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Abstract 

This thesis investigates the structural, electronic and mechanical properties of Ti-based 

alloys aiming in understanding the electronic origin of low-rigidity materials suitable as 

metallic implants. This necessity is originated from the currently used Ti-6Al-4V 

metallic implants that consist of cytotoxic elements (causing diseases) and exhibit 

higher Young’s moduli (E) (~112GPa) than that of the bone (E < 30GPa) (resulting in 

bone atrophy and implant loosening). Therefore, a second generation of Ti-based alloys 

was proposed consisting with non-toxic β-stabilizers like Nb, which although reduced 

by almost half the Young’s modulus, the bone-like E values are still unreachable.  

Starting from the Ti-Nb alloy, the ab initio calculations predict several Ti-Nb phases (α', 

β, α" and ω) depending on the Nb concentration, in line with experimental observations. 

The α' and ω are energetically favoured for Ti-xNb (x ≤ 6.25%at), the β phase is stable 

at high Nb compositions (x ≥ 18.75at%) while the α" phase may exist in intermediate 

stoichiometries. The Young’s moduli (E) follows the Eω > Eα' > Εα" > Εβ sequence, 

revealing high Eω and Eα' values (> 120GPa) and although the Eβ converges to 87GPa, 

the coexistence of all phases affects significantly the E reduction. The calculated 

Young’s modulus surface revealed high anisotropic E values for all Ti-Nb phases, while 

interestingly the Eβ along the [100] direction exhibits really low values (below 30GPa) 

suggesting the importance of a Ti-Nb single-crystal growth for the design of low 

rigidity alloys, especially at small Nb substitutions.  

In order to investigate an alternative pathway for reducing the rigidity, sp or sd-dopants 

were added in the Ti-xNb (x ≥ 18.75at%) alloys. For the sp-dopant Ti-25at%Nb-

x(Sn/In) (x < 6.25%at) alloys, new energy states below the Ti-Nb valence band with 

anti-bonding character are introduced, explaining the experimentally observed E 

decrease (down to 49GPa), while high sp-substitutions (x ≥ 12.5at%) result in β-phase 

destabilization. For the sd-electron dopant, Hf (11at%) may act as precursor of the 

 phase transition when is substituted in the α″ Ti-18.75at%Nb alloy. This is 

attributed to Hf-Hf first and second neighbour interactions that introduce new well 

localized Hf 4f energy states (-11eV) only at the high Hf substitutions (> 12.5at%), thus 

affecting the calculated band energy and inducing β-phase stability. 

Finally, the sd-electron Ti-Zr-Hf alloys were studied by molecular dynamics 
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simulations that yielded disordered polycrystalline structures with E = 64GPa, which 

although lower than the Ti-6Al-4V, it is unfortunately comparable to the β-Ti-25at%Nb 

E values. 
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CHAPTER 1: Introduction 

1.1 Biomedical implants 

1.1.1 Present and future perspectives 

Musculoskeletal disorders are recognized as among the most significant human health 

problems that exist today while it has been estimated that 90% of population over the 

age of 40 suffers from these kinds of diseases. The demand for bone replacement and 

repair is directly related with the continuous aging of the population and the changing 

lifestyle habits within the last decades [1]. The most common reasons for joint 

replacements (Figure 1.1.1) are attributed to diseases such as osteoporosis (weakening 

of the bones), osteoarthritis (inflammation in the bone joints) and trauma. Nevertheless 

not only the replacement surgeries have increased, but also the revision surgery due to 

failures of the implants (Figure1.1.2). Nowadays due to the advancement in medical 

technology people live longer, thus the implants are now expected to serve for much 

longer period or until lifetime without failure or revision surgery. Unfortunately the 

materials available on the market for bone repair and replacement do not satisfy all 

clinical desires. Due to these reasons, development of appropriate material with high 

longevity and excellent biocompatibility is essential. Consequently, a very high uptrend 

in implant manufacturing (Figure 1.1.1) is expected in coming years.  

1.1.2 Biomaterials 

Biomaterials are artificial or natural materials, used in the productions of structures or 

implants, with the aim of replacing the lost or diseased biological fractions. They may 

also help in improving the quality of life and longevity of human beings, that’s the 

reason why the field of biomaterials has grown rapidly to keep with the demands of a 

continuous aging population. Biomaterials are used in different parts of the human body 

as cardiovascular implants (heart valves, pacemaker cases, stents in blood vessels…), 

artificial bones and implants (screws or plates in shoulders, knees, hips, elbows…) as 

well as orthodontic structures [2]. 
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Figure 1.1.1 Various bone-related implants used in vivo for orthopaedic surgery [2]. 
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Figure 1.1.2 Various causes for failure of implants that require revision surgery [3]. 

 

Some of these applications are shown in Figure 1.1.1 [4-6]. The success of biomaterials 

in the body depends on factors such as the material properties, design, and 

biocompatibility, as well as other factors not under the control of the materials engineer, 

including the technique used by the surgeon, the health and condition of the patient, and 

the activities of the patient. The design and selection of biomaterials depend on the 

future application. Development of new biomaterials is an interdisciplinary effort 

between physicists, material scientists and engineers, biomedical engineers, pathologists 

and clinicians. Suitable materials for biomedical implants should possess excellent 

biocompatibility, corrosion resistance in body environment, along with combination of 

high strength, low modulus, high fatigue, wear resistance and high ductility Table 

(1.1.1) [7-9].  
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Table 1.1.1 Implant materials requirements for the desing of orthopaedical 

applications [10]. 

 

1.1.3 Biocompatibility 

The materials used as implants are expected to be non-toxic and should not cause any 

inflammatory or allergic reactions in the human body. The success of the biomaterials 

mainly depends on the reaction of the human body, like the host response induced by 

the material and its degradation in the body [11]. The ability of the implant’s surface to 

integrate with the adjacent bone and other tissues is another important factor and the 

lack of this biointegration may cause different side effects like allergic reactions or 

stress shielding as shown on Figure 1.1.2. If the implant is not well integrated with the 

bone, a fibrous tissue is formed between the bone and the implant [12], which results in 

implant loosening. The biocompatibility of different pure metals is discussed on Table 

1.1.2 and Figure 1.1.3. Consequently, bioactive materials are highly preferred as they 

give rise to high integration with surrounding bone. Nevertheless bio-tolerant implants 

are also accepted for implant manufacturing. Hence, materials with an appropriate 

surface are highly essential for the implant to integrate well with the adjacent bone. 

Surface chemistry, surface roughness and surface topography all play a major role in the 

development of good osseointegration.  

1.1.4 Mechanical biocompatibility 

Properties like hardness, tensile strength, modulus and elongation are of prime 

importance for biomedical applications.  
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Table 1.1.2 Biological impact on the human body for various pure metals. Red 

indicates a serious concern, yellow a moderated concern and green a minimal or no 

concern [13]. 

 

 

Figure 1.1.3 Relationship between the polarization resistance and biocompatibility of 

various pure metals and alloys. Cytotoxicity of various pure metals [14]. 

 

The metals currently used for bone implants are much stiffer than the bone, thus the 

implant carries a disproportionate amount of the loads while the bone is stress-shielded. 

This mechanical mismatch between the bone and implant can lead to bone resorption 

and implants loosening; thus the material for replacing bone is expected to have a 
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modulus equivalent to that of the bone. The bone modulus varies in the magnitude from 

4GPa to 30GPa depending on the type of the bone [15, 16]. The current implant 

materials which have higher stiffness than the bone (Figure 1.1.4) cannot prevent the 

transferred stress to adjacent bone [17]. Any reduction in the stiffness of the implant is 

expected to enhance the stress redistribution to the adjacent bone tissues, therefore 

minimizing the stress shielding effect may result prolonging of the device’s lifetime. 

Summarizing, deal biomaterials for a hard tissue are required not only to reveal 

excellent biocompatibility but also to combine high strength and low-Young’s modulus 

(< 30GPa) in order to meet the demands for a long-service life and implantation.  

Figure 1.1.4 Young’s moduli values of various orthopedic alloys [3]. 

 

1.2 Titanium and Titanium-based alloys for 

biomedical applications 

1.2.1 Titanium and Ti-alloys as a biomaterial 

For load-bearing orthopedic applications, several types of materials including polymers, 

metals, ceramics and composites are currently in use. Nevertheless, metals have so far 

shown the greatest potential and consequently they are used for the majority of the 
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applications due to their excellent mechanical strength and resilience when compared to 

alternative biomaterials, such as polymers and ceramics (table 1.2.1). In particular, 

titanium alloys are the first choice for the majority of applications such as artificial hip 

joints and dental roots because of their high biocompatibility, high strength, long fatigue 

life, formability, machinability and corrosion resistance [17]. 

 

Table 1.2.1 Biomaterials for use in the body [7]. 

Titanium and its Ti-6Al-4V alloy are used since 1950s as implant biomaterials. 

Nevertheless, they are continuously a subject of various modifications concerning the 

alloy’s composition (e.g. Ti–6Al–7Nb, Ti– 5Al–2.5Fe) [7, 9, 19] and their surface 

properties [20] due to their high mechanical strength and fracture toughness [3, 7, 9, 19-

21]. That is in order to meet the needs for improved function and duration of an implant 

in the human body. Unfortunately, these materials have exhibited tendencies to fail after 

long-term use [3, 7, 9, 19, 21] due to various reasons such as high modulus (ETi = 

110GPa and ETi-6Al-4V = 120GPa) compared to that of a cortical bone (E < 30GPa) and 

lack of biocompatibility [3, 7]. The mechanical mismatch leads, as was described in the 

section 1.1.4 (Mechanical Biocompatibility), to bone resorption around the implant 

which will cause tissue loss and implant failure. In order to design novel materials 

suitable for biomedical applications, the research must be focused in the investigation of 

low-rigidity alloys that fulfill all the biocompatibility requirements.  

1.2.2 β-Ti alloys 

Ti alloys are grouped into α, (α + β), and β-type alloys. Young’s moduli of α and (α + 

β)-type titanium alloys such as Ti and Ti-6Al-4V are higher than those of β-type 

titanium alloys (Figure 1.2.2). Therefore, β-type titanium alloys are advantageous for 

the development of titanium alloys with low Young’s modulus for biomedical 
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applications [23]. For this reason, nowadays β-type titanium alloys which are composed 

by non-toxic and allergy-free elements are developed for biomedical applications due to 

their low Young’s moduli, approximately below 80GPa, which is favorable for 

homogeneous stress transfer between implant and bone [24].  

 

 

Figure 1.2.1 Comparison of Young’s moduli of various titanium alloy classified by 

crystalline structure and casting methodology [22]. 

 

The lowest value of Young’s modulus reported for the polycrystalline β-type titanium 

alloy, Ti-35Nb-4Sn [25], or Ti-24Nb-4Zr-7.9Sn [26], is around 40GPa. Young’s 

modulus bellow 40GPa was never measured in polycrystalline biocompatible bulk Ti-

based alloys. Nevetheless, in β-Ti alloys the Young’s modulus exhibits a very 

anisotropic deformation behavior that is highly dependent on the crystal growth 

direction [27-30]. Therefore, although a single-crystal β-Ti alloy grown in a selected 

direction may exhibit enhanced elasticity, detailed studies related to these issues to our 

knownledge are lacking. In addition, the manufacture of porous alloys [31] is very 

effective for further reduction of the Young’s moduli of titanium and its alloys. It is 

known that pores with appropriate sizes enhance the bone growth and remodeling, but 

on the other hand the strength decreases drastically with increasing porosity. 

Summarizing, among the mechanical biocompatibilities, Young’s modulus has a 

significant importance in the final success of the materials for orthopaedics and its 

reduction has received considerable attention during the last years. 

Young’s modulus (GPa) 
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1.2.3 Shape Memory Alloys 

Shape memory alloys (SMAs) are a unique class of metallic materials that can exhibit 

shape memory effect (SME) and superelasticity (SE). A shape memory material is 

initially deformed at low temperature and then recovers its original shape upon heating. 

Superelasticity represents elastic recovery of strains up to 10% during the loading-

unloading cycle at appropriate temperatures [13]. Shape memory alloys (SMAs) are one 

of the most successful materials for the manufacturing of novel medical implants like 

coronary stents [32, 33]. In particular, nitinol (equiatomic TiNi alloy) SMA have been 

successfully applied as biomedical materials (Figure 1.2.2), due to their superior shape 

memory properties, strength, superelasticity, corrosion resistance and absence of 

magnetic properties. Unfortunately the toxic, allergenic and carcinogenic properties of 

nickel [34] have stimulated the development of SMA without the cited undesirable side 

effects. 

 

 

Figure 1.2.2 Photograph shows, from top to bottom, a type A stent, type B stent, stent 

introducer set (guide wire, balloon catheter, compressed stent, sheath), stent retrieval 

set (guide wire, dilator, sheath),and hook wire [33]. 

 

The β-type Ti alloys are known to exhibit a martensitic transformation from β to 

orthorhombic α″ martensite above a critical alloying content. In fact superelasticity has 

been observed in Ti–Nb binary alloys at room temperature and a number of authors 

have attempted the production of biocompatible Ti–Nb(-X) SMAs (X = Zr, Ta, Au, O) 

with superelastic strains up to 4.2% [35-37] However, while α″ orthorhombic Ti-based 

alloys are promising, their Young’s modulus is significantly higher compared to human 
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bone [38]  or to β-type Ti alloys [39]. The achievement of lower Young’s moduli as 

well as the development of new SMA is a topic of increasing interest within the 

biomedical industry. 

 

1.3 Structural and mechanical characteristics of 

Ti and Ti-Nb alloys 

1.3.1 Pure Ti 

Nowadays titanium is one of the most important metals in the industry. The element 

was first discovered in England by W. Gregor in 1790 [40]. Nevertheless, Ti received 

its denomination, by M.H. Klaproth five years later, in reference to the “Titans” who 

was the mythological first sons of the Earth. Chemically, titanium is one of the 

transition elements in group IV and period 4 of Mendeleev’s periodic table. It has the 

atomic number 22 and its atomic weight is 47.9. Titanium is a transition element and 

has an incompletely filled d shell in its electronic structure [41].  

This incomplete shell enables titanium to form solid solutions with many other 

substitutional elements. In the elemental form, titanium has a high melting point (1668 

ºC) and possesses hexagonal closely packed crystal structure (hcp) up to the temperature 

of 882 ºC; above which titanium is transformed into the body centered cubic structure 

(bcc) structure [42]. 

At high pressure and room temperature, Titanium is transformed to the ω phase. About 

25 years ago, Moffat et al. reported [43] that the presence of the ω phase in Ti-based 

alloys is a modification of the β phase of pure titanium. The P-T diagram of Ti (Figure 

1.3.1) reveals that although ω is not a stable phase at room conditions, it can be more 

stable than the β phase at low temperature and high pressure conditions. Interestingly, 

the Ti’s ω phase is retained even if the Ti is pressurized to ω at room temperature (P > 

9GPa) and then returned to atmospheric pressure. In order to alter this behavior Ti must 

be annealed at higher temperatures ºC) [44].  

1.3.2 Ti-Nb alloys 

It is well known that only two stable solid phases exist in the Ti-Nb binary alloy system, 

α –phase hcp (P63/mmc) and β-phase bcc (Figure 1.3.2). As we can see in 

(Figure 1.3.2) above 882 ºC, all Ti-Nb alloys are in solid phase and form single β-phase. 



 

 

   11 

 

Quenching from this phase, the β- structure persists in the alloys which have Nb 

compositions greater than ~25% at [43, 45, 46].  

 

Figure 1.3.1 The pressure-temperature phase diagram of pure titanium [43, 44]. 

 

Burgers [48] originally proposed the orientational relationship between the bcc and hcp 

phase as:  ||  and  ||  

A combination of shuffle, shear, and volume dilatation can lead to this transformation 

(Figure 1.3.3) [49, 50, 51] consisting in: 

ii) A shuffle displacement of the  planes in the  directions.   

Displacement amplitude of  times of the bcc lattice leads to the exact 

hcp stacking sequence. 

ii) A shear such as   and    to squeeze the bcc octahedron 

into a regular hcp one. The angle of the hcp face in the basal plane changes 

from 70.53º to 60º.  
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Figure 1.3.2 Nb-Ti phase diagram [47]. 

 

 

Figure 1.3.3 Schematic representation of the bcc to hcp transformation [52]. 

 

 

However the β→α transformation may allow the formation of martensites phases. The 

stabilization of α′ and α″ phases along with the presence of ω grains have been detected 

in these binary alloys [37, 43, 53]. 

A T0 curve (β→α, β→ω, α→ω) (Figure 1.3.4) gives the points at which the free 

energies of two phases are equal. The implication of this effect is that at temperatures 
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equal or below T0, a single-phase alloy of one crystal structure may transform to another 

single-phase structure without a change in composition. Among other factors, if a 

diffusionless transformation produces strain in the matrix, additional driving force will 

be required to overcome this. As a result, the actual transformation temperature will be 

below T0 [54] Thus, since α' and α" are martensitic forms of α, the martensite starting 

temperature (MS) should be below . Similarly, the  curve shows the region 

where ω precipitates could be formed during quenching. 

It is important to clarify that the α-phase will correspond to the stable hcp (P63/mmc) 

structure, while the α′-phase is formed under martensitic transformation. In other words, 

although both exhibit identical structures and the same lattice parameters, they are 

experimentally formed after different procedures.  Obviously this β to α′ transformation 

obeys the bcc/hcp Burger’s orientation. 

It is important to clarify that the α-phase will correspond to the stable hcp (P63/mmc) 

structure, while the α′-phase is formed under martensitic transformation. In other words, 

although both exhibit identical structures and the same lattice parameters, they are 

experimentally formed after different procedures.  Obviously this β to α′ transformation 

obeys the bcc/hcp Burger’s orientation. 

 

Figure 1.3.4 Calculated T0 and the experimental MS curves [43]. 
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The transformation of β to α′ can be accomplished by [42]  

i) a 10% contraction along which corresponds to  

ii) a 10% expansion along  which corresponds to  

iii) a 1% expansion along  which corresponds to  

 

 

 

Figure 1.3.5 Schematic B2 (bcc) to B19 (α″ orthorhombic phase) transformation in 

NiTi. Also shown are the  projections (equivalent to   projections) of 

two lattices to illustrate clearly the cell deformations and shuffles involved in the 

transformation [58]. 

 

The α″ structure may be viewed as a transition between the hcp and bcc structures. By 

adjusting y, b and c, someone can produce all three structures [56].  For example, a hcp 

structure is obtained when y =1/6 and  (the ideal c/a for hcp is )). 

A bcc structure (Figure 1.3.6) is obtained when y = 1/4 and .  

The α″ is C-centered (space group Cmcm) orthorhombic [55] with atomic positions (0, 

0, 0), (0,-2y, 1/2), (1/2, 1/2, 0), (1/2, 1/2-2y, 1/2) where y has been estimated to have a 

value around 0.2 for Ti-Nb alloys although it may vary with composition. The β→α″ 

transition in NiTi, which is analogous to the same transformation in TiNb alloys, is 

schematically shown in Figure 1.3.5. 
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Figure 1.3.6 Schematic illustration exhibiting the lattice correspondence between β and 

α″ phase [37]. 

 

 

 

 

 

Figure 1.3.7 Plane collapse of bcc along [111] to produce ω. The (111) planes are 

stacked in a pattern that repeats every three planes. Note that the distance between 

(111) planes is exaggerated by 100% to more clearly illustrate the individual planes. 

When the collapse is complete, the 3 atom ω unit cell is formed; the two collapsed 

planes form a honeycomb lattice and the remaining plane forms the hexagonal lattice 

[59]. 
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The orientation of α″ with respect to β is, 

 ||  

 ||  

 ||  

The structure of the ω phase is hexagonal (space group P6/mmm) with atomic positions 

(0, 0, 0), (2/3, 1/3, 1/2), and (1/3, 2/3, 1/2). This is formed by a slight distortion of the 

bcc phase. In Figure 1.3.7, the β→ω transformation is schematically explained by the 

collapse of two among three bcc planes in the direction into a plane at an 

intermediate position, retaining the third plane as a single layer [57].  

The orientation relationships, which follow directly from the atomic displacements, are: 

 ||  

 ||  

And the theoretical lattice parameters are: , .  

1.3.3 Young’s modulus of Ti-Nb alloys 

Figure 1.3.8 shows the composition dependence of Young’s modulus for alloys 

quenched from the β region. The rigidity is highly dependent on the crystalline 

structure, or the predominant phase in polycrystalline compounds, revealing the phase 

stability as a critical parameter for the final modulus. The Young’s modulus of the 

hexagonal phases is the highest, while the bcc exhibits the lowest E, following the 

relationship: Eω > Eα′ > Eα″ > Eβ [39]. At low Nb concentrations, the high Young’s 

modulus is due to the stability of the hcp phase in conjunction with a small percentage 

of ω. The rigidity decreases upon addition of Nb reaching a local minimum at around 

Ti-16wt%Nb (Ti-9at%Nb) due to the progressive stabilization of α″ orthorhombic phase 

against the two hexagonal structures. It is known that the β-phase at high temperatures 

is retained by quenching at Nb content higher than 36wt% (22.5at%Nb). Subsequently a 

minimum in Young’s modulus is observed at Ti-40wt%Nb (Ti-24.5at%Nb), which is 

associated with the predominance of this phase. Age-hardening by ω precipitation is 

expected to occur pronouncedly approximately between 20 and 35wt%Nb (11 to 

22at%Nb) increasing thereby Young’s modulus remarkably, favouring the emergence of 

a local maximum between the two minima. In compositions above 42wt%Nb 
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(27at%Nb) the ω phase has been experimentally observed. Taken into consideration 

these data some can conclude that low Young’s modulus in β-Ti alloys could be 

achieved when the athermal ω precipitation is suppressed at specific at alloying content. 

In line with this idea, and in order to further decrease the Young’s modulus, non-toxic 

ternary additions in β-type Ti-25at%Nb alloys (e.g. Sn) have shown successful results 

avoiding the formation of the ω phase [60, 61] nevertheless the bone –like E values are 

still unreachable. 

 

 

Figure 1.3.8 Nb content of Young’s modulus in quenched Ti-Nb binary alloys [39]. 
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CHAPTER 2: Theoretical background 

2.1 Density Functional Theory 

2.1.1 Quantum many-body problem 

When considering a system of N nuclei, the problem of N+ZN electromagnetically 

interacting particles has to be addressed. Assuming only the pair interactions, the exact 

many-particle Hamiltonian is 

 

 

 

(2.1.1) 

where Mi is the mass of the nucleus located at the position , me is the mass of the 

electrons at  and Zi is the atomic number of nucleus i. The first two terms are the 

kinetic energies for nuclei and the electrons respectively. The third, fourth and fifth 

terms describe the nuclei-electron, electron-electron and nuclei-nuclei Coulomb 

interactions. The time-independent Schrödinger equation for this system reads 

 (2.2) 

where Ψ is the total wave function of the system. Although all parameters in the system 

are known, this equation is impossible to be solved analytically and it has to be treated 

appropriately applying several theories and approximations to simplify the problem.  

2.1.2 The Born-Oppenheimer approximation  

The first step towards a reduction of its complexity is the Born-Oppenheimer 

approximation [1]. Since the dynamics of the electrons occurs at a time-scale that is 

much shorter than that of the much heavier ions, it is legitimate to assume that 

irrespectively of the instantaneous configuration of the ions, the electrons are at every 

moment in their ground state. Assuming that the ions are being “frozen” the nuclei may 
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keep fixed positions during the movements of the electrons and can thus be considered 

as positive charges independently of the electrons. With these assumptions we end up 

with NZ interacting negative particles, moving in an effective potential field. 

Accordingly, the kinetic energy of the nuclei will be zero and the Coulombic potential 

will be constant; thus the new Hamiltonian is 

 (2.1.3) 

where the first term is the kinetic energy of the electron gas, the second corresponds to 

the potential energy due to electron-electron interactions and the third is the potential 

energy of the electrons in the potential of the nuclei. Thus a decoupled Hamiltonian is 

produced, where the contribution of the electrons and the nuclei is separated in two 

different Hamiltonians.   

2.1.3. Density Functional Theory  

The principal goal of any many-body theory is to reduce the number of parameters 

needed to describe the many-body system. Therefore in the quantum many-body theory 

within the density functional theory (DFT) treats the particle density as the fundamental 

variable. The goal is to derive the energy of the system in terms of the charge density. It 

is imperative to note that, by definition, density-functional theory is only able to predict 

the ground-state energy and properties; furthermore, since the ground-state energy is a 

function of a number of parameters of the system, DFT can be also used in order to find 

other ground-state properties – such as equilibrium bond-lengths – by minimizing the 

ground-state energy with respect to these parameters.  

In principle, the theory is able to provide these quantities exactly, but in practice it is 

necessary to introduce some approximations. Fortunately, even the simplest conceivable 

approximation (the local density approximation, LDA) gives accurate results. One of 

the main reasons for this success is that the large kinetic energy is treated exactly, unlike 

in the Thomas–Fermi model [2, 3]. This accuracy, along with the fact that DFT 

transforms the many-body problem into an equivalent single particle problem, is the 

major appealing feature of the theory. 

In 1964 P. Hohenberg and W. Kohn [4] showed that the exact ground-state energy of a 

non-degenerated many-electron system in an external potential, is a unique functional of 

the electron density and that this functional has its minimum at the ground-state density.  
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The two theorems of Hohenberg and Kohn formulated are as follows: 

First theorem: There is a one-to-one correspondence between the ground-state density 

 of a many-electron system (atom, molecule, solid) and the external potential Vext. 

An immediate consequence is that the ground-state expectation value of any observable 

Ô is a unique functional of the exact ground-state electron density. 

 (2.1.4) 

Second theorem: For Ô being the Hamiltonian H, the ground-state total energy 

functional H[ ] = EVext [ ] is of the form  

 

 

 

(2.1.5) 

where the Hohenberg-Kohn density functional FHK [ ] is universal for any many-

electron system. EVext [ ] reaches its minimal value (equal to the ground-state total 

energy) for the ground-state density corresponding to Vext. 

Although the proof of these theorems is out of this text’s scope, and can be found in 

many publications among the mentioned before, it is important to remark their main 

consequences 

i) The ground state particle density determines the full Hamiltonian, except for 

a constant shift of the energy. Hence all properties of the system are 

completely described by this ground state density.  

ii) Although there is an explicit expression for the Hohenberg-Kohn functional 

(FHK), this is unknown. Since FHK does not contain information on the nuclei 

and their position, it is a universal functional for any many-electron system. 

This means that in principle an expression for FHK [ ] exists and can be 

used for every atom, molecule or solid which can be imagined. 

iii) The ground-state density that corresponds to the external potential  

will be the density that minimizes . Of course, this can be done 

only if FHK [ ] is known, but once the density is known a description of 

the whole system can be achieved. 
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Although HK theorems use particle density  as the basic variable, it is still 

impossible to calculate any property of a system because  is still unknown. The 

real breakthrough then came the year after, when W. Kohn and L. Sham [5, 6] proposed 

their ansastz in 1965 (theory that supposed to Walter Kohn the Nobel Prize in chemistry 

in 1998) and showed how the variational problem could be solved via an effective one-

particle scheme, rendering the DFT a usable method for calculations.  

Kohn and Sham (KS) formulated several suggestions in order to simplify the problem. 

They suggested to work with a system of non-interacting electrons, which in general, 

will has a wavefunction (density) different from that of the interacting ones. However in 

the KS approach, a fictitious non-interacting system is constructed, in such a way, that 

its density is the same as that of the interacting electrons. The challenge is then shifted 

from finding the universal HK functional to finding the fictitious system of non-

interacting electrons that has the same density as the “real” one with the interacting 

electrons. This allows setting up more accurate calculations as the expression for the 

kinetic energy of non-interacting electrons.  

Fifteen years later, M. Levy [7] was able to define the necessary functionals without the 

restrictions of the original Hohenberg–Kohn scheme. Since then until nowadays many 

researchers have been working on DFT, which became one of the most spread and 

successful methods on computational physics and materials simulations. For further 

information, there are many publications that describe in more details this theory [8-15]. 

2.1.4 Total energy in terms of density 

Solving the many-particle Schrödinger equation for the ground state wavefunction and 

energy is an impossible task even for a system with few atoms. An alternative way to 

solve the Schrödinger equation is shifting the focus of the problem from  to a 

fundamental observable, namely charge density . For a many-particle system the 

density, is found by calculating the expectation value of the single-particle density 

operator for the many-body wavefunction 

 (2.1.6) 
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 (2.1.7) 

where  are the variables associated with each one of the electrons. When assuming 

that the wavefunction is normalized to unity, integrating the electron density over all 

space will give us the total number of electrons in the system 

 (2.1.8) 

The goal in DFT is to eliminate the wavefunction by writing all terms, making up the 

total ground state energy of the electronic system in terms of density. This is because 

the desirable is to minimize the electronic energy with respect to the density in order to 

obtain the ground state energy and the corresponding electronic density, as commented 

in the previous section when the HK theorem was formulated. It is well known that 

once the wavefunction is obtained by solving the Hamiltonian the observable 

corresponding to a given operator by calculating the expectation value of that operator 

can be determined. This allows to separately calculate the energy terms corresponding 

to the potential operators given in the Hamiltonian (for the electrons). 

Suppose now that the many-body Schrödinger equation and the wavefunction have be 

obtained. The expectation value of the nuclei-electron interaction operator is given by 

 

 

 

(2.1.9) 

after some algebraic operations, the previous expression (2.1.9) can be written as 

a function of  as it follows 

 

 

 

(2.1.10) 
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This simple linear functional form attained by the electron-nucleus interaction energy is 

in fact common to all single-body external potential terms such as an applied electric 

field. 

After some more complicated calculations it can be proved that the equivalent 

derivation for the electron-electron term cannot be written in terms of the single-particle 

density but instead only in terms of the two-particle density: 

 (2.1.11) 

where  may be interpreted as the probability that an electron exists at point  given 

that a second electron exists at .  

However this method does not allow the existence of such a two-particle density but 

instead only the one-particle density, thus another approximation has to be considered. 

In case that the two electrons were completely uncorrelated the two-particle density in 

equation 2.1.11 would just be the product of one-particle densities. This assumption will 

be also applied for the probabilities. Thus the  is written in terms of this product 

plus a correction: 

 (2.1.12) 

The electron-electron energy of equation 2.1.11 may then be written as 

 (2.1.12) 

where the second term comes from the correction in equation 2.1.12 

The kinetic energy implies an even more complicated obstacle. Since the kinetic energy 

operator contains a derivative term, there is no way to write it in terms of the density 

since it is impossible to collect the wavefunction and its conjugate as a single norm 

square. So in order to solve the kinetic energy, the density has to be assumed that it can 

be written as the sum of norm squares of a collection of single-particle orbitals, which is 

one of the key assumptions in DFT 
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 (2.1.13) 

These orbitals are the so called Kohn-Sham orbitals and they are initially completely 

unspecified on the same way as in the orbitals in the Slater determinant in the Hartree-

Fock formalism. In other words, instead of the full many-particle system, a single-

particle orbitals system is considered, which has the same ground state density as the 

real system, thus the treatment remains exactly the same.  

Although the expression of the density as formulated in equation 2.1.13 suggests that 

the kinetic energy is written as the sum of the kinetic energies of the Kohn-Sham 

orbitals, this is not actually equal to the kinetic energy of the real many-particle system. 

Thus the kinetic energy is expressed as the single-particle kinetic energy plus a 

correction extra term: 

 (2.1.14) 

Adding all the terms together in the same expression the total ground state energy may 

be written as:  

 

 

 

(2.1.15) 

The kinetic energy cannot be differentiated directly with respect to  but it can be 

equivalently minimized with respect to the orbitals. Now the only thing that remains to 

be done is to write  in terms of the density. It is important to note that so 

far, our conversion of the energy from the wavefunction description to the density 

representation has been exact. The accuracy of certain approximations is relied to the so 

called exchange-correlation energy, which is the sum of these two terms  

 (2.1.16) 
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The origin of this term is the difference between a system of N interacting and non-

interacting particles. More specifically, the origin of the exchange energy is the Pauli 

repulsion, omitted in the Hartree term, and the correlation energy corresponding to the 

repulsion between electrons. Thus the total energy may be written as 

 

 

 

 

(2.1.17) 

Eventually, the extremely complicated many-body problem that we faced before has 

been reduced to  

i) solving an equivalent one-particle (i.e. non-interacting) system, and 

ii) determining . 

thus rendering DFT calculation feasible in practice. 

2.1.5 The exchange-correlation functional 

Despite all the assumptions taken, the ground-state energy is still under evaluation. 

Since it is the interaction between the electrons which complicates the things, the 

exchange-correlation functional is an artificial way to gradually “turn on” the 

interaction between them. The exchange and correlation energies are defined as the 

difference between the exact total energy of a system and of the classical Hartree energy 

[16, 17].  

2.1.6 Approximations to exchange and correlation 

a) Local Density Approximation (LDA) 

The first well known exchange-correlation functional, the Local Density Approximation 

(LDA) [4, 5] assumes a simple form in which the functional is linearly dependent on the 

density. This approximation considers the whole inhomogeneous and interacting system 

as consisting of a large number of boxes, each containing a homogeneous but 

interacting electron gas. Then the total exchange-correlation energy is approximated as 

the sum of the contributions of all such boxes: 
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 (2.1.18) 

where  is the exchange correlation energy density of an interacting homogeneous 

electron gas of density .  

This approximation is valid because solids, and specially metals, can be often 

considered as close to the limit of homogeneous electron gas within a uniformly 

positive charge background. Accordingly, the exchange part is calculated exactly with 

the Hartree-Fock method, whereas the correlation part is calculated from Quantum 

Monte Carlo computations. Although LDA is a very crude approximation for systems 

that are not as homogeneous as an electron gas, it has proven to be a huge success even 

for non-metallic systems. This is in part due to the cancellation of errors, where LDA 

typically overestimates EX whereas it underestimates EC.  

b) Generalized Gradient Approximation (GGA) 

As previously discussed, LDA treats all systems as homogeneous; however, real 

systems are inhomogeneous. Attributing the limitations of the local description in the 

elimination of the dependence of the exchange-correlation functional on the local 

variations of the electron density, the General Gradient Approximation (GGA) has been 

introduced. In the GGA, unlike in LDA, there is an explicit dependence of the 

exchange-correlation functional on the gradient of the electron density  

 (2.1.19) 

Despite the numerous GGA functionals that have been developed, there is as no 

consensus on the best one. For solid-state applications, the GGAs proposed by Perdew 

et al. [18-21] have been widely used and have proved to be quite successful in 

correcting some of the deficiencies of the LDA. Calculations on prediction of bond 

length and binding energy of molecules, crystal lattice constants, etc. especially in 

systems where the charge density is rapidly varying have been successfully calculated 

by the hand of this functional. However GGA sometimes overcorrects the LDA results 

in ionic crystals where the lattice constants from LDA calculations fit well with 

experimental data but GGA overestimate them [22, 23]. 
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2.1.7 Augmented Plane Wave Method (APW) 

For educational reason, the Augmented Plane Wave Method (APW) [24] will be 

described in this section as an introduction before going to its successors, the linearized 

augmented plane wave (LAPW) and the linearized augmented plane wave with local 

orbitals (APW+lo), which are the methods that will be used in our calculations. 

The basic idea that leads to the APW basis consists of the division of a solid in two 

regions. Close to the nuclei, the electrons behave quite as if they were a free atom, and 

they could be described more efficiently by atomic like functions 

 (2.1.20) 

 

 

 

Figure 2.1.1 Partitioning of the unit cell into atomic spheres, called “muffin tins” (MT) 

and interstitial region (plane waves) [25]. 

 

It should be notted that the APW basis set is dependent. The  correspond to 

the regular solutions of the radial part of the Schrödinger equation for a free atom at 

energy , while  are spherical harmonics. The coefficients  are functions of 

 (reciprocal lattice vectors) determined by requiring that the plane wave outside the 

sphere should match (in value) with the function inside the sphere over the complete 

surface of the sphere. The position inside the muffin tin (MT) is given with respect to 

the center of each sphere. On the other side, for the region far away from the nuclei, the 

electrons are “free”, so these will be described by plane waves 
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 (2.1.21) 

Space is therefore divided now in two regions, as is shown in Figure 2.1.1. Around each 

atom a sphere is drawn. Such a sphere is often called “muffin tin” sphere (MT); its 

radius (RMT) is a crucial parameter for DFT calculations. The second area, 

corresponding to the remaining space outside the spheres and which is described by a 

plane wave, is called the interstitial region. 

2.1.8 Linearized Augmented Plane Wave Method (LAPW) 

The main inconvenient with the APW method is that  has to be constructed at 

the initially unknown eigenvalues of the searched eigenstate. It would be 

helpful if someone is able to recover  on the fly from known quantities. That is 

exactly what the LAPW method enables us to do. The development and demonstration 

of the new equations is out of the scope of this text, this can be found in related text 

books [10, 26].  

The linearized augmented plane wave (LAPW) method [27] is among the most accurate 

methods based on DFT for performing electronic structure calculations for crystals. The 

LAPW method is a procedure for solving the Kohn-Sham equations for the ground state 

density, total energy, and (Kohn-Sham) eigenvalues (energy bands) of a many-electron 

system by introducing a basis set adapted to the problem.  

This adaptation is achieved, like in APW, by dividing the unit cell into non-overlapping 

atomic spheres and their interstitial region. A linear combination of radial functions 

times spherical harmonics Ylm(r) is used inside the atomic sphere  

 (2.1.22) 

where  is the regular solution of the radial Schrödinger equation for a fixed 

energy  and the spherical part of the potential inside sphere, while  is the 

energy derivative of evaluated at the same energy . The linear combinations of 

these two functions constitute the linearization of the radial function. The coefficients 

 and  are functions of  (reciprocal lattice vectors) determined by requiring that 

this basis function matches (in value and also slope) each plane wave (PW) expansion at 

the sphere boundaries. Finally  and are obtained by numerical integration of the 
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radial Schrödinger equation on a radial mesh inside the sphere. The coefficients of the 

atomic-like expansion within the spheres and its energy derivative are chosen so that 

they match the plane-wave both in value and slope.  

In the interstitial region, like in APW method, a plane wave expansion is used 

 (2.1.23) 

where ; being  the reciprocal lattice vectors and  the wave vector inside 

the first Brillouin zone.  

Each plane wave is augmented by an atomic-like function in every atomic sphere. The 

solutions to the Kohn-Sham equations are expanded in this combined basis set of 

LAPW’s  

 
(2.1.24) 

and the coefficients  are determined by the Rayleigh-Ritz variational principle. The 

convergence of this basis set is controlled by a cut-off parameter , 

where  is the smallest atomic sphere radius in the unit cell and  is the 

magnitude of the largest k-vector in equation. 

2.1.9 Linearized Augmented Plane Wave + Local Orbitals Method (LAPW+LO) 

It was not explicitly stated so far which electron states are calculated with the (L)APW 

method. Since the low states are well bound to the nucleus (core state), it is obvious that 

they will not participate in chemical bonding with other atoms. For this reason core 

states will be contained entirely in the muffin tin sphere. States that leak out of the 

muffin tin sphere, and may participate in chemical bonds, are called valence states. 

When applying this definition, there are usually valence states with the same l but 

different n, called semi-core states. In order to be improved upon the linearization and to 

make possible a consistent treatment of semi-core and valence states in one energy 

window, additional (  independent) basis functions, called local orbitals (LO) [28] can 

be added. A local orbital is defined for a particular l and m, and for a particular atom α; 

while it has no effect in the interstitial region and in the muffin tin spheres of other 

atoms, therefore it is called local. Subsequently the formulation of the “lo” consist of a 
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linear combination of two radial functions at two different energies and one energy 

derivative (at one of these energies): 

 (2.1.25) 

The coefficients A, B and C are determined by the requirements that  should be 

normalized and should have zero value and slope at the sphere boundary. Note that the 

addition of local orbitals increases the LAPW basis set size. Although the slightly 

increased computational time is a small price to be paid for a much better accuracy that 

local orbitals offer, and therefore they are always used. 

2.1.10 The APW+lo method 

Despite all the advantages within the development of LAPW method, it has been proved 

that the additional constraint on the PWs to match in value and slope with the solution 

inside the sphere is not the most efficient way to linearize Slater’s APW method [29]. In 

addition, the problem with the APW method was the energy dependence of the basis 

set. The solution of the problem can be made much more efficient when one uses the 

standard APW basis, but with ul (r, El) at a fixed energy El in order to keep the linear 

eigenvalue problem. But we know that with fixed energies this basis set does not give a 

good description of the eigenfunctions.  

In the APW+lo method, the basis set will be energy independent and still have the same 

size as in the APW method. In this sense, APW+lo combines the good features of APW 

and LAPW+LO, by adding a second type of function “local orbital” (equation 2.1.27) to 

have enough variational flexibility in the radial basis functions: 

 (2.1.26) 

 (2.1.27) 

This new lo looks almost like the old “LAPW”-basis set, but here the  and  do 

not depend on  and are determined by the requirement that the lo is zero at the sphere 

boundary (not zero slope) and normalized. Hence, both the APW and the local orbital 

are continuous at the sphere boundary, but each of their first derivatives are 

discontinuous. Although is not strictly needed, the same set of energies  is used as 

the corresponding APW’s.  
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This new scheme results in identical results compared to the LAPW method, allowing 

us to reduce “ ”. This leads to significantly smaller basis sets and thus the 

corresponding computational time is drastically reduced [30]. Within the same 

calculation a “LAPW and APW+lo” mixed basis can be used for different atoms and 

even different l-values of the same atom [31].  

 

2.2 Molecular Dynamics 

2.2.1 Molecular Dynamics 

Molecular Dynamics (MD) is used to simulate many-body problems that are hard or 

impossible to be solved analytically. MD allows for the study and evaluation of physical 

processes in complex systems. In addition, it can verify theoretical computations and 

predict different phenomena [32, 33]. The simulations require initial data such as the 

system interatomic potential, structure, velocities, etc. MD is a deterministic method, 

therefore the system evolves in time. The evolution of the system is gained from its 

Hamiltonian (H) and the equations of motion are given by the derivatives: 

 (2.2.1) 

 (2.2.2) 

The integration of these equations over a time step gives the particles new positions and 

velocities {qi} and {pi} respectively. In classical systems the Hamiltonian takes the form: 

 (2.2.3) 

where  is the kinetic energy and  is the potential energy which 

depends only on the coordinates. The (interatomic semi-empirical) potential is a crucial 

parameter in MD calculations, and the accuracy of the final results is highly dependent 

on this. The main parameters and characteristics of the potential will be discussed in the 

following section.  
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The integration method is also an important parameter that must be taken into account. 

The integration method is usually a finite difference scheme that evolves the particles’ 

coordinates and velocities discretely in time. The chosen integrator needs to be accurate 

enough for the simulated system so that the numerical results will be close enough to 

the real ones and needs to be stable without losses in the total energy. In molecular 

dynamics, the most commonly used time integration algorithm is the Verlet’s algorithm 

[34, 35]. The basic idea is to write two third order Taylor expansions for the positions 

, one forward and one backward in time as follow  

 (2.2.4) 

 (2.2.5) 

being  the velocities,  the accelerations, and  the third derivatives of  with respect 

to t. Adding the two expressions we get 

 (2.2.6) 

Nevertheless, although this algorithm is stable, relatively accurate and simple to 

implement, the velocities are not directly generated. In order to compute the kinetic 

energy K, whose evaluation is necessary to test the conservation of the energy E, the 

velocities are required. For this reason the calculation of the velocities is a crucial 

parameter in final accuracy of the algorithm. By using the Verlet’s method, one could 

compute the velocities from the positions by using 

 (2.2.7) 

The main inconvenient of this algorithm is that, as in the previous expression (2.2.6) the 

error associated is of order Δt
2
. To overcome this difficulty, a better implementation of 

the same basic algorithm is the velocity Verlet algorithm, where positions, velocities 

and accelerations are calculated at the same value of the time variable t+Δt. This 

method uses a similar approach than the basic Verlet, but incorporating explicitly the 

velocity as an input, instead of calculating this from the positions over time 

evolution. The implementation of the algorithm will be as follows: 
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1) The position at , being  the time-step used in the algorithm, is 

calculated by 

 (2.2.8) 

where   are respectively the position, the velocity and the 

acceleration at t. 

2) Then the acceleration at  is derived from the interatomic potential at the 

same time 

 (2.2.9) 

3) Finally the velocity at  is calculated with the following expression 

 (2.2.8) 

Note that this integrator assumes that the acceleration depends only on the position, and 

not on the velocities.  

Then another crucial parameter is the choice of the statistical ensemble of the system 

through which the temperature, pressure and other thermodynamic quantities are 

controlled. In these simulations the isothermal-isobaric (constant number of atoms, 

pressure and temperature - NPT) ensemble was selected and implemented with the 

Nose-Hoover algorithm [35, 36]. The constant parameters are achieved by introducing a 

time-dependent frictional term, whose time evolution is driven by the imbalance 

between the instantaneous kinetic energy and the average kinetic energy. This updates 

the position and velocity for atoms in the group each time-step, keeping a constant 

external temperature. 

Making use of large scale MD simulations several parameters can be controlled that 

cannot be reproduced in DFT-LAPW simulations, like effects affected by the 

temperature and the performance of time dependent recreations. In addition, the system 

size simulated with MD is several orders of magnitude larger than in DFT, although is 

still limited by the CPU speed and the available memory. A good MD simulation is one 
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which finds the right system size that will not affect the results by itself and also the 

right time step that will not skip over the desired physical effect. 

2.2.2 Interatomic potential 

As was commented before, the interatomic potential is the most crucial parameter for 

the success of any MD simulation. The TB-SMA method [38] takes into account the 

essential band character of the metallic bond: the total energy of the system consists of a 

band-structure term, proportional to the effective width of the electronic band [39, 40] 

and a repulsive pair-potential term, which incorporates the non-band-structure parts of 

the total energy, including electrostatic interactions. The expression for the total energy 

 (2.2.11) 

contains a set of adjustable parameters (Aαβ, pαβ, qαβ, and ξαβ) that are usually 

determined by matching to experimental data of cohesive energy, lattice constant, bulk 

modulus, and elastic constants of the system [39 - 42], while α and β stand for the two 

different elements. 

 

2.3 Theory of Elasticity 

2.3.1 Hooke’s law 

When a force acts on a cross-sectional area, the Hooke’s law is expressed as 

 (2.3.1) 

where  is the stress, E is the proportionality constant (Young’s modulus of elasticity) 

and  is the strain.  

When dealing with three dimensional mono-crystalline structures, which are highly 

anisotropic, the Hooke’s law has to be expressed in tensorial form, as follows 

 (2.3.2) 

where  and  are the strain and stress tensors and  is the elastic stiffness tensor.  
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Inversely this expression can be written as  

 (2.3.3) 

being  the compliance tensor, which correspond to the inverse of the stiffness tensor 

. 

 

 

Figure 2.3.1 Typical stress-strain curve 

 

2.3.2 Voigt’s notation 

By expressing the Hooke’s law using the complete tensorial notation, writing the whole 

stress and strain tensor in matrix form, someone may end up with the following 

expression : 

 (2.3.4) 

while taking into account the symmetry of σ, ε and S matrices, the equivalent 

formulation can be extracted:  

 (2.3.5) 
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Although more compact than before this is still a tedious formulation. For this reason 

the Voigt’s notation will be used, in which each pair of Cartesian indices ij are replaced 

by a single index α, according to: 

 (2.3.6) 

resulting in a more simplified expression 

 (2.3.7) 

which is much easier to handle in comparison to the expression 2.3.4. 

2.3.3 Strain and Energy 

In order to calculate the compliance (or the elastic stiffness) tensor by DFT calculations 

a well-known approach will be used that consists of the calculation of the second order 

elastic constants based on the computation of the total energy. This is obtained by 

expressing the total energy of a crystal in terms of a power series of the strain (in this 

case until the second order) 

 (2.3.8) 

where  and  are the energy and volume of the reference structure, which in our 

case is the equilibrium one. By making use of the second order adiabatic elastic 

constants 

 (2.3.9) 

 (2.3.10) 

and substituting 2.3.9 and 2.3.10 in 2.3.8, the following expression is obtained 
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 (2.3.11) 

In order to simplify the formulation, is convenient to use the Voigt’s notation as it 

follows 

 (2.3.12) 

It is important to note that is the stress of the equilibrium structure which is stress 

free (zero pressure) by definition. Consequently, the second term of the expression 

2.3.12 (and 2.3.11), which corresponds to the first derivative of the energy with respect 

to the strain for the equilibrium volume vanishes. Thus the elastic stiffness tensor is 

expressed as a function of the strain and energy as : 

 (2.3.13) 

Making use of this expression, one just has to choose a deformation type given by the 

appropriate strain vector  with values taken around the origin. 

Then, from the total energy curves, the numerical derivatives are taken. That yields to a 

linear combination of the second order elastic constants. The elastic stiffness (or 

compliance) tensor can be simplified by applying the symmetry conditions related with 

the symmetry of the lattice. Due to this reason, the number of deformations which have 

to be applied in order to solve the system is equal to the independent  (or ) 

parameters in the matrix. Once this procedure is repeated for a properly chosen set of 

deformation types, the values of single second order elastic constants can be achieved 

solving the resulting equations. The optimum strain tensors for the different 

crystallographic space groups and a deeper description of this method can be found in 

the ElaStic code manuscript [47]. 

2.3.4 Elastic Stability 

The stiffness matrix calculation is important in order to determine the response of the 

system under different deformations, as well as useful to predict the stability of the 
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different structures and stoichiometries through the elastic stability conditions [48]. The 

mechanical stability conditions for the cubic, hexagonal and orthorhombic lattices are 

given by: 

Cubic lattice: 

 (2.3.14) 

Hexagonal lattice: 

 (2.3.15) 

Orthorhombic lattice: 

 

 

 

 

 

(2.3.16) 

2.3.5 Voigt-Reuss-Hill approximation 

Since real materials are never perfectly isotropic, the discussion of the Hooke’s law for 

anisotropic cases is needed. Although the individual grains may exhibit the crystalline 

anisotropy and symmetry, when they form a polycrystalline aggregate with randomly 

oriented crystallites, the material is considered as microscopically isotropic. Moreover if 

the grains forming the poly-crystalline aggregate have preferred orientation, the material 

can be considered as microscopically anisotropic. Nevertheless, is important to note that 

grain boundaries could also influence in the mechanical characteristics of the materials. 

Since DFT simulations are commonly performed on single-phase monocrystalline 

structures, a method to apply these calculations to more realistic polycrystalline 

materials comparable with experimental results (e.g. tensile or compression test) is 

needed. The application of an appropriate averaging procedure, can determine this 

properties accurately. In particular the Voigt-Reuss-Hill (VHR) approximation [49] 

provides a simple way to estimate the elastic constants of a textured polycrystalline 

matrix having grains in different orientations in terms of its crystallographic texture and 

elastic constants of the constituting grains. While in the Voigt’s [50] approach a 
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uniform strain is assumed, the Reuss’ [51] procedure is valid for the case of uniform 

stress. The resulting Voigt’s and Reuss’ moduli are expressed in terms of the stiffness 

constants (Cij) and compliances (Sij) respectively. 

In the Voigt approach the bulk and shear modulus are 

 (2.3.17) 

 (2.3.18) 

while the corresponding expressions for the Reuss procedure are 

 (2.3.19) 

 (2.3.20) 

R. Hill has shown that the Voigt and Reuss Young’s moduli are the strict upper and 

lower bound, respectively [52, 53]. Thus, the Hill-averaged bulk and shear moduli can 

be determined from these upper and lower limits as 

 (2.3.21) 

 (2.3.22) 

For all the averaged procedures presented here, the Young’s modulus (E) and the 

Poisson’s ratio (ν) can be obtained in connection with the bulk modulus, B, and the 

shear modulus, G, as  

 (2.3.23) 

 (2.3.24) 

 

 



 

 

   45 

 

2.3.6 Young’s modulus surface 

With the aim of measuring the anisotropic behaviour of the elasticity modulus, the 

Young’s modulus surface [54] may be utilized. This is given, in general form, by the 

following expression 

 

 

(2.3.25) 

where  are elastic compliance constants ( ) and ,  and  are the direction 

cosines. 

 

2.4 Computational details 

2.4.1 Ab initio simulations 

By using first principles (ab initio) calculations, ideally someone could build crystals 

atom by atom and describe their electronic structure in detail. Due to this reason DFT is 

a very powerful tool for describing the electronic configuration of metals at nanoscale, 

which is related to the mechanical properties. Linearized augmented plane-wave 

(LAPW) ab initio calculations have higher accuracy compared to other computational 

methods because they describe the interactions using all electrons and plane waves that 

may be valuable for multicomponent alloys [31]. However, this method is 

computationally very expensive and the calculations may be performed in small cells 

with limited number of atoms, whose projection in the reciprocal space are periodically 

reproduced by the use of k-points. Despite these features, ab initio calculations are able 

to describe accurately experimental measurements regarding structural, electronic and 

mechanical properties of materials. 

In this thesis linearized augmented plane-wave method in the framework of density 

functional theory within the WIEN2k software were performed [31]. The exchange 

correlation functional within the generalized gradient approximation (GGA) in the form 

given by Perdew, Burke, and Ernzerhof (PBE96) was employed for the exchange 

correlation functional [31]. 
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For the construction of the different cells various lattices with different symmetries and 

number of atoms were designed. The α′ structure (space group P63/mmc, No. 194) is 

composed by 2 basis atoms at Wyckoff positions (1/3, 2/3, 1/4) and (2/3, 1/3, 1/4); for 

the ω structure (space group P6/mmm, No. 191) the basis atoms were at (0, 0, 0), (1/3, 

2/3, 1/2) and (2/3, 1/3, 1/2); the α″ structure (space group Cmcm, No. 63) is constructed 

with 4 atoms situated at (0, 0, 0), (0, y, 0), (1/2, 1/2, 0) and (0, 1/2+y, 1/2) [55]; and the 

β structure (space group  No. 229) using one atom at the origin. It is important to 

comment that the α″-phase atomic positions depend on an extra degree of freedom 

named “y” [56] that is reported to be around 0.1 for Ti-Nb alloys [57] and whose shuffle 

is related with the  phase transition [58, 59]. 

Several unit cells were used with respect to Nb substitutions and sampling of the 

Brillouin zone. In reference to Ti-Nb-Hf alloys the Nb was kept contant at 18.75at%Nb 

and Ti was substituted by Hf from 5.55at% up to 25at% following the experimental 

compositions. For the Ti-Nb-In/Sn calculations Nb concentration was kept constant at 

25at%, while Ti was progressively substituted by Sn/In in concentrations starting from 

2.08at% up to 25at%. For the simulation of our systems 48 basis atoms were used along 

with a 6x4x3 (38) k-point meshes.  

As a first step, the self-consistent iteration was performed for a total energy and charge 

convergence of 10
-6

 Ry and 10
-2

, respectively, keeping the atomic position constant. 

Afterwards, the ionic relaxation along with the electronic relaxation begins with a force 

convergence criterion of 5·10
-3

 Ry/Bohr retaining the total energy and the charge 

convergence limits. Due to the large number of electrons and the atomic volume of Hf 

atoms, the convergence of this basis, which is controlled by a cut-off parameter, was set 

up to , where  is the smallest atomic sphere radius in the unit cell and 

 is the magnitude of the largest k-vector in equation. For the other compositions, 

due to the smaller atomic radii of Ti, Nb, Sn or In compared to Hf,  was 

set up. 

It is important to note that although the relative positions of the different type of atoms 

within the unit cell have a minor impact on the equilibrium lattice constants, they 

influence critically the system’s electronic and mechanical properties. Despite the small 

unit cell’s restrictions, several atomic rearrangements were systematically tested. 

Consequently, several different atomic configurations were used, in which the 

distributions of the Nb atoms and their short range third element’s (X = In, Sn, Hf) first 
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neighbourhood (FN) environments were systematically tested. In particular, three main 

categories were considered related to the type of first neighbour atoms: a) pure Ti, b) 

pure Nb, and c) mixed Ti-Nb; named Ti-FN, Nb-FN and (Ti-Nb)-FN hereafter, 

respectively. In order to evaluate the X’s energetically favoured FN, the total energy 

difference (ΔΕ) were calculated using the expression:  

 (3.3.1) 

where  is the total energy of the alloys for all atomic environments, 

, and  correspond to the number of Ti, Nb and In atoms in the alloy, while, 

,  and  stand for the total energies of the corresponding pure elements in the 

bcc phase. From all atomic configurations, the energetically favoured FN were chosen 

for further studies (e.g. total energy curves, EDOSs, mechanical properties, etc.).  

The band energy (Eb) is essentially able to describe the preference of a particular 

structure against another one taking into account the shape and the electron-filling of the 

corresponding EDOS. The band energy was calculated using the expression [60] 

 (3.3.2) 

where N(ε) is the  occupation in the electronic density of states (EDOS), E0 is set to -

20eV where the valence and semi-core electrons mainly contribute, while EF stands for 

the Fermi level. 

The initial structures were treated under hydrostatic pressure and the total energy versus 

volume of the primitive unit cell curve was fitted by the Birch-Murnaghan equation of 

state determining the optimum lattice parameters and the bulk moduli. In addition the 

full second order elastic stiffness tensors were calculated from total-energy calculations 

within the framework of the ElaStic package [47]. The deformations performed were as 

many as the independent parameters presented in the stiffness tensor. The bulk, shear 

and Young’s moduli as well as the Poisson’s ratio were averaged by the Voigt-Reuss-

Hill approximation [52] in order to simulate more accurately the behavior of a 

polycrystalline system. For the applied deformations, several strains were applied (from 

1% to 15%) within the different intervals (with 11 or 23 deformations). The smallest 

strain value was used to determine the equilibrium lattice constant more accurately, 

which is especially useful in the orthorhombic case that has three independent lattice 

constants. Then the larger strains, which can be fitted more accurately [47], were 



 

 

   48 

 

considered in order to obtain the Energy vs. Strain curves. Finally the fit interval and the 

order of the polynomial were determined following the convergence criteria suggested 

for the ElaStic package authors [47]. It is important to notice that in general terms, when 

a large deformation (10-15%) is performed, the calculated  values will be more 

accurate, due to the better convergence in the analysis performed by the ElaStiC code. 

Nevertheless when we deal with metastable phases, very large deformations along 

certain directions may lead to abrupt changes in the energy caused perhaps by phase 

transitions. On the other hand, when the deformation is too small, the accuracy of the 

code is not enough to distinguish the energy difference between two points. Therefore, 

tuning the interval and the range of the polynomium used for the fitting is one of the 

most challenging parameters to determine and is crucial for the final accuracy of the 

calculations.   

The powder diffraction pattern simulations were performed within the VESTA software 

[61] taking as input the energetically favoured unit cell calculated by the WIEN2k code. 

2.4.2 Molecular Dynamics simulations 

For the last part of this work, the size of the simulations was scaled-up from DFT to 

classical molecular dynamics, allowing us to create larger systems and to perform time 

and temperature dependent simulations. To this aim, a semi-empirical interatomic 

potential in analogy to the tight binding scheme in the second moment approximation 

was developed in our group by Assoc. Prof. D.G. Papageorgiou. The aforementioned 

potential allows us to describe the interactions of Ti-Zr-Hf metals and their alloys. The 

adjustment of the necessary parameters has been done considering the basic energetic, 

structural and elastic experimental data for the elemental cases, while the heats of 

mixing in the dilute limit have been taken into account in the cases of the cross 

interactions, as we can see in Table 2.4.1. The fitting parameters of the potentials are 

listed in Table 2.4.1 and described in more detail in the theoretical background section 

(chapter 2.2). 

The potential models were subsequently validated by a series of Molecular Dynamics 

simulations from which several thermodynamic quantities, as well as the lattice and 

elastic constants, were compared with available experimental data in the pure elements, 

while solubility and heat of mixing at various concentrations were used in the alloy 

cases [42-46]. In addition the radial distribution function of the pure elements, selective 
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binary systems (Ti-20at%Zr, Ti-20at%Hf and Zr-20at%Hf) and some ternaries have 

been plotted (Figure 2.4.1).  

 

Table 2.4.1 Adjustment of the parameters for the construction of the potential and 

comparison of several simulations (300K) with available experimental data in the pure 

elements. 

 

As expected, lower and wider peaks correspond to polycrystalline cases, in contrast 

with the shaper peaks which stand for the monocrystalline systems. The values of the 

lattice constants a and c are respectively given by the first and the third peaks. In 

addition, it is interesting to mention that all the RDFs exhibit identical features with the 

only difference of a shift, which depends on the lattice parameters. This fact suggests 

the same crystallographic structure (hcp) for all these alloys. Summarizing, the obtained 

models can describe satisfactorily the solid solution cases of Ti-based binary and 

ternary alloys. 

 

Figure 2.4.1 Radial distribution function for the elements and its alloy. 

Fitting values at Zero temperature MD at 300K results

a (Å) c/a Ω (Å3) EC (ev)
C11 C12 C13 C33 C55

EVF (ev) a (Å) EC (ev) Tm (K)
ΔHm

(ev/Å3) (ev/Å3) (ev/Å3) (ev/Å3) (ev/Å3) (kJ/mol)

Hf

Calc: 3,163 1,628 22,319 -6,437 1,238 0,498 0,406 1,350 0,277 2,630 3,175 -6,398 2636 26,05

Exp: 3,195 1,581 22,321 -6,440 1,187 0,465 0,409 1,276 0,374 2,150 3,195 -6,440 2506 25,50

% 0,98 2,98 0,01 0,04 4,30 7,10 0,73 5,80 25,94 22,33 0,61 0,66 5,19 2,16

Ti

Calc: 2,924 1,630 17,637 -4,847 1,189 0,528 0,438 1,288 0,239 1,770 2,937 -4,807 1970 19,30

Exp: 2,951 1,586 17,638 -4,850 1,099 0,542 0,426 1,189 0,317 1,550 2,951 -4,850 1941 18,70

% 0,92 2,79 0,01 0,06 8,19 2,58 2,82 8,33 24,61 14,19 0,47 0,89 1,49 3,21

Zr

Calc: 3,207 1,629 23,269 -6,247 0,990 0,471 0,397 1,069 0,185 2,070 3,218 -6,207 2240 21,23

Exp: 3,231 1,593 23,272 -6,250 0,970 0,419 0,403 1,077 0,227 1,750 3,231 -6,250 2128 21,00

% 0,75 2,28 0,01 0,05 2,06 12,41 1,49 0,74 18,50 18,29 0,41 0,68 5,26 1,10

Fitting values at Zero temperature MD at 300K results

a (Å) c/a Ω (Å3) EC (ev)
C11 C12 C13 C33 C55

EVF (ev) a (Å) EC (ev) Tm (K)
ΔHm

(ev/Å3) (ev/Å3) (ev/Å3) (ev/Å3) (ev/Å3) (kJ/mol)

Hf

Calc: 3,163 1,628 22,319 -6,437 1,238 0,498 0,406 1,350 0,277 2,630 3,175 -6,398 2636 26,05

Exp: 3,195 1,581 22,321 -6,440 1,187 0,465 0,409 1,276 0,374 2,150 3,195 -6,440 2506 25,50

% 0,98 2,98 0,01 0,04 4,30 7,10 0,73 5,80 25,94 22,33 0,61 0,66 5,19 2,16

Ti

Calc: 2,924 1,630 17,637 -4,847 1,189 0,528 0,438 1,288 0,239 1,770 2,937 -4,807 1970 19,30

Exp: 2,951 1,586 17,638 -4,850 1,099 0,542 0,426 1,189 0,317 1,550 2,951 -4,850 1941 18,70

% 0,92 2,79 0,01 0,06 8,19 2,58 2,82 8,33 24,61 14,19 0,47 0,89 1,49 3,21

Zr

Calc: 3,207 1,629 23,269 -6,247 0,990 0,471 0,397 1,069 0,185 2,070 3,218 -6,207 2240 21,23

Exp: 3,231 1,593 23,272 -6,250 0,970 0,419 0,403 1,077 0,227 1,750 3,231 -6,250 2128 21,00

% 0,75 2,28 0,01 0,05 2,06 12,41 1,49 0,74 18,50 18,29 0,41 0,68 5,26 1,10
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Using this interatomic potential, classical molecular dynamics simulations were 

performed by means of the LAMMPS code [62]. The structural and mechanical 

properties of the pure Ti, Zr and Hf metals as well as their Ti-based binaries (Ti-

25at%Zr, Ti-25at%Hf) and ternaries (Ti-12.5at%Zr-12.5at%Hf) were studied. The 

radial distribution function was evaluated for a crystal with up to 104832 atoms that was 

melted to 3000K and quenched at 0.1K/ps, 1K/ps and 10K/ps to room temperature. 

Finally, tensile deformation was applied with a strain rate of of 10
-5

s
-1

 while imposing a 

Poisson’s ratio of 0.3. 
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CHAPTER 3: Results 

3.1 Ti-Nb alloys 

3.1.1 Introduction 

As has been commented in the introduction chapter, upon the Ti-Nb alloy’s preparation 

several phases (including α′, β, α″ and ω) may coexist depending on the Nb 

concentration [1-3]. Therefore, although Nb is a β-stabilizer element, the β-phase 

becomes stable mainly for Nb compositions above 23at%. This behavior is directly 

related with the instability of pure Ti β-phase at ambient conditions, that is correlated to 

its elastic instability due to the negative values of the tetragonal shear constant C’. For 

cubic d transition metals and alloys, the C’ is associated with the energy difference 

between the fcc and bcc, while the stability of these close-packed structures (fcc, hcp, 

bcc) is linked to the electronic band filling and the d-electrons’ number and shape in the 

electronic density of states [4]. These methodologies tried to correlate the electronic 

properties of the Ti-based alloy with the experimentally observed low Young’s modulus 

and shape memory characteristic and were used as guides for the design of new alloys. 

Nevertheless, although the last years the attention was indeed concentrated on the Ti-Nb 

alloys, most of the studies, especially the theoretical ones were focused mainly on the β-

phase and on specific Nb concentrations. Therefore investigations concerning the 

interpretation on the existence of the experimentally observed phases and their influence 

on the alloy’s properties to our knowledge are lacking. 

In this chapter, we report a systematic study of Ti-Nb alloys with increasing Nb 

concentration by first principles calculations and a comparison with experimental data. 

The α′, β, α″ and ω phases were studied by ab initio calculations trying to understand 

the relationship between the structural, electronic and mechanical properties of Ti-Nb 

alloys while in the next chapters the β-Ti based ternary alloys properties (Ti-Nb-X, 

X=Sn, In, Hf (wt%)) will be presented. 
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3.1.2 Results and discussion 

 a) Structural properties 

The main scope of this chapter is to identify the links between the mechanical 

properties, the structure and the chemistry of pure Ti and its Ti-Nb alloys for various 

crystalline phases: e.g. α′, ω, β and orthorhombic α″. It came out that the predominant 

crystalline structure depends on the Nb concentration while all phases contribute in the 

experimentally observed mechanical properties (e.g. Young’s moduli).  

In Figure 3.1.1 the Total Energy for the α′, ω, β and orthorhombic α″ phases are 

represented as a function of the unit cell volume. In this figure, the hexagonal phases are 

found to be more stable for the smallest Nb concentrations while for the highest Nb 

compositions the β-phase becomes the energetically fauvored. In particular, the total 

energy (figure 3.1.1) shows, as expected, the α′ and ω phases of Ti-(0 ≤ x ≤ 6.25)at%Nb 

as energetically favoured structures compared to α" and β phases. The bcc structure is 

especially unfavoured for low Nb compositions, Ti-(0 ≤ x ≤ 12.5)at%Nb, with energy 

differences above 0.1 eV compared to the α' phase. In particular, for Ti-(0 ≤ x ≤ 

6.25)at%Nb the α' and ω phases are the energetically favoured structures, while at the 

low Nb compositions Ti-(0 ≤ x ≤ 12.5)at%Nb the β-phase is really unfavoured, with 

energy differences above 0.1 eV compared to the α′-phase, Figure 3.1.1. On the contrary, 

for higher Nb content Ti-(x ≥ 18.75)at%Nb, the β-phase becomes energetically favoured.  

It should be noted that although the ab initio data reveal the orthorhombic α"-phase 

unfavoured for all Ti-xNb compositions, the total energy difference at Nb12.5at% is 

small compared to the α' and β phases, denoting that these structures could in fact 

coexist with others, in line with the experimental observations.  

The metastable character of the orthorhombic α"-phase that is related with the 

martensitic formation could be associated with the experimental rapidly quenched 

casting methods, as arc melting or mould suction, which allows the formation of several 

Ti-Nb phases [3, 5, 6]. An increasing trend of the volume’s unit cell as a function of the 

Nb addition is observed in the Total Energy vs. Volume curves (Figure 3.1.1), in 

agreement with the experimental results [7]. 

Furthermore, the system’s lattice constants along with the bulk moduli were calculated 

by fitting the Total Energy vs. Volume curves to the Birch Murnaghan equation of state. 

Figure 3.1.2 depicts the α′, ω, α″ and β lattice constants of Ti-Nb binary alloys.  



 

 

   57 

 

 
 

Figure 3.1.1 Total energy versus volume of the experimentally observed Ti-xNb (x = 0, 

6.25, 12.5, 18,75 and 25 (at%)) crystalline structures. Where the α′, ω, α″ and β phases 

are respectively represented by blue, green, red and black traces. 

 

In the α′ and ω phases, due to the hexagonal symmetry pattern of the lattice, two 

different lattice constants a and c (or a and c/a) have to be optimized. In Figure 3.1.2(a) 

the α′-phase lattice constants follow a linear trend: a slightly decreases upon addition of 

Nb, while c increases with a much more pronounced slope compared to a. On the 

contrary, in ω Ti-Nb (Figure 3.1.2(b)), the lattice constants evolution follow the 

opposite trend, a increases more than 0.1 Å compared to the pure Ti and Ti-33.33atNb, 

while c slightly decreases with the addition of Nb. It should be noted, that the presence 

of ω-Ti-Nb grains that were experimentally observed in the binary system is very 

crucial, because although only small volume percentages have been experimentally 

measured, they play an important role since they increase the Young´s modulus [8]. 

Therefore, a theoretical study of the structural (including also mechanical) properties of 

the ω-phase is crucial for the physical insight of Ti-Nb alloys. It is worth to be noted 

that although the hexagonal phases of pure Ti have been largely studied, to our 

knowledge, studies regarding the structural properties of α′ and ω-phase Ti-Nb alloys 



 

 

   58 

 

are rather scarce. Experimentally, the presence of ω grains is especially difficult to be 

detected in Ti-Nb alloys due to their small volume percentage. Moreover ω precipitates 

could appear after mechanical deformation, which is critical for orthopaedical 

applications. This lack renders the theoretical and experimental results of this chapter 

regarding the Ti-Nb ω-phase very interesting and innovative. The present DFT 

calculations are in good agreement with available experimental results for pure Ti and 

Ti-Nb carried out by our colleagues at IFW Dresden.  

Figure 3.1.2 Lattice constants of a) α, b) ω, c) α″ and d) β phases for the binary Ti-Nb 

alloys. The solid squares stand for this work, the bold circles for IFW measurements 

while the other data are referred to previous works [5, 9-16] for comparison. 

 

Turning to the α″-phase, due to its orthorhombic symmetry three independent lattice 

parameters along with the y-parameter (defined in 3.1.2) can be distinguished, which 

makes in total four degrees of freedom to be evaluated. In order to simplify the 

calculations, y was kept constant (y = 0.2) and the lattice constants (a, b and c) were 

calculated after several strains of the unit cell along the three axes. The a lattice constant 

is found the only lattice constant which increases as a result of the progressive addition 

of Nb while the b and c lattice constants are progressively reduced (Figure 3.1.2(c)). 

Moreover in the orthorhombic case, a relatively large difference between the ab initio 

calculations and the experimental values compared to the α′, ω or β structures can be 
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observed. These calculations can be assumed to exhibit the largest error due to the 

presence of the four degrees of freedom along with the constant y value (y = 0.2) during 

the lattice parameters optimization. Nevertheless although the absolute values may 

differ from the experimental lattice constant, they follow the experimental trend upon 

Nb substitution.  

Due to its cubic β-phase’s symmetry, the lattice constant is obtained from the optimum 

volume under hydrostatic pressure. In particular Figure 3.1.2(d) shows the linear 

increase of the lattice constant as a result of Niobium addition.  

 

 

Figure 3.1.3 Energetically favoured atomic conformation of a) α′-Ti-12.50at%Nb, b) ω-

Ti-16.67at%Nb, c) α″-Ti-18.75at%Nb and d) β-Ti-18.75at%Nb. The Ti and Nb atoms 

are represented by blue and magenta spheres.  

 

Although our ab initio calculations underestimate the experimental results, probably due 

to: 

i) the approximations in Density Functional Theory 

ii) small mono-crystalline unit cells  

iii) the absence of temperature and pressure  

they follow the same trend in comparison with the available XRD measurements.  
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Summarizing, the equilibrium Ti-Nb supercell volume increases upon Nb substitution 

for all phases in line with the available XRD patterns [7]. 

The atomic rearrangement inside the supercell is a critical parameter in the present ab 

initio calculations. Due to this reason, for the design of the unit cell, several atomic 

configurations have been considered revealing the Nb preference for a pure Ti first 

neighbourhood (FN). Consequently, the Ti-FN was chosen for further study, trying to 

simulate a solid solution in which the Nb atoms had a majority of Ti nearest neighbour 

atoms. In Figure 3.1.3 the energetically favoured unit cell for selective stoichiometries 

are shown as examples for the different phases. It is clearly visible that the preferred 

atomic conformation is the one where the Nb atoms are homogeneously distributed in 

the crystalline matrix. Interestingly, in both α″ and ω-phases the Nb atoms are found to 

lay in the (0001) plane, which in the ω case stands for the non-dense plane. 

b) Electronic properties 

For the energetically favoured atomic conformation and the optimum equilibrium 

lattice, the Electronic Density of States’ (EDOS) have been calculated for several Ti-Nb 

stoichiometries. The analysis of the EDOS aims in understanding [4] 

i) the electronic origin of the phase transitions,  

ii) the coexistence of several phases,  

iii) the influence of different Nb compositions  

In particular the role of Nb additions in the stabilization or destabilization of the 

different structures and consequently in the mechanical properties may be determined 

from its electronic structure by analyzing the shape and the filling of the EDOS at the 

Fermi level [4]. Figure 3.1.4 – 3.1.8 and Figures SM 1-4 depict respectively the total 

and partials EDOS of α′, ω, α″ and β phases of Ti-xNb for different Nb additions. It is 

clearly visible that the α′ and ω phases present a deep local EDOS minimum located at 

the Fermi level (EF) and a high occupation of states bellow EF denoting the stability of 

these lattices at low Nb concentrations, Ti-(x ≤ 9.375)at%Nb. Nb d-electrons are mainly 

responsible for the states between -3.5eV and EF, while their hybridizations with the Ti 

d-electrons along with a small contribution from the p-electrons, approximately 10 

times smaller compared to the d-contribution, enhance the electron occupation at the 

Fermi level. This phenomenon induces the destabilization of both hexagonal lattices 
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subsequent to the substitutional addition of Nb. The Ti-Nb hybridizations are also 

visible in the p-electrons, where a broad band appears from approximately -6eV to EF. 

These p-electron hybridizations introduce a high peak around -0.5eV that decreases 

progressively upon Nb addition. This effect, which is more pronounced in the pure ω-Ti 

EDOS, is depleted up to 50% in the Nb rich compositions (Ti-50at%Nb). This is due to 

the smaller contribution of p-Ti electrons compared to p-Nb at 0.5eV. In analogy with 

the p-electrons, the s contribution is smaller than the d-electrons occupation in the total 

EDOS. The s-states are located below EF occupying energies between -1eV and -6eV, 

with a maximum occupation between 0.15 and 0.20states/eV/atom at around -3eV.  

 
 

Figure 3.1.4 Electronic density of states of the experimentally observed Ti-xNb (x = 0, 

6.25, 9.37, 18.75, 25 and 50 (at%)) crystalline structures. Where the α′, ω, α″ and β 

phases are respectively represented by blue, green, red and black traces. 

 

Concerning the martensite orthorhombic α″-phase, we observe that small Nb additions 

(≤18.75at%Nb) reduce the occupation at EF rendering the α″ structure more stable than 

the α′ or ω phases, Figure 3.1.4. In particular, for the lowest Nb contents the α′ and ω 

phases present a minimum at the Fermi level that is filled up upon Nb addition, 

denoting the stability of these phases. On the other hand, although pure α″-Ti has a 
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minimum located bellow EF, denoting instability, for Ti-(12.5 ≤ x ≤ 25)at%Nb this 

minimum is shifted exactly at EF revealing stability of the orthorhombic lattice, in 

agreement with previous experimental studies [7, 17].  

 

Figure 3.1.5 Electronic density of states of α′-phase pure Ti (black), Ti-12.5at%Nb 

(blue), Ti-33.33at%Nb (purple) and Ti-50at%Nb (turquoise). 

 

 

Figure 3.1.6 Electronic density of states of ω-phase pure Ti (black), Ti-6.25at%Nb 

(red), Ti-25at%Nb (purple) and Ti-50at%Nb (turquoise). 

 

For Nb additions higher than 25at%, the occupation at the Fermi level is equivalent for 

the orthorhombic as well as the bcc phase. It is worth to be noted that the presence of 

local minima (pseudogap) at EF, presented for the α″-Ti-(12.5 ≤ x ≤ 25)at%Nb 

compositions, may reveal the metastable character of the orthorhombic phase and could 

be related with its coexistence with other phases, in line with experimental observations 

[7]. The α″ metastable features could be explained by the absence of a wide and deep 
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minimum at EF, similar to the ones of the α′ and ω-phase of Ti-(0 ≤ x ≤ 6.25)at%Nb or 

β-Ti-25at%Nb.  

 

Figure 3.1.7 Electronic density of states of α″-phase pure Ti (black), Ti-9.375at%Nb 

(green), Ti-12.5at%Nb (blue), Ti-18.75at%Nb (orange) and Ti-50at%Nb (turquoise). 

 

 

Figure 3.1.8 Electronic density of states of β-phase pure Ti (black), Ti-6.25at%Nb 

(red), Ti-9.375at%Nb (green), Ti-12.5at%Nb (blue) and Ti-25at%Nb (purple).  

 

Regarding the α″ partial EDOS contributions (Figure SM 3), the Nb d-electrons are 

distributed between -3.5eV and EF exhibiting two main peaks at -1eV and -3eV. The 

Nb-Ti hybridizations are mainly responsible for the states at the Fermi level and 

subsequently for the stabilization or destabilization of the orthorhombic structure. In 

addition the partial p-electrons, although with smaller contributions compared with the 

d-electrons, are also responsible for the minimum at EF. In line with the other cases, the 

p-electrons are located within a broad band located approximately between -6eV and 

EF, with a higher occupation between --1eV and EF. Finally the s electrons occupy the 
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states between -1eV and -6eV, with a maximum occupation of around 0.15-

0.20states/eV/atom at -3eV, exhibiting an analogous distribution with the one described 

previously.  

The stabilization of the bcc lattice is crucial since the cubic structures are expected to 

have lower Young’s moduli than the hexagonal structures. The physical insight of the 

emergence of the β-phase upon Nb substitution and the interrelated destabilization of α′ 

and ω can be explained by the new electronic configuration caused by the Nb-Ti 

hybridizations. In particular we found that Nb enrichment results in the enhancement of 

the number of β-Ti-Nb d-electrons, while the main Nb contribution in the EDOS is 

located around -1eV (Figure SM 4). These d-electrons are located between -3.5eV and 

EF and are mainly responsible for the pseudogap at the Fermi level. Interestingly, and in 

contrast to the α and ω cases, this Nb-Ti hybridization is responsible for the depletion of 

the occupied electronic states at the Fermi level, which characterize the β-phase of Ti, 

thus leading in a stable bcc structure. 

Moreover, the presence of a local maximum around -2eV in the d-electrons partial 

EDOS for low Nb compositions is shifted to lower energy states as a result of Nb 

addition. The combination of the electronic states: a) depletion at EF and b) shift 

towards lower energies, denote the stability of the bcc phase upon Nb substitution. The 

depletion of the states at the Fermi level can be also observed in the p-electrons EDOS. 

The main Nb p-electron (p-Nb) EDOS peak, located on EF is depleted from 0.20 

states/eV/atom of pure Ti to 0.15eV/states/atom for the highest Nb compositions. In 

addition the Ti p-electron (p-Ti) and p-Nb peaks around -0.75eV or at the EF (p-Ti 

EDOS) are shifted to lower energy values upon Nb addition. In line with the previously 

described cases, the s-electrons occupy a broad band between -1eV and -6eV with a 

maximum occupation of 0.20states/eV/atom. This peak is initially located around -2eV 

for pure β-Ti and at -4eV for α-Ti, while in the alloy case is situated around –3eV.  

Summarizing, from the study of the electronic properties we are able to conclude that 

the minimum electron occupancy at the Fermi level (EF) indicates the stability of α′ and 

ω structures at low Nb concentrations, Ti-(x ≤ 9.375)at%Nb. Regarding the martensite 

orthorhombic α″-phase, small Nb additions (≤ 18.75at%Nb) render this structure more 

stable than a’ or ω, whereas for Nb compositions above 25at%Nb the orthorhombic 

structure is unfavoured compared to β.  
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Figure 3.1.8 Partial electronic density of states of: a) α-Ti, b) α′-Ti-25at%Nb, c) ω-Ti, 

d) ω-Ti-25at%Nb, e) α"-Ti, f) α"-Ti-25at%Nb, g) β-Ti , β-Nb and  h) β-Ti-25at%Nb; for 

the total, d, p and s contributions (first up to fourth row, respectively).Blue lines stand 

for the Ti-partial contribution, red for the Nb-partial contribution and black for the 

total average. 

 

For the highest Nb contents, the Nb-Ti hybridizations are responsible for the depletion 

of the occupied electronic states at the Fermi level of the binary system, which 

characterize the pure β-Ti, thus leading in a stable bcc structure. The partial EDOSs 

show an analogous behavior for the α′, ω, α″ and β phases and demonstrate that the 
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maximum contribution is due to the d-electrons. These d-electrons are located between -

3.5eV and EF and are mainly responsible for the states at the Fermi level. In addition the 

p-electrons are also responsible for the broad band that goes from -6 eV to EF although 

with significantly smaller contributions in the total EDOS compared to the d-electrons. 

The s electrons occupy the states between -1eV and -6eV, with a maximum occupation 

of 0.20states/eV/atom at -3eV. Concluding, these quantum mechanical calculations 

predict the presence and coexistence of α′, ω, α″ and β Ti-Nb phases as a function of Nb 

substitution due to the shape and the filling of the EDOS, especially at EF. The results of 

this work are in line with available experimental data [3, 6, 7, 17]. 

c) Mechanical properties 

  i) Elastic stiffness and mechanical stability 

The ab initio WIEN2k total energy results and the ElaStic package [18] were used in 

order to calculate the elastic constants of the Ti-Nb alloys. In Figure 3.1.9 the values of 

the elastic stiffness matrix (Cij) and selective mechanical stability conditions for α′, ω, 

α″ and β phases (equations 3.1.1-3) are presented [19]. The behavior of the mechanical 

stability conditions upon Nb substitution, crucial for the stabilization or destabilization 

of these phases, is denoted by arrows. In particular the linear decreasing of C44 (light-

blue turned squares) for the two hexagonal phases (α′ and ω) suggests the progressive 

destabilization of these structures as a result of the Nb addition (positive values 

denote phase stability). In addition, although the condition  is fulfilled for 

the Nb ≤ 33.33at% cases, this difference presents a downward trend upon Nb 

substitution suggesting progressive destabilization of the hexagonal lattices. In 

particular,  elastic constant (represented by red circles) increases whereas  

(represented by black squares) remains constant for the α′-phase and decreases linearly 

for the ω-phase. The ω-phase  equivalent values for Ti-33.33at%Nb, (Figure 

3.1.9(b)), suggest the initiation of its mechanical destabilization. Concerning the 

orthorhombic case, all the mechanical stability conditions (equations 3.1.3) are fulfilled. 

In order to conclude about the stability of this structure other criteria had to be 

consedered, like the total energy preference and the electronic density of states 

behavior. In any case, the Cij values can be used for the calculation of the mechanical 

properties (e.g. Young’s moduli) by means of the VRH average method. On the other 

hand, for the β phase the negative value of C’ ( ), where C11 and C12 
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are respectively represented by black squares and red circles, becomes positive around 

10at%Nb denoting the initiation of β-phase stabilization. Furthermore the  increasing 

trend that converges around 15at%Nb shows the mechanical stability of the bcc phase 

for Nb-rich compositions. The positive value of  is related with the mechanical 

stability, being approximately 40GPa for all compositions. The results concerning the 

mechanical stability of α′, β and ω phases are in agreement with previous studies [20-

24], while to our knowledge studies concerning the elastic stiffness matrix for the 

orthorhombic α″-phase do not exist. It has to be noted that the results concerning the 

orthorhombic phase are very interesting because they could be related with its 

superelasticity and shape memory features [5, 25, 26].  

 

 

Figure 3.1.9 Elastic stiffness tensor and Mechanical stability conditions of the Ti-Nb a) 

α, b) ω, c) α″ and d) β phases versus Nb composition. The blue arrows denote the 

destabilization of α and ω phases while the cross between C11 and C12 shows the 

initiation of the β-phase stabilization. 

 

Concluding, the analysis of the mechanical stability conditions shows the destabilization 

of the α′ and ω structures upon Nb addition, while in Nb-rich compositions (> 

15at%Nb) the β-phase stabilization features emerge. The elastic stiffness matrix’s 
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components can be used in order to predict the system’s mechanical properties like 

bulk, shear and Young’s moduli as well as the Poisson's ratio, for every phase and for 

the different Nb stoichiometries. 

ii) Elastic properties 

The elastic properties of the Ti-xNb (x ≤ 35at%) alloys were systematically studied for 

every single-crystal structure using the corresponding elastic stiffness matrix . 

Figure 3.1.10 illustrates the evolution of the bulk modulus (B), shear modulus (G), 

Poisson’s ratio (ν) and Young’s modulus (E); as a function of Nb concentration. These 

parameters were carefully averaged by means of the Voigt-Reuss-Hill (VRH) 

approximation [27, 28]. More details and basic notions about the VRH average are 

explained in the section 2.3.4 of the theoretical background chapter. 

The hexagonal α′ and ω structures reveal similar behavior concerning K, G, ν and E 

upon Nb addition. In particular, the E and G values decrease almost linearly with the 

presence of Nb. The Young’s moduli values are 134GPa < Eα′ < 75GPa for the α′-phase 

and 185GPa < Eω < 39GPa for the ω-phase, indicating a drastically reduction of the 

Young’s moduli for rich-Nb compositions. Nevertheless, these low Young’s moduli 

values could be related with the destabilization of the α′ and ω phases at the high Nb 

substitutions that are difficult to be found in the experimentally casted alloys. In 

addition, the shear moduli values are within 51GPa < Gα′ < 26GPa and 75GPa < Gω < 

13GPa for the α′ and ω phases respectively, for Nb substitutions between 0 and 35at%. 

Generally, the Young’s and shear moduli vary linearly between the lowest (pure Ti) and 

the highest (Ti-33.33at%Nb) Nb composition. On the other hand, the B and ν values 

follow the opposite trend. The bulk modulus increases from 112GPa to 135GPa for the 

α′-phase whereas in the ω-phase B maintains a constant average value around 120GPa. 

Referring to the ω-phase Poisson’s ratio a pronounced increase is visible upon Nb 

addition being almost 0.4 for Ti-33.33at%Nb compared to 0.2 for the pure β-Ti.  

Regarding the α″-phase, most of the calculated values remain constant upon Nb 

addition. This behavior is more visible for Ti-xNb (9at%Nb < x < 25at%Nb) with 

average values of Bα″ = 116GPa, Gα″ = 39GPa, να″ = 0.34 and Eα″ = 105GPa. On the 

other hand, the higher E values where found for the lower Nb compositions, (less than 

9at%), while a non-linear behavior was predicted for the bulk moduli. These results 
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could be related with the instability of the orthorhombic structure for the lowest Nb 

concentrations.  

For Ti-xNb (x > 15at%Nb) the β-phase is expected to exist since all the mechanical 

stability conditions are fulfilled whereas the G, ν and E reveal almost constant values 

for Nb compositions above 12.5at%. In particular, for Ti-xNb (Nb > 12.5at%) the 

values for the Poisson’s ratio ν varies from 0.37 up to 0.41, G from 30GPa to 34GPa, 

while the E data oscillate between 84GPa and 93GPa; values that can be considered as 

constants. For Ti-xNb (x < 12.5at%) compositions, the calculated ν exhibit extremely 

high values (above 0.5), while E and G acquire very low moduli, which may acquire 

even negative values, revealing the instability of the β-phase Ti-xNb (x < 12.5at%). 

Meanwhile the β-phase bulk modulus shows a linear increasing trend from 106GPa for 

pure Ti up to 132GPa for the Ti-31.25at%Nb. Ductility is another important parameter 

to take into account in the design of materials for biomedical applications. In brittle 

materials failure will occur within or just after the elastic region of the stress-strain 

curve, whereas ductile materials exhibit a long phase of plastic deformation prior to 

ultimate failure. In biomedical implants the toughness and ductility may prevent the 

catastrophic failure as a result of accidental overload or localized strain. The ductility 

can be estimated from the ratio between the bulk (B) and the shear (G) moduli. 

Materials with low B/G ratio are considered as fragile materials, while for high B/G the 

materials are ductile [29]. For all cases, we found that B increases (Figure 3.1.10(a)) 

upon Nb addition. Similarly, the G values (Figure 3.1.10(b)) remains almost constant or 

increase, depending on the structure and the stoichiometry. Therefore we could suggest 

according to the Pugh’s law that the addition of Nb to Ti results in an overall ductility 

improvement. 

In Figure 3.1.10(d) the β-phase presents the lowest Young’s moduli for the Ti-(x ≤ 

32.5at%)Nb alloys, compared to α′, ω and α″ phases while the ω-phase exhibits the 

highest Young’s moduli values for the low Nb compositions, in agreement with the 

previous studies. The Young’s moduli of the β–phase (Eβ) presents a constant modulus 

(approximately 87GPa) for Nb compositions higher than 12.5at% while for the lower 

Nb concentrations, i.e. β-Ti-9.375at%Nb, the modulus is closer to the desired Ebone ~ 

30GPa revealing the importance of β–Ti(x ≤ 12at%)Nb stabilization. Similar behavior is 

found for the Eα′′, although with higher values compared to the β-phase. The VRH 

Young’s modulus of α′ and ω achieve maximum values for the pure Ti cases, while they 
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decrease linearly upon Nb additions. Interestingly, although the Eω decreases down to 

39GPa for Ti-33.33at%Nb, this phase is unfavoured for the Nb-rich compositions.  

Finally, the Young’s moduli reveals higher values for the hexagonal phases than 

orthorhombic and β phases (Eω > Eα′ > Eα′′ > Eβ), while a weighted average on these 

structures as a function of Nb is expected to lead to the experimentally observed w-

shaped curve [8]. Therefore, the absolute and the relative Young’s moduli values 

between the experimentally observed structures could be a crucial parameter for the 

final Young’s modulus of the polycrystalline compound. It is important to note that 

although the grain boundaries may influence the experimental Young’s moduli, they 

cannot be considered within the DFT approach.  

 

 

 

Figure 3.1.10 Ab initio calculations for single-crystal Ti-xNb of a) bulk modulus, b) 

shear modulus, c) Poisson’s ratio and d) Young’s modulus; averaged by the Voigt-

Reuss-Hill approximation. The α′, ω, α″ and β phases are respectively represented by 

blue, green, red and black marks. 

 

As already mentioned, the achievement of low Young’s moduli values is closely related 

with the stabilization of the β-phase. Indeed this phase exhibits the higher stability and 

the mechanical isotropy keeping the lowest Young’s moduli for Nb compositions above 
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15at% compared to the other phases. Although with a slight overestimation, these 

calculations are in agreement with available experimental and theoretical studies.  

Finally the Young’s modulus surface [30] was calculated allowing a very illustrative 

way to describe the elasticity as a function of the crystallographic direction. In particular, 

the directional elasticity modulus is defined in spherical coordinates: the directions are 

given by the angles θ (0 ≤ θ ≤ 2π) and φ (-π/2 ≤ φ ≤ π/2), while the Young’s moduli is 

represented by the modulus r, which is the distance from the origin to the surface. The 

graphical representation of the directional Young’s moduli for selective stoichiometries 

and for all phases is given in Figures 3.1.11-12. For the two hexagonal phases, the 

Young’s modulus surface depicts an anisotropic teetotum-like shape. For the α′-phase, E 

reveals values up to 140GPa and 150GPa respectively for the pure Ti and Ti-25at%Nb 

concentrations, as depicted in the Figure 3.1.11, along the [001] direction ([0001] 

direction for the hexagonal Miller indices). The ω-phase exhibits a rather higher 

maximum modulus compared to the E calculated by the VRH approximation 

(polycrystalline form). In the single-crystal case the ω structure shows the greatest 

anisotropy, compared even to α′, with the highest E[001] value, always above 200GPa for 

Ti-xNb (x ≤ 33.33at%) and reaching up to 250GPa for pure Ti. These results are in line 

with previous experimental studies on single-crystal ω-Ti [24]. Another striking result is 

the exceptionally local low moduli values observed in certain directions. Clear examples 

of this phenomenon are the unusually low minima for high Nb concentration in α′ and ω 

phases, reaching E < 40GPa for α′ and ω Ti-25at%Nb. For these two hexagonal 

structures the absolute minimum E is located at 45° with respect to the [0001] plane, 

which correspond to the [111] direction in a cubic or a tetragonal lattice. This minimum 

E calculated for certain directions seems to be the reason that causes the low VRH 

Young’s modulus for the highest Nb compositions (Ti-33at%Nb). It should be notted 

that the study of the elastic properties of the orthorhombic structure (Figure 3.1.12) is 

especially interesting, since to our knowledge there are not available data. 

The a" structure shows a very high dependence of the elastic modulus with the 

crystallographic direction as it is visible in the Young’s modulus surface. The α″-phase 

presents the lowest Young’s moduli values, around 30GPa along the [010] and the [100] 

directions (the unit cell orientations are shown in the inset of Figure 3.1.12). On the 

other hand the maximum modulus (~160GPa) is located along θ = ±30° or equivalent θ 

±150° (y = 0 plane) directions for the experimentally observed compositions.  
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 Figure 3.1.11 Young’s modulus surface of a) α and b) ω Ti-xNb upon Nb addition. The 

insets illustrate the crystallographic direction where X ~ [100], Y ~ [010] and Z ~ 

[001].  
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Figure 3.1.12 Young’s modulus surface of a) α and b) ω Ti-xNb upon Nb addition. The 

insets illustrate the crystallographic direction where X ~ [100], Y ~ [010] and Z ~ 

[001].  
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The β-phase exhibits a much more homogeneous and isotropic behaviour, compared to 

the hexagonal cases. The β phase presents the lowest Young’s moduli values (20-40GPa) 

along the [100] and equivalent [010]-[001] directions, while the maximum modulus is 

positioned towards the [111] axes, in agreement with previous theoretical [31] and 

experimental studies [32-35] where the sequence Eβ[100] < Eβ[110] < Eβ[111] have 

been empirically proved for Ti-Nb-based alloys. 

From the analysis of the mechanical properties we can conclude in several main 

outcomes 

i) Taking into account only stoichiometries of stable different phases we can 

state that the sequence of the Young’s moduli follows the Eω > Eα′ > Εα′′ > Εβ 

trend. 

ii) Extremely low (even negative) or high values of E, B, G or ν may be used as 

indicators for the instability of the different structures 

iii) According to the Pugh’s law, the addition of Nb to Ti metal results, in 

general, in an improvement of the ductility 

iv) The E dependence with Nb composition (w-shaped curve) could be a result 

of several Ti-Nb phases’ coexisting in a polycrystalline system where the 

grain boundaries could also contribute 

v) The α′ and ω phases’ maximum directional Young’s modulus values (Eα′ = 

140-150GPa and Eω = 200-250GPa) are located along the [001] direction, 

while secondary a local maximum contained in the in-plane. In addition, the 

hexagonal phases lowest moduli (E < 40GPa) is found for the Ti-25at%Nb 

along the [111] direction.  

vi) The α″-phase presents the lowest Young’s moduli values, around 30GPa 

along the [010] and [100] directions while a high modulus (~160GPa) is 

found at θ = ±30° or equivalent θ ±150° (y = 0 plane) directions. 

vii) The β phase presents the lowest Young’s moduli values (20-40GPa) along 

the [100] while the relationship Eβ[100] < Eβ[110] < Eβ[111] was found for 

Ti-Nb-based alloys. 
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3.1.3 Conclusions 

The main scope of this chapter was to identify possible relations between the 

mechanical, the structural and the electronic properties of the Ti-Nb alloys for their 

experimentally observed α′, ω, β and α″ phases. The quantum mechanical calculations 

predicted various phases that depend on Nb concentration, while in all structures the 

unit cell volume increases with Nb addition, in agreement with the experimental data.  

From the EDOS it came out that the electronic depletion at the Fermi level (EF) for α′ 

and ω Ti-(x ≤ 9.375)at%Nb is related with the phase stability at low Nb concentrations. 

In addition, the Nb-Ti d-electron hybridizations are responsible for the depletion of the 

occupied electronic states at the Fermi level, which characterize the β-Ti, thus leading in 

a stable bcc structure. Moreover, we found that Nb enrichment results in the 

enhancement of the number of d-electrons, while the main Nb contributions in the 

electronic density of states (EDOS) are located around -1eV. Furthermore, small Nb 

additions (≤ 18.75at%Nb) render the α″ structure more stable than the α′ or ω, whereas 

for Nb compositions above 25at%Nb the orthorhombic structure is unfavoured 

compared to the β-phase. From the partial EDOS of all phases, the maximum 

contribution is due to the d-electrons, which are located between -3.5 eV and EF, and 

are, therefore, responsible for the states at the Fermi level. In addition, the partial p-

electrons reveal a broad band located approximately between -6eV and EF, while the s 

electrons occupy the lowest states (between -1eV and -6eV). These theoretical 

predictions are in agreement with the experimental results according to which the Ti-Nb 

system exhibits a variety of phases (including α′, ω, β and α″) depending on the Nb 

concentration.  

Furthermore, the mechanical properties of the Ti-Nb alloys were studied good 

agreement between the experimental and theoretical results referring to the elastic 

constants were depicted. The mechanical stability conditions show destabilization of the 

α′ and ω structures upon Nb addition along with the stabilization of the β-phase for Nb-

rich compositions (> 15at%Nb). Moreover, the ω-phase presents the highest Young´s 

moduli, 185GPa for pure Ti, while the corresponding values for the α′ phase are Eα′ (Ti) 

= 134GPa. For both phases, E decreases linearly upon Nb addition. The shear moduli 

follow an analogous behavior compared to E, with 51GPa < Gα′ < 26GPa and 75GPa < 

Gω < 13GPa, respectively for the lowest (pure Ti) and the highest (Ti-33.33at%Nb) Nb 

concentrations. The bulk modulus of the α′ structure increases linearly from Eα′ (Ti) = 
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112GPa to Eα′ (Ti-33.33at%Nb) = 135GPa whereas in ω-phase B presents a constant 

value of 120GPa. Concerning the ω-phase Poisson’s ratio the pure Ti has the νω (Ti) = 

0.2 value which becomes double for the highest Nb composition (Ti-33.33at%Nb). For 

the hcp case, the Poisson’s ration varies from να′ (Ti) = 0.3 and να′ (Ti-33at%Nb) = 0.4 

for the pure and rich Nb content, respectively. Regarding the α″-phase, the elastic 

constants remain almost constant revealing the Bα′′ = 116GPa, Gα′′ = 39GPa, να′′ = 0.34 

and Eα′′ = 105GPa for Ti-xNb (9at%Nb < x < 25at%Nb) values. On the other hand the 

higher E values were found for Nb compositions bellow 9at%Nb, while non linear 

behavior was predicted for the bulk moduli indicating instability. For β-Ti-xNb 

(15at%Nb ≤ x ≤ 31.25at%) the calculated elastic constants were approximately Gβ = 

31GPa, νβ = 0.38 and Eβ = 87GPa. Bβ shows a linearly increasing behavior from Bβ = 

106GPa for pure Ti up to Bβ = 132GPa for Ti-31.25at%Nb. Interestingly Ti-xNb (x < 

12.5at%) compositions present extremely high Poisson’s ratio values while E and G 

depict low moduli suggesting instability of β-Ti-xNb alloys with low Nb concentration. 

Another important outcome is that, according to the Pugh’s law, the Nb substitution in 

the TiNb alloys could be related with the improvement of the ductility.  

The calculated VRH-Young’s moduli of all phases, reveals the sequence of Eω > Eα′ > 

Eα′′ > Eβ for the Nb constants where all these phases coexist, in line with previous 

experimental works. Therefore, in this chapter is predicted that the well known w-

shaped curve could be derived from the weighted average of the Ti-Nb phases that may 

coexist in the polycrystalline system. The α′ and ω directional elastic modulus exhibits 

the maximum E along the [001] direction (Eα′ = 140-150GPa and Eω  = 200-250GPa), 

while the lowest moduli values (E < 40GPa) are located along the [111] direction. The 

α″-phase exhibits the lowest elastic moduli values, around 30GPa along the [010] and 

[100] directions, while the maximum modulus (~160GPa) is found at θ = ±30° or 

equivalent θ ±150° (y = 0 plane) directions. The β phase presents the lowest Young’s 

moduli values (20-40GPa) along the [100] and the equivalent [010]-[001] directions. 

These results are in agreement with previous studies where the Eβ[100] < Eβ[110] < 

Eβ[111] sequence was found for Ti-Nb-based alloys [32]. These results could be used 

for the understanding of the phase transition on Ti-Nb systems and for the design of 

low-rigidity Ti-Nb-X alloys for biomedical implants. 
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3.2 Ti-Nb-Hf alloys 

3.2.1 Introduction 

Implants’ surfaces play an extremely important role in the response of the biological 

environment to the artificial medical devices [1-2]. In titanium implants the normal 

manufacturing steps usually lead to an oxidized, contaminated surface layer that is often 

stressed and plastically deformed, non-uniform and rather poorly defined [3].  

Whereas it is known that for the low Nb substitution, the bulk Ti-Nb alloys exhibit 

several hexagonal or tetragonal phases (like α′, ω or α″) [4-7], Ti-xNb 

(22at%<x<95at%) thin films exhibit mainly the β-cubic phase [8]. Apart Nb, Hf is a 

non-toxic element fully miscible to Ti forming α+β solid solutions without intermetallic 

compounds, while its chemical similarities with Ti and its excellent corrosion resistant 

properties render the Ti-Hf system an interesting passive film for biomedical 

applications [9, 10]. The oxidation of the Ti-Hf films depends on the composition, while 

the XRD measurements exhibit mainly the α′-phase for these films without intermediate 

compound structures [11]. Interestingly, small amounts of Hf slightly affect the TiHf’s 

dynamic Young’s moduli, while they increase the tensile strength of the system [12].  

The study of the ternary Ti-Nb-Hf system that may combine the two Ti-binary alloys’ 

bio-friendly properties, emphasizing on the β-phase stabilization ability would be 

particularly interesting. Especially, in the thin film form, these Ti-Nb-Hf alloys could be 

of valuable use as coatings. However, to our knowledge reports on this topic are rather 

scarce.  

In this chapter, a systematic analysis of the structural and electronic properties Ti-

18.75at%Nb-xHf (0 ≤ x ≤ 25at%) alloys upon Hf substitutions has been carried out by 

means of the DFT-LAPW calculations. The ab initio calculations were compared with 

thin Ti-based films grown by Magnetron Sputtering and characterized by energy 

dispersive X-ray spectroscopy (EDS). The experimental part of this work has been 

carried out by our colleagues in the Department of Physics at the University of 

Ioannina. These results could be used for the understanding of the β-Ti based alloy’s 

formation mechanisms having sd dopants aiming in the design of biocompatible 

materials. 
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3.2.2 Results and discussion  

a) Structural and mechanical properties  

The total energy calculations for the α″ versus the β phases are presented in Figure 3.2.1 

for selective Hf substitution cases. The α″-orthorhombic phase is found energetically 

favoured compared to the β-phase with an energy difference of 0.05eV/atom. It should 

be notted that the α″ total energy’s minimum values have been shifted to zero energy for 

comparison reasons. Although the α″ phase is found energetically favoured compared to 

the β-phase upon Hf substitution, the relative total energy difference between the two 

phases decreases which could indicates the initiation of the β-phase stabilization. 

Moreover, for both phases we found a shift of the total energy minimum to higher 

volumes, denoting a unit cell enlargement above 1 Å
3
/atom between the lowest (Ti-

18.75at%Nb-6.25at%Hf) and the highest (Ti-18.75at%Nb-25at%Hf) Hf compositions.  

The initial structures were subjected under hydrostatic pressure and the total energy 

versus volume of the primitive unit cell curve was fitted determining the bulk moduli 

(inset in Figure 3.2.1) and the optimum lattice parameters (Figure 3.2.2(b)). The bulk 

modulus is given by the second derivative of the polynomium that was used in order to 

fit the ab initio Total Energy vs. Volume curve (Birch-Murnaghan equation of state). 

The estimated B values for the β-phase alloys show an inversely proportional increase 

of the moduli as a result of the Hf addition. In particular, the Bβ for Ti-18.75at%Nb-

6.25at%Hf was found 121GPa, while for the Ti-18.75at%Nb-25at%Hf a modulus of 

116GPa was calculated. On the other hand, Bα′′ increases for the compositions between 

6.25at%Hf and 18.75at%Hf, with values of Bα′′ = 125GPa and Bα′′ = 128GPa 

respectively for the low and high Hf concentrations. Nevertheless, Bα′′ decreases down 

to 127GPa for the highest Hf composition (Ti-18.75at%Nb-25at%Hf). It is interesting to 

note that the α″-phase’s B values are higher than the Bβ ones for all the simulated 

stoichiometries.  

Figure 3.2.2(a) depicts the grazing incidence X-ray diffraction patterns of the deposited 

Ti-based films. A textured growth is preferred for the direction of the [002] lattice 

planes in contrast to the bulk Ti-based alloys for which the [110] peak was mainly 

observed. Small amounts of Nb and Hf result in the growth of the martensitic α″-phase. 

Keeping the Nb content constant at 17±1at% and increasing the Hf content causes a 

small shift of the [002] peak for Hf content above 10at% and gradually to the 
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deformation of the [021] lattice planes. For atomic Hf concentrations of 16at% the 

observed [021] peak is completely deformed simultaneously with a strong peak shift of 

the [002] to larger lattice distances (lower angles of detection). This finding suggests 

that Hf substitutions in the α″ phase (especially of the Ti atoms) induce strong 

deformation in the α″ lattice, eventually leading to phase transformation in the β-Ti. In 

Figure 3.2.2(a) the Ti-16at%Nb-16at%Hf film (blue line) is referred as β-Ti since the 

peak observed corresponds (although shifted possibly due to the internal film stresses) 

to the [110] peak position of the β TiNb structure. 

 

 

Figure 3.2.1 Total energy under hydrostatic pressure versus unit cell’s volume of a) Ti-

18.75at%Nb-6.25at%Hf, b) Ti-18.75at%Nb-12.5at%Hf, c) Ti-18.75at%Nb-18.75at%Hf 

and d) Ti-18.75at%Nb-25at%Hf. Red and black points correspond to the α″ and β 

structures, respectively. The insets show the bulk moduli of the different lattices for all 

the stoichiometries. 
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From the equilibrium volume we derived the crystals’ lattice constants. In Figure 

3.2.1(b), we present the ab initio results (filled circles) along with the available XRD 

data (open circles). Interestingly, although the theoretical data are made for small 

periodic unit cells they exhibit the same slope with the experimental thin film’s data. 

Nevertheless all cases agree that upon Hf substitution the individual α″ and β lattice 

constants increase almost linearly following the Vegard’s law.  

 

Figure 3.2.2 a) Grazing incidence X-ray diffraction patterns of Ti-Nb-Hf films in 

distorted a″-Ti (black lines) and β-Ti (blue line) crystal structure. b) Lattice constants 

versus Hf substitution for: b.1) α″ and b.2) β phases. Filled and open circles correspond 

to ab initio and experimental data 

 

In line with the Ti-Nb phases transitions (Introduction chapter (1.3.2)), the α″-

orthorhombic structure may be viewed as a transition between the hcp and bcc 

structures [13]. For instance, the hcp structure is obtained when y =1/6 and  

while the bcc structure is obtained when y = 0 and  [14].  

In Figure 3.2.3 the evolution of the y-parameter upon Hf addition is represented for the 

different first neighbour pairs of the energetically favoured conformation. The black 

dashed line depicts the perfect orthorhombic y-parameter (y = 0.10).  
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Figure 3.2.3 Orthorhombic y-parameter as a function of the Hf addition for Ti-

18.75at%Nb-xHf. The different lines correspond to each possible atomic pairs. 

 

 

All Hf atoms, including pairs (Nb-Hf, Ti-Hf and Hf-Hf), contribute to the decrease of 

the total y values that is characteristic for the   phase transition. It is important to 

note that in Hf-rich alloys, the number of Hf containing pairs is higher resulting in an 

overall decrease of the y value leading to the experimentally measured  phase 

transition. In addition, Ti-Nb pairs take values below 0.09 for Ti-18.75at%Nb-(x ≤ 

18.75)at%Hf, while for the highest Hf composition y increases above 0.10. The Ti-Nb y 

values are important for the transition to bcc phase, while the high y values at the Ti-

18.75at%Nb-25at%Hf is less significant due to the small percentage of Ti-Nb pairs in 

the Hf-rich compounds. Concluding, it seams that at low Hf concentration the Ti-Nb 

pairs contribute in the transition from the α″ to β phase, while the y-parameter will 

decrease progressively as a result of the Hf substitution, with a main contribution of the 

Nb-Hf pairs. It is worth to be noted, that our ab initio calculations were limited by the 

small unit cells’ size, containing only 16 atoms. Nevertheless, the results of this chapter 

could be used for the understanding of the y value behavior in the Ti-Nb-Hf system. 

b) Electronic properties  

For the energetically favoured atomic rearengement of the ternary alloys and the 

equilibrium lattice of all stoichiometries and phases, the Electronic Density of States’ 
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(EDOS) have been calculated aiming to understand to possible electronic origin of the 

 phase transition [15]. In Figure 3.2.4, we present the α″ and β Ti-18.75at%Nb-

xHf (x = 6.25 and 25.00at%) total and partial density of states. The row sequence 

corresponds to the total, d, p and s electron contributions, while the perfect structure and 

the structure after ionic relaxation EDOSs are respectively depicted by thin and bold 

traces. 

In Figures 3.2.4 and 3.2.5 we can observe that the α″ and β phases exhibit low electron 

occupation (pseudogap) at the EF and higher occupation of states bellow EF, especially 

at high Hf compositions. These features are characterized by a highly occupied local 

minima at EF, which is visible in α″ and β Ti-18.75at%Nb-(6.25 ≤ x ≤ 25)at%Hf 

compositions, revealing the metastable character of these structures. Concerning the 

partial EDOS we can observe that Nb d-electrons are distributed between -3.5eV and EF 

with the presence of two main peaks at -1eV and -2eV. The d-Ti-Nb-Hf hybridizations 

are mainly responsible for the states around the Fermi level and subsequently 

responsible of the stabilization or destabilization of the different structures. Moreover 

we can see that Nb and Ti dominate the d-EDOS, especially below -1.5eV, while in the 

p - EDOS all atoms contribute equally close to the Fermi level. In addition the partial p-

electrons, although with a contribution of almost ten times smaller compared to d-

electrons, also participate in the depletion of the EF. In analogy to the p-electrons, the s 

electron occupation is smaller compared to the participation of the d-electrons in the 

total EDOS around the Fermi level, while Hf has the highest occupation at the lowest 

energies of the s-EDOS. The Ti-Nb-Hf hybridizations are also visible in the s-electrons, 

where a broad band from approximately -6eV to -1eV appears with a peak located 

around -2.5eV, reaching an occupation of approximately 0.15 states/eV/atom.  

In addition Hf f-electrons play a very important role, being responsible for a very high 

peak at low energy values, which is visible in the total EDOS bellow -11eV of Hf-rich 

compositions. These well bonded states are crucial for the stabilization or the 

destabilization of the α″ and β phases. 

In the total orthorhombic EDOSs, similar features emerge in the region around the 

Fermi level upon Hf addition that are mainly due to the Ti d-electron participations with 

an overall depletion at the highest Hf (25at%). Although the different Hf contents result 

in comparable d-EDOSs, the states of 6.25at%Hf substitutions, referring to the α″-

phase, are slightly enhanced around -0.5eV compared to 25at% Hf, while far below EF 
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the opposite is true. In reference to the partial s, p and d orbitals there are not 

appreciable differences between the relaxed and unrelaxed system.  

 

Figure 3.2.4 Electronic density of states of α″-phase: a) Ti-18.75at%Nb-6.25at%Hf for 

the total, d, p and s contributions lied up from the first up to fourth row, respectively, 

and b) stands for Ti-18.75at%Nb-25at%Hf. The contribution due to perfect ideal 

structure is represented by a thin line and the final structure after ionic relaxation with 

a thicker trace.  
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Figure 3.2.5 Electronic density of states of β-phase: a) Ti-18.75at%Nb-6.25at%Hf for 

the total, d, p and s contributions lied up from the first up to fourth row, respectively, 

and b) stands for Ti-18.75at%Nb-25at%Hf. The contribution due to perfect ideal 

structure is represented by a thin line and the final structure after ionic relaxation with 

a thicker trace. 

 

It is interesting to note that for the α″-Ti-18.75at%Nb-12.5at%Hf alloy the low energy 

peak stands below -11eV, which is due to the f-Hf contribution presenting only in the 

perfect case due to the increase of the Hf-Hf distance after the ionic relaxation. It should 

be notted that the the sharp minimum of the α″ EDOS could be associated with the 

shape memory effect that characterizes the orthorhombic phase.  
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Turning on the β-phase EDOS (Figure 3.2.5) we revealed that the Hf d-electrons 

contributions are responsible for the depletion of the occupied electronic states at the 

Fermi level, crucial for the stability of the bcc structure. The d-electrons are located 

between -3.5eV and EF being mainly responsible for the pseudogap at the Fermi level, 

while the main d-Nb contributions in the EDOS are located around -1eV. This 

diminution of states at the Fermi level can be also observed in the Hf and Nb p-

electrons. Moreover, we can see that the s-electrons are shifted to lower energy states as 

a result of the Hf addition, favouring the β-phase stability. The combination of the 

depletion of states at EF and the translation of states to lower energies denotes the 

stability of the bcc phase subsequent of the Hf substitution. In addition we can see again 

a high peak due to Hf f-electrons that appears in the β-Ti-18.75at%Nb-25at%Hf due to 

the Hf-Hf neighbourhood, which may influence the stabilization of β-Ti-Nb-Hf alloys. 

This atomic conformation, with Hf-Hf pairs as first neighbours, although in principle is 

not energetically favoured, is difficult to be avoided in rich-Hf stoichiometries. In 

addition, the difference between the relaxed and perfect system’s EDOS is more 

pronounced in the β-phase compared to the orthorhombic. This difference in the DOS is 

more visible around EF. In all β-phase systems, the reduction of the electrons in the 

region around EF, after ionic relaxation, leads the system to an expected more stable 

structure. This variation is more visible in the relaxed Ti-18.75at%Nb-25at%Hf where 

the states at the Fermi level are drastically reduced compared to the unrelaxed system 

even for the lower Hf compositions. This variation is mainly due to the difference 

between the unrelaxed and the relaxed d-Ti contribution. The combination of these 

phenomena may induce the progressive stabilization of the bcc phase subsequent to the 

substitutional addition of Hf.  

In conclusion, the physical insight of the β emergence and the interrelated 

destabilization of α″ could be related to the new electronic features caused by the Ti-

Nb-Hf hybridization. The partial EDOS shows an analogous behavior of the α″ and β 

phases, while the maximum contribution next to the Fermi level is due to the d-

electrons. In the orthorhombic case the maximum contribution at the Fermi level is due 

to d-Ti contribution whereas in the bcc structure the d-Ti electrons present a minimum 

at EF contributing to the stabilization of the β phase. On the other hand, an energy state 

with the absolute Hf f-electrons character is localized at low energy states (< 11 eV) 

appearing in both the α″- Ti-18.75at%Nb-(x ≥ 18.75)at%Hf and the β-(Ti-18.75at%Nb-
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25at%Hf) due to Hf-Hf nearest neighbours interaction lowering therefore the 

corresponding band energy. In addition the partial p-electrons of the β-phase, although 

with a smaller contribution compared to d-electrons, are also responsible for the 

depletion of the states at EF while the s-electrons are shifted to lower energy values 

upon Hf addition. These variations may help to stabilize the β structure against the α″-

orthorhombic for rich-Hf stoichiometries. 

3.2.3 Conclusions 

In this chapter, a combination of theoretical and experimental data concerning the phase 

stability of α″ and β phases of Ti-Nb-Hf was presented. Ti-based thin films with Nb 

around 17at% and various Hf substitutions were grown by Magnetron Sputtering. At 

low Hf compositions the α″-phase is the preferred structure, while there is a critical 

composition, between 11at%Hf and 16at%Hf attending to the XRD measurements, in 

which a transition from α″ to β phase is found. Both thin films measurements and bulk 

total energy calculations agree that the unit cell volume and the corresponding lattice 

constants increase upon Hf substitution. The overall decrease of the y-parameter 

suggests the progressive   phase transition subsequent to the Hf addition. The 

physical or the electronic origin of this phenomenon is attributed to the Hf 5d 

hybridizations that decrease the total d-electron occupation at the Fermi level and shift 

the lowest energy s-electrons’ states below -6eV, in conjunction with p-electron 

hybridizations occurring close to EF. In addition the Hf f-electrons reveal an inhanced 

peak at states bellow -11eV due to the Hf-Hf first neighbours’ interactions which may 

influence critically the stabilization of the β structure. These results could be of use for 

the design of β-Ti-Nb-Hf alloys suitable for biomedical applications. 
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3.3 Ti-Nb-In alloys 

3.3.1 Introduction 

In this chapter, the influence of In substitution in the Ti-25at%Nb alloy has been 

studied. Indium has s and p valence electrons, which possess an electronic configuration 

(4d
10

5s
2
5p

1
), very similar to Sn (4d

10
5s

2
5p

2
). Therefore, the addition of In to Ti-

25at%Nb is expected to resul similar properties with the Sn case. Indium has been also 

suggested to act as a β-stabilizer element [1, 2] while interestingly it’s pure In tetragonal 

phase (space group l4/mmm No. 139) presents very low Young’s modulus (EIn = 

11GPa). In addition, indium is biocompatible [3-5] and its low melting point (Tm,In = 

429K) could also decrease the high Ti-Nb alloy melting temperature. Moreover, the 

indium presence in the Ti alloys has been reported [6-8] to generate a wide range of 

microstructures with improved characteristics (e.g. low Young’s modulus) [7-9]. For 

these reasons, we considered the Ti-25at%Nb-xIn ternary alloys as promising 

candidates in the field of biomaterials.  

In this thesis the effect of indium (In) additions in the structural and electronic 

characteristics of β-Ti-25at%Nb-xIn (x≤25at%) alloys were investigated by DFT 

calculations while the theoretical results were compared with the β-type (Ti-40wt%Nb)-

xIn alloys (with x ≤ 5.2 wt%) produced by cold-crucible casting and subsequently heat 

treated at 1273K (single β-phase) and water quenched. The experimental part was 

carried out by our colleagues at IFW Dresden [9]. 

3.3.2 Results and discussion  

 a) Structural properties 

Figure 3.3.1 depicts the X-ray diffraction patterns (XRD) of (Ti-40wt%Nb)-(x ≤ 

5wt%)In together with the lattice constants calculated from the XRD data and ab initio 

calculations of β-Ti-25at.%Nb-(x ≤ 12.5at%)In. The XRD measurements in Figure 

3.3.1(a) revealed a solid solution microstructure in the β-phase for all studied alloys, 

probably due to high amount of β-stabilizers and the high cooling rates, while no 

evidenced of a secondary phase like α″ or ω as a result of indium addition were found 

that explain a further increase of the Young’s modulus [7]. In line with the bulk Ti-

based alloys, the highest intensity first peak corresponds to the [110] orientation which 

is the preferred one and corresponces to the first textured preferred growth direction. 
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Figure 3.3.1(b) shows a linear increase dependence between the In content and the 

lattice parameter of the β-Ti-25at%Nb-(x ≤ 25at%)In. This could be related with the 

radius of In (rIn = 0.1659 Å) that is about 13.9% higher compared to Nb and Ti (rTi = 

0.14615 Å, rNb = 0.1429 Å). Consequently, the substitution of indium atoms expands the 

lattice constant leading to the increase of the β-phase lattice constant as manifested in 

both experimental and theoretical approaches. These results are in line with the 

experimental XRD measurements performed by Rietveld analysis [8] where the 

differences in the absolute values could be attributed to the tiny monocrystalline unit 

cells of DFT simulations along with the different temperature and pressure conditions 

(0K and 0GPa in ab initio versus room conditions in the experiment). Nevertheless, the 

slopes obtained by both methods are very similar, confirming the enlargement of the 

bcc lattice parameter upon indium inclusion. 

In the ab initio calculations the atomic distribution of Ti, Nb and In atoms in the unit 

cell were considered and although the lattice constant values were not affected, the total 

energy and the electronic properties were altered between the several rearrengements. 

Using the ab initio total energy difference (ΔΕ), we obtained valuable information 

regarding the bcc phase characteristic, helping us to an easier comparison among 

various atomic environments and indium contents. The calculated total energy 

difference shows several values depending on the indium’s first neighbourhood (FN). 

Figure 3.3.2 illustrates the ΔΕ evolution with indium amount for the three studied 

compositions in Ti-FN, Nb-FN and mixed (Ti-Nb)-FN atomic environments. The 

change of ΔΕ as a function of atomic environment is: ΔΕTi-FN < ΔΕ (Ti-Nb)-FN < ΔΕ Nb-FN 

for each studied ternary composition, where a lower ΔΕ indicates a more energetically 

favoured configuration. These results show that In always prefers the Ti first 

neighbourhood (Ti-FF) (illustrated in inset of Figure 3.3.2) against In and Nb (Nb-FF), 

in line with the experimental findings referring to the homogenous solution of In [9]. 

Interestingly, Nb atoms are the energetically unfavoured In’s first neighbours (Nb-FN).  

This was also confirmed by EDOSs and WFs [9] calculations which revealed that in all 

energy states In-Nb bonding orbitals are absent. No hybridisation was found for the In-

Nb pairs, in line with the large positive heat of mixing (ΔHmix,Nb-In = 15 KJ/mol) 

between these atoms [9]. The positive heat of mixing between In and Nb may allow 

compositional modulations (or phase separation) in the β-type Nb-rich solid solution 

[10]. Such compositional modulations were recently reported in some β-type Ti-based  
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Figure 3.3.1 a) XRD patterns of (Ti-40Nb)-xIn (x = 0, 3.5 and 5 wt%)  samples 

revealing a single β-phase structure b) β-Ti-25at%Nb-xIn lattice constants varying with 

In substitution. Filled and open circles correspond to ab initio and experimental data, 

respectively.  

 

alloys with high β-stabilizers concentrations, e.g. in Ti-Mo [11] For the ternary Ti-

25at%Nb-2.08at%In case, the Ti-FN is the energetically favoured conformation, while 

the total energy difference between the Ti-FN and TiNb-FN atomic rearrangements is 
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almost 0.5eV. These findings suggest that in this atomic environment, indium may act 

as supplementary bcc β-phase stabilizer along with Nb, while for the Nb-FN 

environment the opposite is true. For the Ti-25at%Nb-2.78at%In composition, the ΔΕ 

values are higher than the binary case for all atomic environments. In addition the total 

energy difference between the preference of Ti-FN against TiIn-FN or TiNb-FN may 

vary from 0.5 up to 1eV. These higher ΔΕ values suggest that the highest In-containing 

alloy tends to form less stable bcc crystal lattice than the binary (In-free) Ti-25at%Nb 

composition. As a summary, we can say that the present ab initio simulations showed 

that depending on the atomic environment, and especially at higher content, In 

destabilizes the bcc phase. 

 b) Electronic properties 

The influence of In in the Ti-25at%Nb binary alloy concerning the electronic character 

and the β-phase stabilization or destabilization could be described using the EDOS 

features. For the energetically favoured Ti-FN atomic environment we evaluated the 

electronic density of states for the β-type Ti-25at%Nb-xIn (x = 2.08 and 12.5at%) 

(Figure 3.3.3), ternary alloys. The EDOS of the pure Ti and Nb as well as Ti-25at%Nb 

EDOS have been also included in the first column for comparison. Regarding the pure 

β-Ti EDOS, we observe two main energy bands located around -2eV and at the Fermi 

level (EF = 0 eV) separated by a minimum at -1eV. Close to EF a local pseudogap at 

+0.1eV is found between the highest occupied state (around -0.5eV) and the first 

unoccupied one (at 0.25eV), which denotes metastability for this structure. Such a 

minimum was also depicted in the binary Ti-25at%Nb and ternary Ti-25at%Nb- (In ≤ 

4.17)at%In cases. The pure β-Nb EDOS exhibits a low energy band around -2.5 eV, 

while the next one is located far from EF, denoting higher stability of the Nb β-phase 

compared to the previous cases. For these low In stoichiometries, the total-EDOS bands 

of ternary compositions are mainly situated from -5.5eV up to the Fermi level similarly 

to the Ti-25at%Nb EDOS. Nevertheless the presence of In introduces a well localized 

low energy peak between -6.5 eV and -7 eV, which has a clear s character, denoting 

stability increase. This state is approximately 1eV lower than the other energy states 

denoting its stability. In addition, the maximum at -2eV and the pseudogap located at 

the Fermi level remain almost unaltered for small additions of In, denoting the 

metastability of the β-phase Ti-25at%Nb-(In ≤ 4.17)at%In ternary alloys.  
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Regarding the stoichiometries with higher In concentration, Ti-25at%Nb-(In ≥ 

8.33)at%, we can observe some significant changes in the EDOS compared to the 

smaller compositions. Upon In addition the EDOS exhibits a peak at the Fermi level, 

filling the minimum that was present at low In compositions. In addition, the low 

energy peak is drastically depleted, resulting in a general reduced occupancy in the 

occupied states. These two main features denote the instability of the β-phase for these 

compositions [6]. In the case of the highest indium content, Ti-25at%Nb-25at%In, the 

EDOS exhibits a deep minimum around 0.5eV, which is shifted to low energy states 

compared to the lower In compositions. Nevertheless, the decreasing occupancy trend 

from the occupied to the unoccupied states denotes instability, which is visible due to 

the depletion of the energy states around -2eV. In addition the small filling of the EDOS 

depicted in the broad energy band from between -10eV and -5eV suggests that the 

25at%In β-phase is energetically unfavoured compared to Ti-25at%Nb-(x ≤ 4.17)at%In 

substitutional cases [6]. It is worth to be noted that, following an analogous behavior 

compared to Ti-25at%Nb-Sn alloys [12], the alterations at EF are due to the relative 

compositional changes upon In substitutions and not to direct In contributions. This 

behavior is depicted in the partial s, p and d EDOSs, in which we can see that the d-

electron EDOS is mainly due to Nb and Ti partial contributions.  

Concerning the partial EDOS we can see d-electron contribution above -4eV that is due 

to Nb and Ti atoms. In particular, Ti is mainly responsible for the EDOS features at EF, 

while there is almost no contribution of In at this state.  

These d-electrons hybridizations as well as the presence of a local total- or d-EDOS 

minimum at the EF are very important, since the shape and filling of the d-band is 

known to be correlated with the phase stability [6]. Such a minimum was also found in 

the similar case of Ti-25at%2.08at%Sn (Ti-38wt%Nb-4wt%Sn) ternary alloy EDOS 

[12]. Furthermore, the p-EDOS is also present below -4.0eV, mainly due to In-5p 

electrons, while the Ti-3p and Nb-4p semi-core electrons contribute mainly at energies 

higher than -1eV.  

For the 12.5at% and 25at% In percentages the Nb d-electron states are shifted to higher 

energies, up to the Fermi level contributing to the destabilization of these compositions. 

This phenomenon was also present in Ti-Nb-Sn alloys, at much higher Sn contents (Ti-

25at.%Nb-12.5at.%Sn or Ti-34wt%Nb-21wt%Sn) where the β-phase instability is 

denoted by a peak at the Fermi level [12], whereas In atoms are dominant in the s and p 
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partial EDOSs and the lowest energy states. A broad band energy from EF to -5eV are 

due to the p-electron EDOS, while the states from -5eV until -8eV are due to the s-

electrons contribution. These findings suggest that the substitutional addition of In may 

influence the stabilization of the bcc phase for low In concentrations (Ti-25at%Nb-(x ≤ 

4.17)at%In) by the appearance of lower energy states, while higher substitutions could 

lead to the destabilization of this phase.  

 
 

Figure 3.3.2 Total energy difference (ΔΕ) of Ti-25at%Nb, Ti-25at%Nb-2.08at%In and 

Ti-25at%Nb-2.78at%In for the Ti-FN (blue), Nb-FN (green) and the mixed TiNb-FN 

(red) atomic environments. ΔΕ of binary composition (black line) is set as the reference 

level. In the inset, the Ti-FN energetically favoured atomic configuration is shown; 

where grey, yellow and magenta balls correspond to Ti, Nb and In atoms.  

 

The main Ti, Nb and In EDOSs’ peaks are interesting for the existence of possible 

hybridizations and therefore were investigated in detail. At minor In additions, the 

analysis found low energy states with s character that exhibit basically antibonding 

features with the Ti first neighbouring atoms and with the Ti-Nb second neighbouring 

atoms. This phenomenon will lead to a weakening of the chemical bonds in the system 

and the subsequent elastic softening. At higher In contents, In atoms may become first 

or second neighbours revealing strong σ-bond features while the presence of In-In 

bonding or In-Ti and In-Nb antibonding features for the successive low energy 

eigenvalues are related with the system’s instability. This effect may not only alter the 

decreasing trend of the Young’s modulus, but may result in enhancement of the 

material’s rigidity.  
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Figure 3.3.3 Electronic density of states of β-phase: a) pure Ti, pure Nb, Ti-25at%Nb 

and Ti-25at%Nb-2.08at%In (dotted blue, dotted red, purple and black lines, 

respectively) for the total, d, p and s contributions (first up to fourth row, respectively) 

while  b) stands for Ti-25at%Nb-12.5at%In. 
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From the EDOSs of the low In compositions (Ti-25at%Nb-(x ≤ 2.87)at%In) the 

electronic band energy (Eb) has been calculated for different indium’s atomic 

environments. In line with the total energy results, the calculated Eb shows different 

values depending on the In’s first neighbourhood. 

 

 

 
 

Figure 3.3.4 Band Energy of Ti-25at%Nb, Ti-25at%Nb-2.08at%In and Ti-25at%Nb-

2.78at%In for the Ti-FN (blue), Nb-FN (green) and the mixed TiNb-FN (red) atomic 

environments. ΔΕ of binary composition (black line) is set as the reference level. In the 

inset, the Ti-FN energetically favoured atomic configuration is shown; where grey, 

yellow and magenta balls correspond to Ti, Nb and In atoms.  

 

Taken into account that the system’s band energy has been related with the crystal 

stability [6], the influence of In additions on the band energy data for different atomic 

environments and In amounts were analysed. In Figure 3.3.4 we present the band 

energy for the binary β-TiNb system (dashed line) along with the ternary for the Ti-FN 

and mixed TiNb-FN environments for comparison reasons. In particular, for the Ti-

25at%Nb-2.08%In case, the mixed TiNb-FN is slightly higher (2%) than that of the 

binary Ti-25at%Nb system (black line) suggesting that in this atomic environment In 

may act as supplementary β-phase stabilizer along with Nb while for the Ti-FN 

environment the opposite is true. For the higher In-content alloy (Ti-25at%Nb-

2.78at%In), the Eb value is up to 4% lower for all environments than in the binary case, 

suggesting a β-phase destabilizing effect.  
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c) Mechanical properties 

In order to validate our theoretical predictions and to further study the mechanical 

properties, several β-type (Ti-40wt%Nb)-xIn alloys were produced by cold-crucible 

casting and room temperature mechanical tests were performed by the IFW colleagues 

in Dresden. The measurements revealed that by 5 wt% In additions to the binary Ti-

40Nb alloy a reduction of the Young’s modulus from 69GPa to 49GPa was obtained, 

together with a change of the ultimate fracture strength of from 1421MPa to 775MPa, 

large plastic strains above 20% and a remarkable strain hardening. In the same way with 

Sn, minor additions of indium are effective in lowering the Young’s modulus of Ti-

25at%Nb, improving their biomechanical compatibility. Concluding, the computational 

and experimental results suggested a twofold effect of indium in decreasing the 

Young’s modulus: a) On one side, In atoms soften the bcc phase crystal lattice by 

expanding its unit cell volume and b) on the other side, In introduces low energy 

antibonding states that weaken the bonding character of the binary system.  

3.3.4 Conclusions 

In this chapter, the theoretical data on the β-Ti-25at%Nb-xIn (x ≤ 25at%) were studied 

and compared with the experimental results on the Ti~25at%Nb-xIn (x < 3at%) alloys 

which have been designed and casted for the first time. The analysis of the XRD 

patterns found that all studied alloys completely retain the β-phase in the quenched 

condition. The ab initio calculations found an increase trend of the lattice constants 

upon In substitution, while the experimental lattice parameters calculated from the XRD 

follow the same behaviour. This may be due to the larger atomic radius of In compared 

to that of Ti and Nb. Furthermore binding energy calculations were used to reveal the 

preference of a particular structure against another one. The results predict a 

destabilization of the bcc upon indium content, which depends also on atomic 

environments. The calculated total energy showed that the indium atom always prefers 

the Ti-first neighbourhood (Ti-FN), while the Nb-FN and Ti-Nb-FN environments are 

less energetically favoured especially for the Ti-25at%Nb-2.78at%In composition.  

The electronic density of states revealed that the lowest energy states between -6.5 eV 

and -7 eV of Ti-25at%Nb-(x≤8.33at%)In are mainly due to In s-electrons while the In 

p-electrons are responsible for the states at energies above -5eV. Nevertheless, the main 

contribution at the Fermi level is due to Ti d-electrons. In addition, the β-phase Ti-
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25at%Nb-(x ≥ 12.5at%)In is energetically unfavoured compared to the lower In content 

compositions. The alterations of the chemical bonding due to the In atoms presence 

were also investigated though the investigation of the wavefunction at selective energies 

[9]. The results revealed the presence of In-5s with Ti-4s or Nb-5s antibonding low 

energy states introduced in the In neighbourhood that weaken the bonding character of 

the Ti-25at%Nb, showing for the first time the alterations in the nature of the atomic 

bonding due to In additions and explaining the ternary’s lower values of the Young’s 

modulus. At higher In contents (>> 3at%In), first and second neighbourhood include In-

In pairs that exhibit strong σ bonding features, thus increasing the Young’s moduli and 

inducing instability in the system. 

Moreover, it was experimentally measured that the addition of 5.2wt% indium to Ti–

40wt%Nb expands the bcc lattice parameter lowering at the same time the Young’s 

modulus from E = 69GPa to E = 49GPa. The Young’s modulus of (Ti-40wt%Nb)-

5wt%In (and Ti-24.9at%Nb-2.7at%In) is much lower compared to other commercial 

alloys like Ti-6Al-4V (E = 112GPa) and rather close to that of a bone ( < 30GPa), thus 

helping to overcome the stress shielding effect. These findings suggest that the elastic 

softening of β-Ti-25at%Nb by indium additions may be due to the lattice expansion 

induced by the indium addition and most importantly due to the presence of antibonding 

low energy electron states between In neighbouring atoms that weaken the chemical 

bonds. Summarizing, we can conclude that since Ti-Nb-In alloys satisfy all the non-

toxicity and mechanical biocompatibility conditions they could be characterized as 

promising candidates for the development of orthopaedical implants.  
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3.4 Ti-Nb-Sn alloys 

3.4.1 Introduction 

The β-TiNbSn ternary alloys are very promising materials for orthopaedic applications 

due to their biocompatibility and their lower Young’s moduli (40GPa) [1-5] compared 

to both Ti and Ti-Nb alloys [6-14]. Their reduced rigidity is attributed to the β-phase 

stabilization that is related to Nb and Sn compositions. In particular, in the binary Ti-Nb 

case, this structure becomes dominant among the other phases, i.e. α, ω and α″, at Nb 

composition of 25at% [2, 13]. The presence of the ω-phase is considered responsible for 

the increase of the Young’s modulus in these alloys [2] due to the ω particles that are 

present in the Ti-25at%Nb [7, 13, 15]. Interestingly, the presence of Sn is 

experimentally suggested to suppresses this ω-formation [2, 3, 16] for the Ti-Nb based 

[2, 3] alloys as well as in the Ti-Mo and Ti-V based alloys [2, 16]. In previous studies 

[2, 3], it was found that depending on the heat treatment, the static Young’s moduli of 

the β-(Ti-35wt%Nb)-4wt%Sn could reach 43GPa, while for higher Sn content, i.e. the 

β-(Ti-35wt%Nb)-7.9wt%Sn, although the β-phase was more easily obtained the 

mechanical properties were not significantly improved. It turns out therefore that the 

presence of Sn may alter the structure and the properties of these alloys. However, the 

role of Sn into the Ti-Nb binary systems is not identified, while a systematic study of β-

TiNbSn alloys with increasing Sn contents, although interesting, is still lacking. The ab 

initio calculations were compared with the experimental results on the Ti-25.05at%Nb-

2.04at%Sn alloy. To this end, in this chapter the β-Ti-25at%Nb-xSn (x≤25at%) alloys 

are studied by LAPW-DFT calculations and the corresponding structural and electronic 

properties were evaluated for various Sn substitutions. The ab initio calculations were 

compared with experimental results of the Ti-25.05at%Nb-2.04at%Sn alloy rods 

synthesized at INP Grenoble [1]. 

3.4.3 Results and discussion 

a) Structural and mechanical properties  

In Figure 3.4.1(a), the X-ray diffraction patterns (XRD) of Ti-25.05at%Nb
-
2.04at%Sn 

together with the simulated β-Ti-25at%Nb-2.08at%Sn powder diffraction pattern is 

depicted using the crystal features from the ab initio unit cell. From the experimental 

XRD, only the peaks which correspond to the β phase are identified, while no sign of 



 

 

   105 

 

the ω-phase is observed. In line with the bulk Ti-based alloys, the highest intensity first 

peak corresponds to the (110) preferred orientation. That peak refers to the first textured 

preferred growth direction. It is interesting to notice that despite the limitations of the 

single phase monocrystalline matrix of the ab initio calculations, as well as the 

“powder” approximation of the VESTA software, there is an overall agreement between 

the experimental and the theoretical XRD diffraction data. In particular, in the inset of 

Figure 3.4.1(a) although the first XRD experimental peak is wider than the theoretical 

one, the corresponding angles of the main peak are almost the same. Finally, both the 

theoretical and the experimental relative distances between the XRD peaks are 

comparable. 

In Figure 3.4.1(b), the lattice constants which were obtained by the ab initio 

computations (filled circles) are depicted along with the available experimental data 

from the XRD measurements (open circles). Interestingly, although the theoretical 

values are lower than the experimental ones, they both follow the same slope. The 

differences in the lattice constants’ absolute values are attributed to the small periodic 

unit cells and to the zero pressure and temperature calculations compared to the 

experimental data of the polycrystalline alloys which were measured at room 

temperature. As have been commented in the computational details section, for the 

design of the unit cell, several different atomic configurations were used, in which the 

distributions of the Nb atoms and their short range Sn neighbourhood were 

systematically tested. The calculated total energy shows different values depending on 

the Sn’s first neighbourhood (FN), where a lower energy indicates a more energetically 

favoured configuration. The results show that Sn prefers the Ti first neighbourhood (Ti-

FF) against Sn and Nb (Nb-FF). The inset in Figure 3.4.1(b) shows a schematic 

representation of the energetically favoured conformation of β-Ti-25at%Nb-2.08at%Sn, 

were blue and green balls stand for Ti and Sn atoms, respectively. From all atomic 

configurations, the energetically favoured were chosen for further studies.  

Furthermore from the ab initio total energy curves the bulk modulus (B) was calculated 

for all cases. The results of the B for several Sn substitutions in the Ti-Nb matrix are 

shown in Table 3.4.1. We found that upon Sn substitutions the B values are slightly 

increasing from 119GPa (2.08at%) to 127GPa for the maximum Sn concentration 

25at%. 
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Figure 3.4.1 a) The conventional Cu kα X-ray diffraction pattern of experimentally 

prepared Ti-25.05at%Nb-2.04at%Sn alloy compared with the X-ray diffraction pattern 

of Ti-25at%Nb- 2.08at%Sn alloy simulated with VESTA simulation package based on 

the β unit cell of the ab initio calculations. b) β-Ti-25at%Nb-xSn lattice constants 

varying with Sn substitution. Filled and open circles correspond to ab initio and 

experimental data, respectively. Inset shows a schematic representation of the 

energetically favoured conformation of β-Ti-25at%Nb-2.08at%Sn. Blue and green balls 

stand for Ti and Sn atoms, respectively. 

 

 

Sn (at%) B (GPa) 

0.00 120 

2.08 119 

4.17 122 

6.25 123 

12.50 127 

25.00 127 

  

Table 3.4.1 Bulk modulus of β-Ti-25at%Nb-xSn alloys upon Sn addition. 

 

b) Electronic properties 

Aiming in obtaining insight on the role of Sn in the Ti-Nb alloys for both β and ω 

phases we evaluated the Electronic Density of States (EDOS) of  β-Ti-25at%Nb-xSn, x 

= 2.08 and 12.5at% (Figure 3.4.2), ω-Ti-25.93at%Nb-1.85at%Sn and ω-Ti-25at%Nb-

2.78at%Sn (Figure 3.4.3) ternary alloys. The EDOS of pure Ti and Nb as well as Ti-

25at%Nb EDOS have been also included for comparison reasons. Starting with the pure 



 

 

   107 

 

β-Ti EDOS, we observe two main electron bands located around -2eV and at the Fermi 

level (EF) separated by a minimum at -1eV. Close to EF a local minimum at +0.1eV is 

found between the highest occupied state (around -0.5eV) and the first unoccupied one 

(at 0.25eV) that persists in the binary Ti-25at%Nb and ternary Ti-25at%Nb-(x ≤ 

6.25)at%Sn cases. The pure β -Nb EDOS exhibits a low energy band around -2.5eV, 

while the next one is located far from EF, denoting higher stability of the Nb β-phase 

compared to the previous cases.   

 

Figure 3.4.2 Electronic density of states of β-phase: a) pure Ti, pure Nb, Ti-25at%Nb 

and Ti-25at%Nb-2.08at%Sn (dotted blue, dotted red, purple and black lines, 

respectively) for the total, d, p and s contributions (first up to fourth row, respectively) 

while b) stands for Ti-25at%Nb-12.5at%Sn. 

Regarding the pure ω-Ti EDOS, we observe at EF a minimum with much lower 

occupation that the β-Ti which is within the highest occupied state (around -0.3eV) and 

the first unoccupied one (at 0.2eV) revealing the stability of this phase. Concerning the 
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ω-phase of the Ti-25at%Nb and the Ti-25.93at%Nb-1.85at%Sn, the enhancement of the 

occupation at EF renders the ω structure of these alloys less stable compared to the pure 

Ti ω–phase. This change is more visible in ω-Ti-25at%Nb-2.78at%Sn, suggesting that 

the ω–phase of Ti-25at%Nb and Ti-25at%Nb-xSn as unfavoured, in comparison with 

the β-phase, in line with experimental results [2-5, 16]. The presence of Sn introduces a 

low energy state at -8.2eV in both phases, while slight depletion is found at the Fermi 

level without altering significantly the characteristics of the binary β-phase’s EDOS.  

 
Figure 3.4.3 Electronic density of states the ω-phase: a) pure Ti, Ti-25at%Nb and Ti-

25.93at%Nb-1.85at%Sn (dashed blue, purple and black lines, respectively) for the total, 

d, p and s contributions (first up to fourth row, respectively), b) stand for the cases of 

Ti-25at%Nb-2.78at%Sn. 

 

In the β-Ti-25at%Nb-(x ≤ 6.25)at%Sn total EDOS, the energy states are depleted at EF, 

causing an almost equivalent occupancy from -1eV up to 1eV, while no difference is 

found between the three Sn compositions at the lower energy states close to -8eV. On 
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the contrary, in Ti-25at%Nb-12.5at%Sn the EDOS exhibits a peak at EF and a general 

reduced occupancy in the occupied states denoting instability of the β-phase for this 

composition [21]. In the case of the highest Sn content (25at%) the EDOS exhibits a 

deep minimum around 0.3eV and a decreasing occupancy trend from the occupied to 

the unoccupied states, denoting instability of the β-phase for this composition. 

Nevertheless, the energy states around -1eV and -2eV are also importantly depleted, 

while small filling of the EDOS is found in the broad energy band from -10eV up to -

7eV and around -4eV. These variations suggest that the β-phase of both Ti-25at%Nb-

12.5at%Sn and Ti-25at%Nb-25at%Sn are energetically unfavoured compared to Ti-

25at%Nb-(x ≤ 6.25)at%Sn cases [21]. It worth’s to be noted that the alterations at EF are 

due to the relative compositional changes upon Sn substitutions and the enhancement of 

Ti content. This is illustrated in the calculated partial s, p and d EDOSs, Figure 3.4.2 

and Figure 3.4.3, where the d-electron EDOS is absolute due to contributions of Nb and 

Ti atoms. Similar behavior is found for the ω-phase partial EDOS, where the d-electrons 

contributions are mainly due to the Nb and Ti atoms. In particular, the peaks located at -

1eV and at +1eV show the d-Ti-Nb hybridization, while the states between -1eV and -

4eV are mainly due to Nb d-electrons contribution. In analogy to β-phase, Sn atoms are 

dominant in the s and p partial EDOSs and basically in the lowest energy states. The 

majority of the p-electron occupation in the EDOS is located between -3eV and -5eV, 

while the high peak at -8.2eV is due to s-electrons. Regarding the β-phase partial EDOS 

of the smallest Sn compositions (x ≤ 6.25)at%Sn, the d-electron EDOS are similarly to 

the high Sn compositions mainly due to Nb and Ti atoms having the Ti mainly 

responsible for the EDOS features at EF. The states below -0.8eV are mainly due to Nb, 

while the peak around -1eV denotes hybridization between Nb and Ti d-electrons. Sn 

atoms are dominant in the s and p partial EDOSs and the lowest energy states. A broad 

band energy from -1eV down to -6eV characterizes the p-electron EDOS, while the 

states from -7eV till -9eV are due to s-electrons. Interestingly, in the Sn rich 

stoichiometries, 12.5at% and 25at% Sn, the Sn and Nb atoms may become first 

neighbours which results the appearance of Nb d-electron in the highest energy bands 

due to the Nb4d-Sn5p hybridizations. Nevertheless, for all cases, the Sn contributions 

are dominant in the s and p partial EDOSs. In particular, a broad band energy from -1eV 

down to -6eV characterizes the p-electron EDOS, while the states from -7eV down to -

9eV are due to s-electrons. These findings suggest that the Sn substitutions influence 
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mainly the low energy states, while the states around EF may be affected by the Sn-Ti 

and Sn-Nb hybridizations. 

Figure 3.4.4 depicts the β-Ti-25at%Nb band structure compared to the β-Ti-25at%Nb-

2.08at%Sn, which is the ternary alloy with the minimum addition of Sn (1/48 atoms). 

As we observed in the EDOS, the main Sn contribution (denoted with green light 

circles) is situated around -8.2eV and is almost equally distributed along all the k-points 

directions. 

 

 

Figure 3.4.4 Band structure of β-phase: a) Ti-25at%Nb and b) Ti-25at%-2.08at%Sn. 

The diameter of the colored circles represents the presence of Sn states, the 

contribution drawn in green has a weight of three time the blue circles. 

 

The Sn contribution is also visible in the bands located between -2.5eV and -5eV as 

well as around -1eV (blue dark circles). Not that the scale used gives to the green circles 

a value of 3 times the blue, denoting the higher weight of the lowest energy states. 

In order to investigate the possibility of bonding hybridizations between the dopant and 

the Ti-Nb matrix, several the electron states were further analysed [21]. The findings 

suggested that relatively low Sn substitutions may reduce the system’s rigidity (by 
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means of local antibonding sites), while high Sn content results in significant 

deterioration of the periodic symmetry of the electronic charge that may lead to 

mechanical instability. 

3.4.4 Conclusions 

In this chapter, the computational simulations correlated with experiments on the β and 

ω crystallographic structures of TiNbSn alloys were presented. From the XRD 

measurements an almost linear increase of the lattice constants upon Sn substitution was 

found, while although underestimated the ab-initio values follow the experimental 

behavior. The electronic density of states revealed that the 25at%Sn β-phase is 

energetically unfavoured compared to the 2.08at% and 6.25at% substitutions, while the 

binary and ternary ω-phase compositions are unfavoured compared to pure Ti. In both 

phases, Sn s-electrons are responsible for the lowest energy states around -8eV, the Sn 

p-electrons are located at energies below -3eV, while Ti d-electrons contribute mainly at 

the Fermi level. In addition, it came out that relatively low Sn substitutions result in 

local antibonding sites, while high Sn contents lead to significant modifications of the 

electronic charge symmetry and may head to mechanical instability. Regarding the 

study of the mechanical properties, it was found that the bulk modulus slightly increases 

upon Sn substitutions. These results could be used for the design of β-Ti-based alloys 

with non-toxic additions, suitable for orthopedic applications. 
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3.5     Ti-Zr-Hf alloys 

3.5.1 Introduction 

Zr and Hf are known to show very similar physical and chemical properties with Ti 

since they belong to the IVa group of the periodic table. Ti-alloys containing Zr have 

demonstrated two basic characteristics desirable for the development of a new 

generation of Ti-based alloys for orthopaedics: a) their mechanical strength is up to 2.5 

times higher than the strength of commercial pure Ti, [1] and b) they present higher 

resistance to corrosion in biological fluids in comparison with the pure Ti [2-4]. 

Another advantage of the Ti-Zr alloys is their enhanced osseointegration compared to Ti 

implants most probably due to their α-phase, while the improved biocompatibility 

versus Ti has been established [5, 6]. Moreover Zr-based alloys having biocompatible 

elements, as the β-phase Zr–12Mo–xTi alloys exhibit high compressive and yield 

strength, high elastic energy, enhance plastic strain and low Young’s modulus (32–

35GPa) [7]. Furthermore, Hf has been suggested as an element which has the potential 

to improve the mechanical properties of Ti alloys. In fact Ti–Hf alloys exhibit lamellar 

hcp martensite (α′) structure, while the increase of Hf content (up to 40at%) can gently 

reduce the dynamic Young’s modulus and strongly enhance the strength of Ti–Hf alloys 

[8-10]. Moreover, it is proved that Ti and Hf exhibit good biocompatibility and 

osteoconductivity [11]. Therefore, Ti alloys with Zr and Hf additions, may improve the 

mechanical properties and reveal better corrosion resistance and biocompatibility 

compared to Ti [12]. As an example, Ti-20at%Zr-20at%Hf-20at%Fe alloy is found to 

be harder, showing lower Young’s modulus and better corrosion resistance than Ti–

6Al–4V, while it also exhibits non-cytotoxicity characteristics [13]. Synthesized Ti–Zr, 

Ti–Hf, and Zr–Hf binary and Ti–Zr–Hf ternaries alloys are mainly stabilized in the α-

phase, while ω-phase contributions persist at certain compositions [14-16]. Moreover 

previous studies regarding the ternary Ti-Nb-Hf alloys, detected the presence of ω-

phase for Ti concentrations between 34at% and 60at% [17-19]. For this section we 

scaled-up from DFT to molecular dynamics simulations. Classical molecular dynamics 

simulations allow us to use larger and therefore more realistic systems. In addition MD 

allow us to perform time and temperature dependent simulations, in contrast to DFT 

where we work at constant T = 0K. Although it is interesting to simulate the properties 

of Ti-Zr-Hf systems using large scale simulations, such more realistic cases are still 
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lacking, due to the absence of the corresponding interatomic potentials. Therefore an 

interatomic potential was developed and molecular dynamics simulations were 

performed in order to study how the structural properties are related with the Hf or Zr 

alloying elements along with the Young’s modulus. 

3.5.2 Results and discussion 

We performed large scale molecular dynamics simulations on Ti, Ti-25at%Zr, Ti-

25at%Hf and Ti-12.5at%Zr-12.5at%Hf alloys. Starting from the α phase where the 

doping atoms were randomly placed, we carefully melted at 3000K and subsequently 

quenched the system to 300K, while after equilibrium at room temperature we applied 

tensile deformation. Since the final structure of the system is strongly related with the 

quenching ratio, we tested different ratios with the aim of creating different structures, 

including single-crystal and polycrystalline systems. The radial distribution function 

(Figure 3.5.1) seems to indicate a disordered polycrystalline structure for all alloys 

when the system is rapidly quenched at 10K/ps. On the other hand, when the system is 

quenched at lower ratios (up to 0.1K/ps) the final structure results in mono-crystalline 

system (single grain) with random orientation suggesting that the same calculation for a 

larger system could form a polycrystalline system. 

 
 

Figure 3.5.1 Radial distributions function versus interatomic distance of Ti-12.5at%Zr-

12.5at%Hf. The atoms have been relaxed at 300K after quenching by different ratios:  

10 K/ps (red line), 1 K/ps (blue line) and 0.1 K/ps (black line). 
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In Figure 3.5.2(b) the stress versus strain curves of pure Ti and different alloys are 

depicted. For all compositions studied, the stress-strain curves of the alloys are below 

the monocrystalline α-Ti hcp curve that was expanded along the [0100] direction. It is 

important to note that as an hcp single-crystal, the Young’s modulus of Ti is highly 

dependented on the crystallographic direction. Due to that reason, the system was 

deformed along a chosen direction where a mean value of the Young’s modulus is 

found. As it is depicted in the Table 3.5.2, the calculated Young’s moduli predict higher 

elasticity, around 64GPa, for all the binary and ternary alloys quenched at 10K/ps 

compared to the monocrystalline Ti metal while interestingly this elastic modulus does 

not depent on the alloys’ stoichiometry. 

 

 
Figure 3.5.2 a) Schematic representation of Ti-12.5at%Zr-12.5at%Hf system: hcp 

initial structure, melting at 3000K, quenching to 300K at 10K/ps and upon tensile 

deformation. b) Stress – strain curves of the Ti hcp along [0100] direction and the Ti-

25at%Zr, Ti-25at%Hf and Ti-12.5at%Zr-12.5at%Hf alloys. Along we the calculated 

Young’s moduli by a linear fitting of the elastic region, showed in the inset. 

 

Moreover in these cases, the elastic modulus values do not independent on the direction 

along which the strain is performed, due to the polycrystalline structure of these 

systems. The results of this chapter reveal the importance of the Ti-Zr-Hf systems 

towards the design of a biocompatible low Young’s moduli alloy, that although present 
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higher modulus values compared to β-TiNb alloys, they could be of use for the design 

of novel alloys suitable for biomedical applications. Nevertheless, in order to acquire 

concluding results, more calculations having several stoichiometries in larger systems 

and slowly quenched alloys should be carried out. 

Stoichiomety         

(at%) 

Young’s modulus 

(GPa) 

Ti (hcp) 105 

Ti-25Hf 65 

Ti-25Zr 63 

Ti-12.5Zr-12.5Hf 64 

 

Table 3.5.1 Young’s moduli of disordered Ti (hcp phase) and disordered polycrystalline 

Ti-25at%Hf, Ti-25at%Zr and Ti-12.5at%Zr-12.5at%Hf. 
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CHAPTER 4: Conclusions  

4.1 Concluding remarks  

This thesis investigates the structural, electronic and mechanical properties of non-toxic 

Ti-based alloys aiming to understand the characteristics that can lead in the achievement 

of bone-like Young’s modulus, e.g. the β-phase stability.  

Initially, we studied the Ti-Nb alloys in the experimentally observed α′, ω, β and α″ 

phases. The total energy calculations revealed that the α′ and ω phases are stable in the 

Ti-(x ≤ 6.25)at%Nb and that the β phase becomes energetically favoured in Ti-(x ≥ 

18.75)at%Nb), while the α″ phase may exist in the intermediate stoichiometries (Ti-

(9.375 ≤ x ≤ 18.75)at%Nb). In addition, it came out that in all phases the unit cell 

increases upon Nb substitution, in agreement with available XRD experimental data. 

The EDOS relates the minimum located at the Fermi level (EF) of α′ and ω phases in Ti-

(x ≤ 9.375)at%Nb with stability features at low Nb concentrations, while the partial 

EDOSs of the α′, ω, α″ and β exhibit maxima in the range from -3.5eV up to EF that are 

due to the d-electrons. In line with the total energy, the EDOSs and the XRD results, the 

calculated Ti-Nb mechanical stability conditions revealed destabilization of the α′ and ω 

structures upon Nb addition and initiation of the β-phase stabilization for Nb-rich 

compositions (> 15at%Nb). The negative E and G values as well as the high (> 0.5) 

Poisson’s ratio ν values may also be used as indicators for the instability of β-Ti-(x < 

10at%)Nb. Moreover, the sequence of Eω > Eα′ > Εα″ > Εβ was found for the Young’s 

moduli, while for the β-Ti-xNb (15at%Nb ≤ x ≤ 31.25at%) the calculated elastic 

modulus theoretically saturates to the Eβ = 87GPa. Therefore, we expect that the 

experimentally observed E dependence with Nb composition (w-shaped curve) should 

be a weighted average of the various Ti-Nb phases. The Young’s modulus surfaces 

exhibit enhanced anisotropy for the α′, ω and α″ phases, contrary to the β-phase. 

Interestingly, the β-Ti-Nb alloys may exhibit really low elastic moduli, under 30GPa in 

the [100] and equivalent [010] - [001] directions, while the sequence of Eβ[100] < 

Eβ[110] < Eβ[111] is predicted. Therefore, in order to achieve bone-like Young’s moduli 

using the Ti-xNb alloys, a single β-phase crystal with Nb less than 10at% should be 

grown along the [001] direction.  



 

 

   121 

 

Since the stabilization of β-Ti-xNb can be experimentally obtained at high Nb 

substitutions (x > 22at%), an alternative pathway to achieve low rigidity is by means of 

a third element substitution in Ti-xNb (x ≥ 18.5at%), as experimentally found for the 

case of Ti-Nb-Sn alloys (E = 50.7GPa). In this thesis two main categories concerning 

the third element were studied: a) sp dopants (like Sn and In) and b) sd dopants (like 

Hf). For all ternaries, the ab initio calculations found an almost linear increase of the 

lattice constants upon the third element substitutions, in line with the available XRD 

measurements, whereas Hf is responsible for the highest lattice constant values. The 

calculated total energies showed that the In/Sn/Hf atoms always prefer the Ti-first 

neighbourhood (Ti-FN), while the Nb-FN and Ti-Nb-FN environments are less 

energetically favoured.  

The sp-dopants were substituted in the stable β-Ti25at%Nb compositions in order to 

understand the experimentally observed lowering of E for specific stoichiometries. 

Interestingly, the partial EDOSs of the Ti-25at%Nb-(x ≤ 8.33at%)In/Sn show that the 

dopant’s s-electrons are responsible for the new really low energy states around -8eV 

for Sn and -7eV for In, which exhibit antibonding features with the neighbouring atoms, 

thus leading in a weakening of the chemical bonds and consequently in elastic 

softening. The p-electrons occupy the states between -3eV and -5eV, while the Ti d-

electrons are mainly contributing in the Fermi level without really affecting the 

ternaries’ EDOSs. For high In/Sn contents (≥ 12.5at%), more In-In or Sn-Sn may 

become first or second neighbours exhibiting strong σ-bond features between the 

dopants and antibonding character with the Ti or Nb neighbouring atoms at these new 

lowest energy states. This results in significant deterioration of the periodic symmetry 

of the electronic charge, an effect that could lead to mechanical instability of the β-

phase.  

Furthermore, the sd-electron Hf was substituted in the Ti-18.75at%Nb where the a″ 

phase was experimentally found for small Hf substitution and the  transition was 

achieved for Hf 16at%. The ab initio calculations revealed the emergence of a new 

energy state around -11eV due to Hf 4f in Hf-Hf interactions, which may exist above Hf 

12.5at% and correlates the stabilization of the β-phase with the pure Hf transitions upon 

pressure. The contributions of the Hf 5d at the Fermi level or the Hf 6p at lower 

energies do not significantly alter the binary’s EDOS features, while these results are 

supported by the electronic band energy calculations.   
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Besides the Ti-Nb-based alloys, we also considered the study of Ti-based with sd 

elements like with Zr and Hf (Ti-xZr-yHf, x, y = 0, 12.5at%, 25at%). In these cases 

interatomic potential models became available, thus allowing us to study more realistic 

systems (in sizes) using large scale molecular dynamics simulations. For these alloys, 

the radial distribution functions predict a polycrystalline structure when the system is 

rapidly quenched (10K/ps), while when lower cooling rates were employed (down to 

0.1K/ps) the final structures were close to mono-crystalline systems. The corresponding 

alloys’ Young’s moduli (63-65GPa) are lower than the α-Ti (105GPa), but still 

comparable to the β-Ti-25at%Nb, i.e. higher than 60GPa.  

The results of this thesis could be used for the design of low-rigidity non-toxic Ti-based 

alloys suitable for biomedical implants.  
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4.2 Future work  

In this thesis, a detailed study of the structural, electronic and mechanical properties of 

several Ti-based alloys have been carried out. Nevertheless there are still some open 

questions and work that could be done as a continuation of this thesis. 

The β-phase alloys with Nb additions close to 10at%Nb exhibit a very low Young’s 

modulus. Unfortunately the β-Ti-Nb is unstable at low Nb concentrations. Consequently 

β-Ti-(x < 10at%)Nb-X  alloys with non-toxic additions could be an option for the β-

phase stabilization at such compositions. In particular, a study of Ti-Nb-X alloys with 

other biocompatible additions like Pd, Pt or Sc or with biodegradable compounds like 

Ca or Mg. The calculation of these alloys mechanical properties could also be a future 

topic. The β-phase of the Ti-xNb (x ≥ 18.5at%) has been proven to be the energetically 

favoured with a Young’s modulus highly dependent on the crystallographic direction. 

Due to that reason, methods like cold rolling, heat treatments or the addition of other 

dopants could favoured the growth of β grains along the [100] diminishing the growth 

along [111], leading us to further elastic moduli reduction. 

Other interesting topic for future study could be related with the Ti-Nb systems’ size 

scale-up by means of molecular dynamics. The simulations of large scale systems 

would help us to perform a more realistic study of the structural properties and tensile 

deformations in polycrystalline systems. In addition the influence of the stoichiometry, 

pressure and temperature in the phase transition and their possible influence in the 

mechanical properties could be analyzed in more detail. Unfortunately, classical MD 

simulations require an interatomic potential to describe all atoms interactions, which 

although can be found for Ti (hcp phase) and Nb (bcc phase) metals, is not available for 

the binary system. Nevertheless, considering the technical problems related to the 

molecular dynamics calculations, the system’s size could also be scaled-up (up to ~200 

atoms) by any DFT with pseudopotential methodology. 

Finally, regarding the study of Ti-Zr-Hf system by molecular dynamics, a wider range 

of stoichiometries, as well as larger systems could be simulated in order to get a better 

understanding of the phase transitions and more accurate calculations of the mechanical 

properties.  
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ANNEX 

Dissemination 

The most important research results of this thesis have been or will be submitted for 

publication in peer-reviewed journals as well as presented in international conferences 

and workshop enumerated below. 

Scientific publications  

 The role of Sn doping in the β-type Ti-25at%Nb alloys: experiment and ab initio 

calculations 

J.J. Gutiérrez Moreno,  Y. Guo, K. Georgarakis, A.R. Yavari, G.A. Evangelakis, 

Ch. Lekka 

Journal of Alloys and Compounds 615 (2014) S676–S679 

 

 Elastic softening of β-type Ti-Nb alloys by indium (In) additions 

M. Calin, A. Helth, J.J. Gutiérrez Moreno, M. Bönisch, V. Brackmann,  

L. Giebeler, T. Gemming, Ch. Lekka, A. Gebert, R. Schnettler, J. Eckert 

 Journal of the Mechanical Behavior of Biomedical Materials 39 (2014) 162-174 

 

 Electronic origin of α" to β phase transformation in TiNb-based thin films upon 

Hf microalloying 

 J.J. Gutiérrez Moreno, N.T. Panagiotopoulos, Ch.E. Lekka,  G.A. Evangelakis 

 Manuscript in preparation 

 

 Ti-Nb phase transitions from electronic structure calculations 

 Ch.E. Lekka, J.J. Gutiérrez Moreno,  G.A. Evangelakis 

 Manuscript in preparation 

 

 Structural and electronic properties of Ti-Nb alloys 

 J.J. Gutiérrez Moreno,  G.A. Evangelakis, Ch.E. Lekka 

 Manuscript in preparation 

 

 Mechanical properties of Ti-Nb alloys 

 J.J. Gutiérrez Moreno,  G.A. Evangelakis, Ch.E. Lekka 

 Manuscript in preparation 
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Dissemination in conferences  

 Binary & Ternary Ti-based alloys: A Computational Study 

 J.J. Gutiérrez Moreno, G.A. Evangelakis, D.G. Papageorgiou, Ch.E. Lekka 

 BioTiNet Winter School 

 Talk 

 

 Biocompatible Ti-Nb-Χ (X = Sn, In, Hf) alloys from ab initio calculations 

 J.J. Gutiérrez Moreno, G.A. Evangelakis, Ch.E. Lekka 

 XXIX Panhellenic Conference on Solid State Physics & Materials Science 

 Poster 

 

 Biocompatible Ti-xNb (14<x<40) alloys: Structural, electronic and mechanical 

properties 

 J.J. Gutiérrez Moreno, D.G. Papageorgiou, G.A. Evangelakis, Ch.E. Lekka, 

 M. Boenisch, A. Helth, M. Calin, A. Gebert, J. Eckert 

 Euromat 2013 

 Poster 

 

 Biocompatible Ti-Nb-Χ (X = Sn, In, Hf) alloys from ab initio calculations 

 J.J. Gutiérrez Moreno, G.A. Evangelakis, Ch.E. Lekka 

 Euromat 2013 

 Poster 

 

 Biocompatible Ti-xNb (14<x<40) alloys: Structural, electronic and mechanical 

properties 

 J.J. Gutiérrez Moreno, D.G. Papageorgiou, G.A. Evangelakis, Ch.E. Lekka,  

M. Boenisch, A. Helth, M. Calin, A. Gebert, J. Eckert 

 Euro LightMAT 2013 

 Talk 

 

 Structural, electronic and mechanical properties of β-Ti-Nb-Sn alloys: 

Experiment vs. ab-initio calculations 

 J.J. Gutiérrez Moreno, G.A. Evangelakis, Ch.E. Lekka, Y. Gou, K. Georgarakis, 

A.R. Yavari 

 ISMANAM 2013, 20th International Symposium on Metastable, Amorphous 

and Nanostructured Materials 

 Poster 

 

 Structural, electronic and mechanical properties of β-Ti-Nb-In alloys: 

Experiment vs. ab-initio calculations 

 J.J. Gutiérrez Moreno, G.B. Bokas, G.A. Evangelakis, Ch.E. Lekka, A. Helth, M. 

Boenisch, A. Gebert, M. Calin, J. Eckert 

 ISMANAM 2013, 20th International Symposium on Metastable, Amorphous 

and Nanostructured Materials 

 Poster  
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 On the design of Ti-Nb-X (X = In, Sn, Hf) alloys from ab-initio calculations 

 J.J. Gutiérrez Moreno, G.A. Evangelakis, D.G. Papageorgiou, Ch.E. Lekka 

 4
th

 BioTiNet workshop – Biomaterials for Orthopaedic Applications 

 Talk 

 

 On the design of Ti-Nb-X (X = In, Sn, Hf) alloys from ab-initio calculations 

 J.J. Gutiérrez Moreno, G.A. Evangelakis, D.G. Papageorgiou, Ch.E. Lekka 

 4
th

 BioTiNet workshop – Biomaterials for Orthopaedic Applications 

 Poster 

 

 Biocompatible Ti-Nb and Ti-Nb-Hf thin films by magnetron sputtering and ab-

initio calculations 

 J.J. Gutiérrez Moreno, N.T. Panagiotopoulos, P. Patsalas, Ch.E. Lekka,  

G.A. Evangelakis 

 EMRS 2013 SPRING MEETING 

 Poster 

 

 Structural, electronic and mechanical properties of β-Ti-Nb-Sn alloys: 

Experiment vs. ab-initio calculations 

J.J. Gutiérrez Moreno, G.A. Evangelakis, Ch.E. Lekka, Y. Gou, K. Georgarakis, 

A.R. Yavari 

 EMRS 2013 SPRING MEETING 

 Poster 

 

    Theory-guided bottom-up design of low-rigidity Ti-based alloys (ab initio and 

MD calculations)  

    J.J. Gutiérrez Moreno, G.A. Evangelakis, D.G. Papageorgiou, Ch.E. Lekka 

     3
rd

 BioTiNet workshop – Surface science & engineering 

     Talk 

 

    Theory-guided bottom-up design of low-rigidity Ti-based alloys (ab initio and 

MD calculations) 

     J.J. Gutiérrez Moreno, G.A. Evangelakis, D.G. Papageorgiou, Ch.E. Lekka 

  BioTiNet Mid-term review meeting 

  Talk 

 

 Structural, electronic and mechanical properties of Ti-xNb (Nb<40 at.%) 

J.J. Gutiérrez Moreno, N.T. Panagiotopoulos, D.G. Papageorgiou, G.A. 

Evangelakis, Ch.E. Lekka 

ISMANAM 2012, 19th Internat. Symposium on Metastable, Amorphous and 

Nanostructured Materials 

Poster (Best poster award) 

 

 Structural, electronic and mechanical  properties of β-Ti alloys by means of  ab-

initio calculations 

J.J. Gutiérrez Moreno, G.A. Evangelakis, D.G. Papageorgiou, Ch.E. Lekka 

   BioTiNet summerschool – Titanium in medicine 

   Talk 
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    Structural, electronic and mechanical properties of β-Ti alloys by means of  ab 

initio calculations 

  J.J. Gutiérrez Moreno, G.A. Evangelakis, D.G. Papageorgiou, Ch.E. Lekka 

2
nd

 BioTiNet workshop – Research methodology and research project 

management 

Talk 

 

 Towards Ti-based alloys for biomedical applications by means of ab-initio 

calculations 

J.J. Gutiérrez Moreno, G.A. Evangelakis, D.G. Papageorgiou, Ch.E. Lekka 

1
st
 BioTiNet workshop – Advanced Methods for Materials Characterization 

   Talk 

 

 On the design of β Ti-based alloys for ab-initio calculations 

J.J. Gutiérrez Moreno, G. Bokas, N.T. Panagiotopoulos, G.A. Evangelakis, 

Ch.E. Lekka 

   SCIENCE: Passion, Mission, Responsibilities  

Poster 
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SUPPLEMENTARY MATERIAL 

 Electronic Density of States for the understudy stoichiometries 

a) TiNb 

 
Figure SM 1 Electronic density of states of α′-phase: a) pure α-Ti, b) Ti-6.25at%Nb, c) 

Ti-18.75at%Nb, d) Ti-25at%Nb and e) Ti-50at%Nb; for the total, d, p and s 

contributions (first up to fourth row, respectively).Blue lines stand for the Ti-partial 

contribution, red for the Nb-partial contribution and black for the total average.  

 

 

 
Figure SM 2 Electronic density of states of ω-phase: a) pure Ti, b) Ti-6.25at%Nb, c) 

Ti-18.75at%Nb, d) Ti-25at%Nb and e) Ti-50at%Nb; for the total, d, p and s 

contributions (first up to fourth row, respectively).Blue lines stand for the Ti-partial 

contribution, red for the Nb-partial contribution and black for the total average.  
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Figure SM 3 Electronic density of states of α″-phase: a) pure α″-Ti, b) Ti-6.25at%Nb, 

c) Ti-18.75at%Nb, d) Ti-25at%Nb and e) Ti-50at%Nb; for the total, d, p and s 

contributions (first up to fourth row, respectively).Blue lines stand for the Ti-partial 

contribution, red for the Nb-partial contribution and black for the total average.  

 

 

 
Figure SM 4 Electronic density of states of β-phase: a) pure Ti and Nb, b) Ti-

6.25at%Nb, c) Ti-18.75at%Nb, d) Ti-25at%Nb and e) Ti-50at%Nb; for the total, d, p 

and s contributions (first up to fourth row, respectively).Blue lines stand for the Ti-

partial contribution, red for the Nb-partial contribution and black for the total average. 
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b) TiNbHf 

 
Figure SM 5 Electronic density of states of α″-phase: a) Ti-18.75at%Nb-6.25at%Hf for 

the total, d, p and s contributions lied up from the first up to fourth row, respectively, 

b), c) and d) stand for the cases of Ti Ti-18.75at%Nb-12.5at%Hf, Ti-18.75at%Nb-

18.75at%Hf and Ti-18.75at%Nb-25at%Hf respectively. The contribution due to perfect 

ideal structure is represented by a thin line and the final structure after ionic relaxation 

with a thicker trace) 

 

 
Figure SM 6 Electronic density of states of β-phase: a) Ti-18.75at%Nb-6.25at%Hf for 

the total, d, p and s contributions lied up from the first up to fourth row, respectively, 

b), c) and d) stand for the cases of Ti Ti-18.75at%Nb-12.5at%Hf, Ti-18.75at%Nb-

18.75at%Hf and Ti-18.75at%Nb-25at%Hf respectively. The contribution due to perfect 

ideal structure is represented by a thin line and the final structure after ionic relaxation 

with a thicker trace) 
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c) TiNbIn 

 

Figure SM 7 Electronic density of states of β-phase: a) pure Ti, pure Nb, Ti-25at%Nb 

and Ti-25at%-2.08at%In (dotted blue, dotted red, purple and black lines, respectively) 

for the total, d, p and s contributions (first up to fourth row, respectively, b), c), d), e) 

and f) stand for the cases of Ti-25at%Nb-2.78at%In, Ti-25at%Nb-4.17at%In, Ti-

25at%Nb-8.33at%In, Ti-25at%Nb-12.5at%In and Ti-25at%Nb-25at%In respectively.  

 

d) TiNbSn 

 

Figure SM 8 Electronic density of states of β-phase: a) pure Ti, pure Nb, Ti-25at%Nb 

and Ti-25at%-2.08at%Sn (dotted blue, dotted red, purple and black lines, respectively) 

for the total, d, p and s contributions (first up to fourth row, respectively), b), c), d) and 

e) stand for the cases of Ti-25at%Nb-2.08at%Sn, Ti-25at%Nb-4.17at%Sn, Ti-25at%Nb-

6.25at%Sn, Ti-25at%Nb-12.5at%Sn and Ti-25at%Nb-25at%Sn respectively.  


