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Hepiindn

e authy 11 ObaxToEY| SLITEL3T) UEAETAUE OUOAOYIXES BLICTAOELS ToU EU@avilovTo
ot Ocwpior Avamoapactdoswy AlyeBpdyv tou Artin. H Poowr) pog épeuva emxevtpove-
Tou 6T SLdoToon avamapdotaong (representation dimension) ot otV TepaTOXEATIXA XoU
ohxr) didotaon (finitistic and global dimension) yiu Artin dhyefpec, oty xAdon twy
mpotunwy Cohen-Macaulay xou o1n didotacn Rouquier toryomviouévwy xatnyoptov. To
XATEAANAO EVVOLOAOYIXO TAXGLO, aTtd T1) OXOTLY UAC, Lol TN UEAETH AUTH ELVolL OL GUYXOMT-
OELC APBEALOVEY XATTYORUOY (recollements of abelian categories), wtar YePeAelndng vvola
mou €yel eugaviotel oty ‘Alyefea, ot I'ewpetpio xan oty Tomohoyia, xou 1 cupéwg
yevixr) xhdom twv daxtuliwy Morita. Ilpw e&nyfiooupe avolutdTtepa TO %ivnTEO AUTAS
™ peréTng cuvoiCouue mapoxdte To factxd TNg oTotyela:

o TaZwopolue ouyxolhfioelc xatnyoptdy Teotinwy (Kegdhoto 1).

o Avarntiocoupe par YEVIXELUEVT opohoyixr Yewpla yior oUYXOAANOELS aBEAVGY
xotnyoptdv (Kegdhoo 2).

o Alvoupe EQapuoYES Yo T1) SIEOTUOT) OVATUEAC TUOTIS XOL TNV TEPUTOXEATIXY| OLd-
otoon Y dhyefeec tou Artin (Kegdhoto 5).

o Katooxeudlouvye ma oafiehiovy| xatnyopior Tou UAOTOLEL Vol aprenuévo UovVTELO
¢ xoTNYoplag TEOTOTWY UTERAVE EVOC daxTuliou Morita xou peietdue cuvi-
XEC TEQAUTOTNTAC CLYXEXPEVLY uToxatnyoplwy e (Kepdhoto 3).

o Alvoupe avég ouvinxeg yio To ToTe ot doxtUAlol Morita, w¢ dhyeBpeg Tou Ar-
tin, etvar Gorenstein xou topouctdlouye egapuoyéc o npotuna Cohen-Macaulay
(Kegdhowo 4).

o Aivouyue @pdypoto vl ) ddotaon Rouquier tprywviopévov xotnyoplody (Ke-
pdhono 5).

To 1971 o Auslander [10] 6pioe ) Sido ooy avamopdoTaons Yo g dhyefpa Tou
Artin A o¢ po aprduntiny| avahholwtn p€tenong e tolutioxdtntag tne Yewplag avormo-
edotaong Tng dhyefpoac A. Amo TV G TAEUEd Utar oAy TIXT avaAAolw T TNG uETENoNC
NG OUOAOYIXAC ToAuThoxoTNTOG TG dAYePBpac A elvan 1 mepatoxpatiny| Sidotacn tng A

1 omola oplotnxe and touc Bass, Rosenberg, Zelinsky [21] ot TEAN TNg OexaeTiog TOu
50. Xnuewwvouye OTL 1) OLIC TUOT| AVATURHC TUCTIC CUVOEETOL BUECO UE TNV EXOCIA TEQUTO-
xpatixrc Sdotaonc. Luyxexpuéva ot Igusa xou Todorov [66] €dei&av 61t xdie dhyeBpor

Tou Artin pe B1dcTooN AVATUEACTUONG TO TOAD 3 IXAVOTOLEL TNV EIXACIA TEPUTOXEATIXAG
OLdo Taomg, ONAadY 1 TEPUTOXEAUTIXT OLdo TooT elvon TETEpacEVY. MeTd amd autd To amoTé-
Aeopo oy €0A0YO TO gp@TNUa av xdde dhyePpa Tou Artin €yel B840 TaOT) AVATURAC TAGTC
70 TOAU 3. 370 TAXUCLO UTO ONUUVTIXES HALCELS ahYEBPGY amodelyUnxay 6Tl €youv OLd-
oToon avamapdotoong o Tohd 3. Ernlong, elvor yvwoté and tov Iyama [67] 61 n Sidotoon
avamopdo Taong Wi dhyeBpac Tou Artin etvon mdvta nenepacuévr. To 2006 o Rouquier
¢deile o 1 eCwtepn dhyeBpa A(K™), omou o k eivon owpa xau n > 1, éyel didoTtaon
avanopdotacng n+1. To Poacixd pyoaleio yior autd TO anoTEAEGUN ATOY 1) BLAC TOOT) TELY -
VIOUEVWY XATNYORLWY, 1) oTtola ovoudletar ofjuepa didotaor Rouquier, mou elofydnxe and
Tov (B0 | . Ta TOEATAVE €ENY00V TO GNUOVTIXG pOho Tou SladpapatiCer 1 Bidc Tao
AVUTUEAO TUCTS G TN BOUT) X0 GTNY TOAUTAOXOTNTA TNS XATNYORLIS TV TEOTUTLY Xaddg
X0 TLG OAANAETUORACELS TNG UE EQYUAELN ATO TOV «XOOUOY TV TELYWOVIOUEVLY XATIYOPLOV.
Anéd Ty G Thevpd UK UTEEYOLY XAJCELS TEOTUTWY TOU 0 TUTOG AVATHPAC TAGHC TOUG
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Orodpopatilel oNUUVTIXG POAO, Oyt LOVO Yiol TNV XATNYopla TwV TEoTUTKY, ahha 6T douN
tou Saxtuhiou. To 1967 o Auslander [9], [13] bpioe v xhdon twv tpotinwy Cohen-
Macaulay yevixebovtag Tnv xAdon TWV TENEQUOUEVI TURNYOUEVRY TROBOAXMY TROTUTIKV.
H Sopr xar 1 (opohoyix)) molvmhoxdtnta tne xotnyoplag Gproj A towv nenepoouévo mo-
parybuevwy mpotinwy Cohen-Macaulay (yvootd xar we Gorenstein-npoBolixd mpdtumor)
Yopoxtnellel, umd W Evvola, To av o daxtuMog eivan Gorenstein. Xuyxexpiéva n A etvor
Gorenstein av, xat pévo av, n evctadfic xatnyopla 1wv Gorenstein-tpofoAixwmy TEoTHTKY
elvon TELYOVIXE Lood0voun UE TNV xoTnyopla Wogop@tedy e A, 6mwe auty| €yel opiolel
and touc Buchweitz [31] xow Orlov |

Yxomog NG TopoLoag SloTEB3ng etval var avamTUEOUUE UL YEVIXEUUEVY OUoAOY T VEw-
el YLt GUYROMNAAGELS UBENLAVIY XATNYORLOY XAl Vo HEAETHCOUUE daxTUAoLG Morita amd
N oxomd xuplwe TNe Yewplag avamapaoTdoewy aAYELEMY xaL NG opohoyixhc dhyefBoag
Gorenstein, €yoviag w¢ 0TOYO EQPUPUOYES OTIC OHONOYIXEG DLICTAUCELS XATIYOPLOY Xl
daxTuhlwy. Tt ouyxoAAAoEIC ABEAVEDY XUTNYORIOY PEAETAUE TwS oyeTiCovTan Bidpopeg
OMONOYWNES UVAANOIWTES Ol OLUC TAOELS TOV EUTAEXOUEVV XATNYORLOY X0k ETLTAEOV To-
EWOUOUUE CUYXOMACELS amd XATNYORIEC TEOTUTILY, ATOOENYVOOVTUS ETOL [lal EIXAUCTN TOU
Kuhn. To Bacwxd xtvnteo yio tny evaoyOANoT UaC UE TIC CUYXOMACELS ABEMAVOY XATTYO-
ELOY ElVol EQOTARITO Yol TROBAANTA OVAPOEIXE. UE T1| OLIC TACT| AVATURHS TAGTG X MS XAl
UE TNV TEQUTOXQEUTIXY) BIdoTUoT. ATO TNV GANY TO €VOUCUO YLal TN MEAETT TwV SaXTUAWY
Morita mnydlel amd T cuY VA EPPEVIOT AUTOY TV daxTUAlWY o TN Yewplo avamapao TUoEWY
OAYELEWY %o TN OYEST TOUG UE CUYXOAAHCELS.

Ov ouyxohifoelg afehiovey xatnyoplny eivon oxeiBeic axolouldieg offehavav xatnyo-
oy 0 — o — B — € — 0 €101 OOTE 0 CLUVOPTNTAC €yxhelong it & — B
X0 0 CLVORTNTAC TNAIXO e: BB — € va €youv oploTepd xou de€Ld ouluyeic ouvopTnTéC.
Aoy pootind. uor oLy xOAANoT affehlovey xatnyoplny cupfoliletar we e€Xg:

o i B c 3 R (7, B, )

['evixd oL ouyxohhfioelc oploUnxoy TEMTU GTO TAACLO TV TELYWVICHEVLY XUTNYORLDY UTd
touc Beilinson, Bernstein ot Deligne [22] yio T pehétn twv noporyGUEVGDY XOTNYOpLOY
and dpdryuata (sheaves) oe xatdAAnhoug Tomohoyixolg yweous. To mewTo oNuavTiKd To-
EUOELY O CUYXOAACEWY GTO TR0 TWV ABEMAVOY XATNYORIOY eupavicTnxe and Toug
MacPherson ot Vilonen [91] yio v xataoxeu| tov perverse sheaves. Eniong o Kuhn
YPNOWOTOINCE GUYXOAAACELS XUTNYORWOY Yiot TN UEAETN Tng generic Vewplog avomopo-
OTUCEWY TNG YEVIXEUPEVNG YOOUUXAC OMADBOS. LNUELYOUPE oxoua To €pyo twv Cline,
Parshall xou Scott mou cUVEBEGUY GUYXOAAACELC TUEUYOUEVHY XATNYORLOY UE XUTNYOplES
uiotou Bdpouc (highest weight) xou nui-xAneovouxés (quasi-hereditary) dhyefpec. Anod
v &hhn ot Happel [61,63], Beligiannis, Reiten [30], xou tpéogota ot Hugel, Koenig,
Liu [2-4], xou Chen, Xi [33-35] yehétnoav oyéoeic HeTaE) GUYXOMACEWY TELY WVIOUEVWY
xatnyoptwy xon Yewplag Tilting, opohoyinwv exacuwy, stratifications mopayouevony xatr-
YopLov xoun ahyeBpnric K-dewpioc. Ou ouyxolirioeic afiehiavdy xatnyoplodv epgaviCovian
UE QuolohOYWO TEOTO xon 0T Vewpla avanopactdoewy. T'a mopdderyua xdie TauTodU-
VOO GTOLYElD OE €vol BOXTOALO EMAYEL Lol CUYXOMNOT PETAE) TWV XATNYOPLOY TEOTUTIKY
UTEEAVL TV Saxtulinv R, R/ReR xou eRe. 1o yevixd évoc SoxtOioc Morita, dnhad
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O TUALOG TUVEXWY TN LOPPAC:

A A ANB
(o) — M4 B

omou A, B daxtOhol xan 4N, pMy OimpoTuna, ETdYeL 500 GUYXOMNANOELS XOTNYORLOY
mpotunwy. T'evixdtepa éotw € pa mpooletin xatnyopla xou X, Y duo aviixeipeva
e €. Tote o duxtUAOC EVOOUOPPIOUMY Endy (X @ Y) eivon SoxtOhoc Morita, xou
udhio ta xde doxtOAlog Morita npoxintel ye autdy Tov Tpdmo. To nopamdve TopadelypaTa
%0 XAl GAAES XATAG TACELS OTOL EUPVILOVTOL GUYXOMAAGELS ABEALOVIV XATTYORLOY TOU
oyetilovton ye doxtUAloug Morita, anoteholv éva loyued xivnTeo Yia Tn) SloTe3.

H avohutied| meprypopr| tov Kegahaiov tng Swtpdrc, xadde xon twv XuptdTepwy o-
TOTEAEOUATOVY TNG, EXEL WC €ENC:

Kegdhouwo 1: 1o Kepdhoo 1 ta€vopolue cuYxoAAE xatnyoptdy teotinwy. O Ku-
hn [82] elye exxdoet 6TL oy oL EUTAEXSUEVES XAUTNYOPIES OE Lot GUYXOAATOT Efvat Xty oples
TEOTUTWV UTERAVL k-ahyelpdv nenepacpévne didotaone (b owua), T6Te 1 cuyXOAANoN
auTH efvon 160dUVoPT (He Xdmolar XUTdAANAN €VVola), UE ULl GUYXOAANGT) TOU ETAYETOL O
6 éva TowTodOvopuo ototyelo. To xevipind anotéleopa Tou xepohaiou autol, Ocwpnua
1.3.6, elvou 1y améddelln tne exactiog tou Kuhn, xon udhiota yevixd yio doxtuiioug. H oy
Tou Kegahaiou 1 eivon 1 €&hc: Yty evotnra 1.1 ouyxevipwvoude Bacxéc €vvoleg me-
ol TWV GUYXOMAACERY ABEAIVGDY XATIYORLOY Xl TaEoLGALoue TANDGEN ToEAUOEYUATLY
oLYXOMToERY Tou Va yenotonoindoly oe OAN T Swten. Mtnv évotnta 1.2 tadwo-
HoUPE oLYXOMACES afEAtovedy xatnyopuwy avtiototyiCovtag xoatdhhnheg TTF-tpuddee.
Yy evotnta 1.3 Ta&voUoUpE CUYXOAAACELS XATNYORLOY TEOTUTMV UTEQEAVE OUXTUAIWY
amodewvbovtag €tol TNy exoocio Tou Kuhn, xou téhog otny evotnta 1.4 napovoidlouye
EVaL TOEAOELYUO CUYXOMNONG TOL Bev emdyeTtal amd xdmolo Towtoduvauo otolyeio. Ta
amoteréopato Twv evothtov 1.2, 1.3, 1.4 eivon oc cuvepyaoio pe tov Jorge Vitéria oto
dodpo [109] pe titho Recollements of Module Categories.

Kegpdhouwo 2: To xiplo aviixeluevo uerétne touv Kegpohaiou 2 eivon 1 ogohoyinr cuy-
TEPLPOPA. TWV CUYXOMACEWY ofelavdy xatnyopldv. Idiaitepa e&etdlouue TIC OUddES
emexTdoeny Ext, TIc OMXEC OpONOYIXEC DLUOTAOEC XU TIC TEQUTOXQPUTIXEC OLAC TUOELS
TWV EUTAEXOUEVWV XATNYOPLOY OF Lol CUYXOAANOT), %ot xuplte Twe oyetiCovton ueTo-
E\') touc. To @aotxo’ TEOBANUAL VLol TIC opo’zSeg enextdoewy Ext elvon to ndTE 0 GUVIETNTYC

sl — B ebvan pa k-opodoyikry eugitevon, dnhadt TOTE ETAYEL PUOIXOUG \OOHOp(L-
opoug i Extﬂ(— -) — Ext%(( ), i(— )) v xéde 0 < m < k < 00, xot 10 TOTE
0 oLVOPTNTHG €1 B — € €MAYEL, TEQIOPIOUEVOC OE XATOIEG XUTIAANAES UTOXTNYOPIES,
puotxole toopop@lopols ™ Ext(—, —) — Ext(e(—),e(—)) yia 0 < m < k, 6mou
0 <k <oo. Yta Oeoprato 2.1.10 xou 2.1.11 Advouue To mopandve duo TeolAfuota di-
VOVTOG IXAVES Xou avaryxafeg cLVITXES WOTE VoL €0UUE TOUS {NTOUPEVOUS LGOUORPIGUOUCE.
YNUELOVOUUE OTL ToL OMOTEAECUATO AT YEVIXEVOUY X0 EMEXTEVOUV UTOTEAECUATA TWV
Auslander-Platzeck-Todorov [14] xau Geigle-Lenzing [56]. Yuc evétnreg 2.2 xon 2.3
OlvoUUE PEAYHATO Yol TNV OALXY) XL TEQUTOXQEUTLXY DLAOTACT XATwW ATO OPLOPEVES PUCLO-
hoyiéc unodéoeic. Evbewtind, amodeixvioude 6Tl 1 ohxr} opoloyixy| didotacT tne &
elval TAVTAL PEOYUEVT] amd TNV OAXY| OHOAOYIXT) OO TACT TNG &7 XL TNV OAXT] OUOAOYXH)
OLIoTAO TG 6 oL amd TO supremum Twv TEoBoAX®OY SLICTACEWY 6TV % 1wV Tpofo-
Axov avixetuévey e &7, Ta Baoixd arotedéopata o€ aUTEC TIC BUO EVOTNTES Elval Tal
Ocwpruota 2.2.1, 2.2.8, 2.2.9, 2.3.2 xou 2.3.6. Télog otny evétnta 2.4 divouye eopuoyec
o1 Oewpla AaxTUM®Y YENOWOTOWOVTAS Tal TUPUOELYUATA GUYXOMANCEWY TNG EVOTNTIC
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1.1. Emonuaivouue 6Tl tar anoTehéouata TV evothtwy 2.2, 2.3 xau 2.4, avagopixd e
TIC OUOAOYIXES DLaoTAOELS, YEVIXELOUY TANUWEA anoTteheoudTwv oTn BiBAoyeagpio, dmwe
v Auslander-Platzeck-Todorov [14] xou Fossum-Griffith-Reiten [49]. Ta anoteléopa-
0. ToU xepahatou autol PBeioxoviar 610 Gedpo | | we titho Homological Theory of
Recollements of Abelian Categories.

KegdAoo 3: Y10 Kegdharo 3 xotaoxeudloupe pia a3eAonvi| xotryopio Tou oavamoplo td
EVaL aPNENUEVO LOVTEAD Yl TNV XoTnyopla TeoTUTWY LUTERGVEL evog daxturiou Morita.
YTIC TPOTES TEEWS eVOTNTES ECETACOUUE OLAPOPES IBLOTNTES AUTHS TNG XATUAOKEVNG, UEAE-
TOVTAS ®VPIWE BOUXES WBLOTNTES. LTNY TETURTY EVOTNTO UEAETAUE CUVINXES TEPUTOTNTOC
CUYXEXQUUEVODY UTOXATNYORLOY TNE. 1T EVOTNTES TOU oXOAOLVOUY UEAETAUE OUOAOYL-
%E€C WBLOTNTEC AUTAS TNS afBEAtavrc xoTnyoplog, TEOETOWALOVTIC OUCLUG TS TO €8aPOC Yid
10 Kegpdharo 4 apol ToAAG and 1ol AMOTEAECUATA AUTOU TOU XEQPUAALOU Y ENOLLOTOLOUVTOL
exel.

Kegpdowo 4: Kopo avtixeipevo perétne tou Kegohalou 4 eivon ot daxtOitor Morita
xuplwg amd TN oxoma TG Vewplug avamapdoTacewy ahyeBpmy. Xtny evotnta 4.1 cuyxev-
TPWVOUE TIC OmUPodTNTEG EVVOLEG %Ol TIOEADELYUOTA TOU Yol UAC YPELUOTOLY GTO XEQUANLO
auTd. BTNy evotnTa 4.2 Teplypdpoupe Tal TEOBOAX, To EVECLUA oL TA ATTAG TEOTUTL U-
Tepdve evog Boxtuiiou Morita mou eivon diyeBpa tou Artin. Xpnoylomouwvtog authyv Ty
TepLypagt| yopoxtneilouue mote €vag daxtOAlog Morita efvan dhyeBpa selfinjective xou e
QuUEST) GUVETELXL oUTOU BIVOUUE €Val GV QEAYUA Yo T1) BIAOTACT AVITURIC TUCTC TOU B0
xtOAou Morita A ) 6mov A = B = N = M eivon dhyePBpeg selfinjective xou ¢ = 1 = 0.
Yric evotnreg 4.3 xon 4.4 uehetdue cuVIXES TEPUTOTNTOC YIo UTOXATNYOPIEC TNG XATNYO-
plag mpoTuTLWY evog Boxtuliou Morita xon 6ivouue QEdYUXTA YLot THY OULOAOYIXT DLdG Tao
evog Morita doxtuAiiou, oty nepintworn émou ¢ = ¢ = 0. Ta Poocind arotehéoyata TeV
EVOTHTOVY aUTOV elvon T Oswpruota 4.3.4, 4.3.6 xan 4.4.9, 4.4.14 avtiotoryo. Xnueidvoupe
OTL ToL amoTEAEOATA TNG EVOTNTAS 4.3 €youv amodelytel 6To YeEVIX6 Thaiolo TwY xatrnyo-
ety Morita otnyv evotnta 3.4 tou Kegoatou 3. Xtnv teheutala evotnta 4.5 eZetdlouye
10 ToTE €vog daxtUAog Morita, mou etvon dhyeBpa Tou Artin, etvan Gorenstein. To xOpto
amoTENEOUA NG TopEaydpou auThC elvor To Osprnuo 4.5.3 mou divel yio eav cuvirxm
wote évag daxtUAlog Morita vo efvon Gorenstein. Xpnouyomowdvtog To anoTéAecyo ou-
16 yopaxtnellouue ta Gorenstein-tpooAixd mpdTuTa UTEPEVL TOL BoxTuAiou Morita ye
A =B =N = M xu omov n A civaw i Gorenstein Artin dhyefoa, PAéne Ocwpenuo
4.5.10. Ta amoteréopato Tou xeuialov autoL eivon o cuvepyasio ye tov Edward L.
Green oo dpdpo [60] pe titho On Artin Algebras Arising from Morita Contexts.

KegdAouwo 5: To teheutaio Kegdhowo 5 aoyoleiton ye n Sido taon Rouquier tprywvioué-
VOV XATIYORLOY X0l TN SldoTaoT avanapdo taong ohyefewy tou Artin. Xtnv evotnta 5.1
ueketdue TN Sidotaor Rouquier oe oyéon xou ye 1o mpoBinua avihenong pag cuyxOAn-
O™G ABEMAVEY XATTYORUOY OE Uldl GUYXOAANON) TWV oVTIG TOLY MV TOEAY OUEVOY XATNYORLOV.
[Swaitepa ot0 Oewpnua 5.1.6, divoupe txavég xon avoryxaleg GUVINXES WO TE, Pl CUYXOA-
ANoT ofEAOVOY XATNYORUOY VO ETAYEL Lol CUYXOAANGT) TELYWVIOUEVWY XATIYOPIWOY O TIC
VIO TOLYEC TOEAYOUEVES XATTYORIEC TV PEAYUEVOY CUUTAOXWY. TN CUVEYELXL Olvouue
pedrypata Yoo Tn Owdo taor Rouquier yiog torywviopévng xatnyoptag J o€ pior cuyxoiinon
Tprywviopévwy xotnyoptdv (U, T,V). Xuyxexpyévo oto Oemenua 5.1.10 anodewviouye
6 max {dimU,dim V} < dimT < dimU+dim V+1, énou pe dim T oupBoiilouye T Sid-
otaon Rouquier tne T. Téhog eqapuolouye ta Topandve o€ SaxTUAOUS PE THUTOBUVOL
ototyela xou Witepa 0E TELYWVIX0UE DA TOALOUS TVEXGY. XTNY TEAsuTaio EVOTNTA AUTOD
TOU XEPUAXOU UEAETHUE TO TG CUUTEPLPERETAL 1) OLAC TUCT) OVUTIOREC TUOTIG OF XAUTAUC TUCELS
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oUYXOMAGEWY oBEAoVGOY xoTnyoptwy (&7, A, ). Kotopyhv opilouue TV xatdAhnhn év-
vola TNG OLd6 TUoTE AVAOEdo TAOTG OF OPBEMAVES XATNYOPLES. LTT CUVEYELO ATTODEVUOUNE
OTL oy, 1) BLAO TAOT AVATORAC TAO NG TNG A Elvor T TOAD 3, TOTE X 1) BLAC TUOT) AVATAPAs Tar-
ong e € etvan entiong To moAL 3. Erniong, xdtw and xdnoleg unovéoelg, cuyXEiVOUUE TN
OLdo TaoT avamapdo Taong TN A ue auTh e & xon eEETALOVNE YEVIXG TO TTOTE 1) OLIC TOO
avamopdotaong e 6 elvon uxpdteen 1 lon and 1N dldotaon avanopdotaong e A. Ta
TPV ATOTEAECUOTA AmOTEAOVY Tot Ocwpridata 5.2.2 xou 5.2.3. X1 cuvéyela dlvoupe
EQOPUOYEC Yla TN BldoTaoT avarapdotacne oAyefewy tou Artin, BA. Iloplopoata 5.2.5 -
5.2.14. To televtalo Poaoixd anotéreopa authc NG SwtpBhc, BA. Osdenua 5.2.15, divel
OLVUTXES WOTE, 1) TEPATOXEATIXT| OLdG TaoT plag AyePpag Tou Artin va elvon Temepacuévn
xou oyYeTICEL e YOVYO TEOTO T1) BIAOTUOY) AVITURAC TACTG UE TNV TEQUTOXPATLXY) OL8G TaoT).
Ta anotehéopata Tou xepoaiov autol Beloxovton 610 dpdpo [108] e titho Homological
Theory of Recollements of Abelian Categories.
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Introduction

In this thesis we investigate homological invariants arising in the representation
theory of Artin algebras. The main focus of our study is on the representation, finitistic
and global dimension of Artin algebras, the class of Cohen-Macaulay modules and the
Rouquier dimension of triangulated categories. The proper conceptual framework, from
our perspective, for this study is the general setting of recollements of abelian categories,
a concept which is fundamental in algebra, geometry and topology, and the closely
related omnipresent class of Morita rings. Before we explain the motivation of our work
we summarize below the main features of this thesis:

e (Classify recollements of module categories.
e Develop a general homological theory of recollements of abelian categories.

e Construct an abelian category which represents an abstract model for the
category of modules over a Morita ring and study finiteness conditions on
certain subcategories.

e Give sufficient conditions for Gorensteinness of Morita rings, in the context of
Artin algebras, and provide applications to Cohen-Macaulay modules.

e Provide bounds for the Rouquier dimension of triangulated categories.

e Give applications to representation and finitistic dimension of Artin algebras.

1. Background and Overview

The representation dimension of an Artin algebra has been introduced by Auslan-
der [10] with the expectation that: “this notion gives a reasonable way of measuring how
far an Artin algebra is from being of finite representation type”. This hope was based
on his famous result, that an Artin algebra A is of finite representation type if and
only if the representation dimension of A is at most two. It should be noted that the
representation dimension is strongly connected with the finitistic dimension conjecture
explicitly formulated by Bass [21]. In fact Igusa and Todorov [66] have shown that
the finitistic dimension conjecture is valid for any Artin algebra of representation di-
mension at most three. Several classes of algebras have representation dimension less
than or equal to 3 and it is known from Iyama that the representation dimension of
an Artin algebra is always finite [67]. Recently these important invariants were com-
bined with tools coming from the world of triangulated categories. Rouquier [112] has
shown that there is no upper bound for the representation dimension of Artin alge-
bras. More precisely Rouquier proved that the exterior algebra A(k™), where k is a
field and n > 1 an integer, has representation dimension n 4+ 1. This was the first
example where the representation dimension is greater or equal to 4. The main tool
for this result was the notion of dimension for triangulated categories introduced by

18
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Rouquier [113]. In conclusion representation dimension provides a homological crite-
rion for finite representation type and in some sense measures the homological com-
plexity of the module category. On the other hand the representation type of certain
subcategories of the module category gives information on the structure of the ring.

In the mid-sixties Auslander [9], [13] introduced the class of Cohen-Macaulay modules
(also known as: totally reflexive modules [70], modules of G-dimension zero [13,130],
maximal Cohen-Macaulay modules [16,30] or Gorenstein-projective modules [47]) as

a natural generalization of finitely generated projective modules. The structure of the
category Gproj A of finitely generated Gorenstein-projective modules measures how far
the ring A is from being Gorenstein. It is well known that the stable category Gproj A
is triangulated and there is an equivalence with the singularity category of A, in the
sense of Buchweitz [31] and Orlov [103], if and only if A is Gorenstein. But for the ring
itself, the representation type of the category Gproj A has significant consequences. For
example consider a Noetherian commutative, local, complete Gorenstein ring A. If A is
of finite Cohen-Macaulay type [27], [29] (Gproj A is of finite representation type, i.e. the
set of isomorphism classes of indecomposable Gorenstein-projective modules is finite),
then A is a simple singularity. For more details see Yoshino’s book [129] and the recent
book of Leuschke and Wiegand [86]. We refer also to the work of Beligiannis [29] for
a representation-theoretic study of Gorenstein-projective modules and algebras of finite
Cohen-Macaulay type.

Our aim in this thesis is to investigate homological aspects of recollements of abelian
categories and to study Morita rings in the context of Artin algebras, concentrating
mainly at representation-theoretic and homological aspects. In the context of recolle-
ments of abelian categories we investigate how various homological invariants and di-
mensions of the categories involved in a recollement situation are related. Moreover
we classify recollements of abelian categories whose terms are module categories, thus
solving a conjecture by Kuhn. Our interest in recollements is motivated from questions
and problems on representation and finitistic dimension of Artin algebras and the in-
terrelation between them. On the other hand our interest in Morita rings is motivated
by the frequent occurrence of this class of matrix rings in the representation theory
of Artin algebras and elsewhere, and the interpretation of their module categories via
suitable recollements.

2. Motivation and Examples

In this part of the introduction we give motivation for the study of recollements of
abelian categories and Morita rings, we present illuminating examples, and we explain
also the connections between them.

2.1. Recollements of Abelian Categories. We start by explaining how natu-
rally recollements of abelian categories arise/appear in different branches of mathemat-
ics.

e Recollements of Abelian Categories in Algebra: Let R be a ring and e an idempotent
element of R. Associated with the data (R,e) are the rings eRe, R/ReR and their
module categories Mod-R, Mod-eRe, Mod-R/ReR. Since we have a surjective ring
homomorphism R — R/ReR it follows that the restriction functor from the module
category of R/ReR to the module category of R is fully faithful. On the other hand the
assignment X — eX, where X is a (left) R-module, induces an exact functor from the
module category of R to the module category of eRRe. Moreover these two functors have
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left and right adjoints. Hence any pair (R, e) induces the following situation between
the module categories over the rings R/ReR, R and eRe:

R/R€R®R* Re@eRe_
/\ //e_—\
Mod-R/Re R — " Mod-R — - Mod-¢Re
\/ \_/
Hompg(R/ReR,—) Homcge(eR,—)

The situation described above is a typical example of a recollement situation, namely
a recollement induced by an idempotent element, and it should be considered as the
universal example concerning recollements of module categories. This statement will be
explained in Chapter 1.

e Recollements of Abelian Categories in Geometry: Let X be a topological space and U
an open subspace of X. Denote by F' the complement of U in X. Let Ox be a sheaf
of commutative rings on X and denote by Oy, resp. Op, the restricted sheaves of rings
on U, resp. F. Then the abelian categories Mod-O g, Mod-Ox, Mod-Oy, of sheaves of
O;-modules, where ¢ = F, X or U, are related via the following recollement :

q |

MOd—OF I MOd—OX = MOCI—OU
\_/ \_/
p r

It should be noted that the above situation is the classical example of a recollement
of abelian categories arising in topology and in algebraic geometry, and has appeared
in the work of Beilinson, Bernstein and Deligne [22]. There are also various derived
versions of the above recollement at the level of triangulated categories. We refer to the
book [71] for more details.

e Recollements of Abelian Categories in Topology: Let IF, be a finite field of characteristic
p and order |F,| = ¢ = p°, where p is a fixed prime. We denote by Fun (F,) the functor
category with objects the functors from finite dimensional IF,-vector spaces to F,-vector
spaces, and with morphisms the natural transformations between such functors. It is
well known that Fun(F,) is an abelian category. Let F' € Fun(F,). Then for every
finite dimensional IF,-vector space V' (say dimg, V' = n) the object F(V) becomes a
module over the group algebra F,[GL,(V')]. This observation shows that we can view
the objects of Fun (F,) as generic representations of the general linear group over F,,.
Then Fun (F,) is called the category of generic representations [81]. Denote by M (F,)
the multiplicative semigroup of k X k matrices over F,, and consider the categories
of modules Mod-F[GL,(F,)] and Mod-F,[M(F,)], where F,[My(F,)] is the semigroup
algebra. Then from basic results of Kuhn [81,82] we have the following diagram:

Mod-F,[GL3(F,)] Mod-F, [GLy(F,)]

(1) g

Mod-F,[M;(F,)]

(1) )

Mod-F,[M;(FF,)] Mod-F, [M; (F,)]
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where the vertical diagrams are recollements of module categories and the inverse limit
of the horizontal sequence of Mod-F,[M(F,)], ¥ > 1, is the category Fun(F,). The
category of generic representations Fun (F,) is a fundamental object of study and has
strong connections with several different topics, like: Symmetric groups, Schur algebras,
Topological Hochschild Homology, Steenrod algebra. We refer to the important work
of Kuhn [81-83] for more details on the above subject and the use of recollements of
abelian categories in this area of mathematics.

We continue now by describing the notion of recollements for abelian categories and
we give also some more motivation.
Recollements of abelian categories are exact sequences of abelian categories

0 ——> o ——= B =% 0
where the inclusion functor i represents o7 as a Serre subcategory of % and the functor
e represents ¢ as the quotient category #/.<f, enjoying the additional property that
the inclusion functor i admits a left adjoint q and a right adjoint p, and the quotient

functor e admits a left adjoint | and a right adjoint r. Such a recollement situation of
abelian categories is denoted throughout this thesis by the following diagram:

o i B c 3 R (<, B, )
\_/ \_/
p r

Recollement situations were introduced first in the context of triangulated cate-
gories by Beilinson, Bernstein and Deligne, see [22], in their axiomatization of the
Grothendieck’s six functors for derived categories of sheaves obtained from stratifica-
tions of spaces. In this connection a fundamental example of a recollement situation of
abelian categories appeared in the construction of perverse sheaves, by MacPherson and
Vilonen [91]. In the late eighties, Cline, Parshall and Scott, working in the context of
representation theory, indicated the connections between recollements of derived cate-
gories, highest weight categories, and quasi-hereditary algebras, see [38], [107], and later
Kuhn used recollements of certain abelian categories in his study of generic representa-
tion theory of the general linear group, see [82]. On the other hand, Happel [61,63], and
recently Hugel, Koenig, Liu [2—4], and Chen, Xi [33-35] studied connections between
recollements of triangulated categories in connection with tilting theory, homological
conjectures, stratifications of derived categories of rings, and algebraic K-theory. It is
well known that recollements and TTF-triples of triangulated categories are in bijec-
tion [22], [30], [99]. In this connection Beligiannis-Reiten investigates hereditay torsion
pairs in triangulated categories and discuss applications on homological conjectures and
tilting theory, see [30, Chapter IV] for more details.

It should be noted that recollements of abelian or module categories appear quite
naturally in various settings and are omnipresent in representation theory. Typically
recollement situations arise from the endomorphism ring of a direct sum of two objects
in an additive category. For instance, as we discussed above, any idempotent element e
in a ring R induces a recollement situation between the module categories over the rings
R, R/ReR and eRe. More generally the ring associated to a Morita context induces
two recollements situations, and many categories arising from natural constructions in
ring and module theory, for example comma categories, are related via a recollement
situation. This includes module categories over one sided Artinian rings and module
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categories which play an important role in Galois theory of rings. Finally we mention
that any full subcategory X of an additive category % induces a recollement situation
between the module categories over €, X, and € /X, considered as rings with several
objects, and where the latter denotes the stable category of ¥ modulo the subcategory
X.

The examples mentioned above and the important role they play in various contexts
suggests naturally the following two problems:

e The general study of homological invariants associated to the abelian categories .7,
A, € of the recollement R,, (o7, %, %), and how they are related.

e The classification of recollements whose terms are module categories.

Our main aim in this thesis is to investigate in detail the above problems concentrating
in the behavior of global dimension, finitistic dimension and representation dimension
under recollement of abelian categories and then to give applications to ring theory.
We also study when a recollement situation between abelian categories induces a rec-
ollement situation between the corresponding bounded derived categories, and we give
applications to Rouquier’s dimension of the triangulated categories involved in a rec-
ollement situation. Finally we classify recollements whose terms are module categories,
thus answering a conjecture by Kuhn.

2.2. Morita Rings. Morita contexts, also known as pre-equivalence data, have
been introduced by Bass in [20], see also [41], in his exposition of the Morita Theorems
on equivalences of module categories. Let A and B be unital associative rings. Recall
that a Morita context over A, B, is a 6-uple M = (A, N, M, B, ¢,1), where gM, is a
B-A-bimodule, 4Npg is an A-B-bimodule, and ¢: M ® 4 N — B is a B-B-bimodule
homomorphism, and »: N ® g M — A is an A-A-bimodule homomorphism, satisfying
the following associativity conditions, Vm,m’' € M, Vn,n’ € N:

d(m@n)m' =myp(ne@m’)  and nop(men')=yY(nm)n’

Associated to any Morita context M as above, there is an associative ring, the Morita
ring of M, which incorporates all the information involved in the 6-uple M, defined to
be the formal 2 x 2 matrix ring

A N
A(tﬁﬂll) (M) = (BMA ABB)

where A ) (M) = A® N & M ® B as an abelian group, and the formal matrix multi-
plication is given by

a n a n'\  fad +yp(nem) an' 4+ nbt/

m b)) \m' V) ma' + bm/ bt + ¢p(m @ n')
The Morita ring of a Morita context, not to be confused with the notion of a (right
or left) Morita ring appearing in Morita duality, has been studied explicitly by various
authors in ring, module, or representation, theoretic framework; in this connection we
refer to the papers by Amitsur [1], Muller [97], Green [59], Cohen [40], Loustaunau [89],
and Buchweitz [32], among others. We refer also to the classical textbooks [85], [92],
[116] for the terminology of Morita rings.

It should be noted that Morita rings form an omnipresent class of rings, providing
sources of many important examples and the proper conceptual framework for the study
of many problems in several different contexts in ring theory. We describe briefly some
important examples and situations where Morita rings are involved.
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e Examples of Morita Rings: Let A be a ring and M4 be a right A-module. If B =
End4(M) is the endomorphism ring of A, then viewing M as a B-A-bimodule and
setting N = Hom (M, A), it is easy to see that there exist naturally induced bimodule
homomorphisms ¢ and 1) and a Morita context M = (A, M, N, B, ¢, ). Hence any pair
(A, My), where A is a ring and M, is a right A-module induces a Morita context.

An important special case is when M = eA, where e? = ¢ is an idempotent element
of A. Clearly then N = Hom4 (M, A) = Ae and B = eAe, and the Morita ring A4 4 (M)

takes the form
A Ae
A(d%d))(M) = <6A €A€>

On the other hand if € = e € A is an idempotent element of A and f = 14 — e, then

the Pierce decomposition of A with respect to the idempotents e, f induces a Morita
context M(e, f) = (eAe,eA, fA, fAf, «, ), and the ring A is isomorphic to

A= oo ) = (51 745)

Note that since any Morita ring Ay (M) contains the idempotents e = (164 8) and
f=1y—e=e=(§), it is not difficult to see that there is a ring isomorphism
Ap (M) = Ay (M(e, f)). It follows that any Morita ring is isomorphic to the Morita
ring arising from the Pierce decomposition of a ring A with respect to two orthogonal
idempotents whose sum is the identity of A. We mention that, as a consequence, any
upper or lower triangular matrix ring is a Morita ring.

As another important example, in a more general context, let ¥ be an additive
category and X,Y be arbitrary objects of €. We view M := Homg(X,Y) as an A-
B-bimodule and N := Homg (Y, X) as a B-A-bimodule in a natural way, where A =
Endy(X) and B = Endy(Y). It is easy to see that there is a Morita context M =
(A, M, N, B, ¢,1) and an isomorphism of rings

Endcg(X@Y) = A¢7w(M)

i.e. Morita rings appear as endomorphism rings of a direct sum of objects in any additive
category. This is the universal example of a Morita ring since it is not difficult to see
that any Morita ring arises in this way. On the other hand the above construction gives
the well-known bijective correspondence p: ¢ — M between pre-additive categories
¢ with two objects X,Y and Morita Contexts M = (A, N, M, B, ¢,v). Under this
correspondence p(X) = Endg(X) = A, u(Y) = Endg(Y) = B, M = Homy(X,Y),
N = Hom¢ (Y, X) and the maps ¢ and ¢ are given by the composition of maps in €. As
a consequence the study of Morita rings subsumes the study of pre-additive categories
with two objects and can be considered as 2-dimensional ring theory.

e Morita Rings and Extensions of Grothendieck Categories: Let 0 — ¥ — ¢ —>
& — 0 (%) be an exact sequence of Grothendieck categories. The sequence (x) is called
an extension of /2 (~ &) by 2. Already Gabriel in his thesis [54] has proved that
any locally Noetherian category (i.e. a Grothendieck category with a set of Noether-
ian generators), for instance the category of quasi-coherent sheaves over a Noetherian
scheme or the module category over a left Noetherian ring, can be obtained by succes-
sive extensions of locally finite categories (i.e. a Grothendieck category with a set of
generators of finite Jordan-Holder length). It is a natural problem to classify the exten-
sions (x) of locally finite categories or more generally of locally noetherian categories.
Roos has classified such extensions in the stable case [114]. Recall that an extension
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(%) is called stable if the injective envelope of any object of Z in € lies in &. Suppose
that the extension (%) is stable and the categories Z,% and & are locally Noetherian.
Then there are equivalences of categories:

2 2 TC(A)°, & = TC(A)° and % == TC(A)P, A= (4 4)

where the rings Ag, A; and A are topologically coherent, topologically coperfect and
complete, and TC(Ay)° (resp. TC(A1)°, TC(A)®) is the dual category of the category of
left linearly topologized modules over Aq (resp. Aj, A) which are topologically coherent
and complete. The solution of the above problem in the nonstable case is not known.
Roos suggests that in order to attack the nonstable case one has to develop a theory
about Morita rings with a linear topology and try also to determine how the homological
properties of a Morita ring A4, are related to those of A, B, N, M, ¢ and . We
refer to [104], [114] for more background and details on the above problem.

The examples and situations mentioned above and the important role they play in
various different contexts provide a motivation for studying Morita rings in a general
context using homological and representation-theoretic tools. Our second aim in this
thesis is to study Morita rings, mainly in the context of Artin algebras, concentrating
at representation-theoretic and homological aspects.

3. Organization and the Main Results

The organization and the main results of this thesis are as follows. In Chapter 1
we classify recollements of abelian categories whose terms are module categories. Kuhn
conjectured in [82] that if the categories of a recollement are equivalent to categories of
modules over finite dimensional algebras over a field, then the recollement is equivalent,
in a certain sense, to one induced by an idempotent element in the way we described
in section 2.1 above. We solve this conjecture for general rings. More precisely we have
the following first main result of this thesis, see Theorem 1.3.6.

Theorem A. (Joint with J. Vitéria [109]) Let A be a ring. A recollement of Mod-A
is equivalent to a recollement in which the categories involved are module categories if
and only if it is equivalent to a recollement induced by an idempotent element of a ring
S, Morita equivalent to A.

As a consequence we get that if A is semiprimary, in particular a finite dimensional
algebra as in Kuhn’s situation, then any recollement of Mod-A is equivalent to a rec-
ollement induced by an idempotent element of A, see Corollary 1.3.8. Chapter 1 is
structured as follows. Section 1.1 collects preliminaries notions and results on recolle-
ments of abelian categories that will be useful throughout the thesis and we fix notation.
We also give a variety of model examples of recollements that will be used in the sequel
as illustrations of our main results. In section 1.2, we discuss TTF-triples in abelian
categories and we use them to classify recollements of abelian categories. In section 1.3
we focus on recollements of module categories, proving Kuhn’s conjecture. Finally in
section 1.4 we give an example of a recollement not induced by an idempotent element.

In Chapter 2 we investigate several homological aspects of recollements of abelian
categories. In section 2.1 we study the homological behavior of the six functors in-
volved in the adjoint triples (q,i,p) and (l,e,r) of a recollement situation (<7, %, %)
of abelian categories. More precisely we are interested in finiteness conditions of the
derived functors of p, q, | and r, as well as in the problem of when the exact functor
i: @/ — 2 induces natural isomorphisms i™: Extl;(—,—) — Ext%(i(—),i(—)), for
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0<m <k <oo,ie wheniisa ak-homological embedding, and also in the problem
of when the exact functor e: Z — % induces, restricted to suitable subcategories,
natural isomorphisms e”: Extl;(—, —) — Extl;(e(—),e(—)), up to some steps, i.e. for
0 <m < k, where 0 < k < oo. It turns out that the answer to the above problems
are closely related and depend on the behavior of the k-generalized perpendicular sub-
category of A associated to o7, see Definition 2.1.1, and the subcategory Xy, (or Yi) of
2 consisting of all objects admitting a truncated projective (or injective) resolution by
projectives (or injectives) coming from the quotient category & via the section functor
| (or r). Note that the following second main result of this thesis, see Theorems 2.1.10
and 2.1.11, extend and generalize related results of Auslander-Platzeck-Todorov [14],
formulated in the setting of finitely generated modules over an Artin algebra equipped
with an idempotent ideal, and Geigle-Lenzing [56], formulated in the context of classi-
cal perpendicular categories, i.e. kK = 1, and homological epimorphisms of rings. In the
next result p: le — Idg is the counit of the adjoint pair (I,e) and v: Idg — re is the
unit of the adjoint pair (e,r).

Theorem B. ( [108] ) Let (&7, %B,%) be a recollement of abelian categories and
assume that % and € have enough projective and injective objects.

(i) The following statements are equivalent.
(a) The functori: o — A is a k-homological embedding.
(b) Impp € Xy_1, VP € Proj A.
(¢) Imv; € Yy_q, VI € Inj AB.
(i1) The following statements are equivalent.
(a) The map ey 1 Exty(Z, W) — Extg(e(Z),e(W)) is invertible, VW €
B, (resp. VZ € B), and 0 <n < k.
(b) Z € Xyy1 (resp. W € Yppa).

In section 2.2 and 2.3 of Chapter 2, which form a unit, we study the problem of how
various dimensions, including global and finitistic dimension, of the abelian categories
involved in a recollement situation (&7, %, €) are related. Although one can not expect
in general a precise relation, see Example 2.4.8, we prove the existence of several bounds
concerning the global and finitistic dimension under natural assumptions. In section 2.2
we first show that the global dimension of 4 is always bounded by the sum of the global
dimensions of &/ and % plus the supremum of the projective dimension in & of the
projectives of o7, see Theorem 2.2.1. On the other hand if the functor i is a homological
embedding, meaning that i is a k-homological embedding Vk > 0, then in Theorem
2.2.8 we give lower and upper bounds for the global dimension of % in terms of the
global dimensions of &/ and % and related projective or injective dimensions in &% of
objects coming from . It follows in particular that if 4 is hereditary, then so are .o/
and € (Theorem 2.2.9). Under the assumption that any projective object of &7 has,
via the inclusion i, projective dimension at most one, we show that finiteness of global
dimension of Z is equivalent to finiteness of the global dimension of both & and ¥
(Corollary 2.2.18). Finally we give precise formulas for projective or injective dimension
for objects lying in special subcategories of o7, Z and €, and we apply our results to
stratified abelian categories, see Corollary 2.2.22. Our results in this section extend
and generalize several results of the literature, including those of Auslander-Platzeck-
Todorov [14]. In section 2.3 we study the finitistic dimension, denoted by FPDM
for an abelian category M, and how it behaves in a recollement situation (<, A,%).
After introducing the notion of the locally bounded homological dimension, |.b.hom.dimF’,
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of a right exact functor F' between abelian categories, see Definition 2.3.2, we prove
our first main result of the section, namely: if the section functor |: ¥ — % has
locally bounded homological dimension, then the finitistic projective dimension of ¢ is
bounded by the finitistic projective dimension of # plus the locally bounded homological
dimension of the section functor | (Theorem 2.3.2). Under various natural conditions,
we also give lower and upper bounds for the finitistic dimension of %4 in terms of the
finitistic dimension of & and ¥, and related homological invariants. The results of this
section, applied to comma categories, generalize and extend results of Fossum-Griffith-
Reiten [49]. Indicatively we state the following main result on global and finitistic
dimension of the categories involved in a recollement situation.

Theorem C. ( [108] ) Let (o7, %B,%€) be a recollement of abelian categories such
that B and € have enough projective objects.
(i) We have:

gl.dmZ%Z < gl.dim.« +gl.dim % + sup{pd4i(P) | P € Proj</} +1
(i) If the functor |: € — A has locally bounded homological dimension, then:
FPD (¢) < FPD (%) + |.b.hom.dim|

The final section 2.4 of Chapter 2 is devoted to applications in Ring Theory, guided
by the examples analyzed in section 1.1 of Chapter 1. More precisely we apply our
results of sections 2.2 and 2.3 to recollements of module categories arising from («)
pairs (R, e) consisting of a ring R and an idempotent e € R, (f) triangular matrix rings
or more generally rings of Morita Contexts, (7) quasi-hereditary rings. Our results give
a nice interplay between global and finitistic dimension and generalize and extend a
host of related results in the literature.

In Chapter 3 we construct an abelian category which represents an abstract model
for the category of modules over a Morita ring A ). Let &/ and % be two abelian
categories, F': &7 — % and G: 8 — &/ two additive functors, and ¢: FG — Idg
and ¢¥: GF — 1d, two natural transformations such that F (i) = ¢p and G(¢) =
te. Then from this data we define the Morita category M(¢, 1)), see section 3.1, and
we examine when the latter is an abelian category. The first three sections collects
several structural properties of this category. In the fourth section we study finiteness
conditions on subcategories of the Morita category M(0, 0) and in the remaining sections
we investigate some homological aspects of this construction. This chapter serves as an
introductory step for Chapter 4 and several of its results are used later on.

In Chapter 4 we discuss Artin algebras arising from Morita contexts. More precisely
we study Morita rings A ) in the context of Artin algebras concentrating mainly at
representation-theoretic and homological aspects. In section 4.1 we collect preliminary
notions and results on Morita rings that will be useful throughout this chapter and we
fix notation. In particular we describe the module category over a Morita ring and also
we analyze the connections with recollement situations between the involved module
categories. In section 4.2 we describe the projective, injective and simple modules in
case the Morita ring is an Artin algebra. Using this description we characterize when
the Morita ring is selfinjective and then, as an immediate consequence of this we give an
upper bound for the representation dimension of the Morita ring Ago(M) arising from
the Morita context M where A = B = M = N = A is a selfinjective Artin algebra and

¢=0=1.
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In sections 4.3 and 4.4 we study finiteness conditions on subcategories of the module
category of a Morita ring A4 ) (M) arising from a Morita context M = (A, N, M, B, ¢, 1),
and also we investigate the global dimension of A (M), in the special case when the
bimodule homomorphisms ¢ and v are zero. One advantage for working in this setting
is that the module categories Mod-A, Mod-B, Mod-( 17, %), Mod-(4 %7 ) are fully
embedded into the module category Mod-A g )(M) as functorially finite subcategories.
Indeed we prove in Theorem 3.4.9 that the above natural subcategories of Mod-A g o) are
bireflective (i.e. the full embedding functors have left and right adjoints) and therefore
they are functorially finite in Mod-A g, closed under isomorphic images, direct sums,
direct products, kernels and cokernels. More generally we show in Theorem 3.4.11 that if
U is a functorially finite subcategory of Mod-A and V is a functorially finite subcategory
of Mod-B, then under some additional conditions the subcategories U and V induce a
functorially finite subcategory of Mod-A(g o) (M), thus generalizing some well known re-
sults of the literature, see [120], in the setting of triangular matrix rings. In section 4.4,
after introducing the notion of an A-tight (resp. B-tight) projective A o)-resolution, see
Definition 4.4.2, we give an upper bound for the global dimension of A in terms of
the global dimension of A and B. In particular in Theorem 4.4.9 we show the following
main result of this Chapter.

Theorem D. (Joint with E.L. Green [60]) Let Ay = (B]‘@A ARP) be a Morita ring
which is an Artin algebra and suppose that M has a B-tight projective A g)-resolution
and N has an A-tight projective A g)-resolution. Then:

gl.dimAgo < gl.dimA+gl.dmB +1

Further in Theorem 4.4.14 we deal with the case where either M or N does not have a
tight projective A )-resolution and we present some formulas for the global dimension
of A(o,0). We provide examples which show that the inequalities of our bounds are sharp
and that the inequalities can be proper, see Examples 4.4.10, 4.4.11 and 4.4.15.

The final section 4.5 of Chapter 4 is devoted to investigate when a Morita ring A4 ),
which is an Artin algebra, is Gorenstein and discuss applications of this result. The
following main result of Chapter 4, which is Theorem 4.5.3, gives a sufficient condition
for a Morita ring to be Gorenstein. For an Artin algebra A we denote by (proj A)<>,
resp. (injA)<>, the full subcategory of mod-A consisting of the A-modules of finite
projective, resp. injective, dimension.

Theorem E. (Joint with E.L. Green [60]) Let Ay be a Morita ring which is an
Artin algebra such that the adjoint pair of functors (M ® 4 —,Hompg(M, —)) induces an
equivalence

M ®4 —: (proj A)<> (inj B)<* : Hompg(M, —)

and the adjoint pair of functors (N @ —, Hom (N, —)) induces an equivalence

~

N ®p —: (proj B)<> (inj A)<* : Homu (N, —)

Then the Morita ring A ) is Gorenstein.

For example if A is a Gorenstein Artin algebra then the matrix algebra A 4) =
(44) is Gorenstein, see Corollary 4.5.5. As a consequence of the above result we
characterize the Gorenstein-projective modules over the Morita ring A4 = (j\\ ﬁ),
see Corollary 4.5.10, in case A is a Gorenstein Artin algebra.
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The final Chapter 5 of this thesis is devoted to Rouquier’s dimension for triangulated
categories and to representation dimension of Artin algebras. In section 5.1 of chapter 5
we study the Rouquier dimension of triangulated categories in connection with finding
conditions ensuring that a recollement of abelian categories induces a recollement of
triangulated categories at the level of the corresponding bounded derived categories. In
fact we give several equivalent conditions for the existence of a triangulated recollement
of the bounded derived categories of the abelian categories involved in a recollement
situation, in terms of homological finiteness properties of the functors q, p, I, and r (see
Definition 5.1.5). More precisely our first main result of this section is the following,
see Theorem 5.1.6 for more details.

Theorem F. ( [108] ) Let (o7, %,%) be a recollement of abelian categories and
assume that B and € have enough projective and injective objects.

(i) The following statements are equivalent:
(a) The functor i: of — A is a homological embedding, and the functor
q: B — A, resp. p: B — o, is of locally finite homological, resp.
cohomological, dimension.
(b) There exists a recollement of triangulated categories

L’q 4
o D) S, < b S,
D’(«) D*(#) D(%)
~_ ~_
RYp d

(ii) The following statements are equivalent:
(a) The functor i: of — A is a homological embedding, and the functor
I: € — B, resp. r: € — B, is of locally finite homological, resp.
cohomological, dimension.
(b) There ezists a recollement of triangulated categories

q Lol
,/Dm /Db_(e)\
D’(e) D*(%) D*(%)
\&/ \R_br/

Next we give bounds for the dimension of a triangulated category 7T, in the sense of
Rouquier [113] (see Definition 5.1.7), in a recollement situation (U, T, V) of triangulated
categories. In this context we have our second main result of this section, see Theorem
5.1.10 for more details.

Theorem G. ( [108] ) Let (U,T,V) be a recollement of triangulated categories.
Then:

max {dimU,dimV} < dimT < dimU+dimV + 1

As a consequence if one of the four functors q, p, |, and r of a recollement of abelian
categories (o, %,%) has finite (co)homological dimension (in an appropriate sense,
see Definition 5.1.5), then we get Theorem 5.1.12: max {dimD’(&),dimD%(%)} <
dimD?(%) < dimDb(«) + dimD*(%) + 1. Finally we give applications to Rouquier’s
dimension of bounded derived categories of rings. In fact if A = (Ig Rgs ) is a triangular
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matrix ring then as a consequence of the above we get that: max {dim D’(R), dim D*(S)}
< dimD?(A) < dim D?(R) + dim D®(S) + 1, see Corollary 5.1.15.

In the last section section of Chapter 5 we study the representation dimension, de-
noted by rep.dimM for an abelian category M, and how it behaves in a recollement
situation (&7, %, €) between abelian categories. Firstly we review Auslander’s notion of
representation dimension in the context of abelian categories, see Definition 5.2.1. Note
that if M = mod-A, where A is an Artin algebra, then our definition coincides with the
one given by Auslander, namely: rep.dim A = min{gl.dimEndy(X ® A@D(A)) | X €
mod-A}. Recall also that a A-module Y = X @& A @ D(A) that realizes the minimum is
called an Auslander generator of mod-A. Our first main result shows that if the repre-
sentation dimension of 4 is at most three, then the same holds for the representation
dimension of %, and, under an additional condition, the representation dimension of
/. Finally we show that rep.dim% < rep.dim %, provided that there exists an Aus-
lander generator of # enjoying special properties. These are Theorems 5.2.2 and 5.2.3
respectively. As an application we derive several results on representation and finitis-
tic dimension of Artin algebras, see Corollaries 5.2.5 - 5.2.14. The final main result,
Theorem 5.2.15, of this thesis gives an interesting interplay between representation di-
mension and finitistic dimension, and presents situations where the finitistic dimension
of an Artin algebra is finite using a basic construction of Auslander. We summarize
next some of the above main results.

Theorem H. ( [108] ) Let A be an Artin algebra and e an idempotent element of
A.

(i) Ifrep.dimA < 3 then:
rep.dimeAe < 3
In particular, we have:
rep.dmA < 3 <= rep.dimEnd,(P) < 3

for any finitely generated projective A-module P.
(ii) Let A ® X be an Auslander generator of A. If the functor Homy (X, A) ®x
—: mod-A — mod-I" has locally bounded homological dimension, then:

fin.dimA < rep.dim A + I.b.hom.dim Homy(X,A) ®), — < oo

Conventions and Notations. We compose morphisms f: A — B, g: B — C
in a given category in a diagrammatic order, i.e the composition of f, g is denoted
by f og. We use the usual anti-diagrammatic order when we compose functors and
when we apply elements to morphisms in categories. For a ring R we work usually with
left R-modules and the corresponding category is denoted by Mod-R. Our additive
categories are assumed to have finite direct sums and our subcategories are assumed to
be closed under isomorphisms and direct summands. For all unexplained notions and
results concerning the representation theory of Artin algebras we refer to the book [18],
see also [7], [131]. For the homological algebra used throughout this thesis we refer to
the books [65], [L15], [123], and for the theory of triangulated categories see [98].



CHAPTER 1

Recollements of Module Categories

In this Chapter we give definitions and useful properties of recollements of abelian
categories. We also give a variety of model examples that will be useful throughout this
thesis and we fix notation. We define when two recollements of abelian categories are
equivalent and we establish a correspondence between recollements of abelian categories
up to equivalence and certain T TF-triples. For module categories we show also a corre-
spondence with idempotent ideals, recovering a theorem of Jans [69]. Finally, we show
that a recollement of abelian categories whose terms are module categories is equivalent
to one induced by an idempotent element, thus proving a conjecture by Kuhn [82]. The
results of sections 1.2, 1.3 and 1.4 are included in the paper entitled: Recollements of
Module Categories [109] which is joint work with Jorge Vitéria.

1.1. Preliminaries on Recollements of Abelian Categories

In this section we give the definition of recollement between abelian categories and
we fix notation. We also include a variety of examples that will be used throught in
this thesis.

To begin with, we recall the definition of a recollement situation in the context of
abelian categories, see for instance [50,61,82]. For an additive functor F': &/ — A
between additive categories, we denote by Im F' = {B € | B = F(A) for some A € 7}
the essential image of F' and by Ker ' = {A € &/ | F(A) = 0} the kernel of F.

DEFINITION 1.1.1. A recollement situation between abelian categories &7, % and ¢
is a diagram

o ! B : 3 Rap(, B, )
\_/ \_/
p r

henceforth denoted by (o7, £, %), satisfying the following conditions:
1. (I,e,r) is an adjoint triple.
2. (q,i,p) is an adjoint triple.
3. The functors i, |, and r are fully faithful.
4. Imi = Kere.

In this case the category 4 is said to be the recollement of &7 and .

Throughout this chapter we fix a recollement (&7, %, %) of abelian categories as in
Definition 1.1.1. Then we have the adjoint pairs (l,e), (e,r), (q,i), and (i,p). We
always denote by p: le — Idg, resp. k: ip — Id, the counit of the adjoint pair (I, e),
resp. (i,p), and by \: Idy — iq, resp. v: Idg — re, the unit of the adjoint pair
(q,1), resp. (e, r). In the following remarks we isolate some easily established properties
of a recollement situation which will be useful later.

30
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REMARK 1.1.2. (i) The functorse:  — € and i: &/ — A are exact, since
from the Definition 1.1.1 the functors e and i have left and right adjoints.
(ii) The composition of functors ql = pr = 0. Indeed for every A € & we have:

Hom,, (ql(C), A) ~ Hom4(I(C),i(A)) ~ Homy(C,ei(A)) =0

We infer that ql(C') = 0 for every C' € € and then our claim follows. Similarly
we show that pr = 0.

(iii) Since the functor i: & — 4 is fully faithful it follows that the counit qi —»
Id,, of the adjoint pair (q,i) is invertible and the unit Id,, — pi of the adjoint
pair (i, p) is invertible (see [90]).

(iv) Since the functor r: € — 2 is fully faithful the counit er — Idg of the
adjoint pair (e, r) is invertible and since the functor I: 4 — 2 is fully faithful
the unit Idy — el of the adjoint pair (I,e) is invertible ( see [90] ).

(v) The functor i induces an equivalence between .7 and the Serre subcategory
(i.e. closed under subobjects, quotients and extensions) Kere = Imi of %. In
the sequel we shall view the above equivalence as an identification.

(vi) Since the exact functor e admits a fully faithful left adjoint and a fully faithful
right adjoint, it follows that o/ is a localizing and colocalizing subcategory
of # and there is an equivalence #/o/ ~ € [54]. In particular any rec-
ollement R.,(27, Z,%€) induces a short exact sequence of abelian categories
0 — o — B — € —0.

In section 1.2 we will discuss in more detail the notions of Serre, localizing and
colocalizing subcategories.

REMARK 1.1.3. Let e: Z — ¥ be an exact functor between abelian categories
which is part of an adjoint triple (l,e,r) where | or r is fully faithful. Note that | is
fully faithful if and only if r is fully faithful. Denote by p: le — Idg the counit of the
adjoint pair (I,e) and v: Idg — re the unit of the adjoint pair (e,r). It is easy to see
that for any object B € 4, the assignments Kervg =: p(B) <= B — q(B) := Coker up
induce functors q: 4 — Kere and p: 8 — Kere. It is straightforward to check that
(g,i,p) is an adjoint triple, where i: Kere — A is the inclusion, and so (Kere, %, %)
is a recollement of abelian categories.

REMARK 1.1.4. Let % be an abelian category and .« a Serre subcategory of Z.
Then we have the exact sequence of abelian categories 0 — &7 — B — B/ o/ — 0.
Assume that % is a Grothendieck category with projective covers and & is a Serre
subcategory of # which is closed under products and coproducts. Then from [78] the
quotient functor  — %B/</ has a left and right adjoint. Therefore from Remark
1.1.3 we have the recollement of abelian categories (<7, B, %/ ).

REMARK 1.1.5. Let (&, %,%) be a recollement of abelian categories and suppose
that Z has enough projective and injective objects. Then the functor q: Z — &
preserves projective objects since we have the adjoint pair (q, i) and the functori: &/ —
A is exact. Similarly the functor p: & — & preserves injective objects. Let A be
an object of o/. Then i(A) € 2 and there exists an epimorphism P — i(A) with
P € Proj#. Applying the functor q we obtain the epimorphism q(P) — A and
q(P) € Proj.</. Hence the category & has enough projective objects and Proj.o/ =
add q(Proj #). Note that if X is a full subcategory of an abelian category 7 then
add X denotes the full subcategory of &/ consisting of all direct summands of finite
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coproducts of objects of X. Similarly the category <7 has enough injective objects and
Inj.o/ = addp(Inj%). Suppose that € has enough projective and injective objects.
Then the functor |: 4 — % preserves projective objects since we have the adjoint pair
(I,e) and the functor e: & — € is exact. Similarly the functor r: € — % preserves
injective objects.

We continue with the following result which we will need in the sequel, see also [50].

PROPOSITION 1.1.6. Let (o, B,%€) be a recollement of abelian categories.

(i) There are equivalences of categories:

p: {Be#|ip(B)~B} —— o ~——— {Be#|iqB)~B}: q

In particular, an object B € A belongs to i(<7) if and only if B ~ iq(B) if and
only if B ~ ip(B).
(ii) Let B € A. Then we have the exact sequences

0 —— Ker ugp — le(B) “—B>Bﬂ>iq(3) —0

and
0 —ip(B) —> B 2> re(B) — Coker vg —= 0
where the objects Ker up and Cokervg lie in i(2f).

PRrOOF. Part (i) is straightforward since we have isomorphisms qi ~ Id,, and Id,, ~
pi. For part (ii) we prove only the existence of the first exact sequence. Let B be an
object of . Then from the counit up: le(B) — B of the adjoint pair (l,e) we have
the exact sequence 0 — Ker up — le(B) — B — Coker up — 0 in . Applying
the exact functor e: & — € we infer that e(Ker up) = 0 = e(Coker ug), i.e. Kerpup
and Coker up are objects of i(«7). Since Coker ug = i(A) for some A € & it follows
from (i) that iq(Coker ) ~ Coker up. Since the functor iq is right exact and gl = 0,
the assertion follows from the following commutative diagram:

le(B) 2—~ B Coker jig — 0

l jAB NL)\Coker,u,B

0 iq(B) — iq(Coker j1p) —= 0

The proof that the sequence 0 —» ip(B) ~2» B 2Z; re(B) — Cokervg — 0 is exact
is similar. H

1.1.1. Examples of Recollements of Abelian Categories. We continue by
giving a variety of examples of recollements of abelian categories which will be used
throughout in the next Chapters.

ExAMPLE 1.1.7. (ldempotents) Let R be a ring and ¢* = ¢ € R an idempotent.
Then we have a recollement

R/R€R®R_ Re@eRe_
/.—\ //6_7\
Mod-R/ReR — Mod-R —— . Mod-cRe

vv

Hompg(R/ReR,—) Homcge(eR,—)
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where the category Mod-R/ReR of (left) modules over R/ReR is the kernel of the
functor e(—): Mod-R — Mod-eRe. Note that if R is semiprimary, then any idempo-
tent ideal I is of the form ReR for an idempotent e € R, see [45]. Hence idempotent
ideals in semiprimary rings induce recollements of module categories. The recollement
R(Mod-R/ReR,Mod-R, Mod-ecRe) is said to be the recollement of Mod-R induced by
the idempotent element e. In the last section of this Chapter we show that a recolle-
ment whose terms are module categories is equivalent to one induced by an idempotent
element, thus answering a question by Kuhn in [82].

We now turn our attention to recollement arising from a ring with two idempotent
elements.

ExAMPLE 1.1.8. (Morita Contexts) Let R, S be rings, M a S-R-bimodule and N
a R-S-bimodule. Let ¢: M ®gr N — S be a S5-S-bimodule homomorphism and let
Y: N ®s M — R be a R-R-bimodule homomorphism. Then the above data allow us

to define the Morita ring:
A _ R RNS
(¢,1) sMr S
where the addition of elements of A is componentwise and multiplication is given by
ron\ (" on"\ _ (rr'+Y(nem) rn' + ns'
m s m s mr’ 4+ sm/ ss' + p(m@n')

The Ap)-modules are tuples (XY, f,g) where X € Mod-R, Y € Mod-S, f: M ®p
X — Y and g: N ®sY — X such that the following diagrams are commutative:

N®5M®RXM>N®5Y M®RN®5Y1M—®£M®RX
o] b ] I
R®p X —— X S®gY —— Y

If (XY, f,g)and (X', Y’, f',¢') are A y)-modules, then a morphism (X,Y, f,g9) —
(X",Y", f',¢') in Mod-A 44 is a pair of homomorphisms (a,b) where a: X — X' is a
morphism in Mod-R and b: Y — Y” is a morphism in Mod-S such that the following
diagrams are commutative:

MopX -1 sy NosY L= X
1]\4®al jb 1N®bl ja
MepX sy NogY' -4 X/

Then from Example 1.1.7 using the idempotent elements e; = (1§ 8) and ey = (8 105)

of Ay, we derive the following recollements of abelian categories:

A/A61A®A— A61®61A€17
/_\ ‘/e—\
Mod-A/Aer A —"— Mod-A gy — -~ Mod-e;Ae;
\_/ ‘\/

Homa (A/Ae1A,—) Home, A, (e1A,—)
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A/AezA@A— A€2®62A62_
/.\ /QT\
Mod-A/AesA ——— Mod-A (4.4 — '~ Mod-ezAey
\/ \_/
HOI’T‘U\(A/AEQA,*) HOme2Ae2 (62A7,)
where Mod-A/Aej A ~ Mod-S/Im ¢, Mod-e;Ae; >~ Mod-R, Mod-A/AesA ~ Mod-R/ Im 4
and Mod-S ~ Mod-e5Aes.
Typically rings of the form Ay arise as endomorphism rings A = Endy (X ® Y'),

where X and Y are arbitrary objects in an additive category M: clearly then we have
an isomorphism

A~ Endy(X)  Homy(X,Y)
~ \Homy(Y, X)  Endy(Y)
Idx 0

Then setting ex = ( h o) and ey = (8 I(?Y ), as above we obtain the recollements of
abelian categories:

— —
Mod-Endy(Y')/Im ¢ Mod-A Mod-Endy(X)

\_/

— T —
Mod-Endy(X)/Im1) Mod-A Mod-Endy(Y)

\_/
For a general study of Morita rings via extensions of abelian categories see Chapter
3. In Chapter 4 we study the representation theory of such rings under some restrictions.

The following example is a special case of the above recollement situation and arises
in the Galois theory of noncommutative rings.

ExAaMPLE 1.1.9. (Skew Group Rings and Invariant Subrings) Let R be a ring and G
be a finite group of automorphisms of R. Associated with R and G we have the fixed
ring R = {r € R | g(r) = r for every g € G} and the skew group ring R * G =
{>yca 799 | T4 € R} with multiplication given by the rule (rg)(sh) = rg~'(s)gh for
every 7,5 € R and g,h € G. Then the ring R is a left and right R“-module, R is a left
and right R * G-module and we have bimodule homomorphisms ¢: R®pc R — R*x G

and ¢: R @p.q R — RO, see [38]. Then the Morita ring Ay = (B G2, ) is defined
and the following diagrams:
— — T
Mod-R x G/ Im ¢ Mod- (& 2 .) Mod-R¢
S~ —_ \/
— — T
Mod-R/Im 1) Mod- (B B .) Mod-R x G
\_/ \/

are recollements of module categories by Example 1.1.8.
The homological theory of the next example was studied in [14].

EXAMPLE 1.1.10. (Trace Ideals) Let A be an Artin algebra and U a two-sided idem-
potent ideal in A, so U = AeA for some idempotent element of A. Then we know

from [14] that U = 7p(A) for some projective A-module P, where 7p(A) is the trace of
P in A. Recall that 7p(A) is the ideal Y Im f where f ranges over Homy (P, A). Also
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associated with A we have the Artin algebras A/U and I' = End,(P). Then we have
the following recollement of abelian categories:

A/u®A— P®F—
mod-A /U — mod-A 2D og
\/ \_/

Hom (A/U,—) Homp (Homp (P,A),—)

More generally, let R be a ring and P a finitely generated projective R-module. Then
as above we have a recollement (Ker Homg (P, —), Mod-R, Mod-I"), where I" = Endg(P).
Note that Ker Homg (P, —) is a module category: by a result of Auslander there exist a
uniquely determined idempotent ideal a of R such that Ker Homg(P, —) = Mod-R/q,
see [12], where we refer for the explicit description of the ideal a.

The following example shows that the module category of a left Artinian ring can
be placed always in the right part of a recollement.

ExAMPLE 1.1.11. (Artinian Rings) Let A be a left Artinian ring. Then by a ba-
sic result of Auslander, see [10], there exists a semiprimary ring I' (i.e. the Jacob-
son radical tp is nilpotent and I'/tr is semisimple) of finite global dimension and an

idempotent element e € T' such that A ~ el'e. Therefore, we have the recollement
(Mod-T'/Tel’, Mod-T", Mod-A).

ExXAMPLE 1.1.12. (Comma Categories) Let G: 8 — </ be a right exact functor
between abelian categories. The objects of the comma-category € = (G, A, <), denoted
also as € = (Id | G), are triples (A, B, f) where f: G(B) — A is a morphism in 7.
A morphism v: (A, B, f) — (A", B’, f’) in € consists of two morphisms a: A — A’
in o/ and f: B — B’ in & such that foa = G(5) o f'. It is well known that the
comma category % is abelian since the functor G is right exact. Assume that G has a
right adjoint G': &/ — % and let e: GG’ — 1d,, be the counit and n: Idyp — G'G
be the unit of the adjoint pair (G,G’). We define the following functors:

(i) The functor Ty: B — € is defined by T»(Y) = (G(Y),Y,Idgy) on objects
Y € % and given a morphism : Y — Y’ in & then T4(3) = (G(B), 5) is a
morphism in %.

(ii) The functor Ug: € — A is defined on objects (A, B, f) € € by Ug(A, B, f) =
B and given a morphism (v, 8): (A, B, f) — (A, B’, f') in € then Ug(a, B) =
£ is a morphism in A. Similarly we define the functor U, : ¢ — 7.

(iii) The functor Zg: 8 — € is defined on objects Y € Z by Z4(Y') = (0,Y,0)
and given a morphism : Y — Y’ in & then Z4(5) = (0, 3) is a morphism
in €. Similarly we define the functor Z, : & — €.

(iv) The functor q: € — &7 is defined on objects (A, B, f) € € by q(A, B, f) =
Coker f and if (o, B): (A, B, f) — (A, B’, f’) is a morphism in % then we
have the induced morphism q(c«, 5): Coker f — Coker f’.

(v) The functor Hy: &/ — % is defined on objects X € & by Hy(X) =
(X,G'(X),ex) and given a morphism a: X — X' in & then Hy(a) =
(o, G'(0)) is a morphism in %

(vi) The functor p: € — £ is defined on objects (A, B, f) € € by p(A, B, f) =
Ker (ng o G'(f)) and if (o, B): (A, B, f) — (A, B’, f') is a morphism in ¢
then we get the morphism p(«, 5): Ker (ng o G'(f)) — Ker (ng o G'(f')).
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It is easy to check that the above data define the following recollements:

o € # and A (2 o

Uy Zop P Hgs

EXAMPLE 1.1.13. (Subcategories) Let € be a skeletally small additive category and
let X a full subcategory of €. Let i: X — % be the inclusion functor. We denote
by Mod-% the category of additive functors €°P — 2Ab to the category 2Ab of abelian
groups. It is well-known that the restriction functor res: Mod-¢ — Mod-X, G +—
res(G) = G oi is exact and admits a fully faithful left and a fully faithful right adjoint,
see [12] and [79]. Its kernel Kerres is identified with the full subcategory of Mod-%
consisting of all functors F': €°°P — 2Ab vanishing on X and this last category is
equivalent to the module category Mod-%"/X over the stable category € /X. It follows
from Remark 1.1.3 that the triple (Mod-% /X, Mod-%, Mod-X) is a recollement of abelian
categories. An interesting special case of the above recollement situation is the following.
Let A be an Artin algebra and let X be a full subcategory of mod-A containing the
projectives. Then we have the recollement (Mod-X, Mod-X, Mod-A) where X is the
stable category of X modulo projectives.

We continue with the following classical example of a recollement of abelian cate-
gories arising in Algebraic Geometry. We refer to [71], [72], and to the stacks project
[122] for more details on sheaves over topological spaces.

ExXAMPLE 1.1.14. (Sheaves over topological spaces) Let X, Y be two topological
spaces and f: X — Y a continuous map. Let F be a presheaf of sets on X. Then for
every open subset V' of Y the pushforward of & is defined by

LIWV) =3(fH(V))

where f~1(V) is an open subset of X since the map f is continuous. Then it is easy
to see that we have a functor f.: PSh(X) — PSh(Y'), where PSh(X), resp. PSh(Y),
is the category of presheaves of sets on X, resp. Y. The functor f, has a left adjoint
defined by

f,: PSh(Y) — PSh(X), § + £,S(U) = colim sy §(V)

where the colimit runs over the open neighbourhoods V' of f(U) in Y. Consider now a
sheaf F of sets on X. We write Sh(X) for the category of sheaves of sets on X. Since
f is continuous it follows that the pushforward f.F of F is a sheaf of sets on Y. Then
we obtain a functor

r: Sh(X) — Sh(Y), F — rF(V) =F(f1(V))

which has a left adjoint as well. If G is a sheaf of sets on Y, then the left adjoint is
defined by

e: Sh(Y) — Sh(X), § — e§ = (fpg)Sheaf
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where ( fPS)Sheaf is the sheafification of the presheaf f,G and is called the pullback sheaf.
In other words the functor e is the following composition:

(7)Sheaf fp
Sh(X) — " . PSh(X) L PSh(Y) =" Sh(Y)

e:incofpo(—)Sheaf
where sheafification (—)°¢f is a left adjoint of the inclusion functor Sh(X) — PSh(X)
and f, is the left adjoint of the pushforward f, on presheaves.

Let X be a topological space as above and consider now U an open subspace of
X. Denote by F' the complement of U in X. For simplicity we denote again by Sh(X)
the category of sheaves of abelian groups on X. Recall that an abelian sheaf on X is
an abelian presheaf on X such that the underlying presheaf of sets is a sheaf. In the
setting of abelian sheaves we also have the pullback functor e: Sh(X) — Sh(U), the
pushforward functor r: Sh(U) — Sh(X) and (e, r) is an adjoint pair. But moreover in
this case (U C X) the functor e has a simplest description. In particular we have

e: Sh(X) — Sh(U),§ + eS(V) = (V)

for V' open subset of U, and the sheaf €3 is called the restriction of G to U. It turns out
that for an open immersion U — X the functor e has a left adjoint defined as follows,
first on presheaves:

FV) VcU
l,: PSh(U) —» PSh(X), F
0 Vegu

and then if F is an abelian sheaf on U we define I: Sh(U) — Sh(X) to be (1,F)%hef,
i.e. the sheafification of the abelian presheaf |,J. Thus so far we have the adjoint triple
(l,e,r):

T
Sh(X) < Sh(U)
\_/

r

and since el ~ Idsy) we infer that the functors | and r are fully faithful. The kernel
of the pullback functor e consists of all sheaves F of abelian groups on X such that for
every open subset V of U we have F(V) = 0. Hence Kere consists of all sheaves of
abelian groups on the complement of U, i.e. on F = X\U. Then from Remark 1.1.3
we have the following recollement of abelian categories:

q I

Sh(F) : Sh(X) z Sh(U)
\B/‘\r/

Consider again a topological space X and U an open subset. Let Ox be a sheaf of
commutative rings on X and denote by Oy, resp. Op, the restricted sheaves of rings
on U, resp. F. Then the abelian categories Mod-Op, Mod-0O x, Mod-Oy, of sheaves of
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modules are related via the following recollement :

q |

Mod-O g ' Mod-0 x - Mod-Oy
\_/ \_/
p r

where the above functors are defined in a similar way. For more information on Sheaves
on Spaces and the use of the above recollements in Algebraic Geometry we refer to the

book [43], see also Chapter 6 of the Stacks project [122].
EXAMPLE 1.1.15. (Generic Representations, Kuhn [81-83]) Let F, be a finite field
of characteristic p and order |F,| = ¢ = p°, where p is a fixed prime. Denote by

My (F,) the multiplicative semigroup of k x k matrices over F, and by GLx(F,) the
general linear group over F,. Consider the categories of modules Mod-F,[GL;(F,)] and
Mod-F,[M(F,)], where F,[GL%(F,)] is a group algebra and F,[M(F,)] is a semigroup
algebra. Then for R = F,[M;(F,)] and

(I O
(5 0)
we derive from Example 1.1.7 that the following diagram:

q |

Mod-F,[GLx(F,)] ' Mod-F,[M(F,)] = Mod-F,[Mj_1(F,)]
\_/ \_/
p r

is a recollement of abelian categories. Note that the ideal ReR consists of all noninvert-
ible matrices and therefore R/ReR = F,[GLi(F,)]. We refer to Kuhn [81-83] for more
details on the above recollements and their uses in generic representation theory.

The last example shows a natural way that recollements of abelian categories arise
from recollements of triangulated categories.

EXAMPLE 1.1.16. (Recollements of Hearts, [22, Beilinson-Bernstein-Deligne|) Let
Ri(U, T, V) be a recollement of triangulated categories, i.e. we have three triangulated
categories U, T and V and the following triangulated functors between them:

u ! T k Vv Rer(U, T, V)
\_/ \_/
p r

satisfying the analogues axioms as in the abelian case, that is (l,e,r) and (q,i, p) are
adjoint triples, the functors i, I, and r are fully faithful and Imi = Kere, see Definition
5.1.1 for more details. Recall from [22] that a t-structure in a triangulated category
T is a pair (T=0 T20) of full subcategories such that setting T=" = £7(T=%) and
J2n = ¥7(T2Y), ¥n € Z, the following conditions are satisfied :
(i) Homg(T<% 721 =0, i.e. Homg(X,Y) =0 VX € T=0 and VY € T=1.

(ii) T=0 C T<! and T2 C 720,

(iii) For every D € T there exists a triangle X — D — Y — (X)) such that

X eT0andY € 721
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Then from [22] it follows that the heart H = T<9 N T=20 of a t-structure (T=°,T=9) is
an abelian category and we have the full embedding e: H — 7.

Let Ty = (U=, U=0) be a t-structure in U and Ty = (V= V=0) be a t-structure in
V. Then from [22] we have the t-structure Tq = (T=Y,T2) in T defined by

TV={zeT|e(X)e V=" and q(X) e U™"}

and
T20 — {:p €T |e(X)eV=? and p(X) € UZO}

Consider the hearts Hy, Hy and Hy of the corresponding t-structures Ty, Ty and Ty.
Then we claim that the following diagram:

Hy | Hy — Hy Rab (Hu, H, Hy)

is a recollement of abelian categories. To show this we need to recall some basic facts
about t-structures in triangulated categories.

Let T be a triangulated category with suspension functor 3 and let (T7=° T2°) be
a t-structure in J. Associated to the t-structure (7=, T2%) are the truncation functors
7S JSm — T and 72": 2" — T. Let D be an object of T. Then from (iii) there
is a triangle X — D — Y — 3(X) such that X € T=0 and Y € T=!. Thus we
have the triangle ¥"(X) — ¥"(D) — YY) — X1 X) with ¥7(X) € T=0 and
YY) € 721 and therefore we obtain the triangle:

X D Y S(X)

with X € TS and Y € T=2"*!, Let D' € T, f: D — D’ a morphism and X' —
D' — Y’ — Y(X') a triangle as above with X’ € T=" and Y’ € T=""'. Since
Homg(X,Y’) = 0 we have the following commutative diagram:

X D Y S(X)
A
X' D’ Y S(X)

and since Homg(X,X71(Y”)) = 0 it follows that the maps g and h are unique. Thus
for D' = D and f = Idp we infer that the objects X and Y are unique up to a
unique isomorphism. Then the truncations functors are defined on objects D € T by
7St IS — J, rS(D) = X, and 72"t 0l F 2t (D) = YV and given a
morphism f: D — D’ then 7="(f) = g and 7=""1(f) = h. Hence for any object D of
T there is a triangle

75(D) — D —= 72"*1(D) —= 5(r<7(D))

where 7="(D) € T<" r="*1(D) € 72"*! and the morphism 7="*!(D) — X(7="(D))

is uniquely determined. Note that the truncation functor 7=" is a right adjoint of the

inclusion functor 7" — T and also the truncation functor 7="*! is a left adjoint of

the inclusion functor 72" — T. To proceed we need the following functor:

H: T — Hy =T"NT7° X — H'(X) =7775°(X) ~ 7=°77°(X)
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It is not difficult to check that the object H*(X) = 72°7=9(X) lies in the heart Hy and
the functors 72°7= and 759729 are isomorphic.
Let T and V be two triangulated categories with t-structures (T=°, T72°) and (V=°, V=9)

respectively. A functor e: T — 'V is called

(i) left t-exact if e(T=0) C V=0,
(ii) right t-exact if e(T<%) C V=0 and
(iii) t-exact if e is both left t-exact and right t-exact.

Assume that the functor e has a right adjoint r: V. — 7. Then from [22] the functor
e is right t-exact if and only if r is left t-exact and moreover if these conditions are
satisfied then we have the adjoint pair (H} o e o ey, HJ or o ey) between the hearts Hy
and Hy. For more details on t-structures we refer to [22], [57], [72, Chapter X] and
the lecture notes of Milicic [93].

Consider the following diagram:

u T A% Re (U, T, V)
\/ \/
p r
HY, €y HY ex HY, €y HO €
q’ I
Hy Hy Hy Rab (FH, Hyg, Hy)
~_ ~_

where the functors of Rap(Hy, He, Hy) are defined as follows:

q =Hjoqoes '=HYoloey
i =HYoioey € =HYoeoes
p=Hjopoer ' =Hloroey

We have:

(i) (I',¢,r') is an adjoint triple.
From the above and since (I, e,r) is an adjoint triple, it remains to show that
| is right t-exact, e is left t-exact or right t-exact and r is left t-exact. Let
X € V=0 Then I(X) € T=Y since e(I(X)) ~ X € V=0 and q(I(X)) = 0 € U=O.
Thus | is right t-exact and in the same way we get that e and r are left t-exact.
(i) (d',1,p") is an adjoint triple.
Similarly as in (i) our statement follows.
(iii) The functors i, I" and r’ are fully faithful.
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We first show that the functor I': Hy — Hsq is fully faithful, equivalently the
unit Ids;, — €'l' is an isomorphism. Let Y be an object of Hy. Then we have

elY) = HyeerHIlep(Y)
= Hyeer HI(I(Y))

= Hyeer(r=°(I(Y))) I: right t-exact
= Hyer™(I(Y))

~ Hy7=%el(Y) e: t-exact

~ Hy7°(Y)

=Y

Thus the functor I’ is fully faithful. Then since (I',€/,r") is an adjoint triple
we infer that the functor r’ is fully faithful as well. Similarly, using that the
functor i: U — T is t-exact we derive an isomorphism q'i'(X) ~ X for every
X € Hy. Hence the functor i': Hy — Hq is fully faithful.
(iv) Imi" = Kere'.

Let X € Hy. Since the functor i is t-exact it follows that i(X) € Hy. Thus
i’ = i restricting on the heart Hy and similarly since e is t-exact we have ¢’ = e
on the heart Hy. Then i’ o€’ =ioe=0.

Finally, after the above, we infer that R,,(Hy, Hq, Hy) is a recollement of abelian cat-
egories, called the recollement of hearts.

1.2. Recollements of Abelian Categories and TTF-triples

Throughout, ./ denotes an abelian category and all subcategories considered are
strict (i.e. closed under isomorphisms). In this section we discuss some aspects of
TTF-triples in abelian categories and our aim is to establish a correspondence between
recollements of abelian categories and certain TTF-triples. We start by defining torsion
pairs.

DEFINITION 1.2.1. [42,121] A torsion pair in ¢/ is a pair (X,Y) of full subcate-
gories satisfying the following conditions:
(i) Hom,(X,Y) =0, i.e. Hom (X, Y)=0VX € X, VY € Y;
(ii) For every object A € o7, there are objects X, in X and Y* in Y and a short
exact sequence

0—X4—A—Y4——50

Given a torsion pair (X,Y) in o, we say that X is a torsion class and Y is a
torsion-free class. It follows easily from the definition that

X = °Y={Ae & :Homy(AY)=0,VY € Y}

Yy = X°:={A e« :Homy,(X,A)=0,vX € X}
and that the assignment Ry(A) = X, (respectively, Ly(A) = Y4) yields an additive
functor Ry: & — X (respectively, Ly: &/ — Y) which is right (respectively, left)
adjoint of the inclusion functor iy: X — & (respectively, iy: Y — 7). Hence, X

(respectively, Y) is a reflective (respectively, coreflective) subcategory of o7. Moreover,
the endofunctors iyRy and iyLy satisfy:

e ixRy is a radical functor, i.e., there is pu: ixRy — Id, a natural transfor-
mation such that 4 is a monomorphism and ixRy(Coker pi4) = 0.
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e iyLy is a coradical functor, i.e., there is v: Id,, — iyLy a natural transfor-
mation such that p14 is an epimorphism and iyLy(Kerv,) = 0.

e Both ixRy and iyly are idempotent, i.e., both g, (1) and v;,1,(4) are iso-
morphisms, for all A in <.

In fact, there are bijections between torsion pairs in .o/, idempotent radical functors
F: o/ — o/ and idempotent coradical functors G: &/ — /. Thus, the endofunctors
ixRyx and iyLy determine the torsion pair uniquely, for more details see [42, Theorem
2.8], [100, Theorem 1.2].

We continue by illustrating the notion of torsion pair with two standard examples
in the category of abelian groups.

ExAMPLE 1.2.2. Consider the category of abelian groups Mod-Z and let T (re-
spectively, F) denote its full subcategory of abelian groups whose elements have finite
(respectively, infinite) order. Let G be an abelian group and denote by T(G) = {g €
G | 3n € N : g" = e} its torsion subgroup, i.e. the subgroup of G formed by its ele-
ments of finite order. Note that T'(G) is a normal subgroup of G and the quotient group
F(G) = G/T(G) is the torsion-free quotient group of G. Then we have the following
exact sequence of abelian groups:

0—=T(G)—= G —= F(G) —=0

and clearly Homz(T,F) = 0. Thus (7,F) is a torsion pair in Mod-Z. Moreover, the
right adjoint Ry to the inclusion functor ¢g is given by associating to an abelian group
its torsion subgroup. It is clear that i3 Ry is an idempotent radical functor and that it
determines T as the class of objects X such that izRy(X) = X.

More generally, for a domain R and M an R-module consider its torsion submodule:

tM ={m & M | rm =0 for some nonzero r € R}

Then M is a torsion module if tM = M and is torsion-free if tM = {0}. Note that if
R is not a domain, tM is not necessary a submodule of M. We denote by X, the full
subcategory of Mod-R consisting of all torsion R-modules and by Y the full subcategory
of Mod-R formed by the torsion-free R-modules. Then it is easy to see that for every
R-module M there is an exact sequence 0 — tM — M — M/tM — 0 where
tM € X and M/tM € Y, and Homg(X,Y) = 0 for every X € X, and Y € Y. Hence
(X, Yir) is a torsion pair in Mod-R.

ExAMPLE 1.2.3. Let Mod-Z be the category of abelian groups. Let & be the full
subcategory of divisible groups and R the full subcategory of reduced groups. Recall
that an abelian group G is called divisible if for every € G and every positive integer
n there exists an element y € G such that ny = x. Typical examples of divisible abelian
groups are the rational numbers Q and the real numbers R. Another example of a
divisible group is Z/p>. Denote by D(G) the subgroup of G generated by all divisible
subgroups of G. Note that D(G) is divisible subgroup of G and G is called reduced if
D(G) = 0. We will show that (Z,R) is a torsion pair in Mod-Z.

(i) Let f: D — R be a homomorphism of abelian groups with D € 2 and R € R.
First note that Im f is divisible. Indeed, let y = f(x) and n > 0. Since z € D and D
is divisible there exists an element d € D such that nd = x. Then nf(d) = f(nd) =
f(x) = y and thus Im f is a divisible subgroup of R. But since R is reduced it follows
that f = 0. Hence Homz(Z,R) = 0.
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(ii) Recall that a group G is divisible if and only if it is an injective object in the
category of abelian groups. This implies easily that any divisible subgroup D of G is a
direct summand of G. Consider the divisible subgroup D(G) of G. Then we have

G=DG) @ H
and we claim that H is reduced. Since the divisible subgroup D(H) of H < G is
contained in D(G) and D(G) N H = 0 it follows that D(H) = 0, i.e. H is reduced.
Thus every group G splits as a direct sum G = D(G) @ H where D(G) is the divisible

subgroup of G and H is a reduced subgroup of G. Then we have the short exact sequence
of abelian groups:

0—D(G) —=G—> H——>0

Hence (2,R) is a torsion pair in Mod-Z. In fact (2, R) is a split torsion pair since
for every abelian group G the torsion subobject D(G) of G is a direct summand of G.

Often, torsion and torsion-free classes can be identified by closure properties. Recall
that o7 is said to be well-powered ( [121] ) if the class of subobjects of any given
object forms a set.

PROPOSITION 1.2.4. [/2, Theorem 2.3] Let &/ be a well-powered, complete and
cocomplete abelian category. A full subcategory X is a torsion (respectively, torsion-free)
class if and only if it is closed under quotients, extensions and coproducts (respectively,
subobjects, extensions and products).

Recall from [121] that a torsion pair (X,Y) in < is hereditary if X is closed under
subobjects and cohereditary if Y is closed under quotients. We will be interested in
classes which are both torsion and torsion-free.

DEFINITION 1.2.5. [121] A triple (X,Y,2) of full subcategories of </ is called a
torsion torsion-free triple (TTF-triple, for short) (and Y is a TTF-class) if (X, Y)
and (Y, Z) are torsion pairs.

Clearly, if (X,Y,2) is a TTF-triple in o7, then the torsion pair (X,Y) is cohereditary
and (Y, 2) is hereditary. By Proposition 1.2.4, when 7 is well-powered, complete and
cocomplete, a full subcategory Y of o7 is a TTF-class if and only if it is closed under
products, coproducts, extensions, subobjects and quotients. We refer to [30] for further
details on torsion theories and TTF-triples in both abelian and triangulated categories.
In ring theory, TTF-triples are well understood due to the following result of Jans, which
establish a bijection between TTF-triples and idempotent ideals and it will be proved
in section 1.3 (Proposition 1.3.4) using our results on TTF-triples of abelian categories.
Note that by an idempotent ideal of a ring A, we mean a two-sided ideal I of A such
that I? = 1.

THEOREM 1.2.6. [69, Corollary 2.2] There is a bijection between TTF-triples in
Mod-A and idempotent ideals of the ring A.

We start with an adaptation of the classical bijection between torsion pairs and idem-
potent radicals to TTF-triples. This will, later, yield a proof for Jans’ correspondence
of Theorem 1.2.6.

PROPOSITION 1.2.7. Let & be a well-powered, complete and cocomplete abelian cat-
egory 7 . There are bijections between the following classes:

(i) TTF-triples in < ;
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(i) Left exact radical functors F: of — of preserving products;
(i) Right exact coradical functors G: o/ — o preserving coproducts.

PROOF. We show a bijection between (i) and (ii) (a bijection with (iii) can be
obtained dually). Let (X,Y,2) be a TTF-triple in /. The TTF-class Y is clearly
bireflective and, hence, the inclusion functor iy of Y in &7 admits a left adjoint Ly and
a right adjoint Ry. Thus, iy is exact and iyRy is a left exact radical functor preserving
products. We define a correspondence:

d: (DC,H,Z) P (IyRy%—)%)

Given a left exact radical functor F': &/ — o/ preserving products, it is easy to see
that F' is idempotent and (Yr := {A € &7 | F(A) = A}, Y% = Ker F') is a hereditary
torsion pair (see also [121, Proposition VI.1.7]). Since F' preserves products, Yp is
closed under products and thus, Proposition 1.2.4 shows that Y is a TTF-class. Hence,
we can associate a T TF-triple to F as follows.

\D:F — (OyFangy%‘)
Finally, it easily follows that ® and ¥ are inverse correspondences. O

REMARK 1.2.8. To be left exact and to preserve products is the same as to commute
with limits and dually to be right exact and to preserve coproducts is the same as to
commute with colimits, see [94].

For a subcategory Y of & closed under subobjects, quotients and extensions, Gabriel

constructed in [54] an abelian category .27 /Y with morphisms
Hom y(e(M),e(N)) = lim  Homy (M’ N/N'). (1.2.1)
N/<N:N'ey

M/'<M:M/M’'eYy

Such a subcategory Y is called a Serre subcategory and it yields an exact and essen-
tially surjective quotient functor e: &7 — &7 /Y. A Serre subcategory Y is said to be
localising (respectively, colocalising) if j* admits a right (respectively, left) adjoint.
Moreover, it is said to be bilocalising if it is both localising and colocalising. These
properties are related to the structure of subcategories orthogonal to Y with respect to
the pairings Hom,,(—, —) and Ext!,(—, —) (in the sense of Yoneda), i.e.,

Y. ={Ac .o :Hom,(AY)=0=Ext,(4,Y),VY €Y} and

Yt = {A c o : Hom,(Y,A) = 0= Extl, (Y, A),VY € Y}.

THEOREM 1.2.9. [56, Lemma 2.1, Proposition 2.2] The following hold for a Serre
subcategory Y of .

(i) The quotient functor e induces fully faithful functors Y+ — o /Y and +Y —
/Y.
(i) The functor e: Y+ — &7 /Y is an equivalence if and only if Y is localising, in
which case a quasi-inverse for e is its right adjoint r.
(iii) The functor e: *Y — &7 /Y is an equivalence if and only if Y is colocalising,
in which case a quasi-inverse for e is its left adjoint |.
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Localisations and colocalisations with respect to a torsion pair (X,Y) in 7 first
appeared in [54] (see also [100], [121]). As in [100], we say that (X,Y) is strongly
hereditary, (respectively strongly cohereditary), if there is a functor L: &/ — o/
(respectively, C: o/ — &7), the localisation, (respectively the colocalisation) func-
tor with respect to (X,Y), and a natural transformation ¢: Id,, — L (respectively,
¢: C — Id,) such that, for all A in &

(i) Ker g, Coker g4 € X (respectively, Ker4, Cokeris € Y);
(ii) L(A) € Y (respectively, C(A) € X);
(iii) L(A) is X-divisible (respectively, C(A) is Y-codivisible), meaning that the
functor Hom (—,L(A)) (respectively, Hom, (C(A), —)) is exact on exact se-
quences, 0 - K — M — N — 0, with N € X (respectively, K € Y).

The embedding in 7 of ImL, the Giraud subcategory of ./ associated with (X,Y),
admits an exact left adjoint such that L is given by the composition of the functors and
¢ is the unit of this adjunction ( [100]). Also, ImL is the full subcategory of X-divisible
objects of Y. Dual statements holds for Im C.

DEFINITION 1.2.10. We say that a TTF-triple (X,Y,2) in & is strong if (X,Y) is
strongly cohereditary and (Y, 2) is strongly hereditary.

If o7 has enough projectives (respectively, injectives), then by [100, Theorem 1.8-
1.8%], a torsion pair is cohereditary (respectively, hereditary) if and only if it is strongly
cohereditary (respectively, strongly hereditary)

The next result identifies TTF-classes which are localising and colocalising.

LEMMA 1.2.11. Let (X,Y,2) be a TTF-triple in o7. Then'Y is a localising subcategory
of o if and only if (Y,2) is a strongly hereditary torsion pair. Dually, Y is a colocalising
subcategory if and only if (X,Y) is a strongly cohereditary torsion pair.

PROOF. It is enough to prove the first statement. Suppose that the torsion pair
(Y,2) is strongly hereditary. Let L and ¢: Id,, — L be the associated localisation
functor and natural transformation, respectively, and e: &/ — &7 /Y the quotient
functor. Recall that L = ¢l, where i: § — & is the inclusion functor of the Giraud
subcategory G :=ImL in &/ and [ is its left adjoint. We observe that ei: § — &/ /Y is
an equivalence. It is essentially surjective since it is easy to check that e¢ is a natural
equivalance between e and eL. On the other hand, it is fully faithful by the description
(1.2.1) of morphisms in 7 /Y. Indeed, given M and N in G, there are no subobjects of
N lying in Y and, for all subobjects M’ of M such that M/M’ lies in Y, Y-divisibility
guarantees that Hom,, (M’, N) = Hom (M, N). Since both ei and [ have right adjoints
then so does (ei)l = el = e.

Conversely, suppose that Y is a localising subcategory of o/ and let r: &/ /Y — &/
be the right adjoint of the quotient e: &/ — &7 /Y. Given any object A in &7, consider
the map given by the unit of the adjunction ¢4: A — re(A). We will show that this
is a localisation with respect to (Y,Z). By Theorem 1.2.9, re(A) lies in Y+ and, thus, in
Z =Y°. Since e is exact and er = Id sy, it is also clear that e(Ker ¢4) = 0 = e(Coker ¢4)
and, thus, both Ker ¢4 and Coker ¢4 lies in Y. Finally, since Extl, (Y, re(A)) = 0 for all
Y in Y, re(A) is Y-divisible, as wanted. O

REMARK 1.2.12. In Lemma 1.2.11 we in fact prove that, if Y is a localising subcate-
gory and r is the right adjoint of the quotient functor e: &/ — &7 /Y, then the Giraud
subcategory G associated to the strongly hereditary torsion pair (Y,2) coincides with
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Y+, Similarly, the Co-Giraud subcategory H of 7 induced by the strongly coheredi-
tary torsion pair (X,Y) (formed by the Y-codivisible objects of X) coincides with the
subcategory Y.

Our aim is to establish a correspondence between recollements of abelian categories
up to equivalence and strong TTF-triples. For this reason we define an equivalence
relation on the class of recollements of . Although seemingly artificial, Lemma 1.2.14
shows that Definition 1.2.13 is natural.

DEFINITION 1.2.13. Two recollements R,,(7, B, €) and Ry, (&', #',€") are equiv-
alent if there are equivalence functors ®: Z — % and ©: ¥ — €’ such that the
diagram below commutes up to natural equivalence, i.e. there is a natural equivalence
of functors between ©e and &'®.

B—%C

o oo
%/ ;’_ %/

LEMMA 1.2.14. Two recollements Rap (2, B,%€) and Ry, (', B',€") are equivalent

if and only if there are equivalences ®: B — B, V. of — &' and ©: € — €’

such that the siz diagrams associated to the six functors of the recollements commute up
to natural equivalences.

PRrROOF. The condition in the lemma is clearly sufficient to get an equivalence of
recollements. Conversely, suppose that we have an equivalence of recollements as in
Definition 1.2.13. Recall that left (or right) adjoints of naturally equivalent functors are
naturally equivalent. Thus, the left (or right) adjoints of ©e and of €'® are equivalent.
Such adjoints can be obtained by choosing a quasi-inverse of the equivalences ¢ and
©. Using then the fact that the composition of two quasi-inverse functors is naturally
equivalent to the identity functor, we easily get the desired natural equivalences between
®l and I'© and between ®r and r'©. Up to equivalence, the two recollements are uniquely
determined by these functors (see Remark 1.1.3). Let W be the restriction of ® to Kere
(which is equivalent to &), where e: 8 — %. Then, the diagram associated with
the inclusion functor i: Kere — Z clearly commutes and so do the other two, by an
adjunction argument analogous to the one above. O

We summarize next the above discussion about equivalent recollements:

q [ q [
o B € — N4 B '3
~_ __— ~_ _~ (7,2,0) ~_ __— ~_

p r p r

Def e

1.2.13 @ Cg
@lN Nj@
%/ L’) %/
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Equivalences of recollements whose outer equivalence functors (¥ and © in the
lemma) are the identity functor have been studied in [50]. Equivalences of recollements
of triangulated categories also appear in [107, Theorem 2.5].

In the following theorem, we use the fact that structural properties of %, such as
TTF-triples, are preserved under equivalence.

THEOREM 1.2.15. Let & be an abelian category. The following are in bijection.

(i) Equivalence classes of recollements of abelian categories Rap(<f, B, F);
(ii) Strong TTF-triples (X,Y,2) in B;
(iii) Bilocalising TTF-classes 'Y of A;
(iv) Bilocalising Serre subcategories Y of A.

PROOF. Let R,,(7, B, %) be a recollement of A. Firstly, (Kerq,i(<7),Kerp) is a
TTF-triple in #. The adjoint triple (q,i, p) ensures that

Homy(Kerq,i(47)) = 0 = Homy(i(27), Ker p)
Let B be an object of 4. From Proposition 1.1.6, we have an exact sequence

0 — Ker g — le(B) 22~ B ——iq(B) — 0
where Ker g lies in i(«7). Applying the right exact functor q to the sequence, we see
that q(Im ppg) = 0. Thus, the sequence

0 —Imup — B—iq(B) —0

shows that (Kerq,i(<)) is a torsion pair. Similarly, the exact sequence induced by
vp: B — re(B) can be used to show that (i(.2), Kerp) is a torsion pair in Z. Since
Rab(7, #B,%€) is a recollement, i(<7) is a bilocalising subcategory of %. Hence, by
Lemma 1.2.11, the torsion pairs (Ker q,i(<7)) and (i(.27), Ker p) are, respectively, strongly
cohereditary and strongly hereditary and (Kerq,i(</),Kerp) is a strong TTF-triple.
Note that this TTF-triple depends only on the equivalence class of the recollement.
Indeed, if Ryp (7, #B',€”) is a recollement equivalent to Ry, (7, o7, €) via an equivalence
O: B — A, then the corresponding TTF-class of A associated to it is given by ®i'(.27”)
which coincides, by Lemma 1.2.14, with i(.2/).

We construct now an inverse correspondence (see also [100, Theorem 4.5]). Let
(X,Y,2) be a strong TTF-triple in #. Since Y is a TTF-class, it follows that it is bire-
flective and hence the embedding i of Y in # admits a left adjoint q and a right adjoint
p. It is also a Serre subcategory, and we consider the quotient functor e: 8 — %£/Y.
Since the triple is strong it follows from Lemma 1.2.11 that Y is bilocalising. Thus, e
has both left and right adjoints, | and r respectively, which are fully faithful (because
er and el are naturally equivalent to Idgy, see [54]). Hence, we have a recollement
Rab(Y, B, #B/Y). Clearly these correspondences are inverse to each other, up to equiva-
lence of recollements.

Finally, since i(47) is a bilocalising TTF-class as well as a (bireflective) Serre sub-
category, the bijection between (i) and (ii) easily implies the bijections between (i), (iii)
and (iv). O

Under some conditions on %, the above bijection becomes more clear.

COROLLARY 1.2.16. If # has enough projectives and injectives, then the equivalence
classes of recollements of B are in bijection with the TTF-triples in A.
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PrOOF. Let (X,Y,2) be a TTF-triple in #. Since % has enough projectives and
injectives it follows from [100, Theorem 1.8/1.8%] that every TTF-triple in 4 is strong.
The result then is a consequence of Theorem 1.2.15. O

Given a recollement, we then have the following notable equivalences.

COROLLARY 1.2.17. Let Ry,(7, B, € ) be a recollement of B, G be the Giraud sub-
category associated to the torsion pair (i(<7),Kerp) and H the Co-Giraud subcategory
associated to the torsion pair (Kerq,i(<)). Then, the quotient functor e induces:

(i) an equivalence i(«/)t =G =Imr = Bli() ,
(i) an equivalence *i(o) =H =Im|l —= B/i(«) and
(iii) an equivalence Kerq M Kerp = Bli(A) .

PROOF. Statements (i) and (ii) follow immediately from the fact that the TTF-triple
(Kerq,i(<7), Kerp) is strong and from Remark 1.2.12. Statement (iii) is well-known for
TTF-triples, see [58, Theorem 1.9] or [30, Proposition 1.3]. O

1.3. Kuhn’s Conjecture on Recollements of Module Categories

Let A be a unitary ring and Mod-A the category of right A-modules. Our purpose
in this section is to classify recollements of Mod-A whose terms are module categories.
Kuhn conjectured in [82] that if the categories of a recollement are equivalent to cate-
gories of modules over finite dimensional algebras over a field, then it is equivalent to
one arising from an idempotent element. In this section we prove this conjecture for
general rings.

To study recollements of Mod-A we look at its bireflective subcategories, which are
classified by epimorphisms in the category of unitary rings. A ring homomorphism
f: A — B is an epimorphism if and only if the restriction functor f,: Mod-B —
Mod-A is fully faithful ( [121]). Theorem 1.3.1 states that all bireflective subcategories
of Mod-A arise in this way. Two ring epimorphisms f: A — B and g: A — C lie in
the same epiclass of A, if there is a ring isomorphism h: B — C' such that g = hf.

THEOREM 1.3.1. [68, Theorem 1.6.3] [56] [55, Theorem 1.2] There is a bijection
between epiclasses of A and bireflective subcategories of Mod-A, defined by assigning to
an epimorphism f: A — B, the subcategory Xg := Im f,. Moreover, a full subcategory
X of Mod-A s bireflective if and only if it is closed under products, coproducts, kernels
and cokernels.

Given a ring epimorphism f: A — B, let ¥p;: M — M ®4 B denote the unit
of the adjoint pair (— ®4 B, f.) at a right A-module M (given by ¥y (m) = m ® 1p,
for all m in M). Note that ¢y is an isomorphism for all N in Xp. In fact, 1y is
the Xp-reflection of the right A-module M. In particular, f: A — B, regarded as a
morphism in Mod-A, is the X g-reflection 1) 4.

Some properties of a ring epimorphism f: A — B can be seen from the bireflective
subcategory Xp. In particular we have the following result.

LEMMA 1.3.2. [119, Theorem 4.8] Let f: A — B be a ring epimorphism. Then
X s extension-closed if and only if Tor‘f(B, B) =0.

PROOF. Suppose that Tor!(B,B) = 0 and let 0 — X — Y — Z — 0 be
an exact sequence of A-modules, where X and Z are B-modules. Let M be a right
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B-module and let 0 — Ky — F — M — 0 be an exact sequence of B-modules
with F' free. Then from the long exact sequence:

0 — Tor(M,B) —= Ky®1 B——=F®4B—> M ®,B—=0

we get that

Tor (M, B) =0 (%)
since the unit of the adjoint pair (— ®4 B, f,) is an isomorphism for all objects of Xp.
Let N be a left B-module and 0 — Ly — F/ — N — 0 be an exact sequence of
B-modules where F’ is free. Then from (%) we have the following exact commutative
diagram:

0 ——Tor!'(M,N) —= M @4 Ly —> M @, F' —= M @4 N —=0
0 — TorP(M,N) —= M ®5 Ly — M @5 F' —= M @ N — 0
and this implies that

Torl (M, N) ~ Tor? (M, N) (%)
Then using the relation (xx) we have the following exact commutative diagram:
0 X Y A 0

Tk

0 —XuB—Y Ry B——2®4B——0

Hence Y ~ Y ®4 B and so Y is a B-module. We infer that the subcategory Xp is closed
under extensions in Mod-A.

Suppose that Xp is extension closed and let 0 — Ky — F — B — 0 be an
exact sequence of right A-modules with F' free. Then applying the functor — ® 4 B we
obtain the following long exact sequence:

0 — Tor(B,B) —= Kg®,B—=F®,B—>B®,B—=0
From the following pushout diagram:
0 Ky F B 0
0—Ky®a B N B 0

it follows that N is a B-module since Xz is closed under extensions. Then we have the
exact commutative diagram:

0 Ko F B 0

]

0 —Tor{(B,B) — Ky@4B—F®4B—> B —>0

| |

Ky®s B N B 0

0
and this implies that Tor{(B, B) = 0. O



1.3. KUHN’S CONJECTURE ON RECOLLEMENTS OF MODULE CATEGORIES 50

Since Mod-A has enough projectives and injectives, by Corollary 1.2.16, there is
a bijection between equivalence classes of recollements of Mod-A and TTF-triples in
Mod-A. Moreover, there is a bijection between TTF-classes and bireflective Serre sub-
categories, since the closure conditions for both types of subcategories are the same (see
Proposition 1.2.4 and Theorem 1.3.1). In particular, any bireflective Serre subcategory
of Mod-A is bilocalising by Lemma 1.2.11. In the following result we describe these
categories in terms of ring epimorphisms. Similar results can be found in [11, Section
7] and in [56, Proposition 5.3].

PROPOSITION 1.3.3. Let 'Y be a bireflective Serre subcategory of Mod-A. Then there
1s an idempotent ideal I of A such that'y is the essential image of the restriction functor
induced by the ring epimorphism f: A — A/I.

PROOF. Since Y is a bireflective subcategory of Mod-A, by Theorem 1.3.1, there
is a ring epimorphism f: A — B, for some ring B, such that f.(Mod-B) =Y. We
will now prove that f is surjective. Since Y is a TTF-class, (°Y,Y) is a torsion pair
and the composition iyLy (iy being the inclusion Y — Mod-A and Ly its left adjoint)
is the idempotent coradical functor sending a module M to its torsion-free part. In
particular the unit of this adjunction is surjective on every A-module. On the other
hand, since f,(Mod-B) =Y, it follows that iyLy is naturally equivalent to f.(— ®4 B).
Thus, ¥y : M — M ®4 B is surjective for every A-module M. In particular, f = 14
is surjective. Since f.(Mod-B) is closed under extensions, for I = Ker f we have by
Lemma 1.3.2

0= Tor(B, B) = Tor{'(A/I,A/I) = I/I?
and, thus, we infer that Y = f,(Mod-A/I), with I? = I. O

We now recover Jans’ bijection between T TF-triples and idempotent ideals (Theorem
1.2.6) and classifiy equivalence classes of recollements of Mod-A.

PROPOSITION 1.3.4. There is a bijection between equivalence classes of recollements
of Mod-A, TTF-triples in Mod-A and idempotent two-sided ideals of A. In particular
the bijections are given as follows:

° {equivalence classes of recollements of l\/lod—A} — {TTF—trz'ples n l\/lod—A}

o '~ Mod-4 —* € (Ker q,i(Mod-B), Ker p)
\_/ \_/
P r

(Y,Mod-A4, (Mod-A)/Y) — (X,Y,2)
. {z’dempotent two-sided ideals of A} +— {TTF—tm'ples mn Mod—A}
IQA P=1 —— (°Yp,Yr:={X € Mod-A | F(X) = X},Y5%)

and F = f.(—®4 A/I): Mod-A — Mod-A
I - (DC,H,Z), 1é:.f>l<<|\/|0d_14/l)
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PRroOOF. The bijection between equivalence classes of recollements and TTF-triples
follows from Corollary 1.2.16, since Mod-A has enough projectives and injectives. The
bijection between TTF-triples and idempotent ideals of A can be seen as a consequence
of Proposition 1.2.7. Indeed, the bijection in that proposition assigns to a TTF-triple
a functor which, by Proposition 1.3.3, is precisely f.(— ®4 A/I) for some idempotent
ideal I and f: A — A/I the canonical projection, thus uniquely determined by the
ideal I. Conversely, given an idempotent ideal I and the quotient map f: A — A/I
it is easy to check that f.(—®a A/I) is a right exact idempotent coradical endofunctor
of Mod-A preserving coproducts. Indeed, for any module X in Mod-A we have the
isomorphism X ®g R/I ~ X/XI. Thus we have the exact sequence 0 — X[ —
X — X/XI — 0 in Mod-A and since the ideal [ is idempotent it follows that
XI®aAJI ~XI/XI*~ XI/XI =0. Hence the functor f,(— ®4 A/I) is right exact
coradical and preserves coproducts since f, and — ®4 A/I are left adjoints. O

DEFINITION 1.3.5. We say that a recollement of Mod-A is a recollement by mod-
ule categories if it is equivalent to a recollement in which the categories involved are
module categories.

We recall the conjecture made by Kuhn in [82].
Conjecture [82] Let A be a finite dimensional algebra over a field. Then any rec-
ollement of Mod-A by module categories is equivalent to a recollement induced by an
tdempotent element.

Indeed, we prove Kuhn’s conjecture for any ring A.

THEOREM 1.3.6. A recollement of Mod-A is a recollement by module categories if
and only if it is equivalent to a recollement induced by an idempotent element of a ring
S, Morita equivalent to A.

PRrROOF. By Proposition 1.3.4, any recollement of Mod-A is equivalent to

—®aA/l [
Mod-A/I Mod-A 1, (1.3.1)
\/ \_/
Homa(A/I,—) r

for some idempotent ideal I of A and %} the corresponding quotient category. Clearly,
if I is generated by an idempotent element e in A, then %7 is equivalent to Mod-eAe,
see Example 1.1.7.

Conversely, assume that (1.3.1) is equivalent to a recollement by module categories.
Let P be a small (i.e., Homg, (P, —) commutes with coproducts) projective generator of
%, which exists since we assume that %7 is equivalent to a module category. Let us
denote by C' the ring Endy, (P) and by © the equivalence Homg, (P, —): €7 — Mod-C.
The object |(P) is projective since we have the adjoint pair (l,e) and the functor e
is exact. It is also small since e commutes with coproducts and P is small. Since a
projective object is small in a module category if and only if it is finitely generated,
there is a surjective map p: A®" — I(P), for some n in N. This surjective map splits
since I(P) is a projective A-module, i.e., there is an injective map h: |(P) — A®" such
that ph = Idyp). Let S denote the endomorphism ring of A%", i.e., S = End(A®"),
and let ® := Hom 4(A®", —) denote the Morita equivalence between Mod-A and Mod-S.
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Then we have a surjection ®(p): S = P(A®") — O(I(P)) which splits via ®(h), i.e.,
O(I(P)) is a direct summand of S. Moreover, it is precisely generated by the idempotent
®(h)®(p) in Endg(S), which, under the isomorphism Endg(S) = S is identified with hp.
Denote this element by e. Clearly, €S is the image of ®(h)®(p) and it is isomorphic to
®(I(P)) in Mod-S. Since both | and & are fully faithful, we have the following chain of
ring isomorphisms:

C = Homg, (P, P) = Hom4(I(P),I(P)) = Homg(®(I(P)),®(I(P)))
>~ Homg(eS,eS) = eSe

The last isomorphism is a: eSe — Endg(eS), sending an element in eSe to the endo-
morphism given by left multiplication with it. This is clearly an injective ring homo-
morphism. Given an endomorphim g of €S, g is given by left multiplication with g(e).
Since g(e) lies in €S and g(e)e = g(e?) = g(e), g(e) lies in eSe. Thus, « is surjective.
Now, the functors ©: ¥ — Mod-eSe and ® form an equivalence of recollements from
R(Mod-A/I,Mod-A, ;) to R(Mod-S/SeS, Mod-S, Mod-eSe). Indeed, we have natural

isomorphisms

Oe(M) = Homg, (P,e(M)) = Homu(I(P), M)
~ Homg(®(I(P)), ®(M)) = Homg(eS,®(M))

Since the functor Homg(eS, —) is the quotient functor Mod-S — Mod-eSe, ¢ and ©
form an equivalence of recollements, as wanted. O

Under additional conditions, we can say more about the ideal I of A. If A ad-
mits the Krull-Schmidt property for finitely generated projective A-modules (i.e., A is
semiperfect), we can simplify the statement of the theorem.

COROLLARY 1.3.7. Let A be a semiperfect ring. Then a recollement of Mod-A is
a recollement by module categories if and only if the associated idempotent ideal I is
generated by an idempotent element.

PROOF. This follows from the proof of Theorem 1.3.6. Let P be a basic (i.e., every
indecomposable summand occurs with multiplicity one) small projective generator of
7. Then I(P) is also basic. Since A satisfies the Krull-Schmidt property for projective
modules, I(P) is a direct summand of A% if and only if it is a direct summand of A.
Using the arguments in the proof of Theorem 1.3.6 for S = A, we see that there is an
equivalence of recollements induced by @, Idymeq.4 and ¥ from the recollement (1.3.1)
to the recollement induced by the idempotent element e (see Example 1.1.7). Thus, the
essential image of the embeddings Mod-A/I — Mod-A and Mod-A/AeA — Mod-A
coincide. By Theorem 1.3.1, the epimorphisms f: A — A/I and g: A — A/AeA
must then lie in the same epiclass, i.e., there is an isomorphism h: A/ — A/AeA
such that hf = g. Note now that, since h is an isomorphism, we have I = Ker(f) =
Ker(g) = AeA, thus showing that [ = AeA, as wanted. O

Recall that A is semiprimary if the Jacobson radical t of A is nilpotent and A/¢ is
semisimple. Indeed, semiprimary rings are semiperfect (see, for example, [85, Corollary
23.19]) and every idempotent ideal is generated by an idempotent element of A ( [45]).
Finite dimensional algebras over a field are well-known examples of semiprimary rings.
The following corollary provides an answer to Kuhn’s question in the context where it
appeared.
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COROLLARY 1.3.8. Let A be a semiprimary ring. Then any recollement of Mod-A is
equivalent to a recollement induced by an idempotent element of A. In particular, any
recollement of Mod-A is a recollement by module categories.

PROOF. Let I be the idempotent ideal associated to a recollement of Mod-A, as in
the proof of Theorem 1.3.6. Since A is semiprimary, I = AeA for some e idempotent
element of A. Therefore, the equivalent recollement (1.3.1) is induced by the ring
epimorphism f: A — A/AeA, thus finishing the proof. [

1.4. A recollement not induced by an idempotent element

In this section we present an example of a recollement of Mod-R which is not induced
by an idempotent element.
We start by recalling some basics for von Neuman regular rings.

DEFINITION 1.4.1. A ring R is called von Neuman regular if for every a € R there
exists an element x € R such that a = aza.

A von Neuman regular ring is also called absolutely flat. This is due to the charac-
terization that over a von Neuman regular ring every left R-module is flat [84, Theorem
4.21]. In what follows we need the following result.

LEMMA 1.4.2. [12/, Proposition 2.1] Let R be a von Neuman regular ring and P a
projective R-module. Then every finitely generated submodule of P is a direct summand
of P, i.e. P is reqular.

From now on and until the end of this section we fix a field K. Set

R = ﬁK and I .= éK
i=1 i=1

We have the following easy observation.

LEMMA 1.4.3. Let K be a field and R, I as above. Then R is a unital commutative
von Neumann reqular ring and I is a two-sided idempotent ideal of R.

PRroOF. Since K is a field it follows that for every a € K there exists an element
x = a~! € K such that aza = a. Thus K is a von Neumann regular ring. Then since the
multiplication of elements in R is componentwise we infer that R is a unital commutative
von Neumann regular ring. It is easy to verify that [ is a two-sided idempotent ideal of
R. Note that in a von Neumann regular ring every ideal is idempotent. O

Let m: R — R/I denote the canonical quotient map and m.: Mod-R/I — Mod-R
the corresponding (fully faithful) restriction functor. As in Theorem 1.3.6 consider the
recollement of Mod-R induced by I:

—®rR/I I
//w\ /:\
Mod-R/I - Mod-R %7,
\/ \_/
Homg(R/I,—) r

The statement of this section is as follows.

PROPOSITION 1.4.4. The recollement of Mod-R induced by the idempotent ideal I is
not equivalent to any recollement induced by an idempotent element.
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PrOOF. We will show that the category %7 is not equivalent to a category of mod-
ules. By Theorem 1.3.6 the recollement cannot be equivalent to a recollement by module
categories and, thus, it cannot be induced by an idempotent element.

Recall that the recollement above satisfies Im| C Ker(— ®g R/I). For any module
M in Mod-R, M ®g R/I is isomorphic to M /M. Therefore, we have

% = 1m| C {M € Mod-R | MI = M}

Let P be a small projective generator in ;. Then @ := I(P) is a small (i.e., finitely
generated) projective R-module such that Q1 = ). We write S; for the one dimensional
simple module corresponding to the copy of the field in position j, with j € N.

First we claim that there is k£ in N such that Homg(Sy, @) # 0. Indeed, by the
Hom-tensor adjunction

HomR(Q Or I7 Q) = Hom(Qa HomR(Ia Q))a
and since, for @ projective with Q ®g R/I = 0, we conclude that Q ®z I = @ and,
thus, Hompg(Z, Q) # 0. Since I = @.°, S;, we have the claim.
Secondly, since () is regular (see Lemma 1.4.2), every simple Sy embedded in @ is a
summand of (). Therefore, if we define the set

J :={i € N| Hom(S;,Q) # 0},
it is then clear that, since each S; is simple, @;c;.5; is a summand of (). Since Q) is a

finitely generated R-module, this implies that J is a finite set. Observe now that, for
all k£, S lies in Im | and that S, is projective since

k [e's)
Rp=][Siesae [] s
i=1 i=k+1
Choose now k in N\ J. Clearly Hom(Q, Sy) = 0, since any map would have to
be surjective, thus splitting and forcing k to lie in J. This, however, implies that
Homg, (P, e(Sk)) = 0, which is a contradiction with the assumption that P is a projec-
tive generator for 47. OJ

REMARK 1.4.5. More examples of this nature occur in the class of rings considered
in [117].



CHAPTER 2

Homological Theory of Recollements of Abelian Categories

In this Chapter we investigate several homological aspects of recollements of abelian
categories. First we compare the extension groups between the categories involved in
a recollement of abelian categories. Further we investigate the global and finitistic
dimension of the categories involved in a recollement situation. Note that these results
extend and generalize related results of Auslander-Platzeck-Todorov [14], formulated
in the setting of finitely generated modules over an Artin algebra equipped with an
idempotent ideal. We also give applications to ring theory. In Chapter 5 we will discuss
applications of these results on finitistic and representation dimension of Artin algebras.
The results of this Chapter are included in the paper entitled: Homological Theory of
Recollements of Abelian Categories, see [108].

2.1. Generalized Perpendicular Categories and Homological Embeddings

Let as before (o, 2,%) be a recollement of abelian categories:

o i B c ¢ Ry (7, B, )

Our purpose in this section is to study the derived functors of the six functors involved
in a recollement as well as the relationship and the interplay between the extension
functors of the abelian categories 7/, # and ¥. Note that since the functors i and e
are exact, they induce natural maps:

Ry Ext?, (X,Y) — Ext,(i(X),i(Y)) and ey w: Ext,(Z, W) — Exty(e(Z),e(W))

In this connection we are interested in finding necessary and sufficient conditions such
that the induced homomorphisms i - and/or e}y, are invertible for 0 <n < k.

2.1.1. Generalized Perpendicular Categories. Let M be an abelian category
and U C M be a full subcategory. For integers 0 < i < k we denote by Ui** the full
subcategory of M which is defined by

Wtr = {M € M | Exty(U, M) =0, Vi<n<k}
We also denote by Ut the full subcategory of M defined by
Wt = {M € M | Exth (U, M) =0, Vn > 1}

Similarly the full subcategories ¢+*U and i+=U are defined. Note that Ut and °11U are
the right and left perpendicular categories of U as defined by Geigle-Lenzing, see [56].

DEFINITION 2.1.1. For 0 < k < oo, the right k-perpendicular subcategory i(.e7)o+* of
o/ in A is defined by

i() = {B € % |Exty(i(A),B) =0, VA€ & and 0 < n < k}
55
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and dually the left k-perpendicular subcategory *1*i(.&) of & in % is defined by
oti(e) = {B € B | Exty(B,i(A)) =0, VA€ o/ and 0 < n < k}

In order to study the main properties of the generalized perpendicular categories of

@/ in A, it will be useful to introduce, for 0 < n < oo, the following full subcategories

of A which describe objects which admit (truncated) projective or injective resolutions

by objects from the quotient category %"

X, = {B € # | 3 exact sequence I(P,) — -+ — |(Py)) — B — 0, P; € Proj¥,
0<i<n}

Yo = {B € # | 3 exact sequence 0 — B — r(ly) — --- —>r(1,,), [; € Inj¥F,

0<i<n}

Note that I(P;) € Proj % and r(I;) € Inj %, see Remark 1.1.5.

We begin with the following result which describes the quotient category € of a
recollement.

PROPOSITION 2.1.2. Let (o7, %B,%) be a recollement of abelian categories and as-
sume that € has enough projective and injective objects.
(i) We have: °1i(«/) =Xy and Y, = i()0+.
(ii) There are equivalences:

~ ~

e‘xl X — ¢ — Yy o e’gl

PROOF. (i) Let B € Xy. Then there exists an exact sequence

0—= K —=I(P) —=(P)) —= B ——=0

L

Ko

with Py, Py € Proj%. Applying the functor Homg(—,i(A)) and the adjoint pair (I,e),
we infer that Homgz(B,i(A)) = 0 and Exty,(B,i(A)) ~ Homyg(Ky,i(A)) = 0. Hence
B € *11i(«7). Conversely suppose that B € °11i(«). Then the object e(B) € ¢ and
since ¢ has enough projective objects there exists an epimorphism ay: Py — e(B)
with Py € Proj%. Then from Proposition 1.1.6 we have the exact sequence

le(B) 22~ B2+ iq(B) —= 0
and so the morphism pp is an epimorphism since Homg(B,i(A)) = 0 for every A € 7.
Hence we have the epimorphism I(ag)opup: I(Fy) — B which induces an exact sequence
0 — Ky —I(Fy) — B —0,i.e. B € X, From the long exact sequence

0 — Hom (B, i(A)) — Homz(I(Py),i(A)) — Hom (Ko, i(A)) — Extl(B,i(A)) — 0

it follows that Hom (Ko, i(A)) =~ Homz(I(Fy),i(A)) since Ext,(B,i(A)) = Homg(B,i(A))
= 0. But then Homg(Kj,i(A)) = 0 for every object A € o7 since Homg(I(Fp),i(A)) ~
Homg (P, ei(A)) = 0. Therefore repeating the same argument as above it follows that
Ky € Xy and then we infer that the object B € X;. Hence X; = °1i(«/) and similarly
we obtain that Y, = i(«/)o+1.

(ii) Clearly, le(B) ~ B for every B € X;. This implies that the categories ¥ and
X, are equivalent. See also Corollary 1.2.17. Finally, similar arguments prove the other
equivalence. O
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The following result characterizes when an object in Z belongs to the subcategory
X

PROPOSITION 2.1.3. Let (&7, B, %) be a recollement of abelian categories, where
has enough projective and injective objects and € has enough projective objects. Then
for any B € A, the following are equivalent:

(i) Ext(B,i(A)) =0 for every A€ o/ and 0 <n < k.
(iii) Extly(B,i(I)) =0 for every I € InjaZ and 0 < n < k.
Then:
0bki( @) = Xy = °F*i(Inj )

PROOF. (i) = (ii) By hypothesis there exist an exact sequence |(Py) — -+ —
I(P) — I(Fy) — B — 0 which is part of a projective resolution of B since P; €
Proj % for every i = 0,--- , k. Let A be an object of o/. Then from the complex 0 —
Homy(B,i(A)) — Homg(l(Fy),i(A)) — -+ — Homg(I(Fy),i(A)) it follows that
Ext%(B,i(A)) = 0 for every 0 < n < k since Homg(I(F;),i(A)) ~ Homg (P, ei(A)) = 0.

(ii) = (i) Let £ = 0. Then as in the proof of Proposition 2.1.2 we infer that B € X,
since Homg(B,i(A)) = 0 for every A € /. The case k = 1 was done explicitly in
Proposition 2. 1 2. We continue inductively. Assume that the result holds for every
0<n<k-—1. Let Ext}(B,i(A)) =0 for every A € &/ and 0 < n < k. Then we have
the following exact sequence:

0—— Ky, I(Pyy) - (Py) B——0

and from the exact sequence
0 = Homg(Ky_o,i(A)) = Homg(I(Py_1),i(A)) = Homg(Ky_1,i(A)) = Extly(Kj_o,i(A4)) =0
we obtain the isomorphism
Extly(Kj_2,i(A)) ~ Homg(Ky_1,i(A))
since Homg(I(Py—1),i(A)) = 0. Then from the following isomorphisms:
Ext’(B,i(A)) ~ Ext® 1 (K, i(A)) =~ - - - ~ Exty(Kj_s,i(A)) =~ Homyg(K;_1,i(A) =0

we infer that K;_; € Xy. Thus the object B € Xj.
(iii) < (ii) The implication (ii) = (iii) is obvious. Let A € & and 0 — Ky —
Py — B — 0 be an exact sequence with Py € Proj #. From the exact sequence

0 — Homy(B, —) — Hom4( Py, —) — Hom(Ky, —) — Ext,(B,—) —0 (2.1.1)
we have Hom (P, i(I)) ~ Hom(Ky,i(I)) since Hom4(B,i(I)) = 0 = Extl,(B,i(1)) for
every I € Injo/. Hence we obtain the isomorphism

Hom,,(q(Py), I) ~ Hom (q(Ky), I) (2.1.2)

for every I € Injof/. Let 0 — A — [y — I; be the start of an injective coresolution
of A. Then from the isomorphism (2.1.2) we have Hom(q(F), A) ~ Hom (q(Ky), A)
and hence Homy(Fp,i(A)) ~ Homyg(Ky,i(A)). Then from the exact sequence (2.1.1)
it follows that Homy(B,i(A)) = 0 = Ext,(B,i(A)) for every A € o/. Then the result

follows from the long exact sequence

o Exty(B,i(I)) — Ext,(B,i(%(A))) — Ext%(B,i(A)) — - - -
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obtained from the short exact sequence 0 — i(4) — (/) — i(X(A4)) — 0 with
I €lnjos.

We state now the dual result which characterizes the objects of & lying in Y,,. The
proof is similar with the proof of Proposition 2.1.3 and is left to the reader.

PROPOSITION 2.1.4. Let (o7, %B,%€) be a recollement of abelian categories, where %
has enough projective and injective objects and € has enough injective objects. Then
for any B € A, the following are equivalent:

(i) B € Y.
(i) Ext%(i(A),B) =
(iii) Exty(i(P), B) =
Then:

0 for every A€ of and 0 <n < k.
0 for every P € Proja and 0 <n < k.

i(@)°H =Y, = i(Proj o)

2.1.2. Idempotent Functors. Let F: & — 2 be an endofunctor for an abelian
category ZA. We recall that if F is a subfunctor of Idg, say via natural monic u: F —
Id, then F is called radical if F(Coker i) = 0, and is called idempotent, if ur: F? — F is
invertible. Dually if F is a quotient functor of Idy, say via a natural epic v: Idy — F,
then F is called coradical if F(Kerv) = 0 and is called idempotent, if vg: F — F? is
invertible.

Now we use the natural maps p: le — Id» and v: Idg — re to define idempotent
radical subfunctors and idempotent coradical quotient functors of the identity functor
of the middle part £ of a recollement:

(i) The functor F: Z — 2 is defined by F(B) = Impup on the objects B €
% and given any morphism b: B — B’ in % then we get the morphism
F(b) Im wp — Im up.

(ii) The functor G: B — A is defined by G(B) = Imvp on the objects B €
A and given any morphism b: B — B’ in 4 then we have the morphism
G(b) Im vV — Im vpr.

PROPOSITION 2.1.5. Let (<7, B,€) be a recollement of abelian categories. Then the
functors F,ip: B — B are idempotent radical subfunctors of Idg and the functors
G,iq: B — A are idempotent coradical quotient functors of Idg.

PRrROOF. Clearly the functor F: & — % is a subfunctor of Idy and from the
following diagram

le(1s)

lele(B)

it follows that the map le({p) is epic and prpy = le({p) o pp. Since the map jip(p) is epic
we have F?(B) = Im pgp) ~ F(B), VB € %, i.e. the functor F is idempotent. Clearly F
is radical since F(Coker{p) = F(iq(B)) = 0. Similarly we prove the other claims for the
functors ip, G and iq. |
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2.1.3. Homological Embeddings. To state our first main result of this section
we need the following notion which will play an important role in the sequel.

DEFINITION 2.1.6. An exact functor i: &/ — 2 between abelian categories is called
a k-homological embedding, k > 0, if the map iy : Extl,(X,Y) — Ext(i(X),i(Y)) is
invertible, VX,Y € &/ and 0 < n < k. The functor i is called a homological embedding,
if i is a k-homological embedding, Vk > 0.

REMARK 2.1.7. (i) Let (o7, B, %) be arecollement of abelian categories. Then
the functor i: &/ — 2 is 1-homological embeding since i% - : Ext],(X,Y) —
Ext%(i(X),i(Y)) is an isomorphism for every X|Y € &/ and n = 0,1. This
is a well-known result due to Oort, see [101], and can be easily proved using
that &7 is a Serre subcategory of #.

(ii) If i: & — A is a k-homological embedding, then the map

iy Bt (XY) — Extl ! (1(X),i(Y)
is a monomorphism for every X, Y € o7, see [101].

The following example shows that there are examples of functors which are k-
homological embedding but fail to be (k + 1)-homological embeddings.

ExaAMPLE 2.1.8. Let A be the path algebra of the quiver
1 2 cee k k+1——k+2

modulo the ideal generated by the paths of lenght 2. Then, as in Example 1.1.10, con-

sider the recollement of abelian categories (mod-A /U, mod-A, mod-End(P; @ - - - & Pyy1),
where the idempotent ideal U = 7p,g...ep,,, (A) is the trace of the projective A-module

Py @ -+ @ Pry1 in A, Auslander, Platzeck and Todorov proved in [14] that U is k-

idempotent but not k + l-idempotent, i.e. the map iy Ext} 4 (X,Y) — Ext}(X,Y)

is invertible, VX, Y € mod-A/Uandn = 0,1, - - , k, but it is not invertible for n = k+1.

It follows that the functor i: mod-A/U — mod-A is a k-homological embedding but

not a (k + 1)-homological embedding. For more details see [14].

We need the following well known lemma.

LEMMA 2.1.9. Let o/ be an abelian category and A - B Jy0a sequence of
morphisms such that

Hom,, (X, A) L Hom,, (X, B) L Hom,, (X, C)

is exact for every X € o/ . Then A -5 B s C is exact.

PRrROOF. For X = A we have the exact sequence

Hom.,/ (A, A) —%~ Hom,/ (A, B) X~ Hom,, (A, C)
and consider the morphisms Id4 € Homg(A, A) and g € Hom, (A, B). Then since
g« o fr = 0 it follows that f.(g) =0, i.e. go f =0, and therefore we have Im g C Ker f.
Let a: X — B be a morphism such that a o f = 0. Then f,(a) = 0 and thus there
exists a morphism b: X — A such that g.(b) = a, i.e. bog = a. We infer that
Ker f C Img. Hence the sequence A — B — (' is exact. |

We are ready now to prove our first main result which gives characterizations for
the functor i: &/ — % to be a k-homological embedding.
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THEOREM 2.1.10. Let (o7, B,%) be a recollement of abelian categories and assume
that & has enough projective and injective objects. Then the following statements are
equivalent.

(i) The functori: o — A is a k-homological embedding.

(i) Exty(i(P),i(Y)) =0, for every P € Proj.o/, Y € o/ and 1 <n < k.
(111) Ext%(i(X),i(I)) =0, for every I € Injo/, X € o/ and 1 <n <k.
) Exty,(i(P),i(I)) =0, for every P € Proj.o/, I € Injo/ and 1 <n < k.
V) F‘Prq@ S xk 1
(vi) G||nj% € Yr_1.
)

)

)

(vii) R"p(i(1)) =0 for every I € Injo/ and 1 <n < k.
(viii) R"p(i(A)) =0 for every A€ o/ and 1 <n <k.
(ix) Loq(i(P)) =0 for every P € Projo/ and 1 <n < k.
(x) L,q(i(A)) =0 for every A € o and 1 <n <k.

PROOF. (i) = (ii) Let P € Proj.o/. Then Ext%(i(P),i(Y)) ~ Ext’,(P,Y) = 0 for all
1<n<kandY € 4.

(ii) = (i) Let X,Y € o/ and let 0 — Ky — Py — X — 0 be an exact sequence
with Py € Proj.«/. From Remark 2.1.7(i) we know that the map i y Ext)(X,Y) —
Ext,(i(X),i(Y)) is an isomorphism for every X,Y € .&7. Then from the following exact
commutative diagram:

0 =ExtL(P,Y) Extl, (Ko, Y) Ext?, (X,Y) Ext?,(Py,Y) =0

| | |

0 = Exty, (i(Fo),i(Y)) — Extyy(i(Ko),i(Y)) = Ext(i(X),i(Y)) — Ext(i(P),i(Y)) = 0

it follows that the map ig(,y is invertible. Continuing the above long exact Ext-sequences
we infer that i}, is invertible since so is the map i%, ;. Then the result follows by
induction on n.

(i) < (iil) This is similar to the proof of the equivalence (i) < (ii).

(ii) < (iv) The direction (ii) = (iv) is clear, so it remains to prove that (iv) = (ii).
Let Y €e @ and 0 — Y — [ — XY — 0 be exact, where [ € Injo/. Then from
the exact commutative diagram

Hom,, (P,Y) Hom,, (P, 1) Hom,, (P, 3(Y))

- -

Hom(i(P),i(Y)) == Homg(i(P),i(I)) — Homy(i(P),i(2(Y))) — Ext,(i(P),i(Y)) -0

we have Ext,(i(P),i(Y)) = 0 for every Y € /. Then the result follows from the long
exact Ext-sequence of the above diagram using induction on n.

(ii) & (v) Let Y € & and P € Proj %. From Proposition 1.1.6 and Proposition 2.1.5
we have the short exact sequence 0 — F(P) — P — iq(P) — 0. Since the functor i
is fully faithful and (g, i) is an adjoint pair we have Homy(iq(P),i(Y")) ~ Homy(P,i(Y))
and then we get the isomorphism:

Ext’y" (iq(P), i(Y)) ~ Extly(F(P), (V)

for every n > 0. Then since Proj ./ = add q(Proj #) we infer that (ii) holds if and only
if Extl,(iq(P),i(Y)) = 0 for every P € Proj #,Y € & and 1 < n < k. This is equivalent
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to Ext(F(P),i(Y)) = 0 for every P € Proj %, Y € o/ and 0 < n < k — 1. Then from
Proposition 2.1.3 this is equivalent to F(P) € X;_; and so we are done.

(iii) < (vi) The proof of this equivalence is dual to (ii) < (v) and is left to the
reader.

(i) = (vii) Let I € Inj& and 0 — i([) — I — I' — - — I* an injective
coresolution of i(/) in #A. Since Ext(i(X),i(I)) =0, for any X € & and 1 < n < k,
the complex

0 — Homy(i(X),i(I)) — Homg(i(X), %) — --- — Homy(i(X), I*)
is exact and clearly it is isomorphic to the complex
(¥): 0 — Hom (X, I) — Hom (X, p(1°)) — --- — Hom (X, p(I¥))
Then from Lemma 2.1.9 it follows that the sequence
0— I —>p(I°) — p(I') — -+ — p(I¥)

is exact since the complex (x) is exact for every X € «7/. We infer that R"p(i(1)) = 0
for every 1 < n < k.
(vii) = (viii) Let A € & and

0—=A 0 I SR
L7
$(A) $2(A)

an injective coresolution of A in /. Then if we apply the functor p: Z — & to the
short exact sequence 0 — i(A) — i(1°) — i(X(A)) — 0 we get the following long
exact sequence

0~ A~1"~>X(A) = Rip(i(4)) = R'p(i(I")) = R'p(i(3(4))) = R*p(i(4)) ~ R?p(i(1"))

Since R'p(i(1°)) = 0 = R?p(i(1°)) it follows that R'p(i(A)) = 0 and R'p(i(2(A))) ~
R2p(i(A)) (x). On the other hand from the short exact sequence 0 — i(X(A)) —
i(I') — i(3?(A)) — 0 we have the exact sequence 0 — X(A) — I' — Y2(A) —
R'p(i(X(A))) — 0 and (x) gives R*p(i(A)) = 0. Then continuing with the same
procedure we infer that R"p(i(A4)) = 0 for every 1 <n < k.

(viii) = (i) Let X,Y € & and 0 — i(Y) — [° — ' — ... — I* an injective
coresolution of i(Y) in %. Then the sequence 0 — Y — p(I°) — p(I!) — -+ —
p(I¥) is an injective coresolution of ¥ in & since R"p(i(Y)) = 0 for every 1 < n < k.
Therefore from the following exact commutative diagram:

0 — Hom(i(X),i(Y)) — Homy(i(X), I°) — Homy(i(X), ') — - - - — Homy(i(X), I*)

R |

0 — Hom(X,Y) — Hom (X, p(I°)) — Hom, (X, p(I')) — - -- — Homy(X, p(I*¥))

it follows that the map iy : Ext},(X,Y) — Ext(i(X),i(Y)) is invertible for every
1 < n < k. Therefore the functor i: &/ — % is a k-homological embedding.

Dually we prove the implications (i) = (ix) = (x) = (i) and so the proof is finished.

[
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Closely related to i: & — £ being a k-homological embedding, also in connec-
tion with the behavior of perpendicular categories, is the question of when the map
eyw: Extu(Z,W) — Extg(e(Z),e(W)), induced from the exact quotient functor
e: B — €, is invertible for every 0 < n < k. In this respect we have the follow-
ing result.

THEOREM 2.1.11. Let (o7, B,%) be a recollement of abelian categories and assume
that % and € have enough projective and injective objects. Then the following state-
ments are equivalent.

(i) The map e}y, : Exty(Z, W) — Extg(e(Z),e(W)) is invertible, VW € %,
(resp. VZ € B), and 0 <n < k.
(i) Z € X1 (resp. W € Ypiq).

PRrOOF. (ii) = (i) Let k£ = 0. Since Z € X; there exists an exact sequence |(P;) —
(Py) — Z — 0 with P, Py € Proj%é. Then P, — Py — e(Z) — 0 is exact in €
and since (I, e) is an adjoint pair we have the following exact commutative diagram:

0 ——— Homy(Z, W) Homy(I(Fy), W) —— Homg(I(Py), W)

i ! -

0 — Homy (e(Z),e(W)) — Homy (P, e(W)) — Homy (P, e(W))

Hence the map e} y;,: Homy(Z, W) — Homy(e(Z),e(W)) is invertible. Suppose now
that k = 1, i.e. Z € Xo. Then we have the exact sequence |(Py) — I(Py) — () —
Z — 0 where Py, P;, P, € Proj % and let K; be the kernel of the morphism |(Py) — Z.
Then Ky € X; and the exact commutative diagram

0 —= Homy(Z, W) —= Homy(I(Py), W) —= Hom (Ko, W) —— Ext,(Z, W) —= 0

R

0 > Homy (e(Z),e(W)) > Homy (Py, e(W)) = Homg (e(Ky),e(W)) = Ext.(e(Z),e(W)) = 0

shows that the map elz,w is invertible. Finally suppose that Z € X;,; and that the
result holds for every object B € X,,, and m < k + 1, i.e. the map e%‘;ﬁ} is invertible.

Then the object Ky € Xj and hence from our induction hypothesis the map e’;go}w is
invertible. Therefore from the commutative diagram

Ext™ (Ko, W) Extt,(Z, W)
ekt jN Lek
Ko, W | — zZ,W
Extf ! (e(Ko), (W) = Extf(e(2), e(W))

we deduce that the map e, : Ext’(Z, W) — ExtE(e(Z),e(W)) is invertible for every
WeA.

(i) = (ii) Assume that the map e, is invertible for every W € % and 0 <n < k.
We will prove that Z € X;.;. Hence from Proposition 2.1.3 we have to show that
Ext’(Z,i(I)) = 0 for every I € Injo/ and 0 < n < k + 1. Let us suppose first that
k = 0. This means that we have the isomorphism Homg(Z, W) ~ Homg(e(Z),e(WW))
for every W € % and we have to prove that Z € Xy. Let I € Inj.«/ and

0—i(l) —J —X(i(I)) —0 (%)
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be an exact sequence with J € InjZ. Then e(J) ~ e(X(i())) and from the following
long exact sequence:

0 = Hom(Z,i(I)) —= Homy(Z, J) Hom.(Z, £(i(I))) —= ExtL,(Z,i(I)) - 0

Homy (e(Z), e(J)) > Homg (e(Z),e(3(i(1))))

we derive that Hom(Z,i(I)) = 0 = Ext,(Z,i(I)). Thus Z € X;. Assume now that the
map ey is invertible for every W € % and 0 < n < k. Then we have Ext%(Z,i(1)) ~
Exty(e(Z),ei(I)) for every 0 < n < k and therefore we obtain that Extl,(Z,i(I)) = 0
for every 0 < n < k. Hence it remains to prove that Ext;™(Z,i(I)) = 0. From the long
exact homology sequence obtained from the exact sequence (x) we have the following
isomorphisms:

Extlf(Z,i(1)) = Exth,(Z, S(i(1))) = Exth (e(2), o(SG(1))))
~ Extt(e(Z),e(J])) ~ Ext’,(Z, J)
This clearly implies that Z € X since Ext%/'(Z,i(1)) = 0. O
As a consequence of Theorem 2.1.10 and Theorem 2.1.11 we have the following.

COROLLARY 2.1.12. Let (o7, B,%) be a recollement of abelian categories and as-
sume that % and € have enough projective and injective objects. Then the following

statements are equivalent.

(i) The functori: of — B is a (k + 1)-homological embedding.

(ii) Flproj2z € Xk.

() The map ey, + Ext(F(P), =) — Ext; (e(F(P)), () is invertibl, for co-
ery PeProj# and 0 <n <k-—1.

(iv) Glinjz € Y-

(v) The map €” gy Exti(—, G(I)) — Extg(e(—),e(G(I))) is invertible, for ev-
eryl €Inj#B and 0 <n <k—1.

Let R be a ring with an idempotent element e € R. In this case the full subcategory
X,, of Mod-R consists of all objects B € # such that there exists an exact sequence
Re ®cre P, — -+ — Re ®cre Ph — B — 0 with P; € Proj(eRe), and dually we
have an analogous description for Y,,.

The next consequences of Theorems 2.1.10 and 2.1.11 generalize results of Auslander-
Platzeck-Todorov [14].

COROLLARY 2.1.13. Let (Mod-R/ReR, Mod-R, Mod-eRe) be a recollement of rings.
Then the following statements are equivalent.
(i) The functori: Mod-R/ReR — Mod-R is a (k + 1)-homological embedding.
(i) Extjz(R/ReR,Y) =0 for every Y € Mod-R/ReR and 1 <n <k+1.
(ili) Extx(X,I) = 0 for every X € Mod-R/ReR, I € Inj(R/ReR) and 1 < n <
k+1.
(iv) Extiz(R/ReR,I) =0 for every I € Inj(R/ReR) and 1 <n <k + 1.
(v) ReR € Xy.
(vi) The map e€h.py: Extp(ReR, W) — Ext{p. (eR,eW) is invertible for every
W e Mod-R and 0 <n<k-—1.
(vii) Tor®(R/ReR,Y) =0 for every Y € Mod-R/ReR and 1 <n < k + 1.
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(viii) Tor®(R/ReR, R/ReR) = 0 for every 1 <n <k +1.

Part (ii) of the following consequence of Corollary 2.1.13 gives the connections be-
tween homological embeddings and homological epimorphisms in the sense of Geigle-
Lenzing [56].

COROLLARY 2.1.14. Let R be a ring and €* = e an idempotent element of R.

(i) The map ey, Extp(Z, W) — Extg.(eZ,eW) is invertible for every 0 <
n < k and for every W € Mod-R (resp. Z € Mod-R) if and only if Z € Xyiq
(resp. W € Ygi1).

(ii) The following are equivalent:

(a) The natural map R — R/ReR is a homological epimorphism of rings.
(b) ReR € Xoo.
(¢) The functori: Mod-R/ReR — Mod-R is a homological embedding.

ExXAMPLE 2.1.15. Let R be a ring and e an idempotent element of R such that the
idempotent ideal ReR is a projective R-module. Let Y be a R/ReR-module. Then
Extp(R/ReR,Y) = 0 and since pdy R/ReR < 1 we have Exth(R/ReR,Y) = 0 for every
n > 1. Therefore from Corollary 2.1.13 it follows that the functor i: Mod-R/ReR —
Mod-R is a homological embedding.

2.1.4. Syzygies and Extensions. Let (&7, %4, %) be a recollement of abelian cat-
egories. In this subsection we investigate objects B € % such that there exists a
projective resolution of the form:

"'—>|(Q2) |(Q1) |<Q0)———>Pk—1 Fy B 0
%(m/

In other words, we are interested for objects B € 4 with a syzygy Q% (B), for some
k > 0, such that Q% (B) € X. If such an object exists then from Theorem 2.1.11 we
have the isomorphism Extl,(Q%(B), W) ~ Extl(e(Q*(B)),e(W)) for every n > 0 and
W € #A. Hence we can ask the following natural question:

Can we obtain an isomorphism Ext’,(B, W) — Exti(e(B),e(W)) for some n > X when
the object B has a syzygy such that Q*(B) € X, for some k> 0 ?

The motivation for this question is the finite generation hypothesis on Hochschild co-
homology, see [110] for more details. Indeed, we will show, under a condition, that the
above question has an affirmative answer. For the purpose of our application we need
to work with extensions.

Let € and & be abelian categories and e: ¥ — & an exact functor. If

€0 — X, I XX IS Xg— 0

is an exact sequence in %, then we denote by e(£) the following exact sequence

e(€): 0 — e(Xn) U (X)) — - — (X)) Y e(x) — 0

in 9. It is clear that this operation commutes with Yoneda product; that is, if £ and (
are composable exact sequences in %, then e(£¢) = e(€) - e((). For every pair of objects
X and Y in ¥ and every nonnegative integer ¢, we define a group homomorphism

e}y: Extl (X,Y) — Extl,(e(X),e(Y))
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by
Sy (f) =el(f) for a morphism f: X — Y
ey ([n))

To proceed further we need the following easy result.

e(n)] for an i-fold extension n of X by Y, where ¢ > 0.

LEMMA 2.1.16. Let n be an integer, and let
e0—X—F, 41— —FE—Y —0
be an exact sequence where pd E; < n for every i. Then for every ¢ > n, the map
e Ext' (X, Z) — Ext"™(Y, Z)
given by €*([n]) = [ne] is an isomorphism.

ProOF. f 0 — X — Ey — Y — 0 is an exact sequence with pd_, Ey < n
then from the long exact homology sequence we obtain that Ext’, (X, Z) ~ Ext'7 (Y, Z)
for every ¢ > n and Z € /. Then continuing inductively on the length of € we get the
isomorphism €* for every i > n. |

Now we are ready to prove the following result which answers the question stated
above.

THEOREM 2.1.17. Let (o, B,€) be a recollement of abelian categories, where B
and € have enough projective and injective objects. Let n be an integer, and assume
that pdy, e(P) < n for every projective object P in %B. Let B be an object of % which
has a projective resolution of the form

— (Q2) — Q1) — Qo) — Py — P9 —> -+ — Py — B — 0,

where every Q; is a projective object of €. Then for every i > m + n and every object
B’ of #, the map

e gt Extly(B, B') — Extiy(e(B), e(B'))
s an isomorphism.
PROOF. Let
™w0—M, —PFP,1— - —P —F—DB—0

be the beginning of the chosen projective resolution of B, where M,, denotes the mth
syzygy of B. Consider the following group homomorphisms:

Extl, (B, B) < Extl;™ (M, B') 2y Exti ™ (e(M,,), e(B')) <25 Extl (e(B), e(B))

(2.1.3)
Here, the maps 7* and (e(7))* are isomorphisms by Lemma 2.1.16 (for (e(7))* we use
the fact that pdy e(P) < n for every projective object P in %). The map e}, 5, is an

isomorphism by Theorem 2.1.11. Thus, we have an isomorphism

(e(m)) o eij\};’:’B, o (m*)7!: Ext'y(B, B') — Extl.(e(B), e(B"))

*

We want to show that this is the same map as e} 5. We consider an element [r] €
Ext,"(M,,, B'), and follow it through the maps (2.1.3). We then get the following
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elements:

vl (e(m))*

Extly(B, B') <= Ext; ™ (My, B') “=Z Extl, ™ (e(My), e(B')) == Extly (e(B), e(B'))
7] ]+ le(n)] le(n) |-| e(m)]
le(nm)]

This shows that our isomorphism takes any element [(] € Ext’y(B, B') to the element
[e(C)] € Extiy(e(B),e(B’)). Thus, our isomorphism is e} p. O

2.2. Global Dimension

In this section we study the connections between the global dimension of the cate-
gories involved in a recollement (o, #,%) of abelian categories.

Our first aim is to prove, and analyze the consequences, of the following result which
gives an upper bound for the global dimension of & in terms of the global dimension
of o/ and ¥ .

THEOREM 2.2.1. Let (&7, B,%) be a recollement of abelian categories such that
and € have enough projective objects. Then:

gl.dm% < gl.dim& +gl.dim% + sup{pd,i(P) | P € Proja/} + 1

For the proof we shall need the following auxiliary results which are interesting in
their own right. To begin with, we recall the following well known result (c.f. [123]).

LEMMA 2.2.2. Let 0 — A; = Ay 25 A3 225 Ay — 0 be an ezact sequence in
an abelian category o/ with enough projective objects.

(i) If Ay =0, then:
(a) If pd, A1 < pd, Ay, then pd,, Az =pd,, As.
(b) Ifpd,, Ay > pd,, Ay, then pd,, A3 = pd,, A; + 1.
(c) If pd, Ay = pd,, Az, then pd,, A3 < pd,, A, + 1.
(d) pd,, A3 < max{pd_, A; + 1,pd,, As}.

(11) ]f A4 7é 0, then: pdﬂ A3 < max{pdﬂ Al + 1, pdd AQ, pdﬂ A4}

PRroOF. Part (i) is standard, see [65], [L15], [123]. For part (ii) consider the short
exact sequences

O—>A1—>A2—>Ima2—>() and 0—>|ma2—>A3—>A4—>0

By virtue of part (i)(d), we obtain that pd, Imay < max{pd,, A; + 1,pd,, As}. Then
the result follows from the following long exact sequence:

o Ext” (Imay, A') — Ext?, (A, A') — Ext?, (A, A') — Ext”,(Im ay, A’) — - -
where A’ lies in <7 . O

LEMMA 2.2.3. Let o/ be an abelian category with enough projective objects and let
A e /. If there exists an exact sequence:

0 X X Xo A 0
with pd, X; <n for all0 <iv < m, thenpd, A <m+n.
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Proor. If 0 — X; — Xy — A — 0 is exact with pd, X; < n then from the

long exact Ext-sequence we get that pd,, A < n+ 1. Then by induction on m the result
follows. O

To proceed further we need the notion of the .o7-relative global dimension of %4
which is defined by:

gl.dim % :=sup{pd,i(A) | A€ o}

LEMMA 2.2.4. Let (&7, 2B,%) be a recollement of abelian categories and assume that
% has enough projective objects. Let C' € €. Then:

pd, I(C) < pdy C +gl.dim_, %+ 1

Proor. If gl.dim_, # = oo or pd, C' = oo there is nothing to prove. Assume that
gl.dim_, % = n. The proof will proceed by induction on the projective dimension of
C. If C is a projective object of €, then I(C) is a projective object of & and so the
result follows. Suppose now that pd, C'=m and that the result holds for every object
of € with projective dimension less than of m, i.e., pd, (C") < pdy C"+n+1 for every
object C" € € with pd C" < m. Since pd, C' = m we have the exact sequence

0 P, 2. p-2.p-Y.p -2 C 0
joi/
20
Ky

where the objects P, € Proj4 and K, = Kerag. Because pd, Ky < m, from the
induction hypothesis we deduce that pd 4 1(Ky) < pdy, Ko+n+1 < m—1+n+1=m+n.
Since the functor |: 8 — % is right exact we have the following exact sequence

e

Kerl(ag)

We claim that the object LiI(C) ~ Kerl(iy) € i(«7). Since the functor e: Z — €
is exact and the unit Idy — el is invertible we have e(Kerl(ig)) ~ Keriy and so
e(Kerl(ig)) = 0. Hence pd,LiI(C) < n. Then from the short exact sequence 0 —
Lil(C) — I(Ky) — Kerl(ag) — 0 we have pd, Kerl(ag) < m + n. Therefore from
the exact sequence (2.2.1) it follows that pd 4 1(C) < m+n+1 since I(Fy) € Proj%#. O

I(Fo)

I(C) 0 (2.2.1)

The following result gives some upper bounds for the global dimension of £, ¢ and
completes the proof of Theorem 2.2.1.

PROPOSITION 2.2.5. Let (o7, %,€) be a recollement of abelian categories and as-
sume that B and € have enough projective objects. Then:
(i) gl.dim# < gl.dim_,% + gl.dim% + 1.
(ii) gl.dim,%# < gl.dime + sup{pd,i(P) | P € Proj.</}.
(iii) gl.dim% < gl.dim# + sup{pd, e(P) | P € Proj #}.
In particular if either (a) the functor p: B — o is exact, or () the categories B
and € have enough injectives and the functor q: 8 — o is exact, then:

gldmZ%Z < gl.dima +gl.dm% + 1
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PROOF. (i) Let B be an object of #. Suppose that gl. dim_,% = n < co and
gl.dim% = m < oo. From Proposition 1.1.6 there exists the exact sequence
0 — Kerpup — le(B) 22 B — Coker up — 0 where the objects Ker pup
and Coker g belong to i(<7). Hence pd,Ker ug < n and pd, Coker ug < n.
Then from Lemma 2.2.2 and Lemma 2.2.4 we have the following bound:

pdy, B < max{n+1,pdyle(B),n}
< max{n+1,pd,e(B)+n+1,n}
pd,e(B)+n+1

Since e(B) is an object of ¢ we infer that pd, B < m +n + 1 and the result
follows.

(ii) Let A be an object of .&# and suppose that sup{pd,i(P) | P € Proj &/} =n <
0o. We will prove that pd,i(A) < pd, A+ n. If A is a projective object of
o/ then pd4i(A) < n and so our result holds. Suppose now that pd,, A = m.
Then we have the exact sequence

0O—PF,——P—PF—A—0

where the objects P; € Proj.o/ for 0 < i < m. Hence pd,i(P;) < n and since
the functor i: &/ — 2 is exact we infer from Lemma 2.2.3 that pd,i(A) <
m+n.

(iii) Suppose that gl.dim % = m < oo and sup{pd, e(P) | P € Proj A} =n < cc.
Let C' be an arbitrary object of €. Then I(C) € % and so there exists an
exact sequence

0O—PFP,— - —P — P —I(C)—0

with P; € Proj# for 0 < i < m. Then applying the functor e: Z — € we
obtain the exact sequence

0—ePy,) — - —elP)—eR) —C—0

where pdge(P;) < n for all 0 < i < m. Therefore from Lemma 2.2.3 we
conclude that pdy, € < m + n.

Finally if the functor p is exact then the inclusion i preserve projectives as a left

adjoint of p. In this case we have gl. dim _,% < gl. dim<Z and the assertion follows from

Theorem 2.2.1. Case () is dual. O

We continue with some consequences of the above results.

COROLLARY 2.2.6. Let (o, 2B,%€) be a recollement of abelian categories and assume
that A and € have enough projective objects.

(i) Ifgl.dim % < oo and gl.dim% < oo then gl.dim Z < oc.
(i) If gl.dime/ < oo then gl.dim_, # < oo if and only if sup{pd,i(P) | P €

Proj .o/} < o0.
(iii) If gl.dm % < oo then gl.dim% < oo if and only if sup{pd,e(P) | P €
Proj #} < co.
PRrROOF. The result follows immediately from Propostion 2.2.5. O

REMARK 2.2.7. If 0 — B -2 710 %y [ ... is an injective coresolution of
B € % then we denote by X"(B) the nth cosyzygy of B, that is the image of the
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morphism b,: I"™' — ™. Also, we denote by ¥"(%) the full subcategory of %
consisting of the nth cosyzygy objects of Z. Then since

Ext(i(P),X™(B)) ~ Ext ™ (i(P), B) and Extl(e(P),X"™(C)) ~ Ext'™(e(P),C)
for every n > 1, we have the following:
(i) sup{pdyi(P) | P € Proj.«} < m if and only if ¥™(%) C i(Proj & )1+=.
(ii) sup{pdy e(P) | P € Proj %} < m if and only if X™(%€) C e(Proj #)*=.

The following result gives an upper bound for the global dimension of % provided
that the functor i: &/ — £ is a homological embedding.

THEOREM 2.2.8. Let (o, B, %) be a recollement of abelian categories such that A
and € have enough projective and injective objects. If the functor i: o — A is a
homological embedding, then:

gldima& < gl.dm%Z < sup{pd,i(P)| P € Proj.«/}+
max{sup{idxi(I) | I € Inj</}+gl.dim.<7, gl.dim%}

PROOF. Let B € % and suppose that sup{pd,i(P) | P € Proj.«/} = m < oo. Then
from Remark 2.2.7 we have ¥™(B) C i(Proj «/)'*> and from Proposition 1.1.6 we have
the following exact sequence:

Then since the map i% -1 Ext?, (X, Y) — Ext(i(X),i(Y)) is invertible for every X, Y €
o andn > 0, X™(B) Ci(Proj &)t and Homy(i(P),ip(X™(B))) =~ Homy(i(P), ¥™(B))
we have

Ethg(l(P), Im VZm(B)) =0
for every n > 0 and P € Proj./. Thus from Proposition 2.1.4 we infer that Imvgm ) €
Y and therefore from Theorem 2.1.11 we have the isomorphism

Ext%(Z, Imvgmp)) ~ Exty(e(2), e(lm vsm(py))
for every n > 0 and Z € 4. This implies that
idgz Imvgm gy < gl.dim %
Similarly as in the proof of Proposition 2.2.5(ii) we obtain
idgip(3™(B)) < idyp(E™(B)) 4 supfidyi(l) [ I € Inj.o/}
Hence from the above inequalities, the exact sequence (2.2.2) yields
idgX"™(B) < max{sup{idgi(l) | I € Inje/} + gl.dim .o, gl.dm €’}
and the assertion follows since idg B < idg X" (B) + m. O

The following result shows that if 2 is hereditary then the categories &/ and € are
hereditary as well.

THEOREM 2.2.9. Let (&7, %B,%€) be a recollement of abelian categories and suppose
that % and € have enough projective objects. If gl.dim A < 1, then:

gldima < 1 and gl.dm% < 1
Conwversely, if gl.dimeo/ < 1 and gl.dim% < 1 then:
gl.dm%# < 3+sup{pdyi(P) | P € Proj.</}
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PROOF. Let C be an object of € and --- — P, =% Py 2% C' — 0 a projective
resolution of C'. Since the functor |: ¥ — £ is right exact we have the exact sequence

(P~ 1Py Xk ) —~0

e

Kerl(ag)

0 —— Kerl(ay)

where the objects I1(P;) and I(Fy) are projective in Z. Since gl.dim % < 1, the ob-
ject Kerl(ag) is projective and therefore the short exact sequence 0 — Kerl(ay) —
I(P;) — Kerl(ag) — 0 splits. Applying the functor e we get the split exact sequence
0 — e(Kerl(a;)) — el(P;) — e(Kerl(ag)) — 0. Since e is exact and the unit
Idy — el is invertible we have e(Kerl(ag)) ~ Kerag and e(Kerl(a1)) ~ Kera,. Hence
the exact sequence 0 — Kera; —» P; — Kerag — 0 splits, so Ker ag is projective as
a direct summand of P;. Hence pd, C' < 1 and therefore gl.dim% < 1. Let A;, Ay € &7
and 0 — K — P — A; — 0 be a short exact sequence with P € Projo/. Then
we have the exact commutative diagram:

~

Extl, (P, Ay) Ext, (K, Ap) Ext?, (Ay, Ay) Ext?, (P, Ay)

it ~ il ~ i2
P,Ag | — K,Ag | — A1,49

Exty, (i(P), i(A2)) — Exty(i(K),i(Az)) —= Exty(i(A1),i(A2)) — Exti(i(P),i(Az))

where, by Remark 2.1.7(i), the vertical maps i};’ 4, and i}(, A, are invertible. Since
gl. dim % < 1 we have Ext%(i(A;),i(A43)) = 0 = Ext%(i(P),i(A,)) and thus Ext?,(4;, A,)
= 0. This implies that gl.dim& < 1. The converse follows directly from Theorem
2.2.1. O

REMARK 2.2.10. The implication gl.dm% < 1 = gl.dim& < 1 holds without
assuming enough projectives. Indeed let Ay, Ay € & since the functor i: &/ — A
is 1-homological embeding, see Remark 2.1.7(i), it follows from [101] that the map
%, 4,0 Ext?,(Ar, As) — Ext’(i(A41),i(Az)) is a monomorphism. Since gl. dim % < 1 we
have Ext%(i(A1),i(A)) = 0 and therefore Ext?,(A;, Ay) = 0. Hence gl. dim.oZ < 1.

Now we turn our attention to the study of the structure of the categories X,, and Y,
in connection with the behaviour of the homological dimensions of the categories .27,
A, and €. We begin with the following observation.

COROLLARY 2.2.11. Let (o7, B, %) be a recollement of abelian categories and assume
that B and € have enough projective and injective objects.
(i) If B € X then pdy, B = pdy e(B).
(i) If B € Yoo then idy B = id¢ e(B).
(iii) If X1 = Xo 0r'Y1 = Yoo then gl.dmE < gl.dim A.

PRrOOF. Parts (i) and (ii) follow from Theorem 2.1.11 using that the quotient functor
e: B — € is surjective on objects. Let Xy = X, and suppose that gl. dim %Z = n < oo.
Let C € € and P, — Py, — C' — 0 be an exact sequence with P, Py € Proj%. Then
I(C') € X and from (i) we have pdy, C' = pdy el(C) = pd41(C) < n. Hence gl.dim% <
gl.dim Z. Similarly using the other hypothesis we obtain the same result. U
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REMARK 2.2.12. Suppose that the functor i: &/ — A is a homological embed-
ding and let I € Inj%. By Theorem 2.1.10 we have G(I) € Y, hence idg G(I) =
idg e(G(I)) < gl.dim % by Corollary 2.2.11. Then by Proposition 1.1.6 we have idg ip(I) <
gl.dim% + 1. This shows that Theorem 2.2.8 improves Theorem 2.2.1.

The following result characterizes when the inclusions X; 2 X, or Y; O Y. are
equalities, in terms of properties of the quotient functor of the recollement.

PROPOSITION 2.2.13. Let (&7, AB,%) be a recollement of abelian categories and as-
sume that B and € have enough projective and injective objects. Then:

(i) Y1 = Y if and only if the functor r: € — AB is exact, equivalently the
functor e: B — € preserves projectives.

(i) Xy = X if and only if the functor |: € — B is exact, equivalently the
functor e: B — € preserves injectives.

PROOF. (i) Let Y € Y; and k > 1. We will prove first that Y € Y, if and only if
Extz(e(P),e(Y)) = 0 for every P € Proj % and 1 <n < k — 1. Then our claim follows
from this. Indeed, let Y € Y; and suppose that the functor e preserves projectives.
Then Exty(e(P),e(Y)) = 0 for every n > 1 and therefore Y € Y. Assume conversely
that Y, = Yo and let P be a projective object of %. Since the object r(C) € Y, for
every C € €, it follows that the group Exti(e(P),er(C)) = 0. Thus the object e(P) is
projective in .

We show now our initial statement. If Y € Y, then from Theorem 2.1.11 we have
Extz(e(P),e(Y)) ~ Ext(P,Y) for all 0 < n < k — 1 and so Exty(e(P),e(Y)) = 0 for
every P e Proj# and 1 <n <k -—1.

Let’s make some remarks before we prove the converse. Let P € Proj%. Then
from Proposition 1.1.6 we have the exact sequence le(P) X% P — iq(P) — 0
and e(F(P)) ~ e(P), where F(P) = Imup. Also F(P) € Xy since there exists an
epimorphism () — le(P) for some Q) € Proj%é. From Remark 1.1.5 we know that
Proj &/ = add q(Proj #). By Proposition 2.1.4 in order to prove that B € Yy, it is enough
to show that Extl,(iq(P),B) = 0 for all P € Proj B and 0 < n < k. Suppose for the
converse that Exty(e(P),e(Y)) = 0 for every P € Proj%# and 1 < n < k — 1. Since
F(P) € Xy we have the short exact sequences 0 — K — I(Q)) — F(P) — 0 and
0 — e(K) — Q — e(F(P)) — 0 where ) € Proj%. Then from the following exact
commutative diagram:

0 —= Homy(F(P),Y) —= Hom4(I(Q),Y) —= Homy(K,Y) —— Ext,(F(P),Y) — 0

:L :j :L e:eua),yj

0 > Homg (e(F(P)),e(Y)) = Homy(Q,e(Y)) = Homg (e(K),e(Y)) = Extl(e(F(P)),e(Y)) = 0

it follows that the map e,lz( Py is invertible, where the first and third vertical isomor-
phisms follow from Theorem 2.1.11 since Y € Y;. Therefore we have

Ext%(iq(P),Y) ~ Ext,(F(P),Y) ~ Ext,(e(F(P)),e(Y)) ~ Ext.(e(P),e(Y)) = 0
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Hence from Proposition 2.1.4 we infer that Y € Y5. Moreover, we have the exact
commutative diagram

~

0

0 —— Ext,(K,Y) Ext%(F(P),Y)

~ 1 2
=~ leK,Y eF(P),Yl

0 — Exti(e(K),e(Y)) — ExtZ(e(F(P)),e(Y)) —=0

and from Theorem 2.1.11 it follows that the map e - is an isomorphism since Y € Y.
Hence the map eg( Py I8 invertible and then we have isomorphisms

Extl,(iq(P),Y) ~ Ext%(F(P),Y) ~ ExtZ(e(F(P)),e(Y)) ~ ExtZ(e(P),e(Y)) = 0.

Proposition 2.1.4 then implies that Y € Y5. Then by induction it is easy to see that
Y € ldk;
(ii) The proof is similar and is left to the reader. O

COROLLARY 2.2.14. Let (<7, B,€) be a recollement of abelian categories such that
the functor r: € — A is exact or the functor |: € — A is exact. Then:

gl.dm% < gl.dmZ%Z < max{gl.dim.« + sup{pd,i(P) | P € Proj</} + 1,gl.dim %}

ProOF. The lower bound is a consequence of Corollary 2.2.11 and Proposition
2.2.13. Note that if the functor r is exact then the functor e preserves projectives
and therefore gl.dim% < gl.dim % by Proposition 2.2.5(iii). Now since the functor
|: € — A is exact we claim that pdy,|(C) = pdy, C for every C € €. Let C be
an object of ¥ with pd, C = n and let 0 — P, — -+ — Fp — C — 0
be the projective resolution of C'. Then if we apply the exact functor | we get that
pd, (C) < n = pdy, C since the functor | preserves projectives. Conversely suppose
that pd41(C) = m < oco. Let 0 — Ky — Py — C' — 0 be an exact sequence
with Py € Proj% and K| the kernel of ag: Fy — C. Since the functor | is exact the
sequence 0 — I(Ky) — I(Fy) — I(C') — 0 is exact. Continuing with the same way,
after m-steps we obtain the exact sequence:

0 — (Kp-1) — (Ppy) — -+ — 1(Fy)) — I(C) — 0

where |(K,,—1) is projective since pd, [(C) = m. Then if we apply the functor e we get
the exact sequence:

0 —Ky1—FPpq——F —C—0

and we claim that Q™(X) = K,,_1 € Proj%. But this follows easily since I(K,,_1) is
projective and the functor | is fully faithful. Thus we have pdy, C' < m = pd,|(C) and
then we conclude that pdy, C' = pd4I(C). Let B be an object in . Then working as
in the proof of Proposition 2.2.5(i) combined with Proposition 2.2.5(ii) we obtain that

pd, F(B) < max{gl.dim_ % + 1,pd,le(B)}
< max{gl.dim < + sup{pd4i(P) | P € Proj«/} + 1,gl.dim%’}
Then from the exact sequence 0 — F(B) — B — iq(B) — 0 we infer that

pd, B < max{gl.dim .o/ + sup{pd4i(P) | P € Proj</} + 1,gl.dim€}. The dual for the
upper bound using that the functor r is exact is left to the reader. |
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COROLLARY 2.2.15. Let % be an abelian category such that the diagrams

q | q’ I
/’i\ /;\ /./\ /;\
a B € and o' B ¢’
p r p v

are recollements of abelian categories. Suppose that the functors |, ' are evact and

i(Proje7) € Xy. Then:
max{gl.dim%,gl.dm%¢’'} < gl.dm% < max{gl.dim.«+
sup{pdy, €'i(P) | P € Proj</}+1,gl.dim %€}

PROOF. Let P € Proj.o/ and assume that pdy, €'i(P) = n < co. Then there exists
an exact sequence 0 — @, — -+ — Qg — €'i(P) — 0 with @; € Proj%”. Since
the functor I is exact and preserves projective objects we have the exact sequence 0 —
(Qn) — - — 1(Qo) — I'e'i(P) —> 0 with I(Q;) € Proj 2, i.e. pd,l'ei(P) < n.
Since i(P) € X} it follows from Proposition 2.1.2 that I'e'i(P) ~ i(P). Therefore we infer
that pd,i(P) < n = pdy €i(P) and then the result follows from Corollary 2.2.14. [

The following result characterizes when sup{pd,i(P) | P € Proj«/} < 1. We leave
to the reader its dual version concerning the condition sup{idzi(f) | I € Inja/} < 1.

PROPOSITION 2.2.16. Let (&7, B, %) be a recollement of abelian categories such that
B has enough projective and injective objects. Then the following are equivalent.

(i) The idempotent functor F: BB — P preserves projective objects.
(i) ©(#) C i(Proj o/ .
(iii) sup{pd,i(P) | P € Projo/} < 1.
(iv) The functori: o/ — A is a homological embedding and Y1 = Y.
(v) The functori: of — AB is a 2-homological embedding and Y1 = Yoo

If one of the above equivalent statements holds, then:
max {gl.dim </, gl.dim%} < gl.dmZ%Z < gl.dim< +gl.dim% + 2

PROOF. (i) = (ii) Let Y be an object of Zand 0 — Y — [ — 3(Y) — 0 (1)
be an exact sequence with I € InjZ. From Proposition 1.1.6 we have the exact sequence
0 — F(P) — P — iq(P) — 0, where P € Proj%. Hence pd,iq(P) < 1 and so
we have Ext?,(iq(P),>2(Y)) = 0 for every n > 1. This implies that the cosygygy object
Y(Y) € i(Proj &)+ since Proj .« = add q(Proj %).

(iii) < (ii) = (i) The equivalence (iii) < (ii) follows from Remark 2.2.7. Assuming
(ii), let P € Proj % and consider the extension (1) for an object Y € Z. Then from the
isomorphism ExtZ,(iq(P),Y) ~ ExtL(iq(P),2(Y)) it follows that Ext%(iq(P),Y) = 0
since X(Y) € i(Proj .o/ ). This implies that Extl,(F(P),Y) = 0 for every Y € 4 since
Ext%(iq(P),Y) ~ Ext,(F(P),Y). Hence F(P) € Proj 4.

(i) = (iv) Since the idempotent functor F: # — Z preserves projective objects,
as above we have pd,iq(P) < 1. Hence Extl,(iq(P),i(A)) = 0 for every A € & and
n > 1. Then from Theorem 2.1.10 we infer that the functor i: & — A is a homological
embedding since Proj.«/ = add q(Proj #). The inclusion Y, C Y; always holds. Let
Y € Y;. Then from Proposition 2.1.4 we have Extl,(i(Q),Y) = 0 for n = 0,1 and for
every () € Proj.«Z. Since pd4iq(P) < 1 we conclude that Y € Y, and so Y; = Y.
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(iv) = (v) = (i) The implication (iv) = (v) is clear. Assuming (v), let P € Proj A.
Since the functor i: &/ — A is a 2-homological embedding it follows from Theorem
2.1.10 that F(P) € X;. Thus there exists an exact sequence
with Py, Py € Proj% and from Proposition 2.1.2 we have le(F(P)) ~ F(P). Also from
Proposition 2.2.13 we deduce that the object e(F(P)) ~ e(P) is projective since Y; =
Y. Then if we apply the functor e to the sequence (%) we obtain the split exact
sequence
Therefore, applying the functor |: € — Z to (x*) we get that the sequence (x) splits
and so F(P) € Proj A.

If one of the conditions (i)-(v) holds, then the lower bound for the global dimension

of # follows from statement (iv) using Corollary 2.2.11 and the upper bound follows
from Theorem 2.2.1. O]

As a consequence of Theorem 2.2.8 and Proposition 2.2.16 we have the following.

COROLLARY 2.2.17. Let (&7, %B,%) be a recollement of abelian categories where A,
€ have enough projective and injective objects. If sup{pd,i(P) | P € Proj«/} <1 and
sup{idgi(I) | I € Inje/} <1, then:

max{gl.dim <7 gl. dm%} < gl.dim%Z < max{gl.dim< + 2,gl.dm% + 1}

The following consequence of Propostion 2.2.16 gives a sufficient condition such that
the finiteness of the global dimension of Z is equivalent to the finiteness of the global
dimension of &/ and % .

COROLLARY 2.2.18. Let (&7, B, %) be a recollement of abelian categories, where
and € have enough projective and injective objects. If sup{pd,i(P) | P € Projo/} <1,
then the following are equivalent.

(i) gl.dmZAB < oc.
(ii) gl.dim« < o0 and gl.dm% < oc.

The following is a well known result for comma categories, see [49], and follows
directly from our results.

ExaMpPLE 2.2.19. Let ¢ = (G, %4,4/) = (Id | G) be a comma category. From
Example 1.1.12 we have the recollements of abelian categories (&7, €, #) and (A,€, o)
where the functors Z,: &/ — €, Zy: B — € and U, : ¢ — o, Uy: € — A
are exact. Then from Proposition 2.2.5 and Corollary 2.2.14 we have

max{gl.dim <7, gl.dim#} < gl.dm% < gl.dim« +gl.dm%Z + 1

We close this section by introducing the notion of the stratification dimension for
abelian categories.

DEFINITION 2.2.20. Let £ be an abelian category. A stratification of % is a sequence
of recollements of abelian categories of the following form:

do lo q1 I
/io\ /eo\ /I_l\ /;\
% B (50 s % % %1 )
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We say that the above sequence is a non trivial stratification of £ if the first recollement
in the above sequence is not trivial, i.e. it is not of the form (0, %2, %) or (<, 4,0).

The stratification dimension of Z#, denoted by str.dim %, is defined inductively as
follows. The stratification dimension of Z is str.dimZ = 0 if we have a trivial rec-
ollement (0, %,%,) or (%, %A,0) and there is no non trivial recollement for . We
define str.dim % < 1 if there exists a non trivial recollement (%%, %, %) such that
str.dim.4 = 0. Then inductively the stratification dimension of £ is str.dim% < n
if there exists a non trivial recollement (<%, %, 6;) such that str.dimefy < n — 1. If
no such integer exists then we set str.dim%Z = oo and we make the convention that
o 1 =RB.

ExAMPLE 2.2.21. Let A be an Artin algebra and 0 = Uy C U; C Uy C - - - a chain of
idempotent ideals. Then there exists a positive integer n such that U, = U,;1. Assume
that the quotient algebra A/U, has only the trivial idempotents 0 and 1. Recall that
U; = 7p,(A) is the trace ideal of a projective A-module P,. Then we have the following
stratification of mod-A:

(mod-A/U;, mod-A, mod-T';) U, : idempotent ideal in A
(mod-A /Uy, mod-A /Uy, mod-T') Uy /Uy : idempotent ideal in A/U4
(mod-A/U,,_1, mod-A/U,,_5, mod-T",,_1) Up—1/Up,_o : idempotent ideal in A/U,,_o
(mod-A/U,,, mod-A/U,,_1, mod-T,,) U, /U,_1 : idempotent ideal in A/U,_4

(mod-A/U,,, mod-A/U,, 0)
Therefore we have str. dim mod-A < n. Similarly if we have a chain of idempotent ideals
0=UyCU; C--- CU,—; €U, = A such that A/U,,_; has only the trivial idempotents
0 and 1, then we have a stratification of mod-A as above and str.dimmod-A <n — 1.

The following result is a consequence of Theorem 2.2.1 for a stratified abelian cate-
gory.

COROLLARY 2.2.22. Let & be an abelian category with str.dim % < n. Suppose that
sup{pd,, ity1(P) | P € Proja 1} < 1 for every —1 < k < n — 2 and the categories
60,61, ,Cn—1 have finite global dimension. Let max{gl.dim%, --,gl.dim%,_,} =
m. Then:

ghdm#Z < 2m+2)+ (n—1)(m+2)

PROOF. For n = 0 we have the trivial stratification (0, %,%;) and therefore we
infer that gl. dim % < m. Suppose that n = 1. This means that we have a sequence of
recollements (2, B, 6p) and (0, %%, ¢1). Thus gl.dim 24 < m and then from Theorem
2.2.1 it follows that gl.dmZ < m+m + 1+ 1 = 2m + 2. Continuing inductively the
result follows. OJ

2.3. Finitistic Dimension

In this section we turn our attention to the behavior of the finitistic dimension of
the categories involved in a recollement (<7, %,%€) of abelian categories. Recall that
the finitistic projective dimension FPD(%) of £ is defined by

FPD (#) := sup{pdy, B | pdy B < oo}

To this end it is convenient to introduce the following notion.
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DEFINITION 2.3.1. Let F: o — 2 be a right exact functor between abelian cat-
egories, where we assume that @/ has enough projectives. We say that F has locally
bounded homological dimension, if there exists n > 0 such that whenever L,,F(A) =0
for m > 0 then L,,F(A) = 0 for every m > n + 1. The minimum such n (if it exists) is
called the locally bounded homological dimension of F and is denoted by I.b.hom.dimF.

For instance F has locally bounded homological dimension if it has finite homolog-
ical dimension, i.e. LyF = 0 for some £ > 1. Dually one defines the locally bounded
cohomological dimension of a left exact functor G: & — A.

We begin with the following result which provides a general bound for the finitistic
projective dimension of 4 in terms of the finitistic projective dimension of 4 and the
locally bounded homological dimension of the functor |: ¥ — A.

THEOREM 2.3.2. Let (o, 2B,€) be a recollement of abelian categories and assume
that # and € have enough projective objects. If the functor |: € — B has locally
bounded homological dimension, then:

FPD (%) < FPD (%) + l.b.hom.dim|

PROOF. Assume that |.b.hom.diml = n and FPD(#) = k < oco. Let C € &
has finite projective dimension, so the nth syzygy Q"(C) of C has finite projective
dimension as well. Since clearly L,,I(C') = 0 for m > 0, it follows that L,,|(C) = 0 for
every m > n + 1. We infer that:

L.1(2"(C)) =0 for every m >1 (2.3.1)
Consider a (finite) projective resolution
= Qr — Q1 @1 Qo Q(C) —=0

of Q"(C). Applying the right exact functor | and using (2.3.1), we then have an exact
sequence:

() (Qr-1) — -+ —=(Q1) —=1(Qo) —= I("(C)) —0

which, since | preserves projectives, is a projective resolution of 1(Q"(C')) and then we
have pd, 1(Q2"(C)) < oo. Since FPD (%) = k, it follows that 1(Q""*(C)) = QF(1(Q*(C)))
lies in Proj#. Let f: Q — Q"™*(C) be an epimorphism with () € Proj%. Then we
have the split exact sequence 0 — K — 1(Q) — 1(Q2"**(C)) — 0 and if we apply
the exact functor e we deduce that Q"+*(C) is a direct summand of the projective object
Q, i.e. the object Q"**(C) is projective and therefore pdy C' < n + k. We infer that
FPD (¥¢) < FPD (%) + n. O

Our aim in the remainder of this section is to improve on the bound of Theorem 2.3.2
under natural conditions concerning the homological behavior of the functors p: 4 —
o/ and r: € — . To this end we need some preparations.

LEMMA 2.3.3. Let (&7, B,%) be a recollement of abelian categories such that 2
and € have enough projective objects, and assume that the functors p: B — </ and
r: ¢ — A are exact.

(i) For every B € # we have the exact sequence:
0 —ip(B) =% B 2 re(B) — 0

(i) For every A € o/ we have:  Ly,q(i(A)) = 0, Vm > 1. In particular:
pdyi(A) =pd, A
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(iii) There exists a natural map L,,q(—) — L,q(re(—)) which is a monomorphism
form =1 and an isomorphism for every m > 2.

(iv) If C € € with pdy, C < n then L,q(r(C)) =0 for every m > n + 2.

(v) Let B € % such that L1q(B) = 0. Then the sequence

0 —> le(B) £& B 22 iq(B) — 0

15 ezact.
(vi) Let B € B. Then B € Proj# if and only if q(B) € Proj</, e(B) € Proj¥
and L1q(B) = 0.

PROOF. (i) Let B € #A. Then from Proposition 1.1.6 there exists an exact
sequence 0 —» ip(B) =2 B 2 re(B) — Cokervg — 0 in %, where
Cokervg € i(«7) and thus Cokervp = i(A) for some A € &/. Since pr = 0 and
p is exact we infer that p(i(A)) = A = 0, and then i(A) = Coker v = 0.

(i) Since the functor p is exact it follows that the functor i preserves projectives.
Hence if P* — A is a projective resolution of A in &7 then i(P*) — i(A) is
a projective resolution of i(A) in %. Since qi ~ Id,,, this clearly implies that
La(i(A)) =0, Vm > 1, and therefore pd4i(A) = pd_, A.

(iii) Applying the functor q to the exact sequence in (i) we have the long exact
sequence:

- > Liq(ip(B)) = Lia(B) = Liq(re(B)) = q(ip(B)) = q(B) > q(re(B)) ~ 0

and the result follows from (ii).

(iv) Let @ € Proj €. From (iii) we have the isomorphism L,,q(I(Q)) ~ L,,q(re(I(Q)))
for every m > 2. Since el ~ Idy and I(Q) € Proj £ it follows that L,,q(r(Q)) =
0 for every m > 2. Suppose that n = 1, so we have an exact sequence
0 — Q1 — Qo — C — 0 with Q; € Proj%. Applying the functor r we
obtain the exact sequence 0 — r(Q1) — r(Qo) — r(C') — 0. Then from
the following long exact sequence:

= Liq(r(Q1)) = Lia(r(Qo)) = Lia(r(C)) = q(r(Q1)) = a(r(Qo)) = q(r(C)) =0

we derive that L,,q(r(C)) = 0 for every m > 3. Then the result follows by
induction on n.
(v) Consider the exact sequence:

0 —— Ker iy — le(B) 22~ B 22+ iq(B) —= 0 (2.3.2)
F(B

where, since Ker g € i(.27), we have Ker up = i(A) for some A € «7. Applying
the functor q:  — & to the sequence (2.3.2) we have the following long
exact sequence:

- —Laq(iq(B)) — Lia(F(B)) — Liq(B) — Liq(iq(B)) — - --

Since L1q(B) = 0, by (ii) we deduce that L1q(F(B)) = 0. Hence the long exact
sequence

= L1q(F(B)) — q(i(4)) — q(le(B)) — q(F(B)) —0
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implies that A = 0 since gl = 0 and qi ~ Id,,. We infer that (2.3.2) becomes
a short exact sequence:

0 —> le(B) X2 B 22 iq(B) — 0 (2.3.3)

(vi) Let B € £ be such that q(B) € Proj <7, e(B) € Proj% and L;q(B) = 0. Since
i and | preserve projectives, it follows that both le(B) and iq(B) are projective
in . Then the sequence (2.3.3) is split exact, so B ~ le(B) & iq(B) and
B € Proj#. The converse implication is clear. [

LEMMA 2.34. Let (&7, %,%) be a recollement of abelian categories such that %
and € have enough projective objects, and assume that the functors p: 8 — </ and
r: ¢ — A are exact. Let B € B be a left q-acyclic object, i.e. L,,q(B) =0 for every
m > 1. Then:

pd, B = max{pd,e(B),pd,, q(B)}

PRrooFr. If pd, e(B) = oo or pd,, q(B) = oo, then pd, B < max{pd, e(B),pd,, q(B)}.
Hence we may assume that pd,e(B) = k£ < oo and pd,q(B) = A < oo, and let
m = max{k,A}. If m = 0, then e(B) is projective in € and q(B) is projective in
</ . Then from Lemma 2.3.3(vi) it follows that B is projective in % since L1q(B) = 0.
Suppose that m # 0. Let 0 — Q(B) — Py — B — 0 be an exact sequence with
Py € Proj%. Then from Lemma 2.3.3(v) and since L1q(B) = 0 we have the following
exact commutative diagram:

0 0 0
0——=1e(QB)) —=le(P) le(B) 0
00— Q(B) Fy B 0
0 —iq(Q(B)) —iq(F) iq(B) 0
0 0 0
Then from the exact sequence 0 — le(Q2(B)) — le(Py) — le(B) — 0 it follows that
Lnl(e(B)) =0 ¥Ym>1 (2.3.4)

Also the middle vertical exact sequence splits since iq(Fy) € Proj # and therefore Py ~
le(Py) @ iq(F). Continuing in this way we construct a projective resolution of B as
follows:
(2.3.5)
where the mth syzygy fits in the following exact sequence:
0 —=1e(Q™(B)) — Q™(B) —=iq(Q?™(B)) —=0 (2.3.6)

From the relation (2.3.4) it follows that 1(Q2™(e(B))) ~ le(Q2™(B)) and since L,,q(B) =0
for every m > 1 we have i(Q2"(q(B))) ~ iq(Q2™(B)). Since m is the maximum of
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the projective dimension of e(B) and q(B) it follows that Q™(q(B)) € Proj.«/ and
Q™ (e(B)) € Proj¥. Since i and | preserve projectives we derived that the objects
i(Q™(q(B))) and (2™ (e(B))) are projective in Z. Hence the exact sequence (2.3.6)
splits and therefore the mth syzygy Q™(B) ~ le(Q™(B)) @ iq(Q2™(B)) is projective in
2. Then from the sequence (2.3.5) we infer that

pdyz B < m = max{pdy e(B),pd, q(B)}

Conversely, suppose that pd, B = m. Then Q™(B) € Proj % and therefore e(Q™(B)) €
Proj¢ and q(Q2™(B)) € Proj.o/. But since Q™(e(B)) = e(Q™(B)) and Q™(q(B)) =
q(Q™(B)) (because L,,q(B) = 0 for every m > 1) it follows that pd,e(B) < m and
pd, q(B) < m. Hence

max{pdy e(B),pd,, q(B)} < pdy B
and therefore we conclude that pd, B = max{pdy, e(B), pd,, q(B)}. O

LEMMA 2.3.5. Let (o7, %B,%) be a recollement of abelian categories such that A
and € have enough projective objects, and assume that the functors p: B — </ and
lr: € — A are exact. Then:

(i) Lmg(—=) =0, ¥Ym > 2.
(ii) For any object C' € €: pd,r(C) = max{pd, C,pd, pl(C) + 1}.

PROOF. (i) Let B € #A. Then from Lemma 2.3.3(i) we have the exact se-
quence 0 — iple(B) — le(B) — re(B) — 0. Let 0 — Ky — Qy —
e(B) — 0 be an exact sequence with Qg € Proj%. Then since | is exact we
have the following exact commutative diagram:

and from the Snake Lemma we derive the exact sequence
0 — I(Ky) — K —> iple(B) — 0

Then we have the following long exact sequence:

-+ —Lyq(re(B)) — Lig(K) — Liq(I(Qo)) — Liq(re(B)) — - --

and therefore
Loq(re(B)) ~ L1q(K) (%)

Hence from the following long exact sequence:
-+ — Laq(iple(B)) — Liq(I(Ko)) — Liq(K) — Liq(iple(B)) —

we deduce, using Lemma 2.3.3(ii), that Lyq(K) ~ Liq(I(Kp)). But since the
functor | is exact and gl = 0 it follows that L,,q(I(Ky)) = 0 for every m > 1.
Thus from the isomorphism (%) it follows that Loq(re(B)) = 0 and therefore
Loq(B) = 0. Continuing in this way we infer that L,,q(re(B)) = 0 for every
m > 2. By Lemma 2.3.3(iii), this implies that L,,q(B) = 0, Vm > 2.
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(ii) Let C' € Proj%. Then from the exact sequence 0 — ipl(C) — I(C) —
r(C) — 0 (1) and since pdyipl(C) = pd,, pl(C), see Lemma 2.3.3(ii), our
result holds. Suppose that pdy, C' = co. Then pd, C' = pdy er(C) < pd,r(C)
and therefore pd,r(C) = oco. Let pdyC = n < oo and let 0 — K —
Qo — C — 0 be exact with Qg € Proj%. From Lemma 2.3.3(i) and since
the functor r is exact we have the following exact commutative diagram:

0 ——ipl(Qo) — |(Cﬁo) — r(Cfo) —0 (2.3.7)
0 K 1(Qo) r(C) 0

Then we have the following long exact sequence:

- = L1q(l(Qo)) — Lia(r(C)) — q(K) — q(l(Qo)) —q(r(C)) —0

and thus we have q(K') ~ L;q(r(C)) since gl = 0. From the exact sequence (1)
we obtain the following long exact sequence:

- —L1q(I(C)) — Liq(r(C)) — pl(C) —q(l(C)) —q(r(C)) =0

Since the functor | is exact and gl = 0 it follows that L1q(I(C)) = 0. Hence we
infer that L1q(r(C)) ~ pl(C) and therefore we have the isomorphism:

q(K) ~ pl(C) (2.3.8)

From the lower exact sequence of diagram (2.3.7) we have pd,r(C) = 1 +
pd, K. Since L,,q(—) = 0, Vm > 2, it follows that L,,q(K) = 0 for every
m > 1. Then from Lemma 2.3.4 we have pd, K = max{pdy, e(K),pd,, q(K)}
and thus pd, r(C) = max{1+ pdy, e(K),1+pd,, q(K)}. Using relation (2.3.8)
we infer that pd,r(C) = max{pd, C,1+pd, pl(C)}. O

After these preparations we can prove the second main result of this section which
provides bounds for the finitistic projective dimension of % in terms of the finitistic
projective dimension of &7 and .

THEOREM 2.3.6. Let (o, B,%€) be a recollement of abelian categories and assume
that % and € have enough projective objects.

(i) If sup{pd,i(P) | P € Proj«/} <1, then:
FPD («/) < FPD (%)
(i) If sup{pdy, e(P) | P € Proj#} < oo, then:
FPD(%#) < FPD(%) +gl.dim, % + 1
(iii) If the functorsr: € — B and p: B — & are exact, then:
FPD(«/) < FPD(%) < FPD(</)+ FPD(%) + 1

Suppose in addition that the functor|: € — A is exact and pd_, pl(C) < oo,
VC € €. Then:

(a) If FPD(¥) < FPD(&)+ 1, then FPD(%)
(b) If FPD(¥¢) > FPD(«)+ 1, then FPD(£)

FPD(e) + 1.

<
< FPD(%).
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PROOF. (i) Assume that FPD (%) = k < oo and let A € &/ with pd,, A < 0.

(i)

(iii)

Since sup{pdi(P) | P € Proj«/} <1 it follows from Proposition 2.2.16 that
the functor i: & — % is a homological embedding. Thus pd_, A < pdi(A).
Then from Proposition 2.2.5 we infer that i(A) is an object of finite projective
dimension since pd4i(A) < pd_, A+ 1. This implies that pd,i(A) < k and
therefore pd,, A < k. Hence FPD (&) < FPD (4).

The upper bound for the FPD (#) follows from Proposition 2.2.5(i) since the
functor e:  — € preserves objects of finite projective dimension if and only
if sup{pdy, e(P) | P € Proj B} < 0.

Let B € # with pd, B < oo and let

i —= Py P,—P, —-— P — PBy—B—0

i ol

be a finite projective resolution of B. Since the functor r is exact it follows
that the quotient functor e preserves projective objects. Thus we have the
following exact sequence:

o ——e(Pyy) —e(P,) —=e(Py1) — - —¢e(F) —e(B) —0

L
e(Q(B))  e(2"(B))

which is a finite projective resolution of e(B) in ¢ since pd, e(B) < pdy4z B <
oo and e(P;) € Proj¥. Let pdye(B) = n < oo. Then the nth syzygy
O"(e(B)) = e(Q"(B)) of e(B) is projective and thus Q"' (e(B)) = e(Q"(B))
€ Proj #. From Lemma 2.3.3(iv) we have L,,q(r(e(B))) = 0 for every m > n-+2
and using the isomorphism of Lemma 2.3.3(iii) we infer that L,,q(B) = 0 for
every m > n + 2. Therefore it follows that:

L.q(Q"(B)) =0 for every m > 1
Since e(Q""1(B)) is projective, applying Lemma 2.3.4 we have
pd, Q"(B) = pd,, q(2"(B))
As a consequence we infer that
pdy, B<n+1+pdy, Q" (B)=pd,e(B)+pd,q(Q"(B))+1< oo

This yields that FPD(#) < FPD(<«/) + FPD(¥¢) + 1. For the lower bound
assume that FPD (#) = k < oo and let A € & with pd,, A < co. Since
p is exact we have pdyi(A) < oo and therefore pd,i(A) < k. By Theorem
2.1.10 it follows that pd, A < pdyi(A) and therefore pd,, A < k. Hence
FPD(«/) < FPD(#). Finally we prove the last statement of (iii). Assume
that FPD (¥¢) = m < oo and FPD (&) = n < co. Let B € % with pdy B <
oo. From Lemma 2.3.3(i),(ii) we have an extension 0 — ip(B) — B —
re(B) — 0 and pdip(B) = pd,, p(B). Since pd,, ple(B) < oo, Lemma 2.3.5
implies that pd, re(B) = max{pd, e(B), pd,, ple(B)+1} < max{m,n+1}. As
a consequence we have pd, B < max{n, max{m,n+1}} and the assertions (a)
and (b) follow. O
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REMARK 2.3.7. There is a dual version of Theorems 2.3.2 and 2.3.6 concerning the
finitistic injective dimension FID (#) := sup{idg B | idg B < oo} of #. For instance
assuming that the functor r: ¥ — % has locally bounded cohomological dimension
then we can show that FID(¢) < FID (%) + l.b.cohom.dimr. We leave the dual
formulation of Theorems 2.3.2 and 2.3.6 to the reader.

Applying Theorem 2.3.6 and Theorem 2.3.2 to comma categories ¢ = (G, %, o) =
(Id { G), see Example 1.1.12, we have the following result. Recall that the functor
Zy: B — € is defined on objects Y € B by Z5(Y) = (0,Y,0).

COROLLARY 2.3.8. Let € = (G, B, /) be a comma category.
(i) [49, Theorem 4.20] We have:

FPD(«/) < FPD(¥) < FPD(«)+ FPD(%) + 1
(i) If the functor G: 8 — </ has locally bounded homological dimension, then:
FPD (¢) < FPD (%) + l.b.hom.dimG
(iii) If sup{pdy Z%(P) | P € Proj B} < 1, then:
FPD (#) < FPD (%)

PrROOF. From Example 1.1.12 we have the recollement (7, %, %) and the functors
Uy: ¢ — & and Zy: B — € are exact. Thus (i) follows immediately from Theorem
2.3.6. Since L, T»(B) = (L,G(B),0,0) Yn > 1 and B € A, statement (ii) follows from
Theorem 2.3.2. Finally, the last statement follows from Theorem 2.3.6 using now the

recollement (#,%€, o). O

2.4. Applications to Ring Theory

In this section we apply several of the results of the previous sections, mainly those
concerning global and finitistic dimension, to ring theory, building on the Examples
1.1.7, 1.1.8, 1.1.10, and 1.1.12.

2.4.1. Global Dimension. Let R be a ring and e an idempotent element of R.
The following summarizes some of the results of section 2 of chapter 2 applied to the
recollement of rings (Mod-R/ReR, Mod-R, Mod-¢eRe), see Example 1.1.7. We denote by
gl.dimp, p.r R = sup{pdp X | X € Mod-R/ReR}. For (i) see also Corollary 1.5 of [53]
and for (iii),(iv) and (viii) see Proposition 2.2 and Proposition 2.6 of [75]. Note that
the formula (iv) applied to Example 1.1.10 implies directly Theorem 5.4 of [14]. Also
compare (x) with statement 5 of [45].

COROLLARY 2.4.1. Let R be a ring and e an idempotent element of R. Then the
following hold.
(i) gl.dmR < gl.dimg gz R+ gl. dimeRe + 1.
(ii) gl. dimg p.gR < gl.dim R/ReR + pdp R/ReR.
(iii) gl.dimeRe < gl.dim R+ pd,_p, eR.
(iv) We have:
gl.dimR < gl.dimR/ReR + gl.dimeRe + pdp R/ReR + 1

(v) If R/ReR is a flat right R-module or R/ReR is a projective left R-module,
then:
gl.dimR < gl.dimR/ReR + gl.dimeRe + 1



2.4. APPLICATIONS TO RING THEORY 83

(vi) If Re is a flat right R-module or eR is a projective left e Re-module, then:
gl.dimeRe < gl.dimR
(vii) Let gl.dim R/ReR < oo. Then:
gl.dimp pepR < oo if and only if pdp R/ReR < oo
(viii) Let gl.dim R < oo. Then:
gl.dimeRe < oo if and only if pd.p. eR < oo
(ix) If pdr ReR = n, then
gl.dmR < gl.dimR/ReR + gl.dimeRe + n + 2
(x) If ReR is a projective R-module and eRe is a semisimple ring, then
gl.dimR < gl.dimR/ReR+ 2

The following is a consequence of Theorem 2.2.8.

COROLLARY 2.4.2. If the natural map R — R/ReR is a homological epimorphism,
i.e. ReR € X, then:

gl.dimR/ReR < gl.dmR < pdp R/ReR + max{sup{idgi(I) | I € InjR/ReR}
+gl.dim R/ReR, gl.dim eRe}

By Theorem 2.2.9 we have the following result. Note that the implication R: right
hereditery = eRe: right hereditary is due to Sandomierski [118].

COROLLARY 2.4.3. If R is a right hereditary ring and e* = e € R, then the rings
eRe and R/ReR are right hereditary. Conversely, if the rings eRe and R/ReR are right
hereditary then

gl.dmR < 3+ pdpR/ReR

The next statement is due to Fossum-Griffith-Reiten [49] and follows from Example
2.2.19.

COROLLARY 2.4.4. [/9] If ey and ey are idempotent elements of R such that 15 =
e1 + ey and eqyRes = 0, then:

max{gl.dime; Rey, gl.dimesRes} < gl.dimR < gl.dime;Re; + gl. dimeyRes + 1
The next result follows from Corollary 2.2.18 and generalizes Corollary 5.6 of [14].

COROLLARY 2.4.5. Let R be a ring and e* = e € R an idempotent element. If the
tdeal ReR € Proj R, then:

max{gl.dim R/ReR,gl.dimeRe} < gl.dimR < gl.dimR/ReR + gl.dimeRe + 2

and
ghdmR < oo <= gl.dmR/ReR < oo and gl.dimeRe < oo

Working in the setting of Morita rings, see Example 1.1.8, we have the following
consequence which is the main result of Loustaunau and Shapiro [88].

COROLLARY 2.4.6. [88, Theorem 1.8] Let A gy be a Morita ring. Assume that M
1s a right flat R-module, N is a right flat S-module and N1m ¢ = N. Then:

max{gl.dim R, gl.dim S} < gl.dimA¢ ) < max{gl.dim.S/Im ¢+pdyS/Im¢p+1,gl. dim R}



2.4. APPLICATIONS TO RING THEORY 84

ProoOF. From Example 1.1.8 we have the recollements of module categories
(Mod-S/ Im ¢, Mod-A 4 4y, Mod-R) and (Mod-R/Im, Mod-A4 ), Mod-S)

Since N is a right flat S-module it follows that the functor Aes; ®¢ —: Mod-S —
Mod-A ;4 is exact. Thus from the exact sequence 0 — Im¢ — S — S/Im¢p — 0
we have the exact sequence 0 — Aey ®gIm ¢ — Aes— Aes ®g S/ Im ¢ — 0. Hence
using that N Im¢ = N we deduce the following isomorphisms

Aey @g €5(S/Im ) = Aey ®5 S/ Im¢ = Aes/(Aealm ) =~ (§¥)/(§18s) = S/Im¢

as A(gy)-modules. This shows that the Ay y)-module S/Im¢ belongs to the corre-
sponding subcategory X; of Mod-A 4 ), see Proposition 2.1.2, which is defined from the
recollement of module categories (Mod-R/ Im ), Mod-A 4 ), Mod-S). Then the assertion
follows from Corollary 2.2.15. |

Setting m = 0 in Corollary 2.2.22 and by Example 2.2.21, we obtain directly part
(i) in the following. Part (ii) follows easily from Theorem 2.2.1.

COROLLARY 2.4.7. (i) [45, Statement 9] Let A be a semiprimary quasi-hereditary
ring with a heredity chain of length n. Then gl.dimA < 2n — 2.
(ii) [14, Corollary 6.6] Let A be a quasi-hereditary algebra and let 0 = Uy C Uy =
7, (A) C -+ C U, = A be a chain of idempotent ideals such that U;/U;_; €
proj A/U;—1 and Endapy, , (Pi/U;—1P;) is hereditary for every 1 <i < n. Then
gl.dmA < 3n-—2.

The next examples illustrate that in general one cannot expect exact relations be-
tween the global dimensions of the abelian categories involved in a recollement.

EXAMPLE 2.4.8. (i) Let A be the path algebra of the quiver

1= L~ 2

modulo the relation avo f = 0. Let e be the idempotent associated to the
vertex 1. Then we have the recollement (mod-A/AeA; mod-A, mod-eAe) and

it is not so difficult to observe the following values for the global dimension of
the algebras involved in the above recollement :

gl.dimA/AeA =0
gl.dmA =2
gl.dimeAe = 0o

(i) Let K be a field and consider the ring K[X]/(X?). Then we can view K
as a K[X]/(X?)-K-bimodule and as a K-K[X]/(X?)-bimodule. Also we have
the homomorphisms ®: K @x K — K[X]/(X?), k — kz and the zero map
U: K ®kx)/x2) K — K. Then we have the Morita ring (K[X}H/((Xz) E) and
from [105] we have

gl. dim (KX K — 9

/
K K
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From Example 1.1.8, see also Proposition 3.3.1 and Proposition 4.1.4, since
U = 0 we have the following recollement of abelian categories

Tk
T e < . T~
Mod-K[X]/(X?) — 20, Mod- (KIX)/(x*) k) 2 Mod-K
~ \_/
Hxk
and then
gl dmK[X]/(X?) =
gl. dim (K[X l/(x®) %)
gl dimK = O
(iii) Let A be an Artin algebra and M, be a A-A-bimodule. Then we have the

upper triangular matrix Artin algebra (A AJ/‘{A ) and the recollement of module

categories (mod-A, mod- (A AMA) mod-A), see Example 1.1.12. If gl.dimA <
oo or gl.dim A = oo then from Example 2.2.19 it follows that all the involved
algebras in the recollement have finite global dimension or all of them have
infinite global dimension.

(iv) Let A be a left Artinian ring with gl.dim A = n, allowing n = oo, and with
Loewy length ¢¢(A) = m. Then by Example 1.1.11, we have a recollement
of module categories (Mod-I'/T'eI’, Mod-I", Mod-A), where T is a semiprimary
ring of finite global dimension gl.dimI" < m. It follows that the difference
|gl.dim % — gl.dim%’| of the global dimensions of the categories % and ¥
involved in a recollement (&7, A, %) can be arbitrary large.

2.4.2. Finitistic Dimension. We continue with various applications for the fini-
tistic dimension of rings. Applying Theorem 2.3.6(i) and (ii) to the recollement of
module categories (Mod-R/ReR, Mod-R, Mod-eRe), induced by an idempotent element
e of R, we have the following consequence which is due to Fuller-Saorin and Kirkman-
Kuzmanovich.

COROLLARY 2.4.9. Let R be a ring, e = e € R an idempotent and ¢/ =1 — e.

(i) [53, Corollary 1.5] If pd g, eRe’ < 00, then:
Fin.dimR < Fin.dimeRe +gl.dimp g g R+ 1
(ii) [76, Theorem 1.7] If the left R-module ReR is projective, then:
Fin.dim R/ReR < Fin.dimR

The next result follows from Theorem 2.3.2. First note that if M is a right R-module
over a ring R, then the functor M ®i — has locally bounded homological dimension n
if and only if n is the minimal bound on the vanishing of Tor®(M, —) in the sense of
Kirkman-Kuzmanovich, see [77].

COROLLARY 2.4.10. (i) Let R be a ring and e an idempotent element of R. If
the functor Re @.r. — has locally bounded homological dimension, then
Fin.dimeRe < Fin.dim R + |.b.hom.dim Re ®@.g. —

(ii) /77, Proposition 10] Let A ) = (Sﬁ R3S be a Morita ring. If the functor
M ®pr — has locally bounded homological dimension, then:

Fin.dimR < Fin.dim A4 ) + .b.hom.dim M @ —
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ProOF. Part (i) follows immediately from Theorem 2.3.2. For part (ii) we use
the notation introduced in Example 1.1.8. If X is a left R-module, then it is easy
to see that the S-module Tor(M, X) is annihilated by the ideal Im¢ of S: Im¢ -
Tor(M, X) = 0, see also Proposition 3.7.1. Thus Tor?(M, X) is a module over the
ring S/Im¢ and therefore it is a A(y)-module in a natural way. Since there is an
isomorphism Tor®(Aey, —) ~ Tor®(M, —), ¥n > 1, as functors Mod-R — Mod-A g4,
see also Proposition 3.7.1 and Lemma 4.5.2, the assertion is a direct consequence of
Theorem 2.3.2. O

It is well known from [49], see also [18, Chapter 3, section 2|, that the module
category over a triangular matrix ring is a comma category (Example 1.1.12). The

next well known result of Fossum-Griffith-Reiten follows immediately from Theorem
2.3.6(iii).

COROLLARY 2.4.11. [/ 9, Corollary 4.21] Let A = (=85 be a triangular matriz
ring. Then:

Fin.dimR < Fin.dimA < Fin.dim R+ Fin.dmS +1



CHAPTER 3

The Morita Category

In this Chapter we introduce the concept of the Morita category. This category
should be considered as a general abstract model for the category of modules over a
Morita ring. We investigate several structural properties of this category, for instance
we examine when it is an abelian category, and we also study also finiteness conditions
on subcategories. Further we investigate some homological aspects of this construction.
Note that a similar construction has appeared in [37]. We mention that this Chapter
serves as an introductory step for Chapter 4. At the time of writing this thesis the
results of this Chapter are unpublished.

3.1. Morita Extensions of Abelian Categories

Let o/ and # be two additive categories, F': &/ — % and G: B — o two
additive functors, and ¢: F'G — Idg and ¢: GF — Id,, two natural transformations
such that the diagrams

FGF 2o F GFG 2 i

M}L / Gi /

are commutative. We define the category M = (o7, B, F, G, ¢, 1) with respect to o7, A,
F,G, ¢,1, which has as objects tuples (X,Y, f,g) where X € &7, Y € B, f: F(X) —
Y is a morphism in & and ¢g: G(Y) — X is a morphism in &/ such that the following
diagrams are commutative:

arx) Y qy Fev) 2% px
¥x / d’Yl /
X Y

A morphism (XY, f,9) — (X', Y, f',¢') in M is a pair of morphisms (a, b) where a €
Hom,, (X, X’) and b € Homy(Y,Y”) such that the following diagrams are commutative:

X)L~y G(Y) - X
F(a)l lb G(b)l la
Fx) Ly a) L x

If (a,b): (X,Y, f,g9) — (XY, f'.¢') and (", ¥): (X" Y7, ', ¢") — (X", Y", f",¢")
are morphisms in % then the composition (a,b)o(a’,0'): (X,Y, f,9) — (X", Y", f", 4")
87
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is the morphism (a o a’, b o b') since the following diagrams are commutative:

F(a) F(a') G(b) G(b')

F(X) F(X) —5% F(X") G(Y) G(Y') =% G(Y")
o Lk
Y Y’ Y X X' X"

DEFINITION 3.1.1. The category M = (o, %, F, G, ¢, 1) is said to be the Morita-
extension of &7 and % by the natural transformations ¢ and .

From now on we will denote this category by M(¢, 1) and for simplicity we call
M(¢p, 1) the Morita category of &7 and A.

In what follows, our purpose is to investigate when a Morita category M(¢, ) is
abelian. The following result describes the kernels in M(¢, 1).

LEMMA 3.1.2. Let (a,b): (X,Y, f,9) — (X', Y', f',¢") be a morphism in M(¢p, ).
Then there are maps h: F(Kera) — Kerb and h': G(Kerb) — Kera such that the
kernel of (a,b) is the object Ker (a,b) = (Kera,Kerb, h, h') € M(¢, ).

ProoF. Let (a,b): (X,Y, f,9) — (X', Y, f',¢') be a morphism in M(¢,?). Let
r: Kera — X be the kernel of a: X — X' in & and s: Kerb — Y be the kernel of
b: Y — Y’ in A. Then the following commutative diagrams

F(Kera) 2 pex) 9% pxr G(Kerb) O av) EL gy
I I
0 Kerh ———>Y — > >y’ 0——Kera ——> X —* > X'

imply that (r,s): (Kera,Kerb, h,j) — (X, Y, f, g) is a morphism in M(¢, ¢). From the
following diagrams

G(h)

GF(Kera) G(Kerb) FG(Kerb) F(Kera)
Vkere = Kerq 7 et = Kerh "
GF(r) G(s) FG(s) F(r)
ar(x) Y a) FG(y) 22 F(X)

we have
Yicera 07 = GF(r) 0 x = GF(r) 0 G(f) 0 g = G(h) 0 G(s) o g = G(h) o jor

and therefore 1ker, = G(h) o j since the map r is a monomorphism. Similarly we get
that ¢xers = F(j) o h. Hence the the object (Kera,Kerb, h,j) € M(¢,1). We claim
that the object (Kera,Kerb, h,j) is the kernel of the morphism (a,b): (X,Y, f,9) —
(XY’ f',g") in M(¢,). First note that (r,s) o (a,b) = (roa,sob) = (0,0). Let
(u,v): (X" Y" " ¢") — (X,Y, f,g) be a morphism in M(¢, ) such that (u,v) o
(a,b) = 0. Then there exists a unique morphism x: X” — Kera in &/ such that
kor = pu and a unique morphism A: Y” — Kerb in % such that A o s = v. Then the
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following diagram

(). (ab)_

(Ker a, Kerb, h, j) ~== (X, Y, f, g) =2

N
w|

(X// Y// f// gll)

(Xl Y/ f/ )

is commutative. It remains to show that (x, A): (X", Y", f".¢") — (Kera,Kerb, h,h')
is a morphism in M(¢, ). Since (u,v) and (r,s) are morphism in M(¢, 1)) we have
flov=F(u)of,hos=F(r)ofand ¢"ou=G()og, jor =G(s)og. Then from
the following diagrams

F(X// f” Y// G(Y//) X//
) L

F(u) F(Kera S Kerb (Ker b) = Kera p
F( G(Y) I X

we have f"oXos = F(k)oF(r)of = F(k)ohos and hence f”o\ = F(x)oh. Similarly
we have ¢ o k = G(A\) o j. Hence (k,A\): (X", Y", f".¢") — (Kera,Kerb, h, ') is a
morphism in M(¢, ). We infer that the kernel of the morphism (a,b): (X,Y, f,g9) —
(X",Y' f',¢') is the object (Kera,Kerb, h,j) € M(¢p, ). O

COROLLARY 3.1.3. Let (a,b): (X,Y, f,9) — (X, Y', f', ¢') be a morphism in M (¢, ).
Then (a,b) is a monomorphism in M(p, ) if and only if a: X — X' is a monomor-
phism in < and b: Y — Y’ is a monomorphism in A.

PROOF. Suppose that (a,b) is a monomorphism in M(¢,). Then Ker (a,b) = 0
and from Lemma 3.1.2 it follows that Kera = 0 and Kerb = 0. Hence a: X — X' is a
monomorphism in & and b: Y — Y’ is a monomorphism in %. Similalry by Lemma
3.1.2 we get easily the converse and so our claim follows. O

The following result describes the cokernels in M(¢, ) and as a consequence we
characterize when a morphism in M(¢, 1)) is an epimorphism. Note that for the cokernels
we need the functors F': &/ — A and G: 4 — o/ to be right exact.

LEMMA 3.1.4. Let (a,b): (X,Y, f,9) — (X", Y, f',¢') be a morphism in M(p, 1)
and assume that the functors F and G are right exact. Then the cokernel of (a,b) is
the object Coker (a,b) = (Coker a, Cokerd, f”,g") € M(¢p, ).

ProoOF. Let (a,b): (X,Y, f,9) — (X', Y, f',¢') be a morphism in M(¢,?). Let
0:Y" — Coker b be the cokernel of b: Y — Y’ in % and let v: X’ — Cokera be the
cokernel of a: X — X’ in /. Since F and G are right exact we have the following
exact commutative diagrams:

F(x) 2% p(xy 2L p(Cokera) —= 0 av) 2% vy SOl GCokerb) —— 0

O I O

Y Y’ —2 . Cokerb——0 X—* . x'— 7 . Cokera ——10

F(v)
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We claim that the object (Coker a, Coker b, f”, ¢") is the cokernel of the morphism (a, b).
First note that (a,b) o (7,0) = (aovy,bod) = (0,0). Let (u,v): (X, Y' f,¢) —
(X" Y™ " ¢g") be a morphism in M(¢, 1) such that (a,b)o (u,r) = 0. Since aop =0
and b o v = 0 there exists a unique morphism A: Cokera — X" in & such that
~vo A= p and a unique morphism k: Cokerb — Y in % such that § o k = v. Hence
we have the following commutative diagram:

{ab)

(X,Y, f, g) (X, Y' f'g ) (Cokera Cokerb, ", g")

Ak
m L< )

(X/l/ Yl// fl// gl/l)

and we have to check that (A, k): (Cokera, Cokerd, f” ¢") — (X", Y" " ¢") is a
morphism in M(¢, v)). Since (i, v) and (7, §) are morphism in M(¢p, 1)) we have f' o =
Fyof", flov=Fuo f" and goy =Gdog", ¢opu = Grog”. Then from the following

diagrams:
F(X") X/
F(v) j G(5) lV
F(u) F(Cokera) LA Coker b G(v) Coker b) L— Cokera u
F(\) j tx
Fxmy Y”’ Y”’ L xm

we deduce that F(y)o f"odok = flodok = flov = F(u)o f" = F(y)o F(\) o
f" and hence f” ok = F(X) o f"” since F(v) is an epimorphism. Similaly we have
G0)og'od=¢goyold=gou=GWw)og" = G()oG(k)og” and so ¢" o X\ =
G(k) o g" since G(9) is an epimorphism. Therefore (A, k): (Coker a, Cokerd, f", ¢") —
(X" Y™ f" g") is a morphism in M(¢, v)). In order to finish we have to show that the
tuple (Coker a, Coker b, f”, ") lies in M(¢,10). Thus we have to prove that the following
diagrams:

GF(Cokera) 2% G(Cokerb) FG(Cokerb) " F(Coker a)
Qpcokerat g ¢Cokerbl ”
g f
Coker a Coker b

are commutative. From the following commutative diagrams:

GF(X') G G FG(Y") ) F(X')
Iﬁxf\> X! ‘/g’ ¢y'\> y! ‘/f/
GF () G () FG(s) ()
auny | F(g")
GF(Coker a) G(Cokerb)  FG(Cokerb) ———|— F(Cokera)
v “g bt ™ “p
Cokera — Cokera 7 Cokerb — Coker b
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we have
GE(7) 0 Ycokera = Yxr 0y =G(f ) og oy =G(f) o G(6) o g" = GF(y) o G(f") o g"

and so Ycokera = G(f") 0 ¢” since GF() is an epimorphism. Similarly since F'G(9) is
an epimorphism we have

FG(0) 0 ¢cokers = ¢y 00 = F(g') o f'od = F(g') o F(y) o f" = FG(d) o F(g") o "

and 80 Pcokery = F'¢” o f”. Hence the cokernel of the morphism (a,b): (X,Y, f,9) —
(X",Y' f',¢") is the object (Coker a, Cokerb, f”, g") € M(¢, ). O

COROLLARY 3.1.5. Let (a,b): (X,Y, f,9) — (X", Y, f'.¢') be a morphism in M(¢, )
and assume that the functors F and G are right exact. Then (a,b) is an epimorphism
in M(¢, ) if and only if a: X — X' is an epimorphism in o/ and b: Y — Y’ is an
epimorphism in A.

Proor. This follows immediately from the above description of cokernels. 0
We continue by describing the finite coproduct of objects of M(¢, ).

LEMMA 3.1.6. Let M(¢,) be a Morita category and (X;,Y:, fi,0:), 1 <1 <mn, a
finite number of objects of M(¢,1)). Then the direct sum is the object:

fl RPN 0 gl e O
(Xl@@XTw}/l@@Yn;f?g> wher@ f: » 9=
0 - f 0 - g

PROOF. It is enough to show that the direct sum of (X1, Y1, f1, ¢1) and (X3, Y3, f2, g2)
is the object X = (X1 ® X», Y1 ® Y5, (J;l ]92), (901 902)). First it easy to check that X is an

object of M(¢,1). We define the maps a; = ((1 0), (1 0)): (X1, Y1, fi,91) — X, by =
(((1)), (6)) X — (X17Y1,f1,91) and ap; = ((O 1)7(0 1))3 (X27Y2af2,92) — X, by =
((9),(9)): X — (Xa,Ys, fo,g2). Note that ay,as, b1, by are morphisms in M(¢, ).

Then we have ay 0 by = Id(x, v;,11,91)» @2 © b2 = Id(x,.v5,f5,9,) and by 0 ay + by 0 ay = Idy.
Hence the object X is the direct sum of (X3, Y7, f1,91) and (Xa, Y, fa, g2). O

The following main result of this section gives a sufficient condition for a Morita
category to be abelian.

THEOREM 3.1.7. Let M(¢, 1) be a Morita category of the abelian categories </ and
HB. If the functors F: of — B and G: B — o are right exact then the category
M(p, 1)) is abelian.

PROOF. Since the tuple (0,0,0,0) is the zero object of M(¢, 1)), every finite family
of objects has a coproduct (Lemma 3.1.6), and every morphism in M(¢, 1) has a kernel
and a cokernel (Lemmas 3.1.2 and 3.1.4), it follows from Freyd [51] that in order to show
that M(¢, 1) is an abelian category we must prove that monomorphisms are kernels and
epimorphisms are cokernels.

Claim (i): Monomorphisms are kernels. Let (a,b): (X,Y, f,9) — (X", Y, f',¢') be
a monomorphism in M(¢, ). Let (Coker a, Cokerb, f”, g") be the cokernel of (a,b) and
so we have the exact sequence:

0—= (XY, £,9) 22 (X" V", ', o) ©2 (Coker a, Cokerb, £, g") — 0
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and the following commutative diagrams:

FX)—L vy GY)—2 X
F(a)l lb G(b)j \a
Fx)—L oy o) —L - x
F(c)l Ld G(d)j \c
F(Cokera) I Cokerd G (Coker b) 9 Cokera

Since (a, b) is a monomorphism it follows from Corollary 3.1.3 that the maps a: X —
X' and b: Y — Y’ are monomorphisms. Then the map b: Y — Y” is the kernel of
d: Y’ — Coker b and the map a: X — X' is the kernel of ¢: X’ — Coker a. We claim
that the morphism (a, b) is the kernel of (¢, d). First we have (a,b)o (¢,d) = (0,0). Now
let (a’,0"): (X", Y" " ¢") — (X',Y', f',¢') be a morphism in M(¢,v) such that
(a',0') o (c,d) =0, ie a'oc=0andV od=0. Then there exists a unique morphism
k: X" — X in & such that k oa = d’ and a unique morphism \: Y — Y in &
such that Ao b =1¥8". Then we have the following commutative diagram:

(XY, f,g) —2 o (x" v, 1, g) 2

kA
( )T %

(X//I Y/// f/// glll)

0

(Coker a, Coker b, [, ¢") —=0

Since k and A are unique it follows that (k, A) is the unique morhism such that (k, \) o
(a,b) = (a’,b"). It remains to check that (k, ) is a morphism in M(¢, ). Since (a,b)
and (a',V') are morphism in M(¢, ) we have fob= F(a)o f', f" ol = F(a') o f" and
goa=G(b)og, g"oa =G)og. Then from the following diagrams

f/// /

F(X///) Y/// Y/// X///
oo jA L
Fla) X)Ly o) 9y y
ool )
Fx) Ly Y’ Iy

we deduce that folob = F(k)oF(a)of' = F(k)ofob. Hence f” o\ = F(k)of since b is
monomorphism. Similarly using that a is monomorphism we get that ¢” ok = G(\)og.
Thus the map (a,b), which is a monomorphism, is the kernel of (¢, d).

Claim (ii): Epimorphisms are cokernels. Let (a,b): (X,Y, f,9) — (X", Y, f',¢') be
an epimorphism in M(¢, 1) and let (Kera, Kerb, f”, g") be the kernel of (a,b). Thus we
have the exact sequence:

O—>(Kera,Kerb,f”,g’) il (X Yfg) (X/ Y fg)—=0

From Corollary 3.1.5 we have that a: X — X' is an epimorphism in & and b: ¥ — Y’
is an epimorphism in . Hence the map b: Y — Y’ is the cokernel of v: Kerb — Y
and the map a: X — X’ is the cokernel of 0: Kera — X. We claim that the
morphism (a,b) is the cokernel of (§,7). First note that (d,7) o (a,b) = (0,0). Now
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let (a/,0): (X,Y, f,9) — (X", Y" " ¢") be a morphism in M(¢, 1) such that (d,v) o
(a',0') = 0. Then there exists a unique morphism k: X’ — X" in & such that
a ok = a' and a unique morphism \: Y’ — Y in 4 such that bo A = V'. Hence the
diagram

((57 ab)

0 —— (Kera,Kerb, f", ¢") —=

(XY, f,9) —= (XY, /', 9)) —=0

(a’,b) j(k,A)
7 (X// Y// f// gll)

is commutative. Note that (k, A) is the unique morphism such that (a, b)o(k, \) = (a’, ).
It remains to check that (k,\): (X, Y’ f'.¢") — (X", Y, f",¢") is a morphism in

M(¢, ). Since (a,b) and ( b') are morphism in M(¢, 1)) we have fol/ = F(a') o f”,
fob=F(a)o f and god =GW)og", goa= G(b)og'. Then from the following
diagrams:

FX) L~y
)

F(@) FX) Ly o) y/__+ / §
F(xmy Ly Y” & X”

we deduce that F(a) o F(k)o f” = F(a')o f" = fobo X = F(a)o f' o X and hence
f'oX = F(k)o f" since F'(a) is an epimorphism. Similarly we get that ¢'ok = G(\)og”
since G is right exact. Therefore the map (a,b), which was an epimorphism, is the
cokernel of (§,v). We infer that the Morita category M(¢, 1) is abelian. OJ

Let o/ and £ be two additive categories and F': o — %, G: B — & two
additive functors. Also let ¢: Id,, — F'G and ¢: Idg — GF be two natural trans-
formations such that the diagrams

o FGF G GFG

AR

are commutative. We define the dual Morita category of M(¢, ), which we denote
by CoM(¢,1). The category CoM(¢,v) = (o, B, F,G,$,1) has as objects tuples
(X,Y, f,g) where X € &/ Y € Band f: Y — FX is amorphismin %, g: X — GY
is a morphism in 7, such that the following diagrams are commutative:

F(g)

av) YL qrx) F(x) 2% pa(y)

A morphism (X,Y, f,g) — (X", Y, f',¢') in CoM(¢,) is a pair of morphisms (a, b)
where a € Homg (X, X’) and b € Homgk(Y,Y’) such that the following diagrams
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commute:
y Lo pix) X 2o G(Y)
T T
vy L px) X Loy

We close this section with the following result which gives a sufficient condition such
that the dual Morita category C'oM(¢, ) is abelian. The proof is dual to Theorem
3.1.7 and is left to the reader.

THEOREM 3.1.8. Let CoM(¢, 1) be the dual Morita category of the abelian categories
o and B. If the functors F' and G are left exact then CoM(¢p, 1)) is abelian.

3.1.1. The Morita Category with ¢ = ¢ = 0. Let M(¢, 1) be a Morita category
of the abelian categories &/ and £ with ¢ = ¢ = 0. We denote this category with
M(0,0). We assume that the functors F' and G are right exact, thus M(0,0) is an
abelian category. In this subsection we will describe M(0,0). In particular we prove
that there is an equivalence of categories between M(0, 0) and (&7 x Z)x H, for a suitable
endofunctor H: &/ X B — o x B, where (o x %) x H is the trivial extension of
o/ x % by an endofunctor H, see [49)].

We define the functor

H: o x#B — o xAB, HAB)=(GB,FA)
and given a morphism (a,b): (A, B) — (A’,B’) then H(a,b) = (Gb, Fa). Then

we can define the trivial extension (& x %) x H, where the objects are morphisms
a: H(A,B) — (A, B) such that H(a) o = 0, and if a: H(A,B) — (A, B) and
B: H(A", B") — (A, B') are two objects in (/' x %) x H, then a morphism v: o« — 3
is a morphism v: (A, B) — (A’, B’) such that the diagram

H(7)

H(A,B) — -~ H(A', B)

.| E

(A, B) ——= (4, B))

is commutative, where a = (ay, as), 8 = (b1, be) and v = (¢, ¢2). Also, since the functors
F and G are right exact it follows that the endofunctor H is right exact. Hence from [49]
the trivial extension (&7 x %) x H is an abelian category.

PROPOSITION 3.1.9. Let M(0,0) be a Morita category of </ and B with ¢ = = 0.
Then there is an equivalence:

M(0,0) — (o x B)x H
PrROOF. Let (X,Y, f,g) be an object of M(0,0). We define the functor

T M(0,0) — (o x B)x H, FX.Y.f,9) = HX,Y) 2= (X,Y)
and given a morphism (a,b): (X,Y, f,g) — (X',Y", f',¢') in M(0,0) then F(a,b) =
(a,b). The functor F is well defined since the following composition

(G(f),F(9)) (9,f)

(GF(X), FG(Y)) (G(Y), (X)) — (X, Y)




3.1. MORITA EXTENSIONS OF ABELIAN CATEGORIES 95

is zero, i.e. the object F(X,Y, f,g) € (& x B) x H. It is clear that the functor F is
faithful. Let

[(GY), P(X)) 22

(a b)
(X, V)] “2- [(G(r), F(X) S0 (X))
be a morphism in (& x %) x H. Then we have the commutative diagram

(G(Y), F(x)) ~£2 )

(G(Y"), F(X"))
| Pz
(X,Y) (X", Y")

which implies that (a,b): (X,Y, f,9) — (X', Y, f',¢') is a morphism in M(0,0) and
F(a,b) = (a,b). Thus the functor F is full. Let (ai,a2): H(X,Y) — (X,Y) be
an object of (&7 x $B) x H. Since H(ay,as) o (a,a) = 0 we have the commutative
diagrams:

(a,b)

ar(x) L g(y) Fay) 2L pex)

wxol / ¢Y0j /
al a2
X Y

and so the object (X,Y, f,g) € M(0,0). Then F(X,Y, f,g) ~ [H(X,Y) — (X,Y)] and
this shows that the functor F is essentially surjective. Hence the categories M(0,0) and
(o7 x B) x H are equivalent. O

REMARK 3.1.10. Let M(¢, ) be a Morita category and denote by %(0,0) the full
subcategory consisting of all objects (X, Y, f, g) of M(¢, ) such that ¥x = 0 and ¢y =
0. Then from Proposition 3.1.9 we infer that €(0,0) is equivalent with (& x %) x H.

Hence we always have a full embedding from the trivial extension (& x %) x H to the
Morita category M(¢, ).

3.1.2. Functors and Adjoint Pairs. Let M(¢, 1) be the Morita category of the
abelian categories &/ and 4 by the natural transformations ¢ and 1. From now on we
assume that the functors F' and G are right exact, i.e. M(¢, 1) is abelian. In this section
we introduce several connecting functors between o7, % and M(¢, ). Furthermore we
are interested in the following two subcategories

Kerp ={X €& |vx =0} and Ker¢p={Y € ZB| ¢y =0}

of o/ and A, respectively, and we also introduce functors between Ker, Ker ¢ and
M(¢p,1). In other words we will study a diagram of categories and functors of the
following form:

Uy T
o M(¢, 1)) B
S D
Co Zyp
Ker ¢ M(p, 1) Ker ¢
7. Cz

We define the following functors:
(i) The functor T : & — M(¢, ) is defined by T (X) = (X, F(X),ldpx), ¥x)
on the objects X € & and given a morphism a: X — X’ in & then T (a) =

(a, F(a)).



3.1. MORITA EXTENSIONS OF ABELIAN CATEGORIES 96

(ii) The functor U, : M(¢,1) — o is defined by Uy, (X,Y, f,g) = X on the
objects (XY, f,g) € M(¢,v) and given a morphism (a,b): (X,Y, f,g) —
(XY, f ') in M(p,v) then Uy (a,b) = a.

(iii) The functor Tg: B — M(¢,v) is defined by T»(Y) = (G(Y),Y, ¢y, ldgy))
on the objects Y € 4. On a morphism b: Y — Y’ in A the functor Ty is
defined by T»(b) = (G(b),b).

(iv) The functor Ug: M(¢,1) — A is defined on the objects (X,Y, f,g) €
M(p,v) by Ugx(X,Y, f,g) =Y and given a morphism (a,b): (X,Y, f,g) —
(XY f,g') in M(¢p,v) then Ug(a,b) = b.

It is easy to check that T (X), T%(Y) € M(¢,v) and that T, Uy, Ty, Ug
are functors.

(v) For X € Kerty we define the functor Z,: Keryp — M(¢, ) by Z,(X) =
(X,0,0,0) and if a: X — X’ is a morphism in Ker¢ then Z,(a) = (a,0).
Since ¥y = 0 it follows that Z,,(X) € M(¢, ) and one can easily check that
Zy: Keryp — M(¢, 1) is a functor.

(vi) For (XY, f,g) € M(¢p,1) we define the functor C,: M(¢p,v) — Kert) by
Co(X,Y, f,g) = Cokerg and if (a,b): (X,Y, f,9) — (X', Y, f',¢') is a mor-
phism in M(¢p, ) then Cy(a,b) = £ where &: Cokerg — Coker g is the

unique morphism which makes the following diagram commutative

g

G(Y) = X 5 Cokeryg

o 1T

Gy L= x’ X Coker g/

We verify that C.,(X,Y, f,g) € Kert. Let (X,Y, f,g9) € M(¢,%). Then from
the following commutative diagram

GFry

GFG(Y) L arx) S5 GF(Coker g)
l G() L l

zZ’GY d’X wCokerg

Gy)—=2 X ™ Coker g

we infer that Ycokery, = 0. Hence we deduce that C, (X,Y, f,g) = Cokerg €
Kerty and it is straightforward to check that C,: M(¢p,v) — Kery) is a
functor.

(vii) The functor Zg: Ker¢p — M(¢, 1) is defined on the objects Y € Ker¢ by
Z4(Y)=1(0,Y,0,0), which lies in M(¢, ) since ¢y =0, and if b: Y — Y is
a morphism in Z then Z4(b) = (0,b).

(viii) The functor Cy: M(p,10) — Ker ¢ is defined by C4(X,Y, f, g) = Coker f on
objects (X,Y, f,g) of M(¢, %) and if (a,b): (X,Y, f,g9) — (X, Y', f',d) is a
morphism in M(¢, ) then Cx(a,b) = ¢, where (: Coker f — Coker f’ is the
unique morphism which makes the following diagram commutative:

F(X) L~y ™o Coker f

S

FX')—Y’ % Coker f/
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Similarly with (vi) we get that C4(X,Y, f,g) = Coker f belongs to M(p, )
and then it follows that Cy4: M(¢, 1)) — Ker ¢ is a functor.

Next we collect several useful properties of the above functors.

PROPOSITION 3.1.11. (1) The pairs (To,Uy) and (Ty,Ug) are adjoint pairs
of additive functors.

The pairs (CoryZoy) and (Cy,Zyg) are adjoint pairs of additive functors.

The functors T, and Ty are fully faithful.

We have Uy T, =1dy and UgT 4 = Id4.

©
— e
—

—
—
—

—~
=
— — N e e e

(v) The functors U, and Ug are surjective on objects.
(vi) The functors Ua and Uy are ezxact.
(vii) The functors T, and T4 are right exact.
PROOF. (i) Let (a,b): Ty (X) — (X', Y, f',¢') be a morphism in M(¢p, ).

We define the map
F: Homys,) (T (X), (XY, f,¢")) — Homy (X, X"), F((a,b)) =a

It is straightforward that F is a homomorphism of abelian groups. Since (a, b)
is a morphism in M(¢, 1)) then we have the following commutative diagrams:

Idp(x) Px
F(X) 29 p(x) GF(X) X x
F(a)l l/b G(b)j la
Fx) Ly ay) Lo x

It follows easily from the above first diagram that F is a monomorphism. Let
a: X — X’ be a morphism in /. Then F(a, F(a) o f') = a and (a, Fao f)
is a morphism in M(¢, ). Indeed we have that the following diagrams

Id
F(X) %X p(x) GF(X) 2w X
Fm% lewf GFwwcunl a
Fx) Ly ay) Lo x

are commutative since GF(a) o G(f') o g’ = GF(a) o¢¥xs = t)x oa. Thus F
is an epimorphism. Also it is not difficult to check that the isomorphism JF is
natural. Hence the pair (T, U, ) is an adjoint pair of functors and similarly
we get that (Tg,Uy) is an adjoint pair.

(ii) Let k: Cokerg — X’ be a morphism in 7. We define

F: Hom<Q7<COkerg7X/) — HomM(¢,¢)((X7 Y? f7 g)vzszf<X/))7 ff(k) = (ﬂ-X Ok’,O)

It is easy to see that F is a homomorphism of abelian groups and that F(k) =
(mx o k,0) is a morphism in M(¢,v). Let k: Cokerg — X’ be a morphism
in o/ such that F(k) = 0. Then 7y o k = 0 and since 7x is an epimorphism it
follows that & = 0. Hence J is a monomorphism. Let (a,0): (X,Y, f,g9) —
(X’,0,0,0) be a morphism in M(¢,). Since g o a = 0 there exist a map
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k: Coker g — X' such that the following diagram is commutative:

g

G(Y) = X X Coker g

L -
-
a -
-
2 k

X/

Then F(k) = (mx ok,0) = (a,0) and so F is an epimorphism. Also it is easy to
check that J is a natural isomorphism. Therefore the pair of functors (C., Z )
is an adjoint pair. Similarly we show that (Cy,Zy) is an adjoint pair.

(iii) Let a: X — X’ be a morphism in &7 such that T (a) = 0. Then (a, F(a)) =
(0,0) and thus a = 0. Hence the functor T, is faithful and similarly we deduce
that Ty is faithful. Let (a,b): T (X) — T (X’) be a morphism in M(¢, 9).
Then we have the commutative diagrams

F(X) % p(Xx) GF(X) 2 X

F(a)l lb G(b)l la
IdF(X/) '¢X,

F(X') L2 px) GF(X") X x

and so b = F(a). Thus we have T (a) = (a, F(a)) = (a,b). We infer that the
functor T, is full and similarly we prove that T 4 is full.

(IV) Let X € o/. Then TQ/(X) = (X, F(X), IdF(X),Q/Jx) S M(gb, Q/J) and UQ/TVQ{(X) =
X. Therefore U, T, = Id, and similarly we get that UxT 4 = Id4.

(v) This follows immediately from (iv).

(vi) Let

(a,b) (c,d)
0 ——— (Xla}/la f17gl) I <X27}/2a f2;92) I (X37}/37f37.g3) I 0

be an exact sequence in M(¢, ). Then from Corollaries 3.1.3 and 3.1.5 we
have the monomorphisms U (a,b) = a and Ug(a,b) = b, and the epimor-
phisms Uy (c,d) = ¢ and Ug(c,d) = d. Since Im (a,b) = (Ima,Ilmb, k, \) =
(Kerc,Kerd, h, j) = Ker (¢, d) it follows that U (Im (a,b)) = U (Ker (¢, d)) and
Uz(Im (a,b)) = Ug(Ker (¢,d)). Then Ima = Ker ¢ and Imb = Kerd and so the
sequences 0 — X; — Xy — X3 — 0and 0 — Y] — Yy, — Y3 — 0
are exact. Hence the functors U, and Uy are exact.
(vii) Since from (i) the functor T, is left adjoint it follows that it is right exact.
Similarly from the adjoint pair (T4, Ug) we get that Ty is right exact.
O

We close this section with the following results where we investigate when the cate-
gories &7 and A of a Morita category M(¢, 1)) are equivalent.

LEMMA 3.1.12. Let M(¢, 1)) be a Morita category.

(i) If the natural transformation v : GF — 1d is an epimorphism then it is an
1somorphism.
(i) If the natural transformation ¢: FG — Idg is an epimorphism then it is an
1somorphism.
(iii) If ¢ and v are epimorphisms then the categories o7 and 9B are equivalent.
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PROOF. (i) Suppose that the natural tranformation ¢¥x: GF(X) — X is an epi-
morphism for every X € /. Then since the functor GF' is right exact we have the
following exact commutative diagram :

GF(Kery, ) Y arar(x) G (x) — 0
PKer vy i wGF(X)i lwx

0 Ker by —— = GF(X) —2X X 0

and GF(i)oYapx) = GF(i)oGF(1x) = 0. Then tkery, = 0 and so Kertx = 0. Hence
the morphism 1x: GF(X) — X is an isomorphism for every X € &7. Similarly we
prove (ii). Finally for (iii), if ¢ and ) are epimorphisms then it follows from (i) and (ii)
that the functor F': & — 2 is an equivalence of categories with inverse F~! = G. [

PROPOSITION 3.1.13. Let M(¢,v) be a Morita category.

(i) The natural transformation 1: GF — Id is an epimorphism if and only if
the categories NM(¢p, 1) and B are equivalent via the functor T 4.
(ii) The natural transformation ¢: FG — 1dg is an epimorphism if and only if
the categories M(p,v) and o/ are equivalent via the functor T .
(iii) The categories of and B are equivalent if and only if the natural transforma-
tions V¥x and ¢y are epimorphisms for every X € o and'Y € A.

PROOF. (i) Suppose that the natural transformation ¢¥x: GF(X) — X is an
epimorphism for every X € . From Proposition 3.1.11 we know that the func-
tor Ty: B — M(p,1) is fully faithful. So we have to show that Ty is surjective
on objects. Let (X,Y, f g) be an object of M(¢,). Then we have the morphism
(9,1dy): Tx(Y) — (X,Y, f,g). Also from the following commutative diagram

GF(Kerg) YL ara) Y ar(x)

wKergi wc(y)i vx
Kerg——G(Y) —X—= X

it follows that kerg = 0 since Ykerg 01 = GF (i) 0o Yoy = G(F(i) o ¢py) = G(F (i) o
F(g) o f) = 0 and ¢ is a monomorphism. But then Kerg = 0 since 9kery is an
epimorphism. Hence the morphism ¢: G(Y) — X is an isomorphism and then
the morphism (g,Idy) is also an isomorphism. We infer that the categories % and
M(¢p,1) are equivalent via the functor T4. Conversely, suppose that the functor
Ty: B — M(¢,¢) is an equivalence of categories. Let X be an arbitrary object
of &7 and consider the object T (X) = (X, F(X),Idpx), ¥x) € M(¢,v). Then we get
that (vx,Idpx)): Ta(F (X)) — Tx(X) is an isomorphism. But this implies that the
morphism ¥x: GF(X) — X is an isomorphism, and so we are done. The equivalence
of (ii) is dual with (i).

(iii) If the functor F': &/ — % is an equivalence with inverse G then the result
follows immediately. If conversely the natural transformations ¥x and ¢y are epimor-
phisms for every X € o/ and Y € £ then from (i) and (ii) we infer that the categories
o, M(p,1) and £ are equivalent. O
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3.2. Morita Categories Isomorphic With Their Duals

Let M(¢p,v) = (o, B, F,G, ¢,1) be a Morita category. In this section we assume
that the functors F' and G have right adjoints F’ and G’ respectively. Using ¢ and 1, we
will prove the existence of natural transformations ¢': Idg — G'F’ and ¢': 1d,, —
F'G" such that the Morita category M(¢, ) is isomorphic to the dual Morita category
CoM(¢',9").

Let (X,Y, f, g) be an object of M(¢, ). Since (F, F') and (G,G") are adjoint pairs,
we have the following natural isomorphism:

9X7y HIX,Y
Hom4(F(X),Y) = Hom, (X, F'(Y)) Homy,(G(Y),X) = Homyk(Y,G' (X))
nx,y WS{,Y

and let e: F'F' — Idg, resp. € : GG — Idy, and §: Id,;, — F'F,resp. ¢': Idyp —
G'G be the unit and the counit of the adjoint pair (F, F’), resp. (G,G’). For any object
X € A, we define the morphism 9y = n(n'(¢¥x)): X — F'G'X, and for any object
Y € B we define the morphism ¢y = n'(n(¢y)): ¥ — G'F'Y.

LEMMA 3.2.1. (i) Let X be an object in . Then ¢y = dx o F'(p(y)) ©
F'G'(¢y).
(ii) Let Y be an object in . Then ¢y = 0y o G'(dgvy) o G'F'(dy ).

PrRoOOF. From well known results concerning adjoints functors, see the classical book
[90], we have the following equalities:

P =non(vx) = 77(5%()() oG'(¢Yx)) = 7](5%()()) o F'G'(Yx) = 0x OF/((S}?(X)) o F'G'(¢x)
The second equality follows easily like the first one. O
From the above description we have immediately the following result.

COROLLARY 3.2.2. The family of morphisms ¢y = dx0oF" (8 x))oF'G'(Yx): X —
F'G'(X), for every X € of, determines a natural transformation ¢': 1d, — F'G,
and the family of morphisms ¢y = 6y, o G'(da(vy) o G'F'(¢y): Y — G'F'(Y'), for every
Y € B, determines a natural transformation ¢': 1dg — G'F’.

Since (F, F') and (G, G") are adjoint pairs then we have the adjoint pair (GF, F'G")
with unit G(egr) o €’: GFF'G" — 1d and counit 6 o F'(8%): Id,, — F'G'GF, and
also we have the adjoint pair (FG,G'F’) with unit F(¢}) oe: FGG'F' — Idy and
counit ¢ o G’ (0¢): Idyp — G'F'FG.

PROPOSITION 3.2.3. Let M(¢p,1)) be a Morita category. If the functors F and G
have right adjoints, F' and G’ respectively, then there exist natural transformations
¢ 1dyg — G'F" and ¢': 1dy — F'G’ such that CoM (¢, ") = (o, B, G, F' ', ¢)
is a dual Morita category of o/ and % by ¢’ and ).

PRrROOF. We are going to show that the following diagrams are commutative

, Ve FGQ'F el ¢ G'F' G

F
|« | &
F’ G’
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Let (X,Y, f,g) be an object in M(¢,v). Since 6 o F'(§%): Idy — F'G'GF is the
counit of the adjoint pair (GF, F'G’) we have the following commutative diagram :

dxoF’ (&
X T pIGIGR(X)
6X0F/(f)l lF/G’GF(cSXoF’(f))
F'(Y) F'G'GFF'(Y)
Spr(vyol” (JFF’(Y))
Then

n(f)e ,F’(Y) = Ox o F'(f) o dpy) o F'(0pp (v)) © F'G (Yryy)
= 0x o F'(0p(x)) 0 F'G'GF(0x) o F'G'GFF'(f) o F'G'(Yr(v))
dx o F’(5}; ) 0 F'G'GF(dx) o F'G' (Yrpx)) o F'G'F'(f)

0x 0 F'(0p(x)) o F'G'(Yx) o F'G'(6x) o F'G'F'(f)
ox o F'(0px)) 0 F'G'(darx)) o F'G'F'F(ix) o F'G'F'(f)
77(5F(X) o G'(dar(x)) o G'F'F(¢x) o G'F'(f))

= (' (derx) o F'F(¥x) o F'(f)))

= (' (n(F(¥x) © f)))

and thus the following diagram is commutative:
Hom(F(X),Y) —— Hom,, (X, F'(Y))
(F(¥x).Y) l l(xﬂﬁ'w(y))
Hom(FGF(X),Y) ™% (X, FG'F/(Y))
Similarly as above it follows that the following diagram is commutative:
Homy4(F(X),Y) Hom,, (X, F'(Y))

(¢F(X)’Y)l j(XvF/((bIY))
Hom (FGF(X),Y) " Hom., (X, F'G'F'(Y))

Since F(¢x) = ¢r(x) it follows from the above commutative diagrams that ¢’y =
F'(¢!,). Similarly we show that ¢/, = G'(¢’) and therefore we infer that CoM(¢', ¢)') =
(o, B, G, F' ¢, ¢') is a dual Morita category of &7 and % by ¢’ and /. O

Now we are ready to prove the main result of this section which gives a sufficient
condition for a Morita Category to be equivalent with its dual.

THEOREM 3.2.4. Let M(¢p,) be a Morita category. If the functors F' and G have
right adjoints then the Morita category M(¢p, 1)) is isomorphic to the dual Morita cate-

gory CoM(¢',4))').

ProoF. Let (X,Y, f,g) be an object of M(¢, ) and consider the tuple (XY, o
G'(g),0x o F'(f)). We claim that (X,Y,d} 0o G'(g),dx o F'(f)) belongs to CoM(¢',¢').
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We need to show that the following diagrams are commutative:

F'(8})oF'G" (530G F
Pv) 2 b xy G (x) LT D oy
aXoF%f)T / 6@0G/(g)T ,
wx ¢Y
X y

Indeed we have v = 3y o F' (3 )0 F'G/(1x) = 85 0 /(3 )0 F'C'G(f) 0 F'G (g) =
dxoF'(f)oF'(8%)oF'G'(g) and similarly we derive that §},0G'(g)oG'(0x )oG'F'(f) = ¢, .
Then we can define a functor

F: M(¢,00) — CoM(¢, )

by F(X,Y, f,g) = (X,Y,8 0 G'(9),0x o F'(f)) on objects (X, Y, f,g) € M(¢,¢) and
given a morphism (a,b): (X,Y, f,9) — (X", Y', f,¢) in M(¢,¢) then F(a,b) =
(a,b): (X,Y,8,, 0G'(9),0x 0 F'(f)) — (X", Y, 6y, 0 G'(¢'),0x: o F'(f')) is a morphism
in CoM(¢',1"). We define also the functor

F': CoM(¢', ") — M(o, 1))
by (X, Y, f,9) = (X, Y, F(g)oey, G(f)ock) on objects (X, Y, f, g) € CoM(¢/, ¢/) and
by F(a,b) = (a,b) on morphisms (a,b) of CoM(¢',1"). Then it is easy to check that
F'T = Idwg,p) and FF' = Ideon(g,w)- Hence the categories M(¢, 1)) and coM(¢', ")

are equivalent. O

We define the functor

o - 2T (p,0)
T'WL /
CoM(¢, 4)

by Hy(X) = (X, G'(X), F(¥x) 0 eer(x),€'x) on objects X € 7, where T/, (X) is the
tuple (X, G'(X), ¢, Ide(x)) € CoM(¢',9’), and given a morphism c¢: X — X' in &/
then Hy (¢) = (¢, G'(¢)). Similarly we can define the functor Hy: Z — M(¢, v).

The next result shows that we have more adjoint pairs under the existence of right
adjoints for F' and G.

PROPOSITION 3.2.5. Let M(¢,v) be a Morita category such that the functors F
and G have right adjoints. Then the pairs (Uy,Hy) and (Ug,Hg) are adjoint pairs of
functors.

Proor. We show that (U, H,/) is an adjoint pair of functors. Let (X,Y, f,g) be an
object of M(¢, ). We define the morphism p(x v, rq): (X, Y, f,9) — HyU,(X,Y, f,9),
pixy.f.g) = (Idx,dy 0 G'(g)). First we show that pix,y,fq) is @ morphism in M(¢, ).
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Since G(0%) o GG'(g) o €'y = G(d%) o éTG vy © 9 = ldg)og =g and

fodyoG'(g) = dpix)oG'G(f)oG(g)
= %(X) o G'(Yx)
Idpx) 05 oG (¥x)

(0x) o €F(X) 0 0px) © G'(Yx)

(0x) o FF'(6 F(X)) O EG'GF(X) © G'(Yx)
F(0x)o FF'( F(X)) o FF'G (wX) 0 £¢r(X)

(

(

R

F 6X ¢) F/((S/ ) o F/G/(¢X)) @) 8G”(X)
V) 0 Eqr(x)

T

it follows that the following diagrams are commutative:

GY) X FX) —1 Y
G(84,)°GG (g) l \Idx ldp(x) L 840G’ (g)
'y F (¢ Yoeqr
GG'(X) ==X F(X) ——"5 G'(X)

Hence the map p(xy,fq) is indeed a morphism in M(¢, ). If (a,b): (X,Y, f,9) —
(X",Y', f'.¢') is a morphism in M(¢, ), then the following diagram

(Idx,8%-0G'(g))
(X,Y, f.9) ik Ho Uy (XY, f,9)

l(aﬂ’(a))
HMUM(X7 Y7 f:g)

(@ b)j
(XY, g) )

is commutative since bo dy, 0 G'(¢') = 63, o G'G(b) o G'(¢') = 9%, 0 G'(g) oG'(a). Thus the
morphism p(x,y,s4) is a natural transformation. We have also the natural transformation
7x: UyHy(X) — X defined by mx = Idx. Then it is easy to check that the following
diagrams are commutative:

Ugp pHz

Uy —UyH Uy Hy —H,Uy,Hy
Uy Ho

We infer that (Uy,H.) is an adjoint pair of functors where p: Idg(sy) — HoUy is
the unit and 7: UyH, — Id,, is the counit of (U, H. ). O

3.3. Recollements and Morita Categories

Let M(¢, 1) be a Morita category and suppose that the functors F' and G have right
adjoints. In this section we show that the Morita category M(¢, 1)) admits a recollement
of abelian categories.
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Consider the following diagrams:

dor T
Ker U, M(p, 1) o (3.3.1)
\p/ \/
o Hy
de Tz
Ker Uy M(p, 1) B (3.3.2)

We will show that the above diagrams are recollements of abelian categories. Consider
the subcategories Ker¢ = {Y € # | ¢y = 0} and Keryp = {X € &/ | x = 0} of & and
o/ respectively. Then Ker ¢ is equivalent to Ker U, = {(0,Y,0,0) € M(¢,v) | ¢y =0}
via the functor Z4, and Ker is equivalent to KerUg = {(X,0,0,0) € M(p, ) | vx =
0} via the functor Z,,.

We define the following functors:

(i) The functor q : M(¢,10) — Ker U, is defined by q.,(X, Y, f,g) = (0, Coker f,0,0)
on the objects (X,Y, f,9) € M(¢,¢) and given a morphism (a,b): (X,Y, f,g9) —
(XY, f,¢) in M(¢, ) then qu(a,b) = (0,¢) where (: Coker f — Coker f’ is the

unique morphism which makes the following diagram commutative:

F(X) J oy Coker f

S

F(X')—Y’ 2 Coker f’

Let us explain why q.(X,Y, f,g) lies in KerU,. From the following commutative
diagram:
FG(f) FG(my)

FGF(X) — FG(Y) — FG(Coker f)
F(g)
¢F(X)l ¢YL jquokerf
F(X) ! Y Lt Coker f

and the fact that F'(g) o f = ¢y it follows that ¢cokerf = 0 and thus q(X,Y, f,g) €
KerU, . Then it is straightforward to check that q. : M(¢, 1) — Ker U, is a functor
and dually we have the functor qz: M(¢, 1) — Ker Ug.

(ii) Let (X,Y, f,9) € M(¢,v). Then we have the object (X,Y,d} o G'(g),dx o
F'(f)) € CoM(¢',4") and we define the functor p (X, Y, f, g) = (0, Ker (63 o G'(g)),0,0)
on objects. If (a,b): (X,Y, f,9) — (X',Y', f',¢) is a morphism in M(¢,) then
ps(a,b) = (0,€) where &: Ker (0 0 G'(g)) — Ker (6%, 0o G'(¢’)) is the unique mor-
phism which makes the following diagram commutative:

. 6§,oG’
Ker (8 o G/ (g)) — W G(x)

fj b LG/(a)
: 5,06 (g')

/

Ker (84, 0 G'(¢')) ——Y" G'(X")
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From the following commutative diagram:

Ker (8}, 0 G'(g)) ———— v — 29 xy

;(er (Jg,oG/(g))j ¢,Y] ld),G,(X)
G F'(Ker (8 0 G'9) S G FI(Y) — = G'F'GY(X)

we get that ¢, (80G(g)) = 0 since 0y 0 G'(6c(vy) © G'F'(¢y) = ¢y. Hence the object
ps(X,Y, f,g) € KerU,, and it follows easily that p. : M(¢p, 1) — Ker U, is a functor.
Dually we have the functor pg: M(¢, 1) — Ker Uy.

PROPOSITION 3.3.1. Let M(¢, ) be a Morita category such that the functors F' and
G have right adjoints. Then the diagrams (5.3.1) and (5.5.2) are recollements of abelian
categories.

PRrROOF. Since the functors F' and G have right adjoints it follows from Proposition
3.1.11 and Proposition 3.2.5 that (T, Uy, Hy) and (Ty,Ug, Hg) are adjoint triples.
Also the functors T, and T4 are fully faithful from Propostion 3.1.11, and therefore the
functors H,, and Hy are fully faithful as well. Then we are done since the remaining
adjoint pairs follow immediately, see Remark 1.1.3. Hence the diagrams (3.3.1) and
(3.3.2) are recollements of abelian categories. O

COROLLARY 3.3.2. Let M(¢,v) be a Morita category.

(i) If ¢ = 0 then we have the following recollement of abelian categories:

B o

M(o,v)
\_/ \/

(ii) If ¥ = 0 then we have the following recollement of abelian categories:

N
M(o,v)
\_/ \/

(iii) If ¢ = 0 = 4 then the category (of X B)x H admits a symmetric recollement:
(o, (o x B)x H,B) and (B, (A x B)x H, ).

PROOF. Since ¢y = 0 for every Y € # and ¢x = 0 for every X € o7, it follows that
the categories Ker U, and Z are equivalent, and that the categories Ker Uy and o7 are
equivalent. Then the result follows from Proposition 3.3.1 and Proposition 3.1.9. U

o

B

3.3.1. The MacPherson-Vilonen Category. Let o/ and % be two abelian cat-
egories, G, F': &/ — 2 two functors such that F' is right exact and G is left exact and
let £: ¥ — G be a natural transformation. Then the MacPherson-Vilonen category,
denoted by MV(¢), is defined as follows, see [91]. The objects of MV(&) are tuples
(A, B, f,g), where Ac o/, Be B, f: F(A) — B and g: B — G(A) are morphisms
in % such that the diagram

§a

F(A) G(A)

N

B
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is commutative. Let (A, B, f,g) and (A, B', f',¢') be two objects of MV(§). Then a
morphism from (A, B, f,q) — (A", B’, f',¢) is a pair (a, 8), where a: A — A’ is a
morphism in &/ and #: B — B’ is a morphism in 4 such that the diagram

&a

N

F(A) B2 q4a)
F(a)l BL lG(a)

Fay Lo g g

~_ 7

fA/

is commutative. Then it follows from [91] that the category MV(§) is abelian and there
is a recollement of abelian categories:

/—?\Mwsf/i\
\_/ \/

p r

B o

and q(A, B, f,g) = Coker f, i(B) = (0, B,0,0), p(4, B, f,g) = Kerg, e(A, B, f,g) = A,
I(A) = (A, F(A),Idr(a),€a), and r(A) = (A, G(A), {a, Idga)).

The following shows that there are two MacPherson-Vilonen categories associated
to a Morita category.

PROPOSITION 3.3.3. Let M(¢, 1)) be a Morita category such that the functors F' and
G have right adjoints F' and G’ respectively. Then we have the following recollements
of abelian categories:

/—\ RN - /\
MV(¢) o o MV(6)

where MV(&) and MV(0) are MacPherson-Vilonen categories.

PROOF. From our setting we have the functors G', F': &/ — % where I is right
exact and G’ is left exact. Let (X,Y, f,g) be an object of M(¢,%). Then we define
the natural transformation £: F© — G’, where {x = 63,()() o G'(¢x), and consider the

object (X,Y, f,6 0 G'(g)). Then we have that the following diagram is commutative
F(X) —2 . ¢'(X)
f\\ A,OG'(Q)
Y
since f o dy 0 G'(g) = dpxy © G'G(f) 0 G'(9) = {x. Hence the above data defines the
MacPherson-Vilonen category MV(&). Similarly using the functors F',G: #Z —
where G is right exact and F” is left exact, we define the natural transformation 8: G —
F' by 0y = 0¢vy o F'(¢y) and as objects we take the tuples (Y, X, g,6x o F'(f)). Then
we have the MacPherson-Vilonen category MV(#). Finally the recollement situation of

the categories MV(§) and MV(#) follows from the general construction of a MacPherson-
Vilonen category. O
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PROPOSITION 3.3.4. Let (o, %B,%€) be a recollement of abelian categories. Then
there is a Morita category M(¢p, ) such that (of, B,€) and (KerUgy, M(¢,v),€) are

equivalent recollements.
PROOF. From the recollement (<7, %, %) we define the Morita category:
M(p, ) = (B, €,e: B — C,|: € — B,p: el — Idy,V: le — 1dy)

Note that the natural transformation ¢ is an isomorphism. Then from Proposition
3.1.13 there is an equivalence of categories between % and M(¢, 1)) via the functor T .
Since the following diagram:

B—=n€
T@ L ~ L Idcg
u
M(¢,¢)) =€
commutes up to natural equivalence, see Definition 1.2.13, we infer that the recollements
(o7, B,€) and (Ker Uy, M(¢, 1), €) are equivalent. O

3.4. Functorially Finite Subcategories

In this section our purpose is to study finiteness conditions on subcategories of
M(0,0). Throughout this section we assume that the right exact functors F' and G
have right adjoints F’ and G’ respectively. We denote by (F' | Id) = (F, <7, %) and
(Id | G) = (G, A, o) the comma categories, see Example 1.1.12, associated to the
Morita category M(0,0). The reason for restricting to the case where ¢ = ¢ = 0 is
that we have full embeddings from the abelian categories 7, £, (F | Id) and (Id | G)
to M(0,0). In particular we show that the above natural subcategories of M(0,0) are
bireflective and therefore functorially finite.

We start by defining the following full subcategories of M(0,0):

(X = {(X,Y,f,0)] f: F(X) — Y is an epimorphism}
Y={(0,Y,0,0) | Y € B} =ImZy

Z={(X,Y,0,9) | p(g): Y — G'(X) is a monomorphism }
X' ={(X,Y,0,9) | g: G(Y) — X is an epimorphism}

Y = {(X,0,0,0) | X € 7} =ImZ,

2 ={(X,Y,f,0) | n(f): X — F'(Y) is a monomorphism }

{
We will show that the above subcategories have a special structure in M(0,0). In
section 1.2 we discussed the notion of torsion pairs in abelian categories. Let us briefly
recall this notion.
Let % be an abelian category. Then a torsion pair in 4 is a pair (U, V) of strict full
subcategories of & satisfying the following conditions:

(i) Homgx(U,V) =0, i.e. Homgx(U, V) =0forall U € Wand V € V.
(ii) For every object B € A there exists a short exact sequence 0 — Up ELN
B
B 25 VB —0in 2 such that Ug € U and VB € V.
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In that case, the torsion class U is is closed under factors, extensions and coprod-
ucts and the torsion-free class V is closed under subobjects, extensions and products.
Moreover we have U = +V = {B € % | Homg(B,V) = 0} and V = U+ = {B €
A | Homyx(U, B) = 0}. A triple (U, V,'W) of strict full subcategories of # is called
torsion, torsion-free triple or TTF-triple for short, if (U, V) and (V, W) are torsion pairs.

DEFINITION 3.4.1. [15] A full subcategory % is called contravariantly finite in Z if
for any object B in A there exists a map fp: Cg —> B, where Cp lies in %, such that
the induced map Homy (%, fg): Homy(%,Cp) — Homy4(€, B) is surjective. In this
case the map fp is called a right €-approximation of B. Dually we have the notions of
covariant finiteness and left approximations. Then % is called functorially finite if it is
both contravariantly and covariantly finite.

EXAMPLE 3.4.2. Let A be an Artin algebra. Then the full subcategory ProjA of
projective A-modules and the full subcategory InjA of injective A-modules are func-
torially finite in Mod-A. Moreover, the finitely generated projective and injective A-
modules, proj A and injA respectively, are functorially finite in mod-A. This follows
from [30, Chapter X] since the categories of modules Mod-A and mod-A are Nakayama
categories (i.e. there is an adjoint pair of functors inducing an equivalence between the
projectives and injectives).

On the other hand since A is an Artin algebra, it is left and right Artin ring. Thus
A is left and right Noetherian, but moreover is right perfect and left coherent. Then
from [24, Theorems 5.3, 5.7] we infer that the full subcategories ProjA and InjA are
functorially finite.

In what follows we shall need the following easy and well known observation.

LEMMA 3.4.3. [17] Let (U,V) be a torsion pair in . Then U is contravariantly
finite in BB and V is covariantly finite in AB.

PROOF. Let B be an object of . Since (U, V) is a torsion pair in % we have
the exact sequence 0 — Ug — B — VP — 0 with Ug € U and VB € V. Let
h: U’ — B be a morphism in 4 with U € U. Then the composition h o g® = 0
since Homy(U,V) = 0, and therefore there exists a morphism u: U’ — Up such that
wo fg = h. This implies that fz: Ug — B is a right U-approximation. Hence U is
contravariantly finite and similarly we show that V is covariantly finite. 0

The following result gives the precise structure of the subcategories X,Y,Z, X', Y,
Z/ in the morita category M(0,0).

PROPOSITION 3.4.4. Let M(0,0) be a Morita category. Then the triples (X,Y,2Z)
and (X',Y',2") are TTF-triples in M(0,0).

PRrOOF. Let (X,Y, f,g) be an object of M(0,0). We write f = ko A for the factor-
ization of f through the Im f. Then from the counit of the adjoint pair (T, U, ) we
have the following exact sequence:

T(X) 0 (X, £, 9) — (0, Coker £,0,0) —=0

L

Im (Idx, f)

0 —— (0, Ker £,0,0)



3.4. FUNCTORIALLY FINITE SUBCATEGORIES 109

where Im (Idx, f) = (X, Im f, k, G(A)og). But from the following commutative diagram :

\I’XZO
GFX) Y qiyy L T2 x
G(”)i G
G(im f)

it follows that the map G(\)og is zero since the map G(x) is an epimorphism. Therefore
we have the exact sequence

0— (X,Imf k,0) — (X,Y, f,g) — (0, Coker f,0,0) — 0

with (X, Im f,k,0) € X and (0, Coker f,0,0) € Y. Let (X,Y, f,0) € X and (0,Y",0,0) €
Y. Then Homyo,0)((X,Y, f,0),(0,Y",0,0)) = 0 since the map f: F(X) — Y is an
epimorphism. Hence (X,Y) is a torsion pair in M(0,0). We continue now in order to
show that (Y,2) is also a torsion pair. Let (X,Y, f, g) be an object of M(0,0). From
the unit of the adjoint pair (U,,H,) we have the following exact sequence:

(Idx,p(g))

0 — (0,Kerp(g),0,0) —— (X, Y, f,9) —="H(X) — (0, Coker p(g),0,0) —= 0

|

Im (Idx, p(g))

where p(g) = 6y, 0G'(g). We write p(g) = yon for the factorization through the Im p(g).
The image of the morphism (Idy, p(g)) is the object

(9
Im (Idx, p(g)) = (X, Im p(g),m, p~"(n))

)=
where m = f o~ and the map p(p~'(n)) =n: Imp(9) — G'(X) is a monomorphism.
But then the map m = fo~y = 7 '(7(f) o F'(y) = 0 since the following diagram is
commutative:
W =0

X " Py
F’(v)l
F'(Im p(g))

Thus we obtain the exact sequence

F'(p(9))

F'G(X)

F'(n)

0 — (0,Kerp(g),0,0) — (X,Y, f,9) — (X,Imp(g),0,p" " (n)) — 0

(
in M(O 0) with (0, Ker p(g), 0,0) € Yand (X, Im p(g),0, p~'(n)) € Z. Let (0,0): (0,Y",0,0)
— (X,Y,0,9) be a morphism in M(0,0) with (0, Y’ 0,0) € Y and (X,Y,0,9) € Z.

Then from the following commutative diagrams:

GY') —=0 y? 0
G(b)l l bj
GY) - X y 29 o (x)



3.4. FUNCTORIALLY FINITE SUBCATEGORIES 110

it follows that b = 0 since the map p(g) is a monomorphism. Thus Homy ) (Y,2) =0
and therefore we conclude that (Y, 2) is a torsion pair in M(0,0). Similarly we prove
that (X',Y,2') is a TTF-triple in M(0, 0). O

REMARK 3.4.5. Let (X,Y, f,g) be an object of the morita category M(0,0) with
f: F(X) — Y an epimorphism. Then the morphism g: G(Y) — X is zero since the
composition GF(X) — G(Y) — X is zero and the map G(f) is an epimorphism.
We used this argument in the above proof and note that the same holds for the objects
of Z, X' and Z' as well.

As a consequence of Proposition 3.4.4 and Lemma 3.4.3 we have the following.

COROLLARY 3.4.6. Let M(0,0) be a Morita category.
(i) The full subcategory
X={(X,Y,£,0) | f: F(X) —Y ‘s an epimorphism}
is contravariantly finite in M(0,0), closed under extensions, quotients and

coproducts, and T (/) C X.
(ii) The full subcategory

X' ={(X,Y,0,9) | g: G(Y) — X is an epimorphism}
is contravariantly finite in M(0,0), closed under extensions, quotients and
coproducts, and T»4(#) C X'.
(iii) The full subcategory
Z={(X,Y,0,9) | p(g9): Y — G'(X) is a monomorphism}
is covariantly finite in M(0,0), closed under extensions, subobjects and prod-

ucts, and Hy (o) C Z.
(iv) The full subcategory

2 ={(X,Y, f,0) | n(f): X — F'(Y) is a monomorphism}

is covariantly finite in M(0,0), closed under extensions, subobjects and prod-
ucts, and Hy (%) C 2.

The next result describes the categories &/ and % via the subcategories X, Z, X',
Z'.

COROLLARY 3.4.7. Let M(0,0) be a Morita category. Then there are equivalences
d ==XNZ and B=>N'NZ

PROOF. From Proposition 4.1.4 we have the recollement (%, M(0,0),.</) and so
the quotient category M(0,0)/% is equivalent to /. From Proposition 3.4.4 we have
the TTF-triple (X,Y,2) in M(0,0). Then from [30, Proposition 1.3] it follows that
M(0,0)/Y ~ XNZ. But since we can identify Y with % we infer that < is equivalent with
X N Z. Similarly using the TTF-triple (X', Y’,2Z') and the recollement (27, M(0,0), A)
we infer that £ is equivalent to X' N Z/. O

We denote by Xy the full subcategory of M(0,0) whose objects are the tuples
(X, Y] f, g) such that there is an exact sequence 0 — Ko — T (F) — (X,Y, f,9) —
0 with Py € Proj A. Similarly we define the subcategories Yo = {(X, Y, f, g) € M(0,0) | 3
0 — (X,Y, f,9) — Hu(ly) — Ly — 0 exact with [y € InjA}, X, = {(X,Y, f,9) €
M(0,0) | 30 — Ky — Tx(Qo) — (X,Y,f,9) — 0 exact with Qo € Proj B}
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and Yy = {(X.Y.f.9) € M(0,0) | 30 — (X,Y,f.9) — Hau(Jy) — Ly —
0 exact with Jy € Inj B}.

The reason for defining the above subcategories is the following result which provides
another description of the subcategories X, Z, X' and Z'.

PROPOSITION 3.4.8. Let M(0,0) be a Morita category. Then: X = Xy, Z =Yy,
X' =X, and Z' =Y.

Proor. Let (X,Y, f,0) € X and let a: P — X be an epimorphism with P €
Proj.e/. Then we have the morphism (a, F(a) o f): Ty (P) — (X,Y, f,0) in M(0,0)
which is an epimorphism since f: F'(X) — Y is an epimorphism. Hence (X,Y, f,0) €
Xo. Conversely, let (X, Y, f, g) € Xy. Since there exists an epimorphism (a,b): T (P) —
(X,Y, f,g) it follows that b = F(a) o f and b is an epimorphism. Hence the map f is
an epimorphism and from Remark 3.4.5 it follows that the map g = 0. Thus the ob-
ject (X,Y, f,0) € X. Therefore we have X = X, and similarly we prove the other
statements. [

For the next result we need to recall the notion of bireflective subcategories. A
full subcategory % of an abelian category 4 is said to be reflective if the inclusion
functor i: ¥ — % has a left adjoint. Dually the subcategory % is called coreflective
if i: ¥ — 2% has a right adjoint. Then % is bireflective if it is both reflective and
coreflective. We refer to [54], [55] and [56] for more information about bireflective
subcategories.

The following gives the exact properties of the natural subcategories of M(0, 0).

THEOREM 3.4.9. Let M(0,0) be a Morita category. Then the full subcategories
o, B, (FL1), (1d]G)

are bireflective in M(0,0). In particular the above subcategories are functorially finite
in M(0,0), closed under isomorphic images, direct sums, direct products, kernels and
cokernels.

PROOF. The categories o/ and # are bireflective subcategories of M(0,0) since
from Corollary 3.3.2 we have the recollements (7, M(0,0), %) and (£, M(0,0), <7).
Let F: (F | Id) — M(0,0) be the functor defined on the objects (X,Y, f) € (F | Id)
by F(X,Y, f) = (X,Y, f,0) and given a morphism (a,b): (X,Y, f) — (X", Y’ f') in
(F | Id) then F(a,b) = (a,b): (X,Y, f,0) — (X', Y’, f,0) is a morphism in M(0, 0).
Clearly the functor F is fully faithful. We will show that F has a left and a right
adjoint. Let (X,Y] f,g) be an object of M(0,0). Since ¢y = 0 we have the following
commutative diagram:

FQY) —29 L pix) — ™) p(Cokerg) —— 0
0=¢y fl Ve “h
Y £

Then define the functor H: M(0,0) — (F | Id) by H(X,Y, f,g) = (Cokerg, Y, h) on
objects (X,Y, f,g) € M(0,0) and if (a,b): (X,Y, f,9) — (X", Y’, f',¢’) is a morphism
in M(0,0) then H(a,b) = (£,b) where £: Coker g — Coker ¢’ is the unique morphism



3.4. FUNCTORIALLY FINITE SUBCATEGORIES 112
which makes the following diagram commutative:

G(Y) L~ X 5 Cokeryg

o 1T

Gy L= Xx’ %, Cokerg/

Note that H(a,b) = (£,b) is a morphism in (F | Id) since F(rx)ohob = fob =
F(a)of' = F(a)o F(rx/)oh' = F(rx)o F(§) o and F(mrx) is an epimorphism. We
claim that (3, F) is an adjoint pair of functors. Let (a,b): H(X,Y, f,9) — (X', Y, ')
be a morphism in (F | Id). We define the map

S: Hom(Fud)(g{(Xa va f7 g)? (X/7Y/7 f/)) — HomM(O,O)((X7 Y7 fa g)v (Xla Yl? f/7 0))

by 8((a,b)) = (mx oa,b). It is easy to verify that 8 is a natural isomorphism of abelian
groups. Thus (H, F) is an adjoint pair of functors. Finally the assignment (X,Y, f, g) —
(X, Ker p(g), j) induces a well defined functor K: M(0,0) — (F' | Id) which is the right
adjoint of F'. Note that since f o p(g) = 0 we have the map j: F(X) — Ker p(g). The
details are left to the reader. Then we have the adjoint triple (H,F,8) and therefore
we conclude that (F' | Id) is a bireflective subcategory of M(0,0). Similarly we show
that (Id | G) is bireflective. Then from [54], [56] it follows that the full subcategories
o, B, (F | 1d),(Id | G) are functorially finite in M(0,0), closed under isomorphic
images, direct sums, direct products, kernels and cokernels. 0

REMARK 3.4.10. (i) By Proposition 3.4.4 the categories </ and & are TTF-
classes. This implies also that they are bireflective in M(0,0).

(ii) Let (X,Y, f,g) be an object of M(0,0). Then the map (7x,0): (X,Y, f,9) —
(Coker ¢,0,0,0) is the unique left Im Z-approximation. Also the morphism
(rx,1dy): (X,Y, f,g) — (Cokerg,Y,h,0) is the left Im F-approximation.
Similarly we obtain the descriptions of the left approximations from % and
(Id | G), and dually we derive the right approximations.

We continue with the following result on finiteness of subcategories.

THEOREM 3.4.11. Let M(0,0) be a Morita category.

(i) Let U be a covariantly finite subcategory of </ such that W C KerG' and 'V
a covariantly finite subcategory of % such that V C KerG. Then the full
subcategory

W={(X,Y, f,9) e M(0,0) | X €U and Y €V}

is covariantly finite in M(0,0).

(ii) Let U be a contravariantly finite subcategory of &/ such that U C Ker G' and V
a contravariantly finite subcategory of A such that V C Ker G. Then the full
subcategory

W={(X,Y,f,9) e M(0,0) | X €U and Y €V}

is contravariantly finite in M(0,0).

(iii) Let U be a functorially finite subcategory of </ such that U C Ker G' and V
a functorially finite subcategory of B such that V C KerG. Then the full
subcategory

W={(X,Y,f,9) e M(0,0) | X €U and Y €V}
is functorially finite in M(0,0).
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PRrROOF. (i) Let (A4, By, f1,91) be an object of M(0,0) and let m: A; — X be a
left U-approximation. From the morphisms F'(m) and f; we have the following pushout
diagram:

F(A) — 2 F(X,)
gk
By I

and let n: I — Y] be a left V-approximation. Then we claim that the map

(m,fon)

(A1, By, f1,91)
is a left W-approximation. First the object (X1,Y;,pon,0) € W since it is an object
of M(0,0) with X; € U and Y; € V. Also from the above pushout diagram and since
Hom,, (G(By), X1) ~ Homg(B;, G'(X1)) = 0 it follows that the following diagrams are
commutative:

(X171/1,p on, O)

F(Al) L‘ B1 G(Bl) L Al
F(m)l j@on G(Oon)t jm
F(X)) ==Y, G(V1) —— X,

Thus the map (m,6 o n) is a morphism in M(0,0). Let («,5): (41, By, fi,1) —
(X,Y, f,g) be a morphism in M(0,0) with (X,Y, f,g) € W. Since m: A; — X; is a
left U-approximation and X € U there exists a map v: X; — X such that mo~ = a.
Morover since f; o 8 = F(a) o f there exists a map pu: I — Y such that the following
diagram:

F(A) F(Xy)
flt Lp F(y)of
B, o I
AN \;L
B AN

is commutative. Then since the map n: I — Y] is a left V-approximation there exists
a morphism 0: Y7 — Y such that n o § = u. This implies that the following diagram
is commutative:

(m,0on)

(A17317f1,91)

<a,a>L —
(X,Y, f,9)

Since ponod =popu=F(y)o f and G(Y;) = 0 we infer that (v, ) is a morphism in
M(0,0) and therefore we have proved our claim. Part (ii) is dual to (i) and (iii) follows
from (i) and (ii). O

REMARK 3.4.12. Note that the converse of Theorem 3.4.11 holds, i.e. if W is con-
travariantly (resp. covariantly) finite in M(0, 0) then U is contravariantly (resp. covari-
antly) finite in &7 and 'V is contravariantly (resp. covariantly) finite in Z. Let X be an
object of &7. Then the object Z.,(X) lies in M(0, 0) and since W is contravariantly finite

(Xh}/l?p o TL,O)
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there exists a morphism (a,0): (X', Y, f',¢") — (X,0,0,0) with (X", Y, f',¢') € W.
We claim that the morphism a: X’ — X is a right U-approximation of X in 7. First
X" € U and let k: X” — X be a morphism in & with X” € U. Then since (a,0)
is a right W-approximation and (X”,0,0,0) € W we have the following commutative
diagram:

(X"”,0,0,0)
y L(m)
N £ (a,0)
(XY f'9) (X,0,0,0)

This implies that Aoa = k and then our claim follows. Hence U is contravariantly finite
in o/ and similarly we show that V is contravariantly finite in 4.

In section 4.3 of Chapter 4 we will discuss applications of the above results to Morita
rings.

3.5. Projective, Injective and Simple Objects

Let M(¢, 1) be a Morita category of the abelian categories <7 and % by the natural
transformations ¢ and ¢. We always assume that the functors F' and G are right exact
in order that M(¢, ) is abelian. Our aim in this section is to determine the projective,
injective and simple objects of M(¢, ).

3.5.1. Projective and Injective Objects. We begin with the following result
which characterizes the projective objects of M(¢, ).

PROPOSITION 3.5.1. Let M(¢, ) be a Morita category.

(i) Let P be a projective object of «/. Then T (P) is a projective object of
M(, ).

(i) Let Q be a projective object of B. Then Tx(Q) is a projective object of
M(¢, ).

(iii) Let (X,Y, f,g) be a projective object of M(p, ). Then C(X,Y, f,g) € Proj (Ker)
and Cz(X,Y, f, g) € Proj(Ker ¢).

(iv) Let (X,Y, f,q) be an object of M(¢p,1). Then (X,Y, f,g) € Proj (M(p,v)) if
and only if (X,Y, f,q) is a direct summand of To(P) @ T»(Q) where P is a
projective object in & and @ is a projective object in A.

ProoOF. The statements (i), (ii) and (iii) follow from Proposition 3.1.11 since we
have the adjoint pairs (T.,Uy), (T%,Uz), (Cy,Zy), (Cx,Zy) and the functors U,
Uz, Z,/, Zp are exact.

(iv) Let (X,Y, f,g) be an object of M(¢,%). Let a: P — X be an epimor-
phism in & with P € Projo/ and b: ) — Y be an epimorphism in 4 with @) €
Proj #. Then the map (a, F(a)): T (P) — T(X) is an epimorphism with T, (P) €
Proj (M(¢,%)), and the map (G(b),b): T4(Q) — Tx(Y) is an epimorphism with
T4(Q) € Proj (M(¢,)). Then we have the following commutative diagram:

( (a’%(a)) (G((;),b) )

Ty (P)® T(Q)
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where T/ (X) @ Tx(Y) ~ (X @ G(Y), F(X) @Y, (15 ¢0Y ), (% Idc?<y) )) and the map
Heyd): Ty(X) @ T»(Y) — (XY, f,g) is an epimorphism since ¢ = '(Idy,g): X @
G(Y) — X and d="*(f,1dy): F(X)®Y — Y are epimorphisms. Hence there is an
epimorphism T, (P)®T»(Q) — (XY, f, g) given by the composition ((a’FO(“)) (G(g%b) )o
(fl) and T (P)® T4(Q) is projective in M(¢,1). Thus if (XY, f, g) is projective then
the map T, (P) @& T»(Q) — (X,Y, f,¢g) splits and so (XY, f, g) is a direct summand
of T(P) @ T»(Q). Conversely if (X,Y, f, g) is a direct summand of T, (P) & T4(Q),
where P € Proj.o/ and @) € Proj %, then (X,Y, f, g) is a projective object of M(¢, 1))

since Ty (P) ® T(Q) € Proj (M(¢,7)). O
As a consequence we have the following.

COROLLARY 3.5.2. Let M(¢,1) be a Morita category. If o/ and % have enough
projective objects then M(p, 1) has enough projectives.

We state without proofs the dual results of Proposition 3.5.1 and Corollary 3.5.2.
We use the notation introduced in section 3.2.

PROPOSITION 3.5.3. Let M(¢p, ) be a Morita category such that the functors F' and
G have right adjoints.

(i) Let I be an injective object of o/ . Then Hy, (I) is an injective object of M(¢p,1)).
(ii) Let J be a injective object of B. Then Hyx(J) is an injective object of M (¢, ).
(iii) Let (X,Y, f,g) be an injective object of M(p, ). Then C',(X,Y, f, g) € Inj(Ker1))
and C',(X,Y, f,g) € Inj(Ker¢).
(iv) Let (X,Y, f,g) be an object of M(p,¢). Then (X,Y, f,g) € Inj(M(p,)) if
and only if (X,Y, f,g) is a direct summand of Hoy (1) & Hg(J) where I is an
injective object of & and J is an injective object of A.

COROLLARY 3.5.4. Let M(¢, ) be a Morita category such that the functors F' and
G have right adjoints. If o/ and B have enough injective objects then M(¢p,1)) has
enough injectives.

3.5.2. Simple Objects. In this subsection we determine the simple objects of
M(¢p,1). Recall that an object (X,Y, f,g) of M(¢p,1) is simple if it has no proper
nonzero subobject. Note that the description of the simple objects follows from the
recollement diagram of Proposition 3.3.1 and is due to Kuhn, see [81,82] for a general
result about simple objects in recollements of abelian categories. For completeness we
sketch the proof in our case.

Let X be an object of &7. Then we have the following commutative diagram:

T (X) (oo Ha (X)
~.
Co(X)

where C(X) = Im (Idy, px) = (X, Impx, £, A) and px = 0y © G'(¥x). Then the
assigment X +— Im (Idx, px) defines a functor C. : & — M(¢, ¢) on objects and given
a morphism a: X — X' in &/ then C,(a) = (a,6), where 6: Impux — Im ux is the
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unique morphism which makes the following diagram commutative:

F(X) = G'(X)
\ /
Im pux
F(a) G'(a)

~ 7

Im Hxr

From the above diagram it follows that the functor C.,: &/ — M(¢,1)) preserves
epimorphisms and monomorphisms since F' is right exact and G’ is left exact.
We have the following result which shows that the functor C,, lifts simple modules.

LEMMA 3.5.5. Let S be a simple object of of. Then C,(S) is a simple object of
M(,1).

PRrROOF. Consider the following exact commutative diagram :

T () H. (5)

|

0 (X,Y,f,g)—>CQ¢(S) (X,’Y,’f/7g/)—>0

We claim that either (X,Y,f,g) = 0 or (X',Y' f',¢') = 0. If we apply the exact
functor U, we get the short exact sequence 0 — X — S — X’ — 0 and so
X =0 or X' = 0 since S is simple. Hence (X,Y, f,g) € KerUy or (X', Y’ f'.¢") €
Ker U,,. Consider the subobject (0,Y,0,0) of C/(S). Then the object (0,Y,0,0) is also a
subobject of H,/(S) and Homy(g4)((0,Y,0,0),H(S)) ~ Hom, (U,(0,Y,0,0),5) = 0.
This implies that C.(S) has no nonzero subobjects. Similarly if (0,Y”,0,0) is the
quotient object of C.(S) then (0,Y”,0,0) is also a quotient object of T, (S). But
Homyg,v) (T (5), (0,Y7,0,0)) ~ Hom, (S,Uy(0,Y",0,0)) = 0 and then C.(S) has
no nonzero quotient object. We infer that (X,Y, f,g) = 0 or (X",Y’, f',¢') = 0 and
therefore the object C./(S) is simple. O

LEMMA 3.5.6. Let (X,Y, f, g) be a simple object of M(¢p, 1) such that U, (X,Y, f,g9) =
X #0. Then X is a simple object of & and C,Uy (XY, f,9) ~(X,Y, f,9).

PRrROOF. From the following commutative diagram:

(Idx.,f)
TJJ(X) a (X,Y,f;g)

i \ L(Idx,ég,oG’(g))

CAUEQ{(Xayaf?g) HQ{(X)

we deduce that the map C,/(X) — Im (Idx, 0} 0 G'(g)) is a monomorphism. But then
since (XY, f,g) is simple and C,(X) # 0 it follows that

CdU%<X7Y7fug) = (X7Y>f7g>

Let X’ be a subobject of X and let i: X’ — X be the inclusion map. Then since the
functor C,, preserves monomorphisms we have the monomorphism C/(i): Co(X') —
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CoUx(X,Y, f,g) and therefore Coy(X') =0 or Co(X') ~ (X,Y, f,g). Thus if we apply
the functor U, we get X’ = 0 or X’ ~ X and therefore we conclude that the object
Uy (X,Y, f,g) = X is simple. O

The following result describes the simple objects of M(¢, 1) and follows easily from
Lemma 3.5.5 and Lemma 3.5.6.

PROPOSITION 3.5.7. There is the following bijections:

1d
{simple objects of KerU, } = {simple objects (X, Y, f,qg) € M(¢,¢): X =0}

i ot

u
{simple objects of <} <_ﬁ> {simple objects (X,Y, f,q) € M(¢,v¢): X # 0}

Cu

1d
{simple objects of KerUgz} = {simple objects (X, Y, f,g) € M(¢,¢): Y =0}

'

u
{simple objects of B} <_i> {simple objects (X,Y, f,q) € M(¢,¢): Y # 0}

Cx

REMARK 3.5.8. Let (0,Y,0,0) be a simple object of M(¢,1). Thus Y € £ with
¢y = 0 and we claim that U4(0,Y,0,0) =Y is a simple object of #. Let Y’ be a non-
zero subobject of Y. Then we have the inclusion i: Y’ < Y and from the commutative
diagram

Fe) 2 pay)

¢y’ l/ j ¢Y =0

Y’ - Y

we obtain that ¢y» = 0. Hence we have the monomorphism (0,7): (0,Y’,0,0) —
(0,Y,0,0) where (0,Y’,0,0) # 0 and (0,Y,0,0) is simple. Then (0,Y”,0,0) ~ (0,Y,0,0)
and so Y/ ~ Y, ie. Y is a simple object of 4. Conversely if we start with a simple
object Y € A with ¢y = 0 then it follows easily that the object Z»(Y) = (0,Y,0,0) is
simple. Hence we deduce a bijection between simple objects Y of & with ¢y = 0 and
simple objects (X, Y, f, g) of M(¢, ) such that U, (X,Y, f,g) = 0. Similarly we derive
a bijection between simple objects X of &/ with ¥x = 0 and simple objects (X,Y, f, g)
of M(¢, 1) such that U»(X,Y, f,g) = 0.

3.6. Constructing Resolutions

Let (X,Y, f,g) be an arbitrary object of M(¢,?). Our aim in this section is to
construct a projective resolution of (X, Y, f, g) in terms of a projective resolution of X
in o/ and a projective resolution of Y in A. In this section we assume that the abelian
categories &/ and # have enough projectives.

CONSTRUCTION 3.6.1. Let (X, Y, fo,g0) be an object of M(p, ). Let ag: Py — X
be an epimorphism with Py projective in o/ and by: Qo —> Y an epimorphism with Qg



3.6. CONSTRUCTING RESOLUTIONS 118

projective in AB. Then we have the following pullback diagrams:

v &

Ko —> G(Qo) Ly - Qo
Ho l j G(bo)ogo Go L j bo
Py X F(Ry) @kl |y

and the following exact sequences:
ao
Ho Vo G(bg)o
P %) I o 90
F(ao)o fo
o ¢ ( )
0 Lo (o a) FR)®Qy 2y 0

Since G(£)oG(bo)ogo = G(Co)oGF (ao)oG( fo)ogo = G(Co)oGF (ag)ovbx = G(Co)ovp,0a0
there exist a unique morphism gy: G(Ly) — Ky such that G({y) o ¥p, = g1 © po and
g1 01y = G(&), that is the following diagram is commutative:

G(Lo)

g1
y >
Ky —— G(Qo)
ll‘«o lG(bo)ogo
P—2 X

G(Go)ovp,

Also since F(ug)oF (ag)o fo = F(v9)oFG(by)oF(go)o fo = F(vg)oFG(bg)ogy = F(1g)o
bq, 0 by there ezist a unique morphism fi: F(Ky) — Lo such that F(vy)odg, = fro&
and f1 0o = F(uo), that is the following diagram is commutative:

F(Ky)

F(I/())Od)QO

f1

A o
Ly —— Qo

F(po)
L lbo
(l())ofo

¢o
F(R) @l x

Using the above relations we will show that (Ko, Lo, f1,91) is an object of M(¢p, ). This
means that we have to prove that the following diagrams are commutative:

G(f1) F(g1)
GF(Ky) = G(L) FG(Lo) =" F(K,)
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We have

G(f1)ogio(no,v0) = (G(f1) o g1 0 po, G(f1)ogio0wo)
(G(f1) o G(Co) 0 Pry, G(f1) 0 G(&0))
(GF (ko) 0 ¥y, GF () 0 G(dq,))
= (YK, © Hos Y1, © 1)
= YK, o (to, Vo)

and so G(f1) o g1 = Yk, since (ug, ) is a monomorphism. Similarly we have

F(g1)o fio(Co,%) = (F(g1)0 fioCo, F(g1)0 fro&)
F(gi) o F(Mo) F(g1) o F() © ¢q,)
FG(G) o F(¥p,), FG(&) © dq,)
bro © Co, Pro © &0)

(
= (
= (
= (

= ¢Lo (C0)§0>
and therefore F(g1) o fi = ¢, since ((o,&0) is a monomorphism. Hence the tuple
(Ko, Lo, f1,91) lies in M(¢,v). Then we have the exact sequence:
0 — (Ko, Lo, f1,91) == Tor(R) © Ts(Qo) == (X, Y, £, 9) — 0 (3.6.1)

where the morphisms are

o= (('uO 1/0)’ (CO fo )) Qo = ((G(bigogo)u (F(ago)ofo ))
and we view the direct sum T (Py) ® T4(Qo) as the object:

Tgf(Po) S¥ Tﬂ(@o) (Po e, G(QO) (PO) o Qo, (IdF(()Po) 0 )7 (wPO 0 ))

$Qo 0 Idg(qq)
Now we continue the construction for the object (Ko, Lo, f1,91). Let ay: P — Ky be
an epimorphism with Py projective in </ and by: Q1 — Lo be an epimorphism with (),
projective in %B. Then we have the following pullback diagrams:

121 &1
K1 —G(Q1) L ———Q
NlL lG(bl)om QIL Lbl
a 17 F(a1)of &
P1 ! KO 0 G(Qo) F(Pl) Sk LO . QO
Nol jG(bo)ogo COL lbo
P X F(Ry) Ly
and the exact sequences:
p1 v a1o
0 K, ( ) P& G(Ql)(G(bl) g1 )K.O 0
F(a1)of1
G é ( )
0 Ly (o 6) F(P) & Qi ——L, 0

Then as above there exist unique morphisms go: G(L1) — Ky and fo: F(K;) — L4
which satisfy analogue relations from the pullback diagrams and then we get that the
object (K1, Ly, fa,92) € M(, ). Hence we have the exact sequence:

0 — (K1, L1, fa, g2) == Tor(P1) ® T(Q1) = (Ko, Lo, f1,91) — 0 (3.6.2)
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where the morphisms are

n= () (ae)) = (o) (7))

and we view the direct sum T, (Py) ® T»(Q1) as the object:

Ty (P) @ Ta(Q) ~ (P G(Q), F(P) ®Q, (IdFéP1> ¢gl )’ (1%31 IdG(()Ql) ))

Then from the exact sequences (3.6.1) and (3.6.2) we obtain the exact sequence:

0— (K1, Ly, f2,92) == T (P1) @ Tp(Q1) = T (Po) © Tip(Qo) == (X, Y, f,9) — 0
where the morphism oy is described as follows:

a1 = K10

((eion ), (73S 7)) 0 (o), (w0 0))

= (( c;(b‘ﬁig‘fouo G(bﬁ;{foug ) ’ ( F(agl)gg;oCo F(“§3§§;°5° ))

a10p0 aiovp F(a1)oF(po) F(a1)oF(vg)og
= ((ctnoc@oosn, coocE) ) (T e ety %))

Therefore from the following sequence of pullback diagrams:

- K - G(Q))
)

Vi j G(b;)og;
i

P K,

Vi

K G(Q1)
1 LG(bl)th
P —— Ky —= G(Qo)

/»LOL lG(bo)Ogo

Py —= X
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Ly

y

&1

Q1

-
F(a1)of1 o

F(P) Ly Qo
Coj lbo
PPy ly

we derive the following projective resolution of (X,Y, f,q):
=T (P) @ T5(Q) > To(Piot) ® Tx(Qicr) =+ = Tor(B) & T(Qo) = (X, Y, f,9) =0

where
@0 = ((cmojoq ) (74)7))

_ @;Opi—1 a10Vi—1 F(ai)OF(;,Lifl) F(ai)OF(Vi—l)o¢Qi7
@i = ((Ge)oGG-vovr,_, GeoGE-1) ) (T pogy hot s )

for every i > 1.

and

We continue with another construction of a projective resolution for an object
(X,Y, f,g) of M(¢,1). We remark that the following method was used in Proposition
3.5.1 and that the resulting resolution is the same with that of the above construction.

CONSTRUCTION 3.6.2. Let (X,Y, f,g) be an object of M(¢,v). Let ag: Py — X
be an epimorphism with Py projective in o/ and by: Qo — Y be an epimorphism with
Qo projective in B. Then we have the following commutative diagram:

Tor (Po) @ Tip(Qo) == Ty (X) © Tip (V)
N A i/\o
(X,Y, f.9)
where the objects T (Py) ® Tx(Qo) and T(X) ® Tx(Y) as tuples are:

T%(Po) S¥ T@(QO) ~ (PO ® G(QO),F(PO) @ Qo (IdFéPO) 0 )’ (11)}90 0 ))

(bQO 0 IdG(QO)
T/(X) @ Ta(Y) = (X & GY), F(X)aY, ("0 2 ), (% uly,)

and the morphisms are the following:
fo = ((F atm ) (767 m))s 2o = (("9) (1, ) @0 = ko0 X0 = ((citmyes) ("57))
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The kernel of the morphism «y is the object (K, Lo, f1, g1) where Ko = Ker (*(ag G(bo) © g))
and Lo = Ker (*(F(ag) o f by)). Also from the exact sequences:

(nom) (ctwo)onn)
0 Ky Py & G(Qo) X 0
F(ao)ofo
0 Lo (o a) F(R) @Q(S b )Y 0

we get the morphism vy = ((to, o), (Co; €0)) from (Ko, Lo, f1,g1) to T (Fo) & Tz(Qo)-
Thus so far we have the exact sequence:

0 — (Ko, Lo, f1,01) = T (Py) & T»(Qo) == (X,Y, f,g) — 0 (3.6.3)

Now we continue the above procedure for the object (Ko, Lo, f1,91). Let a;: P, — K
be an epimorphism with Py projective in &/ and by: Q1 —> Lo be an epimorphism with
Q1 projective in B. Then we have the commutative diagram

T (P)® T@(Eh) e T (Ko) @ T(Lo)

-~
~
=~ A1
”10)\1 S N

(KO7 LOa f17 gl)
where the objects T (P1) @ Ty(Q1) and T (Ko) & Tx(Lo) as tuples are:

T (P) & Tu(Qu) = (P& G(Q1), F(P) @ Qu, (7 0 ), (5 s ))

bQ, 0 g
Id
T (Ko) & Tp(Lo) = (Ko & G(Lo), F(Ko) @ Lo, ("5 ) ), ("6 tags.) )

and the morphisms are the following:
fr= (5 aon) (67 0)) A= ((50). (id3,))s mrod = ((ation ) (74)))
The kernel of the epimorphism k1 o Ay is the object (K4, Ly, f1,g1) where
Ky =Ker("(a1 G(b1) o g1))

and
L1 = Ker ("(F(a1) o f1 b))

Also from the following exact sequences:

0 K, (M Vl) P& G<Q1>(G(b1)091 )K.O 0
F(a1)of1
0 Ly (ae) F(Pl)@Q1< d )Lo 0

we get the morphism 11 = ((u1,11),(C1,&1)) from (Ki, L1, fa,g2) to Ty (FPo) @ T»(Qo).
Hence we have the exact sequence:

K101

0— (K17L17 f2a92) £>T£7(Pl) S T@(Ql) - (Ko, LOv fl)gl) —0 (364)

Therefore the Yoneda composition of the short exact sequences (3.6.3) and (3.6.4) gives
the following exact sequence:

0 — (Ky, L1, f2, 92) £>T%(P1) © Ta(Q) = To(Po) ® Tz(Qo) - (X,Y, f,9) —0
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where the morphism ai: Ty (P) @ Tx(Q1) — Tu(Fo) @ Tx(Qo) is the following

composition:

1

o = k1oXhiow = ((awon ) (F(aél)ofl )) o (1o, 0), (Co, &)

= (i i ) (" )

From the following commutative diagrams:

F(K,) n Lo G(Lo) & e
(F(po),F(v0)) (€0-&0) (G(¢0),G(&0)) (po,v0)
Id 0 P 0
(M 2 ) 5wl )
F(FR) @ FG(Qo) F(Py) © Qo GF(P) ® G(Qo) ——— Py ® G(Qo)
F(ap) F(ap)o GF(ap)oG(f) a
(rotorg) (6% (CFa D) (aiieg)
f g
F(X) Y G(Y) X

we have fi0C = F(uo), fioéo = F(n) o dq,, 910 o = G(G) o¥p, and grovy = G(&).

Thus the morphism «q is the following:

o a1040 a10vg F(a1)oF (po) F(a1)oF(vg)og
a1 = ((aoec@esn, 66066 ) (T b eer %))

and we see immediately that it s the same morphism with the one obtained in the
Construction 3.6.1. If we repeat the same procedure for the object (K1, Ly, f2, g2) and
continue in this way we finally deduce a projective resolution for (X,Y, f,g) which is
the same with that of Construction 3.6.1.

3.7. Left Derived Functors and Extensions

In this section we describe the left derived functors of T, : & — M(¢, ) and
Ty: B — M(p,1) and we derive also some formulas for Ext homology groups in
M(¢, ). In what follows we assume that <7 and % have enough projective objects.

PROPOSITION 3.7.1. Let M(¢, ) be a Morita category.
(i) The left derived functor of T : of — M(¢p, 1) is the functor

LT o — M(6,0), X = L, T(X) = (0,L,F(X),0,0), ¥n > 1

where L, F(X) is the left derived functor of F.
(i1) The left derived functor of Ty: B — M(¢p, 1) is the functor

L.Ta: B — M(6,1), Y = L T5(Y) = (LLG(Y),0,0,0), ¥n > 1
where L,G(Y') is the left derived functor of G.

(iii) For every n > 1 we have the following natural isomorphism:
Ua(LuTo (=) — LaF(-)

and

UKQ/(LnT,of<_)) =0
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(iv) For every n > 1 we have the following natural isomorphism:
U (LaTa(=)) — L.G(-)

and
Ug(L, Tx(—)) =0
(v) Let X be an object of @/. Then there exists the following exact sequences:

0——=LiTy(X) — Tu(Qu (X)) — Qo) (T (X)) —= 0
and
0 — Lip1 T (X) — T (2 (X)) — Do) (T (2 (X)) —= 0
(vi) Let Y be an object of B. Then there exists the following exact sequences:
0 —=LiTu(Y) —=Tu(2(Y)) — Qs (Ta(Y)) —=0
and
0—=LinTa(Y) —= Ta(Q5" (V) — Qo) (T(Q2(Y)) — 0

(vii) Let X and X' be objects of o/ such that x» = 0. Then we have the following
natural isomorphism:

Exthis (Tor(X), Zo (X)) — Extl (X, X)

(viii) Let Y and Y’ are objects of B such that ¢y = 0. Then we have the following
natural isomorphism:

Extyp (T2 (Y), Z5(Y')) — Exty(Y,Y”)

(ix) Let X and X' be objects of o/ such that )x = 0 = ¢x,. Then the extension
group Extl, (X, X') is a direct summand of Extyy (s ) (Zo(X), 2 (X")) for all
n > 1. Furthermore there is a natural isomorphism:

Ext}v[((ﬁ’w)(ZM(X),Zd(X’)) —= ExtL (X, X G

where G 1s the abelian group of all equivalence classes of short exact sequences
in ExtJlV[((ﬁ’w)(Z,Qf(X), Z.,(X")) which split as short exact sequences in < .

(x) If Y and Y’ are objects of # such that ¢y = 0 = ¢y then the extension group
Ext%(Y,Y") is a direct summand of Exty, ) (Z5(Y ), Z5(Y")) for all n > 1.
Furthermore there is a natural isomorphism:

Extheop (Z2(Y), Zs(Y')) —== Extl,(Y.Y') & G’

where G' is the abelian group consisting of all equivalence classes of short exact
sequences in Extjlw((b,w(ZL@(Y), Z4(Y")) which split as short exact sequences in
AB.

(xi) If the functor F: of — A is exact then

Exthi(g,) (T (X), (XY, f. ') — Extly(X,X)

for all (X",Y', f',¢") € M(¢,v) and n > 0.
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(xii) If the functor G: B — o is exact then

Eth\l/[(qﬁ,w) (T@(Y)> (X/7 Yla f/a g/)) i> EXtZ{ (Y7 Y/>

for all (X',Y', ', q") € M(¢p,¢) and n > 0.
(xiii) If L,F(X) =0,V 1<i<mn, then we have the isomorphism:

Exthip (T (X), (XY, fl. ) —— Extl (X, X)

for every 1 <i<mn and (XY’ f',g) € M(p,v).
(xiv) If LLG(Y) =0, V 1 <i < n, then we have the isomorphism:
EXt%V[(qb,zp) (ng(Y), (X/a Yl? f/a g/)) :—> EXt;Z(K Y/)

for every 1 <i<mn and (X',Y', f',g) € M(p, ).

PROOF. (i) Let X be an object of &/ and suppose that
as a2

ai ao

Py Py P

oA

Ko K Ky

Py X 0

is a projective resolution of X where K, = Kera,, ¥V n > 0. From the short exact
sequence 0 — Ky — Py — X — 0 we obtain the exact sequence:

T o (G0) T oz (ao0)

0——Li T, (X) T (Ko) Ty (R) Ty (X)——0 (3.7.1)

since L1 T/ (FPy) = 0. Then we have
LlTﬁ(X) = Ker TQ{(Z[)) = (O, Ker F(’Lo), 0, O) = (O, LlF(X), O, O)

From the exact sequence (3.7.1) we have Ly T (X) ~ L1 T (Kp) and then we get that
LoT(X) ~ (0,L,F(X),0,0) since

LT (Ko) = Ker T (i1) = (0, Ker F(i1),0,0) = (0, L, F(Ky), 0,0) = (0, Ly F(X),0,0)
Continuing as above we infer that L, T (X) = (0,L,F(X),0,0) for every n > 1. Simi-
larly we show (ii) and then (iii) and (iv) follow immediately from (i) and (ii).

(v) Let 0 — Qu(X) — P — X — 0 be a short exact sequence with P
projective object of &. Then from the following commutative diagram:

0—LiTy(X) T (Q2y(X)) Ty (P)—Ty(X)—=0
0 Do) (T (X)) —= T (P) —= T (X) —0

we obtain the exact sequence:

If we replace X in the above exact sequence with Q2 (X) then we get the second exact se-
quence since we have the isomorphism L1 T (X) 2 Li T (2, (X)) and Q. (2, (X)) =
QF1(X). Dually we show (vi).
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(vii) Let -+ — P, = P, =% Py % X — 0 be the start of a projective
resolution of X in o/. Then we have the following exact sequence in M(¢,)):

T (a1) T o (ao)

T, (P)

T, (F)

0 — Ker Toy(ay) T(X)——=0

where Ker T, (a;) = (Keray, Ker F'(a;), m,n). Let P, — Kera; be the epimorphism
from the projective resolution of X and let Q)2 — Ker F'(a1) be an epimorphism with
Q2 projective object of . Then from the construction 3.6.1 we have the following
projective resolution of T (X):

=Ty (P) ®Ty(Q2) — Tu(P1) — Ty (F) — Ty (X) —0

Since Homy(p,¢) (T#(Q2), Z(X')) = 0 and using the adjoint pair (T, U, ) we obtain
the following commutative diagram:

0— (T (X),Z(X") = (T (R), Z(X")) = (T (P1), Z(X")) — (T (P2), Z(X')) — - -

A A

0 — Hom (X, X’) — Hom(FPy, X') — Hom (P, X') — Hom (P, X') — - -

1R

We infer that Exty . (T (X), Zs (X)) ~ Exty, (X, X). Similarly we get (viii).
(ix) Since U, and Z, are exact functors we have the following homomorphisms
between the Ext-groups:

s Extg ) (Zor(X), Zu (X)) — Ext(X, X)

and
7" Ext (X, X') — Ext”M((W)(Z%(X),ZM(X’))

Since Uy 0Z,, = Id,, it follows that U”, 0o Z", = Idgqn, (x,x7)- Hence the extension group
Exty, (X, X') is a direct summand of Exty s (£ (X), Zy (X)) for all n > 1. Then we
have the following split exact sequence:

Ul
0 —— Ker UL, —— Extly(y g (Zs (X), Zus (X)) 2 Ext), (X, X) —= 0

where Ker U!, consists of all equivalence classes of short exact sequences in the group
Ext?}w((ﬁm(z (X)), Zy(X")) which split as short exact sequences in /. Hence we have
the isomorphism

where G = Ker U,. Dually we obtain (x).

(xi) Let X be an object of o and let --- — P, 2 P, 2% Py 2% X — O be a
projective resolution of X. Since F' is exact it follows that the functor T, (X) is exact
and therefore the following exact sequence

T (a2) T (ar) T o (ao)

Ty (P)

Ty (P)

T (F)

Ty (X)——0
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is a projective resolution of T, (X). From the adjoint pair (T.,U,) we obtain the
following commutative diagram:

0~ (TW(X% (X/>Y,a f,ag/)) e (T%(PO)’ (X/>Y/a f,’g/)) - (T%(Pl)v (X/,Y/,f/,g/)) o

0 —— Hom (X, X') Hom,, (P, X') Hom,, (P, X')

We conclude that Exty ) (T (X), (X', Y7, f',¢)) = Ext}, (X, X') for every n > 0. In
the same way we obtain (xii).

(xiii) Let X be an object of & and let -+ — P, — Py — X — 0 be a
projective resolution of X. Since L;F'(X) = 0, for 1 < i < n, it follows from (i) that
LT (X) =0 for every 1 <14 <n. This implies that the following sequence:

oo —= Ty (Pop1) — Ty (Py) — - — Ty (FP) — Toy(X) —0

is part of a projective resolution of T, (X). Let (X', Y’ f' ¢') be an arbitrary object
of M(¢, ). Then using the adjoint pair (T, U, ) we have the following commutative
diagram :

(Tr!?f(X)7 (XI7 Y/, f/ug/)) one (Tfo(PO)7 (X,7 Y/, flvg/)) - (TJ?{(P1>’ (leylv f/7g/>> -

| | |

Hom,, (X, X') Hom,, (P, X') Hom,, (P, X')

Hence we have the isomorphism Extgv[(d)’w)(Td(X), (XY f.q¢)) ~ Ext',(X,X') for
every 1 <i < n. Similarly using (ii) we get the desired isomorphism of (xiv). O

3.8. The Morita Category of Module Categories

In this section we give the intepretation of the Morita category of module categories
over rings. This will lead us to the class of Morita rings that we are going to discuss
thoroughly in Chapter 4. Moreover we examine when a Morita category is a module
category.

3.8.1. Morita rings. Let A and B be rings and M a B-A-bimodule and N an
A-B-bimodule. Let ¢: M ®4 N — B be a B-B-bimodule homomorphism and let
v: N®g M — A be an A-A-bimodule homomorphism. Then we define the Morita
ring:

A ([ A  4Np
@¥) =\ ;M4 B

where the addition of elements of A,y is componentwise and multiplication is given

by
a n\ (d n'\ _ (ad +(nem') an’ + nb’
m b m V) ma’ + bm/ bb' + p(m @ n')
If the following diagrams are commutaitve:

NogMos N2 Ao, N MosNog MY B, M

S

N®gB—= N M@, A—= M




3.8. THE MORITA CATEGORY OF MODULE CATEGORIES 128
that is
dm@n)m' =mip(n@m') and no(men') =11Y(n®@m)m' (3.8.1)

for every m,m € M and n,n’ € N, then the above multiplication defines an associative
ring structure on the Morita ring Ay ).

We will describe now the category of modules over A4 ). For this reason we intro-
duce a category which we will show that it is equivalent to Mod-A4 ). Let M(¢, 1)) be
the category whose objects are tuples (XY, f,g) where X € Mod-A, Y € Mod-B,
fi:M®s X — Y and g: N ®3 Y — X such that the following diagrams are
commutative:

NeogMaos XL Neyy MoiN®gY M Mo, X
o I | k

~

A®s X X B®pY Y

If (X,Y, f,g)and (X', Y, f', ¢') are objects of M(¢, 1)), then a morphism (X, Y, f, g) —
(XY’ f',¢") in M(¢,v) is a pair of homomorphisms (a,b) where a: X — X' is a
morphism in Mod-A and b: Y — Y’ is a morphism in Mod-B such that the following
diagrams are commutative:

MeoiX Loy NopY -2 X
IIVI@al lb 1N®bl la
Meay X Loy N®gY L= X'

Then it is well known that the categories Mod-A 4,y and M(¢, 1)) are equivalent, see [59,
Theorem 1.5]. For completeness we prove this equivalence giving some details. The
relationship between Mod-A 4.y and M(¢, 1)) is given via the functor F': M(¢, ) —

Mod-A 4, which is defined as follows. If (X,Y, f,g9) € M(¢,v) then F(X,Y, f,g) =
X @Y as abelian groups, and the A4 y)-module structure is given by

(“ ”) (2,9) = (az + g(n @ y). by + F(m ® ) ()

m b

for alla € Ajb € Bone€ Nym € M,x € X and y € Y. One can verify easily that
F(X,)Y, f,g) is a Agyy-module. If (a,b): (X,Y, f,g9) — (X',Y’, f',¢') is a morphism
in M(¢,) then F(a,b) =a®b: XY — X' Y.

PROPOSITION 3.8.1. [59] [105] Let Ay = (B]‘\L}[A A%P ) be a Morita ring. Then
the categories Mod-A 4.4y and M(¢, ) are equivalent.

PrOOF. From the description of the functor F' on morphisms it follows that F' is
faithful. Let C be a Ay y)-module. Then C' ~ €,C @ e;C as abelian groups where
er = (§9) and e; = (§9) are idempotents elements of A(gy). Observe that e;C is an
A-module, e;C' is a B-module and there exists a B-morphsim f: M ®4 e;C — esC
and an A-morphism ¢g: N ®p esC' — e;C. Then from the relations (3.8.1) we obtain
that the tuple (e;C, exC, f, g) is an object of M(¢, 1) and F(e1C,esC, f,g) ~ C. Hence
F is surjective on objects. Let (X,Y f,g) and (X', Y”, f’, ¢') two objects of M(¢, 1)) and
let a: F(X,Y, f,g) — F(X',Y', f',¢') be a morphism in Mod-A ). Then we have a
map a: X @Y — X' @Y’ and suppose that a(z,y) = (2/,y) for x € X and y € Y.
Since a(z,0) = (2/,0) and «a(o,y) = (0,y') we obtain an A-morphism f: X — X',
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B(z) = 2’ and a B-morphism vy: Y — Y, 4(y) = y'. For m € M we write m’ = (9 9)
and for n € N we write n’ = (). Then we have

(0,7(f(m @ x))) = a(0, f(m & x)) = a(m/(z,0)) = m'a(z,0)
=m/(B(z),0) = (0, f'(m @ B(x)))

and

(B(g(n®y)),0) = a(g(n®y),0) = a(n'(0,y)) = n'a(0,y) = n'(0,7(y)) = (¢'(n@7y(y)),0)

This implies that the following diagrams are commutative:

Mo X Loy NopY -2 =X
1M®Bl L’Y 1N®7l lﬁ
Moy X Loy NopY Lo X

Thus the map (8,7v): (X,Y, f,9) — (X", Y’ f',¢') is a morphism in M(¢,)) and
F(B,7) = a. Hence the functor F' is full and we infer that F' is an equivalence of
categories. ]

In Chapter 4 we are going to work with the above description of Mod-A 4 4.

3.8.2. Morita Categories of Module Categories. Let

A  4Np
A(Wb) = M4 B

be a Morita ring as in the previous section. Consider the functors F' = M®4—: Mod-A —
Mod-B and G = N ®g —: Mod-B — Mod-A. Then the A-A-bimodule homomor-
phism ¢: N ®g M — A defines a natural transformation V: GF — Idpmed-4, Where
Uy = ¢ ® 1x, and the B-B-bimodule homomorphism ¢: M ®4 N — B defines a
natural transformation ®: F'G — Idyed-B, where @y = ¢ ® 1y. Then

M(¢a ,lvb) = (MOd_Av MOd_B7 M ®A e N ®B ) q)’ \Ij)
is a Morita category of Mod-A and Mod-B by the natural transformations ® and W.

PROPOSITION 3.8.2. Let M(¢p, ) be a Morita category of the abelian categories <f
and A by the natural transformations ¢: FG — Idg andy: GF — 1d,. Let X € o7,
Y e#B, A=Endy(X), B=Endg(Y) and A = Endy(g,4) (T (X) D T5(Y)). Then A is
a Morita ring, that is there exists a A-B-bimodule N and a B-A-bimodule M, a B-B-
bimodule morphism ¢: M @4 N — B, a A-A-bimodule morphism v¥: N Qg M — A,

and an isomorphism of rings
A ANB
v (o )

Moreover, if F = M ®4—: Mod-A — Mod-B, G = N®g—: Mod-B — Mod-A, then
defining ¥y : GF(X) — X by ¢ = ® Ly and ¢h: FG(Y) — Y by ¢ = ® 1y
we get an equivalence of categories:

A ANp

Mod-A ~ Mod- (BMA B

) = M(¢/7 ¢/) = (MOd_A7 MOd_Ba M ®A ] N ®B ] ¢/7 ¢/)
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PROOF. First it is easy to verify that any element of A = Endyy(,4) (T (X) BT 2(Y))

is of the form:
| (G(m)a 0 ix G?b)) | <F7(n Y ¢Y> |

where a € A, b € B, n € Homy(X,G(Y)) and m € Homg(Y, F(X)). Using the
adjoint pairs (T.,Uy) and (T4, Ug), and the natural isomorphisms U, T, = Id,, and
Uz T4 = Idg, we have the following isomorphism of abelian groups:
A = Endypy)(Ta(X) @ Tx(Y))
~  Homa(g,) (T (X), T (X)) @ Homy(,0) (Tor (X), T5(Y))
Homa(g,) (T (Y), T (X)) ® Homog,) (T (Y), T(Y))

Hom (X, Uy T (X)) & Homy (X, Uy Tz (Y))
Hom4(Y,UxT (X)) ® Homg(Y,UxT4(Y))
A @ Hom, (X, G(Y)) ® Homyg(Y, F(X)) ® B

PES>)

>

12

Set
N :=Homy,(X,G(Y)) and M :=Homgyg(Y,F(X))

and define actions:
(a,n) = aon, (n,b) »noG(b) and (b,m)—bom, (m,a)— mo F(a)

for every a € A, b€ B,n € N, m € M. Then N becomes an A-B-bimodule and M
becomes a B-A-bimodule. We define the following morphisms:

¢: M R4 N — B, p(m®n)=mo F(n)o oy

Y NgM — A, Y(n®m) =noG(m)ox

Then it is easy to check that ¢ is a B-B-bimodule morphism and v is an A-A-bimodule
morphism. Let (a,n,m,b), (a’,n',m';t’) be two elements of the abelian group A® N @
M & B. We define multiplication by

(a,m,m,b)-(a’,n',m',b") = (ad' -+ (n@m’), an’+noG ('), mo F(a")+bm’, p(mxn’)+0bb')
Then it follows that A® N & M & B is a ring, and moreover it is an associative ring if
Y(n@m)n' =np(men’) and G(m@n)m' =mip(n@m')

for every n,n’ € N and m,m’ € M. We define the following map:
a: ABNO®M @B — A = Endyg,) (T (X) ®Tx(Y))

(a,m,m, ) = | <G<m>ao x G?b)) ’ (F;S% | Fnz ¢Y) |

Then « is an isomorphism of rings and if we consider the Morita ring ( @ ]]\37) then the
map w: ({4 %) — Endyee) (To(X) @ Tx(Y)) given by w((%%)) = (a,n,m,b) is
an isomorphism of rings and we are done. Finally the last assertion follows from the
equivalence of categories between Mod-A and M(¢', 7). O

The following result describes explicitly the coproduct in M(¢, ).

LEMMA 3.8.3. Let M(¢,%) be a Morita category. If o/ and % are cocomplete and
the functors F', G preserve coproducts then M(¢p,v) is cocomplete.
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PROOF. Suppose that (X;,Y;, fi, gi)iesr is a family of objects in M(¢, ). We will
show that the coproduct of this family of objects is the tuple @®;c;(X;,Y;, fi,9:) =
(BX;, BY:, Bfi, ®gi) € M(p,1), where @;c;X; is the coproduct of (X;);e; in &7 with
injections k;: X; — @®ierX; and @Y is the coproduct of (Y;);e; in Z with injections
Ait Yy — @erYi. Since F, G preserve coproducts and each (X;,Y;, fi,9:) € M(¢,v)
we deduce that the object (BX;, ®Y;, ®f;, Bg;) lies in M(¢, ). Also since the following
diagrams are commutative:

Dfi Dgi
Dier F(X;) — Dicr Vs ®ie1G(Y5) - DierX;

we infer that (k;, A;): (X, Y, fi, 95) — (©X;, ®Y;, Bf;, Dg;) is a morphism in M(¢, ).
Let (a;, b;): (X3, Y, fi,9:) — (X, Y, f,g) be a morphism in M(¢, ). Then we have the
following commutative diagrams:

Ki )\i
Xi —— Die1 X; Yi —= @icrYi
n 6
X Y

and therefore the following diagram is commutative:

Kiy\q
(X3, Y, fin gi) ) (@X;, @Y, &f;, ®gi)

a;,b;
( )L %

(X,Y, f,9)

Note that (n,#) is the unique morphism making the above diagram commutative. It
remains to show that (7, 6) is a morphism in M(¢, ), i.e. that the following diagrams
are commutative:

Dfi Dgi

Dier F(X;) — ®Y; BierG (Vi) — @ier X,
F(n)j LG G(@L l”
FX)—1—v GY)—L X

Since k; on = a; we have F(k;) o F(n)o f = F(a;) o f and also since (k;, \;) and (a;, b;)
are morphisms in M(¢,v) we have F(r;) o ®f;00 = fiol 08 = fiob; = F(a;)o f.
Then from the universal property of coproducts:

F(k;
F(X;) (—)> @ier F(X;)

F(ai)Ofl %f

Y
@ fi00

it follows that F'(n) o f = @ f; o 0. Similarly we show that G(0) o g = &g, on. 0

Before we proceed we recall the following characterization for an abelian category
to be a module category.
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THEOREM 3.8.4. [21][51] [9/] [106] A cocomplete abelian category <7 is equivalent
with a module category if and only if <7 contains a compact (i.e. Hom (P, —) preserves
coproducts) projective generator P. In this case <7 is equivalent with Mod-End, (P).

We close this section with the next result where we characterize when a Morita
category is a module category.

PROPOSITION 3.8.5. Let M(¢p, ) be a Morita category of the abelian categories of
and B. Suppose that of and B have coproducts and enough projectives, and the functors
F, G preserves coproducts. Then the following are equivalent:

(i) M(¢,v) is a module category.
(i) & and % are module categories.

Moreover if one of the above equivalent statements hold and o/ = Mod-A, %8 = Mod-B,
then M(¢, ) ~ Mod-A (4,4, where Ay is the Morita ring of A and B.

PRrOOF. (ii) = (i) If & and # are module categories then o7, resp. 4, admits a
compact projective generator P, resp. (). From Proposition 3.5.1 it follows that the
object T (P) & T4(Q) is projective in M(¢p, ). Let (X;,Y:, fi, gi)ier be a family of
objects in M(¢,1). Note that from Lemma 3.8.3 the functors U, and Uy preserve
coproducts. Then using the adjoint pairs (T, U, ) and (T4, Ug) we have:

(Ter(P) © T(Q), ®ier (X3, Vi, fir 93) = Homay (P Uy (@ier (X5, Vi, i, 95)))
Homg (Q, Us(®ier(Xi, Y, fi, 91)))
( )

¥

~ Hom (P, ®ic/Uy (X, Y5, fiy 9i)

® Homy (Q, ®ic/Ux(Xi,Yi, fi,9i))

~ Hom, (P, ®X;) ® Homy(Q, &Y;)

= (@ Homy (P, X;)) ® (& Hom(Q,Y;))
= (@ Homy(pp) (T (P), (X;,Yi, fiy 9i))
® (@ Homyep,0)(T2(Q), (X5, Y5, fi,94)))

= @ier Homypu (T (P) © T2(Q), (X5, Y5, fi, gi))

Hence T, (P) ® T4(Q) is a compact object of M(¢, ). Also T (P)® T4(Q) is a gen-
erator since .« and 4 have enough projectives and so there exists a non-zero morphism
Ty (P)®T4(Q) — (X,Y, f,g) forevery (X,Y, f,g) € M(¢,v), see the proof of Propo-
sition 3.5.1. Finally, since & and & are cocomplete and F', G preserves coproducts then
from Lemma 3.8.3 it follows that M(¢, ) is cocomplete. We infer that M(¢, 1)) is the
module category Mod-Endy(s.v) (T (P) ® T2(Q)).

(i) = (ii) Suppose that M(¢, ) is a module category. Since the categories &7 and
A are coreflective (see section 3.4 for the definition) it follows from [121, Chapter X]
that they are cocomplete. Also from Proposition 3.5.1 we assume that T, (P) ® T»(Q)
is a projective compact generator of M(¢, ). Then it is easy to see that P, resp. @, is
a projective generator for o, resp. A. Let (X;);er be a family of objects in <. Since
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the object T/ (P) is compact in M(¢, 1) and using the adjoint pair (T, U, ) we have:

Hom,, (R Dicr Xi) =~

~

~

Hom (P, Uy (®X;, ®F X;,Idgrx,, ®¥y,))
Homy(pp) (T (P), (8X:, ®F (X;), ldgpx,), Bx,))
Homygp) (Ter (P), &(Xi, F(X:), 1dp(x,), ¥x,))

Dier Homy(g,) (TM(P), (X, F(X3), IdF(Xi)wai))
®ier Homy (P, Uy ( Xy, F(X5), 1dp(x,), ¥x,))

@ier Hom, (P, X;)

Thus the object P is compact in 7. Similarly using the adjoint pair (T4, U%) and that
the object T»(Q) is compact it follows that @) is a compact object of 2. Hence 7 is
the module category Mod-End P and & is the module category Mod-End Q. 0



CHAPTER 4

Artin Algebras Arising from Morita Contexts

In this Chapter we study Morita rings

Ay = (paes “5°)

in the context of Artin algebras, concentrating mainly at representation-theoretic and
homological aspects. First we investigate covariantly finite, contravariantly finite, and
functorially finite subcategories of the module category of a Morita ring when the bi-
module homomorphisms ¢ and v are zero. Further, under some assumpions, we give
bounds for the global dimension of a Morita ring A(p), as an Artin algebra, in terms
of the global dimensions of A and B in the case when both ¢ and ¢ are zero. We
illustrate our bounds with some examples. Finally we investigate when a Morita ring
is a Gorenstein Artin algebra. In particular we show under a condition that A ) is
Gorenstein and as an application we determine the Gorenstein-projective modules over
the Morita ring A¢gy) in case A = N = M = B and A an Artin algebra. The results
of this Chapter are included in the paper entitled: On Artin algebras arising from Morita
Contexts [60], which is joint work with Edward L. Green.

4.1. Preliminaries on Morita Rings

Let A and B be rings, 4Ng an A-B-bimodule, gM, a B-A-bimodule, and ¢: M ® 4
N — B a B-B-bimodule homomorphism, and ¥: N g M — A an A-A-bimodule
homomorphism. Recall that from the Morita context M = (A, N, M, B, ¢, 1) we defined
before the Morita ring:

A N
A(Gﬁﬂﬁ) (M) = (BMA ABB)

where the addition of elements of A,y is componentwise and multiplication is given

by
a n\ (d n'\ _ (ad +(nem') an’ + nb’
m b m V) ma’ + bm/ bb' + p(m @ n')
We assume that ¢(m @ n)m’ = my(n @ m’) and no(m @ n') = P(n @ m)n' for all

m,m’ € M and n,n’ € N. This condition ensures that A ) (M) is an associative ring.
From now on we will write for simplicity A4 instead of Ay ) (M).

REMARK 4.1.1. Morita rings have appeared in the literature under various names,
for instance: the ring of the Morita context [92] and generalized matrix rings [59], [105].

Since we are interested in Artin algebras, the following easy result characterizes
when a Morita ring is an Artin algebra. Recall that an Artin algebra A is an R-algebra
which is finitely generated as an R-module, where R is a commutative artinian ring [18].

PROPOSITION 4.1.2. Let Aigy) = (B]@A AgB) be a Morita ring. Then A ) 15 an
Artin algebra if and only if there is a commutative Artin ring R such that A and B are

134



4.1. PRELIMINARIES ON MORITA RINGS 135

Artin R-algebras and M and N are finitely generated over R which acts centrally on M
and N.

PROOF. Suppose that there is a commutative Artin ring R such that A and B are
Artin R-algebras and M and N are finitely generated over R which acts centrally on
M and N. Then there is a ring morphism f,: R — A whose image is in the center of
A and there is a ring morphism fp: R — B whose image is in the center of B. We
define the ring morphism

JiR— ANy, 7= f(r) = (fAO(T) fBO(T))

We claim that Im f € Z(A,y)), where Z(A(g.y)) is the center of A(gyy. Indeed since
Im fa € Z(A), Im fg C Z(B) and R acts centrally on M and N we have:

(7 5) () = (i o
= (o )

G )

and so our claim holds. Since A, B, M, N are finitely generated over R it follows that
A4 is also finitely generated over R. We infer that A4 ) is an Artin algebra.

Suppose conversely that Ay ) is an Artin algebra, i.e. there is a commutative Artin
ring R and a ring homomorphism f: R — Ay ) with Im f C Z(Ag)), and Ay is
a finitely generated R-module. From the following compositions:

R— A(¢7¢) — A and R — A(@d’) — B
it follows that A and B are finitely generated R-modules. Since f(r) € Z(A.yp), i-e.

o (o) = (0 ) e (%

we have Im f C Z(A) and Im f C Z(B). Hence A and B are Artin R-algebras. It follows
also from the relation (x) that the ring R acts centrally on M and N. O

The description of the modules over a Morita ring Ay is well known [59], and
was defined before in section 3.8. But for completeness and due to our needs we include
it also here. Let M(A) be the category whose objects are tuples (X,Y) f,g) where
X € Mod-A, Y € Mod-B, f € Homg(M ®4 X,Y) and g € Hom4 (N ®p Y, X) such that
the following diagrams are commutative:

NogMoiX 2L Nopy MeiNopY X% Mo, X
o] I | k
ARs X —= X B®gY —= Y

We denote by ¥y and @y the following compositions:

Vx Sy

—Uelly |, o T —eldy L m—

NRpM® X A®as X X M®isNpY B®pY Y
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Let (X,Y, f,g) and (X", Y’ ', ¢') be objects of M(A). Then a morphism (X,Y, f, g) —
(XY’ f',¢") in M(A) is a pair of homomorphisms (a,b) where a: X — X' is an A-
morphism and b: Y — Y’ is a B-morphism such that the following diagrams are
commutative:

Mo X -1 sy NepY =X
M®al jb N®bl la
Moy X Loy NopY -Lv X

Dually since the functors M®@4—: Mod-A —> Mod—B and N®p—: Mod-B — Mod-A
have right adjoints we can define the category M(A). We denote by

7 : Homp(M ®4 X,Y) == Hom (X, Homp(M,Y)) (4.1.1)

and
p: Homy(N ®p Y, X) == Homp(Y,Hom4(N, X)) (4.1.2)

the adjoint isomorphims and let ¢: M ®4 Homp(M,—) — Idmod.5, resp. €: N ®p
HomA(N, —) — IdMod-Aa and ¢: IdMod-A — HomB(M, M®A—), resp. o' IdMod-B —
Hom 4 (N, N®p—), be the counit and the unit of the adjoint pair (M ® 4—, Hom (M, —)),
resp. (N ®p —,Homy(N,—)). The objects of M are tuples (X,Y,k,\) where X €
Mod-A, Y € Mod-B, r: X — Homp(M,Y) and A\: Y — Hom (N, X) such that the
following diagrams are commutative:

X = Hom (A4, X) Y = Homp(B,Y)

: | | |
(M,\) (N,k)

Homp(M,Y) "+ Hom (M, Hom (N, X)) HomA(N, X) —"> Hom (N, Homp(M,Y))

Let (X,Y,k,A) and (X', Y’ k', X) be objects in M(A). Then a morphism (X, Y, k,\) —
(XY k' N) in M(A) is a pair of homomorphisms (¢, d) where ¢: X — X' is an A-
morphism and d: Y — Y’ is a B-morphism such that the following diagrams are
commutative:

X —%> Homp(M,Y) Y —2+ Hom (N, X)
cl j Homp (M,d) dl l Hom 4 (N,c)
X’LHomB(M,Y/) Y’—’\/>HomA(N,X’)

We define the functor F: M(A) — M(A) by F(X,Y, f,g9) = (X,Y,n(f), p(g)) on ob-
jects and F(a,b) = (a,b) on morphisms. Then it is straightforward that F: M(A) —
M(A) is an isomorphism of categories with inverse G(X,Y, k,\) = (X, Y, 7 (k), p~1(N))
on objects and G(a,b) = (a,b) on morphisms. The relationship between Mod-A, 4y and
M(A) is given via the functor F': M(A) — Mod-A 44 which is defined as follows.
If (X,Y,f,g)is an oblect of M(A), then we define F'(X,Y, f,g) = X @Y as abelian
groups, and the A4 4)-module structure is given by

m b

(a ”) (#,y) = (az + g(n @ y), by + f(m & ))
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e Abe Bne Nmée M,x € X and y € Y. One can verify easily that

the object F'(X,Y, f, g) is a Ag,g)-module. If (a,b): (X,Y, f,9) — (X" Y', f',¢) is a
morphism in M then F'(a,b) =a®b: XY — X' @Y.

PROPOSITION 4.1.3. Let Ay ) = (th AgB) be a Morita ring. Then the categories
Mod-A g4y, M(A) and M(A) are equivalent.

PROOF. See [59, Theorem 1.5] and Propostion 3.8.1. O

From now on we will identify the modules over A4 ) with the objects of M(A). We
define the following functors:

(i)

(iii)

(vi)

(vii)

The functor T4: Mod-A — Mod-A (4 ) is defined by
TAa(X)=(X,M ®4 X, ldygx, Vx)

on the objects X € Mod-A and given an A-morphism a: X — X’ then
Ta(a) = (a, M ® a) is a morphism in Mod-A 4 ).
The functor Us: Mod-A(44) — Mod-A is defined on the objects (XY, f, g)
of MOd—A((ﬁw) by

UA<X7}/7f7g> =X
and given a morphism (a,b): (X,Y, f,g9) — (X", Y, f',¢') in Mod-A 4 4) then
Ua(a,b) = a.
The functor Tg: Mod-B — Mod-A4 ) is defined by

Tp(Y)=(N®pY,Y, oy, Idygy)

on the objects Y € Mod-B and given a B-morphism b: Y — Y’ then Tg(b) =
(N ®b,b) is a morphism in Mod-A (g4 .
The functor Ug: Mod-A 4 ) — Mod-B is defined on the objects (X,Y, f, g)
of MOd—A(¢7w) by

UB(X>Y> fag) =Y

and given a morphism (a,b): (X,Y, f,g9) — (X", Y’, f',¢’) in Mod-A4 ) then
UB<CL, b) =b.
The functor Hy: Mod-A — Mod-A, 4 is defined by

Ha(X) = (X, Homa(N, X), 80 © Homa(N, W), éy)

on the objects X € Mod-A and given an A-morphism a: X — X' then
Ha(a) = (a,Hom4 (N, a)) is a morphism in Mod-A g .
The functor Hg: Mod-B — Mod-A 4 is defined by

Hp(Y) = (Homgp(M,Y),Y, ey, 0ngy © Homp(M, @y ))

on the objects Y € Mod-B and given a B-morphism b: Y — Y” then Hp(b) =
(Homp(AM,b),b) is a morphism in Mod-A g4 .

Suppose that ¢ = 0 = 3. Then we define the functor Z,: Mod-A —
Mod-Ao,0) by Za(X) = (X,0,0,0) on the objects X € Mod-A and if a: X —
X' is an A-morphism then Z,(a) = (a,0). Dually we define the functor
Zp: Mod-B — Mod-A( ).

The following result collects and recalls some useful properties about these functors
and the module category over Morita rings.

PROPOSITION 4.1.4. (i) The functors T4, Tp and Ha,Hp are fully faithful.
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(ii) The pairs (Ta,U4), (Tp,Up) and (Ua,Ha), (Ug, Hp) are adjoint pairs of func-
tors.

(iii) The functors U and Up are exact.

(iv) We have KerUy = Mod-A/Ae;A ~ Mod-B/Im ¢, KerUg = Mod-A/AeyA
Mod-A/Im1, Mod-e;Ae; = Mod-A and Mod-esAes = Mod-B, where e,
(89) and es = (§9) are idempotent elements of Ay

(v) The following diagrams:

IR

Mod-B/ Im ¢ ——"——~ Mod-A 4.,

Mod-A/ Im 1) —™— Mod-A 4 ) — 2 Mod-B
\_/ \/

Hp

are recollements of abelian categories. If ¢ = 0 = 1 then we have the following
recollements:

Ta
//ZBx /ﬁ
Mod-B Mod-A g ) Mod-A
\_/ \/

Ha

Tr
//ZA\ /UB\
MOd-A MOd—A(O’O) Mod-B
\_/

Hp
ProoOF. This result is a special case of Proposition 3.3.1 and Corollary 3.3.2. O

The next result describes the Morita rings A ) with ¢ = 0 =1). Recall from [18],
[49] that if R is a ring and g Mg a R-bimodule then the trivial extension R x M is the
ring with elements pairs (r,m) with » € R and m € M, addition is componentwise and
multiplication is given by (r,m)(r’,m’) = (r7',rm’ + mr'). For example let ( 3y, &)
be a triangular matrix ring. Set R = A x B and consider M as a R-bimodule by
(a,b)m = bm and m(a,b) = ma for all @ € A, b € B and m € M. Then the rings
(i1, &) and (A x B) x M are isomorphic. For more details on trivial extension of
rings we refer to Fossum-Griffith-Reiten [49].

PROPOSITION 4.1.5.  [49] Let Aoy = (B]ﬁ[A ARP) be a Morita ring where the
bimodule morphisms ¢ and 1 are zero. Then we have an isomorphism of rings:

Mooy —= (Ax B)x M&® N

where (A x B) x M & N is the trivial extension ring of A x B by the (A x B)-(A x B)-
bimodule M & N.
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PROOF. First we have to show that the abelian group M @ N is an (A x B)-(A x B)-
bimodule. We define the morphisms:

(AXxB)x M®N — M@ N, [(a,b),(m,n)] — (bm,an)
and
M&N x (Ax B) — M & N, [(m,n),(a,b)] — (ma,nb)
Then it is easy to establish that M @ N is a left A x B-module and a right A x B-module.
Also since 4Ny and g M4 are bimodules it follows that
(@, 0)[(m,n)(d’, V)] = (a,b)(ma’,nb)
= [b(ma’), a(nb)]
(bm)a’), (an)b’
bm,an)(a’,b')
(a,b)(m,n)](a’,¥)
and this shows that M & N is an (A x B)-(A x B)-bimodule. Hence we can define the
trivial extension (A x B) x M & N with elements [(a, b), (m,n)] where (a,b) € A x B,
(m,n) € M @ N, the addition is componentwise and the multiplication is given by
[(a1,b1), (m1,n1)] - [(a2, b2), (M2, n2)] [(a1,01) - (az,b2), (a1, b1) - (Mg, na)
+ (ma,n1) - (ag, bo)]
[
[

[b
= |
= (

[

(ayag,b1bs), (byma, aing) + (myaz, nibs)]

(ayag,b1bs), (byma + myag, aing + nybs)]

Then it is straightforward that the morphism A — (A x B) x M @ N, (ﬁ,‘L Z) —
[(a,b), (m,n)] is an isomorphism of rings. O

4.1.1. Examples of Morita Rings. We continue by giving a variety of examples
of Morita rings which will be used throughout this chapter.
The first example shows that any ring with an idempotent element is a Morita ring.

EXAMPLE 4.1.6. Let R be a ring with an idempotent element e. Then from the

Pierce decomposition of R with respect to the idempotents e, f = 1z — e it follows that
R is the Morita ring with A = eRe, B = (1—¢e)R(1—e), N =eR(1—e), M = (1—e€)Re
and the bimodule homomorphisms ¢, ¢ are induced by the multiplication in R.

The following example is well known from Morita equivalence.

ExXAMPLE 4.1.7. Let A be aring and P be an A-module. Then we have the following

Morita ring:
(A Homyu(P, A)
Ao = (P Enda(P) )

with bimodule homomorphisms ¢: P ® 4 Hom4(P, A) — Enda(P), p® f +— ¢(p ®
@) =pf(p) and ¥: Homs(P, A) Qgna,p) P — A, f@p = (f ®@p) = f(p). Hence
any pair (A, Pa), where A is a ring and P, is a right A-module induces a Morita ring.
Also it is well known that if the A-module P is progenerator, then the rings A and
End4(P) are Morita equivalent.

The next example shows that Morita rings are special cases of semi-trivial extensions
introduced by Palmer and Roos, see [105].
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ExXAMPLE 4.1.8. Let R be a ring, M a R-R-bimodule and §: M ®gp M — M
a R-R-bimodule homomorphism. Then on the Cartesian product R x M we define
multiplication by (r,m)- (r',m') = (rr’ +6(m, m’), rm’ +mr’) such that (m@m')ym"” =
ml(m’ @ m"), for every r,r’ € R and m,m’;m” € M. Then this data defines a ring
structure with unit element on the Cartesian product set R x M. This ring is denoted by
Ry M and is called the semi-trivial extension of R by M and 6. We refer to Palmer [105]
for more details.

Let Ay = (BQA AgB) be a Morita ring. Set R = A x B and consider the R-
R-bimodule M = N x M. Then the map 0: M QR M — R is a R-R-bimodule
homomorphism, where M ® R M = N® M x N®gM, and we have the following ring
isomorphism: R xg M ~ Ay ).

The following is the motivated example of this work.

EXAMPLE 4.1.9. Let A be an Artin algebra and U,V two finitely generated A-
modules. Consider the endomorphism Artin algebra Ends(U @ V). Then we have the
Artin algebra:

A(qﬁ,w) = EndA(U@ V) ~ < EndA(U> HomA(U, V))

Homa(V,U)  Endy(V)

where the bimodule homomorphisms ¢: Homy(V,U) @ Homy (U, V) — End, (V') and
1: Homy (U, V) @ Homy(V,U) — Enda(U) are given by composition.

EXAMPLE 4.1.10. Let A be an Artin algebra and let {e,--- ,€,} be a full set of
primitive orthogonal idempotents. Suppose n > 2 and 1 <r <n. Sete; =Y ._, ¢ and

es =y .1 6 Then
A o €1A€1 €1A€2
(@) = €2A€1 €2A€2
is a Morita ring having the structure of an Artin algebra and the bimodule homomor-

phisms ¢: esAe; ®e,ae, €169 —> ea\es and P ey Aeg R, pe, €2Ae; —> e1Aeq are given
by multiplication.

EXAMPLE 4.1.11. Let A be a ring and let I and J be ideals in A. Then we have the

Morita ring
A J
Moy = ( I A)

where ¢: J ®4 I — A and ¢: I ®4 J —> A are multiplication maps. Interesting
special cases are when [ = J, A is an Artin algebra and I and J are contained in the

Jacobson radical of A, or [ = J = A.

Later in this Chapter we will study the special case of Morita rings with ¢ = ¢ = 0.
More generally, the case where ¢ = 1 is of interest. Towards this end, we have the
following result and its corollary.

LEMMA 4.1.12. Suppose that

A N
A((MJ (A A)

is a Morita ring and that a: N — A4 N and B: N — N ®4 A are given by
an)=1®&n and f(n) =n® 1. Then poa =1 o f5.
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PROOF. We note that ¢(a ® n)a’ = ap(n ® ') for all a,a’ € A and n € N. Taking
a = a = 1a, we see that ¢(a(n)) = ¢(1 @ n) = Y(n® 1) = ¥(F(n)) and the result
follows. 0J

As a consequence, we have the following result.

COROLLARY 4.1.13. Suppose that

A A
A(dmﬁ) = (A A)

ProoOF. Noting that A ®4 A is generated by 1 ® 1, we need only to show that
»(1®1) = ¢(1 ®1). But, keeping the notation of the Lemma 4.1.12, with N = A,
p(1®1)=¢(a(l)) =¢(B(1)) =¥(1® 1) and we are done. O

15 a Morita ring. Then ¢ = 1.

4.2. Projective, Injective and Simple Modules

In this section we describe the projective, injective and simple modules over A4 )
as an Artin algebra and we examine also when A4 is selfinjective. Throughout the
section we work in the setting of finitely generated modules over the Artin algebra A4 ).

4.2.1. Projective and Injective A4 )-modules. We start with the next result
which gives a description of the indecomposable projective A4 y)-modules.

PROPOSITION 4.2.1. Let Ay ) be a Morita ring regarded as an Artin algebra. Then
the indecomposable projective Ay 4)-modules are objects of the form:

Ta(P)=(P,M ®a P,Idyg,pr, Yp)

TB(Q) = (N QB Q: Q7 (I)Qu IdN®BQ)

where P is an indecomposable projective A-module and Q) is an indecomposable projective
B-module.

PrROOF. If P = ({1 3) and Q@ = (3 %) then Ay =~ P ® Q as left Ay y)-modules.
From Proposition 4.1.3 it follows that the object of M(A) which corresponds to the
A p)-module P is (A, M ®4 A,Idyga, ¥a). Also the tuple (N ® B, B, ®p,Idygp) is
the object of M(A) corresponding to Q). Let A = P, @ --- ® P, be the decomposition
of A into a direct sum of indecomposable projective A-modules. Then we have the
following decomposition of (A, M ®4 A, Idyea, Va):

(A,M@A A,IdM®A,\I/A) ~ TA(Pl) b---Ph TA(Pn)

where TA(P;) = (P, M ®4 P;,1dyg,p, Vp,), and for every 1 < i < n we have the iso-
morphism EndAw’w)(Pi, M ®4 P, 1dye ,p, Up,) >~ Enda(P;) because T4 is fully faithful.
Since the algebra End 4 (F;) is local it follows that (P, M ®4 P;,Idye . p,, Up,) is an inde-
composable projective A4 )-module, for all 1 <4 < n. Similarly if B=Q;®---® Qn,
is the decomposition of B into the direct sum of indecomposable projective B-modules,
then we infer that (N ®p Q;, @s, Pg,, ldng,q,) is an indecomposable projective A -
module for all 1 <7 < m. In this way we get all indecomposable projective A4 y)-
modules up to isomorphism. [
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Our aim now is to describe the injective A4 4y-modules. In order to do this we

describe how the duality acts on the objects of M(A) using the equivalence of categories:
M(A) — M(A) —> mod-Asy). As usual we denote by D the duality functor of an
Artin algebra, see [18, Section 3, Chapter 2] for more informations.

First we identify the opposite algebra A‘(’; 4 With the Morita ring

o Ber Bop N gop a n\%" b n

P~

A(dmﬁ)_ (AOPMBDP A°P >’ (m b) i (m a°")

Let (X,Y, f,g) € M(A) and recall from (4.1.1) and (4.1.2) the adjoint isomorphisms

m and p. Then the object (X,Y,w(f),p(g)) lies in M(A) and applying the dual-
ity we obtain the morphisms D(7(f)) € Hom e (DHompg(M,Y),D X) and D(p(g)) €
Hompe (D Hom4(N, X),DY). Let 0 — Y — Iy — I be an injective coresolution
of Y. Since the functors D Homg(M, —), M ®pe» D(—): mod-B — mod-A°P are right
exact we have the following exact commutative diagram:

DHompg(M, I;) — DHompg (M, Ij) —= DHomg(M,Y) —=0

| | !

M®Bop DIl M@Bop DIO M@Bop DY—)O

Hence the morphism ¢: M ® e DY — D Hom s(M,Y) is an A°P-isomorphism which is
functorial in Y. Similarly we obtain a B°P-isomorphism 7: N® 4D X — D Hom 4(N, X)
which is functorial in X. Then we have the object (DY,D X,00D(m(f)), 7oD(p(g))) €
M(A°P) where the morphisms are the following compositions:

M @pw DY —Z% = DHomp(M,Y) 20V

~

DX

N @40 DX — 2 DHom (N, X) 2220 py

If (a,b): (X,Y, f,9) — (X', Y, f',¢) is a morphism in M(A) then it is easy to check
that

(D(b),D(a)): (DY',D X", 0"eD(n(f")),7'oD(p(g"))) — (DY,D X, 0oD(x(f)),7oD(p(g)))

is a morphism in M(A°P) and in this way we obtain a contravariant functor D: M(A) —
M(A®P). Then from the following commutative diagram:

M(A) ; mOd-A(¢’w)

DL LD
M(A%) —= mod-A%

we infer that the functor D: M(A) — M(A) is a duality, where D: mod-A ) —
mod—A‘(’Zﬂ ) 18 the usual duality of Artin algebras. We are now ready to describe the
injective Ay y)-modules.
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PROPOSITION 4.2.2. Let A4y be a Morita ring regarded as an Artin algebra. Then
the indecomposable injective Ay yy-modules are of the form:

HA([> = ([7 HomA(N7 [)763\4@)[ @) HomA(N, \If[),EII)

HB<J) = (HomB(M, J), J, 6J,(5N®J o HomB(M,q)J))

where I is an indecomposable injective A-module and J is an indecomposable injective
B-module.

PROOF. This follows from the description of the duality D: M(A) — M(A°P) and
Proposition 4.2.1. |

4.2.2. Simple A4 ,)-modules. In this subsection we determine the simple A4 -
modules. Note that the description of the simple A4 )-modules follows from Proposi-
tion 3.5.7. For completeness we state the result in our case.

Recall that for an A-module X we have the following commutative diagram:

(Tdx ,px)

Ta(X) Ha(X)

>~ 7

Ca(X)

where C4(X) = Im(Idx, pux) = (X,Impux,s,A) and px = dyex © Homu(N, Ux).
Then the assigment X — Im (Idx, ux) gives a well defined functor C4: mod-A —
mod-Ay,4). One crucial property of C4 is that it lifts simple modules, see Lemma 3.5.5.

The following result describes the simple A4 y)-modules in terms of simple A-
modules, simple B-modules, simple B/ Im ¢-modules and simple A/ Im ¢-modules, and
follows immediately from Proposition 3.5.7.

PROPOSITION 4.2.3. There is the following bijections:

u
{simple B/ Im ¢p-modules} = . ~ {simple Ay -modules such that X = 0}
z

B

u
{simple A-modules} <—AE {simple A ) -modules such that X # 0}

A

Ua
{simple A/Imp-modules} = {simple A(4)-modules such that Y = 0}
z

A
Up
{simple B-modules} = {simple \(y)-modules such that' Y # 0}
Cp
REMARK 4.2.4. Let {Sy,---,S,}, resp. {S},---,S/.}, be a complete set of sim-
ple A-modules, resp. B-modules. The simple B/Im ¢-modules are the simple B-
modules with the additional property that ®gs; = --- = ®g = 0. Then from the
first two bijections of Proposition 4.2.3 the simple A4 )-modules are of the form:
Ca(S1), -+ ,Ca(Sn), Zp(S7),---,Zp(S),). Similarly the simple A/Im-modules are
the simple A-modules such that g, = --- = Ug = 0, and using the last two bi-
jections of Proposition 4.2.3 we get that the simple A4 ,)-modules are of the form:
Cp(S7), -+ ,C(SL), Za(S1), -+ ,Za(Sy). It is easy to check that these two descrip-
tions essentially coincide.
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4.2.3. Selfinjective Artin Algebras. After the complete description of the inde-
composable projective and injective A4 y)-modules we are interested to find conditions
for the Artin algebra A4, to be selfinjective. Recall that an Artin algebra A is selfin-
jective if A is an injective A-module.

The following result gives a sufficient condition for a Morita ring to be selfinjective.

PROPOSITION 4.2.5. Let Ay ) be a Morita ring which is an Artin algebra. Assume
that the adjoint pair of functors (M ®4 —, Hompg(M, —)) induces an equivalence

~

M ®4 —: projA) inj B : Homg(M, —)

and the adjoint pair of functors (N ®g —,Hom (N, —)) induces an equivalence

~

N ®p —: projB injA : Homu (N, —)

Then the algebra Ay is selfinjective.

PROOF. Let T4(P) = (P,M ®4 P,1dyg,p, ¥p) be an indecomposable projective
A4p)-module, where P is an indecomposable projective A-module. Since the cate-
gories proj A and inj B are equivalent we have isomorphisms a: M @4 P — J and
b=': Hompg(M,.J) — P for some injective B-module J, where b = §p o Homp(M, a).
Then we have the injective module Hg(.J) = (Homg(M, J), J, €, Ingzs0Homp(M, D))
and we claim that the map (b,a): Ta(P) — Hp(J) is an isomorphism of Ay y)-
modules. Tt is straightforward that the map (b,a) is an isomorphism since both the
maps b and a are isomorphims. Hence we have only to prove that (b, a) is a morphism
in mod-A(y,4), i.e. we have to show that the following diagrams are commutative:

M@y P—2 Ao, P N®g Mo, P e j2
M®bl: :la N®al: :lb
€ 5 oHomp(M,®
M @4 Homp(M, J) —L— ] N @p J —Nestoma®h®) gy (M, J)

Clearly the first diagram is commutative and for the second we have

(N ®p a) odngsoHomp(M,®;) = dngmepr o Homp(M, M ®4 N ®p a)oHomp(M, ®;)
= Ongmep © Homp(M, ®y0p) o Hompg(M, a)
= dnegmep © Homp(M, M ® Vp) o Homp(M, a)
= WVpodpoHomg(M,a)
= WYpob

Thus Ta(P) ~ Hgp(J) and so the indecomposable projective A(4)-module T4(P) is
injective. Moreover from Proposition 4.2.1 we have also the indecomposable projective
A py-module Tp(Q) = (N ®pQ,Q,¢ ® Idg,ldng,g) for some indecomposable pro-
jective B-module (). Then using the equivalence between proj B and inj A it follows as
above that Tg(Q) ~ H4(I) for some injective A-module I and so Tg(Q) is an injective
A(4,p)-module. Since every indecomposable projective A4 y)-module is injective we infer
that the Artin algebra Ay, is selfinjective. O

EXAMPLE 4.2.6. Let A be a selfinjective Artin algebra. Then from Proposition 4.2.5

we get that (4 4) (6 158 selfinjective Artin algebra.
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The following example shows that the converse of Proposition 4.2.5 is not true in
general.

ExaAMPLE 4.2.7. Let K be a field and KQ be the path algebra where Q is the quiver

Let I be the ideal generated by ba, cb, and ac and A = KQ/I. Then A is a selfinfective
finite dimensional K-algebra. Setting e = v; and € = vy + v3, we view A as a Morita
ring via
Ao (eAe ele )
@¥) = \e/Ae e'Ae’

Note that, in this case, ¢ = 1 = 0. Since eAe has one indecomposable projective-
injective module up to isomorphism and €¢’Ae’ has two nonisomorphic indecomposable
projective-injective modules, the converse to Proposition 4.2.5 fails.

For an Artin algebra A we denote by ¢¢(A) the Loewy length of A, i.e. the smallest
integer n such that t" = 0 where t is the Jacobson radical of A. Recall that the
representation dimension rep.dim A of A in the sense of Auslander [10] is defined by

rep.dim A = min{gl. dimEnd, (X) | X: generator and cogenerator of mod-A}

We recall also the following result for selfinjective algebras. We refer to [10] and [111]
for old and recent developments respectively, on this important dimension of Auslander.
See also section 5.2 of Chapter 5 for more applications of our results on representation
dimension.

PROPOSITION 4.2.8. [10] Let A be a selfinjective Artin algebra. Then
rep.dimA < C(A)
As an easy consequence of the above we have the following result.

COROLLARY 4.2.9. Let A be a selfinjective Artin algebra. Then:

. (A A
rep. dim (A A>(oo) < 20(A)

PROOF. Since A is selfinjective we have from Example 4.2.6 that the matrix Artin
algebra (4 %) (0.0) 18 selfinjective. Then the result follows from Proposition 4.2.8 since

(D) 00 = 200N, O

4.3. Functorially Finite Subcategories

Our purpose in this section is to apply the results of section 3.4 in order to study
finiteness conditions on subcategories of Mod-A(g ). The reason for restricting to the

case where ¢ = ¢ = 0 is that we have full embeddings from the module categories

Mod-A, Mod-B, Mod—( B]\"}A ]_%) and l\/Iod-(gl AgB) to Mod-A(gg). In particular we show

that the above natural subcategories of Mod-A () are bireflective and therefore functo-
rially finite.
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We start by defining the following full subcategories of Mod-A ) :
(X = {(X,Y,f,O) | [ M®4 X — Y isan epimorphism}

Y=1{(0,Y,0,0) | Y € Mod-B} =ImZp
2 ={(X,Y,0,9) | p(g): Y — Homu (N, X) is a monomorphism }
X' = {(X, Y,0,9) | g: N®pY — X is an epimorphism}

Y = {(X,0,0,0) | X € Mod-A} = ImZ,

2= {(X,Y, £,0) | 7(f): X — Homp(M,Y) is a monomorphism}

The following resul describes the structure of the above subcategories in Mod-A g ).
The proof follows immediately from Proposition 3.4.4 and Corollary 3.4.6. For the
notion of torsion pairs in abelian categories and functorially finiteness of subcategories
see sections 1.2 and 3.4.

\

PROPOSITION 4.3.1. Let Ay be a Morita ring. Then the triples (X,Y,2Z) and
(X', Y, Z") are TTF-triples in Mod-A o). In particular the following hold.

(i) The full subcategory X is contravariantly finite in Mod-A( ), closed under
extensions, quotients and coproducts, and T ,(Mod-A) C X.
(ii) The full subcategory X' is contravariantly finite in Mod-A( ), closed under
extensions, quotients and coproducts, and Tg(Mod-B) C X'.
(iii) The full subcategory Z is covariantly finite in Mod-A ), closed under exten-
sions, subobjects and products, and Ha(Mod-A) C Z.
(iv) The full subcategory Z' is covariantly finite in Mod-A oy, closed under exten-
sions, subobjects and products, and Hg(Mod-B) C Z/.

The next consequence of Corollary 3.4.7 describes the categories of modules over A
and B via the subcategories X, Z, X', Z'.

COROLLARY 4.3.2. Let A0y be a Morita ring. Then there is an equivalence

Mod-A ==XNZ and Mod-B==X'NYZ

We denote by Xy the full subcategory of Mod-A( g whose objects are the tu-
ples (X,Y, f,g) such that there is an exact sequence 0 — Ky — T4(F) —
(X,Y, f,9) — 0 with Py € ProjA. Similarly we define the subcategories Y, =
{(X, Y, f, g) € MOd—A(o’O) | 10— (X, Y, f, g) — HA(I()) — Ly — O exact with Iy €
InjA}, X = {(X,Y, f,g) € Mod-Ag) | 30 — Ky — Tp(Qy) — (X,Y,f,9) —
0 exact with Qo € Proj B} and Yj, = {(X,Y, f,g) € Mod-Ag) | 30 — (X,Y, f,9) —
Hg(Jo) — Lo — 0 exact with Jy € Inj B}.

From Proposition 3.4.8 we have another description of the subcategories X, Z, X', Z'.

COROLLARY 4.3.3. Let Ao be a Morita ring. Then: X =Xy, Z =Y, X' = Xj
and Z' =Y.

The following main result of this section gives the exact properties of the natural
subcategories of Mod-A (o). For the notion of bireflective subcategory see section 3.4.
Although the next result follows from Theorem 3.4.9 we give an alternative proof.
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THEOREM 4.3.4. Let Aoy be a Morita ring. Then the full subcategories
Mod-A, Mod-B, Mod- (BMA B) Mod- (AA];B)

are bireflective in Mod-A (o). In particular the above subcategories are functorially finite
in Mod-A o), closed under isomorphic images, direct sums, direct products, kernels and
cokernels.

PROOF. Since ¢ = ¢ = 0 it follows that the following maps:
Or: Nooy — A, 91((
O2: Aoy — B, 92((
Os: Mooy —> (pira 8)s 05((n ) = (?)
Os: Mooy — (575°), Oal(m
are surjective ring homomorphisms. Therefore the above maps are ring epimorphisms,

i.e. epimorphisms in the category of rings. Hence from [54], [56], see also Theorem
1.3.1, we infer that the essential images of the restriction functors Mod-A — Mod-Aq ),
Mod-B — MOd—A(O’Q Mod- (BMA B) — Mod-A (0,0) and Mod- (A AgB) — MOd—A(O’O)
are bireflective subcategories. Since bireflective Subcategorles are functorially finite,
it follows that the full subcategories Mod-A, Mod-B, Mod- ( M B) Mod- (A ANB) are
functorially finite in Mod-A o), closed under 1som0rphlc images, direct sums, direct
products, kernels and cokernels. [

REMARK 4.3.5. From Theorem 4.3.4 the full embedding
F: Mod- (BMAB)—>MOCIA00
has a left and right adjoint. But it is easy to observe that Mod- ( S M ,%) is not closed

under extensions and therefore it is not a Serre subcategory of Mod-A (). Hence from
the full embedding F we cannot derive a recollement of module categories.

We continue with the following result on finiteness of subcategories which is a con-
sequence of Theorem 3.4.11.

THEOREM 4.3.6. Let Ay be a Morita ring.

(i) Let U be a covariantly finite subcategory of Mod-A such that U C Ker Hom 4(N,
and V a covariantly finite subcategory of Mod-B such that V C Ker N ®p —.
Then the full subcategory

W = {(X,Y, f,g) € Mod-Apg) | X €U and Y €V}

is covariantly finite in Mod-A ).

(ii) Let W be a contravariantly finite subcategory of Mod-A such that U C Ker Hom 4 (V,
and 'V a contravariantly finite subcategory of Mod-B such thatV C Ker N ®p —.

Then the full subcategory
W= {(X,Y, f,g9) € Mod-Ao) | X €U and Y €V}
is contravariantly finite in Mod-A o).
(iii) Let U be a functorially finite subcategory of Mod-A such that U C Ker Hom 4 (N,

and V a functorially finite subcategory of Mod-B such that V C Ker N ®p —.
Then the full subcategory

W= {(X,Y, f,g9) € Mod-Ao) | X €U and Y €V}
is functorially finite in Mod-A g ).

-)

=)

-)
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REMARK 4.3.7. Note that the converse of Theorem 4.3.6 holds, i.e. if W is con-
travariantly (resp. covariantly) finite in Mod-A ) then U is contravariantly (resp. co-
variantly) finite in Mod-A and 'V is contravariantly (resp. covariantly) finite in Mod-B.
For more details see Remark 3.4.12.

If the bimodule N = 0 then from Theorem 4.3.6 and Remark 4.3.7 we have the
following well known result due to Smalg.

COROLLARY 4.3.8. [120, Theorem 2.1] Let A = (i, &) be a triangular ma-
trix ring, W a full subcategory of Mod-A, V a full subcategory of Mod-B and let W =
{(X,Y,f) €Mod-A | X €U and Y € V}.

(i) The subcategory W is covariantly finite in Mod-A if and only if U is covariantly
finite in Mod-A and V is covariantly finite in Mod-B.
(ii) The subcategory W is contravariantly finite in Mod-A if and only if U is con-
travariantly finite in Mod-A and 'V is contravariantly finite in Mod-B.
(iii) The subcategory W is functorially finite in Mod-A if and only if U is functo-
rially finite in Mod-A and 'V is functorially finite in Mod-B.

We continue with the following applications for Artin algebras. For the notion of
Auslander-Reiten sequences we refer to [18].

COROLLARY 4.3.9. Let Ay be a Morita ring regarded as an Artin algebra. Then
the full subcategories mod-A and mod-B of mod-A o) have relative Auslander-Reiten
sequences in mod-A ).

Proor. It is well known that functorially finite subcategories which are closed under
extensions have Auslander-Reiten sequences, see [19]. Then the result follows from
Theorem 4.3.4. |

COROLLARY 4.3.10. Let A(o0) be a Morita ring which is as an Artin algerba. Let U be
an extension closed functorially finite subcategory of mod-A such that U C Ker Hom 4 (N, —)
and V an extension closed functorially finite subcategory of mod-B such that V C
Ker N @ —. Then the full subcategory W = {(X,Y, f,g) € mod-Ago) | X € U and Y €
V} has Auslander-Reiten sequences in mod-A ).

PROOF. Since U and V are closed under extensions it follows that W is also closed
under extensions. Then the result follows from Theorem 4.3.6 and [19]. 0J

The last part in the paper of Smalg [120] deals with the full subcategory of modules
of finite projective dimension. In particular, if A = ( Bﬁ Y ]%) is a triangular matrix Artin
algebra, then the category of A-modules of finite projective dimension is contravariantly
finite in mod-A if and only if the category of A-modules of finite projective dimension
is contravariantly finite in mod-A and the category of B-modules of finite projective
dimension is contravariantly finite in mod-B, see | , Proposition 2.3]. This result
follows from Corollary 4.3.8 and the description of the subcategory of A-modules of
finite projective dimension. Recall that a A-module (XY, f) is of finite projective
dimension if and only if the projective dimensions of 4. X and gY are finite.

We close this section with the next example which shows that the subcategory
of A)-modules of finite projective dimension cannot be described as in the lower
triangular case. This distinguishes our situation from the lower triangular situation.
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ExAMPLE 4.3.11. Let K be a field and KQ be the path algebra where Q is the quiver

b
0= oS58
Let I be the ideal generated by a?, be, cb, d?, ba — db, and cd — ac and let A = KQ/I. Tt

is not hard to show that A is a selfinjective finite dimensional K-algebra. The structure
of the indecomposable projective-injective modules look like:

/\ /\
\/ \/

Setting e = v; and € = vy, we view A as the Morita ring via

A _ [eAe eA€
@) = \e/Ae e'Aé’
Note that, in this case, =1 = 0. One sees that A is a selfinjective finite dimensional
biserial algebra. Consider the string module of the form

D = (%] V2
U1 V2

Viewing D as module over the algebra Ay 4y, D = (X,Y, f, g), we see that X is isomor-
phic to eAe as a left eAe-module, Y is isomorphic to €’A¢’ as a left ¢/ Ae’-module, and
g = 0. Thus, we have that pd,,, X < 00, pd, Y < 00, but pdy D = oo (since D is
not a projective A-module and A is selfinjective). Finally, letting R = K[z]/(z?), then
it is easy to see that A(gg) = (gﬁ).

4.4. Bounds on the Global Dimension

Let A,0) = (B]’&A AgB ) be a Morita ring which is as an Artin algebra with ¢ = ¢ =
0. In this section we show that, under certain restictions on either M or N, there is a
bound on the global dimension of A ) in terms of the global dimensions of A and B.
This is achieved via the notion of tight projective module and tight projective resolution
that we introduce in the first subsection.

4.4.1. Tight Resolutions and Upper Bounds. Before we begin with some pre-
liminary definitions and results, we give an example which shows that we will need
some restrictions to get a bound on the global dimension of A ) in terms of the global
dimensions of A and B.

ExAMPLE 4.4.1. Let K be a field and Q be the quiver

v Lo w
O (0]
-~

b

Let A = KQ/(ab,ba). Let P (respectively @)) be the projective A-cover of the simple
module having K at vertex v (resp. w) and 0 at vertex w (resp. v). Then A = P & Q.
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Hence A is isomorphic to Homy (P @& @, P & ()°P, which in turn is isomorphic to the
matrix algebra

(EndA(P)°p HomA(PaQ)>
Homa (@, P) Enda(Q)°P

Each entry in this 2 x 2-matrix is K but the multiplication of two elements, one of the
form (2 8) and the other of the form (8 g), in any order, is 0. Thus, as a Morita ring
(#%),A=B=M=N=Kand ¢ =1 =0. Hence A and B have global dimension
0 and M and N have projective dimension 0 over both A and B. But A has infinite

global dimension. O
We introduce the following notion which is crucial for our results of this section.

DEFINITION 4.4.2. If P = (P4,0,0,0) is a projective A(gg)-module for some left
A-module Py, then P is called an A-tight projective A(g)-module. We say that a left
A(o,0-module (X,0,0,0) has an A-tight projective A g-resolution if (X,0,0,0) has a
projective A g)-resolution in which each projective A gy-module is A-tight.

Note that if (Py4, 0,0, 0) is an A-tight projective A g)-module then Py is a projective
A-module and M ® 4 P4 = 0. Conversely, if Py, is a projective A-module and M® 4P, =
0, then (P4,0,0,0) is an A-tight projective A(gg)-module. It is easy to see the following.

(i) A direct sum of modules having A-tight projective A g)-resolutions also has
an A-tight projective A (g gy-resolution.

(ii) A summand of an A-tight projective Ay g)-module is again an A-tight projec-
tive A(g,0)-module.

111 1s an A-module such that ,0,0, as an A-tight projective A gy-

iii) If X i A-modul h that (X,0,0,0) h A-tigh jective Ao o)
resolution, then pd, X = pd, (X.,0,0,0).

The next result classifies A g)-modules having A-tight projective A g g)-resolutions.

PROPOSITION 4.4.3. A Ag0)-module of the form (X,0,0,0) has an A-tight projective
Ao,0)-resolution if and only if M ® 4 P = 0, where P is the direct sum of projective A-
modules in a minimal projective A-resolution of X .

PROOF. Suppose that --+ — P? — P! — P — X — ( is a minimal
projective A-resolution of X. Set P = @,>0P". If M ®4 P =0 then M ®4 P" =0, for
all n > 0. It follows that (X,0,0,0) has an A-tight projective A g)-resolution. On the
other hand, if M ®4 P # 0, then there is a smallest n > 0, such that M ®4 P" # 0. It
follows that there is a minimal projective A g-resolution of (X, 0,0,0) that starts

(P", M @4 P, Idysgpn,0) — (P"1,0,0,0) — - - - — (P°,0,0,0) — (X,0,0,0) — 0

Hence the n + 1-st syzygy is of the form (4t (X), M ®4 P™, Idy ®k,0), where & is the
monomorphism x: Q4T(X) — P It follows that the next projective in the above
minimal A -resolution of (X,0,0,0) is not A-tight and the result follows. O

We use the next result a number of times in what follows.

LEMMA 4.44. If P is a projective A-module such that (P,0,0,0) is not an A-tight
projective Ao,0)-module, then:

pdy,,, (P,0,0,0) = 1+ pdy (0, M @4 P,0,0)
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If Q is a projective B-module such that (0,Q,0,0) is not a B-tight projective A )-
module, then:

pdy ) (0,Q,0,0) =1+ pdy (N @5 Q,0,0,0)

Proor. The first statement follows from the following short exact sequence of A(g g)-
modules

O_)(()?M@A Paan)_)<PvM®A PaldM®AP70)_)(P707070>_)O
and the proof of the second statement is similar. O

We define B-tight projective A o)-modules (0,@Q,0,0) in a similar fashion as A-tight
projective A(gg)-modules and also A g)-modules (0,Y,0,0) having B-tight projective
A(o,0)-resolutions.

We also have the following result.

LEMMA 4.4.5. Let X be an A-B-bimodule such that (X,0,0,0) has an A-tight pro-
jective Ngy-resolution. If Q is a projective B-module, then (X ®p @,0,0,0) has an
A-tight projective A g)-resolution.

PRrROOF. Since direct sums of modules that have A-tight projective A g)-resolutions
are modules having A-tight projective A g )-resolutions, we may assume that @ = Be,
for some primitive idempotent e in B. Since X ®p Be ~ Xe is a summand of X, the
result follows. O

The next lemma is a useful tool in what follows.

LEMMA 4.4.6. Let X be an A-module and Y be a B-module. Then:
(i) pdA(O,O)(X,O,O,O) < 1+max{pdA(O’o)(Q}L‘(X),0,0,0),pdA(()’O)(O,M,O,O)}
(i) pdy,, (0,Y,0,0) < 1+ max{pdy,, (0,Q25(Y),0,0),pdy,  (IV,0,0,0)}

PROOF. We only prove (i) since the proof of (ii) is similar. Let a: P — X be a
projective A-cover of X with kernel Q) (X). Then we have a short exact sequence

(k,Idpep) (a,0)
—_—

0— (Q4(X), M ®4 P, M ® k,0) (P,M ®4 P,1dpgp,0) —= (X,0,0,0) — 0

in which the middle term is a projective A(ggy-module. Therefore it follows that
pdy g (X,0,0,0) < 1+ pdA(OO)(Q}L‘(X),M ®a P,M ® k,0). Next we note that we
have a short exact sequence

0——= (0, M ®4 P,0,0) — (Q4(X), M @4 P,M ® k,0) — (24(X),0,0,0) —=0

We observe that M ®4 P is direct sum of summands of M. Hence we infer that
pdA(0 0 (0, M ®4 P,0,0) < pdA(0 0)(0, M,0,0) and the result now follows. O

We get an immediate consequence of the previous lemma.

COROLLARY 4.4.7. Let X be an A-module and Y be a B-module. Then:
(1> pdA(o,O) (X7 07 O? O) S pdA X + 1 + pdA(Oyo) <O7 M? 07 O)
(ii) Pda (0,Y,0,0) < pdgY +1+ Pda ., (N,0,0,0)
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PrROOF. We only prove (i). If pd, X is not finite, then the result follows. As-
sume that pd, X = n < oo. If we apply Lemma 4.4.6 first to (X,0,0,0) and then to
(Qh(X>7 0,0, 0)7 we get

pdy, (X,0,0,0) <2+ max{pdAm)(Qi(X), 0,0,0),pdy, (0, M,0,0)}
Continuing in this fashion, we get
Pda ., (X,0,0,0) < n+max{pd, (24(X),0,0,0),pdy (0, M,0,0)}

By assumption the nth syzygy Q% (X) is a projective A-module. Applying Lemma 4.4.6
to (27%(X),0,0,0), we obtain the desired result. O

We are now in a position to state our first set of results. For simplicity we write that
a left A-module X has an A-tight projective A g)-resolution meaning that the object
(X,0,0,0), as a left A(gg)-module, has an A-tight projective A g)-resolution. We make
the same agreement for left B-modules having B-tight projective A g -resolution.

PROPOSITION 4.4.8. Let Ay = (BJQA AgB) be a Morita ring which is an Artin
algebra and let X be an A-module and Y be a B-module. If M has a B-tight projective
A(o,0)-resolution, then

pdAw’O)(X,O,O,O) < pdy X+ 1+4+pdg M
If N has an A-tight projective A )-resolution, then

PROOF. The result follows from Corollary 4.4.7 and the fact that (0, M, 0,0) having
a B-tight projective resolution implies that pdA(0 0)(0, M;0,0) = pdg M. Similarly we
obtain the second inequality. [

THEOREM 4.4.9. Let A ) = (B]@A ARP ) be a Morita ring which is an Artin algebra
and suppose that M has a B-tight projective A )-resolution and N has an A-tight
projective Ao y-resolution. Then:

gl.dimAgo < gl.dmA+gl.dmB+1

PROOF. Since ¢ = ¢ = 0 it follows from Proposition 4.2.3 that the simple A g)-
modules are of the form (.5,0,0,0), where S is a simple A-module or of the form
(0,7,0,0), where T is a simple B-module. Now

gl.dim Ao ) < max{pdA(0 0, (5:0,0,0),pdy  (0,7,0,0) | §: simple A-module,

T': simple B-module}
By Proposition 4.4.8 we have pdAm 0 (5,0,0,0) < pd, S+pdg M+1. Thus, pdAm 0 (S,0,0,0)

< gl.dimA + gl.dim B 4+ 1. Similarly, we infer that pdA(OO)(O,T, 0,0) < gl.dmA +
gl.dim B + 1 and then the result follows. O

We provide two examples, the first of which shows that the inequality of Theorem
4.4.9 is sharp and the second shows that the inequality can be proper.
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ExXAMPLE 4.4.10. Let K be a field and Q the quiver

V1 v2 b 3 c V4
@] O —— 0 —> O
|

g
w1 d w2 w3 w4
(o]

Let I be the ideal in KQ generated by all paths of length 2 and let A = KQ/I. We see
the global dimension of A is 4. Now set €, = vy + v +v3+1v4 and €5 = wq +ws + w3 +wy.

View A as the Morita ring
61A€1 €1A€2
€2A€1 €2A€2

The global dimension of €;A¢; is 2 and the global dimension of esAey is 1. Thus
gl.dimA =gl.dime;Aey + gl. dimegAeg + 1

Now M = e3Aey, which, as a left e;Aes-module is isomorphic to the simple module
at wi. We see that N = e€;Aey, which, as a left e;Ae;-module is isomorphic to the
simple module at vy. The reader may check that (0, M,0,0) and (N, 0,0,0) have tight

projective A-resolutions. We note that ¢ and ¢ are both 0 for this example. U
EXAMPLE 4.4.11. Let K be a field and Q the quiver
V1 a v2 b v3

O — 0 —> 0O

¢ d

w1 e w2

We again take I to be the ideal generated by all paths of length 2 and set A = KQ/I.
Now set €; = v1 + v9 + v3 and €3 = wy + wo. View A as the Morita ring

€1A€1 €1A€2
€2A€1 EQAEQ
The reader may check that the hypotheses of Theorem 4.4.9 are satisfied. But the global

dimension of A is 2 while the global dimension of ¢;Ae; is 2 and the global dimension
of €2A€2 is 1. O

We now turn to the case where either (0, M,0,0) or (N,0,0,0) does not have a
tight projective Agg)-resolution. If M is not a projective B-module then a projective
cover of (0,M,0,0) is of the form (0,8): (N ®p Q,Q,0,Idygg) — (0, M,0,0), where
B: Q — M is projective B-cover of M. In particular, N ®p @) is a sum of summands
of N over which we have little control. The next bound results will require that M, as
a left B-module, is projective and N, as a left A-module is projective.

We state a preliminary lemma.

LEMMA 4.4.12. Suppose M is a B-A-bimodule which is projective as a left B-module
and N is an A-B-bimodule which is projective as a left A-module. Then

(i) (M ®a N)®tB is a projective left A-module, for all t > 1.

(il) N®p (M ®A N)®t3 is a projective left A-module, for all t > 0.
(iii) (N ®p )®A is a projective left B-module, for all s > 1.
(iv) M ®4 (N ®p M)®SA is a projective left B-module, for all s > 0.
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PROOF. (i) Suppose P is a projective left A-module. Then P is isomorphic to
a direct sum of indecomposable projective A-modules of the form Ae, where e is a
primitive idempotent in A. It follows that M ®4 P is a direct sum of modules of the
form Me. Since M is assumed to be a projective left B-module, Me is a projective left
B-module and, hence, M ®4 P is a projective left B-module. The result now follows
by induction on t.

(iii) Similarly if @ is a projective left B-module then N ®p5 @ is also a projective left
A-module and then our statement follows. In the same way we get (ii) and (iv). O

The next result concerns tight projective A gg)-modules.

LEMMA 4.4.13. Suppose M is a B-A-bimodule which is projective as a left B-module
and N is an A-B-bimodule which is projective as a left A-module.

(i) If (0,M ®4 (N ®p M)®§A, 0,0) is a B-tight projective A o)-module, for some
s> 0, then (0, (M ®4 N)%IB, 0,0) also is a B-tight projective A o,)-module.
(ii) If (N ®p M)®SA 0,0, 0) is an A-tight projective Ao 0y-module, for some s > 0,
then (N ®p (M ® 4 )®B 0,0,0) also is an A-tight projective A o)-module.
(iii) If (N ®p )® 0,0 0) zs an A-tight projective Ao gy-module, for some s > 0,
then (N ®p (M ®A N) 3 2.0,0,0) also is an A-tight projective A()-module.
(iv) If (0, (M ®4 N)®B, 0,0) is a B-tight projective A o)-module, for some s > 0,
then (0, M ®4 (N ®p M)Q%A, 0,0) also is a B-tight projective A o)-module.
PROOF. We only prove part (i) since the proofs of the other parts are similar.
Assume that (0, M @4 (N ®p M)®SA 0,0) is a B-tight projective A g-module, for some
s > 0. Then tensoring M®A(N®BM)®A on the right by ® 4 N, we obtain (M®AN)9‘§13
The assumption that N is a projective left A-module implies that (M ®4 N) EF is a
direct sum of summands of M ®4 (N ®@p M )®SA. The result now follows. g

We are now in a position to state the second result on bounding the global dimension
of A(()’o).

THEOREM 4.4.14. Let Ao = (B]‘@A AgB) be a Morita ring which is an Artin al-
gebra. Suppose that the global dimensions of A and B are finite, M 1is a projective left

B-module, and N s a projective left A-module.

i) If (N®g M ®gA, 0,0,0) is an A-tight projective Ao -module, for some s > 1,
( K )
then:

gl.dimAgo < max{gl.dim A+ 2s,gl.dimB 4 25+ 1}
(ii) If (0, M @4 (N ®p M)®SA, 0,0) is a B-tight projective A o)-module, for some
s >0, then:
gl.dimApp < max{gl.dimA+2s+1,gl.dimB +2(s+1)}
(iii) If (N ®@p (M ®4 N)‘X’SB, 0,0,0) is an A-tight projective Aoy -module, for some
s >0, then:
gl.dimApp < max{gl.dimA+2(s+1),gl.dimB 4 2s+ 1}
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(iv) If (0, (M ®a4 N)®SB, 0,0) is a B-tight projective A )-module, for some s > 1,
then:
gl.dimAp < max{gl.dimA+ 2s+1,gl.dim B + 2s}

(v) If (N ®p M)®SA,O,0,0) is an A-tight projective Ao gy-module and if

(0, (M ®4 N)®SB, 0,0) is an B-tight projective A py-module, for some s > 1,
then:

gl.dimAgp < max{gl.dim A+ 2s,gl.dim B 4 2s}

(vi) If (N @5 (M ®a4 N)®SB,0,O,O) is an A-tight projective Ao g)-module, and if
(0,M ®4 (N ®p M)®5A,O,O) is a B-tight projective Ao g)-module, for some
s >0, then:
gl.dimAgg < max{gldmA+2s+1,gl.dimB+2s+ 1}

PROOF. Let gl.dim A = d < oo and gl.dim B = e < co. We only prove part (i) with

the remaining parts having similar proofs. We assume that ((N ® g M)®4,0,0,0) is an
A-tight projective Ao gy-module, for some s > 1. First let S be a simple A-module. By
Lemma 4.4.6 we have pd, , (5,0,0,0) < I+max{pd, , (24(5),0,0,0), Pda, (0,11,0,0)}.

By applying Lemma 4.4.6 again, this time to (©%(S5),0,0,0), we get

pdy ) (5, 0,0,0) < 2+ max{pdy (2%(5),0,0,0),pdy  , (0,21,0,0)}
Continuing in this fashion, we get

pdy o (9,0,0,0) < d+max{pdy,  (24(S),0,0,0),pdy , (0,,0,0)}
Now Q4 (S) is a projective A-module, so the next time we apply Lemma 4.4.6, we obtain

pdA(O’O) (S7 07 07 0) S d + 1 + pdA(O’O) <O7 M7 07 O)

If (0, M, 0,0) is a B-tight projective A-module, then we are done. Suppose that (0, M, 0, 0)
is not a B-tight projective module. Since M is a projective B-module, by Lemma 4.4.4
it follows that pdA((]O)(O,M,O,O) <1+ pdA(OO)(N ®p M,0,0,0). If (N ®p M,0,0,0) is
an A-tight projective A-module, we are done. Suppose that (N ®p M,0,0,0) is not an
A-tight projective A-module. Since N ® M is a projective A-module by Lemma 4.4.12,

we see again by Lemma 4.4.4 that pd, (0, M,0,0) < 2+4pdy (0,M®sN®pM,0,0).
Continuing in this fashion, we obtain

pdA(070>(0, M,;0,0) <2s—1+ pdA(o,o)<<N ®p M)®A,O,0,0)

By assumption, ((N ®B M)®S‘, (), (), ()) is ar A—tight projective A(Oyo)—module. Hence, we
see that
PdA(OO>(S,070,())<d+28 _—gl,dimA+28 ( )

Now let T" be a simple B-module. By Lemma 4.4.6 we have
pdy, (0,7,0,0) < 1+ max{pdy  (0,Q25(T),0,0),pdy,  (N,0,0,0)}
Continuing in a similar fashion to the first part of the proof, we obtain

pdAw,O) (T,0,0,0) < e+ max{pdA(Oyo)(O, 0%(T),0,0), pdA(Om(N, 0,0,0)}
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Now N is a projective A-module, and we see by Lemma 4.4.4 that pdA(0 0 (N,0,0,0) <
1+ pdA(O 0 (0, M ®4 N,0,0). Again, following similar arguments to the first part of the
proof, we obtain

pdy ., (V,0,0,0) <25+ pdy (N @p (M ®4 N)®?,0,0,0)

By Lemma 4.4.13, (N ®p (M ®4 N)®SB,0,O,O) is an A-tight projective A g)-module,
and we have
pdA(OO)(07T7070) §€+25+1:gld|mB+25+1 (**)

Since A is an Artin algebra and since from Proposition 4.2.3 a simple A )-module
is isomorphic to either a module of the form (.5,0,0,0) or (0,7,0,0), for some simple
A-module S or some simple B-module T, part (1) follows from (x) and (k). O]

We conclude this section with an example showing that the bounds in the above
theorem are sharp.

EXAMPLE 4.4.15. Let K be a field and let Q be the quiver

U1 v3 U5
(@] (@] o
V2 / V4 /
[e] (o]

Let A be the quotient KQ/I, where I is the ideal generated by all paths of length 2.
Let €, = v; +v3 + v5 and €3 = vy + v4. View A as the Morita ring

61A€1 €1A€2
62A€1 €2A€2 (0,0)
Using the notation ;K; to denote the simple A-module, which on the left is isomorphic to

the simple A-module at vertex v;, and on the right is isomorphic to the simple A-module
at vertex v;, we see that

M = €2A€1 =4 Kg @2 Kh and N = €1A€2 =5 K4 @3 KQ.

Now the global dimensions of A = €;Ae; and B = e3Aey are both 0. Clearly, M is a
projective left B-module and N is a projective left A-module. We see that N @ (M ® 4
N) is isomorphic to ;K. Moreover, (N ®p (M ®4N),0,0,0) is an A-tight projective A-
module. Thus, we can apply part (3) of Theorem 4.4.14 with s = 1 to get gl.dim A < 4.
But the global dimension of A is 4, and we have shown that the inequality in part (3)
is sharp. This example can be adjusted to get that all the inequalities are sharp. O

4.4.2. Some Lower Bounds. In this subsection we provide some lower bounds
for the global dimension of a Morita ring.

LEMMA 4.4.16. Let Ay ) be a Morita ring.
(i) If the bimodule gM 4 is flat as a right A-module then pd, X = Pda,.,) Ta(X).
(ii) If the bimodule ANp is flat as a right B-module then pdgY = Pda,. Tp(Y).

PROOF. Suppose that the bimodule gM, is flat as a right A-module. Then the
functor M ® 4 —: Mod-A — Mod-B is exact and therefore the functor T4: Mod-A —
Mod-A 4,y is exact. Let X be a A-module with pdy X =nandlet0 — P, — --- —
Py, — X — 0 be the projective resolution of X. Then if we apply the exact functor
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T4 we get that pdA(M) Ta(X) <n=pd, X since T4 preserves projectives. Conversely
suppose that pd/\w,w) Ta(X)=m < o0. Let 0 — Ky — Py — X — 0 be an exact
sequence with Py € Proj A and Ky = Kerag, where ag: Py —> X. Since T4 is exact
the sequence 0 — T4(Ky) — Ta(Py) — Ta(X) — 0 is exact. Now we continue
with the same procedure. This means that we take an epimorphism a;: P, — K
with P; a projective A-module, K; = Kera; and then we apply the functor T 4. After
m-steps we obtain the exact sequence: 0 — TA(K;—1) — Ta(Ppoy) — -+ —
Ta(FPy) — Ta(X) — 0 where T4(K,,—1) is projective since Pda . TA(X) = m.
Then if we apply the functor U, we get the exact sequence: 0 — K,,_  — P,_1 —

- — By — X — 0 and we claim that Q™(X) = K,,_; is projective in Mod-A.
But this is straightforward since T 4(K,,_1) is projective. Thus we have pd, X < m =
pdA(M) Ta(X). We infer that pdy X = pdA<¢,w) TA(X) and similarly we prove that
pdp Y =pda,, T(Y) when the functor N @p —: Mod-B — Mod-A is exact. O

As a consequence of the above result we have the following lower bound.

PROPOSITION 4.4.17. [88, Lemma 1.2] Let Ay be a Morita ring and suppose that
My is a flat right A-module and Ng is a flat right B-module. Then:

gl.dimAsy) > max{gl.dim A, gl.dim B}

4.4.3. Comparing Tight Resolutions. In this subsection we discuss the assump-
tion of Theorem 4.4.9 about tight resolutions. Our aim is to compare our result with
some well known bounds for the global dimension of trivial extensions rings.

Let Ao, be a Morita ring regarded as an Artin algebra. Then from Proposition
4.1.5 we have the isomorphism of rings A0y ~ (Ax B)x M@ N, where (Ax B)x M&N
is the trivial extension ring of A x B by the (A x B)-(A x B)-bimodule M & N. Then the
module category mod-A () is equivalent to the trivial extension of abelian categories
(mod-A x mod-B) x H, see [49], where H is the endofunctor

H: mod-A x mod-B — mod-A x mod-B, H(X,Y)=(N®pY, M @4 X)

Suppose that 4Np has an A-tight projective A -resolution and pM,4 has a B-tight
projective A g)-resolution. This implies that we have projective resolutions --- —
APL — AFp — AN — 0 and -+ — Q1 — Qo — M — 0 such that
M®s P, =0and N ®p Q; = 0. If we aply the functor M ®, — to the projective
resolution of N we get that M ®4 N = 0. Similarly if we apply the functor N ®p —
to the projective resolution of M we obtain that N ®p M = 0. Also we derive that
Tor(M,N) = 0 and Tor?(N,M) = 0 for every i > 0. Since M ®4 N = 0 if and
only if M ®y N ®g — = 0 and N ®g M = 0 if and only if N ®g M ®4 — = 0 it
follows that H% = 0. From Corollary 7.6 of [26] it follows that if the left derived functor
L;H/(H(P,Q)) =0 for every i,7 > 1 and P € proj A, Q € proj B, then

gl.dim Ay < c(H)+ 2 - max{gl.dim A, gl. dim B} (%)

where ¢(H) = min{x € N : H**! = 0} is the nilpotency class of H. From the projective
resolutions of N and M we have the following projective resolution of H(A, B):

(AplaBQl) (APO’BQO) H(A> B) 0

in mod-A x B. Hence if we apply the functor H to the above exact sequence we obtain
the zero complex. We infer that L;H/(H(P,Q)) = 0 for every 7,7 > 1 and P €
proj A, @Q € proj B. Hence the assumption of Corollary 7.6 of [26] is satisfied and so
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we have the bound of the relation (k). In particular we obtain that gl.dimAg, <
1 + 2 - max{gl.dim A, gl.dim B} since H*> = 0. But the bound of Theorem 4.4.9 is
gl.dimAo < gl.dim A + gl.dim B + 1 which is better than the above bound but the
assumption of Corollary 7.6 of [26] is weaker than the assumption of tight resolutions for
N and M. Note also that since L;H(H(P,Q)) = 0 for every ¢ > 0 and P € proj A, Q) €
proj BB, there exists an explicit formula for the global dimension of Ay ), see Corollary
7.17 of [26].

4.4.4. Trivial Extensions of Artin Algebras. The main property of the as-
sumption that M has a B-tight projective A g)-resolution and N has an A-tight projec-
tive A(g,0)-resolution is that pdA(O,O)(O’ M,0,0) = pdg M and pdA(O’O) (N,0,0,0) =pd, N.
Our aim in this subsection is to prove a version of Theorem 4.4.9 for a trivial exten-
sion of Artin algebras A = A x N. We start by recalling some basic facts for trivial
extensions. We refer to [49] for more details.

Let A = A x N be a trivial extension of rings which is an Artin algebra (see the
discussion before Proposition 4.1.5 for the notion of trivial extension of rings). The
objects of mod-A are pairs (X, f) where X € mod-A and f: N ®4 X — X is an A-
morphism such that N®4fo f = 0. A morphism a: (X, f) — (Y, g) is an A-morphism
a: X — Y such that foa = N®4a o0 g. We recall also the following functors. The
functor T: mod-A — mod-A is defined by T(X) = (X @ (N®4X),tx) € mod-A on
the A-modules X, where tx = (J'VeX): (N®AX) B (N@AN®AX) — X & (N@4X)
and given an A-morphism a: X — Y then T(a) = (§ F?a)): T(X) — T(Y) is a
A-morphism. The functor Z: mod-A — mod-A is defined by Z(X) = (X,0) € mod-A
on the A-modules X and if a: X — Y is an A-morphism, then Z(a) = a.

We need the following result which is the analogue of Lemma 4.4.6.

LEMMA 4.4.18. Let A = AX N be a trivial extension of Artin algebras and let X be
an A-module. Then:

pdy Z(X) < 14 max{pd, Z(Q}(X)),pd, Z(N)}

PROOF. Let a: P — X be a projective A-cover of X with kernel QY (X). Then
we have a short exact sequence of A-modules

(M6+9) (V)
(N®s N®y P) (N®sP)D(N®sN®aP) N ®as X

(57%) (33)] :
N ®y P) P& (N ®a P) X

(N ®a Q4(X))

3]

LX) e

in which the middle term is a projective A-module. It follows that
pdy Z(X) < 1+pdy (N @4 Q4(X)) & (N @4 N®a P) — Qu(X) @ (N ®a P)) (1)

Next we note that we have the following exact commutative diagram

N oy N oy P (01) (8)
0 (5 76*)

N ®a P QLX) ® (N ®4 P)

N @4 Q4(X)

(1) )

Q4 (X)
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and so we have
pdy (N @4 Q4(X)) & (N ®a N ®4P) = Qy(X) @& (N®4 P)) <

max{pdy Z(N @4 P), pd, Z(24(X))} (2)
Since we have that N ®4 P is direct sum of summands of N it follows that pd, Z(N ®4
P) <pd, Z(N). Hence the result follows from the relations (1) and (2). O

We have the following result and its consequence.
PROPOSITION 4.4.19. Let A = AX N be a trivial extension of Artin algebras. Then:
gl.dimA < gl.dimA+pdy,Z(N)+1
PROOF. Let X be an A-module. We will first prove that
pdy Z(X) <pd, X +pdy Z(N) + 1 (%)

If pd, X is not finite, then the result follows. Assume that pd, X = n. If we apply
Lemma 4.4.18 first to Z(X) and then to Z(Q%4 (X)), we get that

pdy Z(X) < 2+ max{pd, Z(Q4(X)), pds Z(N)}
Continuing in this fashion, we obtain

pdy Z(X) < 1+ max{pd, Z(23(X)), pd, Z(N)}
By assumption, Q7% (X) is a projective A-module. Applying again Lemma 4.4.18 to
Z(£2%(X)) we obtain the relation (k). Recall from [49] that the simple A-modules are
of the form Z(S), where S is a simple A-module. Then from the relation (%) we have

pdy Z(S) < pdy S+ pdy Z(N) + 1. Thus pdy Z(S) < gl.dim A + pd, Z(N) + 1 and so
the result follows. O

COROLLARY 4.4.20. Let A = A x N be a trivial extension of Artin algebras such
that pdy N = pd Z(N). Then:

gldimA < 2.-gl.dmA+1

4.5. Gorenstein Artin Algebras and Cohen-Macaulay Modules

In this section we investigate when a Morita ring, which is an Artin algebra, is
Gorenstein. Moreover we determine the Gorenstein-projective modules over the matrix
algebra with A = M = N = B = A, where A is an Artin algebra. We start by recalling
the notion of Gorenstein algebras.

DEFINITION 4.5.1. [15,16] An Artin algebra A is called Gorenstein if id \A < o0
and id Ay, < oo

Equivalently, A is Gorenstein if (projA)<> = (injA)<*, where (projA)<>, resp.
(inj A)<>°, is the full subcategory of mod-A consisting of the A-modules of finite pro-
jective, resp. injective, dimension. Note that for a Gorenstein Artin algebra we have
idAA = idAp [16]. Important classes of Gorenstein algebras are the algebras of finite
global dimension and the selfinjective algebras.

We start with the next result which describes the left derived functors of T4, Tg
and gives also some useful isomorphisms for the extensions groups Ext.

LEMMA 4.5.2. Let Ay ) be a Morita ring.
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(i) For every n > 1 we have the following natural isomorphisms:
UpL,Ta(=) —= Tori(M,—) and UL, Ta(—)=0
(ii) For every n > 1 we have the following natural isomorphisms:
Usl,Tp(—=) —= Tor?(N,—)  and UL, Tp(—) =0
(iit) If Tor (M, X) =0, V1 < i < n, then we have an isomorphism:
Ext,, | (Ta(X), (X', f,g) —== Exti(X,X')

Jor every 1 <i <n and (X",Y’, f',g') € mod-A(4 ).
(iv) If TorP(N,Y) =0, V1 < i < n, then we have an isomorphism:
Ext,, | (To(V), (X', Y/, ') —== Exty(Y,Y")

for every 1 <i <n and (X",Y’, f',¢') € mod-A(4 ).

PRroOF. This result was proved in the general framework of Morita categories, see
Proposition 3.7.1 of Chapter 3. OJ

The following main result of this section gives a sufficient condition for a Morita
ring to be Gorenstein.

THEOREM 4.5.3. Let Ay ) be a Morita ring which is an Artin algebra such that the
adjoint pair of functors (M @4 —, Homg(M, —)) induces an equivalence

~

M ®4 —: (proj A)<> (inj B)<> : Hompg(M, —)

and the adjoint pair of functors (N ®g —,Hom (N, —)) induces an equivalence

~

N ®p —: (proj B)<> (inj A)<> : Homu(N, —)

Then the Morita ring A ) is Gorenstein.

Proor. We will show that (projA(s))<® = (injAw.e)<>°. In oder to prove our
claim it suffices to show that any projective A4 4)-module has finite injective dimension
and any injective Ay y)-module has finite projective dimension. Thus from Proposition
4.2.1 and Proposition 4.2.2 it suffices to show that idA<¢’¢)TA(P) < 00, idA(W)TB(Q) <
00, PdA(d),wHA(I) < oo and pdA(M)HB(J) < oo for any P € projA, Q € projB, I € injA
and J € injB. Let I € injA. By hypothesis the counit €;: N ® g Homy(N,I)) — [
is an isomorphism and consider the Ay y)-modules Hy(f) = (I, Homa (N, I), 857 ©
Hom4 (N, Uy), €;) and

Tp(Homu (N, 1)) = (N ®@p Homa(N, I),Homa(N, I), Prom 4(n,1)s IdNg sHom A (v,1))
Since Ha([) is a Ay y)-module we have the following commutative diagram:

M®¢)

M @4 N @5 Homu(N, I) M®yl
¢®IdHomA(N,I)l jdfw(g}loHomA(N,\I/])

B ®p Homy4 (N, I) Hom4 (N, I)

~
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and therefore we have the following map:
(EII,IdHOmA(NJ))Z TB(HomA(N, ])) — HA(]) (>I<)

which is an isomorphism of A )-modules. Since I is an injective A-module it follows
that the B-module Hom 4(N, I) has finite projective dimension. Let

0— P, — -+ — P — By —> Homy(N,I) — 0

be a projective resolution of Hom4 (N, I) in mod-B. Since the functor N ®p — is an
equivalence restricted to the subcategory (proj B)<> it follows that the complex

0— N®pPh,— - —> NP — N®gHomus(N,I) — 0

is exact. This implies that Tor” (N, Hom4(N,I)) = 0, Vn > 1, and then from Lemma
4.5.2 we have the following isomorphism:

Ext} ., (Ts(Homa(N, 1)), (X,Y, f,g9)) —— Ext}; (Homa(N,1),Y)

for every n > 1 and (X,Y, f,g) € mod-A(4). Since pdgHomy(N,I) < oo it follows
from the above isomorphism that pd, , =~ Tp(Homa(N,I)) < co. Hence from the rela-

tion (%) we infer that the projective dimension of H4(7) is finite. Similarly we prove
that ida, , Ta(P) < oo, ida, , TB(Q) < oo and pdA(M)HB(J) < 00. We infer that

(proj A(g,p)) <> = (inj A(44))=> and therefore the Morita ring A ) is Gorenstein. [

REMARK 4.5.4. (i) Let Ay be a Morita ring and assume as above that
the adjoint pair of functors (M ®4 —,Hompg(M,—)) induces quasi-inverse
equivalences between (proj A)<* and (inj B)<>°, and the adjoint pair of func-
tors (N ®p —,Hom4 (N, —)) induces equivalences between (proj B)<* and
(inj A)<°. Since A € (proj A)<> it follows that id g M < oo and A ~ Endg(M),
and similarly since B € (proj B)<> we get that id 4N < oo and B ~ End4(N).

(ii) Since selfinjective algebras are Gorenstein, it follows from Example 4.2.7 that
the converse of Theorem 4.5.3 is not true in general.

If Ay is a Morita ring with A = M = N = B then we know from Corollary
4.1.13 that the bimodule homomorphisms ¢ and ¢ are equal. From now on we denote
the Morita ring with all entries a ring A by A4 4) = (ﬁ ﬁ) It is known from Fossum-
Griffith-Reiten [49], see also Happel [62], that if A is a Gorenstein Artin algebra then
the upper triangular matrix algebra (j{ /3) is Gorenstein. In this connection we have
the next result, which is a consequence of Theorem 4.5.3, and shows that A4 is

Gorenstein when A is as well.

COROLLARY 4.5.5. Let A be an Artin algebra. Then A is Gorenstein if and only if
the Morita ring Ay ) 15 Gorenstein Artin algebra.

PROOF. Suppose that A is Gorenstein. Then we have (proj A)<>* = (inj A)<> and
so from Theorem 4.5.3 it follows that matrix algebra Ay 4 is Gorenstein. Conversely
assume that Ay 4 is Gorenstein and let I be an injective A-module. Then the in-
jective A g)-module Hy(I) has finite projective dimension since (projAg¢))<™ =
(inj A(g,4)) <. Consider the exact sequence

= TA(P) @ Ta(Q1) — Ta(R) @ Ta(Qo) — Hal) — 0

which is the start of a finite projective resolution of Hy (7). Note that such a resolution
exists from Construction 3.6.1. Then applying the functor Uy: mod-A4 4 — mod-A
we obtain the exact sequence --- — P, Q1 — Py ® Q9 — I — 0 and this implies
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that pd oI < oco. Similarly we show that id y P < oo for every P € proj A. We infer that
(proj A)<* = (inj A)=>° and therefore the Artin algebra A is Gorenstein. O

We continue now in order to determine the Gorenstein-projective modules over
A(g,4)- Before this we recall some basic results for Gorenstein-projective modules. An
acyclic complex of projective A-modules P®*: -+ — P=! — Pt — pPitl 5 ... g
called totally acyclic, if the complex Hom (P®, A) is acyclic.

DEFINITION 4.5.6. [46,47] A A-module X is called Gorenstein-projective if it is of
the form X = Coker (P~! — P%) for some totally acyclic complex P® of projective
A-modules.

pe.

p! P P! P? P?

v

For an Artin algebra A we denote by Gproj A the full subcategory of mod-A consisting
of the finitely generated Gorenstein-projective A-modules. Let X be a left A-module.
Then we have the contravariant functor Homy(—,A): Mod-A — Mod-A° and the
evaluation map:

evy: X — Hompew (Homy (X, A), A), z — evx(z)(f) = f(z)

A A-module X is called reflexive if the A-morphism evy is an isomorphism. For example,
if P is a finitely generated projective A-module then P is reflexive and this gives the
well known equivalence between finitely generated projective left A-modules and finitely
generated projective left A°P-modules.

LEMMA 4.5.7. [/7] [36] Let X be a finitely generated A-module. Then the following
are equivalent:
(i) X € GprojA.

(ii) There is an exact sequence

d° dt d?

0 X PP P! p?
with P* € proj A and every cocycle Kerd' € 1= A.
(iii) X € tt<A, Homp(X,A) € 1t=(Ay) and X is reflexive.

PROOF. (i) = (ii) Since X is a Gorenstein-projective A-module it follows that every
cocycle Ker d' has a projective resolution of the form:

Pi*S Pi72 Pifl
which remains exact after applying the functor Homy(—, A). Then Ext}(Kerd‘, A) = 0
for every n > 1 and therefore every cocycle Ker d’ lies in > A. The result now follows.

(ii) = (i) Let --- — P72 — P71 — X — 0 be a projective resolution of X.
Then from the hypothesis we have the following exact complex:

Kerd® —— 0

Pe. ... p2 4 _pr_ Ll po & _pr 4 po
Kerd’ ~ X

and Kerd® € 't=A for every n > 0. The module X € '*~A and P~! € 11t=A as
well. Then Kerd—! € 1+=A since the full subcategory '*><A is closed under kernels of
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epimorphisms. Continuing in this way we infer that all the cocycles of P® belong to 1= A,
i.e Ext}y(Kerd',A) = 0 for every n > 1. This implies that the complex Hom,(P*®, A) is
exact and therefore X € Gproj A.

(i) = (iii) Since X is Gorenstein-projective it follows that X € *t~A. Also the com-
plex Homy (P*, A) is an exact complex of finitely generated projective left A°P-modules
and from the evaluation morphisms it follows that Hompe (Homa (P, A), A) ~ P* (x).
Hence Hom, (X, A) is Gorenstein-projective, and therefore Homy (X, A) € 11=(A,), but
moreover from the isomorphism (%) we get that X is reflexive.

(iii) = (i) Let --- — P72 — P7' — X — 0 be a projective resolution of
X. Then the complex 0 — Hom(X,A) — Homy(P~' A) — --- is exact since
X eteoA Let - — Q2 — Q7 — Homy (X, A) — 0 be a projective resolution
of Homy (X, A) where Q° € proj A°P. Then if we apply the functor Hompe (—, A) we get
the complex

0 — Hoonp(HomA(X, A),A) — HOI'T'IAop(Cg_l7 A) — Hoonp(Q_Q, A) —_— ..

which is exact since Homy (X, A) € 1= (A,). Then using that X is reflexive we derive
the following acyclic complex of projectives A-modules:

P*: ... > P2 < P~ — = = £ — > Hompe (@71, A) = Hompe (Q72%, A) > - -

X ~ Hom e (Homy (X, A), A)
such that Homy (P*, A) is exact. We infer that X is Gorenstein-projective. O]

Next we also recall some well known descriptions of Gorenstein-projective modules.

PROPOSITION 4.5.8. [47] [36] [277, Proposition 3.10] Let A be an Artin algebra.
(i) We have:

Gproj A C <A = {X | Ext}(X,A) =0, Vn > 1}
(ii) If gl.dim A < oo then:
Gproj A = proj A
(iii) If A is selfinjective then:
Gproj A = mod-A
(iv) If A is a Gorenstein Artin algebra then:
Gproj A = 1t=A

PRrOOF. (i) This follows immediately from the definition of Gorenstein-projectives.
(ii) Let P be a projective A-module. Then we have the complex

Idp

0 P P 0

and this implies that proj A C GprojA. Now let X be a Gorenstein-projective A-module.
If pdy X = m < oo then Ext}(X,A) # 0, but this is a contradiction from (i). Thus
either X € projA or pdy, X = oco. Since the algebra A has finite global dimension it
follows that X is a projective module and then our statement follows.
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(iii) Let X be a A-module and let P* — X, respectively X — I°®, be a projective
resolution, respectively an injective coresolution, of X. Then since the injectives are pro-
jectives and the functor Homy(—, A) is exact it follows that X is Gorenstein-projective.
Thus we have Gproj A = mod-A.

(iv) Suppose that id A < n and id Ay < n, i.e. A is Gorenstein. Let X € tt<A
and let --- — P72 — P71 —s X — 0 be a projective resolution of X. Then the
following complex:

Q®: 0= Homy(X,A) = Homp (P71, A) = ---=Homy (P, A) = Homy (P~ 1 A) = ---

L

is exact. Since Extlss(Homp(X,A),A) =~ Extiot”(Ya,Ar), Vm > 1, and idAy < n
it follows that Ext}s,(Homa(X,A),A) = 0, Vm > 1. Thus Homs(X,A) € 1t=(A,).
Similarly we obtain that every cocycle of the exact sequence Q® belongs to 11> (A,) and
therefore the complex Homyo (Q®, A) is exact. Since every projective P~ is reflexive we
get that Hompee(Homy (X, A), A) ~ X that is X is reflexive. Then from Lemma 4.5.7
we infer that X € Gproj A and therefore from (i) we conclude that Gproj A = 1t=A. [

Recall from [27], [29] that an Artin algebra A is said to be of finite Cohen-Macaulay
type if the category Gproj A of finitely generated Gorenstein-projective A-modules is of
finite representation type, i.e. the set of isomorphism classes of its indecomposable
objects is finite. Recently Li and Zhang [87] determined the Gorenstein-projective
modules over the triangular matrix algebra (3 f\‘), when A is a Gorenstein Artin algebra,
and using this they obtained a criterion for the Cohen-Macaulay finiteness of (‘0\ ﬁ) in
case that A is a Gorenstein Artin algebra of finite Cohen-Macaulay type.

Our aim now is to describe the Gorenstein-projective modules over the algebra
Awe) = (41). For the ring A, 4 we denote by T}, resp. Hj, the functor Tp, resp.
Hg, where the algebra B is now A.

We need the following observation.

LEMMA 4.5.9. Let A4y be a Morita ring. Then we have isomorphisms of functors:
Ta(—) ~ H\ (=) and T\ (=) ~ Ha(—).

PROOF. Let X be a A-module and f: Homy(A, X) — X, g: A®y X — X the
standard isomorphisms. Consider the maps (f™1,g): TA(X) = (X, A®x X, Idagx, Px) —
HLA(X) = (Homp(A, X), X, ex,0p0x © Homp(A, @x)) and (g, f71): T (X) = (A ®x
X, X, ®x,ldagx) — Ha(X) = (X,Homy (A, X), 0} ox © Homp (A, @x),€y). We claim
that (f~',g) and (g, f~') are isomorphisms of A, 4-modules. We prove that the map
(f~1, g) is an isomorphism. Since f~! and g are isomorphisms we have to show that the
following diagrams are commutative:

IdA(X)X (I)X

ARy X ARy X ARy ARy X X
1A®fll lg 1A®gl Lfl
A SN HOI’T]A(A, X) = X A XA X P xorom(A @) HomA(A, X)

Let A ® x be an element of A ®, X. The map f~! sends an element x to f,: A — X
defined by f,(A) = Ax. Also ex(A® f) = f(A). Then g(A ® ) = Az and ex(1) ®
T'A®2) =ex(A® fo) = fo(\) = Az. Hence the first diagram is commutative. For
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the second diagram let A®@ N ® x be an element of A@y A®p X. Then Px (AN ®@x) =
JPp@1Ix(AN ®1x)) =g9(p(A@N)®z) =p(A® X))z and
i ex(A@XN @) = (A N)z) = fonere
where for \” € A we have:
fooene(N) = No(A & )z ()
On the other hand we have

OA®RX Hom(A,®x)

ARy X —= Homy (A, A @5 A @) X)

HomA(A, X)

ART = Par: A —> AN AN X, gro:(N)=N@A@ 1
= h A — X, h(\) = o(N @ Nz
We compute
Homa (A, @x)(0aex (1a ® gAR N @ 2)))(N") = Homp(A, @x)(0rex (A @ Nz))(N)
= Homy (A, (DX)(gA@))\’I(AH))
= Homp(A, ®x)(\" @A ® Na)

— (V' @\
Since ¢ is a A-A-bimodule homomorphism it follows from (x) that the second diagram
is commutative. Thus the map (f~!, g) is an isomorphism. O

The following result characterizes when a module over the algebra A4 4y is Gorenstein-
projective.

COROLLARY 4.5.10. Let A be a Gorenstein Artin algebra. Then a A4 4)-module
(X,Y, f,g) is Gorenstein-projective if and only if X and Y are Gorenstein-projective
A-modules.

Proor. Let 0 — A — [y — [ — -+ — [,, — 0 be an injective coresolution
of AA. If we apply the functors Hy, H)y: mod-A — mod-A, 4) we obtain the exact
sequences 0 — Hy(A) — Ha(ly) — -+ — Ha(£,) — 0 and 0 — H}(A) —
H\ (lo) — - -+ — H)(I,) — 0 which are injective coresolutions of Hy(A) and H, (A)
respectively. From Lemma 4.5.9 the above resolutions can be regarded as injective
coresolutions of T\ (A) and T, (A) respectively. Then using the adjoint pairs of functors
(U, H}) and (Ux,Hy) we have the following commutative diagrams:

0— ((X7 Y, f: g)uTA<A)) - ((vaaf’ g>’ HZX(IO)) T ((X7 Y, f: g)v H;\<In)) —0

| | |

0 —— Homy (Y, A) Homy (Y, 1) e Homu (Y, I,,) 0

and

0 — ((X, Th(A) — (X, Y. f,9), Ha(To)) — -+ — (X, Y. f, ), HA(L,)) — 0
l g |

0 —— Hom, (X, A) Hom (X, 1) Homy (X, I,,) 0

Then Ext}(Y,A) =0, Vn > 1, if and only if Ext} ,  ((X,Y.f,9), Ta(A)) =0, Vn = 1,

and Ext} (X,A) =0, Vn > 1, if and only if Ext} M)((X,Y,f, 9), T\(A) =0,Vn > 1
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Since Awg) ~ Ta(A) ® Ty (A) as Ay g-modules it follows from Corollary 4.5.5 and
Proposition 4.5.8 (iv) that (X,Y, f,g) € Gproj A4 4) if and only if X, Y € GprojA. [0

After the above description it would be interesting to find conditions such that the
matrix algebra Ay 4) is of finite Cohen-Macaulay type.

We close this section with the next result which gives the connection between the
category of Gorenstein-projective modules over the matrix algebra A, 4) and the cor-
responding category of A.

COROLLARY 4.5.11. Let A be a Gorenstein Artin algebra. Then the recollement
situation of mod-Ay 4 is restricted to the categories of Gorenstein-projective modules
Gproj A(g,¢) and Gproj A.

PROOF. Let X be a Gorenstein-projective A-module. Since A is Gorenstein there
exists an exact sequence 0 — X — P® — P! — ... where each P’ is a projective
A-module. If we apply the exact functors T, and T’y we get that T, (X) and T (X) are
Gorenstein-projective Ay 4)-modules, since from Corollary 4.5.5 the Artin algebra A 4)
is Gorenstein. Also from Corollary 4.5.10 it follows that U, (XY, f, g) is Gorenstein-
projective for every (X, Y, f, g) € Gproj A4, and finally we have Ker Uy = {(0,Y,0,0) €
Gproj As.¢) | Y € Gproj A} O



CHAPTER 5

Representation Dimension and Rouquier’s Dimension

In this final Chapter we apply the abstract homological theory developed in Chapter
2 to the two main ingredients of this thesis, namely Auslander’s representation dimen-
sion and Rouquier’s dimension of triangulated categories. In the first section we investi-
gate recollements of abelian categories (<7, %, €¢’) which lift to triangulated recollements
of the associated bounded derived categories (D°(/), D®(%), D*(%)). Moreover we in-
vestigate the Rouquier dimension of triangulated categories. In particular we give upper
and lower bounds for the dimension of a triangulated category T in a recollement sit-
uation (U, T, V) of triangulated categories. As an application we derive bounds for the
dimension of D®(%) in terms of the dimensions of D?(«7) and D?(%) for a recollement
of abelian categories (<7, #,%). Finally we give bounds for the Rouquier dimension of
the bounded derived category of rings with an idempotent element as well as to trian-
gular matrix rings. In the last section of this Chapter we investigate the representation
dimension and in particular how it behaves in a recollement situation (<, %,%). As
an application we generalize a classical result of Auslander relating the representation
dimension of A and End, (P), where A is an Artin algebra and P a finitely generated pro-
jective A-module. We also give several interesting connections with finitistic dimension.
In particular by applying the results of Chapter 2 about global and finitistic dimension
we provide several applications for the representation dimension of Artin algebras and
we present also an interesting interplay between representation and finitistic dimension,
see Theorem 5.2.15 for more details. The results of this Chapter are included in the
paper entitled: Homological Theory of Recollements of Abelian Categories [108].

5.1. Triangulated Categories and Rouquier’s Dimension

In this section we investigate recollements of bounded derived categories arising
from recollements of abelian categories and moreover we give bounds for the Rouquier
dimension of a triangulated category in a recollement situation.

5.1.1. Recollements of Bounded Derived Categories. In this subsection we
investigate recollements of abelian categories (<, %, %) which lift to triangulated rec-
ollements of the associated bounded derived categories (Db(<), D’(%),D%(¥)). It
turns out that the crucial conditions ensuring the existence of such a lifting are: («) the
functor i: & — £ is a homological embedding, and (/) certain homological finiteness
conditions on the left and/or right adjoint of i and the quotient functor e: 8 — €.

First we recall the notion of a recollement of triangulated categories, see [22] and
[133] for more details.

167
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DEFINITION 5.1.1. A recollement situation between triangulated categories U, T and
V is a diagram

u ! T k Vv Rer(U, T, V)
\_/ \_/
p r

of triangulated functors, henceforth denoted by (U, T, V), satisfying the following con-
ditions:

1. (I,e,r) is an adjoint triple.

2. (q,i,p) is an adjoint triple.

3. The functors i, |, and r are fully faithful.
4. Imi = Kere.

The next result explain us the above definition and in particular it shows how we
get recollements of triangulated categories. Compare it with Remark 1.1.3 and Remark
1.1.4 for recollemenents of abelian categories.

LEMMA 5.1.2. (i) [38, Theorem 1.1] Suppose that we have the following dia-
gram of triangulated categories:

such that

(@) (l,e,r) is an adjoint triple, and

(B) the functor | (orr) is fully faithful.
Then the diagram (x) can be completed to the following recollement of trian-
gulated categories:

(i) /29, Theorem 2.1] Suppose that we have the following diagram of triangulated
categories:

u ' T (xx)

such that
() (q,i,p) is an adjoint triple, and
(B) the functor i is fully faithful.
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Then the diagram (xx) can be completed to the following recollement of trian-
gulated categories:

where 'V is the Verdier quotient T/Imi.

REMARK 5.1.3. A recollement situation (U,T,V) of triangulated categories pro-
duces some localization and colocalization functors for 7 and moreover these functors
determines the recollement up to an equivalence. For more details we refer to [20].

The following result indicates a useful characterization for a functor to be a homo-
logical embedding, see Definition 2.1.6, and it will be used in our main result of this
subsection. If 7 is a Serre subcategory of an abelian category & then we denote by
D’ (%) the full subcategory of D®(%) consisting of all complexes whose homology lie
in .

THEOREM 5.1.4. [128, Theorem 2.1] Let % be an abelian category and </ a Serre
subcategory of B. Then the functor i: o/ — A is a homological embedding if and
only if the canonical triangulated functor D(i): Db(«/) — D®(%) induces a triangle
equivalence:

D'(o/) —*~ DI,()
We need the following notion.

DEFINITION 5.1.5. We define a functor F': &/ — 2 between abelian categories
with enough injectives to be of locally finite cohomological dimension if for every A € o/
there exists k4 > 0 such that the right derived functor R"F(A) = 0 for all n > k4.

Dually we define a functor F': &/ — % between abelian categories with enough
projectives to be of locally finite homological dimension.

The following first main result of this section gives necessary and suficcient conditions
such that a recollement of abelian categories induces a recollement in the bounded
derived categories. Note that a special case of the following result for finite dimensional
algebras over a field was proved in [95], and for left noetherian or semiprimary rings
was proved in [96].

THEOREM b5.1.6. Let (o, 2B,€) be a recollement of abelian categories and assume
that B and € have enough projective and injective objects.

(i) The following statements are equivalent:
(a) The functor i: of — A is a homological embedding, and the functor
q: B — A, resp. p: B — o, is of locally finite homological, resp.
cohomological, dimension.
(b) There exists a recollement of triangulated categories

qu |/

D(7) D*(#)
N~ N~~—

Rbp r’
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(ii) The following statements are equivalent:
(a) The functor i: of — A is a homological embedding, and the functor
lI: € — B, resp. r: € — B, is of locally finite homological, resp.
cohomological, dimension.
(b) There ezists a recollement of triangulated categories

q’ Lo
D(«) D*(%) D*(%)
\_/ \_/
p’ Rbr

(iii) The following statements are equivalent:
(a) The functor i: o — A is a homological embedding, and the functors
I: ¢ — B and q: B — &, resp. the functors r: € — B and
p: B — o, are of locally finite homological, resp. cohomological, di-
MENSION.
(b) There exists a recollement of triangulated categories

L’q LYl
, ‘/D;(i)\ , //Db_(e)\ ,
D*(/) D*(%) D*(¢)
\R_bp/ \R_br/

PROOF. First note that the exact sequence of abelian categories 0 — & —
B — € — 0 lifts to an exact sequence 0 — D° (%) — D*(%) — D*(¢) — 0
of triangulated categories, see [73] and [95].

(i) (a) = (b) Since the functor i: &/ — % is a homological embedding then

it follows from Theorem 5.1.4 that there is an equivalence of triangulated categories
D’(&) ~ D%,(%). Then

0 —= D¥(o/) —= D*(B) —~ DY(%) —= 0

is an exact sequence of triangulated categories. Let B® € D?(%). Suppose first that
B* is concentrated in degree zero, so we deal with an object B € %. Then there is
a quasi-isomorphism B®* — I* where I* € K™ (Inj %) is an injective coresolution of
B. Since the functor p is of locally finite cohomological dimension there exists kg > 0
such that R"p(B) = 0 for every n > kg, so p(I*) has bounded cohomology. Hence the
complex p(I*) is quasi-isomorphic to a bounded complex and so Rp(B*) lies in D°(.«).
Suppose now that B® is the complex
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Then we have the following triangle in D*(%):

0 0 0 0
0 0 By By
By By By 0
0 0 0 0
By [0] By[0] Be By[1]

Since the objects Rp(B;), RPp(B;) and RPp(Bi[1]) lie in D®(&) it follows from the

triangle

R’p(B1) R’p(B) R’p(B°) R’p(By[1])

that R’p(B*) belongs also to D?(«7). Continuing inductively on the length of the com-
plex B* we infer that R’p(B*®) lies in D(«/). Hence Rbp(D%(%)) C D’(«). Similarly
we show that Lq(B®) € Db(«/) using that the functor q is of locally finite homological
dimension.

By [74, Lemma 15.6] we have a natural isomorphism

HomD(ﬂ)(qu(B'), A.) =~ HomD(@)(B.u Db(')(A.))

for any complexes B®* € D~ (%) and A* € D (). Since for B* € D*(%) and A® €
D’(7), we have L’q(B*) € D’(«7) and D°(i)(A*) € D*(%), it follows that (L’q, D*(i))
is an adjoint pair and similarly we prove that (D®(i), R’p) is an adjoint pair. On the
other hand by Lemma 5.1.2(ii) it follows that the derived functor D?(e): D*(%#) —
D?(%) admits a left and right adjoint. We conclude that (D?(&), D*(%),Db(¥)) is a
recollement of triangulated categories.

(b) = (a) Let B € 4. Then L’q(B) = q(P*) € D°(«/) where P* is a projective
resolution of B. This means that the complex q(P*) has bounded cohomology and so
there exists mp > 0 such that L,q(B) = 0 for every n > mp. Hence the functor q is
of locally finite homological dimension and similarly we prove that p is of locally finite
cohomological dimension. Now the exact sequence of triangulated categories 0 —
D’(&/) — D¥(%) — D’(¢) — 0 implies that the canonical functor Db(«/) —
D’ (%) is an equivalence. We infer from Theorem 5.1.4 that the functor i: & — %
is a homological embedding.

The proof of part (ii) is similar to the proof of part (i), noting that in the setting
of (ii) the left and right adjoint of the functor D°(i): D*(«/) — D®(%) follows from
Lemma 5.1.2(i). The implication (b) = (a) of (iii) follows from the corresponding
implications of (i) and (ii). If (iii)(a) holds then as above we obtain the recollements
of (i) and (ii). But then from the adjoint pairs (I, D%(e)) and (LI, D%(e)) it follows
that I' ~ L®l and similarly from the adjoint pairs (D%(e),r’) and (D’(e), R’r) we have
r' ~ RPr. This shows the implication (a) = (b) of (iii). O
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5.1.2. Rouquier Dimension. In this subsection we study the connections be-
tween the dimension of D?(4), in the sense of Rouquier [113], and the dimensions of
D(«/) and D?(¥) for a recollement of abelian categories (&7, %,%). Before this we
show a general upper and lower bound for the dimension of a triangulated category in
a recollement situation. We start by recalling the notion of dimension of a triangulated
category due to Rouquier.

Let T be a triangulated category and let U and V be two subcategories of T. We
denote by U xV the full subcategory of T consisting of objects A such that there exists
a triangle U — A — V — UJl] with U € U and V € V. We denote by (U) the
smallest full subcategory of T which contains U and is closed under finite direct sums,
direct summands and shifts. Set U oV := (U * V) and define inductively (U); = 0 and
<u>n = <u>n—1 © <u>

DEFINITION 5.1.7. [113] The dimension of a triangulated category T is defined by
dimT = min{n > 0 | there exists X € T such that (X),.; = T}

To proceed we need the following preliminary result.

LEMMA 5.1.8. (i) Let T be a triangulated category and let X,Y be objects of
J. Then

<X>n * <Y>m C <X ® Y>n+m

(i) Let0 — U T 55V 4 0 be an ezact sequence of triangulated categories
and assume that the functor i admits a left adjoint q and the functor e admits
a left adjoint |. Then for every A € T there exists a triangle

le(A) — A — iq(A) — le(A)[1]

Proor. (i) Let U — A — V — U[1] be a triangle in T with U € (X),, and
Ve (Y)n. Assume that n =1. Then U € (X) C(X@Y)and V € (Y),,, C(XBY),,.
Hence A € (X @ Y).ut1. Assume that n = 2. Since U € (X & Y')s we have a triangle
Uy — U — Uy — Uy[l] with Uy,Us € (X @ Y). Applying the octahedral axiom,
see [25, Proposition 2.1]; to the composition U; — U — A we have the following
commutative diagram:

U, U U Uh[1]
| |
U, A Y UL [1]
. |
U A 1% U]
. |
00— Up[l] == Us[1] ——=0

Since Uy € (X @ Y) and V € (X @Y, it follows that Y € (X ®Y),,11. We infer
that A € (X @Y),40 since Uy € (X @Y). Then continuing inductively on n the result
follows.

(ii) From the counit of the adjoint pair (I,e) we have a triangle

le(A) — A — A" — le(A)[1]
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in T. Applying the functor e: T — V we deduce that e(A’) = 0 and therefore A" ~ i(U)
for some U € U. Since gl = 0 we have the isomorphism qi(U) ~ q(A) and then we get
i(U) ~iqi(U) ~iq(A). This shows that le(A) — A — iq(A) — le(B)[1] is a triangle
in 7. 0J

We need also the following easy observation.

LEMMA 5.1.9. [113, Lemma 3.4] Let F': T — T’ be a triangulated functor which
1s surjective on objects. Then

dmJ < dimT

PROOF. Let T = (X),. Since F is surjective on objects then T" = (F(X)),, and so
we are done. O

The following main result of this section gives bounds for the dimension of a trian-
gulated category T in a recollement Ry (U, T, V).

THEOREM 5.1.10. Let (U, T,V) be a recollement of triangulated categories. Then:
max {dimU,dimV} < dimT7 < dimU+dimV+1

PRroOOF. The functors e and q are essentially surjective since eol = Idy and qoi = Idy,.
Then Lemma 5.1.9 implies that dimJ > dim'V and dim T > dim U, hence

dim T > max {dim U, dim V}
Assume that dimU = n < oo and dimV = m < 00, so there exist objects U € U and
V € V such that U = (U),11 and V = (V)1. Set X = [(V) and Y = i(U). Let
B € T. Then from Lemma 5.1.8 we have the following triangle in T:
le(B) B iq(B) le(B)[1] (5.1.1)

Clearly I((V);) € (I(V)); and i({U);) C (i(U)); forevery 0 <i < m+1land 0 < j <n+1
respectively. Thus le(B) lies in (X),,+1 and iq(B) lies in (Y),+1, so by applying Lemma
5.1.8 to the triangle (5.1.1) we infer that

T = ((X)mr1 * (V)n1) = (X ©Y)nymia
Therefore dmT <n+m+1=dimU+dimV + 1. 0

REMARK 5.1.11. The proof of Theorem 5.1.10 uses only the exact sequence of trian-
gulated categories 0 — U — T — V — 0 and the adjoint pairs (q,i), (I,€). Since
the existence of a left/right adjoint either of i or e induces a left/right adjoint to the
other functor, the above result holds for any exact sequence of triangulated categories
such that one of the involved functors has a left or right adjoint.

The following result provides bounds for the dimension of the triangulated category
D(%) in terms of the dimensions of D’(.&) and D*(%).

THEOREM 5.1.12. Let (o7, B,%) be a recollement of abelian categories and assume
that A and € have enough projective and injective objects. Then:
dimD’(%) > dimD"(¥)
Suppose that the functor i: of — 9B is a homological embedding, and one of the fol-
lowing conditions hold.

(i) The functor|: € — 2 is of locally finite homological dimension.
(ii) The functor r: € — A is of locally finite cohomological dimension.



5.1. TRIANGULATED CATEGORIES AND ROUQUIER’S DIMENSION 174

(iii) The functor q: B — < is of locally finite homological dimension.
(iv) The functor p: B — & is of locally finite cohomological dimension.

Then:
max {dim D%(.¢7),dimD%(¥)} < dimD’(%) < dimD’(<)+ dimD*(%) + 1

PROOF. Since the quotient functor e: 8 — € is exact, the derived functor D(e):
D’(#) — D(¥) exists. Let C*: 0 — C,, — - — C} — Cy — 0 be an object
of D¥(%). Then each C; € € and el(C;) ~ C; with |(C;) € %. The bounded complex
1(C*): 0 — I(C},) — -+ — 1(Cy) —> 0 in D¥(A) is such that D°(e)(I(C*)) = C*, so
DP’(e) is essentially surjective and then dim D?(%) > dim D(%’) by Lemma 5.1.9.

(i) Assume that the functor I: € — Z is of locally finite homological dimension.
Since the functor i: &/ — 4 is a homological embedding, then from Theorem 5.1.6 we
have the following diagram

q’ LYl
\ ‘/D;(i)\ , //Db_(e)\ ,
D!(7) D/(2) DY(%)

where 0 — D’(&) — D(%) — D(%) — 0 (1) is an exact sequence of triangu-
lated categories and (g, D(i)), (L°l, D%(e)) are adjoint pairs of functors. Therefore the
result follows from Theorem 5.1.10 and Remark 5.1.11.

(iii) Suppose now that the functor q: B — & is of locally finite homological
dimension. Then the derived functor Lfq: D*(%) — D’(«/) induces a left adjoint
": D(¥) — D’(%) of Db(e) and thus we have the exact sequence of triangulated
categories (1) and the adjoint pairs (Lbq, D°(i)), (I, D(e)). Hence our result follows as
in the proof of Theorem 5.1.10.

The proof, using the assumptions for r and p, is similar as above and is left to the
reader. 0J

The following is a consequence of Theorem 5.1.6 and Theorem 5.1.12 for comma
categories.

COROLLARY 5.1.13. Let € = (G, %, ) be a comma category.

(i) We have the following exact sequences of triangulated categories:
0 — Db(«) — D%¥%) —D’%B) —0
and
0 — D% %) — D*(¥¢) — D’(«/) —0

(ii) The functor q: € — < is of locally finite homological dimension if and only
if there exists a recollement of triangulated categories:

qu

T

Db(Zy) Db(Ug)

D(/) D*(%) D*(%)
\_/ \_/

D’(Uy)
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(iii) The functor G: B — o is of locally finite homological dimension if and only
iof there exists a recollement of triangulated categories:

LT
o T T T
Db(ﬂf) D (Zaf) Db(%) D (U@) Db(%)
\_/ \_/
D%(Z )

(iv) The functor p: € — A is of locally finite cohomological dimension if and
only if there exists a recollement of triangulated categories:

Db (Ug)

//b\ //b\
Db(e@) D (Z@) Db(cg) D (UW) Db(JZ{>
~N_ ~_

Rbp

(v) The functor G': o — A is of locally finite cohomological dimension if and
only if there exists a recollement of triangulated categories:

D*(Z)
/b\ /b\
D/(#) 2 i) 2 DY ()
~_ ~_ _—
RPH,,

(vi) We have:
max {dim D’(&7),dimD’(#)} < dimD’(¥) < dimD’(«/)+dimD*(%) + 1

PrOOF. From Example 1.1.12 we have the recollements (<7, %€, %) and (%4,€, o).
Since the functors Uy, : € — & and Uyz: € — A are exact it follows from The-
orem 2.1.10 that the functors Z,: &/ — % and Zyg: B — ¥ are homological
embeddings. Hence as in the first part of the proof of Theorem 5.1.6 we obtain the
exact sequences of (i). The bound on the dimension dimD(%’) follows from Theo-
rem 5.1.12. Finally, the remaining assertions follow from Theorem 5.1.6 using that
L,T%(B) = (L,G(B),0,0) Vn > 1 and B € #, and R"H,(A) = (0,R"G'(A),0) Vn > 1
and A € . O

5.1.3. Recollements of Bounded Derived Categories of Rings. For a ring
R we write D°(R) for the bounded derived category of Mod-R. The next consequence
follows from Theorem 5.1.12.

COROLLARY 5.1.14. Let R be a ring and e* = e € R. Then:
dimD’(R) > dim D®(eRe)

If the natural map R — R/ReR is a homological epimorphism, i.e. ReR € X, and
one of the following holds:

(i) pdg R/ReR < o0
(ii) fdg R/ReR < o0
(iii) pd.p. eR < o0
(iv) fdege Re < 00
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then:
max {dim D’(eRe),dim D’(R/ReR)} < dimD’(R) < dimD’(eRe)+dimD*(R/ReR)+1

Recall that the module category over a triangular matrix ring is a comma category,
see [18] and [49]. Then we have the following consequence of Corollary 5.1.13, parts
(ii) and (iii) of which generalize Corollary 2.5 of [38], see also [5] for part (iii).

COROLI(;AORY 5.1.15. Let A = (Ig Ré\fs ) be a triangular matriz ring and let ey = (16* 8)

and e; = (0 15).
(i) We have the following exact sequences of triangulated categories:

0 — D*(R) — DP(A) — D?(S) — 0

and

0 — D*(S) — D’(A) — D’(R) —0
(ii) If fdp A/AesA < 0o or fds N < oo, then (D°(R),D®(A), D?(S)) is a triangu-

lated recollement.

(iii) If pdy A/AesA < 0o or pdp N < 0o, then (Db(S), DP(A), D*(R)) is a triangu-
lated recollement.

(iv) We have:

max {dim D’(R),dimD’(S)} < dimD’(A) < dimD’(R) +dimD’(S) + 1

REMARK 5.1.16. Let A be a finite-dimensional algebra over a field such that there
exist a recollement of triangulated categories (D?(A’), D?(A), D(A”)) for some finite di-
mensional algebras A’ and A”. Then from [125], see also [63], it follows that gl. dim A <
oo if and only if gl. dim A’ < oo and gl. dim A” < co. If e is an idempotent element of A
and AeA € Proj A then from Corollary 2.4.5 it follows that gl. dim A < oo if and only if
gl.dim A/AeA < oco and gl. dimeAe < co. Suppose that the idempotent element e of A is
primitive. Then from [96, Proposition 5] it follows that (D°(A/AeA), Db(A), Db(eAe))
is a recollement of triangulated categories if and only if AeA is projective both as a left
and right A-module. This shows that for finite dimensional algebras the assumption
AeA € Proj A is enough to ensure the finiteness of the global dimension of A in connec-
tion with the finiteness of the global dimension of A/AeA and eAe, without passing to
the corresponding recollement in the bounded derived categories.

5.2. Representation Dimension

In this section we concentrate on the behavior of representation dimension of the
abelian categories involved in a recollement situation and we give application to Artin
algebras. The main consequences of 5.2.2 are on the relation of the representation
dimension of A, where A is an Artin algebra, with that of eAe, where e is an idempotent
element of A. Finally is subsection 5.2.3 we show an interesting interplay between
representation and finitistic dimension of Artin algebras.

5.2.1. Recollements and Representation Dimension. We begin by reviewing
Auslander’s notion of representation dimension in the context of abelian categories,
see [10]. Let M be an abelian Krull-Schmidt category, i.e. every object of M decomposes
into a finite direct sum of objects having local endomorphism rings. An object X of M
is called generator, resp. cogenerator, if any object of M is a factor, resp. subobject,
of a direct summand of a finite direct sum of copies of X. Recall that if X is a full
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subcategory of M then add X denotes the full subcategory of M consisting of all direct
summands of finite coproducts of objects of X.

DEFINITION 5.2.1. The representation dimension of M, denoted by rep.dim M, is
defined as follows:

rep. dim M = inf{gl. dim mod-Endy(X) | X is a generator-cogenerator of M

and add X is functorially finite in M}

Note that contravariant finiteness of add X implies that mod-Endy(X) is abelian
and covariant finiteness of add X implies that mod-Endy (X )" is abelian. In order to
explain this we need to recall some basics from the theory of coherent functors [&].

An additive functor F': M°® — b is called coherent if there exists an exact se-
quence of functors:

Homyi(—, M) —— Homy(—, M®) —= F ——=0

We denote by mod-M the category of coherent functors over M. Given a morphism
f:Y — Z in M, then a morphism g: X — Y is a weak kernel for f provided that
the induced sequence of functors:

Homy¢(—, X) — Homy(—,Y) —— Homy(—, Z)

is exact. Then a classical result of Freyd [52, Theorem 1.4], see also [10, Chapter 3,
Section 2|, asserts that the category of coherent functors mod-M is abelian if and only
if M has weak kernels. Consider now the category of coherent functors mod-add X over
add X. Then from Auslander [10] there is an equivalence of categories:

mod-add X —— mod-End(X)

where mod-Endy(X) is the category of finitely generated left Endy(X)-modules. Let
f: My — M5 be a morphism in add X with kernel Ker f. Since the subcategory add X
is contravariantly finite in M we get the exact sequence:

0 — Homy(—, Ker f)|add x —= Homy(—, M) aga x —= Hompe(—, M)|agax — 0
and therefore add X has weak kernels. Summarizing the above discussion we have:

add X : contravariantly finite ==  add X: has weak kernels

T mod-add X : abelian category

Aug;?ler mod_EndM(X) . abelian CategOTY

Similarly, from the covariant finiteness of add X, we derive that mod-Endy¢(X) is
abelian. Moreover if add X is functorially finite, then it follows that gl. dim mod-Endy(.X)
= gl. dim mod-Endy(X)°P, see [23], and this common value is the weak global dimension
of Endy(X).

Let X be a generator-cogenerator of an abelian Krull-Schmidt category M such
that add X is functorially finite in M. Then it is well known, see [10] and [48], that the
following statements are equivalent :

(i) gl.dim mod-Endy(X) < n.
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(i) For every A € M there exists an exact sequence

0—>an2 Xl XO A O

with X; € add X such that the following induced sequence is exact:
0 — Homy (X, X,,—2) — - - - — Homy (X, Xy) — Homy (X, A) —=0
(iii) For every A € M there exists an exact sequence
0 A X0 Xt e Xn—2 0
with X; € add X such that the following induced sequence is exact:
0 — Homy(X" 2 X) —— -+ - —— Homy¢(X?, X) —— Homy(4, X) —= 0

For completeness we give the proof.

PROOF. (i) = (ii) Let A € M and f: A — X° be a monomorphism with X° €
add X. Note that such a morphism exists since the object X is a cogenerator of M. For
the cokernel of f there is also a monomorphism for some object X! of add X. Then we
have the exact sequence:

0 AL xo 9. Xt

with X% X' € add X. Applying the functor Homy (X, —) we get the following exact
sequence:

0 —— Homy (X, A) ©I) Homy (X, X©) o) Homy (X, X1) —— Coker (X, g) —= 0

Note that the functor Homy(X, —) induces the following equivalence of categories:
Homy(X, —): add X —— proj(mod-Endy(X))

Thus, since Homy (X, X?), Homy (X, X*) € proj Endy(X) and gl. dim mod-Endy(X) < n
it follows that there is an exact sequence:

0 —— Homy¢(X, Xp_s) —= - - - —— Homy(X, Xo) — Homye(X, A) —= 0
with Xo, ..., X,,—o € add X. Then (ii) follows.
(ii) = (i) Let Y be an object of mod-Endy¢(X) and consider the exact sequence

Homat (X, X°) X Homy (X, X') — =Y — =0

with X% X' € add X, i.e. Homy (X, X%) and Homy (X, X!) are projective Endy(X)-
modules. Then for the object Ker h there exists an exact sequence

OﬁXn72 X1 X() Kerh ——0

with X; € add X such that the following induced sequence is exact:
Homy (X, X,,_2) == - -+ —= Homy (X, Xj) - - = Homy(X, X°) — Homp (X, X!) =Y
Homy (X, Ker h)

We infer that the projective dimension of Y is at most n. Hence gl. dim mod-Endy¢(X) <
n. Similarly we show that (i) is equivalent with (iii). O
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An object X € M that realizes the minimal n is called an Auslander generator of
M. If the sequence (ii) exists for an object A € M then we say that A has an add X-
resolution of length < n — 2 and if the sequence (iii) exists then we say that A has an
add X-coresolution of length < n — 2. Hence the representation dimension of M is the
smaller integer n > 2 or oo such that there exist a generator-cogenerator X € M with
the property that add X is functorially finite and every object A € M has an add X-
resolution of length n — 2 or equivalently an add X-coresolution of length n — 2. Note
that rep.dimM = 2 if and only if M is of finite representation type, i.e M has only
finitely many isoclasses of indecomposable objects.

Throughout this section we fix a recollement R,p(%7, B, %), where £ is a Krull-
Schmidt category, and, for simplicity, we assume that for any object X € £, the
subcategory add X is covariantly finite in Z. Clearly then o/ and € are Krull-Schmidt
categories. Note that if Z is of finite representation type, then since &/ and € are fully
embedded in £, it follows that o7 and € are of finite representation type. Our first result
in this section compares the representation dimension of % with the representation
dimension of &7 and ¥ when rep.dim % < 3.

THEOREM 5.2.2. Let (o, B,€) be a recollement of abelian categories and assume
that rep.dim % < 3.
(i) rep.dim% < 3.
(i) If the functor q: B — < is exact, then: rep.dima/ < 3.

PROOF. (i) Let B be an Auslander generator of #. Then e(B) is a generator-
cogenerator of ¥ and since the functor e has left and right adjoint it follows that
adde(B) is functorially finite in 4. We will show that any object C' of € has an
add e(B)-resolution of length at most one. Let C' be an object of €. Since the object
r(C) € # and rep.dim Z < 3 there exists an exact sequence

by bo

0 By By

r(C) 0 (5.2.1)
with Bi, By € add B such that the sequence

0 — Homgy(B, B;) — Homgy(B, By) — Homy(B,r(C)) —= 0 (5.2.2)
is exact. Applying the functor e: & — € to (5.2.1) we obtain an exact sequence

0——e(B) % e(By) b 0 0

with e(By),e(By) € adde(B) and we have to show that the induced sequence
0 — Homy(e(B),e(By)) — Homy(e(B),e(By)) — Homg(e(B),C) — 0  (5.2.3)

is exact, i.e. we have to prove that the morphism Hom¢ (e(B), e(by)): Homy (e(B), e(By))
— Homy (e(B), ) is an epimorphism. Let ¢: e(B) — C be a morphism in %. Then
the following composition of morphisms

r(c)

B—"re(B) r(C)

belongs to Homgy (B, r(C)), where vp is the unit of the adjoint pair (e,r). Hence from
the exact sequence (5.2.2) there exists a morphism x € Homy (B, By) such that koby =
vpor(c). Then e(k)oe(by) = ¢ and so the sequence (5.2.3) is exact. Therefore we deduce
that rep.dim% < 3.
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(ii) Let B be an Auslander generator of Z. Since the functor q is exact and qi ~ Id,,
it follows that the object q(B) is a generator-cogenerator of «7. Further the category
add q(B) is functorially finite in o/. Let A be an object of <. Since rep.dim# < 3

there exists an exact sequence

by bo

0 B By
with Bi, By € add B such that the sequence
0 — Homg(B, B;) — Homg(B, By) — Homg(B,i(A)) —=0 (5.2.5)

i(A) —0 (5.2.4)

is exact. Applying the functor q: & — &7 to (5.2.4) we get an exact sequence

0——q(B) Y qBy) W a0

with q(B1),q(B2) € addq(B) and we claim that the following sequence
0 — Hom(q(B),q(B1)) — Hom(q(B),q(By)) — Hom(q(B),A) —0  (5.2.6)

is exact. Let a: q(B) — A be a map in /. Then the morphism

B 22 iq(B) % i(4)
belongs to Homy (B,i(A)), where A is the unit of the adjoint pair (i,q). Thus from the
exact sequence (5.2.5) there exists a morphism x: B — By such that koby = Agoi(a).
Applying the functor q we have q(k) o q(bg) = @ and therefore the sequence (5.2.6) is
exact. We infer that rep.dim .o/ < 3. O

The following result shows that rep.dim% < rep.dim £ holds in general, provided
that there exists an Auslander-generator of Z enjoying a special property.

THEOREM 5.2.3. Let (o7, B,%) be a recollement of abelian categories. Let B € A
be an Auslander-generator such that addle(B) C add B. Then:

rep.dim% < rep.dim %

PRrOOF. Let X be an arbitrary object of # and let a: By — X be a right add B-
approximation. Let C' € adde(B). Then e(B)" ~ C @ C’ for some n and if we apply
the functor I: € — % we deduce that I(C') € add B since addle(B) C add B. But
this implies that the sequence Home (C,e(B;)) — Home(C,e(X)) — 0 is exact since
the sequence Homgy(1(C), B;) — Home(I(C), X) — 0 is exact. Hence we infer that
that the morphism e(a): e(B;) — e(X) is a right add e(B)-approximation. Let C' be
an object of ¥ and assume that rep.dim % = n; since |(C) € £ there exist an exact
sequence
bn—2 by

0—— B, 2
with B; € add B such that the sequence
0 —— Homg(B, B,,—2) — - -+ — Homy(B, By) — Homy(B,|(C)) —=0
is exact. Then we have the exact sequence

e(b,_— e(b e(b
0 e(Bn72)( 2)..' (b1) e(Bo) (bo) C 0

with e(B;) € adde(B). Recall that e(B) is a generator-cogenerator of ¢ and add e(B)
is functorially finite in €. Since the morphisms by: By — I(C), By — Kerby,: - -,
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B,,_3 — Kerb,_4 are right add B-approximations it follows that the morphisms e(bg):
e(By) — C, e(By) — e(Kerby), -, e(Bn—3) — e(Kerb,_4) are right adde(B)-
approximations. This implies that the sequence

0 — Homy(e(B),e(Bn_2)) — - - - — Homy(e(B),e(By)) — Homy(e(B),C) — 0

is exact. Hence any object C' € ¢ admits an add e(B)-resolution of length at most n — 2
and therefore rep.dim% < n = rep.dim 4. O

5.2.2. Representation Dimension of Artin Algebras. In this subsection we
work in the setting of finitely generated modules over an Artin algebra A. We recall the
notion of representation dimension due to Auslander.

DEFINITION 5.2.4. [10, Auslander| The representation dimension rep.dim A of
A is defined by

rep.dim A = min{gl. dim End,(X) | X: generator and cogenerator of mod-A}

Note that for M = mod-A, Definitions 5.2.1 and 5.2.4 coincide. We start with the
following consequences of Theorems 5.2.2 and 5.2.3.

COROLLARY 5.2.5. Let A be an Artin algebra with rep.dimA < 3 and e an idem-
potent element of R. Then:
(i) rep.dimeAe < 3.
(i) If the A-module A/AeA is projective, then: rep.dimA/AeA < 3.

COROLLARY 5.2.6. Let M be an Auslander-generator of A and e? = e an idempotent
of A. If the multiplication map Ae Qcpe eM — M is split monomorphism, then:

rep.dimeAe < rep.dimA

PROOF. Since the map Ae ®.p. eM — M is split monomorphism, it follows that
add(Ae ®cpe eM) C add M and therefore the result follows from Theorem 5.2.3. O

Let P be a finitely generated projective A-module. Auslander posed the question
of how the representation dimensions of A and End,(P) are related, see [10], where
he proved that if A is of finite representation type, then so is Endy(P). Now as an
application of Theorem 5.2.2(i) we have the following result which provides a partial
answer to the above question.

COROLLARY 5.2.7. Let A be an Artin algebra. Then:
rep.dmA < 3 <= rep.dimEnd,(P) < 3
for any finitely generated projective A-module P.

We continue with an application to the finitistic dimension. By a well known result of
Igusa-Todorov, see [66], if A is an Artin algebra of rep.dim A < 3 then fin.dim A < oo.
The following, which is the main result of A. Zhang and S. Zhang [132], is a direct
consequence of Corollary 5.2.5(i) and Igusa-Todorov’s result.

COROLLARY 5.2.8. [132, Theorem 2.3] Let A be an Artin algebra with rep.dim A < 3
and e* = e € A. Then:
fin.dimeAe < oo

ExXAMPLE 5.2.9. Many classes of algebras are known to have representation dimen-
sion at most three. For instance we mention:



(i)

(iii)

(vi)

(vii)

(viii)
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Algebras with radical square zero. Auslander proved in [10] that if A is an
Artin algebra with radical v, Loewy length £/(A) = n and rep.dim A/t < 2,
then rep.dim A < 3. This implies that every Artin algebra A with radical
square zero has rep.dim A < 3.

Hereditary algebras. This is also a well known result of Auslander [10]. The
Auslander generator in this case is the direct sum of all the non-isomorphic in-
decomposable projective modules with all the non-isomorphic indecomposable
injective modules.

Stably hereditary algebras. Changchang Xi has shown that if an Artin algebra
A is stably hereditary then rep.dim A < 3, see [127, Theorem 3.5]. Recall that
an Artin algebra A is called stably hereditary if () each indecomposable sub-
module of an indecomposable projective module is either projective or simple
and () each indecomposable factor module of an indecomposable injective
module is either injective or simple. We refer to [127] for more details.

Special biserial algebras. Erdmann, Holm, Iyama and Schréer have shown
that any special biserial algebra has representation dimension at most three,
see [48, Corollary 1.3]. This is an application of their main result, which
asserts that if there is a radical embedding f: A — B and rep.dimB < 2
then rep.dim A < 3. See [48] for more details as well as for the definition of
special biserial algebras.

Tilted algebras. Let A be an Artin algebra. Recall that a A-module T is
tilting if pdy T < 1, Ext) (T, T) = 0 and there exists a short exact sequence
0 — A — T — T' — 0 with 7% € add7T. Then the endomorphism
algebra Enda (7') of a tilting module 7" over a hereditary algebra A is called a
tilted algebra. Assem, Platzeck and Todorov proved that the representation
dimension of a tilted algebra is at most three. Moreover they showed that
the class of strict laura algebras has also representation dimension bounded
by three. For more details see [6].

Quasi-tilted algebras. Oppermann has shown that if A is a quasi-tilted algebra
over an algebraically closed field then rep.dim A < 3. In particular, any quasi-
tilted non-tilted algebra has representation dimension three. Recall that a
finite dimensional k-algebra A is called quasi-tilted if A ~ End,, (T for some
tilting object 7" in a hereditary abelian category &7 (i.e. Ext?,(X,Y) = 0 for
any X,Y € o). Hence if &/ is the module category of a hereditary algebra
then A is tilted. For more details we refer to [102].

Piecewise hereditary. An Artin algebra A is said to be piecewise hereditary if
the derived category D’(mod-A) is triangle equivalent with D®(.7) for some
hereditary abelian category 7. For this important class of algebras, Happel
and Unger have shown that the representation dimension is at most three,
see [64, Corollary 3.2].

Torsionless-finite algebras. Let A be an Artin algebra and denote by Sub A the
full subcategory of mod-A consisting of the submodules of the projectives. The
Artin algebra A is said to be torsionless-finite if Sub A is of finite representation
type, i.e. SubA = add X for some A-module X. Ringel [111], and later
Beligiannis [28] gave a simpler proof, has shown that if A is a torsionless-finite
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Artin algebra then rep.dim A < 3. This important class of algebras contains
many other well known classes. For instance the algebras with radical square
zero and the hereditary ones are torsionless finite. There are more classes of
algebras that are torsionless finite and thus they have representation dimension
at most 3 but not all Artin algebras with representation dimension at most 3
are torsionless finite. See [111] for more details on torsionless-finite algebras.

Therefore for any algebra A in the above list and any idempotent element e € A we
have rep.dimeAe < 3 and fin. dim eAe < oc.

Auslander in [10] proved that if A is a hereditary Artin algebra then rep.dim A < 3.
Then he asked if rep.dim A < 2 + gl. dim A for all Artin algebras A, and so the general
question is how we can relate representation dimension with global dimension. In this
connection we have the following results.

Consider the Artin algebra I' = Ends(A @ D A), where D denotes the usual duality
functor of Artin algebras, viewed as a Morita ring via the isomorphism Endy (A®D A) ~

(Hom Aé\D AA) DAA). Recall that for the idempotent element ey, = (10A 8) € I' we write

gl.dimpp, I = sup{pdp X' | X € mod-I'/T'epT'}.
COROLLARY 5.2.10. Let A be an Artin algebra and I' = Endy (A @ D A). Then:
rep.dimA < gl.dimA +gl. dimp ., '+ 1
and

gl.dimp /e, rI' < gl.dim[/Teal’ + pdp T'/Tesl

PROOF. For an Artin algebra A we always have rep.dim A < gl.dimEnd,(A® D A)
since A@®D A is a generator-cogenerator of mod-A. By Example 1.1.8 we have the recolle-
ment (mod-I'/T'e,I", mod-T', mod-e ey ) of module categories and mod-A ~ mod-eTey.
Then the assertion follows from Proposition 2.2.5. O

The following consequence of Corollary 5.2.10, implied also by Proposition 2.2.5, is
a result of Xi.

COROLLARY 5.2.11. [126, Proposition 5.3] Let A be an Artin algebra such that
Homy(DA,A) = 0. Then:

rep.dimA < 2gl.dmA+1

PROOF. Since Homy(DA,A) = 0 we have the recollement of module categories
(mod-A, mod-(4 B2), mod-A). Since gl.dimI'/TesI' = gl.dim A and pdpI'/Te,I' = 0
then the result follows from Corollary 5.2.10. 0

We have the following consequence of Corollaries 2.4.2 and 2.2.17 applied to recolle-
ments of module categories of the form (mod-I'/T'esI", mod-I", mod-A).

COROLLARY 5.2.12. Let A be an Artin algebra and I’ = Endy (A& DA).

(i) If the natural map I' — T'/Tepl’ is a homological epimorphism, i.e. TeyI' €
X, then:

rep.dimA < pdp['/TepI” + max{pdp. ['/TepI" + gl. dimI'/TepI, gl. dim A}
(i) If the idempotent ideal TepI’ € projI" and T'epI" € projI'°P, then:
rep.dim A < max{gl.dim['/Te,I" + 2,gl.dim A + 1}
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REMARK 5.2.13. In Corollaries 5.2.10 and 5.2.12 we used the recollement of module
categories (mod-I'/Te I', mod-T', mod-A) defined by the idempotent ey = (‘¢ §) of I.
Note that we have also the idempotent €) = (§,) of I'. Hence we have another
recollement (mod-I'/T'¢\ ", mod-I", mod-A) which is different from the first one since
the categories mod-I'/T'¢), " and mod-T"/T'e,I" are not equivalent in general. Using the
recollement defined by the idempotent element ¢/, we obtain analogous results; details

are left to the reader.

COROLLARY 5.2.14. Let A be an Artin algebra with rep.dim A = gl.dimEndy A,
where A = Endy(A @ X) for an Auslander generator A & X. Let ex = (§9) and
CEnda (X) = (8 (1]) be the induced idempotents of A.

(i) If the A-module AeyA is projective, then:
max{gl.dim A, gl. dim A/Ae,A} < 0o
(ii) If the A-module Aegng,(x)A is projective, then:
max{gl. dim End, (X), gl. dim A /Aegnq, (x)A} < 00

PROOF. As before we view the endomorphism Artin algebra Endy(A & X) as the
matrix algebra A = ( Hom AA( X,A) Endf( X) ) Then we have the recollements of module cate-
gories (mod-A/Aep A, mod-A, mod-A) and (mod-A/Aegng, (x)A, mod-A, mod-End, (X)).
Note that we have the equivalences mod-egng, (x)Aegnd, (x) =~ mod-End, (X) and
mod-ey Aey ~ mod-A. Then the result follows from Corollary 2.4.5. O

5.2.3. Finitistic Versus Representation Dimension. Let A be an Artin alge-
bra. We call a pair (T, e), consisting of an Artin algebra I' and an idempotent e* = ¢ € T,
an Auslander pair for A, if I has finite global dimension and A ~ el'e. By a basic
result of Auslander, see [10], any Artin algebra admits an Auslander pair and Dlab-
Ringel showed that I" can be chosen to be quasi-hereditary, see [44]. In fact one can
take T' = Endp (7, A/t"), where t is the Jacobson radical of A and n = ¢¢(A) its Loewy
length. In this case Auslander proved that gl.dim[' < ¢¢(A). We call (T',e), where
[' = End (@, A/t"), the natural Auslander pair of A.

The main result of this section gives an interesting interplay between representation
dimension and finitistic dimension, and presents situations where the finitistic dimension
of an Artin algebra is finite.

THEOREM 5.2.15. Let A be an Artin algebra.

(i) Let T' = Endy(A @ D A) and assume that the Nakayama functor v =D A ®) —
has locally finite homological dimension. Then:

fin.dimA < fin.dimI' + |l.b.hom.dimv

(ii) Let (I'ye) be an Auslander pair for A. If the functor I'e @cr. —: mod-A —
mod-I" has locally bounded homological dimension, then fin.dim A < co. More
precisely:

fin.dimA < gl.dimI' + L.b.hom.dim I'e ®.,r. — < 00

In particular let (EndA(EBfi({x)A/ti), e) be the natural Auslander pair of A. If
the functor I'e ®cre —: mod-A — mod-I" has locally bounded homological
dimension, then:

fin.dimA < ¢/(A) + l.b.hom.dim T'e ®.pe — < 0
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(i) Let A @ X be an Auslander generator of A. If the functor Homy (X, A) ®x
—: mod-A — mod-I" has locally bounded homological dimension, then:

fin.dim A < rep.dim A + I.b.hom.dim Hom, (X, A) ®y — < o0

Proor. Part (i) follows from Corollary 2.4.10. Part (ii) follows from Theorem
2.3.2 applied to the recollement induced by an Auslander pair, see Example 1.1.11.
For part (iii), let A = Endy(A & X). Since gl.dimA := n < oo it follows that
fin.dimA = rep.dimA = gl.dim A. Therefore if we view A as a Morita ring which
is an Artin algebra, as in Corollary 5.2.14, then the result follows from Corollary 2.4.10.
Hence if the locally bounded homological dimension of the functor Homy (X, A) ®4 — is
l.b.hom.dim Homy (X, A) ®y — = m, then we infer that fin.dimA <n+m < occ. O

It follows from Theorem 5.2.15 that an Artin algebra A has fin.dim A < oo, provided
that one of the following conditions hold:

(i) There exists a summand X of an Auslander generator such that the functor
Homj (X, A) ®, — has locally bounded homological dimension.

(ii) The natural quasi-hereditary algebra I" and the idempotent e € T" associated to
A has the property that the functor I'e ®.r. — has locally bounded homological
dimension.



ABSTRACT : In this thesis we investigate homological invariants arising in the repre-
sentation theory of Artin algebras. The main focus of our study is on the representation
and finitistic dimension of Artin algebras, the class of Cohen-Macaulay modules and the
Rouquier dimension of triangulated categories. The proper conceptual framework, from
our perspective, for this study is the general setting of recollements of abelian cat-
egories, a concept which is fundamental in algebra, geometry and topology, and the
closely related omnipresent class of Morita rings. Our aim is to investigate homological
aspects of recollements of abelian categories and to study Morita rings in the context
of Artin algebras, concentrating mainly at representation-theoretic and homological as-
pects. Moreover we classify recollements of abelian categories whose terms are module
categories, thus solving a conjecture by Kuhn. Our interest in recollements is motivated
from questions and problems on representation and finitistic dimension of Artin algebras
and the interrelation between them. On the other hand our interest in Morita rings is
motivated by the frequent occurrence of this class of matrix rings in the representation
theory of Artin algebras and elsewhere, and the interpretation of their module categories
via suitable recollements.
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left t-exact, 40 absolutely flat, 53
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right t-exact, 40 Morita, 33, 134
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Giraud, 45
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reflective, 111
right k-perpendicular, 55
Serre, 44
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