
UNIVERSITY OF IOANNINA
SCHOOL OF HEΑLTH SCIENCES

FACULTY OF MEDICINE

DEPARTMENT OF HYGIENE AND EPIDEMIOLOGY

STUDY OF THE HETEROGENEITY AND INCONSISTENCY IN

NETWORKS OF MULTIPLE INTERVENTIONS

Veroniki  Areti  Angeliki

M a t h e m a t i c i a n

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOHPY

I O A N N I N A  2 0 1 4





ÐÁÍÅÐÉÓÔÇÌÉÏ ÉÙÁÍÍÉÍÙÍ
ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΥΓΙΕΙΝΗΣ ΚΑΙ ΕΠΙΔΗΜΙΟΛΟΓΙΑΣ

ΜΕΛΕΤΗ ΤΗΣ ΕΤΕΡΟΓΕΝΕΙΑΣ ΚΑΙ ΤΗΣ ΑΣΥΝΕΠΕΙΑΣ ΣΕ

ΔΙΚΤΥΑ ΠΟΛΛΑΠΛΩΝ ΠΑΡΕΜΒΑΣΕΩΝ

Βερονίκη Αρετή Αγγελική

Μ α θ η μ α τ ι κ ό ς

Ä É Ä Á Ê Ô Ï Ñ É Ê Ç  Ä É Á Ô Ñ É Â Ç

I O A N N I N A  2 0 1 4





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Η έγθξηζε ηεο δηδαθηνξηθήο δηαηξηβήο από ηελ Ιαηξηθή ρνιή ηνπ Παλεπηζηεκίνπ 

Ισαλλίλσλ δελ ππνδειώλεη απνδνρή ησλ γλώκσλ ηνπ ζπγγξαθέα Ν. 5343/32, άξζξν 202, 

παξάγξαθνο 2 (λνκηθή θαηαρώξεζε ηνπ Ιαηξηθνύ Σκήκαηνο). 

 













 

Acknowledgements 

 

I am deeply indebted to my supervisor Dr. Georgia Salanti for her excellent guidance, 

caring and wise advice through all these years. The support and guidance of my second 

supervisor, Prof. Julian Higgins, has been invaluable on the academic level, for which I am 

extremely grateful. I am very thankful to the European Research Council, which has 

supported my study. Thank you also to all my other colleagues and friends in School of 

Medicine, Department of Hygiene and Epidemiology at the University of Ioannina in 

Greece for having made this building very special to me. I would never have been able to 

finish my dissertation without the help and support from my family and my husband. 

 

 

This dissertation is dedicated to the memory of my beloved father Charalambos 

Veronikis (1937-2005). 

 





 

Table of Contents 

1. Introduction…………………………………………………………………………………….1 

1.1 Background to the research ................................................................................................ 1 

1.2 Justification for the research ............................................................................................... 5 

2. Heterogeneity and uncertainty in meta-analysis………………………………………………..7 

2.1 Introduction ........................................................................................................................ 7 

2.2 Models for meta-analysis ................................................................................................... 8 

2.3 Estimating the heterogeneity variance ................................................................................ 9 

2.3.1 Properties of a good estimation method ..................................................................... 9 

2.3.2 Estimation methods for the heterogeneity variance ................................................. 11 

2.3.3 Assumptions made for the heterogeneity in an NMA model ................................... 15 

2.4 Estimating the uncertainty for the summary treatment effect .......................................... 16 

2.4.1 Confidence Intervals for the summary treatment effect ........................................... 17 

2.5 Comparison of methods .................................................................................................... 18 

3. Statistical approaches to evaluate the assumption of consistency…………………………….21 

3.1 Introduction ...................................................................................................................... 21 

3.2 Notation ............................................................................................................................ 22 

3.3 Consistency model ........................................................................................................... 23 

3.4 Models to evaluate global inconsistency .......................................................................... 24 

3.4.1 Design-by-treatment interaction (DBT) ................................................................... 24 

3.4.2 Lu and Ades (LA) ..................................................................................................... 25 

3.4.3  -statistic and I2 measure for evaluating and measuring inconsistency ................... 25 

3.5 Methods to evaluate local inconsistency .......................................................................... 27 

3.5.1 Loop-specific (LS) approach .................................................................................... 27 

3.5.2 Separating one design from the rest (SODR) ........................................................... 29 

3.5.3 Separating indirect and direct evidence (SIDE) ....................................................... 31 

3.6 Comparison of approaches to evaluate inconsistency ...................................................... 33 

4. Evaluation of inconsistency in networks of interventions…………………………………….35 

4.1 Introduction ...................................................................................................................... 35 

4.2 Empirical study ................................................................................................................. 37 

4.2.1 Searching for network meta-analyses and data extraction ....................................... 37 

4.2.2 Effect measures ........................................................................................................ 37 



 

4.2.3 Estimation of the heterogeneity ................................................................................ 38 

4.2.4 Comparison of the approaches for the evaluation of inconsistency and model fit ... 39 

4.2.5 Description of database ............................................................................................ 40 

4.2.6 Models to evaluate global Inconsistency .................................................................. 43 

4.2.7 Methods to evaluate local Inconsistency .................................................................. 46 

4.3 Simulation study ............................................................................................................... 58 

4.3.1 Simulation study design ........................................................................................... 58 

4.3.2 Estimation of the variance of inconsistency ............................................................. 61 

4.3.3 Type I error............................................................................................................... 61 

4.3.4 Statistical Power ....................................................................................................... 64 

4.3.5 Coverage Probability and Bias ................................................................................. 67 

4.3.6 Properties of loop-specific method in a ‘typical’ loop of evidence .......................... 72 

5. Discussion……………………………………………………………………………………..73 

6. Conclusions…………………………………………………………………………………...79 

Summary in English………………………………………………………………………………..81 

Πεξίιεςε ζηα ειιεληθά……………………………………………………………………………83 

References………………………………………………………………………………………….85 

Appendix…………………………………………………………………………………………...93 

 



 

1. Introduction 

1.1 Background to the research 

Meta-analysis is the statistical technique that pools data from several trials in an effort 

to increase power over the individual studies and in the hope of identifying patterns among 

trial results or potential sources of disagreement among those results. However, 

conventional meta-analytic models are restricted to pairwise comparisons, pooling results 

only from studies that compare two interventions. It is very common in health-care 

decision making to have more than two competing interventions. When multiple 

interventions have been developed to address the same problem, their relative effectiveness 

is a key concern for policy makers and practitioners who need to choose which specific 

intervention to implement. There might be studies comparing pair or triplets of 

interventions but it is impossible to find enough studies comparing all possible pairs of all 

the available interventions referred to the same condition. In comparative effectiveness 

reviews with more than two interventions, multiple separate and pairwise meta-analyses 

need to be conducted. This becomes confusing and taking into account the results from all 

the available comparisons would potentially lead to biased inferences (1). Moreover, 

pairwise meta-analysis would not answer which treatment is better when there are no 

studies directly comparing the treatments of interest. Network meta-analysis (NMA) 

addresses this problem by extending conventional meta-analytic models to enable 

comparisons between different sets of interventions to be combined in a single analysis. 

When interventions are compared to a common treatment, e.g. placebo, it is possible to 

compare them indirectly via this common comparator. This methodology has been 

discussed in an early paper by Bucher et al (2). Suppose there are three treatments A, B 

and C and there are no studies comparing directly treatments B and C, but both of them are 

compared to a common comparator A. The true relative effects of the two treatments 

versus the common comparator, B vs. A and C vs. A, may contribute to make inference on 

the comparison C vs. B via the indirect comparison method. Although direct comparisons 

are better than indirect ones in terms of statistical power and mean squared error (3), 

studies have demonstrated that under certain circumstances the indirect comparison 

provides less biased estimates than pairwise meta-analysis (3,4). Mills et al (5) showed via 
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a simulation study that indirect comparisons have low power when heterogeneity is 

moderate to large. 

Network meta-analysis is used to combine the results of clinical trials that undertake 

different comparisons of treatments. When various treatment comparisons are connected in 

a network these can be presented in a network diagram as long as every pairwise 

comparison belongs to a chain that connects all treatments. A network of treatments should 

be connected in the sense that at least one comparison or path exists between two 

interventions in the network. If the comparisons from primary studies do not form a 

connected network, then NMA cannot be applied. To visualise the available evidence 

graphical representations can be used via network diagrams. The NMA methodology 

synthesizes simultaneously evidence from a network of studies involving multiple 

treatments. The relative effectiveness of each pair of interventions can then be estimated, 

regardless of whether the two interventions were directly compared in any of the primary 

studies. NMA is more advantageous of pairwise meta-analysis and indirect comparison as 

we can draw inferences for the comparability between interventions not directly studied in 

an individual clinical trial, and we are given the option to rank the interventions according 

to their efficacy.  

The ever-increasing number of alternative treatment options and the plethora of clinical 

trials have increased the use of NMA the last fifteen years (6). Despite the advantages of 

network meta-analysis, it is not yet a widely established approach of evidence synthesis in 

the literature. Many review authors are sceptical towards the assumptions of the method 

(7). The statistical expertise required in fitting the model, the presentation of complex 

results in an understandable format and the evaluation of the risk of bias and the quality of 

evidence in the network meta-analysis are far more challenging than in conventional meta-

analysis.  

The potential utility of network meta-analysis and the generalisation of its results rest on 

the validity of the required assumptions (8). As in the case of conventional meta-analysis, 

the validity of NMA findings rests on the randomization process of the included RCTs and 

preserves this within-study randomization (1,9). A possible violation of randomization 

would arise if participants of treatment arm A of AB trial were directly compared with 

those in arm C of BC trial in order to estimate the relative effect of A vs. C. It is not valid 
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to compare individuals in different studies. The NMA model respects that participants are 

randomized to interventions within a trial and not across trials (1,10,11).  

Even if conventional meta-analysis and NMA use well-conducted randomized trials, 

threats to the validity of the homogeneity assumption might arise. The assumption of 

homogeneity is violated when there is excessive discrepancy among the study-specific 

treatment effects in the sense that the discrepancy is greater than what one would expect 

due to random error. A certain degree of variability in study estimates is almost always 

present due to chance. Additional variability might occur due to many reasons such as 

differences in the way studies are conducted and how the estimates are measured; this 

additional variability is often termed heterogeneity. The estimation of the heterogeneity is 

of interest and provides insight in the interpretation of the meta-analysis’ results. Several 

methods have been suggested to quantify or express heterogeneity the properties of which 

differ under several circumstances. 

A key assumption in NMA is that the trials are exchangeable in the sense that they are 

sufficiently similar regarding particular characteristics of the studies (1,10,12). The ability 

to learn about a pairwise comparison via an intermediate treatment and make a valid 

indirect comparison constitutes transitivity. The transitivity assumption is comparable to 

the homogeneity assumption to a clinical and methodological way. In order that the 

transitivity assumption holds the similarity of the distribution of the effect modifiers across 

comparisons is required. The effect modifiers are study-level characteristics that influence 

the relative effects of the interventions being compared. The ideal evidence would be to 

use large, multi-arm trials that randomly allocate participants to all eligible interventions. 

Multi-arm trials are by definition consistent and in case a treatment effect estimate for one 

comparison is missing then it can be calculated from the remaining estimates. The 

transitivity assumption implies that participants in the network could theoretically have 

been randomized to any of the treatments in the network. 

Some study-level characteristics vary across studies which is inevitable. These 

variations can include, for example, the way in which an intervention is defined and 

delivered or participant characteristics. The transitivity assumption holds when a) the 

treatments are equivalent in the sense that they are given for the same condition, b) studies 

are sufficiently similar in the sense that the effect modifiers are equally distributed, and c) 

the missing arm in a study is missing at random suggesting that these arms are only 
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unobserved. Transitivity assumes that observed and unobserved estimates do not differ 

beyond what can be explained by heterogeneity. 

Lack of transitivity in NMA can question the consistency of the underlying estimates 

and the reliability of the results. It is therefore crucial to evaluate the consistency 

assumption between the different sources of evidence before analysing them jointly. 

Consistency refers to the extension of transitivity in network estimates, where direct and 

indirect estimates obtained for the same comparison are in agreement (12,13). 

Disagreement between direct and indirect estimates is called inconsistency. Note that the 

distinction between transitivity and consistency is analogous to the one between 

methodological and statistical heterogeneity in pairwise meta-analysis. Similarly to the 

assumption of homogeneity, the assumption of consistency is violated in the presence of 

important discrepancy, beyond what is expected by sampling error, between the overall 

treatment effects of the different sources of evidence.  

Consistency is a property of closed loops within networks, i.e. the paths that begin from 

an intervention node and end to the same node via two or more intermediate interventions, 

as well as entire networks. Consistency in individual loops can be measured by testing for 

statistical differences between direct and indirect estimates. The assumption of consistency 

can be statistically evaluated with several approaches in either certain parts of the network 

(e.g. separating direct and indirect evidence (SIDE), loop-specific (LS), back-calculation) 

or in the entire network (e.g. Lumley model, Lu and Ades (LA) model, design-by-

treatment interaction (DBT) model, comparing the model fit and parsimony from 

consistency and inconsistency models) (9,13–18). Consistency should always be 

statistically assessed and reported when network meta-analysis is used. However, statistical 

tests are underpowered and high levels of heterogeneity can mask inconsistency 

(12,13,16,19,20). A large heterogeneity in the treatment effects leads to greater uncertainty 

in estimates of the mean effect sizes, and statistical inconsistency is less likely to be 

detected. Finding no statistical evidence of inconsistency does not necessarily imply that a 

network is consistent or that the transitivity assumption is valid.  

The ability to detect inconsistency might depend on the estimation of the amount of 

heterogeneity which can vary using different methods (e.g. DerSimonian and Laird, 

restricted maximum likelihood etc.) (21). Similarly, different assumptions for the 

heterogeneity, being the same or different in different parts of the same loop or the network 
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of evidence, may impact on the detection of inconsistency. Inconsistency can be possibly 

affected by the use of different effect measures. Empirical evidence suggests that ratio 

measures are more homogeneous than absolute effect measures (22,23). These differences 

depend on the extent of variation in baseline risk across studies. If these are substantially 

different in different parts of a loop, then inconsistency may be greater for some effect 

measures than others; if baseline risks vary substantially within each comparison, then 

more or less heterogeneity may be present (22). Although there are strong indications that 

the presence, magnitude and estimation method of heterogeneity might influence the 

detection of inconsistency, this association has not been studied extensively. For instance, 

the impact of two alternative methods to express uncertainty about the pairwise summary 

effects (Wald type (Wt) and Knapp-Hartung (KH) method (24,25)) remains unclear. It has 

been shown that the KH method outperforms Wt and that it is insensitive to the estimator 

of the heterogeneity used (24,25). I anticipate that differences in the properties of the two 

methods will impact on the estimation of inconsistency.  

If the required assumptions for NMA are violated the results of a network meta-analysis 

can be biased. Despite its importance, investigators commonly combine direct and indirect 

evidence without evaluating the validity of the consistency assumption. A recent survey 

showed that only 14% of the authors applying NMA have evaluated the assumption of 

consistency, the 24% of whom have used inappropriate approaches (e.g. comparison of 

direct estimates with NMA estimates) to evaluate consistency (6). Several reviews 

evaluating NMAs and the validity of the prerequisite assumptions, highlighted the 

importance of assessing and reporting the methods applied (4,6,14,26–29). Thus, there is 

an urgent need to improve the quality of published NMAs with respect to the uptake, 

application and reporting of methods to evaluate inconsistency. The poor quality might 

also highlight that the methods for NMA are in development and there is a lack of 

agreement on the methods that should be employed. 

1.2 Justification for the research 

The aim of this thesis is to evaluate the prevalence of inconsistency and the importance 

of statistical considerations that might influence its detection. I explore the role of factors 

that may impact on inferences about inconsistency. The factors that I explore are 

associated with the amount of data available in the loop (e.g. number, size and distribution 

of trials across comparisons, frequency of events), heterogeneity in the pairwise 
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comparisons (magnitude and estimation method) and the method for inference about the 

uncertainty in pairwise summary effects. I examine whether the different effect measures 

for dichotomous outcome data are associated with differences in inconsistency, and I 

evaluate whether different approaches to evaluate inconsistency impact on inferences on 

the prevalence and magnitude of inconsistency. I evaluate inconsistency in 40 complex 

networks of interventions (involving 303 closed loops) with dichotomous outcome data, at 

least four treatments and at least one closed loop. I also conduct a simulation study 

considering realistic scenarios and I estimate the properties (type I error, power and 

coverage probability) for the test of consistency. The simulation scenarios are informed by 

the previous empirical study with the large collection of 303 loops from published 

networks of interventions (13), and a study about the empirical distribution of 

heterogeneity on dichotomous outcomes (30). 



 

2. Heterogeneity and uncertainty in meta-analysis 

2.1 Introduction 

Meta-analysis is a technique that pools data from several trials and returns an overall 

estimate of treatment effect size. It requires the studies whose data are pooled to be 

‘similar’ in design and to provide sufficient information for computing estimates. A certain 

degree of variability in study estimates is almost always present due to chance. Additional 

variability might occur due to many reasons such as differences in the way studies are 

conducted and how the estimates are measured; this additional variability is often termed 

heterogeneity. There are three different types of heterogeneity: i) clinical heterogeneity, 

which is referred to the variability in the participants, interventions, and outcomes, ii) 

methodological heterogeneity, which reflects the variability in study design and risk of 

bias, and iii) statistical heterogeneity, which is referred to the variability in the intervention 

effects. In the next sections, I will refer to the statistical heterogeneity, which is a 

consequence of clinical or methodological variability, or both, among trials, as 

heterogeneity.  

Heterogeneity refers to the variation across study-findings beyond random error and its 

quantification is often of interest and improves the interpretation of results of a meta-

analysis. One of the most widely statistical methods used for meta-analysis is the inverse 

variance method which uses the reciprocal of the within-study variance as weight. The 

magnitude of the heterogeneity impacts on the estimation of the weights assigned to each 

study and hence to the estimated variance of the overall treatment effect. 

Several methods have been proposed to estimate the heterogeneity variance (  ) and 

they vary in popularity and complexity. The estimators for    are categorised to closed 

form (non-iterative) and iterative methods. In contrast to closed form estimators, the 

iterative methods require checking for convergence and run the risk of estimating    

erroneously or failing to converge to a solution. The estimators can be generally 

categorised to the method of moments approaches (e.g. DerSimonian and Laird (DL) (31), 

and Paule and Mantel (PM) (32) methods), the maximum likelihood estimators (e.g. 

maximum likelihood (ML) (33,34), and restricted maximum likelihood (REML) (33) 

methods), the weighted least squares estimators (e.g. Sidik and Jonkman (SJ) (35) method), 
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and the Bayes estimators (e.g. full Bayes (36) method). Veroniki et al. (37) describe in a 

recent review all the existing methods in detail. 

The uncertainty around the summary treatment effect can be estimated using a wide 

variety of methods. The most popular categories of the confidence intervals (   ) for the 

summary treatment effect are the asymptotically normal-based     (e.g. Wald type (Wt) 

(31)), the likelihood-based     (e.g. profile likelihood (34)), the     based on t-distribution 

(e.g. Knapp and Hartung (KH) (38)), the quantile approximation     (39), and the Henmi 

and Copas     (40). For a comparison of the methods see Sánchez-Meca and Marín-

Martínez, (25). 

In this chapter I start with a short description of the statistical models for combining 

studies in meta-analysis and the properties a good estimator should be associated with. 

Then I present the most popular estimation methods for the heterogeneity and the 

uncertainty of the summary treatment effect, which I also use in the empirical and 

simulation studies for the evaluation of inconsistency (see chapter 4). 

2.2 Models for meta-analysis 

The main two models used to pool study results in the meta-analysis are the fixed-effect 

(FE) and the random-effects (RE) models. The FE model assumes that all studies share the 

same (fixed) true effect, i.e. there is one ‘true effect’ size and all differences in observed 

effects are due to sampling error. In the RE model the effect sizes observed in the studies 

represent a random sample from a particular distribution of the underlying treatment 

effects. They are distributed around a mean with the width of the distribution describing 

the degree of heterogeneity. The     around the summary effect obtained from a RE meta-

analysis describe the uncertainty in the location of the mean effect and its width depends 

on the magnitude of the heterogeneity variance, the number of studies and the precision of 

the individual study estimates (41). A RE model takes into account both within-study (  ) 

and between-study (  ) variation, in contrast to the FE model that accounts for within-

study variation only. It follows that in the presence of heterogeneity (    ) the RE 

model results in a wider    compared to the FE model reflecting greater uncertainty around 

the mean (42). When the heterogeneity equals to zero the RE model simplifies to the FE 

model.  
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Let    be the observed relative treatment effect (e.g. log-odds ratio (   )) in study 

        with    its respective within-study variance,     the common mean under the FE 

model and    the random error in study  .  

          

           

The summary treatment effect is estimated as  

 ̂   
∑        

 
   

∑      
 
   

                     (2.1) 

where            is the weight assigned to each study under the FE model. 

Under the RE model     is the mean of the distribution of the underlying effects,    is 

the difference between the mean     and the underlying study-specific mean   , and    is 

the variance of the random effects distribution. 

         

          

           

           

The estimated summary treatment effect  ̂   is computed as in (2.1) using the weights 

under the RE model,                . In the next sections I will use the notation 

 ̂    ̂
   to denote that the overall treatment effect depends on the estimated heterogeneity.  

Both models are structured assuming that the within-study variances,    are known. 

Since    are only estimated from the observed study data the distributions of the test 

statistics discussed in the following sections are only approximated for large    values. 

2.3 Estimating the heterogeneity variance 

2.3.1 Properties of a good estimation method 

A good estimator should a) be unbiased, and b) have low mean square error (MSE).  
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Bias is the difference between the expected value of the estimator (or the mean of the 

estimator) and its true value and is given by 

      ̂      ̂         ̂       

Negatively or positively biased estimators lead to an under- or over-estimation of the 

true heterogeneity variance, respectively. A good estimator should not only be unbiased, 

but also remain unaffected as much as possible by sampling fluctuation (efficiency). The 

MSE is commonly used as an efficiency measure and represents the squared distance 

between the estimator and its true value: 

     ̂    [  ̂      ]       ̂   (      ̂  )
 
 

where         ̂    *( ̂     ̂  )
 
+. 

If  ̂  is an unbiased estimator of    (   ̂     ), then the variance of this estimator is 

bounded as      ̂   (    
  )

  
 under the Cramer-Rao inequality, with     

   the 

Fisher information. The efficiency of an unbiased estimator is defined by (43–45): 

   ̂   
(    

  )
  

     ̂  
  

A good estimator has    ̂   close to unity, with low variance. The efficiency of an 

estimator is measured relative to other estimators and is called ‘relative efficiency’. 

Consider for example two estimation methods that yield  ̂ 
  and  ̂ 

 . If      ̂ 
        ̂ 

   

then  ̂ 
  is said to be more efficient than  ̂ 

 , and the relative efficiency,    ̂ 
   ̂ 

  , of the 

two unbiased estimators lies within the interval [   ]. The relative efficiency    ̂ 
   ̂ 

   is 

generally defined as: 

   ̂ 
   ̂ 

   
     ̂ 

  

     ̂ 
  

  

For unbiased estimators      ̂        ̂   and the    ̂ 
   ̂ 

   simplifies to the ratio of 

the two variances. The MSE of the estimator is minimised relative to other estimators. 

Good estimators should also have small type I error (rejecting the null hypothesis     
  

  when it is true) and high power (rejecting the null hypothesis when     ). 
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2.3.2 Estimation methods for the heterogeneity variance 

DerSimonian and Laird (DL) method 

The DL estimator is possibly the most frequently used as it is a closed form and simple 

to implement method (31). The DL estimator can be obtained as: 

 ̂  
     

{
 
 

 
 

  
       

∑      
 
      

∑      
  

   

∑      
 
   }

 
 

 
 

 

where   ∑           ̂   
  

   . The estimated values of the heterogeneity might either 

be negative setting therefore  ̂  
  equal to zero, or might be non-negative keeping the same 

non-truncated value. While the method before truncation is unbiased under the 

assumptions of the RE model, it has been shown that after truncating negative values to 

zero it might produce biased estimators (46,47). Hence, under the assumptions of the RE 

model the DL estimator might be positively biased over-estimating the true heterogeneity. 

Bias inflates not only due to truncation, but also because weights are calculated from 

within-study variances that are assumed fixed and known. As the size and number of 

studies included in the meta-analysis decreases and the sampling variances increase the DL 

estimator becomes more variable and truncation is more prevalent increasing bias. On the 

other hand, as    deviates zero the truncation bias decreases since the possibility of finding 

a negative  ̂  
  decrease. 

Although  ̂  
  must be positively biased due to truncation, simulation studies suggest 

that the DL method performs well for small or close to zero heterogeneity and large   

(21,46). It should be noted that the magnitude and direction of bias of the estimator 

depends on the selection of the simulation scenarios. A general conclusion from the 

published studies is that the estimation method underestimates the true heterogeneity when 

it is large and particularly when the size and number of studies is relatively small 

(21,35,46,48). This results in poor control of type I error and low coverage probability of 

the underlying     (25,39,49). The method is associated with lower MSE than the SJ and 

PM estimators in meta-analyses where the true heterogeneity is not too large (21). Jackson 

et al. (50) suggested that the DL estimator is inefficient when the studies included in the 

meta-analysis are of different sizes and particularly for large   . 
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Paule-Mandel (PM) method 

Paule and Mandel (32) proposed this method (PM) to estimate    by iterating the 

generalised  -statistic 

                      ∑      (    ̂    
  )

  
        

    (2.1) 

until      equals to its expected value ( (    )     ) (47). The method is also known 

as empirical Bayes estimator and has been discussed by Morris (51) with             

   . The process requires at each iteration step non-negative values, otherwise  ̂  
  is set 

equal to zero, and guaranties one solution of  ̂  
  (52). When the normality assumption 

does not hold it has been shown that the PM method is more robust for the estimation of    

in contrast to the DL estimator that depends on large studies (52). The method mirrors the 

REML estimation when the normality assumption holds (53). Many authors recommend 

the use of  ̂  
  because of its good properties (37,48,52). 

An empirical study (48) showed that as heterogeneity increases  ̂  
  becomes greater 

than  ̂  
 . It has been suggested that the PM estimator is nearly unbiased for large number 

(  30) and size (arm sample size larger than 100 participants) of studies, and that 

performs best in terms of bias among the DL, REML and PM methods (54). Sidik and 

Jonkman (21) noted the methodological similarity between the SJ and PM estimators, and 

stated that differences between the two estimates can largely be accounted for by the fact 

that the SJ estimator is simplified to two-steps and that yields always positive 

heterogeneity estimates. Generally the PM estimator has similar MSE with the SJ method 

(21). More specifically when the heterogeneity variance is small the PM estimator has 

slightly smaller MSE than the SJ method, whereas for large heterogeneity the PM 

estimator has slightly larger MSE than the SJ method. It has been shown that the PM 

method upwards bias for small k and   , whereas for large k and     downwards bias 

(21,55). Knapp and Hartung (38) in a comparison of the DL, REML and PM methods, 

found that the PM estimator is less efficient than the DL and REML methods, and that it 

does not perform well for small  . 

Maximum Likelihood (ML) method 

The ML method is asymptotically efficient but requires an iterative solution (33,34). 

Setting the marginal distribution               the estimate  ̂  
  is produced by the 

log–likelihood function 
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∑           

    
 

 
∑

       

       
 
   . 

Setting partial derivatives with respect to   and    equal to zero and solving the 

likelihood equations for the two parameters to be estimated, the ML estimators for   and 

   can be obtained by 

 ̂    ̂  
   

∑        
 
   

∑      
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where              ̂  
  . An initial estimate of  ̂  

  can be decided a priori as a 

plausible value of the heterogeneity variance or it can be estimated with any other 

estimator or even it can be set zero. The ML estimates are obtained by iterating both  ̂  
  

and  ̂    ̂  
   until convergence. Each iteration step requires non-negativity and sets 

negative estimated values equal to zero. Instead of the underlying procedure, the 

maximisation of the likelihood can be performed using various techniques (e.g. Newton-

Raphson method, the simplex method etc.) with different convergence properties. It should 

be noted that likelihood based methods are asymptotically unbiased with variance 

approaching the Cramer-Rao lower bound. Hence, when   is large the maximum 

likelihood estimators are fully efficient. 

Simulation studies suggest that although the ML estimator has lower MSE across all 

values of   and    than the DL and REML methods, the estimator exhibits a large amount 

of negative bias as    increases when    and sample size are small to moderate (21,41,46). 

Within-study variances    are assumed to be known which may account for the negative 

bias (21). The estimator also assumes effect estimates are normally distributed and there is 

currently little evidence to suggest how the ML method performs under non-normal 

conditions. It has been shown that the ML method has the smallest MSE in comparison to 

the REML, SJ, and PM methods, but exhibits the largest amount of bias among them 

(21,41). It is suggested to avoid applying the ML estimator due to substantial bias (46,54). 
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Restricted Maximum Likelihood (REML) method 

The REML method is a well-known estimation technique and is produced by the log–

likelihood function (51) 
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by setting the partial derivative with respect to    equal to zero. The REML estimator can 

be obtained by: 
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where              ̂    
   (21,31). Similarly, to ML method the REML estimator is 

calculated by an iterative process that requires non-negativity at each iteration step with a 

closed form initial estimate. 

Simulation studies suggest that the REML method underestimates    especially when 

the data is sparse and in such cases should probably be avoided (21,46). Is has been shown 

that the method is less downwardly biased than the DL and ML estimators, but has greater 

MSE (21,39). Viechtbauer (46) showed that the REML method is the best approach 

compared to other methods, including DL and ML estimators, when large studies are 

included in the meta-analysis. Knapp and Hartung (38) in a comparison of the DL, REML 

and PM methods, found that the REML estimation is more efficient than the DL and PM 

methids. Jackson et al. (50) investigated the asymptotic efficiency of the DL, ML and 

REML methods and showed that for large    the DL and REML estimators are more 

efficient. Although most simulation studies have shown that the REML estimation 

produces superior results to the DL method, an empirical study including 920 Cochrane 

reviews with dichotomous outcome data and meta-analyses including at least three studies 

has shown that the magnitude of the REML estimator can be smaller or larger than the DL 

method (56). 

Sidik-Jonkman (SJ) method 

Sidik and Jonkman (35) introduced a non-iterative estimation method of the 

heterogeneity variance based on weighted least squares. To obtain the SJ estimator (known 

also as model error variance estimator) we first calculate the values  ̂   ̂    with 
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 ̂      ̂ 
  (assuming  ̂ 

     and  ̂ 
  ∑      ̅   

     . The SJ estimation method can 

be derived by setting the quantity ∑  ̂ 
  (    ̂ ̂   )

  
    equal to its expected value and 

obtain 

 ̂  
  

 

    
∑  ̂ 

  (    ̂ ̂   )
  

   ,            (2.2) 

where  ̂ 
  is an initial estimate of the heterogeneity variance and  ̂ ̂    ∑  ̂ 

    
 
    

∑  ̂ 
   

    is the weighted random-effects pooled estimate. The method always yields a 

positive estimate of the true heterogeneity variance. 

The SJ estimator as already mentioned above has methodological similarities with the 

PM method. Weights assigned to each study for  ̂  
  can be re-expressed as  ̂   ̂    

 ̂ 
      ̂ 

    , i.e. random effect weights as in the PM estimator multiplied by the constant 

term  ̂ 
 . Thus, if the initial estimate of  ̂  

  was defined as  ̂ 
   ̂  

  in the above equation 

for  ̂  
  (2.2), it can be rearranged into the form  (    )      which is identical to how 

the PM estimator is derived. In practice, the SJ method differs from the PM estimator in 

being always positive and non-iterative. 

Simulation studies suggest that the SJ estimation method has smaller MSE and 

substantially smaller bias than the DL estimator for large values of k and   , whereas the 

opposite occurs when   and    are small (35). Simulation studies have also suggested that 

the SJ estimation method has the largest bias among the DL, ML, REML, and PM methods 

for relatively small values of   , whereas the magnitude of bias relative to the other 

estimators tends to decrease as    increases (21,54). For large    the SJ and PM methods 

are the best estimators in terms of bias according to Sidik and Jonkman (21). In agreement 

to most simulation studies, an empirical study (56) showed that the SJ estimator produces 

larger values than the DL method. 

2.3.3 Assumptions made for the heterogeneity in an NMA model 

In a pairwise meta-analysis we can either assume that trials estimate a single underlying 

effect size (FE model) or that the study-specific underlying effect sizes are different but 

drawn from the same distribution (RE model) with heterogeneity   . Let    
  be the 

heterogeneity in the Y vs. X comparison. Consider the network defined by two triangular 

loops,     and    , informed by   ,   ,   ,    and    comparisons. An assumption is 

that all studies share the same (fixed) parameter, i.e. there is one true effect size for each 
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comparison and all differences in observed effects are due to sampling error with    
  

   
     

     
     

      , where    
 ,    

 ,    
 ,    

 , and    
  are the 

heterogeneity variances in the   vs.   ,   vs.  ,   vs.  ,   vs.  , and   vs.   comparisons, 

respectively. Alternatively, we might assume that the true effect sizes differ implying that 

the parameters of the underlying studies follow some distribution. Under the latter 

scenario, it is common to assume that heterogeneity is the same for all comparisons being 

made    
     

     
     

     
         

  and call it common within-network 

heterogeneity (    
 ) assumption. In case each comparison in the network is informed by a 

single study     
  is set zero. Another assumption would be to allow all comparisons to 

have a different amount of the heterogeneity    
     

     
     

     
 , but the 

consistency of NMA structure imposes some implicit constraints on the variances and 

covariances of the random effects. Lu and Ades (57) discuss further these issues and 

propose an approach to model the heterogeneity structure that is compatible with the 

consistency assumptions. Finally, a frequent assumption is the common within-loop 

heterogeneity (     
 ) in which all comparisons in a particular loop have the same amount 

of heterogeneity;     loop:    
     

     
         

 ,     loop:    
     

     
  

       
 . Assuming a common within-loop heterogeneity allows comparisons that have been 

addressed by only one study to ‘borrow strength’ from the rest of the comparisons included 

in the loop. When all comparisons involved in a loop are informed by a single study then 

     
  equals zero. It should be noted that      

  may be different for the same comparison 

when it is involved in different loops. The common within-loop heterogeneity assumption 

can be made simultaneously within one analysis and is only reasonable in separate, loop-

specific, analyses (see section 3.5.1). 

2.4 Estimating the uncertainty for the summary treatment effect 

Apart from estimating the true summary treatment effect using a variety of methods it is 

also important to quantify the uncertainty for the estimate, i.e. the    for  . The     

produced by different methods are often compared in terms of a) coverage probability and 

b) width.  

The coverage probability of a    for   is the proportion of times the interval comprises 

the true overall treatment effect,        . A good CI for a certain level of confidence 

allows a small ‘room’ for   to vary. The greater the precision of   the narrower the   . The 
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most frequently encountered     to quantify the extent of the summary treatment effect are 

described below. 

2.4.1 Confidence Intervals for the summary treatment effect 

Wald-type (Wt) Confidence Intervals 

The Wt    (31) is the most popular technique for establishing     for  . Assuming 

             ̂   and      ̂    ̂
      ∑     , a 95%    is given by  

 ̂    ̂
       √   ( ̂    ̂

  ). 

The method has coverage probability considerably below 95%, unless a large number of 

studies is included in the meta-analysis with a large study size and low or zero 

heterogeneity (25,39,49). A simulation study examined the performance of the method 

using a variety of estimators, including the DL, REML and SJ methods, and showed that 

Wt depends on the estimator employed (25). The method performs poorly for small 

samples (    ) (50). Normand (58) suggests the use of the method with the REML 

estimator so as to take into account the loss in degrees of freedom caused by the estimation 

of  . 

Knapp-Hartung (KH) Confidence Intervals 

The KH method was proposed by Hartung (59) and later discussed by Knapp and 

Hartung (38), which relies on a t-distribution with     degrees of freedom and assumes a 

weighted variance of  . Sidik and Jonkman (24) independently developed this approach as 

well. Hartung (59) showed that the approximate distribution of the   statistic is 

  
 ̂    ̂

    

√   ( ̂    ̂
  )

       

where        ( ̂    ̂
  )      

 

     ∑      
 
   

 

with      the generalised   statistic as defined in (2.1). The approximate 95%    for   is 

given by 

 ̂    ̂
           √   ( ̂    ̂

  ). 
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The method is easy to implement and no iterative computation is required. This test was 

proposed by Hartung (59) as it is not influenced by the magnitude of the heterogeneity 

variance or the heterogeneity estimator in contrast to the standard test. In agreement, 

Makambi (49) showed that KH is robust against changes in the magnitude of    and the 

selection of estimator. Similarly, Sidik and Jonkman (60) employed different estimators 

and showed that the coverage probability of the method is less affected by the estimator 

than the Wald-type method. This is in agreement with Knapp and Hartung (38) who 

showed that the use of different estimators makes little difference in practice. A simulation 

study suggested (25) that the method has good properties with high coverage in general 

and that it is insensitive to the number of trials. Higgins and Thompson (11) showed in 

simulations that the KH method has more appropriate false positive rates than the standard 

normal test. It has been also shown that the approach provides coverage close to the 

nominal level (25,60) and that exhibits better control of type I error than the Wt method 

with the DL estimator (49). Knapp and Hartung (38) suggested the use of the PM estimator 

for the heterogeneity along with the KH method for obtaining     for   so as to get a 

cohesive approach based on generalised  .  

2.5 Comparison of methods 

The estimation of the heterogeneity using a variety of methods may lead to different 

conclusions and the selection of an appropriate estimator for    is crucial. In this chapter I 

show that no estimator is clearly best under all circumstances in terms of both bias and 

efficiency. To select the most appropriate estimator one should consider whether a zero 

value of heterogeneity is possible, the properties of the various estimators in terms of bias 

and efficiency, and ease of application, which gives preference to closed form methods. It 

should be also taken into account that the performance of an estimator depends on the 

number and size of studies included the meta-analysis, as well as on the magnitude of the 

true heterogeneity. Empirical studies have shown that the majority of the pairwise meta-

analyses are informed by less than ten studies (30,61) and that most meta-analyses with 

dichotomous outcome data yield       . In such cases, evidence from simulation studies 

shows that the SJ method overestimates    (21,54); the ML method is associated with 

substantial negative bias (21,54); REML estimation is less downwardly biased than the DL 

and ML estimators with greater MSE though (21); and the PM estimator is less 

downwardly biased than the DL or REML methods (54). An empirical study (62) showed 
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that non-negative methods perform well on average, but produce biased results for meta-

analyses with few studies where positive heterogeneity methods are to be preferred. 

Novianti et al (63) compared in a simulation study for sequential meta-analysis among 

others the DL, PM, REML and SJ estimators when true heterogeneity is zero and showed 

that all methods overestimate    with the DL, PM and REML methods having the best 

approximation of   . Thompson and Sharp (41) as well as Viechtbauer (46) in a 

comparison of various estimators including the DL, ML, and REML methods concluded 

that the REML estimation is the most appropriate technique in terms of bias and efficiency. 

Panityakul er al (54) applied a simulation study and suggested that the PM estimator is less 

biased than the DL and REML methods. Empirical evidence illustrated that heterogeneity 

might vary with different effect measures (22,23,64). It is therefore possible that the 

performance of the estimators might differ according to the outcome data. Novianti et al 

(63) recommended the use of PM estimators for both dichotomous and continuous 

outcome data, while stated that REML for continuous data is a valid alternative as well. 

With respect to     for the overall treatment effect the KH approach is recommended as 

one of the best options. The KH method is the only method that has been suggested that 

provides good coverage irrespectively to the heterogeneity and the number of studies 

included in the meta-analysis (25,38). However, before these approaches can be 

confidently used, a thorough investigation of all available methods for the estimation of    

and    for   using realistic scenarios informed by empirical evidence would be necessary 

for completeness. A summary of the five heterogeneity estimators and the two methods for 

the estimation of the uncertainty for the summary treatment effect is presented in Table 1. 

In the following chapters I drop the subscript RE from  ̂   as every   is estimated in the 

random effects model. In case this does not hold I will make this clear. 
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Table 1. Overview of the estimators for the heterogeneity (  ) and the methods to estimate the uncertainty of 

the overall treatment effect according to simulation studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method 
Abbre

viation 

Iterative

/Closed 

form  

Positive/ 

Non-

negative 

Simulation studies suggest that the 

method… 

Estimators for the heterogeneity 

Method of moments estimators 

DerSimonian 

and Laird 
DL 

Closed 

form  

Non-

negative 

performs well for small or close to zero 

   and large number (   ) and size 

(    ) of studies (21,46) 

Paule and 

Mandel 
PM Iterative 

Non-

negative 

is generally less downwardly biased 

than DL, it is easy to calculate, mirrors 

more computationally intensive 

methods (e.g. REML), and does not 

require distributional assumptions 

(41,47) 

Maximum Likelihood estimators 

Maximum 

likelihood 
ML Iterative 

Non-

negative 

reveals substantial negative bias for 

large    (      ) which decreases as 

number and size of studies increase 

(21,41,46) 

Restricted 

maximum 

likelihood 

REML Iterative 
Non-

negative 

is less downwardly biased than DL and 

ML, and bias  decreases as number and 

size of studies increase (21,46) 

Model error variance estimator 

Sidik and 

Jonkman 
SJ 

Closed 

form  
Positive 

performs well for large    (      ), 

but not suitable for small sample sizes 

(   ) (21,54) 

Estimation methods for the uncertainty of the overall treatment effect 

Wald-type Wt 
Closed 

form  
- 

performs well for small    (      ) 

and large number (   ) and size 

(   ) of studies (25,39,49) 

Knapp-

Hartung 
KH 

Closed 

form  
- 

performs well irrespectively the 

magnitude and estimator for the 

heterogeneity, as well as the number of 

studies (25) 



 

3. Statistical approaches to evaluate the assumption of 

consistency 

3.1  Introduction 

One of the key advantages of NMA is the appropriate modelling of studies with 

multiple arms as all study arms can be included in contrast to pairwise meta-analysis that 

forces separate comparisons (see Franchini et al. (65)). The estimates obtained from multi-

arm studies for different comparisons are correlated. Consider for example the three-arm 

trial comparing interventions A, B, and C. The AB and AC comparisons use the same data 

from participants in A and hence modelling AB and AC treatment effects is sufficient, as 

the third contrast (BC) is calculated by the difference of the AB and AC treatment effects.  

The NMA technique combines simultaneously both direct comparisons within trials and 

indirect comparisons across trials. Before combining the results of direct and indirect 

comparisons the extent to which they are in agreement with each other should be 

examined. Inconsistency, the statistical disagreement of the information coming from 

various sources of evidence, namely direct and indirect, can occur in NMA as the result of 

intransitivity or by chance. It should be noted that multi-arm studies are inherently 

consistent in an evidence loop, which might complicate the consistency assessment. 

Several methodologies to evaluate consistency have been outlined in the literature (for a 

review see NICE DSU Technical Support Document 4 (16)). The methods can be broadly 

categorised into methods that detect local inconsistency at a specific part of the network 

(e.g. a specific loop of evidence) and methods that evaluate global inconsistency for the 

entire network (14,15,17,18). Methods in the former category are useful to locate sources 

of inconsistency whereas methods in the latter category provide global tests. The 

evaluation of inconsistency can be equivalently evaluated in either a Bayesian or a 

frequentist setting.  

The simplest and most popular statistical approach to evaluate the prevalence of 

inconsistency is by contrasting direct and indirect information in a loop of evidence (2). 

Investigators should interpret the results carefully as the method is associated with a 

number of limitations (3,20). More sophisticated and appropriate approaches have been 

presented for complex networks to evaluate local and global inconsistency and a recent 
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review highlights their advantages and limitations (14). Dias et al. (15) suggested the node-

splitting approach to identify inconsistency between the evidence provided from direct 

studies for a specific treatment comparison and the indirect evidence based on the entire 

network after the comparison of interest has been removed. Various models have been 

proposed to evaluate consistency in the entire network and to synthesise evidence so as to 

reflect the extra variability beyond what is expected by heterogeneity or random error 

(14,16). Lu and Ades (66) developed a statistical model to account for random 

inconsistency in each closed loop of evidence in the network. The presence of studies with 

multiple arms makes the results of the Lu and Ades model sensitive to their 

parameterisation, and this prompted Higgins et al.(17) and White et al. (18) to introduce 

the idea of design inconsistency and develop models that encompass the potential conflict 

between studies including different sets of treatments, named ‘designs’. Krahn et al.(67) 

and Jackson et al. (68) have also derived formulae for the  -statistic and the    
metric for 

inconsistency in the entire network. As several of these developments are new, they 

haven’t been applied to more than a handful of networks.  

3.2 Notation 

Consider a network of evidence comprising of S treatments in the set             

and   studies in total. Each study         compares a specific number of treatments 

Sk. Studies that compare the same treatments belong to the same design d. Design d refers 

to studies with Sd specific treatments in the set Ωd    investigated in Nd studies and the 

network has in total D designs (        ). Let A be the arbitrarily chosen reference 

treatment and M an index for any of the S-1 remaining treatments. I set         the 

observed effect size (e.g.    ) of treatment M relative to treatment A in study   and 

design d. Let also         be the variance of         and     the parameter for the ‘true’ 

relative treatment effect of M relative to A. Any parameter     that includes treatment A 

is named basic parameter and all other parameters are named functional. Under the 

assumption of consistency a functional parameter associated with treatment comparison 

MX can be expressed via the consistency equation            . If consistency does 

not hold the functional parameters are subject to loop inconsistency and parameters that 

can be estimated in different designs (e.g.     estimated in AB and ABC studies) are 

subject to design inconsistency. Loop inconsistency refers to the difference between direct 

(e.g.    ) and indirect (e.g.        ) estimate for the same comparison. Design 
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inconsistency refers to the difference in the relative effect of two treatments when this is 

estimated in studies with different designs. I will term the amount of disagreement between 

different sources of evidence inconsistency factor (  ). The    parameters included in the 

models below might be treated either as random effects assuming they all come from a 

common normal distribution            with    the inconsistency variance, or as fixed 

effects allowing different sources of evidence to differ by a fixed quantity. 

3.3 Consistency model 

The consistency (or NMA) model is defined as a multivariate random-effects meta-

analysis. The observed effect size         of treatment   relative to treatment   of study k 

with design   is modelled under the consistency assumption as: 

                                                (3.1) 

The consistency model relies on the transitivity assumption and that the missing arms are 

missing at random. Hence, White et al. (69) use the data augmentation technique and 

impute data with a very small amount of information for designs that do not include the 

reference treatment. The study random errors are normally distributed             , 

where    is the within-study variance-covariance matrix assumed to be known. Note that 

for a two-arm study k the within-study variance-covariance matrix    reduces to a 1×1 

matrix including the sample variance of study k. In the general case that a study has    

arms the dimension of    is                . The study-specific RE are normally 

distributed as shown below with    being the between studies variance-covariance matrix 

involving the heterogeneity variance for each treatment comparison: 

      (     (
        
   

       
+) 

I discuss the structure of    in section 4.2.3 and the assumptions of the heterogeneity in 

2.3.2.  
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3.4 Models to evaluate global inconsistency 

3.4.1 Design-by-treatment interaction (DBT) 

The DBT method evaluates whether a network as a whole demonstrates inconsistency 

by employing an extension of multivariate meta-regression that allows for different 

treatment effects in studies with different designs (the ‘design-by-treatment interaction 

approach’) (17,18). To exemplify the idea of the design-by-treatment interaction approach, 

consider a network of evidence constructed from an     three-arm trial and an      

four-arm trial. Both     and      trials are inherently consistent. However, the two 

studies are considered to have different designs and design inconsistency reflects the 

possibility that they might give different estimates for the same comparisons the two 

studies include (  ,    and   ). 

The inconsistency model is an extension of model (3.1) and is defined as a multivariate 

random-effects meta-regression with additional covariates for the different designs: 

                                                         (3.2) 

where        represents inconsistency in comparison    for design  , which may 

correspond to either design or loop inconsistency. As described in detail elsewhere (17,18) 

not all possible        covariates are required, since otherwise the model is over-

parameterised. The number of inconsistency factors depends on both the total number of 

treatments in the network and the number of treatments in each design, and is defined as 

      ∑               . The number of inconsistency terms       is the 

difference in the number of parameters between the consistency and inconsistency models. 

If any AM comparison can be estimated only via direct evidence and there are no multi-

arm studies involving both A and M treatments then inconsistency cannot be estimated and 

I set         .  

I assess the null hypothesis         the χ
2
-test with       degrees of freedom: 

              

where    is the         vector comprising the inconsistency terms and   is the       

      variance-covariance matrix of IF. The model accounts for possible correlations in 

the likelihood in multi-arm trials and is insensitive to their parameterisation. Note that the 
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     statistic is equivalent to the  -statistic for the evaluation of the assumption of 

consistency as presented elsewhere (67). 

3.4.2 Lu and Ades (LA) 

Lu and Ades (66) proposed a special case of the DBT model that accounts for 

inconsistency in each loop of the network as long as this loop is not only informed by 

multi-arm studies. This is because multi-arm studies are inherently consistent and therefore 

loops informed by studies with multiple arms are not expected to show inconsistency. Lu 

and Ades (66) implemented their model (LA) in a Bayesian framework assuming random 

   terms. As the LA model does not distinguish between different designs, I drop the 

respective subscript. Suppose now MX comparison is included in a closed loop AMX, and 

the study k compares all three treatments, then the observed treatment effect       is 

modelled as: 

                                

where       measures the magnitude of inconsistency in the loop that MX belongs to. Let 

  be the number of total distinct comparisons observed in the network and   the number 

of functional parameters that indirectly are only estimated by multi-arm trials, then 

               are the number of inconsistency factors in the network (see Lu 

and Ades (66) for more details). I assess the null hypothesis         using the χ
2
-test 

with f degrees of freedom: 

             

with   the           variance-covariance matrix of   . The model provides a global test 

for loop consistency in the entire network. The presence of multi-arm trials though might 

complicate the consistency assessment. It is possible that differences in the 

parameterisation of the multi-arm studies can yield different values for the    parameters 

with different     values and hence different inference on inconsistency. 

3.4.3  -statistic and I
2
 measure for evaluating and measuring inconsistency 

As in pairwise meta-analysis, one can employ the  -statistics in NMA to infer about 

homogeneity, consistency or both. The total variability in the entire network can be split 

into the variation within (    ) and between (    ) designs; these refer to heterogeneity 

and inconsistency. Krahn et al. (67) used the decomposition of Cochran’s  -test to 
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evaluate the assumptions of consistency and homogeneity in the network. The 

decomposition resembles the one used in the study-level subgroups in the context of 

pairwise meta-analysis (70). The total network  -statistic (    ) is separated into the 

heterogeneity statistic (    ) and the inconsistency statistic (    ): 

               

Under the homogeneity and consistency assumptions, the global Cochran’s  -statistic 

follows a       

  distribution with degrees of freedom the number of data points minus the 

number of basic parameters (      ∑              
   ). The      statistic is 

defined as the weighted sum of squared deviations of the observed treatment effects from 

the consistent effect estimates. If we stack all observed treatment effects         into the 

vector   with length ∑        
    and   is a block diagonal variance-covariance matrix 

with blocks    and  ̂ the     estimates of the basic parameters, then 

          ̂          ̂  

where   is a ∑        
          design matrix that denotes the comparisons 

presented in each element of  . The associated test examines whether the total variation 

can be compatible with chance. To evaluate the heterogeneity within designs we use the 

heterogeneity statistic defined as the sum of the within-design Q-statistics (    
 ): 

     ∑     
 

 

   
 ∑        ̂  

   
         ̂  

 

   
  

Using the fixed effect consistency model  ̂  represents the          vector of the 

treatment effects estimated in design   with    treatments. Suppose design   includes    

studies, then    is a vector of length [        ] and    is the [        ]       

   design matrix. The variance-covariance matrix    is a [        ]   [        ] 

block diagonal matrix containing the within-study variances and covariances of the 

observed treatment effects included in design  . The      statistic has approximately a 

      

  distribution with       ∑               
   . The between-designs  -statistic 

for inconsistency is a likelihood-ratio test statistic as shown by Lu et al.(71) and is defined 

as  
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where    is the vector of inconsistency factors estimated from the DBT model and   is 

their variance-covariance matrix. Under the consistency assumption the omnibus statistic 

for inconsistency has approximately a       

  distribution as the      statistic. Although 

Lu et al. (71) have shown that the      statistic can be calculated fitting either FE or RE 

model (assuming a common within-design heterogeneity) Rucker et al. recommended to 

use the FE model(71) and Krahn et al.(67) suggested that using a FE model within designs 

allows for better location of inconsistency.  

Multivariate versions of the    statistics that can be used to measure both heterogeneity 

and inconsistency have been suggested by White et al.(18), Rucker and Guido (72), and 

Jackson et al. (68). Jackson et al. (68) defined three different    statistics that describe 

three different sources of variability:  

   
    

  
 

with   
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where | | is the determinant of the estimated variance-covariance matrix of  ̂, the 

subscript     refers to the consistency model, DBT to the inconsistency DBT model and 

RE or FE to the random and fixed effects respectively.     
  describes the amount of 

variability attributed to inconsistency rather than sampling error or heterogeneity,     
  

describes the amount of variability attributed to heterogeneity rather than sampling error 

and         
  describes the amount of variability attributed to heterogeneity and 

inconsistency rather than sampling error. 

3.5 Methods to evaluate local inconsistency 

3.5.1 Loop-specific (LS) approach 

The loop-specific (LS) method evaluates inconsistency in all closed loops of evidence 

formed by three or four treatments within each network, by contrasting direct with indirect 

estimates of a specific treatment effect. I call ‘triangular loops’ the closed paths involving 
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three treatments and ‘quadrilateral loops’ the closed paths involving four treatments. 

Bucher et al. (2) described the method in an early paper and I refer to it as the ‘loop-

specific’ approach. The LS method because of its simplicity and of not requiring 

specialised software to compute is so far the most commonly applied approach.  

Inconsistency can be evaluated as the disagreement between different sources of 

evidence within a closed loop. In each network of treatments all triangular and 

quadrilateral loops are identified. In each loop we can estimate the treatment effects of all 

pairwise comparisons using conventional meta-analysis. As the LS method does not 

distinguish between different designs, I drop the respective subscript. Consider for 

example the triangular loop     formed by treatments       with available comparisons 

  ,    and   . In the RE model the observed treatment effect       is modeled as: 

                      

where       is a random effect for study k of   relative to   and       is the within-study 

sampling error. Similarly, for the other two comparisons in the loop: 

                      

                      

To estimate all direct relative effects within the triangular loop     I perform a 

random-effects meta-analysis for each available comparison. I discuss the assumptions 

about the heterogeneity variances in section 2.3.3. Within each available loop, I evaluated 

whether the consistency assumption holds. Since in a single loop there may be only one 

inconsistency, the    for the loop     is defined as (66,73) 

  ̂   
    | ̂     ̂    ̂   | 

with        ̂   
         ̂         ̂         ̂   , 

I use the ‘LS’ superscript to denote the method in which    is estimated. The direction 

of the estimated    is irrelevant to the evaluation of inconsistency and only the magnitude 

of its absolute value is of interest. I assess the null hypothesis            using the z-

test (74): 
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  ̂   
  

√      ̂   
   

         

A similar process is followed for all quadrilateral loops formed by four different head-

to-head comparisons. However, if the quadrilateral loop is formed by two or more 

triangles, then only the triangles are evaluated. Since a multi-arm study is inherently 

consistent in an evidence loop, different parameterizations of its arms causes complications in 

the consistency assessment. 

3.5.2 Separating one design from the rest (SODR)  

The SODR method examines whether a specific design in the network can be 

responsible for inconsistency. In particular, the method evaluates whether the effect size 

for the same comparison differs when estimated using a particular study design b and other 

designs in the network. To estimate inconsistency I ‘detach’ the    studies of a specific 

design b from the network; then I estimate the      treatment effects from a) the    

studies and b) the network without the    studies assuming consistency. The difference 

between the estimates is the magnitude of inconsistency for design b. The SODR method is 

a special case of the DBT model that includes only one design inconsistency term    
     

at the time; that corresponds to a vector with      elements for the differences between 

direct and indirect estimates for the comparisons it includes. If the detached design 

includes treatments A, B and C then    
     is the vector        

           
     . 

Consider we want to estimate SODR inconsistency for a specific design b that includes 

the comparison AM. The observed treatment effect         accounting for possible design 

inconsistency in b is modelled as 

           
                   

             , for design      

           
                     , for design     

where       
     measures the magnitude of inconsistency for design     in comparison 

AM. The parameter    
   is the mean treatment effect of M relative to A that comes from 

all available designs except design b whereas    
         

     is the mean treatment effect 

for AM in design b. Note that this is different from the    term included in the DBT 
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approach that models inconsistency simultaneously for all designs. The number of 

inconsistency factors included in the model depends on the number of treatments in the 

detached design and is defined as            , with    denoting the degrees of 

freedom. Note that        might be different for different designs. 

In Table 2 I provide an illustrative example considering a network of three different sets 

of studies: AB, ABC, and ABCD studies. Setting A the reference the possible SODR 

inconsistencies are: design AB          (       
    ), design ABC          (        

      

        
    ), and design ABCD          (         

              
               

    ). Note that 

         
     is not estimable as no AD studies are available, so it should be omitted. 

For each design     under the null hypothesis is       
       an approximate test 

can be obtained using the χ
2
-test with p degrees of freedom as: 

  
        

           
     

with   the     variance-covariance matrix of    
    . Note that SODR approach 

accounts for possible correlations in the likelihood in studies with multiple arms and is 

insensitive to their parameterisation. 

Table 2. Consistency model and SODR method. Inconsistency is evaluated for designs AB, ABC and ABCD 

using the SODR method. In all cases A is the reference treatment. 

Study Type of study Model study-specific treatment effects 

Consistency Model 

1 AB                                 

2 ABC (
         

         
)  (

   

   
)  (

         

         
*  (

         

         
)  

3 ABCD (

          

          

          

+  (

   

   

   

+  (

          

          

          

)  (

          

          

          

+  

Separating design AB 

1 AB             
                    

               

2 ABC (
         

         
)  (

   
   

   
   )  (

         

         
*  (

         

         
)  
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3 ABCD (

          

          

          

+  (

   
   

   
   

   
   

)  (

          

          

          

)  (

          

          

          

+  

Separating design ABC 

1 AB             
                        

2 ABC 
(
         

         
)  (

   
    

   
    

)  (
         

         
*  (

        
    

        
    )  

(
         

         
)  

3 ABCD (

          

          

          

+  (

   
    

   
    

   
    

)  (

          

          

          

)  (

          

          

          

+  

Separating design ABCD 

1 AB             
                         

2 ABC (
         

         
)  (

   
     

   
     

)  (
         

         
*  (

         

         
)  

3 ABCD 

(

          

          

          

+  

(

   
     

   
     

   
     

)  (

          

          

          

)  (

         
    

         
    

         
    

,  (

          

          

          

+  

 

3.5.3 Separating indirect and direct evidence (SIDE) 

The SIDE method has been presented and implemented in a Bayesian framework by 

Dias et al. (15) with the name ‘node-splitting’. The method examines whether a particular 

comparison might be associated with inconsistency, by separating the information of each 

network estimate into two distinct parts: the direct and the indirect evidence. The same 

process is repeated for all comparisons included in the network. Note that only 

comparisons that belong to closed loops are susceptible for inconsistency in the SIDE 

method. Suppose we want to separate comparison AX that belongs to at least one closed 

loop. The observed treatment effect       accounting for possible inconsistency between 

direct and indirect evidence for the AX comparison is modelled as 

         
               

          , if study k includes A and M 

         
                , if study k does not include M 
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The parameter of interest     
     measures the magnitude of inconsistency between the 

direct and indirect evidence for the comparison AX. I will call a comparison ‘inconsistent’ 

when the direct evidence disagrees with that of the remaining network beyond chance. The 

model above can also be seen as a special case of the LA model (and hence special case of 

DBT) where only one IF term is estimated at a time. For each comparison AX under the 

null hypothesis        
       the approximate test can be obtained using the z-test: 

   
     

  ̂  
    

√   ̂     
     

         

Note that if AX is part of a multi-arm study     
     would be deferent depending on the 

parameterization of the multi-arm studies. This will be illustrated by a simple example. 

Consider one AB, one ABC and one AC study, as shown in Table 3 and let AB 

comparison be separated. The choice of the reference treatment in this dataset determines 

which comparisons from the three-arm study ABC will feature in the data. Let A be the 

reference treatment then ABC study will contribute with       and      . There is no direct 

evidence on the BC comparison,    
    is not directly estimable and therefore inconsistency 

    
     is not identifiable in this case. If we choose B to be the reference treatment then 

ABC study will contribute with       and      . Now we have all three comparisons 

informed directly and hence inconsistency     
     is identifiable. If BC studies were 

present, inconsistency would be identifiable in both parameterisations but its estimates 

would be different because the multi-arm study would provide information to only    
    or 

only    
    depending on the reference treatment.  

Table 3. Evaluation of inconsistency for comparison AB using the SIDE method. 

Study Type of study Model study-specific treatment effects 

Reference Treatment A (parameterisation 1) 

1 AB          
              

            

2 ABC 
(
     

     
)  (

   
   

   
   )  (

     

     
*  (    

    

 
*  

(
     

     
)  

3 AC          
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  with    
        

        
       

    

Reference Treatment B (parameterisation 2) 

1 AB          
              

            

2 ABC 
(
     

     
)  (

   
   

   
   )  (

     

     
*  (    

    

 
*  

(
     

     
)  

3 AC          
                 

  with    
        

        
       

     

 

3.6 Comparison of approaches to evaluate inconsistency 

One of the drawbacks of the LS method is that inferences in loops are not independent, 

because different loops of the network share the same studies. To overcome this, Caldwell 

et al.(75) introduced a chi-squared test for the special case that all loops in the network 

share a single comparison. However, this can be applied only to specific parts of the 

network, and again yields multiple tests if all pieces of the network need to be tested. 

Another drawback of the LS approach is that indirect evidence is restricted to the 

information provided from a single loop. It is preferable to compare the direct evidence 

with the indirect estimate from the entire network, as is the approach taken in the SIDE 

method proposed by Dias et al.(15). All three methods outlined above are sensitive to the 

parameterization of multi-arm studies, and do not offer obvious ways to infer about 

network consistency. The only method to identify local inconsistency that is insensitive to 

the studies with multiple arms is the SODR method by Veroniki et al. (76). Among all the 

methods, LS is to date the most popular approach to evaluate inconsistency (6).  

When NMA is applied within a Bayesian framework, investigators often contrast 

models with and without the consistency constraints with respect to fit and parsimony (77). 

This provides a global test for the plausibility of consistency in the entire network, but 

inferences are again sensitive to the parameterization of multi-arm studies. The DBT 

model is the only model that provides an omnibus test, can be fit in a frequentist setting 

and provides results insensitive to the parameterisation of multi-arm studies (17,18). 

Models that do not account for design inconsistency (e.g. LA (66) and the one presented by 

Lumley (78)) are special cases of the DBT model. 





 

4. Evaluation of inconsistency in networks of interventions  

4.1 Introduction 

The assessment of the consistency assumption is vital to ensure that the NMA results 

are valid and interpreted appropriately. The need to define the levels of inconsistency in 

real life data led empirical studies to examine the prevalence of inconsistency between 

direct and indirect comparisons. Song et al.(29) carried out an empirical study applying the 

Bucher method and assuming different heterogeneity parameters in every comparison 

within each loop. They evaluated inconsistency in 112 loops of evidence formed by studies 

comparing pairs of three treatments and concluded that inconsistency was prevalent in 14% 

of the networks (29). In a response to comments on their article, Song et al. (79) 

alternatively assumed that all comparisons within each triangular loop share the same 

amount of heterogeneity and they observed that inconsistency was reduced to 12%. A 

recent analysis of 94 three-treatment networks in Cochrane Reviews found statistically 

significant inconsistency in 17% of the networks (19). However, no empirical evidence 

exists so far regarding the prevalence of inconsistency in more complex networks, 

primarily because no omnibus test was available until recently to evaluate the assumption 

of consistency in a network as a whole. A general model to detect inconsistency has been 

proposed, and called design-by-treatment interaction model (18) (see section 3.4.1). 

Inconsistency can be viewed not only as the disagreement between direct and indirect 

estimates in a loop, but also as the disagreement between studies involving different sets of 

treatments. 

In a network of trials the detection of inconsistency can be hampered by the presence of 

heterogeneity. Large heterogeneity impacts on the uncertainty of the mean effect sizes, and 

hence statistical inconsistency is less likely to be detected. The estimation of the 

heterogeneity variance can vary using different methods (e.g. DL, REML (21)), which 

subsequently affects the ability to detect inconsistency. Assumptions about the 

heterogeneity being the same in different parts of the network or the same in the entire 

network may similarly impact on the detection of inconsistency. However, as factors that 

cause heterogeneity can also cause inconsistency, complete separation of the two is not 

always possible. In summary, large heterogeneity increases the chances of inconsistency 

being present, but decreases the chances of detecting it. 
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Both the presence and the detection of inconsistency may be affected by the use of 

different effect measures. Empirical studies have shown that ratio measures (odds ratio 

(  ) and risk ratio (  )) are less heterogeneous than absolute effect measures (such as 

risk difference) and that the risk ratio for adverse outcomes is less likely to be 

heterogeneous than that for beneficial outcomes (22,23). These differences depend on the 

extent of variation in baseline risk across studies. If baseline risks are substantially 

different in different parts of a loop, then the underlying inconsistency may be greater for 

some effect measures than others; if baseline risks vary substantially within each 

comparison, then more or less heterogeneity may be present, depending on the effect 

measure. Caldwell et al. have also considered the choice of different effect measures in 

network meta-analysis and concluded that the choice of measure should be based on 

physiological understanding of the outcome and, if possible, after considering the model fit 

(13,80). 

The aim of this chapter is to evaluate empirically the prevalence of inconsistency in 

published networks of interventions that compare at least four treatments, and to examine 

the extent to which this is acknowledged by the authors of the NMAs. I further aim to 

investigate the statistical considerations that might influence the statistical detection of 

inconsistency in these complex networks of evidence. I also explore whether different 

effect measures for dichotomous outcome data are associated with differences in 

inconsistency, and whether different ways to estimate heterogeneity impact upon the 

magnitude and detection of inconsistency. I explore the role of factors that may impact on 

inferences about inconsistency in a simple loop of evidence for a dichotomous outcome. 

The factors that I explore are associated with the amount of data available in the loop (such 

as number, size and distribution of trials across comparisons, frequency of events), the 

heterogeneity variance in the pairwise comparisons (presence or absence and estimation 

method) and the method for inference about pairwise summary effects (Wt or KH). I 

conduct a simulation study considering realistic scenarios and I evaluate the performance 

of the test for the assumption of consistency. I select the simulation scenarios relying on 

empirical findings (13,30). 
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4.2 Empirical study 

4.2.1 Searching for network meta-analyses and data extraction 

I searched in PubMed for research articles including networks with at least four 

treatments and dichotomous primary outcomes. I searched for articles published between 

March 1997 and February 2011 in which any form of indirect comparison was applied, 

according to their titles or abstracts. I used the search code: 

(network OR mixed treatment* OR multiple treatment* OR mixed 

comparison* OR indirect comparison* OR umbrella OR simultaneous 

comparison*) AND (meta-analysis) 

In case I identified two or more networks on the same topic, I included only one in the 

dataset and preferred to the larger one. I extracted data regarding the year of publication, 

the methods applied for the indirect comparison, the number of trials and the number of 

arms of each study, as well as the total number of interventions involved in each network. 

From each network I extracted data for the primary outcome (as stated in the text or, if this 

was unclear, defined as the first outcome presented). I preferred data presented in     

tables rather than as effect sizes with their measure of uncertainty, when both formats were 

reported. The extracted data include the name of each trial, as well as the number of 

events, the sample size and the treatment in every arm of each trial included in the 

network. 

Two review authors (Areti Angeliki Veroniki and Georgia Salanti) independently 

assessed each article for the evaluation of the assumption of consistency. Differences in 

assessment results were discussed. For each network we extracted the statistical methods 

used by the original authors to evaluate consistency. We considered inappropriate methods 

a) the comparison of network estimates with the direct estimates, b) the informal 

comparison of the results with previously conducted meta-analyses, and c) the informal 

comparison of indirect estimates with the direct estimates. 

4.2.2 Effect measures 

I considered four effect measures for dichotomous outcomes: the   , the risk difference 

(  ), the risk ratio of beneficial outcomes (   ) and the risk ratio for harmful outcomes 

(   ). The LS and DBT approaches were applied with   ,    ,    , and    

measures, whereas SIDE, SODR and LA approaches were applied using the    scale. 



38 

 

Statistical approaches to evaluate the assumption of consistency 

4.2.3 Estimation of the heterogeneity  

I made assumptions about the heterogeneity variances, and I address first the LS 

approach. I used both common within-loop heterogeneity,      
 , and common within-

network heterogeneity,     
 , as already described in 2.3.3 section. In the DBT model I 

assume that all comparisons in the network share the same heterogeneity variance     
 . 

Suppose the total number of treatments included in a study k is   , the variance-covariance 

matrix for the random effects has                 dimension and is given by 

        
 (

      
   

     
+ 

If the k
th

 study is a two-arm study then the between studies variance-covariance matrix 

reduces to        
 . 

In general, when the number of studies included in the meta-analysis is large, the 

heterogeneity parameter is more precisely estimated (70). Therefore, it is likely that  ̂   
  is 

more precise than  ̂    
 . Assuming a common heterogeneity variance impacts also on the 

precision of the summary effects, and consequently on power for detecting inconsistency. 

For example, it is possible that the heterogeneity in a specific loop     is smaller than the 

heterogeneity in the rest of the network. Assuming the same heterogeneity in the network 

will then decrease precision for the summary estimates of the     loop and may therefore 

decrease the power to detect inconsistency. Similarly, assuming common within-network 

heterogeneity introduces heterogeneity in loops involving comparisons informed by a 

single study, decreasing the chance of identifying the presence of inconsistency. Although 

the assumption of the common within-network heterogeneity can underestimate the 

prevalence of substantial inconsistency, it allows for a more accurate representation of how 

the effects are combined in a network meta-analysis. On the contrary, it is possible that the 

common within-network heterogeneity increases precision for the summary estimates if the 

heterogeneity in a specific loop is bigger than the heterogeneity in the rest of the network, 

and hence statistical inconsistency can be evident. 

I estimated inconsistency in a frequentist setting, where the heterogeneity    can be 

estimated by a variety of methods. The performance of the different estimators can differ 

in terms of bias and MSE, and they can over- or under-estimate the true heterogeneity 
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variance (see section 2.3.1). As heterogeneity may affect the estimation of inconsistency, I 

evaluated inconsistency using different estimators of   . I applied the different estimation 

methods using the    effect measure. In the LS approach I used the DL (31), REML (51) 

and SJ (35) methods. I included the DL method because it is the most popular estimator in 

random-effects meta-analysis and is the default estimator in many meta-analysis’ software 

(e.g. RevMan). I used the frequently applied REML method and the less popular SJ 

estimator because they are associated with large differences in their properties. In the DBT, 

SODR, SIDE and LA approaches only the DL, ML and REML estimators of the 

heterogeneity are available. I applied the ML and REML methods in DBT model, since the 

DL method is not appropriate when the augmentation technique is applied (18). For the 

LA, SIDE and SODR I selected the REML method relying on simulation studies that 

suggest the REML estimation as it performs better in terms of bias than the DL and ML 

estimators (see section 2.3). 

4.2.4 Comparison of the approaches for the evaluation of inconsistency and model 

fit 

For each network I estimated global inconsistency using the LA and DBT models and 

local inconsistency using LS, SIDE and SODR methods using the RE model. Total 

inconsistency and heterogeneity were also measured using   .  

The DBT model estimates inconsistency in the entire network, whereas the LS approach 

evaluates each loop separately. It is therefore impossible to infer about the level of 

agreement between the two methods. I arbitrarily considered a network to be inconsistent 

under the loop-specific approach if at least 5% of its loops are inconsistent in order to 

describe the comparative performance of the two methods. 

Loop inconsistency refers to a difference between direct and indirect estimates for the 

same comparison. However, the presence of multi-arm trials in a network of evidence 

complicates the evaluation of loop inconsistency, since loops formed within multi-arm 

trials are necessarily consistent. Consider for example a network comprising some    

studies, some    studies and some three-arm     studies. Note that only two of the three 

possible treatment effects are sufficient to fully specify the results of the three-arm studies. 

If the two effects include the    comparison, then loop inconsistency might be observed 

by contrasting it with an indirect estimate constructed from the other two groups of studies. 
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On the other hand, if the two effects from the three-arm studies are    and   , then an 

evaluation of inconsistency would not take place. I therefore exclude the comparison that is 

most frequent within the loop and evaluate loop inconsistency in the LS method. This can 

impact on the summary treatment effects though and hence on the evaluation of 

inconsistency for a network with many multi-arm studies. The LA and SIDE approaches 

are sensitive to the parameterisations of the multi-arm studies too. For LA and SIDE 

approaches I examined all possible parameterisations to account for differences in the 

results. In the LA model I considered a network inconsistent when it was found 

inconsistent with at least one parameterisation. Similarly, in SIDE approach I considered 

that a comparison is associated with inconsistency when it disagreed with the remaining 

network in at least one parameterisation of the multi-arm studies. Among the different 

    test values that appeared using different parameterisations of the multi-arm trials I 

used the maximum    . When estimating the heterogeneity in LA model I obtained a 

range of values that resulted from all possible parameterisations for the multi-arm trials. In 

all approaches I used fixed    terms because there are often too few inconsistency 

parameters to get a reliable estimate for the inconsistency variance   . Note that the    is 

the logarithm of the ratio of odds ratios (   ) from the two different sources of evidence 

for the same comparison, i.e.         |  | . When there is no evidence for 

inconsistency the     is close to the unity. 

I implemented LS method in software R 2.13.2 using the self-programmed routine 

ifplot.fun, which is available online (in http://www.mtm.uoi.gr/ under ‘How to do an 

MTM’). The four approaches LA, DBT, SODR, SIDE and    measure were carried out in 

software STATA using the mvmeta (69) command.  

4.2.5 Description of database 

The search initially identified 817 relevant articles and after the screening process I 

ended up with 40 different networks. The full process is shown in the flow chart in Figure 

1.  

The original authors evaluated the assumption of inconsistency using appropriate 

statistical methodology in 15 (38%) networks. Out of these 15 networks, inconsistency for 

at least one comparison in the analysis was reported in 10 (67%). The most prevalent 

method (18%) of evaluating inconsistency was the LS approach. A large proportion of 
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investigators (23%) seemed to be aware of the consistency assumption but used 

inappropriate methods to evaluate it, such as comparisons of direct and network estimates 

(see Appendix Table 1). 

 

Figure 1. Flow chart of the process of selecting network meta-analysis articles 

Twenty-five (63%) networks used   , 13 (33%) used   , one (2%) used all of the 

three   ,    and   , and one (2%) used a hazard ratio. In only seven publications (18%) 

the authors explain their choice of effect measure. Most networks had a subjective primary 

outcome (43%), whereas 35% and 22% of the networks had semi-objective (e.g. cause-

specific mortality, major morbidity event etc.) and all-cause mortality outcomes 

respectively.  

The median number of studies per network is 23, ranging from 9 to 111. The median 

number of trials per loop is 8 and the median loop sample size is 2196; the respective 

median number of trials and sample size per comparison are 2 and 706. The number of 

treatments compared ranged from 4 to 17 with a median of 6. The majority of the networks 

(63%) compared pharmacological interventions vs. placebo. Multi-arm trials were included 

in most networks (34 networks, 85%). Thirty-three networks included three-arm trials and 

nine included four-arm trials. The number of included three-arm trials per network ranged 

from 0 to 12, whereas the number of included four-arm trials ranged from 0 to 6. The total 

number of loops obtained from the 40 networks is 303 and ranged from 1 to 70 per 
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network. The characteristics of these networks are described in detail in Appendix Table 2. 

The 40 relevant NMAs included 348 different comparisons and 362 different designs. Out 

of the 362 designs 287 were designs including two-arm studies Each network included 

between one and 42 comparisons that could be separated to estimate SIDE inconsistency 

(median 10), and each comparison included between 1 and 47 studies (median 2). The 

median number of designs per network where inconsistency can be evaluated was 8 and 

ranged from 2 to 43, and each design was informed from 1 to 45 (median 1) studies. Most 

networks included at least one comparison (36 networks, 90%) or at least one design (37 

networks, 93%) informed by a single study. In one network (66) the only present loop was 

informed by less than three independent comparisons and consequently the LA and SIDE 

approaches were not applicable.  

 

Figure 2. Histograms for the 40 published networks of evidence: a) the within-loop heterogeneity ( ̂ ), b) the 

mean treatment effect in the absolute log odds-ratio scale (|   |), and c) the number of trials ( ) per meta-

analysis Heterogeneity is estimated with the DerSimonian and Laird method. 

In Figure 2 I summarise some of the attributes of the 303 loops of 40 published 

networks of interventions using the     scale. The majority of the pairwise meta-analyses 

(93%) included fewer than ten trials, and the median |   | was 0.32 with interquartile 
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range (IQR) (0.13, 0.75). In 91% of the loops the      
  using the DL estimator is estimated 

less than 0.5 and zero in 51% of the loops.  

4.2.6 Models to evaluate global Inconsistency 

Design-by-treatment interaction (DBT) model 

In the DBT model the ML Wald tests for analyses of    yielded 8 inconsistent 

networks out of the 40 networks (20%), whereas 11 (28%) of the networks were found to 

display inconsistency when analysed using each of the three effect measures    ,     

and    (all pairwise comparisons between    vs.    ,     or    for inconsistent 

networks with the ML estimator using the McNemar test produced     0.371). The REML 

Wald test indicated 5 (13%), 6 (15%), 7 (17%) and 5 (13%) inconsistent networks using 

the   ,    ,     and   , respectively (all pairwise comparisons between    vs.     

or    for inconsistent networks with the REML estimator using the McNemar test 

produced     1, whereas    vs.     produced     0.617) (see Table 4 and Table 5).  

Table 4. Number of consistent networks that become inconsistent when changing from one effect size to 

another and vice versa, in the design-by-treatment interaction model and the restricted maximum likelihood 

(REML) and maximum likelihood (ML) estimators of the heterogeneity.   : risk difference measure,    : 

risk ratio for harmful outcomes,    : risk ratio for beneficial outcomes,   : odds ratio, C: consistent, I: 

inconsistent  

      estimated with ML  

             
% of 40 

networks 

 
 

 

 C I C I C I  

Consistent 28 4 28 4 28 4 80% 

Inconsistent 1 7 1 7 1 7 20% 

% of 40 

networks 
72% 28% 72% 28% 72% 28%  

     estimated with REML  

             
% of 40 

networks 

 
 

 

 C I C I C I  

Consistent 33 2 32 3 32 3 87% 

Inconsistent 1 4 1 4 3 2 13% 

% of 40 

networks 
85% 15% 83% 17% 87% 13%  

 

Comparing the REML with the ML method, the former yielded fewer inconsistent 

networks (13% to 17% depending on effect measure) than the latter (20% to 28% 
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depending on effect measure), but there were no important differences (McNemar test 

under the comparison of ML estimator versus the REML estimator;   :     0.248,    : 

    0.074,    :     0.1336,   :     0.041) (see Table 5). This is probably because the 

ML method estimated slightly smaller values of the heterogeneity variance than the REML 

in almost all networks and all effect sizes. 

 Table 5. Number of consistent networks that become Inconsistent and vice versa, when heterogeneity is 

estimated with maximum likelihood (ML) or the restricted maximum likelihood (REML) method. 

Inconsistency is investigated with the design-by-treatment interaction (DBT) model for all four effect sizes. 

   : risk difference measure,    : risk ratio for harmful outcomes,    : risk ratio for beneficial outcomes, 

  : odds ratio 

       estimated with ML 
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  Consistent Inconsistent % of 40 networks 

 
 

 Consistent 32 3 87% 

Inconsistent 0 5 13% 

% of 40 networks 80% 20%  

       

 
 
 

 Consistent 29 5 85% 

Inconsistent 0 6 15% 

% of 40 networks 72% 28%  

       

 
 
 

 Consistent 29 4 83% 

Inconsistent 0 7 17% 

% of 40 networks 72% 28%  

      

 
 

 Consistent 29 6 87% 

Inconsistent 0 5 13% 

% of 40 networks 72% 28%  

 

In Figure 3a and Figure 3b I present the heterogeneity estimates using ML and REML 

methods in consistency ( ̂   
 ) model against the DBT ( ̂   

 ) model. Results are presented 

on the    effect measure. On average the consistency models display higher heterogeneity 

than the DBT models, accounting probably for inconsistency in the data. Figure 3c shows 

the differences in √ ̂ values between DBT and consistency models estimated with REML 

method and the   . The consistency model yielded higher heterogeneity values in 26 

(65%) networks compared to the DBT model with a mean relative change (       ̂   
  

 ̂   
         ̂   

   ̂   
   )      . The fact that the consistency model often yielded 

higher heterogeneity estimates than the inconsistency model might indicate that the extra 
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variability due to possible inconsistency in the former model is captured in the 

heterogeneity. Large relative drops in heterogeneity can be seen as an alternative approach 

to detect inconsistency. In Figure 3d I depict the relative change between consistency and 

DBT model against the squared root of the   values for the inconsistency parameters 

estimated in DBT model using the REML estimator and   . The larger the heterogeneity 

in the consistency model compared to  ̂    the more chances to find an inconsistent 

network. 

 

Figure 3. Plot of heterogeneity estimates ( ̂ ) with maximum likelihood (ML) (panel a) and restricted 

maximum likelihood (REML) (panel b) from the consistency (CON) model against heterogeneity estimates 

from the design-by-treatment interaction (DBT) model along with the equality line. c) Bar plot of the 

difference in the square root of the estimated heterogeneity standard deviation between consistency and DBT 

model. Negative values show greater heterogeneity in CON model, whereas positive values show greater 

heterogeneity in DBT model. Star points show the networks that were found inconsistent in DBT model 

using REML method. b) Plot of the squared root of the   values of the inconsistency estimated in DBT 

model against the relative change of the square root of the heterogeneity in the DBT model from the CON 
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model. The horizontal blue dashed line represents the cut-off value       . Note that 15 networks with 

 ̂      could not be presented in the plot. All plots are presented on the odds ratio scale. 

For fourteen networks (35%) I could not find any indication in the published articles 

that the authors evaluated the assumption of consistency. Four out of these networks were 

found to be inconsistent when I applied the DBT model using the REML method and the 

   scale. A cause of concern is that one in three of the meta-analysis authors did not 

examine consistency since conclusions from NMA may not be valid when the consistency 

assumption does not hold. 

Lu and Ades (LA) model 

I applied the LA model in 39 networks in total. Inconsistency was prevalent in 

maximum 7 (18%) networks when I applied different parameterisations of the multi-arm 

studies (see also Appendix Table 8). A different parameterisation of the studies with 

multiple arms impacts on the inference about inconsistency and the impact is more 

pronounced when the network includes loops with comparisons informed by single studies 

(e.g. network of Imamura (81), Elliott (82)). Different parameterisation of the multi-arm 

studies impacts also on the estimation of heterogeneity in the LA model and I selected the 

maximum  ̂  
  value (see the spread in the box plots presented in Figure 9). There is a large 

variation in the estimation of  ̂   though when the multi-arm studies are differently 

parameterised. A large variability in the network might be expressed either as 

inconsistency or as heterogeneity when parameterising the multi-arm studies differently. 

For example, in one parameterisation the network by Salliot 2011 (83) is suggested 

consistent with  ̂       , whereas in another parameterisation the network is suggested 

inconsistent with  ̂        (see Figure 9). 

4.2.7 Methods to evaluate local Inconsistency 

Loop-specific (LS) method 

Inconsistency using different effect measures for dichotomous data 

Out of the total 303 loops identified in the 40 networks, 23 were found to be 

inconsistent (8%) when analysed with   , 26 (9%) with    , 29 (10%) with     and 29 

(10%) as   , for common within-loop heterogeneity ( ̂    
 ) estimated using the DL 

method. Table 6 provides these results along with results under the assumption of common 

within-network heterogeneity ( ̂   
 ). Changing effect size when using  ̂    

 , some 
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consistent loops became inconsistent and vice versa. These changes were more often 

observed between    vs.    and    vs.    . Eleven (4%) consistent loops with    

changed to inconsistent with   , whereas 5 (2%) loops that deviate from consistency 

using    changed to consistent when    was employed (see Table 6). The percentage of 

inconsistent loops was comparable across the four effect measures (McNemar test when 

 ̂    
  was used;    vs.    : P   0.505,    vs.    : P   0.239,    vs.   : P   0.211). 

In Appendix Table 3 I provide the inconsistency estimates in all four scales for all loops, 

along with their standard errors and     values.  

Table 6. Number of consistent (C) and inconsistent (I) loops using different effect measures and assumptions 

for the heterogeneity. I assume either common within-loop heterogeneity ( ̂    
 ) estimated with DerSimonian 

and Laird method and network heterogeneity ( ̂   
 ) estimated with restricted maximum likelihood method. 

     estimated with  ̂    
  

  
           

% of 303 

loops 

   

 
C I C I C I 

 
Consistent 274 6 268 12 269 11 92% 

Inconsistent 3 20 6 17 5 18 8% 

% of 303 loops 91% 9% 91% 9% 91% 9% 
 

     estimated with  ̂   
  

  
           

% of 303 

loops 

   

 
C I C I C I 

 
Consistent 283 3 278 8 278 8 94% 

Inconsistent 2 15 7 10 9 8 6% 

% of 303 loops 94% 6% 94% 6% 95% 5% 
 

 

The 40 network dataset included 203 loops with at least one comparison being informed 

by a single study. Inconsistency was more likely to be found in these loops. For example, 

in the network of Elliot (82) I identified two inconsistent loops using the    scale, which 

share the same comparison including only one study. It is possible that in such cases 

inconsistency is introduced by this particular study. Of the 203 loops 19 (9%) were found 

to be inconsistent with   , whereas from the 100 remaining loops with comparisons 

including two or more studies only 4 (4%) were inconsistent (    0.154). The respective 

percentages of inconsistent loops for the other scales were 18 (9%) vs. 8 (8%) (    0.972) 
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with    , 21 (10%) vs.8 (8%) (  0.657) with     and 20 (10%) vs. 9 (9%) (   0.977) 

with   . 

A similar picture was observed assuming a common within-network heterogeneity 

( ̂   
 ), although the total inconsistency rate dropped. Out of the 303 loops, I detected 16 

(5%) inconsistent loops with   , 19 (6%) with    , 18 (6%) with     and 16 (5%) with 

   (see Table 6). In Appendix Table 4 I provide the inconsistency estimates using the four 

effect measures for all loops along with their standard errors and     values. Again, there 

were no important differences in inconsistency between the four effect measures 

(McNemar test when  ̂   
  was used;    vs.    :     0.371,    vs.    : P   0.789,    

vs.   : P   1). 

Table 7. Number of consistent loops that become inconsistent in the loop-specific method (LS) when 

applying the common within-loop heterogeneity ( ̂    
 )) estimated with the DerSimonian and Laird method 

and network heterogeneity ( ̂   
 ) estimated with the restricted maximum likelihood method.   : risk 

difference measure,    : risk ratio for harmful outcomes,    : risk ratio for beneficial outcomes,   : odds 

ratio. 

 
     estimated with  ̂    
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Consistent Inconsistent % of 303 loops 

 
 

 Consistent 280 7 95% 

Inconsistent 0 16 5% 

% of 303 loops 92% 8%  

    

 
 
 

 Consistent 275 10 94% 

Inconsistent 3 16 6% 

% of 303 loops 91% 9%  

    

 
 
 

 Consistent 273 13 94% 

Inconsistent 2 16 6% 

% of 303 loops 90% 10%  

   

 
 

 Consistent 273 15 95% 

Inconsistent 2 14 5% 

% of 303 loops 90% 10%  

 

Comparing the common within-loop and common within-network approaches I 

concluded that there are important differences in the number of inconsistent loops between 

the two methods, especially when   ,     or    are applied (McNemar test when  ̂    
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was used vs. when  ̂   
  was used;   :      0.023,    :      0.096,    :      0.010, 

  :     0.004). In Table 7 I provide the number of important      using the four effect 

measures assuming either      
  or     

 .  

 

Figure 4. Two sided   values of      (fourth-root scale) for    vs.   ,    vs.     and    vs.     effect 

measures with the DerSimonian and Laird method for      
  and the restricted maximum likelihood for     

 . 

The red solid diagonal line indicates equality, the blue dashed diagonal line is the regression line and the two 

green dotted horizontal and vertical lines represent the  =0.05 threshold lines.  

In Figure 2 the   values for the LS approach are presented for both      
  and     

 for 

the three pairs of effect measures;    vs.   ,    vs.     and    vs.    . The two-sided 

  values are displayed on the fourth root scale (23). Among all six panels, agreement 

seems to be higher between    and     as seen by less scatter around the equality line 

and a smaller number of discordant points. This is likely to be due to most outcomes being 

rare rather than common, so that    is closer to     than to    . Heterogeneity 

estimates are in better agreement between    and     (for  ̂   
 : mean |    

     
 | 

   
   52%, mean |    

     
 |    

   63%, mean |   
     

 |    
   90%; for  ̂    

 : 

mean |    
     

 |    
   51%, mean |    

     
 |    

   79%, mean |   
     

 | 
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   97%). In general, no substantial differences in inconsistency were observed 

between the effect measures. 

Inconsistency using different estimators for the heterogeneity parameter 

In Table 8 I present the number of inconsistent loops using three heterogeneity 

estimators for      
 : the DL, REML. SJ, and REML methods and the REML estimation for 

    
 . Results are presented on the    effect measure. I observed that both the DL and 

REML methods led to a greater number of inconsistent loops than the SJ method. This is 

due to the differences in their properties. As already discussed in section Estimation 

methods for the 2.3.2, in certain cases the DL and REML methods underestimate    

whereas the SJ estimator overestimates   . As noted earlier, I observed that inconsistency 

was more frequent in loops that include comparisons informed by a single study (Table 8). 

Using      
  19 (9%) out of 203 loops with at least one comparison informed by one study 

were found to be inconsistent with the DL estimation, whereas only 4 (4%) were 

inconsistent of the remaining 100 loops (  0.154). The respective percentages with the 

REML and SJ estimators are 18 (9%) versus 3 (3%) (  0.099) and 12 (6%) vs. 2 (2%) 

(  0.217). However, using     
  the respective inconsistent loops were 4 (2%) vs. 12 

(12%) (  0.001) with the REML estimation. The evaluation of inconsistency assuming 

    
  and REML in comparisons described by a single study decreases the inconsistency 

rate by 7% compared to      
 . This is because the amount of within-network heterogeneity 

in most inconsistent loops, and particularly those that include at least one comparison 

informed by a single study, is larger than      
 . 

There was no evidence that inconsistency differs statistically among the three estimators 

when assuming a common within-loop heterogeneity (comparison of inconsistent loops 

with at least two studies per comparison: DL vs. REML:   1, DL vs. SJ:   0.679, SJ vs. 

REML:   1; comparison of inconsistent loops with at least one comparison informed by 

a single study: DL vs. REML:   1, DL vs. SJ:   0.262, SJ vs. REML:   0.343). 

However, inconsistency differs substantially between the common within-loop and the 

common within-network approach with the REML method (comparison of inconsistent 

loops with at least two studies per comparison:   0.035; comparison of inconsistent 

loops with at least one comparison informed by a single study:   0.003). 
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Table 8. Frequency of Inconsistent loops (IL) using the DerSimonian and Laird (DL), restricted maximum 

likelihood (REML) and Sidik-Jonkman (SJ) estimators for the heterogeneity. Inconsistency is estimated with 

the log odds-ratio scale using the loop-specific approach for both common within-loop heterogeneity ( ̂    
 ) 

and network heterogeneity ( ̂   
 ). The number of IL is provided when  ̂    

  or  ̂   
  is equal to zero, as well 

as when the closed loop involves one study in at least one comparison. 

Estimator of    IL IL with  ̂    
    

IL with1 study in at 

 least one comparison 

 ̂    
  

DL 23 (8%) 14 (5%) 19 (9%) 

REML 21 (7%) 18 (6%) 18 (9%) 

SJ 14 (5%) 5 (2%) 12 (6%) 

Total loops 303 303 203 

 ̂   
  

REML 17 (6%) 5 (2%) 5 (2%) 

Total loops 303 303 203 

 

 

Figure 5. Comparison of the heterogeneity estimated with DerSimonian and Laird (DL), restricted maximum 

likelihood (REML) and Sidik-Jonkman (SJ) methods; the heterogeneity is presented on the log scale when 

applying the loop-specific approach (common within-loop heterogeneity variance,      
 ) in the 303 loops. 
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In Figure 5 I compare the estimated heterogeneity on the log scale using the DL, REML 

and SJ methods. I show that the SJ method is associated with larger values of 

heterogeneity, leading to fewer inconsistent loops than the other two methods (see Table 

8). 

 

Figure 6. The left-hand side panels represent a plot of inconsistency estimate (  ̂  ) against the heterogeneity 

( ̂ ) and the right-hand side panels correspond to a plot of the   value of   ̂   against  ̂ . Inconsistency is 

estimated using the common within-loop heterogeneity variance and the DerSimonian and Laird (DL), 

restricted maximum likelihood (REML) and Sidik-Jonkman (SJ) methods. 

For each loop, I compared the      and its   value with the estimated heterogeneity for 

each loop ( ̂    
 ) using the three estimators (see Figure 6). Irrespective of the estimation 

method used, the magnitude of inconsistency increases slightly as the estimated 

heterogeneity increases. Conversely, lower values of the heterogeneity are associated with 

greater chances of identifying significant     , though the correlation coefficients between 

the   value or      and the heterogeneity variance are very small (correlation coefficients 

for   ̂   versus  ̂ :      0.14        0.15,      0.29; correlation coefficients for   

value of     ̂ versus  ̂ :      0.13,        0.13,      0.04). 
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Separating indirect and direct evidence (SODR) method 

The detachment of 31 (9%) designs (total 362) suggested important disagreement 

between those designs and the remaining network. In 16 (40%) networks I identified at 

least one inconsistent design (see Appendix Table 6). The median number of inconsistent 

designs per network was 2 and ranged from 0 to 4. In Table 9 I examine whether the 

magnitude of estimated heterogeneity and the number of studies informing each design are 

associated with more or less chances of identifying inconsistency. Although designs 

informed by a single study reject more often the assumption of consistency, the percentage 

of inconsistency did not significantly differ from designs informed by two or more studies 

(19/188 (10%) vs. 12/174 (7%);    0.367). The total heterogeneity was estimated equal to 

zero in the detachment of 117 (32%) designs after the detachment of the particular design 

in 24 (60%) networks. Twelve (10%) out of the 117 designs were found inconsistent 

(Table 9).  

Table 9. Frequency of inconsistent designs and comparisons estimated using the SODR and SIDE methods. 

The number of designs/comparisons is provided when  ̂  is equal to zero, as well as when a 

design/comparison includes a single study. Comparisons that were found inconsistent with at least one 

parameterisation of the multi-arm studies were classified as inconsistent in SIDE method.  

SODR method 

Designs  ̂    

Designs 

including a 

single study 

Designs 

including a 

single study 

and  ̂    

 Total 

Consistent 
105 

(90%) 
167 (90%) 46 (89%)  

331 

(91%) 

Inconsistent 
12 

(10%) 
19 (10%) 6 (11%)  31 (9%) 

Total 
117 

(32%) 
188 (52%) 52 (14%)  

362 

(100%) 

SIDE method 

Comparisons 

 
 ̂    

Comparisons 

including a 

single study 

Comparisons 

including a 

single study 

and  ̂    

Comparisons 

included in at 

least one 

multi-arm trial 

Total 

Consistent 
124 

(87%) 
109 (89%) 37 (86%) 182 (89%) 

309 

(89%) 

Inconsistent 
18 

(13%) 
14 (11%) 6 (14%) 23 (11%) 

39 

(11%) 

Total 
142 

(36%) 
123 (35%) 43 (12%) 205 (59%) 

348 

(100%) 
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In Figure 7a I compare the distribution of the heterogeneity estimates in SODR method 

and I compare it to the heterogeneity estimated in the consistency model. In half of the 

networks with global inconsistency the heterogeneity of the consistency model is larger 

than the median  ̂  from the SODR model, suggesting again that in those networks the 

extra variability due to inconsistency might have inflated the heterogeneity parameter in 

the consistency model. As presented in Figure 7a heterogeneity can drop substantially 

when detaching some designs (see for example the network by Macfadyen 2005 (84)). 

Given that the power of inconsistency tests is suspected to be low, monitoring changes in 

heterogeneity might be used as an alternative; designs whose detachment leads to 

important drops in heterogeneity are suspected for inconsistency. 

Separating indirect and direct evidence (SIDE) method 

Inconsistency was prevalent in 39 (11%) comparisons (total 348) that belonged to 19 

(49%) different networks out of the total 39 (see Appendix Table 7). The number of 

inconsistent comparisons per network ranged from 0 to 6 (median 2). In total 205 (59%) 

comparisons were informed by at least one multi-arm study in 76 (22%) of which the 

magnitude of heterogeneity changed when a multi-arm study was parameterised 

differently. Inference about inconsistency changed in 16 comparisons (5%) when 

parameterisation changed in multi-arm studies. Similarly to SODR method, inconsistency 

did not change when I restricted the analysis to comparisons for which at least two studies 

provide direct evidence (14/123 (11%) vs. 25/225(11%);    1) (Table 9). In Figure 7b I 

present the distribution of the heterogeneity estimated in SIDE method compared to the 

network heterogeneity estimated in the consistency model. Again, the detachment of some 

comparisons in networks can decrease heterogeneity a lot and this can be used as an 

alternative to the test for inconsistency. 
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Figure 7. Comparison of the estimated heterogeneity ( ̂ ) in SODR method (panel a) and SIDE method 

(panel b) versus  ̂  in the consistency (NMA) model. Each boxplot represents the distribution of  ̂  when all 

designs (panel a) or comparisons (panel b) of a network were detached. Numbers on the top of the boxplots 

and red stars represent  ̂  in the consistency model. Note that in one network (66) inconsistency could not be 

evaluated using the SIDE method. Circled boxplots are inconsistent networks in either LA or DBT models. 

SODR: Separating one design from the rest, SIDE: separating indirect and direct evidence. 

Comparison of approaches to evaluate inconsistency and distribution of I2 for 

inconsistency 

In Figure 8 I present the histogram of the absolute     as estimated in each approach 

separately. To evaluate loop inconsistency using the LS method I used 303 closed loops of 

evidence. The median inconsistency using the LS method and  ̂    
  with DL estimator was 

   =1.40 with IQR (1.16, 2.20). For SODR method I separated 362 different designs 

from their networks and I applied the SIDE method in 348 treatment comparisons. Figure 

8b and Figure 8c show the histogram of the absolute     as estimated using the SODR and 

SIDE methods, respectively. Overall the evidence coming from different designs for the 

same comparison disagreed with a median     1.37 with IQR (1.14, 2.18). Similar results 

were obtained with the SIDE method; direct and indirect evidence for the same comparison 
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disagreed by a median     1.44 with IQR (1.15, 2.16). Figure 8d and Figure 8e show the 

histogram of the absolute     for the DBT and LA models, respectively. For the LA model 

where different   ̂ values can occur with different parameterisation of multi-arm studies I 

display the maximum   ̂ per loop. Overall the evidence coming from different designs was 

found to disagree by a median     1.49 with IQR (1.16, 2.84), whereas the LA model 

showed that direct evidence disagreed to indirect one in a closed loop by median     1.48 

with IQR (1.22, 2.46). 

 

Figure 8. Histogram of the absolute values of the inconsistency factors (  ) for the    effect measure 

estimated using a) the LS method b) the SODR method, c) the SIDE method, d) the DBT model, and e) the 

LA model. In (b) and (e) histograms I display the maximum    in case of multiple     for the same loop or 

comparison (due to different parameterisation of multi-arms studies). 

In Table 10 I compare the number of inconsistent networks using the LA model and the 

DBT model. Two networks were found to be inconsistent in the LA model, but consistent 

with the DBT approach. This might be due to the differences in the estimation of the 

heterogeneity and the fact that I used the maximum test value from the different 

parameterisations of the multi-arm studies to infer about inconsistency in the LA model. In 

Figure 9 I compare the heterogeneity as estimated with the DBT and LA models. For 
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networks with non-negligible heterogeneity (e.g.  ̂ >0.05) the estimate from the DBT 

model is at the lower spectrum of values of    estimated with the LA method. This might 

suggest that in these networks there is design inconsistency which is not accounted for in 

the LA model and hence the variability associated with it is encompassed in the 

heterogeneity.  

 

Figure 9. Comparison of the estimated heterogeneity ( ̂ ) in Lu and Ades (LA) model and design-by-

treatment interaction (DBT) model. Each boxplot represents the estimates for  ̂  resulting from different 

parameterisations of the multi-arm studies included in each of the 39 networks. For one network39 

inconsistency could not be evaluated using the LA model. Red points are the estimates of  ̂  in DBT model. 

Full circles denote inconsistent networks in both LA and DBT models and dashed circles denote inconsistent 

networks in LA model only. Networks found inconsistency with at least one parameterisation of the multi-

arm studies were considered inconsistent. 

 

Table 10. Number of consistent and inconsistent networks using the Lu and Ades (LA) and design-by-

treatment interaction (DBT) models. Networks that were found inconsistent with at least one 

parameterisation of the multi-arm studies were classified as inconsistent in LA model. Note that in one 

network (66) inconsistency could not be evaluated using the LA approach. 

 
Lu and Ades model 

D
B

T
 

m
o
d

el
  

Consistent Inconsistent Total 

Consistent 32 2 34 (87%) 

Inconsistent 0 5 5 (13%) 

Total 32 (82%) 7 (18%) 39 (100%) 

 



58 

 

Statistical approaches to evaluate the assumption of consistency 

In Figure 10 I present the distribution of     
  (median 50%, IQR(27%,71%)),     

  

(median 26%, IQR(0%,63%)), and         
  (median 72%, IQR(46%,86%)). 

 

 

Figure 10. Histogram of the I2 values when accounting for a) inconsistency, b) heterogeneity and c) both 

inconsistency and heterogeneity in the network. 

4.3 Simulation study 

4.3.1 Simulation study design  

The simulation study was informed by our empirical study (for a description of the 

dataset see section 4.2.5). I restricted our analysis to dichotomous outcome data measured 

using a single scale as empirical evidence showed no differences in inconsistency using 

different effect sizes (13). I selected    due to its good mathematical properties (22,23). 

Let us consider a three-treatment network     with   ,    and    trials. I assumed the 

summary treatment effect for the    comparison                        and for 

the    comparison      1. I computed the    for BC comparison as: 
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I selected values      
                      to cover a range of plausible values for 

inconsistency as suggested by empirical data. I considered two different distributions for 

heterogeneity that pertain to a subjective outcome (the most frequently reported outcome in 

our data) and all-cause mortality for comparisons between pharmacological interventions 

and placebo; according to (30) these are                    and                     

(median     0.02 with (IQR 0.01, 0.04)) (30). 

Let   ,    and    represent the number of studies included in the three comparisons   , 

   and    respectively, with            ,             and            . I 

examined both networks where all comparisons include the same number of trials     

                (‘balanced’ direct comparisons) and networks where each 

comparison is informed by a different number of trials with                   

(‘imbalanced’ direct comparisons).  

For each combination of   ,      
  , and    I simulated the trial-specific underlying 

relative treatment effects from a normal distribution as: 

        
          

   

        
          

   

        
          

    

I generated arm-level data for each trial   ,    and   . For an    trial I assumed equal 

trial sizes across arms:      
      

   and I selected small, moderate and large trial 

sizes sampled from           ,             and             , respectively. The 

number of events per arm, denoted with      
and      

 are drawn from the binomial 

distributions: 

     
  (     

      
) 

     
  (     

      
) 

where      
 and      

 are the probabilities of the outcome in each trial arm. To define these 

probabilities I make assumptions about the average risk (  ) of the outcome in the trial 

assuming both frequent and rare events. I simulated the    from a uniform distribution as: 

       
             , for frequent event rates 
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             , for rare event rates. 

I obtained the event probabilities in the arms as the solution to the equations: 

       
 

     
      

 
 

        
    (

     
(       

)

     
(       

)
) 

I then calculated the sample     and its variance as 

        

     (
     

 (     
      

)

     
 (     

      
)
) 

      

  
 

     

 
 

     
      

 
 

     

 
 

     
      

 

If the simulated number of events in one of the study arms is zero, I add 0.5 to the cells 

of the     table. I repeated this process for all     trials and then I perform a random-

effects meta-analysis to obtain the summary effect size  ̂  . I followed the same process 

for comparisons    and    and then I estimate the inconsistency factor.  

I also considered an extra scenario representing the ‘typical’ loop; that is a loop with the 

characteristics most commonly encountered in our empirical study (13). Most three-

treatment loops (65%) had at least one comparison informed by a single trial and a median 

sample size in the loop of 2310 participants. Based on the empirical distribution of trials in 

triangular loops I generate data for frequent events,                  , and 

sample size per arm drawn from             .  

For each scenario I analysed 1000 simulated triangular networks. Assuming 0.05 the 

significance level, I estimated the power of the     
   test when true inconsistency was 

present (  | |      |     
      and type I error when the null hypothesis was true 

(  | |      |     
     . I computed the coverage probability for the    of 

inconsistency, i.e. the probability that the estimated interval for      included its true 

value. I carried out the simulations in the freely available software R 2.15.2 using the self-

programmed sims.fun function, which is available online (in http://www.mtm.uoi.gr/ under 

‘Material from Publications’).  
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I estimated the uncertainty of the pairwise summary effects by employing four different 

strategies: the Wald type method using DL estimator (WtDL), REML (WtREML) and PM 

(WtPM) estimators for the heterogeneity and the Knapp-Hartung method with the DL 

estimator (KHDL). The main two differences between the Wt and KH methods are a) the 

Wt method estimates the variance of the overall treatment effect for a specific comparison, 

e.g. AB, using the inverse of the sum of the study weights, whereas the KH method derives 

the variance of the overall treatment effect as the ratio of a generalised   statistic divided 

by the product of the degrees of freedom (     ) and the sum of the random-effects 

study weights (for more details see sections 2.3 and 2.4). When a comparison was 

addressed by a single trial (so that the loop includes 3 trials in total) estimation of 

heterogeneity is impossible. In these cases I used the fixed-effect model (by setting    

 ) and consequently all methods (WtDL, WtREML, WtPM and KHDL) would yield 

exactly the same results.  

4.3.2 Estimation of the variance of inconsistency 

In this section I explain how       ̂   
    depends on the magnitude of the heterogeneity 

as well as the number of trials included in the network. Without a loss of generalisation I 

use the Wt approach. The variances of the direct mean treatment effects are functions of 

the within-study variances   ̂ and the heterogeneity   . Let    ,     and     trials inform 

the AB, AC and BC comparisons respectively. Assuming the sampling variances are the 

same for all trials ( ̂), the variance of inconsistency is obtained by  

        ̂   
     ̂ (

 

   
 

 

   
 

 

   
)    ̂           (4.1) 

Formula (4.1) shows that       ̂   
    increases with the heterogeneity and decreases 

with the number of the trials included in the network. 

4.3.3 Type I error 

The relatively small number of trials included in each pairwise meta-analysis (fewer 

than 7) and the magnitude of assumed heterogeneity for a subjective outcome (median 

    0.12) make bias and MSE for    comparable between the three estimators WtDL, 

WtREML and WtPM. Type I error was therefore comparable between the WtDL, 

WtREML and WtPM methods (data not shown) and I present results only from WtDL and 

KHDL. Figure 11 and Figure 12 in display the estimated type I error for equal and 
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different numbers of trials across comparisons. In general, type I error was close to the 

nominal level for the WtDL method, but larger than 5% for many scenarios analysed with 

KHDL. The KHDL method generally yielded smaller variances for      leading to larger 

type I errors. Type I error converged to the nominal level more rapidly when      for 

both the WtDL and KHDL methods. The overall type I error approached the nominal level 

as the number of trials increases for the same trial size. In the current simulation scenarios, 

I did not find important differences between the three estimators of      

 

Figure 11. Type I error by sample size (n), frequency of events and loop sample size. Equal number of trials 

per comparison (                   ) is assumed in the presence (    ) and absence (    ) 

of heterogeneity. Circled points correspond to loops with single study for which a fixed-effects model is 

employed. The region within the horizontal dotted lines defines the confidence interval for the 0.05 nominal 

level. n: sample size, WtDL: Wald type method using the DerSimonian and Laird estimator, KHDL: Knapp 

and Hartung method with DL estimator. 
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Figure 12. Type I error by sample size (n), frequency of events and loop sample size. Results are shown 

assuming different number of trials ( ) per comparison (                 ). The region within the 

horizontal dotted lines defines the confidence interval for the 0.05 nominal level. WtDL: Wald type method 

with DerSimonian and Laird (DL) estimator, KHDL: Knapp and Hartung method with DL estimator. 

In Table 11 I provide type I error values for various simulation scenarios. When the total 

number of individuals included in the network ranges from 2400 to 3000, type I error lied 

between 0.06–0.08. Type I error deviated from 0.05 considerably when an equal and small 

number of trials is considered across comparisons for all trial sizes. 

For rare events, type I error departed from 0.05 in a greater extent than it does for 

frequent events. Type I error was lower than its nominal level in most cases for the WtDL 

method especially when     , probably due to overestimation of   . The KHDL method 

resulted again in considerably larger type I errors, which is probably due to the small 

variances of the mean treatment effects. Type I error is closer to the nominal level for 

WtDL when      for all sample sizes. All methods tend to improve their performance 

with increasing total number of trials included in the entire network (see Figure 11 and 

Figure 12). 
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Table 11. Type I error, power and coverage probability by sample size ( ) and number of trials ( ). Results 

are presented for frequent events and aggregated over different assumptions for heterogeneity and methods to 

estimate the variances of the mean treatment effects. In bold I present results from loops in which the total 

number of individuals is between 2400 and 3000. 

 

 
Balanced Scenario (             ) Imbalanced 

Scenario 

  =1  =2  =3  =4  =5  =6  =7    =1 

   =4 

   =7 

Type I error (    = 0) 

n  (20,50) 0.07 0.07 0.06 0.04 0.05 0.05 0.04 0.06 

n  (50,150) 0.10 0.07 0.06 0.06 0.05 0.06 0.04 0.08 

n  (150,300) 0.13 0.07 0.05 0.06 0.06 0.04 0.05 0.06 

Power (     = 0.6) 

n  (20,50) 0.13 0.15 0.18 0.23 0.27 0.33 0.37 0.16 

n  (50,150) 0.25 0.30 0.42 0.52 0.62 0.70 0.76 0.32 

n  (150,300) 0.42 0.54 0.70 0.79 0.84 0.88 0.89 0.49 

Coverage Probability (     = 0.6) 

n  (20,50) 0.96 0.96 0.97 0.98 0.97 0.97 0.97 0.97 

n  (50,150) 0.95 0.96 0.97 0.96 0.96 0.96 0.96 0.95 

n  (150,300) 0.93 0.95 0.94 0.94 0.96 0.95 0.95 0.95 

 

4.3.4 Statistical Power 

In Figure 13 and Figure 14 present the power for                       for both 

frequent and rare events when equal (Figure 13) and different (Figure 14) numbers of trials 

are included in comparisons. The overall power increases both with the number of trials 

included in each pairwise meta-analysis and with their sample size. Results were 

aggregated over all estimation methods for heterogeneity and the different methods to 

estimate the variance of the direct summary effects. In Table 11 I provide the power values 

for various simulation scenarios when      = 0.6 and frequent events are considered. 

When the total number of individuals included in the network ranges from 2400 to 3000, 

power ranged between 0.54 and 0.70 when an equal number of trials was assumed across 

comparisons but dropped to 0.32 when each comparison had a different number of trials. 

As can be seen in equation (4.1), the distribution of trials across comparisons affects the 

estimation of the variance of     . This has an impact on power and the test is more 

powerful when trials are distributed uniformly across comparisons. The comparison of 

frequent (Figure 13a) and rare (Figure 13b) events indicates that power is larger for 

frequent events. Rare events were associated with larger variability for the pairwise 
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summary treatment effects and hence the chances of identifying potentially important 

inconsistency decrease. It should be noted that the first summary result of each power 

curve pertains to the case where there is only one trial per comparison and heterogeneity is 

set to be zero. This has an impact on monotonicity especially when      is low and sample 

size is large. 

 

Figure 13. Power by magnitude of inconsistency factor (    ), frequency of events and loop sample size. 

Power is presented for different sample sizes ( ) assuming equal number of trials per comparison (    
               ). Results are aggregated over different assumptions for heterogeneity and methods 

to estimate the variance of the mean treatment effect. The first summary result in each power curve pertains 

to the case where there is a one trial per comparison and a fixed-effects model is employed. 
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Figure 14.Power by magnitude of inconsistency factor (IF), frequency of events and loop sample size. I 

assume different number of trials ( ) per comparison (                 ). Results are aggregated 

over different assumptions for the heterogeneity and methods to estimate the variances of the mean treatment 

effects. 

In  

Table 12 and Table 13 I present the power for the WtDL and KHDL methods. For 

frequent events the power to detect inconsistency does not vary significantly with the 

method used to estimate heterogeneity or to express uncertainty on the summary effects 

although the KH method is marginally more powerful, especially in the absence of 

heterogeneity. This is because, in many cases, the KH estimates smaller variances for 

inconsistency compared with the Wt method. The median inconsistency standard error is 

0.33 (IQR 0.21, 0.50) for the KHDL method and 0.40 (IQR 0.27, 0.57) for the WtDL 

approach. These findings agree with a previous simulation study (25), which showed that 

when heterogeneity is zero the KH method yields a smaller variance for the mean 

treatment effects than the Wt method. As anticipated, when there is no heterogeneity, there 

is less uncertainty associated with each pairwise effect and the power to detect 

inconsistency increases for all      values. 
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Table 12. Power of the     test aggregated over sample size. WtDL: Wald type method with DerSimonian 

and Laird (DL) estimator, KHDL: Knapp and Hartung method with DL estimator,   : inconsistency factor 

 Heterogeneity No Heterogeneity 

     0.3 0.45 0.6 1 0.3 0.45 0.3 0.45 

 Frequent Events 

WtDL 0.10 0.15 0.23 0.42 0.13 0.23 0.38 0.68 

KHDL 0.11 0.17 0.24 0.42 0.19 0.31 0.44 0.73 

 Rare Events 

WtDL 0.08 0.10 0.14 0.25 0.07 0.11 0.17 0.35 

KHDL 0.11 0.12 0.16 0.28 0.12 0.17 0.25 0.44 
 

The impact of heterogeneity is similar when the outcome is rare. Table 13 shows that 

the advantage of KHDL method when heterogeneity is zero becomes more pronounced for 

rare events. The WtREML and WtPM methods yielded similar power to WtDL. 

Table 13. Power of the     test aggregated over sample size and number of trials. Results are presented for 

equal number of trials across comparisons.     : inconsistency factor, WtDL: Wald type method with 

DerSimonian and Laird (DL) estimator, KHDL: the Knapp and Hartung method with DL estimator. 

 Heterogeneity No Heterogeneity 

     0.3 0.45 0.6 1 0.3 0.45 0.6 1 

 Frequent Events 

WtDL 0.17 0.26 0.36 0.59 0.20 0.38 0.52 0.77 

KHDL 0.19 0.27 0.37 0.60 0.27 0.44 0.58 0.80 

 Rare Events 

WtDL 0.10 0.15 0.21 0.38 0.09 0.16 0.25 0.49 

KHDL 0.13 0.18 0.24 0.41 0.16 0.23 0.33 0.55 

 

4.3.5 Coverage Probability and Bias 

I assess how often the 95%    for inconsistency included the assumed      value used 

to generate the data. I plot the coverage probability for the 95% CI of      in Figure 15 

and Figure 16. The coverage probability is close to the nominal level (95%) for most 

settings. Rare events were associated with larger uncertainty and therefore provide higher 

coverage than frequent events. In Table 11 I provide the coverage values for various 

simulation scenarios when     = 0.6. When the total number of individuals included in the 

network ranged from 2400 to 3000, coverage ranged from 95% to 96%. Coverage did not 

change considerably when an equal or different number of trials is assumed across 

comparisons. 
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Figure 15. Coverage probabilities of the 95% confidence interval for the inconsistency factor (    ) and loop 

sample size. Equal number of trials per comparison (                   ) is assumed. Results 

are aggregated over different assumptions for the heterogeneity and methods to estimate the variances of the 

mean treatment effects. The region within the horizontal dotted lines defines the confidence interval for the 

95% nominal level. 
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Figure 16. Coverage probabilities of the 95% confidence interval for the inconsistency factor (    ). I 

assume different number of trials ( ) per comparison (                 ). Results are aggregated 

over different assumptions for the heterogeneity and methods to estimate the variances of the mean treatment 

effects. The region within the horizontal dotted lines defines the confidence interval for the 95% nominal 

level. The first summary result in each coverage probability line pertains to the case where there is a single 

trial per comparison and a fixed-effects model is employed. 

 

In Figure 17 and Figure 18 I present the average relative bias (|  ̂       |     ) 

when       . Relative bias decreases with the total number of individuals included in 

the network, the total number of trials, and the assumed      value.  

Table 14 and Table 15 present the coverage probability for the 95%    of      using 

different methods to express uncertainty on the summary effects. The KHDL method 

reduces slightly the chances of including the true inconsistency in the 95%    of     , 

especially when     , as the summary effects are more precise.  
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Figure 17. Averaged relative bias assuming various scenarios for the inconsistency factor (    ) and the 

frequency of events. I assume equal number of trials per comparison (                   ). 

Results are aggregated over different assumptions for the heterogeneity and methods to estimate the 

variances for the direct treatment effects. 

 

Table 14. Coverage probability of the 95% confidence interval for the inconsistency factor (    ). Results 

are aggregated over sample size and number of trials (assumed equal across comparisons). WtDL: Wald type 

method with DerSimonian and Laird (DL) estimator, KHDL: Knapp and Hartung method with DL estimator. 

 Heterogeneity No Heterogeneity 

     0 0.3 0.45 0.6 1 0 0.3 0.45 0.6 1 

Frequent Events 

WtDL 0.90 0.94 0.94 0.94 0.93 0.96 0.98 0.97 0.97 0.97 

KHDL 0.89 0.93 0.93 0.93 0.91 0.92 0.95 0.94 0.94 0.93 

Rare Events 

WtDL 0.93 0.96 0.96 0.97 0.96 0.97 0.98 0.99 0.98 0.96 

KHDL 0.91 0.95 0.95 0.95 0.94 0.92 0.96 0.96 0.95 0.94 
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Figure 18. Averaged relative bias assuming various scenarios for the inconsistency factor (    ) and the 

frequency of events. I assume different number of trials ( ) per comparison (                 ). 

Results are aggregated over different assumptions for the heterogeneity and methods to estimate the 

variances of the mean treatment effects. 

 

Table 15. Coverage probabilities of the 95% confidence interval for the inconsistency factor (    ). WtDL: 

Wald type method with DerSimonian and Laird (DL) estimator, KHDL: Knapp and Hartung method with DL 

estimator. 

 Heterogeneity No Heterogeneity 

     0 0.3 0.45 0.6 1 0 0.3 0.45 0.6 1 

Frequent Events 

WtDL 0.92 0.96 0.96 0.96 0.95 0.97 0.98 0.98 0.97 0.97 

KHDL 0.91 0.95 0.96 0.95 0.94 0.93 0.96 0.95 0.95 0.93 

Rare Events 

WtDL 0.95 0.96 0.97 0.98 0.98 0.97 0.98 0.98 0.99 0.99 

KHDL 0.93 0.95 0.96 0.96 0.96 0.93 0.96 0.96 0.96 0.95 
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4.3.6 Properties of loop-specific method in a ‘typical’ loop of evidence 

The type I error in the ‘typical’ loop is 5% and 7% for subjective and all-cause mortality 

outcomes using the WtDL method and 11% and 12% using the KHDL estimation. The 

‘typical’ loop of evidence with all-cause mortality outcome has considerably low power. 

The overall power ranged between 14% and 75% for the WtDL method and 21% and 78% 

for the KHDL approach depending on the magnitude of     . For a subjective outcome 

that pertains to larger heterogeneity power decreases to 14%-63% for WtDL and in 20% to 

65% for KHDL. Coverage was close to the nominal level (see Table 16). 

Table 16. Type I error, power and coverage probability for the     test in a ‘typical’ loop of evidence. I 

assume a dichotomous frequent outcome, number of trials ( ) per comparison                   

and the sample size per arm is drown from             .     : inconsistency factor, WtDL: Wald type 

method with DerSimonian and Laird (DL) estimator, KHDL: Knapp and Hartung method with DL estimator. 

 Type I error Power Coverage Probability 

      0 0.3 0.45 0.6 1 0 0.3 0.45 0.6 1 

 All-cause mortality outcome (median(  ) = 0.02) 

WtDL 0.05 0.14 0.23 0.38 0.75 0.95 0.97 0.99 0.98 0.95 

KHDL 0.11 0.21 0.32 0.46 0.78 0.89 0.94 0.93 0.92 0.90 

 Subjective outcome (median(  ) = 0.11) 

WtDL 0.07 0.14 0.23 0.34 0.63 0.94 0.96 0.96 0.97 0.95 

KHDL 0.12 0.20 0.29 0.41 0.65 0.88 0.93 0.93 0.92 0.91 

 

 



 

5. Discussion 

The increased use of NMA should be accompanied by caution when combining direct 

and indirect evidence. Evaluation of consistency is an important task in network meta-

analysis (12). It has been shown though that it is not rare for reviewers to combine direct 

and indirect evidence in a network of interventions without evaluating the assumption of 

consistency (6,14). A recent survey showed that only 9% of the Cochrane review authors 

are aware of the prerequisite assumptions for a valid NMA (7). Empirical studies have 

shown that although NMA are increasingly conducted, the key assumptions are not always 

evaluated and reporting of the methodology applied is inadequate (6,27,28). Thus, there is 

a need to improve the quality of NMA regarding the assumptions and the methods that are 

reported. Protocols of NMA should present methods for the evaluation of inconsistency 

and define strategies to be followed when inconsistency is present. Several methodologies 

have been outlined in the literature to test inconsistency (15,17,66,75). In this research 

study I used a large-scale empirical dataset to evaluate the prevalence of inconsistency 

using five different approaches.  

A key finding of our study is that heterogeneity plays an important role in the statistical 

detection of inconsistency and a lower heterogeneity is associated with higher rates of 

detected inconsistency. This suggests that heterogeneity might account for some 

disagreement between various sources of evidence. A general conclusion is that the 

changes in heterogeneity between consistency and inconsistency models can be used as an 

alternative to the tests for inconsistency. However, the choice of the heterogeneity 

assumption and estimation method can hamper the detection of inconsistency. On the 

contrary, although it has been suggested that a poor choice of the measurement scale, i.e. 

analysing data on a ‘preferred’ scale rather than on the ‘best’ scale, can increase the 

probability of finding inconsistency (80), this study showed that the three scales for 

dichotomous data are not associated with important inconsistency differences. It is 

advisable that the best approach is to choose the appropriate scale, relying on both type of 

outcome data and mathematical properties, and then transform the results to an alternative 

scale to aid interpretation. 

Our empirical study suggests that inconsistency is prevalent in between 2% and 10% of 

the tested loops, depending on the effect measure and heterogeneity estimation method, 
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and about one eighth of the networks is inconsistent. I also found that 9% of the tested 

designs and 11% of the total comparisons disagreed with the remaining network. I 

recommend using the DBT model to evaluate a network as a whole and then if 

inconsistency is detected the methods that evaluate which piece of evidence is responsible 

for a potential inconsistency in the network (e.g. the LS, SIDE or SODR methods) can be 

employed. I suggest the DBT model as it is the only method presented in the literature so 

far that can evaluate the entire network and is insensitive to the parameterization of studies 

with multiple arms, accounting also for potential design inconsistency. The LA is a special 

case of the DBT model and the main disadvantage of the approach is that different 

parameterisations of the multi-arm studies might conclude to different results. Hence, it is 

advisable that all possible scenarios should be used before making inference. Note that the 

LA approach does not account for design inconsistency and hence this variability is 

encompassed in the heterogeneity variance. This study suggested two networks 

inconsistent with the LA model but consistent with the DBT model. This might be due to 

the differences in the estimation of the heterogeneity and the fact that I used the maximum 

test value from the different parameterisations of the multi-arm studies to infer about 

inconsistency in the LA model. It should be also noted that the DBT model might lose 

power in detecting inconsistency as it has more degrees of freedom (greater number of 

parameters) in contrast to the LA approach. However, the      value is always greater 

than the     one as LA is a special case of the DBT approach. A summary of the 

properties of the five different approaches is presented in Table 17. 

If inconsistency is found, exploration of its possible causes is a key component of 

network meta-analysis and can raise research and editorial standards by shedding light on 

the strengths and weaknesses of the body of evidence. Results from statistical tests should 

however be interpreted with caution: the absence of statistical inconsistency does not 

provide reassurance that the NMA results are valid. The assumption of consistency should 

always be evaluated conceptually by identifying possible effect modifiers that differ across 

studies (10). In Table 18 I present a summary of recommendations on what should be 

applied when inconsistency is found. 
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Table 17. Overview of the properties of the loop-specific (LS), separating direct and indirect evidence 

(SIDE), separating one design from the rest (SODR), Lu and Ades (LA), and design-by-treatment interaction 

approaches. 

 LS 

Method 

SIDE 

Method 

SODR 

Method 

LA 

Model 

DBT 

Model 

Simple to compute Yes No No No No 

Insensitive to 

parameterization of multi-

arm studies 

No No Yes No Yes 

Indirect estimate derived 

from the entire network 
No Yes Yes Yes Yes 

Does not suffer from 

multiple testing 
No No No Yes Yes 

Power No No Unclear No Unclear 

 

Table 18. Summary of recommendations when statistically significant inconsistency is found. 

Action Inconsistency 

Check the data 

Use LS, SIDE, or SODR inconsistency methods to identify 

studies with potential data extraction errors. Evidence loops that 

include comparisons informed by a single study are particularly 

suspicious for data errors. 

Resign to it 
Investigators may decide not to synthesize the network in the 

presence of excessive inconsistency 

Explore it 
Split the network into subgroups or use network meta-regression 

to account for differences across studies and comparisons.  

Encompass it Apply DBT or LA models that relax the consistency assumption. 

 

In the simulation study I evaluated the properties of the LS method for detecting 

inconsistency comparing direct and indirect estimates in triangular networks. I informed 

the simulation scenarios by previous large-scale empirical studies, and I used the most 

commonly encountered meta-analytic tools for statistical inference regarding heterogeneity 

and the uncertainty of the mean treatment effects. The main advantage of this work is that 

it sheds light on factors that might affect the detection of inconsistency and have not been 
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examined in the past, such as the use of KH approach for the    of the direct summary 

effects. The simulation study shows that the inconsistency test has on average low power 

to detect inconsistency, in particular for rare outcomes. In the absence of heterogeneity and 

for a large number and size of trials the overall power for inconsistency might be adequate. 

A previous simulation study (3) also found that different ways to evaluate inconsistency 

(e.g. Lu and Ades model, separating indirect and direct method) have low power in 

particular under the RE models (see also Table 17). Our study suggests that power is 

improved if the KH method is used, although the type I error increases as well.  

For the empirical assessment of consistency I evaluated articles included in PubMed 

and I restricted the analysis to dichotomous outcomes. Other network meta-analyses, such 

as those undertaken in technology appraisals for the National Institute for Health and 

Clinical Excellence (NICE) in the UK, are not included. I expect our findings regarding 

choice of effect measure and statistical techniques to be generalizable, although it is 

unclear whether our findings regarding prevalence of inconsistency are relevant to these 

settings. An empirical study for continuous outcomes will be needed to infer about possible 

differences in inconsistency between mean differences, standardized mean differences and 

ratios of means. 

Network meta-analyses are typically restricted to evidence based on randomized 

controlled trials (RCTs). The randomized participant assignment to parallel treatment arms 

keeps study groups as similar as possible with known and unknown confounding factors 

balanced. Well-conducted RCTs are the gold standard of clinical information. However, 

including only RCTs in network meta-analysis a great deal of information from different 

study designs is ignored. It is widely accepted that non-randomised and quasi-randomised 

trials provide evidence from broader rages of settings and populations. If these studies have 

a certain level of quality, there is no technical reason not to include them in the network 

meta-analysis. Combining both randomized and observational evidence in network meta-

analysis, while adjusting for potential biases due to study design, allows one to make an 

informed decision (85). However, the inclusion of observational trial in network meta-

analysis might increase heterogeneity and inconsistency in the data. An additional 

empirical study including networks with nonrandomised trials to evaluate the extent of 

inconsistency would be valuable.  
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A limitation of the simulation study is that I did not account for the possible impact of 

multi-arm trials on inconsistency and I only reconsider triangular networks. Although I 

considered only the DL, REML and PM methods to estimate heterogeneity I do not 

anticipate that inclusion of different estimators would alter the conclusions. In fact, the 

three estimators considered here provided similar results because they gave comparable 

estimates for the heterogeneity in the scenarios considered. A further simulation study with 

more ‘extreme’ scenarios would potentially reveal differences between the choice of the 

estimator and its impact on the detection of inconsistency. Finally, a thorough investigation 

of the properties of all available methods for inconsistency and their sensitivity in the 

characteristics of the network would be needed for completeness. 

The use of network meta-analysis is commonly performed on the basis of aggregated 

data. The benefits of using individual patient data rather than aggregated data have been 

previously examined and it has been suggested the use of individual patient data in 

network meta-analysis can reduce statistical heterogeneity across the network and hence 

can increase the precision of treatment effect estimates (86,87). This is because the 

parameter estimates of the individual patient data models are estimated using from both 

within-study and across-study evidence, whereas the results from the aggregated data 

models are only based on across-study associations. Jansen (87) showed that combining 

individual patient data with aggregated data minimizes the chances of confounding bias 

being evident in indirect comparison and network meta-analysis. One of the most 

important advantages of using individual patient data in network meta-analysis is that it is 

possible to identify interactions which cannot be detected when using aggregated data and 

hence evaluate the assumption of consistency. Donegan et al. (86) showed that using 

aggregated data in network meta-analysis to evaluate the consistency assumption did not 

reject the null hypothesis, whereas using individual patient data questioned the consistency 

and reliability of the results. This is because of the imbalance in patient-level effect 

modifiers across comparisons that could not be identified with aggregated data. 

Inconsistent evidence can also affect one of the most important properties of network 

meta-analysis, the ability to rank the treatments according to their efficacy (86).  However, 

further research is needed to establish the benefits of individual patient data in various 

settings, as well as the properties of the individual patient data network meta-analysis in 

complex networks of interventions. This research study might be used to inform the 
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development of strategies for the assessment of the assumption of consistency using 

individual patient data and examine whether this approach is more valuable than 

aggregated data network meta-analysis. 

 



 

6. Conclusions 

The findings of our research study can be used to inform the development of strategies 

to detect statistical inconsistency. Results from methods I examined appear to be sensitive 

to the estimation method and to assumptions made about heterogeneity, as well as the 

presence of the multi-arm studies. Consequently, investigators should interpret very 

carefully a statistically non-significant result and always consider the comparability of the 

studies in terms of potential effect modifiers. A sensitivity analysis using different methods 

for the heterogeneity and inconsistency is advisable, before concluding about the absence 

of statistical inconsistency. 

 

 





 

Summary in English 

Background: Network meta-analysis relies on the agreement between direct and indirect 

evidence defined as consistency. Empirical evidence about the prevalence of inconsistency is 

limited to simple loops of evidence about three interventions. No evidence exists so far 

regarding the extent of inconsistency and the factors that control its statistical detection in 

complex networks of interventions.  

Aims: The objective is to evaluate empirically the prevalence of inconsistency in full 

networks using various approaches for the assessment of consistency and to explore factors 

that might control its statistical detection. 

Methods: I evaluated inconsistency in 40 published networks with dichotomous data 

published in PubMed from March 1997 until February 2011 and involved at least four 

treatments and at least one closed loop. The networks included 303 loops of evidence, 362 

trial designs - studies involving different sets of treatments- and 348 comparisons. I employed 

five approaches: 1) loop-specific (LS): I evaluated each loop in the network separately by 

contrasting direct and indirect estimates 2) Separating one design from the rest (SODR): I 

evaluated the agreement between studies of a particular design and the remaining network 

3) separating indirect and direct evidence (SIDE): I evaluated the agreement between a 

particular comparison and the remaining network 4) Lu and Ades model (LA): I jointly 

assessed all possible inconsistencies in the network to obtain an omnibus test 5) Design-by-

Treatment interaction model (DBT): I evaluated the agreement between estimates from 

different designs in the network in an omnibus test. In LS and DBT approaches I used 

different effect measures, and various estimators and assumptions for the heterogeneity. I 

also carried out a simulation study to estimate the performance of the LS test. 

Results: Inconsistency was prevalent in 1) between 2% and 10% of the tested loops 

depending on the effect measure, assumption and estimation method for heterogeneity, 2) 

9% of the tested designs, 3) 11% of the total comparisons, 4) maximum seven (18%) 

networks depending on the parameterisation of the multi-arm studies, and 5) between 13% 

and 28% of the networks depending on the effect size and estimator for heterogeneity. 

Important heterogeneity was associated with a small decrease in statistical inconsistency, but 

different effect measures had no statistically significant impact on detecting inconsistency. The 

simulation study showed that the LS-test has generally low power that is positively 
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associated with sample size and frequency of the outcome and negatively associated with the 

presence of heterogeneity. Type I error converges to the nominal level as the total number of 

individuals included in the loop increases. Coverage is close to the nominal level in most cases. 

Different estimation methods for heterogeneity do not greatly impact on test performance, but 

different methods to derive the variances of the direct estimates impact on the inconsistency 

inference. 

Conclusions: This study suggests that changing effect measure might improve statistical 

consistency and that a sensitivity analysis in the assumptions and estimators of 

heterogeneity is needed before concluding the absence of statistical inconsistency, 

particularly in networks with few studies. Investigators should interpret every test results 

very carefully and always consider the comparability of the studies in terms of potential effect 

modifiers. 

 

 



 

Περίληψη ζηα ελληνικά 

Διζαγωγή: ηε κεηα-αλάιπζε πνιιαπιώλ παξεκβάζεσλ θξίλεηαη απαξαίηεηε ε 

αμηνιόγεζε ηεο ζπλέπεηαο κεηαμύ άκεζσλ θαη έκκεζσλ ζηνηρείσλ. Οη εκπεηξηθέο κειέηεο 

ηεο βηβιηνγξαθίαο πνπ κειεηνύλ ηελ αζπλέπεηα πεξηνξίδνληαη ζε δίθηπα ηξηώλ 

παξεκβάζεσλ, ελώ νη ηδηόηεηεο ησλ κεζόδσλ γηα ηνλ έιεγρν ηεο ζπλέπεηαο δελ έρνπλ 

κειεηεζεί δηεμνδηθά.  

κοπός: Η εκπεηξηθή αμηνιόγεζε ηεο αζπλέπεηαο ζε πεξίπινθα δίθηπα ρξεζηκνπνηώληαο 

δηαθνξεηηθέο πξνζεγγίζεηο θαη ε δηεξεύλεζε ησλ παξαγόλησλ πνπ επεξεάδνπλ ηε 

ζηαηηζηηθή αλίρλεπζή ηεο. 

Μέθοδοι: ηελ παξνύζα εξεπλεηηθή εξγαζία ε ύπαξμε ηεο αζπλέπεηαο δηεξεπλάηαη ζε 40 

δίθηπα πνιιαπιώλ παξεκβάζεσλ δεκνζηεπκέλα ζηελ PubMed από ην Μάξηην ηνπ 1997 

κέρξη θαη ην Φεβξνπάξην ηνπ 2011 πνπ εκπεξηέρνπλ ηνπιάρηζηνλ 4 παξεκβάζεηο θαη 

ηνπιάρηζηνλ 1 θιεηζηό βξόρν. Σα δίθηπα απηά πεξηιακβάλνπλ 303 θιεηζηνύο βξόρνπο πνπ 

δεκηνπξγνύληαη από ηα ζηνηρεία ησλ παξεκβάζεσλ, 348 ζπγθξίζεηο, θαη 362 

δηαθνξεηηθνύο ηύπνπο κειεηώλ. Δθάξκνζα 5 δηαθνξεηηθέο πξνζεγγίζεηο: 1) Αμηνιόγεζε 

θάζε βξόρνπ μερσξηζηά, 2) Αμηνιόγεζε ζπκθσλίαο κεηαμύ ζηνηρείσλ κηαο ζύγθξηζεο θαη 

ηνπ ππόινηπνπ δηθηύνπ, 3) Αμηνιόγεζε ζπκθσλίαο κεηαμύ ζηνηρείσλ ελόο ηύπνπ κειεηώλ 

κε ην ππόινηπν δίθηπν, 4) Αμηνιόγεζε ηεο αζπλέπεηαο ρξεζηκνπνηώληαο έλα γεληθεπκέλν 

έιεγρν, 5) Αμηνιόγεζε ηεο ζπκθσλίαο κεηαμύ ησλ εθηηκήζεσλ δηαθνξεηηθώλ ηύπσλ 

κειεηώλ. Δπηπιένλ, δηεμήρζε έξεπλα πξνζνκνίσζεο γηα ηελ αμηνιόγεζε ηεο πξώηεο 

πξνζέγγηζεο (κέζνδνο (1)) ζε δίθηπα ηξηώλ παξεκβάζεσλ σο πξνο ην ζθάικα ηύπνπ Ι, ηελ 

ηζρύ θαη ηελ πηζαλόηεηα επηθάιπςεο. Υξεζηκνπνηώληαο ηηο κεζόδνπο (1) θαη (5) 

εμεηάζακε αλ ε ρξήζε δηαθνξεηηθώλ κέηξσλ ζρέζεο πνπ πεξηγξάθνπλ δηρόηνκα δεδνκέλα 

θαη νη δηαθνξεηηθνί ηξόπνη εθηίκεζεο ηεο εηεξνγέλεηαο ζρεηίδνληαη κε δηαθνξέο ζηελ 

εθηίκεζε ηεο αζπλέπεηαο. 

Αποηελέζμαηα: Αλάινγα κε ηε κέζνδν εθηίκεζεο ηεο εηεξνγέλεηαο θαη ην κέηξν ζρέζεο, 

ν αξηζκόο ησλ εμεηαδόκελσλ βξόρσλ πνπ βξέζεθαλ λα είλαη αζπλεπείο κε ηε κέζνδν (1) 

θπκαίλεηαη από 2% έσο 10%. Οη κέζνδνη (2) θαη (3) έδεημαλ πσο ην 11% ησλ ζπγθξίζεσλ 

θαη ην 9% ησλ δηαθνξεηηθώλ ηύπσλ κειεηώλ δε ζπκθσλνύλ κε ην ππόινηπν δίθηπν. Σν 

κνληέιν (4) έδεημε όηη ν κέγηζηνο αξηζκόο δηθηύσλ πνπ κπνξεί λα είλαη αζπλεπή είλαη 18% 
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αλάινγα κε ηε κνληεινπνίεζε ησλ δηαθνξεηηθώλ ηύπσλ κειεηώλ. Από ην 13% έσο ην 28% 

ησλ δηθηύσλ δελ πιεξνί ηελ ππόζεζε ηεο ζπλέπεηαο ζύκθσλα κε ην κνληέιν (5), αλάινγα 

κε ηε κέζνδν εθηίκεζεο ηεο εηεξνγέλεηαο θαη ην κέηξν ζρέζεο. Βξόρνη κε ζπγθξίζεηο πνπ 

πεξηγξάθνληαη από κία θαη κόλν κειέηε θαίλεηαη λα απνξξίπηνπλ ζπρλόηεξα ηελ ππόζεζε 

ηεο ζπλέπεηαο. Παξόιν πνπ ν ιόγνο αλαινγηώλ είλαη πην ζπλεπέο κέηξν ζρέζεο από ην 

ιόγν θηλδύλσλ θαη ηε δηαθνξά θηλδύλσλ, δελ ππάξρεη ζηαηηζηηθά ζεκαληηθή δηαθνξά 

κεηαμύ ησλ κέηξσλ απηώλ. Όκσο, ε ππεξεθηίκεζε ηεο εηεξνγέλεηαο κπνξεί λα νδεγήζεη 

ζε ιαλζαζκέλε απνδνρή ηεο ππόζεζεο όηη ππάξρεη ζπλέπεηα. Οη πξνζνκνηώζεηο έδεημαλ 

όηη ε ηζρύο ηνπ ηεζη απμάλεη κε ην κέγεζνο δείγκαηνο θαη ηε ζπρλόηεηα ησλ γεγνλόησλ 

κηαο έθβαζεο, ελώ κεηώλεηαη κε ηελ εηεξνγέλεηα. Σν ζθάικα ηύπνπ Ι πιεζηάδεη ην επίπεδν 

ζεκαληηθόηεηαο όζν απμάλεη ν ζπλνιηθόο αξηζκόο ησλ ζπκκεηερόλησλ, ελώ ε πηζαλόηεηα 

επηθάιπςεο παξακέλεη πάληα ζε ηθαλνπνηεηηθά επίπεδα. 

σμπεράζμαηα: Απνδεηθλύεηαη πσο κία ελαιιαγή ζηα κέηξα ζρέζεο κπνξεί λα βειηηώζεη 

ηε ζηαηηζηηθή ζπλέπεηα. Ίζσο ε ρξήζε ηεο αλάιπζεο επαηζζεζίαο ζηηο δηαθνξεηηθέο 

ππνζέζεηο-εθηηκεηέο ηεο εηεξνγέλεηαο ζα βνεζνύζε ζην λα απνθαλζνύκε αλ ππάξρεη ή όρη 

αζπλέπεηα, εηδηθόηεξα ζηελ πεξίπησζε δηθηύσλ κε ιίγεο κειέηεο. Η ρξήζε δηαθνξεηηθώλ 

κνληέισλ κπνξεί λα δώζεη κία δηαθνξεηηθή εηθόλα γηα ηελ ύπαξμε ή όρη ζπλέπεηαο, θαζώο 

απηά ζπζρεηίδνληαη κε δηαθνξεηηθέο ηδηόηεηεο. Οη εξεπλεηέο ζα πξέπεη λα εξκελεύνπλ ηα 

απνηειέζκαηα κε πξνζνρή αθνύ ε αζπλέπεηα κπνξεί λα ππνεθηηκάηαη. 
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Appendix 

Appendix Table 1. Characteristics of included networks regarding the assessment of inconsistency in the 

original reviews 

id Network 
Assumption of consistency was 

evaluated 

Method to detect 

inconsistency 

Inconsistency 

reported as 

present 

1 Ades1 Unclear 

Model comparison in fit and 

parsimony - unclear whether 

this was specific to the 

assumption of consistency 

Unclear 

2 Ara2 No Not reported Not reported 

3 Baker3 Inappropriate method* 
Comparison of network 

estimates to direct estimates 
No 

4 Ballesteros4 Yes Loop-based approach No 

5 Bangalore5 Inappropriate method* 
Comparison of network 

estimates to direct estimates 
No 

6 Bansback6 No Not reported Not reported 

7 Bottomley7 No Not reported Not reported 

8 Brown8 Yes Loop-based approach No 

9 Bucher9 Yes Loop-based approach No 

10 Cipriani10 Yes Loop-based approach Yes 

11 Dias11 Yes 
Node-splitting & back-

calculation 
Yes 

12 Eisenberg12 No Not reported Not reported 

13 Elliott13 Yes Lumley’s method Yes 

14 Govan14 No Not reported Not reported 

15 Hofmeyr15 Inappropriate method* 

Informal comparison of the 

results to previously 

conducted meta-analyses 

No 

16 Imamura16 No Not reported Not reported 

17 Lam17 Inappropriate method* 
Comparison of network 

estimates to direct estimates 
No 

18 Lapitan18 Inappropriate method* 

Informal comparison of the 

results to previously 

conducted meta-analyses 

No 

19 Lu (1)19 Yes Lu and Ades model No 

20 Lu (2)19 Yes 
Model comparison in fit and 

parsimony 
No 

21 Macfayden 22 No Not reported Not reported 

22 Middleton23 No Not reported Not reported 
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23 Mills24 Yes Loop-based approach No 

24 Nixon25 No Not reported Not reported 

25 Picard26 No Not reported Not reported 

26 Playford27 Yes Loop-based approach No 

27 Psaty28 Yes Lumley’s method Yes 

28 Puhan29 Inappropriate method* 

Informal comparison of the 

results to previously 

conducted meta-analyses 

No 

29 Roskell (1)31 Inappropriate method* 
Comparison of network 

estimates to direct estimates 
No 

30 Roskell (2)30 Inappropriate method* 
Comparison of network 

estimates to direct estimates 
Yes 

31 Salliot32 No Not reported Not reported 

32 Sciarretta33 Yes Lu and Ades model Yes 

33 Soares-Weiser34 No Not reported Not reported 

34 Thijs35 Yes Lumley’s method No 

35 Trikalinos36 Yes Lumley’s method Yes 

36 Virgili37 Yes Loop-based approach No 

37 Wang38 Inappropriate method* 

Informal comparison of the 

results to previously 

conducted meta-analyses 

No 

38 Welton39 Unclear 

Model comparison in fit and 

parsimony - unclear whether 

this was specific to the 

assumption of consistency 

Unclear 

39 Woo40 No Not reported Not reported 

40 Yu41 No Not reported Not reported 

* Some systematic reviews compared estimates from meta-analysis to the estimates obtained from 

network meta-analysis. I consider this to be an inappropriate method to evaluate consistency.  

**Inconsistency has been previously assessed21 

***Inconsistency has been previously assessed20 

 



95 

 

Appendix 

Appendix Table 2. Characteristics of networks with at least one closed loop included in the database. I define K the total number of studies and S the total number of 

treatments included in each network. (NMA = network meta-analysis; GLM = generalized linear model,    = hazard ratio,    = risk ratio,    = odds ratio,    = risk 

difference). 

id Network loops K S Disease/ 

Condition 

Outcome Type of Treatments 2arm 

trials 

3arm 

trials 

4arm 

trials 

Indirect Method Effect Measure 

used by reviewers 

1 Ades1 3 15 9 Schizophrenia Relapse Antipsychotic 

treatments 

15 0 0 Bayesian NMA HR 

2 Ara2 5 12 5 Hypercholesterolaemi

a 

Effectiveness in 

reducing LDL-

c. 

Statins 10 0 1 Bayesian NMA RR 

3 Baker3 12 39 8 Chronic obstructive 

pulmonary disease 

(COPD>=1) 

Exacebration 

episodes 

Pharmacological 

treatments 

29 3 6 Bayesian NMA OR 

4 Ballesteros4 2 9 4 Dysthymia Efficacy (50% 

reduction in 

depressive 

symptoms since 

baseline, or 

similar criteria) 

Antidepressants 6 3 0 GLM OR , RR , RD 

5 Bangalore5 18 49 8 High blood pressure Cancer and 

cancer-related 

deaths 

Antihypertensive 

drugs 

45 4 0 Bayesian NMA OR 

6 Bansback6 2 22 8 Moderate to severe 

plaque psoriasis 

Psoriasis area 

and severity 

index (PASI) 

Treatments for 

psoriasis 

21 1 0 Bayesian NMA RR 

7 Bottomley7 4 10 7 Moderately severe 

scalp psoriasis 

Investigator’s 

global 

assessment 

Topical therapies 8 1 1 Meta-regression RR 

8 Brown8 6 40 6 Non-steroidal anti-

inflammatory drug-

induced 

gastrointestinal 

toxicity 

Serious GI 

complications 

Pharmacological 

interventions 

36 2 0 Bucher RR 
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9 Bucher9 2 18 4 Pseudocystis carinii 

in HIV infected 

patients 

Number of 

pseudocystis 

carinii 

pneumonia 

(prophylaxis 

against 

pneumocystis 

carinii in HIV 

infected 

patients) 

Pharmacological 

prophylaxis for 

pseudocystis carinii 

18 0 0 Bucher OR 

10 Cipriani10 70 111 12 Unipolar major 

depression in adults 

The proportion 

of patients who 

responded to or 

dropped out of 

the allocated 

treatment 

Antidepressants 109 2 0 Bayesian NMA OR 

11 Dias11 11 50 9 Acute myocardial 

infraction 

Death Thrombolytic drugs 

and angioplasty 

48 2 0 NMA for trial-

level and 

summary-level 

data 

OR 

12 Eisenberg12 1 61 5 Smoking Smoking 

abstinence 

Pharmacotherapies 

for smoking 

cessation 

59 3 0 Bayesian NMA OR 

13 Elliott13 16 22 6 Hypertension, high-

risk patients 

Proportion of 

patients who 

developed 

diabetes. 

Antihypertensive 

drugs 

18 4 0 GLM OR 

14 Govan14 2 31 5 Stroke Death Types of stroke unit 

care 

25 3 0 Bayesian NMA OR 

15 Hofmeyr15 1 24 4 Postpartum 

haemorrhage 

Maternal death Misoprostol or 

other uterotonic 

medication 

18 1 0 Bucher RR 

16 Imamura16 26 38 13 Stress urinary 

incontinence 

Cure Non surgical 

treatments 

31 5 2 Bayesian NMA OR 
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17 Lam17 3 12 5 Left ventricular 

dysfunction 

Mortality Combined 

resynchronisation 

and implantable 

defibrillator therapy 

9 2 0 Bayesian NMA OR 

18 Lapitan18 5 22 9 Urinary incontinence 

in women 

Number not 

cured within 

first year 

Treatments for 

urinary 

incontinence in 

women 

19 2 1 Not reported RR 

19 Lu (1)19 4 24 4 Smoking Cessation Smoking cessation 

interventions 

22 2 0 Bayesian NMA OR 

20 Lu (2)19 4 40 6 Gastroesophageal 

reflux disease 

Effectiveness Gastroesophageal 

reflux disease 

therapies 

38 2 0 Bayesian NMA OR 

21 Macfayden 
22 

2 13 4 Chronically 

discharging ears with 

underlying eardrum 

perforations 

Resolution of 

discharge 

Topical antibiotics 

without steroids 

10 3 0 Not reported RR 

22 Middleton23 1 20 4 Heavy menstrual 

bleeding 

Dissatisfaction 

at 12 months 

Second line 

treatment 

20 0 0 Logistic 

regression 

OR 

23 Mills24 2 89 4 Smoking Abstinence from 

smoking at at 

least 4 weeks 

post-target quit 

date 

Pharmacotherapies 86 3 0 Bucher OR 

24 Nixon25 2 11 9 Rheumatoid arthritis American 

college of 

rheumatology 

(ACR) response 

criteria at 6 

months or 

beyond 

Cytokine 

antagonists 

10 1 0 NMA & meta-

regression 

OR 

25 Picard26 33 43 8 Pain on injection with 

propofol 

No pain Drugs, physical 

measurements, and 

combinations 

28 12 3 Not reported RR 

26 Playford27 1 10 5 Fungal infections in Mortality Antifungal agents 10 0 0 Not reported RR 
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solid organ transplant 

recipients 

27 Psaty28 10 28 7 Coronary heart 

disease (CHD) 

Fatal and 

nonfatal events 

Antihypertensive 

therapy 

24 4 0 GLM RR 

28 Puhan29 7 34 5 Stable chronic 

obstructive 

pulmonary disease 

Exacerbation Inhaled drug 

regimes 

27 1 6 Logistic 

regression 

OR 

29 Roskell (1)31 6 17 11 Atrial fibrillation Stroke 

prevention 

Anticoagulants 15 1 1 Mixed log-

binomial model 

RR 

30 Roskell (2)30 3 12 10 Fibromyalgia 30% 

improvement in 

pain response 

Pharmacological 

interventions 

6 6 0 Mixed log-

binomial model 

RR 

31 Salliot32 1 15 5 Rheumatoid arthritis 

(with inadequate 

response to 

conventional disease-

modifying AR drugs 

or to anti-tumour 

necrosis factor agent) 

ACR50 

response rate 

Biological 

antirheumatic 

agents 

14 1 0 Bucher OR 

32 Sciarretta33 13 26 8 Heart fealure Prevention of 

heart failure 

Antihypertensive 

treatments 

24 2 0 Bayesian NMA OR 

33 Soares-

Weiser34 

4 14 8 Bipolar disorder All relapses Pharmacological 

interventions for the 

prevention of 

relapse in people 

with bipolar 

disorder 

10 4 0 Logistic 

regression & 

Bayesian NMA 

OR 

34 Thijs35 3 24 5 Transient ischaemic 

attack or stroke 

Prevention of 

serious vascular 

events 

Antiplatelets 20 3 0 GLM OR 

35 Trikalinos36 1 63 4 Non-acute coronary 

artery disease 

Death Percutaneous 

coronary 

interventions 

62 0 0 GLM RR 

36 Virgili37 1 10 5 Neovascular age-

related macular 

degeneration 

Visual acuity 

loss 

Pharmacological 

Treatments 

10 0 0 Logistic 

regression & 

Bayesian NMA 

OR 
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37 Wang38 4 43 9 Catheter-related 

infections 

Catheter 

colonisation 

Different central  

venous catheters 

41 2 0 Bayesian NMA OR 

38 Welton39 4 36 17 Coronary heart 

disease 

All-cause 

mortality 

Psychological 

Interventions 

31 4 0 Logistic 

regression & 

Bayesian NMA 

OR 

39 Woo40 3 19 10 Chronic hepatidis B HBV DNA 

levels 

Nucleostides 16 3 0 Bayesian NMA OR 

40 Yu41 5 14 6 Cardiac surgery Cardiac 

ischemic 

complications 

and mortality 

Inhaled anesthetics 11 2 1 Not reported OR 
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Appendix Table 3. Inconsistency estimates (    ) along with their standard error (        ) and     values estimated in the loop specific approach for the four effect 

sizes. Within each loop, inconsistency is estimated assuming the network heterogeneity ( ̂   
 ). The amount of heterogeneity is estimated with the restricted maximum 

likelihood estimator in the design-by-treatment interaction model.   : risk difference measure,     : log risk ratio for harmful outcomes,     : log risk ratio for 

beneficial outcomes and    : log odds ratio. 

  
                 

Network 

to
ta

l 
lo

o
p

s 

In
co

n
si

st
en

t 

lo
o

p
s 

h
et

er
o
g

en

ei
ty

 

  
 
 
 

  
 
  

 
 
 
  

 

 
 
 
 

( 
 v

a
lu

e)
 

In
co

n
si

st
en

t 

lo
o

p
s 

h
et

er
o
g

en

ei
ty

 

  
 
 
 

  
 
  

 
 
 
  

 

 
 
 
 

( 
 v

a
lu

e)
 

In
co

n
si

st
en

t 

lo
o

p
s 

h
et

er
o
g

en

ei
ty

 

  
 
 
 

  
 
  

 
 
 
  

 

 
 
 
 

( 
 v

a
lu

e)
 

In
co

n
si

st
en

t 

lo
o

p
s 

h
et

er
o
g

en

ei
ty

 

  
 
 
  

 
 
  

 
 
 
  

 

 
 
 
 

( 
 v

a
lu

e)
 

Ades
1 3 0 0.30 

  
0 0.22 

  
1 0.01 

0.38 

(0.16) 

-2.42 

(0.020) 
1 0.01 

0.29 

(0.14) 

2.03 

(0.040) 

Ara
2 5 0 0.00 

   
0.00 

   
0.00 

   
0.00 

  
Baker

3 12 0 0.00 
   

0.00 
   

0.00 
   

0.00 
  

Ballesteros
4 2 0 0.02 

   
0.00 

   
0.04 

   
0.00 

  

Bangalore
5 18 0 0.00 

  
0 0.00 

  
2 0.00 

0.02 

(0.01) 

-2.74 

(0.010) 
2 0.00 

0.02 

(0.01) 

2.67 

(0.010) 

    

0.02 

(0.01) 

2.27 

(0.020) 

0.02 

(0.01) 

-2.20 

(0.030) 

Bansback
6 2 0 0.00 

   
0.35 

   
0.05 

   
0.00 

  
Bottomley

7 4 0 0.12 
   

0.02 
   

0.02 
   

0.01 
  

Brown
8 6 0 0.02 

   
0.02 

   
0.00 

   
0.00 

  
Bucher

9 2 0 0.00 
   

0.00 
   

0.00 
   

0.00 
  

Cipriani
10 70 3 0.00 

0.69 

(0.28) 

-2.49 

(0.013) 

2 0.00 

0.57 

(0.28) 

2.00 

(0.045) 

3 0.00 

0.38 

(0.15) 

-2.63 

(0.009) 

3 0.00 

0.18 

(0.08) 

-2.28 

(0.022) 

1.15 

(0.51) 

-2.27 

(0.023) 

0.31 

(0.15) 

2.00 

(0.045) 

0.58 

(0.27) 

-2.19 

(0.029) 

0.29 

(0.13) 

-2.17 

(0.030) 

0.61 

(0.24) 

-2.51 

(0.012) 

0.23 

(0.11) 

-2.19 

(0.028)   

0.14 

(0.06) 

-2.18 

(0.029) 

Dias
11 11 1 0.00 

1.2 

(0.41) 

-2.92 

(0.003) 
1 0.00 

1.15 

(0.40) 

-2.90 

(0.004) 
1 0.00 

0.05 

(0.02) 

2.86 

(0.004) 
1 0.00 

0.05 

(0.02) 

-2.91 

(0.004) 

Eisenberg
12 1 0 0.03 

  
0 0.00 

  
0 0.02 

  
0 0.00 
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Elliott
13 16 2 0.01 

0.83 

(0.3) 

2.78 

(0.005) 
2 0.01 

0.80 

(0.28) 

2.82 

(0.005) 
0 0.00 

  
0 

0.00 
  

0.71 

(0.33) 

2.18 

(0.030) 

0.70 

(0.31) 

2.27 

(0.024)      

Govan
14 2 1 0.00 

0.90 

(0.39) 

2.29 

(0.022) 
1 0.00 

0.82 

(0.33) 

2.49 

(0.013) 
0 0.00 

  
0 0.00 

  

Hofmeyr
15 1 0 0.00 

  
0 0.00 

  
0 0.00 

  
0 0.00 

  

Imamura
16 26 5 0.07 

4.74 

(1.19) 

-3.99 

(<0.001) 

6 0.01 

3.35 

(0.97) 

3.45 

(0.001) 

5 0.05 

3.34 

(1.00) 

3.33 

(0.001) 

2 0.02 

0.79 

(0.20) 

3.88 

(<0.001) 

2.56 

(1.13) 

-2.26 

(0.024) 

1.72 

(0.78) 

2.22 

(0.026) 

1.74 

(0.83) 

2.09 

(0.037) 

0.74 

(0.19) 

3.86 

(<0.001) 

4.52 

(0.99) 

-4.56 

(<0.001) 

1.68 

(0.46) 

3.70 

(<0.001) 

1.81 

(0.52) 

3.51 

(<0.001)   

3.06 

(1.24) 

2.48 

(0.013) 

1.36 

(0.59) 

2.33 

(0.020) 

1.28 

(0.64) 

2.01 

(0.045)   

1.9 

(0.85) 

2.24 

(0.025) 

2.37 

(1.00) 

-2.37 

(0.018) 

2.37 

(1.04) 

-2.28 

(0.023)   

  

1.14 

(0.56) 

-2.03 

(0.042)     

Lam
17 3 0 0.00 

  
0 0.00 

  
0 0.00 

  
0 0.00 

  

Lapitan
18 6 0 0.00 

  
0 0.00 

  
0 0.00 

  
1 0.00 

0.30 

(0.14) 

2.16 

(0.030) 

Lu (1)
19 4 0 0.43 

  
0 0.02 

  
0 0.26 

  
0 0.01 

  
Lu (2)

19 4 0 0.25 
  

0 0.03 
  

0 0.07 
  

0 0.01 
  

Macfayden
22 2 0 0.53 

  
0 0.05 

  
0 0.15 

  
0 0.04 

  
Middleton

23 1 0 0.00 
  

0 0.00 
  

0 0.00 
  

0 0.00 
  

Mills
24 2 0 0.18 

  
0 0.02 

  
0 0.09 

  
0 0.01 

  
Nixon

25 2 0 0.65 
  

0 0.06 
  

0 0.30 
  

0 0.03 
  

Picard
26 33 2 0.67 

1.9 

(0.94) 

2.01 

(0.045) 
4 0.15 

0.91 

(0.41) 

-2.20 

(0.028) 
1 0.13 

1.08 

(0.51) 

-2.11 

(0.035) 
2 0.03 

0.43 

(0.19) 

2.22 

(0.027) 

2.5 

(1.17) 

-2.13 

(0.033) 

1.13 

(0.57) 

-1.99 

(0.047)   

0.50 

(0.25) 

-2.02 

(0.044) 
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1.20 

(0.61) 

1.97 

(0.049)     

  

1.38 

(0.65) 

-2.12 

(0.034)     

Playford
27 1 0 0.00 

  
0 0.00 

  
0 0.00 

  
0 0.00 

  

Psaty
28 10 1 0.01 

0.77 

(0.31) 

-2.47 

(0.013) 
1 0.01 

0.71 

(0.28) 

-2.50 

(0.012) 
2 0.00 

0.03 

(0.01) 

2.04 

(0.041) 
2 0.00 

0.02 

(0.01) 

-1.98 

(0.047) 

    

0.03 

(0.01) 

2.14 

(0.032) 

0.03 

(0.01) 

-2.09 

(0.037) 

Puhan
29 7 0 0.00 

  
0 0.00 

  
1 0.00 

0.15 

(0.07) 

2.23 

(0.026) 
1 0.00 

0.08 

(0.04) 

-2.17 

(0.030) 

Roskell (1)
31 6 0 0.07 

  
0 0.07 

  
0 0.00 

  
0 0.00 

  
Roskell (2)

30 3 0 0.00 
  

0 0.00 
  

0 0.00 
  

0 0.00 
  

Salliot
32 1 1 0.12 

0.87 

(0.4) 

2.18 

(0.029) 
0 0.00 

  
1 0.09 

0.70 

(0.32) 

2.17 

(0.03) 
0 0.00 

  

Sciarretta
33 13 0 0.01   1 0.01 

0.61 

(0.30) 

2.05 

(0.040) 
0 0.00 

  
0 0.00 

  

Soares-Weiser
34 4 0 0.35 

  
0 0.03 

  
0 0.13 

  
0 0.02 

  
Thijs

35 3 0 0.00 
  

0 0.00 
  

0 0.00 
  

0 0.00 
  

Trikalinos
36 1 0 0.00 

  
0 0.00 

  
0 0.00 

  
0 0.00 

  
Virgili

37 1 0 0.00 
  

0 0.01 
  

0 0.00 
  

0 0.00 
  

Wang
38 4 0 0.18 

  
0 0.10 

  
1 0.00 

1.00 

(0.44) 

2.26 

(0.02) 
1 0.01 

0.45 

(0.20) 

-2.23 

(0.030) 

Welton
39 4 0 0.19 

  
0 0.16 

  
0 0.00 

  
0 0.00 

  
Woo

40 3 0 0.00 
  

0 0.07 
  

0 0.08 
  

0 0.01 
  

Yu
41 5 0 0.00 

  
0 0.00 

  
0 0.00 

  
0 0.00 
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Appendix Table 4 Inconsistency estimates (    ) along with their standard error (        ) and     values estimated in the loop specific approach for the four effect 

sizes. Within each loop, inconsistency is estimated assuming a common heterogeneity for each comparison ( ̂    
 ). The amount of heterogeneity is estimated with the 

DerSimonian and Laird estimator in the random-effects model.   : risk difference measure,     : log risk ratio for harmful outcomes,     : log risk ratio for beneficial 

outcomes and    : log odds ratio. 
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Ades
1 3 2 

0.00 
1.59 

(0.41) 

3.91 

(0.000) 
1 

0.00 
1.21 

(0.32) 

3.76 

(0.000) 
1 

0.00 
0.37 

(0.09) 

-4.14 

(0.000) 
1 

0.00 
0.28 

(0.07) 

4.26 

(0.000) 

0.00 
2.07 

(1.00) 

2.06 

(0.039)        
  

Ara
2 5 0 

   
0 

   
0 

   
0 

 
  

Baker
3 12 0 

   
2 

0.001 
0.12 

(0.06) 

1.97 

(0.049) 
0 

   
0 

 
  

   
0.00 

0.12 

(0.06) 

2.25 

(0.024)     
  

Ballesteros
4 2 0 

   
0 

   
0 

   
0 

 
  

Bangalore
5 18 2 

0.00 
0.21 

(0.10) 

2.12 

(0.034) 
2 

0.00 
0.21 

(0.10) 

2.12 

(0.034) 
2 

0.00 
0.02 

(0.01) 

-2.72 

(0.006) 
2 

0.00 
0.02 

(0.01) 

2.5 

(0.012) 

0.00 
0.19 

(0.09) 

2.18 

(0.029) 
0.00 

0.19 

(0.09) 

2.18 

(0.029) 
0.00 

0.02 

(0.01) 

2.54 

(0.011) 
0.00 

0.02 

(0.01) 

2.57 

(0.010) 

Bansback
6 2 0 

   
0 

   
1 0.00 

0.91 

(0.38) 

2.37 

(0.018) 
0 

 
  

Bottomley
7 4 0 

   
0 

   
0 

   
0 

 
  

Brown
8 6 0 

   
0 

   
0 

   
0 

 
  

Bucher
9 2 0 

   
0 

   
0 

   
0 

 
  

Cipriani
10 70 3 

0.02 
0.71 

(0.33) 

-2.14 

(0.032) 
3 

0.02 
0.71 

(0.33) 

-2.17 

(0.030) 
4 

0.00 
0.38 

(0.13) 

-2.86 

(0.004) 
3 

0.00 
0.18 

(0.08) 

-2.37 

(0.018) 

0.00 
1.15 

(0.51) 

-2.27 

(0.023) 
0.00 

1.15 

(0.51) 

-2.27 

(0.023) 
0.00 

0.58 

(0.26) 

-2.27 

(0.024) 
0.00 

0.29 

(0.12) 

-2.35 

(0.019) 
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0.00 
0.61 

(0.24) 

-2.51 

(0.012) 
0.00 

0.61 

(0.24) 

-2.51 

(0.012) 
0.00 

0.23 

(0.1) 

-2.33 

(0.02) 
0.00 

0.14 

(0.06) 

-2.48 

(0.013) 

 
  

   
0.00 

0.28 

(0.14) 

-2.01 

(0.045)  
  

Dias
11 11 1 0.00 

1.20 

(0.41) 

-2.93 

(0.003) 
1 0.00 

1.15 

(0.40) 

-2.90 

(0.004) 
1 0.00 

0.05 

(0.02) 

2.89 

(0.004) 
1 0.00 

0.05 

(0.02) 

-2.96 

(0.003) 

Eisenberg
12 1 0 

   
0 

   
0 

   
0 

 
  

Elliott
13 16 2 

0.01 
0.83 

(0.30) 

2.79 

(0.005) 

3 

0.00 
0.58 

(0.29) 

1.99 

(0.046) 

3 

0.00 
0.02 

(0.01) 

2.90 

(0.004) 

3 

0.00 
0.02 

(0.01) 

2.86 

(0.004) 

0.00 
0.71 

(0.27) 

2.64 

(0.008) 
0.01 

0.80 

(0.29) 

2.79 

(0.005) 
0.00 

0.02 

(0.01) 

-2.23 

(0.026) 
0.00 

0.01 

(0.01) 

2.33 

(0.020) 

   
0.00 

0.70 

(0.26) 

2.68 

(0.007) 
0.00 

0.03 

(0.01) 

-2.41 

(0.016) 
0.00 

0.03 

(0.01) 

2.45 

(0.014) 

Govan
14 2 1 0.00 

0.90 

(0.39) 

2.29 

(0.022) 
1 0.00 

0.82 

(0.33) 

2.49 

(0.013) 
0 

   
0 

   

Hofmeyr
15 1 0 

   
0 

   
0 

   
0 

   

Imamura
16 26 5 

0.27 
4.71 

(1.30) 

-3.61 

(0.000) 

6 

0.02 
3.35 

(0.98) 

3.41 

(0.001) 

6 

0.02 
3.35 

(0.98) 

3.41 

(0.001) 

7 

0.03 
0.8 

(0.24) 

3.32 

(0.001) 

0.00 
2.52 

(1.06) 

-2.38 

(0.017) 
0.00 

1.72 

(0.77) 

2.24 

(0.025) 
0.00 

1.72 

(0.77) 

2.24 

(0.025) 
0.00 

0.45 

(0.21) 

2.12 

(0.034) 

0.00 
4.52 

(0.95) 

-4.76 

(0.000) 
0.01 

1.68 

(0.45) 

3.71 

(0.000) 
0.01 

1.68 

(0.45) 

3.71 

(0.000) 
0.00 

0.69 

(0.14) 

4.79 

(0.000) 

0.00 
3.05 

(1.18) 

2.59 

(0.010) 
0.03 

1.31 

(0.62) 

2.1 

(0.036) 
0.03 

1.31 

(0.62) 

2.1 

(0.036) 
0.00 

0.17 

(0.08) 

-1.99 

(0.046) 

0.00 
1.90 

(0.75) 

2.53 

(0.011) 
0.00 

2.37 

(1.00) 

-2.38 

(0.017) 
0.00 

2.37 

(1.00) 

-2.38 

(0.017) 
0.01 

0.45 

(0.23) 

-2.01 

(0.044) 

   
0.00 

1.12 

(0.55) 

-2.05 

(0.040) 
0.00 

1.12 

(0.55) 

-2.05 

(0.040) 
0.00 

0.37 

(0.13) 

-2.73 

(0.006) 

         
0.00 

0.37 

(0.16) 

2.28 

(0.023) 

Lam
17 3 0 

   
0 

   
0 

   
0 

   

Lapitan
18 6 0 

   
0 

   
1 0.00 

0.33 

(0.16) 

-2.02 

(0.043) 
1 0.00 

0.30 

(0.13) 

2.24 

(0.025) 

Lu (1)
19 4 0 

   
0 

   
0 

   
0 
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Lu (2)
19 4 0 

   
0 

   
0 

   
0 

   
Macfayden

22 2 0 
   

0 
   

0 
   

0 
   

Middleton
23 1 0 

   
0 

   
0 

   
0 

   
Mills

24 2 0 
   

0 
   

0 
   

0 
   

Nixon
25 2 1 0.00 

2.36 

(0.52) 

4.59 

(0.000) 
1 0.00 

0.65 

(0.16) 

-4.08 

(0.000) 
1 0.00 

1.72 

(0.39) 

4.36 

(0.000) 
1 0.00 

0.45 

(0.09) 

5.21 

(0.000) 

Picard
26 33 2 

0.64 
1.89 

(0.93) 

2.03 

(0.042) 

3 

0.14 
0.89 

(0.40) 

-2.22 

(0.027) 

1 

0.00 
1.58 

(0.73) 

-2.18 

(0.029) 

1 

0.04 
0.43 

(0.20) 

2.11 

(0.035) 

0.81 
2.52 

(1.25) 

-2.02 

(0.043) 
0.09 

1.21 

(0.54) 

2.25 

(0.025)       

   
0.17 

1.39 

(0.68) 

-2.06 

(0.040)       

Playford
27 1 0 

   
0 

   
0 

   
0 

   

Psaty
28 10 1 

0.00 
0.76 

(0.29) 

2.66 

(0.008) 
1 

0.00 
0.70 

(0.26) 

2.72 

(0.007) 
1 

0.00 
0.03 

(0.01) 

2.33 

(0.020) 
2 

0.00 
0.05 

(0.03) 

2.00 

(0.046) 

       
  0.00 

0.03 

(0.01) 

2.33 

(0.02) 

Puhan
29 7 0 

   
0 

   
1 0.00 

0.15 

(0.06) 

2.36 

(0.018) 
1 0.00 

0.08 

(0.04) 

2.22 

(0.026) 

Roskell (1)
31 6 1 0.00 

0.77 

(0.32) 

2.43 

(0.015) 
1 0.00 

0.75 

(0.3) 

2.45 

(0.014) 
1 0.00 

0.03 

(0.01) 

-2.39 

(0.017) 
1 0.00 

0.03 

(0.01) 

2.33 

(0.020) 

Roskell (2)
30 3 0 

   
0 

   
0 

   
0 

   

Salliot
32 1 1 0.02 

0.86 

(0.35) 

2.44 

(0.015) 
0 

   
1 0.03 

0.70 

(0.3) 

2.36 

(0.018) 
0 

   

Sciarretta
33 13 0 

   
0 

   
2 

0.00 
0.02 

(0.01) 

-2.14 

(0.032) 
2 

0.00 
0.01 

(0.10) 

2.08 

(0.037) 

      
0.00 

0.01 

(0.01) 

-2.13 

(0.033) 
0.00 

0.01 

(0.00) 

2.06 

(0.040) 

Soares-

Weiser
34 

4 0 
   

1 0.01 
0.38 

(0.16) 

2.39 

(0.017) 
0 

   
0 

   

Thijs
35 3 0 

   
0 

   
0 

   
0 

   
Trikalinos

36 1 0 
   

0 
   

0 
   

0 
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Virgili
37 1 0 

   
0 

   
0 

   
0 

   

Wang
38 4 1 0.11 

2.08 

(1.00) 

2.07 

(0.038) 
0 

   
1 0.01 

0.99 

(0.44) 

2.26 

(0.024) 
1 0.00 

0.45 

(0.19) 

2.36 

(0.018) 

Welton
39 4 0 

   
0 

   
0 

   
0 

   
Woo

40 3 0 
   

0 
   

0 
   

0 
   

Yu
41 5 0 

   
0 

   
0 

   
0 
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Appendix Table 5.      (  value) results according to design-by-treatment interaction model (DBT) using the restricted maximum likelihood (REML) and maximum 

likelihood (ML) estimators when applying all four effect measures.   : risk difference measure,    : risk ratio for harmful outcomes,    : risk ratio for beneficial 

outcomes,   : odds ratio. 

Network 
              

REML ML REML ML REML ML REML ML 

Ades
1 19.60 (<0.001) 19.52 (<0.001) 13.20 (0.004) 18.32 (<0.001) 22.63 (<0.001) 22.63 (<0.001) 22.03 (<0.001) 22.03 (<0.001) 

Ara
2 1.72 (0.944) 1.76 (0.941) 1.75 (0.941) 1.75 (0.941) 1.11 (0.981) 1.83 (0.935) 2.41 (0.878) 2.41 (0.878) 

Baker
3 16.07 (0.1883) 17.61 (0.128) 25.02 (0.015) 26.24 (0.01) 15.13 (0.235) 15.13 (0.235) 11.70 (0.470) 13.58 (0.328) 

Ballesteros
4 1.78 (0.776) 3.20 (0.526) 3.07 (0.547) 4.36 (0.359) 2.86 (0.582) 6.06 (0.194) 1.96 (0.744) 3.57 (0.467) 

Bangalore
5 7.7 (0.935) 14.36 (0.499) 14.17 (0.513) 20.49 (0.154) 16.82 (0.330) 16.83 (0.329) 18.86 (0.220) 18.86 (0.220) 

Bansback
6 2.16 (0.339) 2.16 (0.340) 2.22 (0.330) 2.35 (0.310) 7.15 (0.028) 7.15 (0.028) 1.30 (0.523) 1.47 (0.480) 

Bottomley
7 5.57 (0.473) 22.59 (0.001) 6.92 (0.328) 31.18 (<0.001) 5.52 (0.479) 16.89 (0.01) 5.26 (0.511) 24.90 (<0.001) 

Brown
8 5.75 (0.675) 5.85 (0.664) 5.50 (0.703) 5.57 (0.695) 5.45 (0.709) 5.45 (0.709) 5.91 (0.657) 5.91 (0.657) 

Bucher
9 0.74 (0.692) 0.73 (0.695) 0.70 (0.706) 0.70 (0.706) 1.04 (0.594) 1.35 (0.508) 1.13 (0.567) 1.49 (0.474) 

Cipriani
10 30.79 (0.577) 32.25 (0.504) 28.4 (0.696) 37.04 (0.288) 32.7 (0.482) 38.85 (0.223) 30.37 (0.599) 39.72 (0.196) 

Dias
11 9.90 (0.449) 12.78 (0.236) 9.90 (0.449) 12.60 (0.247) 8.41 (0.589) 11.49 (0.321) 8.73 (0.558) 12.18 (0.273) 

Eisenberg
12 2.65 (0.265) 3.27 (0.195) 3.19 (0.203) 3.76 (0.153) 3.23 (0.199) 4.24 (0.120) 3.09 (0.214) 3.66 (0.161) 

Elliott
13 19.61 (0.106) 31.70 (0.003) 20.09 (0.093) 31.27 (0.003) 9.53 (0.732) 31.78 (0.003) 9.00 (0.773) 32.33 (0.002) 

Govan
14 12.12 (0.017) 12.1 (0.017) 12.67 (0.013) 12.67 (0.013) 7.69 (0.104) 8.23 (0.083) 9.07 (0.059) 9.50 (0.050) 

Hofmeyr
15 3.44 (0.179) 3.44 (0.179) 3.47 (0.177) 3.47 (0.177) 2.72 (0.257) 2.92 (0.232) 2.72 (0.256) 2.94 (0.230) 

Imamura
16 32.47 (0.070) 26.84 (0.140) 11.16 (0.934) 33.17 (0.032) 21.71 (0.357) 23.56 (0.262) 15.85 (0.726) 45.81 (0.001) 

Lam
17 2.92 (0.404) 2.92 (0.404) 2.78 (0.427) 2.78 (0.427) 0.21 (0.977) 0.57 (0.904) 0.16 (0.983) 0.35 (0.949) 

Lapitan
18 6.09 (0.193) 6.49 (0.166) 5.85 (0.211) 5.85 (0.211) 8.97 (0.062) 8.97 (0.062) 9.49 (0.050) 9.49 (0.050) 

Lu (1)
19 5.11 (0.646) 6.76 (0.455) 4.57 (0.713) 5.87 (0.555) 5.19 (0.637) 6.97 (0.432) 5.64 (0.582) 7.48 (0.381) 

Lu (2)
19 11.24 (0.081) 6.06 (0.195) 11.86 (0.065) 14.53 (0.024) 10.32 (0.112) 13.92 (0.031) 12.05 (0.061) 16.76 (0.010) 

Macfayden 
22 13.14 (0.022) 20.74 (0.001) 15.23 (0.009) 15.23 (0.009) 0.00 (<0.001) 27.22 (<0.001) 3.69 (0.595) 14.38 (0.013) 
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Middleton
23 2.18 (0.140) 2.17 (0.141) 1.90 (0.168) 1.90 (0.168) 2.76 (0.097) 2.76 (0.097) 2.87 (0.091) 2.87 (0.091) 

Mills
24 1.75 (0.782) 2.02 (0.732) 3.14 (0.535) 3.53 (0.473) 1.14 (0.889) 1.29 (0.863) 1.94 (0.746) 2.19 (0.700) 

Nixon
25 7.25 (0.065) 29.51 (<0.001) 14.92 (0.002) 21.76 (<0.001) 5.09 (0.165) 28.05 (<0.001) 12.37 (0.006) 39.33 (<0.001) 

Picard
26 60.27 (0.001) 101.29 (<0.001) 60.67 (0.001) 127.27 (<0.001) 50.24 (0.016) 50.24 (0.016) 62.85 (0.001) 123.81 (<0.001) 

Playford
27 1.53 (0.217) 1.52 (0.218) 1.49 (0.222) 1.49 (0.222) 0.94 (0.333) 0.94 (0.333) 0.81 (0.369) 1.11 (0.291) 

Psaty
28 10.71 (0.38) 13.62 (0.191) 5.99 (0.816) 10.32 (0.413) 10.21 (0.423) 18.10 (0.053) 9.64 (0.473) 16.76 (0.080) 

Puhan
29 9.4 (0.226) 7.15 (0.413) 8.52 (0.289) 8.52 (0.289) 6.37 (0.498) 9.51 (0.218) 6.49 (0.418) 8.19 (0.316) 

Roskell (1)
31 4.57 (0.335) 8.03 (0.090) 4.54 (0.337) 8.23 (0.084) 3.56 (0.469) 5.66 (0.226) 3.45 (0.486) 5.86 (0.210) 

Roskell (2)
30 0.2 (0.906) 0.20 (0.906) 1.31 (0.520) 1.31 (0.520) 0.51 (0.776) 0.51 (0.776) 0.82 (0.663) 0.82 (0.663) 

Salliot
32 11.81 (0.003) 11.81 (0.003) 2.74 (0.254) 2.76 (0.252) 10.44 (0.005) 13.34 (0.001) 5.11 (0.078) 5.11 (0.078) 

Sciarretta
33 12.89 (0.456) 22.25 (0.052) 14.33 (0.351) 14.33(0.351) 42.75 (<0.001) 42.75 (<0.001) 50.80 (<0.001) 50.80 (<0.001) 

Soares-

Weiser
34 1.98 (0.961) 

7.97 (0.336) 1.33 (0.988) 21.62 (0.003) 2.86 (0.898) 7.17 (0.411) 1.91 (0.965) 12.62 (0.082) 

Thijs
35 1.66 (0.893) 1.66 (0.893) 1.87 (0.867) 1.87 (0.867) 1.61 (0.9) 1.91 (0.861) 1.64 (0.896) 1.86 (0.868) 

Trikalinos
36 0.66 (0.415) 0.73 (0.393) 0.68 (0.411) 0.68 (0.411) 0.01 (0.905) 0.01 (0.906) 0.04 (0.850) 0.04 (0.850) 

Virgili
37 0.09 (0.766) 0.13 (0.714) 0.01 (0.910) 0.01 (0.910) 2.39 (0.122) 2.39 (0.122) 1.50 (0.221) 1.59 (0.207) 

Wang
38 5.68 (0.577) 8.46 (0.294) 5.64 (0.582) 8.76 (0.270) 6.21 (0.515) 8.01 (0.331) 6.05 (0.534) 8.28 (0.309) 

Welton
39 4.14 (0.845) 4.48 (0.812) 4.01 (0.857) 4.30 (0.829) 6.33 (0.611) 8.13 (0.420) 6.57 (0.584) 8.25 (0.410) 

Woo
40 5.52 (0.238) 5.59 (0.232) 2.13 (0.711) 3.51 (0.477) 10.69 (0.030) 24.39 (<0.001) 4.89 (0.299) 8.10 (0.088) 

Yu
41 3.28 (0.858) 3.28 (0.858) 3.27 (0.859) 3.27 (0.859) 2.71 (0.910) 2.71 (0.910) 2.82 (0.901) 2.82 (0.901) 
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Appendix Table 6. Inconsistency factors (       ) along with their standard error (SE(       )),        

and heterogeneity as estimated when detaching each design. Heterogeneity has been estimated using the 

restricted maximum likelihood estimator.  

Network 

Number of 

designs in 

the network 

        

(SE(       )) 
      ( -value) heterogeneity 

Ades
1 8 

1.63 (0.39) 17.79 (<0.001) 0.00 

1.54 (0.51) 9.17 (0.002) 0.04 

1.54 (0.51) 9.17 (0.002) 0.04 

Ara
2 8 Consistent 

Baker
3 12 Consistent 

Ballesteros
4 5 Consistent 

Bangalore
5 18 0.20 (0.08) 6.53 (0.011) 0.00 

Bansback
6 2 Consistent 

Bottomley
7 7 1.34 (0.55) 6.04 (0.014) 0.06 

Brown
8 11 Consistent 

Bucher
9 5 Consistent 

Cipriani
10 43 0.43 (0.17) 6.24 (0.013) 0.01 

Dias
11 15 1.19 (0.41) 8.45 (0.004) 0.00 

Eisenberg
12 3 Consistent 

Elliott
13 15 

0.77 (0.27) 

0.65 (0.27) 
9.48 (0.009) 0.01 

0.29 (0.14) 4.19 (0.041) 0.01 

Govan
14 6 

0.73 (0.35) 4.31 (0.038) 0.00 

0.91 (0.39) 5.28 (0.022) 0.00 

0.91 (0.39) 5.28 (0.022) 0.00 

Hofmeyr
15 3 Consistent 

Imamura
16 24 

3.11 (1.54) 4.07 (0.044) 0.06 

1.91 (0.80) 5.75 (0.016) 0.01 

0.93 (0.46) 4.09 (0.043) 0.01 

1.44 (0.69) 4.35 (0.037) 0.00 

Lam
17 3 Consistent 

Lapitan
18 5 Consistent 

Lu (1)
19 8 Consistent 

Lu (2)
19 10 

1.59 (0.72) 4.90 (0.027) 0.21 

0.72 (0.49) 

0.67 (0.51) 
6.01 (0.049) 0.22 

Macfayden
22 6 

1.87 (1.25) 

3.13 (1.30) 
7.05 (0.029) 0.23 

Middleton
23 3 Consistent 

Mills
24 5 Consistent 

Nixon
25 7 Consistent 

Picard
26 22 

3.03 (1.01) 

2.79 (0.95) 

1.25 (1.02) 

12.59 (0.006) 0.50 

2.29 (1.12) 4.17 (0.041) 0.60 

1.28 (1.12) 

3.20 (1.24) 

2.75 (1.16) 

8.94 (0.030) 0.56 

Playford
27 3 Consistent 

Psaty
28 11 0.52 (0.25) 4.22 (0.040) 0.01 
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0.69 (0.30) 5.24 (0.022) 0.00 

Puhan
29 8 0.31 (0.14) 4.89 (0.027) 0.00 

Roskell (1)
30 8 Consistent 

Roskell (2)
31 2 Consistent 

Salliot
32 3 

0.26 (0.34) 

1.04 (0.32) 
11.81(0.003) 0.00 

0.91 (0.27) 11.20 (0.001) 0.00 

Sciarretta
33 17 

0.49 (0.22) 4.80 (0.028) 0.01 

0.55 (0.28) 3.96 (0.047) 0.00 

Soares-Weiser
34 9 Consistent 

Thijs
35 8 Consistent 

Trikalinos
36 3 Consistent 

Virgili
37 3 Consistent 

Wang
38 10 

2.10 (1.05) 

2.10 (1.05) 
3.97 (0.046) 0.17 

2.10 (1.05) 

2.10 (1.05) 
3.97 (0.046) 0.17 

Welton
39 11 Consistent 

Woo
40 4 Consistent 

Yu
41 8 Consistent 

 

Appendix Table 7. Inconsistency factors (      ) and their standard error (          ),       values and 

common-within network heterogeneity estimated in SIDE method. Heterogeneity has been estimated using 

the restricted maximum likelihood estimator. Note that in one network (21) SIDE inconsistency could not be 

evaluated. Whenever a comparison was part of at least one multi-arm study, I estimated inconsistency after 

re-parameterisation of the multi-arm studies and I present the maximum       value. N: number of 

comparisons that can be separated in the network.  

Network 
Is the comparison included 

in a multi-arm trial? 
N 

IF 

(SE(IF)) 
      

(P-value) 
heterogeneity 

Ades
1 

NO 

8 

1.63 (0.39) 4.22 (<0.001) 0.00 

NO 1.54 (0.51) 3.03 (0.002) 0.04 

NO 1.54 (0.51) 3.03 (0.002) 0.04 

Ara
2  8 Consistent 

Baker
3  14 Consistent 

Ballesteros
4  5 Consistent 

Bangalore
5 NO 18 0.20 (0.08) 2.56 (0.011) 0.00 

Bansback
6  4 Consistent 

Bottomley
7 YES 6 

1.34 

(0.55) 
2.46 (0.014) 0.06 

Brown
8 YES 10 

1.27 

(0.63) 
2.02 (0.044) 0.00 

Bucher
9  5 Consistent 

Cipriani
10 NO 42 0.43 (0.17) 2.50 (0.013) 0.01 

Dias
11 NO 15 1.19 (0.41) 2.91 (0.004) 0.00 

Eisenberg
12  1 Consistent 

Elliott
13 

YES 
14 

0.71 (0.23) 3.05 (0.002) 0.01 

YES 0.27 (0.11) 2.54 (0.011) 0.01 
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Govan
14 

NO 

5 

0.91 (0.39) 2.30 (0.022) 0.00 

YES 0.73 (0.35) 2.08 (0.038) 0.00 

NO 0.91 (0.39) 2.30 (0.022) 0.00 

Hofmeyr
15  1 Consistent 

Imamura
16 

YES 

21 

1.39 (0.69) 2.01 (0.044) 0.03 

YES 1.42 (0.6) 2.36 (0.018) 0.02 

NO 1.91 (0.80) 2.40 (0.016) 0.01 

YES 1.51 (0.69) 2.17 (0.030) 0.00 

YES 1.61 (0.51) 3.19 (0.001) 0.00 

NO 1.44 (0.69) 2.09 (0.037) 0.00 

Lam
17  7 Consistent 

Lapitan
18  1 Consistent 

Lu (1)
19  6 Consistent 

Lu (2)
19 NO 9 1.60 (0.72) 2.22 (0.026) 0.21 

Macfayden
22 

YES 
5 

1.49 (0.75) 2.00 (0.045) 0.32 

YES 2.98 (1.49) 2.01 (0.045) 0.32 

Middleton
23  3 Consistent 

Mills
24  5 Consistent 

Nixon
25 YES 6 1.94 (0.50) 3.88 (<0.001) 0.07 

Picard
26 

YES 

23 

1.51 (0.47) 3.17 (0.002) 0.52 

YES 1.53 (0.53) 2.91 (0.004) 0.52 

YES 1.63 (0.79) 2.07 (0.039) 0.61 

YES 2.57 (0.70) 3.7 (<0.001) 0.45 

YES 2.11 (0.85) 2.48 (0.013) 0.57 

Playford
27  3 Consistent 

Psaty
28 

YES 
10 

0.46 (0.22) 2.09 (0.036) 0.00 

NO 0.52 (0.25) 2.05 (0.04) 0.01 

Puhan
29 YES 8 0.29 (0.13) 2.26 (0.024) 0.00 

Roskell (1)
31  8 Consistent 

Roskell (2)
30   Inconsistency could not be estimated 

Salliot
32 

YES 
3 

0.91 (0.27) 3.35 (0.001) 0.00 

YES 1.83 (0.55) 3.35 (0.001) 0.00 

Sciarretta
33 

NO 
15 

0.55 (0.28) 1.99 (0.047) 0.00 

NO 0.49 (0.22) 2.19 (0.028) 0.01 

Soares-

Weiser
34 

 8 Consistent 

Thijs
35  7 Consistent 

Trikalinos
36  3 Consistent 

Virgili
37  3 Consistent 

Wang
38 

NO 
9 

2.10 (1.05) 1.99 (0.046) 0.17 

NO 2.10 (1.05) 1.99 (0.046) 0.17 

Welton
39  9 Consistent 

Woo
40 YES 9 0.63 (0.30) 2.10 (0.036) 0.00 
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YES 1.26 (0.60) 2.10 (0.035) 0.00 

Yu
41  9 Consistent 

 

Appendix Table 8. Results according to Lu and Ades (LA) model and    measures. Heterogeneity has been 

estimated ( ̂ ) using the restricted maximum likelihood estimator. Note that in one network (21) 

inconsistency could not be evaluated using the LA model. In bold I present the networks for which the test 

for inconsistency was statistically significant. For the LA model I applied all different parameterisations of 

the multi-arm studies and I present the maximum     value. df: degrees of freedom 

 
Lu and Ades model    measures 

Network df     p-value  ̂      
      

          
  

Ades
1 3 19.60 <0.001 0.00 0.00 0.71 0.71 

Ara
2 4 0.97 0.914 0.00 0.73 0.00 0.73 

Baker
3 6 12.14* 0.059* 0.00 0.70 0.23 0.77 

Ballesteros
4 2 1.51* 0.471* 0.06 0.84 0.32 0.89 

Bangalore
5 10 9.34* 0.501* 0.00 0.91 0.38 0.95 

Bansback
6 1 0.02 0.883 0.00 0.29 0.00 0.29 

Bottomley
7 2 2.90* 0.235* 0.11 0.64 0.74 0.91 

Brown
8 5 4.96* 0.421* 0.00 0.43 0.14 0.51 

Bucher
9 2 0.74 0.692 0.00 0.21 0.00 0.21 

Cipriani
10 31 29.96 0.519 0.01 0.75 0.18 0.80 

Dias
11 5 7.34* 0.197 0.00 0.94 0.08 0.95 

Eisenberg
12 1 2.47* 0.116* 0.02 0.30 0.35 0.55 

Elliott
13 9 18.10 0.034 0.01 0.68 0.62 0.88 

Govan
14 2 10.93 0.004 0.00 0.58 0.00 0.58 

Hofmeyr
15 1 3.25* 0.071* 0.00 0.06 0.00 0.06 

Imamura
16 14 25.25 0.032 0.00 0.52 0.18 0.61 

Lam
17 1 0.08 0.773 0.00 0.45 0.00 0.45 

Lapitan
18 1 0.16 0.691 0.00 0.48 0.00 0.48 

Lu (1)
19 3 2.85* 0.416* 0.47 0.76 0.84 0.96 

Lu (2)
19 4 8.44* 0.077* 0.22 0.62 0.64 0.86 

Macfayden 
22 2 11.08 0.004 0.11 0.39 0.75 0.85 

Middleton
23 1 2.18 0.140 0.00 0.46 0.00 0.46 

Mills
24 2 1.52* 0.468 0.18 0.17 0.78 0.81 

Nixon
25 2 3.03 0.220 0.39 0.00 0.91 0.88 

Picard
26 11 23.73 0.008 0.46 0.63 0.72 0.89 

Playford
27 1 1.53 0.217 0.00 0.23 0.00 0.23 

Psaty
28 6 10.63* 0.100* 0.05 0.68 0.46 0.83 

Puhan
29 4 8.66* 0.070* 0.00 0.63 0.28 0.73 

Roskell (1)
31 4 4.57* 0.335* 0.04 0.12 0.60 0.65 

Roskell (2)
30 - - - - 0.41 0.00 0.41 

Salliot
32 1 11.20 <0.001 0.00 0.00 0.60 0.19 

Sciarretta
33 9 11.16* 0.264* 0.02 0.96 0.60 0.98 

Soares-

Weiser
34 

2 1.15* 0.562* 0.44 0.78 0.72 0.94 
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Thijs
35 2 0.68* 0.877* 0.00 0.76 0.00 0.76 

Trikalinos
36 1 0.66 0.415 0.00 0.25 0.00 0.25 

Virgili
37 1 0.09 0.766 0.01 0.28 0.07 0.33 

Wang
38 3 5.59* 0.134* 0.17 0.28 0.66 0.75 

Welton
39 4 1.86* 0.762* 0.21 0.20 0.46 0.57 

Woo
40 2 5.02* 0.081* 0.00 0.51 0.00 0.51 

Yu
41 4 2.16* 0.706* 0.00 0.72 0.00 0.72 

* a different parameterisation of the multi-arm studies results in different chi-square tests, but the 

significance of the test does not change. 

 

 

References to the included networks 

 1.  Ades AE, Mavranezouli I, Dias S, et al. Network meta-analysis with competing risk 

outcomes. Value Health 2010;13:976-83. 

 2.  Ara R, Pandor A, Stevens J, et al. Early high-dose lipid-lowering therapy to avoid 

cardiac events: a systematic review and economic evaluation. Health Technol 

Assess 2009;13:1-118. 

 3.  Baker WL, Baker EL, Coleman CI. Pharmacologic treatments for chronic 

obstructive pulmonary disease: a mixed-treatment comparison meta-analysis. 

Pharmacotherapy 2009;29:891-905. 

 4.  Ballesteros J. Orphan comparisons and indirect meta-analysis: a case study on 

antidepressant efficacy in dysthymia comparing tricyclic antidepressants, selective 

serotonin reuptake inhibitors, and monoamine oxidase inhibitors by using general 

linear models. J Clin Psychopharmacol 2005;25:127-31. 

 5.  Bangalore S, Kumar S, Kjeldsen SE, et al. Antihypertensive drugs and risk of 

cancer: network meta-analyses and trial sequential analyses of 324,168 participants 

from randomised trials. Lancet Oncol 2011;12:65-82. 

 6.  Bansback N, Sizto S, Sun H, et al. Efficacy of systemic treatments for moderate to 

severe plaque psoriasis: systematic review and meta-analysis. Dermatology 

2009;219:209-18. 

 7.  Bottomley JM, Taylor RS, Ryttov J. The effectiveness of two-compound 

formulation calcipotriol and betamethasone dipropionate gel in the treatment of 

moderately severe scalp psoriasis: a systematic review of direct and indirect 

evidence. Curr Med Res Opin 2011;27:251-68. 

 8.  Brown TJ, Hooper L, Elliott RA, et al. A comparison of the cost-effectiveness of 

five strategies for the prevention of non-steroidal anti-inflammatory drug-induced 

gastrointestinal toxicity: a systematic review with economic modelling. Health 

Technol Assess 2006;10:iii-xiii, 1. 



114 

 

Appendix 

 9.  Bucher HC, Guyatt GH, Griffith LE, et al. The results of direct and indirect 

treatment comparisons in meta-analysis of randomized controlled trials. J Clin 

Epidemiol 1997;50:683-91. 

 10.  Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability 

of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet 

2009;373:746-58. 

 11.  Dias S, Welton NJ, Caldwell DM, et al. Checking consistency in mixed treatment 

comparison meta-analysis. Stat Med 2010;29:932-44. 

 12.  Eisenberg MJ, Filion KB, Yavin D, et al. Pharmacotherapies for smoking cessation: 

a meta-analysis of randomized controlled trials. CMAJ 2008;179:135-44. 

 13.  Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: 

a network meta-analysis. Lancet 2007;369:201-7. 

 14.  Govan L, Ades AE, Weir CJ, et al. Controlling ecological bias in evidence 

synthesis of trials reporting on collapsed and overlapping covariate categories. Stat 

Med 2010;29:1340-56. 

 15.  Hofmeyr G J, Gulmezoglu A M, Novikova N, et al. Misoprostol to prevent and 

treat postpartum haemorrhage: a systematic review and meta-analysis of maternal 

deaths and dose-related effects. Bull World Health Organ 2009;645-732. 

 16.  Imamura M, Abrams P, Bain C, et al. Systematic review and economic modelling 

of the effectiveness and cost-effectiveness of non-surgical treatments for women 

with stress urinary incontinence. Health Technol Assess 2010;14:1-iv. 

 17.  Lam SK, Owen A. Combined resynchronisation and implantable defibrillator 

therapy in left ventricular dysfunction: Bayesian network meta-analysis of 

randomised controlled trials. BMJ 2007;335:925. 

 18.  Lapitan MC, Cody JD, Grant A. Open retropubic colposuspension for urinary 

incontinence in women. Cochrane Database Syst Rev 2009;CD002912. 

 19.  Lu G, Ades A. Modeling between-trial variance structure in mixed treatment 

comparisons. Biostatistics 2009;10:792-805. 

 20.  Lu G, Ades AE, Sutton AJ, et al. Meta-analysis of mixed treatment comparisons at 

multiple follow-up times. Stat Med 2007;26:3681-99. 

 21.  Lu GB, Ades AE. Assessing evidence inconsistency in mixed treatment 

comparisons. Journal of the American Statistical Association 2006;101:447-59. 

 22.  Macfadyen CA, Acuin JM, Gamble C. Topical antibiotics without steroids for 

chronically discharging ears with underlying eardrum perforations. Cochrane 

Database Syst Rev 2005;CD004618. 

 23.  Middleton LJ, Champaneria R, Daniels JP, et al. Hysterectomy, endometrial 

destruction, and levonorgestrel releasing intrauterine system (Mirena) for heavy 



115 

 

Appendix 

menstrual bleeding: systematic review and meta-analysis of data from individual 

patients. BMJ 2010;341:c3929. 

 24.  Mills EJ, Wu P, Spurden D, et al. Efficacy of pharmacotherapies for short-term 

smoking abstinance: a systematic review and meta-analysis. Harm Reduct J 

2009;6:25. 

 25.  Nixon R, Bansback N, Brennan A. The efficacy of inhibiting tumour necrosis 

factor alpha and interleukin 1 in patients with rheumatoid arthritis: a meta-analysis 

and adjusted indirect comparisons. Rheumatology (Oxford) 2007;46:1140-7. 

 26.  Picard P, Tramer MR. Prevention of pain on injection with propofol: a quantitative 

systematic review. Anesth Analg 2000;90:963-9. 

 27.  Playford EG, Webster AC, Sorell TC, et al. Antifungal agents for preventing fungal 

infections in solid organ transplant recipients. Cochrane Database Syst Rev 

2004;CD004291. 

 28.  Psaty BM, Smith NL, Siscovick DS, et al. Health outcomes associated with 

antihypertensive therapies used as first-line agents. A systematic review and meta-

analysis. JAMA 1997;277:739-45. 

 29.  Puhan MA, Bachmann LM, Kleijnen J, et al. Inhaled drugs to reduce exacerbations 

in patients with chronic obstructive pulmonary disease: a network meta-analysis. 

BMC Med 2009;7:2. 

 30.  Roskell NS, Beard SM, Zhao Y, et al. A meta-analysis of pain response in the 

treatment of fibromyalgia. Pain Pract 2011;11:516-27. 

 31.  Roskell NS, Lip GY, Noack H, et al. Treatments for stroke prevention in atrial 

fibrillation: a network meta-analysis and indirect comparisons versus dabigatran 

etexilate. Thromb Haemost 2010;104:1106-15. 

 32.  Salliot C, Finckh A, Katchamart W, et al. Indirect comparisons of the efficacy of 

biological antirheumatic agents in rheumatoid arthritis in patients with an 

inadequate response to conventional disease-modifying antirheumatic drugs or to 

an anti-tumour necrosis factor agent: a meta-analysis. Ann Rheum Dis 2011;70:266-

71. 

 33.  Sciarretta S, Palano F, Tocci G, et al. Antihypertensive treatment and development 

of heart failure in hypertension: a Bayesian network meta-analysis of studies in 

patients with hypertension and high cardiovascular risk. Arch Intern Med 

2011;171:384-94. 

 34.  Soares-Weiser K, Bravo VY, Beynon S, et al. A systematic review and economic 

model of the clinical effectiveness and cost-effectiveness of interventions for 

preventing relapse in people with bipolar disorder. Health Technol Assess 

2007;11:iii-206. 



116 

 

Appendix 

 35.  Thijs V, Lemmens R, Fieuws S. Network meta-analysis: simultaneous meta-

analysis of common antiplatelet regimens after transient ischaemic attack or stroke. 

Eur Heart J 2008;29:1086-92. 

 36.  Trikalinos TA, Alsheikh-Ali AA, Tatsioni A, et al. Percutaneous coronary 

interventions for non-acute coronary artery disease: a quantitative 20-year synopsis 

and a network meta-analysis. Lancet 2009;373:911-8. 

 37.  Virgili G, Novielli N, Menchini F, et al. Pharmacological treatments for 

neovascular age-related macular degeneration: can mixed treatment comparison 

meta-analysis be useful? Curr Drug Targets 2011;12:212-20. 

 38.  Wang H, Huang T, Jing J, et al. Effectiveness of different central venous catheters 

for catheter-related infections: a network meta-analysis. J Hosp Infect 2010;76:1-

11. 

 39.  Welton NJ, Caldwell DM, Adamopoulos E, et al. Mixed treatment comparison 

meta-analysis of complex interventions: psychological interventions in coronary 

heart disease. Am J Epidemiol 2009;169:1158-65. 

 40.  Woo G, Tomlinson G, Nishikawa Y, et al. Tenofovir and entecavir are the most 

effective antiviral agents for chronic hepatitis B: a systematic review and Bayesian 

meta-analyses. Gastroenterology 2010;139:1218-29. 

 41.  Yu CH, Beattie WS. The effects of volatile anesthetics on cardiac ischemic 

complications and mortality in CABG: a meta-analysis. Can J Anaesth 

2006;53:906-18. 

 

 


