

-

, MSc

.

-

, MSc

.

μ , μ . 5343/32, 202, μμ μ

2»

μ

μ μ μ	.: 746	/29-5-2009
-------	--------	------------

	μ	μ	:	
μ	:	, .	. μμ	μ
:	/			
	• /	, . , .	μμ μμ	μ
μμ	Ļ	ı	μ : 11-7-2012	
μ:	«μ	μ	μ	μ

μ

. . . .:

-		μ	»

855 /18-7-2012

- 1. μ . , .
- 2. . / , .
- 3. , ,
- 4. μ . μ , .
- 5.
 .
 / , .

 6.
 .
 , .

 7.
 .
 , .

μ μ « » 2-7-2014

μμ	μ	μμ	μμ
,		μ	

μ ...

μ ...» Joshua J. Marine

.

«

. µ , µ µ µ µ µ

μ

μ

µ. µ µ, µ µµ.

μ . μ , μ μ , μ , μ ,

μ μ μ. , μ , μ μ

μ , μ

, μ , μ , . μ

.

μ μ , μ , μ , μ

μ, μ μ, μ,

, μ . Alexandru C lin, μ , μ μ .

μ . μ μ, . μ ,

,

μ

р р р

μ , μ • μ, μ μ μ μ , μ μ μ , μ μ μ.

2014

,

,

1 –

1

				••
3		-	μ	1.1
4	– µ	μ		1.2
6			μ	1.3
6		μ	1	1.3.1
9	μ μ	_	2	1.3.2
10		_	3	1.3.3
10			4	1.3.4
15				

2

2. 2.1 μ 2.2 μ _ 2.3 μ 2.3.126 μ μ 12 -2.3.232 **—** 12 (LD₅₀) -2.3.2.1 μ

3

3.

 42
 44
 49
 53
 54
 56

	3.7	μ	μ	E	Beer	μ	μ				59
	3.8	μ	۲	I İ	Beer						59
	3.9							μ	μ		64
	3.9.1	μ					μ				μ
μ	•										65
	3.9.2	μ	μ		μ		μ	μ			68
	3.9.3		μ	μ			μ	μ		μ	
				•••••							70
	3.9.4							μ	μ		μ
						•••••					72
;	3.10		μ		μ			_			75
	3.10.1	μμ	μ		μ						77
	3.10.2		μ	ł	l						81
	3.10.3		μ	μ		μ	μ	μ	μ		84
	3.11		μ		μ		μ	UV/Vis	5		85
	3.11.1			μ.							85
	3.11.2				μ.	•••••					86
	3.11.3		μ			•••••					88
	3.11.4	μ		μ							90
	3.11.5		μ		μ						90
	3.11.6		μ		U١	//Vis		μ			μ
	μ										90
		••							•••••		93

4 –

4. μ 4.1 4.2 μ (Certified Reference Material).....103 4.3 μ μ AVN......106 4.4 μ – μ μ 4.5 μ 4.6 pH.....109 AVN.....115 4.7 μ AVN μ Fe³⁺, Co²⁺, Al³⁺, μ 4.8 μ μ Cu²⁺ xvi

4.9		μ - Εο ²⁺		AVN μ Fe ³⁺ , Co ²⁺ , Al ³⁺	AIPO ₄	1,10
4.10 u Fe ³⁺	۲ ۲	, re	 I	AVN μ Fe ³⁺ Co ²⁺	1,10	134
4.11	μ		μ	AVN µ Fe ³⁺ Co ²⁺		
4.12	μ	μ		AVN μ Fe(NO ₃) ₃ .9H ₂ C	Co(NC	D ₃) ₂ .6H ₂ O
μ		(*)				150
4.13				μ		156
						159
	5					
5.						
5.1		μ	μ	Prawn, GBV	V08572	Wheat, NCS
ZC73009)					165

5.2 µ

μ μ167

 μ		μ
 μ		
		μ
	μ	
	μ	
	μ	μ

AI.	Aldrich/
AAS	Atomic Absorption Spectrophotometry/ μ μ
	μ
AAVN	Acid Alizarin Violet N/ -
Abs	Absorbance/
С	Concentration/
С	Concentration /
dist.	distilled/ µ (.)
Dpk	Di-2-pyridil ketone
ECR	Eriochrome Cyanine R
FAAS	Flame Atomic Absorption Spectrometry/ μ μ μ
GFAAS	Graphite Furnace Atomic Absorption Spectrometry/ μ
	μμ
FI.	Fluka/
FS	Fluorescence Spectrometry/ μ μ μ
FIS	Flow Injection Spectrophotometry/ μ μ μ
FISPS	Flow Injection Solid Phase Spectrophotometry/ μ μ
	μ
FO-LADS	Fiber Optic – Linear array detection Spectrophotometry/
	ч ч ч
IC	Ion Chromatography/ µ
ICP-AES	Inductively Couple Plasma - Atomic Emission Spectrography/
	ч ч-ч ч

xix

ICP-MS	Inductively Couple Plasma – Mass Spectrometry/	
	μ μ- μ μ	
LD ₅₀	Lethal Dose ₅₀ / µ ₅₀	
LOD	Limit of Detection/	
LOQ	Limit of Quantification/	
LP-Prawn:	Laboratory Prepared-Prawn/ µ	μ
	Prawn	
m	mass/ μ	
	Merck/	
*	Metal ion/	
ML	Metal ion-Ligand/ -	
MEKC	Micellar Electrokinetic Capillary Chromatography/	
	μ	
POL	Polarography/	
RSD	Relative Standard Deviation/	
SOSC	Orthogonal Signal Correction Spectrometry/ µ	μ μ
	μ	
SP	Solid Phase/	
SPS	Solid Phase Spectrophotometry/ µ µ	
	Transmittance/ µ	
UL	Upper Limit/ µ	
UV/Vis	Ultraviolet/Visible/ /	
V _f	Volume _{final} / µ	
VOL	Voltametry/ µ	
WHO	World Health Organization/ μ μ	
XRF	-Ray Fluorescence spectrometry/ µ -	

	, LOD		
	LOD=3 x s/ µ	(5)	
\triangleright	, LOQ		
	LOQ=3 x LOD	(6)	
>	, RSD%		
:	$RSD(\%) = \frac{s}{\overline{x}} x 100$	(7)	
S= x=	μμ		
\triangleright	μ, μ <u>%</u>		
	% $\mu = C - C / C \times 100$	(8)	
: C	μ	μ	μ
C .	μ μ μ μ .	μ	μ

1.

1.1 µ -

				μ					Ferroum		
						μ			(),		(Si)
		(AI)	[Carmich	ael S., 1989].	Т	μ	μ				
			μ	μ		μ	μ				
ł	L		μ		1	20 µ	I				μ
μ		μ		- ,		(3	5-80%)	μ
(90-95%).			,	μ			μ
μ			μ								μ
										μ	
									μ,		
	5%								,	μ	μ
	μ		-	,		35%	μ				,
μ		μ			,	μ		μ			μ
	μ		,	(ac	ciaio)
		•	,								

. μ ,

μ, , μ μ, , μ 17 μ 12 . . μ . μ μ . μ

 Tylecote F., 1975 (a,b)].
 11

 μ
 8
 μ
 μ

 .
 .
 .

1.2	μ	-	μ			
	h h	μ ().	4 μ μ	8μ (), μ26	(µ µ 55,84) 7.
	+2	μ μ +3	ћ т 8 г	-2	, +6,	μ
u	, µ µ µ	1.538 C.	μ	μ , μ	2.862	μ C
F		μ	μ	, , ,	ĥ	h h
μ	μ	μ (, μ	μ) μ 1000		
	μ	μ μ μ ,	,	μ,	h h , ,	ł
	μ μ « μ,	μμ μ » [Huhe	μ eev.l.	μ	μ μ	μ
ł	, J	р р р р	μ	,	,	μ
h h	μ	μ ,	, μ μ	µµ µ , µ		μ
		μ		:		

1- -_

μμ μ 75-100 . 50% (μ) μ μ , μμ μ μ μ. μ μ , µ μ μ :) ,) µ ,) μ ,)) µ μ ____, Fe₃O₄: μ μ , μ μ • 25-45% µ μ μ " " μ μ ((), μμ), . .). (μμ , Fe₂O₃: μ μ. μ μ μ « » μ. <u>μ</u>, FeO(OH).H₂O: μ μ μ μ μ μ « μ » μ μ. ____, Fe₂CO₃: (30-37%). μ μ μ μ (,). μμ30%. μ $(Fe,Mg)_3(Si,Al)_2O_5(OH)_4$ μ μ, • (FeS₂) µ (Fe1-xS), , μ μ .,2000]. [(Fe²⁺) μ

μ.μ

μ

404						
	: μ 					25.1.1/molK
μ 	26		μ			1 83 (Pauling scale)
р р П	55	847				
μ	55,	047		Ч		1 : 762,5 kJ/mol
	7.0	74 ar/sm^3			:	2 : 1561,9 kJ/mol
	7,0				:	3 : 2.957 kJ/mol
μ	1.5	38 0				(20 °C) 96.1 n →m
μ	2.8	62 °C	μ	μ		(300K) 80,4 W/m⋅K
	13,	81kJ/mol	μ			(25°C)11,8 µm/m⋅K
μ	340) kJ/mol				4,0 (Mohs)
	μ					
μ			μ			, μ
		•				
2						
.o µ						
			μ	, μ		
μμ	J	μ		,	μ	
,	μ		,		DNA	μ
	μ.					
			μ		·	
1		μμ	μ			μ,
40%			μ	μ	60%	
μ			[Huheey	.].		
• •						
.3.1	μ					
			μ			
			μ			
		,			μ	,
			`			

					μ						
				μ	, μ		μ				
μ	ł	, -		μ			h l	J			
		μ									
	μ,	Oa	hu,					20% 	· ,		
	μ							μ	+3	[Brog	otod
R 19701	μ								μ	נסומ:	sieu
11.,1070].	м		u						(u)	u	
			μ.		μ				μ	F	
.Ha		,									
diaminatatraa	ootio /	acid (CDTA	`		,			.,	cyclohexa	ne-trans-	1,2-
ulammetettaat).	μ				μ	CDTA		
		u U			u		μ		uu	۲	,
μ μ		μ			μ.				Р. Г.		
(рН),		μ			μ		μ	μ	
μ		,									
					μ						
				μ							
	μ	«		»,				μ			
(Gymr	nodiun	n Bruve)				μ	μ			,	
μ		μ			μ						
								μ			
ч		μ				μ	μ nH				
μ,		U	L	1	u	۲	рп		1		
μ		· ·	٢		۳	, μ		F	μ	μ	
		μ				•			μ		
		3+ (Fo ²⁺)			•			
	μ	57 (6		μ U	<i>)</i> .				μ		μ
μ	Fe ³	, +.		٣			,				

	1-	-										
				μ			μ	μ			μ	
	μ			μ				,				
											μ	
		μ				μ				μ		
	μ,μ		-							,		
	μ		,	16%.			μ					
	μ											
μ		μ	μ	μ						μ		
	•				,			μ				
			•						μ			
		,	4000			μ					μ	
	[Bezk	orovainy F	1.,1980)].								
		,			μ		,					
		۲		п		м		ш	•		п	
	U			٣				٣			٣	
	μ						,			и		
	·							μ	μ	·		
								•	•			

[Bezkorovainy A.,1980].

			μ					μμ
								μ
	μ	μμ						: Fe ³⁺
			μ	μ	μ	μ	μ	Fe ²⁺ .
CDTA					μ			

					•						
,							,				-
						,			,		
			п							п	
		•	м	,				,		٣	
	μ		μ								

[Olsen A., *et al.,* 1981].

1.3.2 - µ µ

μ μ, μ . μ μμ μ. μμ, 10 20 mg μ .

μμ 5 15%. μ μ μ . μ μ μ, ,

μ , μ μ μ μ μ μ μ , μ, , , μμ . μ μ μ μ

, . (µ µ), (), µ µ .

μ 1.3.2.1 µ μ μ μ , μ μ μ μ () μ () 1.3.2.2. μ

μ μ μ _ μ μ μ , μ μ , . , μ μ μ μ, μ μ μ . μ μ .

μ

1.3.3 -

•

μ μ μ. , μ μ μ μ, , , μ μ μ . , , , , μ μ μ μ . μ μ , , μ • μ μ μ μ), (. . μ μ μ , μ , , μ μ . , μ μ μ μ • μμ μ

μμ μ , μ μ μ , . 1.3.3 μ μ μ μ μ μ μ - μ μ μ

μ - μ μ μ

1.3.4

μ - μ (μ, , μ). , μ

,

μ

*

μ μ .

_ 1.3.2.1 : µ				
	USA		FU	WHO
1-3	7	40	4	5
4-6	-	-	4	5,5
4-8	10	30	-	-
7-10	10	-	6	9,5
9-13	8	40	-	-
11-14	-	-	10	15
15-18	-	-	13	9
14-18	11	45	-	-
19-50+	8	45	9	-
11-14	-	-	18-22	16
14-18	15	45	-	-
15-50	-	-	17-21	12,5
19-50	18	45	-	-
50+	8	45	8	9,5
μ	27	45	*	*
μ	9	45	10	10,5
μμ	8	-	-	-

μ μ μ μ μ. μμ μ р , µ μ μ μ μ , μ • μ μ μ , µ , μ μ , , (LD₅₀). 1.3.4.1 μ μ

	1-				
		μ	μ	(LD ₅₀)	
,				,	,

_1.3.2.2:	, μ	μ	*	
		(15%)	
(mg)	700 mg	105 mg	700 mg 100%()
(mg)	300 mg	45 mg	300 mg 100%()
(mg)	14 mg	2,1 mg	14 mg 100%()
(µg)	1,1 mg	0,165 mg	1,1 mg 100%()
(µg)	130 µg	19,5 µg	130 µg 100%()
(mg)	10 mg	1,425 mg	9,5 mg 100%()
(mg)	2 mg	0,3 mg	2 mg 100%()
(µg)	55 µg	8,25 µg	55 µg 100%()
μ (μg)	45 µg	6,75 µg	40 µg 100%()
(µg)	50 µg	7,5 µg	50 µg 100%()
(mg)	2,5 mg	0,375 mg	2,5 mg 100%()
(mg)	550 mg	82,5 mg	550 mg 100%()

* [395]

.

,

_1.3.3:

		Fe (mg)		Fe (mg)
	(165 ar)	F 4	(90,qr)	
.μ	(10591)	5,4	(oogi)	21
	(190gr)	1	(80gr)	6
-	. (75gr)	9	(70gr)	3
All Bran (45	igr)	5	(100gr)	1,5
Bran Flakes	s (45gr)	9	(200gr)	3
Corn Flakes	s (30gr)	2	(100gr)	2
Musli(95gr)		5	(100gr)	3
μ	2 .	15	μ (8)	2
μ	2.	1	(4)	2,5
μ	2.	2	(1/2)	1,5
	μ. (150gr)	2	μ (100gr)	1
	μ. (150gr)	1		
μ	μ. (165gr)	0,7	μ (20)	1
	μ. (165gr)	0,3	(25gr)	0,5
(1)		1	" " (100gr)	2,4

.

_**1.3.4.1:** μ (LD₅₀).

		LD ₅₀ (
	μ	/kg)			
					[Keith H.,1957; Nayfield G. et
					all., 1976; Whittaker P. et all.,
Fe		320-1100	Х		1996]
		247-250		Fe.	[Boccio R., et all., 1998]
		206			[Keith H.,1957]
		>200			[Keith H., 1957]
		>50000	Iron1	Fe [Carbonyl	[Whittaker P. et all 1996]

μ

.

μ

1.3.4.2 µ µ

μ

	_1.3.4.2		μ					
	μ	(1), (2), (3)	μ (4	(4)	μ (5),(6)		- (7), (8), (9)	
					μ	μ		
		(mg/l)						
As	0,01		0,1		0,5	0,05-1	0,01-0,03	
Ве			0,1		30	3	0,34	
Cd	0,005		0,01		0,1	0,001	0,005	
Со			0,05		10	0,25-1	0,02	
Cr	0,05		0,1		2	0,1-3	0,03-0,11	
Cu	2		0,2		1	0,05-1	0,0035-0,04	
F	1,5		1		20	2-15	X	
Fe	0,2		3		15	0,5-20	x	
Mn	0,05		0,2		10	0,2-4	X	
Мо	x		0,01		10	2	0,3	
Ni	0,02		0,2		10	0,05-1	0,02	
Pb	0,01		0,1		5	0,05-0,4	0,025	
Zn	x		2		2-20	0,005-10	X	
Hg	0,001		0,002		0,01	0,0001	0,001	
В	1		2		10	0,5	0,07-2	
* [(1) 892, (2)	630, (3)	53, (4) 354, (5)	582), (6)	253, (7)	1416, (8)	1909, (9) 749]	
<u>1- -</u>

Bezkorovainy A., Plenum Press, New York, 336-337, 1980.

Boccio R., Zubillaga B., Caro A., Lysionek A., Gotelli A., Gotelli J. and Weill R., Res., 62, 65–73, **1998**.

Brasted R., Chem. Educ. , 47, 634, 1970.

Carmichael R., CRC Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, Boca Raton, FL, **1989**.

Dacey W., Science, 210, 1017-1019, 1980.

Huheey J., « μ », μ , (- : , μ μ ,)., .

Keith H., Am. J. Clin. Nutr., 5, 35–38, 1957.

Nayfield G., Kent H. and Rodman F., Arch. Pathol. Lab. Med., 100, 325–328, 1976.

Olsen R. et al., Am. Sci., 69, 378, 1981.

Raymond K. et al., ACS Adv. Chem. Ser. No 162, Washington, DC, Chapter 2, 1977.

Roland O., Brian M. Fagan, Cambridge University Press, Cambridge [u.a.], 1985.

Tylecote R., Westafrican Journal of Archaeology, Vol. 5, 1975 (a).

Tylecote R., Journal of the Historical Metallurgy Society, Vol. 9, 1975 (b).

Whittaker P., Hines A., Robl G. and Dunkel C., Toxicol. Pathol., 24, 558 -563, 1996.

Leader Books, 2000. ., « : », μ / /582/2.7.1979: μ μ μ . (., μ .179182/656/79) / /53/20.2.1986: / /379/10.6.1986. « μ » 80/778 μ μμ μ 15.7.80

/ /253/9.3.2001: μ μ μ μ 76/464/ μ 4 1976.(4859/726/2001) / /892/11.7.2001: « », 98/38/ μμ μ 3 µ 1998. (2/2600/2001) μ / /395/27.2.2004: μ /2002/46/ « » μ μ μ / /1416/12.10.2005: μμ μ μ μ μ . 6 . 2/1-2-2001. . μ « μ μ μ 76/464/ μ 4 1976» (15/), μ . 50388/2003 (1866/) / /630/26.4.2007: μ 2/2600/2001 « », 98/83/ μμ μ 3 µ 1998. / /749/31.5.2010: μ μ μ μ μ / /1909/8.12.2010: μ μ. . . 51354/2641/ 103 μ « () μ μ μμ , 2008/105/ μ μ 2008 « 16 μ () μ μ 82/176/ , 83/513/ , μ μ 84/156/ , 84/491/ 86/280/ 2000/60/ », μ ».

.

//354/2011: μ μ , μ μ

2.

2.1 μ

μ μ , kobolds, μ и μ μ Bluecap (Coblynau ()). μ μ μ kobolds 16 μ μ μ μ μ μ μ μ kobolds [Angus C., et all, 1996]. kobolds μ μ μ , . [Weeks M.E., 2003; The Writers of Chantilly., 2002]. kobolds. μμ μ μ μ μ μ () .[Jameson R.,1820; Eagleson M.,1994; Morris R., 2003; Commodity Research Bureau.,2005] μ kobolds, μ , [Rose μ C.,1996]. o 1735 (1739,) Georg Brandt μ μ » [Daintith J.,1994], μ μ μ μ « 1780, μ μ , » [Commodity Research Bureau., 2005]. μ μ« 0,0029% μ μ μ (μ, ,) , μ μ , , [Weeks M.E., 1932]. μ μ μ μ μ (), (μ) μ 21

		2-	-						
			μ			(μ	
	μ).					·	μ	μ	
					μµ,				3
(618µ	J)	(1368-16	44µ) [Rar	nberg I.,200	08; Encycle	opedia Britanr	nica Online].
		μ			μ				
		μ			μ	μ,		μ	
(CoA	sS),								
		μ				μ		,	«
		»,				μ	,	μ	μ
								μ.	
2.2		μ		-	μ				
					4		9 µ		
	μ	μ	μ			(),	()
		().		μ	μ 27	μ	μ 58,933.	
		μ		9	μ			,	
	μ		μ			-3	+4,	I	μ
+2	+3		μ						

					+2.	
	(Co ²⁺)	μ			_	μ
(Co(H ₂ O)6) ²⁺	μ			μ	μ	$(CoCl_4)^2$
[Greenwood, N	., <i>et. all.,</i> 1997].					
	μ	μ	μ	μ		μ,

				μ		μ				,
		«	»						μ	
	Co ₃ O ₄	,					900	С		
μ		(CoO) [H	ollema	an F. <i>, et al</i>	<i>I.,</i> 20	07].				
	μ					2.927	С		μ	
	1.495 C.					,				
	μ	μ		8,9	μ	μ			1,6	1,7 J T ⁻¹
	μ [Murthy R., 20	003],					2/3			[Celozzi

						2-	
S.,	et	all.,	2008].		2.2.1		μ
				μ			

	_2.2.1:	μ			
μ		Со	μ		24,81J/molK
μ	μ	27			1,88 (Pauling scale)
μ		58,933		μ	1 : 760,4 kJ/mol
					2 : 1.648 kJ/mol
		8,9 gr/cm ³			3 : 3.232 kJ/mol
μ		1.495 °C			(20 °C) 62,4 n →m
μ		2.927 °C	μ	μ	(300 [°] K) 100 W/m⋅K
		16,06 kJ/mol	μ		(25 °C) 11.8 µm/m⋅K
	μ	377 kJ/mol			5,0 (Mohs)

μ -

,

μ, μ . μ μ , μ, . μ, μ . . μ μ μ , ,

[Pough H. F., 1988; Shedd . Kim., 2008 (a,b); Dana D. J.,2008]:

•			, (CoAs	sS,								. μ	
			ł	J		μ		μ						
	μ	μ			μ			(S-S)				μ	-
			(S-As	s),							μ		(μ
).				μμ	,		,	μ	μ	μ	
		(«		μμ	»)
					,			, μ			μ			,
			μ					μ				μ		
			μ						«	μ	»	μ		
				μ	μ	μ	(µ	μ).		(
ŀ	J									• •	D			

	,	h h	l)		,	
		μ.				,		μ
		«μ	μ		X	» (cobalt	blooms)	
μ						μ	μ	
		μ	μ					,
			μ		μ			,
	,		,	μ,		,		

- _____, Co₃(AsO₄)₂.8(H₂O), . μ ""
- «μ μ » μ , $Ni_3(AsO_4)_2.8(H_2O),$ μ «μ μ μ ». μ μ μ μ μ
- , μ μ μ , . μ (,,μ,,,,,),
- р (,, р, , , , , , , р р р р р р р р .
- _____, (Co,Fe)As₂,
- · μ μ Safflor μ Zaffer, , μ · μ μ
- μ,,,,
- μ .
 _____, CoAs₂₋₃,
- μ Skutterud , . μ μ (Co,Fe,Ni)As₂₋₃. μ . μ , μ
- . μ, μ

μ μ. μ Cobalt Skuterrud μ μ Ο_ CoCO₃, μ μ μ μ μ μ , $Mg_6Cr_2CO_3(OH)_{16} 4H_2O$. μ, μ μ μ

-59. μ -60 μ μ μ -60 (Co-60 ⁶⁰Co) μ 1,17 MeV μ μ . ⁶⁰Co, 1,33 MeV [Audi G.,2003; Mandeville C.,1943]. μ 2 , μ μ μ μ μ . μ μ μ 1984, μ μ μ , ⁶⁰Co μ μ μ μ μ ⁶⁰Co [Blakeslee S.,1984]. 5,27 μ ,μ ,

μ μ μ μ . , μ μ μμ ,μ . ⁶⁰Co [National Research Council (U.S.),2008(a,b)].

,

μ , μ μ [Wilkinson M., 1998], μ

		μ			μ				
⁶⁰ Co.									
			-57	(Co-57	⁵⁷ Co)			μ	
μ				,			μ,μ		
			μ	12,	μ			μ -	
Schilling	l	μ			μ		μ	12 [Zuc	kier S.,
1984; C)iaz L., 2	2010].							,
				μ.		,	⁵⁷ Co	μ	
	μ		Mössba	auer			μμ	-	
μ		,					[Meyer T.,	2001; Kaln	icky D.,
2001].									
	,					μ		μ	
	⁵⁹ Co	μ	μ	· .			,	μ	

		⁶⁰ Co. To	60	Co,	μ
	μ		μ	«μ	»
[Payne R., 1977] <i>.</i>					

2.3	μ				
		,		•	

μ					,		μ	
			,			μ	μ	
		,		μ			,	
μ	,							

2.3.1 μ μ ₁₂ -

			μ	μ
μ,μ		μ	μ	₁₂ (μ
),		μ	

2-

	2-												
	μ				μ	μ							
μ					μ						, μ		
							μ			μ			μ Β ₁₂
									μ			μ	12•
		٢	I									•	
μ	B ₁₂ ,			μ							μ		
μ		μ	μ								μ	,	
μ			μ		,						DN	Α.	
μ				ł	J,					μ			
,													
μ	ι.			μ	₁₂ µ								
		μ											
().			μ								μ
12,			μ										
	•	,	,										
		(μ).	μ	μ
				μ			μ		,				
μ				,			,			,			,
	,	μ	μ		,						ł	J	μ
		μ		:	I		μ						
	μ			μ			•						
		μ	μ										
μ			12•		۱ 	ј,						μ	
	рп	ł	J		μ							12.	,
			μ		μ	,					ŀ		
		12•	μ		12 µ							μ	
μ,		,	μ,			,				,		,	,
μ	μ,μ	μ	μ	μ	μ		•						
		μ	12								·		
	μ (Rombo	µ ۱۸۱ (ra	naenie A	200	วา	٣	,				
	(μ	NOUNDE	9), [N	idonio A	.,200	J.						

μ₁₂ μ, , , , μ , 2.3.1.1.

_ 2.3.1.1:	μ 1.	2 /100gr	
	12 (µg)		12 (µg)
-			
	76		3,8
	39		1-3
	24		1,7
	19	(60)	0,4
	8,3		
	4,4	μ (1 .)	0,8
	2,3	(bran flakes)	

µ	<u>12</u> Ц							
μ	μ,				μ		12	
μ	μ				μ			μ
	μ				(vegan).		μ	
				μ				
μ	μ					,	μ	
				μ		μ		
			μ					
			:	,		,		
	μ	, µ µ				μ.		
								,
	,	μ				μ	μ	
μ.								
							μ	
		μ		μ	μ	•		

(vegans) μ , μ. μ ,

		2-	-										
		12,	μ		μ					μ	μ	μ	μ
		,	μ		u	•							
	μ,		,		ŀ	J,		_		,		ł	ιμ
	1		1		μ			μ				ц	
50	μ	μμ				,						٣	
50					μ	μ	μ		μ	μ		, 5	50
						,		μ					
		μ			,		12 12		h h				μ
			μ			,			٢	I			
			Ļ	J						μ		12	μ
	12•	μ		,		μ	μ					μ	μ μ
(3	, μ	h h). J	μ			,		μ	D,		3
								μ					
	μ	-	,	,				μ					
μ													

•

,

•

,

,

μ μ μ • μ μ μ μ μ 12, . μμ μ μ. 2.3.1.2 μ 12 μ . μ μ μ

3			, μ	μ
	12•		20-30	
		ч 11 11	40	,
		ЧЧ	12•	
_2.3.1.2:	μ	μ 12		
		μg μ ₁₂ /μ		
		0,4-0,5		
1-0		0 9-1 8		
1-9		0,3-1,0		
-		2,4		
		2628		
- μ		2,0-2,0		
	3		μ	
-	μ ₁₂ ,	2.3.1.3		μ
	μ	μ		,
		μ		
μ				μ
	μ ₁₂ .			
μ		0.2mg/kg	μ	μ
Р Ц 12	[Schwarz J., 20	0,2mg/kg.		
r 12	μ	μ		
	•			
	20			North
Island,			,	
« »,				
, μ		μ		
μ μ	μ	μ	μ	
[WEB info1.,2012].				
μμ			μ	₁₂ µ
	μμ			,

μ

μ

(₁₂). ,

μ

_2.3.1.3:	μ	μ	()*
		(15%)	
μ (μg)	700µg 2500 IU	105 µg	1050µg 150%()
μ D (μg)	5µg 200 IU	0,75µg	7,5µg 150%()
μ (mg)	10mg	1,5mg	30mg 300%()
μ Κ(μg)	30µg	4,5µg	90µg 300%()
μ B₁(mg)	1,1mg	0,165mg	3,3mg 300%()
μ B ₂ (mg)	1,6mg	0,24mg	4,8mg 300%()
(mg)	18mg	2,7mg	54mg 300%()
(mg)	6mg	0,9mg	18mg 300%()
µ ₆ (mg)	1,5mg	0,225mg	4,5mg 300%()
(µg)	200µg	30µg	600µg 300%()
μ 12 (μg)	1,4µg	0,21µg	4,2µg 300%()
(µg)	150µg	22,5µg	450µg 300%()
μ C (mg)	45mg	6,75mg	135mg 300%()
* [395]		<u> </u>	

μ

		μ	μ			μ
μ				μ	12,	
	μ					

2.3.2

- 12

1966							
μ	, μ	μ			μ		μ
		μ	μ		[Barcelou	ıx D.,1999].	
		μ,		μ	μ	μ	
,				μ	μ	μ	
					μμ	. [Basketter	A. et

all.,2003].

μ μ μ 12 μ μ , , μ , 5-10mg, µ μ 12 , μ , •

2.3.2.1 μ (LD₅₀) -

μ

μ μ μ μ . , μ μ μ μ . , μ μ μ μ μ μ μ μ μ μ μ μ , μ μ μ μ μ μ μ μ μ μ μ μ μ . μ μ μ , μ μ , μ μ μ . , , μ μ , , [WHO., 2006]. μ μ μ μ μ μ μ μ ,μ , μ μ μ , (LD₅₀). 2.3.2.1 μ

μ (LD₅₀) ,

_ 2.3.2.1 : μ	(LD ₅₀).*	
	LD ₅₀ (mg /kg)**	LD ₅₀ (mg Co/kg)
Cobalt(II) fluoride	150	91
Cobalt(II) oxide	202	159
Cobalt(II) phosphate	387	187
Cobalt(II) bromide	406	109
Cobalt(II) chloride	418	190
Cobalt(II) sulphate	424	161
Cobalt(II) nitrate	434	140
Cobalt(II) acetate	503	168
* [Speijers et al., 1982], **	р р	

•

.

 $\begin{array}{ccc} \mu & & \\ \mu & (LD_{50}) & 42,4mg/kg & CoCl_2,\ 317\ mg/kg \\ CoCO_3 & 3.672mg/kg & Co_3O_4\ [FDRL,1984(a,b,c)]. \end{array}$

Angus C. and Brit G., "We Lived a Life and Then Some: The Life, Death, and Life of a Mining Town, Between the Lines", **1996**.

Audi G., Bersillon O., Blachot J., Wapstra H., Nuclear Physics A (Atomic Mass Data Center) 729: 3–128, 2003.

Barceloux D., Clinical Toxicology 37 (2): 201–216, 1999.

Basketter A., Angelini, G., Ingber A., Kern S., Menné T., Contact Dermatitis 49 (1): 1–7, **2003**.

Blakeslee S., "The Juarez accident". New York Times, 1984.

Celozzi S., Araneo R., Lovat G., "Electromagnetic Shielding", 2008.

Commodity Research Bureau, "Cobalt, The CRB Commodity Yearbook 2004", 2005.

Daintith J., "BRANDT, Georg", Biographical Dictionary of Scientists, 2nd ed. Vol. 1. New York: Taylor & Francis Group, L.L.C, **1994**.

Dana J., "Manual of Mineralogy and Lithology, Containing the Elements of the Science of Minerals and Rocks", READ BOOKS, **2008**.

Diaz L. "Cobalt-57: Uses". JPNM Physics Isotopes. University of Harvard, 2010.

Eagleson M., "Cobalt", Concise Encyclopedia: Chemistry. Walther de Gruyter, 1994.

Encyclopedia Britannica Online

Greenwood N., Earnshaw A., "Chemistry of the Elements", Butterworth–Heinemann, pp. 1117–1119, **1997**.

FDRL, "Acute oral LD50 study of cobalt sulphate lot no. S88336/A in Sprague-Dawley rats", Waverly, NY, Food and Drug Research Laboratories, **1984a**.

FDRL, "Study of cobalt (II) carbonate tech gr. CoCO3, lot #030383 in Sprague-Dawley rats", Waverly, NY, Food and DrugResearch Laboratories, **1984b**.

FDRL, "Acute oral toxicity study of cobalt oxide tricobalt tetraoxide in Sprague-Dawley rats", Waverly, NY, Food and Drug Research Laboratories,**1984c**.

Holleman F., Wiberg E., Wiberg N., Lehrbuch der Anorganischen Chemie, 102nd ed., pp. 1146–1152, **2007**.

Jameson R., "System of Mineralogy: In Which Minerals Are Arranged According to the Natural History Method", **1820**.

Kalnicky D., Singhvi R., Journal of Hazardous Materials 83 (1–2): 93–122, 2001.

Khasnis A., Gokula M., Journal of Postgraduate Medicine 49 (2): 169–72, 2003.

Mandeville C., Fulbright H., Physical Review 64 (9–10): 265, 1943.

Meyer T., "Physical Therapist Examination Review", p. 368, 2001.

Morris R., The Last Sorcerers: The Path from Alchemy to the Periodic Table. Joseph Henry Press, **2003**.

Murthy R., "Magnetic Properties of Materials", Structure And Properties Of Engineering Materials. p. 381, **2003**.

National Research Council (U.S.), "Committee on Radiation Source Use and Replacement", **2008 (a)**.

National Research Council (U.S.), "Nuclear and Radiation Studies Board", 2008 (b).

Payne R., "The Hazards of Cobalt". Occupational Medicine 27 (1): 20–25, 1977.

Pough F., Peterson T. R., Scovil J., "A Field Guide to Rocks and Minerals", Houghton Mifflin Harcourt, **1988**.

Ramberg I., "The making of a land: geology of Norway", Geological Society. pp. 98, 2008.Rose C., "Spirits, Fairies, Leprechauns, and Goblins: An Encyclopedia", New York City, 1996.

Schwarz J., Kirchgessner M., Stangl I., Journal of Animal Physiology and Animal Nutrition 83 (3): 121, **2000**.

Shedd K., "Mineral Yearbook 2006: Cobalt", United States Geological Survey, 2008 (a).

Shedd K., "Commodity Report 2008: Cobalt", United States Geological Survey, 2008 (b).

Speijers A., Krajnc I., Berkvens M., van Logten J., Food and Chemical Toxicology, 20:311–314, **1982**.

The Writers of Chantilly, "Knock, Knock, Knock!", We Celebrate the Macabre. Xlibris, 2002.

WEB info1., <u>http://sci.waikato.ac.nz/farm/content/soils.html#bush_sickness</u>, "Soils". Waikato University, **2012**.

Weeks Mary Elvira, Journal of Chemical Education 9: 22, 1932.

Weeks Mary Elvira, "Elements Known to the Alchemists", Discovery of the Elements. Kessinger Publishing, **2003**.

WHO, WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER, "Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide", IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 86, Lyon, **2006**.

Wilkinson M., Gould G., "Food irradiation: a reference guide", p. 53, 1998.

Zuckier S., Chervu R., Journal of Nuclear Medicine 25 (9): 1032–9, 1984.

//395/27.2.2004: μ μ /2002/46/ « μ μ μ »

	3-			-
3.				
		μ	,	μ
μ	3			μ.
μ		μ	μ,	-
μ				:)
μ	,	μ	μ,	
		μ		μ
		μ μ	μ	()
) µ	μ	3	μ
μ,			μ	
3				
μ		μ	3 3	3 3
μ	()			
			μ	μ,,
μμ,,	μ	,	μ	μ
		μ	,	μ
				μ
			μ	μ Beer.
	μ	μ	μ.	
н ч и и	μ,	П		μ
μ, μ	4	Ч	РР	·
μ	μ	P.	μ	
μ μ		3		μ.
	μ	μ		
μμ) L),	μ	μ μ
μ	μ	,		
	μ, μ	μ		μ.
μ				μ,
		-		3

3-

μ μ μ μ μ μ μ μ μ μ μ μ μ μ : μ μ μ

	3-		
	$= \frac{c}{\in}$	(3.1.1)	
μ (3x10 ¹⁰ cm/s).	μ μ (s ⁻¹) μ μ	μ (cm), Hertz (Hz) c μ [€] cm ⁻¹ :	
	$\mathbf{f} = \frac{1}{\mathbf{f}} = \frac{\mathbf{f}}{c}$	(3.1.2)	
h h	μ . μ , μ ,	μμ, μ , μ ,	
р Р Р	μ. μ μ μ (nm), μ μ μ	μ μ μ (μm) μ , μ μ μ μ cm ⁻¹ . ,	μ
μ	μ $E = h \notin = \frac{hc}{hc}$	μ.	μ ,
, E 6,62×10 ⁻³⁴ J/s.	}.	(3.1.3) ergs <i>h</i>	Plank,

рано 5,5. р р р р р р р р р р р

μ

•

.

,

,

Μήκος κύματος (m)	10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁶ 10) ⁻⁵ 10 ⁻⁴	10 ⁻³ 10 ⁻² 10 ⁻¹ 10 ⁰	10 ¹ 10 ² 10 ³
Συχνότητα (MHz)	3x10 ¹⁰ 3x10 ⁸	3x10 ⁶	3x10 ⁴ 3x10 ²	3
Είδος ακτινοβολίας	ακτίνες-χ ακτίνες-γ Υπεριώδες Ορατό	Υπέρυθρο	Μικροκύματα	Ραδιοκύματα
Ενεργειακές στάθμες των εκάστοτε μεταπτώσεων	Ατομικές Ατομικές και μεταπτώσεις μοριακές Ι ηλεκτρονίων μεταπτώσεις δ ηλεκτρονίων	Μοριακές δονήσεις	Μοριακές περιστροφές	Ενεργειακές στάθμες πυρηνικού μαγνητικού αυντονισμού
	Μείωση ενέργειας ———			
μ_3.1.2:	μ μ [F	aust C., 1	992].	

	μ	μ (μ 3.1.2)
μ	μ	μ	μ
[Harvey D., 2000] <i>.</i>			

μ

),

μ

(

.,

, , , ,

		μ		,	,										
					_= E	. + E	. +				(3.	1.4)			
					μ				μ				μ		
				μ		,				μ				,	
μ	,	μ						μ		ł	L			μ	
μ			μ												
				[IUP	AC Mar	nual, 19	979].								
							μ					μ			
	μ			(,	μ	00								μ
μ				(_ 10),	00	.,		μ					
μ				μ			μ		:	,					
μ				•		,		μ						/	
		,					μ	,			μĻ	Ι,			,
				μμ	,					μ			,		μ
μ				μ	μ		μ		,		ц ц			цц	, I.
		μ				(400	- 800	0 nm)	,		μ.	,		μ,	
		μ	,		μ	μ		μ				μ		μ	,
					,		μ.						(0.75	25	um)
						п							(0,75	- 23 25 - 1	000
um						μ	U	,			u		(4		000
P	,						r.		μ		, ,			, µ	
	μ	UV/Vis,							μ			μ		I	,
	μ			3				μ	-	μ					
		:	•			μ								μ	

-

μ

, μ,)μ (μ ,

		3-				<u> </u>
h	, ,	μ		,	µ µ	, μ μ υ
	μ,	, U	L	u u		μ.
μ	• <i>•</i>	μ	μ	·		
	<u>μ</u> :	μ		μμ		,
	μ		μ		μ	μ
	,	μ,	μ	,		μ.
μ	μ	μ			μ	μ,
		μμ			μ	
			μ.	. μι	L	μ
μ			,	μ	μ	,
	,		,		μh	
3.3.1	μ μ 3.3.2).		μ		μ	(
	UV/Vis	μ	μ			μ
μ					μ	μ.
μ				μμ,	,	
μ			UV/Vis	5	μ	μ
l	μ			μ	μ	μ
μ		100),	μ	μ UV/V	/is μ	
μ	μ		(hi	ghly structure	ed)	μ
μ		UV/Vis	μ	μ		μ
	μ	(<i>n</i> -	,	,) µ
μ	μ		μ			μ
			μ	μ		
μ	[IUF	PAC Manual, 19	88].			μ
μ	UV/Vi	is μ ,		μ		,
		μ		3		μ
		μ	,	μ		
	[Harve	y D., 2000].				

	3-		
3.3.1:		μ	
μ		μ	μ
		μ	
		-	/ Mossbauer
		-	/ -
		/	/ /
	-		/ µ
			/
			/ Raman
	-	μ	/ µ µ
		·	/
	-		
		μ	μ μ
u			
·		/	и и и
(µ)		
		-	μ -
	-		μμ
		/	μ μ
			μ μ μ

	3-			
3.3.2:	μ			
1	μ		μ	
-			-	
			μ	
	-		μ	
/		٣	μ	

3.3 UV/Vis μ

μ μ ,μ μ μ , μ μ μ *μ μ μ μ μ μ , . ,

> : + hv: + μ

μ μ μ μ μ μ μ μ μ . μ μ μ • , μ μ μ .

, μ () μ (μ) μ O, S, N (μ μ n) μ μ μ μ μ μ μ . μ μ μ μ μ μ μ μ . , UV/Vis, μ μ μ μ .

μ

3-							-
μ	μ	UV/Vis					μ
μ	μ						3.3.3
μ	,	μ	μ				μ
	μ	μ			μ	μ	
μ							
_3.3.3:	μ		r	٦,	μ		
	μ	μ	(nm)			μ	
*	<185				C-C	, C-H	
*	150-250				H2C	, CH3OI	H, CH3CI
*	200-500				C=C	;, C=O, (C=N
*	250-800				C=C), C=N, №	N=N, N=O
	1 331						
ł	1 0.0.1		U	μ		:	
	 * * * * *	μ μ μ μ μ , μ , μ , μ , μ , μ , μ , μ . μ . μ . μ . μ . 23.3.3: μ μ . μ . 23.3.3: μ * < < * < < < μ 3.3.1 μ	μ μ UV/Vis μ μ μ μ , μ μ , μ μ , μ μ . μ μ . μ μ . μ μ . μ . . μ <td>μ μ μ μ μ μ</td> <td>μ μ UV/Vis μ μ μ μ η μ μ μ η μ μ μ η μ μ μ η μ μ μ η μ μ -3.3.3: μ n, -3.3.3: μ μ (nm) * <185 * 150-250 * 200-500 μ 3.3.1 μ μ</td> <td>μ μ UV/Vis μ μ μ μ , μ μ μ , μ μ μ , μ μ μ μ μ μ μ μ μ μ </td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	μ μ μ μ μ μ	μ μ UV/Vis μ μ μ μ η μ μ μ η μ μ μ η μ μ μ η μ μ μ η μ μ -3.3.3: μ n, -3.3.3: μ μ (nm) * <185 * 150-250 * 200-500 μ 3.3.1 μ μ	μ μ UV/Vis μ μ μ μ , μ μ μ , μ μ μ , μ μ μ μ μ μ μ μ μ μ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

•		*:	μ	,			
	μ			μ	, µ		
	μ			*	μ		
	μ	μ				μ	μ,
	*,	μ					
		(<185nm-U\	/ -		μμ).
٠		n *:	μ			μ	μ
		(h h	l) µ		μ	n *.
		μμ , μ			μ		μ
	* µ						μμ
	μ 150	0 250 nm, j	L				200 nm.
			μ				
	μ	μ	μ		μ	μ.	μ
		, ,		μ		n *	μ
	μ μ	μ	1(00 300)0 L cm ⁻¹	mol⁻¹.	
	μ	μ	n *		μ	μ	μ
	μ,	μ		3			. µ
		μ					
	μ	n *					μ.
•		n *	*	:			μ
	μ	μμ		,			,
		μ	n		*	μ	
					μ		
	μ	20	00 800 r	nm			μ
		μ			μ		
		μ			μ	μ	
	,				μ		
	μ	[Skoog D. et al	<i>I.</i> , 1998; Harv	ey D., 200	0].		
	μ					4.0	n ^
	μ		μ *		μ	10	100 L cm ⁻¹
		μ				1000	
	1101.	μ		μ 			,
			μ	μ	-		μ
	μ	μ			n	μ	

3-

	3-						-		
μ	μ	μ (*	μ		μ). (
м 11)	,	Ш			(μ		
μ).	м	٣					u	
		n,		μ	,	μ		F	
	μ	μ		μ	,		(Cu ²⁺	
Co ²⁺ ,	μ	μ							
			μ						
μ		C	d-			μ	,		d-
		μ						μ	
	()	μ		, d	-			
	μ								
		μ		μ					
		d		μ				μ,	
	μ	$Cu(H_2O)_6^{2+}$	μ				d-		
μ,		μ	3.3.2.	d-d µ					

.

μ_3.3.2: d-d μ

μ.

				3-										-
μ	μ			μ	,					UV µ	/Vis		μ ,	
-	-						μ		μ	-				
		(µ)					μ		().
			,	μ				μ						
		(3.3	8.1).											
			M - L	$+ hv \rightarrow \Lambda$	⁄1⁺ - L⁻					(3.3	3.1)			
									μ	μ	μ			
	μ							μ					μ	
				ł	I					μ		•		
		μ		μ		-			μ Fe ²	2+,				
				μ					•	,			μ	
	μ	μ							μ					
3.4.		μ		u		_								
		ł	L	μ					ł	ı	μ			
	μ				μ		,	μ		μ				μ
	μ							μ				μ	ļ	
			μ			μ					μ		μ	
				μ	μ			•	μ	、		μ		μ
1				μ (••	`),			μ	
(,),	μ		μ			μ	•	
		μ	IJ	11		μ U			,			ц		
			٣	٣		٣						r*		

μ μ, μμ μ. μ, μμμμ, μ μ μ μ. μ μ μ μ

					μ		μ.
μ	μ	-	(200 - 800	nm) µ		
	μ		μ				
μ							
	(μ	μ).			
	μμ			μ	μ		:)
(μ),)
μ	μ	, μ	μ		,)		μ,
, ,) µ		,)	

3.5

$$T = \frac{P}{P_o}$$
(3.5.1)

μ 100, (%) 0 % 100 % (μ μ) , (). μ μ μ , μ ,

μ

-

μ . μ , μ μ μ , μ μ , μ μ μ , μ (µ 3.5.1.b). P_o. μ [Ewing μ , , W., 1997]:

$$A = -\log T = -\log \frac{P}{P_0} = \log \frac{P_0}{P}$$
(3.5.2)

μ , , μ μμ

		3-						
	μ	μ μ	μ	μ	dx,	μμ	μ	dP_m
(μ3	3.6.1).		•		3.6.1	μ. ι	J	
, i	μ		μ				С,	
	$-rac{dP_m}{P_m}$	= aCdx				(3.6	5.1)	
۳ ب						h h	μ	
2.0.1	P _m =P	Ρ _m =Ρ, μ ,	:	μ	X=0	x=D,	Q	
	$-\int_{P_m=P_0}^{P_m=P}$	$\frac{dP_m}{P_m} = aC \int_{x=0}^{x=1}$	$\frac{dx}{dx}$			(3.6	.2)	
	3.6.	2 µ						
	$\ln\left(\frac{P_0}{P}\right)$	= abC				(3.6.	3)	
		3.5.2, µ	μ	,		μ,	3.6	.3 µ
	A = b	С				(3.6.	.4)	
conc ⁻¹ .						μμ	μ	cm ^{−1}
				μ	,			
			μ				μ	μ
μ	cm-1.g-1.L	. cm-1.mo	l-1.L,		3	3.6.4 µ		

		3-		-	
		A = <i>b</i> C		(3.6.5)	
			μ,		
	μ		μ	μ μ	
			, µ		
μ			μ		
		μ		[Harvey D., 2000].	
		3.5.2	2µ :		
		$A = -\log T = -$	$\log \frac{P}{P_0} = \log \frac{P_0}{P} = \forall bC$	(3.6.6)	
			, ,	, ,	
μ	μ	,	μ		
	μ	μ			
μ	, µ		μ		
			μ	max	
			, μ	μ Beer μ	μ
	μ				

,

,

max•

•

Cμ μ 3.6.5, µ b μ μ μ) μ μ (, μ μ μ

58

μ μ , , , C, μ μ μ μ . μ μμ μ Beer, b, , b μ μ μ , b . μ μ max , μ μ , μ μ μ μ , μ μ μ μ max ,

			3-					-
	"	II	μ					
			μ		,		μ	
	μ	,				μ	Beer, µ	μ
	μ		"	μ	", μ	μ		Ax
μ		μ			Cx.			

3.7 μ μ Beer μ μ

μ Beer μ μ μ μ μ μ μ μ μ μ μ , Ai, μ , tot,

$$A_{tot} = AX + AY = xbCX + ybCY$$
(3.7.1)

μμ n , Am, :

$$A_{m} = \sum_{i=1}^{n} A_{i} = \sum_{i=1}^{n} \vee_{i} bc_{i}$$
(3.7.2)

μμ , μ μ μ μ μ μ μ 3 4 [Harvey D., 2000].

3.8 µ µ Beer

,

., , µр ., , рр

μ	μ	μ			,		μb
					μ	μ	
		μ	μ		μ.	,	
μ			μ				μ
μ	μ	,	μ		<i>.</i>	•	<i></i> 、
	μ		(')		(instru	mental devia	ations)
μ		(cnemical devia	tions),				
			μ	Beer			μ
					μ	[Kortum C	5., <i>et all.</i>].
,				μ	Beer,	μ	
		μ	μ			n	μ.
		μ	2	μ		,	
3.6.5,	μ	<i>n</i> / (n²+2)	² . ,			ł	l
			μ		0,01		
ŀ	J	μ_μ_	Beer				
	μ	Beer	μ				
	μ						μ.
μ		(>0,01),	μ	μ	
		μ,μ	μ		μ		μ
					μ	,	l
μ						μ	μ
μ		, µ					,
μ		μ				μμ	μ
			(µ 3.8.	1).	μ	μ	
		μ			3		
						μ	μ
	μ	hh h				μ	
				μ			

μ_3.8.1: μ μ μ μ) ,)μ) μ μ μ Beer-Lambert.

	μ			μ				_									
			μ								μ	Beer	μ		,		
		,				,		ł	L								
							μ										
			μ				ł	J	I	μ	μ		μ		•		μ,
		μ					,						,				
μ	μ	,										μ	μ	ŀ	I		
	μ			μ	,	μ	,		,								
	μ	μ						μμ	μ								
	μ											μ				_	
			μ		E	Beer					μ		μ				

	μ	μ	,	,	μ	μ	
			,			μ	μ
μ,			,			μ	μμ
	μ		,		μĻ	1	μ
μ	μ	μ	μ.				
		μ				μ	
	μ	Beer [S	koog D.	, <i>et all.</i> , 1998]			

-

	μμ μ u Beer	μ	h h	,
μ	, μ ,μ	3		μ
	$A' = \log \frac{P'_0}{P_T} = \vee bC$		(3.8.1)	
	$\frac{P'_0}{P_T} = 10^{v'bC}$		(3.8.2)	
	$P_T' = P'_0 10^{-v bC}$.		(3.8.3)	
,	μμ			
	$P_T "= P"_0 10^{-v"bC}$.		(3.8.4)	

-

".

μ	,		μ	μ	,
μ	μ	P' + P"			

$$A_{m} = \log \frac{P'_{0} + P''_{0}}{P'_{0} 10^{-v'bC} + P''_{0} 10^{-v'bC}}.$$
(3.8.5)

$$A_m = \vee bC, \qquad (3.8.6)$$

$$A = \log \frac{P_0 + P_{stray}}{P_T + P_{stray}}$$
(3.8.7)

μ

P _{stray}			μ			μ			
h		μ					μ		μ
								μ	
μμ								μ	[Sharpe M., 1984].
ł	l				,		μ		μ
	P _{stray} ,		μ	μ			Р		3

, P_{stray} μ μ μ μ μ μ μ Beer. μ

μ μ μ μ μ μ μ μ μ [Skoog D. et all., 1998]. μ μ μ μ μ μ μ, μ , , μ μ μ μ μ μ , μ μ μ . μ μ

μ μ μ 0,368 36,8% [Hiskey F., 1949]. μ μ μ , μ

μ μ μ μ μ μ μ . [C lin A. et all., 2006; Demertzis M. et all., 2007; μ μ μ Demertzis M. et all., 2012(a); Demertzis M. et all., 2012(b)].

3-						
3.9.1 μ μμ		I	Ļ			
μ μμ (x),	hh	h	μ	I	μ μ	(y) ,
(). μμ , μ μ all., 1988]. μμ μ :	hh		h	μ	μ	y x, [Miller C. <i>et</i>
y = a + bx				(3	3.9.1.1)	
μμ μ 1988], 3.9.1.1 :	μ	Beer	у µ , s _a ,	ν = , , , μ	k = C [Mil	a = 0. µ ler C. <i>et all.</i> ,
$y = (a \pm s_a) + bx_s$				(3	8.9.1.2)	
x₅ µ ↓ 3.9.1.1 3.9.1.2,	и х µ:			S _a .		μ
$x_s - x = \pm \frac{s_a}{b}$				(3	.9.1.3)	
х _s -х µµµµ µ, µ,	х. µ µ	3.9.1.1 μ	, Ι, μ 3.9.	μ 1.1.	х, µ	μ . , μ,μ

 $y = \mathbf{a} + bx_s \pm s_b x_s \tag{3.9.1.5}$

3.9.1.4,

:

3.9.1.1

μ

μμ

Δ C Δ C Χ_a Χ Συγκέντρωση 0.1.2: μ

,

μμ

Αναλυτικό σήμα

y

a

67

μ

-

3-

3.9.3.2

:

 $P_{o} - P = kP_{o}C$ (3.9.3.6)

3-							-	
μ	,	3.9.3		3.9.3.7,				
$P_o - P = 2$	2.303vbCP _o						(3.9.3.7)	
	u	и	Bee	er,			3.9.	3.7,
	μ	F	μ	- ,		, (P _o -P)/P _o ,	0,05,
	3.9.3.8	μ		95%.				
$\frac{P}{P_o} = e^{-2}$	303 bС						(3.9.3.8)	
	μ,					μ	μ	3
μ	3.9.	3.7,				μ		
,					μ		μ	
μ Μ 2004: Deme	rtzis Mo <i>t all</i>	μ - μ 2012(b)]	μ			μ	μ	[Demertzis,
w., 2004, Deme		, 2012(0)].						
3.9.4			μ	1	μ		μ	
μ	μ			μ			μ	
μμ				μ		μ		
, μ	μ	μ						
[Skoog	D. <i>et all.</i> , 199	98].						
μ,	, μ	μ	I				μ	μ
μ		J			μ	·	80	%,
	10% [Hiskey	F., 1949],	μ	μ			:	
dC 0.4	343 dT							
$\frac{1}{C} = \frac{1}{T}$	logT						(3.9.4.1)	

3.9.4.1, μ μ μμ μ

72

			3-						
3.9.2.1	,		μ 3.9.	4.					
	,		3.9.4.1			μ			μ.
μ	Beer	٢	ιμ		μ	:			
	$C = -\frac{0.434}{v}$	431nT ′b					(3.9	.4.2)	
							3.9.4.	1.	
	h h		3	У	μ		Х,		
	$\mathbf{v} = \mathbf{f}(\mathbf{v})$						(2.0	4.2)	
	y = I(x)						(3.9	.4.3)	
				μ	μ	, <i>Y</i> ,	,		
μ	, x,	[Fa	rrington D.,	1956].	,	μ	μ		3.9.4.2,
	, C,		μμ				39	μ 42	, ,
	· , 3.9.4	4.1,		,		μ.	0.0		
		,		μ	Be	eer, µ µ			3.9.4.4,
	μ		3.9.4.5,						
	-0.43431n7	Γ = -log	T = bC				(3.9	9.4.4)	
	$\frac{d(-\log T)}{-\log T} = -\frac{1}{2}$	$\frac{dC}{C}$					(3.9	9.4.5)	
	C								
			μ			3.9.2.3.		, d(-l	ogT)
		,		, -	logT,			, C	,
3.9.4.6	,	μ	,			μ	μμ	[F	arrington
D.,195	6],	μ	Beer.						

				3	-										-
95%	6	μ,			μ 1%	,		μ		μ	μ	C	%	= 99	μ
	μ			4%.					μ						
			μ	μ					μ					μ	,
		,					,		,						μ.
		μ		μ					μ			,			μ
					μ			μ							
μ		,	μ												
3.1	0			μ		μ			-	_					
			μ							μ				μ	
	٣	u h	•	м	u	٣			()				
	μ	ι μ			P.				(,	μ			,
	μ.	•							μ			•	μ		
	μ	μ												,	
	μ		"	μ	μ		μ	"			μ	μ		μ	
	μ	μ				, µ						,			μ
		,							,	,			,		,
				•											
			μ	μ		μ					,				
()	μ,	μ		μ		,	,						-
		,		μ	μ			(µ)				μ		,
				μ		, 1)			μ			J			
		μ	μ	,		ı) µ		2)							,
	п			п			3	, <i>ב</i>)) п				٣		Ч	
	μ	. 4)		٣			, 0	μ, μ						μ	
(µ	•)	5)		μμ	, I	,	•						μ	
	μ	, I	-		•										
					μ			٢	I		μ	,			
	μ	μ	,										,		

.

(340-800 nm), μ μ μ UV/Vis (190-800 nm) µ µ (2-15 μ μ μ μ μm). μ μ ,

μμ (μ μ ,) μ

3.10.1: μ μ μ (μ).

				μ
μ	μ		(UV)	(Vis),
		μ	μ μ	

		3-		
3.10.1:	μ	μ	μ.	
			(UV)	(Vis)
				W Xe
			Π_2 D_2 Xe	(Laser)
μ	μ			
				μ
			μ	μ
			μ	μ
			Vvcor	

μ

3.10.1 μμ μ μ

(μ), (160 - 365 nm) µ μ μμ μ μ μ μ μ , μ. μ μ μ μ μ μ μ , . (10 µ), μ , . μ μ, μ μ μ μ μ μ, 77 3-

		μ			μ		•	μ	μ			
					340 nn	n - 3 µm.			ł	J		
			μ			μ		μ				
					,							
μ					μ						μ	
				().						μ	
	μ				μ						μ	
					,	μ					μ	,
		μ	μ		WI_4					μ		μ
	μ		μ	W								
		μ	μ									
				μ	μ			μ				
		μ	μ	,	μ							,
									μ	Be	er.	
		μ			μ					μ ()	
μμ		μ	(μ	μ).					
				,						μ	μ	
								μ		μ	μ	,
				μ	μ	μ		μ				
	,						μ	μ		μ		-
										μ		,
						,				μ		
					μ.							
									,		μ	
	μ	,				μ	,		μ			
				:)			() (ban	d-pass t	filters),
		μ					μ					
1	μμ		,)			(cut-c	off filter	s),			
		μμ			μ		·					μ
2						u					(abso	orption
filter	s),									,	``	•
μ	ı h									,	20-5	0 nm.

3.10.1.1: μμ μ

(interference filters), μ μ μ μ , , $MgF_2,\ \mu$ μ μ , Ag, μ μ 5-15 nm, µ μ μ μ μ μ μ μ μ μ μ . "μ μ μ μ μ μ " (0,01 nm) μ μ μ , μ μ μ μ μ (: 1) µ). μ μ μ μ μ μ , 2)), µ (μ μ , 3) (μ μ μ 79

-

3-

), µ	()	5) µ	μ	μμ	μ	, 4)
		μ	μ			μ			μ
μ		μ	μ				μ. . μ		,
μ		μ	μ				μ	μ	μ
		,	μ	μ					μ.
	μ		(recelution)	(12.00)		μ	μ	()	: 1)
μ			(resolution), , 2)	(nm),			μ	μ μ (resolving	g power),
R= / µ	, µ	, µ	, 3)	μ				4)	μ
,			,	μ	:))	μ	μ)
	μ		μ.						
	0						Ļ	I	
	μ		μ, μ				()	
μ				"	μц	, "		1,000 ,	cm (
)		,			μ,μ	1
μ μ	μ	,), μ	μ	μ				μ
			,					ł	ג
			3	μ	μ	,	(μ	-
I	μ		μ)	μ	ł	, ,		

-

μ.

3-

		3-				-
						: 1)
			μ,2	2)	,	,
			, 3) µ		,	
	μ		,			
μ	, 4)		μ			, 5) μ
	μ		6) µ	μh	μ	μ
μ						11
ч u	u	μ	и	μ.		μ,
	·		μ μ	-		μ
		,				
			(µ)		
(μ)		П
(μμ		μ	,	٣	μ,
			·			·
	μ	μ	μ	μ		: 1)
μ	0 % (=	=),	μ		μμ	μ,2)
μ 	100 %	(=0) µ				3)
μ	%	μ		μ		μ.
3.10.2	μ	μ				
		μ	μ	П		μ,
		μ.	, U	٣	μ	
μ	μ	,	μ	ı µ		μ.
			μ	μ,μ		
	,					μμ
			μ			
	μ	μ	μ	, µ		μ

.

μ		μ	μ			μ		μ.	μ	
				μ	μ	0%	100 %	(µ)	μ
μ.				μ						,
			,			μ				
	μ							μ		
μ			μ		μ	μ		μ		
	μ				,	,		μ	μ	

3.10.2.1: μ μμ μ μ (Bausch and Lomb Spectronic 20) μ.

г_и. рр, , рр р. рр, , рр р. рр

μ

μ

•

		μ	μ	,	: 1)	μ	μ			μ	
(Sto	opped - flov	v spectro	photome	eter), 2)	μ		μ				
(rapid - s	canning spe	ctrophoto	meter),	3) µ		μ	μ	μ			
(photon	counter),	4)	μ	μ			μ		μ	,	5)
μ	μ										
			μ		ł	J	μ				
	(fib	er optics)	, µ								
μ	,			μ			μ				

•

μ

		μ	μ			μ		μ			
								μ	μ	μ	
	μ	μ	(μ)		μ	μ	μ	μ	
μμ						Hg	2,				
							μ	μ	μ		μ
								μ			

3.10.3	μ	μ	μ	μ	μ	μ		
		μ	μ	μ	μ		μ	
	,				μ			
10 ⁻⁸	10 ⁻⁶ .	,		,		μ		
		μ					μ	
μ	μ		μ	μ	μ	μ		
		μ			μ	μ	μ	,
			μ	μ	ιμ		,	
	μ	μ μ	μ	μ				
	μ	(ICP).						

		3-							
3.11		μ	μ		μ	UV/V	ïs		
3.11.1		μ							
	u	u					u		U
	μ	F.	μ		, μ		P.	μ	μ
		μ,			μ,		μ		μ,
μ			μ	,					
			μ	[Harv	vey D., 2	2000].			
		μ, μ		μ		μ		,	95%
μ			μ	,	μ		μ	μ	μ
UV/Vis.					μμ	μ		μ	, µ
[Birke	R., 19	83].							
					μ			,	
UV/Vis		u							
		' UV/Vi	S,		,		,μ		μ
							μ,	Fe	3+
			,		μ	1,10	Phenan	throline	3
		μ,	μ					μ	
		μ			UV/Vis	5		,	
						μ		μ	
				μ	Be	er.			
		П							
UV/Vis	,	۴,					u		
• • • • • •		u					μ.	u	Beer.
μ	,	·						μ	(narrow
infrared ad	sorptio	n band),			μ				
μ μ			μ,						
		UV/Vis		, µ		μ			
		μ.					μ		μ
		μ		KB	r	[⊦	larvey D	., 2000]	

3.11.2	<u> </u>				μ								
			μ						μ				
	μ								μ	[S	astre J	., 2002],	
								μ					
	μ												
			UV/	Vis							μ		
μ	•				μ						3.1	1.2.1	
			μ			•				ŀ	1		
							μ	μ				μ	
μ		μ	,	μ	ļ		μ					μ	μ
	μ	μ		μ		*_							
	μ				I	μ			μ	l			
			μ				•			,			
μ				μ			, µ					μ	
μ			μμ	L								3.11	.2.
NO -	μ,					2 ⁻ µ				μ			2
NO ₃ .					3			2-		μ			μ
μ	`							- µ			μ		-(1-
)		μ			μ	μ		50	μ Γ	μ		μ.
	μ	μ		μ				μ . μ _α οι	2-	J_2 ,			
Halse	<u>ר א 2-</u>		μ	n -			μ	i nyci	4			μ	μ
rig(OC	J ₃ J ₂ .			μ-				Ч				560	nm
μ	μ			ł				μ				209	
	HCN	SO						Ч					,
	, .	2,							-				

-

3.11.2 µ

3-
_**3.11.2:** μ μ UV/Vis μ [Harvey D., 2000].

		μ
μ	μ <i>ECR</i> pH 6 μ	535
	AsH₃ μ Zn μ μ μ μ μ	μ - 535
μ	CHCl₃ NaOH μ μ μ	μμ 518
μ	Cr(VI) μ μ μμ	540
	μ μ, CHCl₃/CH₃OH μ μ μ	457
	h h h h - h	510
	CHCl₃ µµ µ µ µ µ	μμ 510
	MnO΄₄ μ	525
	CHCl₃ μμ μ	μ 492
	μ zincon pH 9 μ μ μ	620

-

_3.11.2:

μ

μ

(

UV/Vis µ		

	[Harvey D., 2000].)	
	μ	
μμ	μμμ, μ μ	630
	μ CNClμ μ μ-, μ μ - μμ μ	578
	μ Zr-SPADNS μ μ ZrF6 ²⁻ μ	570
(µ)	н Н	592
	NO ²⁻ μCd, μμμ μ μ μ <i>N</i> -(1-)- μ	543
	μ 4- μ Κ ₃ Fe(CN) ₆ μ μ μ	460
	µµµµ µµµ µ, µCHCl ₃	652

[Shull K.,et all, 1967], [Budesinsky B., 1974], [Method 3500-Fe-B, 1998], [Yoe H., 1928], [Howell A., 1928], [Alastair F.]

3.11.3 µ

	UV/Vis			μ					
	μ	,	μ				3.11.3.		
				μ					
μ		μ	,	μ					
μ	μ	μ		μ		(matrix effect).		μ	
					μ				μ

			3-								-
h		0,4	45 M NaOH	pH >>	» 13.			h h	μ	μ	CHCl₃
_ 3 µ [.11.3: Harvey D., 2	μ 2000].	μ	UV/Vis	ε μ						
										I	l
	μμ		μ	1,	NaOH, µ	Cu ²⁺				540	
			μ	Fe ³⁺			,			- 40	
			СНЗСООН	H ₂ SO ₄			μ			540	
			μ		h h		μ			710	
				0,45	NaOH	CHCI ₃	μ			260	
			μ -	,	1 µ	00 °C				630	
										420	
				μ	Ce4+	As ³⁺					
260 nm				3							
		. р	μ								10 µ
р	NH4CI		μ			:					
	A_{barb}	A_{pH1}	$_{3} - \left(\frac{V_{samp} + V}{V_{samp}}\right)$	$\left(\frac{NH_4Cl}{NH_4Cl}\right)A$	pH10				(3.1	1.3.1)	

3-

3.11.4 µ µ

	UV/Vi	sμ		μ				μ	
μ		μ,		μ	μ	I	,	μ,	,
	μ			, μ			μ	μ	
			3.11.2	3.11.3.		μ,			
		μ, μ							
		I	J	-	,	μ	μ	μ	
			3.11.2.						

-

3.11.5 μ μ

	UV	/Vis µ			μ					
	μ.			μ	μ				μ	
	μ	μ					,	μ		52,5 mL
			μ	$K_2Cr_2O_7$	·.			μ		
	μ			Cr ³⁺ ,		μ	μμ		440 nm	,
μ				μ						
	μ				μ	0,19	%,			μ
				,		μ	0,025r	ng		μ

3.11.6 μ UV/Vis μ μ μ

		μ		μ	μ		
	μ					μ	μ
		μ	μ		[Alastair F.].		
		μ	μ			,	
			μ		(specifically	equilibrium satu	ration solubility, C_{S})
		μ		, J,			μ
					[Brittain H., 19	995; Brittain H.,	1999; Florence A.,
1998].			μ			μ	μ

	3-					
μ,0	C _s , µ	, <i>J</i> ,				
	μ	μ			,	
	μ.					
	μ		μ	μ		
		μ UV/Vis			μ	μ
μ	μ , UV/Vis		μ			
μ		3		μ		
μ						
	, μ ,	μ	,			
	μ		μ		UV	
	μ				,	
			,	μ	μ	μ
					μ	
0,01% w/w.	μ	μ	μ			
		μ	μ	312 nm.		
	280 nm,			312 nm.		
	μ			μ		0,02
μ	μ					

Alastair F. and Johnston A., Applications of ATR UV/Vis spectroscopy in physical form characterization of pharmaceuticals, <u>www.spectroscopyeurope.com/Process_16_6.pdf</u> Birke R. and Mavrodineanou R., *Accuracy in Analytical Spectrophotometry*, NBS Special Publication 260-81, Washington, D.C.: National Bureau of Standards, **1983**.

Brittain H. and Grant D., *Physical characterization of pharmaceutical solids*, Ed by H.G. Brittain. Marcel Deckker, New York, **1995**.

Brittain H. and Grant D., *Polymorphism pharmaceutical solids,* Ed by H.G. Brittain. Marcel Deckker, New York, **1999**.

Budesinsky B., Microchemical journal, 24, 1974.

C Iin A.; Vijdeluc C., Fiamegos Y., Stalikas, C., Kovala-Demertzi D., Demertzis M., In Sensitive Spectrophotometric Determination of Copper with di-2-pyridyl Ketone, Proceedings of the 9th Eurasia Conference on Chemical Sciences (EuAs C2S-9), Antalya, Turkey, Ohtaki, H.; ener, B. Eds.; 2006, B-OP-4, p 26, **2006**.

Christian G., Analytical Chemistry, 6th ed., John Wiley & Sons Inc., 2004.

Demertzis M., Anal. Chim. Acta, 505, 73-76, 2004.

Demertzis M., C lin A., Vijdeluc C., Fiamegos Y., Stalikas C., Kovala-Demertzi D., In Errors in Spectrophotometry, Proceedings of the 5th International Conference on Instrumental Methods of Analysis-Modern Trends and Applications, Rio-Patras, Greece, Christopoulos T. K., Ioannou, P.C. Eds., OR 274, **2007**.

Demertzis M., Palios A., C lin A., Vijdeluc C., Chrysafis G., In Spectrophotometric Error Due to Uncertainty in Reading the Signal, Proccedings of the 12th Eurasia Conference on Chemical Sciences (EuAs C2S-12), Corfu, Greece, Kitagawa, S., Hadjiliadis, N., Eds., S10-OP9, **2012(a)**.

Demertzis M., Palios A., C lin A., Vijdeluc C., Chrysafis G., *J. Chem. Chem. Eng.*, 6, 585-590, **2012(b)**.

Ewing W., *"Analytical instrumentation handbook"*, 2nd ed., Marcell Dekker Inc., New York, **1997**.

Farrington D., "Mathematical Preparation for Physical Chemistry", McGraw-Hill Book Company, Inc., New York, pp 70-91, **1956**.

Faust C., "Modern Chemical Techniques", RSC, 1992.

3-

Florence A. and Attwood D., *Physicochemical priciples of pharmacy*, MacMillan Press, London, 5-35, **1998**.

Gilbert D., J. Chem. Educ., 68, A278–A281, 1991.

Harvey D., "Modern Analytical Chemistry", McGraw-Hill Higher Education, 2000.

Hiskey F., Principles of Precision Colorimetry. Anal. Chem., 21, 1440-1446, 1949.

Holler F., *Mathcad Applications for Analytical Chemistry*, Philadelphia:Saunders College Publishing, 147-149, **1994**.

Howell A., Eds. Wiley, New York, 301-303, 1928.

Ingle J. and Crouch S., Anal Chem., 44, 1375, 1972.

IUPAC Manual, Quantities, Units and Symbols in Physical Chemistry, 1988.

IUPAC Manual, Manual of symbols and terminology for physicochemical quantities and units, **1979**.

Kortum G., and Seiler M.T., Angew. Chem., 52, 687, 1939.

Method 3500-Fe-B, *Standard Methods for the Analysis of Water and Wastewater.* American Public Health Association: Washington, D.C., 19th ed., 376 – 378, **1998**.

Miller C.; Miller N., Statistics for Analytical Chemistry; John Wiley and Sons, New York, pp 109-112, **1988**.

Pardue ., Hewitt . nd Milano ., Clin. Chem., 20, 1028, 1974.

Rothman L., Crouch S. and Ingle J., Anal Chem., 47, 1226, 1975.

Shull K. and Guthan G., J.AWWA, 1456 – 1468, 1967.

Skoog D., Holler F., Nieman T., *"Principles of instrumental analysis"*, 5th ed., **1998**.

Sastre J., Sahuquillo A., Vidal M., Rauret G., Anal. Chim. Acta, 59, 462, 2002.

Sharpe M., Anal. Chem, 56, 339A, 1984.

Strong C., III Anal. Chem., 48, 2155–2161, 1976.

Yoe H., Photometric chemical analysis, 1, 273, 1928.

., ., « »., µ

, **2005**.

		μ			-									
									μ	:				
	1)		J	μ			μ			μ			μ	
					-			(AVN	I)	1,10				
	2)		μ		μ					μ				
	μ		μ										۲	I
								μ	()		μ		
				μ		μ								
					μ					μ	μ		μ	,
		q	uartz						μ		μ			
						μ						μ		
		μ												
		,												
		μ					•							
					μ		μ						μ	
μ			μ							٢	I		μ	
				μ		,		μ			μ			
		μ					μ					•		
		0			μ		,	μ			• •		μ	
	AVN μ	Al ³⁺ ,	502	nm.										
		,	μ							μ	,			
	μ	μ	μ	,	μ									•
	μ				μ			,			μ	,		μ
μ							μ						μ	
μ			μ				- 21	a 21	μ		μ			
			μ			μ	Fe³⁺	Co²⁺		μ			•	
							μ	μ						
	μμ	•												

4. -

	4-				
4.1					
		μ		μ	
•	μ				
μ					
μ	μ	μ	10	100 µL.	
	μ	, µ	3,3 µS/cm,	μ	
	μ		,		
«DES-4»		,	μ	pH µ	
	, μ		μ	«691pH-mete	r»
Metrohm.					
	, μ	μ	μ	μ	
μ	μ	μ,	«Jasco V-53	0 UV-Vis»,	
		4.1.1	«Analyti	kjena Specord 200-2	50»,
			4.1.2.		

_4.	1.1:			μ	μ	Jasco Mo	odel V-530)/SPF		
				Jasc	o Model	V-530/SPF				
	μ					μ	,	μ	μ	
μ		μ	μ			190nm -1.1	00nm			
						μ	(19	0nm ·	- 350nm)	
						μ	(35	i0nm ·	-1.100nm)	
μ	I	μ	μ			±0,1nm				
μ		μ				±0,5nm				
	μ					Abs , %T, 9	%R			
μ						±0,001 Abs	6			
μ						±0,002 Abs	6			
μ						0,04 %T				
		μ	μ			4.000, 2.00	00, 1.000,	400, 2	200, 100, 40 nm/r	nin
						±0,001 Abs	s/hour			
						,	,			
						Silicon pho	oto-diode ((S133	7)	

			Analytikjena Specor	d 200-250	0				
	μ		μ	μ	μ	μ	μ		
				μ	μ		μ	μ	
					μ	μ			μ
			μ.						
μ	μ		190 nm – 1.100	nm					
μ			-8 A 8 A						
			μ	(190 nr	n – 350 ı	nm)			
			μ	(350 nr	n – 1.100) nm)			
μ			-4 A 4 A						
μ	μ		± 0,5 nm						
μ	μ	μ	± 0,05 nm						
μ			± 0,005						
16 nm									
μ			± 0,01						
μ	200 n	m	0,2 %T						
μ	220 n	m	0,008 %T						
μ	240 n	m	0,008 %						
μ	340 n	m	0,008 %T						
Bas	eline 500 n	ım	0,00015 (RMS	S)					
			6.00	0 nm/min					

_4.1.2: μ μ Analytikjena Specord 200-250

4.2 – μ –

μ μ , Aldrich (I.), Merck (.) Fluka (Fl.) (4.2.1). μ μ HNO₃ 0,1 μ μ [Malato S. et al., 2009]. (4.2.1) μ 50 mL , , 100 mL, 4-6 C 25 mL, 50 μ μ , mL, 100 mL, 250 mL, 500 mL, 1000 mL, μ HNO₃ 30% 16 μ , 80 C μ μ . quartz. μ μ μ μ HNO3 30% μ , 99

	4-	-						
5-10				μ			μ.	
	μ					μ	,	
μ	ł	l	μ	μ	[Skoog	D. <i>et al.</i> ,	1998],	
	μ		μ					μ
	Past	eur (μ)
I	μ							
	μ							
μ.					μ			4.2.1
	,				μ			μ
		,						μ,
	μ			:				
	$C_1V_1=C_2V_1$, 2				(4.2.1)		
: C ₁ :			μ					
	V ₁ :		μ					
	C ₂ :			μ				
	V ₂ :		μ					
	Fe(NO₃)։ μ μ	3.9H2O 3 0,1	Ļ	AI(NO ₃) ₂ .91	H ₂ O		μ	

_**4.2.1:** μ (*) μ .

*	••	М	C (M)	m (gr)	V _f (mL)		
AI	AI(NO ₃) ₃ .9H ₂ O	375,13	10x10 ⁻³	0,38	100	HNO ₃ (0,1 M)	AI.
Fe	Fe(NO ₃) ₃ .9H ₂ O	404	10x10 ⁻³	0,404	100	HNO3 (0,1 M)	М.
Cu	Cu(NO ₃) ₂ .3H ₂ O	241,6	10 ⁻³	0,0242	100	. H ₂ O	FI.
Са	CaCl ₂	111	0,5	5,55	100	. H ₂ O	M.
Cd	Cd(NO ₃) ₂ .4H ₂ O	308,47	10 ⁻³	0,0309	100	. H ₂ O	M.
Cr	$K_2Cr_2O_7$	294,19	10 ⁻³	0,0294	100	. H ₂ O	AI.
Cr	Cr(NO ₃) ₃ .9H2O	400,15	10 ⁻³	0,04	100	. H ₂ O	M.
К	KCI	74,56	0,5	3,7	100	. H ₂ O	M.
Mg	MgSO ₄ .7H ₂ O	246,48	0,5	12,3	100	. H ₂ O	M.
Na	NaCl	58,44	10 ⁻³	0,0058	100	. H ₂ O	M.

				4-		_	-
(_ 4.2.1 : μ	(*) µ).		
Pb	Pb(NO ₃) ₂	331,2	10 ⁻³	0,0331	100	. H ₂ O	AI.
Zn	Zn(NO ₃) ₂ .4H ₂ O	261,451	10 ⁻³	0,0262	100	. H ₂ O	M.
Ва	BaCl ₂	208,25	10 ⁻³	0,0208	100	. H ₂ O	M.
Mn	MnCl ₂	125,84	10 ⁻³	0,0126	100	. H2O	M.
Ni	NiCl ₂ .6H ₂ O	237,71	10 ⁻³	0,0238	100	. H2O	М.
Ag	AgNO ₃	169,88	10 ⁻³	0,017	100	. H ₂ O	AI.
Со	Co(NO ₃) ₂ .6H ₂ O	291,03	10 ⁻³	0,0291	100	HNO₃(0,1 M)	FI.
P 4	NaH2PO4.2H2O	156,01	50x10 ⁻³	0,78	100	. H ₂ O	FI.
P 4	Na ₃ PO ₄ .12H ₂ O	380,14	0,1	3,8014	100	. H ₂ O	M.
Sr	SrCl ₂ .6H ₂ O	266,62	10 ⁻³	0,0267	100	. H ₂ O	M.
Zr	$CI_2H_{12}O_7Zr$	286,22	10x10 ⁻³	0,286	100	. H ₂ O	-
μ		Mw	C (M)	m (gr)	V _f (mL)		
	CH ₃ COONa	82,03	2	16,406	100	. H ₂ O	М.
	CH₃COOH	60,05	2	9,12(mL)	80	. H ₂ O	M.
	HBO ₃	61,83	0,2	3,0915	250	. H ₂ O	FI.
	C ₆ H ₈ O ₇ .H ₂ O	210,14	0,05	2,6268	250	. H ₂ O	M.
	- C ₁₆ H ₁₁ N ₂ NaO ₅ S	366,32	10x10 ⁻³	0,366	100	. H ₂ O	AI.
1,10	C ₁₂ H ₈ N ₂ .H ₂ 0	198,24	5x10 ⁻³	0,0991	100	. H ₂ O	М.
μ	H ₃ NOCI	69,49	0,15	69,505	100	. H ₂ O	FI.
-2-	C ₁₁ H ₈ N ₂ O	184,19	10x10 ⁻³	0,1842	100	. H ₂ O	AI.
D-	C ₆ H ₁₄ O ₆	182,172	10x10 ⁻³	0,1822	100	. H ₂ O	M.
Tiron	$C_6H_6Na_2O_9S_2$	332,22	10x10 ⁻³	0,3322	100	. H2O	M.

	μ		μ	(Buffers)	[Gottsch	alk,19	959; Ca	armod	ly,196′	1; Per	rin D.,	1974]:	
)	μ		μ	CH₃COC)H 2 M -	CH₃C	OONa	2 M ((4.2	2.2):		
					μ	I	μ		μ		μ	μ	
	μ	pН				μ		μ			pН	μ	μ
	μ			μ	ŀ	l	3,4	5,9	9.				
		:											

x mL CH₃COO a 2 M (10-x) mL CH₃COOH 2 M

101

4-	-	-

)	μ	I	u		(HBO3)	0,2 M	,		(C ₆ H ₈ C	D ₇ .H ₂ O) (0,05 M
	Na ₃ PO ₄	.12H ₂ O	0,1 M	l (4.2	2.3):						
	μ	ŀ	I		μ	μ		μ		μ	рН	
		μ		μ			рΗ	μ	μ	μ		
	μ	μ	2	12.						:		

x mL μ HBO₃ 0,2 M - C₆H₈O₇.H₂O 0,05 M (200-x) mL Na₃PO₄.12H₂O 0,1 M

_4.2.2:	μ μ	CH ₃ COONa – CH ₃ COOH	
рН	x	рН	x
3,4	0,5	4,7	5,3
3,7	1	4,8	5,85
3,8	1,25	4,9	6,4
3,9	1,55	5	6,95
4	1,85	5,1	7,4
4,1	2,2	5,2	7,8
4,2	2,6	5,3	8,15
4,3	3,05	5,4	8,45
4,4	3,6	5,5	8,75
4,5	4,15	5,6	9
4.6	4,7	5,9	9,5

_	4.2.3:	μ μ	$(H_2BO_3 - C_6H_8O_7)$)	
рН	X	рН	x	рН	x
2	195	5,5	126	9	69
2,5	184	6	118	9,5	60
3	176	6,5	109	10	54
3,5	166	7	99	10,5	49
4	155	7,5	92	11	44
4,5	144	8	85	11,5	33
5	134	8,5	78	12	17

4.3	μ	μ	(Certified	d Reference Mat	erials)
		μ	μ		μ
			μ	Prawn, GBW	/08572 (4.3.1)
Wheat	t, NCS Z	C73009(4.3.2).		
				(,
	۳ ۱			(P /
	1 06570	μ	(10.9.4.4/	~	μ Flawii
GDVVU	, , ,	a a a a a a '		y,	60,2665 µg/g)
	(0,029 µg/g,	63,6178 µg/g) (4.3.3).	
	_4.3.1:	μμ	μ	μ	Prawn, GBW08572
			μ	μ	
K	%	0,597		0,012	INAA, AAS, ICP
Na	%	0,381		0,008	INAA, AAS, ICP, XRF
Ca	%	0,304		0,006	INAA, AAS, ICP
Mg	%	0,16		0,003	INAA, AAS, ICP, XRF
AI	%	0,131		0,004	INAA, ICP, ISE, XRF
Ν	%	14,3		0,4	Kj
Ρ	%	0,845		0,012	ICP, SP, XRF
Cu	µg/g	4,66		0,23	AAS, ICP, POL
Zn	µg/g	60,8		1,4	AAS, ICP, XRF
Mn	µg/g	1,96		0,13	INAA, AAS, ICP
Fe	µg/g	19,8		0,4	INNA, AAS, ICP
Sr	µg/g	40,6		3,4	INNA, AAS, ICP
As	µg/g	1,42		0,06	INNA, AAS, FS
Se	µg/g	4,52		0,04	INNA, AAS, FS, POL
Pb	µg/g	0,298		0,019	AAS, POL
Cd	µg/g	0,023		0,004	AAS, POL
Hg	µg/g	0,201		0,004	AAS, FS
Cr	µg/g	0,24		0,06	INNA, AAS, ICP
Ва	µg/g	4,29		0,72	INNA, ICP
F	µg/g	5,31		0,39	ISE, IC

(_4.3.1:	μμ		μ Prawn, GBW0857
			μμ	
S		%	0,85	
Co T		hð\ð	0,029	J
		hð\ð	1,05	
Br		hð\ð	13,5	
_4.3.2	2: μ	μμ	μ	«Wheat-NCS ZC73009».
			μμ	
			(M)	
AI	(10 ⁻²)	0,0104		0,001
As	(10 ⁻⁶)	0,031		0,005
B*	(10 ⁻⁶)	0,55		
Ва	(10 ⁻⁶)	2,4		0,3
Be*	(10 ⁻⁹)	0,85		
Bi*	(10 ⁻⁹)	2,5		
Br*	(10 ⁻⁶)	0,33		
Са	(10 ⁻²)	0,034		0,002
Cd	(10 ⁻⁹)	18		4
Се	(10 ⁻⁶)	0,009		0,002
CI	(10 ⁻²)	0,086		0,003
Co*	(10 ⁻⁶)	0,008		
Cr	(10 ⁻⁶)	0,096		0,014
Cs*	(10 ⁻⁶)	0,01		
Cu	(10 ⁻⁶)	2,7		0,2
Dy*	(10 ⁻⁹)	0,8		
Er*	(10 ⁻⁹)	0,31		
Eu*	(10 ⁻⁹)	0,8		
Fe	(10 ⁻⁶)	18,5		3,1
Gd*	(10 ⁻⁹)	0,91		
Ge*	(10 ⁻⁹)	2		
Hf*	(10 ⁻⁶)	0,03		
Hg*	(10 ⁻⁹)	1,6		
Ho*	(10 ⁻⁹)	0,12		

(ZC73009».)	_4.3.2:	μμμ	μ	«Wheat-NCS
 *	(10 ⁻⁶)	0,06		
К	(10 ⁻²)	0,14	0,006	
La	(10 ⁻⁶)	0,006	0,002	
Li	(10 ⁻⁶)	0,024	0,005	
Lu*	(10 ⁻⁹)	0,04		
Mg	(10 ⁻²)	0,045	0,007	
Mn	(10 ⁻⁶)	5,4	0,3	
Мо	(10 ⁻⁶)	0,48	0,05	
N	(10 ⁻²)	2,4	0,06	
Na	(10 ⁻⁶)	17	5	
Nb*	(10 ⁻⁶)	0,008		
Nd	(10 ⁻⁶)	0,0046	0,0014	
Ni	(10 ⁻⁶)	0,06	0,02	
Р	(10 ⁻²)	0,154	0,007	
Pb	(10 ⁻⁶)	0,065	0,024	
Pr	(10 ⁻⁹)	1,1	0,4	
Rb	(10 ⁻⁶)	2,6	0,2	
S	(10 ⁻²)	0,178	0,017	
Sb*	(10 ⁻⁶)	0,006		
Sc*	(10 ⁻⁹)	3		
Se	(10 ⁻⁶)	0,053	0,007	
Si*	(10 ⁻²)	0,008		
Sm	(10 ⁻⁹)	0,95	0,28	
Sr	(10 ⁻⁶)	2,5	0,3	
Tb*	(10 ⁻⁹)	0,1		
Th*	(10 ⁻⁹)	2		
Ti*	(10 ⁻⁶)	2		
TI*	(10 ⁻⁹)	0,5		
Tm*	(10 ⁻⁹)	0,04		
U*	(10 ⁻⁹)	1,6		
V	(10 ⁻⁶)	0,034	0,012	
Zn	(10 ⁻⁶)	11,6	0,7	

4-		
4.3.3: μ μ		μ.
К	%	0,597
Na	%	0,381
Са	%	0,304
Mg	%	0,16
AI	%	0,131
Ν	%	14,3
Р	%	0,845
Cu	hð\ð	4,66
Zn	hð\ð	60,8
Mn	hð\ð	1,96
Fe	hð\ð	60,2865
Sr	hð\ð	40,6
Со	hð\ð	63,6178
As	hð\ð	1,42
Se	hð\ð	4,52
Pb	hð\ð	0,298
Cd	hð\ð	0,023
Hg	hð\ð	0,201
Cr	hð\ð	0,24
Ва	hā\ā	4,29
F	hð\ð	5,31

AVN 4.4 μ μ – μ

Acid Alizarin Violet N, AV . eriochrome violet B, chrome fast violet B, solochrome violet RS, omega chrome dark violet D, pontachrome violet SW palatin chrome violet.

	H AVN, C ₁₆ H	l ₁₁ N₂NaO₅S,		ł	μι	pk 7	12,8.
μ		μı	μ,	μ		μ	
				μ,		μμ.	
				μμ			
		μ		μμ			
	«	»	μ		μ	μ	AVN

							μ		μ			μ
μ		[Lindstrom	F. <i>et a</i>	a <i>ll</i> .,1972].						μ		AVN
				μ			(μ4.	.4.1).			
			μ	μ				μ,				μ
μ		μ			μ	μ		μ	μ		μ	1,10
		,										
	μ	, μ			•				, 1,1	0		
		μ			μ	μ					μ	Fe ²⁺ .
	1,10			μ					(μ	4.4	.2)
	μ						,	μ				μ
μ		μ										

μ_4.4.1: μ μ AVN.

	μ	[Fe(pher	ר) ₃] ²⁺ ,		μ	"	",	μ		
μ		μ	Fe ²⁺ .		μ					μ
	μ	1,06 V.	μ	μ					μ	
μ	μ		μ.							

μ_4.4.2: 1,10 μ μ

4.5 μ μ

	μ		AVN		1,1	0			
μ		μ	μ		[Sillen	L. et a	a <i>l</i> ., 1971; Bis	hop E., 1972;	Martel A.,
1991; Ab	olino O.	et al., '	1994].			4.5.1	4.5.2		
	μ		μ	μ	μ		μ	AVN	1,10
	μ		μ						

	_ 4.5.1 :	μ	μ	μ Α	VN-	(*) 1:1 2	2:1.	
	Al ⁺³	Ca ⁺²	Cu ⁺²	Mg ⁺²	Ni ⁺²	Pb ⁺²	Zn ⁺²	Cd ⁺²	Mn ⁺²
ML	18,4	6,6	21,8	8,6	15,9	12,5	13,5	11,47	10,96
ML ₂	31,6	9,6	-	13,6	26,4	17,8	20,9	-	-

4-	-	-
		_

_	4.5.2:	μ	μ μ	1,10		-	(*)	1:1, 2:1, 3:1.
	Fe ⁺³	Fe ⁺²	Co ⁺²	Cu ⁺²	Zn ⁺²	Ni ⁺²	Mn ⁺²	Cd ⁺²
ML	6,5	58,5	7,08	8,8	6,4	8,6	4	5,8
ML ₂	11,4	11,15	13,72	15,3	12,2	16,7	7,3	10,6
ML ₃	14,1	21	19,8	20,2	17,1	24,3	10,3	14,6

$$M+L \quad ML, K_1 = [ML]/[M][L]$$
(4.5.1)
$$ML+L \quad ML_2, K_2 = [ML_2]/[ML][L]$$
(4.5.2)

, M () L ()

4.6 pH

pН AVN μ μ μ Fe³⁺ Co²⁺. μ μ $HBO_3 0,2 M, C_6H_8O_7.H_2O$ μ μ Na₃PO₄.12H₂O 0,1 M 0,05 M μ 2 µ pH 12, μ μ CH₃COOH 2 M (CH₃COONa 2 M рН 3,4 μ) μ 5,9 [Malato S. et al., 2009].

μ <u>μ 1:</u> μ μ . AVN 2,5x10⁻³ M, μ μ 0,2 HBO₃, 0,05 $C_6H_8O_7.H_2O$ μ 50 µ AVN, μ (Na₃PO₄.12H₂O) 0,1 AVN 50 μ . μ μ μ μ μ μ μ μ μ , 4.6.1. μ , 600 nm (µ 4.6.1). 350 μ μ

	46	1-	11					рН
μ		2 12.	٣	AVN	μ	μ 50 μ	μ, Ι.	p.,
1	рН	μ	HBO₃ 0,2M, C AVN 50 [x mL	C ₆ H ₈ O7.H2O 0,05 μ]	5M,	μ	Na₃PO₄. AVN 50 [5-x m	12H ₂ O 0,1 , μΜ L]
1	2		4,875	5			0,125	5
2	3		4,4				0,6	
3	4		3,875	5			1,125	5
4	5		3,35				1,65	
5	6		2,95				2,05	
6	7		2,475	5			2,525	5
7	8		2,125	5			2,875	5
8	9		1,725	5			3,275	5
9	10		1,35				3,65	
10	10,5		1,225	5			3,775	5
11	11		1,1				3,9	
12	11,5		0,825	5			4,75	
13	12		0,425	5			4,575	5

4-

_

μ_4.6.1: μ 50 μ AVN μ μ ₃, C₆H₈O₇H₂O Na₃PO₄.12H₂O μ pH 2 12.

				4-			
		μ		AVN µ	μ		μ
500 nm	551 nm	μ pH 2	10,	. µ			
AVN		μрΗ		μ		μ	
			μ		pH 2 µ		
μ	μ	pΗ μ	10 (μ 4.6.2).			
	μ μ	380 nm	526 nm		μ		
AVN	μ			μ	().	μ	4.6.3

μ_4.6.3: μ AVN μ pH.

μ_4.6.2: μ AVN μ pH 2 11.

μ μ μ μ ΑVN μ Fe³⁺ Co²⁺ μ 1,10 μ Fe³⁺ μ pH 3,4 5,9.

- AVN 10⁻³ , μ <u>2:</u> μ $\label{eq:Fe} Fe(NO_3)_3.9H_2O~10^{-3} \qquad HNO_3~0,1~M,~CH_3COONa~2~M \qquad CH_3COOH~2~M~(\qquad \mu$ μ). μ μ μμ.ρΗ μ μ , 3,4, 4,0, 4,5, 5,0, 5,5 5,9, . AVN 10 μ μ., μ μ μ 1,5µ. μμ 5 mL, 60 C μ μ 30 μ μ , 502 nm. μ 4.6.4. μ μ

μ _4.6.4: AVN μ AVN-Fe⁺³ 502 nm pH. : () AVN 10 μ Fe⁺³ 0 μ () AVN 10 μ Fe⁺³ 1,5 μ.

				4-	-	-
	μμ	J.	pН	μ		
		,	3,4, 4,0,	4,5, 5,0, 5,5	5,9,	
	AVN	μ				50
,				μ		μ
μ	2μ.	μ	μ		,	5 mL,
	и					60 C

30 μ μ, 502 nm. μ 4.6.5. μ μ

μ.

μ

μ

 μ AVN-Co⁺² μ _4.6.5: AVN 502 nm рН. :() AVN 50 μ Co⁺² 0 μ . () AVN 50 μ Co⁺² 2 μ .

μ 4: μ 1,10 -5x10⁻³ , μ (H₃NOCI) 0,15 M, Fe(NO₃)₃.9H₂O 1,5x10⁻³ HNO3 0,1 M, CH3COONa 2 M $\,$ CH3COOH 2 M ($\,\mu\,$ $\,$ $\,\mu\,$). μ μ μ μ . pH μ 3,4, 4,0, 4,5, 5,0, 5,5 5,9, 1,10 , 100 µ μ H₃NOCI 0,015 Μ. , μ μ 3 μ. μ μ μ

 $\begin{array}{cccccccc} \mu \ _4.6.6: & 1,0 & -H_3 \text{NOCI} & \mu & 1,10 & -H_3 \text{NOCI-Fe}^{+2} \\ 510 \ nm & pH. & : (\) \ 1,0 & 100 \ \mu \ , \ H_3 \text{NOCI} \ 0,015 & \ Fe^{+2} \ 0 \ \mu \ (\) \\ 1,0 & 100 \ \mu \ , \ H_3 \text{NOCI} \ 0,015 & \ Fe^{+2} \ 3 \ \mu \ . \end{array}$

		μ		μ	2, 3	4			4.6.	2
			pН		5,0.	μ		р	H 5,0	
μ					μ		AVN J	u Fe ³⁺	Co ²⁺	
	1,10		μ Fe ²⁺	,	μ			μ	AVN	
1,10					,	μ			μ	
AVN,		μ	AVN µ	Fe ³⁺	Co ²⁺ ,		μ	μ	, =502	2 nm,
μ		μ				рН З,	4.	μ		1,10
		μ Fe ²⁺	μ						µ pł	H 5,9.
					μ	,	μ		pН	5,0
	μ									
	μ	•								
		,					μ		AVN μ	Fe ²⁺
Сс	0 ²⁺	1,10		μ	Fe ²⁺				pł	Н,

					4-		_	-
μ		μ,	pH 5,0,					
		μ		(4.	7.2		4.7.3)
	pН	μ	μ 4,5	5,5.				
		(§4.7)	μ		μ	5	6,	
μ	μ			AVN		μ		μ

_4.6	.2:	μ	AVN μ Fe ³⁺ Co ²	+ μ
1,10	μ Fe ⁺² .			
nU	μ	μ	μ	
рп	AVN-Fe ³⁺	AVN-Co ²⁺	1,10	-Fe ²⁺
3,4	0,0496	0,0019	0,0332	
4	0,0519	0,0029	0,0327	
4,5	0,0535	0,0199	0,0329	
5	0,0559	0,0373	0,0334	
5,5	0,0545	0,0356	0,0333	
5,9	0,0527	0,0353	0,0321	

4.7 μ

AVN

	μ <u>5:</u>		μ	AVN	1,25x10 ⁻³	
μ		2	pH μ 5,0). µ		
		μμ		μ		
	AVN	15µ.	μμ		,	
5 mL, µ	μ			μ		
μ	μ		μ	μ	250 nm	600
nm (µ	4.7.1). μ		μ		AVN	
μ	μ	μ	15 µ .			
		μ	AVI	N (µ 4.7	.1)	
μ	μ			μ	μ μ	
(Abs _{max})	μ μ	=500 nm.	μμ,		μ	
	450 nm	350 nm µ	*	¢μ»,	μ	
	. μ	μ 1	=307 nm	₂ =266 nm		
μ						

μ = 4.7.2: μ AVN (250 nm-600 nm) μ 15 μ.

AVN:15μ.

μ_4.7.3: μ AVN (470 nm-540 nm) μ 15 μ AVN=15 μ .1) 1 , 2) 15 .

μ_4.7.4: AVN, 500 nm, μ 15 μ. AVN=15 μ.

4-	-	•			
_4.7.1:					
				μμ	
Acid Alizarin Violet N	pH=5,5	ћ ћ ћ	Cu, Fe		[Sarzanini et al., 1998]
Pontachrome Violet SW	surfactant	μ μ (colorimetry)	Са		[Satsuki et al., 1998]
Solohrome Violet RS	pH=5,2 8,5 10 70° C	μ	AI		[Wang et al., 2001]
Solohrome Violet RS	pH=4,5	μ	Fe		[Jagner et al., 1993a]
Solohrome Violet RS	pH=4,5	μ	Fe, Ti		[Jagner et al., 1993b]
Solohrome Violet RS	pH=4,2	μ	AI	, , µ µ	[Stryjewska et al., 1992]
Solohrome Violet RS	pH=4,7 1h 70° C	- µ	Fe		[Fogg and Lewis., 1985]
Solohrome Violet RS	pH=4.5 10min 90° C	μ	AI		[Wang et al., 1985]
Solohrome Violet RS	pH=4,8	μ	Ga		[Wang et al., 1986a]
Solohrome Violet RS	pH=5,1	μ	Ті	, μ	[Wang et al., 1986b]

						4-	_	-
(_4.7.1:							.)
Solohrome Violet F	?S pH=4,6		μ	Z	r			[Wang et al., 1986c]
Solohrome Violet F	RS pH=5,1		μ	F	e, Ti, Ga			[Wang et al., 1987]
Solohrome Violet F	RS pH=4,5		Ļ	J F	e			[Hua et al., 1988]
_4.7.2	μ			μ Fe ⁺³		μ		
				μ		μ	- µ	
p-xylenol	pH=8-10 (Fe,Pb) pH=9 (Cr) 95° C	h		Fe(III), Pb Cr(III)	(11),	μ	Fe (III)_3.07mg/L Pb (II)_18.6 mg/L Cr(III)_3.27mg/L	[Umit et al., 2007]
3-(2-Pyridyl)-5.6- Diphenyl-1,2,4- Triazine(PDT)	pH=2-9	μ	UV	Fe(II)	μ		Fe (III), =295nm	[Weihuang et al., 2007]
hematoxylin	pH=5.8	ц З) ц	µ µ SOSC)	Al(III), Fe(III)		, μ	Al(III), =490nm Fe(III), =502nm	[Ali et al., 2007]
diphenylcarbazid e (DPC)	pH=9	h h		Fe(III), Pb(II) Cr(III)	, ,		Fe (III)_0.32mg/L Pb (II)_0.51 mg/L Cr(III)_0.81mg/L	[Elci et al., 2008]
Di-2-pyridyl ketone thiosemicarbazo ne (DPKT)	рН=6 µ : 1:2	μ		Co(II), Cu(II), N (II), Fe(II)	i µ	, µ	Ni(II)_0,16ng Fe(II)_0.12ng Co(II)_0.11ng Cu(II)_0.3ng µ :400nm	[Asci et al., 2008]
RAWI-Weak acid brilant blue dye	pH=3,15 25°C 7	h	μ	Fe(III)	μ		Fe (III)4,1x10 ⁻¹⁰ g/mL	[Hongwei et al., 2008]

(_4.7.2:	μ	μ	Fe ⁺³	μ.)	
4-acetyl-5- methyl-1-phenyl- 1H-pyrazole-3- carboxylic acid	pH=1,5 [Fe(III)] pH= [Fe(II)]	μ	Fe(II), Fe(III)	: , µ, µ, , µ,	Fe (III)_0,24mg/L	[Sacmaci a Kartal., 200
2,3-dichloro-6-(3- carboxy-2- hydroxy-1- naphthylazo)qui noxaline	pH=3,54	μ μ (SPS)	Fe(II), Fe(III)	, ,	Fe(II)_280ng/L Fe(III)_290ng/L	[Asmin a Gouda., 200
bis(salicylaldech yde) propylenediimin e (H2SAPn)	pH=6-9 (pH=8,1) 25oC	μ (MEKC)	Fe(III), Cu(II), Ni(II), UO2(VI), Co(II)	,	UO2(VI)_0,015ng/L Fe(III)_0,015ng/mL Cu(II)_0,061ng/mL Ni(II)_0,061ng/mL Co(II)_0,122ng/mL	[Mirza et 2008]
1-(2- thiazolylazo)-2- napthol immobilized on C18-bonded silica (TAN)	pH=6,3	μμ	Fe(II)	μ, μ, μ	Fe(II)_15mg/L	[Teixeira a Rocha., 200
1-(2-piridylazo)- 2-naphthol(PAN)	pH=4, E=- 400mV, μ =4mV, μ =25mV, =15H z	μ	Fe(III)		Fe(III)_0,1mg/L	[Segura et 2008]
Chrome Azurols (CAS)	pH=3,2	h h	Fe(III), AI(III)	μ	Fe(III)_4,9mg/L AI(III)_5,6mg/L	[Vanloot et 2007]

-

4-

-

					4-	_	
_4.7.3	: µ	u	Ļ	u Co ⁺²	μ.		
					μ μ	μ	•
Co-BSOPD	pl =25 C	H, µ	μ	Со	, , μ	0,5 mg/L	[Ahmed M. et al., 2007]
	рН	h	μ -	Со	μ	5 ng/g	[Ribeiro A. <i>et al.</i> , 2005]
		(GF-AAS)					
1 2	pH=4	h	μ	Со		3,8 ng/L	[Berton P. <i>et al.</i> , 2010]
APDC	pH=4,5	h h	μ - -	Со	, µ	2,1 µg/L	[Donati G. et al., 2006]
2-(5-bromo-2- pyridylazo)-5- diethylaminophe nol (5-Br-PADP)- tetraphenyborate	рН	μ	μ	Со	μ μ μ , μ	30 ppb	[Pancras J. <i>et al.</i> , 1998]
Co-(nitroso-R)	pH=7	h	μ -	Со		3 µg/L	[Liu X. et al., 1995]
2-(5bromo-2- pyridylazo)-5-(N- propyl-N- sulphopropylami no)-aniline	pH=4	h	μ	Со		1 ng/L	[Yamame T. <i>et al.</i> , 1992]
Benzeacetaldehy de-4-hydroxy oxo-aldoxime	рН=9	μ	μ	Со	μ,	2,1 ng/mL	[Jadhav S. <i>et al.</i> , 1998]
DMG	рН=9	hh		Co, Ni	h	1,1 µg/kg	[Sancho D. <i>et al.</i> , 2000]
BTAHQ	pH=6,4	μ	μ	Со	, µ,	3,1 ng/mL	[Amin A., 2011]
Co-PAN	pH=1	μh	h	Со		0,14ng/mL	[Gharehbaghi M., 2009]
_	pH=8	ICP-MS		Co, Ni, Cd	,	0,003-0,0015 µg/L	[Hu W. <i>et</i> <i>al.</i> ,2006]

	4-	_		-			
(_4.7.3:	μ		μ Co ⁺²	μ).		
Br-TAO	pH=7-8	μ	μ	Co	0,9 µg/L	[Baliza P. <i>al.</i> , 2009]	
Me-BTABr	рН=7-8, Т=40 С	h h	μ	Co, Ni	0,9-1,1 μg/L	[Lemos V. al., 2007]	
РРКО	pH=8,5	h	μ	Co, Fe, Cu, Ni	0,7-0,8 ng/L	[Karimi H. <i>al.</i> , 2008]	
DMG	pH=9	μ		Со	0,03 µg/L	[Kajic P. <i>al.</i> , 2003]	

		,				ł	L		AVN
		μ			,			AVN	
μ	μ	μ	μ	Fe ³⁺ ,		μ		μ	μ
Co ⁺² ,					μ		μ	μ	

<u>µ 6:</u>		μ		AVN	5x1	0 ⁻³ M
	μ				0,5x10 ⁻³ M, 1,	5x10 ⁻³ M,
2,5x10 ⁻³ M,	3,5x10⁻³ M	4,5x10 ⁻³	M.		μ	
Fe(NO ₃) ₃ .9H ₂	O 1,5x10⁻⁴	HNO₃ 0,1	М	μ	10 ⁻³ M	HNO ₃
0,1 M, µ	μ		2	pH 5,0	. ,	
	μ		, µ		μ	μ.
рН	μμ	,		,	,	μ 5,0.
	Fe ³⁺	μ		1, 2, 3	,4 5μ,	
	AVN	μ			μ 1	0, 30, 50,
70 90 µ	1	5			μ	
	5 mL.	μ		μ	μ	
,					60 C 30	
		μ	μ,			
μ		502 nm.		μ		
4	1.7.4.					
			AVN 10 μ	μ		

r						
μ	μ	, R ² ,	μμ			
μ 4.7.5		,	μ	μ		
				4-	-	-
----------------------	---------	---	------------------	-------------------------------------	-------------------------	----
				AVN		
μ			Fe ³⁺	μ		
	μ	μ		ΑVN (30 μ ,50 μ	,70μ 9	90
μ).						
	_4.7.4:	μ	μ	AVN-Fe ³⁺ , AVN 10-90 μ	Fe ³⁺ 1-5μ .	
C _{AVN} (μΙ	VI)			μ		-
10			y = -0,0034	x + 0,0549, R ² = 0,4541		-
30			y = -0,0224	x + 0,2406, R ² = 0,9998		
50			y = -0,022x	+ 0,3969, R ² = 0,9992		
70			y = -0,0209	x + 0,5461, R ² = 1		

 $y = -0.0213x + 0.7105, R^2 = 0.9997$

μ			μ		μ		μ
	μ	Fe ³⁺	Co ²⁺ .				
4.8	u	u			u	AVN u Fe ^{3.}	⁺ . Co ²⁺ . Al ³⁺ .
Cu ²⁺	Ni ³⁺	r			F		, , ,
			μ				
	μ	AV	Νμ Εθ	e ³⁺ , Co ²⁺ , A	Al ³⁺ , Cu ²⁺	Ni ²⁺ .	
μ			3			μ	
		_ 21		AVN	μ	•	
μ	AVI	Nµ Fe ³⁺ ,	- - 3+	(A \ / \	AVN
۸ I ³⁺	Cu ²⁺	Ni ²⁺	Fe	(μ8). µ	Ανν μ	Fe ⁻ , Co ⁻ ,
Аι,	Cu	INI	AVN			μ	,
Fe ³⁺	(u	7). Co ²⁺ (u 9). A	м м ³⁺ (и	10). Cu ²⁺ (u 11). N	li ²⁺ (u
12),	μ	.,,	F -7,		(F , , .	
	<u>μ 7:</u>	μ	A١	/N	5x10 ⁻³	Fe(NO ₃) ₃ .9H ₂ O 10 ⁻³
	HNO ₃ (),1 M		μ	. μ		μ
	μ	2,	pH 5,0.	μ	μ	μ	μ
		μ					5 mL.
		AVN	μ			100	μ,
		Fe³⁺	1, 2, 3,	4, 5, 6, 7,	8, 9 10 µ		
		μ co o	μ	μ		,	
		60 C	30			μ	μ, 230
700 n	m	μ	11 4 8	μ 1			230
1001	,		μ 4.0		•		

AVN

μ

Ni²⁺.

μ

μ

μ

μ

μ

μ

pH 5,0

124

4-

Fe³⁺, Co²⁺, Al³⁺, Cu²⁺

μ

 μ _4.8.1: μ μ VN-Fe³⁺. AVN: () () 100 μ Fe³⁺: () 0 μ , () 1 μ , () 2 μ ...() 10 μ .

			μ	4.8.1	μ	μ	AVN- Fe ³⁺
		:					
•	μ				498 nm.		

- µ ... 467 553 nm.
- Fe³⁺, μ, μ ..μ μ . , μ μ μ 467 553 nm μ Beer μ μ μ , AVN (_1) μ μ (₂).

$$_{1}=_{1}b100$$
 (4.8.1)

mole Fe³⁺

125

AVN

 $\mu _4.8.3: \mu \qquad \mu \qquad VN-Fe^{3+}. \qquad AVN: () () 100 \mu \\ Fe^{3+}: () 1\mu , () 2\mu , () 3\mu , () 4, () 5\mu .$

µ	<u>ı 8:</u>		μ	A	VN				μ
		2,5x10) ⁻³ , 3,5x	×10 ⁻³	4,5x10	-3 ,			
μ	AVN				Ę	5x10 ⁻³ .			μ
Fe(NO	₀₃)₃.9H₂O			10 ⁻³	HN	O₃ 0,1 M		μ	
		2 M.		,			μ		,
	μ		μμ					5 mL.	pН
	μ	μ	Ę	5,0		A۷	/N 1		
5	Ομ,	2	70 µ	3	90)μ,		F	e ³⁺
	μ					1, 3	5μ.		μ
μ		μ			,				60 C
30					μ	μ	,		
μ		μ			350	600 nm,			μ
4.8.4.									
			μ	4.8.4			• •1,	=467 nm	
• •2,	=553	s nm,				μ	,	μ	
							AV	N	
100 µ				μ7.	,				μ
			μ			μ			

	μ	9:		μ								μ		μ		
	μ	AVN,	Co(N	O ₃) ₂ .6	H ₂ O		μ		,			2,5x	10 ⁻³	, 10 ⁻	-3	
2				μ				٢	I				ł	J		
	μ	μ		,						5 m	ıL.	pН			μ	
μ						AVI	N	5,0	50 µ			,				
Co ²⁺		2,	4, 6,	8	10	μ									μ	
μ			μ					,							60	С
3	80							μ		μ	,					
μ				μ							380		620	nm,		
			μ	4.8.5.												

 $\mu _4.8.5: \mu \qquad \mu \quad VN-Co^{2+}. \qquad AVN() (): 50 \mu \quad Co^{2+}:$

μ 4.8.5 μ AVN-Co²⁺

μ μ :

- µ 495 nm.
- . . 394 nm 539 nm.
- Co^{2+} , μ , μ . . μ . μ

μ AVN-Fe³⁺.

• $\mu \ \mu \ \mu \ \mu$, $\mu \ \mu \ \mu$ $\mu \ AVN-Fe^{3+}$.

AVN.

	μ 1	<u>0:</u>		μ	μ		μ		μ		AVN
		2,5x	10 ⁻³ ,	μ			AI(N	O₃)₃.9ŀ	H ₂ O		10 ⁻³
	HNO_3	0,1 M,						μ		AI(NO ₃)	3.9H ₂ O
		5x10) ⁻⁴	HNO₃ 0,1	М	μ				2.	μ
			μ		,		μ		μ	μ	,
				5 mL.	pН		μ	μ			
	AVN	5,0	50 µ		,				Al ³⁺	0, 2, 3,	4 5
μ							μ	μ		μ	
		,					60	С	30		
	μ			μ	μ	,				μ	
	μ				3	850	600	nm,			μ
4.8	8.6.										

- μ 505 nm.
- µ . .₂ 388 nm . .₁ 490-502 nm.
- µ µ µ , µ

 $() 2 \mu , () 4 \mu , () 6 \mu , () 8 \mu$ $() 10 \mu .$

μ 4.8.7 μ AVN-Cu²⁺

μ μ :

- μ 500 520nm (Cu²⁺)
- . . 503-504 nm.
- Cu²⁺
- .., µ ..
- μ μ μ 2-3 nm
 μ ΑVN-Cu²⁺ μ
- Cu²⁺, μ μ μ μ =502nm μ μ μ μ μ μ
- μ μ σα μ.
- . μ μ μ μ μ , 5 mL. pH AVN 5,0 50 μ , Ni²⁺ 4,6 8 μ

,

- . μ μ μ 60 C 30
 - - μ μ :
 - µ 496 nm.
 - μ μ
 364 372 nm (...2)
 507 512 nm (...1).
 - Ni²⁺
 - ..₁, μ ..₁. ● μ μ μ 2-3 nm
 - μ μ μ 2-3 nm ..., μ μ AVN-Ni²⁺ μ Ni²⁺, μ μ μ μ 502 nm,
 - Cu²⁺
- μ , μ μ μ μ Fe³⁺ 132

4- –

-

4.9 μ AVN μ Fe³⁺, Co²⁺, Al³⁺ AIPO₄ 1,10 μ Fe²⁺

μ μ AVN μ Fe³⁺, Co²⁺, Al³⁺, Al³⁺ PO4³⁻, 1,10 μ μ Fe²⁺, 90 μ μ (_{μ.}), , 30 C (₃₀), 45 C (₄₅) μ μ 60 C (₆₀), .

<u>µ</u> 1	<u>3:</u>				μ		A	VN	Fe	(NO ₃) ₃	.9H ₂ O	HNO₃ 0,1
М			2,5x10 ⁻³	М	10 ⁻³			,			μ	
		2			,	μ			μ	μ		
			5 mL.	рН				AVN		5,0	50 µ	,
			Fe ³⁺	3μ		μ	μ			μ		
			μ	μ		μ			μ	,		
60	,	50	2 nm,			μ	4.9	9.1.				

 μ .

<u>µ 16:</u> μ μ μ μ AVN, NaH₂PO₄.2H₂O, μ AI(NO₃)₃.9H₂O HNO₃ 0,1 M μ 2,5x10⁻³ M, 50x10⁻³ M, 10x10⁻³ M 2 , μ μ . 5 , µ μμ , AVN, Al^{3+} PO₄³⁻ 5,0, 50 µ , 600 µ 1.000 mL. pH μ. Al³⁺ μ μ Al³⁺ μ ΡΟ4³⁻. PO4³⁻, μ

μ μ μ

502 nm, 90 μ 4.9.4.

μ.

	μ		μ			μ	μ,	1	
	μ	μ	μ	AVN-AI ³⁺		AIP	D_4^-		
	μ		μ						
	μ,μ		μ	μ	,				
	μμμ	μ	,						
		μ					,		
μ	3			μ	μ	μ	3		
	μ		AVN µ	Al ³⁺ .		μ 4.9.4	μ		
,				μ,		μ	60 C		
	30								

μ 17: μ μ μ $NaH_2PO_4.2H_2O_7$ μ μ 50x10⁻³ M, 25x10⁻³ M $AI(NO_3)_3.9H_2O$ HNO₃ 0,1 M μ 2 μ , µ . μ 5 mL. pH µ μ μ , 3,4, 3,7, 4,0, 4,3, 4,5, 5,0, 5,3, 5,6 μ PO4³⁻ Al³⁺ 5,9, 500 1.000 µ μ μ μ μ 60 C 30 , μ μ μ μ , μ 4.9.5. . 502 nm,

μ 18<u>:</u> NaH₂PO₄.2H₂O μ 50x10⁻³ M. , $AI(NO_3)_3.9H_2O$ HNO3 0,1 M μ AI(NO₃)₃.9H₂O $AI(NO_3)_3.9H_2O$ μ HNO3 0,1 M 5x10⁻³ M, 2. μ μ μ μ μ μ 5 mL. pН μ μ Al³⁺ PO4³⁻ 5,0 1.000 µ , 0, 10, 30, 50, 70, 90, 100, 300, 600, 800 1.000 µ μ μ μ . , 60 C 30 502 nm, μ μ μ μ ,

μ _4.9.6: . μ : μ 60. μ 1,10 -Fe²⁺μ , : 90 . μ : μ 60. 1,10 : 500 μ , H₃NOCI: 0,015 Fe²⁺: 3 μ .

μ 1,10 μ 20: , Fe(NO₃)₃.9H₂O HNO₃ 0,1 M, μ μ (H₃NOCI) $25x10^{-3}$ M, $15x10^{-3}$ M, 2 0,005 , , µ , µ μ μ μ 5 mL. pH μ , 1,10 Fe²⁺ 5,0, 500 160 μ , H₃NOCI 0, 20, 40, 60, 80, 100, 200, 300, μ μ 400 500μ , μ . , 60 C 30

μ.

4.10 μμ μ ΑVN μ Fe³⁺ Co²⁺ 1,10 μ Fe³⁺

μ 21: AVN μ μ μ μ 7,5x10⁻³ M 2 μ , Fe(NO₃)₃.9H₂O HNO₃ 0,1 M 7,5x10⁻³ M, μ HNO₃ 0,1 Μ μ Fe(NO₃)₃.9H₂O μ 3x10⁻³ M 10⁻⁴ M . μ , μ μ μ μ , , 5 mL. AVN pН 5,0 150 μ , $\mathsf{Fe}^{\mathsf{3}+} \ 0, \ 0, 2, \ 0, 4, \ 0, 6, \ 0, 8, \ 1, 0 \ 1, 6, \ 1, 8, \ 2, 0 \ 6, 0, \ 12, \ 18, \ 24, \ 26, \ 30, \ 33, \ 36, \ 42, \ 48, \ 60, \ 75,$

90, 105, 120, 135 150 μ . μ μ μ μ , 60 C 30 μ μ , μ μ μ 500 nm, μ 4.10.1.

μμ

AVN 22: μ μ и μ , 7,5x10⁻³ M 2 μ Co(NO₃)₂.6H₂O 5x10⁻³ M 2x10⁻³ μ μ M, 10⁻³ M 10⁻⁴ M. μ μ , , μ 5 mL. pН μ μ AVN 5,0 150µ

μ μ 511 nm, μ 4.10.2.

24 µ Co²⁺. 0,2 µ ,μ, Co²⁺ 0,2 µ 1 µ (R²=0,9992), μμ Co²⁺ (LOD:0,3x10⁻⁷). μ μ

23: 1,10 μ μ μ μ µ (H₃NOCI) μ 25x10⁻³ M, 0,15 2 μ 10⁻² M, Fe(NO₃)₃.9H₂O HNO₃ 0,1M Fe(NO₃)₃.9H₂O HNO₃ 0,1M μ μ 10⁻³ M 10⁻⁴ , μ μμ, μ , µ

5 mL. pH, 1,10 H_3 NOCI 5,0, 500 µ 0,015 ,

Fe³⁺ 0, 0,2, 0,4, 0,6, 0,8, 1,0, 1,2, 1,4,1,6, 1,8, 2,0, 4,0, 6,0, 8,0, 10, 12, 14, 16, 18, 20, 40, 60, 80, 160, 190 200 µ μ 60 C μ μ 30 μ μ , μ

μ 513 nm, μ 4.10.3.

μ 4.10.3. , μμ μ 1,10

4.11 μ μ ΑVN μ Fe³⁺ Co²⁺

AVN 2.5x10⁻³ M. μ 24: μ μ AVN 1,5x10⁻³ M, 1,25x10⁻³ M, 10⁻³ M, 0,75x10⁻³ M, μ , μ Fe(NO₃)₃.9H₂O 0,5x10⁻³ M 0,25x10⁻³ M. HNO₃ 0,1 M 2,5x10⁻³ M μ Fe(NO₃)₃.9H₂O HNO₃ 0,1 M 0,5x10⁻³ M. 2. μ μ , μ μ μ , , рН μ 5,0. 5 mL. μ, μ AVN 1, 2, 3, 4 μ 5µ, 2, 4, 6, 8 10µ , 3, 6, 9, 12 4, 8, 12, 16 20 µ , µ 15µ, 5, 10, 15, 6, 12, 18, 24 20, 25 30 µ 30 µ Fe³⁺ 1, 2, 3, 4 5 µ μ , Fe³⁺ AVN 4.11.1. . μ μ μ , 60 C 30 μ μ , 500 nm, μ 4.11.1 4.11.2. μ μ

_4.11.1:		Fe ³⁺	AVN,	μ Αν	N- Fe ³⁺	
				Fe ³⁺ /AVN		
	1:1	1:2	1:3	1:4	1:5	1:6
Fe ³⁺ (μ)			AVN	(µ)		
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30

AVN 2,5x10⁻³ M <u>μ 25:</u> μ μ AVN 1,5x10⁻³ M, 1,25x10⁻³ M, 10⁻³ M, 0,75x10⁻³ M, 0,5x10⁻³ M 0,25x10⁻³ M. Co(NO₃)₂.6H₂O 2x10⁻³ M μ μ , Co(NO₃)₂.6H₂O 0,5x10⁻³ M. μ μ , 2. μ , 5 mL. pН μ μ μ , μ 5,0. μ μ 1, 2, 3, 4 2, 4, 6, 8 AVN 5μ, 10µ , 4, 8, 12, 16 3, 6, 9, 12 15µ, 20

и.	u	5. 1	10. 15. 20.	25 30 u	I		6.
18, 24	т 30 ц	-)	-, -, -,		L	J	-)
,	Co ²⁺	123	4 5 u	,	Г	-	AVN
C_{0}^{2+}	00	1, 2, 0,	4 11 2	•			,
			Τ.ΙΙ.Ζ.		, 6	р р ОС 31	n
٣		,				51	1 nm
		μ	μ	, P	μ	51	
	µ 1 11 2·	•	Co^{2+}	Δ\/Ν	<i>μ</i> Δ	/N-Co ²⁺	
	r. 1 1.2.		00	AVN,		///-00 .	
			4-0	4.0	4.4	4.5	4-0
		1:1	1:2	1:3	1:4	1:5	1:6
Co ²	²+ (μ)			AVN	(µ)		
	1	1	2	3	4	5	6
	2	2	4	6	8	10	12
	3	3	6	9	12	15	18
	4	4	8	12	16	20	24
	5	5	10	15	20	25	30
0,040 0,040 0,035 0,030 0,025 0,020 0,015 0,010 0,015	1 2	R"=1	5	0.08 LDU 0.06 0,06 0,04 0.04	2 4	6	
	Συγκεντρω	ση AVN, μM			Συ	γκέντρωση AVN,	μM
0,15 (Y) 0,12 - Lubuo 0,09 - 0,06 -	:3	y = 0,0089x + 0,0 R ² = 0,99928	033	0,18 0,14 0,14 0,12 0,012 0,00 0,00 0,00	1:4	y = 0,00834x R ² = 0,99936	+ 0,00794

μ

	4-	_			
4.12	μ	μ	AVN μ Fe(NC	0₃)₃.9H₂O	Co(NO ₃) ₂ .6H ₂ O
μ		(*)			
			μ	Fe ³	3+
Co ²⁺		μ		μ	,

				μ.,		μ	μ μ								
							μ					μ	μ		•
			μ							μ				,	
		μ		μ	,	,						μ		μ	
μ	,							μ				I	μ		
μ		502 nm,					μ	μ				ł	r		
AVN μ Al ³⁺ .															

 $\begin{array}{cccc} \mu & 26: & \mu & AVN & 2,5: \\ Fe(NO_3)_3.9H_2O & HNO_3 & 0,1 & M & 5x10^{-4} & . & , \end{array}$ μ AVN 2,5x10⁻³ , μ 2 μ (*) Al³⁺, Cu²⁺, Zn²⁺, Co²⁺, Ba²⁺ Mn²⁺, μ 5x10⁻⁴ 5x10⁻³ . μμ , µ μ AVN µ 5 mL. pH 5,0 μ Fe³⁺ 1 μ 50 µ ,

h h μ. 1, 5, 10, 20, 50 100 µ , (*) . μ μ μ 60 C 30 μ, μ μ 502 nm. μ 4.12.1 (%) μ μ Fe⁺³1μ .

<u>μ 27:</u> μ AVN 2,5x10⁻³ , μ Fe(NO₃)₃.9H₂O HNO₃ 0,1 M 5x10⁻⁴ . , 2 μ μ (*) Cd²⁺, Cr³⁺, Pb²⁺, Ni²⁺, , 5x10⁻⁴ 5x10⁻⁵ . , μ μ μ μ , 5 mL. pH AVN µ 5,0 μ

50 µ	,		μ		Fe ³⁺ 1
μ.			μ	μ	μ
(*)			0,1, 0,5, 1,	2,5 10µ,	
,	μ	μ	μ	3	
	60 C	30		μ	μ,
		μ	μ	502 nm.	4.12.2
		(%)	μ		

μ Fe⁺³1μ .

μ AVN 2,5x10⁻³ , μ μ <u>28:</u> 2 $Fe(NO_3)_3.9H_2O$ HNO₃ 0,1 M 5x10⁻⁴. μ (*) Ca²⁺, Mg²⁺, Na¹⁺, K¹⁺ PO₄³⁻ μ 0,5 . 0,05 μ , 5 μμ μ , mL. pН AVN μμ 5,0 50 µ Fe³⁺ 1μ. μ μ μ μ (*) 100, 500, 1.000, 2.000, 5.000 10.000 µ , μ μ μ , 60 C 30 μ μ 502 nm. μ μ (%) µ 4.12.3 μ Fe⁺³1μ . 4.12.1, 4.12.2 4.12.3 μ 1 μ Fe³⁺, μ , Fe³⁺ *, μ μ μ AVN-Co²⁺, μμ μ μ µ 9. Al³⁺ Co²⁺, μ AVN, μ μ μ AVNμ μ μ . . Al³⁺, μμ 6% 100 μ Cu²⁺ Cr³⁺ Fe³⁺. , μ μ μ $Fe^{3+}1\mu$, μ μ μ , PO_{4}^{-3} 10 µ 5 µ μ μ (>5,5%) 2.000 μ .

		4-			-	-			
μ					,	μ		(,)
	_ 4.12 μ 26.	.1:			μ Fe ³⁺	1μ, pH	μ j 5,0	υ ΑVN 50 μ	μ Fe ³⁺
μ	Fe³⁺/µ	*	A	3+	Cu ²⁺	Zn ²⁺	Co ²⁺	Ba ²⁺	Mn ²⁺
							μ (%)		
	1:1		-0,	49	0,39	0,12	377,6	1,02	1,42
	1:5		0,	18	4,11	0,98	381,7 1,84		1,58
1:10 -0		37	-5,27	2,51	653,6 -1,12		1,19		
1:20 0,		0,	71	-7,18	2,79	764,4	1,34	1,89	
1:50 -1		-1,	81	-7,95	3,87	796,3 2,55		3,98	
	1:100 -4,		-4,	58	-7,99	4,46	787,9	2,73	4,56
	_4.12	2.2:			μ		μ	μ	μ Fe ³⁺
	μ 27.				Fe ³⁺	1µ, pH	5,0	AVN 50 μ	
	μ Fe ³⁺ /	μ	*		Cd ²⁺	Cr ³⁺		Pb ²⁺	Ni ²⁺
							μ (%)	
	1:0,	,1			0,85	1,88		-0,56	0,32
	1:0,	,5			0,77	2,41		0,19	0,17
1:1				-1,23	3,59		-0,48	0,41	
	1:2	2			-1,11	4,96		0,17	0,59
	1:5	5			0,98	7,76		-0,99	-2,74
	1:1	0			0,86	10,49		-1,01	-5,09

		4-			_	
_ 4.12.3 : µ			μ μ		μ <i>F</i> e ³⁺	μ
28.	Fe ³⁺	1μ, pH	5,0 AVN	50μ.		
μ Fe ³⁺ /μ *	Ca ²⁺	Mg ²⁺	Na ¹⁺	K ¹⁺	PO ₄ ³	}-
			μ (%)			
1:100	0,12	0,39	0,71	0,64	0,76	;
1:500	0,31	0,97	0,11	0,41	1,48	5
1:1.000	0,54	1,17	0,34	0,74	3,89)
1:2.000	0,66	2,72	0,79	0,83	6,65	5
1:5.000	1,81	3,78	0,91	1,34	8,79)
1:10.000	2,99	4,51	1,78	1,81	10,39	9
Co(NO ₃) ₂ .6H ₂	20 5x10 ⁻⁴ .	, Fo ³⁺ 7n ²⁺	Ba ²⁺ Mn	ب 2+		
μ (*) Al ³⁺ , Cu ²⁺ ,	Fe ³⁺ , Zn ²⁺ ,	Ba ²⁺ Mn	2+,		
5>	x10 ⁻⁴ 5x	10 ⁻³ .	,		ł	l
,	μ	μμ	,			Į
mL. pH		AVN	μμ		5,0	50 µ
,		μ			C0 ²⁺	1μ
			μμ	μ		(*)
		1, 5	5, 10, 20, 50	100 µ	,	•
3	μμ		μ	,		
	60 C 3	0	_	μ		μ
	μ	μ	50	02 nm.		4.12.4
μ Οσ	ο ²⁺ 1μ.	(%)	μ			
<u>μ 30:</u>		μ	AVN 2,5x1	0 ⁻³ , I	μ	2

 μ Co(NO₃)₂.6H₂O 5x10⁻⁴ , μ , μ 5x10⁻⁵ (*) Cd²⁺, Cr³⁺, Pb²⁺, Ni²⁺, 5x10⁻⁴ , μ . , , μ 5 mL. pН μ μ 5,0 50 µ AVN , μ μ Co²⁺ 1μ. μ

	4-		-						
		μ	μ	μ		(*)			
		0,1, 0,5, 1	, 2, 5	10 µ ,			,	μ	
μ		μ		,				60 C	,
30				μ	μ	,			
μ	ł	L	502 nm.		4.12.5				
(%)	μ				μ	Co ²⁺ 1 µ			

μ AVN 2,5x10⁻³ , μ μ <u>31:</u> 2 $Co(NO_3)_2.6H_2O~5x10^{-4}$, μ μ (*) Ca²⁺, Mg²⁺, Na¹⁺, K¹⁺ PO₄³⁻ 0,05 0,5 . μ , μ 5 mL. pН μ μ AVN µ µ 5,0 50 µ , Co^{2+} 1 μ . μ μμμ (*) 100, 500, 1.000, 2.000, 5.000 10.000 µ , μ μ μ , μ μ, 60 C 30

μ μ 502 nm. 4.12.6 (%) μ μ Co²⁺ 1 μ .

_4.12.4:		μ		μ μ		μ Co ²⁺
μ 29.		Co ²⁺	1µ, pH	5,0	Α <i>VN 50 μ</i>	
μ Co²⁺/μ *	Al ³⁺	Cu ²⁺	Fe ³⁺	Zn ²⁺	Ba ²⁺	Mn ²⁺
				μ (%)		
1:1	0,12	0,79	340,3	0,85	-0,44	0,89
1:5	0,99	3,91	341,9	1,21	-0,51	-0,17
1:10	2,98	-5,88	688,6	0,94	-0,59	1,32
1:20	3,13	-6,73	719,1	1,15	-1,47	1,78
1:50	3,79	-7,22	664,7	0,99	-1,11	1,94
1:100	4,91	-7,14	527,6	0,87	0,83	3,49

_4.12.5:	μ		μ	μ	μ Co ²⁺			
μ 30.	Co ²⁺	΄ 1μ, p	0H 5,0	AVN	50μ.			
μ Co²+/μ *	Cd ²⁺	C	r ³⁺	Pb ²⁺	Ni ²⁺			
			μ (%)				
1:0,1	0,08	0,	88	0,09	-0,21			
1:0,5	0,11	1,	73	0,17	-0,19			
1:1	1,12	3,	87	0,76	-0,46			
1:2	2,79	4,	91	0,88	-0,53			
1:5	3,15	9,	87	-0,74	1,32			
1:10	4,88	12	,55	0,51	-2,94			
_4.12.6:	μ		μ	μ	μ Co ²⁺			
μ 31.	Co ²⁺	1μ, ρ	H 5,0	AVN	50μ.			
μ Co ²⁺ /μ *	Ca ²⁺	Mg ²⁺	Na ¹⁺	K ¹⁺	PO4 ³⁻			
		μ (%)						
1:100	0,39	0,69	-0,54	0,41	0,85			
1:500	0,78	1,97	0,19	0,29	1,99			
1:1.000	1,48	3,78	0,48	0,27	4,96			
1:2.000	0,97	4,96	0,94	0,99	6,54			
1:5.000	2,73	5,31	0,73	2,42	9,87			
1:10.000	3,24	5,22	3,67	4,78	12,31			
	4.12.4	4, 4.12.5	4.12.6					
u 1 u	Co ²⁺	, -	μ		,			
Co ²⁺	* 11							

Fe ³⁺ ,	μ	μ	μμ			μ	AVN-
Fe ³⁺ ,			μ 7.		μ		
	μ Co ²⁺ 1μ,	Cu ²⁺	Cr ³⁺	μ	,	μ	
	μ			μ Fe ³⁺	1μ,		μ
μ	6%,			μ	10 µ		2μ,
	. Al ³⁺	μ	μ	AVN,		μ	

м		м	м	• •		м	/ /	. ,		٣
μ	5	%		μ	100	μ				Co ²⁺ .
,	PO_4^{-3}	N	lg ²⁺		μ	(>5%,)		
μ		2.000	μ 5	.000 µ	,					
μ				μ			(,)
4.13							μ			
				u			<u></u> §4.12	(u	2	26-31).
			u	r	(Co ²⁺ . F	e ⁺³ . Ni ²⁻	⁺ . Cu ²⁺ .	Al ³⁺ . PO	1 ³⁻).	,,
	u		F	u	Fe ³⁺	,	Co ²⁺ .	,	Ŧ / ,	
	г [.]			F.	u		,			u .
	,				u -	, (pH.			L	г., Л.,
u).		u		P.	(1)		0.1	г ,	, 10.000
г [.] И.	<i>)</i> ,		F					-,-		
F							и			
μ		μ	,			и	•	μ		μ
Fe ³⁺		Со ²⁺ .			μ	·		μ		•
μ			μ		•	μ	Fe ³⁺	Co ²⁺ ,		
•	μ	μ	μ			·			μ	AVN-
M*.	·	I							•	
	μ					μ	A۱	∕N-Fe ³⁺	AVN	I-Co ²⁺ ,
			Fe ³⁺	Co ²⁺ ,		μ			490	510
nm. AV	'N		Fe ³⁺	Co ²⁺	μ		μ	Al ³⁺ , Cu ²	²⁺	Ni ²⁺
μ		μ			.	l	AVN-	Ni ²⁺		
364	372	2 nm	507	512	? nm (μ´	12), µ		μ	
	μ		μ		Ni ²⁺			μ	F	э ³⁺
Co ²⁺ ,	ł	L		50)2 nm.		μ			
Ni ²⁺	μ	l	μ	,	μ			F	9 ³⁺ ,	
	μ	μ	. μ	,			Ni ²⁺			Fe ³⁺
	μ		5	% (μ 27).					
		μ	AVN	-Al ³⁺			μ		388 ו	nm
156										

... μ ΑVN-Al³⁺,

μ

Co²⁺.

4- –

μμ

μ

μ

μ AVN-Cu²⁺ μ 490 502 nm, o.. 503-... μ ΑVN-Al³⁺ (=502 nm), μ μ 504 nm. µ μ AVN-Cu²⁺ (=503-504 nm). . . μ » μ μ Fe³⁺ Co²⁺, μ μ 502 nm. μ Cu²⁺ Al³⁺ 10 100 μ 26 29, , (Fe³⁺, Co²⁺), , μ μ μ μ. µ Fe³⁺ Co²⁺. μ μ μ μ μ μ , μ μ . . AVN-Al³⁺, Al³⁺ μ μ Cu²⁺. , ..μ μ μ μ μ μ μ μ μ. μ μ $\mu \quad Fe^{3+} \qquad Co^{2+} \ \mu$ μ μ μ. 1,10 , D-, , , Tiron -2μ μ μ , Fe³⁺ Co²⁺ u μ μ μ AVN. μ Al³⁺ PO4³⁻ μ μ μ μ (μ μ 18). µ 17 μ μ, « μ » (matrix effect), μ μ μ μ. μ PO4³⁻ μ μ μ μ . μ μ,μ μ , μ μ. μ μ , μ μ μ μ μ HNO₃ 0,1 M 50 mL. μ μ μ. μ μ.
Abollino O., Sarzanini C., Mentasti E., *Talanta* 41(2):1107, 1994.

Ahmed M., Uddin M., Chemospher, 67, 2020–2027, 2007.

Amin S., Gouda A., *Talanta* 76:1241-1245, 2008.

Amin A., Arabian Journal of Chemistry, 2011.

Asci B., Alpdogan G., Sungur S, *Journal of Liquid Chromatography & Related Technologies*, 31: 1299-1305, **2008**.

Baliza P., Teixeira L., Lemos V., Microchemical Journal, 93, 220–224, 2009.

Berton P., Wuilloud R., Analytica Chimica Acta, 662, 155–162, 2010.

Bishop E. (Ed.), Indicators, Pergamon Press, Oxford, pp.262, 1972.

Carmody, J. Chem. Ed., 38, 559, 1961.

Divrikli U., Akdogan A., Soylak M., Elci L., *Journal of Hazardous Materials*, 149:331-337, **2007**.

Donati G., Nascentes C., Nogueira A., Arruda M., Nóbrega J., *Microchemical Journal*, 82, 189–195, **2006**.

Elci L., Kartal A., Soylak M., Journal of Hazardous Materials, 153: 454-461, 2008.

Fogg A., Lewis J., *Talanta* 25:461,1985.

Gharehbaghi M., Shemirani F., Farahani M., *Journal of Hazardous Materials*, 165, 1049–1055, **2009**.

Gottschalk, Zeit, Anal. Chem., 167, 342, 1959.

Hongwei ., Jian X., Huizhen X., Xiaoman Y, *J. Ocean Univ. Chin.*, Vol. 7, No 2, pp. 161-165, 2008.

Hu W., Hu B., Jiang Z., Anal. Chim. Acta, 572, 55-62, 2006.

Hua C., Jagner D., Renman L., *Talanta* 35(8) : 597, 1988.

Jadhav S., Utekar S., Kulkarni A., Varadarajan A., Malve S., *Talanta,* 46, 1425–1432, 1998.

Jagner D., Renman L., Stefansdottir H.S., Anal. Chim. Acta 281 (2): 305,1993a.

Jagner D., Renman L., Stefansdottir H.S., Anal. Chim. Acta 281 (2): 315,1993b.

Kajic P., Milosev I., Pihlar B., Pisot V., *J. Trace Elem. Med. Biol.*, Vol.17 (3) 153-158, 2003.

Karimi H., Ghaedi M., Shokrollahi A., Rajabi H.R., Soylak M., Karami B., *Journal of Hazardous Materials*, 151, 26–32, **2008**.

Lemos V., Silva da Franc, R., Moreira B., Separation and Purification Technology, 54,

349–354, **2007**.

Lindstrom F., Womble A.E., Tal., 20:589,1972.

Liu X., Fang Z., Analytica Chimica Acta, 316, 329-335, 1995.

Malato S., Fernández P., Maldonaldo M., Blanco J., Gernjak W., *Catalysis Today*,147, p.1–59, **2009**.

Martell A., Smith R.; Critical Stability Constants; Plenum Press, New York, 1991.

Mirza A., Khuhawar Y., Arain R., J. Sep. Sci., 31,3037-3044, 2008.

Niazi A., Zolgharnein J., Davoodabadi R., Anali di Chimica, 97, 2007.

Novaes G., Souza A., Microchem. J., 84, 14–21, 2006.

Onishi H., Photometric determination of traces of metals, Wiley – Intrsience Publication, John Wiley & Sons, Fourth Edition, **1986**.

Pancras J., Puri B., Taher M.A., Dehzoei M.A., Sheibani A., Talanta, 46, 1107–1113, **1998**.

Perrin D., Dempsey B., "Buffers for pH and Metal Ion Control", Chapman and Hall Laboratory Manual.

Ribeiro A., Vieira M., Furtado A., Borges D., Welz B., Heitmann U., Curtius A., *Spectrochimica Acta*, Part B 60, 693–698, **2005**.

Sacmaci S., Kartal S., Analytica Chimica Acta 623:46-52, 2008.

Sancho D., Deban L., Campos I., Pardo R., Vega M., *Food Chemistry*, 71, 139-145, 2000.

Sarzanini C., Abollino O., Bruzzoniti M.C., Mentasti E., *Journal of Chromatography A*, 804(1-2): 241, **1998**.

Satsuki T., Nagoh Y., Yoshimura H., Tenside Surfactants Detergents, 35 (1): 60, 1998.

Segura R., Toral Ines Maria., Arancibia Veronica., Talanta 75: 973-977, 2008.

Sillen L. and Martell A., in "Stability Constants", suppl. 1, Alden press Oxford, 1971.

Skoog D., Holler F., Nieman T., "Principles of instrumental analysis", 5th ed., 310p., 1998.

Stryjewska E., Rubel S., Kusmierczyk K., Chemia Analityczna, 37 (1): 43, 1992.

Teixeira L., Rocha F., Talanta 71: 1507-1511, 2007.

Vanloot Pierre., Branger Catherine., Margaillan Andre., Branch-Papa Christophe.,

Boudenne Jean-Luc., Coulomb Bruno., Anal Bioanal Chem 389: 1595-1602, 2007.

Wang J., Farias P.A.M., Mahmoud S.J., Anal. Chim. Acta, 172:57, 1985.

Wang J., Zadeii M.J., Anal. Chim. Acta, 185: 229, 1986a.

Wang J., Mahoud S.J., J. Electroanal. Chem., 208: 383, 1986b.

Wang J., Tuzhi P., Varughese K., Talanta 34 :561, 1986c.

Wang J., Tuzhi P., Martinez T., Anal Chim. Acta, 201:43, 1987.

Wang X., Lei J., Bi S., Gan N., Wei Z., Anal Chim. Acta, 449 (1-2): 35, 2001.

Weihuang Z., Phengchang W., Jian Z., Congqiang L., Analytical Sciences, vol. 23, 2007.

Yamane T., Koshmo K., Analytica Chimica Acta, 261, 205-211, 1992.

5.

					,	μ	
	μ	Fe ³⁺ ,	(Co ²⁺	μ	μ	,
,	μ,		μ			, μ	μ
μ 28	,			*		»	
					, μ		μ
Fe ³⁺	C	0 ²⁺ ,		,	3	μ	
	μ	, μ		μ	ł	n h	ı
μ	AVN-Al ³⁺ .	, μ			۲	I Co ²⁺	Fe ³⁺
,	μ			μ	Fe ²⁺ µ 1	I,10	
,			μ		μ		4,
	μ		μ		μ	AVN	1,10
	, µ				μ		
μ	μ	μ		Pra	wn GBW0	8572	Wheat NCS
ZC73009,		μ		,			μ

5.1 μ μ Prawn, GBW08572 Wheat, NCS ZC73009

- μ - μ μ μ - μ μ μ - μ μ - μ μ - μ μ - μ - μ μ - μ - μ μ -

:	μ	<u> </u>	
μ	μ	μ	
μ			
	μ	μ	(

	5-										_
μ)		μ	7-8			,			
Wheat	µ 2,382	μ 1 gr,		Prawn		8,5	5,65	μ 2,31 %	59 gr		
	•										
i	μ	μ								I	u
		,μ				,		500 C	5	•	
	μ	_	μ	μ			52	20 C,			
μ		Fe ⁺³ [On	ishi H.	, 1986].							
		μ					(200)-240 (C),	μ	
							μ		μ.		
_											
								25 m	I		_
п	μ	ч	μ				•	20 m	L 100) ml	3
٣		r u u		90 C	u			. u	100	,	
μ	μ				r	μ	,	μ		μ	
			, 5 mL	H_2O_2		μ					
Pasteur, µ	l					μμ			μ		
μ	μ										
:											
	μ	ι - μ			μ						з,
	μ		μ						25 m	L	
₃ 0,1	(V =2	5 mL),									
:											
				μ		μ	l	,		μ	
		- 0.	-	50	mL µ				μ		
	μ F).	=e ³⁺	Co ²	+ (μ			μ		μ	
			μ					μ	(*)	

		μ		Prawn.				
		μ	*			μ		
		25 mL.			μ	I	μμ	
	90 C				25 mL		_з 0,1	(V =25
mL)								

5.2 μ μ μ

				μ		μ	,			3
0,1						μ		,		
μ			µ F	-e ³⁺	Co ²⁺ .		μ 32,		μ	
Fe ³⁺		μ	Prawn	Wheat,	μ				AVN	
	μ	33,			$Fe^{2+} \mu$	1,10				
		μ	Co²+ µ	AVN.						

		μ		•					μ			AV	N	μ		μ
	,				2,5x10) ⁻³		2						,		μ
			Fe(N	IO ₃)3	3.9H ₂ O	ΗN	IO ₃ 0,	1 M	,			:	2x10 ⁻³	,		
	μ		Fe	(NO	3)3.9H2	J F	HNO ₃	0,1	Μ				10 ⁻⁴			
			μ					μ				μ	μ		,	
				5 m	ηL	pН				μ5	,0.					,
						μ										
					μ			,					AV	'N	50 µ	,
					ł	I							A٧	/N.		
		μ								μ	μ					Fe ³⁺
	0,4,	0,6, 0),8, 1,	0	1,2 µ	,										
		μ	μ							μ				μ	0,1 m	nL.
		μ					μ		μ			μ				,
							60	С		30						
	μ		μ	,					μ				μ			μ
μ					502 ni	n.										
						μ				5	.2.1		5.2.2		,	

μ		(µ 5.2.1)	μ	Fe ³⁺
μ	Prawn	Wheat.		

	_5.2.1:	μ	μ	μ		μ AVN 50	Οµ pH 5.0
μ μ		μ	V	Wheat NCS ZC73	009.		
C _{Fe()}	C _{Fe()}		6	۵.	С.	C .	
(µ)	(µ)	н ,		4) (1	ı Fe ³⁺)	(µ Fe ³⁺)	μ /0
0,4	0,398	-0,5					
0,6	0,601	-0,17					
0,8	0,799	-0,13	0,4	48084	0,6313	0,6452	2,21
1	1,005	0,5					
1,2	1,196	-0,33					
μ		μ.					
μ	μ	,	μ		μ	(μ 5.2.1),
	μ	μ					
μ		[(C _{Fe()} -	CFe())/CFe())] x100.			
			ŀ	u AVN-Whea	ət.		
μ		[(C -C	<u>)</u> /C <u>]</u> x10	00.			

	_5.2.2		μ	μ	μ		μ AVN 50	Οµ pH 5.0
μ	μ		μ	Prawl	n GBW08572.			
C _{Fe()}	C _{Fe()}	u %	Δ.	٨	Δ.	C .	С	ш %
(µ)	(µ)	P /		F 2	A 3	(µ Fe ³⁺)	(µ Fe ³⁺)	μ ,0
0,4	0,398	-0,5						
0,6	0,601	-0,17						
0,8	0,799	-0,13	0,48396	0,00264	0,48132	0,6569	0,6246	-4,92
1	1,005	0,5						
1,2	1,196	-0,33						
μ		μ						
μ	μ		,	μ		μ	(μ 5.2.1),
	μ	μ						
	μ	[(C	Fe() - C _{Fe(}))/C _{Fe()}]x1	00.			
				μ	AVN-Prawn.			
				μ	Prawn	AVN.		
	μ	μ	(3=	1-2)	μ	μ	(matrix eff	fect).
	μ	<i>[(</i> C	-C _)/C	<u>]</u> x100.				

Fe³⁺, Wheat, μ μ μ *y*, µ μ μ х, μ 1 μ 0,6452 μ . μ, C , C ., ., 0,6313 µ (4.3.2). % μ μ μ . μ Wheat 2,21. μ Fe³⁺, Prawn, μ μ μ μ *y*, μ μ х μ з. , , C μ, C μ 0,6246 μ . ., ., 0,6569 µ (4.3.2). μ μ % μ , µ Prawn 4,92. μ 5.2.3, μ μ μ Fe³⁺ μ AVN, (s) μ (LOD), (LOQ), (*RSD*%). μ

.

_5.2.3	:		μ			μ μ			μ Fe ³⁺		
		s		L	OD(M)			LOQ(M)		RS	D(%)
•		6,39x10) ⁻⁵	0,8	83x10 ⁻⁸		2	,49x10 ⁻¹	8	0,0	013
2	2	4,1x10	-6	0,	53x10 ⁻⁹		1	,59x10 ⁻	9	0,0	800
3	3	6,39x10) ⁻⁶	0,9	92x10 ⁻⁹		2	,76x10 ⁻	9	0,0	001
4	L	7,52x1()-5	0,9	97x10 ⁻⁸		2	2,91x10 ⁻	8	0,	02
				(1),					μ
		μ				μ				μ	
			μ	(.	AVN).		μ		(2),
		μ				μ			μ		
	μ	μ				μ				μ	AVN
Fe ³⁺						(3	5),			μ
		и			и			-		μ	
	L			F	e ³⁺	и				u	AVN
Fe ³⁺				_		F	4.			I ²	и
		ш		3	1	1	- ,				г [.] Ц
	F۵	۳ 3+			r			۵\/ا	N-F≏ ³⁺		٣
	10		м				Р	,,,,,			
	(.				SU0()				μ		
μ	(3	s, LOD	, <i>L</i> OQ		<i>5D /</i> 0),		μ			•	
μ				4			•				
µ 33:					μ						μ
			,							μF	e ^{2+,3+}
Co ²⁺ .	μ			μ							
μ						μ		AVN	, 1,10		
·			μ	(H₃NO	OCI)	·		и			
2.5×10^{-3}	2.5x10) ⁻³ () 15	2	- /	I.		F	IJ	,	
Ee(NO ₂) ₂ 9H	_, <u>o</u> ,r.	, , HN(), 10) 0 <i>′</i>	1 M		•	2 5x1	∩ ⁻³	٣		
	20	Eo(I		ын О	ЦМС		2,071	ο,	5v10 ⁻	4	2 5v10
μ		1 6(1	NO 3 J 3.3	112O	TINC	7 3 0 , 1 W					2,3710
0 5.40-3	•	,		μ			U		$J_2.0\Pi_2O$,	I	
2,5810 ,				μ				Z	,5X10		
μ	_		μ	μ	,				,	5 mL	р
5,0).	μ			μ			μ	(,).	
		μ	()			μ		μ	1,10		
170											

		5-				
μ		μ			,	
	μ					
	μ	,	1,*	10		H₃NOCI
500 µ	0,015	,			٢	l
	1,10		H ₃ N	OCI.		
μ		μ	μ		Fe ²⁺	1,0,
1,5, 2,0, 2,	53,0μ,					
		μ		μ 0,1	mL.	
	μ (),		μ		μ	AVN-
Fe³⁺, µ						
μ	μ		· /	L	٢	L
	μ	μμ		A	VN	
	50 µ ,				I	Fe ³⁺
0, 1,0, 2,0, 3	3,0, 4,0 5,0 µ					
	, μ	μ	(),		μ Co ²⁺	μ AVN.
	μ		μ	μ	μ	•
	,			μ		
			μ		,	
AVN	50 µ ,			H	l	
	AVN.	<u> </u>				
μ	μ	Co ²⁺	1,0, 1,5,	2,0, 2,5, 3,0	, 3,5, 4,0,	4,5, 5,0,
5,5 6 µ	,					μ
μ			μ		μ 0,1	mL.
	,	μμ		μ		,
		60 C	30			
μ	μ,		μ	μ		μ
μ		502 nm.				
	μ			Ļ	l	
μ						
μ						

	_5.2.4	:	μ μ		μ		μ 1,10	
500 µ	, H₃NO	CI 0,015	рН 5,0 µ	μ		μ LP-Prawn.		
C _{Fe()}	C _{Fe()}	и %	Δ.	Δ.		С.	C .	μ
(µ)	(µ)	μ /0	~ 1	-72 -	Fe(II)	(µ Fe ²⁺)	(µ Fe ²⁺)	%
1,0	0,994	-0,6						
1,5	1,509	0,6						
2,0	1,992	-0,4	0,025769	0,00258	0,023189	2	2,042	2,1
2,5	2,528	1,12						
3,0	2,982	-0,6						
μ		μ						
μ		μ	μ			μ 5	.2.2	μ
Ļ	J	[(C _{Fe}	() - C _{Fe()})/C ₁	_{≂e()}]x100.				
				μ 1,	10	-	μ	
				μ		μ	1,10	
	μ	μ	(_{Fe(II)} =	1 - 2)	μ	μ	(matrix effec	t).
Ļ	L	<i>[(</i> C	-C _)/C]x100.				

				5-						
	μ1	,10					μ		(μ
5.2.2)	у	μ		Fe(II)•				х		
μ					μ, C	.,	μ	2,042 µ	,	
			, C	.,	μ	2μ	(4.3	5.3),	
μ	2,1%.									
				5.	2.2		μ		μ	
μ				5.2.5,					μ	
	μ	μ		μ	Fe ²⁺ µ	1,10				

_5.2.5:	μ	μ μ	μ Fe	9 ²⁺ .
	S	LOD(M)	LOQ(M)	RSD(%)
2	4,1x10 ⁻⁵	1,08x10 ⁻⁸	3,24x10 ⁻⁸	0,18
3	5,8x10 ⁻⁵	1,53x10 ⁻⁸	4,59x10 ⁻⁸	0,26
4	2,04x10 ⁻⁴	0,54x10 ⁻⁷	1,62x10 ⁻⁷	0,9

	2,	μ	μ	
μ		μμ		μ
	μ 1,10	-Fe ²⁺ .	3,	
μ	h	μ μ		
μ	μ	Fe ²⁺	μ	· ,
	4,	μ	μ	
μ		μ	Fe ²⁺	μ
			μ	
μ	(s, LOD, LOQ R	S <i>D</i> %), µ		
μ	4			

_5.2.6:	μ	μ	μ	μ AVN 50 μ	рН: 5,0
μμ	μ LP-	Prawn.		<u>.</u>	
С _{Fe()} (µ)	С _{Fe(})(µ)	μ%	Fe(III)	Fe(III)	
1,0	1,012	1,2			
2,0	1,986	-0,7			
3,0	2,956	-1,46	0,38684	-0,0467	6
4,0	4,003	0,08			
5,0	4,995	-0,1			
μ	μ.				
μ	μμ	1	μ	5.2.3	μ
μ μ	$[(C_{Fe(\)} - C_{Fe(\ }AVN 50 \ \mu \ . \ Fe^{3+} \ (Fe(III))$))/C _{Fe(})]x100 μ 2,042 μ . Fe	³⁺ μ 2,042 μ .		
μΑ	μ .VN-Fe ³⁺ (μ	5.2.6 5.2.3)	,	μ , <i>y=-0,0</i> 229x+0	,4336,
x=2,042 μ	,	Fe(III)= y-(0,4336=-0,0229x	=-0,04676.	
0,44 0,42 0,40 0,38 0,38 0,36 0,34 0,32 0		y=-0,0229x+ R ² =0,9999	0,4336	■ 1 5	
μ_5.2.3:	Συγκεν μ μ	ιρωση Fe(III), μΜ ν AVN-Fe ³⁺	. AVN.	: 50 µ pH:5,0 µ	μ

				5-						
		5.2.7,			5.2	2.3				
	μ	μ	μ		μ	ı F€	е ^{з+} µ	AV	N,	
	μ 32,	μ	μ AVN	-Fe ³⁺		μ	, μ		Fe ³	³⁺ .
	_5.2.7:	S	μ LO	μ D(M)	μ	LOQ	(M)	μF	e ³⁺ . RSD(%	6)
	1	7.45x10 ⁻⁶	0.98	x10 ⁻⁹		2.94x	10 ⁻⁹		0.002	2
	2	6.86x10 ⁻⁵	0.9	x10 ⁻⁸		2.7x1	0 ⁻⁸		0.018	3
	3	6.07x10 ⁻⁵	0.8	×10 ⁻⁸		, 2.4x1	0 ⁻⁸		0.017	,
	4	2.58x10 ⁻³	0.34	x10 ⁻⁶		1.02x	10 ⁻⁶		0.711	
						,				
							ŀ	ı		
	μ	(s, LOD, L	LOQ R	'SD%),		μ			,	μ
			4,			μ	μ			
		μ.	,	,						
		·.								
п			μμ	μμ			۲			
μ										
			V=	:bx			(5	.2.1)		
			,				,	,		
			y=	⊧a+ <i>b</i> x			(5	.2.2)		
								,		
							μ	μ	μ	
			u		и	. a	b.		u	
		(5.2.2)			•	,	- 1		•	
	,	(<i></i>).								
	,			μ						
	μ		μ						,	b
	μ									
										175

	_5.2.8:		μ μ	1	μ		μ AVN 50	и pH: 5,0
μμ	u		μ LP-Pr	awn.				
C _{C ()}	C _{Co()}	μ	4	5		C .	C .	μ
(µ)	(µ)	%				(µ Co ⁻)	(µ Co)	%
1,0	0,987	-1,3						
1,5	1,518	1,2						
2,0	2,005	0,25						
2,5	2,492	-0,32						
3,0	2,994	-0,2	0 35077	0.00258	0 3/810	2	2 117	±5.85
3,5	3,508	0,23	0,55077	0,00230	0,04019	2	2,117	+5,05
4,0	3,993	-0,18						
4,5	4,51	0,22						
5,0 5.5	5,003	0,06						
5,5 6.0	5,493	-0,14						
0,0	5,505	-0,10						
μ 		μ					525	
μ		μ	μ			μ	5.2.5	μ
Ļ	u	[(Cc	co(1) - C _{Co(1)}).	/C _{Co(1)}]x10	0.	14/2		
				μ	AVIN-LF-FIA			<i></i>)
				μ		µ (motrix offoo		μ).
	μ	1/0	μ	1.400	μ	(matrix enec	t) (= 4 - 5).	
μ	1	<i>[(</i> C	-C _)/C	<u>.</u>]x100.				
0,4	¹⁵ Г							
Απορρόφηση	40 -	y= R	=0,42586-0,0 =0,9999	0146x				
0,3	35	. 1	. 1			A A A	δ	
	0	1	2 Σιινκ	3 έντοωση (4 Co(II), uM	5	6	
µ_	_5.2.5:	μ	μ	AVN	-Co ²⁺ .	AVN: 50	Ομ pH: 5,0)μ μ

-

	Ę	5-						
		5.2.9					μ	μ
μ								5.2.5
	μ		μ			μ Αν	′N-Co²+, μ	μ
μ		Co ²⁺ .						
	_5.2.9:		μ	μ	μ		μ Co ²⁺ .	
		S	LOD(M)			LO	Q(M)	RSD(%)
	2	0,68x10 ⁻⁵	0,14x10 ⁻⁸			0,42	2x10 ⁻⁸	0,002
	3	0,94x10 ⁻⁵	0,19x10 ⁻⁸			0,57	7x10 ⁻⁸	0,002
	4	1,48x10 ⁻⁴	0,3x10 ⁻⁷			0,9	x10 ⁻⁷	0,04
						μ	(s, LOD, LOQ	RSD%),
				,	μ		4	

.

Onishi H., Photometric determination of traces of metals, Wiley – Intrsience Publication, John Wiley & Sons, Fourth Edition, **1986**.

-

\triangleright	т	μμ	μ			μ	, μ	
			μ					
۶	μ			μ		μ	μ	μ
	μ	μμ		μ		μ		
	99%.							
					2	μ		,
	μ	h h					μ	
	_ 13	Fe ⁺³ HNC	₃ 0,1M		μ		μ	
~	Fe ⁺³ .							- +3
		الم	2.4	5.0				Fers
	μ	μ ρπ	3,4	5,9, Al ⁺³		3,4 p⊓ 5,9.		
		AIF O_4 ,		Αι,	μ			μ
			ц	AVN	I-AI ⁺³			
,	u	u .	۳.	,			1	00
	μ	F	, µ	μ		(Fe ³⁺ , Co ²⁺).		
\triangleright				·		/	μ	,
		μ		μ	μ			,
		μ	Fe ³⁺	Co ²⁺ .				
		96 % 9	99,	μ				
	μμ							
≻								μ
			μ	μ				
۶	To RSD%	μ		μ	Fe ⁺³	μ	0,02	0,71.
	To RSD%	μ		μ	Fe ⁺²	0,9.		
	TO RSD%				C^{+2}	0.04		

μ, 5%, μ μ 0,0029%.

8 μ 4 ,μ μ μ 55,847. μ 26 +2 μ μ +3. μ , μ μ , μ μ μ μ, μ 2.862 C 1.538 C. μ μ μ μ μ, μ , , μ μ μ , μ μ

μ.

μ

Fe²⁺ Fe³⁺ μ μ , μ μ . μ, μ μ, μ μ μ μ 9μ 4 μ

μ 27 58,933. +2 μ μ μ μ μ 2.927 C +3. μ 1.495 C. , μ μ μ . , , μ , μ , μ μ μ ⁵⁷Co, µ μ μ μ -

Schilling, μ Mössbauer μ - 60 Co, μ 5,27

μ , μ ⁵⁹Co, µ μ « μ , ». , μ μ μ ,μ μ $B_{12}\,\mu$ μ μ 12• μ, μ μμ . , , B_{12} μ μ μ , μ μ B_{12} μ . μ μ , (). μ μ μ,μ μ μ μ μ . .. , μ μ 12 μ μ μ, μ μ μ , μ , μ GFAAS, SPS, HPLC, ICP, VOL, POL, F UV/Vis, , μ μ. (AAVN--, AVN) 1,10 , μ μ μ • , pH, μ μ μ μ μ . μ pH μ pΗ μ 3,4 5,9, μ 5,0. μ 0,2 M µ μ μ 0,2 M μ μ .

μ μ μ μ μ 60 C 30 μ ₃ 0,1 μ , AVN, μ μ μ 10-13 µ . AVN ,15µ, AVN 90 µ. 30 µ 50µ. µ AVN-Fe³⁺, 1,10 -H₃NOCIμ Co²⁺ : Fe²⁺ AVN-Co²⁺, μ Fe³⁺, Fe²⁺ -µ 0,2-36 μ , 0,2-24 μ 0,2-160 μ . AVN-Fe³⁺ AVN-Co²⁺ μ , μ () (L) μ μ : ML, ML₂, ML₃, ML₄, ML₅, ML₆. μ μ μ μ μ μ AVN-Al³⁺, μ (...) μ μ Al³⁺ AIPO₄. μ µ Beer μ μ μ μμ μ , μ. μ μ μ μ μ μ μ , μ μ Prawn μ μ μ GBW08572, Wheat NCS ZC73009 LP-Prawn (μ). (LOD) (LOQ) Fe³⁺ 0,97×10⁻⁸ 2,91×10⁻⁸ M, μ Co²⁺ 0,3×10⁻⁷ Fe²⁺, 5,36×10⁻⁸ 1,62×10⁻⁷ M 0,9×10⁻⁷ M . T LOD LOQ μ , μ μ ,μ μ μ μ 2, 3 μ μ μ μ μ μ μ μ ,

μ	μ	μ					, µ
			μ	μ	μ	, μ	
μ	μ	(=99%).				

SUMMARY

Iron is the sixth most abundant element in the world and accounts for about 5% of the earth's crust, contrary to cobalt which is only 0.0029%.

Iron is in the 4th period and the 8th group of the periodic table, with 26 atomic number and 55.847 atomic mass. The usual oxidation numbers are +2 and +3. It is a gray-white or grayish metal sufficiently malleable and ductile, softer than aluminum that can obtain any desirable shape, however it is very sensitive to the presence of oxygen and water. The boiling point of pure iron is 2,862 °C and the melting point 1,538 °C. The major mineral metals of iron are, Magnetite, Hematite, Limonite, Siderite and Chamositis. Combining these features with the low cost, steel and various alloys of iron, is now widely used in modern industry.

In addition, iron is the most abundant transition metal and has the most biological roles of any other element. Fe²⁺ is an essential trace element used by almost all the living organisms, while Fe³⁺ is well absorbed. In the human body, iron is transferred in the blood by the transferrin and stored in the liver, spleen and bone marrow. Furthermore, iron is not easily excreted from the human body, so it can be accumulated to toxic concentrations, which can even cause death.

Cobalt is in the 4th period and the 9th group of the periodic table, with 27 atomic number and 58.933 atomic mass. The usual oxidation numbers are +2 and +3. The boiling point of pure cobalt is 2,927 °C and the melting point 1,495 °C. Apart from nickel and iron, cobalt is one of the three naturally magnetic elements. The major mineral metals of cobalt are, Kovalitis, Sfairokovalitis, Erythritis, Soffloritis and Skoutterouditis.

Previously, compounds of cobalt had used in dying, giving blue color to the glass, in enamels, in ceramics and painting. Nowadays, cobalt isotopes, as ⁵⁷Co, are used in medicine, with the testing control-Schilling, in research as a source at the Mössbauer spectroscopy and also in fluorescent X-rays devices, while the isotope ⁶⁰Co, a radioactive metal, which its half-life is 5.27 years, is used in radiotherapy. Finally the isotope ⁵⁹Co, can be used in the manufacture of a weapon, known as "cobalt bomb".

Cobalt is an essential dietary trace element for all animals. It is the active center of coenzymes called cobalamins and the most famous example of these is vitamin B_{12} . Vitamin B_{12} is essential for the proper functioning of cells, keeps the nervous system healthy, increases the body energy and reduces the irritability. It also improves concentration, memory and balance. Vitamin B_{12} is essential during the rapid separation of

cells, is useful for the folic acid release and thus helps to helps in red blood cell formation. Finally, vitamin B_{12} is found almost exclusively in animal's flesh and animal products.

In case of iron and cobalt deficiency, there are replenishment formulations to refill the Recommended Daily Allowance (RDA) limits. Deficiency in iron and cobalt mainly leads to anemia with the known symptoms like exhaustion, weakness etc. In addition, deficiency in cobalt-vitamin B₁₂ leads to neurological problems and it is difficult to be determined directly, because of the high levels of accumulation.

For these reasons, the determination of the iron and cobalt percentage in drinking water, food, pharmaceutical products and biological samples, is necessary to avoid accumulation of these metals while has attracted great interest, using many different techniques of instrumental analysis as GFAAS, SPS, HPLC, ICP, V, P, F and UV / Vis, which was used in our laboratory.

In this direction, the choice of Acid Alizarin Violet N (AAVN-AVN) and 1,10 phenanthroline as possible coupling reagents, gave a very strong reaction with iron and cobalt. The parameters studied for method optimization were, the ligant concentration, pH, time and the reaction temperature and the affinity between the metal and the ligand.

The optimum pH value for the reaction of iron and cobalt with ligands was studied in a pH range between 3.4 and 5.9, whereas pH 5.0 was the optimal value. buffer solution of acetic acid 0.2 M and sodium acetate 0.2 M was used for this purpose in order to avoid undesirable deviations of the measurements. t was found that the complexation between ligands and metal ions, at room temperature, was not complete, so a water bath at 60 °C for 30 minutes was needed. Stock and working solutions were prepared either in distilled water or in 0.1 M HNO₃ and was always fresh. However, repeated measurements of absorption standards AVN, demonstrated that they were stable for 10 to 13 days.

The optimum AVN concentration, for concentration range of iron, 1 to 5 μ , was found to be from 30 μ to 90 μ . The experimental concentration of AVN chosen was 50 μ . For complexes AVN-Fe³⁺, 1,10 phenanthroline-H₃NOCI-Fe²⁺ and AVN-Co²⁺, the minimum-maximum limits of determination of Fe³⁺, Fe²⁺ and Co²⁺ are: 0.2 to 36 μ M, 0.2 to 24 μ M and 0.2 to 160 μ M. However, for complexes AVN-Fe³⁺ and AVN-Co²⁺ showed the existence of six complexes between metal ion (M) and ligand (L), as follows: ML, ML₂, ML₃, ML₄, ML₅, ML₆.

Various metal ions, found in several samples, preventing the determination of iron and cobalt giving errors which are due to the absorption of the matrix (matrix effect). For this reason, it was chosen to use the selected sosbestic Point (IS) of the complex AVN-

Al³⁺, in order to remove the obstruction of ions Al³⁺ and AIPO₄. Applying the Beer law for mixtures, the interference effect of these ions are decreased to a satisfactory extent.

By using the calibration curve of known addition method and applying the method of least squares, the variations in absorption in relation to the concentration of iron and cobalt applied to the determination of these metal ions in the reference samples as Prawn GBW08572, the Wheat NCS ZC73009 and LP-Prawn (reference sample which was prepared in the laboratory). The limit of detection (LOD) and quantification limit (LOQ) for Fe^{3+} in standard samples examined is 0.97×10^{-8} and 2.91×10^{-8} M, for Fe^{2+} is 5.36×10^{-8} and 1.62×10^{-7} M and for Co^{2+} is 0.3×10^{-7} and 0.9×10^{-7} M respectively. The LOD and LOQ of the methods, calculated from the standard deviation of all points of the curve.

In conclusion, with this proposed method, the theoretical and actual detection limit is now about 2, 3 times lower. So, the prevailing hitherto perception about the error absorption spectrophotometry should be revised, since proved that the relative error is greater in smaller concentrations or in greater transmittance. Namely, it can be developed accurate and sensitive spectrophotometric methods, measuring at the top of the scale of the transmittance (T = 99%).