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Summary of the dissertation 

The present dissertation is oriented towards the empirical application of certain models and 

econometric techniques drawn from recent developments in the financial econometric 

literature. The aims of this project are targeted a) in testing the proposed financial models 

to financial data sets, b) in enriching and strengthen the analysis by inducing new aspects 

into the proposed methodologies, and finally c) in producing inferences and comparing the 

outcomes with other results existing in  many related empirical applications.  

Each chapter in the present dissertation corresponds a different section of applied 

econometrics and therefore three empirical projects are carried out. Those are : a) the 

estimation and  test of the joint conditional CAPM model introduced by Morelli (2011), b) 

the detection of fractional cointegrating relations using the variance ratio approach 

introduced by Nielsen (2010), and finally c) a comparative analysis of different volatility 

models, aiming a) the comparison of their volatility forecasting potentials  under various 

forecasting horizons, and b) the detection of possible statistically significant volatility - 

return relations.  Specifically :   

Chapter 1 follows the approach of Morelli (2011) and carries over the estimation and test 

of the joint conditional CAPM model. The analysis uses the monthly returns of the 25 

Fama-French portfolios in the period from July 1926 to June 2008 to evolve in two phases. 

The first part of the analysis through the application of four different methodologies 

estimates corresponding versions of the time varying beta coefficients series, while the 

second based on those latter estimates tests the statistical significance of the beta - return 

relation, especially when the last is conditioned upon the sign of excess market returns.  
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Note that the above methodologies correspond a) the volatility approach, where  

conditional covariances and variances that define the notion of conditional beta are 

modeled  as ARCH, GARCH, FIGARCH and FIEGARCH processes, b) the recursive OLS 

approach, and c) the Kalman filter analysis, where two different assumptions have been 

applied on the definition of the state equation. Those are a) the random walk approach and 

the b) AR(1) alternative.  

In spite of differences existing in all four versions of the estimated time varying beta 

coefficients series, results in all four procedures reject the conditional and the joint 

conditional CAPM versions, while results appear robust either when the analysis examine 

the full sample case or two equal sub-samples. 

The key feature of chapters 2 and 3 evolves around the idea of long memory that is 

detected both in cointegrating relations and volatility return series. From the initial work of 

Granger (1981) to nowadays there has been an increasing amount of evidence supporting 

the presence of long memory in different financial and macroeconomic  series, with the list 

including data over exchange rates, interest rates, indexes of production, consumption, 

unemployment, estimated series on volatility and many others.
1
 

 

Chapter 2 uses  daily data from the European interbank money market to examine the term 

structure theory on four interest rates series. As it is well known expectations hypothesis 

suggests the existence of long run equilibrium relations among interest rates of different 

maturities. The relations imply the stationary nature of spreads, while traditionally the 

theory is verified through cointegration analysis. However, the restrictiveness of I(0)/I(1) 

                                                           
1 See for example Diebold and Rudebusch (1989), Sowell (1992), Baillie (1996), Lobato and Velasco (2000), 

Andersen, Bollerslev, Diebold and Ebens (2001). 
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dichotomy that is followed in traditional cointegration analysis and the possibility that the 

time series in question may be fractionally integrated, forces the present application to 

examine the cointegration rank through fractionally integrated systems. Indeed chapter 2 

follows the non parametric variance ratio test of Nielsen (2010)  and applies such a 

fractional analysis, while at the same time and for comparative reasons the chapter expands 

with the estimation of parametric tests of Johansen (1998,1991) and the fractional 

alternative of Breitung and Hassler (2002).  

 

Although results on the cointegration rank differ significantly between parametric and non 

parametric tests, however no specific outcome can be considered generally true for the 

parametric alternatives, since both procedures end up with different results when different 

lag augmentations are being applied. Finally the paper proceeds with an informal 

comparison of the estimated and hypothesized cointegrating space, given that the variance 

ratio procedure provides a consistent estimator of the last. 

 

Chapter 3 deals with issues on volatility modeling and volatility forecasts. The chapter uses 

the daily returns of the Fama-French stock market index to estimate initially different 

volatility models (GARCH, EGACRH, FIGARCH, IGARCH, GARCH-M, EGARCH-M, 

FIGARCH-M, IGARCH-M) while aims the comparison of their volatility forecasting 

potentials and the detection of  statistically significant volatility – return relations. As far as 

the volatility modeling part is concerned the chapter presents an application of the 

exponential fractional GARCH-M model (FIEGARCH-M) that extends the basic volatility 

FIEGARCH framework of Bollerslev and Mikkelsen (1996) by introducing a possible 

volatility in mean effect. However, the analysis of Christensen and Nielsen (2007) which 

claims that introducing volatility in the mean equation may generate long memory in 
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returns, forces the present application to acknowledge existence of possible spillover 

effects and naturally the chapter extends by estimating the filtered long memory volatility 

models (FIEGARCH-MG and FIEGARCH-MH)  of Christensen, Nielsen and Zhu (2010). 

Both enter the volatility forecast comparison and both are tested for the presence of 

statistically significant volatility-return relations. On the distributional assumption part the 

chapter explores all available options and alters the estimation settings of the estimated log 

likelihood functions by applying the following four distributional assumptions. These are 

a) normality, b) t-student, c) generalized error and c)  skewed asymmetric distribution.   

The results suggest the existence of a statistically significant volatility in mean effect when 

both filtered long memory volatility models are estimated under t student,
2
 while on the 

other hand the volatility forecast comparison indicates a solid preference to the 

parsimonious FIEGARCH model, since the last dominates all other alternatives 

irrespective of the assumed forecasting horizon. 

                                                           
2
 Although this is not generally valid for the other competing volatility frameworks. 
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Summary in Greek 

Ζ παξνύζα δηδαθηνξηθή δηαηξηβή πξνζαλαηνιηζκέλε ζηελ εκπεηξηθή εθηίκεζε δηαθόξσλ 

νηθνλνκεηξηθώλ ππνδεηγκάησλ πνπ νξηνζεηνύλ ηηο πην πξόζθαηεο εμειίμεηο ζηα αληίζηνηρα 

πεδία ηεο ρξεκαηννηθνλνκηθήο βηβιηνγξαθίαο, απνβιέπεη  ηόζν ζηνλ εκπινπηηζκό θαη ηελ 

ελδπλάκσζε ησλ ήδε ππάξρνλησλ εκπεηξηθώλ εξεπλώλ κε λέα ζηνηρεία, όζν θαη ζηελ 

παξαγσγή πνξηζκάησλ θαη ηελ ζύγθξηζε ηνπο κε    απνηειέζκαηα  παξόκνησλ εκπεηξηθώλ 

κειεηώλ. 

Κάζε έλα από ηα ηξία θεθάιαηα ηεο παξνύζαο δηαηξηβήο εκπίπηεη ζε έλα δηαθξηηό 

εξεπλεηηθό ρσξίν ηεο εθαξκνζκέλεο νηθνλνκεηξίαο, θαη ζπλεπώο ηα ηξηα απηνηειή 

εκπεηξηθά αληηθείκελα πνπ πξαγκαηεύεηαη ην παξόλ θείκελν είλαη : α) ν ππό ζπλζήθε από 

θνηλνύ έιεγρνο ηνπ Morelli (2011) γηα ηελ εκπεηξηθή ηζρύ ηνπ ππνδείγκαηνο απνηίκεζεο 

πεξηνπζηαθώλ ζηνηρείσλ (CAPM), β) ν θιαζκαηηθόο έιεγρνο ηεο ύπαξμεο 

ζπλνινθιεξώζηκσλ ζρέζεσλ ζε Δπξσπατθά δηαηξαπεδηθά επηηόθηα  ζπγθεθξηκέλεο 

δηάξθεηαο ρξεζηκνπνηώληαο ηελ αλαινγία δηαθπκάλζεσλ ηνπ Νielsen (2009), θαη  ηέινο γ) 

ε  εθηίκεζε δηαθόξσλ ππνδεηγκάησλ κεηαβιεηόηεηαο ρξεζηκνπνηώληαο ηνλ δείθηε αγνξάο 

ησλ Fama-French, επηδηώθνληαο αθελόο ηελ  ζπγθξηηθή αλάιπζε ηεο πξνβιεπηηθήο  

ηθαλόηεηαο ησλ ππνδεηγκάησλ απηώλ θαη αθεηέξνπ ηνλ εληνπηζκό ζηαηηζηηθά ζεκαληηθώλ 

ζρέζεσλ ζηελ δηαδηθαζηά αληαιιαγήο ηνπ θηλδύλνπ κε ηελ απόδνζε.  

Αλαιπηηθά : 

Τν πξώην θεθάιαην  αθνινπζώληαο ηελ εκπεηξηθή πξνζέγγηζε ηνπ Morelli (2011) εθηηκά 

ηελ εγθπξόηεηα ηνπ ππνδείγκαηνο CAPM πξαγκαηνπνηώληαο ηνλ πξνηεηλόκελν από ηνλ 

Morelli από θνηλνύ ππό ζπλζήθε έιεγρν ηνπ ππνδείγκαηνο. Ζ αλάιπζε ρξεζηκνπνηώληαο 

ηηο κεληαίεο απνδόζεηο ησλ 25 ραξηνθπιαθίσλ ησλ Fama-French ηελ πεξίνδν από ηνλ 
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Ηνύιην ηνπ 1926 εσο ηνλ Ηνύλην ηνπ 2008 εθηπιίζζεηαη ζε δύν θάζεηο : ζηελ πξώηε κέζσ 

ηεζζάξσλ πξνζεγγίζεσλ εθηηκώληαη ηζάξηζκεο εθδνρεο ησλ κεηαβαιιόκελσλ ρξνληθά 

βήηα, ελώ ζηελ δεύηεξε ειέγρεηαη ε ζηαηηζηηθή ζεκαληηθόηεηαο ηεο ζρέζεο κεηαμπ βήηα 

θαη απνδόζεσλ, εηδηθά όηαλ ε ηειεπηαία ηειεί ππό ηελ ζπλζήθε πξνζήκνπ ησλ 

ππεξβαιινπζώλ απνδόζεσλ ηεο αγνξάο.  

Να ζεκεησζεί όηη νη εθηηκήζεηο ηνπ πξώηνπ ζηαδίνπ απηέο αληηζηνηρνύλ ε θάζε κηα ζε 

δηαθξηηέο κεζνδνινγηθέο πξνζεγγίζεηο. Απηέο αλαιπηηθά είλαη : α) ζηελ πξνζέγγηζε ηεο 

κεηαβιεηόηεηαο, όπνπ νη ππό ζπλζήθε δηαθπκάλζεηο θαη ζπλδηαθπκάλζεηο πνπ 

ρξεζηκνπνηνύληαη ζηελ εμαγσγή ησλ κεηαβαιιόκελσλ ρξνληθά βήηα πξνθύπηνπλ από ηελ 

εθηίκεζε θαηάιιεια εμεηδηθεπκέλσλ ππνδεηγκάησλ κεηαβιεηόηεηαο, β) ε πξνζέγγηζε ησλ 

επαλαιεπηηθώλ εθηηκήζεσλ κε ηελ κέζνδν ησλ ειαρίζησλ ηεηξαγώλσλ, θαη ηέινο ε 

κέζνδνζ ηνπ θίιηξνπ Kalman όπνπ δηαθξίλνπκε ηελ ππόζεζε γ) ηνπ ηπραίνπ πεξίπαηνπ 

θαη δ) ηελ απηνπαιίλδξνκε ελαιιαθηηθή. Παξά ηηο πξνθαλείο αληηζέζεηο κεηαμπ ησλ 

ηεζζάξσλ εθηηκήζεσλ ηα απνηειέζκαηα ζπιιήβδελ ησλ ειέγρσλ απνξξίπηνπλ ακθόηεξεο 

ηηο ππό ζπλζήθε εθδνρέο ηνπ CAPM, ηόζν ζηελ πεξίπησζε ηνπ πιήξνπο δείγκαηνο, όζν 

θαη ζε εθείλε ησλ δύν ππνπεξηόδσλ ίζεο ρξνληθήο δηάξθεηαο.  

Τν θπξίαξρν ζηνηρείν ησλ θεθαιαίσλ 2 θαη 3 αθνξά ην ραξαθηεξηζηηθό ηεο  καθξνρξόληαο 

κλήκεο, πνπ πξνζηδηάδεη ηόζν ηηο ζπλνινθιεξώζηκεο ζρέζεηο δηαθόξσλ νηθνλνκηθώλ 

κεγεζώλ, όζν θαη ηελ κεηαβιεηόηεηα πνπ εθηηκάηαη  ζηηο απνδόζεηο ησλ κεηνρώλ.
3
 

Αλαιπηηθά : 

                                                           
3
Από ηελ αξρηθή εξγαζία ηνπ Granger (1981) κέρξη θαη ζήκεξα πιεζώξα ζηνηρείσλ ππνζηεξίδεη ηελ 

παξνπζία καθξνρξόληαο κλήκεο ζε δηάθνξεο θαηεγνξίεο δεδνκέλσλ είηε ρξεκαηννηθνλνκηθώλ είηε 

καθξννηθνλνκηθώλ. Τέηνηα δεδνκέλα είλαη ζπλήζσο νη ζπλαιιαγκαηηθέο ηζνηηκίεο, ηα δηαηξαπεδηθά 

επηηόθηα, νη δείθηεο παξαγσγήο θαηαλάισζεο θαη αλεξγίαο. Βι Diebold & Rudebusch (1989), Sowell (1992), 

Baillie (1996), Lobato & Velasco (2000), Andersen, Bollerslev, Diebold & Ebens. 
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Τν θεθάιαην 2 αμηνπνηώληαο εκεξήζηα δεδνκέλα ηεο Δπξσπατθεο δηαηξαπεδηθήο αγνξάο 

ρξήκαηνο εξεπλά ηελ ύπαξμε καθξνρξόλησλ ζρέζεσλ ζηηο απνδόζεηο  ηεζζάξσλ επηηνθίσλ 

δηαθνξεηηθήο ρξνληθήο δηάξθεηαο.  

Ζ δηαδηθαζία απνθαηλόκελε ηελ ζηαζηκόηεηα ησλ δηαθνξώλ ζηηο απνδόζεηο ησλ ελ ιόγν 

ζεηξώλ παξαδνζηαθά  πξαγκαηνπνηείηαη κε ζπλνινθιεξώζηκεο κεζόδνπο, ελσ νη 

πεξηνξηζκνί ζηελ αλάιπζε από ηελ ―θιαζηθή‖ δηρνηόκεζε ησλ ζεηξώλ ζε ζηάζηκεο θαη 

κε, όπσο άιισζηε ε πηζαλόηεηα ηεο ύπαξμεο θιαζκαηηθά νινθιεξώζηκσλ κεηαβιεηώλ 

επηβάιινπλ επιόγσο ειέγρνπο αλαγλώξηζεο θιαζκαηηθά ζπλνινθιεξώζηκσλ ζρέζεσλ.  

Υπό ην πξίζκα απηό ην θεθάιαην 2 εθαξκόδνληαο ηνλ κε παξακεηξηθό έιεγρν ηεο 

αλαινγίαο δηαθπκάλζεσλ ηνπ Nielsen (2010) πξαγκαηνπνηεί κηα εκπεηξηθή εθηίκεζε 

θιαζκαηηθνύ ηύπνπ, ελώ ηα εμαρζέληα πνξίζκαηα αληηπαξαβάιινληαη κε ηα απνηειέζκαηα 

εθηίκεζεο ησλ παξακεηξηθώλ ειέγρσλ ηνπ Johansen (1998,1991) θαη ηνπ Breitung and 

Hassler (2002).  

Τα απνηειέζκαηα ππνγξακκίδνπλ αθελόο ηα δηαθνξεηηθά πνξίζκαηα ησλ ειέγρσλ ζρεηηθά 

κε ηνλ αξηζκνύ ησλ ζπλνινθιεξώζηκώλ ζρέζεσλ, ελσ αθεηέξνπ ππνλνκεύνπλ ηελ 

αμηνπηζηία ησλ παξακεηξηθώλ κεζόδσλ θπξίσο κέζσ ηνπ πθηζηάκελνπ πινπξαιηζκνύ ησλ 

απνηειεζκάησλ όηαλ επηβάιινληαη δηαθνξεηηθέο πξνζαπμήζεηο ζηνλ αξηζκό ησλ 

πζηεξήζεσλ. Τειηθά ην θεθάιαην 2 θιείλεη κε έλαλ άηππν έιεγρν ν νπνίνο ζπγθξίλεη ηνλ 

εθηηκεκέλν θαη ππνζεηηθό ζπλνινθιεξώζηκν ρώξν.  

Τν θεθάιαην 3 αζρνιείηαη κε ηελ ππνδεηγκαηνπνίεζε ηεο κεηαβιεηόηεηαο θαη ηελ 

πξαγκαηνπνίεζε πξνβιέςεσλ.
4
 Φξεζηκνπνηώληαο ηηο εκεξήζηεο απνδόζεηο ηνπ δείθηε 

αγνξάο ησλ Fama-French, ε αλάιπζε εθηηκά αξρηθά δηάθνξα ππνδείγκαηα 

                                                           
4
 Οη πξνβιέςεηο πξνθαλώο αθνξνύλ ηελ κεηαβιεηόηεηα. 
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κεηαβιεηόηεηαο,
5
απνβιέπσληαο ηόζν ζηελ ζύγθξηζε ηεο πξνβιεπηηθήο ηνπο ηθαλόηεηαο, 

όζν θαη ηνλ εληνπηζκό ελδερνκέλσο ζηαηηζηηθά ζεκαληηθώλ ζρέζσλ  αληαιιαγήο 

θηλδύλνπ-απόδνζεο.  

Δηδηθά ζηελ ηειεπηαία πεξίπησζε εηδηθό βάξνο απνδίδεηαη ζην FIEGARCH-M, ην νπνίν 

επεθηείλεη ην βαζηθν ππόδεηγκα κεηαβιεηόηεηαο ησλ Bollerslev and Mikkelsen (1996) κε 

ηελ  εμεηδίθεπζε κηαο εμίζσζεο γηα ηνλ ππό ζπλζήθε κέζν, ε νπνία ζπλδέεη ηηο απνδόζεηο 

ησλ κεηνρώλ κε ηελ πξναλαθεξζείζα εμεηδίθεπζε ηεο κεηαβιεηόηεηαο. 

 Ψζηόζν ε αλάιπζε ησλ Christensen and Nielsen (2007) πνπ θάλεη ιόγν γηα ηελ δηάρπζε 

ησλ ηδηνηήησλ ηεο καθξνρξόληαο κλήκεο από ηελ κεηαβιεηόηεηα ζηηο απνδόζεηο ησλ 

κεηνρώλ, ―ππνρξεώλεη‖ εθ λένπ ηελ αλάιπζε λα ζπκπεξηιάβεη ζηηο εθηηκήζεηο  ηεο ηα 

ππνδείγκαηα FIEGARCH-ΜG- FIEGARCH-MH ησλ Christensen, Nielsen and Zhu 

(2010), ηα νπνία ρξεζηκνπνηνύλ θίιηξα γηα ηελ αθύξσζε ησλ πξναλαθεξζέλησλ 

απνηειεζκάησλ δηάρπζεο.  

Ακθόηεξα  αμηνινγνύληαη  ηόζν γηα ηελ πξνβιεπηηθή ηνπο ηθαλόηεηαο όζν θαη γηα ηνλ 

εληνπηζκό αληαιιαθηηθώλ ζρέζεσλ θηλδύλνπ - απόδνζεο. Να ζεκεησζεί όηη αλαθνξηθά κε 

ηηο ρξεζηκνπνηνύκελεο θαηαλνκέο ζηηο εθάζηνηε εμεηδίθεπζεηο ησλ ινγαξηζκηθώλ 

ζπλαξηήζεσλ πηζαλνθάλεηαο, ην θεθάιαην δηεξεπλά όιεο ηηο δηαζέζηκεο επηινγέ θαη 

ρξεζηκνπνηεί θαηά πεξίπησζε ηελ α) ε θαλνληθή, β) ηελ t-student, γ) ηελ γεληθεπκέλε 

θαηαλνκή ησλ ιαζώλ θαη δ) ηελ αζύκκεηξε κε θύξησζε t-student θαηαλνκή.  

Σρνιηάδνληαο ηέινο ηα εκπεηξηθά απνηειέζκαηα ηνπ θεθαιαίνπ αμίδεη λα ζεκεησζεί όηη 

κόλν ε εθηίκεζε ησλ ππνδεηγκάησλ FIEGARCH-MG θαη FIEGARCH-MH ππν ηελ 

                                                           
5 GARCH, EGACRH, FIGARCH, IGARCH, GARCH-M, EGARCH-M, FIGARCH-M, IGARCH-M. 
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ππόζεζε ηεο t-student αλαγλσξίδεη ζηαηηζηηθά ζεκαληηθέο ζρέζεηο αληαιιαγήο θηλδύλνπ-

απόδνζεο, ελώ ζε όηη αθνξά ηελ ζύγθξηζε ηεο πξνβιεπηηθήο ηθαλόηεηαο, όια αλεμαηξέησο 

ηα ππνδείγκαηα  κεηνλεθηνύλ  ζε ζρέζε κε ην FIEGARCH, πνπ  ππεξέρεη έλαληη 

νπνηνπδήπνηε άιινπ ζε νπνηνδήπνηε εθ ησλ εμεηαδνκέλσλ ρξνληθό νξίδνληα πξνβιεςεο. 
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Testing Conditional CAPM using Time Varying Beta. 

An Application to the Fama-French Portfolios data set. 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Testing Conditional CAPM with Time Varying Beta : 

An Application to the Fama-French Portfolios 

 

A B S T R A C T 

 

Conditional versions of CAPM utilize the idea of time varying beta coefficients, while recently 

Morelli (2011) following Pettengill et al. (1995) introduced a joint conditional test that explores the 

relation between the varying beta coefficients and the return series. His approach basically evolves 

in two phases : a) the estimation of time varying beta and b) the test of  beta-return relation 

conditioned upon the sign of excess market returns. The present analysis in an attempt to access the 

roll of varying beta and explain the monthly excess returns of the 25 Fama-French portfolios, in a 

period from July 1926 to June 2008, applies Morelli‘s (2011) joint conditional test. However, the 

approach innovates by introducing various assumptions on the formation of the time varying beta 

coefficients series, and moreover the analysis beside applying the volatility approach of Morelli 

(2011), which models conditional covariances and variances through known volatility models, such 

as ARCH, GARCH, FIGARCH and FIEGARCH, applies three more methodologies. Those are the 

recursive OLS beta estimates and two Kalman filter approaches, with each introducing different 

assumptions on the definition of the state equation. Those are the random walk hypothesis and the 

AR(1) alternative. In spite of pronounced differences existing in all four versions of the estimated 

time varying beta series, results in all procedures reject the simple conditional and the joint 

conditional CAPM, while results appear robust either when examining the full sample or the two 

equal spread in time sub-periods. The above results are further strengthen by a monthly seasonality 

analysis that indicates a consistent throughout the whole year non statistically significant beta-

return relation. The last is valid irrespective of the apllied methodology for the estimation of time 

varying beta. 

 

 

Keywords: Conditional Beta, Market Risk Premium, ARCH, FIGARCH, Kalman Filter, Joint Conditionality 

testing 
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1. Introduction.  
 

 

The Sharpe (1964)-Litner (1965) Capital Asset Pricing Model (CAPM) is among the  most 

well established models in financial empirical literature postulating a linear tradeoff 

between expected returns and betas. The model states that the expected return of an asset is 

exclusively related to the market return through the estimation of the beta coefficient that 

defines the nature of link between the returns of an asset and the risk of the market as a 

whole.
6
  

The model armed with the ideas of diversification and division of risk into systematic and 

unsystematic components, implies the existence of reward solely for the non diversifiable 

component of risk.
7
 Therefore CAPM under simplifying assumptions,

8
concerning mainly 

the behavior of investors and the presence of a single common risk factor, attempts linearly 

to quantify the relation between the beta of an asset and its corresponding expected return. 

However, the usefulness of beta as the single risk measure has been challenged in different 

ways. For example Chen, Roll and Ross (1986) argue that beta is not the most efficient 

measure of systematic risk and favor instead several macroeconomic variables that can 

jointly assess it.  

                                                           
6
The CAPM model estimates the asset‘s sensitivity to the market risk, also known as non diversifiable or 

systematic risk. This measurement is represented by the quantity beta. The fundamental equation of  CAPM 

is based upon the following idea, the reward to risk ratio of any individual security in the market is equal to 

the market reward to risk ratio.               
 

                           
( ( ) ) / ( ) ( ) ( ( ) )i F i M F i F i M FR R E R R E R R E R R          

 where E(Ri) is the expected return of asset i, RF is the return of the risk free asset, E(RM) is the expected 

return of the market portfolio and  βi denotes asset‘s beta.                                                                                                                                                                                                                                                                                                                                                                                                                                           
7
Unsystematic risk does not co-vary with the market as a whole, and therefore is considered as the additional 

random noise added in every asset‘s return equation. 
8
The first assumption of CAPM states that investors are only interested in expected returns and risk, and so if 

they are rational they will always try to maximize expected returns for any given level of risk. Another 

assumption of the model assumes that standard deviation of past returns is a perfect proxy for the future risk 

associated with a given security. A third assumption states that all investors have homogeneous beliefs in the 

process of the risk-reward trade off, while a fourth one defines the systematic risk of the market as the 

determinant element of the non diversifiable part of risk. 
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Another view mainly attributed to Lakonishok and Shapiro (1986) challenges the solitary 

presence of beta and states that various measures of unsystematic risk affect securities 

returns, while another dispute stimulated by the empirical evidence of Fama and French 

(1992,1993,1996) introduces in the return equation various explanatory variables beside 

the excess market returns and indicates that beta does not measure risk
9
 and hence in terms 

of CAPM there is not risk-return trade off. 

Despite these arguments the wide spread of the models is an undisputed fact. This  

preference probably stems from the convenience of using a model with a single measure of 

risk, although there seems to be no consensus among professionals and academics of how 

his key parameter should be modeled.
10

 

One quest mainly triggered by the empirical evidence of Ferson (1989), Ferson and Harvey 

(1991,1993), Ferson and Korajczyk (1995), Lettau and Ludvigson (2001), Fama and 

French (1997, 2004), Lewellen and Nagel (2006) and Ang and Chen (2007) argues that 

beta coefficients and market risk premiums vary over time and hence unconditional CAPM 

is improper in producing  correct empirical inferences.
11

 In this direction Jagannathan and 

Wang (1996) endorse that unconditional CAPM tend to estimate statistically significant 

                                                           
9
Fama-French examined CAPM with constant betas (i.e., the unconditional CAPM)  and found that the 

model is inadequate in explaining specific asset pricing anomalies. In particular Fama-French found that 

unconditional CAPM cannot explain a) why portfolios of small firms outperform those of large firms, that is 

the size effect, b) why portfolios of firms with high book to market (B/M) ratios outperform those of firms 

with low (B/M) ratios, that is the B/M effect, and c) why portfolios of firms with relatively high returns in the 

past year outperform those of firms with relatively low past returns, that is the momentum effect. 
10

This discussion includes various aspects of the estimation procedure, while some of the most popular 

debates cover issues over indexes, time frames and data frequencies. See Blume (1975), Carleton and 

Lakonishok (1985), Klemkosky and Martin (1975), Reilly and Wright (1988). 

11
In unconditional versions of CAPM beta estimates are generated after regressing an asset‘s return on the 

return to the market portfolio. Using stationary time series this process generally produces estimates where 

their distributions have also time invariant properties. 
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alpha coefficients,
12

 and hence conclude that relevant CAPM frameworks tend to create 

biases that favor the model rejection. 

In fact the majority of empirical studies
13

 provide weak or no support in favor of a stable 

linear relation, while on the other hand, increasing evidence suggest that  expected returns 

and corresponding risks vary over time, and hence conditional CAPM frameworks are 

essential in incorporating such variations.
14

 

Note that an insightful advocacy in favor of conditional CAPM is offered by Hansen and 

Richards (1987) and underlines two things. First, that tests incorporating conditional 

moments will be more powerful, and second, that absence of conditional information, as in 

the unconditional CAPM, will often lead to incorrect inferences about the mean variance 

efficiency of the market portfolio.  

 In spite the latter undisputed conditional CAPM endorsement the latter is not clear how it 

should be pursued. For example many studies on conditional CAPM such as Shanken 

(1990), Jagannathan and Wang (1996),  Clare, O‘ Brien, Smith and Thomas (1996), Ferson 

and Harvey (1999), Lettau and Ludvigson (2001), Petkova and Zhang (2005) and Avramov 

and Chordia (2006) depend on instrumental variables  for modeling time-varying betas and  

market risk premiums,
15

while another view recently demonstrated by Morelli (2011) 

estimates time varying beta using appropriate autoregressive conditional heteroskedastic 

forms (ARCH).  

                                                           
12

 Alpha coefficient corresponds the part of the expected excess return that is not predictable  by the 

unconditional CAPM. The empirical evidence speculate that those estimates are possibly related to 

covariances generated from possible time varying betas and hence time varying risk premiums. 

13
See Banz (1981), Basu (1983), Bhandari (1988), Fama and French (1992), Grinold (1993), Davis (1994), 

Chan and Chui (1996), Fletcher (1997), Hung et al (2004). 
14

 See Bodurtha and Mark (1991), Ng (1991), Petkova and Zhang (2005), Lewellen and Nagel (2006). 
15

Harvey (2001) states that in this case results are probably sensitive to the choice of instrumental variables, 

while Lewellen and Nagel (2006) argue that tests based on cross sectional regressions for the conditional 

CAPM, do not impose theoretical restrictions on the covariance corresponding the beta of an asset and the 

market risk premium.  
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In the latter case the volatility frameworks that model conditional functions of variances 

and covariances become the essential mechanisms in computing the conditional beta 

coefficients.
16

The conditional nature of the process guarantees  incorporation of 

information at every discrete moment and hopefully promises a functional version of the 

conditional CAPM approach. 

However, the entrepreneurial element in Morelli‘s work is concentrated upon what he calls 

joint conditional test. His idea basically combines the estimation of conditional betas with 

the methodology presented in Pettengill et.al (1995) that examines the roll of beta 

conditional upon the sign of realized market excess returns. 

Indeed Pettengill et al (1995)  underlines  a fundamental contrast in the CAPM logic. They 

interestingly note that although CAPM is a model  based upon expectations, however it 

uses out of necessity realized returns instead of missing expected data. This  substitution is 

obviously instigated by the lack of expected evidence, while is entrenched in the critical 

assumption that realized returns accurately reflect the missing expected data.  

The above choice conceals an inevitable transformation of the model since drastically 

alters its fundamental properties. Moreover the statement of CAPM for a positive relation 

between betas and expected returns that naturally leads to the implication of expected 

market returns always exceed the risk free rate,
17

 is no longer valid. In fact the use of 

realized returns creates an actual possibility for the appearance of negative realized market 

risk premiums, an acknowledgment ultimately utilized in the return equation induced by 

                                                           
16

Modeling conditional versions of CAPM using appropriate volatility frameworks is not a new approach. 

See Bollerslev et al. (1988), Ng (1991), Hanson and Hordahl (1998). 
17

The market risk premium in the unconditional CAPM is always assumed to be positive. 
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Pettengill et al (1995).
18

 In this particular case the estimated betas were linked with the 

realized returns in statistically significant positive and negative relations, an outcome 

obviously underlying the importance of separating  first market returns, into up and down 

markets.
19

 

The present paper using the monthly realized excess returns of the 25 Fama-French 

portfolios in a period of 82 years from July 1926 to June 2008, follows the approach of 

Morelli (2011) and produces in it‘s first part of the analysis  the necessary time varying 

beta estimates for all 25 Fama-French portfolios. When this phase is completed, the 

estimated coefficients are tested upon the sign of excess market returns and this process 

consummates the second stage of the joint conditional CAPM test.  

However, there is no reason to assume as Morelli (2011) that conditional variances will 

necessarily follow an ARCH or GARCH process, and in this track of thinking a decision 

was taken for strengthening and enriching the joint conditional test by allowing other 

possibilities to enter the specification of conditionally heteroskedastic frameworks. Such 

alternatives are the long memory volatility models, FIGARCH and FIEGARCH, which 

both are estimated alongside traditional volatility processes.  

Although returns on all 25 Fama-French portfolios are stationary processes,
20

 volatility of 

those returns incorporates long memory characteristics and this sensibly justifies the 

entrance in the analysis of long memory volatility models. On the other hand the fact that 

excess returns on the majority of cases create leptokyrtic, positive skewed distributions 

                                                           
18

Other studies following Pettengill‘s et al (1995) approach are Fletcher (1997), Hung et al. (2004), Faff 

(2001), Elsas et al. (2003), Ho et al (2006). 
19

Pettengill et al. (1995) conclude that when realized market return outperforms the risk free rate, a case 

which is refer to as up market, there exists a  positive relation between beta and returns. On the other hand 

when realized market return is negative, a case which is referred to as down market, the beta - return relation 

turns out being a negative one. 
20

 See in the appendix the results presented in table B. 
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forces the analysis to consider distributional assumptions beside normality and indeed at 

some point the paper uses t-student as an alternative assumption for the formation of the 

corresponding log-likelihood functions. 

 Using standard criteria for the volatility model selection two decision were taken : a)  to 

model the conditional variance of the market excess returns upon the framework of 

FIEGARCH (1,d,1) under the assumption of t student, and b) to estimate the  GARCH 

(1,1) for all conditional covariances, applying constantly the assumption of normality. 

However, in the present analysis this latter approach is not the only one applied, since 

modeling time varying beta eventually implicates other two known possibilities. Those are 

a) the recursive OLS beta estimates and b) the kalman filter approach,
21

 where two 

possibilities are explored when formulating the state equation. Those are the i) random 

walk hypothesis and ii) the AR(1) alternative.  

Although the estimated beta coefficients differ significantly from case to case,
22

 however, 

the final outcome is common in all alternatives and rejects both the simple conditional and 

the joint conditional CAPM, either when examining the full sample or the two equal spread 

in time sub-periods.  

Furthermore the results of a monthly seasonality analysis that are consistent throughout the 

whole year, reveal a non statistically significant beta-return relation irrespective of the 

applied methodology for the estimation of time varying beta. 

Section 2 briefly discusses the fundamental equations of the joint conditional test,  while  

section 3 provides the mathematical tools for the estimation of Kalman filtered betas, while 

                                                           
21

See Wells (1996) and Bucland and Fraser  (2001) for an application of kalman filter on time varying beta. 
22

  In the appendix table (k)  reports the  correlation matrixes over all  estimated betas. 
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at the same time presentes empirical results on all four estimated risk premiums. Finally, 

section 4 concludes. 

2. The joint conditional modeling. 

The CAPM can be expressed as in equation (1) 

                                              ( )it F it it mt F itR R a R R                                                         (1)                                       

with Rit, Rmt, Rf  present respectively returns of portfolio i, returns of the market portfolio 

m and returns of the risk free asset at time t, with βi standing for the beta coefficient of 

portfolio i, defined as in the following equation 

                                                  
ˆ cov( , ) ( )i it mt mtR R var R 

                                                           

(2)

 

The CAPM can also be written in terms of cross sectional returns and this expression is 

called the security market line. The latter is presented in equation (3) 

                                                    0 1( )it F iE R R                                                                     (3)         

Equation (3) stands for a linear constant relation among the excess returns of portfolio i 

and it‘s beta estimate. This version is called the static or unconditional CAPM, since βi is 

by default a constant term and hence conditional information play no role in determining 

the excess returns of portfolio i.  

As was stated in the introduction the majority of empirical evidence suggest the existence 

of time-varying risk premiums, and if true unconditional versions of CAPM will unlikely 

hold. Therefore conditional CAPM expressions as in equation (4) may be more appropriate  

                                                   
11 , 1( | ) ( ( | ))

tit t i I mt tE r I E r I
                                                          (4) 
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In equation (4)  rit  and rmt present respectively the excess returns of portfolio i and the 

excess returns of the market portfolio, E(.|It-1) states the expectation operator conditional 

upon the available set of econometric information at time t-1, and βi,It-1 measures the 

systematic risk of the market. The latter is defined as in the following equation 

                                                    
1, 1 1cov( , | ) / var( | )

ti I it mt t mt tr r I r I
                                                (5)                                       

Following Morelli (2011) the analysis assumes next that the excess returns of portfolio i 

and the excess returns of the market portfolio can be modeled under appropriate 

autoregressive forms, with their general presentations given in equations (6) and (7) 

following 

                                                         0

1

g

it j it j it

j

r a a r 



  
                                                         (6)       

                                                        

0

1

g

mt j mt j it

j

r a a r 



  
                                                          (7) 

Morelli (2011) then states that the above excess returns are further decomposed into their 

expected and unexpected counterparts and these separations are expressed in equations (8) 

and (9)  

                                                             

1( | )it it t itr E r I e 
                                                           (8)     

                                                             

1( | )mt mt t mtr E r I e 
                                                      (9)          

Next the disturbance terms of the estimated AR models provide equations (10) and (11) 

which finally incorporate the desired conditional expressions of covariances and variances 
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1( , ) ( , | )it mt it mt t itCov Cov I h     
                                              (10) 

                                                  

2 2

1( ) ( | )mt mt t mtE E I h   
                                                            (11) 

Using the conditional parts of equations (10) and (11) and the residuals generated  from 

equations (6) and (7) the analysis proceeds with the estimation of appropriate
23

conditional 

heteroskedastic frameworks for both conditional variance and conditional covariances.
24

 

Once those estimates are finally completed the time varying betas are then generated using 

the following ratio   

                                        1

2

, 1 1
ˆ ( , | ) ( | )

ti it mt t mt tCov I E I   
  

                                                 (12) 

So, equation (4) which expresses the risk–return relation conditional upon information set I 

can be recast as in equation (13). In the last case the conditional information are 

incorporated into the estimated time varying betas through modeling conditional variances 

and conditional covariances as appropriate volatility forms. 

                                           

1
1 12

1

( , / )
( | ) ( )( ( | )

( / )

it mt t
it t mt t

mt t

Cov I
E r I E r I

E I

 




 




                                            (13) 

The conditional relation among time varying betas and returns is then tested through  the 

following cross-sectional regression  

                                                            0 1
ˆ

i i ir a     
                                                                (14) 

                                                           
23

The competing conditional heteroskedastic frameworks are ARCH (1,1), GARCH (1,1), FIGARCH (1,1) 

and FIEGARCH (1,1). All models are estimated under either normal or t-student distribution. Using standard 

criteria for volatility model selection the best volatility frameworks are chosen and these frameworks model 

conditional variance and conditional covariances. 
24

Conditional covariances and conditional variance are denoted respectively as E(εit,εmt|It-1) and E(ε
2
mt|It-1). 
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If  conditional CAPM model holds then the constant term in equation (14) should be equal 

to zero, while the market risk premium, that is γ1 coefficient, must be positive and 

statistically significant. If these conditions are met then beta is considered a statistically 

significant pricing risk factor. 

Adjusting equation (14) to Pettengill‘s et al (1995) approach generates Morelli‘s (2011) 

joint conditional test. The latter requires the additional separation of market excess returns 

into up and down categories and doing so introduces in equation (14) a dummy variable. In 

this last case the cross sectional regressions are stated as in the following equation 

                                             0 1 1
ˆ ˆ(1 )i i i ir a           

                                                   (15) 

where δ presents a dummy variable,
25

and positive and negative symbols stand respectively 

for positive and negative market excess returns.  

Under Pettengill‘s methodology beta is a significant price factor if the following conditions 

are met a) both γ1 variables are statistically significant, b) both corresponding coefficients 

have the expected signs, and c) the constant term in equation (15) is equal to zero. The 

above requirements in mathematical terms are expressed in the following statement  

                                                    0 1 10, 0, 0     
                                                              (16) 

As Grauer and Janmaat (2010) state the econometrician in equations (14) and (15) 

typically tests whether the intercept is equal to zero against a two sided alternative. 

However these tests may be substituted by those examining the slope of the corresponding 

equations and particularly those approaches test whether the slope coefficients are equal to 

zero. 

                                                           
25

  δ=1 if rmt>0 and  δ=0 if rmt<0 
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 The last statement defines on each occasion the null hypothesis. However, the alternative 

in equation (14) is that of a positive and negative slope, while in equation (15) the 

alternative is that of a positive and negative slope, corresponding respectively the cases of 

up and down markets. Obviously when the null hypothesis are rejected the conditional and 

joint conditional notions of CAPM are valid.
26

 So the t-statistics for the constant term and 

for γ1 in equation (14) constitute a two tailed test, whereas the t-statistics for the slopes in 

equation (15)  correspond each to one tailed test.  

3. Empirical Application.  

Table (C) in the appendix presents summary statistics on the excess returns of the market 

portfolio and the excess returns of each of the 25 Fama-French portfolios.
27

 The results 

confirm two features that are common in all cases. Those are a) the leptokytric distribution 

in all excess returns and b) the statistically significant autocorrelations found even at 300 

lags at some occasions.  

In table (1) the analysis model the excess returns of all 25 Fama-French portfolios as 

appropriate autoregressive processes. The specification procedure estimates initially an 

AR(20) model and then tests using the likelihood ratio statistic whether the individually 

non significant variables can jointly be dropped. For example, the initially estimated AR 

(20) model that corresponds portfolio ―1‖ estimates non statistically significant variables at 

different lags.
28

 Looking at the likelihood ratio column and the corresponding p-values, 

those lagged variables are jointly dropped and so the remaining variables that determine 

the exact specified autoregressive framework of portfolio 1 are all reported in table (1).  

                                                           
26

 It is important to clarify here that any tests adopting Pettengill‘s et al. (1995) methodology can not be 

considered as tests of the CAPM model, since the relationships tested focus on realized and not expected 

returns.  
27

The analysis corresponds at each of the 25 Fama-French portfolios a number from 1 to 25. For details about 

definitions see the appendix. 
28

 Those lags are  2,4,5,6,7,8,9,10,14,17,18,19,20. 
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Table (1)  Specified autoregressive models for the market and the  25 Fama-French portfolios. 

Portfolio Lagged Variables  Subset L.R F-test 

1 1 3 11 12 13 15 16 - - - - - Chi^2(13) 
14.985 

[0.308] 
7.545 [0.000]** 

2 1 3 6 8 9 13 14 16 17 - - - Chi^2(11) 
12.509 

[0.252] 
10.51 [0.000]** 

3 1 3 6 7 9 12 13 15 16 17 20 - Chi^2(9) 
6.484 

[0.690] 
9.147 [0.000]** 

4 1 9 13 15 16 17 20 - - - - - Chi^2(13) 
18.8702 

[0.1272] 
   22.54   [0.000]** 

5 1 3 7 8 9 12 13 17 20 - - - Chi^2(11) 
2.725 

[0.974] 
11.85 [0.000]** 

6 1 3 14 15 17 - - - - - - - Chi^2(14) 
14.074 

[0.444] 
8.132 [0.000]** 

7 1 3 9 14 15 16 17 20 - - - - Chi^2(12) 
9.551 

[0.655] 
12.4 [0.000]** 

8 1 3 6 9 13 14 15 20 - - - - Chi^2(9) 
8.129 

[0.521] 
15.1 [0.000]** 

9 1 3 5 6 9 12 13 14 15 16 17 20 Chi^2(8) 
2.731 

[0.950] 
12.84 [0.000]** 

10 1 3 6 7 9 12 13 15 16 17 20 - Chi^2(9) 
7.824 

[0.551] 
10.4 [0.000]** 

11 1 3 9 14 16 17 20 - - - - - Chi^2(13) 
8.243 

[0.827] 
11.65 [0.000]** 

12 9 14 15 16 17 20 - - - - - - Chi^2(13) 
10.897 

[0.619] 
5.401 [0.000]** 

13 1 3 5 6 9 14 15 17 - - - - Chi^2(12) 
11.039 

[0.525] 
11.73 [0.000]** 

14 1 3 5 6 9 14 15 17 - - - - Chi^2(12) 
11.039 

[0.525] 
11.73 [0.000]** 

15 1 3 5 6 9 12 14 15 16 17 20 - Chi^2(9) 
5.073 

[0.827] 
11.35 [0.000]** 

16 1 3 14 16 17 - - - - - - - Chi^2(15) 
9.694 

[0.838) 
5.858 [0.000]** 

17 1 3 4 6 9 14 15 17 - - - - Chi^2(12) 
13.704 

[0.320] 
7.56 [0.000]** 

18 1 3 5 9 12 14 15 16 - - - - Chi^2(10) 
16.995 

[0.074] 
7.147 [0.000]** 

19 1 3 5 6 9 12 14 16 20 - - - Chi^2(11) 
8.678 

[0.651] 
10.25 [0.000]** 

20 1 3 6 9 12 14 16 17 20 - - - Chi^2(10) 
9.951 

[0.444] 
10.62 [0.000]** 

21 1 3 5 8 14 16 17 - - - - - Chi^2(13) 
10.263 

[0.672] 
5.481 [0.000]** 

22 1 3 5 17 - - - - - - - - Chi^2(16) 
17.022 

[0.384] 
6.928 [0.000]** 

23 1 3 5 7 9 12 14 - - - - - Chi^2(13) 
14.545 

[0.336] 
10.02 [0.000]** 

24 1 3 5 6 7 9 12 14 16 20 - - Chi^2(10) 
12.618 

[0.245] 
11.7 [0.000]** 

25 1 2 3 8 9 12 13 14 15 17 - - Chi^2(9) 
8.298 

[0.504] 
97.92 [0.000]** 

market 1 3 5 9 14 16 17 - - - - - Chi^2(13) 
12.479 

[0.488] 
7.166 [0.000]** 

Note : Table (1) reports the lagged variables that create appropriate autoregressive forms for each Fama-French portfolio. All estimated 

models use a constant term. Column (L.R) reports the results on the  likelihood ratio statistic. The last tests whether the missing lagged 

variables of the initially estimated AR(20) models can jointly be dropped. P-values are reported in the brackets. The last column reports 

the F-statistic for the joint significance test for the selected variables.*(**) denotes rejection at 5% (1%) significance level. 
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Further evidence in favor of the suggested AR specifications are found in the F-test column 

that assesses the joint significance of the remaining non excluded variables. The p-values 

of the corresponding F- statistics are reported in the brackets. The results clearly indicate 

that the chosen lagged variables of all AR models are jointly significant at both 

conventional levels of significance.  

Furthermore table (D) in the appendix that reports the log-likelihood values and the Ljung-

Box Q statistics on the estimated residuals at different number of lags, provide solid 

support for the chosen autoregressive models, since the results strongly indicate that no 

statistically significant autocorrelations are found at 5% significant level in all 26 AR 

models even at very distant lags.  

So, as in Morelli (2011) a well fitted autoregressive process is what it takes to create an 

uncorrelated sequence of residuals from the initial excess return series. However, the 

statistically significant autocorrelations found on the squared residuals series at all selected 

number of lags, clearly indicate the presence of ARCH errors and apparently imply that 

residuals series may well be uncorrelated but they are not independent. 

3.1 Estimating time varying beta using volatility models. 

In order to proceed with the estimation of time varying beta coefficients using  volatility 

models a two stage process is followed. The first stage estimates the conditional variance 

of the AR residuals correspond the excess returns of the market portfolio, and the second, 

estimates conditional covariances for  the cross products of the latter residuals and the ones 

correspond each AR model of table (1). Evidently this approach assumes that both 

components of conditional beta, conditional variances and conditional covariances, follow 

a known volatility process. 
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Using the square error terms of the market portfolio the analysis estimates three volatility 

models with results reported in table (3). The competing volatility frameworks are 

GARCH (1,1), FIGARCH (1,d,1) and FIEGARCH (1,d,1). Note that tables (3i) and (3ii) 

which both are nested in table (3) estimate the above volatility models under the 

assumption of normality and t student respectively. Finally table (2) concentrates the 

fundamental mathematical expressions of all competing volatility frameworks.  

Table (2) Mathematical frameworks of GARCH, FIGARCH, FIEGARCH models. 

GARCH 

2 2 2 2 2

0 0

1 1

( ) ( )
q p

t i t i t i t t

i i
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 
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2 1 1 2{1 ( )] {1 ( )(1 ) [1 ( )] }d

t tL L L L            

Φ(L)=(1-θ1L-…-θpL
P) 

Θ(L)=(1+ζ1L+…+ΘqL
q) 

FIE 

GARCH       
2 1

1log( ) ( ) (1 ) [1 ( )] ( )d

t tL L L g    

   
 

1 2( ) [ ( )]t t t tg E      

 

Note : For the general GARCH (p,q) case presented  here, p refers to the number of GARCH terms, while q numbers the ARCH terms 

and a0 denotes the constant term of the volatility equation. For FIEGARCΖ σ stands for the mean of the logarithmic conditional 

variance, while Φ(L) and Χ(L) are polynomials in the lag operator, Φ(L)=(1-θ1L)x…x(1-θpL) and Χ(L)=(1+ς1L)x…(1+ςqL) and (1-L)d 

denotes the fractional difference operator, with d reporting the order of fractional intergration for the log variance. The presence of long 

memory implies  stronger persistence of shocks to volatility  than the one correspond by the GARCH type model. Note that modeling 

log of ζ2 instead of just ζ2 implies that FIEGARCH does not require any constraints for assuring the positive sign of the expected 

conditional volatility. This stems EGARCH model of Nelson (1991). In contrast to GARCH, that requires non-negative coefficients in 

order to ensure a positive sign for the expected conditional volatility, the EGARCH model of Nelson does not impose such constraints 

on the parameters, since models the logarithm of the conditional variance. Furthermore the exponential or asymmetry feature of 

FIEGARCH is ensured by the presence of the news impact function g(.) that defines the manner in which past returns affect the current 

levels of volatility. Note that vt=εt/ζt is the normalized innovation, ζ2 is the rate at which the magnitude of the normalized innovations in 

deviations from the mean enter into current volatility levels. ζ1 coefficient is the one generates an asymmetry on the news impact on 

volatility. So, if ζ1<0 then negative innovations cause higher volatility than positive innovations of the same magnitude. Note that the 

above asymmetrical reaction to innovations does not induce unconditional skewness in returns, which instead is produced by the 

incorporation of an in mean feature. For the last notation see He et al (2008). 

The existence of many empirical evidence endorsing the presence of long memory in 

volatility
29

makes natural at this point the choice of long memory specifications alongside 

traditional options in volatility modeling.
30

 Such frameworks are the FIEGARCH and 

FIGARCH models that frequently have been used in the volatility literature.  

                                                           
29

 See Crato and de Lima (1994), Baillie et al (1996), Robinson (1991), Baillie and Morana (2007). 
30

 Presumably GARCH and ARCH models are considered here the traditional volatility specifications. See 

Morelli (2011), Bollerslev et  al (1998). 
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Furthermore since the empirical distribution Fama-French returns is characterized by a 

severe leptokyrtic shape, choosing of normality as the solitary distributional assumption 

may not be congruent for the properties inherited to the estimated conditional volatility 

levels, and therefore the analysis estimates the above volatility models under an alternative 

distributional assumption.  

Indeed table (3ii) re-estimates GARCH (1,1), FIGARCH (1,d,1) and FIEGARCH (1,d,1) 

under the t-student assumption. The latter sets an interesting alternative especially if 

returns are characterized by a fat tail distribution. 

Although all volatility models initially are estimated using one ARCH and one GARCH 

term, however the long memory volatility specifications under the assumption of t student 

turn over a non statistically significant ARCH term at both conventional levels of 

significance.
31

Deciding to drop the ARCH terms and continue with the restricted versions 

of the models is a decision eventually based upon likelihood ratio test. The related statistics 

and the corresponding p-values for FIGARCH and FIEGARCH models are X
2
(1) = 

0.675919 [0.4110] and X
2
(1) = 0.978886 [0.3225] respectively. The p-values are reported 

in the brackets. Obviously both tests accept the restricted frameworks and so the reported 

in table (3ii) FIGARCH and FIEGARCH models use alone the GARCH term and therefore 

the estimated long memory volatility models become the FIGARCH(1,d,0) and  

FIEGARCH(1,d,0) respectively. 

Once the competing volatility models are estimated a decision must taken about the 

framework that will ultimately model the conditional variance. This is the next step in the 

                                                           
31

 Those are 1% and 5%. 
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analysis and is equivalent as seeking the best volatility model among those presented in 

tables (3i) and (3ii). The comparison of results in table (3) indicate that the best volatility 

model is FIEGARCH (1,d,0) estimated under the t-student assumption. The model 

estimates a statistically significant long memory parameter, d=0.442, while it‘s log-

likelihood value and both information criteria, Akaike and Schwarz, report respectively the 

highest and smallest values among all estimated volatility models.  

However it seems true that the rest frameworks also exhibit well conditional 

heteroskedastic properties. Those properties are seen in the high p-values of the Ljung-Box 

Q statistics, the acceptance of null in all negative and positive size bias tests and the 

outcomes presented in all individual Nyblom statistics, clearly implying the stability of 

estimated coefficients in time.  

As it has been said most of the results in table (3) endorse FIEGARCH as the best 

volatility model. However the Engle and Ng (1993) sign bias tests and the statistical 

significance of ζ2 coefficient, that denotes the rate at which the magnitude of  normalized 

innovations in deviations from the mean enter the current volatility levels, at 1% 

significant level question somewhat the evident superiority of the model. 

Specifically the statistical significance of the sign bias tests in all frameworks imply the 

strong presence of asymmetric phenomena in the Fama-French returns. The belief is 

strengthen by the fact that both ζ1 coefficients, estimated under either the normality or t-

student assumptions are not statistically significant, although this holds true 
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Table (3) Estimations of GARCH (1,1), FIGARCH (1,d,1), FIEGARCH(1,d,1) using 2

Mt  

Table (3i) - Normal Distribution Table (3ii)-t-student Distribution 

GARCH FIGARCH FIEGARCH GARCH FIGARCH FIEGARCH 
 

(1,1) (1,d,1) (1,d,1) (1,1) (1,d,0) (1,d,0) 

0.582 0.469 4.175 0.929 0.730 3.838 
σ 

[0.021]* [0.010]* [0.000]** [0.003]** [0.011]* [0.000]** 

0.106 -0.033 -0.558 0.104 
α1 - - 

[0.000]** [0.664] [0.002]** [0.000]** 

0.875 0.775 0.796 0.859 0.716 0.710 
β1 [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** 

-0.205 -0.117 
Θ1 - - - - 

[0.057] [0.046]* 

0.209 0.147 
Θ2 - - -  

[0.000]** [0.000]** 

0.809 0.456 0.762 0.442 
d - - 

[0.000]** [0.000]** [0.000]** [0.000]** 

Logl -2877.1 -2873.3 -2857.8 -2863.6 -2862.6 -2845.44 

Alaike 5.938 5.930 5.904 5.912 5.910 5.879 

Schwarz 5.953 5.945 5.934 5.932 5.930 5.909 

36.003 35.585 40.466 36.349 35.848 40.096 
Q(50) 

[0.931] [0.938] [0.829] [0.925] [0.934] [0.840] 

97.339 97.001 93.361 96.296 96.270 93.100 
Q(100) 

[0.556] [0.566] [0.667] [0.586] [0.586] [0.674] 

145.298 146.139 135.673 143.625 145.239 135.915 
Q(150) 

[0.593] [0.573] [0.792] [0.631] [0.594] [0.788] 

193.862 192.777 185.610 192.781 192.601 184.061 
Q(200) 

[0.608] [0.630] [0.759] [0.630] [0.633] [0.783] 

242.935 244.064 235.992 240.833 243.767 235.113 
Q(250) 

[0.613] [0.593] [0.728] [0.649] [0.599] [0.741] 

3.629 3.429 3.422 3.603 3.453 3.470 
S.B.T 

[0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** 

1.254 0.173 2.666 1.108 0.416 1.785 
N.S.B.T 

[0.209] [0.862] [0.007]** [0.267] [0.676] [0.074] 

0.785 0.388 0.092 0.573 0.423 0.100 
P.S.B.T 

[0.432] [0.697] [0.926] [0.566] [0.671] [0.920] 

24.613 25.326 14.838 23.359 24.221 15.542 
Joint 

[0.000]** {0.000]** [0.001]** [0.000]** [0.000]** [0.001]** 

Nσ 0.093 0.045 0.098 0.181 0.048 0.166 

Νa 0.144 - 0.189 0.258 - - 

Nd - 0.086 0.227 - 0.072 0.074 

Νβ 0.106 0.061 0.132 0.210 0.040 0.078 

Nζ1 - - 0.295 - - 0.070    

Νζ2 - - 0.213 - - 0.147 

8.782 9.125 10.301 
Student DF - - - 

[0.000]** [0.000]** [0.004]** 
Note : Tables reports the estimated coefficients on each estimated volatility model. P-values are reported in the brackets.  Results are 

reported : a) for the Akaike and Schwarz information criteria, b) for the Ljung Box Q statistic at different lags, c) for the Engle and Ng 

(1993) ci) S.B.T, (sign bias test),  cii) N.S.B.T (negative size bias test), ciii) P.S.B.T (positive size bias test), civ) joint (joint sign and 

size bias test),  d) for the Nyblom statistic in all estimated coefficients, where for instance  (Na) corresponds to Nyblom statistic for 

coefficient a, whereas (Nb) corresponds to Nyblom statistic for b coefficient, e) for the Log-likelihood value. * (**) denotes rejection at 
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5%(1%) significance level. For Nyblom statistic note : Asymptotic 1% critical value for individual statistics = 0.75, Asymptotic 5% 

critical value for individual statistics = 0.47. 

for different levels of significance. Particularly, if FIEGARCH is estimated using the 

normality assumption ζ1 turns out being not statistically significant at both conventional 

levels, whereas if FIEGARCH is estimated under t-student the same variable is not 

statistically significant at only 1% significant level. 

On the other hand ζ2 parameter which is statistically significant in both versions of  

FIEGARCH  it is probably of no use, since the results clearly indicate that the negative and 

positive size bias tests are  not statistically significant in all volatility models.
32

So, there is 

actually a conflict between the statistical significance of ζ2 coefficient and it‘s actual 

contribution in improving the other two volatility models, FIGARCH and GARCH, that do 

not incorporate terms for eliminating the size biases.  

Hence, all evidence conduce that the news impact function is not the competitive edge of 

FIEGARCH. However the analysis, principally motivated by the competitive values 

reported for the log-likelihood function and the corresponding estimated information 

criteria, decides to model the conditional variance upon the FIEGARCH framework, using 

the t-student distribution. 

 As for the cross products of error terms 
33

 the paper in all 25 cases estimates a GARCH 

(1,1) model under the assumption of normality. The estimated coefficients and other 

corresponding results are all reported in tables (E) and (F) in the appendix. Note  that using 

alternative distributions or estimating long memory volatility models for these cross 

                                                           
32

This result is true for all cases except the one correspond to negative size bias test  for FIEGARCH under 

normal distribution  
33

The errors terms here refer to  residuals generated from the autoregressive model correspond  the  market 

and each  individual  Fama-French  portfolio. The cross products are estimated using the R program and 

particularly the cross-covariance function of package ―NCF‖. Modeling these cross products through a 

volatility model generates the conditional covariances. 
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products generally delivers irrational outcomes and that‘s why the paper avoids at this 

point the use of such complex volatility forms.  

However, the results presented in tables E and F in the appendix provide strong evidence 

that GARCH (1,1) may in fact be the correct specified form, since results at the Ljung-Box 

Q statistics indicate the absence of serial correlation in the residuals at all selected lags, 

while the sign and size bias tests imply the absence of relative asymmetric phenomena
34

 

and the individual Nyblom statistics indicate the absence of structural breaks. The next step 

in the analysis uses equation (12) to estimate the 25 time varying betas. Table (G) in the 

appendix presents their summary statistics, while graph (1) below prints their graphical 

representation. The feature in table (G) that intrigues the most  is the characteristic of long 

memory that designates certain estimated beta series. Indeed looking at the column 

reporting the long memory estimates the analysis detects 9 cases where these estimates are 

above the threshold point of 0.5 and at the same time are statistically significant.
35

  

Graph (1) Time varying beta of  the 25 Fama-French portfolios : ―The volatility approach‖.                                                                     

  
                                                           
34

 If asymmetries were present then  GARCH (1,1) should  estimate  statistically significant sign and size bias 

tests The fact that in all cases the asymmetrical subtests are statistically insignificant provides strong 

evidence against this hypothesis. 
35

The presence of long memory can be defined can be defined in terms of persistence in the observed 

autocorellations. Fractional integration in a series yt can be described as (1-L)
d
(yt-κ)=ut where L is the lag 

operator, d is the fractional integration parameter, κ is the expectation of yt and ut is considered  a stationary 

short memory disturbance with zero mean. If |d|>1/2 yt is non stationary and has long memory. If 0<d<1/2 yt 

is stationary, while for -1/2<d<0 yt is stationary and is referred to as anti-persistent. 
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Note that returns in all 25 Fama-French portfolios constitute stationary processes, as 

clearly can be seen in the results presented in table (B) in the appendix. 

So now the analysis is in a position to test whether the beta coefficient is indeed a pricing 

risk factor. In order to do that we estimate cross sectional regressions as in equation (14). 

The regression is estimated over every month and a total of 965 regressions are performed. 

Summary statistics νn the estimated γ1 coefficients are presented in table (G) in the 

appendix under the reference name ―risk premium (I)", while graph (2) below presents it‘s 

graphical evolution.                                                                                                                                                                                                            

                                                                                                                                                        

Graph (2) Estimated risk premium over the full sample period using the ―volatility approach‖.                                                                      

 

 Table (3) estimates average risk premiums over the total period and the two equal spread 

in time sub-periods, each extending over 41 years.
36

The brackets below the estimated 

means report the corresponding t-statistics.
37

 Irrespective of the sample period the results 

clearly indicate a non statistically significant negative risk premium and hence the 
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 Splitting the sample into two equal sub-periods provides more robust testing. 
37

The statistical significance here refers to the outcome of the following hypothesis test : 0 1: 0   against 

the alternative 0 1: 0  . Note that γ1 denotes stands for the average risk premium. 
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outcomes imply the rejection of conditional CAPM.
38

Note that the null hypothesis

0 1: 0   is against the two sided alternative 1 1: 0   . 

 Table (3) Average risk premiums and t statistics over the total period and two equal sub-periods 

Average risk premium Full Sample Sub-period 1 Sub-period 2 

1  

-0.106 

    [-0.046] 

-0.050 

     [-0.019] 

-0.164 

  [-0.086] 

Note : The table reports average risk premiums of the full sample and  two equal sub-periods, obtained from monthly cross section 

regressions. In the brackets the t-statistic values are reported. *(**) denotes rejection at 5% (1%) significance level. 

So, under the volatility approach the estimated time varying beta coefficients have no  

explanatory power over the formation of  Fama-French portfolios returns.
39

 However, as 

was stated in the introduction using realized returns instead of real expected data tends to 

violate certain fundamental aspects of the CAPM model and since the absence of expected 

returns is a rather insurmountable issue, it is useful at this point to apply the methodology 

presented in Pettengill.et al (1995).  

Under the dichotomy of market excess returns into up and down categories table (4) 

reports the estimated average risk premiums
40

 and hence presents outcomes on the joint 

conditional test.  

Table (4) Average risk premium (I) following the methodology of  Pettengill et al (1995). 

Average risk premium Full Sample Sub-period 1 Sub-period 2 

1


 
0.400 

[0.172] 

0.578 

[0.218] 

0.207 

[0.110] 

1


 
-0.856 

[-0.422] 

-1.089 

[-0.482] 

-0.651 

[-0.368] 
Note: Both significance tests are based on one–tailed test. In the brackets t-statistics are reported.*(**) denotes rejection at 5% (1%) 

significance level. 
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These findings are consistent with a number of studies. See for example Davis (1994), Fama and French 

(1992), Pettengill et al (1995) 
39

Pettengill et al. (1995) notes that  an  insignificant beta can be attributed to the aggregation of data during 

periods where the excess market return is  positive and negative. 
40

The excess market returns are divided in two categories. The ones correspond the up market and the rest 

which belong to the down market. The risk premiums are estimated separately using cross sectional 

regressions and the monthly estimates are averaged so that the following  two hypotheses can be tested : a) 

0 1: 0    against the alternative 1 1: 0   , and b)
 0 1: 0    against the alternative 1 1: 0    

. 
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The results in contrast with the outcomes reported in Pettengill et al. (1995) present an 

insignificant positive and negative relation in the up and down markets respectively. The 

results are valid both in the full sample and the two equal extended in time sub-periods, 

and so clearly results suggest that time varying beta coefficients cannot be regarded 

statistically significant pricing risk factors even when conditioning on the sign of excess 

market returns. Therefore the notion of Pettengill et al (1995) as this is integrated in the 

joint conditional test is clearly rejected. 

3.2 Estimating time varying beta using i) the recursive OLS estimates and ii) the 

Kalman filter approach. 

The next section estimates time varying conditional betas using two different 

methodologies. Those are a) the recursive regression approach and b) the Kalman filter 

analysis.  

3.2.1 The recursive OLS approach. 

Graph (3) presents graphical representation of all 25 recursively estimated betas, while 

graph (4) after having applied cross sectional regressions, for every single available
41

 time 

period, generates the corresponding market risk premiums.
42

 Obviously the above 

estimations differ significantly from the ones presented in the previous procedure.
43

  

Table (5) resumes results in all aspects of the estimated γ1 coefficient which the analysis 

refer to as risk premium (II). As usual γ1 stands for the estimated risk premium of the 

simple conditional CAPM model, while 1


 and 1


 both refer to the joint conditional 
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 Availability here refers to the availability of data at certain points in time. 
42

 The recursive OLS betas are estimated using the Eviews 6 program. 
43

 Table (H) in the appendix concentrates the descriptive statistics of the 25 recursively OLS estimated betas. 
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CAPM approach. Again the results show that the null hypothesis,
44

 on either the 

conditional or the joint conditional tests cannot be rejected, while this is true irrespective of 

the examined sample period. 

Graph (3) Time varying beta of the 25 Fama-French portfolios using the recursive OLS approach.         

                                                 

Graph (4) The estimated risk premiums over the full sample period  using the recursive OLS beta approach. 

   

 Table (5) Average risk premiums (II) following the methodology of  Pettengill et al (1995). 

Average risk premium Full Sample Sub-period 1 Sub-period2 

                 1  
-0.291 

[-0.064] 

-0.488 

[-0.079] 

-0.094 

[-0.053] 

1


 
0.560 

[0.135] 

0.754 

[0.139] 

0.289 

[0.168] 

1


 
-1.561 

[-0.329] 

-2.648 

[-0.406] 

-0.599 

[-0.359] 
Note: Significance tests on γ1(+)  and γ1(-) are both based on a one–tailed probability. Significance test on γ1 is based on a two tailed 

probability.*(**) denotes rejection at 5% (1%) significance level. 

Hence the recursively estimated time varying betas does not have any explanatory power 

over the formation of returns of the 25 Fama-French portfolios. 
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3.2.2 The kalman filter approach 

As mentioned earlier an alternative procedure in the estimation of time varying beta 

coefficients is the Kalman filter analysis. The latter constitutes a recursive algorithm for 

the estimation of the systematic risk of the market and generally operates through the 

induction of new information every time the fundamental regression is repeating itself.
45

 In 

general lines Kalman filter is consider being a dynamic system that follows a state space 

regression that is briefly discussed in the following lines. 

 Suppose we have n different observations at time t that contain k different signals with 

additive noise such as in equation (17) 

                                                                t t tY CX                                                                             (17) 

where Yt is the (nx1) observation vector, Xt  is the (kx1) signal vector, C is the (nxk) 

coefficient matrix,
46

that describes the relationship between signals and observations while 

εt is a (nx1) vector of observation noise for which we accept the following relations 

                                                                          
( ) 0tE e 

                                                                              (18) 

                                                                         
'( ) 0t tE e e 

                                                                           (19) 

Let assume that the signal vector Xt follows a first order vector autoregression (VAR) as in 

the following equation
47

  

                                                                   1t t tX AX  
                                                                        (20)                                             

                                                           
45

In recursive estimation methodology, a new estimate is obtained when adding a correction term to the 

previous estimate. The correction is such that if the new observation is higher than the previous estimate the 

last is corrected upwards and vice versa. Naturally, if the new observation  is equal to the previous estimate 

there is no meaning to change the estimate since there exist no new information. 
46

 C is broadly known as the observation matrix. 
47

 Equation (20) is known as state space representation. 
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where Xt is a (kx1) signal vector and A defines a (kxk) coefficient matrix that describes the 

dynamics of the system.
48

The system  noise λt is a (kx1) vector, that exhibits similar 

properties as the observation noise vector. Those are resumed in the following two 

equations  

                                                                  
( ) 0tE  

                                                                                      (21) 

                                                                
'( )t t tE Q  

                                                                                 (22) 

Given N observations the problem of finding an optimum estimator is obtained by 

minimizing the mean variance-covariance matrix of the estimated errors. That is   

                                                                 

'( )e

N N NP E e e
                                                                               (23) 

Finally, the estimator at time N may be written as  

                                                    1 1
ˆ ˆ ˆ[ ]N N N N NX AX k Y CAX   

                                                        (24) 

where kN is the (kxn) Kalman gain matrix defined as in (25) 

                                                        

1[ ' ]T

N N N Nk S C CS C R  
                                                                   (25)      

 and SN is the (kxk) matrix defined as in the following equation  

                                                      1 'e

N N NS AP A Q 
                                                                      (26) 

Suppose now that coefficients in a K variable regression vary across time according to the 

following equation  

                                                              1t t t ta Aa   
                                                                               (27) 

where αt is the (kx1) coefficients vector, At  is the (kxk) system matrix similar to the one 

presented in equation (20), while λt is a (kx1) serially uncorrelated vector for which we 

assume that 

                                                           
48

 This matrix is usually called system matrix. 
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(0, )t tN Q

                                                                             (28) 

The regression equation is defined as  

                                                                    t t t tY X a  
                                                                            (29) 

where Yt is a (nx1)  observation vector,  Xt is a (nxk) matrix of independent variables and 

the disturbance term is serially uncorrelated vector for which we assume 

                                                                 
(0, )t tN R

                                                                                (30)             

Kalman filter sets a recursive process of three steps. The algorithm starts with the 

prediction of the signal. At time N-1 the best estimate of the vector coefficient αN before 

the observation arrives at time N is given by equation (31) which constitutes the prediction 

step. 

                                                            1 1
ˆ ˆ

N N Na A a 
                                                                      (31)    

After  arrival of  observation YN  three quantities  exist : a) the estimate of the signal at time 

N-1, b) the estimate of observation and finally c) the difference between the actual 

observation and its estimate which is named innovation.  

The new information used in kalman filtering is not the observation itself but the difference 

between the observation and its estimate. This step is called innovation accounting. 

Finally, the last step which is called update, weights innovation by the Kalman gain and 

adds the latter to the estimate of the signal in order to provide an updated estimate. The last 

is  presented in equation (32) 

                                          1 1 1 1
ˆ ˆ ˆ( )N N N N N N N Na A a k Y X A a     

                                             (32)   

where kN (kxn) matrix is the Kalman gain defined in equation (33)         
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' ' 1[ ]N N N N N N Nk S X X S X R  
                                                     (33)                       

                                                

'

1 1 1 1

e

N N N N NS A P A Q    
                                                                    (34) 

 

Equation (31) is flexible and allows the OLS estimates of the coefficients in the 

regression.
49

 However, the system matrix can be specified in more than one ways and 

therefore we have a range of choices over this matter. In regards with our application two 

alternatives are performed. Those are : a) the random walk hypothesis and b) the 

autoregressive alternative.
50

 

 In terms of CAPM these choices imply two things. First that the observation equation is 

basically the market line  

                                                                    it it it ity x  
                                                                         (35) 

where yit= rit-r0t stands for the excess return of asset or portfolio i at time t, xit=rm – rot 

denotes the excess return of the market portfolio also at time t, and εit is without serial 

correlation residual that follows the normal distribution with zero mean and ζ
2

εi variance. 

The second thing implied  is that the beta of asset i will follow either the random walk 

model  

                                                                   , 1it i t it   
                                                                          (36)       

or  the first order autoregressive alternative  

                                                          , 1( )it i t itp       
                                               (37)   

                                                           
49

 The last requires setting At=I and Qt=0 
50

 Note that estimation of the time varying beta coefficients using the Kalman filter approach is carried out 

with Stamp 8.2 program. 
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with vit~NID(0,ζ
2

λ) and β defined as a long term coefficient.
51

 

 

Using the Kalman filter approach and assuming that time varying beta coefficients follow 

the random walk model as in equation (36), the analysis estimates next all 25 recursively 

estimated betas. Note that graph (5) below generates their graphical output, while graph (6) 

presents their corresponding market risk premiums which are denoted as risk premiums 

(III). These are generated after estimating the cross sectional regressions of equations (14) 

and (15) for every time period that there exists availability of data.                        

Graph (5) Time varying beta using the Kalman Filter approach and assuming a random walk state equation.  

 
 

 

 

Graph (6) Risk premium (III) using the kalman filtered beta and assuming a random walk model for the state 

equation. 

 

 

                                                           
51

 Given an initial estimate of beta β0 and an initial prediction error variance p
e
o the beta can be estimated 

recursively through  Kalman Filtering. Note that  an initial beta estimate and a prediction of the observation 

equation disturbance variance  are  regularly obtained through the  full sample OLS estimation of the market 

line equation. 
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Using the estimated risk premiums printed in graph 6 the analysis moves on with the 

assessment of the statistical significance of the average risk premiums. Table (6)  presents 

the corresponding results under the simple conditional CAPM approach and the 

methodology presented in Morelli (2011). Note that the table presents the estimated 

average risk premiums for the full sample period and the two sub-periods, while brackets 

report the estimated t statistics that correspond the null hypothesis that the average risk 

premium is equal to zero. 

Estimated risk premiums in all 9 blocks of the table are not statistically significant at 5% 

significant level, although the sign of the up market risk premium in the full sample case 

and in sub-period 1 is not what is expected and hence this fact alone rejects the joint 

conditional framework. Conversely the signs of the down market, both in the full sample 

and in the two sub-periods are the ones expected, although again both conditional tests find 

no explanatory power over the time varying betas. 

Table (6)  Estimated risk  premiums  (III)  using the kalman filter approach and assuming the random walk 

state equation. 

Average risk premium Full Sample Sub-period 1 Sub-period2 

1  
0.814 

[0.107] 

1.564 

[0.018] 

0.067 

[0.010] 

1


 
-4.875 

[-0.021] 

-12.924 

[-0.040] 

3.765 

[0.754] 

1


 
-4.660 

[-0.769] 

-4.398 

[-0.589] 

-4.887 

[-1.092] 
Note: Significance tests on γ1(+)  and γ1(-) are  based on a one–tailed probability. Significance test on γ1 is based on a two tailed 

probability.*(**) denotes rejection at 5% (1%) significance level. 

Graph (7) Time varying beta using the Kalman filtering and assuming AR(1) equation for the state equation 

modeling. 
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Graph (8) Risk premium using kalman filtered beta and assuming an AR(1) model for the state equation. 

        

 

 

Assuming that the state equation forms a first order autoregressive framework, graphs (7) 

and (8) in the previous page present respectively the kalman filter estimated betas and the 

corresponding market risk premiums which are denoted as risk premiums (IV).
52

 

Finally table (7) concentrates results on conditional and joint conditional CAPM under the 

AR (1) hypothesis for the state equation. Again the same conclusion drawn from all 

previous approaches is  repeat it here, and that is all estimated risk premiums, either when 

examining the full sample case or the two equal spread in time sub-samples, either when 

conditioning cross sectional regressions on the dichotomy of up and down market excess 

returns or not, they are not statistically significant at 5% significant level, and therefore 

time varying beta measurements of risk cannot be considered as statistically significant 

pricing risk factors. Impression cause the unexpected positive signs of the average risk 

premiums reported in all three blocks of the table that correspond the down market case.  

Table (7)  Estimated average risk premium (IV) using the Kalman filter betas and assuming an AR(1) state 

equation. 

Average risk premium Full Sample Sub-period 1 Sub-period2 

1  

0.887 

[0.836] 

0.853 

[0.786] 

0.920 

[0.889] 

                                                           
52

 Note that the descriptive statistics of the Kalman filter estimated betas and the corresponding risk 

premiums are reported in table (J) in the appendix. 
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1


 
0.854 

[0.745] 

0.886 

[0.750] 

0.819 

[0.742] 

1


 

0.950 

[1.032] 

                 0.796 

                [0.887] 

1.083 

[1.179] 
Note: Significance tests on γ1(+)  and γ1(-) are all based on a one–tailed probability. Significance test on γ1 is based on a two tailed 

probability.*(**) denotes rejection at 5% (1%) significance level. 

Note that the issue of seasonality is extensively explored in table (L) in the appendix. The 

table reports a) the monthly average risk premiums and b) the corresponding t-statistics 

over the full sample period after re-estimating equations (14) and (15) for every 

month
53

and using all previous methodologies for the estimation of time varying beta. The 

results indicate a consistent throughout the whole year non statistically significant beta-

return relation, a fact that strengthens considerably the outcomes presented in the previous 

parts of the analysis.
54

 

4. Conclusions. 

 The present paper attempts to estimate and test four versions of the conditional CAPM, 

which are all based on the idea of time varying beta coefficients. Those versions introduce 

corresponding methodologies of how conditional beta can be estimated, and briefly 

mentioned those alternatives are : a)  the  volatility approach, estimates time varying beta 

after modeling conditional variances and conditional covariances as appropriate volatility 

frameworks,  b) the recursive OLS approach, which estimates conditional betas from OLS 

regressions after adjustments made on the sample size, and finally c) the kalman filter 

approach, which estimates betas using recursive analysis and  inducing two different 

assumptions on the state equation. Those are a) the random walk hypothesis and b) the 

AR(1) alternative.  

                                                           
53

Obviously these monthly estimations require the previous separation of data according to the months of the 

year. 
54

 The presence of strong relations found only in particular months of the years can bias results when the 

overall analysis is conducted. A representative example is found in Pettengill et al. (1995) .  Their statistically 

significant unconditional beta–return  relation found solely in the months of January and February tend to 

affect the unconditional beta-return relation through out the hall year. 
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Furthermore, the paper following Morelli (2011)  attempts to test these conditional CAPM 

forms upon the sign of excess market returns, following at this point Pettengill et al. (1995) 

who suggest the division of  excess market returns into up and down markets. This joint 

conditional test constitutes the core interest of the presents analysis. Although all four 

methods estimate completely different sets on the time varying beta coefficients series, 

however all methods agree that the beta measurement of risk cannot be considered a 

statistically significant pricing risk factor, either when the analysis examines the simple 

conditional CAPM  or when testes the joint conditional approach. These results are further 

supported a) by a monthly seasonality analysis  and b) by the split of the full sample into 

two  sub-periods. In both situations the estimated risk premiums in conditional and joint 

conditional tests are not statistically significant and therefore time varying betas can not be 

regarded as statistically significant pricing risk factors. 
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Appendix 

1.Naming the Fama-French portfolios. 

The 25 Fama-French portfolios contain equal weighted returns generated from the 

intersection of 5 ME portfolios and 5 BE/ME portfolios. ME stands for market equity or 

(size) and is defined as price times number of shares, with breakpoints for every month t 

using all NYSE stocks for which Fama-Frech have availability over the market equity. 

Price is taken from CRSP, while number of shares is taken from Compustat (if available) 

or alternatively from CRSP. The five ME portfolios are ranked and named as ―small‖, ―2‖, 

―3‖, ―4‖ and ―big‖.  

BE is defined as the book value of stockholders equity plus balance sheet deferred taxes 

and investment tax credit (if available) minus the book value of preferred stock.
55

The five 

BE/ME portfolios are ranked and named as ―low‖, ―2‖, ―3‖, ―4‖, ―high‖.  

The intersection of ME and BE/ME portfolios naturally creates 25 new portfolios. For 

convenience the paper applies the following notation. The intersection of ―small‖ and 

―low‖ portfolio create a new asset which the paper refers to as ―1‖. Combining ―small‖ 

with portfolios ―2‖, ―3‖, ―4‖ and ―high‖ from the BE/ME segmentation creates respectively 

portfolios  ―2‖, ―3‖,‖4‖ and ―5‖ of the present analysis.  Combining now ―low‖ with  

portfolios ―2‖, ―3‖, ―4‖ and ―big‖ which are generated from the segregation of NYSE 

stocks based upon the market equity generates new assets which the paper name as ―6‖, 

―11‖, ―16‖and ―21‖. The same logic is applied in all cases  and therefore all names can be 

seen in the inputs of table (A) in the next page. 

                                                           
55

 For definitions see the http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/variable_definitions.html 



52 
 

Table (A) The intersection of 5 ME portfolios and 5 BE/ME portfolios. The  creation of the 25 Fama-French 

portfolios. 

 low 2 3 4 High 

small 1 2 3 4 5 

2 6 7 8 9 10 

3 11 12 13 14 15 

4 16 17 18 19 20 

big 21 22 23 24 25 

 

 

Graph (1)  Graphical representation of  excess returns of the 25 Fama-French portfolios.     

 

 

 

 

Table (B) Augmented Dickey-Fuller test for the 25 Fama-French portfolios. 

Augmented Dickey-Fuller test 

1 
-28.472 

[0.000]** 
6 

-28.037 

[0.000]** 
11 

-26.233 

[0.000]** 
16 

-28.171 

[0.000]** 
21 

-28.228 

[0.000]** 

2 
-19.587 

[0.000]** 
7 

-25.976 

[0.000]** 
12 

-27.171 

 [0.000]** 
17 

-26.348 

[0.000]** 
22 

-29.130 

[0.000]** 

3 
-27.138 

[0.000]** 
8 

-24.890 

[0.000]** 
13 

-25.808 

[0.000]** 
18 

-26.853 

[0.000]** 
23 

-27.169 

[0.000]** 

4 
-24.623 

[0.000]** 
9 

-25.113 

[0.000]** 
14 

25.808 

[0.000]** 
19 

-26.788 

[0.000]** 
24 

-19.726 

[0.000]** 

5 
-25.410 

[0.000]** 
10 

-25.589 

[0.000]** 
15 

-19.297 

[0.000]** 
20 

-19.476 

[0.000]** 
25 

-8.241 

[0.000]** 
Note : *(**) denotes rejection at 5% (1%) significance level. 
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Table (C) Summary statistics of the market and the 25 Fama-French portfolios. 

Portfolio Mean Skewness Kurtosis st.devi Q(50) Q(100) Q(150) Q(200) Q(250) Q(300) 

1 0.433 2.762 27.912 12.358 
103.496 

[0.000]** 

103.496 

[0.000]** 

205.313     

[0.001]** 

235.694   

[0.042]* 

256.573   

[0.374] 

284.077 

[0.737] 

2 0.794 4.496 57.633 10.666 
154.773      

[0.000]** 
242.400   

[0.000]** 
261.578   

[0.000]** 
288.205   

[0.000]** 
304.031   
[0.010]* 

314.750 
[0.267] 

3 1.007 1.859 15.913 9.264 
172.161   

[0.000]** 

230.168   

[0.000]** 

261.737   

[0.000]** 

290.797   

[0.000]** 

308.353   

[0.006]** 

323.406 

[0.168] 

4 1.176 2.866 31.341 8.671 
223.280   

[0.000]** 

284.875   

[0.000]** 

323.638   

[0.000]** 

356.342   

[0.000]** 

379.028   

[0.000]** 

394.259   

[0.000] 

5 1.393 3.263 31.687 9.573 
149.614   

[0.000]** 
214.870   

[0.000]** 
256.491   

[0.000]** 
294.120   

[0.000]** 
314.813   

[0.003]** 
332.024   
[0.098] 

6 0.550 0.388 5.116 8.002 
82.0538   

[0.002]** 

136.308   

[0.009]** 

166.226   

[0.172] 

200.553   

[0.475] 

227.162   

[0.847] 

256.014   

[0.968] 

7 0.928 1.995 22.039 7.882 
134.570   

[0.000]** 

189.086   

[0.000]** 

206.984   

[0.001]** 

237.540   

[0.035]* 

259.812   

[0.321] 

280.727   

[0.781] 

8 1.025 2.220 23.399 7.32 
188.874   

[0.000]** 
236.402   

[0.000]** 
262.631   

[0.000]** 
293.582   

[0.000]** 
313.660   

[0.003]** 
330.700   
[0.107] 

9 1.090 1.843 19.084 7.586 
195.143   

[0.000]** 

249.196   

[0.000]** 

279.801   

[0.000]** 

318.457   

[0.000]** 

339.871   

[0.000]** 

358.409   

[0.011] 

10 1.219 1.949 18.820 8.689 
164.483   

[0.000]** 

219.237   

[0.000]** 

253.955   

[0.000]** 

287.976   

[0.000]** 

311.109   

[0.005]** 

330.993   

[0.105] 

11 0.645 1.084 10.803 7.667 
139.213   

[0.000]** 
173.993   

[0.000]** 
192.576   

[0.010]** 
226.672   
[0.094] 

247.130   
[0.539] 

267.869   
[0.908] 

12 0.854 0.325 6.983 6.559 
91.425   

[0.000]** 

136.397   

[0.009]** 

161.668   

[0.243] 

200.535   

[0.476] 

227.280   

[0.845] 

251.241   

[0.981] 

13 0.972 1.115 15.052 6.734 
157.960   

[0.000]** 

202.511   

[0.000]** 

225.633   

[0.000]** 

255.069   

[0.005]** 

274.291   

[0.139] 

295.866   

[0.556] 

14 0.972 1.115 15.052 6.734 
157.960   

[0.000]** 
202.511   

[0.000]** 
225.633   

[0.000]** 
255.069   

[0.005]** 
274.291   
[0.139] 

295.866   
[0.556] 

15 1.117 2.020 20.286 8.635 
186.327   

[0.000]** 

253.056   

[0.000]** 

289.327   

[0.000]** 

309.493   

[0.000]** 

332.456   

[0.000]** 

351.673   

[0.021] 

16 0.655 -0.190 3.563 6.232 
69.5623   

[0.035]* 

108.090   

[0.272] 

133.038   

[0.836] 

167.461   

[0.954] 

202.399   

[0.987] 

234.302   

[0.998] 

17 0.724 0.934        12.857        6.265 
108.650   

[0.000]** 
147.101   

[0.001]** 
173.668   
[0.090] 

207.146   
[0.349] 

230.044   
[0.812] 

256.512   
[0.967] 

18 0.833       1.109       15.572        6.341 
118.137   

[0.000]** 

166.107   

[0.000]** 

200.258   

[0.003]** 

233.848   

[0.050] 

252.480   

[0.444] 

278.634   

[0.806] 

19 0.941         1.959       21.410        7.002 
124.827   

[0.000]** 

180.514   

[0.000]** 

205.994   

[0.001]** 

226.715   

[0.094] 

245.111   

[0.575] 

270.389   

[0.889] 

20 1.051         2.156        22.778        8.979 
144.467   

[0.000]** 
198.368   

[0.000]** 
236.450   

[0.000]** 
259.599   

[0.002]** 
274.279   
[0.139] 

293.656   
[0.592] 

21 0.576       0.018       5.439        5.484 
85.713   

[0.001]** 

134.115   

[0.012]** 

168.145   

[0.147] 

199.431   

[0.498] 

232.153   

[0.784] 

266.452   

[0.918] 

22 0.589        -0.044      5.314       5.236 
81.791   

[0.003]** 

142.331   

[0.003]** 

180.354   

[0.046] 

218.500   

[0.175] 

245.269   

[0.572] 

278.760   

[0.805] 

23 0.647        0.926       15.177        5.728 
125.412   

[0.000]** 
168.748   

[0.000]** 
202.174   

[0.002]** 
227.470   
[0.088] 

249.361   
[0.499] 

280.213   
[0.787] 

24 0.702        2.003       24.430        6.901 
175.102   

[0.000]** 

223.899   

[0.000]** 

246.992   

[0.000]** 

267.655   

[0.000]** 

283.815   

[0.069] 

311.627   

[0.310] 

25 -0.26        -4.829       36.287        13.375 
1939.10   

[0.000]** 

2000.73   

[0.000]** 

2014.94   

[0.000]** 

2029.78   

[0.000]** 

2041.12   

[0.000]** 

2061.26   

[0.000]** 

market 0.617        0.220        7.891        5.411 
102.589   

[0.000]** 
155.636   

[0.000]** 
186.428   
[0.023]* 

218.700   
[0.173] 

242.496   
[0.621] 

273.336   
[0.863] 

Note : Q stands for  Ljung-Box statistic. In the brackets the corresponding p values are reported. *(**) denotes rejection at 5% (1%) 

significance level. 
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Table (D)  Logl, Ljung-Box Q and Q* statistics for the chosen autoregressive models. 

P Logl Q(50) Q(100) Q(150) Q(200) Q*(50) Q*(100) Q*(150) Q*(200) 

1 -3797.54 
50.305 

[0.461] 

108.425 

[0.265] 

145.576 

[0.586] 

173.812 

[0.909] 

326.403 

[0.000]** 

377.006 

[0.000]** 

386.837 

[0.000]** 

390.647 

[0.000]** 

2 -3630.51 
55.594 

[0.272 

130.069 

[0.023] 

154.263 

[0.388] 

180.237 

[0.838] 

245.451 

[0.000]** 

275.819 

[0.000]** 

279.160 

[0.000]** 

279.794 

[0.000]** 

3 -3487.92 
75.236 

[0.012]* 
144.806 

[0.002]** 
177.746 
[0.060] 

200.293 
[0.480] 

636.580 
[0.000]** 

1011.96 
[0.000]** 

1048.97 
[0.000]** 

1053.10 
[0.000]** 

4 -3403.94 
56.7407   

[0.238] 

125.083   

[0.045]* 

168.819   

[0.139] 

201.943   

[0.448] 

543.101   

[0.000]** 

786.334   

[0.000]** 

800.229   

[0.000]** 

804.114   

[0.000]** 

5 -3517.09 
53.718 

[0.333] 

53.718 

[0.333] 

171.846 

[0.106] 

200.645 

[0.473] 

301.145 

[0.000]** 

609.136 

[0.000]** 

623.970 

[0.000]** 

626.219 

[0.000]** 

6 -3380.61 
37.816  
[0.897] 

91.755   
[0.709] 

129.441   
[0.886] 

166.027   
[0.961] 

373.384   
[0.000]** 

581.029   
[0.000]** 

601.953   
[0.000]** 

626.883   
[0.000]** 

7 -3331.27 
30.829   

[0.984] 

83.132   

[0.888] 

106.317   

[0.997] 

135.779   

[0.999] 

512.550   

[0.000]** 

741.880   

[0.000]** 

745.177   

[0.000]** 

750.963   

[0.000]** 

8 -3249.4 
37.265  

[0.908] 

77.078   

[0.956] 

106.888   

[0.996] 

137.892   

[0.999] 

646.942   

[0.000]** 

856.127   

[0.000]** 

863.812   

[0.000]** 

869.768   

[0.000]** 

9 -3274.93 
38.525   
[0.881] 

85.401   
[0.850] 

116.102   
[0.981] 

152.877   
[0.994] 

885.673   
[0.000]** 

1224.43   
[0.000]** 

1237.66   
[0.000]** 

1245.44   
[0.000]** 

10 -3420.78 
49.7663   

[0.482] 

105.150   

[0.342] 

140.157   

[0.706] 

164.879   

[0.966] 

557.495   

[0.000]** 

886.145   

[0.000]** 

905.566   

[0.000]** 

918.105   

[0.000]** 

11 -3313.3 
40.376   

[0.832] 

83.516   

[0.882] 

107.475   

[0.996] 

142.509   

[0.999] 

591.118   

[0.000]** 

757.217   

[0.000]** 

767.148   

[0.000]** 

782.100   

[0.000]** 

12 -3189.87 
61.038  
[0.136] 

99.874   
[0.484] 

128.453   
[0.897 

167.590   
[0.953] 

613.319   
[0.000]** 

895.443   
[0.000]** 

909.175   
[0.000]** 

920.314   
[0.000]** 

13 -3193.2 
39.272   

[0.862] 

91.941   

[0.704] 

117.732   

[0.975] 

146.991   

[0.998] 

531.082   

[0.000]** 

798.170   

[0.000]** 

803.269   

[0.000]** 

807.713   

[0.000]** 

14 -3187.68 
38.669   

[0.877] 

89.948   

[0.754] 

115.441   

[0.983] 

144.648   

[0.998] 

541.917   

[0.000]** 

811.589   

[0.000]** 

817.456   

[0.000]** 

821.902   

[0.000]** 

15 -3407.56 
47.079  
[0.591] 

112.446   
[0.186] 

148.427   
[0.520] 

168.076   
[0.951] 

510.610   
[0.000]** 

768.755   
[0.000]** 

784.451   
[0.000]** 

788.285   
[0.000]** 

16 -3148.12 
34.800 

[0.949] 

69.068   

[0.992] 

96.132   

[0.999] 

132.604   

[0.999] 

364.148   

[0.000]** 

440.829   

[0.000]** 

477.006   

[0.000]** 

497.832   

[0.000]** 

17 -3137.45 
39.028   

[0.868] 

80.223   

[0.927] 

107.415   

[0.996] 

141.785   

[0.999] 

402.047   

[0.000]** 

581.619   

[0.000]** 

586.693   

[0.000]** 

593.260   

[0.000]** 

18 -3155.3 
51.052  
[0.432] 

99.189   
[0.504] 

131.054   
[0.865] 

164.079   
[0.970] 

364.807   
[0.000]** 

483.449   
[0.000]** 

486.723   
[0.000]** 

490.815   
[0.000]** 

19 -3227.12 
33.373  

[0.966] 

95.080   

[0.620] 

117.816   

[0.975] 

140.792   

[0.999] 

561.452   

[0.000]** 

741.105   

[0.000]** 

745.852   

[0.000]** 

748.733   

[0.000]** 

20 -3462.06 
40.547   

[0.827] 

101.377   

[0.442] 

140.954   

[0.689] 

162.789   

[0.974] 

756.564   

[0.000]** 

1021.08   

[0.000]** 

1031.13   

[0.000]** 

1034.78   

[0.000]** 

21 -3014.96 
46.411 
[0.618] 

92.239   
[0.697] 

126.818   
[0.915] 

161.266   
[0.979] 

444.836   
[0.000]** 

593.825   
[0.000]** 

615.093   
[0.000]** 

627.009   
[0.000]** 

22 -2977.15 
53.517   

[0.340] 

104.815   

[0.351] 

138.885   

[0.732] 

180.080   

[0.840] 

600.027   

[0.000]** 

807.140   

[0.000]** 

831.081   

[0.000]** 

841.899   

[0.000]** 

23 -3061.54 
50.289   

[0.461] 

95.119   

[0.619] 

131.672   

[0.856] 

158.589   

[0.986] 

760.161   

[0.000]** 

832.365   

[0.000]** 

835.879   

[0.000]** 

839.919   

[0.000]** 

24 -3195.96 
39.166   
[0.865] 

94.006   
[0.649] 

118.066   
[0.974] 

141.310   
[0.999] 

696.672   
[0.000]** 

850.311   
[0.000]** 

852.104   
[0.000]** 

853.768   
[0.000]** 

25 -3556.83 
63.379   

[0.096] 

128.081   

[0.030]* 

162.129   

[0.235] 

183.000   

[0.800] 

792.423   

[0.000]** 

957.573   

[0.000]** 

1036.71   

[0.000]** 

1037.30   

[0.000]** 

market -2998.96 
44.974   

[0.674] 

94.870   

[0.626] 

127.473   

[0.908] 

164.735   

[0.967] 

591.678   

[0.000]** 

787.614   

[0.000]** 

799.688   

[0.000]** 

807.480   

[0.000]** 

  Note : Q  and Q* stands respectively for  the Ljung-Box statistic of residuals and squared residuals. In the brackets the corresponding  

p-values are reported. *(**) denotes rejection at 5% (1%) significance. Logl refers to the value of the log-likelihood value function. 
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Table (E) Estimating conditional covariances using the GARCH (1,1) model. 

GARCH (1,1)-Normal Distribution 

 Logl α1 β1 Akaike Schwarz S.B.T N.S.B P.S.B Joint 

CP1 -5702.75 
0.438 

[0.000]** 

0.847 

[0.000]** 
11.762 11.772 

1.116  

[0.264] 

0.041  

[0.967] 

0.691  

[0.489] 

1.708 

[0.635] 

CP2 -5634.89 
0.457 

[0.007]** 
0.853 

[0.000]** 
11.622 11.632 

0.453  
[0.650] 

0.163  
[0.870] 

0.119  
[0.905] 

0.322  
[0.955] 

CP3 -5408.51 
0.424 

[0.000]** 

0.840 

[0.000]** 
11.155 11.165 

0.523  

[0.600] 

0.086  

[0.931] 

0.331  

[0.740] 

0.440  

[0.931] 

CP4 -5369.47 
0.387 

[0.001]** 
0.855 

[0.000]** 
11.109 11.119 

0.294  
[0.768] 

0.121  
[0.903] 

0.477  
[0.632] 

0.349  
[0.950] 

CP5 -5411.58 
0.387 

[0.001]** 

0.851 

[0.000]** 
11.196 11.206 

2.362  

[0.018]* 

1.076  

[0.281] 

0.101  

[0.919] 

5.757  

[0.124] 

CP6 -5457.55 
0.310 

[0.004]** 
0.867 

[0.000] 
11.256 11.266 

0.558  
[0.576] 

0.184 
[0.853] 

0.729  
[0.465] 

0.737 
[0.864] 

CP7 -5338.06 
0.397 

[0.000]** 

0.840 

[0.000]** 
11.044 11.054 

0.649  

[0.516] 

0.082  

[0.934] 

0.537  

[0.591] 

0.785  

[0.852] 

CP8 -5260.17 
0.358 

[0.000]** 
0.850 

[0.000]** 
10.883 10.893 

35.902   
[0.933] 

91.031   
[0.727] 

0.569  
[0.569] 

0.581  
[0.900] 

CP9 -5290.55 
0.382 

[0.001]** 

0.844 

[0.000]** 
10.946 10.956 

2.168  

[0.030]* 

0.997  

[0.318] 

0.243  

[0.807] 

0.243  

[0.807] 

CP10 -5406.44 
0.409 

[0.000]** 

0.840 

[0.000]** 
11.186 11.1960 

0.631  

[0.527] 

0.288  

[0.772] 

0.575  

[0.564] 

0.995  

[0.802] 

CP11 -5361.43 
0.481 

[0.000]** 

0.814 

[0.000]** 
11.092 11.103 

0.739  

[0.459] 

0.117  

[0.906] 

0.578  

[0.563] 

0.908  

[0.823] 

CP12 -5261.59 
0.380 

[0.001]** 

0.841 

[0.000]** 
10.886 10.896 

0.804  

[0.421] 

0.634  

[0.525] 

0.614  

[0.538] 

1.216  

[0.749] 

CP13 -5252.21 
0.347 

[0.001]** 
0.854 

[0.000]** 
10.867 10.877 

0.005  
[0.995] 

0.532  
[0.594] 

0.597  
[0.550] 

0.684  
[0.876] 

CP14 -5270.66 
0.361 

[0.006]** 

0.857 

[0.000]** 
10.905 10.915 

0.696  

[0.486] 

0.190  

[0.849] 

0.636  

[0.524] 

1.177  

[0.758] 

CP15 -5366.74 
0.399 

[0.000]** 
0.840 

[0.000]** 
11.103 11.113 

0.662  
[0.507] 

0.291  
[0.770] 

0.674  
[0.500] 

1.191  
[0.755] 

CP16 -5244.2 
0.377 

[0.000]** 

0.835 

[0.000]** 
10.850 10.860 

0.963  

[0.335] 

0.046  

[0.962] 

1.197  

[0.231] 

2.224  

[0.527] 

CP17 -5231.73 
0.393 

[0.000]** 
0.837 

[0.000]** 
10.791 10.801 

0.877  
[0.380] 

1.128  
[0.259] 

0.633  
[0.526] 

1.864  
[0.601] 

CP18 -5190.41 
0.433 

[0.000]** 

0.824 

[0.000]** 
10.739 10.749 

0.118  

[0.905] 

0.033  

[0.973] 

0.349  

[0.726] 

0.149  

[0.985] 

CP19 -5156.77 
0.298 

[0.000]** 
0.852 

[0.000]** 
10.669 10.679 

0.751 
[0.452] 

0.015  
[0.987] 

0.664  
[0.506] 

1.065  
[0.785] 

CP20 -5312.31 
0.339 

[0.000]** 

0.839 

[0.000]** 
10.991 11.001 

1.669  

[0.095] 

0.384  

[0.700] 

0.453  

[0.650] 

3.354  

[0.340] 

CP21 -5092.09 
0.381 

[0.000]** 
0.829 

[0.000]** 
10.535 10.545 

1.583  
[0.123] 

0.571  
[0.567] 

0.773  
[0.439] 

3.374  
[0.337] 

CP22 -5025.93 
0.316 

[0.000]** 

0.847 

[0.000]** 
10.399 10.409 

0.192  

[0.847] 

0.051 

[0.959] 

0.775  

[0.437] 

0.689  

[0.875] 

CP23 -5034.75 
0.329 

[0.000]** 
0.848 

[0.000]** 
10.417 10.427 

0.951  
[0.341] 

0.108  
[0.913] 

0.477  
[0.633] 

1.587  
[0.662] 

CP24 -5023.36 
0.300 

[0.003]** 

0.843 

[0.000]** 
10.393 10.403 

1.036  

[0.299] 

0.031  

[0.975] 

0.676  

[0.498] 

1.518  

[0.678] 

CP25 -5247.8 
0.353 

[0.006]** 
0.837 

[0.000]** 
10.857 10.867 

1.255  
[0.209] 

0.052  
[0.958] 

0.966  
[0.333] 

2.200  
[0.531] 

Note : Q and Q* stand respectively for  Ljung-Box statistic of residuals and squared residuals. In the brackets the corresponding p values 

are reported : *(**) denotes rejection at 5% (1%) significance level. Table reports the results on the Engle and Ng (1993) sign bias test 

(SBT), negative size bias test (NSBT), positive size bias test (PSBT), Joint test (Joint). 
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Table (F) Estimating conditional covariances using the GARCH (1,1) model. 

 Nα Νβ Q(50) Q(100) Q(150) Q(200) Q(250) 

CP1 0.158 0.190 
28.260   

[0.994] 

58.325   

io[0.999] 

142.670   

[0.652] 

175.969   

[0.888] 

225.366   

[0.866] 

CP2 0.097 0.130 
29.254   

[0.991] 

58.584  

[0.999] 

134.843   

[0.807] 

178.410   

[0.861] 

220.756   

[0.908] 

CP3 0.141 0.189 
33.315   
[0.966] 

78.894   
[0.941] 

157.683   
[0.317] 

212.676   
[0.256] 

264.729   
[0.249] 

CP4 0.168 0.192 
32.026   

[0.977] 

68.589   

[0.993] 

148.711   

[0.514] 

209.176   

[0.313] 

254.566   

[0.407] 

CP5 0.151 0.159 
32.466   
[0.974] 

73.764   
[0.977] 

153.098   
[0.414] 

206.676   
[0.358] 

255.006   
[0.400] 

CP6 0.080 0.097 
30.649   

[0.985] 

68.930   

[0.992] 

140.356   

[0.702] 

174.529   

[0.902] 

222.649   

[0.892] 

CP7 0.126 0.163 
30.961   
[0.984] 

76.569 
[0.960] 

146.350   
[0.569] 

200.502   
[0.476] 

248.962   
[0.506] 

CP8 0.117 0.132 
35.902  

[0.933] 

91.031   

[0.727] 

160.327   

[0.267] 

229.890   

[0.072] 

284.174   

[0.067] 

CP9 0.152 0.164 
35.998  
[0.931] 

80.940   
[0.918] 

144.667   
[0.607] 

219.256   
[0.166] 

264.257   
[0.256] 

CP10 0.133 0.156 
30.630   

[0.985] 

78.002   

[0.949] 

150.185   

[0.480] 

226.689   

[0.094] 

269.183  

[0.193] 

CP11 0.109 0.193 
30.721   
[0.985] 

70.806   
[0.988] 

133.595   
[0.827] 

171.695   
[0.927] 

211.300   
[0.963] 

CP12 0.162 0.175 
34.294   

[0.955] 

88.744   

[0.782] 

159.815   

[0.276] 

211.535   

[0.274] 

255.450   

[0.392] 

CP13 0.150 0.174 
30.185   
[0.988] 

83.513   
[0.882] 

151.270   
[0.455] 

223.654   
[0.120] 

264.022   
[0.259] 

CP14 0.163 0.179 
28.159  

[0.994] 

76.183  

[0.963] 

150.359   

[0.476] 

217.574   

[0.187] 

253.629   

[0.424] 

CP15 0.144 0.182 
32.076   

[0.977] 

86.462   

[0.830] 

140.239   

[0.704] 

213.296   

[0.247] 

257.480   

[0.359] 

CP16 0.064 0.073 
28.976   

[0.992] 

74.160   

[0.975] 

132.369   

[0.846] 

173.028   

[0.916] 

215.864   

[0.942] 

CP17 0.141 0.170 
33.305   
[0.966] 

81.482   
[0.911] 

144.171   
[0.618] 

192.092   
[0.643] 

226.532   
[0.854] 

CP18 0.147 0.149 
34.141  

[0.957] 

86.507   

[0.829] 

151.822   

[0.443] 

212.753   

[0.255] 

251.367   

[0.463] 

CP19 0.099 0.162 
38.227   
[0.888] 

102.402   
[0.414] 

150.516   
[0.472] 

214.721   
[0.226] 

259.317   
[0.329] 

CP20 0.074 0.112 
31.828   

[0.978] 

109.791   

[0.236] 

166.394   

[0.170] 

235.938   

[0.041] 

298.627   

[0.018] 

CP21 0.038 0.046 
39.188   
[0.864] 

95.281   
[0.614] 

143.509   
[0.633] 

195.089   
[0.584] 

242.217   
[0.626] 

CP22 0.101 0.119 
34.743   

[0.950] 

83.240  

[0.887] 

141.484   

[0.678] 

192.409   

[0.637] 

235.843   

[0.730] 

CP23 0.059 0.052 
38.835  
[0.873] 

90.299  
[0.745] 

147.089   
[0.551] 

203.783   
[0.412] 

242.117   
[0.627] 

CP24 0.047 0.138 
45.119  

[0.669] 

105.933   

[0.323] 

154.727   

[0.378] 

208.990   

[0.316] 

257.987   

[0.350] 

CP25 0.074 0.173 
41.519  
[0.797] 

105.225   
[0.340] 

166.601   
[0.167] 

225.924   
[0.100] 

269.440   
[0.190] 

Note : Q and Q* stand respectively for  Ljung-Box statistic of residuals and squared residuals. In the brackets the corresponding p values 

are reported : *(**) denotes rejection at 5% (1%) significance level. For the individually estimated Nyblom statistic note that the 1% 

critical value is equal to 0.75 while the asymptotic 5% critical value is equal to 0.47. Na and Nb  stands respectively for the  individually 

estimated  Nyblom statistics of coefficient a and b. 
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Table (G)  Descriptive statistics of a) betas estimated using volatility models and  b)  corresponding risk 

premiums (I). 

 

Conditionally 

Variance/covariance   
beta 

mean St. dev kurtosis Skewness 
GPH 

test 

1 4.079 2.604 6.340 1.805 
0.324 

[0.018]* 

2 3.504       2.316 6.093        2.162        
0.480 

[0.000]** 

3 2.262        1.559 8.913        2.302       
0.344 

[0.012]* 

4 2.138        1.342 3.516        1.501        
0.552 

[0.000]** 

5 2.498        2.344 30.202        4.569       
0.380 

[0.005]** 

6 2.347        1.239 1.169        1.169      
0.441 

[0.001]** 

7 1.806        0.777 3.392        1.259        
0.447 

[0.001]** 

8 1.601        0.827 2.235        1.224        
0.594 

[0.000]** 

9 1.720        1.122 7.798        2.385        
0.537 

[0.000]** 

10 2.234         1.294 3.631        1.499       
0.554 

[0.000]** 

11 1.918        0.893 5.945       1.594        
0.405 

[0.003]** 

12 1.485       0.487 0.678        0.579        
0.405 

[0.003]** 

13 1.508       0.643 1.321       0.960        
0.577 

[0.000]** 

14 1.579         0.695 0.455        0.829      
0.615 

 [0.000]** 

15 2.075        1.211 2.669       1.370        
0.635 

[0.000]** 

16 1.450        0.586 5.884        1.789        
0.618 

[0.000]** 

17 1.343        0.409 0.612       0.471       
0.346 

[0.011]* 

18 1.284        0.418 2.478       0.983        
0.322 

[0.018]* 

19 1.278        0.619 0.807        1.007        
0.518 

[0.000]** 

20 1.836        1.040 1.931       1.239        
0.425 

[0.001]** 

21 1.022        0.281 1.558       1.022        
0.440 

[0.001]** 

22 0.895        0.245 0.023       0.533       
0.337 

[0.013]* 

23 0.936        0.332 0.832        0.672        
0.428 

[0.001]** 

24 0.987        0.508 1.235        1.058        
0.459 

[0.000]** 

25 1.647        1.140 13.840 2.934       
0.345 

[0.011]* 

Risk premium (I) -0.106        2.290 14.006        0.919        
0.295 

[0.032]* 

 Note : In the brackets the corresponding p values are reported : *(**) denotes rejection at 5% (1%) significance level. GPH test reports 

the slope coefficient of the Log periodogram regression. The number of periodogram points is 31 and the bandwidth parameter is set to 

0.50. 
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Table (H)  Descriptive statistics of  a) estimated betas using the recursive OLS approach and  b)  

corresponding risk premiums (II). 

Recursively 

generated beta 
mean St. Dev kurtosis Skewness 

GPH 

test 

1 1.744 0.116 10.383 1.065 
0.614 

[0.000]** 

2 1.579        0.125 10.848        -0.231        
0.350 

[0.010]** 

3 1.510         0.141 6.731        -2.205        
1.121 

[0.000]** 

4 1.404        0.201 19.328        -3.819        
0.973 

[0.000]** 

5 0.032        0.144 74.028        8.367       
0.093 

[0.497] 

6 1.148        0.101 7.097        -2.317        
0.934 

[0.000]** 

7 1.306        0.096 14.118        -3.413        
0.828 

[0.000]** 

8 1.242        0.100 7.364       -1.435        
0.677 

[0.000]** 

9 1.318        0.096 3.194        -1.673        
1.470 

[0.000]** 

10 1.459        0.139 10.164        -2.707       
0.857 

[0.000]** 

11 1.236        0.094 17.421        -4.125        
1.018 

[0.000]** 

12 1.127         0.046 16.476        -3.760        
0.929 

[0.000]** 

13 1.197         0.120 24.421        -4.256        
0.558 

[0.000]** 

14 1.197        0.120 24.421        -4.256       
0.558 

[0.000]** 

15 1.556        0.127 2.034        -1.046        
0.811 

[0.000]** 

16 0.994        0.081 21.511        -3.195        
0.195 

[0.154] 

17 1.099        0.060 16.413        -3.902       
0.670 

[0.000]** 

18 1.119        0.071 9.188       -3.007        
1.167 

[0.000]** 

19 1.261        0.111 6.152        -2.181       
1.119 

[0.000]** 

20 1.609        0.172 4.252        -1.689       
1.085 

[0.000]** 

21 0.962        0.041 14.127        3.543        
0.835 

[0.000]** 

22 0.916        0.032 52.861        4.741        
-0.061 

[0.654] 

23 1.027        0.062 4.645        -0.943        
0.868 

[0.000]** 

24 1.267        0.119 2.293        -1.092        
1.053 

[0.000]** 

25 1.410        0.134 5.322        0.220       
0.138 

[0.313] 

Risk premium (II) -0.291        4.506 51.685        -2.098        
-0.163 

[0.233] 

 Note : In the brackets the corresponding p values are reported : *(**) denotes rejection at 5% (1%) significance level. GPH test reports 

the slope coefficient of the Log periodogram regression. The number of periodogram points is 31 and the bandwidth parameter is set to 

0.50. 
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Table (I) Descriptive statistics of a) the kalman filter estimated betas and the b) corresponding risk premiums 

(III) using the random walk assumption. 

Kalman filter 

Beta  

Random Walk choice 

mean St. Dev kurtosis Skewness 
GPH 
test 

1 1.534        0.563 3.779        1.105        
0.487 

[0.000]** 

2 1.331        0.532 5.628        1.170        
0.385 

[0.005]** 

3 1.220       0.463 1.770        1.004       
0.525 

[0.000]** 

4 1.124        0.468 2.616       1.126       
0.457 

[0.000]** 

5 1.229        0.545 5.431       1.597        
0.430 

[0.001]** 

6 1.325        0.321 0.188        0.057       
0.696 

[0.000]** 

7 1.183        0.314 1.860        0.638       
0.237 

[0.084] 

8 1.102        0.326 1.249       0.650        
0.564 

[0.000]** 

9 1.114        0.318 0.807       0.524        
0.485 

[0.000]** 

10 1.247        0.386 0.802        0.644       
0.632 

[0.000]** 

11 1.232        0.267 -0.014     -0.053       
0.572 

[0.000]** 

12 1.105        0.171 -0.906        -0.035      
0.533 

[0.000]** 

13 1.060        0.213 0.335        0.102        
0.540 

[0.000]** 

14 1.060       0.213 0.335       0.102        
0.540 

[0.000]** 

15 1.202        0.390 0.287        0.335        
0.676 

[0.000]** 

16 1.141        0.154 0.310        0.182        
1.062 

[0.000]** 

17 1.059        0.149 0.513       0.087        
0.472 

[0.000]** 

18 1.046        0.174 2.73        -0.822        
0.473 

[0.000]** 

19 1.075        0.274 0.546        0.168        
0.516 

[0.000]** 

20 1.217        0.375 0.523        0.527       
0.694 

[0.000]** 

21 0.999       0.064 -1.303       -0.090        
1.113 

[0.000]** 

22 0.941        0.107 0.448        -0.371        
0.710 

[0.000]** 

23 0.895        0.116 1.900        0.204        
0.833 

[0.000]** 

24 0.967        0.245 1.884        0.110       
0.849 

[0.000]** 

25 1.060        0.517 7.475        -0.975        
0.463 

[0.000]** 

Risk Premium (III) -4.7805        175.96 890.86        -29.855        
-0.000 
[0.995] 

 Note : In the brackets the corresponding p values are reported : *(**) denotes rejection at 5% (1%) significance level. GPH reports the 

slope coefficient of the Log periodogram regression. The number of periodogram points is 31 and the bandwidth parameter is set to 0.50. 
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Table (J)  Descriptive statistics of a) the kalman filter estimated betas and the b) corresponding risk 

premiums (IV) using the AR (1) assumption. 

Kalman filter 

Beta –AR(1) choice 
mean St. Dev kurtosis Skewness GPH 

1 -0.547 2.061 3.137 1.043 
0.084 

[0.539] 

2 -0.156 1.921 2.274 -0.261 
0.131 

[0.338] 

3 0.221 1.369 0.494 0.230 
0.194 

[0.155] 

4 0.265 1.454 1.066        -0.219 
0.023 

[0.864] 

5 0.552         1.592 0.150       -0.049       
0.239 

[0.081] 

6 -0.176        1.398 0.380        0.180        
0.183 

[0.181] 

7 0.171        1.150 0.889        0.107        
-0.068 
[0.616] 

8 0.289        1.043 1.821        0.239        
0.121 

[0.378] 

9 0.525        1.390 10.588        2.296        
0.167 

[0.223] 

10 0.475        1.325 2.978       0.694        
0.214 

[0.117] 

11 -0.106        0.884 0.853        -0.558        
-0.028 
[0.834] 

12 0.241 0.794 0.796       0.265        
0.055 

[0.686] 

13 0.330        0.807 0.993        0.369        
0.059 

[0.664] 

14 0.330       0.807 0.993        0.369        
0.059 

[0.664] 

15 0.332        1.287 0.433        0.345        
0.179 

[0.190] 

16 -0.017        0.703 2.116        0.407        
0.248 

[0.070] 

17 0.063        0.660 2.077        0.545        
0.153 

[0.264] 

18 0.063         0.661 2.075       0.545        
0.152 

[0.265] 

19 0.287        1.058 6.245        1.636        
0.099 

[0.470] 

20 0.144        1.219 4.017        -1.074        
0.086 

[0.528] 

21 -0.232         0.686 0.742        -0.288       
0.569 

[0.000]** 

22 0.004        0.421 1.172        0.484        
0.207 

[0.129] 

23 -0.020       1.078 1.203        -0.451        
0.178 

[0.193] 

24 0.040        0.748 4.097        0.367        
-0.248 

[0.070] 

25 0.112        3.149 4.211        0.439       
-0.471 

[0.000]** 

Risk premium (IV) 0.887         1.061 4.284        -0.445        
0.004 

[0.973] 

Note : In the brackets the corresponding p values are reported : *(**) denotes rejection at 5% (1%) significance level. GPH reports the 

slope coefficient of the Log periodogram regression. The number of periodogram points is 31 and the bandwidth parameter is set to 0.50. 
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Table (K)  Correlation matrixes estimated for  a) the risk premium series and b) the time varying beta 

estimates using the full sample. 

 Risk premium I Risk premium II Risk premium III Risk premium IV 

Risk premium I 1    

Risk premium II -0.055 1   

Risk premium III 0.004 -0.018 1  

Risk premium IV -0.031 -0.020 0.0006 1 

     

Portfolio-1     

Beta1 1    

Beta2 0.276 1   

Beta3 0.501 0.209 1  

Beta4 0.241 -0.064 0.159 1 

     

Portfolio-2     

Beta1 1    

Beta2 0.181 1   

Beta3 0.377 0.250 1  

Beta4 0.125 0.161 0.134 1 

     

Portfolio-3     

Beta1 1    

Beta2 0.214 1   

Beta3 0.703 0.193 1  

Beta4 0.045 0.081 0.005 1 

     

Portfolio-4     

Beta1 1    

Beta2 0.234 1   

Beta3 0.590 0.236 1  

Beta4 -0.016 0.151 -0.044 1 

     

Portfolio-5     

Beta1 -0.067 1   

Beta2 0.603 -0.098 1  

Beta3 0.139 0.076 0.111 1 

Beta4     

     

Portfolio-6     

Beta1 1    

Beta2 0.373 1   

Beta3 0.646 0.283 1  

 0.012 -0.011 0.070 1 

Portfolio-7     

Beta1 1    

Beta2 0.167 1   

Beta3 0.591 0.155 1  

Beta4 0.227 0.168 0.143 1 

Portfolio-8     

Beta1 1    

Beta2 0.158    

Beta3 0.644 0.238 1  

Beta4 0.155 0.226 0.092 1 

     

Portfolio-9     

Beta1 1    

Beta2 0.070 1   

Beta3 0.330 0.294 1  

Beta4 -0.040 -0.153 0.033 1 

     

Portfolio-10     

Beta1 1    

Beta2 0.286 1   

Beta3 0.704 0.327 1  

Beta4 0.051 0.142 0.023 1 

     

Portfolio-11     

Beta1 1    
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Beta2 0.160 1   

Beta3 0.712 0.245 1  

Beta4 -0.042 0.093 0.087 1 

     

Portfolio-12     

Beta1 1    

Beta2 0.007    

Beta3 0.613 0.004 1  

Beta4 0.074 -0.115 0.176 1 

     

Portfolio-13     

Beta1 1    

Beta2 0.199 1   

Beta3 0.687 0.239 1  

Beta4 0.155 -0.005 0.050 1 

     

Portfolio-14     

Beta1 1    

Beta2 0.197    

Beta3 0.682 0.239 1  

Beta4 0.163 -0.005 0.050 1 

     

Portfolio-15     

Beta1 1    

Beta2 0.481 1   

Beta3 0.727 0.439 1  

Beta4 0.013 -0.122 -0.039 1 

     

Portfolio-16     

Beta1 1    

Beta2 0.444 1   

Beta3 0.760 0.498 1  

Beta4 -0.052 0.018 0.017 1 

     

Portfolio-17     

Beta1 1    

Beta2 0.133 1   

Beta3 0.692 0.135 1  

Beta4 -0.083 0.110 -0.162 1 

     

Portfolio-18     

Beta1 1    

Beta2 0.153 1   

Beta3 0.564 0.260 1  

Beta4 0.001 0.216 -0.035 1 

     

Portfolio-19     

Beta1 1    

Beta2 0.329    

Beta3 0.716 0.344 1  

Beta4 0.158 -0.113 0.079 1 

     

Portfolio-20     

Beta1 1    

Beta2 0.409 1   

Beta3 0.760 0.456 1  

Beta4 -0.107 -0.086 -0.143 1 

     

Portfolio-21     

Beta1 1    

Beta2 0.237 1   

Beta3 0.540 0.266 1  

Beta4 0.141 0.294 0.183 1 

     

Portfolio-22     

Beta1 1    

Beta2 0.248 1   

Beta3 0.593 0.105 1  

Beta4 -0.146 0.123 0.006 1 
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Portfolio-23     

Beta1 1    

Beta2 0.244 1   

Beta3 0.572 0.193 1  

Beta4 -0.170 0.183 -0.089 1 

yy     

Portfolio-24     

Beta1 1    

Beta2 0.491 1   

Beta3 0.711 0.495 1  

Beta4 0.077 0.135 0.101 1 

     

Portfolio-25     

Beta1 1    

Beta2 0.417 1   

Beta3 0.344 0.339 1  

Beta4 -0.037 -0.023 0.160 1 

Note : The table reports a)  the correlation matrixes of the four estimated risk premiums and b) the correlation matrixes corresponding 

each Fama-French portfolio using on each occasion the time varying betas that are estimated after applying four different methodologies. 

Specifically ―Beta1‖ and ―Beta2‖correspond respectively to the volatility and recursively estimated betas, while ―Beta3‖, ―Beta 4‖ 

correspond to the Kalman Filter betas  assuming respectively the random walk and the AR(1) for the formation of the state equations. 

Table (L)  Month by month estimates of conditional and Joint conditional CAPM models. 

Month γ1 γ1+ γ1- 

Volatility Approach 

January 0.034 (0.057) 0.121 (0.342) -0.337 (-0.012) 

February 0.003 (0.044) 0.023 (0.356) -0.378 (-0.239) 

March 0.036 (0.056) 0.124 (0.463) -0.402 (-0.321) 

April 0.023 (0.046) 0.234 (0.237) -0.023 (-0.564) 

May 0.086 (0.036) 0.120 (0.461) -0.109 (-0.289) 

June -0.074 (-0.035) 0.023 (0.023) -0.237 (-0.102) 

July 0.023 (0.083) 0.036 (0.129) -0.204 (-0.345) 

August 0.056 (0.047) 0.147 (0.728) -0.367 (-0.291) 

September 0.025 (0.057) 0.245 (0.269) -0.102 (-0.241) 

October 0.093 (0.023) 0.700 (0.236) -0.238 (-0.309) 

November -0.056 (-0.034) 0.461 (0.234) -0.346 (-0.328) 

December 0.046 (0.036) 0.209 (0.312) -0.023 (-0.320) 

Recursive OLS 

January 0.032 (0.049) 0.129 (0.445) -0.411 (-0.367) 

February 0.023 (0.032) 0.046 (0.854) -0.561 (-0.231) 

March 0.057 (0.023) 0.123 (0.341) -0.245 (-0.459) 

April 0.078 (0.012) 0.178 (0.201) -0.201 (-0.031) 

May 0.089 (0.238) 0.123 (0.309) -0.139 (-0.342) 

June -0.032 (-0.230) 0.230 (0.210) -0.234 (-0.438) 

July 0.037 (0.034) 0.093 (0.029) -0.561 (-0.398) 

August 0.047 (0.092) 0.459 (0.034) -0.301 (-0.467) 

September 0.023 (0.003) 0.267 (0.045) -0.662 (-0.304) 

October 0.038 (0.027) 0.039 (0.038) -0.201 (-0.345) 

November -0.032 (-0.026) 0.036 (0.342) -0.348 (-0.256) 

December 0.012 (0.023) 0.278 (0.467) -0.561 (-0.372) 

Kalman Filter- Random walk assumption 

January 0.340 (0.920) 0.109 (0.331) -0.142 (-0.287) 

February 0.020 (0.321) 0.122 (0.290) -0.331 (-0.201) 

March 0.038 (0.342) 0.311 (0.221) -0.225 (-0.348) 

April 0.093 (0.026) 0.281 (0.301) -0.109 (-0.441) 

May 0.045 (0.309) 0.002 (0.237) -0.301 (-0.331) 

June 0.063 (0.662) 0.267 (0.221) --0.661 (-0.211) 

July 0.012 (0.783) 0.201 (0.256) -0.301 (-0.101) 

August 0.014 (0.012) 0.672 (0.099) -0.234 (-0.381) 

September 0.029 (0.035) 0.320 (0.102) -0.221 (-0.362) 

October 0.010 (0.003) 0.208 (0.180) -0.561 (-0.209) 

November 0.027 (0.023) 0.291 (0.371) -0.463 (-0.110) 

December 0.122 (0.221) 0.041 (0.209) -0.021 (-0.463) 
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Kalman Filter-AR(1) assumption 

January 0.020 (0.301) 0.261 (0.267) -0.431 (-0.320) 

February 0.340 (0.012) 0.781 (0.269) -0.301 (-0.462) 

March 0.002 (0.123) 0.119 (0.301) -0.018 (-0.387) 

April 0.568 (0.203) 0.278 (0.021( -0.202 (-0.190) 

May 0.021 (0.039) 0.103 (0.331) -0.267 (-0.621) 

June 0.287 (0.021) 0.108 (0.321) -0.101 (-0.302) 

July 0.107 (0.209) 0.465 (0.129) -0.467 (-0.101) 

August 0.003 (0.661) 0.209 (0.374) -0.332 (-0.107) 

September 0.022 (0.398) 0.311 (0.301) -0.281 (-0.356) 

 October 0.078 (0.451) 0.219 (0.363) -0.374 (-0.763) 

November 0.125 (0.289) 0.019 (0.321) -0.020 (-0.632) 

December 0.245 (0.332) 0.077 (0.231) -0.023 (-0.333) 
Note : The table reports the monthly estimated risk premiums and the corresponding t-statistics, the last are reported in parenthesis, for 

the conditional and the joint conditional CAPM versions using the full sample. *(**) denotes rejection at 5% (1%). 
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Chapter 2 

Fractional Cointegration and the Term Structure Theory of Interest Rates 

Evidence from the European Interbank Money Market 

 

 

 

 

 

 



 

 

               Fractional Cointegration and the Term Structure Theory of Interest Rates.  

Evidence from the European Interbank Money Market. 

 

                                                       A B S T R A C T 

 

The present paper examines the term structure theory of interest rates using daily data from the 

European  interbank money market. The expectations hypothesis suggests the existence of long run 

equilibrium relations among interest rates of different maturities. The theory implies the stationary 

nature of spreads while traditionally is verified through cointegration analysis. However, the 

restrictiveness of I(0)/I(1) dichotomy and the possibility that  the time series in question may be 

fractionally integrated, forces the present application to examine cointegration rank through 

fractionally integrated systems, and indeed the paper applies such a fractional analysis by following 

the non parametric variance ratio test of Nielsen (2010) that does not require the specification of a 

particular data generating process and is invariant to short run dynamics. For the period under 

consideration and for comparative purposes the present work also estimates the parametric tests of 

Johansen‘s (1988,1991) and the fractional alternative of Breitung and Hassler (2002). Results on 

the cointegration rank among non-parametric and parametric tests differ significantly, even though 

there seems to be no consensus on the parametric results when different lag augmentations are 

applied. Finally, the paper proceeds with an informal comparison between the estimated and 

hypothesized cointegrating space, given that a consistent estimator of the last is easily obtained 

through the variance ratio test. 

 

Keywords: Fractional integration and cointegration, Interest rates, Cointegration rank, 

Cointegration space, Long Memory, Unit root processes, Non-parametric, Term structure, Variance 

ratio 
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1. Introduction  

 

 

Over the years cointegration analysis has been one of the milestones of empirical economic 

research, proven extremely useful when testing the validity of term structure theory. 

According to expectations hypothesis the yield spread between long and short-term interest 

rates is an excellent predictor of future changes of short rates over the long run, and if true, 

the empirical research must provide strong evidence  in support of the stationary nature of 

yield spreads series. Put it in other words, if expectations hypothesis holds then the term 

premium of interest rates by default is equal to zero, and this in terms of cointegration 

implies that short and long term interest rates constitute cointegrated series.
56

  

 

Interestingly the empirical validity of the theory provide little evidence in support of the 

pure expectations hypothesis,
57

 and a possible explanation for the observed deviations can 

be attributed to the restrictiveness of I(1)-I(0) dichotomy that  characterizes all traditional 

methods in cointegration analysis. Indeed the standard cointegration approach allows 

solely integer values for the memory parameters of the system and this explains why 

relevant tests for the existence of cointegrating relations  rely heavily on unit root tests. 

However, many economic and financial series display fractional memory properties in 

their integration order and this naturally leads next to fractional cointegration, a method 

that was initially introduced by Granger (1986) and was later analyzed for properties and 

                                                           
56

This is the purest form of expectation hypothesis advanced mainly by Irving Fisher. The theory postulates 

that short term bonds yield the same expected returns as long term ones. This implies that forward interest 

rates are unbiased estimates of expected future spot rates. Note that a major stream of criticism for the pure 

form of expectation hypothesis stems from the fact that this ignores several related issues such as a) the risk 

of capital loss, and b) the  unexpected inflation. 
57

 See for example Cook and Hahn (1990), Dua (1991), Fama (1990), Friedman (1979), Kane (1983), 

McCulloch (1975), Mankiw and Miron (1986), Van Horne (1965). 
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characteristics by Cheung and Lai (1993), Jagannathan (1999), Marinucci and Robinson 

(2001) and Tsay (2000).
58

  

The fractional cointergration method allows both the integration order of the observed 

series and the integration order of equilibrium errors to take on real values in the (0,1) area, 

and this justifies why the process is considered an adaptable ―tool‖ in acknowledging and 

detecting possible cointegrating relations.
59

  

The necessity of applying fractional instead of standard cointegration techniques  emerges 

due to a number of reasons. One motivation arises as a result of mounting evidence 

supporting the existence of long run relations among long memory processes,
60

 while 

another reason mainly demonstrated by Gonzalo and Lee (1998, 2000), states that the null 

hypothesis of no cointegration will be rejected more often than the nominal‘s level 

suggestion, given of course the fractional nature of the observed series.  

In the past the identification and modeling of long run relations in fractional cointegrated 

systems has followed many approaches. Most of them built on the null hypothesis of no 

cointegration versus the alternative of fractional cointegration. In the semi-parametric 

frequency domain for example, Marinucci and Robinson (2001) apply a cointegration 

procedure that compares the estimates in the integration order of the observed series,
61

 

while Robinson and Yajima (2002) place weight on the eigenvalues problem generated by 

the estimation of the spectral density matrix. Furthermore an interesting view  has recently 

                                                           
58

 Empirical applications can also be found in Booth and Tse (1995), Masih (1995, 1998), Baillie and 

Bollerslev (1994) , Dueker and Startz (1998). 
59

A process is integrated of order d if it‘s kth difference has a spectral density f(ι)~C|ι|
-2(d-k)

, such that ι is 

tending to zero, C>0 and k is nonnegative integer such that d-k<0.5 (Chen and Hurvich, 2003).Consider next 

two processes, Xt, Yt that are I(d) processes. We say that those series are fractionally cointegrated  if there 

exists a linear combination Ut=Yt-βXt such that Ut is I(du) with du<d. Obviously standard cointegration is a 

generalization of fractional cointegration, with du and d set respectively to 0 and 1. 
60

 See for example Cheung and Lai  (1993), Diebold et al. (1994), Baillie and Bollerslev (1994). 
61

 Robinson (2008) provides rigorous theoretical support of this idea. 
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demonstrated by Marmol and Velasco (2004) and proposes a Wald test of the null of 

spurious relations against the alternative of a single cointegrating relation, with a similar 

idea also applied in Hualde and Velasco (2008).  

In the time domain the parametric trace test of Breitung and Hassler (2002) stands out and 

solves a generalized eigenvalue problem of the type proposed by Johansen. However, the 

approach as any other parametric procedure depends heavily on the correct specification of 

short run dynamics and therefore the usual dilemmas about the correct number of lags are 

inserting the fractional analysis, as is common for the Johansen parametric test. 

The present paper in order to detect possible fractional cointegrating relations in a system 

of four interest rates drawn from the European interbank money market applies the 

nonparametric variance ratio test of Nielsen (2010). The test due to a number of virtues is 

completely separated from other alternatives that are usual seen in the fractional 

cointegration literature.  

First, the statistic does not depend on the integration order of the observed series, while 

neither the statistic nor its asymptotic distribution depend on b, that is the strength of the 

cointegrating relation.
62

 Second, inferences on the cointegration rank do not presuppose the 

estimation of cointegrating vectors, as contrary is true with other methods that depend 

heavily on some kind of regression analysis.
63

 Finally, the most important advantage in 

applying Nielsen‘s variance ratio approach can be seen in the non parametric nature of the 

                                                           
62

Nielsen (2010) states that this is a major advantage since b by default is unobserved and it‘s estimation 

requires the estimation of cointegration relations first. The last demands the determination of  cointegration 

rank. 
63

See for example Marmol and Velasco (2004). Their analysis focus on the comparison of OLS and GLS 

estimates of cointegrating vectors. Hualde and Velasco (2008) on the other hand proceed to inferences on the 

cointegration rank using the GLS estimates introduced in Robinson and Hualde (2003). 
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test.
64

 In contrast to Johansen (1998, 1991) and Breitung and Hassler (2002) fully 

parametric trace tests, the analysis does not depend on the misspecification of short run 

dynamics and therefore avoids possible misspecifications in the lag augmentation, a state 

that is very often responsible for the inconsistent and the erroneous estimate of 

cointegrating rank.
65

 

Section 2 presents the fundamental mathematic equations of the variance ratio test, while 

section 3 uses time and frequency domain maximum likelihood methods to answer the 

question of whether the observed interest rates series should enter Nielsen‘s approach after 

adjustments made on the interest rates series for a non zero mean or a deterministic time 

trend or both.  Sections 4 and 5 concentrate on the empirical results of the chapter and 

moreover present estimations and results over the variance ratio test and the parametric 

procedures of Johansen (1998, 1991) and Breitung and Hassler (2002) respectively. Finally 

section 6 proceeds with an informal comparison between the estimated and hypothesized  

cointegration space and section 7 concludes. 

2. The variance ratio test 

The nx1 vector Zt is said being fractionally integrated of order d,
66

 that is ZtI(d), if   

                                     (1 ) (1 )d d d

t t t t tz L u z L u u 

                                                                  (1)  

                                                           
64

Even though the variance ratio test is characterized by Nielsen (2010) as non parametric the author remains 

cautious about accepting the term. This is because the test actually depends on a user chosen parameter, that 

is d1, which induces a hall family of tests. The parameter appears in the asymptotic distribution of the test and 

defines decisively it‘s shape. 
65

 For example Lutkepohl and Saikkonen (1999) note that whenever the number of lags (k)  is too small 

relative to the true size, there can be severe size distortions, while on the other, hand significant power losses 

may arise if k is too large. In this case too few cointegrating relations are going to be acknowledged. 

66
The definition applies both to univariate and vector cases. Note that a univariate stationary series is one that 

is characterized by a continuous spectral density function bounded at the zero frequency. A vector defined as 

an I(d) process is one that it‘s d-th difference has a continuous spectral density matrix bounded, positive, 

semi-definite and bounded away from the zero matrix. In terms of the eigenvalues of the spectral density 

matrix this implies that these are non-negative, while there exists at least one eigenvalue that is bounded 

away from zero. 
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where ut  I(0) and (1-L)
d
 is defined by the following binomial expansion  

                                                          
0

( )
(1 )

( ) ( 1)

d j

j

j d
L L

d j





 
 

   
                                                         (2)                   

                                                                                                                                     

where                                                    
1

0
( ) z tj t e dt


                                                                       (3) 

The parameter d determines the memory of the process. Specifically, for d>-1/2 vector Zt 

is invertible, for d=0 is stationary with spectral density function bounded at the origin, for 

d<1/2 is covariance stationary, while for d>1/2 is long memory with spectral density 

unbounded at low frequencies.
67

  

Fractional cointegration although replicates the basic notions of standard cointegration, 

however allows the observed series to be fractionally integrated. Moreover a vector of time 

series variables is characterized as fractionally cointegrated if all variables are integrated of 

order d>0.5 and at the same time exists a linear combination of the same variables with a 

smaller degree of integration (d-b).  

In technical terms the above statement can be recast  into the following definition. The nx1 

vector Zt is cointegrated, if Zt I(d)
68

 and at the same time there exists a full rank nxr 

matrix β, such that ' tZ I (d-b) for b>0,
69

 where d and b are real numbers. The r 

                                                           
67

Long memory time series are stationary processes that display a statistically significant dependence 

between very distant observations in time. This dependence is formalized in terms of persistence in the 

observed autocorellations. Specifically for a long memory process it‘s autocorellation function will decay at a 

hyperbolical rate, while the for a pure stationary process the same function will die out exponentially. Note 

that the hyperbolic decay of the sample autocorrelation function does not necessarily stem from a long range 

dependent process. In fact very often switching regime and change-point processes, display the same 

empirical characteristics. 
68

The integration order of a vector Zt is determined by the highest integrated order observed among it‘s  

components. This possibly implies the existence of  over-differenced elements.  
69

Obviously b can differ in each cointegrating vector and so indexing b implies the following statement βθ
‘
zt

I(d-bk)  for k=1,…,r 
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independent columns of β‘Zt product define the cointegration rank, while the space 

spanned by the columns of β constitute the cointegrating space. 
70

 

Using daily data from the European interbank money market the paper targets the 

estimation of the non parametric variance ratio test presented in Nielsen (2010). The 

interest rates  under consideration are the Eonia and the Euribor interest rates of 7, 10 and 

12 months, denoted respectively as ieonia, i7,i10 and i10. 

 As was stated in the introduction, the variance ratio test contrary to conventional I(1)/I(0) 

cointegration analysis,
71

 does not depend on the integration order of the observed series or 

the strength (b) of the cointegrating relations,
72

 while another advantage stems from the 

nonparametric nature of the test that excludes the existence of possible misspecifications  

in the short run dynamics. Indeed the statistic contrary to most parametric cointegration 

rank tests, that are sensitive both to different specifications assumed by the underlying 

model and to the lag-augmentations employed,  performs  adequately well in the 

simulations  performed in Nielsen (2010). Specifically the ratio test exhibits good size and 

power properties to different specifications of the simulated models,  although the sample 

sizes, T=100 and T=250,  are considered rather small for non parametric tests. 

The statistic using a) the sample variances of the observed series and b) their fractional 

partial sum is constructed as their ratio. In the univariate case of Zt the following notations 

are applied 

                                                          

d

t tz u

  , d>1/2, t=1,2,…
                                                                

(4)
 

                                                           
70

 Granger (1981,1983) provides an error correction formula for fractionally cointegrated systems. In 

particular, if yt~I(d) is a k-dimensional vector and zt is a set of cointegrating vectors such that zt=a‘yt~I(d-b) 

then Granger proves that the appropriate error correction is H(L)(1-L)
d
yt=-γ[1-(1-L)

b
](1-L)

d-b
zt+C(L)εt 

71
 Stock and Watson (1988), Johansen (1988, 1991). 

72
 Note that variance ratio distribution does not depend on b. 
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1d

t tz u

  , d1>0, t=1,2                                                  (5)      

                                                                                                                                                             

The fractional central limit theorem that is applied for Zt
73

 assuming d>1/2 provides  

equations (6) and (7). These report the sample second moments of Zt 
and tz 74

and provide 

their corresponding convergences in distribution assuming T tends to infinity. 
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The univariate variance ratio statistic is then defined as the ratio of 6 to 7 

 

                                     

1

1

2 1
2

2 1 0
1 1

22

0

1

( )
( )

( )

T

t
dd Dt

T

d dt

t

z W s ds
p d T

W s dsz




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 
 


                                                           (8)       

 

Note that d1 is a parameter chosen by the econometrician and is submitted solely to his 

judgment. However, the fact that d1 appears in the asymptotic distribution of the ratio 
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Nielsen (2010) states that for d>1/2 and regularity conditions for ut the following central limit theorem can 

be applied. T
1/2-d

z ζΕWd(s), 0< S≤1 as T  . Note that double arrow means weak convergence of a 

process in D[0,1]. The same is valid for 
tz . 

74
Note that 

Ddenotes convergence in distribution whereas Wd denotes a special case of fractional 

standard Brownian motion of order d>1/2 defined Wd(r)=0, r=0 and 
1

1
0

1
( ) ( ) ( )

( )

r
d

dW r r s dW s
d

 
  , 

r>0. Note that W1 denotes a standard Brownian motion. 
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makes this choice less autonomous in the sense that the econometrician will pick up those 

values of d1 that maximize the power of the test. 

 Indeed Nielsen (2010) underlines  the important fact that certain values of d1 tend to 

maximize the power of the test. Moreover a local power analysis in Nielsen (2010) 

indicates that the power of the ratio test appears being monotonically decreasing in d1 and 

that d1=0.1 probably sets the best choice.
75

This means that higher values of d1 do not 

generate higher power for the test, while gains from using lower values to 0.1 are minor or 

at least equal. 

In the vector case the variance ratio test will be based upon the following statement 

 

                                                            

1

1( )T T TR d A B                                                                                 (9)         

 where                   
'

1

T

T t t

T

A z z

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'

1

T

T t t

T

B z z


 , 
1(1 )

d

t tz L z
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                                          (9i) 

 

Let now ι1≤…≤ιn be the ordered eigenvalues of RT (d1), with εj,  j=1,…,n denote the 

corresponding eigenvectors. Nielsen (2010) shows that the decision of whether an 

eigenvector constitutes a cointegrating vector is solely based upon the rate at which the 

associated eigenvalue converges to zero.
76

 

Note at this point the adjustment potentials of the variance ratio  to deterministic time 

trends, nonzero means or both, using the following regression equation 

                                                           
75

Nielsen (2010) comments that a small value of d1 may distort the size properties of the test, while another 

typical choice is that of d1= 1. 
76

Nielsen (2010) acknowledges three cases: a) if ιj converges to zero at rate OP(T
-2d1

) then eigenvector εj is 

not a cointegrating vector, b) if the rate is OP(T
1-max(2d-2b+2d,1

) then εj is a cointegrating vector and d-b<1/2 and 

c) if the rate is equal to OP(T
-2d1

)  εj is again a cointegrating vector but d-b>1/2. 
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't t tY a z                                                                           (10) 

where δt = [1,t]', Zt denotes the residuals, while Yt stands for the observed series vector.
77

 

In this last case the de-trended variance ratio test is constructed upon the least squares 

residuals of equation (10) and hence
78

  

                                                                       ˆˆ 't t tz Y a                                                                             (11)   

Once the variance ratio is estimated and the possibly corrected for the presence of 

deterministic time trends, the analysis next uses the eigenvalues ιj, j=1,..,n to estimate the 

trace statistic
79

 that is presented in equation (12) 

                                                               12

, 1

1

( )
n r

d

n r j

j

d T 




                                                                (12)                                                                   

where                                      , 1 1
ˆ( ) ( , )D

n r n rd U d d                                                                           (13) 

 

Note that the asymptotic distribution depends on a) the integration order of the observed  

series, d, b) the parameter d1 indexing the family of tests and finally c) the dimensionality 

of the problem, or state it differently the number of common stochastic trends, that is n-r. 

On the other hand note that the distribution is independent to the degree of cointegration, 

that is b. 

The null hypothesis and the alternative are given in the following relation
80
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If δt=[1,t]‘ this stands for the presence of a deterministic linear time trend and a non zero mean. Obviously 

other definitions of δt correspond to different specifications of equation (10). For example, for δt=0 there are 

no deterministic trends, while for δt=1 there is a non zero mean. 
78

If a de-trending procedure is under consideration then the asymptotic distribution should adjust through 

appropriate simulations. This process in order to yield good size properties requires the smooth change of 

critical values whenever the integration order of the observed series is changing. Actually in order to obtain 

the right quantiles a consistent estimate of the integration order must be used. So assuming d* is such an 

estimate then quantiles must be simulated in order to obtain the following asymptotic distribution Un-r(d*,d1). 
79

The trace statistic Λn,r (d1) is asymptotically invariant to short run dynamics. Therefore as Nielsen (2010) 

quotes any hypothesis test based on this statistic will eventually share this invariant property. 
80

The procedure compares the statistic Λn,0 (d1) with the corresponding critical values CVμ,n(d
*
, d1). So for 

example, if the first value is smaller than the second then the null hypothesis H0 : r=0 is not rejected and the 
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                                                                0 0:H r r   1 0:H r r
                                                                 (13i) 

 3. Interest rates : trend stationary or difference stationary processes. 

As was stated in section 2 the non parametric variance ratio test is estimated after 

corrections made in the observed time series for deterministic terms. Nielsen (2010) 

decides the de-trending form of his data set solely upon the graph of the interest rates series 

under consideration, while contrary the present analysis, uses the ARFIMA models, in 

order to yield a decision based on evidence rather than intuition.
81

 

An important debate of the trend behavior of many macroeconomic and financial series 

often implicates the discussion of whether such trends are best described as deterministic 

time trends or unit root with drift models.
82

 

ARFIMA frameworks that often have been used in this conflict area of research, constitute 

a conducive tool in determining the stationary nature of the  interest rates series under 

consideration and hopefully will decide in the present analysis the residuals upon  the 

variance ratio test is going to be estimated.  

Although many researchers such as Chambers (1996) have used in the past exclusively 

frequency domain methods, the present analysis applies time and frequency domain 

maximum likelihood techniques.  

Consider for example the following ARFIMA model 

                                   1 1(1 ... )(1 ) (1 ... )P d q

p t q ta L a L L x L L                                               (14)                                                                                                 

                                                                                                                                                                                
analysis concludes that the cointegration rank is r=0 . However, if it is rejected the process moves on and 

compares Λn,1(d1) with the corresponding critical value CVμ,n-1(d
*
, d1). The same procedure is repeated until 

at some point there is acceptance of the null hypothesis. 

  
81

 The decision is  obviously important since determines the data set upon which  the ratio statistic is going to 

be estimated. 
82

See Perron (1989), Andrews and Zivot (1992) 
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In equation (14) the short run behavior of the series is captured severally by the ARMA 

parameters, while the long memory property is modeled by parameter d
83

whose effect on 

the short run dynamics is limited.
84

 

Now equation (15) presents the deterministic model  

                                                                      t tx t e                                                                                (15) 

 

 where et is  a stationary ARMA process
85

 

 

                                                                     ( ) ( )t ta L e b L u                                                                       (16) 

 

Differencing (15) provides equation (17) 
 

                                                                    t tx e                                                                                              (17)                                                                                                          

 

Taking first differences in (16) and solving for Γet turns over  
 

                                                                
1( ) ( )t te a L B L u                                                                   (18)            

                                                                   

Finally substituting the last equation in (17) turns over  

 

                                                              1( ) ( )t ta L x b L u                                                                    (19) 

 

 

Chamber (1996) notes that Γxt although being stationary is in fact an over-differenced 

process. This stems from the fact that first differencing a deterministic trend series adds on 

a unit root in the moving average representation. Therefore the first difference of Γxt 
is 

integrated of order minus one, and therefore expressing Γxt 
through the context of an 

ARFIMA (p,d,q) should estimate ˆ 1d   .  

Consider now the random walk model with a drift as in equation (20) 

                                                           
83

The model is non stationary whenever d≥0.5. On the other hand long range dependence occurs for any 

value of d greater than zero. 
84

In terms of the spectral density function this means that the long range dependence is easily estimated 

without imposing any prior restrictions on the higher frequencies components. 
85

ut is white noise process. 
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                                                                  1t t tx x e                                                                             (20)     

                                                                                    
  Differencing (20) turns over equation (21) 
 

                                                             1( ) ( )t ta L x b L u  
                                                                (21) 

 

 
where Γxt is expressed as an ARFIMA (p,d,q) with ˆ 0d   

3.1 Time domain analysis. 

The previous analysis states that ARFIMA (p,d,q) nests both the trend and difference 

stationary versions
86

 and corresponds at each a specific estimation of d. In fact this 

statement  introduces a formal test for determining the residuals upon which  the variance 

ratio test will be based. However, a drawback of this process focuses on the sensitivity of 

the estimated coefficients when different classes of ARFIMA are estimated. 

 

 Indeed Schmidt and Tschernig (1993) underlie the decisiveness of determining erroneous 

AR and MA orders, and particularly state that possible misspecifications  in either of the p 

and q orders,   may cause substantial biases in the estimation of the long memory 

parameter. Specifically, for  under-specification or over-specification of either p and q 

orders, Schmidt and Tschernig (1993) worn for inconsistent estimates of not only AR and 

MA coefficients, but also of d.  

 

On the other hand, Sowell (1992) does not embrace this opinion at all and in contrast states 

that ARFIMA is a parameterization where short and long run behavior is captured 

separately by the ARMA components and the fractional differencing operator respectively. 

                                                           
86

 The first difference of a deterministic trend series is integrated of order -1, while the first difference of a 

unit root model is 0. A sufficient and necessary condition for the latter statement to be valid is that the 

corresponding spectral density at zero frequency must not be zero, while for the former statement to exist the 

spectral density must be zero at zero frequency. The conclusion that occurs is that testing the spectral density 

at zero frequency is equivalent as testing the integration order of the observed series. 
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Therefore erroneous estimates on the short memory part do not affect the estimation of the 

long memory parameter,
87

while the inverse according to Sowell (1992) is also true. 

 

 Actually Sowell (1992) suggests the selection of p and q orders according to Akaike and 

Schwarz information criteria. His procedure starts by setting a-priori max orders for the 

lagged autoregressive variables (p) and the lagged moving average components (q), while 

next, using maximum likelihood functions, he estimates all  ARFIMA models that are 

generated from different combinations in the q and p orders.
88

 The above information 

criteria are then helpful in ascertaining the best ARFIMA. 

 

In order to determine the appropriate ARFIMA class, the analysis follows the general 

scheme of Sowell (1992). However, limiting a-priori as Sowell does the p and q orders 

seems rather restrictive and therefore the establishment of the appropriate ARFIMA class 

is completely differentiated at this point from the latter procedure.  

 

Actually the hall process evolves in five steps. Specifically : The first step generates the 

first differenced interest rates series of ieonia,i7,i10 and i12 denoted respectively as Γeonia, Γi7, 

Γi10 and Γi12. The second step uses Γeonia, Γi7, Γi10, Γi12 and applies on each series four long 

memory methods in order  to obtain for each series equal number of long memory 

estimates, while the third step applies on each series fractional differencing in order to 

produce the corresponding stationary processes. The fourth step uses the Box-Jenkins 

                                                           
87

The long range dependence occurs for any positive values of d. As Sowell (1992) claims this dependence in 

terms of spectral density function occurs even if placing less restrictions on the higher frequency components 

and this is seen as the flat segment of the spectral density graph.  
88

 Sowell (1992) notes that if d≤0.5 the process consistently estimates all ARFIMA coefficients. 
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methodology
89

to determine on the stationary series the appropriate AR and MA orders, 

while finally the fifth step corresponds at each ARFIMA the estimated maximum 

likelihood value and the Akaike and Schwarz information criteria.
90

 

 

Table (1) reports the estimated long memory coefficients of the first differenced interest 

rates series of Γeonia, Γi7, Γi10 and Γi12 implementing on each occasion four long memory 

tests. For example, estimating the GPH test for the first differenced series of Eonia using a 

bandwidth parameter equal to 0.4
91

  turns over a long memory coefficient that is equal to 

0.331.  

 

Using next the appropriate fractional differencing operator, that is (1-L)
0.331 

the analysis 

obtains the corresponding stationary process, while applying next the Box-Jenkins 

methodology to the latter fractionally differenced series determines the  AR and MA orders 

of the ARFIMA.  

 

In this particular case these orders were set equal to one. So synthesizing all the above 

outcomes the analysis corresponds for Γeonia and for the GPH test under the bandwidth 

parameter of 0.4 the ARFIMA (1,0.331,1) framework. 

                                                           
89

The method proposed by Box and Jenkins is customarily partitioned in three stages : identification, 

estimation and diagnostic checking. At the identification stage an ARIMA is specified on the basis of 

autocorrelations and partial autocorrelations. As it is well known the true autocorrelations of a pure MA 

process present a cutoff point at the MA order, whereas the partial autocorrelations taper off. In contrast, the 

autocorrelations of a pure AR processes taper off, whereas it‘s partial autocorrelations present a cutoff point 

at the AR order. 
90

 A disjoint ARFIMA estimation in a space time context is carried out in Haslett and Raftory (1989). The 

researchers apply a two step algorithm in order to estimate separately the short and long memory coefficients. 

In the frequency domain an analogous procedure is delivered by Coli et al (2005). Their full parametric 

approach is realized combining the orthogonal decomposition of a stochastic process with the Whittle 

likelihood estimation. 
91

As bandwidth parameter the analysis here defines the value of the function T
m
 that proclaims the number of 

low frequency ordinates. 



81 
 

There are many approaches in estimating the fractional differencing parameter. In the 

present analysis there are four. Those are : a) the rescaled–range method of Hurst (1951) 

which in the present analysis will be denoted as R/S, b) the modified R/S method of Lo 

(1991) that will be refer to as modified R/S, c) the GPH test suggested by Geweke and 

Porter-Hudak (1983) and finally d) the semi-parametric GSP test of Robinson and Henry 

(1998). 

 

 Sowell (1992a) argues that the estimations of the fractional differencing operator  can be 

quite misleading, and using different long memory tests to control the accuracy  

predominantly as a necessity, especially when acknowledging the drawbacks following 

every estimating procedure.  

 

For instance, a problem with the R/S statistic is that it‘s distribution is not well defined, 

while the long memory estimate appears sensitive to potential short term dependence or 

heterogeneities occurred in the data generating process.
92

 On the other hand the long 

memory estimate of the modified R/S statistic is invariant to a general class of short 

memory processes, while the limiting distribution is known.  

 

Furthermore, the semiparametric GPH estimate appears to be sensitive to the choice of the 

bandwidth parameter and to the presence of short range dependence.
93

 As has been stated 

by Geweke and Porter-Hudak (1983) the number of low frequency periodogram ordinates, 

that is values of the function T
m

, introduces definitely judgment and commonly, large 
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Robinson states ―although the statistic behaves well with respect to long tailed distributions, its limit 

distribution is not standard and its difficult to use it in statistical inference, while it has no known optimal 

efficiency properties with respect to any known family of distributions.‖ 
93

 Chen and Wohar (1992). 
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bandwidth parameters will bias  the estimate of d due to the use of medium and high 

frequency components, while on the other hand,  small values will tend to generate 

imprecise estimates due to the limited degrees of freedom.  Finally, in simulations made in 

Dittmann (2000) the modified R/S appeared less powerful to GPH,
94

while  on the other 

hand the size distortions of the former were actually smaller than those presented for the 

GPH. 

 

Graph (1) displays the graphical output  of Γeonia, Γi7, Γi10 and Γi12 while tables (1) to (3) 

report respectively : a) the estimated long memory coefficients of Γeonia, Γi7, Γi10, Γi12, 

using a range of bandwidth parameters for the specification of the sample size functions of 

both  GPH and GSP estimates, b) the orders of AR and MA polynomials after  applying 

appropriate fractional differencing 
95

on Γeonia, Γi7, Γi10 and Γi12, and finally c) the log-

likelihood value and the Akaike and Schwarz information criteria on every estimated 

ARFIMA model.  

Table (1) Estimation of the long memory coefficient for the first differenced interest rates series  Γeonia, Γi7, Γi10, Γi12 

using GPH, GSP, R/S and modified R/S  long memory estimates. 

 GPH GSP Modified R/S R/S 

 0.4T  
0.6T  

0.8T  
0.4T  

0.6T  
0.8T  

Q=5* Q=10* Q=15* - 

Γeonia 
0.331 

[0.039]* 

0.130 

[0.040]* 

-0.279 

[0.000]** 

0.476 

[0.000]** 

0.114 

[0.013]* 

-0.183 

[0.000]** 
-0.482 -0.457 -0.444 -0.527 

Γi7
 0.335 

[0.037]* 

0.361 

[0.000]** 

0.247 

[0.000]** 

0.251 

[0.013]* 

0.404 

[0.000]** 

0.243 

[0.000]** 
-0.368 -0.389 -0.403 -0.324 

Γi10
 0.252 

[0.117] 

0.288 

[0.000]** 

0.207 

[0.000]** 

0.210 

[0.038]* 

0.363 

[0.000]** 

0.202 

[0.000]** 
-0.382 -0.400 -0.412 -0.348 

Γi12
 0.252 

[0.117] 

0.288 

[0.000]** 

0.207 

[0.000]** 

0.210 

[0.038]* 

0.363 

[0.000]** 

0.202 

[0.000]** 
-0.382 -0.400 -0.412 -0.348 

Number of observations: 2812; number of periodogram points corresponding each bandwidth parameter: 24, 117, 574; Critical Values 

for Hurst-Mandelbrot and R/S tests  90%: [0.861, 1.747] 95%: [0.809, 1.862] 99%: [0.721, 2.098], Null hypothesis stated for Hurst-

Mandelbrot and R/S tests are respectively H0: no autocorrelation and H0 : no long-term dependence; The following form is applied for 
transforming the R/S statistic into the fractional differencing coefficient d=[(log(R/S)/logT]-1/2; p-values are reported in the brackets; * 

denotes rejection at 5% significance level, ** denotes rejection at 1%.                                                              
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 Particularly if d<0.3 the power of the modified R/S test declines as d decreases. 
95

Applying fractional differencing on a series and then considering the ARMA model that best captures the 

remaining short run dynamics is a method also applied in Diebold and Rudebusch (1989). 
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Except of two blocks
96

 in table (1) the results indicate that the GPH and GPS estimates of d 

are statistically significant at 5% significant level, while contrary the implied long memory 

coefficients in Lo‘s and Mandelbrot‗s R/S statistics are non statistically significant at the 

same level of significance, since both accept the corresponding null hypothesis
97

for the 

existence of short memory and the presence of no autocorrelation respectively.  

 

Furthermore, it can be stated that the estimated long memory coefficients of both  GPH and 

GSP tests appear quite robust to changes in the bandwidth parameter, although this is not 

true for Γeonia under the bandwidth value of 0.8. In this case both tests agree on the 

definition of the series as anti-persistence.
98

 

 

Table (3) reports the values of the log likelihood functions and the corresponding Akaike-

Schwartz information criteria corresponding each ARFIMA model presented in table (2). 

According to the information criteria the ARFIMA models that best fit Γeonia,Γi7, Γi10, Γi12 

are respectively the ARFIMA (1,0.331,1), (1,0.361,1),(1,0.363,1)  

                                                           
96

 Those are the values reported for the GPH estimates of Γi10 and Γi12 under the bandwidth of 0.4  
97

The null hypothesis of the R/S statistic of Mandelbrot (1972) is that of an uncorrelated process, while the 

modified R/S statistic of Lo (1991) focuses on the null of a short memory process against the alternative of a 

long term dependence. The long memory coefficients of both statistics are estimated using the form presented 

in Mandelbrot and Wallis (1969). This is d=[(log(R/S)/logT]-1/2. Mandelbrot (1972,1975), Mandelbrot and 

Taqqu (1979) analyze the properties of this procedure. 
98

 McLeod and Hipel (1978) use the autocorrelations pj to define the long memory. Specifically a discrete 

time process yt has long memory if the following quantity is non finite 

                                                                lim
n

n j

j n

p




 

For 0<d<0.5 the process is long memory in the sense that it‘ s autocorrelations are all positive and decay at a 

hyperbolic rate. For -0.5<d<0 the sum of absolute values of pj tends to a constant and so it has short memory. 

The autocorrelations decay hyperbolically to zero. In this case process is referred to as anti-persistence. 
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Graph  (1) Graphical representation of Γieonia, Γi7, Γi10, Γ12 

 

 

Table (2)   The proposed ARFIMA (p,d,q)  models for the first differenced interest rates series  Γeonia, Γi7, Γi10, Γi12 

 Γeonia Γi7
 Γi10

 Γi12
 

0.4T GPH (1,0.331,1) (1,0.335,1) (1,0.252,1) (1,0.252,0) 

0.6T GPH (1,0.130,1) (1,0.361,1) (1,0.288,1) (2,0.288,1) 

0.8T GPH (0,-0.279,0) (1,0.247,0) (1,0.207,0) (1,0.207,1) 

0.4T GSP (1,0.476,1) (1,0.251,0) (1,0.210,0) (1,0.210,1) 

0.6T GSP (1,0.114,1) (1,0.404,1) (1,0.363,1) (1,0.363,1) 

0.8T GSP (0,-0.183,0) (1,0.243,1) (1,0.202,0) (1,0.202,1) 

Note : The orders of AR and MA components are decided upon the graphical representations of ACF and PACF. All estimated models 

do not include constant terms in the corresponding. 

 

Table (3)  Log-likelihood values, Akaike and Schwartz information criteria for the maximum likelihood estimated 

ARFIMA. 

                                                                ARFIMA (p,d,q) 

 
0.4T  

GPH 

0.6T
GPH 

0.8T
GPH 

0.4T  
GSP 

0.6T  
GSP 

0.8T  
GSP 

Γeonia 

2088.65 

(-1.483)* 

[-1.484]* 

2084.33 

(-1.480) 

[-1.481] 

2025.41 

(-1.439) 

[-1.440] 

2087.64 

(-1.482) 

[-1.484] 

2083.69 

(-1.479) 

[-1.481] 

2039 

(-1.449) 

[-1.449] 

Γi7

 
6919.87 

(-4.919) 

[4.919] 

6920.01 

(-4.919)* 

[-4.919]* 

6917.80 

(-4.918) 

[-4.918] 

6917.87 

(-4.918) 

[-4.918] 

6919.71 

(-4.919) 

[-4.919] 

6917.69 

(-4.918) 

[-4.918] 

Γi10

 
6379.86 

(-4.535) 

[-4.535] 

6380.83 

(-4.536) 

[-4.536] 

6376.87 

(-4.534) 

[-4.533] 

6376.86 

(-4.534) 

[-4.533] 

6381.15 

(-4.536)* 

[-4.536]* 

6376.83 

(-4.534) 

[-4.533] 

Γi12

 
6094.80 

(-4.333) 

[-4.333] 

6106.42 

(-4.340) 

[-4.341] 

6103.74 

(-4.339) 

[-4.339] 

6103.91 

(-4.339) 

[-4.333] 

6106.71 

(-4.349)* 

[-4.341]* 

6103.46 

(-4.338) 

[-4.339] 
  Note : In parenthesis and brackets the Akaike and Schwartz information criteria are reported respectively; K denotes the number of 

estimated coefficients 
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and (1,0.363,1) respectively.
99

Note the congruence of both information criteria in every 

occasion. 

As was stated in the previous section the fractional differencing operator contains critical 

information over the nature of trend appearing in the series.  A brief review of these 

statements is that the ARFIMA model that best fits the first differenced process of a series 

will estimate a value of d equal to zero, if the trend in the original series is stemming from 

a unit root process and will estimate a value of d equal to -1 if the trend occurs from a 

deterministic trend model. Therefore testing the null hypothesis of d=0 or d=-1 decides the 

de-trending procedure in the present analysis. 

 

Specifically, for the ARFIMA model that corresponds the first differenced process, if it 

estimates a value of d equal to zero, then the trend of the series is due to a unit root 

process, while if d is equal to -1, the trend occurs from a deterministic time trend model. 

Therefore testing the null hypothesis of d=0 or d=-1 decides the de-trending strategy in the 

present analysis. 

 

However, before conducting  such a testing analysis two things must be stated. First,  the 

consistency and asymptotic normality of the maximum likelihood estimates of the 

Gaussian fractional ARIMA are presented in Dahlhaus (1989) and they are valid when 

0<d<1/2. This case obviously is in line with the ARFIMA models presented in table (3). 

Second, it will prove useful to remember that first differencing a deterministic trend series 

                                                           
99

 The present selection of ARFIMA is supported  inversely by the following  procedure. Using the first 

differenced interest rates series, the orders of AR and MA polynomials are defined  according to the optimal 

orders found in table (3). The procedure next estimates the maximum likelihood the value of d. Results are 

presented in the appendix. 
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imposes a unit root in it‘s ARMA moving average representation. This statement will 

prove helpful when testing the null hypothesis  

d=-1. 

Table (4) presents results on the likelihood ratio test when examining either of the above 

restrictions. For example, imposing the null hypothesis d=0 on the ARFIMA (1,0.331,1)
100

 

that corresponds the first differenced series of Eonia, Γeonia, turns over the restricted 

ARMA(1,1) framework.  The likelihood ratio in the last case turns over a value equal to 

0.011 and for a chi-squared distribution with one degree of freedom the null hypothesis 

d=0 is accepted.  

 

On the other hand, testing the restriction d= -1on the same ARFIMA, implies  that the 

restricted framework is the ARMA (1,2).
101

 In this case the estimated likelihood ratio 

statistic is 23.19 and for a chi-square distribution with one degree of freedom the result 

indicates the rejection of the corresponding null hypothesis. Therefore the results conduce 

that the presence of stochastic trend is the one characterize best the Eonia interest rates 

series.  

Table (4) Results of the likelihood ratio test for deciding the stochastic or deterministic trend in the first 

differenced interest rate series. 

 Γeonia Γi7 Γi10 Γi12 

d=0 0.011 19.6** 7** 7.1** 

d=1 23.19** 2.76 12.06** 11** 
Note : *(**) denote rejection at 5(1)% significant level 

 

As can be seen in the results presented in table (4) neither of the hypothesis dominates the 

other. Specifically, although  Γeonia and  Γi7  clearly provide  support over the unit root  and 

                                                           
100

This ARFIMA is estimated for the first differenced series of Eonia, that is Γeonia, and fopr the GPH 

estimator that uses T
0.4

 as a sample function T
0.4

. 
101

Estimating the ARFIMA (1,-1,1) with PcGive turns over no outcome since the estimating process deos not 

reach any convergence.    
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the time trend models respectively, however, the other two processes, Γi10 and Γi12,  clearly 

reject at 5% and 1% significant levels both null hypothesis.  

The fact that there is no homogeneity in the above results may attributed to possible 

misspecifications existing in the AR, MA orders. If that is the case then the author assesses 

that these errors are caused more by the segregate specification of the long memory part 

and the short dynamics and less by a non-successful Box-Jenkins methodology. Either way 

the conclusion remains the same and this is that time domain analysis provides little help in 

deciding a common de-trending strategy in all interest rates series under examination. 

Therefore the latter procedure is considered  impractical. However the paper continues 

upon the same quest in section 3.2 although in this case estimates  ARFIMA frameworks 

under the frequency domain analysis. 

 

3.2 Frequency domain analysis.  

Chambers (1996) states that the frequency domain analysis
102

 is generally invariant to 

specifications applied on the short and  long memory modeling, and so using this process 

to estimate the coefficients of an ARFIMA it is expected to deliver reliable outcomes, even 

if possible misspecifications exist in the AR and MA orders. The fundamental equations of 

Chambers (1996) are given below. 

 

Specifically, let ζ denote the vector of ARFIMA‘s (p,d,q) coefficients 

 

 

                                                                1 1( , ,..., , ,..., )p qd a a b b 
 

 

                                                           
102

As Chambers (1996) notes the Wald statistic in this case can be seen as  the t ratio of the estimated 

differencing parameter. 



88 
 

Using a sample of T observations the estimation of ζ vector is obtained through 

minimizing the negative of the frequency domain log-likelihood function. The last is 

defined as in the following equation  

                                         

1

1

( ) 0.5 [ln ( ; ) ( ) / ( ; )]
T

s t s s

s

LnL h I h     




                                            (21)     

 
                                           
where ιs=2πο/Τ, s=1,…,T-1 denotes the set of Fourier frequencies and IT (ι) stands for the 

periodogram function defined as in equation (22) 
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                                                                   (22) 

 

 

Function (21) is stressed in Hannan (1973) and depends on ζ through the spectral density 

function of the assumed ARFIMA (p,d,q) class. The latter sets up a discrete version of the 

Whittle (1951) frequency domain method.  

 

However, Coli et al (2005) contrary to Chambers (1996)  state that misspecifications in the 

AR and MA coefficients definitely  affect the estimation of  the long memory parameter 

and moreover correspond in particular combinations of AR and MA components specific 

long memory features. For example, for the ARFIMA (0,d,0) they state that it‘s spectral 

density function is given by the following equation  

                                                            

2( , ) |1 |iw dg w d e  

                                                                  (23) 

which entirely is concentrated at low frequencies. In fact  g(w,d) irrespective of the value 

in the long memory parameter, appears being a decreasing function of w. In this case as w 

tends to zero the function g (w,d) tends to infinity. 
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In the general ARFIMA( p,d,q) framework the spectral density function is given by  

                                          

2
2

2

| ( ) |
( , ) |1 |

| ( ) |

iw
iw d

iw

e
g w d e

e
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


 


 

                                                                (24)

 

The last is strongly affected by the presence of short run dynamics.  

Some typical examples are the ARFIMA (1,d,0) and ARFIMA (0,d,1). If these frameworks 

estimate a positive AR and MA coefficients respectively, then their spectral density 

function will exhibit  an increased intensity at low frequencies, whereas if these 

coefficients are negative this fact alone will shift the concentration of the function to higher 

frequencies, while if a MA of opposite sign is added to ARFIMA (1,d,0) it will cause a 

reduction of it‘s memory value.Another typical example is the ARFIMA (1,d,1). Coli et. 

al. (2005) argue that for positive AR and MA coefficients the relative spectral density 

function will be concentrated to low frequencies, while on the other hand if these 

coefficients are both negative then the density function will be centered to higher 

frequencies. Furthermore if the estimated AR and MA coefficients exhibit opposite signs 

the behavior of the spectral will be determined by the larger absolute coefficient. 

 

Finally, in the general ARFIMA (p,d,q) case the large positive AR parameters will increase 

the long memory value, while the large negatives will restricted it. Note that the large and 

negative AR and MA coefficients will tend to eliminate the long memory of the process. In 

this case these models will exhibit similar properties to (1,0,1) ARFIMA.  

 

Setting by default the max AR and MA orders equal to three as in Sowell (1992) the 

present work, uses appropriate spectral density functions to estimate all ARFIMA 

frameworks that are generated from different combinations in the AR and MA 



90 
 

orders.
103

The fact that the paper applies multiple combinations in these orders stems 

exactly from the statements of Coli et al (2005) that imply a straightforward link among 

the sensitivity of long memory estimates and the existence of possible misspecifications  in 

the AR and MA orders. 

 

Furthermore, in an attempt to reduce the parameter space region the analysis applies in all 

estimated ARFIMA frameworks the standard parameterization choice, an option provided 

by the afm tools package of the R statistical program.
104

/
105

 

 

Table (5) presents the ARFIMA that estimate the smallest Schwarz information criteria for 

every differenced interest rate series, while table (6) tests the trend and differenced 

stationary nature of the observed series using the results of the wald and likelihood ratio 

tests.  

 

The results in table (5) underline certain characteristics. First of all under this approach non 

of the differenced interest rates series of the analysis is defined as anti-persistent.
106

 

                                                           
103

Estimations are carried out with the R statistical program using the afmtools-package. All estimated 

ARFIMA  are presented extensively in the appendix. 
104

Standard parameterization requires certain premises. First, the parametric spectral density  function must 

have the following form f(ι; ζ; ζ
2
)= (ζ

2
/2π)h(ι;ζ), where ζ is an r dimensional vector and ζ

2
 is regarded as 

varying freely from ζ. Second, the following relation must be true 

                                                            
log ( ; ) 0h d




  




  
Practically standard parameterization means that the residual variance ζ

2
 is located out of the likelihood 

function in order to reduce the dimensions of the parameter space.   
105

Although the Whittle estimates are asymptotically efficient only when xt is Gaussian, however limiting 

distributions in the case of standard parameterizations are steady under many departures from Gaussianity. 

This property is initially established for short memory series. The justification of using Whittle estimates in 

long memory models is provided in Fox and Taqqu (1986).Their objective function is a continuous version of 

(21) but their insight may well be applied to the discrete case.  Fox and Taqqu (1986) and Dahlhaus (1989) 

under assumptions made for the long memory parameter and the correct specification of short run dynamics, 

have shown that ζ estimated vector is consistent and asymptotically normally distributed. Dalhaus (1989) 

also establishes asymptotic efficiency. 
106

 This outcome strengthens the previous choice of the analysis to consider only the GPH and GSP estimates 

of table (1). 
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Second, all estimated long memory coefficients are statistically significant at both 

conventional levels of significance and range from 0.348 to 0.405, and finally third, all 

chosen ARFIMA frameworks are estimated using one AR and one MA order.  

Table (6) reports the results on the Wald and likelihood ratio statistics. Both tests reject the 

null hypothesis of the trend and differenced stationary nature  at 1% and 5% significant 

levels, and so the analysis is left at this point solely with an intuitive selection strategy for 

the nature of data that are finally  going to be used. Following Nielsen (2010) the analysis 

decides to adjust the observed interest rates series for a deterministic time trend and a non 

zero-mean. 

Table (5)  Whittle estimated ARFIMA models that minimize the Schwarz information criteria 

 Γeonia Γi7
 Γi10

 Γi12 

α1
 0.290 

    [14.095]** 

0.460    

    [19.242]** 

0.448 

   [19.002]**     

0.472 

[19.456]      

ζ1
 -0.945    

    [-5.315]** 

-0.654  

     [-19.839]**   

-0.669  

     [-19.596]**   

-0.699 

  [19.456]    

d 0.405    

    [ 13.105]** 

0.375   

    [12.129]**   

0.351 

     [11.350]**   

0.348 

  [11.249]    
               Note : t estimates are reported in the brackets//*(**) denotes rejection at 5%(1%) significant level 

 

Table (6) Wald and likelihood ratio statistics for testing the null hypothesis of differenced or trend stationary 

series. 

          Γeonia

 
         Γi7   

 
          Γi10 

 
        Γi12  

 

Null hypothesis d=0 (difference stationarity) 

Wald              13.5**             12.5**             11.7**             11.6** 

Likelihood ratio             43.07**            76.09**             55.05**            46.07** 

Null hypothesis d=-1 (trend stationarity) 

Wald              46.83**             45.83**             45.03**            44.93** 

Likelihood ratio               76.03**             46.07**             56.02**            42.01** 
Note : *(**) denote rejection at 5%(1%) significant level 

 

 

 4. Estimating the variance ratio test. 

 

Table (7) uses the de-trended interest rates series to estimate the GPH and GSP estimates 

of d. The applied bandwidth choices follow Nielsen (2010) and are consistent with the 

previous parts in the analysis. Furthermore, table (8) uses those latter estimates to test 
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whether those series are in fact unit root processes. One and two asterisks denote 

respectively  rejection of the null at 5% and 1% significant levels.
107

Note, that the unit root 

hypothesis  is against the two sided alternative. 

 

 In table (7) all estimated long memory coefficients  are statistically significant at 5% and 

1% significant level. Interestingly some of the GPH estimates are below the threshold 

value of one,
108

 although table (8) indicates that these series are generally no different to 

I(1) processes. Specifically, table (7) indicates that six GPH estimates  are below one, 

while table (8) shows that only one of them is actually different to a unit root process.  

 

Furthermore, the results in table (8) show that the unit root hypothesis is rejected 15 out of 

24 times.
109

 The outcome is consistent with the majority of evidence existing in many 

related empirical applications,
110

and implies the introduction of two variance ratio tests : a)  

one that uses the hypothesis d=1, and b) a second that sets d equal to the average value of 

those GSP estimations that correspond to a particular bandwidth choice. In the present 

analysis this is 0.8.
111

  

 

However, the analysis does not rest upon this double assumption for the integration order 

of the de-trended interest rates series, and applies additionally two choices over the index 

                                                           
107

Nielsen (2010) underlines the invariant nature of the GSP estimates and states that adjustments made in the 

interest rates series for a non zero mean and a deterministic trend do not alter the good properties of the GSP 

estimators. 
108

Those estimated values are between (0.812-0.963). 
109

Geweke and Porter-Hudak (1983) shows that GPH test provides consistent estimate of 1-d. This is the 

trend coefficient in their linear regression equation, where periodogam points are evaluated at Fourier 

frequencies (2πj)/T, j=1,.., n, where n is the number of low frequency periodogram points used in estimation. 

In the present analysis this is refer to as bandwidth. Note that any hypothesis test of d is based upon a t-

statistic. 
110

 See Chen and Hurvich (2003), Nielsen (2010) 
111

Nielsen (2010) set d equal to 1.0025. This is the average value of those GSP estimates that correspond to 

bandwidth of 0.4. This average is very close to the one estimated in table (6) when m is set equal to 0.8. In 

this case the average value of d is equal to 1.003. 
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appearing in the asymptotic distribution of the variance ratio test.
112

 These are d1=0.1 and 

d1=1.  

Since Λn,r (d1) statistic in the present analysis is estimated under all the above combinations 

of d and d1, eventually the paper conducts four fractional cointegration variance ratio tests. 

Note  that  in the variance ratio methodology d parameter refers to the integration order of 

the observed data series, while d1 indexes a particular family of tests and is a parameter 

chosen exclusively by the econometrician.   

 

Table (7) GPH and GSP long memory tests for the de-trended univariate interest rates series. 

ARFIMA (p,d,q) 

 T0.4 GPH T0.6 GPH T0.8 GPH T0.4 GSP T0.6 GSP T0.8 GSP 

eonia 0.812 

[0.000]** 

0.941 

[0.000]** 

0.753 

[0.000]** 

1.247 

[0.000]** 

1.080 

[0.000]** 

0.69 

[0.000]** 

I7 
0.953 

[0.000]8* 

1.171 

[0.000]** 

1.073 

[0.000]** 

1.110 

[0.000]** 

1.242 

[0.000]** 

1.100 

[0.000]** 

I10 
0.963 

[0.000]** 

1.173 

[0.000]** 

1.077 

[0.000]** 

1.082 

[0.000]** 

1.234 

[0.000]** 

1.114 

[0.000]** 

I12 
0.960 

[0.000]** 

1.166 

[0.000]** 

1.085 

[0.000]** 

1.064 

[0.000]** 

1.230 

[0.000]** 

1.108 

[0.000]** 
                 Note : number in parenthesis reporte p-values, *(**) denotes rejection of unit root hypothesis at 5%(1%) 

          

 
 

Table (8) Testing the null hypothesis of d=1 for the GPH and GSP estimates of long memory in the de-

trended interest rates series. 

 

 T
0.4

 GPH T
0.6

 GPH T
0.8

 GPH T
0.4

 GSP T
0.6

 GSP T
0.8

 GSP 

eonia -1.167 -0.936 -9.148** 2.421* 1.739 -8.6** 

I7 -0.291 2.714** 2.703** 1.078 5.260** 6.11** 

I10 -0.229 2.746** 2.851** 0.803 5.086** 5.7** 

I12 -0.248 2.634** 3.148** 0.627 5** 5.4** 
Note : *(**) denotes rejection of unit root hypothesis at 5%(1%) 

          

Table (9)  uses  the de-trended interest rates series  and  reports : a) the univariate variance 

ratio test p(d1), b) the ordered eigenvalues of RT(d1) ratio for both values of d1, and c) the 

variance ratio trace statistic. Table (10) reports the 1%, 5% and 10 % simulated critical 

                                                           
112

d1 appears in the asymptotic distribution of the ratio. Nielsen (2010) states that certain values of d1 

maximize the power of the test.  
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values of all four cointegration variance ratio trace tests. These critical values are generated 

after appropriate simulations and are reported in Nielsen (2010). 

 

Table (9) Univariate variance ratio, ordered eigenvalues and the variance ratio cointegration rank test. 

Univariate Variance Ratio Test 

d1 eonia I7 I10 I12 

0.1 5.1111e+003 5.7334e+003 5.7156e+003 5.7137e+003 

1 1.0559e+005 1.4324e+005 1.4628e+005 1.4738e+005m 

    Eigenvalues 

d1 ι1 ι2 ι3 ι4 

0.1 0.349        0.399   0.472 0.484 

1 0.00001 0.00002   0.00005 0.0001 

Variance Ratio Trace Statistic 

d1 n-r=1or r=3 n-r=2 or r=2 n-r=3 or r=1 n-r=4 or r=0 

0.1 1.708 3.662 5.973 8.342 

1 79.12 237.38 633.03 1424.3 
Note : The table reports the eigenvalues of RT(d1) ratio, the univariate variance ratio test and the cointegration rank test for the de-
trended interest rate series. 

 
 

Table (10) Critical values of the four variance ratio cointegration  rank tests using de-trended interest rate 

series. 

Table (10)-A                                                          d=1 

Null Hypothesis n-r=1 or r=3 n-r=2or r=2 n-r=3 or r=1 n-r=4 or r=0 

d1=0.1 

α=0.10 [1.93] [3.81] [5.75]* [7.74]* 

α=0.05 [1.98] [3.88] [5.82]* [7.82]* 

α=0.01 [2.08] [4.01] [5.97]* [7.97]* 

d1=1 

α=0.10 [228.18] [586.52] [1157.34] [1970.49] 

α=0.05 [291.93] [697.41] [1325.41] [2202.48] 

α=0.01 [457.46] [971.59] [1706.81] [2.709.98] 

Table (10)-B                            d=average GSP estimates when bandwidth is set to 0.8-(1.003) 

d1=0.1 

α=0.10 [1.93] [3.81] [5.75]* [7.74]* 

α=0.05 [1.98] [3.87] [5.83]* [7.82]* 

α=0.01 [2.08] [4.00] [5.97]* [7.97]* 

d1=1 

α=0.10 [228.81] [586.32] [1159.92] [1960.74] 

α=0.05 [293.45] [691.22] [1330.46] [2198.69] 

α=0.01 [447.33] [950.59] [1691.45] [2.695.75] 
Note : number in brackets report the simulated critical values reported in Nielsen (2010). * denotes rejection of the null hypothesis at the 

corresponding significant level. 

 

Comparison of the simulated critical values in tables 10-A and 10-B reveal many 

similarities among them. Specifically, the critical values correspond the choice of d1=0.1 in 

9 out of 12 cases are identical, while the rest critical values of either d1  parameter  

although not matching perfectly each other are indeed very close. The evident similarity 
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stems from the fact that the  average GSP estimate of d is indeed very close to one and 

therefore the simulated critical values in both tables are not expected to  be much different. 

 

In general lines it can be stated that results of table (10) depend significantly on the value 

of d1 parameter, since changing the assumption of the integration order for the observed 

series, that is d, does not really alter any of the cointegrating results. For example, under 

the choice of d=1 and d1=0.1 the variance ratio test acknowledges two cointegrating 

relations, whereas if the combination of d=1 and d1=1 is applied, the ratio concludes that 

no cointegrating relations exist, with the same results also repeat when the average GSP 

estimate of d is employed. The apparent dilemma on the cointegration rank is resolved 

when remembering that the power of the variance ratio test is maximized under the choice 

of d1=0.1. The cointegration rank corresponding this choice must generally considered 

more reliable.  

 

So, the results in table (10) support the presence of two common stochastic trends, or in 

other words indicate the presence of two cointegrating relations. Given that expectations 

hypothesis implies the existence of a unique common stochastic term among n interest 

rates of different maturities, the variance ratio clearly rejects the validity of term structure 

theory.  

 

The result is in line with the outcomes presented in Chen and Hurvich (2003) where it is 

found that two common stochastic trends exist among eight interest rates of different 

maturities.  
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Although comparison is not straightforward, however, both outcomes speculate the 

existence of one common trend driving the short maturity interest rates and another driving 

the long term ones. Note that an alternative explanation for the finding of two cointegrating 

relations can be seen in the argument  that expectations hypothesis holds better in the 

shorter end of the yield curve. Of course in this case every interest rate that corresponds to 

any duration between the first and eleventh month may  considered as a potential shorter 

end part of the yield curve shorter end  shorter end is considered a period of less than six 

months. 

 

5. Estimating the cointegration rank using Johansen’s (1991, 1998) and Breitung and 

Hassler (2002) tests. 

 

This section extends the previous analysis by applying two different cointegration 

methodologies. Those are a) the Johansen (1988, 1991) cointegration approach and b) the 

Breitung and Hassler (2002) fractional trace test.  

 

5.1 Applying Johansen’s test (1991,1998). 

Since Johansen‘s test  by  its nature assumes the existence
113

of I(1) and I(0) variables, in 

the appendix the interested reader may find results over the ADF, Phillips-Perron and 

KPSS unit root tests. All of these tests indicate the strong presence of unit roots in the 

observed interest rate series and indeed, both the ADF and Phillips-Peron  accept the 

corresponding null hypothesis in all interest rates series at both conventional levels of 

significance, while KPSS fails to reject the null of stationarity at 1%  significant level, 

although this is not true for Eonia. 

                                                           
113

 If I(2) variables are existing then it will be necessary to use the approach developed by Johansen (1995b). 
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Even though  Diebold and Rudebusch (1991) and Sowell (1990a) argue that  standard unit 

root tests may lack high power against fractional alternatives,  their argument is probably 

moderated  by  the results presented in the first column  of table (8). In this case although 

all  the estimated fractional differencing operators are below 1, however the null 

hypothesis of d=1 is accepted in all four blocks, and so the interest rates series  are 

considered  being unit root processes in this particular case.  

 

Table (11)  isolates the long memory tests and the bandwidth parameters under which the 

hypothesis d=1 is not rejected. The table sets a useful transformation of the results reported 

in table (8).  Obviously the unit root assumption is supported by both long memory tests, 

GPH and GSP, under mainly the 0.4 value for the bandwidth parameter.
114

 

Table (11)  : Long memory tests accepting the hypothesis d=1. 

eonia GPH-T
0.4

& GPH-T
0.6 

GSP-T
0.6 

I7 GPH-T
0.4 

GSP-T
0.4 

I10 GPH-T
0.4 

GSP-T
0.4 

I12 GPH-T
0.4 

GSP-T
0.4 

 

Before proceeding with the actual cointegration analysis the VAR order, k, must first be 

decided. This is a very critical point in Johansen‘s analysis, since possible 

                                                           
114

 The log-periodogram regression estimator of Geweke and Porter-Hudak (1983), that was latter formalized 

by Robinson (1995) and Hurvich et al. (1998) develops the idea that if an interest rate series presents long 

memory characteristics then the spectrum of the process should be a linear function of the frequencies close 

to zero. Let I(wJ) denote the sample periodogram at the jth Fourier frequency. The estimate is obtained from 

the least square regression  log[I(wJ)]=b0+b1log(wJ)+uJ, where j=1,..,m and d=(-1/2)b1. The asymptotic 

standard error for d depends only on  m. As has been stated by Geweke and Porter-Hudak (1983) the choice 

of the number of low frequency ordinates, that is T
m
, necessarily involves judgment. Specifically Geweke 

and Porter-Hudak (1983) note ― Although a too large value of n will cause contamination of the estimate of 

the d estimate due to medium or high frequency components, a too small value will lead to imprecise 

estimates due to limited degrees of freedom in the estimation process. 
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misspecifications in the lag augmentation, may cause phenomena of autocorrelation, non 

normality and conditional heteroskedasticity on the residual series.  

 

On the other hand specifying the value of k is frequently  implicated with issues of omitted 

variables biases.  In a situation where autocorrelations in the residual series are due to 

omitted variables, these absences will likely become part of the error term and increasing 

the lag length to restore any such phenomena usually is not the correct answer.
 115

 

 

On the other hand over-parameterization which is associated in many monte carlo 

experiments with a reduction in the power of cointegrating tests, can also create potential 

problems, since very often implies that too few cointegrating relations will be 

acknowledged.
116

Avoiding over-parameterization is also underlined in Johansen (1995b) 

who states that to many lags will cause the number of parameters to grow very fast and as a 

consequence  the information criteria that strike a compromise between the number of lags 

and parameters will tend to reject the alternatives most of the times.  

 

In the present analysis the max number of lag augmentations is set equal to 25, 

representing the business days of one month period. At the same time following Lee and 

Siklos (1997) the analysis  does not apply seasonal adjustments, since  evidence in  many 

                                                           
115

Residual misspecification very often arise as a consequence of omitting important conditioning variables. 

In the last case increasing the lag length may result as reported in Harris and Sollis (2003) in a harmful 

parameterization, that affects the estimation of cointegration rank, and makes hard the economical 

interpretation of the present cointegrating relations. The same is stated also by Johansen (1995b) who 

encourages researcher to increase the information set instead of automatically increasing the lag length. 
116

This opinion is mainly supported by Lutkepohl and Saikkonen (1999) who report the existence of size 

distortions and power losses when  the number of lags (k) is too small and  too large respectively. Their 

recommendation is to choose the lag-length using information criteria such as Akaike. This criterium tends to 

create a balance between a good approximation of the data generating process and an efficient use of the 

sample information. However, Cheung and Lai (1993) state that cointegration tests are rather robust to over-

parameterization, while additionally argue that the size distortions, when k is to small, are probably minor.  
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monte carlo experiments suggest that relevant attempts usually end up in less or spurious 

cointegration.  

 

Table (12) reports the values of Akaike, Hanna-Quin and Schwartz information criteria for 

VAR (25) and VAR(1) models. Although the majority of outcomes support the 

parsimonious version, however, the suggested in Johansen (1995) likelihood ratio test 

clearly rejects the model reduction.     

 
Table (12) : Information criteria and Likelihood ratio test for the VAR order selection 

Model T N.P Logl SC HQ AIC 

Var(25) 2788 404 31033.054 -21.112 -21.662 -21.972 

Var(1) 2788 20 30364.043 -21.725 -21.752 -21.768 

Likelihood Ratio~x
2
(384) 1338.0 [0.000]** 

 Note : T stands for the number of observations, Logl is the loglikelihood value, p-values are reported in the brackets,                        

*(**) denotes rejection of unit root hypothesis at 5%(1%) 

 

  

The latter contradiction forces the econometrician to use both VAR models 

simultaneously, while another challenge focus on the nature of deterministic variables that 

eventually will eventually enter the cointegrating space. In the present analysis following 

Johansen (1992b) the deterministic components are examined alongside the number of 

cointegrating relations using the pantula principle (Johansen 1992, 1995).  

 

This is a tool for deciding simultaneously a) the correct rank order and b) the deterministic 

components that will enter the VECM. The strategy starts with the VECM framework 

presented in equation (25). For notation simplicity the number of lags, k, is set equal to 

two. 

 

                                             

1 1 1 1 2 1 2

1

t t t k tz z a z a u


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
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       
 
                                           (25)
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Imposing specific restrictions in equation (25) generates three models. Those are models 

1,2 and 3, each introducing a different set of deterministic components.
117

The applied 

principle moving on from the most restrictive model to the least restrictive one, compares 

at each stage of the process the trace statistic to its critical value and stops the first time the 

null hypothesis is not rejected.
118

 

 

Tables (13) and (14) report respectively the trace and max eigenvalues statistics when the 

number of lag augmentations in all restricted models is set equal to one. Starting with table 

(13) and the most restrictive model, that is model1, the trace rank statistic is estimated at a 

value of 432.541, exceeding its 95% and 99% critical values. Proceeding with the next 

most restrictive model and keeping r=0 the null hypothesis is rejected again.  

 

Keeping this track, hence moving from left to right in every row of table (13), the first time 

the null hypothesis is not rejected, belongs to the block that corresponds model 1 with 

cointegration rank equal to three. 

 

 Even though the monte carlo experiments in Cheung and Lai (1993) suggest the 

superiority of the trace rank test  to the maximum eigenvalue statistics mainly due to the  

                                                           
117

Model1 is generated after setting δ1,δ2,κ2 equal to zero. This restricts the intercept solely to the 

cointegrating space. This model is suitable if there are no linear trends in the levels of the data, such that the 

first differenced series have a zero mean. The critical values for this model are available in Osterwald –

Lenum (1992), although Doornik and Ooms (1999) has also produced critical values using the Gamma 

distribution. Note that these values are the default option in the econometric package Pcgive 10.1. If there are 

linear trends in the levels of the data then the analysis should specify model 2, that allows the non stationary 

relationships in the model to drift. This model is generated when δ1 and δ2 parameters are set equal to zero. 

The critical values for this model are found in Pesaran et al (2000). Finally, model 3 sets δ2=0 and as a result 

the cointegration space includes solely time as a trend stationary variable. This model is proper whenever 

there is some long run linear growth that the model cannot account for. 
118

 For other applications of  Pantula principle see Love and Chandra (2005) and Dawson (2006). 
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robustness of the former test in phenomena of skewness and excess kurtosis, however in 

this case the maximum eigenvalues statistics reported in table (14) estimate identical 

results and so these results strengthen the overall credibility of Johansen analysis.  

                                                                                                                    

Table (13) : Eigenvalues and trace rank statistics for VAR (1) and models 1,2 and 3. 

r n-r Eigenvalue1 Model1 Eigenvalue2 Model2 Eigenvalue3 Model3 

0 4 0.093
 

432.541 

[0.000]**
 

0.092
 

427.030 

[0.000]**
 

0.101
 

494.468 

[0.000]**
 

1 3 0.035
 

156.859 

[0.000]**
 

0.035 

 

155.477 

[0.000]**
 

0.035
 

192.628 

[0.000]**
 

2 2 0.018
 

54.986 

[0.000]** 
0.018

 

53.966
 

[0.000]** 
0.030

 

91.088 

[0.000}**
 

3 1 0.000
 

 2.585 

[0.660] 
0.000

 

2.494 

[0.114]
 

0.001
 

4.355 

[0.234]
 

 Note :  MacKinnon-Haug-Michelis (1999) p-values are reported in the brackets.*(**) denote respectively rejection at 

5%(1%) significance level. 

 

Table (14) :  Eigenvalues and Maximum eigenvalues statistics for VAR (1)- models 1,2 and 3. 

r n-r Eigenvalue1 Model1 Eigenvalue2 Model2 Eigenvaue3 Model3 

0 4 0.093
 

 275.681 

[0.000]**
 

 0.092
 

 
 

 271.553 

[0.000]**
 

0.101
 

 301.840 

[0.000]**
 

1 3 0.035
 

101.873 

[0.000]**
 

0.035
 

101.510 

[0.000]**
 

0.035
 

 101.539
 

 [0.000]**
 

2 2 0.018
 

52.400 

[0.000]**
 

0.018
 

51.472 

[0.000]**
 

0.030
 

 86.733 

[0.000]**
 

3 1 0.000
 

2.585 

[0.660]
 

 0.000
 

2.494 

[0.114]
 

0.001
 

4.355 

[0.690] 
Note :  MacKinnon-Haug-Michelis (1999) p-values are reported in the brackets.*(**) denote respectively rejection at 

5%(1%) significance level. 

 

                    

Furthermore tables (15) and (16) estimate correspondingly the trace and maximum 

eigenvalues statistics when the number of lag augmentations is set equal to 25. Both 

statistics support the choice of model 1, while both suggest the presence of one 

cointegrating relation. The outcome clearly rejects the validity of term structure theory and 

obviously contrasts the previous result for the presence of three cointegrating vectors or the 

presence of only one common stochastic trend.  
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Table (15) : Eigenvalues and trace rank statistics for VAR (25) - models 1,2 and 3. 

r n-r Eigenvalue1 Model1 Eigenvalue2 Model2 Eigenvalue3 Model3 

0 4 0.014 
72.989 

[0.000]** 
0.014 

72.091 

[0.000]** 
0.015 

83.520 

[0.000]** 

1 3 0.007 
32.266* 

[0.100] 
0.007 

31.662 

[0.030] 
0.008 

40.695 

[0.082] 

2 2 0.003 
11.676 

[0.478] 
0.003 

11.188 

[0.200] 
0.004 

18.308 

[0.323] 

3 1 0.000 
1.943 

[0.788] 
0.000 

1.566 

[0.210] 
0.001 

4.757 

[0.631] 
 Note :  MacKinnon-Haug-Michelis (1999) p-values are reported in the brackets.*(**) denote respectively rejection at 

5%(1%) significant level 

  

 
 

Table (16)  Eigenvalues and Max-eigenvalue statistics for VAR (25)- models 1,2 and 3. 

r n-r Eigenvalue1 Model1 Model2 Eigenvalue2 Eigenvalue3 Model3 

0 4 0.014 
40.723 

[0.000]** 
0.014 

40.429 

[0.000]** 
0.015 

42.825 

[0.001]** 

1 3 0.007 
20.590 

[0.085] 
0.007 

20.473 

[0.061] 
0.008 

22.387 

[0.133] 

2 2 0.003 
9.732 

[0.359] 
0.003 

9.622 

[0.237] 
0.004 

13.550 

[0.285] 

3 1 0.000 
1.943 

[0.788] 
0.000 

1.566 

[0.210] 
0.001 

4.757 

[0.631] 
Note :  MacKinnon-Haug-Michelis (1999) p-values are reported in the brackets.*(**) denote respectively rejection at 

5%(1%) significant level 
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5.2 Applying Breitung and Hassler (2002) test. 

The analysis in this section is separated out in two parts. The first makes a brief 

presentation of  the fundamental mathematical relations of Breitung and Hassler‘s (2002)  

fractional parametric trace test, and the second  proceeds with an application of the statistic 

to the observed interest rates series. 

Breitung and Hassler‘s (2002) parametric fractional trace test is based upon a generalized 

eigenvalue problem analogous to Johansen (1988). The statistic sets up a multivariate 

version of the regression based score test that results in a chi-squared distribution, with 

degrees of freedom depending on the cointegration rank under the null. Note that the 

distribution under consideration does not rely on the integration order of the observed 

series or the integration order of deviations corresponding the long run relationships. 

Suppose xt is a nx1 vector of Gaussian components, originally generated from yt vector 

after applying the fractional differencing operator of equation (1). Note that Gaussianity 

assumption is only important for the set up of the log-likelihood function which is 

presented in equation (26) and is not necessary for further asymptotic analysis. 

                               
' 1
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and replacing Σ with a consistent estimate as in the following equation 
 

                                                           
1 '

1

ˆ
T

t t

t

T x x


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                                                                    (28)         

   
Breitung and Hassler (2002) set up their multivariate score statistic as in the next equation 
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1 ' 1

0 10 11 10
ˆ( ) [ ]d tr S S S   

                                                         (29)        

                                                    

 

Since the trace of a matrix is the sum of all eigenvalues, Breitung and Hassler (2002) 

follow at this point Johansen (1995) and estimate their cointegration rank statistic through 

the sum of the n-r smallest eigenvalues. So actually based their test on the following 

problem 

 

                                                        
' 1

10 11 10
ˆ 0S S S  

                                                               (29i) 

 

                                                                    
 

Under the null hypothesis H0: r=r0 the trace statistic is introduced as 
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                                                                        (30) 

 

with ι1≤…≤ιn denote the ordered eigenvalues. As T tends to infinity the trace has an 

asymptotic X
2 

distribution with (n-r0)
2
 degrees of freedom.  

 

Finally two issues must be analyzed: a) the use of de-trended series and b) the existence of 

possible misspecifications in d. For the first it has to be stated that if a possible de-trending 

is of interest, then regressing xt on a vector containing different deterministic terms, such 

as constants, time trends and possibly seasonal dummy variables must first be realized. In 

this case the trace statistic remains practically invariable and the only difference centers on 

the substitution of the fractionally differenced series in equations (27) and (28) with the 

above estimated residuals.  

 

The second possibility explores the use of short run dynamics in the analysis, due to 

possible misspecifications existing in the long memory parameter. These short run 
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dynamics are modeled through estimating appropriate VAR (X) forms. In the latter case 

the trace statistic is re-estimated using the residuals of a well suited autoregressive process.  

 

As has been pointed by Breitung and Hassler (2002) assuming a known long memory 

parameter places severe restrictions on the testing procedure, and a possible 

misspecification may be responsible for the presence of serially correlated errors. If that is 

the case then Breitung and Hassler (2002) suggest that the effects of a possible 

misspecification of d can likely be reduced when accounting for short run dynamics, and 

this strategy is  well explored in the estimations presented in table (17). However, Breitung 

and Hassler (2002) point that this process is rather trivial, since a large lag number will 

tend on one hand to eliminate the size distortions, while on the other will weaken 

drastically the power of the test.  

 

Table (17) which considers this last notation  induces three alternatives for modeling short 

run dynamics. These are a) the zero lag-augmentations choice, b) the one lag option and c) 

the twenty five lags alternative. Obviously the last two cases follow the specifications 

applied in Johansen parametric test.
119

The results in table (17) depend heavily on the 

modeling of short run dynamics and specifically options a and c identify significantly three 

cointegrating relations, whereas  the b  option clearly rejects all null hypothesis. 

Table (17) :  Breitung and Hassler (2002) fractional trace test. 

r n-r Λro -0 (d) Λro-1 (d) Λro-25 (d) X2~(n-ro)2 

0 4 360.128* 145.944* 40.253* 26.296 

1 3 85.516* 36.219* 14.048* 16.919 

2 2 9.578* 21.921* 3.730* 9.488 

                                                           
119

The fractionally differenced series are generated with the R program and particularly with the Fracdiff  

package. For estimation of the long memory parameter the analysis uses the GPH test. Those estimates  are 

produced after setting the  number of  low -frequency  ordinates  equal to 575 and this implies that the m 

parameter in the sample function is set equal to 0.8. If the lag augmentation strategy is not, then Breitung and 

Hassler (2002) suggest the computation of the statistic using an estimated d value. In this last case the 

analysis is better to use the bootstrap critical values presented in Davidson (2002). 
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3 1 2.837 8.665* 0.1418 3.841 
  Note : Λro -0 (d), Λro-1 (d), Λro-25 (d) denote respectively the estimated trace statistics estimated under using a)  no lags , b)  one lag and c) 

twentyfive lags. The critical values are reported in the last column. * denotes rejection of the null. 

 
 

Finally, table (18) concentrates results on the Johansen (1998,1991) and Breitung and 

Hassle (2002) cointegration tests. Two things must be stated here. First, that the applied 

pantula principle picks up model1 in all four cases examined, and second that  results on 

the cointegration rank appear to be sensitive arise to different lag augmentations applied.
120

 

Note that the last statement underlines the advantage of the non parametric variance ratio 

test, that does not depend on the specification of short run dynamics or any other tuning 

parameter.  

Table (18) : Results of Johansen‘s (1998,1991) and Breitung  and Hassler‘s (2002) tests 

Lag length Cointegration rank         Specifications   term structure theory 

Panel A: Johansen (1998,1991) trace test 

1 r=3 Model 1 acceptance 

25 r=1 Model1  rejection 

Panel B: Johansen (1998,1991) max eigenvalue 

1 r=3 Model1 acceptance 

25 r=1 Model 1 rejection 

Panel C: Breitung and Hassler (2002) fractional trace test 

0 r=3 De-trended interest rate  acceptance 

1 Rejection of the null De-trended interest rate rejection 

25 r=3 De-trended interest rate acceptance 

Note Model 1 is generated from equation (23) after applying  δ1= δ2=κ2=0. This determination restricts the 

intercept solely to the cointegration space. This model is suitable if there are no linear trends in the levels of 

the data such that the first differenced series have a zero mean. 

 

6.  An informal test of the variance ratio using the estimated cointegration space. 

 

The space spanned by all linearly independent cointegration vectors is the cointegration 

space and  Johansen (1988,1991) states that the reduced rank regression will indicates the 

number of unique cointegration vectors spanning it. However, any linear combination of 

stationary vectors will generate another stationary vector, and therefore estimates of the 

cointegrating vectors will not necessarily be unique. Therefore without imposing certain 

                                                           
120

 This is true for all panels A,B and C. 
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restrictions motivated by economic arguments it will be possible only to estimate a 

basis
121

of the space spanned by the cointegrating vectors.
122

  

 

This last statement is obviously true for the variance ratio test, since the statistic does not 

identify all the restrictions imposed by  expectation hypothesis theory. Note that the last in 

terms of cointegration imposes two restrictions. The first implies that among n interest 

rates of different maturities there should be n-1 cointegrating relations, while, the second  

states that if expectations hypothesis holds, then any linear combination of such n interest 

rates must normally sum its coefficients to zero. Put it differently, the last restriction 

implies that coefficients in each of the cointegrating vectors must add up to zero if 

expectations hypothesis holds.  

 

In the present analysis the first of these two implications was extensively tested in sections 

4 and 5 through  the use of different cointegration techniques, while the second, as is 

reported in Hall et al (1992),  is testable using the following relation  

 

                                                      1, [ ,..., ]'nB DF D I i  
                                               (31) 

 

where i=[1,…,1], D is a n x (n-1) matrix and F is a (n-1) x (n-1) matrix of free parameters. 

Based on this last equation the estimated cointegration space in Nielsen (2010) is 

informally compared to D.
123

 

                                                           
121

 Basis is a set of linearly independent vectors that in a linear combination can represent every vector in a 

given vector space. Put it simple, a basis is a linearly independent spanning set. In mathematical terms, a 

basis B of a vector space V over a field F is a linearly independent subset of V that spans V. So B satisfies 

the following conditions : a) the linear independent property and b) the spanning property. In more details, 

suppose that B=(λ1,...,λn) is a finite subset of a vector space V over a field F( with real or complex numbers R 

or C). The linear independence property implies that for all a1,..,an of F the following statement is true 

a1λ1+…+anvn=0. The spanning property implies that for every x in V it is possible to choose a1,…,an  such 

that x=a1λ1+…+anvn.h. 
122

 See Johansen (1988,1991),  and Chen and Hurvich (2003, 2006) 
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Although the variance ratio statistic is  purely a strategy for testing the cointegration rank 

and is not associated formally with a distribution theory for the estimated cointegration 

space, inferences on the validity of expectations theory may produced indirectly, through 

comparing the estimated and the hypothesized cointegration space. The former is the space 

spanned by a subset of eigenvectors generated from the following eigenproblem 

 

                                                             
0    

                                                                 (32) 

 

 where  equation (32) uses the eigenvalues of equation (9).  

 

Since, the estimated variance ratio test rejects the term structure theory by acknowledging 

two cointegrating relations instead of three, the rest part of the analysis retains a 

confirmatory task, in the sense that  if expectation hypothesis does not  hold then the 

estimated and hypothesized cointegration space must deviate. 

 

Although  defying particular eigenvectors of the equation (32) as estimates of the real 

cointegrating vectors is not accurate, since the variance ratio does not deliver a distribution 

theory for the estimated cointegrating space, however these vectors are proven useful for 

the rest part of section 6. 

 

Panels (19i) and (19ii) of table (19) present the eigenvectors of RT(d1) matrix when d1 

parameter is set equal to 0.1 and 1 respectively. The eigenvectors correspond  to the 

eigenvalues reported in table (9), and specifically eigenvector εj is linked to the eigenvalue 

                                                                                                                                                                                
123

 See Johansen (1998,1991) for a simultaneous test on both the zero sum and the rank restrictions. 
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ιj for j=1,..,4, while these vectors are simultaneously sorted in the same order as the 

corresponding eignevalues. Note that the last row of both panels reports the sum of the 

elements of each eigenvector.  

 

According to expectation hypothesis the elements of all the columns of any basis of the 

cointegration space must sum up to zero and  this does not  seem to be the case in either 

panel of table (19), although it could be said that the sum corresponding  panel 19i is more 

close to zero the other one.   

 

Specifically in panels (19i) and (19-ii) the  sums  are -0.122  and 1,818 respectively.  

However these vectors cannot be regarded as straightforward estimates of particular 

cointegrating vectors, and so as in Nielsen (2010) the analysis concentrates in one matrix 

on the matrix ε(3), which is comprised  by the eigenvectors corresponding  the three 

largest eigenvalues of RT(d1) matrix. The analysis continues next with the  rotation of this 

subspace, since this  makes easier the economical interpretation of it‘s vector.
124

The 

rotation is achieved by estimating the following product  

                                                      ε(3)([Η3,03Φ1]ε(3))
-1

                                                       (33) 

which applies a normalization on each  cointegrating vector, so that each can be considered 

an estimated spread between two interest rates series.  

 

Table (20) that presents the estimated cointegration space assuming r=3, verifies that the 

estimated and hypothesized space are not relevant to each other and so the comparison  

casts doubts on the validity of expectations hypothesis. 

                                                           
124

In order to proceed with the analysis we assume r=3. 
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Table (19) Eigenvectors of the de-trended data after setting d1=0.1 and d1=1 

 Panel (19)-i d1=0.1                   Table (19)-ii  d1=1 

 ε1 ε2 ε3 ε4 ε1 ε2 ε3 ε4 

eonia -0.4434 -0.8741 0.8841 0.3319 0.4147 -0.9052 0.0930 0.0005 

I7 -0.5165 -0.3617 0.1649 0.4602 0.5230 0.1573 -0.7998 -0.2493 

I10 -0.5180 -0.2546 0.2841 0.5380 0.5264 0.2566 0.1461 0.7973 

I12 -0.5179 -0.2546 0.3325 0.6234 0.5267 0.3001 0.5748 -0.5496 

sum -1.9958 -1.745 1.6656 1.9535 1.9908 -0.1912 0.0136 0.0006 
Note : The eigenvectors of Rt(d1) matrix are reported for the detrended data. The eigenvectors are sorted in the same order as the 

eigenvalues in table 7(i). The final row reports the sum of all the elements of the corresponding eigenvector. 

 

Table (20)  Estimated cointegration space assuming r=3 

 Table (15)-i d1=0.1 Table (15)-ii  d1=1 

 ε2 ε3 ε4 ε2 ε3 ε4 

eonia 1 0 0 1 0 0 

I7 0 1 0 0 1 0 

I10 0 0 1 0 0 1 

I12 -0.017 -0.193 1.334 -0.7862 -0.9923 -0.998 

sum 0.983 0.807 2.334 0.213 0.008 0.002 
Note : The table reports the estimated and rotated cointegration space assuming r=3 

 

 

 

7. Conclusions. 
 

The paper using four European interest rates of different maturities. applies the non 

parametric variance ratio test of Nielsen (2010) in order to produce inferences on the 

expectation hypothesis. The procedure contrary to the parametric tests of Johansen 

(1988,1991) and the fractional version of Breitung and Hassler (2002), which both are 

estimated in the paper, is invariant to short run dynamics and naturally avoids the usual 

misspecification errors that rise when the other two methods are applied.  

 

Furthermore Nielsen‘s (2010) strategy beside the latter advantage does not require  the 

estimation of  cointegrating vectors or inferences made on the integration order of the 

series under consideration, although the test does depend on a parameter appearing in the 
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asymptotic distribution of the ratio, that is d1, and whose values correspond to significant 

differences in the power of the ratio test. 

 

Following Nielsen who suggests the use of  d1=0.1 since this maximizes the power of the 

test, the analysis proceeds with this choice and with an alternative of setting  d1=1. In the 

first case the sequential test of the variance ratio comes up with two cointegrating relations 

and hence rejects the expectations hypothesis, while the same result occurs when 

considering the alternative choice of d1, although in this case no cointegrating relations 

exist.  

 

The paper proceeds with the application of some known parametric tests in order to 

underline the drawbacks which are present when different lag-augmentations are  applied.  

 

As far as  the Johansen methodology is concerned the VAR (1) and VAR (25) models 

which both are estimated after controlling for the relevant short run dynamics, they 

produce not surprisingly two different outcomes. Specifically VAR (1) concludes the 

presence of three and therefore accepts the expectations hypothesis , while VAR (25) 

acknowledges the presence of only one cointegrating relation. Note that these results are 

consistent either when estimating the trace rank or the maximum eigenvalue statistics. 

 

The same lag-augmentations are applied when the analysis estimates the fractional 

cointegration rank of Breitung and Hassler (2002) although in this particular case there is 

also the choice of setting the lag-length equal to zero. The results show that when lag 

augmentations are equal to 25 the expectation hypothesis holds, while the remaining two 

options reject the term structure theory. Finally, the paper with an informal testing 
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comparison of the estimated and hypothesized  cointegration space. This require a rotation 

of the estimated cointegration space so that every column represent the spread of two 

interest rates of different maturities.  The results show that the estimated and hypothesized 

space are not relative to each other and so this informal testing comparison of the estimated  

 

 

Rejection is also valid when considering the alternative choice for d1, although no 

cointegrating relations are acknowledged in this case. The paper proceeds with the 

application of some known parametric tests in order to prove the drawbacks which are 

attached with the decision over the lag-augmenations. As far as the Johansen methodology 

is concerned, VAR(1) and VAR(25) models which are selected after controlling the short 

run dynamics, they produce not surprisingly two different outcomes. On one hand VAR(1) 

framework stands for the presence of three cointegrating relations and hence accepts the 

expectations hypothesis, whereas VAR(25) acknowledges only one. The same lag-

augmentations are chosen when alternatively  we apply the fractional cointegration rank 

test of Breitung and Hassler (2002), although in this particular testing there is also the 

choice of setting the lag-length equal to zero. For this last case and when lags are set to 25 

the expectations hypothesis holds, whereas for the remaining case all null hypothesis are 

being rejected. Finally, the paper proceeds with an informal testing of the cointegration 

space. This require a rotation of the estimated  cointegration space so that every columns 

will stand for the spread of two interest rates. The results show that the estimated and the 

hypothesized space are not relative to each other and so this informal testing procedure 

constitutes another indication that in the present data set the expectation  hypothesis does 

not hold.  



113 
 

Appendix 
 

1. Plots and descriptive statistics of interest rates series under examination. 

 
Table (A) Descriptive statistics of eonia, i7, i10 and i12 

 mean Std.dev skewness Kurtosis Jarque/Bera Q(50) Q(100) Q(150) Q(200) 

ieonia

 
2.932          1.125 -0.294  -0.285        

50.315    

[1.1864e-011]       

125729.   

[0.000]** 

219097.   

[0.000]** 

275483.   

[0.000]** 

302072.   

[0.000]** 

i7

 
3.2486         1.1246 0.060076        -0.99523        

117.78    
[2.6508e-026]       

129620.   
[0.000]** 

224797.   
[0.000]** 

282689.   
[0.000]** 

311964.   
[0.000]** 

i10

 
3.305         1.121 0.075    -1.0355        

128.38  

[1.3243e-028]     

129430.   

[0.000]** 

223829.   

[0.000]** 

280708.   

[0.000]** 

309565.   

[0.000]** 

i12

 
3.346         1.1218 0.082569        -1.0444        

131.04    
[3.5100e-029]      

129197.   
[0.000]** 

222729.   
[0.000]** 

278440.   
[0.000]** 

306562.   
[0.000]** 

Note : p-values are reported in the brackets/*(**) denotes rejection at 5% and 1 significant level/ 

Q(50),Q(100),Q(150),Q(200) denotes the Ljung Box statistic for  

 

Graph (Α) Plot of Eonia, i7, i10, i12.                               

                      

                                        

 

2. Modeling fractional ARIMA models for the first differenced interest rates series  of Δeonia, 

Δi7, Δi10 and Δi12. 

Table (3) uses the  Akaike and Schwartz  information criteria and corresponds to Γeonia,Γi7, 

Γi10, Γi12 the ARFIMA (1,0.331,1), (1,0.361,1),(1,0.363,1) and (1,0.363,1) respectively. 

The procedure starts by estimating initially the fractional differencing operator of Γeonia,Γi7, 

Γi10, Γi12, while in a next stage applies fractional differencing to the above series, and 

finally uses ACF and PACF plots, hence applies the Box-Jenkins methodology to decide 

the appropriate orders of AR and MA polynomials.  
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Table (B) using the Pc.Give10, which provides the option of estimating the ARFIMA 

using a fixed long memory parameter,  presents the estimated parameters of the above 

selected fractional ARIMA models when the fractional differencing operator is fixed. 

Table (C) which immediately follows repeats those estimates but allows this time the 

fractional parameter to be freely estimated through the maximum likelihood process.  

 

Table (B) The estimated coefficients and the portmanteau statistics of the selected ARFIMA models using a 

fixed long memory parameters. 

 Γeonia Γi7 Γi10 Γi12 

d 
fixed 

0.331 0.361 0.363 0.363 

α1 
0.354 

[0.000]** 

0.463 

[0.000]** 

0.448 

[0.000]** 

0.469 

[0.000]** 

ζ1 
-0.932 

[0.000]** 

-0.644 

[0.000]** 

-0.680 

[0.000]** 

-0.711 

[0.000]** 

Q (50) 
62.568 

[0.077] 

84.087 

[0.001]** 

77.541 

[0.004]** 

70.349 

[0.019}* 

Q(100) 
118.45 

[0.078] 

132.95 

[0.010]* 

133.69 

[0.009]** 

130.37 

[0.016]* 

Q(150) 
180.50 

[0.035]** 
219.92 

[0.000]** 
214.70 

[0.000]** 
204.39 

[0.001]** 

Q(200) 
232.56 

[0.046]* 
313.90 

[0.000]** 
295.96 

[0.000]** 
288.16 

[0.000]** 

Note :P(50),P(100),P(150),P(200) denote the portmanteau statistics for residual autocorrelation.  p-values are               

reported in the brackets. *(**) rejection at 5% and 1% significant level 

 

Table (C)  The estimated coefficients and the portmanteau statistics of the selected ARFIMA models when 

long memory parameter is freely estimated using the maximum likelihood process. 

 Γeonia Γi7 Γi10 Γi12 

d 

fixed 

0.376 

[0.000]** 

0.254 

[0.000]** 

0.325 

[0.000]** 

0.320 

[0.000]** 

α1 
0.323 

[0.000]** 

-0.083 

[0.919] 

0.452 

[0.000]** 

0.480 

[0.000]** 

ζ1 
-0.239 

[0.000]** 
-0.001 
[0.999] 

-0.649 
[0.000]** 

-0.682 
[0.000]** 

P(50) 
61.803 
[0.072] 

91.584 
[0.001]** 

77.837 
[0.003]** 

70.734 
[0.014]* 

P(100) 
171.55 

[0.076] 

142.18 

[0.001]** 

134.16 

[0.007]** 

130.95 

[0.012]* 

P(150) 
179.54 

[0.035]* 

228.88 

[0.000]** 

214.8 

[0.000]** 

204.68 

     [0.001]** 

P(200) 
231.56 

[0.046]* 
331.92 

[0.000]** 
297.00 

[0.000]** 

289.53 

     [0.000]** 
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Note :P(50),P(100),P(150),P(200) denote the portmanteau statistics for residual autocorrelation.  p-values are               

reported in the brackets. *(**) rejection at 5% and 1% significant level 

Tables D, E, F and G report the Whittled estimated coefficients of the ARFIMA models 

corresponding Γi7, Γi10, Γi12 and ΓEonia . Setting the max AR and MA order equal to 3 and 

using all possible combinations in modeling the short memory dynamics as in Sowell 

(1992), each of the above tables estimates the same 16 ARFIMA frameworks. In the 

brackets below the estimated coefficients  the t-statistic values are reported, while *(**) 

denote respectively the rejection of the null at 5% and % significant level. 

 The last column in every table reports the Schwarz (Bayesian) information criteria. These 

estimations are generated using the R statistical program and specifically the afmtools-

package. The above information criterium decides the ARFIMA frameworks upon which 

the rest part of the analysis will actually evolve and as already has stated the selected 

ARFIMA models are all employing common AR and MA specifications which sets the AR 

and MA order equal to one.Using these ARFIMA models images (B) to (E) below each 

table generate graphically outputs on a) the inverse AR and MA roots, b) the theoretical 

and empirical spectrum and  finally c) the correlogram of the estimated residuals.  

The fact that all inverse AR and MA roots are well inside the unit circle indicates a  good 

approximation of the long memory segments of the ARFIMA, since otherwise the roots of 

the autoregressive and moving average polynomials would normally approach the unit 

circle. In fact for a positive long range dependence the root of the autoregressive 

polynomial would approach the unit circle, while for a negative long run dependence the 

root of the moving average polynomial would do the same 
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Furthermore, plots of the implied spectral densities over the corresponding periodograms 

indicate the appropriateness of the selected ARFIMA, while the same   fit is underlined by 

the autocorrelation functions of the estimated residuals. 

Table (D) : Whittled estimated ARFIMA models corresponding Γi7 interest rate. 

Γi7 

ARFIMA d α1 α2 α3 Θ1 Θ2 Θ3 

(0,d,0) 
0.210 

[6.806]**      
- - - - - - 

(0,d,1) 
0.265 

[8.560]** 
- - - 

-0.094 

[-4.978]** 
- - 

(0,d,2) 
0.267 

[8.647]** 
- - - 

-0.097 

[-5.1203]** 

-0.003 

[-0.177]** 
- 

(0,d,3) 
0.348 

[11.253]** 
- - - 

-0.183 

[-9.274]** 

-0.036 

[-1.828] 

-0.064 

[-3.271]** 

(1,d,0) 
0.259 

[8.363]** 

-0.088 

[-4.638]** 
- - - - - 

(2,d,0) 
0.259 

[8.373]** 

-0.088 

[-4.655]** 

-0.0004 

[-0.024] 
- - - - 

(3,d,0) 
0.2855 

[9.221** 

-0.114 

[-5.991]** 

-0.018 

[ -0.989] 

-0.041 

[-2.170]** 
- - - 

(1,d,1) 
0.375 

[12.129]** 

0.460 

[19.242]** 
- - 

-0.654 

[-19.839]** 
- - 

(1,d,2) 
0.258 

[8.342]** 

-0.822 

[-14.085]** 
- - 

0.735 

[15.219]** 

-0.057 

[-1.192] 
- 

(1,d,3) 
0.453 

[14.647]** 

0.492 

[19.785]** 
- - 

-0.780 

[-18.306]** 

0.083 

[1.965]* 

-0.051 

[-1.210] 

(2,d,1) 
0.253 

[8.175]** 

-0.886 

[-13.656]** 

-0.053 

[-0.821] 
- 

0.805 

[14.991]** 
- - 

(2,d,2) 
0.462 

[14.928]** 

0.136 

[6.541]** 

0.250 

[12.049]** 
- 

-0.431 

[-13.688]** 

-0.274 

[-8.698}** 
- 

(2,d,3) 
-0.085 

[-2.762]** 

1.254 

[1.091] 

-0.265 

[-0.231] 
- 

-1.003 

[-8.393]** 

0.152 

[1.272] 

-0.063 

[-0.530] 

(3,d,1) 
0.446 

[14.422]** 

0.471 

[18.718]** 

0.073 

[2.933]** 

-0.034 

[-1.387] 

-0.751 

[-17.360]** 
- - 

(3,d,2) 
0.474 

[15.324]** 

-0.267 

[-9.091]** 

0.454 

[15.413]** 

0.040 

[1.389] 

-0.039 

[-1.315] 

-0.604 

[-20.139]** 
- 

(3,d,3) 
0.399 

[12.911]** 

0.946 

[11.421]** 

-1.066 

[-12.872]** 

-1.175 

[-11.723]** 

-1.175 

[-11.723]** 

1.223 

[12.204]** 

-0.584 

[-5.829]** 
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Graph (B) :  Plots νf the estimated ARFIMA (1,d,1)  for Γi7  a) inverse AR and MA roots, b) theoretical and 

empirical spectrum, c) ACF-residuals.  
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Table (E) : Whittled estimated ARFIMA models corresponding Γi10 interest rate. 

Γi10 

ARFIMA d α1 α2 α3 Θ1 Θ2 Θ3 Sic 

(0,d,0) 
0.164 

[5.314]** 
- - - - - -  

(0,d,1) 
0.219 

[7.077]** 
- - - 

-0.097 

[-5.105]** 
- -  

(0,d,2) 
0.243 

[7.864]** 
- - - 

-0.122 
[-6.378]** 

-0.029 
[-1.543] 

-  

(0,d,3) 
0.323 

[10.447]** 
- - - 

-0.204 

[-10.220]** 

-0.058 

[-2.906]** 

-0.063 

[-3.187]** 
 

(1,d,0) 
0.209 

[6.773]**     
-0.084 

[-4.456]**     
- - - - -  

(2,d,0) 
0.222 

  [7.196]**    

-0.098 

 [-5.190]**    

-0.020 

[-1.102]*         
- - - -  

(3,d,0) 
0.252 

[8.148]     
-0.128 

[-6.711]**      
-0.042 

[-2.195]*       
-0.045 

[-2.391]*      
- - -  

(1,d,1) 
0.351 

[11.350]** 

0.448 

[19.002]** 
- - 

-0.669 

[-19.596]** 
- -  

(1,d,2) 
0.440 

[14.234]** 
0.612 

[20.294]** 
- - 

-0.932 
[-13.950]** 

0.103 
[1.542] 

-  

(1,d,3) 
0.419 

[13.552]** 

0.504 

[19.941]** 
- - 

-0.804 

[-17.566]**        

0.075  

[1.639]     

-0.033 

[-0.731]        
 

(2,d,1) 
0.446 

[14.426]** 
0.475 

[18.537]** 
0.069 

[2.714]** 
- 

-0.803 
[-15.127]** 

- -  

(2,d,2) 
0.410  

[13.262]**      

0.015 

[0.761]       

0.272 

[13.379]**       
- 

-0.305  

[-11.174]**       

-0.344     

[-12.610]**    
-  

(2,d,3) 
0.053 

[1.743]     
0.238     

    [1.180] 
0.732 

[3.626]**      
- 

-0.174 
[-2.500]*     

-0.691]  
[-9.940]**    

-0.043 
[-0.622]      

 

(3,d,1) 
0.418 

[13.506]** 

0.464 

[18.676]** 

0.062 

[2.510]* 

-0.019 

[-0.796] 

-0.763 

[-16.882]** 
- -  

(3,d,2) 
0.040 

   [1.314]   
0.320 

[1.366]    
0.707 

[3.015]**     
-0.054 

[-0.233]     
-0.242 

[-3.304]**    
-0.668 

[-9.119]**     
-  

(3,d,3) 
0.410 

[13.262]**      

0.584     

[15.869]** 

0.263 

[7.156]**   

-0.155 

[-4.210]**     

-0.874  

[-10.540]    

-0.170 

[-2.056]*      

0.195 

[2.362]*     
 

Note : In the brackets t-statistics are reported. *(**) denote respectively rejection of the null at 5% and 1% significant level 

Graph (D) :  Plots νf the estimated ARFIMA (1,d,1) for Γi10  a) inverse AR and MA roots, b) theoretical and 

empirical spectrum, c)ACF-residuals.  
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 Table (F) : Whittled estimated ARFIMA models corresponding Γi10 interest rate. 

Γi12 

ARFIMA d α1 α2 α3 Θ1 Θ2 Θ3 Sic 

(0,d,0) 
0.148 

[4.800]** 
- - - - - -  

(0,d,1) 
0.191 

[6.182]** 
- - - 

-0.077 

[-4.060]** 
- -  

(0,d,2) 
0.228 

[7.374]** 
- - - 

-0.115 
[-6.031]** 

-0.044 
[-2.324]* 

-  

(0,d,3) 
0.307 

[9.913]** 
- - - 

-0.196 

[-9.778]** 

-0.073 

[-3.658]** 

-0.062 

[-3.139]** 
 

(1,d,0) 
0.183 

[5.930]** 
-0.065 

[-3.465]** 
- - - - -  

(2,d,0) 
0.203 

[6.562]** 

-0.086 

[-4.551]** 

-0.031 

[-1.673] 
- - - -  

(3,d,0) 
0.233 

[7.527]**      
-0.117 

[-6.122]**         
-0.052 

[-2.732]**      
-0.046 

[-2.423]**       
- - -  

(1,d,1) 
0.348 

[11.249]** 

0.472 

[19.456]** 
- - 

-0.699 

[-18.938]** 
- -  

(1,d,2) 
0.416 

[13.456]** 
0.586 

[20.404]** 
- - 

-0.890 
[-14.799]** 

0.076 
[1.267] 

-  

(1,d,3) 
0.400 

[12.926]** 

0.509 

[20.009]** 
- - 

-0.798 

[-17.281]** 

0.055 

[1.199] 

-0.022 

[-0.490] 
 

(2,d,1) 
0.418 

[13.510]** 
0.485 

[18.972]** 
0.050 

[1.967]* 
- 

-0.792 
[-15.627]** 

- -  

(2,d,2) 
0.387 

[12.509]** 

-0.083 

[-3.947]** 

0.309 

[14.606]** 
- 

-0.190 

[-7.388]** 

-0.422 

[-16.413]**    
-  

(2,d,3) 
0.407 

[13.144]**    
-0.220 

[-8.051]**      
0.434 

[15.843]**     
- 

-0.074 
[-2.505]*       

-0.593 
[-20.075]**      

0.033 
[1.142]      

 

(3,d,1) 
0.399 

[12.895]**      

0.476 

[19.044]**       

0.045 

[1.814]      

-0.013 

[-0.547]      

-0.764 

[-16.854]**      
- -  

(3,d,2) 
0.406 

[13.109]**       
-0.285 

[-9.751]**        
0.420 

[14.374}**     
0.023 

[0.793]      
-0.008 

[-0.282]     
-0.598 

[-20.364]**      
-  

(3,d,3) 
0.406 

[13.124]**    

0.686 

[9.426]**     

0.410 

[5.642]**      

-0.245 

[-3.372]**     

-0.979 

[-4.289]**     

-0.305 

[-1.337]     

0.353 

[1.547]     
 

Note : In the brackets t-statistics are reported. *(**) denote respectively rejection of the null at 5% and 1% significant level 

Graph (E) :  Plots νf the estimated ARFIMA (1,d,1) for Γi12  a) inverse AR and MA roots, b) theoretical and 

empirical spectrum, c)ACF-residuals.  
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Γeonia 

ARFIMA d α1 α2 α3 Θ1 Θ2 Θ3 Sic 

(0,d,0) 
-0.214 

[-6.940]** 
- - - - - -  

(0,d,1) 
-0.208 

[-6.731]** 
- - - 

-0.014 

[-0.744] 
- -  

(0,d,2) 
-0.117 

[-3.778]** 
- - - 

-0.121 
[-6.193]** 

-0.126 
[-6.498] 

-  

(0,d,3) 
0.450 

[14.547]** 
- - - 

-0.701 

[-5.828]** 

-0.179 

[-1.487] 

-0.055 

[-0.460] 
 

(1,d,0) 
-0.210 

[-6.783]** 

-0.010 

[-0.563] 
- - - - -  

(2,d,0) 
-0.173 

[-5.591]** 

-0.048 

[-2.531]* 

-0.083 

[-4.363]** 
- - - -  

(3,d,0) 
-0.142 

[-4.596]** 

-0.083 

[-4.336]** 

-0.102 

[-5.313]** 

-0.065 

[-3.431]** 
- - -  

(1,d,1) 
0.405 

[13.105]** 

0.290 

[14.095]** 
- - 

-0.945 

[-5.315]** 
- -  

(1,d,2) 
0.395 

[12.756]** 

0.322 

[15.314]** 
- - 

-0.968 

[-5.311]** 

0.022 

[0.124] 
-  

(1,d,3) 
0.390 

[12.611]** 

0.359 

[16.588]** 
- - 

-1.000 

[-5.079]** 

0.043 

[0.218] 

0.009 

[0.050] 
 

(2,d,1) 
0.395 

[12.772]** 

0.297 

[14.374]** 

0.006 

[0.335] 
- 

-0.944 

[-5.418]** 
- -  

(2,d,2) 
0.393 

[12.690]** 

0.481 

[20.082]** 

-0.047 

[-1.962]* 
- 

-1.125 

[-4.439]** 

0.170 

[0.674] 
-  

(2,d,3) 
0.386 

[12.477]** 

-0.577 

[-6.545]** 

0.336 

[3.813]** 
- 

-0.058 

[-0.599] 

-0.897 

[-9.250]** 

0.058 

[0.602] 
 

(3,d,1) 
0.389 

[12.588]** 

0.302 

[14.567]** 

0.006 

[0.322] 

0.004 

  [0.206]     

-0.943 

[-5.465]**   
- -  

(3,d,2) 
0.386 

[12.484]**     
-0.643 

[-6.573]**   
0.295 

[3.018]**      
0.019 

[0.198]     
0.006 

[0.067]      
-0.896    

[-9.318]** 
-  

(3,d,3) 
0.395 

[12.751]**    

-1.185 

[-3.194]**    

-0.060 

[-0.163]       

0.166 

[0.448]       

0.540 

[2.466]*     

-0.891 

[-4.071]**      

-0.481 

[-2.201}*      
 

Note : In the brackets t-statistics are reported. *(**) denote respectively rejection of the null at 5% and 1% significant level 

Graph (F) :  Plots νf the estimated ARFIMA (1,d,1) for ΓEonia  a) inverse AR and MA roots, b) theoretical 

and empirical spectrum, c)ACF-residuals. 
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3. Graphical representation of interest rates series after applying fractional 

differencing. 

Graph (G) : Fractionally differences interest rate series when d=0.1 

                                      

 Graph (H) : Fractionally differences interest rate series when d=1 

                                      

 

4. Testing the unit root hypothesis using ADF, Phillips-Peron and KPSS tests 

Table (H)  The ADF, Phillips-Peron and KPSS test 

Interest rates ADF 
Phillips-

Peron 
KPSS Lags 

eonia -0.329 

[0.918] 

-1.598 

[0.483] 
1.108** 8 

I7 
     -0.346 

     [0.915] 

-0.454 

[0.897] 
0.628* 7 

I10 
-0.384 

[0.909] 

-0.522 

[0.884] 
0.624* 7 

I12 
-0.438 

[0.900] 

-0.580 

 [0.872] 
 0.626* 7 

Note : For the ADF tests the Schwartz information criteria was used for lag selection, while  maxlag was set equal to 27 and the 

MacKinnon (1996) one-sided p-values were used for all cases. The Phillips-Peron spectral estimations were based uppon Barlett Kernel, 

while for the KPSS test statistic the asymptotic critical values are 0.739 and 0.463 for 1 % and 5% significance levels respectively. On 
all test equations a constant but no trend was included, *(**) denotes rejection at 5% and 1% significant level. 
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Chapter 3 

Forecasting volatility and the risk return trade off . 

An application on the Fama-French Benchmark market return 

 

  



 

 

 

Forecasting volatility and the risk return trade off : 

An application on the Fama-French Benchmark market return 

 

A B S T R A C T 

   The paper presents an application of the exponential fractional GARCH-M (FIEGARCH-

M) model to the daily stock market index returns of Fama-French. The model extends the 

basic long memory volatility framework of Bollerslev and Mikkelsen (1996) by 

introducing a possible volatility in mean effect. However, as has been stated by 

Christensen and Nielsen (2007) the introduction of volatility in the return equation may not 

be empirically warranted since often generates long memory in returns. Avoiding this 

spillover effect could be crucial and in order to achieve the co-existence of long memory in 

volatility and short memory in returns, the paper follows Ang et all. (2006) and 

Christensen, Nielsen and Zhu (2010) and estimates their filtering volatility frameworks 

(FIEGARCH-MG and FIEGARCH-MH). However, there is no reason to assume as 

Christensen, Nielsen and Zhu (2010) that innovations in the return equations necessarily 

will follow the normal distribution and therefore the present work enriches the estimation 

by introducing various distributional assumptions settings on the corresponding maximum 

likelihood functions. The results indicate the existence of a statistically significant in mean 

effect when both filtered models are estimated under the assumption of t-student. However 

both cases cannot outperform in terms of forecasting criteria the parsimonious FIEGARCH 

version which dominate filtered and non filtered volatility models in various forecasting 

horizons. 

 

Keywords : FIEGARCH, Financial leverage, GARCH, Long memory, Risk-return trade off, Stock returns, Volatility 

feedback. 



125 
 

1. Introduction. 
  
The main goal of the paper is to compare different volatility models in terms of their 

volatility forecasting potentials. However, before dealing with its final goal the paper  

addresses first the issue of specifying properly the competing volatility frameworks, and 

naturally this pre-requests answers upon questions such as : a) the ideal number of ARCH 

and GARCH terms that should be employed in every volatility model, b) the  distributional 

assumptions applied and upon which the corresponding likelihood functions will be 

formed, c) the incorporation or not in the estimated frameworks of volatility-return 

relations, and finally d) issues related to long memory features and spillover effects when 

both phenomena are present.  

Especially when dealing with the question of whether the estimated volatility frameworks 

identify possible volatility-return relations,
125

the paper answers the question of whether 

there exist statistically significant risk-return trade offs. So, the analysis although initially 

sets its eye on volatility forecasting, simultaneously  addresses the issue of whether 

particular volatility specifications imply straightforward risk and return relations. 

 There are three theoretical approaches that justify the existence of such a relation : (a) the 

risk-return tradeoff, (b) the financial leverage effect and (c) the volatility feedback effect 

mechanism. The first assuming rational investors that will take on additional risk whenever 

they expect higher returns, underlines a positive relation between volatility and returns.
126

 

The second  approach is attributed to Black (1976) and is broadly known as the leverage 

effect. The theory states that bad news  decrease the price of a stock and increase at the 

same time the financial leverage or the debt/equity ratio of the corresponding firm. This 

                                                           
125

 These volatility models are denoted with the M designation. For example GARCH-M, EGARCH-M, 

FIEGARCH-M.  
126

This idea triggered Engle (1982) to introduce GARCH-M, that sets volatility as explanatory variable in the 

conditional mean equation. 
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situation  sets stocks riskier after the price drop and hence increase future expected 

volatility. So, this leverage effect obviously introduces a negative relation between 

volatility and returns. Finally, the last approach is attributed to Cambell and Hentsel (1992) 

and their volatility feedback mechanism. The last resumes the following chain of events. 

An increase in volatility increases further the risk premium and the discount rate in the 

economy, and given an unchanged stream of dividends, this lowers the price of a stock,
127

 

and produces naturally a negative volatility return-relation. 

Although the daily stock market returns are not characterized by the long memory feature 

and seem to be rather unpredictable, volatility in returns is highly predictable and can be 

modeled as a long memory process. These findings that are common in a number of 

studies,
128

set naturally the FIEGARCH model of Bollerslev and Mikkelsen (1996) at the 

core of the present analysis. The last not only addresses the issue of the asymmetric 

volatility reactions to positive and negative innovations as the exponential EGARCH 

model of Nelson (1991) does, but also accounts for the long memory features in volatility 

as those have been modeled by the FIGARCH approach of Βaillie et al. (1996).  

Furthermore the paper focuses on FIEGARCH-M models. These frameworks beside 

modeling volatility as a combination of asymmetrical and long memory features moreover 

estimate the in mean relation among the latter volatility specification and the examined 

return series.
129

 

An interesting view of this risk-return relation that is also explored in the present analysis 

is explored in Christensen, Nielsen and Zhu (2010) and states that the introduction of 

                                                           
127

Christensen,Nielsen and Zhu (2010) state that the volatility feedback effect mechanism possibly is 

strongest at the market level, while the leverage effect mainly affects individual stocks. 
128

 See Crato and de Lima (1994), Baillie et al (1996), Robinson (1991), Baillie and Morana (2007). 
129

These are the basic operations of any volatility-Mmodel. 
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volatility in the return equation may generate long memory in returns. Avoiding this 

spillover effect may prove crucial for both, the forecasting properties and the statistical 

acknowledgment of the risk-return trade off, and so modeling the co-existence of long 

memory in volatility and short memory in returns as in Ang et all. (2006) and Christensen, 

Nielsen and Zhu (2010) sets an interesting empirical application of the present analysis. 

The procedure introduces two FIEGARCH-M models, the FIEGARCH-MG and 

FIEGARCH-MH, which both consider the option that it is changes in volatility entering 

the conditional in mean equation rather than volatility levels themselves. 

In terms of forecasting FIEGARCH is initially compared to GARCH, IGARCH, 

FIGARCH, EGARCH and GJR. All these models are estimated for the daily stock market 

index returns of Fama-French for a period of 37 years, from 01.07.1963 to 

31.06.2010.
130

The applied specifications are decided upon standard information criteria 

that reward both the goodness of fit and parsimony as well as the out of sample 

forecasting.
131

For example, although all the above models are estimated initially under the 

normality assumption, however, a trialing process of applying alternative distributions such 

as the t-student, general error and the skewed t-student, indicates that the fit corresponding 

all the above models is significantly enhanced whenever the skewed t-student distribution 

is applied. So the majority of the above models are estimated under this distributional 

assumption. 

 At this initial stage and controlling for autocorrelation in data returns, comparisons reveal 

that FIEGARCH is indeed the best forecasting model, while the volatility in mean effect 

                                                           
130

The data are available on http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ 
131

The ―specification‖ term here refers to certain characteristics of the estimated volatility frameworks. Such 

characteristics are (a) the hypothesized distribution of innovations , (b) the number of GARCH-ARCH terms, 

(c)  the inclusion or not in the estimated frameworks of possible M features and (d) the number of statistically 

significant autoregressive terms when controlling the conditional in mean equation for the  existence of 

possible autocorrelations in the daily stock market returns. 
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irrespective of the estimated volatility framework, turns out being not statistically 

significant, contrary to results presented in Christensen, Nielsen and Zhu (2010). However 

this conclusion is generally sensitive to the distributional assumptions applied, since the 

choice of normal distribution generally acknowledges the statistical presence of the latter 

relation, although in this case the forecasting and fitting properties of all the competing 

volatility models are  rather poor and non-competitive.  

As far as the filtered long memory volatility models is concerned, there is no obvious 

reason why their innovations must necessarily follow the standard normal distribution  as 

in Christensen, Nielsen and Zhu (2010) and therefore the paper changes the estimation 

settings by introducing various possibilities over the distributional assumption. The t-

student distribution that is finally chosen acknowledges a statistically significant in mean 

effect, although both filtered models cannot outperform in terms of forecasting the 

parsimonious FIEGARCH model according to standard forecasting criteria.  

The rest of the paper is organized as follows. Section 2 presents the mathematical 

equations that correspond the M volatility models and the quasi maximum likelihood 

method. Section 3 estimates all the competing volatility frameworks and particularly 

section 3.1 estimates the non filtered EGARCH, FIEGARCH, FIGARCH, GARCH, GJR, 

IGRACH volatility models, while section 3.2 estimates the filtered FIEGARCH models, 

FIEGARCH-MH and FIEGARCH-MG. Section 4 presents a comparative forecasting 

analysis of all estimated volatility frameworks and finally section 5 concludes. 

2. The volatility–M models and the quasi maximum likelihood estimation. 

The basic idea of a volatility-M model is the introduction of volatility in the return 

equation. Denoting rt as the daily return of a stock or stock market index at time t, Ft-1 as 
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the available set information up to t-1moment,
 
zt as a white noise process at time t, the 

general representation of any volatility-M model is given by equation system (1), where 

(1.a), (1.b) and (1.c) equations state respectively the conditional in mean specification, the 

conditional variance of the residuals, and the general ARCH representation : 

                                                      
2

t t tr                                                                                          (1.a)                                                                                                                                                        

                                                                  

2 2

1( / )t t tE F  
                                                                                    

(1.b) 

                                                                      

1/2( )t t tz a                                                                                          (1.c)                                                                                              

                                                       

2 2 2 2

1 1(1, ,..., , ,..., )t t t q t t pv                                                                         (1.d) 

 

Equation system 1 is estimated by quasi maximum likelihood (QML).
132

Although  

ordinary least squares (OLS) deliver consistent estimates, however, the maximum 

likelihood method is more efficient, in the sense that the estimated parameters converge to 

their population counterparts at a much faster rate.
133

Obviously the log-likelihood function 

depends upon the assumed distribution of innovations
 
and specifically upon the assumed 

conditional distributions of εt and
 
rt.

134
 

Although Engle (1982) notes that applying conditional normality may not be as restrictive 

as it initially appears,
135

however it is common strategy to let alternative assumptions enter 

                                                           
132

When normality is assumed but the true conditional distribution is not normal, the maximum likelihood 

estimations are known to be quasi maximum likelihood. Weiss (1986) and Bollerslev and Wooldridge (1992) 

shows that these (estimations) are consistent whenever the equations of the conditional mean and the 

conditional variance are correctly specified.  
133

Engle (1982) shows that estimating the ΑRCH (1) model using the maximum likelihood provides gains in 

efficiency that are quite large. 
134

Note that Zt term in (1.c) equation is usually named as innovation process. The reader must keep in mind 

that the term innovation in the present context refers either to the previous definition or the one stated by 

Cristensen, Nielsen  and Zhu (2010). The last will be clarified as soon as there is presentation of the filtered 

volatility models. 
135

Engle (1982) states that if conditional distribution of returns is normal, the unconditional will not be 

normal since it‘s shape strongly displays a leptokurtic shape. 
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the conditional distributions. Indeed Palm (1996), Pagan (1996) and Bollerslev, Chou and 

Kroner (1992) underline the widespread use of fat-tailed distributions in the volatility 

literature,
136

 an particularly state that the symmetric t-student, the generalized error (GED), 

and the skewed student distribution of Fernandez and Steel (1998) are in fact the most 

popular alternatives. Since the distribution of asset returns is most of the times negatively 

skewed,
137

the latter distribution  by incorporating and adjusting for phenomena of kurtosis 

and skewness, turns out being extremely useful. 

Equation system (1) describes the general framework of a volatility-M model. However, 

Christensen, Nielsen and Zhu (2010) propose an alternative presentation  which introduces 

volatility changes instead of volatility levels as the explanatory variable entering the 

conditional in mean equation. The approach in the present analysis is applied solely for the 

FIEGARCH-M model, and further details are displayed as soon as there is presentation of 

the basic FIEGARCH framework.  

FIEGARCH, nests both the FIGARCH model of Baillie.et al (1996) and the asymmetrical  

ΔGARCH  model of Nelson (1991). This model is specified in the next equation  

                                               

2

1( )(1 ) (ln ) ( ) ( )d

t tL L L g z                                                             (2)         

  

where σ is the mean of the logarithmic conditional variance, θ(L) and ς(L) are 

polynomials in the lag operator, (1-L)
d
 stands for the fractional difference operator 

presented  in equation (3), zt is the normalized innovation at time t, that is zt=εt/ζt, while 

                                                           
136

Bollerslev (1987), Hsieh (1989), Baillie and Bollerslev (1989), Palm and Vlaar (1997) among others show 

that these distributions perform better in order to capture the higher observed Kurtosis. 
137

Note that this is the case in our data set. For more information on the use of non normal distributions when 

estimating GARCH models, see Laurent and Peters (2002). 
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finally g (zt-1) introduces the news impact function that is defined  as in equation (4)  that 

follows 

                                                0

( 1)
(1 )

( 1) ( 1)

d K

k

d
L L

k d k





 
 

    
                                                       (3)    

    

                                                             

( ) ( )t t t tg z z z E z   

                                                                 (4) 

The fractional difference operator engages a key roll in the FIEGARCH model, allowing a 

persistence of shocks to volatility which is stronger than the one designating the short 

memory volatility models of  GARCH, ARCH, EGARCH etc. Furthermore,  the  

incorporation of asymmetries or leverage effects in the estimated conditional variance is 

ensured by the presence of the news impact function g (zt-1), which manages the way in 

which past shocks affect  the current levels in volatility.
138

  

As  Nelson (1991) states the leverage effect should be modeled as both a function of 

magnitude and sign, and coefficients ζ and γ presented  in equation (4) manage exactly 

that. Specifically, γ coefficient displays the rate at which innovations enter volatility, while 

ζ manages the way the sign of the  normalized innovations affect  the current levels in 

volatility. Obviously for a value ζ that is below zero, the negative innovations will induce 

higher volatility levels than the positive innovations of the same magnitude.  

 Christensen, Nielsen and Zhu (2010)  introduce the following stationary input in the 

conditional in mean equation 

                                                              

2(1 ) (ln )d

t th L                                                          (5) 

                                                           
138

Using in FIEGARCH the natural log of conditional variance as the reliant variable implies that the latter 

will always positive, even in the presence of negative estimated coefficients. This transformation eliminates 

the necessity of imposing non negativity parameter restrictions, a strategy most common in the GARCH and 

ARCH models. 
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The equation operates as a filter that  abstracts the long memory feature of volatility, while 

an analogous stationary expression is  presented in Ang et.al (2006) and uses the news 

impact function of the previous period, that is g(zt-1) function. The last resumes the most 

recent innovation to volatility. 

 Both stationary products, ht and g(zt-1), when substitute the independent variable of 

equation (1.a) generate  the following two expressions 

                                                               1( )t t tr g z                                                             (6) 

                                                                  t t tr h                                                                  (7)              

                                  

These conditional in mean equations alongside the FIEGARCH modeling of conditional 

variance, premise the filtered long memory volatility models presented in Christensen, 

Nielsen and Zhu (2010). Particularly, equation (6) corresponds to the  FIEGARCH-MG 

model, while equation (7) belongs to the FIEGARCH-MH case. 

3. Application to the Fama-Frech stock market index, 1963-2010.    

3.1 Estimating volatility models with out filtering : GARCH, EGARCH, FIGARCH, 

GJR, FIEGARCH, IGARCH. 

The first part of the analysis  uses the  daily returns  of the Fama-French stock market for a 

period of 37 years from 01.07.1963 to 31.06.2010,  to  estimate different  non filtered 

volatility models. Those models are GARCH-M, EGARCH-M, FIGARCH-M, 

FIEGARCH-M, IGARCH-M and GJR-M, while table (1) concentrates the relative 

mathematical expressions. 
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Following at this point Bollerslev and Mikkelsen (1996) the above volatility frameworks 

add  in the conditional mean equations the autoregressive terms of an AR(3) process, and 

so these models beside including in the return equation the corresponding volatility 

estimates
139

 account also for autocorrelations in stock market returns.   

This adjustment which theoretically is based on the arguments of Scholes and Williams 

(1977) and Lo and MacKinlay (1990) underline the important fact that  potential 

discontinuous trading of stocks that make up the market index may result  in significant 

serial dependence over the index returns. Obviously the structure of  autocorrelation  will 

depend  on the specific feature that defines the exact nature of non synchroneity.  

The above comments imply two things. First, that  all  the above volatility models use 

equation system (1) as their general mathematical expression, and second, that only 

equation (1.a) is changing into the following expression  

                                         
2

1 1 2 2 3 3t t t t t tr r r r                                                           (8)   

                                                    

Table (2)  concentrates   the estimations on the above volatility-M models. All cases 

estimate equation (8) as the fundamental conditional in mean equation. Furthermore  

following Christensen, Nielsen and Zhu (2010) all models of table (2) use one ARCH and 

one GARCH term, while all models are estimated under the assumption of  standard 

normal distribution. Hence the estimated volatility models of table (2) are the 

GARCH(1,1)-M-[1,2,3], EGARCH-(1,1)-M-[1,2,3], FIGARCH-(1,1)-M-[1,2,3], 

FIEGARCH-(1,1)-M-[1.2.3], IGARCH-(1,1)-M-[1,2,3] and  GJR (1,1)-M-[1,2,3].
140

 

                                                           
139

 The presence of the conditional in mean equation is denoted by the M designate. 
140

Estimation of the above models is carried out with the G@rch 6 program. For the calculation of standard 

errors the option of sandwich formula is consistently used. Elements x and y in parenthesis (x,y) denote 
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Table (1) Mathematical expressions of the conditional variances for the estimated volatility models. 

GARCH 
2 2 2 2 2

0 0

1 1

( ) ( )
q p

t i t i t i t t

i i

a a a a L B L     

 

        

 
     α(L)=a1L+…+aqL

q 

     B(L)=β1L+…+βpL
P 

IGARCH 
2 2 2 2 2

0 0

1 1

( ) ( )
q p

t i t i t i t t

i i

a a a a L B L     

 

        

1 1

1
q p

i i

i i

a 
 

    

EGARCH 

               

2 1

1log( ) [1 ( )] [1 ( )] ( )t tL a L g z   

     g(zt)=γ1zt+γ2(|zt|-Δ(|zt|) 

GJR 

                 

2 2 2 2

1 1

( )
q p

t i t i i t i t i j t j

i j

a S      

   

 

      
 If εt-i>0 then S

-1
=1 

 If εt-i<0 then S
-1

=0 

FIGARCH 

   

2 1 1 2{1 ( )] {1 ( )(1 ) [1 ( )] }d

t tL L L L          
 

Φ(L)=(1-θ1L-…-θpL
P) 

Θ(L)=(1+ζ1L+…+ΘqL
q) 

 

The statistical significance of ι coefficient in results presented in table (2) indicates that in 

four out of six models
141

the return-volatility relation is present and favors a positive risk-

return trade off. On the other hand the estimated ζ and γ parameters in both news impact 

functions of EGARCH-M and FIEGARCH-M models are statistically significant at 

conventional levels and have the expected signs.
142

 Furthermore the fractionally 

differenced parameter, d, although positive and strongly significant in both long memory 

volatility models differ significantly between the two and create speculations about the 

                                                                                                                                                                                
respectively the number of GARCH (x) and ARCH (x) terms, while number in brackets indicate the 

autoregressive variables enriching the conditional in mean equation. For example  FIEGARCH (1,1)-M-[1] 

denotes an M volatility model that uses one GARCH and ARCH term for the volatility specification, while 

adds in the conditional in mean equation beside the logζ
2
 the first lagged variable rt-1 as an additional 

explanatory variable. If the model under consideration does not belong to the M family of volatility models 

then the letter M is missing from the above notation. For example FIEGARCH (2,1)-[1,3]  states that the 

model under consideration is the FIEGARCH with two GARCH and one ARCH terms specifying the 

conditional variance equation, and the first and third lagged return variables, those are rt-1 and rt-3, added in 

the conditional mean equation. Note that the same notation is consistently used throughout the analysis. 
141

 These models are  IGARCH, FIGARCH, FIEGARCH and GARCH. 
142

 The news impact function, as clearly can be seen in the mathematical expressions presented in table (1) 

and equation (2) is used solely in EGARCH and FIEGARH models. The successive incorporation of both 

asymmetries induced by the sign and size of innovations implies that the estimated coefficients ζ and γ fulfill 

certain characteristics. Those features are mainly two. First, the statistical significance of both estimated 

coefficients at conventional levels, and second the verification of their expected signs. Specifically, ζ is 

expected to be negative and γ positive. By default GJR incorporates only the asymmetries induced by the 

sign of innovations and in this case by default the expected sign of ζ is positive. Therefore, the model does 

not incorporate the news impact function presented in equation (4).  
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realized goodness of fit. Moreover, for FIGARCH and FIEGARCH models he estimated 

long memory parameters are 0.525 and 0.173 respectively.  

As for  the serial correlation of residuals in all models the estimated non statistically 

significant Ljung–Box Q statistics
143

 at both choices of lags, those are 100 and 200, 

indicate clearly the absence of misspecifications in the corresponding conditional in mean 

equations, an outcome mainly attributed to the presence of autoregressive 

terms
144

introduced in equation (8). 

Furthermore the Ljung–Box Q* statistics that are estimated on the squared residuals, turn 

over non statistically significant outcomes except in one case. The exception irrespective 

of the lag choices applied concerns the FIEGARCH model. The results clearly suggest a 

misspecification of the FIEGARCH volatility equation although Harris and Sollis (2003) 

argue that in GARCH type models the p-values drawn from X
2
 distributions cannot 

generally considered reliable. However these results since retain useful information for 

further model comparison they are reported constantly in the present analysis.   

Beyond this clearly FIEGARCH-M reports the best Akaike and log-likelihood value 

among all estimated volatility models, while EGARCH-M practically matches those 

standings and in the case of Schwarz information criteria outperforms FIEGARCH-M. 

Finally the last row of table (2) presents results on the mean square error (MSE). The last is 

estimated over the last 100 days of the sample period, using one-day ahead out of sample 

volatility forecasts. Oddly, FIEGARCH-M turns over the highest value and hence the 

                                                           
143

 The level of significance is 5% 
144

Estimating the same conditional in mean equations without the autoregressive terms of equation (8) turns 

over everywhere  statistically significant Ljung-Box Q* statistics at both lag-choices. 
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worst forecasting property among all estimated models, while at same time the best 

forecasting performance is delivered by FIGARCH-M. 

Since the models in table (2) are estimated under a common set of applied specifications 

that concern mainly a) the number of ARCH and GARCH terms, b) the assumption of 

conditional distribution and c) the orders of the autoregressive variables introduced in the 

corresponding conditional in mean equations, estimates in table (2) may embed biases and 

therefore mislead the quest for the best forecasting volatility model. So, the specifications 

applied in table (2) should not by any means considered final and  contrary wise  they 

should be regarded as the initial milestones for evolving further the fit of the  presented 

volatility models. 

A versatile and perhaps a more realistic approach than the previous one would let the 

volatility specifications change every time a different volatility model is estimated. Such 

an analysis finds auspicious ground in many empirical applications
145

and is carried over in 

the estimations presented in table (3). The specifications and settings chosen for every 

volatility model are decided upon standard information criteria that reward both the 

goodness of fit and parsimony as well as the out of sample forecasting.
146

  

For example all models presented in table (3) except EGARCH which incorporates the 

generalized error distribution (GED) are estimated presuming the skewed student 

                                                           
145

Nelson (1991) for example suggests that EGARCH model should be estimated using the generalized error 

distribution (GED) while French, Schwert and Stambaugh
145

(1987) propose  the  GARCH (2,1) specification 

every time a GARCH volatility model is estimated. 
146

Retaining the volatility frameworks presented in table (2) the analysis re-estimates all models assuming 

however non-normal distributions, such as a) the t-student b) the generalized error and c) the skewed t-

student distribution. The estimates are reported in the appendix, while table (3) resumes the final 

specification of each volatility model. This process consists of two parts. The first decides the distributional 

assumptions upon which the volatility models are estimated. These decisions are taken after comparing the 

log-likelihood values and the Akaike/Schwarz information criteria corresponding every distributional 

alternative. The second locates in those latter estimates the non statistically significant coefficients, and uses 

the likelihood ratio test to decide the restricted forms. The results are reported in the appendix. 
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distribution for the corresponding innovations, since the last significantly not only 

improves  the fit but in many cases enhances the forecasting properties of the 

corresponding volatility  models. Indeed comparison of the log-likelihood values and the 

Akaike-Schwarz information criteria  in tables (2) and (3), unveil that all models of table 

(3) achieve considerably higher and smaller values respectively. 

Table (2) Estimations of GARCH(1,1)-M-[1,2,3], EGARCH(1,1)-M-[1,2,3], IGARCH(1,1)-M-[1,2,3], 

GJR(1,1)-M-[1,2,3], FIGARCH(1,1)-M-[1,2,3], FIEGARCH(1,1)-M-[1,2,3] assuming standard normal 

distribution. 

 IGARCH EGARCH GJR FIGARCH FIEGARCH GARCH 

κ 
0.022 

      [0.005]** 

0.009 

[0.341] 

0.015 

   [0.048]* 

0.021 

  [0.012]* 

-0.004 

[0.527] 

0.022 

     [0.008]** 

κ1
 0.153 

     [0.000]** 

0.157 

     [0.000]** 

0.161 

      [0.000]** 

0.155 

    [0.000]** 

0.1614 

     [0.000]** 

0.153 

    [0.000]** 

κ2
 -0.015 

[0.122] 

-0.005 

[0.535] 

-0.008 

[0.390] 

-0.016 

[0.125] 

-0.003 

[0.706] 

-0.016 

[0.126] 

κ3
 0.011 

[0.249] 

0.021 

[0.012] 

0.018 

[0.072] 

0.009 

[0.372] 

0.022 

[0.028] 

0.010 

[0.271] 

σ 
0.005 

    [0.000]** 

0.000 

[1.000] 

 0.007 

     [0.000]** 

0.015 

    [0.000]** 

-6.265 

     [0.000]** 

0.006 

    [0.000]** 

ι 
0.028 

     [0.004]** 

 0.002 

 [0.874] 

0.005 

[0.633] 

0.033 

    [0.004]** 

0.042 

     [0.001]** 

0.030 

    [0.006]** 

α1
 0.090 

     [0.000]** 

-0.363 

     [0.000]** 

0.024 

    [0.000]** 

0.225 

    [0.000]** 

-0.517 

    [0.000]** 

0.087 

    [0.000]** 

β1
 0.909 

    [0.000]** 

0.989 

    [0.000]** 

0.915 

   [0.000]** 

0.651 

    [0.000]** 

0.955 

    [0.000]** 

0.908 

    [0.000]** 

ζ - 
-0.125 

     [0.000]** 

0.104 

     [0.000]** 
- 

-0.142 

     [0.000]** 
- 

γ - 
0.194 

    [0.000]** 
- - 

0.193 

    [0.000]** 
- 

d - - - 
0.525 

    [0.000]** 

0.173 

   [0.000]** 
- 

Logl -13729.9 -13565.7 -13610.8 -13710.2 -13543.6 -13727.707 

Akaike 2.342 2.315 2.322 2.339 2.311 2.342 

Schwarz 2.346 2.315 2.322 2.339 2.318 2.342 

Q(100) 
101.689   

[0.434] 

101.123   

[0.449] 

97.181   

[0.561] 

106.808   

[0.302] 

106.494   

[0.309] 

101.954   

[0.426] 

Q(200) 
219.196   

[0.167] 

218.316   

[0.178] 

217.383   

[0.189] 

224.067   

[0.116] 

220.992   

[0.147] 

219.744   

[0.161] 

Q*(100) 
95.9477   

[0.539] 

101.123   

[0.449] 

99.173  

[0.447] 

91.327   

[0.670] 

161.449      

[0.000]** 

94.659   

[0.576] 

Q*(200) 
186.545   

[0.710] 

222.698   

[0.110] 

210.752   

[0.254] 

173.752   

[0.892] 

282.624                       

[0.000]** 

189.056   

[0.663] 

ΜSΔ 12.76 13.57 13.45 12.96 16.39 13.1 

Note: Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, this is the value of the maximized 

log-likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic 

for testing the up to m‘th order serial dependence of standardized and absolute standardized residuals denoted 

respectively as Q(m) and Q*(m). Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of 
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sample forecasts. The values in parenthesis stand for p-values. *denotes rejection at 5% significance, while ** denotes 

rejection at 1% significant level. 

Table (3) Estimations of IGARCH (1,1)-[1], GARCH(1,1)-[1], FIGARCH(1,1-)[1], FIEGARCH(1,1)-[1], GJR(1,1)-[1] 

under the skewed distribution. Estimation EGARCH (2,1)-M-[1] using the GED distribution. 

 IGARCH EGARCH GJR FIGARCH FIEGARCH GARCH 

κ 
0.034 

     [0.000]** 

0.040 

    [0.000]** 

0.021 

     [0.000]** 

0.034 

    [0.000]** 

0.019 

     [0.000]** 

0.034 

     [0.000]** 

κ1
 0.137 

    [0.000]** 

0.138 

    [0.000]** 

0.144 

     [0.000]** 

0.137 

    [0.000]** 

0.145 

     [0.000]** 

0.137 

    [0.000]** 

σ 
0.003 

    [0.000]** 

2.257 

     [0.000]** 

0.005 

     [0.000]** 

0.009 

     [0.000]** 

-2.294 

    [0.000]** 

0.004 

    [0.000]** 

ι - 
-0.026 

     [0.003]** 
- - - - 

α1
 0.079 

    [0.000]** 

-0.980 

     [0.000]** 

0.026 

    [0.000]** 

0.196 

     [0.000]** 

-0.468 

     [0.000]** 

0.078 

    [0.000]** 

β1
 0.920 

     [0.000]** 

1.928 

     [0.000]** 

0.920 

    [0.000]** 

0.697 

    [0.000]** 

0.759 

     [0.000]** 

0.919 

    [0.000]** 

κ2 
 

- - - - - 
-0.928 

    [0.000]** 

κ3 - - - - - - 

ζ - 
-0.114 

    [0.000]** 

0.097 

    [0.000]** 
- 

-0.121 

     [0.000]** 
- 

γ - 
0.156 

    [0.000]** 
- - 

0.158 

     [0.000]** 
- 

d - - - 
0.573 

[0.000] 

0.565 

0.000 
- 

Logl -13466.2 -13348.2 -13381.1 -13453.9 -13296.2 -13465.8 

Akaike 2.297 2.277 2.282 2.295 2.268 2.297 

Schwarz 2.300 2.283 2.287 2.300 2.275 2.301 

Q(100) 
110.010   

[0.231] 

112.954   

[0.177] 

102.255   

[0.418] 

114.201   

[0.157] 

108.880   

[0.255] 

109.821   

[0.235] 

Q(200) 
228.858   

[0.079] 

230.429   

[0.068] 

222.613   

[0.130] 

173.619   

[0.893] 

226.944   

[0.077] 

228.809   

[0.079] 

Q*(100) 
97.545   

[0.493] 

123.147   

[0.037] 

94.132   

[0.591] 

95.1898   

[0.561] 

127.563   

[0.024] 

96.846   

[0.513] 

Q*(200) 
228.858   

[0.079] 

230.429   

[0.068] 

196.698   

[0.512] 

173.619   

[0.893] 

226.944   

[0.077] 

184.429   

[0.746] 

MSE 12.8 13.25 13.04 12.93 13.97 12.98 

Asymmetry 
-0.062 

    [0.000]** 
- 

-0.064 

     [0.000]** 

-0.061 

    [0.000]** 

-0.062 

     [0.000]** 

-0.062 

    [0.000]** 

Note : Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, the value of the maximized log-

likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic for 

testing the up to m‘th order serial dependence in the standardized and absolute standardized residuals denoted 

respectively as Q(m) and Q*(m). Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of 

sample forecasts and the estimated asymmetry coefficient of skewed student distribution. The values in parenthesis stand 

for p-values.*denotes rejection at 5% significance level, while ** denotes rejection at 1 significance. 

 Take for example the results reported for the IGARCH model in tables (2) and (3). The 

estimated log-likelihood values are -13729.9 and -13466.2 respectively, while the Akaike 

criterium is significantly improved, and from the initial value of 2.342 finally reaches in 

table (3) the value of 2.297. However, implementing a non normal distribution not only 
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improves the fit of the presented volatility models, but in many cases alters the statistical 

significance of certain coefficients.  

Take for example the GARCH model and watch out how coefficients ι and κ3 are missing 

from the estimations presented in table (3). Precluding the corresponding  variables is a 

decision made in a two stage process. The first stage estimates the unrestricted GARCH 

version, proclaiming the variables that are individually non significant and therefore may 

be dropped, while the second stage estimates the likelihood ratio test and draws 

conclusions on the reception of the restricted forms. 

For example the estimation of the unrestricted GARCH
147

model indicates ι1, κ2 and κ3 as 

individually not statistically significant at 5% significance level, while the likelihood ratio 

statistic that tests the joint exclusion of these coefficients accepts the corresponding null 

hypothesis and so GARCH (1,1)-[1,2] is the restricted framework presented in table (3). 

Obviously applying this two stage process in all models of table (2) delivers the 

estimations presented in table (3). 

 Except EGARCH that acknowledges a negative statistically significant volatility-return 

relation, all other models in table (3) reject the validity of the risk-return trade off.
148

Note 

that although all models in table (3) are estimated using one ARCH and one GARCH term, 

however the EGARCH model of Nelson (1991) does not follow this pattern and applies a 

different combination that constitutes of two GARCH and one ARCH terms. Finally even 

though all models strengthen the interpretive properties of the corresponding conditional in 
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 This is GARCH(1,1)-M-[1,2,3] estimated under the skewed student distribution. 
148

Using t-student, GED and skewed student distribution for the formation of the corresponding likelihood 

functions ends up in non statistically significant risk-return coefficients. However applying the normality 

assumption results in the acknowledgement of the risk–return trade off in four at of six volatility models. 

Therefore the analysis concludes that the statistical significance of the risk-return relation is sensitive to the 

distribution applied. 
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mean equations by introducing rt-1 in the relative equations, the GARCH model does the 

same and moreover adds rt-2. 

 Again the majority of the estimated Ljung–Box Q and Q*statistics are not statistically 

significant at 5% significant level,
149

 while coefficients ζ and γ of both news impact 

functions acknowledge the presence of a leverage sign and size effect and justify the 

competitive fit succeeded by EGARCH and FIEGARCH. 

Further evidence on the superiority of FIEGARCH  are reported in results of table (4) 

where the Engle and Ng (1993) sign and size bias misspecification tests are presented.
150

 

As expected IGARCH, FIGARCH and GARCH reject the null hypothesis in all Engle and 

Ng (1993) tests, while the rest models although account for asymmetries, do not always 

manage successfully the leverage and size effects.  

Specifically the results in table (4) indicate that only FIEGARCH incorporates efficiently 

all  three asymmetries, since EGARCH and GJR models although` both accept  null 

hypothesis in the sign bias (S.B) and negative size bias test (N.S.B), however turn over 

statistically significant statistics when the positive size bias tests (P.S.B) are estimated.  

The results of table (4) are considered somewhat unexpected. The acceptance of null 

hypothesis in the N.S.B test for the GJR model is completely unjustified since the model 

by default accounts only for the sign asymmetries. On the other hand FIEGARCH although 

deals efficiently with the asymmetries induced by the sign and size of innovations, 

however unexpectedly rejects the null in the joint Engle and Ng (1993) test at 5% 
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 Only Q*(100) statistics of EGARCH and FIGARCH are statistically significant at 5%. 
150

Engle and Ng (1993) proposed three tests: a) the sign bias test (SBT), b) the negative sign bias test (NSBT) 

and c) the positive sign bias test (PSBT). The logic of these tests is to see whether having estimated a 

particular GARCH model, an asymmetry dummy variable is significant in predicting the squared residuals. 

The tests are of the null hypothesis that the null model is correctly specified (i.e there is on remaining 

asymmetry). 
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significant level.  This contradiction naturally surprises, but similar outcomes have 

reported before in other empirical studies.
151

    

Table (4) Engle and Ng (1993) Sign and Size bias test. 

 IGARCH EGARCH GJR FIGARCH FIEGARCH GARCH 

S.B 
2.187                

[0.028]* 

1.242 

[0.213] 

2.882        

[0.003]** 

2.006 

[0.044]* 

1.558 

[0.119] 

2.148  

[0.031]* 

NSB 
2.452 

[0.014]* 

0.120  

[0.904] 

0.303  

[0.761] 

3.091 

[0.001]** 

0.100 

[0.920] 

2.631  

[0.008]** 

PSB 
3.000     

[0.002]** 

2.417  

[0.015]* 

2.287  

[0.022]* 

2.798 

[0.005]** 

1.716 

[0.085] 

2.912  

[0.003]** 

Joint 
55.730  

[0.000]** 

16.404  

[0.000]** 

31.505  

[0.000]** 
58.505  

[0.000]** 

12.648  

[0.049]** 

56.176        

[0.000]** 

 Note : (SB) stands for sign bias, (NSB) for negative size bias test, (PSB) for positive size bias test, (Joint) for                                                                                                                                                                

the joint statistic. Number in parenthesis report p-values.* (**) denotes rejection at 5% and 1% significant levels 

respectively. 

The previous analysis indicated FIEGARCH (1,1)-[1] as the best volatility model, although 

the outcomes on the mean square error in table (3) make this vantage less obvious, since 

FIEGARCH actually delivers the worst  forecast error measurement.  

However, the results in tables (Β) and (C) in the appendix, where different error 

measurements on one day ahead out of sample forecasts are reported, for 100 and 200 days 

of forecasts respectively, reverse this impression.
152

 The outcomes affirm that although 

FIEGARCH(1,1)-[1] in terms of MSE does not stamp it‘s forecasting superiority, however 

the model does provide competitive forecasts in the majority of forecast error 

measurements. See for example the reported values on the median squared error, the mean 

absolute error, the mean absolute percentage error and the logarithmic loss function.  

Furthermore, since no model in tables (B) and (C) provides consistently best forecasts 

naturally no model is considered dominant in terms of forecasting. However,  the results  
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 See for example Harris and Solis (2003). 
152

The forecasts error measurements are (MSE) mean squared error, (MedSE) median squared error, (MAE) mean 

absolute error, (RMSE) root mean squared error, (MAPE) mean absolute percentage error, (AMAPE) Adjusted mean 

absolute percentage error,(TIC) Theil inequality coefficient, (LL) Logarithmic loss function. 
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in table (5) where the 300 one day ahead out of sample forecasts are reported turn around 

this impression and consolidate the forecasting superiority of FIEGARCH (1,1)-[1]. 

Impressively the model exceeds in terms of forecasting any other model  in 7 out of 8 

forecasting error measurements.
153

  

These outcomes provide even greater endorsement for the results presented in table (3) and 

further justify the belief that FIEGARCH (1,1)-[1] is indeed the best volatility model 

among all non filtered alternatives presented so far. 

Table (5)   Forecasts errors for 300 one day ahead out of sample forecasts  

 IGARCH EGARCH GJR FIGARCH FIEGARCH GARCH 

MSE 46.21 10.52 23.41 25.96 9.858* 26.99 

MedSE 52.61 2.706 25.43 26.68 1.693* 27.28 

MAE 6.508 2.320 4.526 4.781 2.052* 4.882 

RMSE 6.797 3.243 4.838 5.095 3.14* 5.196 

MAPE 1498 400.2 1023 1066 318.3* 1081 

AMAPE 0.748 0.608 0.705 0.712 0.594* 0.714 

TIC 0.593 0.504* 0.529 0.537 0.534 0.540 

LL 15.16 8.956 13.06 13.34 8.162* 13.44 

 Note  (MSE) mean squared error, (MedSE) median squared error, (MAE) mean absolute error, (RMSE) root mean 

squared error, (MAPE) mean absolute percentage error, (AMAPE) Adjusted mean absolute percentage error,(TIC) Theil 

inequality coefficient, (LL) Logarithmic loss function * denotes the best forecasting model 

 

3.2 Estimating volatility models with filtering: FIEGARCH-MH and FIEGARCH-

MG. 

The previous analysis indicated FIEGARCH (1,1)-[1] as the best volatility model 

according to information criteria rewarding the goodness of fit and parsimony as well as 

the out of sample forecasting. Furthermore,  results revealed that the inclusion of the long 

memory feature alone as in the FIGARCH model does not imperatively improve the fit, 

while the statistical significance of the risk-return relation, although  sensitive to the 

distributional assumptions applied, is mainly conceded under the assumption of normality.

 . 

                                                           
153 The only exception concerns Theil‘s Inequality coefficient. 
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This section follows the approach of Christensen, Nielsen and Zhu (2010) and estimates 

their filtered long memory volatility models. These models are FIEGARCH-MH and 

FIEGARCH-MG.  

Furthermore the analysis beside including in the corresponding conditional mean equations 

the autoregressive terms of an AR(3) process as in the previous section, accounts also for 

potential lagged volatility in mean effects and so, after appropriate adjustments made, the 

conditional in mean equation of FIEGARCH-MH  is defined as in equation (10) 

                            1 1 2 2 3 3 1 2 1 3 2t t t t t t tr r r r h h h                                             (10)      

                                                                                         

For FIEGARCH-MG  the following specification is applied 

 

                         1 1 2 2 3 3 1 1 2 2 3 3( ) ( ) ( )t t t t t t tr r r r g z g z g z                                 (11)      

                             

Assuming innovations follow the normal distribution, tables (6) to (10) concentrate  

estimations on both filtered long memory volatility models.
154

  

Although both cases aim the filtering of conditional variance, however the models turn 

over quite different results as far as the risk–return relation is concerned. Particularly, the 

statistical significance of ι1 coefficient at 5% significant level in FIEGARCH-MH 

underlines the strong presence of a positive risk-return trade off, while at the same time the 

acceptance of null hypothesis in the t-statistics in all  lagged volatility variables in the 

FIEGARCH-MG model indicates a complete absence of such relations.  

                                                           
154

 The visual representations of both regressors appears in Graph (1). 
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However, beside these differences the models present a number of common characteristics.  

First, both filtered models acknowledge the statistical significance of the first 

autoregressive component, while both incorporate well specified conditional in mean 

equations.
155

 On the other hand another common feature  concerns the Ljung Box Q* 

statistics, and specifically the rejection of the null hypothesis  irrespective of the lag 

selection. The outcomes clearly suggest the existence of possible misspecifications in the 

corresponding volatility equations, although these inferences are not affirmed when the 

LM statistics are computed.  These results which are reported in table (6) indicate that 

conditional variances are probably well specified.
156

 

 Table (9) estimates different error measurements for 100 one day ahead out of sample 

forecasts. Comparing these results with the ones reported in table (B) in the appendix  

where different forecasts error measurements are reported for the same forecasting horizon 

but for various non filtered volatility models, reveals the poor forecasting potentials of 

FIEGARCH-MG and FIEGARCH-MH. Both models deliver forecasts that never challenge 

the best values of each forecast error measurement. 

                                                           
155

 This is seen in the results reported on the Ljung box Q statistic. 
156

 Except of ARCH (1-100) test that rejects LM‘s null hypothesis at 5% significant level all other statistics 

accept null hypothesis. 
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Graph (1) Graphical representation of ht and g(zt-1) variables assuming  innovations follow the standard 

normal distribution. 

                                 

 

The analysis so far aimed the filter of long memory in volatility. However, the a-priori use 

of normality as in Christensen, Nielsen and Zhu (2010) is not entirely warranted by the 

present data set, since the last is characterized by a strong leptokurtic, negative skewed 

shape.  

The possible misuse of normality can also be seen in table (10) where the outcomes on the 

adjusted Pearson goodness of fit test are reported. The test compares the empirical 

distribution of innovations with it‘s theoretical shape. The rejection of the null in all 

sections of cells indicates a possible mismatch and this obviously seems to be the case for 

both filtered long memory volatility models. 

Table (6) Estimated coefficients FIEGARCH-MH, FIEGARCH-MG assuming standard normal distribution. 

FIEGARCH-MH FIEGARCH-MG 

κ 
0.022 

[0.000]** 
d 

0.549 

[0.000]** 
κ 

0.020 

[0.000] 
d 

0.534 

[0.000]** 

κ1

 0.187 

[0.000]** 
β1

 0.777 

[0.000]** 
κ1

 0.154 

[0.000] 
β1

 0.818 

[0.000]** 

κ2

 0.008 

[0.304] 
Logl

 
-13518.3 κ2

 0.001 

[0.922] 
Logl

 
-13533.4 

κ3

 0.026 

[0.098] 
Akaike 2.307 κ3

 0.019 

[0.114] 
Akaike 2.310 

ι1

 0.262 

[0.000]** 
Schwarz 2.315 ι1

 -0.039 

[0.437] 
Schwarz 2.318 

g(zt)-normal  

0 850 1700 2550 3400 4250 5100 5950 6800 7650 8500 9350 10200 11050 
0 

1 

2 

3 
g(zt)-normal  

HT-normal  

0 850 1700 2550 3400 4250 5100 5950 6800 7650 8500 9350 10200 11050 

0 

10 

20 

30 

40 
HT-normal  
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ι2

 0.107 

[0.069] 
Q(100) 

106.832   

[0.301] 
ι2

 0.051 

[0.310] 
Q(100) 

104.485   

[0.359] 

ι3 
0.014 

[0.837] 
Q(200) 

223.073 

[0.126] 
ι3 

0.018 

[0.721] 
Q(200) 

222.575 

[0.130] 

σ 
0.000 

[1.000] 
Q*(100) 

133.828 

[0.009]** 
σ 

0.000 

[1.000] 
Q*(100) 

134.152 

[0.008]** 

α1 
-0.535 

[0.000]** 
Q*(200) 

240.772 

[0.020]* 
α1 

-0.588 

[0.000]** 
Q*(200) 

238.715 

[0.025]* 

ζ 
-0.131 

[0.000]** 
γ 

0.176 

[0.000]** 
ζ 

-0.134 

[0.000]** 
γ 

0.186 

[0.000]** 

Table (7)   Engle and Ng tests(1993) 

SBT
 

1.352 

[0.176 
NSB 

0.791 

[0.428] 
SBT

 

0.987 

[0.323] 
NSB 

0.638 

[0.522] 

PSB 
1.593 

[0.110] 
Joint 

8.761  

 [0.032] 
PSB 

1.953 

[0.050] 
Joint 

8.876 

[0.030] 

Table (8)   Engle‘s LM ARCH test (1982) for FIEGARCH-MG, FIEGARCH-MH 

ARCH  

1-100 test 

1.2939 

  [0.026]* 

ARCH  

1-200 test 

1.1231 

[0.114] 

ARCH 

 1-100 test 

1.2845 

 [0.029] 

ARCH  

1-200 test 

1.1052 

 [0.149] 

ARCH  

1-300 test 

1.0573 

[0.240] 
- - 

ARCH 

1-300 test 

1.0370 

 [0.3202]   
- - 

Note : Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, the value of the maximized log-

likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic for 

testing the up to m‘th order serial dependence of the standardized and absolute standardized residuals denoted 

respectively as Q(m) and Q*(m). (SBT) stands for the sign bias test, (NSBT) for the negative size bias test, (PSBT) for 

the positive size bias test and (Joint) for the Joint statistic. The table also reports Engle‘s (1982) LM ARCH test. The 

values in parenthesis stand for p-values.*denotes rejection at 5% significance level, while ** denotes rejection at 1 

significance. 

Table (9)  Error measurements for 100 one day ahead out of sample forecasts. 

 MSE MedSE MAE RMSE MAPE AMAPE TIC LL 

FIEGARCH 

MG 
13.21 2.851 2.242 3.635 388.8 0.640 0.611 11.13 

FIEGARCH 

MH 
13.18 2.648 2.201 3.63 375.7 0.637 0.617 10.97 

Note  (MSE) mean squared error, (MedSE) median squared error, (MAE) mean absolute error, (RMSE) root mean 

squared error, (MAPE) mean absolute percentage error, (AMAPE) Adjusted mean absolute percentage error,(TIC) Theil 

inequality coefficient, (LL) Logarithmic loss function. 

 

Table (10)  The adjusted Pearson goodness of fit test for FIEGARCH-MH and FIEGARCH-MG under 

normality. 

cells 

FIEGARCH-MH FIEGARCH-MG 

statistic 
P-Value 

(g-1) 

P-Value 

(g-k-1) 
statistic 

P-Value 

(g-1) 

P-Value 

(g-k-1) 

300 436.6828 [0.000]** [0.000]** 481.1917 [0.000]** [0.000]** 

400 561.2224 [0.000]** [0.000]** 589.8035 [0.000]** [0.000]** 

600 742.4638 [0.000]** [0.000]** 800.5812 [0.000]** [0.000]** 
                       *denotes rejection at 5% significance level, while ** denotes rejection at 1 significance 

The next part of the analysis uses different distributional assumptions to estimate 

FIEGARCH-MH and FIEGARCH-MG.
157

 Obviously introducing assumptions beside 

                                                           
157

The appropriateness of the applied distributions is judged according to standard criteria used in the 

volatility literature. These criteria are parsimony, goodness of fit and out of sample forecasting. 
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normality requires  re-estimating the news impact function g(zt) 
and the stationary variable 

ht. Once this stage is completed the estimates of both filtered long memory volatility 

models are concentrated in table (11) and then models are  tested for the joint exclusion of 

the non statistically significant variables. The estimated restricted models that come out of 

these process and are denoted as FIEGARCH-MH*and FIEGARCH MG*, are both 

presented in table (12).The objective remains the estimation of the best filtered volatility 

models considering the options of the analysis as far as the distributional assumptions are 

concerned. 

Specifically for FIEGARCH-MH the choice results among estimating the filtered MH 

model either under the t-student or GED distributions, since the estimated asymmetry 

coefficient of the skewed student distribution in table (11) is non statistically significant 

and naturally excludes the corresponding model from the rest part of the analysis.
158

 

However, making a choice between the remaining two restricted
159

options is no easy task, 

since both models achieve equal fit and identical estimations in almost all implicated 

coefficients.  

Specifically, both models acknowledge the same set
160

 of coefficients as statistically 

significant at conventional levels, while both estimate a positive ι1 coefficient and  

therefore conclude the presence of a positive return-risk trade off.  

                                                           
158

Note that G@RCH does not estimate μ but log μ facilitating inferences about the null hypothesis of 

symmetry. Note also that skewed–student equals the symmetric student distribution when μ=1 or in this case 

when log(μ)=0. The estimated value of log (μ) is reported in the output under the label asymmetry. See 

Lambert and Laurent (2001) and Bauwens and Laurent (2005) for more details on this outcome. 
159

The full models are estimated in table (11) while the restricted versions are reported in table (12). The 

latter are generated after the joint test for the significance of all or part of the individually non statistically 

significant variables in the models presented in table (11) is  accepted. Take for example the FIEGARCH-

MH under the assumption of t-student. Looking at t-statistics and the corresponding p-values in table (11) the 

individually non statistical significant variables are the second and third order autoregressive term and the 

innovation ht-2. Those variables correspond respectively to the coefficients κ2, κ3 and ι2 and ι3. The 

likelihood ratio statistic that tests the joint exclusion of these variables accepts the null hypothesis and the 

restricted model is presented in table (2). 
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Table (11) Estimation of the unrestricted FIEGARCH-MH-MG models assuming t- student, GED, and 

skewed student innovations. 

 

FIEGARCH-MH FIGARCH-MG 

t-student GED skewed t-student GED skewed 

κ 
0.014 

[0.005]** 

0.016 

[0.005]** 

0.015 

[0.015]* 

-0.011 

[0.561] 

0.264 

[0.000]** 

0.024 

[0.551] 

κ1
 0.176 

[0.000]** 

0.167 

[0.000]** 

0.170 

[0.000]** 

0.138 

[0.000]** 

-0.023 

[0.009]** 

0.137 

[0.000]** 

κ2
 -0.005 

[0.635] 

-0.008 

[0.400] 

-0.011 

[0.212] 

-0.010 

[0.151] 

-0.001 

[0.899] 

-0.011 

[0.587] 

κ3
 0.013 

[0.235] 

0.012 

[0.289] 

0.007 

[0.458] 

0.009 

[0.252] 

-0.015 

[0.057] 

0.008 

[0.608] 

ι1 
0.267 

[0.000]** 

0.244 

[0.001]** 

0.232 

[0.001]** 

-0.105 

[0.002]** 

1.819 

[0.000]** 

-0.115 

[0.319] 

ι2
 0.117 

[0.100] 

0.085 

[0.234] 

0.079 

[0.226] 

0.061 

[0.018]* 

-0.214 

[0.000]** 

0.061 

[0.583] 

ι3 
-0.011 

[0.861] 

-0.022 

[0.736] 

-0.055 

[0.369] 

0.009 

[0.252] 

0.2621 

[0.000]** 

0.007 

[0.961] 

α1
 -0.439 

[0.002]** 

-0.524 

[0.000]** 

-0.467 

[0.000]** 

-0.494 

[0.000]** 

-0.552 

[0.000]** 

-0.496 

[0.000]** 

β1
 0.722 

[0.000]** 

0.760 

[0.000]** 

0.743 

[0.000]** 

0.753 

[0.000]** 

0.779 

[0.000]** 

0.755 

[0.000]** 

σ 
0.000 

[1.000] 

0.000 

[1.000] 

0.000 

[1.000] 

0.000 

[1.000] 

0.000 

[1.000] 

0.000 

[1.000] 

ζ 
-0.116 

[0.000]** 

-0.124 

[0.000]** 

-0.113 

[0.000]** 

-0.120 

[0.000]** 

-0.127 

[0.000]** 

-0.119 

[0.000]** 

γ 
0.161 

[0.000]** 

0.177 

[0.000]** 

0.164 

[0.000]** 

0.172 

[0.000]** 

0.179 

[0.000]** 

0.171 

[0.000]** 

d 
0.605 

[0.000]** 

0.589 

[0.000]** 

0.602 

[0.000]** 

0.599 

[0.000]** 

0.590 

[0.000]** 

0.598 

[0.000]** 

Logl -13316.1 -13355.7 -13319.4 -13324.3 -13337.2 -13323.6 

Akaike 2.273 2.279 2.273 2.274 2.276 2.274 

Schwarz 2.282 2.288 2.283 2.283 2.285 2.284 

Q(100) 
107.189   

[0.293] 

109.357   

[0.245] 

106.202   

[0.316] 

104.503   

[0.359] 

101.155   

[0.448] 

104.343   

[0.363] 

Q(200) 
225.352   

[0.105] 

227.740   

[0.086] 

224.904   

[0.109] 

224.171   

[0.115] 

219.525   

[0.163] 

224.218   

[0.115] 

Q*(100) 
117.399   

[0.088] 

120.253   

[0.063] 

117.803   

[0.084] 

117.288   

[0.089] 

121.926   

[0.051] 

118.119   

[0.081] 

Q*(200) 
219.033   

[0.145] 

222.383   

[0.112] 

219.338   

[0.142] 

218.073   

[0.156] 

224.006   

[0.099] 

219.245   

[0.143] 

MSE 13.21 13.21 13.20 13.24 13.24 13.23 

Asymmetry 

(log) 
- - 

0.006 

[0.712] 
- - 

0.006 

[0.702] 

SB 
1.339  

[0.180] 

1.271  

[0.203] 

1.530  

[0.125] 

1.500  

[0.133] 

1.458  

[0.144] 

1.331  

[0.182] 

NSB 
0.397  

[0.690] 

0.708  

[0.478] 

0.436       

[0.662] 

0.547 

[0.584] 

0.945  

[0.344] 

0.415 

[0.677] 

PSB 
2.141  

[0.032]* 

2.250      

[0.024]* 

2.139 

   [0.032]* 

2.215     

[0.026]* 

2.408 

[0.016]* 

2.253  

[0.024]* 

                                                                                                                                                                                
160 The statistical significant coefficients are κ, κ1, ι1, d, ζ, γ. 
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Joint 
13.380  

[0.003]** 

12.951      

[0.004]** 

14.711             

[0.002]** 

14.614  

[0.002]** 

15.163  

[0.001]** 

13.944  

[0.002]** 
Note : Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, the value of the maximized log-likelihood 

function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic for testing the up to m‘th order 

serial dependence of the standardized and absolute standardized residuals, denoted respectively by Q(m) and Q*(m), (SB) stands for sign 

bias, (NSB) for negative size bias test, (PSB) for positive size bias test, (Joint) for the joint statistic. Number in parenthesis report p-

values. Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of sample forecast and the asymmetry 

coefficient estimated when the distribution skewed student is assumed. The values in parenthesis stand for p-values.*denotes rejection at 

5% significance level, while ** denotes rejection at 1% significance.  

Table (12)   Estimation of restricted FIEGARCH-MH and FIEGARCH-MG assuming t- student and GED 

distributions 

 FIEGARCH-MH* FIEGARCH-MG* 

 t-student GED t-student GED 

κ 
0.014 

     [0.000]** 

0.015 

    [0.001]** 
- 

0.232 

    [0.000]** 

κ1
 0.175 

     [0.000]** 

0.165 

    [0.000]** 

0.136 

    [0.000]** 

-0.025 

  [0.019]* 

κ2
 

- - - - 

κ3
 

- - - - 

ι1 
0.274 

    [0.000]** 
- 

-0.106 

     [0.004]** 

1.834 

    [0.000]** 

ι2
 

- - 
0.088 

   [0.016]* 

-0.211 

   [0.000]** 

ι3 - 
- 

 
- - 

α1
 -0.428 

    [0.002]** 

-0.512 

    [0.000]** 

-0.491 

    [0.000]** 

-0.552 

   [0.000]** 

β1
 0.721 

   [0.000]** 

0.757 

    [0.000]** 

0.750 

    [0.000]** 

0.778 

   [0.000]** 

σ - - - - 

ζ 
-0.117 

    [0.000]** 

-0.123 

     [0.000]** 

-0.120 

    [0.000]** 

-0.127 

    [0.000]** 

γ 
0.161 

    [0.000]** 

0.176 

    [0.000]** 

0.172 

    [0.000]** 

-0.127 

    [0.000]** 

d 
0.603 

    [0.000]** 

0.588 

   [0.000]** 

0.600 

    [0.000]** 

0.589 

    [0.000]** 

Logl -13335.3 -13359.4 -13325.1 -13338.3 

Akaike 2.273 2.279 2.273 2.276 

Schwarz 2.278 2.285 2.279 2.282 

Q(100) 
111.326   

[0.206] 

113.526   

[0.167] 

107.000   

[0.297] 

103.981   

[0.372] 

Q(200) 
228.332   

[0.082] 

230.501   

[0.068] 

226.332   

[0.097] 

222.389   

[0.132] 

Q*(100) 
117.338   

[0.089] 

119.949   

[0.065] 

117.088   

[0.091] 

121.093   

[0.056] 

Q*(200) 
217.060   

[0.168] 

220.242   

[0.133] 

217.800   

[0.159] 

222.389   

[0.132] 

MSE 14.29 13.24 13.25 13.24 

SB 
1.641  

[0.100] 

1.370 

[0.170] 

1.548  

[0.121] 

1.473  

[0.140] 

NSB 
0.454  

[0.649] 

0.656  

 [0.511] 

0.565  

[0.571] 

0.953  

[0.340] 
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PSB 
1.975 

   [0.048]* 

2.143 

   [0.032]* 

2.184       

[0.028]* 

2.437 

    [0.014]* 

Joint 
14.22           

[0.002]** 

12.828     

[0.005]** 

14.698  

[0.002]** 

15.490 

[0.001]** 
Note Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, the value of the maximized log-likelihood function, 

the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic for testing the up to m‘th order serial 

dependence of the standardized and absolute standardized residuals, denoted respectively by Q(m) and Q*(m), (SB) stands for sign bias, 

(NSB) for negative size bias test, (PSB) for positive size bias test, (Joint) for the joint statistic. Number in parenthesis report p-values. 

Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of sample forecast and the asymmetry coefficient 

estimated when the distribution skewed student is assumed. The values in parenthesis stand for p-values.*denotes rejection at 5% 

significance level, while ** denotes rejection at 1% significance.  

Furthermore, the models estimate almost identical values on the Akaike and Schwarz 

information criteria, while both estimate Ljung Box Q and Q* statistics at 100 and 200 lags 

that are not statistically significant. As for the sign and size bias tests of Engle and Ng  

(1993) both filtered models estimate identical results. Specifically the S.B.T and N.S.B.T 

statistics accept the null, whereas the joint and P.S.Β tests both rejects it. 

Table (13) reports the log-likelihood values and the Akaike/ Schwarz information criteria 

for all the competing filtered volatility models. In bold letters the table denotes the best 

estimates of each criterium. Obviously the best ones belong to the t-student assumption. 

Table (13)  The log-likelihood values and the Akaike/Schwarz information criteria of all estimated filtered 

volatility models. 

 FIEGARCH-MH FIEGARCH-MG 

 Lilkelihood value Akaike Schwarz Likelihood value Akaike Schwarz 

Normal -13518.3 2.307 2.315 -13533.4 2.1310 2.318 

t-student-MH*- MG* -13335.3 2.273 2.278 -13325.1 2.273 2.279 

GED-MH*-MG* -13359.74 2.279 2.285 -13338.3 2.276 2.282 
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4. Forecasting volatility : A comparative analysis. 

A last criterium for selecting the best volatility model involves inescapably out of sample 

forecasts. However, using only one forecast error measurement, or estimating various 

forecasts error measurements under the same forecasting horizon definitely induces biases. 

For example, the mean square error values (MSE) reported in table (12)  according to the 

forecasting accuracy test of Diebold and Mariano (1995) are statistically equal.
161

 

However, using a different forecasting horizon than the 100 one step ahead out of sample 

forecasts of table (12), for example 200, turns over this impression since the MSE values 

are no longer consider being statistically equal.
162

 So the analysis in this case is left with no 

real power over the selection procedure.  

In an attempt to overcome this drawback, it is worth using a criteria that assesses the 

overall mean square errors of different forecasting horizons and in this direction the 

present analysis applies the Clements and Hendry (1993) approach which introduces the 

generalized forecast error second moment statistic (GFESM). The last is given by the 

determinant of the complete forecast error second matrix which is presented in the 

following equation        

                                                           GFESM= [ ']E uu                                                      (12)                 

                                                                                                                                                                                

where u is the vector of forecast errors.
163

 

                                                           
161

 For more details see the appendix. 
162

 Results are reported in the appendix 
163

 In order to avoid large numbers the analysis reports results on the log transformation of GFESM. This is 

denoted as Log-GFESM. 
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Tables (14) and (15) use one step ahead out of sample forecasts for 20,40,60,80 and 100 

days to estimate the log-GFESM statistic for both restricted filtered volatility models, 

under the t student and GED distributions. 

 Obviously FIEGARCH-MH* under the t-student assumption is constantly generating the 

smaller Log-GFESM values. Taking in mind this outcome along with the smaller Akaike 

and Schwarz values of FIEGARCH-MH* in table (13), the analysis eventually decides to 

estimate the filter FIEGARCH-MH model under the t-student assumption.  

Note that for FIEGARCH-MG* the results reported in tables (11) and (12) are in fact very 

similar to the ones presented for FIEGARCH-MH*, while the basic conclusions are briefly 

discussed in the following lines.  

Under the assumption of skewed student distribution the FIEGARCH-MG
164

 estimates an 

asymmetry coefficient that is strongly insignificant. The result naturally precludes the 

model from the rest part of the analysis and so the remain competing volatility frameworks 

are the FIEGARCH-MG, estimated under either the t-student or the GED distribution. 

Although the above models acknowledge different statistically significant sets on the 

estimated coefficients, however, the models appear identical according to standard 

information criteria.
165

 

The selection procedure continues next with the estimation of the  restricted versions of the 

above models. Those are presented  in table (12). Note that the outcomes on Q and Q* 

Ljung Box statistics imply the correct specification of the mean and volatility equations, 

while the sign and size bias tests reiterate the same pattern as in FIEGARCH-MH*case, 

                                                           
164

 The analysis denotes this model  as FIEGARCH-MG-skewed. 
165

 As has been stated the selection procedure involves the restricted models. So here identical refers to the 

latter specification.  
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with S.B.T and N.S.B.T statistics accept the null hypothesis at 5%  significant level, and 

joint and P.S.B  tests rejects it, at both conventional levels. 

The similar results of the above models make impossible  a sustained choice among them. 

Moreover, since the comparison of the mean squared errors value (MSE) reported in table 

(12) does not really contribute any additive information in the selection procedure, the 

weight of the selection falls entirely on forecasting properties and particular on Log-

GFESM statistic.  

As already is mentioned the results on the Log-GFESM statistic in table (14) are endorsing 

the estimation of the FIGARCH-MH*under the t-student distribution, while this option is 

also supported by the smaller Akaike value. 

Table  (14)-(15)  Estimation of the Log-GFESM statistic for FIEGARCH-MH* and FIEGARCH-MG*    

under the t –student and GED distributions. 

 

Table (14)      Table (15) 

FIEGARCH-MH* 

 student 

FIEGARCH-MH* 

            GED 

FIEGARCH-MG*  

student 

FIEGARCH-MG* 

GED 

         Log-GFESM 

20 0,067 0,466 0,476 0,457 

40 0,196 0,948 0,969 0,928 

60 1,166 1,473 1,503 1,445 

80 2,333 2,571 2,601 2,543 

100 3,488 3,692 3,723 3,665 

 

As far as the FIEGARCH-MG* is concerned the results in table (15) indicate that the two 

models appear equally good performances when controlling for different forecasting 

horizons, even though FIEGARCH-MG* model under the GED distribution is constantly 

generating smaller Log-GFESM values. However, the comparison of the corresponding 

MSE of 20, 40, 60, 80, 100 one step ahead out of sample forecasts, indicates that those 

differences are not statistically significant. 
166
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 Note that Log-GFSM  statistics for FIEGARCH-MG* under the t-student and GED are considered 

statistically equal according to Diebold and Mariano test (1995). 
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So the decision of which model to choose falls entirely on Akaike and Schwarz criteria 

reported in table (13). Considering the slightly smaller values of both, when FIEGARCH-

MG* is estimated under t-student, there is finally a decision reached.  

Results of tables (16) and (17) estimate the adjusted Pearson goodness of fit test and 

provide further support on the decision to estimate both filtered restricted models under the 

assumption of t-student. Specifically the results report that under the t student  assumption 

the null hypothesis is accepted in every section of cells, while the last is always rejected 

when the GED distribution is chosen. So, results provide solid support over the decision to 

estimate both filtered models under the assumption of t-student. 

Table (16)  Adjusted Pearson Chi-square Goodness-of-fit test for restricted FIEGARCH-MH* 

cells 
FIEGARCH-MH* 

t-student 

FIEGARCH-MH* 

GED 

 stat P P* stat P P* 

300 334.514          0.077           0.056 385.932          0.000           0.000 

400 432.129          0.121           0.069 473.705         0.005           0.002 

600 580.851          0.695          0.598 666.338          0.028           0.015 

Note : P-column reports p-values corresponding p-each number of cells. The P*-column reports the 

corresponding adjusted p-values. 

Table (17)  Adjusted Pearson Chi-square Goodness-of-fit test for restricted FIEGARCH-MG* 

cells 
FIEGARCH-MH* 

t-student 

FIEGARCH-MG* 

GED 

 stat P P* stat P P* 

300 335.642 0.071 0.053 416.065 0.000 0.000 

400 434.346 0.107 0.059 473.023 0.006 0.002 

600 597.579 0.508 0.405 695.090 0.003 0.001 

Note : P-column reports p-values corresponding p-each number of cells. The P*-column reports the 

corresponding adjusted p-values. 

However, before proceeding with the final forecasting analysis there are two things that 

must be stated. First, the estimates on the long memory parameter in all  non filtered 

volatility models are quite robust and vary between 0.525 and 0.573. The only exception is 

the FIEGARCH model in table (2) which surprisingly estimates a value 0.173. On the 

other hand the same long memory estimates for the restricted filtered volatility models are 

approximately 0.60 and match the values found in Bollerslev and Mikkelsen (1996).  
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The second statement concerns the risk-volatility relation and the fact that FIEGARCH-

MG*indicates the presence of two opposite in sign statistically significant relations.  

Moreover, ι1 coefficient is found being negative, while ι2 is positive. The results suggest 

the dominance of a volatility feedback effect mechanism in the first lagged period and the 

existence of a positive volatility-return trade off in the second. 

 The combination of signs reported here is the one appearing in Christensen, Nielsen and 

Zhu (2010). The researchers justify this finding by stating that  the negative sign of the first 

period is something to be seen first, since the volatility feedback effect mechanism induces 

an immediate price drop as soon as the discount rate in the economy reacts to an increase 

in volatility. So, the negative effect is something to be seen first. On the other hand the 

positive sign of the second period is attributed mainly to adjustments made in expectations, 

a phenomena that naturally requires time in order to mature and in the present analysis this 

occurs in the second period.  

Two things must be underlined when dealing with such phenomena. First, a possible non 

linearity in either relation would make difficult the separation of the two results, and 

second an omitted variable bias would produce a negative risk-return relation when in fact 

there is not any. 

Next, the paper compares the best volatility models of each approach. Competing 

frameworks are the FIEGARCH (1,1)-[1] estimated under the skewed student assumption 

and the restricted filtered FIEGARCH-MH* and FIEGARCH-MG* both estimated under 

the t-student distribution. 

 Obviously, the estimations reported in tables (3) and (13) indicate that the non filtered 

FIEGARCH (1,1)-[1] outperforms both filtered FIEGARCH versions according to the log-
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likelihood values and the Akaike and Schwarz criteria. This may be due to the fact that 

FIEGARCH (1,1)-[1]  accepts all null hypothesis in the relevant sign and size bias tests of 

Engle and Ng (1993), although this is not true for the joint test at 5% significant level since 

the p-value in this case is 0.049 and hence rejects on the limit the null hypothesis.  

Ignoring this latter rejection and having in mind the statement of Engle and Ng (1993) that 

the joint test is actually more powerful to the individual ones, then this might be the only 

framework that efficiently manages the leverage effects. So the above statements leave no 

doubt about the opportune incorporation of all asymmetrical effects. Note that the 

estimation of FIEGARCH (1,1)-[1] under the skewed student distribution  is endorsed by 

the results presented in appendix for the adjusted Pearson test.
167

 

A last crucial criterium involves out of sample forecasting under different forecasting 

horizons. Earlier in the analysis  the paper used 20, 40, 60, 80 and 100 one step ahead out 

of sample forecasts, estimating on each occasion the corresponding log-GFESM statistic.  

Table (17) re-estimates this statistic for the competing volatility frameworks, while table 

(18) extends the foresting horizons of the analysis by assuming 100, 150, 200 and 250 one 

step ahead out of sample forecasts. At the same time the table reports  the  values of eight 

forecasts error measurements in order to provide an overall assessment of the forecasting 

performances.  

Both tables verify the complete dominance of FIEGARCH(1,1)-[1] in short and long  term 

forecasting horizons, as clearly can be seen in the nine forecasts error measurements. The 

only exception is reported in table (17) for the 60 one step ahead out of sample forecasts. 

In this case the FIEGARCH(1,1)-[1] delivers the worst forecasts error measurement. 

                                                           
167

Another endorsement for estimating FIEGARCH underthe skewed student distribution can  be seen  in the 

statistical significance of the estimated asymmetric coefficient reported in table (3). 
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Table (17)  One step ahead forecasts of FIEGARCH models considering different forecasting horizons for L-

GFESM statistic 

L-GFESM 
FIEGARCH(1,1)-[1] 

Skewed student 

FIEGARCH-MH*(1,1) 

t-student 

FIEGARCH-MG*(1,1) 

t-student 

20  0,480* 0,067 0,457 

40  1,147* 0,196 0,928 

60 1,686  1,166* 1,445 

80  2,140* 2,333 2,543 

100  2,673* 3,488 3,665 

 

Table (18) One step ahead forecasts of FIEGARCH models considering different forecasting horizons  

 
FIEGARCH* 

Skewed student 

FIEGARCH-MH* 

t-student 

FIEGARCH-MG* 

t-student 

L-GFESM 

 

100 0.708* 0.919 0.942 

150 1.361* 1.844 1.886 

200 1.926* 2.767 2.825 

250 2.840* 3.810 3.878 

MSE 

100 5.109* 8.309 8.762 

150 4.504* 8.404 8.779 

200 3.669* 8.378 8.690 

250 8.209* 11.06 11.310 

MEDSE 

 

100 3.003* 8.852 9.349 

150 2.336* 9.253 9.813 

200 1.776* 9.298 9.717 

250 1.714* 8.852 9.135 

MAE 

 

100 1.914* 2.694 2.773 

150 1.715* 2.705 2.771 

200 1.538* 2.725 2.780 

250 1.814* 2.843 2.890 

RMSE 

 

100 2.260* 2.883 2.960 

150 2.122* 2.899 2.963 

200 1.915* 2.894 2.948 

250 2.865* 3.326 3.363 

MAPE 

 

100 432.2* 658.9 676.7 

150 296.1* 456.6 468.7 

200 348.8* 679.9 690 

250 299.9* 603.5 612.3 

AMAPE 

 

100 0.588* 0.639 0.643 

150 0.588* 0.659 0.662 

200 0.604* 0.689 0.692 

250 0.604* 0.668 0.670 

TIC 

 

100 0.466* 0.485 0.489 

150 0.476* 0.505 0.508 

200 0.477* 0.531 0.534 
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250 0.578* 0.514 0.515 

LL 

 
   

100 8.209* 9.847 9.982 

150 7.457* 9.582 9.694 

200 8.628* 11.600 11.700 

250 8.333* 11.190 11.270 

 Note : * denote the best forecasting model 

5. Conclusions. 

The present analysis uses the daily returns of the Fama-French stock market index  to 

estimate various volatility models, with the aim to compare their volatility forecasting  

potentials. The competing volatility frameworks are GARCH, FIGARCH, EGARCH, 

IGARCH, GJR and FIEGARCH.  

The pursue of the above objective naturally requires the exact specification of the 

competing volatility frameworks, and this obviously demands decisions upon dilemmas 

such as, a) the number of ARCH and GARCH terms used in every volatility model, b) the 

distributional assumptions applied, and finally c) decisions about whether to include in the 

estimated frameworks volatility-return relations. Especially when dealing with the last 

issue, the analysis answers the question about the presence of a statistically significant 

volatility-return relation. 

Furthermore the analysis focuses on FIEGARCH model and applies a filter of long 

memory in volatility in order to prevent possible spill over effects. Specifically, the 

analysis follows Christensen, Nielsen and Zhu (2010) and estimates their filter volatility 

models, FIEGARCH-MH and FIEGARCH-MG, that introduce stationary volatility 

representations in the conditional in mean equations.  

As far as the volatility-relation is concerned the results suggest that the acknowledgement 

of such a relation is generally sensitive to the distributional assumptions applied and to 

specific estimated models. On the other hand and as far as volatility forecasting is 
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concerned, the Fama-French stock market index provides  strong support for models not 

incorporating such a risk-return relation, with FIEGARCH (1,1)–[1] truly outperforming 

any other model, either according to standard information criteria  that reward the fit, or 

according to combined forecasting analysis, that examines various forecasting error 

measurements under different forecasting horizons. 
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                                                            Appendix 

1. ACF, Spectral density, long memory tests. 

                                 

The spectrum at zero frequency is a finite function and therefore suggests that stock market index 

of Fama-French is a well defined stationary process. The same results are confirmed in table (A) 

when implementing both the log-periodogram regression method of Geweke and Porter-Hudak 

(1983) and the Gaussian semi-parametric method of Robinson and Henry (1998). Furthermore, 

results confirm the negative skewed and leptokyrtic nature of the data set, which justifies the 

selection of skewed student t distributions in the majority of estimations. 

Table (A)  Descriptive statistics of Fama-French data set 

 mean std.dev skewness Kurtosis J.B 
GPH 

test 

GSP 

test 

r 0.019 0.983 
-0.54655 

4.5806e-129 

17.655 

[0.000] 

1.5295e+005 

[0.000] 

0.017 

[0.052] 

0.011 

[0.073] 

 

 

2. Forecasts Error Measurements for different volatility models. 

 

Table (B) Forecasts Error measurements for 100 one day ahead out of sample forecasts 

 IGARCH EGARCH GJR FIGARCH FIEGARCH GARCH 

MSE 12.80 14.19 13.04 12.93 13.97 12.98 

MedSE 2.943 1.114 4.458 3.785 1.473 2.529 

MAE 2.207 1.986 2.430 2.337 2.049 2.142 

RMSE 3.577 3.766 3.612 3.596 3.738 3.602 

MAPE 396.6 226.4 475.6 442.8 261.7 359.6 

AMAPE 0.633 0.635 0.647 0.641 0.637 0.631 

TIC 0.597 0.718 0.567 0.578 0.689 0.620 

r 
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LL 11.120 9.57 11.92 11.61 9.96 10.78 

Table (C)   Forecasts Error measurements for 200 one day ahead out of sample forecasts 

 IGARCH EGARCH GJR FIGARCH FIEGARCH GARCH 

MSE 7.679 8.127 7.727 9.207 8.225 7.824 

MedSE 1.636 0.783 1.222 5.747 0.981 1.262 

MAE 1.658 1.46 1.567 2.362 1.527 1.558 

RMSE 2.771 2.851 2.78 3.034 2.868 2.797 

MAPE 266.5 168 230.4 430.8 191.7 222.8 

AMAPE 0.580 0.570 0.572 0.635 0.579 0.574 

TIC 0.583 0.682 0.611 0.515 0.661 0.622 

LL 8.172 6.89 7.732 10.28 7.25 7.641 

 

Table (D) Estimations of GARCH(1,1)-M-[1,2,3], EGARCH(1,1)-M-[1,2,3], IGARCH(1,1)-M-[1,2,3], 

GJR(1,1)-M-[1,2,3], FIGARCH(1,1)-M-[1,2,3], FIEGARCH(1,1)-M-[1,2,3] assuming the t-student 

distribution. 

 IGARCH EGARCH GJR FIGARCH FIEGARCH GARCH 

κ 
0.035 

[0.000] ** 

0.023  

[0.002]** 

0.028  

[0.000]** 

0.035 

[0.000]** 

0.002  

[0.775] 

0.035  

 [0.000]**   

κ1
 0.147  

 [0.000]** 

0.147   

[0.000]** 

0.151 

[0.000]**  

0.147 

 [0.000]**  

0.134  

[0.000]**   

0.147  

 [0.000]** 

κ2
 -0.027 

  [0.003]** 

-0.018 

 [0.023]* 

-0.021 

[0.025]* 

-0.028   

[0.003]** 

-0.023 

[0.036]*   

-0.027   

[0.003]** 

κ3
 0.003 

[0.692] 

0.009  

[0.231] 

0.009 

 [0.335] 

0.002  

[0.775] 

0.008   

[0.544]  

0.003  

[0.689] 

σ 
0.003 

[0.000]** 
- 

 0.005  

[0.000]** 

0.010 

[0.000]**   
- 

0.004 

[0.000]** 

ι 
0.016  

  [0.118] 

-0.016    

[0.381] 

0.002 

  [0.777]  

    0.018  

[0.116]   

0.007   

[0.000]** 

0.017  

  [0.120] 

α1
 0.080 

[0.000]** 

-0.327 

[0.000]**    

0.026 

[0.000]**  

      0.195  

[0.000]**  

-0.293  

 [0.673]  

0.078 

[0.000]**   

β1
 0.919 

[0.000]** 

0.994 

 [0.000]** 

0.919   

[0.000]** 

0.693    

[0.000]** 

      0.922  

[0.000]** 

0.919  

[0.000]**  

ζ - 
-0.109 

[0.000]**    

0.910 

[0.000]** 
- 

-1.000    

[0.151] 
- 

γ - 
0.181 

  [0.000]** 
- - 

1.000 

[0.160]      
- 

d - - - 
0.569  

 [0.000]** 

0.217  

 [0.008]** 
- 

Logl -13.470.7 -13.364.6 -13.389 -13.458 -13345.6 -13.470.3 

Akaike 2.298   2.280   2.285   2.296   2.367         2.453 

Schwarz 2.303  2.287   2.291  2.303  2.374   2.302 

Q(100) 
106.903   

[0.300] 

99.838 

 [0.485]  

98.029   

[0.537]   

111.305   

[0.206] 

114.273   

[0.155] 

112.151 

[0.167] 

Q(200) 
226.916   

[0.092] 

219.202 

[0.167]    

219.489   

[0.164]   

231.070   

[0.065] 

231.490   

[0.062] 

223.430 

[0.172] 

Q*(100) 
97.428   

[0.497] 

100.486   

[0.411] 

94.036   

[0.594] 

94.7586   

[0.573] 

350.714   

[0.000]** 

264.372 

[0.450] 

Q*(200) 
185.233   

[0.733] 

203.100   

[0.386] 

197.540   

[0.495] 

174.781   

[0.881] 

507.979   

[0.000]** 

493.129 

[0.000]** 

ΜSΔ 13.25 13.01 12.98 13.47 12.98 13,90 

Note: Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, this is the value of the maximized 

log-likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic 

for testing the up to m‘th order serial dependence of standardized and absolute standardized residuals denoted 
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respectively as Q(m) and Q*(m). Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of 

sample forecasts. The values in parenthesis stand for p-values. *denotes rejection at 5% significance, while ** denotes 

rejection at 1% significant level. 

Table (E) Estimations of GARCH(1,1)-M-[1,2,3], EGARCH(1,1)-M-[1,2,3], IGARCH(1,1)-M-[1,2,3], 

GJR(1,1)-M-[1,2,3], FIGARCH(1,1)-M-[1,2,3], FIEGARCH(1,1)-M-[1,2,3] assuming the GED distribution. 

 IGARCH EGARCH GJR FIGARCH FIEGARCH GARCH 

κ 
0.029 

[0.001]** 

0.024 

[0.001]** 

0.023 

[0.002]** 

0.029 

[0.000]** 

-0.033 

[0.000]** 

0.029 

[0.000]** 

κ1
 0.142 

[0.000]** 

0.148 

[0.000]** 

0.147 

[0.000]** 

0.142 

[0.000]** 

0.186 

[0.000]** 

0.142 

[0.000]** 

κ2
 -0.032 

[0.000]** 

-0.018 

[0.006]** 

-0.024 

[0.010]* 

-0.032 

[0.000]** 

0.024 

[0.031]* 

-0.032 

[0.000]** 

κ3
 0.001 

[0.884] 

0.010 

[0.181] 

0.008 

[0.371] 

0.000 

[0.975] 

0.042 

[0.004]** 

0.001 

[0.881] 

σ 
0.003 

[0.000]** 
- 

0.005 

[0.000]** 

0.010 

[0.000]** 
- 

0.004 

[0.000]** 

ι 
0.011 

[0.284] 

 

 

-0.001 

[0.862] 

0.014 

[0.221] 

-0.091 

[0.000]** 

0.012 

[0.262] 

α1
 0.079 

[0.000]** 

-0.316 

[0.000]** 

0.027 

[0.000]** 

0.196 

[0.000]** 

0.654 

[0.011]* 

0.078 

[0.000]** 

β1
 

0.920 
0.992 

[0.000]** 

0.920 

[0.000]** 

0.693 

[0.000]** 

-0.247 

[0.322] 

0.919 

[0.000]** 

ζ - 
-0.107 

[0.000]** 
 - 

-0.239 

[0.000]** 
- 

γ - 
0.179 

[0.000]** 
- - 

0.042 

[0.000]** 
- 

d - - - 
0.568 

[0.000]** 

0.664 

[0.000]** 
- 

Logl -13458.2 -13.362.7 -13376.3 -13445.4 -13807.3 -13457.7 

Akaike 2.296 2.280 2.282 2.294 2.356 2.296 

Schwarz 2.302 2.288 2.289 2.301 2.364 2.302 

Q(100) 
112.028   

[0.193] 

99.579   

[0.493] 

99.912   

[0.483] 

116.905   

[0.118] 

177.063   

[0.000]** 

111.872   

[0.196] 

Q(200) 
232.636   

[0.056] 

218.749   

[0.172] 

221.664   

[0.140] 

237.306   

[0.036]* 

300.369   

[0.000]** 

232.578   

[0.056] 

Q*(100) 
97.354 

[0.499] 

101.654   

[0.380] 

93.479   

[0.610] 

94.557 

[0.579] 

2180.330   

[0.000]** 

96.615   

[0.520] 

Q*(200) 
184.487   

[0.745] 

206.254   

[0.329] 

195.929   

[0.528] 

174.010   

[0.889] 

2539.56   

[0.000]** 

184.964   

[0.737] 

ΜSΔ 13.23 12.93 14.56 13.8 13.46 13.58 

asymmetry 
-0.065 

[0.000]** 

0.011 

[0.513] 

-0.066 

[0.000]** 

-0.065 

[0.000]** 

-0.145 

[0.000]** 

-0.065 

[0.000]** 

Note: Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, this is the value of the maximized 

log-likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic 

for testing the up to m‘th order serial dependence of standardized and absolute standardized residuals denoted 

respectively as Q(m) and Q*(m). Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of 

sample forecasts. The values in parenthesis stand for p-values. *denotes rejection at 5% significance, while ** denotes 

rejection at 1% significant level. 

Table (F) Estimations of GARCH(1,1)-M-[1,2,3], EGARCH(1,1)-M-[1,2,3], IGARCH(1,1)-M-[1,2,3], 

GJR(1,1)-M-[1,2,3], FIGARCH(1,1)-M-[1,2,3], FIEGARCH(1,1)-M-[1,2,3] assuming the Generalized Error 

Distribution. 
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 GARCH EGARCH GJR FIGARCH FIEGARCH IGARCH 

κ 
0.038 

[0.000]** 

0.026 

[0.001]** 

0.031 

[0.000]** 

0.038 

[0.000]** 

-0.025 

[0.000]** 

       0.038 

[0.000]** 

κ1
 0.137 

[0.000]** 

0.140 

[0.000]** 

0.143 

[0.000]** 

0.139 

[0.000]** 

0.192 

[0.000]** 

0.137 

[0.000]** 

κ2
 -0.028 

[0.003]** 

-0.019 

[0.022]* 

-0.022 

[0.018]* 

-0.029 

[0.002]** 

0.027 

[0.004]** 

-0.028 

[0.002]** 

κ3
 0.002 

[0.785] 

0.010 

[0.259] 

0.008 

[0.396] 

0.001 

[0.869] 

0.044 

[0.000]** 

0.002 

[0.779] 

σ 
0.005 

[0.000]** 
- 

0.005 

[0.000]** 

0.229 

[0.000]** 
- 

0.004 

[0.000]** 

ι 
0.014 

[0.214] 

-0.021 

[0.177] 

0.000 

[0.929] 

0.017 

[0.209] 

-0.098 

[0.000]** 

0.013 

[0.211] 

α1
 0.082 

[0.000]** 

-0.368 

[0.000]** 

0.026 

[0.000]** 

0.243 

[0.000]** 

0.687 

[ 0.007]** 

0.093 

[0.230] 

β1
 0.915 

[0.000]** 

0.993 

[0.000]** 

0.917 

[0.000]** 

0.571 

[0.000]** 

    -0.334 

[0.000]** 

0.937 

[0.000]** 

ζ - 
-0.118 

[0.000]** 

0.645 

[0.000]** 
- 

-0.228 

[0.000]** 
- 

γ - 
0.193 

[0.000]** 
- - 

0.034 

[0.000]** 
- 

d - - - 
0.408 

[0.000]** 

0.672 

[0.000]** 
- 

Logl -13498.2 -13398.2 
-13472.4 -13472.4 -13921.5 -13498.9 

Akaike 2.303 2.286 2.290 2.299 2.376 2.303 

Schwarz 2.309 2.293 2.296 2.305 2.383 2.308 

Q(100) 
111.782 

[0.197] 

101.269 

[0.445] 

100.754 

[0.460] 

119.852   

[0.085] 

195.649   

[0.000]** 

112.079 

[0.192] 

Q(200) 
232.448 

[0.057] 

220.959 

[0.147] 

222.890 

[0.127] 

239.744   

[0.028]* 

320.131   

[0.000]** 

232.589 

[0.056] 

Q*(100) 
95.182 

[0.561] 

102.210 

[0.365] 

95.339 

[0.557] 

92.4645   

[0.638] 

2427.05   

[0.000]** 

96.292 

[0.529] 

Q*(200) 
186.127 

[0.717] 

205.531 

[0.341] 

201.811 

[0.411] 

170.296   

[0.923] 

320.131   

[0.000]** 

185.208 

[0.056] 

ΜSΔ 14.00 12.97 14.01 13.47 13.8 13.76 

Note: Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, this is the value of the maximized 

log-likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic 

for testing the up to m‘th order serial dependence of standardized and absolute standardized residuals denoted 

respectively as Q(m) and Q*(m). Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of 

sample forecasts. The values in parenthesis stand for p-values. *denotes rejection at 5% significance, while ** denotes 

rejection at 1% significant level. 

 

3. Forecast Evaluation. 

Very often the analysis compares the MSE values of the competing volatility frameworks 

in order to produce inferences on their forecasting volatility potentials. However, if a 

volatility model does estimate a lower MSE value than a competing alternative it is 

probably precarious to talk about forecasting superiority, since the differences of the 

compared MSE values may actually turn out being not statistically significant. So as 
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Diebold and Mariano (1995) underline it is very important not only to compare the MSE 

values but it is of interest also to test whether possible reductions in the MSE values are 

statistically significant.  

Let assume that two different volatility models generate m, h step ahead out of sample 

forecasts. This implies two sets of forecasts errors, e1t and e2t, where obviously t=1,…,m. If 

the analysis uses as criterium for the forecasting potential the MSE value then if 

                                                               

2 2

1 2t td e e   

the hypothesis of equal forecast accuracy can be represented as E[dt]=0.The Diebold and 

Mariano (1995) statistic for testing the null hypothesis of equal forecast accuracy is  
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Under the null hypothesis S1 statistic follows asymptotically the standard normal 

distribution. Note that the monte carlo experiments conducted in Diebold and Mariano 

(1995) indicate that the performance of the statistic is good either for samples that are 

small or  for forecasts errors that are autocorrelated and have non-normal distributions. 

An alternative statistic for testing the equality of forecasts errors is the one offered by 

Harvey, Leybourne and Newbold (1997) and is denoted in the equation following. This 
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actually modifies Diebold and Mariano‘s test and claims the improvement of the finite 

sample performances of the latter statistic. 
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where S1 is the initial statistic. Note that S2 is compared with t-student critical values. 

Table (G)   Diebold and Mariano (1995) and Harvey, Leybourne and Newbold (1997) statistics. 

Null Hypothesis : E[d]=0 

100-one step ahead out of sample forecasts 

FIEGARCH-MH* FIEGARCH-MG* 

t-student-GED t-student-GED 

S1-normal distribution 3.450** 0.653 

S2-tstudent  3.210** 0.610 

Note : *(**) denote the rejection of the null at 5% and 1% significant level. 

 

Table (H)   Diebold and Mariano (1995) and Harvey, Leybourne and Newbold (1997) statistics. 

Null Hypothesis : E[d]=0 

200-one step ahead out of sample forecasts 

FIEGARCH-MH* FIEGARCH-MG* 

t-student-GED t-student-GED 

S1-normal distribution 3.234** 2.774** 

S2-tstudent  3.201** 2.720** 

Note : *(**) denote the rejection of the null at 5% and 1% significant level. 

 

Table (I)   Diebold and Mariano (1995) and Harvey, Leybourne and Newbold (1997) statistics. 

Null Hypothesis : 

E[d]=0 

                              FIEGARCH-MG*[t-student and GED] 

                        Different one step ahead out of sample forecasts 

20 40 60 80 100 

S1-normal distribution 0.541 0.671 0.978 1.231 1.340 
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S2-t student  0.532 0.598 0.951 1.200 1.278 

Note : *(**) denote the rejection of the null at 5% and 1% significant level. 

 

The results in table (G) indicate that the MSE values reported on table (12) for 100 one 

step ahead out of sample forecasts of FIEGARCH-MH*models of t-student and GED 

distributions are statistically different to each other, since the null hypothesis in Diebold 

and Mariano test (1995) is rejected at 5% and 1% significant levels. On the other hand 

comparison of the MSE values of FIEGARCH-MG* modes of t-student and GED 

distributions on the same forecasting, horizon turns over the acceptance of null hypothesis 

in the relevant Diebold and Mariano‘s test. As for the results reported on table (H), those 

reject the corresponding null hypothesis at both levels of significance and hence the results 

conclude that the relevant MSE values are in fact statistically different to each other at all 

occasions.  

Finally, in table (I) the outcomes of  S1 and S2 statistics strongly suggest  the indifference 

of the corresponding MSE values at all examined forecasting horizons. Furthermore note 

that the previous outcomes are all verified when the results on the S2 statistic are reported. 
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