I I I I T I I I I
200 500 1000 2000 5000 10000 200 500 1000 2000 5000 10000
a. frequent events b. rare events

Total number of individuals in the loop

Balanced Scenario (K5 = K4¢c = Kgc = K)

Figure 17. Averaged relative bias assuming various scenarios for the inconsistency factor (IFXS) and the
frequency of events. | assume equal number of trials per comparison (Kyz = Kye = Kgc = K =1,...,7).
Results are aggregated over different assumptions for the heterogeneity and methods to estimate the
variances for the direct treatment effects.

Table 14. Coverage probability of the 95% confidence interval for the inconsistency factor (1FX5). Results
are aggregated over sample size and number of trials (assumed equal across comparisons). WtDL: Wald type
method with DerSimonian and Laird (DL) estimator, KHDL: Knapp and Hartung method with DL estimator.

Heterogeneity No Heterogeneity
IFYS 0 03 045 06 1 0 0.3 0.45 0.6 1
Frequent Events
WtDL 090 094 094 094 093 096 098 0.97 0.97 0.97

KHDL 089 093 093 093 091 092 0.9 0.94 0.94 0.93
Rare Events
WtDL 093 096 096 097 096 0.97 0.98 0.99 0.98 0.96

KHDL 091 095 095 095 094 092 096 0.96 0.95 0.94

Statistical approaches to evaluate the assumption of consistency
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Figure 18. Averaged relative bias assuming various scenarios for the inconsistency factor (IFLS) and the
frequency of events. | assume different number of trials (K) per comparison (K,z = 1, Ky = 4, Kge = 7).
Results are aggregated over different assumptions for the heterogeneity and methods to estimate the
variances of the mean treatment effects.

Table 15. Coverage probabilities of the 95% confidence interval for the inconsistency factor (IFS). WtDL:
Wald type method with DerSimonian and Laird (DL) estimator, KHDL: Knapp and Hartung method with DL
estimator.

Heterogeneity No Heterogeneity

IF'S 0 0.3 0.45 0.6 1 0 0.3 045 0.6 1

Frequent Events

wtbDL 092 09 09 09 095 097 098 098 097 097

KHDL 091 095 09 095 094 093 09 09 095 0.93

Rare Events

wtbL 095 09 097 098 098 097 098 098 099 0.99

KHDL 093 095 09 09 09 093 09 09 096 0.95

Evaluation of inconsistency in networks of interventions
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4.3.6 Properties of loop-specific method in a ‘typical’ loop of evidence

The type I error in the ‘typical’ loop is 5% and 7% for subjective and all-cause mortality
outcomes using the WtDL method and 11% and 12% using the KHDL estimation. The

‘typical’ loop of evidence with all-cause mortality outcome has considerably low power.
The overall power ranged between 14% and 75% for the WtDL method and 21% and 78%

for the KHDL approach depending on the magnitude of IFLS. For a subjective outcome

that pertains to larger heterogeneity power decreases to 14%-63% for WtDL and in 20% to

65% for KHDL. Coverage was close to the nominal level (see Table 16).

Table 16. Type | error, power and coverage probability for the WIS test in a ‘typical’ loop of evidence. |
assume a dichotomous frequent outcome, number of trials (K) per comparison K,z = 1,K,c = 4,Kgc = 3
and the sample size per arm is drown from n~U(120,160). IFS: inconsistency factor, WtDL: Wald type
method with DerSimonian and Laird (DL) estimator, KHDL: Knapp and Hartung method with DL estimator.

Type | error Power Coverage Probability
IF'S 0 03 045 06 1 0 03 045 0.6 1
All-cause mortality outcome (median(z?) = 0.02)
WiDL 0.05 014 023 038 075 095 0.97 099 0.98 0.95
KHDL 0.11 021 032 046 078 089 094 093 092 0.90
Subjective outcome (median(z?) = 0.11)
WiDL 0.07 014 023 034 063 094 096 096 0.97 0.95
KHDL 0.12 020 029 041 065 088 093 093 092 091

Statistical approaches to evaluate the assumption of consistency




5. Discussion

The increased use of NMA should be accompanied by caution when combining direct
and indirect evidence. Evaluation of consistency is an important task in network meta-
analysis (12). It has been shown though that it is not rare for reviewers to combine direct
and indirect evidence in a network of interventions without evaluating the assumption of
consistency (6,14). A recent survey showed that only 9% of the Cochrane review authors
are aware of the prerequisite assumptions for a valid NMA (7). Empirical studies have
shown that although NMA are increasingly conducted, the key assumptions are not always
evaluated and reporting of the methodology applied is inadequate (6,27,28). Thus, there is
a need to improve the quality of NMA regarding the assumptions and the methods that are
reported. Protocols of NMA should present methods for the evaluation of inconsistency
and define strategies to be followed when inconsistency is present. Several methodologies
have been outlined in the literature to test inconsistency (15,17,66,75). In this research
study | used a large-scale empirical dataset to evaluate the prevalence of inconsistency

using five different approaches.

A key finding of our study is that heterogeneity plays an important role in the statistical
detection of inconsistency and a lower heterogeneity is associated with higher rates of
detected inconsistency. This suggests that heterogeneity might account for some
disagreement between various sources of evidence. A general conclusion is that the
changes in heterogeneity between consistency and inconsistency models can be used as an
alternative to the tests for inconsistency. However, the choice of the heterogeneity
assumption and estimation method can hamper the detection of inconsistency. On the
contrary, although it has been suggested that a poor choice of the measurement scale, i.e.
analysing data on a ‘preferred’ scale rather than on the ‘best’ scale, can increase the
probability of finding inconsistency (80), this study showed that the three scales for
dichotomous data are not associated with important inconsistency differences. It is
advisable that the best approach is to choose the appropriate scale, relying on both type of
outcome data and mathematical properties, and then transform the results to an alternative

scale to aid interpretation.

Our empirical study suggests that inconsistency is prevalent in between 2% and 10% of
the tested loops, depending on the effect measure and heterogeneity estimation method,
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and about one eighth of the networks is inconsistent. | also found that 9% of the tested
designs and 11% of the total comparisons disagreed with the remaining network. |
recommend using the DBT model to evaluate a network as a whole and then if
inconsistency is detected the methods that evaluate which piece of evidence is responsible
for a potential inconsistency in the network (e.g. the LS, SIDE or SODR methods) can be
employed. | suggest the DBT model as it is the only method presented in the literature so
far that can evaluate the entire network and is insensitive to the parameterization of studies
with multiple arms, accounting also for potential design inconsistency. The LA is a special
case of the DBT model and the main disadvantage of the approach is that different
parameterisations of the multi-arm studies might conclude to different results. Hence, it is
advisable that all possible scenarios should be used before making inference. Note that the
LA approach does not account for design inconsistency and hence this variability is
encompassed in the heterogeneity variance. This study suggested two networks
inconsistent with the LA model but consistent with the DBT model. This might be due to
the differences in the estimation of the heterogeneity and the fact that | used the maximum
test value from the different parameterisations of the multi-arm studies to infer about
inconsistency in the LA model. It should be also noted that the DBT model might lose
power in detecting inconsistency as it has more degrees of freedom (greater number of
parameters) in contrast to the LA approach. However, the WPBT value is always greater
than the W4 one as LA is a special case of the DBT approach. A summary of the

properties of the five different approaches is presented in Table 17.

If inconsistency is found, exploration of its possible causes is a key component of
network meta-analysis and can raise research and editorial standards by shedding light on
the strengths and weaknesses of the body of evidence. Results from statistical tests should
however be interpreted with caution: the absence of statistical inconsistency does not
provide reassurance that the NMA results are valid. The assumption of consistency should
always be evaluated conceptually by identifying possible effect modifiers that differ across
studies (10). In Table 18 I present a summary of recommendations on what should be

applied when inconsistency is found.

Discussion
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Table 17. Overview of the properties of the loop-specific (LS), separating direct and indirect evidence
(SIDE), separating one design from the rest (SODR), Lu and Ades (LA), and design-by-treatment interaction
approaches.

LS SIDE SODR LA DBT

Method Method Method Model Model
Simple to compute Yes No No No No
Insensitive to
parameterization of multi- No No Yes No Yes
arm studies
Indirect estqnate derived No Yes Yes Yes Yes
from the entire network
Doeg not suffer from No No No Yes Yes
multiple testing
Power No No Unclear No Unclear

Table 18. Summary of recommendations when statistically significant inconsistency is found.

Action Inconsistency

Use LS, SIDE, or SODR inconsistency methods to identify

studies with potential data extraction errors. Evidence loops that

Check the data . ' . ‘ '

include comparisons informed by a single study are particularly

suspicious for data errors.

Investigators may decide not to synthesize the network in the
Resign to it o )

presence of excessive inconsistency

Split the network into subgroups or use network meta-regression
Explore it ) ) )

to account for differences across studies and comparisons.
Encompass it Apply DBT or LA models that relax the consistency assumption.

In the simulation study | evaluated the properties of the LS method for detecting
inconsistency comparing direct and indirect estimates in triangular networks. | informed
the simulation scenarios by previous large-scale empirical studies, and | used the most
commonly encountered meta-analytic tools for statistical inference regarding heterogeneity
and the uncertainty of the mean treatment effects. The main advantage of this work is that

it sheds light on factors that might affect the detection of inconsistency and have not been

Discussion
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examined in the past, such as the use of KH approach for the CI of the direct summary
effects. The simulation study shows that the inconsistency test has on average low power
to detect inconsistency, in particular for rare outcomes. In the absence of heterogeneity and
for a large number and size of trials the overall power for inconsistency might be adequate.
A previous simulation study (3) also found that different ways to evaluate inconsistency
(e.g. Lu and Ades model, separating indirect and direct method) have low power in
particular under the RE models (see also Table 17). Our study suggests that power is
improved if the KH method is used, although the type I error increases as well.

For the empirical assessment of consistency | evaluated articles included in PubMed
and | restricted the analysis to dichotomous outcomes. Other network meta-analyses, such
as those undertaken in technology appraisals for the National Institute for Health and
Clinical Excellence (NICE) in the UK, are not included. | expect our findings regarding
choice of effect measure and statistical techniques to be generalizable, although it is
unclear whether our findings regarding prevalence of inconsistency are relevant to these
settings. An empirical study for continuous outcomes will be needed to infer about possible
differences in inconsistency between mean differences, standardized mean differences and

ratios of means.

Network meta-analyses are typically restricted to evidence based on randomized
controlled trials (RCTs). The randomized participant assignment to parallel treatment arms
keeps study groups as similar as possible with known and unknown confounding factors
balanced. Well-conducted RCTs are the gold standard of clinical information. However,
including only RCTs in network meta-analysis a great deal of information from different
study designs is ignored. It is widely accepted that non-randomised and quasi-randomised
trials provide evidence from broader rages of settings and populations. If these studies have
a certain level of quality, there is no technical reason not to include them in the network
meta-analysis. Combining both randomized and observational evidence in network meta-
analysis, while adjusting for potential biases due to study design, allows one to make an
informed decision (85). However, the inclusion of observational trial in network meta-
analysis might increase heterogeneity and inconsistency in the data. An additional
empirical study including networks with nonrandomised trials to evaluate the extent of

inconsistency would be valuable.

Discussion
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A limitation of the simulation study is that | did not account for the possible impact of
multi-arm trials on inconsistency and | only reconsider triangular networks. Although |
considered only the DL, REML and PM methods to estimate heterogeneity | do not
anticipate that inclusion of different estimators would alter the conclusions. In fact, the
three estimators considered here provided similar results because they gave comparable
estimates for the heterogeneity in the scenarios considered. A further simulation study with
more ‘extreme’ scenarios would potentially reveal differences between the choice of the
estimator and its impact on the detection of inconsistency. Finally, a thorough investigation
of the properties of all available methods for inconsistency and their sensitivity in the

characteristics of the network would be needed for completeness.

The use of network meta-analysis is commonly performed on the basis of aggregated
data. The benefits of using individual patient data rather than aggregated data have been
previously examined and it has been suggested the use of individual patient data in
network meta-analysis can reduce statistical heterogeneity across the network and hence
can increase the precision of treatment effect estimates (86,87). This is because the
parameter estimates of the individual patient data models are estimated using from both
within-study and across-study evidence, whereas the results from the aggregated data
models are only based on across-study associations. Jansen (87) showed that combining
individual patient data with aggregated data minimizes the chances of confounding bias
being evident in indirect comparison and network meta-analysis. One of the most
important advantages of using individual patient data in network meta-analysis is that it is
possible to identify interactions which cannot be detected when using aggregated data and
hence evaluate the assumption of consistency. Donegan et al. (86) showed that using
aggregated data in network meta-analysis to evaluate the consistency assumption did not
reject the null hypothesis, whereas using individual patient data questioned the consistency
and reliability of the results. This is because of the imbalance in patient-level effect
modifiers across comparisons that could not be identified with aggregated data.
Inconsistent evidence can also affect one of the most important properties of network
meta-analysis, the ability to rank the treatments according to their efficacy (86). However,
further research is needed to establish the benefits of individual patient data in various
settings, as well as the properties of the individual patient data network meta-analysis in
complex networks of interventions. This research study might be used to inform the

Discussion
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development of strategies for the assessment of the assumption of consistency using
individual patient data and examine whether this approach is more valuable than
aggregated data network meta-analysis.

Discussion



6. Conclusions

The findings of our research study can be used to inform the development of strategies
to detect statistical inconsistency. Results from methods | examined appear to be sensitive
to the estimation method and to assumptions made about heterogeneity, as well as the
presence of the multi-arm studies. Consequently, investigators should interpret very
carefully a statistically non-significant result and always consider the comparability of the
studies in terms of potential effect modifiers. A sensitivity analysis using different methods
for the heterogeneity and inconsistency is advisable, before concluding about the absence

of statistical inconsistency.






Summary in English

Background: Network meta-analysis relies on the agreement between direct and indirect
evidence defined as consistency. Empirical evidence about the prevalence of inconsistency is
limited to simple loops of evidence about three interventions. No evidence exists so far
regarding the extent of inconsistency and the factors that control its statistical detection in

complex networks of interventions.

Aims: The objective is to evaluate empirically the prevalence of inconsistency in full
networks using various approaches for the assessment of consistency and to explore factors

that might control its statistical detection.

Methods: | evaluated inconsistency in 40 published networks with dichotomous data
published in PubMed from March 1997 until February 2011 and involved at least four
treatments and at least one closed loop. The networks included 303 loops of evidence, 362
trial designs - studies involving different sets of treatments- and 348 comparisons. | employed
five approaches: 1) loop-specific (LS): | evaluated each loop in the network separately by
contrasting direct and indirect estimates 2) Separating one design from the rest (SODR): |
evaluated the agreement between studies of a particular design and the remaining network
3) separating indirect and direct evidence (SIDE): | evaluated the agreement between a
particular comparison and the remaining network 4) Lu and Ades model (LA): | jointly
assessed all possible inconsistencies in the network to obtain an omnibus test 5) Design-by-
Treatment interaction model (DBT): | evaluated the agreement between estimates from
different designs in the network in an omnibus test. In LS and DBT approaches | used
different effect measures, and various estimators and assumptions for the heterogeneity. |

also carried out a simulation study to estimate the performance of the LS test.

Results: Inconsistency was prevalent in 1) between 2% and 10% of the tested loops
depending on the effect measure, assumption and estimation method for heterogeneity, 2)
9% of the tested designs, 3) 11% of the total comparisons, 4) maximum seven (18%)
networks depending on the parameterisation of the multi-arm studies, and 5) between 13%
and 28% of the networks depending on the effect size and estimator for heterogeneity.
Important heterogeneity was associated with a small decrease in statistical inconsistency, but
different effect measures had no statistically significant impact on detecting inconsistency. The

simulation study showed that the LS-test has generally low power that is positively
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associated with sample size and frequency of the outcome and negatively associated with the
presence of heterogeneity. Type | error converges to the nominal level as the total number of
individuals included in the loop increases. Coverage is close to the nominal level in most cases.
Different estimation methods for heterogeneity do not greatly impact on test performance, but
different methods to derive the variances of the direct estimates impact on the inconsistency

inference.

Conclusions: This study suggests that changing effect measure might improve statistical
consistency and that a sensitivity analysis in the assumptions and estimators of
heterogeneity is needed before concluding the absence of statistical inconsistency,
particularly in networks with few studies. Investigators should interpret every test results
very carefully and always consider the comparability of the studies in terms of potential effect
modifiers.

Summary in English



Iepiinyn ot eAAnvika

Ewoyoyn: Zm peta-avaivon moAlomiov mopepfdcewv  kpivetal omapoitntn 1
a&loldynon g GLVETELNG HETAED AUECHV KOl EUUECOV OTOXEI®MV. Ol EUTEIPIKEG LEAETEC
™m¢ PPMoypapioag mov pehetodhv v acvvéneln meplopilovior oe  dlKTLa  TPLUOV
mopeUPacewv, eved o1 1O10TNTEG TV UEBOO®V Yo TOV EAEYYO TNG GULVETELNG OEV £YOLV

peretn0el 01e£0d1KdL.

Yxkomog: H eunelpikn agloAdynon g acLveERELNG 6€ TePITAOKO OIKTLO YPTCILOTOUDVTOG
OLPOPETIKEG TTPOGEYYIGEIG KOl 1M OlEPEHVNON TOV TOPAYOVI®OV Tov emnpedlovv

GTATIGTIKY] OViXVELGT TNG.

Mé00dot: Ztnv Topovoa epELVNTIKY Epyacio 1 VTapEn TG acvvénelag depevvatat og 40
diktvo molamlmv mopeufdoemv dnpootevpéve otnv PubMed ord to Mdptio tov 1997
uéxpt ka1 to defpovdplo tov 2011 mov eumepiéyovv tovAdyoTov 4 moapeuPdoelg Ko
tovAdyotov 1 khewotd Ppdyo. Ta diktva avtd neptrappdvovy 303 Khelstovg Ppdyovs mov
onuovpyovvtal amd T otoyein Tov mopespPdoswv, 348 ovykpioelg, kot 362
OLOLPOPETIKOVG TOTOVG peAeTdV. Epdppoca 5 dwapopetikég mpoceyyioeic: 1) ALioAdynon
k& Ppoyov Eexmprotd, 2) A&lordynon cvopemviag HeTall oTotyelwV Hag cOYKPIONG Kot
TOV VIOLOITOL J1KTVLOV, 3) ALLOAOYNON CLHEMVING HeTAED GTOLYEIWMV EVOG TUTTOL UEAETAOV
LE T0 VTOAOTO OikTLO, 4) AEIOAOYNON TG OLGVVETELNG XPTCLLOTOLOVTOS VO YEVIKEDUEVO
éleyyo, 5) A&odAdoynon g ovueoviag HETaED TOV EKTIUNCEDV SOPOPETIKMY TOTMV
peretov. EmmAéov, o1e&nydn £pevva mpocopoimong yw v o&loAdynon g mpaTng
npocéyyione (uébodog (1)) oe diktvo TpLOV TaPeUPAcE®Y MG TPOC TO GOAALO TOTOV I, TNV
woyd Kot TV mlavétra emkdivyng. Xpnotpomowdvtog Tig pebodovg (1) xor (5)
eetdoape av 1 ¥pHoN SOPOPETIKAOV PETPOV GYECTG TOV TEPLYPAPOVY dYOTOUN dedOUEVAL
KOl Ol SL0POPETIKOL TPOTOL EKTIUNONG TNG €TEPOYEVELNG oYeTilovTol pe dapopég otV

EKTIUNOT TNG OCVVETELNG.

Amoteréopata: Avaroyo pe ™ pnéEB0OO EKTIUNONG TNG ETEPOYEVELNG KOl TO LETPO GYECNC,
0 apBuog Tov eEetalopevov Ppdymv mov Ppédnkav va ivar acvveneic pe ™ pébodo (1)
ropaivetor amd 2% £mg 10%. O pébodot (2) ko (3) édei&av mwg to 11% tmv cuykpicemv
Kot 70 9% TV SEOPETIKOV TOTOV LEAETMOV d€ GLUP®OVOVV LEe TO VOAomo oiktvo. To

povtéro (4) £€de1Ee 0TL 0 PéYoTog aplBpog SkTvV Tov prmopet va gtvar acvvent| eivor 18%
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aVAAOYOL LLE T LOVTEAOTOINGT TV SOPOPETIKAOV TOTTOV HEAET®V. ATto To 13% £mg t0 28%
TOV SIKTO®V 0gV TANPOL TNV VITOBEST TNG CLVETELNS COLPMVA LE TO LOVTEAO (5), avaioya
pe ™ uéBodo eXTIUNONG TNG ETEPOYEVELNG Kal TO HETPO oyxéomg. Bpdyot pe cuykpicelg mov
mePLypaeovtal omd pio Ko Hovo HEAETN QaiveTal vo amoppinTovy cuyvotepa TV vrdeon
g ovvénetlag. [lapdro mov o Adyog avoroyidv gival mo cuvenég PETPO GYEGNS Ao TO
Adyo Kivdbvev Kol T S1opopd KIvOUVMV, OEV DITAPYEL CTOTIGTIKG OMUOVTIKY Olpopd
HETOED TV PETPOV aVTAOV. OpmG, 1 VIEPEKTIUNGCT TNG ETEPOYEVELNG UTOPEL VO 0dNYNGEL
oe havBaouévn amodoyr] g vobeong 0Tl vdpyel cvvénela. Ot TPOGOUOIDGELS E0e15aV
OTL M 1oYVG TOL TECT aEAvVEL e TO PEYEBOC SELYLOTOC KO TN GLYVOTNTO TOV YEYOVOT®V
pag éxPaong, eve peimveton pe v etepoyévetn. To oedipa tomov I mincidlet to enimedo
ONUOVTIKOTNTOS OG0 ALEAVEL O GLVOMKOG apPlOUOG TV CLUUETEXOVT®V, EVO N THAVOTNTO

EMKAALYNG TOPAUEVEL TTAVTO GE TKAVOTOUTIKA ETITENAL.

YopumEPASPOTE: ATOOEIKVOETOL TG P EVOALOYN oTa LETPO. oYEONG LWITOPEL Vo PEATUDCEL
TN OTOTIOTIKN oLVEmEwW. Towg M ypnon g ovaivong evoicnciog oTig SloPOPETIKES
VROOEGEIG-eKTIUNTEG TNG £TEPOYEVELNG Ba fonbovoe 610 va amopavliovue av vapyel 1 Oyt
OGVVETELN, EOIKOTEPO GTNV TEPITTMOOT OIKTO®V pE Alyeg pehéteg. H yprion dtapopeTikmv
HOVTEA®V umopel vo dMoeL pia SPOPETIKY EKOVA Yo TNV VITOPEN N OYL CLVETELNG, KABMG
avtd cvoyetilovron pe daPopeTikég 1010tNTeEG. Ot gpguvnTég Ba TPEmeL v EpUNVELOLY TA

QOTEAEGULATO. LLE TPOCOYN POV 1) AGVVETELN UTOPEL VO VITOEKTILATOL.

[TepiAnym ota eAAnvikd
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Appendix

Appendix Table 1. Characteristics of included networks regarding the assessment of inconsistency in the
original reviews

Assumption of consistency was

Method to detect

Inconsistency

2 NET7S evaluated inconsistenc [REEe
y present
Model comparison in fit and
1 Ades! Unclear parsimony - unclear whether Unclear
this was specific to the
assumption of consistency
2 Ara? No Not reported Not reported
3 . * Comparison of network
0 2Rl Inappropriate method estimates to direct estimates No
4 Ballesteros* Yes Loop-based approach No
5 . - Comparison of network
5 Bangalore Inappropriate method estimates to direct estimates No
6 Bansback® No Not reported Not reported
7 Bottomley’ No Not reported Not reported
8 Brown® Yes Loop-based approach No
9 Bucher® Yes Loop-based approach No
10 Cipriani®® Yes Loop-based approach Yes
11 Bfesit Yes Node-spllttlng_ & back- Yes
calculation
12 Eisenberg'? No Not reported Not reported
13 Elliott*® Yes Lumley’s method Yes
14 Govan' No Not reported Not reported
Informal comparison of the
15 Hofmeyr® Inappropriate method* results to previously No
conducted meta-analyses
16 Imamura®® No Not reported Not reported
17 : " Comparison of network
17 Lam Inappropriate method estimates to direct estimates No
Informal comparison of the
18 Lapitan'® Inappropriate method* results to previously No
conducted meta-analyses
19 Lu (1)® Yes Lu and Ades model No
20 Lu (2" Yes Model comparison in fitand No
parsimony
21 Macfayden % No Not reported Not reported
22 Middleton® No Not reported Not reported
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23 Mills** Yes Loop-based approach No

24 Nixon® No Not reported Not reported

25 Picard® No Not reported Not reported

26 Playford®’ Yes Loop-based approach No

27 Psaty?® Yes Lumley’s method Yes
Informal comparison of the

28 Puhan® Inappropriate method* results to previously No

conducted meta-analyses

Comparison of network

31 . *
29 Roskell (1) Inappropriate method estimates to direct estimates No

30 : " Comparison of network
30 Roskell (2) Inappropriate method estimates to direct estimates Yes
31 Salliot* No Not reported Not reported
32 Sciarretta®™ Yes Lu and Ades model Yes
33 Soares-Weiser* No Not reported Not reported
34 Thijs® Yes Lumley’s method No
35 Trikalinos® Yes Lumley’s method Yes
36 Virgili*’ Yes Loop-based approach No

Informal comparison of the

37 Wang® Inappropriate method* results to previously No

conducted meta-analyses

Model comparison in fit and
parsimony - unclear whether

39
38 Welton Unclear this was specific to the Unclear
assumption of consistency
39 Woo® No Not reported Not reported
40 Yu* No Not reported Not reported

* Some systematic reviews compared estimates from meta-analysis to the estimates obtained from
network meta-analysis. | consider this to be an inappropriate method to evaluate consistency.
**|nconsistency has been previously assessed*

***|nconsistency has been previously assessed®
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Appendix Table 2. Characteristics of networks with at least one closed loop included in the database. | define K the total number of studies and S the total number of
treatments included in each network. (NMA = network meta-analysis; GLM = generalized linear model, HR = hazard ratio, RR = risk ratio, OR = odds ratio, RD = risk
difference).

id Network loops K S Disease/ Outcome Type of Treatments 2arm 3arm 4arm  Indirect Method Effect Measure
Condition trials  trials trials used by reviewers
1 Ades' 3 15 9 Schizophrenia Relapse Antipsychotic 15 0 0 Bayesian NMA HR
treatments
2 Ara’ 5 12 5 Hypercholesterolaemi  Effectiveness in Statins 10 0 1 Bayesian NMA RR
a reducing LDL-
C.
3 Baker® 12 39 8  Chronic obstructive Exacebration Pharmacological 29 3 6 Bayesian NMA OR
pulmonary disease episodes treatments
(COPD>=1)
4  Ballesteros® 2 9 4 Dysthymia Efficacy (50% Antidepressants 6 3 0 GLM OR,RR,RD
reduction in
depressive
symptoms since
baseline, or
similar criteria)
5 Bangalore® 18 49 8  High blood pressure Cancer and Antihypertensive 45 4 0 Bayesian NMA OR
cancer-related drugs
deaths
6 Bansback® 2 22 8 Moderate to severe Psoriasis area Treatments for 21 1 0 Bayesian NMA RR
plaque psoriasis and severity psoriasis
index (PASI)
7  Bottomley’ 4 0 7 Moderately severe Investigator’s Topical therapies 8 1 1 Meta-regression RR
scalp psoriasis global
assessment
8 Brown® 6 40 6 Non-steroidal anti- Serious Gl Pharmacological 36 2 0 Bucher RR

inflammatory drug-
induced
gastrointestinal
toxicity

complications

interventions

Appendix




96

9 Bucher® 2 18 4  Pseudocystis carinii Number of Pharmacological 18 0 0 Bucher OR
in HIV infected pseudocystis prophylaxis for
patients carinii pseudocystis carinii
pneumonia
(prophylaxis
against
pneumocystis
carinii in HIV
infected
patients)
10  Cipriani® 70 111 12 Unipolar major The proportion Antidepressants 109 2 0 Bayesian NMA OR
depression in adults  of patients who
responded to or
dropped out of
the allocated
treatment
11 Dias™ 11 50 9  Acute myocardial Death Thrombolytic drugs 48 2 0 NMA for trial- OR
infraction and angioplasty level and
summary-level
data
12 Eisenberg® 1 61 5 Smoking Smoking Pharmacotherapies 59 3 0 Bayesian NMA OR
abstinence for smoking
cessation
13 Elliott™ 16 22 6  Hypertension, high- Proportion of Antihypertensive 18 4 0 GLM OR
risk patients patients who drugs
developed
diabetes.
14  Govan* 2 31 5 Stroke Death Types of stroke unit 25 3 0 Bayesian NMA OR
care
15  Hofmeyr®™ 1 24 4 Postpartum Maternal death Misoprostol or 18 1 0 Bucher RR
haemorrhage other uterotonic
medication
16  Imamura’® 26 38 13 Stress urinary Cure Non surgical 31 5 2 Bayesian NMA OR
incontinence treatments
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17

17 Lam 3 12 Left ventricular Mortality Combined 9 2 Bayesian NMA OR
dysfunction resynchronisation
and implantable
defibrillator therapy
18 Lapitan™® 5 22 Urinary incontinence Number not Treatments for 19 2 Not reported RR
in women cured within urinary
first year incontinence in
women
19 Lu (1)* 4 24 Smoking Cessation Smoking cessation 22 2 Bayesian NMA OR
interventions
20 Lu (2)* 4 40 Gastroesophageal Effectiveness Gastroesophageal 38 2 Bayesian NMA OR
reflux disease reflux disease
therapies
21  Macfayden 2 13 Chronically Resolution of Topical antibiotics 10 3 Not reported RR
2 discharging ears with discharge without steroids
underlying eardrum
perforations
22 Middleton® 1 20 Heavy menstrual Dissatisfaction Second line 20 0 Logistic OR
bleeding at 12 months treatment regression
23 Mills* 2 89 Smoking Abstinence from  Pharmacotherapies 86 3 Bucher OR
smoking at at
least 4 weeks
post-target quit
date
24 Nixon® 2 11 Rheumatoid arthritis American Cytokine 10 1 NMA & meta- OR
college of antagonists regression
rheumatology
(ACR) response
criteria at 6
months or
beyond
25 Picard® 33 43 Pain on injection with No pain Drugs, physical 28 12 Not reported RR
propofol measurements, and
combinations
26 Playford”’ 1 10 Fungal infections in Mortality Antifungal agents 10 0 Not reported RR

Appendix




solid organ transplant
recipients

27 Psaty”® 10 28 7 Coronary heart Fatal and Antihypertensive 24 GLM RR
disease (CHD) nonfatal events therapy
28 Puhan® 7 34 5 Stable chronic Exacerbation Inhaled drug 27 Logistic OR
obstructive regimes regression
pulmonary disease
29  Roskell (1)* 6 17 11 Atrial fibrillation Stroke Anticoagulants 15 Mixed log- RR
prevention binomial model
30 Roskell (2)% 3 12 10 Fibromyalgia 30% Pharmacological 6 Mixed log- RR
improvement in interventions binomial model
pain response
31  Salliot® 1 15 5  Rheumatoid arthritis ACRS50 Biological 14 Bucher OR
(with inadequate response rate antirheumatic
response to agents
conventional disease-
modifying AR drugs
or to anti-tumour
necrosis factor agent)
32  Sciarretta® 13 26 8 Heart fealure Prevention of Antihypertensive 24 Bayesian NMA OR
heart failure treatments
33 Soares- 4 14 8 Bipolar disorder All relapses Pharmacological 10 Logistic OR
Weiser® interventions for the regression &
prevention of Bayesian NMA
relapse in people
with bipolar
disorder
34 Thijs® 3 24 5  Transient ischaemic Prevention of Antiplatelets 20 GLM OR
attack or stroke serious vascular
events
35  Trikalinos® 1 63 4 Non-acute coronary Death Percutaneous 62 GLM RR
artery disease coronary
interventions
36 Virgili*’ 1 10 5 Neovascular age- Visual acuity Pharmacological 10 Logistic OR
related macular loss Treatments regression &

degeneration

Bayesian NMA
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37 Wang® 43 9 Catheter-related Catheter Different central 41 Bayesian NMA OR
infections colonisation venous catheters
38 Welton® 36 17 Coronary heart All-cause Psychological 31 Logistic OR
disease mortality Interventions regression &
Bayesian NMA
39 Woo® 19 10 Chronic hepatidis B HBV DNA Nucleostides 16 Bayesian NMA OR
levels
40 Yu* 14 6 Cardiac surgery Cardiac Inhaled anesthetics 11 Not reported OR
ischemic

complications
and mortality
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Appendix Table 3. Inconsistency estimates (IF5) along with their standard error (SE(IF-5)) and WS values estimated in the loop specific approach for the four effect
sizes. Within each loop, inconsistency is estimated assuming the network heterogeneity (£2,,,). The amount of heterogeneity is estimated with the restricted maximum
likelihood estimator in the design-by-treatment interaction model. RD: risk difference measure, LRRH: log risk ratio for harmful outcomes, LRRB: log risk ratio for
beneficial outcomes and LOR: log odds ratio.

LOR LRRH LRRB RD
S 29 o2 23 & 9= 22 &> 3 9= 22 8> 3 3= 22 &> 3 & 3 =
Network = 28§58 =3 =F 285% =3 ®Ff Z85% I F EZ85% wS &F
82 £ %) S -E- %) & g =2 %) S g 2 & &
. 038 242 029 203
Ades 0 030 0 022 100l 07 oo L 0% oTn com)
Ara? 0 000 0.00 0.00 0.00
Baker® 12 0 000 0.00 0.00 0.00
Ballesteros* 2 0 0.02 0.00 0.04 0.00
002 274 002 267
. (0.01)  (0.010) (0.01)  (0.010)
Bangalore 18 0 000 0 0.0 2 000 ST 2 000 S5 — o0
(0.01)  (0.020) (0.01)  (0.030)
Bansback® 2 0 000 0.35 0.05 0.00
Bottomley’ 4 0 012 0.02 0.02 0.01
Brown® 6 0 002 0.02 0.00 0.00
Bucher® 2 0 000 0.00 0.00 0.00
069 249 057 200 038 263 018 -2.28
(0.28)  (0.013) (0.28)  (0.045) (0.15)  (0.009) (0.08)  (0.022)
N 115 227 031 200 058 -2.19 029 217
Craren 03 000 65y oz 2 %00 015 oasy 2 %00 oony o029y 2 900 (013)  (0.030)
061 251 023 219 014 2.8
(0.24)  (0.012) (011)  (0.028) (0.06)  (0.029)
— 12 2.92 115 290 005 286 005 291
i 1000 6ay  ©oosy 1 900 a0y ©oosy 1 %00 ooy 0oosy L %90 o2y (0.004)
Eisenberg®? 1 0 0.03 0 0.0 0 0.02 0 0.00
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0.83

2.78

0.80

2.82

0.00
13 (0.3) (0.005) (0.28)  (0.005)
Elliott 16 2 001 01 518 2 001 570 597 0 0.00 0
(0.33)  (0.030) (0.31)  (0.024)
" 0.90 2.29 0.82 2.49
Govan 2 1 0.00 039)  (0022) 1 0.00 (033)  (0013) 0 0.00 0 0.00
Hofmeyr™ 1 0 0.00 0 0.0 0 0.00 0 0.00
4.74 -3.99 3.35 3.45 3.34 3.33 0.79 3.88
(1.19)  (<0.001) (0.97)  (0.001) (1.00)  (0.001) (0.20)  (<0.001)
2.56 -2.26 1.72 2.22 1.74 2.09 0.74 3.86
(1.13)  (0.024) (0.78)  (0.026) (0.83)  (0.037) (0.19)  (<0.001)
4.52 -4.56 1.68 3.70 1.81 351
" (0.99)  (<0.001) (0.46)  (<0.001) (0.52)  (<0.001)
Imamura 26 5 0.07 306 528 6 001 T30 >33 5 0.05 178 > 0L 2 002
(1.24)  (0.013) (0.59)  (0.020) (0.64)  (0.045)
1.9 2.24 2.37 -2.37 2.37 -2.28
(0.85)  (0.025) (1.00)  (0.018) (1.04)  (0.023)
1.14 -2.03
(0.56)  (0.042)
Lam?’ 3 0 0.00 0 0.00 0 0.00 0 0.00
18 0.30 2.16
Lapitan 6 0 0.0 0 0.00 0 0.00 1 0.00 ©14)  (0.030)
Lu (1)*® 4 0 043 0 0.02 0 0.26 0 001
Lu (2)*® 4 0 025 0 003 0 007 0 001
Macfayden” 2 0 053 0 005 0 015 0 004
Middleton® 1 0 0.00 0 0.00 0 0.00 0 0.00
Mills® 2 0 0.18 0 002 0 0.09 0 001
Nixon?® 2 0 0.65 0 006 0 030 0 003
1.9 2.01 0.01 -2.20 1.08 211 0.43 2.22
. e (0.94)  (0.045) (0.41)  (0.028) (0.51)  (0.035) (0.19)  (0.027)
Picard 33 2 067 5% 513 4 015 113 199 1 013 2 003 550 502
(1.17)  (0.033) (0.57)  (0.047) (0.25)  (0.044)
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1.20 1.97
(0.61)  (0.049)
1.38 -2.12
(0.65)  (0.034)
Playford? 1 0 0.00 0 0.0 0 0.00 0 0.00
0.77 -2.47 0.71 -2.50 0.03 2.04 0.02 -1.98
-8 (0.31)  (0.013) (0.28)  (0.012) (0.01)  (0.041) (0.01)  (0.047)
Psaty 10 1 o001 1 0.1 2 0.00 003 > 14 2 0.00 503 =09
(0.01)  (0.032) (0.01)  (0.037)
29 0.15 2.23 0.08 -2.17
Puhan 7 0 0.00 0 0.0 1 0.00 (007)  (0.026) 1 0.00 (004)  (0.030)
Roskell (1)* 6 0 007 0 007 0 0.00 0 0.00
Roskell (2)® 3 0 0.0 0 0.0 0 0.0 0 0.0
o 0.87 2.18 0.70 2.17
Salliot 1 1 012 0.4) (0.029) 0 0.00 1 0.09 (0.32) 0.03) 0 0.00
) 2 0.61 2.05
Sciarretta 13 0 001 1 001 (030)  (0.040) 0 0.00 0 0.00
Soares-Weiser®* 4 0 0.35 0 0.03 0 0.13 0 0.02
Thijs® 3 0 0.00 0 0.0 0 0.00 0 0.00
Trikalinos® 1 0 0.00 0 0.0 0 0.00 0 0.00
Virgili*’ 1 0 0.00 0 001 0 0.00 0 0.00
28 1.00 2.26 0.45 -2.23
Wang 4 0 018 0 010 1 0.00 (0.44) 0.02) 1 001 (020)  (0.030)
Welton®® 4 0 0.19 0 0.16 0 0.00 0 0.00
Woo® 3 0 0.00 0 007 0 008 0 0.01
Yu# 5 0 0.00 0 0.00 0 0.00 0 0.00
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Appendix Table 4 Inconsistency estimates (IF5) along with their standard error (SE(IF5)) and WS values estimated in the loop specific approach for the four effect
sizes. Within each loop, inconsistency is estimated assuming a common heterogeneity for each comparison (£;,,,)- The amount of heterogeneity is estimated with the
DerSimonian and Laird estimator in the random-effects model. RD: risk difference measure, LRRH: log risk ratio for harmful outcomes, LRRB: log risk ratio for beneficial
outcomes and LOR: log odds ratio.

LOR LRRH LRRB RD
2 5 2 2 T &5, & 2 T &5, & 2 T 5. & = o
o bR [<2) = S bR %) [<2) = = bR %) 5] ~ =) 5 n 5] — S
Network = 28 g£#& S S 2g £# =3 S gg £ =2 = 28 £& nZ &S
g 2 @2 ) ST -2 %) ST - 2 & g = & S
159 3.01 121 3.6 037 414 028 426
. 000 h41)  (0.000) 000 532 (0.000) 000 ho9)  (0.000) 000 h07)  (0.000)
Ades 3 2 1 1 1
o 207 2.06
: (100)  (0.039)
Ara? 5 0 0 0 0
0.12 197
0.001
Baker? 12 0 2 (0.06) (0.049) 0 0
oo 012 225
: (0.06)  (0.024)
Ballesteros* 2 0 0 0 0
0.21 212 021 212 002 272 0.02 25
s T 0.00  h10)  (0.034) ) 000 ©10)  (0.034) ) 000 ho1)  (0.006) ) 000 ho1)  (0.012)
g oo 019 218 oo 019 218 oo 002 254 oo 002 257
: (0.09)  (0.029) : (0.09)  (0.029) : (0.01)  (0.011) : (0.01)  (0.010)
; 0.91 237
Bansback 2 0 0 1 0.00 (0.38) (0.018) 0
Bottomley’ 4 0 0 0 0
Brown® 6 0 0 0 0
Bucher? 2 0 0 0 0
071 214 071 217 038 -2.86 018 237
Giorian® | 70 3 002 533 (0.032) ; 0.02° " 033)  (0.030) . 000 0513)  (0.004) 5 000 008) (0.018)
P oo L1522 oo L5 227 oo 088 227 oo 029 23
: (0.51)  (0.023) : (051)  (0.023) : (0.26)  (0.024) : (0.12)  (0.019)
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oo 061 251
(0.24)  (0.012) 000 0% (oo
o o oo 028 233
) 0T 2% oo 014 248
Dias 11 000 20  -2.93 £ R -
Eisenberg™ 1 (0.41) (0.003) 0.00 (éllllg) o004 (8.32) o
. (0.004) 000 ¢ o0 0
0 — (0.02)  (0.004) 000 002 (o0
— - 0 - 1 (0.02)  (0.003)
Elliott® l g} - . -
16 ooy 071 2.64 s 350" — o g
on — e — 029 04 (0.01)  (0.004) 000 002 2.86
o — o000 (0.01)  (0.004)
| o g oo 2n oo 001 233
Govan 2 000 090 229 (026) (0.007) 0.00 (8'82) e (8.8? )
— : ) (0.022) (033)  (0.013) | I
A7 36l
(1.30)  (0.000) 002 So0 (000
oo 252 238 5 "o o
(1L06)  (0.017) 000 72 2.24 T 2o — 00.8 o
0.00 4.52 -4.76 (0.77)  (0.025) 0.00 o ot 06— 2n
| i — 017 02 (0.77)  (0.025) 000 045 212
B o o5 i o o) 0.01 1.68 3.71 (0.21) (0.034)
(118)  (0.010) 003 31 2.1 ST — 8.69 o
0o 190 253 (0.62)  (0.036) 003 (e s o —iw
i 2% - 052 0,036 (0.62)  (0.036) 000 017 ~1.99
i — 0o (0.08)  (0.046)
v i G 25 2% ol 045 201
s — 4% oo (0.23)  (0.044)
B LT oo 037 213
| (8.13) (0.006)
wr oo 037 2.8
= 6 (0.16)  (0.023)
u
- : oo 038 202
o 000 030 2.24
(0.13)  (0.025)

Appendix




105

Lu (2)* 4 0 0 0 0
Macfayden?? 2 0 0 0 0
Middleton? 1 0 0 0 0
Mills? 2 0 0 0 0
e 236 459 065 -4.08 172 436 045 521
NP 2.1 000 ooy ooy P %90 946 ooo) Y 909 039y 0oop) ' %% 0o9)  (0.000)
189 203 089 -222 158 218 043 211
064 093)  (0.042) 014 040) (0.027) 000 573)  (0.029) 004 920)  (0.035)
o 252 2.02 121 225
Picard 3B 2 08l oo g 2 0 gy ook L 1
139 -2.06
017" 068)  (0.040)
Playford® 1 0 0 0 0
076 266 070 272 003 233 005 200
" 0.00  h29)  (0.008) 000 ©26)  (0.007) 000 ho1)  (0.020) 000 ho3)  (0.046)
Psaty 10 1 1 1 2
oo 008 233
00 0oy (0.02)
» 015 236 008 222
Puhan 7 0 0 1000 o2 ot 1 000 (0 oo
" 077 243 075 245 003 -2.39 003 233
Roskell ()™ 6 1 000y go15y L+ 000 o5 gorey T 000 oony 0017y Y %% 001y (0020
Roskell 2)¥ 3 0 0 0 0
— 086 244 070 236
salliot 11002 g ooy O 10 ol o O
002 214 001 208
0.00 0.00
Sciarretta® 13 0 0 2 001) (0032 2 (010) (0.087)
oo 00L 213 oo 00l 206
: (0.01)  (0.033) 90 000)  (0.040)
Soares- 0.38 2.39
Weiser* 4 0 00l 4 0oy O 0
Thijs® 3
Trikalinos® 1
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Virgili®’ 1 0 0 0 0

- 208 207 099 226 045 236
WETE 41 01l g (0o3g) O 001 gapy o2ey 1 %90 g19) (0018
Welton* 4 0 0 0 0
Woo® 3 0 0 0 0

Yu* 5 0 0 0 0
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Appendix Table 5. WPBT (P value) results according to design-by-treatment interaction model (DBT) using the restricted maximum likelihood (REML) and maximum
likelihood (ML) estimators when applying all four effect measures. RD: risk difference measure, RRH: risk ratio for harmful outcomes, RRB: risk ratio for beneficial
outcomes, OR: odds ratio.

RRH RRB
Network
REML ML REML ML REML ML REML ML
Ades! 19.60 (<0.001 19.52 (<0.001) 13.20 (0.004) 18.32 (<0.001) 22.63 (<0.001) 22.63 (<0.001) 22.03 (<0.001) 22.03 (<0.001)
( )
Ara’ 1.72 (0.944) 1.76 (0.941) 1.75(0.941) 1.75 (0.941) 1.11 (0.981) 1.83 (0.935) 2.41 (0.878) 2.41 (0.878)
Baker® 16.07 (0.1883) 17.61 (0.128) 25.02 (0.015) 26.24 (0.01) 15.13 (0.235) 15.13 (0.235) 11.70 (0.470) 13.58 (0.328)
Ballesteros* 1.78 (0.776 3.20 (0.526) 3.07 (0.547) 4.36 (0.359) 2.86 (0.582) 6.06 (0.194) 1.96 (0.744) 3.57 (0.467)
( )
Bangalore5 7.7 (0.935 14.36 (0.499) 14.17 (0.513) 20.49 (0.154) 16.82 (0.330) 16.83 (0.329) 18.86 (0.220) 18.86 (0.220)
( )
Bansback® 2.16 (0.339 2.16 (0.340) 2.22 (0.330) 2.35(0.310) 7.15 (0.028) 7.15 (0.028) 1.30 (0.523) 1.47 (0.480)
( )
Bottomley7 5.57 (0.473) 22.59 (0.001) 6.92 (0.328) 31.18 (<0.001) 5.52 (0.479) 16.89 (0.01) 5.26 (0.511) 24.90 (<0.001)
Brown® 5.75 (0.675 5.85 (0.664) 5.50 (0.703) 5.57 (0.695) 5.45 (0.709) 5.45 (0.709) 5.91 (0.657) 5.91 (0.657)
( )
Bucher® 0.74 (0.692) 0.73 (0.695) 0.70 (0.706) 0.70 (0.706) 1.04 (0.594) 1.35 (0.508) 1.13 (0.567) 1.49 (0.474)
Cipriani10 30.79 (0.577) 32.25 (0.504) 28.4 (0.696) 37.04 (0.288) 32.7 (0.482) 38.85 (0.223) 30.37 (0.599) 39.72 (0.196)
Dias™ 9.90 (0.449) 12.78 (0.236) 9.90 (0.449) 12.60 (0.247) 8.41 (0.589) 11.49 (0.321) 8.73 (0.558) 12.18 (0.273)
Eisenberg12 2.65 (0.265) 3.27 (0.195) 3.19 (0.203) 3.76 (0.153) 3.23(0.199) 4.24 (0.120) 3.09 (0.214) 3.66 (0.161)
Elliott*® 19.61 (0.106) 31.70 (0.003) 20.09 (0.093) 31.27 (0.003) 9.53(0.732) 31.78 (0.003) 9.00 (0.773) 32.33 (0.002)
Govan* 12.12 (0.017) 12.1(0.017) 12.67 (0.013) 12.67 (0.013) 7.69 (0.104) 8.23 (0.083) 9.07 (0.059) 9.50 (0.050)
Hofmeyr15 3.44 (0.179 3.44 (0.179) 3.47 (0.177) 3.47 (0.177) 2.72 (0.257) 2.92 (0.232) 2.72 (0.256) 2.94 (0.230)
( )
Imamura®® 32.47 (0.070) 26.84 (0.140) 11.16 (0.934) 33.17 (0.032) 21.71 (0.357) 23.56 (0.262) 15.85 (0.726) 45.81 (0.001)
Lam® 2.92 (0.404) 2.92 (0.404) 2.78 (0.427) 2.78 (0.427) 0.21 (0.977) 0.57 (0.904) 0.16 (0.983) 0.35(0.949)
Lapitan18 6.09 (0.193) 6.49 (0.166) 5.85(0.211) 5.85(0.211) 8.97 (0.062) 8.97 (0.062) 9.49 (0.050) 9.49 (0.050)
Lu (1)lg 5.11 (0.646 6.76 (0.455) 4.57 (0.713) 5.87 (0.555) 5.19 (0.637) 6.97 (0.432) 5.64 (0.582) 7.48 (0.381)
( )
Lu (2)19 11.24 (0.081 6.06 (0.195) 11.86 (0.065) 14.53 (0.024) 10.32 (0.112) 13.92 (0.031) 12.05 (0.061) 16.76 (0.010)
( )
Macfayden 22 13.14 (0.022) 20.74 (0.001) 15.23 (0.009) 15.23 (0.009) 0.00 (<0.001) 27.22 (<0.001) 3.69 (0.595) 14.38 (0.013)
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Middleton® 218 (0.140) 2.17 (0.141) 1.90 (0.168) 1.90 (0.168) 2.76 (0.097) 2.76 (0.097) 2.87 (0.091) 2.87 (0.091)
Mills? 1.75 (0.782) 2.02 (0.732) 3.14 (0.535) 3.53 (0.473) 1.14 (0.889) 1.29 (0.863) 1.94 (0.746) 2.19 (0.700)
Nixon® 7.25 (0.065) 2951 (<0.001)  14.92(0.002)  21.76 (<0.001)  5.09(0.165)  28.05(<0.001) 1237 (0.006)  39.33 (<0.001)
Picard® 60.27 (0.001)  101.29(<0.001)  60.67 (0.001)  127.27 (<0.001)  50.24(0.016)  50.24 (0.016) 62.85(0.001)  123.81 (<0.001)

Playford?’ 153 (0.217) 1.52 (0.218) 1.49 (0.222) 1.49 (0.222) 0.94 (0.333) 0.94 (0.333) 0.81 (0.369) 1.11 (0.291)
Psaty® 10.71 (0.38) 13.62 (0.191) 5.99 (0.816) 10.32 (0.413)  10.21(0.423)  18.10 (0.053) 9.64 (0.473) 16.76 (0.080)
Puhan® 9.4 (0.226) 7.15 (0.413) 8.52 (0.289) 8.52 (0.289) 6.37 (0.498) 9.51 (0.218) 6.49 (0.418) 8.19 (0.316)

Roskell (1)*! 457 (0.335) 8.03 (0.090) 4.54 (0.337) 8.23 (0.084) 3.56 (0.469) 5.66 (0.226) 3.45 (0.486) 5.86 (0.210)

Roskell (2)® 0.2 (0.906) 0.20 (0.906) 1.31 (0.520) 1.31 (0.520) 0.51 (0.776) 0.51 (0.776) 0.82 (0.663) 0.82 (0.663)
Salliot® 11.81 (0.003) 11.81 (0.003) 2.74 (0.254) 2.76 (0.252) 10.44 (0.005)  13.34 (0.001) 5.11 (0.078) 5.11 (0.078)

Sciarretta® 12.89 (0.456) 22.25(0.052)  1433(0.351)  14.33(0.351)  42.75(<0.001)  42.75(<0.001)  50.80 (<0.001)  50.80 (<0.001)

v?/%?srg?“ 1,08 (0.961) 7.97 (0.336) 1.33 (0.988) 21.62 (0.003) 2.86 (0.898) 7.17 (0.411) 1.91 (0.965) 12.62 (0.082)
Thijs® 1,66 (0.893) 1.66 (0.893) 1.87 (0.867) 1.87 (0.867) 1.61 (0.9) 1.91 (0.861) 1.64 (0.896) 1.86 (0.868)
Trikalinos®® 0.66 (0.415) 0.73 (0.393) 0.68 (0.411) 0.68 (0.411) 0.01 (0.905) 0.01 (0.906) 0.04 (0.850) 0.04 (0.850)
Virgili® 0.09 (0.766) 0.13 (0.714) 0.01 (0.910) 0.01 (0.910) 2.39 (0.122) 2.39 (0.122) 1.50 (0.221) 1.59 (0.207)
Wang® 5.68 (0.577) 8.46 (0.294) 5.64 (0.582) 8.76 (0.270) 6.21 (0.515) 8.01 (0.331) 6.05 (0.534) 8.28 (0.309)
Welton® 4.14 (0.845) 4.48 (0.812) 4.01 (0.857) 4.30 (0.829) 6.33 (0.611) 8.13 (0.420) 6.57 (0.584) 8.25 (0.410)
Woo® 552 (0.238) 5.59 (0.232) 213 (0.711) 3.51 (0.477) 10.69 (0.030)  24.39 (<0.001) 4.89 (0.299) 8.10 (0.088)
yut 3.28 (0.858) 3.28 (0.858) 3.27 (0.859) 3.27 (0.859) 2.71 (0.910) 2.71 (0.910) 2.82 (0.901) 2.82 (0.901)
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Appendix Table 6. Inconsistency factors (IFS'°PE) along with their standard error (SE(IFS/PPEY), W SIPDE
and heterogeneity as estimated when detaching each design. Heterogeneity has been estimated using the
restricted maximum likelihood estimator.

Number of

SIDDE
Network tggsri]%xgrr]k (SEI (I; FSIDDEY) WSIPDE (p_yalue) heterogeneity
1.63 (0.39) 17.79 (<0.001) 0.00
Ades® 8 1.54 (0.51) 9.17 (0.002) 0.04
1.54 (0.51) 9.17 (0.002) 0.04
Ara’ 8 Consistent
Baker® 12 Consistent
Ballesteros® 5 Consistent
Bangalore® 18 0.20 (0.08) 6.53 (0.011) 0.00
Bansback® 2 Consistent
Bottomley’ 7 1.34 (0.55) 6.04 (0.014) 0.06
Brown® 11 Consistent
Bucher? 5 Consistent
Cipriani® 43 0.43 (0.17) 6.24 (0.013) 0.01
Dias™ 15 1.19 (0.41) 8.45 (0.004) 0.00
Eisenberg" 3 Consistent
77 (0.27
— . o1 827; 9.48 (0.009) 0.01
0.29 (0.14) 4.19 (0.041) 0.01
0.73 (0.35) 4.31 (0.038) 0.00
Govan* 6 0.91 (0.39) 5.28 (0.022) 0.00
0.91 (0.39) 5.28 (0.022) 0.00
Hofmeyr 3 Consistent
3.11 (1.54) 4.07 (0.044) 0.06
" 1.91 (0.80) 5.75 (0.016) 0.01
Imamura 24 0.93 (0.46) 4.00 (0.043) 0.01
1.44 (0.69) 4.35 (0.037) 0.00
Lam® 3 Consistent
Lapitan'® 5 Consistent
Lu (1)* 8 Consistent
. 159 (0.72) 4.90 (0.027) 0.21
Lu@ 10 e ggg‘% 6.01 (0.049) 0.22
Macfayden? 6 o 8:238 7.05 (0.029) 0.23
Middleton? 3 Consistent
Mills®* 5 Consistent
Nixon® 7 Consistent
3.03 (L01)
2.79 (0.95) 12.59 (0.006) 0.50
1.25 (1.02)
Picard® 22 2.29 (1.12) 4.17 (0.041) 0.60
128 (1.12)
3.20 (1.24) 8.94 (0.030) 0.56
2.75 (1.16)
Playford®’ 3 Consistent
Psaty®® 11 0.52 (0.25) 4.22 (0.040) 0.01
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0.69 (0.30) 5.24 (0.022) 0.00
Puhan?® 8 0.31 (0.14) 4.89 (0.027) 0.00
Roskell (1)® 8 Consistent
Roskell (2)* 2 Consistent
0.26 (0.34)
salliot® 3 1.04 (0.32) 11.81(0.003) 0.00
0.91 (0.27) 11.20 (0.001) 0.00
. - 0.49 (0.22) 4.80 (0.028) 0.01
Sl 17 0.55 (0.28) 3.96 (0.047) 0.00
Soares-Weiser® 9 Consistent
Thijs® 8 Consistent
Trikalinos® 3 Consistent
Virgili*’ 3 Consistent
gig (1'85) 3.97 (0.046) 0.17
Wang® 10 10 (1.05)
210 (L.05) 3.97 (0.046 017
2.10 (1.05) 97 (0.046) '
Welton™ 11 Consistent
Woo® 4 Consistent
Yu* 8 Consistent

Appendix Table 7. Inconsistency factors (IFS'PE) and their standard error (SE (IFS™PEY), WSIPE values and
common-within network heterogeneity estimated in SIDE method. Heterogeneity has been estimated using
the restricted maximum likelihood estimator. Note that in one network (21) SIDE inconsistency could not be
evaluated. Whenever a comparison was part of at least one multi-arm study, | estimated inconsistency after
re-parameterisation of the multi-arm studies and | present the maximum W S value. N: number of
comparisons that can be separated in the network.

Is the comparison included IF WSIDE .
NSRS in a multi-arm trial? N (SE(IF)) (P-value) MR
NO 1.63(0.39)  4.22 (<0.001) 0.00
Ades* NO 8  154(051)  3.03(0.002) 0.04
NO 1.54 (0.51)  3.03 (0.002) 0.04
Ara’ 8 Consistent
Baker® 14 Consistent
Ballesteros* 5 Consistent
Bangalore® NO 18 0.20 (0.08) 2.56 (0.011) 0.00
Bansback® 4 Consistent
7 1.34
Bottomley YES 6 (0.55) 2.46 (0.014) 0.06
8 1.27
Brown YES 10 0.63) 2.02 (0.044) 0.00
Bucher® 5 Consistent
Cipriani®® NO 42 0.43(0.17)  2.50(0.013) 0.01
Dias™ NO 15 1.19 (0.41) 2.91 (0.004) 0.00
Eisenberg®? 1 Consistent
L YES 0.71(0.23)  3.05(0.002) 0.01
Elliott 14
YES 0.27 (0.11)  2.54(0.011) 0.01
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NO 0.91(0.39)  2.30(0.022) 0.00
Govan** YES 5  073(0.35)  2.08(0.038) 0.00
NO 091(0.39)  2.30 (0.022) 0.00
Hofmeyr® 1 Consistent
YES 1.39(0.69)  2.01(0.044) 0.03
YES 142 (0.6)  2.36(0.018) 0.02
. NO 1.91(0.80)  2.40 (0.016) 0.01
Imamura YES 2L T151(069) 217 (0.030) 0.00
YES 1.61(0.51)  3.19 (0.001) 0.00
NO 1.44(0.69)  2.09 (0.037) 0.00
Lam*’ 7 Consistent
Lapitan®® 1 Consistent
Lu (1)* 6 Consistent
Lu (2)* NO 9 1.60 (0.72)  2.22(0.026) 0.21
Mactavdon?? YES - 149 (0.75) _ 2.00 (0.045) 0.32
actayden YES 298 (1.49)  2.01(0.045) 0.32
Middleton® 3 Consistent
Mills** 5 Consistent
Nixon® YES 6 1.94 (0.50)  3.88 (<0.001) 0.07
YES 151 (0.47)  3.17 (0.002) 0.52
YES 153(053)  2.91(0.004) 0.52
Picard® YES 23 1.63(0.79)  2.07 (0.039) 0.61
YES 257 (0.70) 3.7 (<0.001) 0.45
YES 2.11(0.85)  2.48(0.013) 0.57
Playford®’ 3 Consistent
" YES 046 (0.22) _ 2.09 (0.036) 0.00
LY NO 10 —052(025)  2.05(0.04) 0.01
Puhan® YES 0.29 (0.13) 2.26 (0.024) 0.00
Roskell (1)* Consistent
Roskell (2)* Inconsistency could not be estimated
. YES 091(0.27)  3.35(0.001) 0.00
Salliot 3
YES 1.83(0.55)  3.35(0.001) 0.00
. i NO 055 (0.28) 1.9 (0.047) 0.00
Sciarretta NO 15 049(022) 2.9 (0.028) 0.01
Soares- .
Weiser® 8 Consistent
Thijs® 7 Consistent
Trikalinos® 3 Consistent
Virgili¥’ 3 Consistent
" NO 2.10 (L.05) 1.9 (0.046) 0.17
Wang NO % T510(1L05) 1.9 (0.046) 0.17
Welton® 9 Consistent
Wo0* YES 9 0.63 (0.30) 2.10 (0.036) 0.00
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YES

1.26 (0.60)

2.10 (0.035)

0.00

Yu4l

Consistent

Appendix Table 8. Results according to Lu and Ades (LA) model and /2 measures. Heterogeneity has been
estimated (£2) using the restricted maximum likelihood estimator. Note that in one network (21)
inconsistency could not be evaluated using the LA model. In bold I present the networks for which the test
for inconsistency was statistically significant. For the LA model | applied all different parameterisations of
the multi-arm studies and | present the maximum W4 value. df: degrees of freedom

Lu and Ades model I? measures

Network df wta p-value 12 2. 1 hetne
Ades! 3 19.60 <0.001 0.00 000 071 0.71
Ara’ 4 0.97 0.914 0.00 0.73  0.00 0.73
Baker® 6 12.14* 0.059* 0.00 070  0.23 0.77
Ballesteros* 2 1.51* 0.471* 0.06 0.84  0.32 0.89
Bangalore® 10 9.34* 0.501* 0.00 0.91 0.38 0.95
Bansback® 1 0.02 0.883 0.00 0.29  0.00 0.29
Bottomley” 2 2.90* 0.235* 0.11 064 0.74 0.91
Brown® 5 4.96* 0.421* 0.00 043  0.14 0.51
Bucher® 2 0.74 0.692 0.00 021  0.00 0.21
Cipriani® 31 29.96 0.519 0.01 075 0.8 0.80
Dias™ 5 7.34* 0.197 0.00 0.94 0.08 0.95
Eisenberg? 1 2.47* 0.116* 0.02 030 035 0.55
Elliott® 9 18.10 0.034 0.01 0.68  0.62 0.88
Govan* 2 10.93 0.004 0.00 0.58  0.00 0.58
Hofmeyr®® 1 3.25* 0.071* 0.00 0.06  0.00 0.06
Imamura® 14 25.25 0.032 0.00 052 018 0.61
Lam® 1 0.08 0.773 0.00 0.45 0.00 0.45
Lapitan®® 1 0.16 0.691 0.00 048  0.00 0.48
Lu (1)* 3 2.85*% 0.416* 0.47 076  0.84 0.96
Lu (2)* 4 8.44* 0.077* 0.22 062  0.64 0.86
Macfayden #? 2 11.08 0.004 0.11 039 075 0.85
Middleton® 1 2.18 0.140 0.00 046  0.00 0.46
Mills® 2 1.52* 0.468 0.18 0.17  0.78 0.81
Nixon® 2 3.03 0.220 0.39 0.00 001 0.88
Picard?®® 11 23.73 0.008 0.46 063 0.72 0.89
Playford® 1 1.53 0.217 0.00 023  0.00 0.23
Psaty?®® 6 10.63* 0.100* 0.05 0.68  0.46 0.83
Puhan?® 4 8.66* 0.070* 0.00 063 0.8 0.73
Roskell (1) 4 457* 0.335* 0.04 012  0.60 0.65
Roskell (2)* - - - - 041  0.00 0.41
Salliot® 1 11.20 <0.001 0.00 0.00  0.60 0.19
Sciarretta® 9 11.16* 0.264* 0.02 096  0.60 0.98
VSV‘;"’I‘;:fM 2 1.15* 0.562% 0.44 078  0.72 0.94
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Thijs® 2 0.68* 0.877* 0.00 0.76  0.00 0.76
Trikalinos® 1 0.66 0.415 0.00 0.25 0.00 0.25
Virgili*’ 1 0.09 0.766 0.01 028  0.07 0.33
Wang*® 3 5.59* 0.134* 0.17 028  0.66 0.75
Welton® 4 1.86* 0.762* 0.21 020  0.46 0.57
Woo* 2 5.02* 0.081* 0.00 051  0.00 0.51
Yu# 4 2.16* 0.706* 0.00 0.72 0.00 0.72

* a different parameterisation of the multi-arm studies results in different chi-square tests, but the
significance of the test does not change.
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