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Summary of the dissertation
The present dissertation is oriented towards the empirical application of certain models and
econometric techniques drawn from recent developments in the financial econometric
literature. The aims of this project are targeted a) in testing the proposed financial models
to financial data sets, b) in enriching and strengthen the analysis by inducing new aspects
into the proposed methodologies, and finally c) in producing inferences and comparing the

outcomes with other results existing in many related empirical applications.

Each chapter in the present dissertation corresponds a different section of applied
econometrics and therefore three empirical projects are carried out. Those are : a) the
estimation and test of the joint conditional CAPM model introduced by Morelli (2011), b)
the detection of fractional cointegrating relations using the variance ratio approach
introduced by Nielsen (2010), and finally ¢) a comparative analysis of different volatility
models, aiming a) the comparison of their volatility forecasting potentials under various
forecasting horizons, and b) the detection of possible statistically significant volatility -

return relations. Specifically :

Chapter 1 follows the approach of Morelli (2011) and carries over the estimation and test
of the joint conditional CAPM model. The analysis uses the monthly returns of the 25
Fama-French portfolios in the period from July 1926 to June 2008 to evolve in two phases.
The first part of the analysis through the application of four different methodologies
estimates corresponding versions of the time varying beta coefficients series, while the
second based on those latter estimates tests the statistical significance of the beta - return

relation, especially when the last is conditioned upon the sign of excess market returns.



Note that the above methodologies correspond a) the volatility approach, where
conditional covariances and variances that define the notion of conditional beta are
modeled as ARCH, GARCH, FIGARCH and FIEGARCH processes, b) the recursive OLS
approach, and c) the Kalman filter analysis, where two different assumptions have been
applied on the definition of the state equation. Those are a) the random walk approach and

the b) AR(1) alternative.

In spite of differences existing in all four versions of the estimated time varying beta
coefficients series, results in all four procedures reject the conditional and the joint
conditional CAPM versions, while results appear robust either when the analysis examine

the full sample case or two equal sub-samples.

The key feature of chapters 2 and 3 evolves around the idea of long memory that is
detected both in cointegrating relations and volatility return series. From the initial work of
Granger (1981) to nowadays there has been an increasing amount of evidence supporting
the presence of long memory in different financial and macroeconomic series, with the list
including data over exchange rates, interest rates, indexes of production, consumption,

unemployment, estimated series on volatility and many others.*

Chapter 2 uses daily data from the European interbank money market to examine the term
structure theory on four interest rates series. As it is well known expectations hypothesis
suggests the existence of long run equilibrium relations among interest rates of different
maturities. The relations imply the stationary nature of spreads, while traditionally the

theory is verified through cointegration analysis. However, the restrictiveness of 1(0)/1(1)

! See for example Diebold and Rudebusch (1989), Sowell (1992), Baillie (1996), Lobato and Velasco (2000),
Andersen, Bollerslev, Diebold and Ebens (2001).



dichotomy that is followed in traditional cointegration analysis and the possibility that the
time series in question may be fractionally integrated, forces the present application to
examine the cointegration rank through fractionally integrated systems. Indeed chapter 2
follows the non parametric variance ratio test of Nielsen (2010) and applies such a
fractional analysis, while at the same time and for comparative reasons the chapter expands
with the estimation of parametric tests of Johansen (1998,1991) and the fractional

alternative of Breitung and Hassler (2002).

Although results on the cointegration rank differ significantly between parametric and non
parametric tests, however no specific outcome can be considered generally true for the
parametric alternatives, since both procedures end up with different results when different
lag augmentations are being applied. Finally the paper proceeds with an informal
comparison of the estimated and hypothesized cointegrating space, given that the variance

ratio procedure provides a consistent estimator of the last.

Chapter 3 deals with issues on volatility modeling and volatility forecasts. The chapter uses
the daily returns of the Fama-French stock market index to estimate initially different
volatility models (GARCH, EGACRH, FIGARCH, IGARCH, GARCH-M, EGARCH-M,
FIGARCH-M, IGARCH-M) while aims the comparison of their volatility forecasting
potentials and the detection of statistically significant volatility — return relations. As far as
the volatility modeling part is concerned the chapter presents an application of the
exponential fractional GARCH-M model (FIEGARCH-M) that extends the basic volatility
FIEGARCH framework of Bollerslev and Mikkelsen (1996) by introducing a possible
volatility in mean effect. However, the analysis of Christensen and Nielsen (2007) which

claims that introducing volatility in the mean equation may generate long memory in
9



returns, forces the present application to acknowledge existence of possible spillover
effects and naturally the chapter extends by estimating the filtered long memory volatility
models (FIEGARCH-MG and FIEGARCH-MH) of Christensen, Nielsen and Zhu (2010).
Both enter the volatility forecast comparison and both are tested for the presence of
statistically significant volatility-return relations. On the distributional assumption part the
chapter explores all available options and alters the estimation settings of the estimated log
likelihood functions by applying the following four distributional assumptions. These are

a) normality, b) t-student, c) generalized error and c) skewed asymmetric distribution.

The results suggest the existence of a statistically significant volatility in mean effect when
both filtered long memory volatility models are estimated under t student,® while on the
other hand the volatility forecast comparison indicates a solid preference to the
parsimonious FIEGARCH model, since the last dominates all other alternatives

irrespective of the assumed forecasting horizon.

2 Although this is not generally valid for the other competing volatility frameworks.
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Summary in Greek
H mapovca 5100KTopikn S10Tpiffn] TPOGAVATOAGUEVT) TNV EUTELPIKT] EKTIUNOCT SOPOPOV
OIKOVOUETPIKAOV VTOOELYLATWV TOL 0plofeTOVV TIC o TPOcpate e&eMEelg 0T avTioTOL O
medior TG YPNUOTOOIKOVOLKNG BiBAloypapiag, omoPAénel TOGO GTOV EUTAOVLTIGUO KOl TV
EVOLVAU®ON T®V NON LIAPYOVI®V EUTEIPIKOV EPEVVOV HE VEN GTOLXELD, OGO KOl GTNV
TOPOYWYT TOPICUATOV KOl TNV GUYKPLOT] TOVG PE  OMOTEAECUOTO TOLPOUOUDY EUTEIPIKAOV

HEAETDV.

Kdabe éva amd ta tplo kepdiaio g moapovoag Satping eumintel oe Eva SaKPLTO
EPELVNTIKO YWPIO0 TNG EPOPUOGUEVNG OIKOVOUETPIOG, KOl GUVETMG TO TPLOL OVTOTEAN
EUTELPIKA OVTIKEILEVOL TTOV TPAYLOTEVETOL TO POV KEIEVO gival : o) 0 VIO GLVONKT aTd
Kooy éheyyoc tov Morelli (2011) yio v eumelpikn 16x0 TOV VLOSEIYLOTOG ATOTIUNONG
neplovolok®v  otoyeiov  (CAPM), B) o «laopotikdc Erheyyos g  Vmopéng
GUVOAOKANPOOIU®V oyécemv o€ Euvpomaikd owtpomelikd emitdokio.  GUYKEKPLUEVNG
SIPKELOG YPNOLOTOLDVTAG TNV avadoyia dtakvpdvoemy tov Nielsen (2009), kot télog v)
N exTipnon SPOp®V LIOSEYUATMOV UETOPANTOTNTAS Y¥PNCLLOTOIDOVTOS TOV OEIKTI ayOPAS
tov Fama-French, esmdidkoviog apevog Ty GYKPLTKN ovOiALGT TG TPOPAETTIKNG
KAVOTNTOG TOV VTOOELYUAT®V OVTAV KOl APETEPOV TOV EVTOTIGUO GTOTIOTIK( CNUOVTIKAOV

oY£GEMV OTNV O1001KAGLY AVTOAAOYNS TOV KIVODVOV LE TNV amddooT).
AvVoAVTIKG :

To mpdTO KePAroo oakorlovbmvtag v eunelpikn npocéyyion tov Morelli (2011) extipd
v gykupotta tov vrodeiypatog CAPM mpaylotonoidvtag tov TpoTetvOUEVo amd ToV
Morelli arnd kowvod vd cuvinkn éleyyo Tov vrodeiypotog. H avalvon ypnoiponotdvog

TIg unviaieg anodocels tov 25 yoptopuiokiov tov Fama-French v mepiodo amd tov

11



IovAo tov 1926 em¢ Tov Iovvio Tov 2008 ektvAicoetal o€ 000 PACELS : TNV TPAOTN UECW
TEGOAPMV TPOCEYYICEWV EKTIUOVTOL 10GPIOUEG EKOOYEG TOV UETARBAALOUEVOV YPOVIKA
Brta, evd otnv 0e0TEPN EAEYYETOL 1| GTOTICTIKY] CMUAVIIKOTNTAG TNG OYXEONG UETOEL PriTa
Kol amod0cewV, €0IKA OTov 1 TeAevtaio TEAEl VIO TNV GLVONKN TPOGHUOL TV

VIEPPOALOVCADV ATOSOGEMV TNG Y0P,

Noa onueiwdetl 6Tt 01 EKTIUNGELS TOV TPMOTOV GTAOIOV OVTEG AVTICTOLXOVV 1 kKGBe o o€
dwkprtég pebodoroyikég mpooeyyioels. AVTEC avalvTikd glval @ o) GTNV TPOGEYYIOT| TNG
petafAntottoc, Omov ot VIO GLVONKN SWKLUAVOELS KOl GULVOLUKLUAVGEL TOL
YPNOLOTOOVVTOL GTNV £EAYOYN TOV LETAUPAALOLEVOV YpOVIKE PriTa TpoKOTTOVY OId TNV
eKTIUNON KATAAANAL eEEIOIKEVUEVOV VTTOSELYLATOV PETAPANTOTNTOC, B) 1| TPOGEYYIOT TOV
EMOVOATTIKOV EKTIUNCE®Y pe TNV UED0SO TV ehayioTOV TETPOYOV®V, KOl TEAOC 1
uébodoo tov @iktpov Kalman émov dakpivovpe v vadbeomn y) tov Tuyoiov TEPimaTOn
Kol 0) TV avtomaAivopoun evorloktikn. Tlapd tic mpoeaveig aviiBéoelg petaéy tov
TEGOAPMV EKTIUNGEMVY TA OMOTEAECUOTA GCUAABONV TOV EALYYOV ATOPPITTOVY AUPOTEPES
TIG VO cvvONK” ekdoyéc tov CAPM, 1600 oty mepintmon tov TApPovS delypotoc, 660

Kot 6€ EKEVT TV dVO VTOTEPLOdMV 16MG YPOVIKNG SLAPKELNG.

To xvpiapyo ororyeio Twv kepaiainv 2 Kot 3 apopd TO YOUPAKTNPIOTIKO TNG LOKPOYPOVIOG
UVIUNG, OV TPOGIOALEL TOGO TIC GLUVOAOKANPDGIUES OYECELS OLOLPOP®Y OIKOVOUIKADV
peyebov, 660 kol TV HETAPANTOTNTO TOL EKTIUATOL  OTIC OMOOOGELS TMOV uetox(bv.s

Avalotikd

SATO mv apykn epyacio tov Granger (1981) péypt kor onuepa nAnddpa ctoyegiov vroompiler v
TOPOVGIN HOKPOYPOVIOG HVAUNG o€ O1dpopeg Kotnyopieg Oedopévav €11 YPNUOTOOIKOVOUKOV €T
paxpootkovopk®v. Tétown dedopéva givar ouvnBwg o1 GUVOALOYUOTIKEG 160TIiEG, Ta dtoTpomelikd
gmrokia, o1 deikteg mapaywyng katavdimong kot avepyiog. BA Diebold & Rudebusch (1989), Sowell (1992),
Baillie (1996), Lobato & Velasco (2000), Andersen, Bollerslev, Diebold & Ebens.
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To xepdiaio 2 a&lomoidvrag nuepniota dedopéva ™ Evpomaikng datpamelikng ayopdc
YPNUOTOC EPELVA TNV VIAPEN LOKPOYPOVIOV GYEGEDV GTIC OTOOOCEL; TEGCAPM®V EMTOKIWV

OLOPOPETIKNG YPOVIKNG SIAPKELOG,.

H dodwoasio amo@atvopevn v oTacIdTNTo TOV SPOP®Y OTIS OTOOOCELS TOV €V AOYO
CEPDV TOPUOOCIOKE  TPAYUATOTOIEITOL HE GUVOAOKANPMOOIUES HEDOOOVG, €V Ol
TEPOPIGHOL GTNV avAAVoT omd TV “KACIKN” S1(OTOUNGCT TOV GEPAOV GE GTAGULES KOl
un, 6mwg dAhmote N mBavoTNTA TS VIOPENG KAACUATIKE OAOKANPAOGIL®V UETAPANTOV

eMPAALOVY EVAOYMG EAEYYOVG AVOLYVDPIONG KAUCUATIKE GUVOAOKANPOCIU®V CYEGEDV.

Yno 10 mpiopo ovtd T0 KEQEAANO 2 £PapUOOVTIOG TOV UM TOPOUETPIKO EAEYYXO TNG
avoloyiog dwaxvpavoemv tov Nielsen (2010) mpayuotomolel o eUmEPIK eKTiunon
KAoopaTIKoD TOTOL, eVO To e&aybévta mopiopata avTumapaBaAlovTol Le To amoTEAEGOTA
EKTIUNOMNG TOV TOPOUETPIKOV eAEyymv tov Johansen (1998,1991) kot tov Breitung and

Hassler (2002).

Ta amoteléopato vroypopupilovy agevog To SPOPETIKA TOPICUATO TOV EAEYYMV GYETIKA
pHe tov oplipod T®V GLVOAOKANPAOCIUOV GYEGEMV, EVO OQETEPOV VLTOVOUEDOLV TNV
aflomotio TV TApaUETPIK®OV HeBOO®MV KLPIOE HEG® TOL VEIGTAUEVOL TAOVPOAIGLOD TOV
amotelecpdtov  O6tav  emPAAAOVIOL  JOPOPETIKEG TPOGOVENCES oToV  aplBud TV
votepnoewv. Tehkd to ke@dAaio 2 Kheivel pe €vav dtvmo EAeyyo o omoiog GuyKpivel Tov

EKTIUNUEVO KOl VTTOOETIKO GLVOAOKANPDOGILO YDPO.

To xepdiaio 3 aocyoAeiton pe TV LIOdEYHOTOTOINGT TNG METAPANTOTNTOG Kol TNV
TPOYLLOTOTTOINGN npo[.’)M’,\us(nv.4 XPNOYOTOUDVTOG TIC NUEPNOLEG AMOOOGEIS TOL OElKTN

ayopdg tov Fama-French, m avdlvon ektipnd opyikd  Stdeopo.  LrodeiypoTo

* O TPOPAEYELS TPOPAVAC APOPOVY THY LETABANTOTNTO.
13



uawﬁ?»nt()tnmg,Somoﬁkén(ovwg TOGO GTNV GUYKPION TNG TPOPAETTIKNG TOVS IKOVOTNTOG,
000 KOl TOV EVIOMIGUO EVOEYOUEVMG OTOTIOTIKA ONUOVIIKOV GYECMOV  OVTOAANYNG

KIVOUVOL-0mdd00TG.

Ewdwd oty televtaio mepintmon €101kd Papog amodideton oto FIEGARCH-M, 10 omoio
enekteivel 10 Pactko veddetypo petopintomrag tov Bollerslev and Mikkelsen (1996) e
mv e€edikevon pog e&iomong yio Tov vd cuvONK” HEGO, N 0moio GLVOEEL TIG ATOJOGELS

TOV LETOYMV pE TNV Tpoavapepbeioa eEeldikevon g petafAntodTnTOC.

Qo1660 1 avaivon tov Christensen and Nielsen (2007) mov kdvel Adyo yo tnv didyvon
TOV WI0THTOV NG UAKPOYPOVIOG UVAUNG omtd TNV HETABANTOTNTO OTIG ATOdOGES TMOV
HETOYDV, “DTOYPEDVEL” €K VEOL TNV OVAALGTN VO GUUTEPIAAPEL OTIG EKTIUNCELS TNG TO
vrodeiypata FIEGARCH-MG- FIEGARCH-MH twv Christensen, Nielsen and Zhu
(2010), To omoio YPMOWOTOWOVY @IATpa Yy TNV OKOP®ON TOV TPoavapepBEVI®OV

AOTELECUATOV OLAYVOTG.

Apedtepa  a&oloyovvtar TOGO Yo TNV TPOPAENTIKY] TOVS KAVOTNTOG OGO KOl Yol TOV
EVIOTGUO OVTOAAOKTIK®OV GYEGEMV KIVOUVOL - amddoons. Na onueiwdel 0Tt avapopikd pe
TIG (PNOYLOTOIOVUEVEG KOTAVOUEG OTIG EKACTOTE €EEIOIKEVCELS T®V  AOYOPOKAOV
CLUVOPTNCEDV TOAVOPAVELNS, TO KEQAANO Olepevvl Oleg TG Swobéoiueg emAoyé kot
XPNOWOTOLEl KaTh mepinT@on v o) N Koavovikn, B) v t-student, y) v yevikevpévn

Katavour Tov Aadodv kat 8) TNV acOUUETPT LE KbpTwon t-student katavous.

Yyondalovtag TEAOG To EUTEIPIKE amoTeAEspaTa TOv KeQaiaiov a&ilel va onuewmbel oti

uévo m extiunon tov vrodetypatowv FIEGARCH-MG kat FIEGARCH-MH vmo v

®> GARCH, EGACRH, FIGARCH, IGARCH, GARCH-M, EGARCH-M, FIGARCH-M, IGARCH-M.

14



vroBeon g t-student avayvopilel 6TOTIOTIKG GNUAVTIKEG OXEGELS AVTOAAAYNC KIvOHVO-
amOd00NC, EVD GE OTL APOPA TNV GUYKPLOT TS TPOPAETTIKNG IKOVATNTOS, OAX OVEENPETMG
to. vmodetypata  pewovektovov  oe oyéon pe 1o FIEGARCH, mov vmepéyel €vavtt

0TO10VONTOTE GALOL GE 0mO10dNTTOTE €K TV e&eTalopévmv ypovikd opilovta mpoPAeyng.
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Chapterl

Testing Conditional CAPM using Time Varying Beta.

An Application to the Fama-French Portfolios data set.



Testing Conditional CAPM with Time Varying Beta :

An Application to the Fama-French Portfolios

ABSTRACT

Conditional versions of CAPM utilize the idea of time varying beta coefficients, while recently
Morelli (2011) following Pettengill et al. (1995) introduced a joint conditional test that explores the
relation between the varying beta coefficients and the return series. His approach basically evolves
in two phases : a) the estimation of time varying beta and b) the test of beta-return relation
conditioned upon the sign of excess market returns. The present analysis in an attempt to access the
roll of varying beta and explain the monthly excess returns of the 25 Fama-French portfolios, in a
period from July 1926 to June 2008, applies Morelli’s (2011) joint conditional test. However, the
approach innovates by introducing various assumptions on the formation of the time varying beta
coefficients series, and moreover the analysis beside applying the volatility approach of Morelli
(2011), which models conditional covariances and variances through known volatility models, such
as ARCH, GARCH, FIGARCH and FIEGARCH, applies three more methodologies. Those are the
recursive OLS beta estimates and two Kalman filter approaches, with each introducing different
assumptions on the definition of the state equation. Those are the random walk hypothesis and the
AR(1) alternative. In spite of pronounced differences existing in all four versions of the estimated
time varying beta series, results in all procedures reject the simple conditional and the joint
conditional CAPM, while results appear robust either when examining the full sample or the two
equal spread in time sub-periods. The above results are further strengthen by a monthly seasonality
analysis that indicates a consistent throughout the whole year non statistically significant beta-
return relation. The last is valid irrespective of the apllied methodology for the estimation of time
varying beta.

Keywords: Conditional Beta, Market Risk Premium, ARCH, FIGARCH, Kalman Filter, Joint Conditionality
testing



1. Introduction.

The Sharpe (1964)-Litner (1965) Capital Asset Pricing Model (CAPM) is among the most
well established models in financial empirical literature postulating a linear tradeoff
between expected returns and betas. The model states that the expected return of an asset is
exclusively related to the market return through the estimation of the beta coefficient that
defines the nature of link between the returns of an asset and the risk of the market as a

whole.®

The model armed with the ideas of diversification and division of risk into systematic and
unsystematic components, implies the existence of reward solely for the non diversifiable
component of risk.” Therefore CAPM under simplifying assumptions,concerning mainly
the behavior of investors and the presence of a single common risk factor, attempts linearly

to quantify the relation between the beta of an asset and its corresponding expected return.

However, the usefulness of beta as the single risk measure has been challenged in different
ways. For example Chen, Roll and Ross (1986) argue that beta is not the most efficient
measure of systematic risk and favor instead several macroeconomic variables that can

jointly assess it.

®The CAPM model estimates the asset’s sensitivity to the market risk, also known as non diversifiable or
systematic risk. This measurement is represented by the quantity beta. The fundamental equation of CAPM
is based upon the following idea, the reward to risk ratio of any individual security in the market is equal to
the market reward to risk ratio.

(ER)-Re)/ B =E(Ry)-Re © ER) =R+ A(E(Ry)-Re)

where E(Ri) is the expected return of asset i, Rg is the return of the risk free asset, E(Ry) is the expected
return of the market portfolio and B; denotes asset’s beta.

"Unsystematic risk does not co-vary with the market as a whole, and therefore is considered as the additional
random noise added in every asset’s return equation.

®The first assumption of CAPM states that investors are only interested in expected returns and risk, and so if
they are rational they will always try to maximize expected returns for any given level of risk. Another
assumption of the model assumes that standard deviation of past returns is a perfect proxy for the future risk
associated with a given security. A third assumption states that all investors have homogeneous beliefs in the
process of the risk-reward trade off, while a fourth one defines the systematic risk of the market as the
determinant element of the non diversifiable part of risk.
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Another view mainly attributed to Lakonishok and Shapiro (1986) challenges the solitary
presence of beta and states that various measures of unsystematic risk affect securities
returns, while another dispute stimulated by the empirical evidence of Fama and French
(1992,1993,1996) introduces in the return equation various explanatory variables beside
the excess market returns and indicates that beta does not measure risk® and hence in terms

of CAPM there is not risk-return trade off.

Despite these arguments the wide spread of the models is an undisputed fact. This
preference probably stems from the convenience of using a model with a single measure of
risk, although there seems to be no consensus among professionals and academics of how

his key parameter should be modeled.*

One quest mainly triggered by the empirical evidence of Ferson (1989), Ferson and Harvey
(1991,1993), Ferson and Korajczyk (1995), Lettau and Ludvigson (2001), Fama and
French (1997, 2004), Lewellen and Nagel (2006) and Ang and Chen (2007) argues that
beta coefficients and market risk premiums vary over time and hence unconditional CAPM
is improper in producing correct empirical inferences.* In this direction Jagannathan and

Wang (1996) endorse that unconditional CAPM tend to estimate statistically significant

Fama-French examined CAPM with constant betas (i.e., the unconditional CAPM) and found that the
model is inadequate in explaining specific asset pricing anomalies. In particular Fama-French found that
unconditional CAPM cannot explain a) why portfolios of small firms outperform those of large firms, that is
the size effect, b) why portfolios of firms with high book to market (B/M) ratios outperform those of firms
with low (B/M) ratios, that is the B/M effect, and ¢) why portfolios of firms with relatively high returns in the
past year outperform those of firms with relatively low past returns, that is the momentum effect.

This discussion includes various aspects of the estimation procedure, while some of the most popular
debates cover issues over indexes, time frames and data frequencies. See Blume (1975), Carleton and
Lakonishok (1985), Klemkosky and Martin (1975), Reilly and Wright (1988).

In unconditional versions of CAPM beta estimates are generated after regressing an asset’s return on the
return to the market portfolio. Using stationary time series this process generally produces estimates where
their distributions have also time invariant properties.
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alpha coefficients,> and hence conclude that relevant CAPM frameworks tend to create

biases that favor the model rejection.

In fact the majority of empirical studies*® provide weak or no support in favor of a stable
linear relation, while on the other hand, increasing evidence suggest that expected returns
and corresponding risks vary over time, and hence conditional CAPM frameworks are

essential in incorporating such variations.**

Note that an insightful advocacy in favor of conditional CAPM is offered by Hansen and
Richards (1987) and underlines two things. First, that tests incorporating conditional
moments will be more powerful, and second, that absence of conditional information, as in
the unconditional CAPM, will often lead to incorrect inferences about the mean variance

efficiency of the market portfolio.

In spite the latter undisputed conditional CAPM endorsement the latter is not clear how it
should be pursued. For example many studies on conditional CAPM such as Shanken
(1990), Jagannathan and Wang (1996), Clare, O’ Brien, Smith and Thomas (1996), Ferson
and Harvey (1999), Lettau and Ludvigson (2001), Petkova and Zhang (2005) and Avramov
and Chordia (2006) depend on instrumental variables for modeling time-varying betas and
market risk premiums,*®while another view recently demonstrated by Morelli (2011)
estimates time varying beta using appropriate autoregressive conditional heteroskedastic

forms (ARCH).

12 Alpha coefficient corresponds the part of the expected excess return that is not predictable by the
unconditional CAPM. The empirical evidence speculate that those estimates are possibly related to
covariances generated from possible time varying betas and hence time varying risk premiums.

3See Banz (1981), Basu (1983), Bhandari (1988), Fama and French (1992), Grinold (1993), Davis (1994),
Chan and Chui (1996), Fletcher (1997), Hung et al (2004).

14 See Bodurtha and Mark (1991), Ng (1991), Petkova and Zhang (2005), Lewellen and Nagel (2006).
Harvey (2001) states that in this case results are probably sensitive to the choice of instrumental variables,
while Lewellen and Nagel (2006) argue that tests based on cross sectional regressions for the conditional
CAPM, do not impose theoretical restrictions on the covariance corresponding the beta of an asset and the
market risk premium.
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In the latter case the volatility frameworks that model conditional functions of variances
and covariances become the essential mechanisms in computing the conditional beta
coefficients."®The conditional nature of the process guarantees incorporation of
information at every discrete moment and hopefully promises a functional version of the

conditional CAPM approach.

However, the entrepreneurial element in Morelli’s work is concentrated upon what he calls
joint conditional test. His idea basically combines the estimation of conditional betas with
the methodology presented in Pettengill et.al (1995) that examines the roll of beta

conditional upon the sign of realized market excess returns.

Indeed Pettengill et al (1995) underlines a fundamental contrast in the CAPM logic. They
interestingly note that although CAPM is a model based upon expectations, however it
uses out of necessity realized returns instead of missing expected data. This substitution is
obviously instigated by the lack of expected evidence, while is entrenched in the critical

assumption that realized returns accurately reflect the missing expected data.

The above choice conceals an inevitable transformation of the model since drastically
alters its fundamental properties. Moreover the statement of CAPM for a positive relation
between betas and expected returns that naturally leads to the implication of expected
market returns always exceed the risk free rate,*’ is no longer valid. In fact the use of
realized returns creates an actual possibility for the appearance of negative realized market

risk premiums, an acknowledgment ultimately utilized in the return equation induced by

®*Modeling conditional versions of CAPM using appropriate volatility frameworks is not a new approach.
See Bollerslev et al. (1988), Ng (1991), Hanson and Hordahl (1998).
"The market risk premium in the unconditional CAPM is always assumed to be positive.
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Pettengill et al (1995).'® In this particular case the estimated betas were linked with the
realized returns in statistically significant positive and negative relations, an outcome
obviously underlying the importance of separating first market returns, into up and down

markets.*®

The present paper using the monthly realized excess returns of the 25 Fama-French
portfolios in a period of 82 years from July 1926 to June 2008, follows the approach of
Morelli (2011) and produces in it’s first part of the analysis the necessary time varying
beta estimates for all 25 Fama-French portfolios. When this phase is completed, the
estimated coefficients are tested upon the sign of excess market returns and this process

consummates the second stage of the joint conditional CAPM test.

However, there is no reason to assume as Morelli (2011) that conditional variances will
necessarily follow an ARCH or GARCH process, and in this track of thinking a decision
was taken for strengthening and enriching the joint conditional test by allowing other
possibilities to enter the specification of conditionally heteroskedastic frameworks. Such
alternatives are the long memory volatility models, FIGARCH and FIEGARCH, which

both are estimated alongside traditional volatility processes.

Although returns on all 25 Fama-French portfolios are stationary processes,?® volatility of
those returns incorporates long memory characteristics and this sensibly justifies the
entrance in the analysis of long memory volatility models. On the other hand the fact that

excess returns on the majority of cases create leptokyrtic, positive skewed distributions

80ther studies following Pettengill’s et al (1995) approach are Fletcher (1997), Hung et al. (2004), Faff
(2001), Elsas et al. (2003), Ho et al (2006).

Bpettengill et al. (1995) conclude that when realized market return outperforms the risk free rate, a case
which is refer to as up market, there exists a positive relation between beta and returns. On the other hand
when realized market return is negative, a case which is referred to as down market, the beta - return relation
turns out being a negative one.

20 See in the appendix the results presented in table B.

23



forces the analysis to consider distributional assumptions beside normality and indeed at
some point the paper uses t-student as an alternative assumption for the formation of the

corresponding log-likelihood functions.

Using standard criteria for the volatility model selection two decision were taken : a) to
model the conditional variance of the market excess returns upon the framework of
FIEGARCH (1,d,1) under the assumption of t student, and b) to estimate the GARCH

(1,2) for all conditional covariances, applying constantly the assumption of normality.

However, in the present analysis this latter approach is not the only one applied, since
modeling time varying beta eventually implicates other two known possibilities. Those are
a) the recursive OLS beta estimates and b) the kalman filter approach,”* where two
possibilities are explored when formulating the state equation. Those are the i) random

walk hypothesis and ii) the AR(1) alternative.

Although the estimated beta coefficients differ significantly from case to case, however,
the final outcome is common in all alternatives and rejects both the simple conditional and
the joint conditional CAPM, either when examining the full sample or the two equal spread

in time sub-periods.

Furthermore the results of a monthly seasonality analysis that are consistent throughout the
whole year, reveal a non statistically significant beta-return relation irrespective of the

applied methodology for the estimation of time varying beta.

Section 2 briefly discusses the fundamental equations of the joint conditional test, while

section 3 provides the mathematical tools for the estimation of Kalman filtered betas, while

?15ee Wells (1996) and Bucland and Fraser (2001) for an application of kalman filter on time varying beta.
22 |n the appendix table (k) reports the correlation matrixes over all estimated betas.
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at the same time presentes empirical results on all four estimated risk premiums. Finally,

section 4 concludes.
2. The joint conditional modeling.

The CAPM can be expressed as in equation (1)

Re—Re=a,+ it(Rmt_RF)+git ®
with Ri;, R, Ry present respectively returns of portfolio i, returns of the market portfolio
m and returns of the risk free asset at time t, with B; standing for the beta coefficient of

portfolio i, defined as in the following equation

f =cov(R,,R )/var(R ) .

The CAPM can also be written in terms of cross sectional returns and this expression is

called the security market line. The latter is presented in equation (3)

E(Rit_RF):7/0+71/3i ®)
Equation (3) stands for a linear constant relation among the excess returns of portfolio i
and it’s beta estimate. This version is called the static or unconditional CAPM, since f; is
by default a constant term and hence conditional information play no role in determining

the excess returns of portfolio i.

As was stated in the introduction the majority of empirical evidence suggest the existence
of time-varying risk premiums, and if true unconditional versions of CAPM will unlikely

hold. Therefore conditional CAPM expressions as in equation (4) may be more appropriate

E(rit | It—l) :ﬂi (E(rmt | It—l)) )

4
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In equation (4) ri and ry; present respectively the excess returns of portfolio i and the
excess returns of the market portfolio, E(.|l.1) states the expectation operator conditional
upon the available set of econometric information at time t-1, and Bj .1 measures the

systematic risk of the market. The latter is defined as in the following equation

ﬂi,h_l :COV(rit’ L | lt—l)/ Var(rmt | lt—l) ©)

Following Morelli (2011) the analysis assumes next that the excess returns of portfolio i
and the excess returns of the market portfolio can be modeled under appropriate
autoregressive forms, with their general presentations given in equations (6) and (7)

following

= ®)

g
Fe =+ Zaj Mot T €it
= 0]

Morelli (2011) then states that the above excess returns are further decomposed into their
expected and unexpected counterparts and these separations are expressed in equations (8)
and (9)
i = E(rit | It—1)+eit
®)

M =BG 1)+,

mt

©)

Next the disturbance terms of the estimated AR models provide equations (10) and (11)

which finally incorporate the desired conditional expressions of covariances and variances
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Cov(e,, &) =Cov(g,, &, | 1,5) +hy
(10)

E(52 )= E(Erfn | |1—1)+hmt

mt
11

Using the conditional parts of equations (10) and (11) and the residuals generated from
equations (6) and (7) the analysis proceeds with the estimation of appropriate?*conditional
heteroskedastic frameworks for both conditional variance and conditional covariances.**
Once those estimates are finally completed the time varying betas are then generated using

the following ratio

ﬁi,[t_l =Cov(& &,y | It—l)/E(grit '

So, equation (4) which expresses the risk—return relation conditional upon information set |

(12)

can be recast as in equation (13). In the last case the conditional information are
incorporated into the estimated time varying betas through modeling conditional variances

and conditional covariances as appropriate volatility forms.

Covlgy & / It—l))(E(r [4)

E(r|l,)=
( it | t—l) ( E(E;t / It_l) 13)

The conditional relation among time varying betas and returns is then tested through the

following cross-sectional regression

h=a,+70+&

(14)

%The competing conditional heteroskedastic frameworks are ARCH (1,1), GARCH (1,1), FIGARCH (1,1)
and FIEGARCH (1,1). All models are estimated under either normal or t-student distribution. Using standard
criteria for volatility model selection the best volatility frameworks are chosen and these frameworks model
conditional variance and conditional covariances.

#Conditional covariances and conditional variance are denoted respectively as E(gi,&mli-1) and E(e’ml.1).
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If conditional CAPM model holds then the constant term in equation (14) should be equal
to zero, while the market risk premium, that is y; coefficient, must be positive and
statistically significant. If these conditions are met then beta is considered a statistically

significant pricing risk factor.

Adjusting equation (14) to Pettengill’s et al (1995) approach generates Morelli’s (2011)
joint conditional test. The latter requires the additional separation of market excess returns
into up and down categories and doing so introduces in equation (14) a dummy variable. In

this last case the cross sectional regressions are stated as in the following equation

(=a,+9 B+ (-0) B +¢&

where & presents a dummy variable,*and positive and negative symbols stand respectively

(15)

for positive and negative market excess returns.

Under Pettengill’s methodology beta is a significant price factor if the following conditions
are met a) both vy, variables are statistically significant, b) both corresponding coefficients
have the expected signs, and c) the constant term in equation (15) is equal to zero. The
above requirements in mathematical terms are expressed in the following statement

a,=0,7">0,7, <0 ©
As Grauer and Janmaat (2010) state the econometrician in equations (14) and (15)
typically tests whether the intercept is equal to zero against a two sided alternative.
However these tests may be substituted by those examining the slope of the corresponding
equations and particularly those approaches test whether the slope coefficients are equal to

ZEro.

2 5=1ifr>0and 5=0 if r,<0
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The last statement defines on each occasion the null hypothesis. However, the alternative
in equation (14) is that of a positive and negative slope, while in equation (15) the
alternative is that of a positive and negative slope, corresponding respectively the cases of
up and down markets. Obviously when the null hypothesis are rejected the conditional and
joint conditional notions of CAPM are valid.?® So the t-statistics for the constant term and
for y1 in equation (14) constitute a two tailed test, whereas the t-statistics for the slopes in

equation (15) correspond each to one tailed test.

3. Empirical Application.

Table (C) in the appendix presents summary statistics on the excess returns of the market
portfolio and the excess returns of each of the 25 Fama-French portfolios.?” The results
confirm two features that are common in all cases. Those are a) the leptokytric distribution
in all excess returns and b) the statistically significant autocorrelations found even at 300

lags at some occasions.

In table (1) the analysis model the excess returns of all 25 Fama-French portfolios as
appropriate autoregressive processes. The specification procedure estimates initially an
AR(20) model and then tests using the likelihood ratio statistic whether the individually
non significant variables can jointly be dropped. For example, the initially estimated AR
(20) model that corresponds portfolio “1”” estimates non statistically significant variables at
different lags.?® Looking at the likelihood ratio column and the corresponding p-values,
those lagged variables are jointly dropped and so the remaining variables that determine

the exact specified autoregressive framework of portfolio 1 are all reported in table (1).

% It is important to clarify here that any tests adopting Pettengill’s et al. (1995) methodology can not be
considered as tests of the CAPM model, since the relationships tested focus on realized and not expected
returns.

?"The analysis corresponds at each of the 25 Fama-French portfolios a number from 1 to 25. For details about
definitions see the appendix.

%8 Those lags are 2,4,5,6,7,8,9,10,14,17,18,19,20.
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Table (1) Specified autoregressive models for the market and the 25 Fama-French portfolios.

Portfolio Lagged Variables Subset LR F-test
1 1|3 |mf12|{13|15]16] - |-|-]|-|- |chirea) [104'390885] 7,545 [0.000]**
) 12,509
2 136 |8 |0o|13]14|16]17| - |- |- |chiraas) | 500 | 1051 [0.0000*
3 1036 |7|9|12]|13|15|16]17]20| - | chirog) [g'ggg] 9.147 [0.000]**
4 1|9 |13[15|16]17]20| - | -] -1]-1|-|chireaas) [108'18277022] 2254 [0.000]**
5 103789121317 |20] -1 - |- | chirean) [8'3451] 11.85 [0.000]**
6 13 |1wa|s|a7| -] -] -]-1]-1-]-]chinqa [104 4(1‘74‘5 8.132 [0.000]**
7 13 |9o|1al1s|16|17|20]| -] -|-]-|chira [gggé] 12.4 [0.000]**
8 13|69 13]1al1s]|20]|-]-1-]-/chiro [géﬁ] 15.1 [0.000]**
9 1035 |6|9|12]|13|14|15]16]|17|20] chiroe [gggé] 12.84 [0.000]*
10 |1(3|6|7|9o|12|13]15|16]17|20] - | chirzo) [g'gé‘l‘] 10.4 [0.000]**
11 |13 |9o|wale|1r|20]|-|-]-1-]-/|chirna [g'gg% 11.65 [0.000]**
) 10.897
12 |9 |14|15 |6 17|20 - |- |- |- || |cniw@s| de | 540100001
13 [1|3|s|6|9|wa]1s|17|-|-]-]-]chir [10150235?] 11.73 [0.000]**
14 [1|3|s|6|9|wals]|7|-|-]-]-]chir [10150235% 11.73 [0.000]**
15 | 1(3|5|6|9o|w2|1al1s5|16]17|20] - | chiro) [g'gg% 11.35 [0.000]**
16 1|3 ]walwe|ar| -] -|-|-|-1]-]-]chirs [g'gg‘g‘) 5.858 [0.000]**
17 |1|3]ale|9|wal1s|7|-|-]-]-]chirw [10357200‘5 7.56 [0.000]**
” 16.995 -
18 (1|3 |5 |9 |2f1|1s|1s| |- |- |- |chivao| PSS | 7.147 (0.000]
19 [1|3|s5|6|9|12]1a]16|20]|-]-]-]chirq [ggg% 10.25 [0.000]**
20 |1]3|6|9|12]1al16]17|20]| -] -] - |chiroo) [8'2451411] 10.62 [0.000]**
21 | 1|3 |5 |8 lw|w.|1r|-|-|-|-]-/|chiraw) [1006276233 5.481 [0.000]**
2 |13 |s || -|-]-|-|-|-1]-1-]cnirs [107'308242] 6.928 [0.000]**
23 |1]3|s5 |79l -|-|-]-]-]chirw [104'353‘%53 10.02 [0.000]**
) 12618
24 | 1|3 |5 |6|7|09|12|14]16]20] |- |chi210) | FO0 | 107 [0000]
25 |1]2|3|8|9|12]13]|1a|15[17] -] - | chira) [g'ggi] 97.92 [0.000]**
market | 1| 3|5 |9 |14]16|17|-|-]-|-|-|chira) [1022;78% 7.166 [0.000]*

Note : Table (1) reports the lagged variables that create appropriate autoregressive forms for each Fama-French portfolio. All estimated
models use a constant term. Column (L.R) reports the results on the likelihood ratio statistic. The last tests whether the missing lagged
variables of the initially estimated AR(20) models can jointly be dropped. P-values are reported in the brackets. The last column reports
the F-statistic for the joint significance test for the selected variables.*(**) denotes rejection at 5% (1%) significance level.
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Further evidence in favor of the suggested AR specifications are found in the F-test column
that assesses the joint significance of the remaining non excluded variables. The p-values
of the corresponding F- statistics are reported in the brackets. The results clearly indicate
that the chosen lagged variables of all AR models are jointly significant at both

conventional levels of significance.

Furthermore table (D) in the appendix that reports the log-likelihood values and the Ljung-
Box Q statistics on the estimated residuals at different number of lags, provide solid
support for the chosen autoregressive models, since the results strongly indicate that no
statistically significant autocorrelations are found at 5% significant level in all 26 AR

models even at very distant lags.

So, as in Morelli (2011) a well fitted autoregressive process is what it takes to create an
uncorrelated sequence of residuals from the initial excess return series. However, the
statistically significant autocorrelations found on the squared residuals series at all selected
number of lags, clearly indicate the presence of ARCH errors and apparently imply that

residuals series may well be uncorrelated but they are not independent.

3.1 Estimating time varying beta using volatility models.

In order to proceed with the estimation of time varying beta coefficients using volatility
models a two stage process is followed. The first stage estimates the conditional variance
of the AR residuals correspond the excess returns of the market portfolio, and the second,
estimates conditional covariances for the cross products of the latter residuals and the ones
correspond each AR model of table (1). Evidently this approach assumes that both
components of conditional beta, conditional variances and conditional covariances, follow

a known volatility process.
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Using the square error terms of the market portfolio the analysis estimates three volatility
models with results reported in table (3). The competing volatility frameworks are
GARCH (1,1), FIGARCH (1,d,1) and FIEGARCH (1,d,1). Note that tables (3i) and (3ii)
which both are nested in table (3) estimate the above volatility models under the
assumption of normality and t student respectively. Finally table (2) concentrates the

fundamental mathematical expressions of all competing volatility frameworks.

Table (2) Mathematical frameworks of GARCH, FIGARCH, FIEGARCH models.

q p
2 2 2 2 2
GARCH | Ot =&+ Zaigt—i + Zﬂzat—i =gy +a(l)e +B(L)oy | yma i sae
=1 = B(L)=piL+..+fpL”

FI O(L)=(L-gsL-...-L")

sarch | o2 = ofl-O(L)T* +{L- O(L)(L- L)' L-O(L) e’ | ewr-astnir o

G:FIE:H |Og(0't2) = aH'(D(L)_l(]-_ l—)_d [1+ Q(L)]Q(Vt_l) 904) =6, +6,v,|-E(v )]

Note : For the general GARCH (p,q) case presented here, p refers to the number of GARCH terms, while g numbers the ARCH terms
and ap denotes the constant term of the volatility equation. For FIEGARCH ® stands for the mean of the logarithmic conditional
variance, while ®(L) and ¥(L) are polynomials in the lag operator, ®(L)=(1-p:L)x...x(1-g,L) and P(L)=(1+y:iL)x...(1+y,L) and (1-L)*
denotes the fractional difference operator, with d reporting the order of fractional intergration for the log variance. The presence of long
memory implies stronger persistence of shocks to volatility than the one correspond by the GARCH type model. Note that modeling
log of o° instead of just o> implies that FIEGARCH does not require any constraints for assuring the positive sign of the expected
conditional volatility. This stems EGARCH model of Nelson (1991). In contrast to GARCH, that requires non-negative coefficients in
order to ensure a positive sign for the expected conditional volatility, the EGARCH model of Nelson does not impose such constraints
on the parameters, since models the logarithm of the conditional variance. Furthermore the exponential or asymmetry feature of
FIEGARCH is ensured by the presence of the news impact function g(.) that defines the manner in which past returns affect the current
levels of volatility. Note that vi=e/c is the normalized innovation, 6; is the rate at which the magnitude of the normalized innovations in
deviations from the mean enter into current volatility levels. 8; coefficient is the one generates an asymmetry on the news impact on
volatility. So, if 6:<0 then negative innovations cause higher volatility than positive innovations of the same magnitude. Note that the
above asymmetrical reaction to innovations does not induce unconditional skewness in returns, which instead is produced by the
incorporation of an in mean feature. For the last notation see He et al (2008).

The existence of many empirical evidence endorsing the presence of long memory in
volatility?makes natural at this point the choice of long memory specifications alongside
traditional options in volatility modeling.*® Such frameworks are the FIEGARCH and

FIGARCH models that frequently have been used in the volatility literature.

2% See Crato and de Lima (1994), Baillie et al (1996), Robinson (1991), Baillie and Morana (2007).
% presumably GARCH and ARCH models are considered here the traditional volatility specifications. See
Morelli (2011), Bollerslev et al (1998).
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Furthermore since the empirical distribution Fama-French returns is characterized by a
severe leptokyrtic shape, choosing of normality as the solitary distributional assumption
may not be congruent for the properties inherited to the estimated conditional volatility
levels, and therefore the analysis estimates the above volatility models under an alternative

distributional assumption.

Indeed table (3ii) re-estimates GARCH (1,1), FIGARCH (1,d,1) and FIEGARCH (1,d,1)
under the t-student assumption. The latter sets an interesting alternative especially if

returns are characterized by a fat tail distribution.

Although all volatility models initially are estimated using one ARCH and one GARCH
term, however the long memory volatility specifications under the assumption of t student
turn over a non statistically significant ARCH term at both conventional levels of
significance.*'Deciding to drop the ARCH terms and continue with the restricted versions
of the models is a decision eventually based upon likelihood ratio test. The related statistics
and the corresponding p-values for FIGARCH and FIEGARCH models are X?*(1) =
0.675919 [0.4110] and X?(1) = 0.978886 [0.3225] respectively. The p-values are reported
in the brackets. Obviously both tests accept the restricted frameworks and so the reported
in table (3ii) FIGARCH and FIEGARCH models use alone the GARCH term and therefore
the estimated long memory volatility models become the FIGARCH(1,d,0) and

FIEGARCH(1,d,0) respectively.

Once the competing volatility models are estimated a decision must taken about the

framework that will ultimately model the conditional variance. This is the next step in the

% Those are 1% and 5%.
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analysis and is equivalent as seeking the best volatility model among those presented in
tables (3i) and (3ii). The comparison of results in table (3) indicate that the best volatility
model is FIEGARCH (1,d,0) estimated under the t-student assumption. The model
estimates a statistically significant long memory parameter, d=0.442, while it’s log-
likelihood value and both information criteria, Akaike and Schwarz, report respectively the

highest and smallest values among all estimated volatility models.

However it seems true that the rest frameworks also exhibit well conditional
heteroskedastic properties. Those properties are seen in the high p-values of the Ljung-Box
Q statistics, the acceptance of null in all negative and positive size bias tests and the
outcomes presented in all individual Nyblom statistics, clearly implying the stability of

estimated coefficients in time.

As it has been said most of the results in table (3) endorse FIEGARCH as the best
volatility model. However the Engle and Ng (1993) sign bias tests and the statistical
significance of 0, coefficient, that denotes the rate at which the magnitude of normalized
innovations in deviations from the mean enter the current volatility levels, at 1%

significant level question somewhat the evident superiority of the model.

Specifically the statistical significance of the sign bias tests in all frameworks imply the
strong presence of asymmetric phenomena in the Fama-French returns. The belief is
strengthen by the fact that both 6, coefficients, estimated under either the normality or t-

student assumptions are not statistically significant, although this holds true
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Table (3) Estimations of GARCH (1,1), FIGARCH (1,d,1), FIEGARCH(L,d,1) using &2,

Table (3i) - Normal Distribution Table (3ii)-t-student Distribution
GARCH | FIGARCH | FIEGARCH | GARCH | FIGARCH | FIEGARCH
1,1 (1,d,1) (1,d,1) (1,2) (1,d,0) (1,d,0)
0.582 0.469 4.175 0.929 0.730 3.838
® [0.021]* [0.010]* [0.000]** [0.003]** [0.011]* [0.000]**
0.106 -0.033 -0.558 0.104 ) i
* [0.000]** [0.664] [0.002]** [0.000]**
0.875 0.775 0.796 0.859 0.716 0.710
By [0.000]** | [0.000]** [0.000]** [0.000]** | [0.000]** [0.000]**
0 i i -0.205 ) ) -0.117
! [0.057] [0.046]*
0 i i 0.209 ) 0.147
2 [0.000]** [0.000]**
d ) 0.809 0.456 ) 0.762 0.442
[0.000]** [0.000]** [0.000]** [0.000]**
Logl -2877.1 -2873.3 -2857.8 -2863.6 -2862.6 -2845.44
Alaike 5.938 5.930 5.904 5.912 5.910 5.879
Schwarz 5.953 5.945 5.934 5.932 5.930 5.909
Q(50) 36.003 35.585 40.466 36.349 35.848 40.096
[0.931] [0.938] [0.829] [0.925] [0.934] [0.840]
Q(100) 97.339 97.001 93.361 96.296 96.270 93.100
[0.556] [0.566] [0.667] [0.586] [0.586] [0.674]
Q(150) 145.298 146.139 135.673 143.625 145.239 135.915
[0.593] [0.573] [0.792] [0.631] [0.594] [0.788]
Q(200) 193.862 192.777 185.610 192.781 192.601 184.061
[0.608] [0.630] [0.759] [0.630] [0.633] [0.783]
Q(250) 242.935 244.064 235.992 240.833 243.767 235.113
[0.613] [0.593] [0.728] [0.649] [0.599] [0.741]
SBT 3.629 3.429 3.422 3.603 3.453 3.470
" [0.000]** | [0.000]** [0.000]** [0.000]** | [0.000]** [0.000]**
NSB.T 1.254 0.173 2.666 1.108 0.416 1.785
T [0.209] [0.862] [0.007]** [0.267] [0.676] [0.074]
PSBT 0.785 0.388 0.092 0.573 0.423 0.100
T [0.432] [0.697] [0.926] [0.566] [0.671] [0.920]
Joint 24.613 25.326 14.838 23.359 24.221 15.542
[0.000]** | {0.0007** [0.001]** [0.000]** | [0.000]** [0.001]**
No 0.093 0.045 0.098 0.181 0.048 0.166
N, 0.144 - 0.189 0.258 - -
Nqg - 0.086 0.227 - 0.072 0.074
A\ 0.106 0.061 0.132 0.210 0.040 0.078
N1 - - 0.295 - - 0.070
Ng, - - 0.213 - - 0.147
8.782 9.125 10.301
Student DF - - - [0.000** | [0.000]** | [0.004]**

Note : Tables reports the estimated coefficients on each estimated volatility model. P-values are reported in the brackets. Results are
reported : a) for the Akaike and Schwarz information criteria, b) for the Ljung Box Q statistic at different lags, c) for the Engle and Ng
(1993) ci) S.B.T, (sign bias test), cii) N.S.B.T (negative size bias test), ciii) P.S.B.T (positive size bias test), civ) joint (joint sign and
size bias test), d) for the Nyblom statistic in all estimated coefficients, where for instance (N.) corresponds to Nyblom statistic for
coefficient a, whereas (N;) corresponds to Nyblom statistic for b coefficient, ) for the Log-likelihood value. * (**) denotes rejection at
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5%(1%) significance level. For Nyblom statistic note : Asymptotic 1% critical value for individual statistics = 0.75, Asymptotic 5%
critical value for individual statistics = 0.47.

for different levels of significance. Particularly, if FIEGARCH is estimated using the
normality assumption 6; turns out being not statistically significant at both conventional
levels, whereas if FIEGARCH is estimated under t-student the same variable is not

statistically significant at only 1% significant level.

On the other hand 0, parameter which is statistically significant in both versions of
FIEGARCH it is probably of no use, since the results clearly indicate that the negative and
positive size bias tests are not statistically significant in all volatility models.**So, there is
actually a conflict between the statistical significance of 6, coefficient and it’s actual
contribution in improving the other two volatility models, FIGARCH and GARCH, that do

not incorporate terms for eliminating the size biases.

Hence, all evidence conduce that the news impact function is not the competitive edge of
FIEGARCH. However the analysis, principally motivated by the competitive values
reported for the log-likelihood function and the corresponding estimated information
criteria, decides to model the conditional variance upon the FIEGARCH framework, using

the t-student distribution.

As for the cross products of error terms * the paper in all 25 cases estimates a GARCH
(1,1) model under the assumption of normality. The estimated coefficients and other
corresponding results are all reported in tables (E) and (F) in the appendix. Note that using

alternative distributions or estimating long memory volatility models for these cross

2This result is true for all cases except the one correspond to negative size bias test for FIEGARCH under
normal distribution

%*The errors terms here refer to residuals generated from the autoregressive model correspond the market
and each individual Fama-French portfolio. The cross products are estimated using the R program and
particularly the cross-covariance function of package “NCF”. Modeling these cross products through a
volatility model generates the conditional covariances.
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products generally delivers irrational outcomes and that’s why the paper avoids at this

point the use of such complex volatility forms.

However, the results presented in tables E and F in the appendix provide strong evidence
that GARCH (1,1) may in fact be the correct specified form, since results at the Ljung-Box
Q statistics indicate the absence of serial correlation in the residuals at all selected lags,
while the sign and size bias tests imply the absence of relative asymmetric phenomena®
and the individual Nyblom statistics indicate the absence of structural breaks. The next step
in the analysis uses equation (12) to estimate the 25 time varying betas. Table (G) in the
appendix presents their summary statistics, while graph (1) below prints their graphical
representation. The feature in table (G) that intrigues the most is the characteristic of long
memory that designates certain estimated beta series. Indeed looking at the column

reporting the long memory estimates the analysis detects 9 cases where these estimates are

above the threshold point of 0.5 and at the same time are statistically significant.*®

Graph (1) Time varying beta of the 25 Fama-French portfolios : “The volatility approach”.
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3% If asymmetries were present then GARCH (1,1) should estimate statistically significant sign and size bias
tests The fact that in all cases the asymmetrical subtests are statistically insignificant provides strong
evidence against this hypothesis.

*The presence of long memory can be defined can be defined in terms of persistence in the observed
autocorellations. Fractional integration in a series y; can be described as (1-L)%(y;-p)=u, where L is the lag
operator, d is the fractional integration parameter, u is the expectation of y; and u; is considered a stationary
short memory disturbance with zero mean. If |d|>1/2 y; is non stationary and has long memory. If 0<d<1/2 y,
is stationary, while for -1/2<d<0 vy, is stationary and is referred to as anti-persistent.
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Note that returns in all 25 Fama-French portfolios constitute stationary processes, as

clearly can be seen in the results presented in table (B) in the appendix.

So now the analysis is in a position to test whether the beta coefficient is indeed a pricing
risk factor. In order to do that we estimate cross sectional regressions as in equation (14).
The regression is estimated over every month and a total of 965 regressions are performed.
Summary statistics on the estimated y; coefficients are presented in table (G) in the
appendix under the reference name “risk premium (I)", while graph (2) below presents it’s

graphical evolution.

Graph (2) Estimated risk premium over the full sample period using the “volatility approach”.
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Table (3) estimates average risk premiums over the total period and the two equal spread
in time sub-periods, each extending over 41 years.**The brackets below the estimated
means report the corresponding t-statistics.®” Irrespective of the sample period the results

clearly indicate a non statistically significant negative risk premium and hence the

% Splitting the sample into two equal sub-periods provides more robust testing.
¥The statistical significance here refers to the outcome of the following hypothesis test : Hy:y = 0 against

the alternative H, : y;, # 0. Note that y, denotes stands for the average risk premium.
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outcomes imply the rejection of conditional CAPM.®Note that the null hypothesis

H, :y, =0 is against the two sided alternativeH, :; #0 .

Table (3) Average risk premiums and t statistics over the total period and two equal sub-periods

Average risk premium | Full Sample | Sub-period 1 | Sub-period 2
= -0.106 -0.050 -0.164
7 [-0.046] [0.019] [-0.086]

Note : The table reports average risk premiums of the full sample and two equal sub-periods, obtained from monthly cross section
regressions. In the brackets the t-statistic values are reported. *(**) denotes rejection at 5% (1%) significance level.

So, under the volatility approach the estimated time varying beta coefficients have no
explanatory power over the formation of Fama-French portfolios returns.** However, as
was stated in the introduction using realized returns instead of real expected data tends to
violate certain fundamental aspects of the CAPM model and since the absence of expected
returns is a rather insurmountable issue, it is useful at this point to apply the methodology

presented in Pettengill.et al (1995).

Under the dichotomy of market excess returns into up and down categories table (4)
reports the estimated average risk premiums*® and hence presents outcomes on the joint

conditional test.

Table (4) Average risk premium (1) following the methodology of Pettengill et al (1995).

Average risk premium Full Sample Sub-period 1 Sub-period 2
—+ 0.400 0.578 0.207
71 [0.172] [0.218] [0.110]
—- -0.856 -1.089 -0.651
71 [-0.422] [-0.482] [-0.368]

Note: Both significance tests are based on one—tailed test. In the brackets t-statistics are reported.*(**) denotes rejection at 5% (1%)
significance level.

*These findings are consistent with a number of studies. See for example Davis (1994), Fama and French
(1992), Pettengill et al (1995)

“Ppettengill et al. (1995) notes that an insignificant beta can be attributed to the aggregation of data during
periods where the excess market return is positive and negative.

**The excess market returns are divided in two categories. The ones correspond the up market and the rest
which belong to the down market. The risk premiums are estimated separately using cross sectional
regressions and the monthly estimates are averaged so that the following two hypotheses can be tested : a)

H, : 7, =0 against the alternative H, :7," >0, and b) H, : 7, =0 against the alternative H, : 7, <0
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The results in contrast with the outcomes reported in Pettengill et al. (1995) present an
insignificant positive and negative relation in the up and down markets respectively. The
results are valid both in the full sample and the two equal extended in time sub-periods,
and so clearly results suggest that time varying beta coefficients cannot be regarded
statistically significant pricing risk factors even when conditioning on the sign of excess
market returns. Therefore the notion of Pettengill et al (1995) as this is integrated in the

joint conditional test is clearly rejected.

3.2 Estimating time varying beta using i) the recursive OLS estimates and ii) the

Kalman filter approach.

The next section estimates time varying conditional betas using two different
methodologies. Those are a) the recursive regression approach and b) the Kalman filter

analysis.
3.2.1 The recursive OLS approach.

Graph (3) presents graphical representation of all 25 recursively estimated betas, while
graph (4) after having applied cross sectional regressions, for every single available* time
period, generates the corresponding market risk premiums.** Obviously the above

estimations differ significantly from the ones presented in the previous procedure.*®

Table (5) resumes results in all aspects of the estimated y; coefficient which the analysis

refer to as risk premium (I1). As usual y; stands for the estimated risk premium of the

simple conditional CAPM model, while 7" and 7 both refer to the joint conditional

! Availability here refers to the availability of data at certain points in time.
*2 The recursive OLS betas are estimated using the Eviews 6 program.
* Table (H) in the appendix concentrates the descriptive statistics of the 25 recursively OLS estimated betas.
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CAPM approach. Again the results show that the null hypothesis,** on either the

conditional or the joint conditional tests cannot be rejected, while this is true irrespective of

the examined sample period.

Graph (3) Time varying beta of the 25 Fama-French portfolios using the recursive OLS approach.
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Graph (4) The estimated risk premiums over the full sample period using the recursive OLS beta approach.
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Table (5) Average risk premiums (I1) following the methodology of Pettengill et al (1995).

Average risk premium Full Sample Sub-period 1 Sub-period2
— 0.291 -0.488 -0.094
71 [-0.064] [-0.079] [-0.053]
— 0.560 0.754 0.289
71 [0.135] [0.139] [0.168]
_ -1.561 2.648 -0.599
71 [-0.329] [-0.406] [-0.350]

Note: Significance tests on yi(+) and yi(-) are both based on a one-tailed probability. Significance test on vy, is based on a two tailed

probability.*(**) denotes rejection at 5% (1%) significance level.

Hence the recursively estimated time varying betas does not have any explanatory power

over the formation of returns of the 25 Fama-French portfolios.

“H,:y7 =0H,:» =0,H,:% =0
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3.2.2 The kalman filter approach

As mentioned earlier an alternative procedure in the estimation of time varying beta
coefficients is the Kalman filter analysis. The latter constitutes a recursive algorithm for
the estimation of the systematic risk of the market and generally operates through the
induction of new information every time the fundamental regression is repeating itself.*® In
general lines Kalman filter is consider being a dynamic system that follows a state space

regression that is briefly discussed in the following lines.

Suppose we have n different observations at time t that contain k different signals with

additive noise such as in equation (17)

Yt = CXt ‘|‘€t a7
where Y, is the (nx1) observation vector, X; is the (kx1) signal vector, C is the (nxKk)
coefficient matrix,*’that describes the relationship between signals and observations while

&tis a (nx1) vector of observation noise for which we accept the following relations

(18)

E(ee)=0

(19)

Let assume that the signal vector X; follows a first order vector autoregression (VAR) as in

the following equation®’

X, =AX_,+v,

(20)

**In recursive estimation methodology, a new estimate is obtained when adding a correction term to the
previous estimate. The correction is such that if the new observation is higher than the previous estimate the
last is corrected upwards and vice versa. Naturally, if the new observation is equal to the previous estimate
there is no meaning to change the estimate since there exist no new information.

% C is broadly known as the observation matrix.

" Equation (20) is known as state space representation.
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where X; is a (kx1) signal vector and A defines a (kxk) coefficient matrix that describes the
dynamics of the system.**The system noise v; is a (kx1) vector, that exhibits similar
properties as the observation noise vector. Those are resumed in the following two

equations

E(v)=0

1)

Given N observations the problem of finding an optimum estimator is obtained by

minimizing the mean variance-covariance matrix of the estimated errors. That is

Prj - E(eNelN)

(23)
Finally, the estimator at time N may be written as
XN :AXN—1+kN[YN _CAXN—l] (24)
where ky is the (kxn) Kalman gain matrix defined as in (25)
T 1 -1
ky =S,C'[CS,C+R,] o
and Sy is the (kxk) matrix defined as in the following equation
e 1
Sy = AP A+Q, o

Suppose now that coefficients in a K variable regression vary across time according to the

following equation

., = Aat + @7

where oy is the (kx1) coefficients vector, A; is the (kxk) system matrix similar to the one
presented in equation (20), while v; is a (kx1) serially uncorrelated vector for which we

assume that

*® This matrix is usually called system matrix.
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v, ~N(0,Q) )
The regression equation is defined as
Y, = X.a +& 29)

where Y is a (nx1) observation vector, X;is a (nxk) matrix of independent variables and

the disturbance term is serially uncorrelated vector for which we assume

&~NQO.R) 0
Kalman filter sets a recursive process of three steps. The algorithm starts with the
prediction of the signal. At time N-1 the best estimate of the vector coefficient ay before
the observation arrives at time N is given by equation (31) which constitutes the prediction

step.

ay = A8y (31)
After arrival of observation Yy three quantities exist : a) the estimate of the signal at time
N-1, b) the estimate of observation and finally c) the difference between the actual

observation and its estimate which is named innovation.

The new information used in kalman filtering is not the observation itself but the difference
between the observation and its estimate. This step is called innovation accounting.
Finally, the last step which is called update, weights innovation by the Kalman gain and
adds the latter to the estimate of the signal in order to provide an updated estimate. The last

is presented in equation (32)

éN = _1é-N—1 + kN (YN -X N AN—lé-N—l) (32)

where ky (kxn) matrix is the Kalman gain defined in equation (33)
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kN :SNXN[XNSNXN -I-RN]_1

(33)

Sy =ALPLAL+Qu (34)

Equation (31) is flexible and allows the OLS estimates of the coefficients in the
regression.”® However, the system matrix can be specified in more than one ways and
therefore we have a range of choices over this matter. In regards with our application two
alternatives are performed. Those are : a) the random walk hypothesis and b) the

autoregressive alternative.>

In terms of CAPM these choices imply two things. First that the observation equation is

basically the market line

Yie = BiXie + Ei (35)
where yi= ri-ror stands for the excess return of asset or portfolio i at time t, Xij=rm — rot
denotes the excess return of the market portfolio also at time t, and & is without serial

correlation residual that follows the normal distribution with zero mean and ¢ variance

The second thing implied is that the beta of asset i will follow either the random walk

model

By = lBi,t—l Vi
or the first order autoregressive alternative

ﬂit _ﬂ = pﬁ(ﬂi,t—l _ﬂ) TV

(36)

@7

* The last requires setting A=I and Q=0
% Note that estimation of the time varying beta coefficients using the Kalman filter approach is carried out
with Stamp 8.2 program.
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with vi~NID(0,6%) and B defined as a long term coefficient.™

Using the Kalman filter approach and assuming that time varying beta coefficients follow
the random walk model as in equation (36), the analysis estimates next all 25 recursively
estimated betas. Note that graph (5) below generates their graphical output, while graph (6)
presents their corresponding market risk premiums which are denoted as risk premiums
(1. These are generated after estimating the cross sectional regressions of equations (14)

and (15) for every time period that there exists availability of data.

Graph (5) Time varying beta using the Kalman Filter approach and assuming a random walk state equation.

Graph (6) Risk premium (I11) using the kalman filtered beta and assuming a random walk model for the state
equation.
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*! Given an initial estimate of beta B, and an initial prediction error variance p°, the beta can be estimated
recursively through Kalman Filtering. Note that an initial beta estimate and a prediction of the observation
equation disturbance variance are regularly obtained through the full sample OLS estimation of the market
line equation.
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Using the estimated risk premiums printed in graph 6 the analysis moves on with the
assessment of the statistical significance of the average risk premiums. Table (6) presents
the corresponding results under the simple conditional CAPM approach and the
methodology presented in Morelli (2011). Note that the table presents the estimated
average risk premiums for the full sample period and the two sub-periods, while brackets
report the estimated t statistics that correspond the null hypothesis that the average risk

premium is equal to zero.

Estimated risk premiums in all 9 blocks of the table are not statistically significant at 5%
significant level, although the sign of the up market risk premium in the full sample case
and in sub-period 1 is not what is expected and hence this fact alone rejects the joint
conditional framework. Conversely the signs of the down market, both in the full sample
and in the two sub-periods are the ones expected, although again both conditional tests find

no explanatory power over the time varying betas.

Table (6) Estimated risk premiums (I11) using the kalman filter approach and assuming the random walk
state equation.

Average risk premium Full Sample Sub-period 1 Sub-period2
= 0.814 1.564 0.067
7 [0.107] [0.018] [0.010]
— -4.875 -12.924 3.765
71 [-0.021] [-0.040] [0.754]
— -4.660 -4.398 -4.887
71 [-0.769] [-0.589] [-1.092]

Note: Significance tests on yi(+) and vyi(-) are based on a one—tailed probability. Significance test on vy, is based on a two tailed
probability.*(**) denotes rejection at 5% (1%) significance level.

Graph (7) Time varying beta using the Kalman filtering and assuming AR(1) equation for the state equation

modeling.
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Graph (8) Risk premium using kalman filtered beta and assuming an AR(1) model for the state equation.
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Assuming that the state equation forms a first order autoregressive framework, graphs (7)
and (8) in the previous page present respectively the kalman filter estimated betas and the

corresponding market risk premiums which are denoted as risk premiums (1V).>?

Finally table (7) concentrates results on conditional and joint conditional CAPM under the
AR (1) hypothesis for the state equation. Again the same conclusion drawn from all
previous approaches is repeat it here, and that is all estimated risk premiums, either when
examining the full sample case or the two equal spread in time sub-samples, either when
conditioning cross sectional regressions on the dichotomy of up and down market excess
returns or not, they are not statistically significant at 5% significant level, and therefore
time varying beta measurements of risk cannot be considered as statistically significant
pricing risk factors. Impression cause the unexpected positive signs of the average risk

premiums reported in all three blocks of the table that correspond the down market case.

Table (7) Estimated average risk premium (V) using the Kalman filter betas and assuming an AR(1) state
equation.

Average risk premium Full Sample Sub-period 1 Sub-period?2
— 0.887 0.853 0.920
i [0.836] [0.786] [0.889]

%2 Note that the descriptive statistics of the Kalman filter estimated betas and the corresponding risk
premiums are reported in table (J) in the appendix.
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— 0.854 0.886 0.819
" [0.745] [0.750] [0.742]
- 0.950 0.796 1.083
§ [1.032] [0.887] [1.179]

Note: Significance tests on yi(+) and vyi(-) are all based on a one-tailed probability. Significance test on vy, is based on a two tailed
probability.*(**) denotes rejection at 5% (1%) significance level.

Note that the issue of seasonality is extensively explored in table (L) in the appendix. The
table reports a) the monthly average risk premiums and b) the corresponding t-statistics
over the full sample period after re-estimating equations (14) and (15) for every
month®and using all previous methodologies for the estimation of time varying beta. The
results indicate a consistent throughout the whole year non statistically significant beta-
return relation, a fact that strengthens considerably the outcomes presented in the previous

parts of the analysis.>*

4. Conclusions.

The present paper attempts to estimate and test four versions of the conditional CAPM,
which are all based on the idea of time varying beta coefficients. Those versions introduce
corresponding methodologies of how conditional beta can be estimated, and briefly
mentioned those alternatives are : a) the volatility approach, estimates time varying beta
after modeling conditional variances and conditional covariances as appropriate volatility
frameworks, b) the recursive OLS approach, which estimates conditional betas from OLS
regressions after adjustments made on the sample size, and finally c) the kalman filter
approach, which estimates betas using recursive analysis and inducing two different
assumptions on the state equation. Those are a) the random walk hypothesis and b) the

AR(1) alternative.

530bviously these monthly estimations require the previous separation of data according to the months of the
year.

> The presence of strong relations found only in particular months of the years can bias results when the
overall analysis is conducted. A representative example is found in Pettengill et al. (1995) . Their statistically
significant unconditional beta—return relation found solely in the months of January and February tend to
affect the unconditional beta-return relation through out the hall year.
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Furthermore, the paper following Morelli (2011) attempts to test these conditional CAPM
forms upon the sign of excess market returns, following at this point Pettengill et al. (1995)
who suggest the division of excess market returns into up and down markets. This joint
conditional test constitutes the core interest of the presents analysis. Although all four
methods estimate completely different sets on the time varying beta coefficients series,
however all methods agree that the beta measurement of risk cannot be considered a
statistically significant pricing risk factor, either when the analysis examines the simple
conditional CAPM or when testes the joint conditional approach. These results are further
supported a) by a monthly seasonality analysis and b) by the split of the full sample into
two sub-periods. In both situations the estimated risk premiums in conditional and joint
conditional tests are not statistically significant and therefore time varying betas can not be

regarded as statistically significant pricing risk factors.
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Appendix
1.Naming the Fama-French portfolios.

The 25 Fama-French portfolios contain equal weighted returns generated from the
intersection of 5 ME portfolios and 5 BE/ME portfolios. ME stands for market equity or
(size) and is defined as price times number of shares, with breakpoints for every month t
using all NYSE stocks for which Fama-Frech have availability over the market equity.
Price is taken from CRSP, while number of shares is taken from Compustat (if available)
or alternatively from CRSP. The five ME portfolios are ranked and named as “small”, “2”,

6‘37’, 6‘4” and ‘Cbig7’.

BE is defined as the book value of stockholders equity plus balance sheet deferred taxes
and investment tax credit (if available) minus the book value of preferred stock.*The five

BE/ME portfolios are ranked and named as “low”, “2”, “3”, “4”, “high”.

The intersection of ME and BE/ME portfolios naturally creates 25 new portfolios. For
convenience the paper applies the following notation. The intersection of “small” and
“low” portfolio create a new asset which the paper refers to as “1”. Combining “small”
with portfolios “2”, “3”, “4” and “high” from the BE/ME segmentation creates respectively
portfolios “2”, “3”,”4” and “5” of the present analysis. Combining now “low” with
portfolios “2”, “3”, “4” and “big” which are generated from the segregation of NYSE
stocks based upon the market equity generates new assets which the paper name as “6”,
“117, “16”and “21”. The same logic is applied in all cases and therefore all names can be

seen in the inputs of table (A) in the next page.

> For definitions see the http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/variable_definitions.html
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Table (A) The intersection of 5 ME portfolios and 5 BE/ME portfolios. The creation of the 25 Fama-French
portfolios.

low| 2 | 3 | 4 | High
small | 1 2 3|4 5
2 6 71819 10

3 11 121314 ] 15
4 16 |17 18 [19] 20
big 21 |22 123 |24| 25

Graph (1) Graphical representation of excess returns of the 25 Fama-French portfolios.
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Table (B) Augmented Dickey-Fuller test for the 25 Fama-French portfolios.

Augmented Dickey-Fuller test

. 28472 . WO |, 26233 6 | BIA |, | 28228
[0.000]** [0.000]** [0.000]** [0.000]%* [0.000]%*
) 219587 : 259% |, 27171 | 26348 | | 29130
[0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
5 27138 . 2489 | -25.808 5 | 26858 | o | -27.169
[0.000]** [0.000]** [0.000]%* [0.000]** [0.000]%*
24623 25113 25.808 -26.788 119.726
4 Toooop | % |oooop | M | poooop | 1% | joooope | 24| [o.0007%*
-25.410 25,589 219.297 219.476 8.241
5 o000 | 10 |poooop| ¥ | ooop | 2 |joooop+| 2 | [0.000]*

Note : *(**) denotes rejection at 5% (1%) significance level.
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Table (C) Summary statistics of the market and the 25 Fama-French portfolios.

Portfolio | Mean | Skewness | Kurtosis | st.devi Q(50) Q(100) Q(150) Q(200) Q(250) Q(300)
L Jows | o | oo | | gmen | s | sman | e | Eom | o
o [om | ewo | mon o | S | e | s | mmae | s | et
s [ | o | wsons | oo | i | Bt | s | smier | smes | i
o [ | oww oo |oon | gm0 | mam T smow | e | o | s
s 1w | e | mew | oo | un | g | e | s | e |
o [omo | om | suo | som | g | bown | e | e | mn | o
7 Jowm | e | mow | o | e | Sl | s | aow | oo | oo
o [ aos | som | | we | gmun | mewn T emer | | st o
o [0 | ams | oo | row | i | ons T ennl | ey | oo
o | s | o | e | ol | | s e s s
u | ows | o | oo | paer | SIS e | s aen | e | e
[ omss | ows | aom | oo | st | o | b e | |
5 oo | nms | s | orae | pmom [T mms o | ae | e
1w Jom | us | | v | gmom | aenn T emes | s o [ e
5| | emo | mam | oas | S| e | mom | omes | s | e
o |oms | am | s | oz | gon | o | uoms e | e | me
v [0 | oo | wemr | s | mes| awin | unss | e | anon | osn
BEREAEAE A AR
o [ own [ aeso | zvao |y | s e T i aen | ae | o
0 || 2 | | e | | e | enen T o o [ e
o [osmo | oow | swn | s | I e | o e | s | o
2 [oso | aow | soe | swe | S s wom T ansn | aeno |
5 |ow | oms | s | s | e | e | mane e | a0z
|0 | oms | e | oo | S| e | semr | amees | s | e
5 | o | wms | soan |sos | ot | oonn | amest T amorm T vz aian
e | oorr | oom | 7 sen | W | i | e [ anne | enen | o

Note : Q stands for Ljung-Box statistic. In the brackets the corresponding p values are reported. *(**) denotes rejection at 5% (1%)

significance level.
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Table (D) Logl, Ljung-Box Q and Q* statistics for the chosen autoregressive models.

P Logl Q(50) Q(100) Q(150) Q(200) Q*(50) Q*(100) Q*(150) Q*(200)
L 379754 | 50305 | 108425 | 145576 | 173812 326.403 377.006 386.837 390.647
: [0.461] [0.265] [0.586] [0.909] | [0.000** | [0.000]** | [0.000]** | [0.000]**

) 36305, | 55594 | 130069 | 154263 | 180.237 245.451 275.819 279.160 279.794
: [0.272 [0.023] [0.388] [0.838] | [0.000]** | [0.000]** | [0.000]** | [0.000]**

3 aag7gp | 75236 | 144806 | 177746 | 200.293 636.580 1011.96 1048.97 1053.10
: [0.012]* | [0.002]** | [0.060] [0.480] | [0.000** | [0.000]** | [0.000]** | [0.000]**

. 340304 | 567407 | 125083 | 168819 | 201943 543.101 786.334 800.229 804.114
: [0.238] | [0.045]* [0.139] [0.448] | [0.000]** | [0.000]** | [0.000]** | [0.000]**

c as1709 | 53718 53.718 171.846 | 200.645 301.145 609.136 623.970 626.219
: [0.333] [0.333] [0.106] [0.473] | [0.0001** | [0.000]** | [0.000]** | [0.000]**

5 3306, | 37816 91.755 129441 | 166.027 373.384 581.029 601.953 626.883
: [0.897] [0.709] [0.886] [0.961] | [0.000** | [0.000]** | [0.000]** | [0.000]**

: a33107 | 30829 83.132 106.317 | 135.779 512.550 741.880 745177 750.963
: [0.984] [0.888] [0.997] [0.999] | [0.000** | [0.000]** | [0.000]** | [0.000]**

g aoaga | 37265 77.078 106.888 | 137.892 646.942 856.127 863.812 860.768
: [0.908] [0.956] [0.996] [0.999] | [0.000]** | [0.000]** | [0.000]** | [0.000]**

9 7403 | 38525 85.401 116102 | 152.877 885.673 1224.43 1237.66 124544
: [0.881] [0.850] [0.981] [0.994] | [0.000** | [0.000]** | [0.000]** | [0.000]**

10 aa07g | 497663 | 105150 [ 140.157 | 164879 557.495 886.145 905.566 918.105
: [0.482] [0.342] [0.706] [0.966] | [0.000]** | [0.000]** | [0.000]** | [0.000]**

1 a3133 | 40376 83516 107.475 | 142.509 591.118 757.217 767.148 782.100
: [0.832] [0.882] [0.996] [0.999] | [0.000** | [0.000]** | [0.000]** | [0.000]**

1 318087 | 61038 99.874 128453 | 167.590 613.319 895.443 909.175 920.314
: [0.136] [0.484] [0.897 [0.953] | [0.000** | [0.000]** | [0.000]** | [0.000]**

13 a1030 | 39272 91.941 117.732 | 146.991 531.082 798.170 803.269 807.713
: [0.862] [0.704] [0.975] [0.998] | [0.000** | [0.000]** | [0.000]** | [0.000]**

1 318763 | 38669 89.948 115441 | 144.648 541.917 811.589 817.456 821.902
: [0.877] [0.754] [0.983] [0.998] | [0.000]** | [0.000]** | [0.000]** | [0.000]**

15 aa07ss | 47079 | 112446 | 148427 | 168.076 510.610 768.755 784.451 788.285
: [0.591] [0.186] [0.520] [0.951] | [0.000** | [0.000]** | [0.000]** | [0.000]**

16 314812 | 34800 69.068 96132 | 132604 | 364.148 440.829 477.006 497.832
: [0.949] [0.992] [0.999] [0.999] | [0.000** | [0.000]** | [0.000]** | [0.000]**

17 313745 | 39028 80.223 107.415 | 141785 | 402.047 581.619 586.693 593.260
: [0.868] [0.927] [0.996] [0.999] | [0.000** | [0.000]** | [0.000]** | [0.000]**

18 aiss3 | 51052 99.189 131.054 | 164.079 364.807 483.449 486.723 490.815
: [0.432] [0.504] [0.865] [0.970] | [0.000** | [0.000]** | [0.000]** | [0.000]**

19 am71n | 33373 95.080 117.816 | 140.792 561.452 741.105 745.852 748.733
: [0.966] [0.620] [0.975] [0.999] | [0.000** | [0.000]** | [0.000]** | [0.000]**

20 aae206 | 40547 | 101377 [ 140954 | 162789 756.564 1021.08 1031.13 1034.78
: [0.827] [0.442] [0.689] [0.974] | [0.000** | [0.000]** | [0.000]** | [0.000]**

”1 a01406 | 46411 92.239 126.818 | 161.266 | 444.836 593.825 615.093 627.009
: [0.618] [0.697] [0.915] [0.979] | [0.0001** | [0.000]** | [0.000]** | [0.000]**

. og7715 | 53517 | 104815 [ 138885 | 180.080 600.027 807.140 831.081 841.899
: [0.340] [0.351] [0.732] [0.840] | [0.000** | [0.000]** | [0.000]** | [0.000]**

»3 a06L54 | 50289 95.119 131.672 | 158.589 760.161 832.365 835.879 839.919
: [0.461] [0.619] [0.856] [0.986] | [0.000** | [0.000]** | [0.000]** | [0.000]**

» 310505 | 39-166 94.006 118.066 | 141.310 696.672 850.311 852.104 853.768
: [0.865] [0.649] [0.974] [0.999] | [0.000** | [0.000]** | [0.000]** | [0.000]**

. amsegz | 63379 | 128081 [ 162129 | 183.000 792.423 957.573 1036.71 1037.30
: [0.096] | [0.030]* [0.235] [0.800] | [0.000** | [0.000]** | [0.000]** | [0.000]**

market | 200806 | 44974 94.870 127473 | 164.735 591.678 787.614 799.688 807.480
: [0.674] [0.626] [0.908] [0.967] | [0.000]** | [0.000]** | [0.000]** | [0.000]**

Note : Q and Q* stands respectively for the Ljung-Box statistic of residuals and squared residuals. In the brackets the corresponding
p-values are reported. *(**) denotes rejection at 5% (1%) significance. Logl refers to the value of the log-likelihood value function.
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Table (E) Estimating conditional covariances using the GARCH (1,1) model.

GARCH (1,1)-Normal Distribution

Logl o B1 Akaike Schwarz SB.T N.S.B P.S.B Joint
cPL | brozrs [o?dgg]s** [0%8317** 11762 | 1L.ir2 [ééég] [g'.gg%] [82325141 [cliggg]
CP2 | 563489 [0%3?]7** [0%88]3** 11622 ) 11.632 [g'.ggg] [3%33] [82332] [%ggé]
CP3 | 540851 [o.odggj‘** [090'33?** 11155 ) 11165 [8'.233] [828?3] [8232%)] [823@2]
Cha | -S3eo47 [0968513]7** [0%38]5** 11109 ) 11.119 [8'?23] [8233%] [8:‘61;;] [82‘518]
s | e | o | S | e | | g | | o
CP6 | 545755 [0%(3)}1;)** [823(%] 11256 ) 11.266 [822?2] [82%2131] [8231532] [8;231]
CPT | 533806 [0%3817** [090'33;)** 11044 | 11054 [8:24112] [g:ggi] [8:\231] [82222]
o | i | e | i | ow | o | o | s | s o
o | e | S | 3 | v | we | i | | S | o
CP10 | -5406.44 [o%gg]g** [O%gg]o** 11.186 | 11.1960 [8:23%] [g'égg] [8:2232] [8:3821
CP1l | 536143 [o%gg]l** [o%gclﬁl** 11092 ) 11.103 [g:zlgg] [g'.écl)g] [8:22321 [8:3221
v | s |t | oo | oo | o | g | o | coe | oo
CP13 | 525221 [0%8‘11]7** [o?o'ggf** loger | 10817 [81832] [8'.23421] [8:55)%] [8:2321
CP14 | -5270.66 [0%82]1** [0.063817** 10905 | 10915 [8'.?122] [8';?18] [8:232] [é%;]
oP1s | 536674 | iiogie | poooopes | 11199 | 11118 | e | 0% | poseo | o)
TR AN SECAECAR AR A
cPi7 | 528113 [o%gg]g** [0.0638]7** lo7e1 | 10801 [81%8] [ééf—,g] [8:222] [3:23‘11]
CP1s | -510041 [o%gg]?’** [o.odggf** 10739 | 10.749 [%écl)g] [8'.8321 [8:%%] [8:;312]
CP19 | 18677 [o%(z)g]s** [o.odgg]z** 10669 | 10679 [8)712;] [g'.gég] [822?)2] [éﬁggg]
o s | e | o | o | | o | o | o | on
CP21 | -5002.09 [o%gg]l** [o.odgg?** 10535 | 10545 [éiigg] [8'.22%] [8:471:733] [3:2:7;71]
CP22 | -5025.93 [0?6(3)(1)?** [0%33]7** 10399 | 10409 [g'.é%] [g:gg;] [8:471:?] [8:2321
cP23 | 503475 | oo | poooopes | 0417 | 10427 | i | oo | posss | [oeed)
crr | | | o | oo | o | oo | o | o | oo
CP25 | 52418 [o?dggf** [0%28]7** 10857 | 10867 [%)égg] [%.ggg] [8:2(352] [gégg]

Note : Q and Q* stand respectively for Ljung-Box statistic of residuals and squared residuals. In the brackets the corresponding p values
are reported : *(**) denotes rejection at 5% (1%) significance level. Table reports the results on the Engle and Ng (1993) sign bias test
(SBT), negative size bias test (NSBT), positive size bias test (PSBT), Joint test (Joint).
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Table (F) Estimating conditional covariances using the GARCH (1,1) model.

Nq Ng Q(50) Q(100) Q(150) Q(200) Q(250)
CPL_ | 018 | 010 | jooen | ignoss) | fossal | [oses) | [osee]
cP2 | oo | om0 | ooy | s | foson | [osen | foses]
cPs | o | 01 | oo | ooy | josn | forse | foses)
cPe | 0188 | 012 | oy | joosy | fosiel | fong | foor
o | om | om | g | pm |l | omes |k
CP6 0.080 0.097 f’(f 56;5% F(f 59932% 1[30732? 1[(7)493519 2[32882?
cPr_ | 012 | 01 | jomy | ool | foses) | fows) | fosoe]
ces | 0w | o8 | ey | orn | o | joor | fooen
cPo | 01 | 014 | oosy | ooty | josorl | [ote) | [ossel
CP10 0.133 0.156 f’g 56835% [73 ;)fgz] 1[304553 2[(2)_6682? 2[891213213
CP11 0.109 0.193 ?g '978251] [7(? 53036] 1[3,3552%3 l[g.lég%s 25222?
CPz_ | 012 | O | ooy | jor | [oxel | [0z | [oaon)
CPs_ | 0150 | O | (voms | (os | [oasy) | (ot | [o2s9)
e | oms | oms | Al mIm T imss [ansr e
crs | o | om | o |k | s | ean |
CPs | 004 | 007 | ey | foors) | foase) | [ostg | fosal
CPu_ | oMl | OW0 | (vess | joor | [oew) | [ossy | [ossa
o | _ow | owe | poH | R | | e
CPo | 009 | 032 | jyiy | joag | foaa) | fore | foso]
CP0 | 00 | O0M2 | ooy | Jopse | [oro) | fooan | foors]
cPA | 00% | 00 | (vses | ooy | [oess) | [oseq) | [oeae]
e | oo | ow | R e | | s
s | oo | e | eh [ oR | We |l | e
CP24 0.047 0.138 €0§§619% 1[8532213 1[843%]7 2[8,83'22? 2[3732317
cPs | o0 | O | oy | foso | [oen | foinl | [o1s]

Note : Q and Q* stand respectively for Ljung-Box statistic of residuals and squared residuals. In the brackets the corresponding p values
are reported : *(**) denotes rejection at 5% (1%) significance level. For the individually estimated Nyblom statistic note that the 1%
critical value is equal to 0.75 while the asymptotic 5% critical value is equal to 0.47. N, and N, stands respectively for the individually
estimated Nyblom statistics of coefficient a and b.
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Table (G) Descriptive statistics of a) betas estimated using volatility models and b) corresponding risk
premiums (I).

beta
1 4079 | 2.604 | 6340 | 1.805 [0%3128‘;*
’ 3504 | 2316 | 6093 | 2.162 [o.odgg?**
3 2262 | 1550 | 8913 | 2302 [0%3142‘;*
4 2138 | 1342 | 3516 | 1501 [o,odgg]z**
5 2498 | 2.344 | 30202 | 4569 [o.%gg?**
6 2347 | 1239 | 1169 | 1169 [0%3411]1**
7 1806 | 0777 | 3392 | 1.259 [09631117**
8 1601 | 0827 | 2235 | 1204 [0_%88?**
9 1720 | 1122 | 7798 | 2385 [0_00'88]7**
10 2234 | 1204 | 3631 | 1.499 [O%ggj‘r**
1 1918 | 0893 | 5945 | 1504 [O%gg]s**
12 1485 | 0487 | 0678 | 0579 [O%gg]i*
13 1508 | 0643 | 1321 | 0.960 [0_0(58(7)]7**
14 1579 | 0695 | 0455 | 0829 [0%%%,?**
15 2075 | 1211 | 2669 | 1370 [o,ocjgg]s**
16 1450 | 0586 | 5884 | 1789 | (ST,
17 1343 | 0409 | 0612 | 0471 [0%31416]*
18 1284 | 0418 | 2478 | 0983 [0%31282]*
19 1278 | 0619 | 0807 | 1.007 [o.odgé?**
20 1836 | 1040 | 1931 | 1239 [O%gi]s**
21 1022 | 0281 | 1558 | 1.022 [o_odgi?**
22 0895 | 0245 | 0023 | 0533 [0%31337]*
23 0936 | 0332 | 0832 | 0672 [O%gi?**
2 0987 | 0508 | 1235 | 1.058 [0%33]%*
25 1647 | 1140 | 13840 | 2.934 [0%31415]*
Risk premium (I) | -0.106 | 2290 | 14.006 | 0.919 0.295
[0.032]*

Note : In the brackets the corresponding p values are reported : *(**) denotes rejection at 5% (1%) significance level. GPH test reports
the slope coefficient of the Log periodogram regression. The number of periodogram points is 31 and the bandwidth parameter is set to
0.50.
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Table (H) Descriptive statistics of a) estimated betas using the recursive OLS approach and b)
corresponding risk premiums (I1).

g?ﬂﬁiﬁg’%ﬁa mean | St Dev | kurtosis | Skewness (t;;lt_{

1 1744 | 0116 | 10383 | 1.065 [o%gflﬁl**
2 1579 | 0125 | 10848 | -0.231 [O%ig?**
3 1510 | 0141 | 6731 | -2.205 [o.ld(l)g]l**
4 1404 | 0201 | 19328 | -3819 [o%gg?**
5 0032 | 0144 | 74028 | 8367 [81333]
6 1148 | 0101 | 7.097 | -2317 [o%gg?**
7 1306 | 0.096 | 14.118 | -3.413 [o?dggf**
8 1242 | 0100 | 7.364 | -1.435 [0.06%17**
9 1318 | 0096 | 3194 | -1673 [o.ldgg?**
10 1450 | 0139 | 10164 | -2.707 [o%gg]?**
1 1236 | 0094 | 17421 | -4.125 [o_ldgéf**
12 1127 | 0046 | 16.476 | -3.760 [O%ggig**
13 1197 | 0120 | 24421 | -4.256 [O%ggf**
14 1197 | 0120 | 24421 | -4.256 [o%gg?**
15 1556 | 0127 | 2.034 | -1.046 [o%gé]l**
16 0994 | 0081 | 21511 | -3.195 [8212451]
17 1099 | 0.060 | 16413 | -3.902 [o?d%?**
18 1119 | 0071 | 9.188 | -3.007 [0.16(1)8]7**
19 1261 | 0111 | 6152 | -2.181 [o.ldcl)é?**
20 1.609 | 0.172 4.252 -1.689 [o_ldgg;;**
2 0962 | 0041 | 14127 | 3543 [o%gg?**
22 0916 | 0032 | 52.861 | 4.741 ['8 gg 41]
23 1027 | 0062 | 4645 | -0.943 [O%ggf**
2 1267 | 0119 | 2293 | -1.002 [O_ldgg]g**
25 1410 | 0134 | 5322 | 0.220 [81521

Risk premium () | -0.291 | 4506 | 51685 | -2098 | o3

Note : In the brackets the corresponding p values are reported : *(**) denotes rejection at 5% (1%) significance level. GPH test reports
the slope coefficient of the Log periodogram regression. The number of periodogram points is 31 and the bandwidth parameter is set to
0.50.
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Table (1) Descriptive statistics of a) the kalman filter estimated betas and the b) corresponding risk premiums
(11) using the random walk assumption.

Kalman filter . GPH
Beta ) mean St. Dev | kurtosis | Skewness test
Random Walk choice

1 1534 | 0563 | 3779 | 1.105 [0%3317**
p 1331 | 0532 | 5628 | 1170 [O%ggjr’**
3 1220 | 0463 | 1770 | 1004 [o%gcz)?**
4 1124 | 0468 | 2616 | 1126 [0%3817**
5 1229 | 0545 | 5431 | 1597 [O_Odgi?**
6 1325 | 0321 | 0188 | 0.057 [o,odgg?**
7 1183 | 0314 | 1860 | 0638 [8%2‘71]

8 1102 | 0326 | 1249 | 0650 [o%ggjl**
9 1114 | 0318 | 0807 | 052 [0_%33?**
10 1247 | 0386 | 0802 | 0644 [0.0688]2**
1 1232 | 0267 | -0.014 | -0.053 [09688]2**
12 1105 | 0171 | -0.906 | -0.035 [0%8313**
13 1060 | 0213 | 0335 | 0102 [0_%83?**
14 1060 | 0213 | 0335 | 0102 [o.odgg?**
15 1202 | 0390 | 0287 | 0335 [o%%?**
16 1141 | 0154 | 0310 | 0182 [o%gg]z**
17 1059 | 0149 | 0513 | 0087 [0_0(53(7)]2**
18 1046 | 0174 | 273 | -0822 [0.063813**
19 1075 | 0274 | 0546 | 0.168 [0%8(1);5**
20 1217 | 0375 | 0523 | 0527 [o%gg?**
21 0.999 | 0.064 | -1.303 -0.090 [0%5(1)13**
22 0941 | 0107 | 0448 | -0371 [o%é?**
23 0895 | 0116 | 1.900 | 0.204 [o,%gg]g**
24 0967 | 0245 | 1884 | 0110 [o.%gg?**
25 1060 | 0517 | 7475 | -0.975 [0%38]3**

Risk Premium (Ill) | -4.7805 | 17596 | 890.86 | -29.855 [gggg]

Note : In the brackets the corresponding p values are reported : *(**) denotes rejection at 5% (1%) significance level. GPH reports the
slope coefficient of the Log periodogram regression. The number of periodogram points is 31 and the bandwidth parameter is set to 0.50.
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Table (J) Descriptive statistics of a) the kalman filter estimated betas and the b) corresponding risk
premiums (1V) using the AR (1) assumption.

1 0547 | 2061 | 3137 | 1043 [8223]
2 0156 | 1921 | 2274 | -0.261 [8::132;]
3 0221 | 1.369 | 0494 | 0230 [8&23]
4 0265 | 1.454 | 1.066 | -0.219 [8:%2]
5 0552 | 1592 | 0150 | -0.049 [8:?)22]
6 0176 | 1398 | 0380 | 0.180 [?ﬁgf]
7 0171 | 1150 | 0.889 0.107 [ggfg]
8 0289 | 1043 | 1.821 | 0.239 [8;1,%]
9 0525 | 1.390 | 10588 | 2.296 [8:%]
10 0475 | 1325 | 2978 | 0694 [8:ﬁ[71]
1 0106 | 0884 | 0853 | -0.558 [gggf]
12 0241 | 0794 | 079 | 0.265 [g:ggg]
13 0330 | 0.807 | 0993 | 0.369 [83%2?1]
14 0330 | 0.807 | 0993 | 0.369 [8222]
15 0332 | 1287 | 0433 | 0.345 [g:gg]
16 0017 | 0703 | 2116 | 0407 [g:(z);tg]
17 0.063 | 0660 | 2077 | 0545 [8:%22]
18 0.063 | 0661 | 2075 | 0545 [8:;251
19 0287 | 1058 | 6245 | 1636 [81333]
20 0144 | 1219 | 4017 | -1.074 [g:ggg]
21 0232 | 068 | 0742 | -0.288 [o%gg?**
2 0004 | 0421 | 1172 | 0484 [gig;]
23 20020 | 1078 | 1203 | -0451 [811321
24 0.040 | 0.748 4.097 0.367 [_8,5;1(2)3]
25 0.112 | 3.149 4211 0.439 [o-,%'(;l()?]l**
Risk premium (IV) | 0887 | 1061 | 4284 | -0.445 [823%]

Note : In the brackets the corresponding p values are reported : *(**) denotes rejection at 5% (1%) significance level. GPH reports the
slope coefficient of the Log periodogram regression. The number of periodogram points is 31 and the bandwidth parameter is set to 0.50.
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Table (K) Correlation matrixes estimated for a) the risk premium series and b) the time varying beta
estimates using the full sample.

Risk premium | | Risk premium Il | Risk premium Il | Risk premium IV
Risk premium | 1
Risk premium 11 -0.055 1
Risk premium 111 0.004 -0.018 1
Risk premium IV -0.031 -0.020 0.0006 1
Portfolio-1
Betal 1
Beta2 0.276 1
Beta3 0.501 0.209 1
Beta4 0.241 -0.064 0.159 1
Portfolio-2
Betal 1
Beta2 0.181 1
Beta3 0.377 0.250 1
Beta4 0.125 0.161 0.134 1
Portfolio-3
Betal 1
Beta2 0.214 1
Beta3 0.703 0.193 1
Betad 0.045 0.081 0.005 1
Portfolio-4
Betal 1
Beta2 0.234 1
Beta3 0.590 0.236 1
Betad -0.016 0.151 -0.044 1
Portfolio-5
Betal -0.067 1
Beta2 0.603 -0.098 1
Beta3 0.139 0.076 0.111 1
Beta4
Portfolio-6
Betal 1
Beta2 0.373 1
Beta3 0.646 0.283 1
0.012 -0.011 0.070 1
Portfolio-7
Betal 1
Beta2 0.167 1
Beta3 0.591 0.155 1
Betad 0.227 0.168 0.143 1
Portfolio-8
Betal 1
Beta2 0.158
Beta3 0.644 0.238 1
Betad 0.155 0.226 0.092 1
Portfolio-9
Betal 1
Beta2 0.070 1
Beta3 0.330 0.294 1
Betad -0.040 -0.153 0.033 1
Portfolio-10
Betal 1
Beta2 0.286 1
Beta3 0.704 0.327 1
Beta4 0.051 0.142 0.023 1
Portfolio-11
Betal 1
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Beta2 0.160 1

Beta3 0.712 0.245 1

Betad -0.042 0.093 0.087
Portfolio-12

Betal 1

Beta2 0.007

Beta3 0.613 0.004 1

Betad 0.074 -0.115 0.176
Portfolio-13

Betal 1

Beta2 0.199 1

Beta3 0.687 0.239 1

Betad 0.155 -0.005 0.050
Portfolio-14

Betal 1

Beta2 0.197

Beta3 0.682 0.239 1

Betad 0.163 -0.005 0.050
Portfolio-15

Betal 1

Beta2 0.481 1

Beta3 0.727 0.439 1

Betad 0.013 -0.122 -0.039
Portfolio-16

Betal 1

Beta2 0.444 1

Beta3 0.760 0.498 1

Betad -0.052 0.018 0.017
Portfolio-17

Betal 1

Beta2 0.133 1

Beta3 0.692 0.135 1

Betad -0.083 0.110 -0.162
Portfolio-18

Betal 1

Beta2 0.153 1

Beta3 0.564 0.260 1

Betad 0.001 0.216 -0.035
Portfolio-19

Betal 1

Beta2 0.329

Beta3 0.716 0.344 1

Betad 0.158 -0.113 0.079
Portfolio-20

Betal 1

Beta2 0.409 1

Beta3 0.760 0.456 1

Betad -0.107 -0.086 -0.143
Portfolio-21

Betal 1

Beta2 0.237 1

Beta3 0.540 0.266 1

Betad 0.141 0.294 0.183
Portfolio-22

Betal

Beta2 0.248 1

Beta3 0.593 0.105 1

Beta4 -0.146 0.123 0.006
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Portfolio-23

Betal 1

Beta2 0.244 1

Beta3 0.572 0.193 1

Beta4 -0.170 0.183 -0.089 1

Yy

Portfolio-24

Betal 1

Beta2 0.491 1

Beta3 0.711 0.495 1

Betad 0.077 0.135 0.101 1
Portfolio-25

Betal 1

Beta2 0.417 1

Beta3 0.344 0.339 1

Betad -0.037 -0.023 0.160 1

Note : The table reports a) the correlation matrixes of the four estimated risk premiums and b) the correlation matrixes corresponding
each Fama-French portfolio using on each occasion the time varying betas that are estimated after applying four different methodologies.
Specifically “Betal” and “Beta2”correspond respectively to the volatility and recursively estimated betas, while “Beta3”, “Beta 4”
correspond to the Kalman Filter betas assuming respectively the random walk and the AR(1) for the formation of the state equations.

Table (L) Month by month estimates of conditional and Joint conditional CAPM models.

Month

Y1 | Y1+ | Y1-
Volatility Approach
January 0.034 (0.057) 0.121 (0.342) -0.337 (-0.012)
February 0.003 (0.044) 0.023 (0.356) -0.378 (-0.239)
March 0.036 (0.056) 0.124 (0.463) -0.402 (-0.321)
April 0.023 (0.046) 0.234 (0.237) -0.023 (-0.564)
May 0.086 (0.036) 0.120 (0.461) -0.109 (-0.289)
June -0.074 (-0.035) 0.023 (0.023) -0.237 (-0.102)
July 0.023 (0.083) 0.036 (0.129) -0.204 (-0.345)
August 0.056 (0.047) 0.147 (0.728) -0.367 (-0.291)
September 0.025 (0.057) 0.245 (0.269) -0.102 (-0.241)
October 0.093 (0.023) 0.700 (0.236) -0.238 (-0.309)
November -0.056 (-0.034) 0.461 (0.234) -0.346 (-0.328)
December 0.046 (0.036) 0.209 (0.312) -0.023 (-0.320)
Recursive OLS
January 0.032 (0.049) 0.129 (0.445) -0.411 (-0.367)
February 0.023 (0.032) 0.046 (0.854) -0.561 (-0.231)
March 0.057 (0.023) 0.123 (0.341) -0.245 (-0.459)
April 0.078 (0.012) 0.178 (0.201) -0.201 (-0.031)
May 0.089 (0.238) 0.123 (0.309) -0.139 (-0.342)
June -0.032 (-0.230) 0.230 (0.210) -0.234 (-0.438)
July 0.037 (0.034) 0.093 (0.029) -0.561 (-0.398)
August 0.047 (0.092) 0.459 (0.034) -0.301 (-0.467)
September 0.023 (0.003) 0.267 (0.045) -0.662 (-0.304)
October 0.038 (0.027) 0.039 (0.038) -0.201 (-0.345)
November -0.032 (-0.026) 0.036 (0.342) -0.348 (-0.256)
December 0.012 (0.023) 0.278 (0.467) -0.561 (-0.372)
Kalman Filter- Random walk assumption
January 0.340 (0.920) 0.109 (0.331) -0.142 (-0.287)
February 0.020 (0.321) 0.122 (0.290) -0.331 (-0.201)
March 0.038 (0.342) 0.311 (0.221) -0.225 (-0.348)
April 0.093 (0.026) 0.281 (0.301) -0.109 (-0.441)
May 0.045 (0.309) 0.002 (0.237) -0.301 (-0.331)
June 0.063 (0.662) 0.267 (0.221) --0.661 (-0.211)
July 0.012 (0.783) 0.201 (0.256) -0.301 (-0.101)
August 0.014 (0.012) 0.672 (0.099) -0.234 (-0.381)
September 0.029 (0.035) 0.320 (0.102) -0.221 (-0.362)
October 0.010 (0.003) 0.208 (0.180) -0.561 (-0.209)
November 0.027 (0.023) 0.291 (0.371) -0.463 (-0.110)
December 0.122 (0.221) 0.041 (0.209) -0.021 (-0.463)
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Kalman Filter-AR(1) assumption

January 0.020 (0.301) 0.261 (0.267) -0.431 (-0.320)
February 0.340 (0.012) 0.781 (0.269) -0.301 (-0.462)
March 0.002 (0.123) 0.119 (0.301) -0.018 (-0.387)
April 0.568 (0.203) 0.278 (0.021( -0.202 (-0.190)
May 0.021 (0.039) 0.103 (0.331) -0.267 (-0.621)
June 0.287 (0.021) 0.108 (0.321) -0.101 (-0.302)
July 0.107 (0.209) 0.465 (0.129) -0.467 (-0.101)
August 0.003 (0.661) 0.209 (0.374) -0.332 (-0.107)
September 0.022 (0.398) 0.311 (0.301) -0.281 (-0.356)
October 0.078 (0.451) 0.219 (0.363) -0.374 (-0.763)
November 0.125 (0.289) 0.019 (0.321) -0.020 (-0.632)
December 0.245 (0.332) 0.077 (0.231) -0.023 (-0.333)

Note : The table reports the monthly estimated risk premiums and the corresponding t-statistics, the last are reported in parenthesis, for

the conditional and the joint conditional CAPM versions using the full sample. *(**) denotes rejection at 5% (1%).
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Chapter 2

Fractional Cointegration and the Term Structure Theory of Interest Rates

Evidence from the European Interbank Money Market



Fractional Cointegration and the Term Structure Theory of Interest Rates.

Evidence from the European Interbank Money Market.

ABSTRACT

The present paper examines the term structure theory of interest rates using daily data from the
European interbank money market. The expectations hypothesis suggests the existence of long run
equilibrium relations among interest rates of different maturities. The theory implies the stationary
nature of spreads while traditionally is verified through cointegration analysis. However, the
restrictiveness of 1(0)/1(1) dichotomy and the possibility that the time series in question may be
fractionally integrated, forces the present application to examine cointegration rank through
fractionally integrated systems, and indeed the paper applies such a fractional analysis by following
the non parametric variance ratio test of Nielsen (2010) that does not require the specification of a
particular data generating process and is invariant to short run dynamics. For the period under
consideration and for comparative purposes the present work also estimates the parametric tests of
Johansen’s (1988,1991) and the fractional alternative of Breitung and Hassler (2002). Results on
the cointegration rank among non-parametric and parametric tests differ significantly, even though
there seems to be no consensus on the parametric results when different lag augmentations are
applied. Finally, the paper proceeds with an informal comparison between the estimated and
hypothesized cointegrating space, given that a consistent estimator of the last is easily obtained
through the variance ratio test.

Keywords: Fractional integration and cointegration, Interest rates, Cointegration rank,
Cointegration space, Long Memory, Unit root processes, Non-parametric, Term structure, Variance
ratio



1. Introduction

Over the years cointegration analysis has been one of the milestones of empirical economic
research, proven extremely useful when testing the validity of term structure theory.
According to expectations hypothesis the yield spread between long and short-term interest
rates is an excellent predictor of future changes of short rates over the long run, and if true,
the empirical research must provide strong evidence in support of the stationary nature of
yield spreads series. Put it in other words, if expectations hypothesis holds then the term
premium of interest rates by default is equal to zero, and this in terms of cointegration

implies that short and long term interest rates constitute cointegrated series.*®

Interestingly the empirical validity of the theory provide little evidence in support of the
pure expectations hypothesis,”” and a possible explanation for the observed deviations can
be attributed to the restrictiveness of 1(1)-1(0) dichotomy that characterizes all traditional
methods in cointegration analysis. Indeed the standard cointegration approach allows
solely integer values for the memory parameters of the system and this explains why

relevant tests for the existence of cointegrating relations rely heavily on unit root tests.

However, many economic and financial series display fractional memory properties in
their integration order and this naturally leads next to fractional cointegration, a method

that was initially introduced by Granger (1986) and was later analyzed for properties and

%This is the purest form of expectation hypothesis advanced mainly by Irving Fisher. The theory postulates
that short term bonds yield the same expected returns as long term ones. This implies that forward interest
rates are unbiased estimates of expected future spot rates. Note that a major stream of criticism for the pure
form of expectation hypothesis stems from the fact that this ignores several related issues such as a) the risk
of capital loss, and b) the unexpected inflation.

*" See for example Cook and Hahn (1990), Dua (1991), Fama (1990), Friedman (1979), Kane (1983),
McCulloch (1975), Mankiw and Miron (1986), Van Horne (1965).
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characteristics by Cheung and Lai (1993), Jagannathan (1999), Marinucci and Robinson

(2001) and Tsay (2000).%®

The fractional cointergration method allows both the integration order of the observed
series and the integration order of equilibrium errors to take on real values in the (0,1) area,
and this justifies why the process is considered an adaptable “tool” in acknowledging and

detecting possible cointegrating relations.*

The necessity of applying fractional instead of standard cointegration techniques emerges
due to a number of reasons. One motivation arises as a result of mounting evidence
supporting the existence of long run relations among long memory processes,®® while
another reason mainly demonstrated by Gonzalo and Lee (1998, 2000), states that the null
hypothesis of no cointegration will be rejected more often than the nominal’s level

suggestion, given of course the fractional nature of the observed series.

In the past the identification and modeling of long run relations in fractional cointegrated
systems has followed many approaches. Most of them built on the null hypothesis of no
cointegration versus the alternative of fractional cointegration. In the semi-parametric
frequency domain for example, Marinucci and Robinson (2001) apply a cointegration
procedure that compares the estimates in the integration order of the observed series,®
while Robinson and Yajima (2002) place weight on the eigenvalues problem generated by

the estimation of the spectral density matrix. Furthermore an interesting view has recently

%8 Empirical applications can also be found in Booth and Tse (1995), Masih (1995, 1998), Baillie and
Bollerslev (1994) , Dueker and Startz (1998).

A process is integrated of order d if it’s kth difference has a spectral density f(A)~CJA|*®™, such that A is
tending to zero, C>0 and k is nonnegative integer such that d-k<0.5 (Chen and Hurvich, 2003).Consider next
two processes, X;, Y; that are 1(d) processes. We say that those series are fractionally cointegrated if there
exists a linear combination U=Y-pX; such that Uy is I(d,) with d,<d. Obviously standard cointegration is a
generalization of fractional cointegration, with d, and d set respectively to 0 and 1.

% See for example Cheung and Lai (1993), Diebold et al. (1994), Baillie and Bollerslev (1994).

%1 Robinson (2008) provides rigorous theoretical support of this idea.
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demonstrated by Marmol and Velasco (2004) and proposes a Wald test of the null of
spurious relations against the alternative of a single cointegrating relation, with a similar

idea also applied in Hualde and Velasco (2008).

In the time domain the parametric trace test of Breitung and Hassler (2002) stands out and
solves a generalized eigenvalue problem of the type proposed by Johansen. However, the
approach as any other parametric procedure depends heavily on the correct specification of
short run dynamics and therefore the usual dilemmas about the correct number of lags are

inserting the fractional analysis, as is common for the Johansen parametric test.

The present paper in order to detect possible fractional cointegrating relations in a system
of four interest rates drawn from the European interbank money market applies the
nonparametric variance ratio test of Nielsen (2010). The test due to a number of virtues is
completely separated from other alternatives that are usual seen in the fractional

cointegration literature.

First, the statistic does not depend on the integration order of the observed series, while
neither the statistic nor its asymptotic distribution depend on b, that is the strength of the
cointegrating relation.®® Second, inferences on the cointegration rank do not presuppose the
estimation of cointegrating vectors, as contrary is true with other methods that depend
heavily on some kind of regression analysis.®® Finally, the most important advantage in

applying Nielsen’s variance ratio approach can be seen in the non parametric nature of the

®2Nielsen (2010) states that this is a major advantage since b by default is unobserved and it’s estimation
requires the estimation of cointegration relations first. The last demands the determination of cointegration
rank.

%3See for example Marmol and Velasco (2004). Their analysis focus on the comparison of OLS and GLS
estimates of cointegrating vectors. Hualde and Velasco (2008) on the other hand proceed to inferences on the
cointegration rank using the GLS estimates introduced in Robinson and Hualde (2003).
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test.®* In contrast to Johansen (1998, 1991) and Breitung and Hassler (2002) fully
parametric trace tests, the analysis does not depend on the misspecification of short run
dynamics and therefore avoids possible misspecifications in the lag augmentation, a state
that is very often responsible for the inconsistent and the erroneous estimate of

cointegrating rank.®

Section 2 presents the fundamental mathematic equations of the variance ratio test, while
section 3 uses time and frequency domain maximum likelihood methods to answer the
question of whether the observed interest rates series should enter Nielsen’s approach after
adjustments made on the interest rates series for a non zero mean or a deterministic time
trend or both. Sections 4 and 5 concentrate on the empirical results of the chapter and
moreover present estimations and results over the variance ratio test and the parametric
procedures of Johansen (1998, 1991) and Breitung and Hassler (2002) respectively. Finally
section 6 proceeds with an informal comparison between the estimated and hypothesized

cointegration space and section 7 concludes.

2. The variance ratio test

The nx1 vector Z; is said being fractionally integrated of order d,®® that is Z;< I(d), if

z(1-L)" =u &z, =(1-L)"u =A"u, )

®Even though the variance ratio test is characterized by Nielsen (2010) as non parametric the author remains
cautious about accepting the term. This is because the test actually depends on a user chosen parameter, that
is d;, which induces a hall family of tests. The parameter appears in the asymptotic distribution of the test and
defines decisively it’s shape.

% For example Lutkepohl and Saikkonen (1999) note that whenever the number of lags (k) is too small
relative to the true size, there can be severe size distortions, while on the other, hand significant power losses
may arise if k is too large. In this case too few cointegrating relations are going to be acknowledged.

%The definition applies both to univariate and vector cases. Note that a univariate stationary series is one that
is characterized by a continuous spectral density function bounded at the zero frequency. A vector defined as
an I(d) process is one that it’s d-th difference has a continuous spectral density matrix bounded, positive,
semi-definite and bounded away from the zero matrix. In terms of the eigenvalues of the spectral density
matrix this implies that these are non-negative, while there exists at least one eigenvalue that is bounded
away from zero.

70



where u; e 1(0) and (1-L)" is defined by the following binomial expansion

o TG-d)
D=2 Gt ®

where r(j)= jowtzfle"dt @3)

The parameter d determines the memory of the process. Specifically, for d>-1/2 vector Z;
is invertible, for d=0 is stationary with spectral density function bounded at the origin, for
d<1/2 is covariance stationary, while for d>1/2 is long memory with spectral density

unbounded at low frequencies.®’

Fractional cointegration although replicates the basic notions of standard cointegration,
however allows the observed series to be fractionally integrated. Moreover a vector of time
series variables is characterized as fractionally cointegrated if all variables are integrated of
order d>0.5 and at the same time exists a linear combination of the same variables with a

smaller degree of integration (d-b).

In technical terms the above statement can be recast into the following definition. The nx1

vector Z; is cointegrated, if Zie 1(d)®® and at the same time there exists a full rank nxr

matrix B, such that g'Z, €1 (d-b) for b>0,% where d and b are real numbers. The r

%Long memory time series are stationary processes that display a statistically significant dependence
between very distant observations in time. This dependence is formalized in terms of persistence in the
observed autocorellations. Specifically for a long memory process it’s autocorellation function will decay at a
hyperbolical rate, while the for a pure stationary process the same function will die out exponentially. Note
that the hyperbolic decay of the sample autocorrelation function does not necessarily stem from a long range
dependent process. In fact very often switching regime and change-point processes, display the same
empirical characteristics.
%The integration order of a vector Z; is determined by the highest integrated order observed among it’s
components. This possibly implies the existence of over-differenced elements.
%0Obviously b can differ in each cointegrating vector and so indexing b implies the following statement P, z;
€l(d-by) fork=1,...r
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independent columns of B’Z; product define the cointegration rank, while the space

spanned by the columns of { constitute the cointegrating space. ™

Using daily data from the European interbank money market the paper targets the
estimation of the non parametric variance ratio test presented in Nielsen (2010). The
interest rates under consideration are the Eonia and the Euribor interest rates of 7, 10 and

12 months, denoted respectively as ieonia, 17,110 aNd izp.

As was stated in the introduction, the variance ratio test contrary to conventional 1(1)/1(0)
cointegration analysis,”* does not depend on the integration order of the observed series or
the strength (b) of the cointegrating relations,’” while another advantage stems from the
nonparametric nature of the test that excludes the existence of possible misspecifications
in the short run dynamics. Indeed the statistic contrary to most parametric cointegration
rank tests, that are sensitive both to different specifications assumed by the underlying
model and to the lag-augmentations employed, performs adequately well in the
simulations performed in Nielsen (2010). Specifically the ratio test exhibits good size and
power properties to different specifications of the simulated models, although the sample

sizes, T=100 and T=250, are considered rather small for non parametric tests.

The statistic using a) the sample variances of the observed series and b) their fractional
partial sum is constructed as their ratio. In the univariate case of Z; the following notations

are applied

-d
L=AU, d>172,¢=1,2,... (4)

" Granger (1981,1983) provides an error correction formula for fractionally cointegrated systems. In
particular, if y~I(d) is a k-dimensional vector and z is a set of cointegrating vectors such that z=a’y~1(d-b)
then Granger proves that the appropriate error correction is H(L)(1-L)%=-y[1-(1-L)*](1-L)**z+C(L)e;

" Stock and Watson (1988), Johansen (1988, 1991).

"2 Note that variance ratio distribution does not depend on b.
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= _ A
L,=A"U d>0, t=1,2 ®)

The fractional central limit theorem that is applied for Z,"® assuming d>1/2 provides

equations (6) and (7). These report the sample second moments of Z; and 7{ and provide

their corresponding convergences in distribution assuming T tends to infinity.

1

)
Ty 72 —L50? o | W,(s)'ds ©)

=) 0
2(d+dy) C.2 D 2 1 2
ds =
T ' zzt >0, _)I Wd+d1 (s)"ds @)
=1

The univariate variance ratio statistic is then defined as the ratio of 6 to 7

Z j:wd (s)%ds

1
22 [ Wy (s)°ds

®)

Note that d; is a parameter chosen by the econometrician and is submitted solely to his

judgment. However, the fact that d, appears in the asymptotic distribution of the ratio

"Nielsen (2010) states that for d>1/2 and regularity conditions for u; the following central limit theorem can
be applied. T¥#%2 — 65,W(s), 0< S<I as T —> 0. Note that double arrow means weak convergence of a

process in D[0,1]. The same is valid for Z, .

"Note that —=—>denotes convergence in distribution whereas Wy denotes a special case of fractional

r
standard Brownian motion of order d>1/2 defined W,(r)=0, r=0 and W, (r) = IO (r—s)**dw,(s),

1
I'(d)
r>0. Note that W, denotes a standard Brownian motion.
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makes this choice less autonomous in the sense that the econometrician will pick up those

values of d; that maximize the power of the test.

Indeed Nielsen (2010) underlines the important fact that certain values of d; tend to
maximize the power of the test. Moreover a local power analysis in Nielsen (2010)
indicates that the power of the ratio test appears being monotonically decreasing in d; and
that d;=0.1 probably sets the best choice.”This means that higher values of d; do not
generate higher power for the test, while gains from using lower values to 0.1 are minor or

at least equal.

In the vector case the variance ratio test will be based upon the following statement

Ri(d)=AB ©

.
- a5 _ 11\
where A =>.27 and B =§Zt2t, z=Q1-L)"z -
Let now M;<...<\, be the ordered eigenvalues of Ry (di), with n;, j=I,...,n denote the
corresponding eigenvectors. Nielsen (2010) shows that the decision of whether an
eigenvector constitutes a cointegrating vector is solely based upon the rate at which the

associated eigenvalue converges to zero.”

Note at this point the adjustment potentials of the variance ratio to deterministic time

trends, nonzero means or both, using the following regression equation

"Nielsen (2010) comments that a small value of d; may distort the size properties of the test, while another
typical choice is that of d;= 1.

"®Nielsen (2010) acknowledges three cases: a) if Aj converges to zero at rate Op(T™) then eigenvector v; is
not a cointegrating vector, b) if the rate is Op(T*™*#*241) then v is a cointegrating vector and d-b<1/2 and
¢) if the rate is equal to Op(T ™) n; is again a cointegrating vector but d-b>1/2.
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Yi=a'0+7, (10)
where &= [1,t]', Z; denotes the residuals, while Y, stands for the observed series vector.”’

In this last case the de-trended variance ratio test is constructed upon the least squares
residuals of equation (10) and hence’®

L,=Y,-d'0 (11)
Once the variance ratio is estimated and the possibly corrected for the presence of

deterministic time trends, the analysis next uses the eigenvalues 2;, j=1,..,n to estimate the

trace statistic’® that is presented in equation (12)

Ay (d) =T 4, (12)
i1

where A, (d)—>U, (d, d,) (13)

Note that the asymptotic distribution depends on a) the integration order of the observed
series, d, b) the parameter d; indexing the family of tests and finally c) the dimensionality
of the problem, or state it differently the number of common stochastic trends, that is n-r.
On the other hand note that the distribution is independent to the degree of cointegration,

that is b.

The null hypothesis and the alternative are given in the following relation®

"If 8=[1,t]’ this stands for the presence of a deterministic linear time trend and a non zero mean. Obviously
other definitions of &, correspond to different specifications of equation (10). For example, for §=0 there are
no deterministic trends, while for 8.=1 there is a non zero mean.

"8It a de-trending procedure is under consideration then the asymptotic distribution should adjust through
appropriate simulations. This process in order to yield good size properties requires the smooth change of
critical values whenever the integration order of the observed series is changing. Actually in order to obtain
the right quantiles a consistent estimate of the integration order must be used. So assuming d* is such an
estimate then quantiles must be simulated in order to obtain the following asymptotic distribution U,,(d*,d,).
"*The trace statistic A, (dy) is asymptotically invariant to short run dynamics. Therefore as Nielsen (2010)
quotes any hypothesis test based on this statistic will eventually share this invariant property.

®The procedure compares the statistic A, (d;) with the corresponding critical values Cvéyn(d*, d,). So for
example, if the first value is smaller than the second then the null hypothesis Hy : r=0 is not rejected and the
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Hyir=r, H:r>r s

3. Interest rates : trend stationary or difference stationary processes.

As was stated in section 2 the non parametric variance ratio test is estimated after
corrections made in the observed time series for deterministic terms. Nielsen (2010)
decides the de-trending form of his data set solely upon the graph of the interest rates series
under consideration, while contrary the present analysis, uses the ARFIMA models, in

order to yield a decision based on evidence rather than intuition.®*

An important debate of the trend behavior of many macroeconomic and financial series
often implicates the discussion of whether such trends are best described as deterministic

time trends or unit root with drift models.®?

ARFIMA frameworks that often have been used in this conflict area of research, constitute
a conducive tool in determining the stationary nature of the interest rates series under
consideration and hopefully will decide in the present analysis the residuals upon the

variance ratio test is going to be estimated.

Although many researchers such as Chambers (1996) have used in the past exclusively
frequency domain methods, the present analysis applies time and frequency domain

maximum likelihood techniques.

Consider for example the following ARFIMA model

(L+al+.+a " )1-L)"x =(+4L+..+6,l%)e (14)

analysis concludes that the cointegration rank is r=0 . However, if it is rejected the process moves on and
compares A,(d;) with the corresponding critical value CV¢.,(d’, d;). The same procedure is repeated until
at some point there is acceptance of the null hypothesis.

8 The decision is obviously important since determines the data set upon which the ratio statistic is going to
be estimated.
82Gee Perron (1989), Andrews and Zivot (1992)
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In equation (14) the short run behavior of the series is captured severally by the ARMA
parameters, while the long memory property is modeled by parameter d®whose effect on

the short run dynamics is limited.>

Now equation (15) presents the deterministic model

X = ut+&, (15)
where e; is a stationary ARMA process®
a(L)e, =b(L)u, (16)
Differencing (15) provides equation (17)
AX = p+Ag, (17)
Taking first differences in (16) and solving for Ae; turns over
Ae, =a(L) " B(L)Au, (18)

Finally substituting the last equation in (17) turns over
a(L)Ax = 4 +b(L)Au, (19)

Chamber (1996) notes that Ax; although being stationary is in fact an over-differenced
process. This stems from the fact that first differencing a deterministic trend series adds on
a unit root in the moving average representation. Therefore the first difference of Ax; is

integrated of order minus one, and therefore expressing Ax; through the context of an

ARFIMA (p,d,q) should estimate d = —1.

Consider now the random walk model with a drift as in equation (20)

%The model is non stationary whenever d>0.5. On the other hand long range dependence occurs for any
value of d greater than zero.

#In terms of the spectral density function this means that the long range dependence is easily estimated
without imposing any prior restrictions on the higher frequencies components.

8, is white noise process.
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X =HtX 6 20)

Differencing (20) turns over equation (21)

a(L)Ax = g4 +b(L)u

(21)
where Ax; is expressed as an ARFIMA (p,d,q) with d =0

3.1 Time domain analysis.

The previous analysis states that ARFIMA (p,d,q) nests both the trend and difference
stationary versions®® and corresponds at each a specific estimation of d. In fact this
statement introduces a formal test for determining the residuals upon which the variance
ratio test will be based. However, a drawback of this process focuses on the sensitivity of

the estimated coefficients when different classes of ARFIMA are estimated.

Indeed Schmidt and Tschernig (1993) underlie the decisiveness of determining erroneous
AR and MA orders, and particularly state that possible misspecifications in either of the p
and g orders, may cause substantial biases in the estimation of the long memory
parameter. Specifically, for under-specification or over-specification of either p and q
orders, Schmidt and Tschernig (1993) worn for inconsistent estimates of not only AR and

MA coefficients, but also of d.

On the other hand, Sowell (1992) does not embrace this opinion at all and in contrast states
that ARFIMA is a parameterization where short and long run behavior is captured

separately by the ARMA components and the fractional differencing operator respectively.

8 The first difference of a deterministic trend series is integrated of order -1, while the first difference of a
unit root model is 0. A sufficient and necessary condition for the latter statement to be valid is that the
corresponding spectral density at zero frequency must not be zero, while for the former statement to exist the
spectral density must be zero at zero frequency. The conclusion that occurs is that testing the spectral density
at zero frequency is equivalent as testing the integration order of the observed series.
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Therefore erroneous estimates on the short memory part do not affect the estimation of the

long memory parameter,®’while the inverse according to Sowell (1992) is also true.

Actually Sowell (1992) suggests the selection of p and g orders according to Akaike and
Schwarz information criteria. His procedure starts by setting a-priori max orders for the
lagged autoregressive variables (p) and the lagged moving average components (q), while
next, using maximum likelihood functions, he estimates all ARFIMA models that are
generated from different combinations in the q and p orders.®® The above information

criteria are then helpful in ascertaining the best ARFIMA.

In order to determine the appropriate ARFIMA class, the analysis follows the general
scheme of Sowell (1992). However, limiting a-priori as Sowell does the p and q orders
seems rather restrictive and therefore the establishment of the appropriate ARFIMA class

is completely differentiated at this point from the latter procedure.

Actually the hall process evolves in five steps. Specifically : The first step generates the
first differenced interest rates series oOf igonia,i7,i10 and iy denoted respectively as Aeonia, Ai7,
Airo and Aj12. The second step uses Aeonia, Ai7, Airo, Air2 and applies on each series four long
memory methods in order to obtain for each series equal number of long memory
estimates, while the third step applies on each series fractional differencing in order to

produce the corresponding stationary processes. The fourth step uses the Box-Jenkins

¥The long range dependence occurs for any positive values of d. As Sowell (1992) claims this dependence in
terms of spectral density function occurs even if placing less restrictions on the higher frequency components
and this is seen as the flat segment of the spectral density graph.

8 Sowell (1992) notes that if d<0.5 the process consistently estimates all ARFIMA coefficients.
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methodology®to determine on the stationary series the appropriate AR and MA orders,
while finally the fifth step corresponds at each ARFIMA the estimated maximum

likelihood value and the Akaike and Schwarz information criteria.*°

Table (1) reports the estimated long memory coefficients of the first differenced interest
rates series of Aconia, Ai7, Aizo @and Ajiz implementing on each occasion four long memory
tests. For example, estimating the GPH test for the first differenced series of Eonia using a
bandwidth parameter equal to 0.4°" turns over a long memory coefficient that is equal to
0.331.

Using next the appropriate fractional differencing operator, that is (1-L)%*

the analysis
obtains the corresponding stationary process, while applying next the Box-Jenkins
methodology to the latter fractionally differenced series determines the AR and MA orders

of the ARFIMA.

In this particular case these orders were set equal to one. So synthesizing all the above
outcomes the analysis corresponds for Aeonia and for the GPH test under the bandwidth

parameter of 0.4 the ARFIMA (1,0.331,1) framework.

%The method proposed by Box and Jenkins is customarily partitioned in three stages : identification,
estimation and diagnostic checking. At the identification stage an ARIMA is specified on the basis of
autocorrelations and partial autocorrelations. As it is well known the true autocorrelations of a pure MA
process present a cutoff point at the MA order, whereas the partial autocorrelations taper off. In contrast, the
autocorrelations of a pure AR processes taper off, whereas it’s partial autocorrelations present a cutoff point
at the AR order.

% A disjoint ARFIMA estimation in a space time context is carried out in Haslett and Raftory (1989). The
researchers apply a two step algorithm in order to estimate separately the short and long memory coefficients.
In the frequency domain an analogous procedure is delivered by Coli et al (2005). Their full parametric
approach is realized combining the orthogonal decomposition of a stochastic process with the Whittle
likelihood estimation.

%1As bandwidth parameter the analysis here defines the value of the function T™ that proclaims the number of
low frequency ordinates.
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There are many approaches in estimating the fractional differencing parameter. In the
present analysis there are four. Those are : a) the rescaled—range method of Hurst (1951)
which in the present analysis will be denoted as R/S, b) the modified R/S method of Lo
(1991) that will be refer to as modified R/S, c) the GPH test suggested by Geweke and
Porter-Hudak (1983) and finally d) the semi-parametric GSP test of Robinson and Henry

(1998).

Sowell (1992a) argues that the estimations of the fractional differencing operator can be
quite misleading, and using different long memory tests to control the accuracy
predominantly as a necessity, especially when acknowledging the drawbacks following

every estimating procedure.

For instance, a problem with the R/S statistic is that it’s distribution is not well defined,
while the long memory estimate appears sensitive to potential short term dependence or
heterogeneities occurred in the data generating process.”? On the other hand the long
memory estimate of the modified R/S statistic is invariant to a general class of short

memory processes, while the limiting distribution is known.

Furthermore, the semiparametric GPH estimate appears to be sensitive to the choice of the
bandwidth parameter and to the presence of short range dependence.®® As has been stated
by Geweke and Porter-Hudak (1983) the number of low frequency periodogram ordinates,

that is values of the function T", introduces definitely judgment and commonly, large

%2Robinson states “although the statistic behaves well with respect to long tailed distributions, its limit
distribution is not standard and its difficult to use it in statistical inference, while it has no known optimal
efficiency properties with respect to any known family of distributions.”

% Chen and Wohar (1992).
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bandwidth parameters will bias the estimate of d due to the use of medium and high
frequency components, while on the other hand, small values will tend to generate
imprecise estimates due to the limited degrees of freedom. Finally, in simulations made in
Dittmann (2000) the modified R/S appeared less powerful to GPH,*while on the other
hand the size distortions of the former were actually smaller than those presented for the

GPH.

Graph (1) displays the graphical output of Aeonia, Ai7, Aizo and aiz2 While tables (1) to (3)
report respectively : a) the estimated long memory coefficients of Aeonia, Ai7, Aitg, Air2,
using a range of bandwidth parameters for the specification of the sample size functions of
both GPH and GSP estimates, b) the orders of AR and MA polynomials after applying
appropriate fractional differencing *°on Aconia, Ai7, Aizo and aiz2, and finally c) the log-
likelihood value and the Akaike and Schwarz information criteria on every estimated

ARFIMA model.

Table (1) Estimation of the long memory coefficient for the first differenced interest rates series Aconia, Ai7, Ao, Air2
using GPH, GSP, R/S and modified R/S long memory estimates.

GPH Gsp Modified RIS RIS
T 0.4 T 0.6 T 0.8 T 0.4 T 0.6 T 0.8 Q=5* | Q=10* | Q=15*
0331 | 0130 | 0279 | 0476 0114 | -0.183
Aeonia | 10.0397* | [0.0407* | [0.0007** | [0.0007** | [0.013]* | [0.000]+* | 0482 | 0457 | 0444 | -0.527
033 | 0361 0.247 0.251 0404 | 0243
Air | (00371 | [0.0007** | [0.0001* | [0.013]* | [0.0007** | [0.000p+ | 0368 | -0-389 | -0.403 | -0.324
0252 | 0.288 0.207 0.210 0363 | 0202
Airo | 10117) | [0.0007 | [0.0007** | [0.038]* | [0.000]** | [0.000)** | 0382 | 0400 | -0.412 | -0.348
A, | 0252 | 0288 0.207 0.210 0363 | 0202 | oo | oo | oo | o

[0.117] | [0.000]** | [0.000]** | [0.038]* | [0.000]** | [0.000]**
Number of observations: 2812; number of periodogram points corresponding each bandwidth parameter: 24, 117, 574; Critical Values
for Hurst-Mandelbrot and R/S tests 90%: [0.861, 1.747] 95%: [0.809, 1.862] 99%: [0.721, 2.098], Null hypothesis stated for Hurst-
Mandelbrot and R/S tests are respectively Ho: no autocorrelation and Ho : no long-term dependence; The following form is applied for
transforming the R/S statistic into the fractional differencing coefficient d=[(log(R/S)/logT]-1/2; p-values are reported in the brackets; *
denotes rejection at 5% significance level, ** denotes rejection at 1%.

% particularly if d<0.3 the power of the modified R/S test declines as d decreases.
%Applying fractional differencing on a series and then considering the ARMA model that best captures the
remaining short run dynamics is a method also applied in Diebold and Rudebusch (1989).
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Except of two blocks®® in table (1) the results indicate that the GPH and GPS estimates of d
are statistically significant at 5% significant level, while contrary the implied long memory
coefficients in Lo’s and Mandelbrot‘s R/S statistics are non statistically significant at the
same level of significance, since both accept the corresponding null hypothesis®for the

existence of short memory and the presence of no autocorrelation respectively.

Furthermore, it can be stated that the estimated long memory coefficients of both GPH and
GSP tests appear quite robust to changes in the bandwidth parameter, although this is not
true for Aeonia Under the bandwidth value of 0.8. In this case both tests agree on the

definition of the series as anti-persistence.”

Table (3) reports the values of the log likelihood functions and the corresponding Akaike-
Schwartz information criteria corresponding each ARFIMA model presented in table (2).
According to the information criteria the ARFIMA models that best fit Aeonia,Ai7, Airo, Air2

are respectively the ARFIMA (1,0.331,1), (1,0.361,1),(1,0.363,1)

% Those are the values reported for the GPH estimates of Ai; and Aiy, under the bandwidth of 0.4

9The null hypothesis of the R/S statistic of Mandelbrot (1972) is that of an uncorrelated process, while the
modified R/S statistic of Lo (1991) focuses on the null of a short memory process against the alternative of a
long term dependence. The long memory coefficients of both statistics are estimated using the form presented
in Mandelbrot and Wallis (1969). This is d=[(log(R/S)/logT]-1/2. Mandelbrot (1972,1975), Mandelbrot and
Taqqu (1979) analyze the properties of this procedure.

% McLeod and Hipel (1978) use the autocorrelations p; to define the long memory. Specifically a discrete
time process y; has long memory if the following quantity is non finite

n
lim, Z|pj|

j=—n
For 0<d<0.5 the process is long memory in the sense that it’ s autocorrelations are all positive and decay at a
hyperbolic rate. For -0.5<d<0 the sum of absolute values of p; tends to a constant and so it has short memory.
The autocorrelations decay hyperbolically to zero. In this case process is referred to as anti-persistence.
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Graph (1) Graphical representation of Aiggnia, Ai7, Airg, A1y
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Table (2) The proposed ARFIMA (p,d,q) models for the first differenced interest rates series Aeonia, Ai7, Airo, Airz
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Aconia A Aio Airz
T% GpH (1,0.331,1) (1,0.335,1) (1,0.252,1) (1,0.252,0)
T2 gpy (1,0.130,1) (1,0.361,1) (1,0.288,1) (2,0.288,1)
T8 spH (0,-0.279,0) (1,0.247,0) (1,0.207,0) (1,0.207,1)
T%Gsp (1,0.476,1) (1,0.251,0) (1,0.210,0) (1,0.210,1)
T2 5ep (1,0.114,1) (1,0.404,1) (1,0.363,1) (1,0.363,1)
T8 5ep (0,-0.183,0) (1,0.243,1) (1,0.202,0) (1,0.202,1)

Note : The orders of AR and MA components are decided upon the graphical representations of ACF and PACF. All estimated models

do not include constant terms in the corresponding.

Table (3) Log-likelihood values, Akaike and Schwartz information criteria for the maximum likelihood estimated

ARFIMA.

ARFIMA (p,d,q)

T 0.4 T 0.6 T 0.8 T 0.4 T 0.6 T 0.8

GPH GPH GPH GSP GSP GSP

2088.65 2084.33 2025.41 2087.64 2083.69 2039
Aeonia (-1.483)* (-1.480) (-1.439) (-1.482) (-1.479) (-1.449)
[-1.484]* [-1.481] [-1.440] [-1.484] [-1.481] [-1.449]
6919.87 6920.01 6917.80 6917.87 6919.71 6917.69
Ai7 (-4.919) (-4.919)* (-4.918) (-4.918) (-4.919) (-4.918)
[4.919] | [4.919]* | [4.918] | [4.918] | [4.919] | [-4.918]
6379.86 6380.83 6376.87 6376.86 6381.15 6376.83
Aio (-4.535) (-4.536) (-4.534) (-4.534) (-4.536)* (-4.534)
[-4.535] [-4.536] [-4.533] [-4.533] [-4.536]* [-4.533]
6094.80 6106.42 6103.74 6103.91 6106.71 6103.46
Airo (-4.333) (-4.340) (-4.339) (-4.339) (-4.349)* (-4.338)
[4333] | [4341] | [4339] | [4333] | [-4.341]* | [-4.339]

Note : In parenthesis and brackets the Akaike and Schwartz information criteria are reported respectively; K denotes the number of

estimated coefficients

84




and (1,0.363,1) respectively.®Note the congruence of both information criteria in every

occasion.

As was stated in the previous section the fractional differencing operator contains critical
information over the nature of trend appearing in the series. A brief review of these
statements is that the ARFIMA model that best fits the first differenced process of a series
will estimate a value of d equal to zero, if the trend in the original series is stemming from
a unit root process and will estimate a value of d equal to -1 if the trend occurs from a
deterministic trend model. Therefore testing the null hypothesis of d=0 or d=-1 decides the

de-trending procedure in the present analysis.

Specifically, for the ARFIMA model that corresponds the first differenced process, if it
estimates a value of d equal to zero, then the trend of the series is due to a unit root
process, while if d is equal to -1, the trend occurs from a deterministic time trend model.
Therefore testing the null hypothesis of d=0 or d=-1 decides the de-trending strategy in the

present analysis.

However, before conducting such a testing analysis two things must be stated. First, the
consistency and asymptotic normality of the maximum likelihood estimates of the
Gaussian fractional ARIMA are presented in Dahlhaus (1989) and they are valid when
0<d<1/2. This case obviously is in line with the ARFIMA models presented in table (3).

Second, it will prove useful to remember that first differencing a deterministic trend series

% The present selection of ARFIMA is supported inversely by the following procedure. Using the first
differenced interest rates series, the orders of AR and MA polynomials are defined according to the optimal
orders found in table (3). The procedure next estimates the maximum likelihood the value of d. Results are
presented in the appendix.
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imposes a unit root in it’s ARMA moving average representation. This statement will
prove helpful when testing the null hypothesis

d=-1.

Table (4) presents results on the likelihood ratio test when examining either of the above
restrictions. For example, imposing the null hypothesis d=0 on the ARFIMA (1,0.331,1)*®
that corresponds the first differenced series of Eonia, Aeonia, turns over the restricted
ARMA(1,1) framework. The likelihood ratio in the last case turns over a value equal to
0.011 and for a chi-squared distribution with one degree of freedom the null hypothesis

d=0 is accepted.

On the other hand, testing the restriction d= -1on the same ARFIMA, implies that the
restricted framework is the ARMA (1,2).°! In this case the estimated likelihood ratio
statistic is 23.19 and for a chi-square distribution with one degree of freedom the result
indicates the rejection of the corresponding null hypothesis. Therefore the results conduce
that the presence of stochastic trend is the one characterize best the Eonia interest rates

series.

Table (4) Results of the likelihood ratio test for deciding the stochastic or deterministic trend in the first
differenced interest rate series.

Aeonia Ai7 Ai10 Ai12
d=0 0.011 19.6** T** 7.1%*
d=1 23.19** 2.76 12.06** 11**

Note : *(**) denote rejection at 5(1)% significant level
As can be seen in the results presented in table (4) neither of the hypothesis dominates the

other. Specifically, although Aconia and Aj; clearly provide support over the unit root and

190This ARFIMA is estimated for the first differenced series of Eonia, that is Aeonia, and fopr the GPH
estimator that uses T%* as a sample function T,

10l Estimating the ARFIMA (1,-1,1) with PcGive turns over no outcome since the estimating process deos not
reach any convergence.
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the time trend models respectively, however, the other two processes, Aijpand Airp, clearly
reject at 5% and 1% significant levels both null hypothesis.

The fact that there is no homogeneity in the above results may attributed to possible
misspecifications existing in the AR, MA orders. If that is the case then the author assesses
that these errors are caused more by the segregate specification of the long memory part
and the short dynamics and less by a non-successful Box-Jenkins methodology. Either way
the conclusion remains the same and this is that time domain analysis provides little help in
deciding a common de-trending strategy in all interest rates series under examination.
Therefore the latter procedure is considered impractical. However the paper continues
upon the same quest in section 3.2 although in this case estimates ARFIMA frameworks

under the frequency domain analysis.

3.2 Frequency domain analysis.

Chambers (1996) states that the frequency domain analysis'®?

is generally invariant to
specifications applied on the short and long memory modeling, and so using this process
to estimate the coefficients of an ARFIMA it is expected to deliver reliable outcomes, even

if possible misspecifications exist in the AR and MA orders. The fundamental equations of

Chambers (1996) are given below.

Specifically, let 6 denote the vector of ARFIMA’s (p,d,q) coefficients

0=(d,a,...a,b,..b)

192As Chambers (1996) notes the Wald statistic in this case can be seen as the t ratio of the estimated
differencing parameter.
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Using a sample of T observations the estimation of 6 vector is obtained through
minimizing the negative of the frequency domain log-likelihood function. The last is

defined as in the following equation

LnL(6) = o.5Tf[|n h(A:0)+1.(4)/h(A:6)] o

s=1

where As=2nc/T, s=1,...,T-1 denotes the set of Fourier frequencies and I+ (1) stands for the

periodogram function defined as in equation (22)

T 2

2 Xteitl

t=1

1(A) =1 (22)

27T

Function (21) is stressed in Hannan (1973) and depends on 6 through the spectral density
function of the assumed ARFIMA (p,d,q) class. The latter sets up a discrete version of the

Whittle (1951) frequency domain method.

However, Coli et al (2005) contrary to Chambers (1996) state that misspecifications in the
AR and MA coefficients definitely affect the estimation of the long memory parameter
and moreover correspond in particular combinations of AR and MA components specific
long memory features. For example, for the ARFIMA (0,d,0) they state that it’s spectral
density function is given by the following equation

g(w, d) o1—e™ |
(23)

which entirely is concentrated at low frequencies. In fact g(w,d) irrespective of the value
in the long memory parameter, appears being a decreasing function of w. In this case as w

tends to zero the function g (w,d) tends to infinity.
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In the general ARFIMA( p,d,q) framework the spectral density function is given by

g(W d) =| 1_e—iw |—2d | e(e*i-W) |2
lpe ™) P 2

The last is strongly affected by the presence of short run dynamics.

Some typical examples are the ARFIMA (1,d,0) and ARFIMA (0,d,1). If these frameworks
estimate a positive AR and MA coefficients respectively, then their spectral density
function will exhibit an increased intensity at low frequencies, whereas if these
coefficients are negative this fact alone will shift the concentration of the function to higher
frequencies, while if a MA of opposite sign is added to ARFIMA (1,d,0) it will cause a
reduction of it’s memory value.Another typical example is the ARFIMA (1,d,1). Coli et.
al. (2005) argue that for positive AR and MA coefficients the relative spectral density
function will be concentrated to low frequencies, while on the other hand if these
coefficients are both negative then the density function will be centered to higher
frequencies. Furthermore if the estimated AR and MA coefficients exhibit opposite signs

the behavior of the spectral will be determined by the larger absolute coefficient.

Finally, in the general ARFIMA (p,d,q) case the large positive AR parameters will increase
the long memory value, while the large negatives will restricted it. Note that the large and
negative AR and MA coefficients will tend to eliminate the long memory of the process. In

this case these models will exhibit similar properties to (1,0,1) ARFIMA.

Setting by default the max AR and MA orders equal to three as in Sowell (1992) the
present work, uses appropriate spectral density functions to estimate all ARFIMA

frameworks that are generated from different combinations in the AR and MA
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orders.*®The fact that the paper applies multiple combinations in these orders stems
exactly from the statements of Coli et al (2005) that imply a straightforward link among
the sensitivity of long memory estimates and the existence of possible misspecifications in

the AR and MA orders.

Furthermore, in an attempt to reduce the parameter space region the analysis applies in all
estimated ARFIMA frameworks the standard parameterization choice, an option provided

by the afm tools package of the R statistical program.%4/*%°

Table (5) presents the ARFIMA that estimate the smallest Schwarz information criteria for
every differenced interest rate series, while table (6) tests the trend and differenced
stationary nature of the observed series using the results of the wald and likelihood ratio

tests.

The results in table (5) underline certain characteristics. First of all under this approach non

of the differenced interest rates series of the analysis is defined as anti-persistent.'®

103Estimations are carried out with the R statistical program using the afmtools-package. All estimated
ARFIMA are presented extensively in the appendix.

1%Standard parameterization requires certain premises. First, the parametric spectral density function must
have the following form f(x; 0; 6°)= (c%/2m)h(1;0), where 0 is an r dimensional vector and o is regarded as
varying freely from 6. Second, the following relation must be true

j_” logh(4;0)dA=0

Practically standard parameterization means that the residual variance o° is located out of the likelihood
function in order to reduce the dimensions of the parameter space.

1%5Although the Whittle estimates are asymptotically efficient only when x; is Gaussian, however limiting
distributions in the case of standard parameterizations are steady under many departures from Gaussianity.
This property is initially established for short memory series. The justification of using Whittle estimates in
long memory models is provided in Fox and Tagqu (1986).Their objective function is a continuous version of
(21) but their insight may well be applied to the discrete case. Fox and Taqqu (1986) and Dahlhaus (1989)
under assumptions made for the long memory parameter and the correct specification of short run dynamics,
have shown that 6 estimated vector is consistent and asymptotically normally distributed. Dalhaus (1989)
also establishes asymptotic efficiency.

198 This outcome strengthens the previous choice of the analysis to consider only the GPH and GSP estimates
of table ().
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Second, all estimated long memory coefficients are statistically significant at both
conventional levels of significance and range from 0.348 to 0.405, and finally third, all
chosen ARFIMA frameworks are estimated using one AR and one MA order.

Table (6) reports the results on the Wald and likelihood ratio statistics. Both tests reject the
null hypothesis of the trend and differenced stationary nature at 1% and 5% significant
levels, and so the analysis is left at this point solely with an intuitive selection strategy for
the nature of data that are finally going to be used. Following Nielsen (2010) the analysis
decides to adjust the observed interest rates series for a deterministic time trend and a non

Z€ero-mean.

Table (5) Whittle estimated ARFIMA models that minimize the Schwarz information criteria

Aeonia Ai7 AilO Ai12
0.290 0.460 0.448 0.472
1 [14.095]** [19.242]** [19.002]** [19.456]
0 -0.945 -0.654 -0.669 -0.699
! [-5.315]** [-19.839]** [-19.596]** [19.456]
d 0.405 0.375 0.351 0.348
[ 13.105]** [12.129]** [11.350]** [11.249]

Note : t estimates are reported in the brackets//*(**) denotes rejection at 5%(1%) significant level

Table (6) Wald and likelihood ratio statistics for testing the null hypothesis of differenced or trend stationary
series.

| Aeonia | Ai7 | Ai10 I Ai12
Null hypothesis d=0 (difference stationarity)
Wald 13.5** 12.5** 11.7** 11.6**
Likelihood ratio 43.07** 76.09** 55.05** 46.07**
Null hypothesis d=-1 (trend stationarity)
Wald 46.83** 45,83** 45,03** 44,93**
Likelihood ratio 76.03** 46.07** 56.02** 42.01**

Note : *(**) denote rejection at 5%(1%) significant level

4. Estimating the variance ratio test.

Table (7) uses the de-trended interest rates series to estimate the GPH and GSP estimates
of d. The applied bandwidth choices follow Nielsen (2010) and are consistent with the

previous parts in the analysis. Furthermore, table (8) uses those latter estimates to test
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whether those series are in fact unit root processes. One and two asterisks denote
respectively rejection of the null at 5% and 1% significant levels.’*’Note, that the unit root

hypothesis is against the two sided alternative.

In table (7) all estimated long memory coefficients are statistically significant at 5% and
1% significant level. Interestingly some of the GPH estimates are below the threshold

198 although table (8) indicates that these series are generally no different to

value of one,
I(1) processes. Specifically, table (7) indicates that six GPH estimates are below one,

while table (8) shows that only one of them is actually different to a unit root process.

Furthermore, the results in table (8) show that the unit root hypothesis is rejected 15 out of
24 times.*® The outcome is consistent with the majority of evidence existing in many
related empirical applications,**°and implies the introduction of two variance ratio tests : a)
one that uses the hypothesis d=1, and b) a second that sets d equal to the average value of
those GSP estimations that correspond to a particular bandwidth choice. In the present

analysis this is 0.8.1

However, the analysis does not rest upon this double assumption for the integration order

of the de-trended interest rates series, and applies additionally two choices over the index

197Njjelsen (2010) underlines the invariant nature of the GSP estimates and states that adjustments made in the
interest rates series for a non zero mean and a deterministic trend do not alter the good properties of the GSP
estimators.

1% Those estimated values are between (0.812-0.963).

1%9Geweke and Porter-Hudak (1983) shows that GPH test provides consistent estimate of 1-d. This is the
trend coefficient in their linear regression equation, where periodogam points are evaluated at Fourier
frequencies (2xij)/T, j=1,.., n, where n is the number of low frequency periodogram points used in estimation.
In the present analysis this is refer to as bandwidth. Note that any hypothesis test of d is based upon a t-
statistic.

110 5ee Chen and Hurvich (2003), Nielsen (2010)

MNjelsen (2010) set d equal to 1.0025. This is the average value of those GSP estimates that correspond to
bandwidth of 0.4. This average is very close to the one estimated in table (6) when m is set equal to 0.8. In
this case the average value of d is equal to 1.003.

92



appearing in the asymptotic distribution of the variance ratio test.'? These are d,=0.1 and
d;=1.

Since An, (dy) statistic in the present analysis is estimated under all the above combinations
of d and ds, eventually the paper conducts four fractional cointegration variance ratio tests.
Note that in the variance ratio methodology d parameter refers to the integration order of
the observed data series, while d; indexes a particular family of tests and is a parameter

chosen exclusively by the econometrician.

Table (7) GPH and GSP long memory tests for the de-trended univariate interest rates series.

ARFIMA (p,d.q)
TGPH | T°°GPH | T*8GPH | T™GSP 76 GSp T8 GSp

conia 0.812 0.941 0.753 1.247 1.080 0.69
[0.000]** | [0.000]** | [0.000]** | [0.000]** | [0.000]** | [0.000]**

| 0.953 1.171 1.073 1.110 1.242 1.100
7 [0.000]8* | [0.000]** | [0.000]** | [0.000]** | [0.000]** | [0.000]**

| 0.963 1.173 1.077 1.082 1.234 1.114
1o [0.000]** | [0.000]** | [0.000]** | [0.000]** | [0.000]** | [0.000]**

| 0.960 1.166 1.085 1.064 1.230 1.108
12 [0.000]** | [0.000]** | [0.000]** | [0.000]** | [0.000]** | [0.000]**

Note : number in parenthesis reporte p-values, *(**) denotes rejection of unit root hypothesis at 5%(1%)

Table (8) Testing the null hypothesis of d=1 for the GPH and GSP estimates of long memory in the de-

trended interest rates series.

T GPH T°® GPH T°% GPH T4 GSP T® GSP T°® GSP
eonia -1.167 -0.936 -0.148** 2.421* 1.739 -8.6%*
I; -0.291 2.714%* 2.703%* 1.078 5.260** 6.11**
I -0.229 2.746%* 2.851** 0.803 5.086** 5.7%*
1 -0.248 2.634%* 3.148** 0.627 GH* 5.4%*

Note : *(**) denotes rejection of unit root hypothesis at 5%(1%)

Table (9) uses the de-trended interest rates series and reports : a) the univariate variance
ratio test p(d;), b) the ordered eigenvalues of Ry(d;) ratio for both values of dj, and c) the

variance ratio trace statistic. Table (10) reports the 1%, 5% and 10 % simulated critical

12q, appears in the asymptotic distribution of the ratio. Nielsen (2010) states that certain values of d;

maximize the power of the test.
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values of all four cointegration variance ratio trace tests. These critical values are generated

after appropriate simulations and are reported in Nielsen (2010).

Table (9) Univariate variance ratio, ordered eigenvalues and the variance ratio cointegration rank test.

Univariate Variance Ratio Test
dl eonia l; l1g l1o
0.1 | 5.1111e+003 | 5.7334e+003 | 5.7156e+003 | 5.7137e+003
1 | 1.0559e+005 | 1.4324e+005 | 1.4628e+005 | 1.4738e+005m

Eigenvalues
d; M A2 A3 Ay
0.1 0.349 0.399 0.472 0.484
1 0.00001 0.00002 0.00005 0.0001

Variance Ratio Trace Statistic
d; | n-r=lorr=3 | nr=2orr=2 | n-r=3orr=1 n-r=4 or r=0
0.1 1.708 3.662 5.973 8.342

1 79.12 237.38 633.03 1424.3

Note : The table reports the eigenvalues of Rr(d,) ratio, the univariate variance ratio test and the cointegration rank test for the de-
trended interest rate series.

Table (10) Critical values of the four variance ratio cointegration rank tests using de-trended interest rate
series.

Table (10)-A d=1
Null Hypothesis n-r=1 or r=3 n-r=2or r=2 n-r=3 or r=1 n-r=4 or r=0
a=0.10 [1.93] [3.81] [5.75]* [7.74]*
d;=0.1 | 0=0.05 [1.98] [3.88] [5.82]* [7.82]*
a=0.01 [2.08] [4.01] [5.97]* [7.97]*
a=0.10 [228.18] [586.52] [1157.34] [1970.49]
di=1 a=0.05 [291.93] [697.41] [1325.41] [2202.48]
a=0.01 [457.46] [971.59] [1706.81] [2.709.98]
Table (10)-B d=average GSP estimates when bandwidth is set to 0.8-(1.003)
a=0.10 [1.93] [3.81] [5.75]* [7.74]*
d;=0.1 | 0=0.05 [1.98] [3.87] [5.83]* [7.82]*
0=0.01 [2.08] [4.00] [5.97]* [7.97]*
a=0.10 [228.81] [586.32] [1159.92] [1960.74]
d;=1 0=0.05 [293.45] [691.22] [1330.46] [2198.69]
0=0.01 [447.33] [950.59] [1691.45] [2.695.75]

Note : number in brackets report the simulated critical values reported in Nielsen (2010). * denotes rejection of the null hypothesis at the
corresponding significant level.

Comparison of the simulated critical values in tables 10-A and 10-B reveal many
similarities among them. Specifically, the critical values correspond the choice of d;=0.1 in
9 out of 12 cases are identical, while the rest critical values of either d; parameter

although not matching perfectly each other are indeed very close. The evident similarity
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stems from the fact that the average GSP estimate of d is indeed very close to one and

therefore the simulated critical values in both tables are not expected to be much different.

In general lines it can be stated that results of table (10) depend significantly on the value
of d; parameter, since changing the assumption of the integration order for the observed
series, that is d, does not really alter any of the cointegrating results. For example, under
the choice of d=1 and d;=0.1 the variance ratio test acknowledges two cointegrating
relations, whereas if the combination of d=1 and d;=1 is applied, the ratio concludes that
no cointegrating relations exist, with the same results also repeat when the average GSP
estimate of d is employed. The apparent dilemma on the cointegration rank is resolved
when remembering that the power of the variance ratio test is maximized under the choice
of d;=0.1. The cointegration rank corresponding this choice must generally considered

more reliable.

So, the results in table (10) support the presence of two common stochastic trends, or in
other words indicate the presence of two cointegrating relations. Given that expectations
hypothesis implies the existence of a unique common stochastic term among n interest
rates of different maturities, the variance ratio clearly rejects the validity of term structure

theory.

The result is in line with the outcomes presented in Chen and Hurvich (2003) where it is

found that two common stochastic trends exist among eight interest rates of different

maturities.

95



Although comparison is not straightforward, however, both outcomes speculate the
existence of one common trend driving the short maturity interest rates and another driving
the long term ones. Note that an alternative explanation for the finding of two cointegrating
relations can be seen in the argument that expectations hypothesis holds better in the
shorter end of the yield curve. Of course in this case every interest rate that corresponds to
any duration between the first and eleventh month may considered as a potential shorter
end part of the yield curve shorter end shorter end is considered a period of less than six

months.

5. Estimating the cointegration rank using Johansen’s (1991, 1998) and Breitung and
Hassler (2002) tests.

This section extends the previous analysis by applying two different cointegration
methodologies. Those are a) the Johansen (1988, 1991) cointegration approach and b) the

Breitung and Hassler (2002) fractional trace test.

5.1 Applying Johansen’s test (1991,1998).

Since Johansen’s test by its nature assumes the existence**of I(1) and 1(0) variables, in
the appendix the interested reader may find results over the ADF, Phillips-Perron and
KPSS unit root tests. All of these tests indicate the strong presence of unit roots in the
observed interest rate series and indeed, both the ADF and Phillips-Peron accept the
corresponding null hypothesis in all interest rates series at both conventional levels of
significance, while KPSS fails to reject the null of stationarity at 1% significant level,

although this is not true for Eonia.

131 1(2) variables are existing then it will be necessary to use the approach developed by Johansen (1995b).
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Even though Diebold and Rudebusch (1991) and Sowell (1990a) argue that standard unit
root tests may lack high power against fractional alternatives, their argument is probably
moderated by the results presented in the first column of table (8). In this case although
all the estimated fractional differencing operators are below 1, however the null
hypothesis of d=1 is accepted in all four blocks, and so the interest rates series are

considered being unit root processes in this particular case.

Table (11) isolates the long memory tests and the bandwidth parameters under which the
hypothesis d=1 is not rejected. The table sets a useful transformation of the results reported
in table (8). Obviously the unit root assumption is supported by both long memory tests,

GPH and GSP, under mainly the 0.4 value for the bandwidth parameter.***

Table (11) : Long memory tests accepting the hypothesis d=1.

eonia | GPH-T**& GPH-T’® | GSP-T®
I7 GPH-T* GSP-T%*
l10 GPH-T%* GSP-T%4
|12 GPH-T** GSp-T*

Before proceeding with the actual cointegration analysis the VAR order, k, must first be

decided. This is a very critical point in Johansen’s analysis, since possible

114 The log-periodogram regression estimator of Geweke and Porter-Hudak (1983), that was latter formalized
by Robinson (1995) and Hurvich et al. (1998) develops the idea that if an interest rate series presents long
memory characteristics then the spectrum of the process should be a linear function of the frequencies close
to zero. Let I(w;) denote the sample periodogram at the jth Fourier frequency. The estimate is obtained from
the least square regression log[l(w;)]=be+b;log(w;)+u;, where j=1,..m and d=(-1/2)b;. The asymptotic
standard error for d depends only on m. As has been stated by Geweke and Porter-Hudak (1983) the choice
of the number of low frequency ordinates, that is T™, necessarily involves judgment. Specifically Geweke
and Porter-Hudak (1983) note “ Although a too large value of n will cause contamination of the estimate of
the d estimate due to medium or high frequency components, a too small value will lead to imprecise
estimates due to limited degrees of freedom in the estimation process.
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misspecifications in the lag augmentation, may cause phenomena of autocorrelation, non

normality and conditional heteroskedasticity on the residual series.

On the other hand specifying the value of k is frequently implicated with issues of omitted
variables biases. In a situation where autocorrelations in the residual series are due to
omitted variables, these absences will likely become part of the error term and increasing

the lag length to restore any such phenomena usually is not the correct answer. **°

On the other hand over-parameterization which is associated in many monte carlo
experiments with a reduction in the power of cointegrating tests, can also create potential
problems, since very often implies that too few cointegrating relations will be
acknowledged.**®Avoiding over-parameterization is also underlined in Johansen (1995b)
who states that to many lags will cause the number of parameters to grow very fast and as a
consequence the information criteria that strike a compromise between the number of lags

and parameters will tend to reject the alternatives most of the times.

In the present analysis the max number of lag augmentations is set equal to 25,
representing the business days of one month period. At the same time following Lee and

Siklos (1997) the analysis does not apply seasonal adjustments, since evidence in many

5Residual misspecification very often arise as a consequence of omitting important conditioning variables.
In the last case increasing the lag length may result as reported in Harris and Sollis (2003) in a harmful
parameterization, that affects the estimation of cointegration rank, and makes hard the economical
interpretation of the present cointegrating relations. The same is stated also by Johansen (1995b) who
encourages researcher to increase the information set instead of automatically increasing the lag length.
Y8This opinion is mainly supported by Lutkepohl and Saikkonen (1999) who report the existence of size
distortions and power losses when the number of lags (k) is too small and too large respectively. Their
recommendation is to choose the lag-length using information criteria such as Akaike. This criterium tends to
create a balance between a good approximation of the data generating process and an efficient use of the
sample information. However, Cheung and Lai (1993) state that cointegration tests are rather robust to over-
parameterization, while additionally argue that the size distortions, when k is to small, are probably minor.
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monte carlo experiments suggest that relevant attempts usually end up in less or spurious

cointegration.

Table (12) reports the values of Akaike, Hanna-Quin and Schwartz information criteria for
VAR (25) and VAR(1) models. Although the majority of outcomes support the
parsimonious version, however, the suggested in Johansen (1995) likelihood ratio test

clearly rejects the model reduction.

Table (12) : Information criteria and Likelihood ratio test for the VAR order selection

Model T [NP| Logl SC HQ AIC

Var(25) 2788 | 404 | 31033.054 | -21.112 | -21.662 | -21.972

Var(1) 2788 | 20 | 30364.043 | -21.725 | -21.752 | -21.768
Likelihood Ratio~x*(384) 1338.0 [0.000]**

Note : T stands for the number of observations, Logl is the loglikelihood value, p-values are reported in the brackets,
*(**) denotes rejection of unit root hypothesis at 5%(1%)

The latter contradiction forces the econometrician to use both VAR models
simultaneously, while another challenge focus on the nature of deterministic variables that
eventually will eventually enter the cointegrating space. In the present analysis following
Johansen (1992b) the deterministic components are examined alongside the number of

cointegrating relations using the pantula principle (Johansen 1992, 1995).

This is a tool for deciding simultaneously a) the correct rank order and b) the deterministic
components that will enter the VECM. The strategy starts with the VECM framework
presented in equation (25). For notation simplicity the number of lags, k, is set equal to

two.

B
Az, =T\ Az,  +a| i |7, , +au, + 00,7 +U,
% (25)
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Imposing specific restrictions in equation (25) generates three models. Those are models
1,2 and 3, each introducing a different set of deterministic components.’*’The applied
principle moving on from the most restrictive model to the least restrictive one, compares
at each stage of the process the trace statistic to its critical value and stops the first time the

null hypothesis is not rejected.**®

Tables (13) and (14) report respectively the trace and max eigenvalues statistics when the
number of lag augmentations in all restricted models is set equal to one. Starting with table
(13) and the most restrictive model, that is modell, the trace rank statistic is estimated at a
value of 432.541, exceeding its 95% and 99% critical values. Proceeding with the next

most restrictive model and keeping r=0 the null hypothesis is rejected again.

Keeping this track, hence moving from left to right in every row of table (13), the first time
the null hypothesis is not rejected, belongs to the block that corresponds model 1 with

cointegration rank equal to three.

Even though the monte carlo experiments in Cheung and Lai (1993) suggest the

superiority of the trace rank test to the maximum eigenvalue statistics mainly due to the

"\Modell is generated after setting 8;,8,,u, equal to zero. This restricts the intercept solely to the
cointegrating space. This model is suitable if there are no linear trends in the levels of the data, such that the
first differenced series have a zero mean. The critical values for this model are available in Osterwald —
Lenum (1992), although Doornik and Ooms (1999) has also produced critical values using the Gamma
distribution. Note that these values are the default option in the econometric package Pcgive 10.1. If there are
linear trends in the levels of the data then the analysis should specify model 2, that allows the non stationary
relationships in the model to drift. This model is generated when 3, and &, parameters are set equal to zero.
The critical values for this model are found in Pesaran et al (2000). Finally, model 3 sets 3,=0 and as a result
the cointegration space includes solely time as a trend stationary variable. This model is proper whenever
there is some long run linear growth that the model cannot account for.

18 For other applications of Pantula principle see Love and Chandra (2005) and Dawson (2006).
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robustness of the former test in phenomena of skewness and excess kurtosis, however in

this case the maximum eigenvalues statistics reported in table (14) estimate identical

results and so these results strengthen the overall credibility of Johansen analysis.

Table (13) : Eigenvalues and trace rank statistics for VAR (1) and models 1,2 and 3.

r | n-r | Eigenvaluel | Modell | Eigenvalue2 | Model2 | Eigenvalue3 | Model3
0| 4| 0093 [g.sozdg#* 0.002 [3?07(;8]3,9* 0.101 [3?0463163*
1] s | ooss | 156891 0035 [ ISSATT T s | 192625
2| 2 0.018 [05.3690?2* 0.018 [oégbgoﬁi* 0.030 [0%6%%%*
3| 1| 0000 [52683] 0.000 [éiﬁj] 0.001 [3:32451]

Note : MacKinnon-Haug-Michelis (1999) p-values are reported in the brackets.*(**) denote respectively rejection at

5%(1%) significance level.

Table (14) : Eigenvalues and Maximum eigenvalues statistics for VAR (1)- models 1,2 and 3.
r | n-r | Eigenvaluel | Modell | Eigenvalue2 | Model2 | Eigenvaue3 | Model3
0| 4| 0093 [%%g]iﬂ 0092 | 271553 | 0.101 [g%%)(?]‘ﬁ
[0.000]**
13| oo | ST oo | ML g | 100530
2] 2 0.018 [0?(2)640%2* 0.018 [053'0%7]3* 0.030 [O’?g(')g:])’f*
3|1 0.000 [gzggg] 0.000 [(2):‘1‘23] 0.001 [g:ggg]

Note : MacKinnon-Haug-Michelis (1999) p-values are reported in the brackets.*(**) denote respectively rejection at
5%(1%) significance level.

Furthermore tables (15) and (16) estimate correspondingly the trace and maximum
eigenvalues statistics when the number of lag augmentations is set equal to 25. Both
statistics support the choice of model 1, while both suggest the presence of one
cointegrating relation. The outcome clearly rejects the validity of term structure theory and
obviously contrasts the previous result for the presence of three cointegrating vectors or the

presence of only one common stochastic trend.
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Table (15) : Eigenvalues and trace rank statistics for VAR (25) - models 1,2 and 3.

r | n-r | Eigenvaluel | Modell | Eigenvalue2 | Model2 | Eigenvalue3 | Model3
0] 4| 004 | gopope 004 | oo | 0015 | o0
5| o [ R oo | B | o |
2| 2| 00038 | o | 0808 | ooy | 00m | ion
S| 1] 000 | gy | 000 | popgy | 0% | g

Note : MacKinnon-Haug-Michelis (1999) p-values are reported in the brackets.*(**) denote respectively rejection at

5%(1%) significant level

Table (16) Eigenvalues and Max-eigenvalue statistics for VAR (25)- models 1,2 and 3.

r | n-r | Eigenvaluel | Modell | Model2 | Eigenvalue2 | Eigenvalue3 | Model3
0 4| 0014 | yoiopes | 0014 | oogee | 0015 | o
L] 3] 000 | goms | 007 | poogy | 0% | o
2| 2| 0003 | gz | 0903 | opgn | 00 | ooy
B 1] 000 | g7y | 0000 | gaig | 000 | gy

Note : MacKinnon-Haug-Michelis (1999) p-values are reported in the brackets.*(**) denote respectively rejection at

5%(1%) significant level
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5.2 Applying Breitung and Hassler (2002) test.

The analysis in this section is separated out in two parts. The first makes a brief
presentation of the fundamental mathematical relations of Breitung and Hassler’s (2002)
fractional parametric trace test, and the second proceeds with an application of the statistic

to the observed interest rates series.

Breitung and Hassler’s (2002) parametric fractional trace test is based upon a generalized
eigenvalue problem analogous to Johansen (1988). The statistic sets up a multivariate
version of the regression based score test that results in a chi-squared distribution, with
degrees of freedom depending on the cointegration rank under the null. Note that the
distribution under consideration does not rely on the integration order of the observed

series or the integration order of deviations corresponding the long run relationships.

Suppose x; is a nx1 vector of Gaussian components, originally generated from y; vector
after applying the fractional differencing operator of equation (1). Note that Gaussianity
assumption is only important for the set up of the log-likelihood function which is

presented in equation (26) and is not necessary for further asymptotic analysis.

L(6,%)=-T/2(2x[%)) —0.5%[(1— L)y (1-1)""y,]

(26)
Defining now
T T t-1
* ' * * 1 * ._1
Sy = ZXI—IXI LSy = Z XX Xy = Z J X
t=2 t=2 j=1 27)
and replacing X with a consistent estimate as in the following equation
R T
=Ty xx
t=1 (28)

Breitung and Hassler (2002) set up their multivariate score statistic as in the next equation
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Ao (d) = tr[i_lsl‘osl_llslo]

(29)

Since the trace of a matrix is the sum of all eigenvalues, Breitung and Hassler (2002)
follow at this point Johansen (1995) and estimate their cointegration rank statistic through
the sum of the n-r smallest eigenvalues. So actually based their test on the following

problem

A%-8,,5,1S,,|=0

(29i)
Under the null hypothesis Ho: r=r, the trace statistic is introduced as
A (D)= 2,
1= (30)

with ;<...<\, denote the ordered eigenvalues. As T tends to infinity the trace has an

asymptotic X? distribution with (n-ro)? degrees of freedom.

Finally two issues must be analyzed: a) the use of de-trended series and b) the existence of
possible misspecifications in d. For the first it has to be stated that if a possible de-trending
is of interest, then regressing X; on a vector containing different deterministic terms, such
as constants, time trends and possibly seasonal dummy variables must first be realized. In
this case the trace statistic remains practically invariable and the only difference centers on
the substitution of the fractionally differenced series in equations (27) and (28) with the

above estimated residuals.

The second possibility explores the use of short run dynamics in the analysis, due to

possible misspecifications existing in the long memory parameter. These short run

104



dynamics are modeled through estimating appropriate VAR (X) forms. In the latter case

the trace statistic is re-estimated using the residuals of a well suited autoregressive process.

As has been pointed by Breitung and Hassler (2002) assuming a known long memory

parameter places severe restrictions on the testing procedure, and a possible
misspecification may be responsible for the presence of serially correlated errors. If that is
the case then Breitung and Hassler (2002) suggest that the effects of a possible
misspecification of d can likely be reduced when accounting for short run dynamics, and
this strategy is well explored in the estimations presented in table (17). However, Breitung
and Hassler (2002) point that this process is rather trivial, since a large lag number will
tend on one hand to eliminate the size distortions, while on the other will weaken

drastically the power of the test.

Table (17) which considers this last notation induces three alternatives for modeling short
run dynamics. These are a) the zero lag-augmentations choice, b) the one lag option and c)
the twenty five lags alternative. Obviously the last two cases follow the specifications
applied in Johansen parametric test."*°The results in table (17) depend heavily on the
modeling of short run dynamics and specifically options a and c identify significantly three

cointegrating relations, whereas the b option clearly rejects all null hypothesis.

Table (17) : Breitung and Hassler (2002) fractional trace test.

r|nr| Awno(d) Aro-1(d) | Arozs(d) X2~(n'r0)2
0] 4 |360.128* | 145.944* | 40.253* 26.296
1| 3 | 85.516* | 36.219* | 14.048* 16.919
2| 2 9.578* | 21.921* | 3.730* 9.488

"The fractionally differenced series are generated with the R program and particularly with the Fracdiff
package. For estimation of the long memory parameter the analysis uses the GPH test. Those estimates are
produced after setting the number of low -frequency ordinates equal to 575 and this implies that the m
parameter in the sample function is set equal to 0.8. If the lag augmentation strategy is not, then Breitung and
Hassler (2002) suggest the computation of the statistic using an estimated d value. In this last case the
analysis is better to use the bootstrap critical values presented in Davidson (2002).
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[3] 1| 2837 | 8665* | 01418 | 3.841 |

Note : Aro-0(d), Aro1 (d), Are-2s (d) denote respectively the estimated trace statistics estimated under using a) no lags , b) one lag and c)
twentyfive lags. The critical values are reported in the last column. * denotes rejection of the null.

Finally, table (18) concentrates results on the Johansen (1998,1991) and Breitung and
Hassle (2002) cointegration tests. Two things must be stated here. First, that the applied
pantula principle picks up modell in all four cases examined, and second that results on
the cointegration rank appear to be sensitive arise to different lag augmentations applied.*?
Note that the last statement underlines the advantage of the non parametric variance ratio

test, that does not depend on the specification of short run dynamics or any other tuning

parameter.

Table (18) : Results of Johansen’s (1998,1991) and Breitung and Hassler’s (2002) tests

Lag length | Cointegration rank | Specifications | term structure theory

Panel A: Johansen (1998,1991) trace test

1 r=3 Model 1 acceptance

25 r=1 Modell rejection
Panel B: Johansen (1998,1991) max eigenvalue

1 r=3 Modell acceptance

25 r=1 Model 1 rejection
Panel C: Breitung and Hassler (2002) fractional trace test

0 r=3 De-trended interest rate acceptance

1 Rejection of the null De-trended interest rate rejection

25 r=3 De-trended interest rate acceptance

Note Model 1 is generated from equation (23) after applying 6;= 6,=p,=0. This determination restricts the
intercept solely to the cointegration space. This model is suitable if there are no linear trends in the levels of
the data such that the first differenced series have a zero mean.

6. An informal test of the variance ratio using the estimated cointegration space.

The space spanned by all linearly independent cointegration vectors is the cointegration
space and Johansen (1988,1991) states that the reduced rank regression will indicates the
number of unique cointegration vectors spanning it. However, any linear combination of
stationary vectors will generate another stationary vector, and therefore estimates of the

cointegrating vectors will not necessarily be unique. Therefore without imposing certain

120 This is true for all panels A,B and C.
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restrictions motivated by economic arguments it will be possible only to estimate a

basis?

of the space spanned by the cointegrating vectors.'*?

This last statement is obviously true for the variance ratio test, since the statistic does not
identify all the restrictions imposed by expectation hypothesis theory. Note that the last in
terms of cointegration imposes two restrictions. The first implies that among n interest
rates of different maturities there should be n-1 cointegrating relations, while, the second
states that if expectations hypothesis holds, then any linear combination of such n interest
rates must normally sum its coefficients to zero. Put it differently, the last restriction
implies that coefficients in each of the cointegrating vectors must add up to zero if

expectations hypothesis holds.

In the present analysis the first of these two implications was extensively tested in sections
4 and 5 through the use of different cointegration techniques, while the second, as is

reported in Hall et al (1992), is testable using the following relation

B=DF,D=[l_,,...,—i] @

where i=[1,...,1], D is a n x (n-1) matrix and F is a (n-1) x (n-1) matrix of free parameters.
Based on this last equation the estimated cointegration space in Nielsen (2010) is

informally compared to D.*?

121 Basis is a set of linearly independent vectors that in a linear combination can represent every vector in a
given vector space. Put it simple, a basis is a linearly independent spanning set. In mathematical terms, a
basis B of a vector space V over a field F is a linearly independent subset of V that spans V. So B satisfies
the following conditions : a) the linear independent property and b) the spanning property. In more details,
suppose that B=(v4,...,v,)) is a finite subset of a vector space V over a field F( with real or complex numbers R
or C). The linear independence property implies that for all ai,..,.a, of F the following statement is true
arvit...+av,=0. The spanning property implies that for every x in V it is possible to choose a,,...,a, such
that X=a;vi+.. .+anVn.h.

122 See Johansen (1988,1991), and Chen and Hurvich (2003, 2006)
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Although the variance ratio statistic is purely a strategy for testing the cointegration rank
and is not associated formally with a distribution theory for the estimated cointegration
space, inferences on the validity of expectations theory may produced indirectly, through
comparing the estimated and the hypothesized cointegration space. The former is the space

spanned by a subset of eigenvectors generated from the following eigenproblem

4B, —A.|=0 -

where equation (32) uses the eigenvalues of equation (9).

Since, the estimated variance ratio test rejects the term structure theory by acknowledging
two cointegrating relations instead of three, the rest part of the analysis retains a
confirmatory task, in the sense that if expectation hypothesis does not hold then the

estimated and hypothesized cointegration space must deviate.

Although defying particular eigenvectors of the equation (32) as estimates of the real
cointegrating vectors is not accurate, since the variance ratio does not deliver a distribution
theory for the estimated cointegrating space, however these vectors are proven useful for

the rest part of section 6.

Panels (19i) and (19ii) of table (19) present the eigenvectors of R(d;) matrix when d;
parameter is set equal to 0.1 and 1 respectively. The eigenvectors correspond to the

eigenvalues reported in table (9), and specifically eigenvector n; is linked to the eigenvalue

123 See Johansen (1998,1991) for a simultaneous test on both the zero sum and the rank restrictions.
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A; for j=1,..,4, while these vectors are simultaneously sorted in the same order as the
corresponding eignevalues. Note that the last row of both panels reports the sum of the

elements of each eigenvector.

According to expectation hypothesis the elements of all the columns of any basis of the
cointegration space must sum up to zero and this does not seem to be the case in either
panel of table (19), although it could be said that the sum corresponding panel 19i is more

close to zero the other one.

Specifically in panels (19i) and (19-ii) the sums are -0.122 and 1,818 respectively.
However these vectors cannot be regarded as straightforward estimates of particular
cointegrating vectors, and so as in Nielsen (2010) the analysis concentrates in one matrix
on the matrix n(3), which is comprised by the eigenvectors corresponding the three
largest eigenvalues of R(d;) matrix. The analysis continues next with the rotation of this
subspace, since this makes easier the economical interpretation of it’s vector."**The
rotation is achieved by estimating the following product

n(3)([13,0sxaIn(3)) ™ (33)
which applies a normalization on each cointegrating vector, so that each can be considered

an estimated spread between two interest rates series.

Table (20) that presents the estimated cointegration space assuming r=3, verifies that the
estimated and hypothesized space are not relevant to each other and so the comparison

casts doubts on the validity of expectations hypothesis.

12%In order to proceed with the analysis we assume r=3.
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Table (19) Eigenvectors of the de-trended data after setting d;=0.1 and d;=1

Panel (19)-i d;=0.1 Table (19)-ii d;=1
N1 N2 N3 N4 N1 N2 N3 N4
eonia -0.4434 -0.8741 0.8841 0.3319 0.4147 -0.9052 0.0930 0.0005
I; -0.5165 -0.3617 0.1649 0.4602 0.5230 0.1573 -0.7998 -0.2493
l1o -0.5180 -0.2546 0.2841 0.5380 0.5264 0.2566 0.1461 0.7973
I, -0.5179 -0.2546 0.3325 0.6234 0.5267 0.3001 0.5748 -0.5496
sum -1.9958 -1.745 1.6656 1.9535 1.9908 -0.1912 0.0136 0.0006

Note : The eigenvectors of Ry(d;) matrix are reported for the detrended data. The eigenvectors are sorted in the same order as the
eigenvalues in table 7(i). The final row reports the sum of all the elements of the corresponding eigenvector.

Table (20) Estimated cointegration space assuming r=3

Table (15)-i d;=0.1 Table (15)-ii d;=1
N2 N3 N4 N2 N3
eonia 1 0 0 1 0
l; 0 1 0 0 1
lig 0 0 1 0 0
Iy -0.017 -0.193 1.334 -0.7862 -0.9923 -0.998
sum 0.983 0.807 2.334 0.213 0.008 0.002

Note : The table reports the estimated and rotated cointegration space assuming r=3

7. Conclusions.

The paper using four European interest rates of different maturities. applies the non
parametric variance ratio test of Nielsen (2010) in order to produce inferences on the
expectation hypothesis. The procedure contrary to the parametric tests of Johansen
(1988,1991) and the fractional version of Breitung and Hassler (2002), which both are
estimated in the paper, is invariant to short run dynamics and naturally avoids the usual

misspecification errors that rise when the other two methods are applied.

Furthermore Nielsen’s (2010) strategy beside the latter advantage does not require the
estimation of cointegrating vectors or inferences made on the integration order of the

series under consideration, although the test does depend on a parameter appearing in the
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asymptotic distribution of the ratio, that is d;, and whose values correspond to significant

differences in the power of the ratio test.

Following Nielsen who suggests the use of d;=0.1 since this maximizes the power of the
test, the analysis proceeds with this choice and with an alternative of setting d;=1. In the
first case the sequential test of the variance ratio comes up with two cointegrating relations
and hence rejects the expectations hypothesis, while the same result occurs when
considering the alternative choice of d;, although in this case no cointegrating relations

exist.

The paper proceeds with the application of some known parametric tests in order to

underline the drawbacks which are present when different lag-augmentations are applied.

As far as the Johansen methodology is concerned the VAR (1) and VAR (25) models
which both are estimated after controlling for the relevant short run dynamics, they
produce not surprisingly two different outcomes. Specifically VAR (1) concludes the
presence of three and therefore accepts the expectations hypothesis , while VAR (25)
acknowledges the presence of only one cointegrating relation. Note that these results are

consistent either when estimating the trace rank or the maximum eigenvalue statistics.

The same lag-augmentations are applied when the analysis estimates the fractional
cointegration rank of Breitung and Hassler (2002) although in this particular case there is
also the choice of setting the lag-length equal to zero. The results show that when lag
augmentations are equal to 25 the expectation hypothesis holds, while the remaining two

options reject the term structure theory. Finally, the paper with an informal testing
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comparison of the estimated and hypothesized cointegration space. This require a rotation
of the estimated cointegration space so that every column represent the spread of two
interest rates of different maturities. The results show that the estimated and hypothesized

space are not relative to each other and so this informal testing comparison of the estimated

Rejection is also valid when considering the alternative choice for d;, although no
cointegrating relations are acknowledged in this case. The paper proceeds with the
application of some known parametric tests in order to prove the drawbacks which are
attached with the decision over the lag-augmenations. As far as the Johansen methodology
is concerned, VAR(1) and VAR(25) models which are selected after controlling the short
run dynamics, they produce not surprisingly two different outcomes. On one hand VAR(1)
framework stands for the presence of three cointegrating relations and hence accepts the
expectations hypothesis, whereas VAR(25) acknowledges only one. The same lag-
augmentations are chosen when alternatively we apply the fractional cointegration rank
test of Breitung and Hassler (2002), although in this particular testing there is also the
choice of setting the lag-length equal to zero. For this last case and when lags are set to 25
the expectations hypothesis holds, whereas for the remaining case all null hypothesis are
being rejected. Finally, the paper proceeds with an informal testing of the cointegration
space. This require a rotation of the estimated cointegration space so that every columns
will stand for the spread of two interest rates. The results show that the estimated and the
hypothesized space are not relative to each other and so this informal testing procedure
constitutes another indication that in the present data set the expectation hypothesis does

not hold.
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Appendix

1. Plots and descriptive statistics of interest rates series under examination.

Table (A) Descriptive statistics of eonia, i7, i;g and iy,

mean Std.dev skewness Kurtosis Jarque/Bera Q(50) Q(100) Q(150) Q(200)

) 50315 125729, | 219097. | 275483, | 302072,
leonia | 2.932 | 1125 -0.294 0285 | 11 1g64e-011] | [0.000]** | [0.000]** | [0.0007** | [0.000]**
) 117.78 120620, | 224797. | 282689, | 311964,
| 32486 | 11246 | 0.060076 | -0.99523 | 1, erge 6] | [0.000]** | [0.000]** | [0.000]** | [0.000]**

) 12838 120430, | 223829. | 280708. | 309565,
o 3305 | 1121 0.075 10355 1y 3943e-028] | [0.0007** | [0.000]** | [0.000]** | [0.000]**
) 131.04 120197, | 222729. | 278440, | 306562,
Iz 3.346 | 11218 | 0082569 | -1.0444 | 1351000059 | [0.000]** | [0.0007** | [0.000]** | [0.000]**

Note : p-values are reported in the brackets/*(**) denotes rejection at 5% and 1 significant level/
Q(50),Q(100),Q(150),Q(200) denotes the Ljung Box statistic for

Graph (A) Plot of Eonia, iy, i1, 1.
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2. Modeling fractional ARIMA models for the first differenced interest rates series of Agonia,
Aiz, Ao and Ajp,.

Table (3) uses the Akaike and Schwartz information criteria and corresponds to Aconia,Ai7,
Airo, Airz the ARFIMA (1,0.331,1), (1,0.361,1),(1,0.363,1) and (1,0.363,1) respectively.
The procedure starts by estimating initially the fractional differencing operator of Aconia,Ai7,
Airo, Ai12, While in a next stage applies fractional differencing to the above series, and
finally uses ACF and PACF plots, hence applies the Box-Jenkins methodology to decide

the appropriate orders of AR and MA polynomials.
113



Table (B) using the Pc.Givel0O, which provides the option of estimating the ARFIMA
using a fixed long memory parameter, presents the estimated parameters of the above
selected fractional ARIMA models when the fractional differencing operator is fixed.

Table (C) which immediately follows repeats those estimates but allows this time the

fractional parameter to be freely estimated through the maximum likelihood process.

Table (B) The estimated coefficients and the portmanteau statistics of the selected ARFIMA models using a
fixed long memory parameters.

Aeonia Ay Airo Air

fi)?ed 0.331 0.361 0.363 0.363

a 0.354 0.463 0.448 0.469
. [0.000]** [0.000]** [0.000]** [0.000]**

0 -0.932 -0.644 -0.680 -0.711
L [0.000]** [0.000]** [0.000]** [0.000]**

Q (50) 62.568 84.087 77.541 70.349
[0.077] [0.001]** [0.004]** [0.019}*

Q(100) 118.45 132.95 133.69 130.37
[0.078] [0.010]* [0.009]** [0.016]*

Q(150) 180.50 219.92 214.70 204.39
[0.035]** [0.000]** [0.000]** [0.001]**

Q(200) 232.56 313.90 295.96 288.16
[0.046]* [0.000]** [0.000]** [0.000]**

Note :P(50),P(100),P(150),P(200) denote the portmanteau statistics for residual autocorrelation.
reported in the brackets. *(**) rejection at 5% and 1% significant level

p-values are

Table (C) The estimated coefficients and the portmanteau statistics of the selected ARFIMA models when
long memory parameter is freely estimated using the maximum likelihood process.

Aconia Ai7 Aio Aiz
d 0.376 0.254 0.325 0.320
fixed | [0.000]** [0.000]** [0.000]** [0.000]**
. 0.323 10,083 0.452 0.480
: [0.000]** [0.919] [0.000]** [0.000]**
) 10.239 -0.001 -0.649 -0.682
' [0.000]%* [0.999] [0.000]%* [0.000]%*
°(50) 61.803 91.584 77.837 70.734
[0.072] [0.001]** [0.003]** [0.014]*
P (100) 17155 14218 134.16 13095
[0.076] [0.001]** [0.007]%* [0.012]*
179.54 228,88 2148 204.68
. . . *%k
P(%0) | 10,035 [0.000]%* [0.000]%* [0.001]
28953
b0y | Z3LSE 331.92 297.00 [0.000]
[0.046]* [0.000]** [0.000]** :
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Note :P(50),P(100),P(150),P(200) denote the portmanteau statistics for residual autocorrelation. p-values are
reported in the brackets. *(**) rejection at 5% and 1% significant level

Tables D, E, F and G report the Whittled estimated coefficients of the ARFIMA models
corresponding Aiz, Aiwo, Ai12 and Agonia . Setting the max AR and MA order equal to 3 and
using all possible combinations in modeling the short memory dynamics as in Sowell
(1992), each of the above tables estimates the same 16 ARFIMA frameworks. In the
brackets below the estimated coefficients the t-statistic values are reported, while *(**)

denote respectively the rejection of the null at 5% and % significant level.

The last column in every table reports the Schwarz (Bayesian) information criteria. These
estimations are generated using the R statistical program and specifically the afmtools-
package. The above information criterium decides the ARFIMA frameworks upon which
the rest part of the analysis will actually evolve and as already has stated the selected
ARFIMA models are all employing common AR and MA specifications which sets the AR
and MA order equal to one.Using these ARFIMA models images (B) to (E) below each
table generate graphically outputs on a) the inverse AR and MA roots, b) the theoretical

and empirical spectrum and finally c) the correlogram of the estimated residuals.

The fact that all inverse AR and MA roots are well inside the unit circle indicates a good
approximation of the long memory segments of the ARFIMA, since otherwise the roots of
the autoregressive and moving average polynomials would normally approach the unit
circle. In fact for a positive long range dependence the root of the autoregressive
polynomial would approach the unit circle, while for a negative long run dependence the

root of the moving average polynomial would do the same
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Furthermore, plots of the implied spectral densities over the corresponding periodograms
indicate the appropriateness of the selected ARFIMA, while the same fit is underlined by

the autocorrelation functions of the estimated residuals.

Table (D) : Whittled estimated ARFIMA models corresponding A;; interest rate.

Az
ARFIMA d o [\ o3 (O 0, 03
oo | o - 1
0.265 -0.004
Od1) | 55607+ - [-4.978]** - -
0.267 -0.007 20,003
0.d2) | 1g6a7pre - [-5.1203]* | [-0.177]** -
043) 0.348 - 0.183 20,036 20,064
43) | [11.053)% [9274]* | [1828] | [-3.271]%*
0.259 20,088
(1,d.0) [8.363]** | [-4.638]** ) ) )
0.259 -0.088 20,0004
@d0) | ga7ape | 465 | [0.024] - - -
Gao | 02855 -0.114 20.018 20,041 - -
4 (92217 | [-5.901]* | [-0.989] | [-2.170]**
Lo 0375 0.460 - 0,654 - -
)| 12.109)% | [19.242)% [-19.830]**
02 0.258 0,822 - 0.735 20,057 -
d [8.342]%* | [-14.085]** (152191 | [-1197]
03) 0.453 0.492 - -0.780 0.083 20,051
43) | 114647 | [19.785]% [-18.306** | [L965]* | [-1210]
2o 0.253 -0.886 20,053 - 0.805 - -
4 (8175 | [-13.656] | [-0.821] [14.991]
202) 0.462 0.136 0.250 - -0.431 0274 -
42 | nagogrr | [e5411 | [12.049)% [-13.688]** | [-8.698}**
2ds) | . 008 1254 -0.265 - 1,003 0.152 20,063
d. [-27627* | [1091] [-0.231] [-8.303** | [1272] [-0.530]
4o 0.446 0.471 0.073 20,034 -0.751 - -
G | pag2op | periep | [2osyrr | [1387] | [17.360]%
302) 0.474 -0.267 0.454 0.040 -0.039 20,602 -
92) | 115304 | [-9.001] | [15.413p* | [1.389] [-1315] | [-20.139]**
303) 0.399 0.946 ~1.066 1175 1175 1223 0,584
43) | nponaprr | pronp | [128720%* | (11723 | [11723]% | [12.204]** | [-5.800]*

116




Graph (B) : Plots of the estimated ARFIMA (1,d,1) for Ai, a) inverse AR and MA roots, b) theoretical and
empirical spectrum, ¢) ACF-residuals.
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Table (E) : Whittled estimated ARFIMA models corresponding Ay interest rate.

Aito
ARFIMA d o1 o2 o3 (O} [CA 03 Sic
oo | | - | - | - |- |-
0.219 -0.097

0.d.1) [7.077]** ) ) ) [-5.105]** ) }

0.d2) 0.243 . . . -0.122 -0.029 .
i [7.864]** [-6.378]** [-1.543]

0.4.3) 0.323 . . . -0.204 -0.058 -0.063
i [10.4477** [-10.220]** | [-2.906]** | [-3.187]**

0.209 -0.084

(1,.0) [6.773]** | [-4.456]** ) ) ) ) ]

2.4.0) 0.222 -0.098 -0.020 . . . .
i [7.196]** | [-5.90]** | [-1.102]*

(3.4.0) 0.252 -0.128 -0.042 -0.045 . . .
i [8.148] [-6.711]** [-2.195]* [-2.391]*

(L.d.1) 0.351 0.448 . . -0.669 . .
i [11.350]** | [19.002]** [-19.596]**

(1.d2) 0.440 0.612 . . -0.932 0.103 .
- [14.234]** | [20.294]** [-13.950]** [1.542]

(1.d:3) 0.419 0.504 . . -0.804 0.075 -0.033
i [13.552]** | [19.941]** [-17.566]** [1.639] [-0.731]

2.d.1) 0.446 0.475 0.069 . -0.803 . .
i [14.426]** | [18.537]** | [2.714]** [-15.127]**

2.42) 0.410 0.015 0.272 . -0.305 -0.344 .
i [13.262]** [0.761] [13.379]** [-11.174]** | [-12.610]**

2.4.3) 0.053 0.238 0.732 . -0.174 -0.691] -0.043
- [1.743] [1.180] [3.626]** [-2.500]* [-9.940]** [-0.622]

(3.4.1) 0.418 0.464 0.062 -0.019 -0.763 . .
i [13.506]** | [18.676]** [2.510]* [-0.796] [-16.882]**

(3.02) 0.040 0.320 0.707 -0.054 -0.242 -0.668 .
i [1.314] [1.366] [3.015]** [-0.233] [-3.304]** | [-9.119]**

(34.3) 0.410 0.584 0.263 -0.155 -0.874 -0.170 0.195
i [13.262]** | [15.869]** | [7.156]** [-4.210]** | [-10.540] [-2.056]* [2.362]*

Note : In the brackets t-statistics are reported. *(**) denote respectively rejection of the null at 5% and 1% significant level

Graph (D) : Plots of the estimated ARFIMA (1,d,1) for Aiyy a) inverse AR and MA roots, b) theoretical and
empirical spectrum, c)ACF-residuals.
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Table (F) : Whittled estimated ARFIMA models corresponding A;yq interest rate.

Airz
ARFIMA d o1 o2 o3 (O} [CA 03 Sic
040 | aope | - : : : : :
0.191 -0.077
0.d.1) [6.182]** ) ) ) [-4.060]** ) }
0.d2) 0.228 . . . -0.115 -0.044 .
i [7.374]** [-6.031]** [-2.324]*
0.4.3) 0.307 . . . -0.196 -0.073 -0.062
i [9.913]** [-9.778]** | [-3.658]** | [-3.139]**
0.183 -0.065
(1,.0) [5.930]** | [-3.465]** ) ) ) ) ]
0.203 -0.086 -0.031
(2,d.0) [6.562]** | [-4.551]** [-1.673] ) ) ) )
(3.4.0) 0.233 -0.117 -0.052 -0.046 . . .
i [7.527]** | [-6.122]** | [-2.732]** | [-2.423]**
(L.d.1) 0.348 0.472 . . -0.699 . .
i [11.249]** | [19.456]** [-18.938]**
(1.d2) 0.416 0.586 . . -0.890 0.076 .
- [13.456]** | [20.404]** [-14.799]** [1.267]
(1.d:3) 0.400 0.509 . . -0.798 0.055 -0.022
i [12.926]** | [20.009]** [-17.281]** [1.199] [-0.490]
2.d.1) 0.418 0.485 0.050 . -0.792 . .
i [13.510]** | [18.972]** [1.967]* [-15.627]**
24.2) 0.387 -0.083 0.309 . -0.190 -0.422 .
i [12.509]** | [-3.9471** | [14.606]** [-7.388]** | [-16.413]**
2.4.3) 0.407 -0.220 0.434 . -0.074 -0.593 0.033
- [13.144]** | [-8.051]** | [15.843]** [-2.505]* | [-20.075]** [1.142]
(3.4.1) 0.399 0.476 0.045 -0.013 -0.764 . .
i [12.895]** | [19.044]** [1.814] [-0.547] [-16.854]**
(3.02) 0.406 -0.285 0.420 0.023 -0.008 -0.598 .
i [13.1091** | [-9.7511** | [14.374}** [0.793] [-0.282] [-20.364]**
(3.4.3) 0.406 0.686 0.410 -0.245 -0.979 -0.305 0.353
i [13.124]** | [9.426]** [5.642]** [-3.372]** | [-4.289]** [-1.337] [1.547]

Note : In the brackets t-statistics are reported. *(**) denote respectively rejection of the null at 5% and 1% significant level

Graph (E) : Plots of the estimated ARFIMA (1,d,1) for Aiy, a) inverse AR and MA roots, b) theoretical and
empirical spectrum, c)ACF-residuals.
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Aeonia
ARFIMA d ol o o3 0, 0, [CH Sic
049 | pgoapr | - : : : : :
-0.208 -0.014
Od1) | [ g731p% - - - [-0.744] - -
-0.117 -0.121 -0.126
(0.d.2) [-3.778]** ) ) ) [-6.193]** [-6.498] ]
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Note : In the brackets t-statistics are reported. *(**) denote respectively rejection of the null at 5% and 1% significant level

Graph (F) : Plots of the estimated ARFIMA (1,d,1) for Agenia @) inverse AR and MA roots, b) theoretical
and empirical spectrum, c)ACF-residuals.
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3. Graphical representation of interest rates series after applying fractional
differencing.

Graph (G) : Fractionally differences interest rate series when d=0.1
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Graph (H) : Fractionally differences interest rate series when d=1
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Table (H) The ADF, Phillips-Peron and KPSS test
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4. Testing the unit root hypothesis using ADF, Phillips-Peron and KPSS tests

Interest rates ADF PBS::)F;]S' KPSS Lags
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Note : For the ADF tests the Schwartz information criteria was used for lag selection, while maxlag was set equal to 27 and the
MacKinnon (1996) one-sided p-values were used for all cases. The Phillips-Peron spectral estimations were based uppon Barlett Kernel,
while for the KPSS test statistic the asymptotic critical values are 0.739 and 0.463 for 1 % and 5% significance levels respectively. On
all test equations a constant but no trend was included, *(**) denotes rejection at 5% and 1% significant level.
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Forecasting volatility and the risk return trade off .

An application on the Fama-French Benchmark market return



Forecasting volatility and the risk return trade off :

An application on the Fama-French Benchmark market return

ABSTRACT

The paper presents an application of the exponential fractional GARCH-M (FIEGARCH-
M) model to the daily stock market index returns of Fama-French. The model extends the
basic long memory volatility framework of Bollerslev and Mikkelsen (1996) by
introducing a possible volatility in mean effect. However, as has been stated by
Christensen and Nielsen (2007) the introduction of volatility in the return equation may not
be empirically warranted since often generates long memory in returns. Avoiding this
spillover effect could be crucial and in order to achieve the co-existence of long memory in
volatility and short memory in returns, the paper follows Ang et all. (2006) and
Christensen, Nielsen and Zhu (2010) and estimates their filtering volatility frameworks
(FIEGARCH-MG and FIEGARCH-MH). However, there is no reason to assume as
Christensen, Nielsen and Zhu (2010) that innovations in the return equations necessarily
will follow the normal distribution and therefore the present work enriches the estimation
by introducing various distributional assumptions settings on the corresponding maximum
likelihood functions. The results indicate the existence of a statistically significant in mean
effect when both filtered models are estimated under the assumption of t-student. However
both cases cannot outperform in terms of forecasting criteria the parsimonious FIEGARCH
version which dominate filtered and non filtered volatility models in various forecasting
horizons.

Keywords : FIEGARCH, Financial leverage, GARCH, Long memory, Risk-return trade off, Stock returns, Volatility
feedback.



1. Introduction.

The main goal of the paper is to compare different volatility models in terms of their
volatility forecasting potentials. However, before dealing with its final goal the paper
addresses first the issue of specifying properly the competing volatility frameworks, and
naturally this pre-requests answers upon questions such as : a) the ideal number of ARCH
and GARCH terms that should be employed in every volatility model, b) the distributional
assumptions applied and upon which the corresponding likelihood functions will be
formed, c¢) the incorporation or not in the estimated frameworks of volatility-return
relations, and finally d) issues related to long memory features and spillover effects when

both phenomena are present.

Especially when dealing with the question of whether the estimated volatility frameworks

identify possible volatility-return relations,**

the paper answers the question of whether
there exist statistically significant risk-return trade offs. So, the analysis although initially
sets its eye on volatility forecasting, simultaneously addresses the issue of whether

particular volatility specifications imply straightforward risk and return relations.

There are three theoretical approaches that justify the existence of such a relation : (a) the
risk-return tradeoff, (b) the financial leverage effect and (c) the volatility feedback effect
mechanism. The first assuming rational investors that will take on additional risk whenever
they expect higher returns, underlines a positive relation between volatility and returns.*?®
The second approach is attributed to Black (1976) and is broadly known as the leverage
effect. The theory states that bad news decrease the price of a stock and increase at the

same time the financial leverage or the debt/equity ratio of the corresponding firm. This

125 These volatility models are denoted with the M designation. For example GARCH-M, EGARCH-M,
FIEGARCH-M.

126This idea triggered Engle (1982) to introduce GARCH-M, that sets volatility as explanatory variable in the
conditional mean equation.
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situation sets stocks riskier after the price drop and hence increase future expected
volatility. So, this leverage effect obviously introduces a negative relation between
volatility and returns. Finally, the last approach is attributed to Cambell and Hentsel (1992)
and their volatility feedback mechanism. The last resumes the following chain of events.
An increase in volatility increases further the risk premium and the discount rate in the
economy, and given an unchanged stream of dividends, this lowers the price of a stock,*?’

and produces naturally a negative volatility return-relation.

Although the daily stock market returns are not characterized by the long memory feature
and seem to be rather unpredictable, volatility in returns is highly predictable and can be
modeled as a long memory process. These findings that are common in a number of
studies,?set naturally the FIEGARCH model of Bollerslev and Mikkelsen (1996) at the
core of the present analysis. The last not only addresses the issue of the asymmetric
volatility reactions to positive and negative innovations as the exponential EGARCH
model of Nelson (1991) does, but also accounts for the long memory features in volatility

as those have been modeled by the FIGARCH approach of Baillie et al. (1996).

Furthermore the paper focuses on FIEGARCH-M models. These frameworks beside
modeling volatility as a combination of asymmetrical and long memory features moreover
estimate the in mean relation among the latter volatility specification and the examined

return series.*?

An interesting view of this risk-return relation that is also explored in the present analysis

is explored in Christensen, Nielsen and Zhu (2010) and states that the introduction of

2TChristensen,Nielsen and Zhu (2010) state that the volatility feedback effect mechanism possibly is
strongest at the market level, while the leverage effect mainly affects individual stocks.

128 See Crato and de Lima (1994), Baillie et al (1996), Robinson (1991), Baillie and Morana (2007).

12These are the basic operations of any volatility-Mmodel.
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volatility in the return equation may generate long memory in returns. Avoiding this
spillover effect may prove crucial for both, the forecasting properties and the statistical
acknowledgment of the risk-return trade off, and so modeling the co-existence of long
memory in volatility and short memory in returns as in Ang et all. (2006) and Christensen,
Nielsen and Zhu (2010) sets an interesting empirical application of the present analysis.
The procedure introduces two FIEGARCH-M models, the FIEGARCH-MG and
FIEGARCH-MH, which both consider the option that it is changes in volatility entering

the conditional in mean equation rather than volatility levels themselves.

In terms of forecasting FIEGARCH is initially compared to GARCH, IGARCH,
FIGARCH, EGARCH and GJR. All these models are estimated for the daily stock market
index returns of Fama-French for a period of 37 years, from 01.07.1963 to
31.06.2010."*The applied specifications are decided upon standard information criteria
that reward both the goodness of fit and parsimony as well as the out of sample
forecasting.*'For example, although all the above models are estimated initially under the
normality assumption, however, a trialing process of applying alternative distributions such
as the t-student, general error and the skewed t-student, indicates that the fit corresponding
all the above models is significantly enhanced whenever the skewed t-student distribution
is applied. So the majority of the above models are estimated under this distributional

assumption.

At this initial stage and controlling for autocorrelation in data returns, comparisons reveal

that FIEGARCH is indeed the best forecasting model, while the volatility in mean effect

30The data are available on http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

131The “specification” term here refers to certain characteristics of the estimated volatility frameworks. Such
characteristics are (a) the hypothesized distribution of innovations , (b) the number of GARCH-ARCH terms,
(c) the inclusion or not in the estimated frameworks of possible M features and (d) the number of statistically
significant autoregressive terms when controlling the conditional in mean equation for the existence of
possible autocorrelations in the daily stock market returns.
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irrespective of the estimated volatility framework, turns out being not statistically
significant, contrary to results presented in Christensen, Nielsen and Zhu (2010). However
this conclusion is generally sensitive to the distributional assumptions applied, since the
choice of normal distribution generally acknowledges the statistical presence of the latter
relation, although in this case the forecasting and fitting properties of all the competing

volatility models are rather poor and non-competitive.

As far as the filtered long memory volatility models is concerned, there is no obvious
reason why their innovations must necessarily follow the standard normal distribution as
in Christensen, Nielsen and Zhu (2010) and therefore the paper changes the estimation
settings by introducing various possibilities over the distributional assumption. The t-
student distribution that is finally chosen acknowledges a statistically significant in mean
effect, although both filtered models cannot outperform in terms of forecasting the

parsimonious FIEGARCH model according to standard forecasting criteria.

The rest of the paper is organized as follows. Section 2 presents the mathematical
equations that correspond the M volatility models and the quasi maximum likelihood
method. Section 3 estimates all the competing volatility frameworks and particularly
section 3.1 estimates the non filtered EGARCH, FIEGARCH, FIGARCH, GARCH, GJR,
IGRACH volatility models, while section 3.2 estimates the filtered FIEGARCH models,
FIEGARCH-MH and FIEGARCH-MG. Section 4 presents a comparative forecasting

analysis of all estimated volatility frameworks and finally section 5 concludes.

2. The volatility—-M models and the quasi maximum likelihood estimation.

The basic idea of a volatility-M model is the introduction of volatility in the return

equation. Denoting r; as the daily return of a stock or stock market index at time t, Fi.; as
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the available set information up to t-lmoment, z; as a white noise process at time t, the
general representation of any volatility-M model is given by equation system (1), where
(1.a), (1.b) and (1.c) equations state respectively the conditional in mean specification, the

conditional variance of the residuals, and the general ARCH representation :

=u+ /IO't2 +¢, (L3)

o’ =E(g IF.) (Lb)

g =1,(va)"” (10)

Vi :(]"gtz—l""’gtz—q’O-tz—l""’atz—p) (1.d)

Equation system 1 is estimated by quasi maximum likelihood (QML).**?Although
ordinary least squares (OLS) deliver consistent estimates, however, the maximum
likelihood method is more efficient, in the sense that the estimated parameters converge to
their population counterparts at a much faster rate.***Obviously the log-likelihood function
depends upon the assumed distribution of innovations and specifically upon the assumed

conditional distributions of & and r..3*

Although Engle (1982) notes that applying conditional normality may not be as restrictive

as it initially appears,***however it is common strategy to let alternative assumptions enter

13\When normality is assumed but the true conditional distribution is not normal, the maximum likelihood
estimations are known to be quasi maximum likelihood. Weiss (1986) and Bollerslev and Wooldridge (1992)
shows that these (estimations) are consistent whenever the equations of the conditional mean and the
conditional variance are correctly specified.

33Engle (1982) shows that estimating the ARCH (1) model using the maximum likelihood provides gains in
efficiency that are quite large.

3Note that Z, term in (1.c) equation is usually named as innovation process. The reader must keep in mind
that the term innovation in the present context refers either to the previous definition or the one stated by
Cristensen, Nielsen and Zhu (2010). The last will be clarified as soon as there is presentation of the filtered
volatility models.

1%Engle (1982) states that if conditional distribution of returns is normal, the unconditional will not be
normal since it’s shape strongly displays a leptokurtic shape.
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the conditional distributions. Indeed Palm (1996), Pagan (1996) and Bollerslev, Chou and
Kroner (1992) underline the widespread use of fat-tailed distributions in the volatility
literature,**® an particularly state that the symmetric t-student, the generalized error (GED),
and the skewed student distribution of Fernandez and Steel (1998) are in fact the most
popular alternatives. Since the distribution of asset returns is most of the times negatively

137

skewed, °"the latter distribution by incorporating and adjusting for phenomena of kurtosis

and skewness, turns out being extremely useful.

Equation system (1) describes the general framework of a volatility-M model. However,
Christensen, Nielsen and Zhu (2010) propose an alternative presentation which introduces
volatility changes instead of volatility levels as the explanatory variable entering the
conditional in mean equation. The approach in the present analysis is applied solely for the
FIEGARCH-M model, and further details are displayed as soon as there is presentation of

the basic FIEGARCH framework.

FIEGARCH, nests both the FIGARCH model of Baillie.et al (1996) and the asymmetrical

EGARCH model of Nelson (1991). This model is specified in the next equation

p(L)(L-L) (noy -a) =y (L)g(z.,) @

where o is the mean of the logarithmic conditional variance, ¢(L) and wy(L) are
polynomials in the lag operator, (1-L)? stands for the fractional difference operator

presented in equation (3), z; is the normalized innovation at time t, that is z=¢/ot, while

13%8Bollerslev (1987), Hsieh (1989), Baillie and Bollerslev (1989), Palm and Vlaar (1997) among others show
that these distributions perform better in order to capture the higher observed Kurtosis.

¥Note that this is the case in our data set. For more information on the use of non normal distributions when
estimating GARCH models, see Laurent and Peters (2002).
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finally g (zi.1) introduces the news impact function that is defined as in equation (4) that

follows

O I
-0 = 2 @ ke o

9(z,) =0z, + (2| -E|z))
()]

The fractional difference operator engages a key roll in the FIEGARCH model, allowing a
persistence of shocks to volatility which is stronger than the one designating the short
memory volatility models of GARCH, ARCH, EGARCH etc. Furthermore, the
incorporation of asymmetries or leverage effects in the estimated conditional variance is
ensured by the presence of the news impact function g (z+1), which manages the way in

which past shocks affect the current levels in volatility.'*®

As Nelson (1991) states the leverage effect should be modeled as both a function of
magnitude and sign, and coefficients 6 and y presented in equation (4) manage exactly
that. Specifically, y coefficient displays the rate at which innovations enter volatility, while
6 manages the way the sign of the normalized innovations affect the current levels in
volatility. Obviously for a value 0 that is below zero, the negative innovations will induce

higher volatility levels than the positive innovations of the same magnitude.

Christensen, Nielsen and Zhu (2010) introduce the following stationary input in the

conditional in mean equation

h=(1-L)’(no! -0) ©)

1%8sing in FIEGARCH the natural log of conditional variance as the reliant variable implies that the latter
will always positive, even in the presence of negative estimated coefficients. This transformation eliminates
the necessity of imposing non negativity parameter restrictions, a strategy most common in the GARCH and
ARCH models.
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The equation operates as a filter that abstracts the long memory feature of volatility, while
an analogous stationary expression is presented in Ang et.al (2006) and uses the news
impact function of the previous period, that is g(z.1) function. The last resumes the most

recent innovation to volatility.

Both stationary products, h; and ¢g(z.1), when substitute the independent variable of

equation (1.a) generate the following two expressions

A ::u+/19(zt—1)+5t (6)

[=u+h+e ™

These conditional in mean equations alongside the FIEGARCH modeling of conditional
variance, premise the filtered long memory volatility models presented in Christensen,
Nielsen and Zhu (2010). Particularly, equation (6) corresponds to the FIEGARCH-MG

model, while equation (7) belongs to the FIEGARCH-MH case.

3. Application to the Fama-Frech stock market index, 1963-2010.

3.1 Estimating volatility models with out filtering : GARCH, EGARCH, FIGARCH,
GJR, FIEGARCH, IGARCH.

The first part of the analysis uses the daily returns of the Fama-French stock market for a
period of 37 years from 01.07.1963 to 31.06.2010, to estimate different non filtered
volatility models. Those models are GARCH-M, EGARCH-M, FIGARCH-M,
FIEGARCH-M, IGARCH-M and GJR-M, while table (1) concentrates the relative

mathematical expressions.
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Following at this point Bollerslev and Mikkelsen (1996) the above volatility frameworks
add in the conditional mean equations the autoregressive terms of an AR(3) process, and
so these models beside including in the return equation the corresponding volatility

estimates™® account also for autocorrelations in stock market returns.

This adjustment which theoretically is based on the arguments of Scholes and Williams
(1977) and Lo and MacKinlay (1990) underline the important fact that potential
discontinuous trading of stocks that make up the market index may result in significant
serial dependence over the index returns. Obviously the structure of autocorrelation will

depend on the specific feature that defines the exact nature of non synchroneity.

The above comments imply two things. First, that all the above volatility models use
equation system (1) as their general mathematical expression, and second, that only

equation (1.a) is changing into the following expression

2
L= pt W+ T, + T+ Aoy +6, ®)

Table (2) concentrates the estimations on the above volatility-M models. All cases
estimate equation (8) as the fundamental conditional in mean equation. Furthermore
following Christensen, Nielsen and Zhu (2010) all models of table (2) use one ARCH and
one GARCH term, while all models are estimated under the assumption of standard
normal distribution. Hence the estimated volatility models of table (2) are the
GARCH(1,1)-M-[1,2,3], EGARCH-(1,1)-M-[1,2,3], FIGARCH-(1,1)-M-[1,2,3],

FIEGARCH-(1,1)-M-[1.2.3], IGARCH-(1,1)-M-[1,2,3] and GJR (1,1)-M-[1,2,3].1°

139 The presence of the conditional in mean equation is denoted by the M designate.
M0Estimation of the above models is carried out with the G@rch 6 program. For the calculation of standard
errors the option of sandwich formula is consistently used. Elements x and y in parenthesis (x,y) denote
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Table (1) Mathematical expressions of the conditional variances for the estimated volatility models.

q p
GARCH | o7 =ay+ Zaigf_i + Z pol, =a,+a(L)e’ +B(L)o? a(L)=a L+ .. +aglC
=) i1 B(L)=ByL+...+BpL"

q p q p
IGARCH atz =a, + Zaigtz_i -I-Zﬂp‘tz_i =d, + t':‘l(|-)<9t2 + B(L)O'tz Zai + Zﬂ. =1
i=1 i=1 i=1 i=1

EGARCH log(c?) = w+[L- AL '[L+a(L)]9(z.,) 9@)=yizetva(12d-E(z)
q p _ A
GJR O't2 =+ Z (ai gtz_i +7; St__igtz_i) + Zﬂl O-tz_j :I Z::g :Egrr: g-lzé
i=1 j=1

roarch | o} = oft- BT HL-O(L)(L-L°[L- BT Yl | ozt o0y

The statistical significance of A coefficient in results presented in table (2) indicates that in

four out of six models'**

the return-volatility relation is present and favors a positive risk-
return trade off. On the other hand the estimated 6 and y parameters in both news impact
functions of EGARCH-M and FIEGARCH-M models are statistically significant at
conventional levels and have the expected signs.**> Furthermore the fractionally

differenced parameter, d, although positive and strongly significant in both long memory

volatility models differ significantly between the two and create speculations about the

respectively the number of GARCH (x) and ARCH (x) terms, while number in brackets indicate the
autoregressive variables enriching the conditional in mean equation. For example FIEGARCH (1,1)-M-[1]
denotes an M volatility model that uses one GARCH and ARCH term for the volatility specification, while
adds in the conditional in mean equation beside the logo® the first lagged variable r.; as an additional
explanatory variable. If the model under consideration does not belong to the M family of volatility models
then the letter M is missing from the above notation. For example FIEGARCH (2,1)-[1,3] states that the
model under consideration is the FIEGARCH with two GARCH and one ARCH terms specifying the
conditional variance equation, and the first and third lagged return variables, those are ry; and r. 3, added in
the conditional mean equation. Note that the same notation is consistently used throughout the analysis.

'L These models are IGARCH, FIGARCH, FIEGARCH and GARCH.

142 The news impact function, as clearly can be seen in the mathematical expressions presented in table (1)
and equation (2) is used solely in EGARCH and FIEGARH models. The successive incorporation of both
asymmetries induced by the sign and size of innovations implies that the estimated coefficients 6 and vy fulfill
certain characteristics. Those features are mainly two. First, the statistical significance of both estimated
coefficients at conventional levels, and second the verification of their expected signs. Specifically, 6 is
expected to be negative and vy positive. By default GJR incorporates only the asymmetries induced by the
sign of innovations and in this case by default the expected sign of 6 is positive. Therefore, the model does
not incorporate the news impact function presented in equation (4).
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realized goodness of fit. Moreover, for FIGARCH and FIEGARCH models he estimated

long memory parameters are 0.525 and 0.173 respectively.

As for the serial correlation of residuals in all models the estimated non statistically

significant Ljung-Box Q statistics*’

at both choices of lags, those are 100 and 200,
indicate clearly the absence of misspecifications in the corresponding conditional in mean
equations, an outcome mainly attributed to the presence of autoregressive

terms**‘introduced in equation (8).

Furthermore the Ljung—Box Q¥ statistics that are estimated on the squared residuals, turn
over non statistically significant outcomes except in one case. The exception irrespective
of the lag choices applied concerns the FIEGARCH model. The results clearly suggest a
misspecification of the FIEGARCH volatility equation although Harris and Sollis (2003)
argue that in GARCH type models the p-values drawn from X? distributions cannot
generally considered reliable. However these results since retain useful information for

further model comparison they are reported constantly in the present analysis.

Beyond this clearly FIEGARCH-M reports the best Akaike and log-likelihood value
among all estimated volatility models, while EGARCH-M practically matches those

standings and in the case of Schwarz information criteria outperforms FIEGARCH-M.

Finally the last row of table (2) presents results on the mean square error (MSE). The last is
estimated over the last 100 days of the sample period, using one-day ahead out of sample

volatility forecasts. Oddly, FIEGARCH-M turns over the highest value and hence the

3 The level of significance is 5%
14Estimating the same conditional in mean equations without the autoregressive terms of equation (8) turns
over everywhere statistically significant Ljung-Box Q* statistics at both lag-choices.

135



worst forecasting property among all estimated models, while at same time the best

forecasting performance is delivered by FIGARCH-M.

Since the models in table (2) are estimated under a common set of applied specifications
that concern mainly a) the number of ARCH and GARCH terms, b) the assumption of
conditional distribution and c¢) the orders of the autoregressive variables introduced in the
corresponding conditional in mean equations, estimates in table (2) may embed biases and
therefore mislead the quest for the best forecasting volatility model. So, the specifications
applied in table (2) should not by any means considered final and contrary wise they
should be regarded as the initial milestones for evolving further the fit of the presented

volatility models.

A versatile and perhaps a more realistic approach than the previous one would let the
volatility specifications change every time a different volatility model is estimated. Such
an analysis finds auspicious ground in many empirical applications'*and is carried over in
the estimations presented in table (3). The specifications and settings chosen for every
volatility model are decided upon standard information criteria that reward both the

goodness of fit and parsimony as well as the out of sample forecasting.**®

For example all models presented in table (3) except EGARCH which incorporates the

generalized error distribution (GED) are estimated presuming the skewed student

SNelson (1991) for example suggests that EGARCH model should be estimated using the generalized error
distribution (GED) while French, Schwert and Stambaugh**>(1987) propose the GARCH (2,1) specification
every time a GARCH volatility model is estimated.

16Retaining the volatility frameworks presented in table (2) the analysis re-estimates all models assuming
however non-normal distributions, such as a) the t-student b) the generalized error and c) the skewed t-
student distribution. The estimates are reported in the appendix, while table (3) resumes the final
specification of each volatility model. This process consists of two parts. The first decides the distributional
assumptions upon which the volatility models are estimated. These decisions are taken after comparing the
log-likelihood values and the Akaike/Schwarz information criteria corresponding every distributional
alternative. The second locates in those latter estimates the non statistically significant coefficients, and uses
the likelihood ratio test to decide the restricted forms. The results are reported in the appendix.
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distribution for the corresponding innovations, since the last significantly not only
improves the fit but in many cases enhances the forecasting properties of the
corresponding volatility models. Indeed comparison of the log-likelihood values and the

Akaike-Schwarz information criteria in tables (2) and (3), unveil that all models of table

(3) achieve considerably higher and smaller values respectively.

Table (2) Estimations of GARCH(1,1)-M-[1,2,3], EGARCH(1,1)-M-[1,2,3], IGARCH(1,1)-M-[1,2,3],

GJR(L,1)-M-[1,2,3],

FIGARCH(1,1)-M-[1,2,3],

FIEGARCH(1,1)-M-[1,2,3] assuming standard normal

distribution.
IGARCH EGARCH GJR FIGARCH | FIEGARCH GARCH

0.022 0.009 0.015 0.021 -0.004 0.022

K [0.005]** [0.341] [0.048]* [0.012]* [0.527] [0.008]**
0.153 0.157 0.161 0.155 0.1614 0.153

- [0.000]** [0.000]** [0.000]** |  [0.000]** [0.000]** [0.000]**
-0.015 -0.005 -0.008 -0.016 -0.003 -0.016

H [0.122] [0.535] [0.390] [0.125] [0.706] [0.126]
0.011 0.021 0.018 0.009 0.022 0.010

Hs [0.249] [0.012] [0.072] [0.372] [0.028] [0.271]
0.005 0.000 0.007 0.015 -6.265 0.006

© [0.000]** [1.000] [0.000]** |  [0.000]** [0.000]** [0.000]**

N 0.028 0.002 0.005 0.033 0.042 0.030
[0.004]** [0.874] [0.633] [0.004]** [0.001]** [0.006]**
0.090 -0.363 0.024 0.225 -0.517 0.087

* [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
0.909 0.989 0.915 0.651 0.955 0.908

P [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**

o ] -0.125 0.104 ] -0.142 ]

[0.000]** [0.000]** [0.000]**
0.194 0.193
v ” [0.000]** - i [0.000]** -
d ] ] ] 0.525 0.173 ]
[0.000]** [0.000]**

Logl -13729.9 -13565.7 -13610.8 -13710.2 -13543.6 -13727.707
Akaike 2.342 2.315 2.322 2.339 2.311 2.342
Schwarz 2.346 2.315 2.322 2.339 2.318 2.342
0(100) 101.689 101.123 97.181 106.808 106.494 101.954

[0.434] [0.449] [0.561] [0.302] [0.309] [0.426]
0(200) 219.196 218.316 217.383 224.067 220.992 219.744
[0.167] [0.178] [0.189] [0.116] [0.147] [0.161]
0*(100) 95.9477 101.123 99.173 91.327 161.449 94.659
[0.539] [0.449] [0.447] [0.670] [0.000]** [0.576]
0*(200) 186.545 222.698 210.752 173.752 282.624 189.056
[0.710] [0.110] [0.254] [0.892] [0.000]** [0.663]
MSE 12.76 1357 13.45 12.96 16.39 13.1

Note: Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, this is the value of the maximized
log-likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic
for testing the up to m’th order serial dependence of standardized and absolute standardized residuals denoted
respectively as Q(m) and Q*(m). Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of
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sample forecasts. The values in parenthesis stand for p-values. *denotes rejection at 5% significance, while ** denotes

rejection at 1% significant level.

Table (3) Estimations of IGARCH (1,1)-[1], GARCH(1,1)-[1], FIGARCH(1,1-)[1], FIEGARCH(L,1)-[1], GIR(1,1)-[1]

under the skewed distribution. Estimation EGARCH (2,1)-M-[1] using the GED distribution.

IGARCH EGARCH GJR FIGARCH | FIEGARCH GARCH
0.034 0.040 0.021 0.034 0.019 0.034
K [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
0.137 0.138 0.144 0.137 0.145 0.137
H [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
0.003 2.257 0.005 0.009 -2.294 0.004
@ [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
s ] -0.026 ] ] ] ]
[0.003]**
0.079 -0.980 0.026 0.196 -0.468 0.078
01 [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
B 0.920 1.928 0.920 0.697 0.759 0.919
1 [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
] ] ] ] ] -0.928
M2 [0000]**
Ha - - - - - -
o ] -0.114 0.097 ] -0.121 ]
[0.000]** [0.000]** [0.000]**
] 0.156 ] ] 0.158 ]
i [0.000]** [0.000]**
q ] ] ] 0573 0.565 ]
[0.000] 0.000
Logl -13466.2 -13348.2 -13381.1 -13453.9 -13296.2 -13465.8
Akaike 2.297 2.277 2.282 2.295 2.268 2.297
Schwarz 2.300 2.283 2.287 2.300 2.275 2.301
0(100) 110.010 112.954 102.255 114.201 108.880 109.821
[0.231] [0.177] [0.418] [0.157] [0.255] [0.235]
0(200) 228.858 230.429 222,613 173.619 226.944 228.809
[0.079] [0.068] [0.130] [0.893] [0.077] [0.079]
0%(100) 97.545 123.147 94.132 95.1898 127.563 96.846
[0.493] [0.037] [0.591] [0.561] [0.024] [0.513]
0*(200) 228.858 230.429 196.698 173.619 226.944 184.429
[0.079] [0.068] [0.512] [0.893] [0.077] [0.746]
MSE 12.8 13.25 13.04 12.93 13.97 12.98
Asvmmetr -0.062 ] -0.064 -0.061 -0.062 -0.062
y y [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**

Note : Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, the value of the maximized log-
likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic for
testing the up to m’th order serial dependence in the standardized and absolute standardized residuals denoted
respectively as Q(m) and Q*(m). Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of
sample forecasts and the estimated asymmetry coefficient of skewed student distribution. The values in parenthesis stand
for p-values.*denotes rejection at 5% significance level, while ** denotes rejection at 1 significance.

Take for example the results reported for the IGARCH model in tables (2) and (3). The
estimated log-likelihood values are -13729.9 and -13466.2 respectively, while the Akaike
criterium is significantly improved, and from the initial value of 2.342 finally reaches in

table (3) the value of 2.297. However, implementing a non normal distribution not only
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improves the fit of the presented volatility models, but in many cases alters the statistical

significance of certain coefficients.

Take for example the GARCH model and watch out how coefficients A and p3 are missing
from the estimations presented in table (3). Precluding the corresponding variables is a
decision made in a two stage process. The first stage estimates the unrestricted GARCH
version, proclaiming the variables that are individually non significant and therefore may
be dropped, while the second stage estimates the likelihood ratio test and draws

conclusions on the reception of the restricted forms.

For example the estimation of the unrestricted GARCH**’

model indicates Aj, pp and pg as
individually not statistically significant at 5% significance level, while the likelihood ratio
statistic that tests the joint exclusion of these coefficients accepts the corresponding null
hypothesis and so GARCH (1,1)-[1,2] is the restricted framework presented in table (3).

Obviously applying this two stage process in all models of table (2) delivers the

estimations presented in table (3).

Except EGARCH that acknowledges a negative statistically significant volatility-return
relation, all other models in table (3) reject the validity of the risk-return trade off.***Note
that although all models in table (3) are estimated using one ARCH and one GARCH term,
however the EGARCH model of Nelson (1991) does not follow this pattern and applies a
different combination that constitutes of two GARCH and one ARCH terms. Finally even

though all models strengthen the interpretive properties of the corresponding conditional in

Y7 This is GARCH(1,1)-M-[1,2,3] estimated under the skewed student distribution.

8sing t-student, GED and skewed student distribution for the formation of the corresponding likelihood
functions ends up in non statistically significant risk-return coefficients. However applying the normality
assumption results in the acknowledgement of the risk—return trade off in four at of six volatility models.
Therefore the analysis concludes that the statistical significance of the risk-return relation is sensitive to the
distribution applied.
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mean equations by introducing r; in the relative equations, the GARCH model does the

same and moreover adds ri.o.

Again the majority of the estimated Ljung—-Box Q and Q¥statistics are not statistically
significant at 5% significant level,**® while coefficients 6 and y of both news impact
functions acknowledge the presence of a leverage sign and size effect and justify the

competitive fit succeeded by EGARCH and FIEGARCH.

Further evidence on the superiority of FIEGARCH are reported in results of table (4)
where the Engle and Ng (1993) sign and size bias misspecification tests are presented.'*
As expected IGARCH, FIGARCH and GARCH reject the null hypothesis in all Engle and
Ng (1993) tests, while the rest models although account for asymmetries, do not always

manage successfully the leverage and size effects.

Specifically the results in table (4) indicate that only FIEGARCH incorporates efficiently
all three asymmetries, since EGARCH and GJR models although™ both accept null
hypothesis in the sign bias (S.B) and negative size bias test (N.S.B), however turn over

statistically significant statistics when the positive size bias tests (P.S.B) are estimated.

The results of table (4) are considered somewhat unexpected. The acceptance of null
hypothesis in the N.S.B test for the GJR model is completely unjustified since the model
by default accounts only for the sign asymmetries. On the other hand FIEGARCH although
deals efficiently with the asymmetries induced by the sign and size of innovations,

however unexpectedly rejects the null in the joint Engle and Ng (1993) test at 5%

149 Only Q*(100) statistics of EGARCH and FIGARCH are statistically significant at 5%.

0Engle and Ng (1993) proposed three tests: a) the sign bias test (SBT), b) the negative sign bias test (NSBT)
and c) the positive sign bias test (PSBT). The logic of these tests is to see whether having estimated a
particular GARCH model, an asymmetry dummy variable is significant in predicting the squared residuals.
The tests are of the null hypothesis that the null model is correctly specified (i.e there is on remaining
asymmetry).
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significant level. This contradiction naturally surprises, but similar outcomes have
reported before in other empirical studies.***
Table (4) Engle and Ng (1993) Sign and Size bias test.
IGARCH | EGARCH GJR FIGARCH | FIEGARCH | GARCH
B 2.187 1.242 2.882 2.006 1.558 2.148
' [0.028]* [0.213] [0.003]** | [0.044]* [0.119] [0.031]*
NSB 2.452 0.120 0.303 3.091 0.100 2631
[0.014]* [0.904] [0.761] [0.001]** [0.920] [0.008]**
PSB 3.000 2417 2.287 2.798 1.716 2.912
[0.002]** [0.015]* [0.022]* | [0.005]** [0.085] [0.003]**
Joint 55.730 16.404 31505 58.505 12.648 56.176
[0.000]** | [0.000]** | [0.000]** | [0.000]** | [0.049]** | [0.000]**

Note : (SB) stands for sign bias, (NSB) for negative size bias test, (PSB) for positive size bias test, (Joint) for
the joint statistic. Number in parenthesis report p-values.* (**) denotes rejection at 5% and 1% significant levels
respectively.

The previous analysis indicated FIEGARCH (1,1)-[1] as the best volatility model, although
the outcomes on the mean square error in table (3) make this vantage less obvious, since

FIEGARCH actually delivers the worst forecast error measurement.

However, the results in tables (B) and (C) in the appendix, where different error
measurements on one day ahead out of sample forecasts are reported, for 100 and 200 days
of forecasts respectively, reverse this impression.*® The outcomes affirm that although
FIEGARCH(1,1)-[1] in terms of MSE does not stamp it’s forecasting superiority, however
the model does provide competitive forecasts in the majority of forecast error
measurements. See for example the reported values on the median squared error, the mean

absolute error, the mean absolute percentage error and the logarithmic loss function.

Furthermore, since no model in tables (B) and (C) provides consistently best forecasts

naturally no model is considered dominant in terms of forecasting. However, the results

151 See for example Harris and Solis (2003).

1%2The forecasts error measurements are (MSE) mean squared error, (MedSE) median squared error, (MAE) mean
absolute error, (RMSE) root mean squared error, (MAPE) mean absolute percentage error, (AMAPE) Adjusted mean
absolute percentage error,(TIC) Theil inequality coefficient, (LL) Logarithmic loss function.
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in table (5) where the 300 one day ahead out of sample forecasts are reported turn around
this impression and consolidate the forecasting superiority of FIEGARCH (1,1)-[1].
Impressively the model exceeds in terms of forecasting any other model in 7 out of 8

forecasting error measurements.**®

These outcomes provide even greater endorsement for the results presented in table (3) and
further justify the belief that FIEGARCH (1,1)-[1] is indeed the best volatility model

among all non filtered alternatives presented so far.

Table (5) Forecasts errors for 300 one day ahead out of sample forecasts

IGARCH EGARCH GJR FIGARCH | FIEGARCH GARCH
MSE 46.21 10.52 23.41 25.96 9.858* 26.99
MedSE 52.61 2.706 25.43 26.68 1.693* 27.28
MAE 6.508 2.320 4.526 4.781 2.052* 4.882
RMSE 6.797 3.243 4.838 5.095 3.14* 5.196
MAPE 1498 400.2 1023 1066 318.3* 1081
AMAPE 0.748 0.608 0.705 0.712 0.594* 0.714
TIC 0.593 0.504* 0.529 0.537 0.534 0.540
LL 15.16 8.956 13.06 13.34 8.162* 13.44

Note (MSE) mean squared error, (MedSE) median squared error, (MAE) mean absolute error, (RMSE) root mean
squared error, (MAPE) mean absolute percentage error, (AMAPE) Adjusted mean absolute percentage error,(TIC) Theil
inequality coefficient, (LL) Logarithmic loss function * denotes the best forecasting model

3.2 Estimating volatility models with filtering: FIEGARCH-MH and FIEGARCH-
MG.

The previous analysis indicated FIEGARCH (1,1)-[1] as the best volatility model
according to information criteria rewarding the goodness of fit and parsimony as well as
the out of sample forecasting. Furthermore, results revealed that the inclusion of the long
memory feature alone as in the FIGARCH model does not imperatively improve the fit,
while the statistical significance of the risk-return relation, although sensitive to the

distributional assumptions applied, is mainly conceded under the assumption of normality.

152 The only exception concerns Theil’s Inequality coefficient.
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This section follows the approach of Christensen, Nielsen and Zhu (2010) and estimates
their filtered long memory volatility models. These models are FIEGARCH-MH and

FIEGARCH-MG.

Furthermore the analysis beside including in the corresponding conditional mean equations
the autoregressive terms of an AR(3) process as in the previous section, accounts also for
potential lagged volatility in mean effects and so, after appropriate adjustments made, the

conditional in mean equation of FIEGARCH-MH is defined as in equation (10)

L=l + ot + gl g+ AR+ AN+ AN (10)

For FIEGARCH-MG the following specification is applied

=gt + ot 4t +49(20) +4,9(2 ) + 49(2) (11)

Assuming innovations follow the normal distribution, tables (6) to (10) concentrate

estimations on both filtered long memory volatility models.**

Although both cases aim the filtering of conditional variance, however the models turn
over quite different results as far as the risk—return relation is concerned. Particularly, the
statistical significance of A; coefficient at 5% significant level in FIEGARCH-MH
underlines the strong presence of a positive risk-return trade off, while at the same time the
acceptance of null hypothesis in the t-statistics in all lagged volatility variables in the

FIEGARCH-MG model indicates a complete absence of such relations.

1% The visual representations of both regressors appears in Graph (1).
143



However, beside these differences the models present a number of common characteristics.
First, both filtered models acknowledge the statistical significance of the first
autoregressive component, while both incorporate well specified conditional in mean
equations.® On the other hand another common feature concerns the Ljung Box Q*
statistics, and specifically the rejection of the null hypothesis irrespective of the lag
selection. The outcomes clearly suggest the existence of possible misspecifications in the
corresponding volatility equations, although these inferences are not affirmed when the
LM statistics are computed. These results which are reported in table (6) indicate that

conditional variances are probably well specified.*®

Table (9) estimates different error measurements for 100 one day ahead out of sample
forecasts. Comparing these results with the ones reported in table (B) in the appendix
where different forecasts error measurements are reported for the same forecasting horizon
but for various non filtered volatility models, reveals the poor forecasting potentials of
FIEGARCH-MG and FIEGARCH-MH. Both models deliver forecasts that never challenge

the best values of each forecast error measurement.

155 This is seen in the results reported on the Ljung box Q statistic.
1% Except of ARCH (1-100) test that rejects LM’s null hypothesis at 5% significant level all other statistics
accept null hypothesis.
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Graph (1) Graphical representation of h, and g(z.,) variables assuming innovations follow the standard
normal distribution.
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The analysis so far aimed the filter of long memory in volatility. However, the a-priori use
of normality as in Christensen, Nielsen and Zhu (2010) is not entirely warranted by the
present data set, since the last is characterized by a strong leptokurtic, negative skewed

shape.

The possible misuse of normality can also be seen in table (10) where the outcomes on the
adjusted Pearson goodness of fit test are reported. The test compares the empirical
distribution of innovations with it’s theoretical shape. The rejection of the null in all
sections of cells indicates a possible mismatch and this obviously seems to be the case for

both filtered long memory volatility models.

Table (6) Estimated coefficients FIEGARCH-MH, FIEGARCH-MG assuming standard normal distribution.

FIEGARCH-MH FIEGARCH-MG

0.022 d 0.549 0.020 d 0.534

H [0.000]** [0.000]** K [0.000] [0.000]**
0.187 B 0.777 0.154 b 0.818

H [0.000]** 1 [0.000]** H [0.000] 1 [0.000]**
0.008 0.001

™ [0.304] Logl -13518.3 ™ [0.922] Logl -13533.4
0.026 : 0.019 ;

U3 [0.098] Akaike 2.307 U3 [0.114] Akaike 2.310
0.262 -0.039

M [0.000]** Schwarz 2.315 M [0.437] Schwarz 2.318
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0.107 106.832 0.051 104.485
A2 [0.069] Q(100) [0.301] r2 [0.310] Q(100) [0.359]
0.014 223.073 0.018 222575
A [0.837] Q(200) [0.126] A [0.721] Q(200) [0.130]
0.000 133.828 0.000 134.152
® mooo] | Q70 | 1o ooy ® mooo] | QA0 | g nogprx
-0.535 240.772 -0.588 238.715
1 [0.000p+ | Q7200) [0.020]* 0 [0.000p+ | Q7200) [0.025]*
. -0.131 0.176 ) 0.134 0.186
[0.000]** i [0.000]** [0.000]** i [0.000]**
Table (7) Engle and Ng tests(1993)
1352 0.791 0.987 0.638
SBT [0.176 NSB [0.428] SBT [0.323] NSB [0.522]
1593 : 8.761 1.953 : 8.876
PSB [0.110] Joint [0.032] PSB [0.050] Joint [0.030]
Table (8) Engle’s LM ARCH test (1982) for FIEGARCH-MG, FIEGARCH-MH
ARCH 1.2939 ARCH 11231 ARCH 1.2845 ARCH 1.1052
1100 test | [0.026]* | 1-200test | [0.114] | 1-100test | [0.029] | 1-200test | [0.149]
ARCH 1.0573 ] ] ARCH 1.0370 ] ]
1-300 test | [0.240] 1300 test | [0.3202]

Note : Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, the value of the maximized log-
likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic for
testing the up to m’th order serial dependence of the standardized and absolute standardized residuals denoted
respectively as Q(m) and Q*(m). (SBT) stands for the sign bias test, (NSBT) for the negative size bias test, (PSBT) for
the positive size bias test and (Joint) for the Joint statistic. The table also reports Engle’s (1982) LM ARCH test. The
values in parenthesis stand for p-values.*denotes rejection at 5% significance level, while ** denotes rejection at 1
significance.

Table (9) Error measurements for 100 one day ahead out of sample forecasts.

MSE | MedSE | MAE | RMSE | MAPE | AMAPE | TIC LL
FIEGARCH | 1321 | 2851 | 2242 | 3635 | 38838 0640 | 0611 | 1113
FIECARCH | 1318 | 26e8 | 2201 3.63 3757 | 0637 | 0617 | 10.97

Note (MSE) mean squared error, (MedSE) median squared error, (MAE) mean absolute error, (RMSE) root mean
squared error, (MAPE) mean absolute percentage error, (AMAPE) Adjusted mean absolute percentage error,(TIC) Theil
inequality coefficient, (LL) Logarithmic loss function.

Table (10) The adjusted Pearson goodness of fit test for FIEGARCH-MH and FIEGARCH-MG under
normality.

FIEGARCH-MH FIEGARCH-MG
cells statistic P-Value P-Value statistic P-Value P-Value
(g-1) (9-k-1) (9-1) (9-k-1)

300 436.6828 | [0.000]** | [0.000]** | 481.1917 [0.000]** | [0.000]**
400 561.2224 | [0.000]** | [0.000]** | 589.8035 [0.000]** | [0.000]**
600 742.4638 | [0.000]** | [0.000]** | 800.5812 [0.000]** | [0.000]**
*denotes rejection at 5% significance level, while ** denotes rejection at 1 significance

The next part of the analysis uses different distributional assumptions to estimate

FIEGARCH-MH and FIEGARCH-MG.™" Obviously introducing assumptions beside

"The appropriateness of the applied distributions is judged according to standard criteria used in the
volatility literature. These criteria are parsimony, goodness of fit and out of sample forecasting.

146



normality requires re-estimating the news impact function g(z;) and the stationary variable
hi. Once this stage is completed the estimates of both filtered long memory volatility
models are concentrated in table (11) and then models are tested for the joint exclusion of
the non statistically significant variables. The estimated restricted models that come out of
these process and are denoted as FIEGARCH-MH*and FIEGARCH MG*, are both
presented in table (12).The objective remains the estimation of the best filtered volatility
models considering the options of the analysis as far as the distributional assumptions are

concerned.

Specifically for FIEGARCH-MH the choice results among estimating the filtered MH
model either under the t-student or GED distributions, since the estimated asymmetry
coefficient of the skewed student distribution in table (11) is non statistically significant

and naturally excludes the corresponding model from the rest part of the analysis.*®

However, making a choice between the remaining two restricted™®

options is no easy task,
since both models achieve equal fit and identical estimations in almost all implicated

coefficients.

Specifically, both models acknowledge the same set*®

of coefficients as statistically
significant at conventional levels, while both estimate a positive A; coefficient and

therefore conclude the presence of a positive return-risk trade off.

¥Note that G@RCH does not estimate & but log & facilitating inferences about the null hypothesis of
symmetry. Note also that skewed—student equals the symmetric student distribution when &=1 or in this case
when log(&)=0. The estimated value of log (&) is reported in the output under the label asymmetry. See
Lambert and Laurent (2001) and Bauwens and Laurent (2005) for more details on this outcome.

9The full models are estimated in table (11) while the restricted versions are reported in table (12). The
latter are generated after the joint test for the significance of all or part of the individually non statistically
significant variables in the models presented in table (11) is accepted. Take for example the FIEGARCH-
MH under the assumption of t-student. Looking at t-statistics and the corresponding p-values in table (11) the
individually non statistical significant variables are the second and third order autoregressive term and the
innovation hy,. Those variables correspond respectively to the coefficients p,, ps and A, and Az The
likelihood ratio statistic that tests the joint exclusion of these variables accepts the null hypothesis and the
restricted model is presented in table (2).
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Table (11) Estimation of the unrestricted FIEGARCH-MH-MG models assuming t- student, GED, and
skewed student innovations.

FIEGARCH-MH FIGARCH-MG
t-student GED skewed t-student GED skewed
0.014 0.016 0.015 -0.011 0.264 0.024
H [0.005]** [0.005]** [0.015]* [0.561] [0.000]** [0.551]
0.176 0.167 0.170 0.138 -0.023 0.137
1 [0.000]** [0.000]** [0.000]** [0.000]** [0.009]** [0.000]**
-0.005 -0.008 -0.011 -0.010 -0.001 -0.011
Ha [0.635] [0.400] [0.212] [0.151] [0.899] [0.587]
0.013 0.012 0.007 0.009 -0.015 0.008
Hs [0.235] [0.289] [0.458] [0.252] [0.057] [0.608]
2 0.267 0.244 0.232 -0.105 1.819 -0.115
1 [0.000]** [0.001]** [0.001]** [0.002]** [0.000]** [0.319]
% 0.117 0.085 0.079 0.061 -0.214 0.061
2 [0.100] [0.234] [0.226] [0.018]* [0.000]** [0.583]
2 -0.011 -0.022 -0.055 0.009 0.2621 0.007
8 [0.861] [0.736] [0.369] [0.252] [0.000]** [0.961]
-0.439 -0.524 -0.467 -0.494 -0.552 -0.496
% [0.002]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
0.722 0.760 0.743 0.753 0.779 0.755
By [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
0.000 0.000 0.000 0.000 0.000 0.000
® [1.000] [1.000] [1.000] [1.000] [1.000] [1.000]
0 -0.116 -0.124 -0.113 -0.120 -0.127 -0.119
[0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
0.161 0.177 0.164 0.172 0.179 0.171
i [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
d 0.605 0.589 0.602 0.599 0.590 0.598
[0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
Logl -13316.1 -13355.7 -13319.4 -13324.3 -13337.2 -13323.6
Akaike 2.273 2.279 2.273 2.274 2.276 2.274
Schwarz 2.282 2.288 2.283 2.283 2.285 2.284
Q(100) 107.189 109.357 106.202 104.503 101.155 104.343
[0.293] [0.245] [0.316] [0.359] [0.448] [0.363]
Q(200) 225.352 227.740 224.904 224171 219.525 224.218
[0.105] [0.086] [0.109] [0.115] [0.163] [0.115]
Q*(100) 117.399 120.253 117.803 117.288 121.926 118.119
[0.088] [0.063] [0.084] [0.089] [0.051] [0.081]
Q*(200) 219.033 222.383 219.338 218.073 224.006 219.245
[0.145] [0.112] [0.142] [0.156] [0.099] [0.143]
MSE 13.21 13.21 13.20 13.24 13.24 13.23
Asymmetry 0.006 0.006
(log) i ) [0.712] ) ) [0.702]
SB 1.339 1.271 1.530 1.500 1.458 1.331
[0.180] [0.203] [0.125] [0.133] [0.144] [0.182]
NSB 0.397 0.708 0.436 0.547 0.945 0.415
[0.690] [0.478] [0.662] [0.584] [0.344] [0.677]
PSB 2.141 2.250 2.139 2.215 2.408 2.253
[0.032]* [0.024]* [0.032]* [0.026]* [0.016]* [0.024]*

180 The statistical significant coefficients are p, pi, A4, d, 0, v.
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13.380 12.951 14.711 14.614 15.163 13.944
[0.003]** [0.004]** [0.002]** [0.002]** [0.001]** [0.002]**
Note : Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, the value of the maximized log-likelihood
function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic for testing the up to m’th order
serial dependence of the standardized and absolute standardized residuals, denoted respectively by Q(m) and Q*(m), (SB) stands for sign
bias, (NSB) for negative size bias test, (PSB) for positive size bias test, (Joint) for the joint statistic. Number in parenthesis report p-
values. Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of sample forecast and the asymmetry
coefficient estimated when the distribution skewed student is assumed. The values in parenthesis stand for p-values.*denotes rejection at
5% significance level, while ** denotes rejection at 1% significance.

Joint

Table (12) Estimation of restricted FIEGARCH-MH and FIEGARCH-MG assuming t- student and GED
distributions

FIEGARCH-MH* FIEGARCH-MG*

t-student GED t-student GED
0.014 0.015 ] 0.232
K [0.000]** [0.001]** [0.000]**
0.175 0.165 0.136 -0.025
- [0.000]** [0.000]** [0.000]** [0.019]*
Ha - - - -
Hs - - - -
N 0.274 ] -0.106 1.834
. [0.000]** [0.004]** [0.000]**
N ] ] 0.088 -0.211
2 [0.016]* [0.000]**
A - ) - -
. -0.428 0512 -0.491 -0.552
1 [0.002]** [0.000]** [0.000]** [0.000]**
B 0.721 0.757 0.750 0.778
1 [0.000]** [0.000]** [0.000]** [0.000]**
® . ] ] .
o -0.117 -0.123 -0.120 -0.127
[0.000]** [0.000]** [0.000]** [0.000]**
0.161 0.176 0.172 -0.127
i [0.000]** [0.000]** [0.000]** [0.000]**
d 0.603 0.588 0.600 0.589
[0.000]** [0.000]** [0.000]** [0.000]**
Logl -13335.3 -13359.4 -13325.1 -13338.3
Akaike 2.273 2.279 2.273 2.276
Schwarz 2.278 2.285 2.279 2.282
0(100) 111.326 113526 107.000 103.981
[0.206] [0.167] [0.297] [0.372]
0(200) 228.332 230.501 226.332 222.389
[0.082] [0.068] [0.097] [0.132]
0*(100) 117.338 119.949 117.088 121.093
[0.089] [0.065] [0.091] [0.056]
0*(200) 217.060 220.242 217.800 222.389
[0.168] [0.133] [0.159] [0.132]
MSE 14.29 13.24 13.25 13.24
SB 1.641 1.370 1548 1.473
[0.100] [0.170] [0.121] [0.140]
NSB 0.454 0.656 0.565 0.953
[0.649] [0.511] [0.571] [0.340]
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bsB 1.975 2.143 2.184 2.437
[0.048]* [0.032]* [0.028]* [0.014]*

Joint 1422 12.828 14.698 15.490
[0.002]** [0.005]** [0.002]** [0.001]**

Note Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, the value of the maximized log-likelihood function,
the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic for testing the up to m’th order serial
dependence of the standardized and absolute standardized residuals, denoted respectively by Q(m) and Q*(m), (SB) stands for sign bias,
(NSB) for negative size bias test, (PSB) for positive size bias test, (Joint) for the joint statistic. Number in parenthesis report p-values.
Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of sample forecast and the asymmetry coefficient
estimated when the distribution skewed student is assumed. The values in parenthesis stand for p-values.*denotes rejection at 5%
significance level, while ** denotes rejection at 1% significance.

Furthermore, the models estimate almost identical values on the Akaike and Schwarz
information criteria, while both estimate Ljung Box Q and Q* statistics at 100 and 200 lags
that are not statistically significant. As for the sign and size bias tests of Engle and Ng
(1993) both filtered models estimate identical results. Specifically the S.B.T and N.S.B.T

statistics accept the null, whereas the joint and P.S.B tests both rejects it.

Table (13) reports the log-likelihood values and the Akaike/ Schwarz information criteria
for all the competing filtered volatility models. In bold letters the table denotes the best

estimates of each criterium. Obviously the best ones belong to the t-student assumption.

Table (13) The log-likelihood values and the Akaike/Schwarz information criteria of all estimated filtered
volatility models.

FIEGARCH-MH FIEGARCH-MG

Lilkelihood value | Akaike | Schwarz | Likelihood value | Akaike | Schwarz

Normal -13518.3 2.307 2.315 -13533.4 2.1310 2.318
t-student-MH*- MG* -13335.3 2.273 2.278 -13325.1 2.273 2.279
GED-MH*-MG* -13359.74 2.279 2.285 -13338.3 2.276 2.282
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4. Forecasting volatility : A comparative analysis.

A last criterium for selecting the best volatility model involves inescapably out of sample
forecasts. However, using only one forecast error measurement, or estimating various
forecasts error measurements under the same forecasting horizon definitely induces biases.
For example, the mean square error values (MSE) reported in table (12) according to the
forecasting accuracy test of Diebold and Mariano (1995) are statistically equal.*®
However, using a different forecasting horizon than the 100 one step ahead out of sample
forecasts of table (12), for example 200, turns over this impression since the MSE values
are no longer consider being statistically equal.*®* So the analysis in this case is left with no

real power over the selection procedure.

In an attempt to overcome this drawback, it is worth using a criteria that assesses the
overall mean square errors of different forecasting horizons and in this direction the
present analysis applies the Clements and Hendry (1993) approach which introduces the
generalized forecast error second moment statistic (GFESM). The last is given by the
determinant of the complete forecast error second matrix which is presented in the

following equation

GFESM=|E[uu] 12)

where u is the vector of forecast errors. %

181 For more details see the appendix.

162 Results are reported in the appendix

183 1n order to avoid large numbers the analysis reports results on the log transformation of GFESM. This is
denoted as Log-GFESM.
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Tables (14) and (15) use one step ahead out of sample forecasts for 20,40,60,80 and 100
days to estimate the log-GFESM statistic for both restricted filtered volatility models,

under the t student and GED distributions.

Obviously FIEGARCH-MH* under the t-student assumption is constantly generating the
smaller Log-GFESM values. Taking in mind this outcome along with the smaller Akaike
and Schwarz values of FIEGARCH-MH* in table (13), the analysis eventually decides to

estimate the filter FIEGARCH-MH model under the t-student assumption.

Note that for FIEGARCH-MG* the results reported in tables (11) and (12) are in fact very
similar to the ones presented for FIEGARCH-MH*, while the basic conclusions are briefly

discussed in the following lines.

Under the assumption of skewed student distribution the FIEGARCH-MG*® estimates an
asymmetry coefficient that is strongly insignificant. The result naturally precludes the
model from the rest part of the analysis and so the remain competing volatility frameworks
are the FIEGARCH-MG, estimated under either the t-student or the GED distribution.
Although the above models acknowledge different statistically significant sets on the
estimated coefficients, however, the models appear identical according to standard

information criteria.*®®

The selection procedure continues next with the estimation of the restricted versions of the
above models. Those are presented in table (12). Note that the outcomes on Q and Q*
Ljung Box statistics imply the correct specification of the mean and volatility equations,

while the sign and size bias tests reiterate the same pattern as in FIEGARCH-MH*case,

184 The analysis denotes this model as FIEGARCH-MG-skewed.
185 As has been stated the selection procedure involves the restricted models. So here identical refers to the
latter specification.
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with S.B.T and N.S.B.T statistics accept the null hypothesis at 5% significant level, and

joint and P.S.B tests rejects it, at both conventional levels.

The similar results of the above models make impossible a sustained choice among them.
Moreover, since the comparison of the mean squared errors value (MSE) reported in table
(12) does not really contribute any additive information in the selection procedure, the
weight of the selection falls entirely on forecasting properties and particular on Log-

GFESM statistic.

As already is mentioned the results on the Log-GFESM statistic in table (14) are endorsing
the estimation of the FIGARCH-MH*under the t-student distribution, while this option is

also supported by the smaller Akaike value.

Table (14)-(15) Estimation of the Log-GFESM statistic for FIEGARCH-MH* and FIEGARCH-MG*
under the t —student and GED distributions.

Table (14) Table (15)
FIEGARCH-MH* | FIEGARCH-MH* | FIEGARCH-MG* | FIEGARCH-MG*
student GED student GED
Log-GFESM
20 0,067 0,466 0,476 0,457
40 0,196 0,948 0,969 0,928
60 1,166 1,473 1,503 1,445
80 2,333 2,571 2,601 2,543
100 3,488 3,692 3,723 3,665

As far as the FIEGARCH-MG* is concerned the results in table (15) indicate that the two
models appear equally good performances when controlling for different forecasting
horizons, even though FIEGARCH-MG* model under the GED distribution is constantly
generating smaller Log-GFESM values. However, the comparison of the corresponding
MSE of 20, 40, 60, 80, 100 one step ahead out of sample forecasts, indicates that those

differences are not statistically significant. 1°°

186 Note that Log-GFSM statistics for FIEGARCH-MG* under the t-student and GED are considered
statistically equal according to Diebold and Mariano test (1995).
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So the decision of which model to choose falls entirely on Akaike and Schwarz criteria
reported in table (13). Considering the slightly smaller values of both, when FIEGARCH-

MG* is estimated under t-student, there is finally a decision reached.

Results of tables (16) and (17) estimate the adjusted Pearson goodness of fit test and
provide further support on the decision to estimate both filtered restricted models under the
assumption of t-student. Specifically the results report that under the t student assumption
the null hypothesis is accepted in every section of cells, while the last is always rejected
when the GED distribution is chosen. So, results provide solid support over the decision to

estimate both filtered models under the assumption of t-student.

Table (16) Adjusted Pearson Chi-square Goodness-of-fit test for restricted FIEGARCH-MH*

cells FIEGARCH-MH* FIEGARCH-MH*
t-student GED
stat P p* stat P p*
300 334.514 0.077 0.056 385.932 0.000 0.000
400 432.129 0.121 0.069 473.705 0.005 0.002
600 580.851 0.695 0.598 666.338 0.028 0.015

Note :

corresponding adjusted p-values.

P-column reports p-values corresponding p-each number of cells. The

P*-column reports the

Table (17) Adjusted Pearson Chi-square Goodness-of-fit test for restricted FIEGARCH-MG*

cells FIEGARCH-MH* FIEGARCH-MG*
t-student GED
stat P p* stat P p*
300 335.642 0.071 0.053 416.065 0.000 0.000
400 434.346 0.107 0.059 473.023 0.006 0.002
600 597.579 0.508 0.405 695.090 0.003 0.001

Note : P-column reports p-values corresponding p-each number of cells. The P*-column reports the
corresponding adjusted p-values.

However, before proceeding with the final forecasting analysis there are two things that
must be stated. First, the estimates on the long memory parameter in all non filtered
volatility models are quite robust and vary between 0.525 and 0.573. The only exception is
the FIEGARCH model in table (2) which surprisingly estimates a value 0.173. On the

other hand the same long memory estimates for the restricted filtered volatility models are

approximately 0.60 and match the values found in Bollerslev and Mikkelsen (1996).
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The second statement concerns the risk-volatility relation and the fact that FIEGARCH-

MG*indicates the presence of two opposite in sign statistically significant relations.

Moreover, A; coefficient is found being negative, while A, is positive. The results suggest
the dominance of a volatility feedback effect mechanism in the first lagged period and the

existence of a positive volatility-return trade off in the second.

The combination of signs reported here is the one appearing in Christensen, Nielsen and
Zhu (2010). The researchers justify this finding by stating that the negative sign of the first
period is something to be seen first, since the volatility feedback effect mechanism induces
an immediate price drop as soon as the discount rate in the economy reacts to an increase
in volatility. So, the negative effect is something to be seen first. On the other hand the
positive sign of the second period is attributed mainly to adjustments made in expectations,
a phenomena that naturally requires time in order to mature and in the present analysis this

occurs in the second period.

Two things must be underlined when dealing with such phenomena. First, a possible non
linearity in either relation would make difficult the separation of the two results, and
second an omitted variable bias would produce a negative risk-return relation when in fact

there is not any.

Next, the paper compares the best volatility models of each approach. Competing
frameworks are the FIEGARCH (1,1)-[1] estimated under the skewed student assumption
and the restricted filtered FIEGARCH-MH* and FIEGARCH-MG* both estimated under

the t-student distribution.

Obviously, the estimations reported in tables (3) and (13) indicate that the non filtered

FIEGARCH (1,1)-[1] outperforms both filtered FIEGARCH versions according to the log-
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likelihood values and the Akaike and Schwarz criteria. This may be due to the fact that
FIEGARCH (1,1)-[1] accepts all null hypothesis in the relevant sign and size bias tests of
Engle and Ng (1993), although this is not true for the joint test at 5% significant level since

the p-value in this case is 0.049 and hence rejects on the limit the null hypothesis.

Ignoring this latter rejection and having in mind the statement of Engle and Ng (1993) that
the joint test is actually more powerful to the individual ones, then this might be the only
framework that efficiently manages the leverage effects. So the above statements leave no
doubt about the opportune incorporation of all asymmetrical effects. Note that the
estimation of FIEGARCH (1,1)-[1] under the skewed student distribution is endorsed by

the results presented in appendix for the adjusted Pearson test.'®’

A last crucial criterium involves out of sample forecasting under different forecasting
horizons. Earlier in the analysis the paper used 20, 40, 60, 80 and 100 one step ahead out

of sample forecasts, estimating on each occasion the corresponding log-GFESM statistic.

Table (17) re-estimates this statistic for the competing volatility frameworks, while table
(18) extends the foresting horizons of the analysis by assuming 100, 150, 200 and 250 one
step ahead out of sample forecasts. At the same time the table reports the values of eight
forecasts error measurements in order to provide an overall assessment of the forecasting

performances.

Both tables verify the complete dominance of FIEGARCH(1,1)-[1] in short and long term
forecasting horizons, as clearly can be seen in the nine forecasts error measurements. The
only exception is reported in table (17) for the 60 one step ahead out of sample forecasts.

In this case the FIEGARCH(1,1)-[1] delivers the worst forecasts error measurement.

187 Another endorsement for estimating FIEGARCH underthe skewed student distribution can be seen in the
statistical significance of the estimated asymmetric coefficient reported in table (3).
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Table (17) One step ahead forecasts of FIEGARCH models considering different forecasting horizons for L-

GFESM statistic

L _GFESM FIEGARCH(L,1)-[1] FIEGARCH-MH*(1,1) FIEGARCH-MG*(1,1)
Skewed student t-student t-student
20 0,480* 0,067 0,457
40 1,147* 0,196 0,928
60 1,686 1,166* 1,445
80 2,140* 2,333 2,543
100 2,673* 3,488 3,665

Table (18) One step ahead forecasts of FIEGARCH models considering different forecasting horizons

FIEGARCH* FIEGARCH-MH* FIEGARCH-MG*
Skewed student t-student t-student
L-GFESM
100 0.708* 0.919 0.942
150 1.361* 1.844 1.886
200 1.926* 2.767 2.825
250 2.840* 3.810 3.878
MSE
100 5.109* 8.309 8.762
150 4,504* 8.404 8.779
200 3.669* 8.378 8.690
250 8.209* 11.06 11.310
MEDSE
100 3.003* 8.852 9.349
150 2.336* 9.253 9.813
200 1.776* 9.298 9.717
250 1.714* 8.852 9.135
MAE
100 1.914* 2.694 2.773
150 1.715* 2.705 2.771
200 1.538* 2.725 2.780
250 1.814* 2.843 2.890
RMSE
100 2.260* 2.883 2.960
150 2.122* 2.899 2.963
200 1.915* 2.894 2.948
250 2.865* 3.326 3.363
MAPE
100 432.2* 658.9 676.7
150 296.1* 456.6 468.7
200 348.8* 679.9 690
250 299.9* 603.5 612.3
AMAPE
100 0.588* 0.639 0.643
150 0.588* 0.659 0.662
200 0.604* 0.689 0.692
250 0.604* 0.668 0.670
TIC
100 0.466* 0.485 0.489
150 0.476* 0.505 0.508
200 0.477* 0.531 0.534
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250 0.578* 0.514 0.515

LL
100 8.209* 9.847 9.982
150 7.457* 9.582 9.694
200 8.628* 11.600 11.700
250 8.333* 11.190 11.270

Note : * denote the best forecasting model
5. Conclusions.

The present analysis uses the daily returns of the Fama-French stock market index to
estimate various volatility models, with the aim to compare their volatility forecasting
potentials. The competing volatility frameworks are GARCH, FIGARCH, EGARCH,

IGARCH, GJR and FIEGARCH.

The pursue of the above objective naturally requires the exact specification of the
competing volatility frameworks, and this obviously demands decisions upon dilemmas
such as, a) the number of ARCH and GARCH terms used in every volatility model, b) the
distributional assumptions applied, and finally ¢) decisions about whether to include in the
estimated frameworks volatility-return relations. Especially when dealing with the last
issue, the analysis answers the question about the presence of a statistically significant

volatility-return relation.

Furthermore the analysis focuses on FIEGARCH model and applies a filter of long
memory in volatility in order to prevent possible spill over effects. Specifically, the
analysis follows Christensen, Nielsen and Zhu (2010) and estimates their filter volatility
models, FIEGARCH-MH and FIEGARCH-MG, that introduce stationary volatility

representations in the conditional in mean equations.

As far as the volatility-relation is concerned the results suggest that the acknowledgement
of such a relation is generally sensitive to the distributional assumptions applied and to

specific estimated models. On the other hand and as far as volatility forecasting is
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concerned, the Fama-French stock market index provides strong support for models not
incorporating such a risk-return relation, with FIEGARCH (1,1)-[1] truly outperforming
any other model, either according to standard information criteria that reward the fit, or
according to combined forecasting analysis, that examines various forecasting error

measurements under different forecasting horizons.
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Appendix

1. ACF, Spectral density, long memory tests.

0.1r

The spectrum at zero frequency is a finite function and therefore suggests that stock market index
of Fama-French is a well defined stationary process. The same results are confirmed in table (A)
when implementing both the log-periodogram regression method of Geweke and Porter-Hudak
(1983) and the Gaussian semi-parametric method of Robinson and Henry (1998). Furthermore,

results confirm the negative skewed and leptokyrtic nature of the data set, which justifies the
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selection of skewed student t distributions in the majority of estimations.

Table (A) Descriptive statistics of Fama-French data set

I
500

mean | std.dev | skewness Kurtosis JB GPH GSP
test test
-0.54655 17.655 | 1.5295e+005 | 0.017 | 0.011
r|0019 ] 0983 4.5806e-129 | [0.000] [0.000] [0.052] | [0.073]
2. Forecasts Error Measurements for different volatility models.
Table (B) Forecasts Error measurements for 100 one day ahead out of sample forecasts
IGARCH | EGARCH | GJR | FIGARCH | FIEGARCH | GARCH
MSE 12.80 14.19 13.04 12.93 13.97 12.98
MedSE 2.943 1.114 4.458 3.785 1.473 2.529
MAE 2.207 1.986 2.430 2.337 2.049 2.142
RMSE 3.577 3.766 3.612 3.596 3.738 3.602
MAPE 396.6 226.4 475.6 442.8 261.7 359.6
AMAPE 0.633 0.635 0.647 0.641 0.637 0.631
TIC 0.597 0.718 0.567 0.578 0.689 0.620
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| LL 11.120 957 1192 1161 | 996 10.78
Table (C) Forecasts Error measurements for 200 one day ahead out of sample forecasts

IGARCH | EGARCH | GJR | FIGARCH | FIEGARCH | GARCH

MSE 7.679 8.127 7.727 9.207 8.225 7.824
MedSE 1.636 0.783 1.222 5.747 0.981 1.262
MAE 1.658 1.46 1.567 2.362 1.527 1.558
RMSE 2771 2.851 2.78 3.034 2.868 2.797
MAPE 266.5 168 230.4 430.8 191.7 222.8
AMAPE 0.580 0.570 0.572 0.635 0.579 0.574
TIC 0.583 0.682 0.611 0.515 0.661 0.622
LL 8.172 6.89 7.732 10.28 7.25 7.641

Table (D) Estimations of GARCH(1,1)-M-[1,2,3], EGARCH(1,1)-M-[1,2,3], IGARCH(1,1)-M-[1,2,3],
GJR(1,1)-M-[1,2,3], FIGARCH(1,1)-M-[1,2,3], FIEGARCH(1,1)-M-[1,2,3] assuming the t-student
distribution.

IGARCH EGARCH GJR FIGARCH | FIEGARCH | GARCH
0.035 0.023 0.028 0.035 0.002 0.035
K [0.000] ** [0.002]** [0.000]** [0.000]** [0.775] [0.000]**
0.147 0.147 0.151 0.147 0.134 0.147
H [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
-0.027 -0.018 -0.021 -0.028 -0.023 -0.027
Ha [0.003]** [0.023]* [0.025]* [0.003]** [0.036]* [0.003]**
0.003 0.009 0.009 0.002 0.008 0.003
Hs [0.692] [0.231] [0.335] [0.775] [0.544] [0.689]
. 0.003 ] 0.005 0.010 ] 0.004
[0.000]** [0.000]** [0.000]** [0.000]**
N 0.016 -0.016 0.002 0.018 0.007 0.017
[0.118] [0.381] [0.777] [0.116] [0.000]** [0.120]
. 0.080 -0.327 0.026 0.195 -0.293 0.078
1 [0.000]** [0.000]** [0.000]** [0.000]** [0.673] [0.000]**
0.919 0.994 0.919 0.693 0.922 0.919
By [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
o ] -0.109 0.910 ] -1.000 ]
[0.000]** [0.000]** [0.151]
0.181 1.000
v ” [0.000]** i i [0.160] -
q ] ] ] 0.569 0.217 ]
[0.000]** [0.008]**

Logl -13.470.7 -13.364.6 -13.389 -13.458 -13345.6 -13.470.3
Akaike 2.298 2.280 2.285 2.296 2.367 2.453
Schwarz 2.303 2.287 2.291 2.303 2.374 2.302
0(100) 106.903 99.838 98.029 111.305 114.273 112.151

[0.300] [0.485] [0.537] [0.206] [0.155] [0.167]
0(200) 226.916 219.202 219.489 231.070 231.490 223.430
[0.092] [0.167] [0.164] [0.065] [0.062] [0.172]
O*(100) 97.428 100.486 94.036 94.7586 350.714 264.372
[0.497] [0.411] [0.594] [0.573] [0.000]** [0.450]
0*(200) 185.233 203.100 197.540 174.781 507.979 493.129
[0.733] [0.386] [0.495] [0.881] [0.000]** [0.000]**
MSE 13.25 13.01 12.98 13.47 12.98 13,90

Note: Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, this is the value of the maximized
log-likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic
for testing the up to m’th order serial dependence of standardized and absolute standardized residuals denoted
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respectively as Q(m) and Q*(m). Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of
sample forecasts. The values in parenthesis stand for p-values. *denotes rejection at 5% significance, while ** denotes
rejection at 1% significant level.

Table (E) Estimations of GARCH(1,1)-M-[1,2,3], EGARCH(1,1)-M-[1,2,3], IGARCH(1,1)-M-[1,2,3],
GJR(1,1)-M-[1,2,3], FIGARCH(1,1)-M-[1,2,3], FIEGARCH(L,1)-M-[1,2,3] assuming the GED distribution.

IGARCH EGARCH GJR FIGARCH | FIEGARCH GARCH
0.029 0.024 0.023 0.029 -0.033 0.029
a [0.001]** [0.001]** [0.002]** [0.000]** [0.000]** [0.000]**
0.142 0.148 0.147 0.142 0.186 0.142
H [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
-0.032 -0.018 -0.024 -0.032 0.024 -0.032
H [0.000]** [0.006]** [0.010]* [0.000]** [0.031]* [0.000]**
0.001 0.010 0.008 0.000 0.042 0.001
Hs [0.884] [0.181] [0.371] [0.975] [0.004]** [0.881]
0.003 0.005 0.010 0.004
© [0.000]** ] [0.000]** [0.000]** ] [0.000]**
N 0.011 -0.001 0.014 -0.091 0.012
[0.284] [0.862] [0.221] [0.000]** [0.262]
0.079 -0.316 0.027 0.196 0.654 0.078
o [0.000]** [0.000]** [0.000]** [0.000]** [0.011]* [0.000]**
B, 0.920 0.992 0.920 0.693 -0.247 0.919
[0.000]** [0.000]** [0.000]** [0.322] [0.000]**
o ] -0.107 ] -0.239 ]
[0.000]** [0.000]**
0.179 0.042
v ” [0.000]** - - [0.000]** -
d ] ] ] 0.568 0.664 ]
[0.000]** [0.000]**

Logl -13458.2 -13.362.7 -13376.3 -13445.4 -13807.3 -13457.7
Akaike 2.296 2.280 2.282 2.294 2.356 2.296
Schwarz 2.302 2.288 2.289 2.301 2.364 2.302
0(100) 112.028 99579 99.912 116.905 177.063 111.872

[0.193] [0.493] [0.483] [0.118] [0.000]** [0.196]
0(200) 232.636 218.749 221.664 237.306 300.369 232578
[0.056] [0.172] [0.140] [0.036]* [0.000]** [0.056]
0%(100) 97.354 101.654 93.479 94 557 2180.330 96.615
[0.499] [0.380] [0.610] [0.579] [0.000]** [0.520]
0*(200) 184.487 206.254 195.929 174.010 2539.56 184.964
[0.745] [0.329] [0.528] [0.889] [0.000]** [0.737]
MSE 13.23 12.93 14.56 13.8 13.46 1358
asymmetry -0.065 0.011 -0.066 -0.065 -0.145 -0.065
[0.000]** [0.513] [0.000]** [0.000]** [0.000]** [0.000]**

Note: Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, this is the value of the maximized
log-likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic
for testing the up to m’th order serial dependence of standardized and absolute standardized residuals denoted
respectively as Q(m) and Q*(m). Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of
sample forecasts. The values in parenthesis stand for p-values. *denotes rejection at 5% significance, while ** denotes
rejection at 1% significant level.

Table (F) Estimations of GARCH(1,1)-M-[1,2,3], EGARCH(1,1)-M-[1,2,3], IGARCH(1,1)-M-[1,2,3],
GJR(1,1)-M-[1,2,3], FIGARCH(1,1)-M-[1,2,3], FIEGARCH(1,1)-M-[1,2,3] assuming the Generalized Error

Distribution.
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GARCH EGARCH GJR FIGARCH | FIEGARCH | IGARCH
0.038 0.026 0.031 0.038 -0.025 0.038
K [0.000]** [0.001]** [0.000]** [0.000]** [0.000]** [0.000]**
0.137 0.140 0.143 0.139 0.192 0.137
H [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
-0.028 -0.019 -0.022 -0.029 0.027 -0.028
Ha [0.003]** [0.022]* [0.018]* [0.002]** [0.004]** [0.002]**
0.002 0.010 0.008 0.001 0.044 0.002
Hs [0.785] [0.259] [0.396] [0.869] [0.000]** [0.779]
R 0.005 ] 0.005 0.229 ] 0.004
[0.000]** [0.000]** [0.000]** [0.000]**
N 0.014 -0.021 0.000 0.017 -0.098 0.013
[0.214] [0.177] [0.929] [0.209] [0.000]** [0.211]
. 0.082 -0.368 0.026 0.243 0.687 0.093
1 [0.000]** [0.000]** [0.000]** [0.000]** [ 0.007]** [0.230]
B 0.915 0.993 0.917 0571 -0.334 [000'8317**
1 [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** '
o ] -0.118 0.645 ] -0.228 ]
[0.000]** [0.000]** [0.000]**
0.193 0.034
v ” [0.000]** i i [0.000]** -
d ] ] ] 0.408 0.672 ]
[0.000]** [0.000]**

Log 132982 133982 134724 134724 139215 -13498.9
Akaike 2.303 2.286 2.290 2.299 2.376 2.303
Schwarz 2.309 2.293 2.296 2.305 2.383 2.308
0(100) 111.782 101.269 100.754 119.852 195.649 112.079

[0.197] [0.445] [0.460] [0.085] [0.000]** [0.192]
0(200) 232.448 220.959 222.890 239.744 320.131 232.589
[0.057] [0.147] [0.127] [0.028]* [0.000]** [0.056]
0*(100) 95.182 102.210 95.339 92.4645 2427.05 96.292
[0.561] [0.365] [0.557] [0.638] [0.000]** [0.529]
0*(200) 186.127 205.531 201.811 170.296 320.131 185.208
[0.717] [0.341] [0.411] [0.923] [0.000]** [0.056]
MSE 14.00 12.97 14.01 13.47 138 13.76

Note: Quasi Maximum Likelihood estimates are reported. Also reported are the Logl, this is the value of the maximized
log-likelihood function, the Akaike and Schwarz information criteria, the values of the Ljung-Box portmanteau statistic
for testing the up to m’th order serial dependence of standardized and absolute standardized residuals denoted
respectively as Q(m) and Q*(m). Finally, the table reports the mean square error (MSE) for 100 one-day-ahead out of
sample forecasts. The values in parenthesis stand for p-values. *denotes rejection at 5% significance, while ** denotes
rejection at 1% significant level.

3. Forecast Evaluation.

Very often the analysis compares the MSE values of the competing volatility frameworks
in order to produce inferences on their forecasting volatility potentials. However, if a
volatility model does estimate a lower MSE value than a competing alternative it is
probably precarious to talk about forecasting superiority, since the differences of the

compared MSE values may actually turn out being not statistically significant. So as
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Diebold and Mariano (1995) underline it is very important not only to compare the MSE
values but it is of interest also to test whether possible reductions in the MSE values are

statistically significant.

Let assume that two different volatility models generate m, h step ahead out of sample
forecasts. This implies two sets of forecasts errors, e;; and e, where obviously t=1,...,m. If

the analysis uses as criterium for the forecasting potential the MSE value then if

the hypothesis of equal forecast accuracy can be represented as E[d;]=0.The Diebold and

Mariano (1995) statistic for testing the null hypothesis of equal forecast accuracy is
S, =lV(d)1*d

where

V)=, +2> 7]

k=1

7o=n"> (4, -d)d,, ~d)

t=k+1

Under the null hypothesis S; statistic follows asymptotically the standard normal
distribution. Note that the monte carlo experiments conducted in Diebold and Mariano
(1995) indicate that the performance of the statistic is good either for samples that are

small or for forecasts errors that are autocorrelated and have non-normal distributions.

An alternative statistic for testing the equality of forecasts errors is the one offered by

Harvey, Leybourne and Newbold (1997) and is denoted in the equation following. This
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actually modifies Diebold and Mariano’s test and claims the improvement of the finite

sample performances of the latter statistic.

m+1-2h+m™h(h-1).,,
I,

S2:[ m

where S; is the initial statistic. Note that S, is compared with t-student critical values.

Table (G) Diebold and Mariano (1995) and Harvey, Leybourne and Newbold (1997) statistics.

100-one step ahead out of sample forecasts
Null Hypothesis : E[d]=0 FIEGARCH-MH* FIEGARCH-MG*
t-student-GED t-student-GED
S1-normal distribution 3.450** 0.653
Sa-tstudent 3.210** 0.610

Note : *(**) denote the rejection of the null at 5% and 1% significant level.

Table (H) Diebold and Mariano (1995) and Harvey, Leybourne and Newbold (1997) statistics.

200-one step ahead out of sample forecasts
Null Hypothesis : E[d]=0 FIEGARCH-MH* FIEGARCH-MG*
t-student-GED t-student-GED
S1-normal distribution 3.234** 2.774**
Sa-tstudent 3.201** 2.720**

Note : *(**) denote the rejection of the null at 5% and 1% significant level.

Table (1) Diebold and Mariano (1995) and Harvey, Leybourne and Newbold (1997) statistics.

FIEGARCH-MG*[t-student and GED]

Null Hypothesis :

E[d]=0 Different one step ahead out of sample forecasts

20 40 60 80 100

S1-normal distribution 0.541 0.671 0.978 1.231 1.340
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So-t student 0.532 0.598 0.951 1.200 1.278

Note : *(**) denote the rejection of the null at 5% and 1% significant level.

The results in table (G) indicate that the MSE values reported on table (12) for 100 one
step ahead out of sample forecasts of FIEGARCH-MH*models of t-student and GED
distributions are statistically different to each other, since the null hypothesis in Diebold
and Mariano test (1995) is rejected at 5% and 1% significant levels. On the other hand
comparison of the MSE values of FIEGARCH-MG* modes of t-student and GED
distributions on the same forecasting, horizon turns over the acceptance of null hypothesis
in the relevant Diebold and Mariano’s test. As for the results reported on table (H), those
reject the corresponding null hypothesis at both levels of significance and hence the results
conclude that the relevant MSE values are in fact statistically different to each other at all

occasions.

Finally, in table (1) the outcomes of S; and S, statistics strongly suggest the indifference
of the corresponding MSE values at all examined forecasting horizons. Furthermore note

that the previous outcomes are all verified when the results on the S, statistic are reported.
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