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Abstract

One of the most intriguing subject in modern physics is nanoscience, building the

background for understanding the fundamental principles of nanoelectronics. Graphene

since its fabrication in 2004 has become one of the main subjects of research in

nanoscience. It is the first 2d metal ever made, it has extraordinary electronic prop-

erties and offers a vast field for applications and fundamental theoretical work. In

this thesis we study the electronic properties of graphene in the presence of disor-

der, which is an inevitable factor in every mesoscopic system. We accomplish the

study of related phenomena through well established methods of mesoscopic physics,

like Fractals and Quantum Chaos. This allows us to study the interplay between

the well-known electronic behavior of pure graphene, and the diffusive or localization

phenomena introduced by the disorder.
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Chapter 1

Introduction

Graphene, the first 2D metal ever made, is a single layer of carbon atoms densely

packed in a honeycomb lattice structure. Graphene was fabricated for the first time

in 2004 by the Manchester group of A. Geim and K. Novoselov [1, 2], via mechani-

cal exfoliation of graphite. They were awarded the Nobel prize for Physics in 2010.

Graphene has extraordinary properties never encountered in conventional materials

before, such as, great flexibility and high electron mobility with electron velocities

near the Fermi energy approaching the speed of light c, much higher than in any con-

ventional semiconductor. It can be cut into long strips known as graphene nanorib-

bons [3] or confined structures known as graphene flakes [4] making it an excellent

candidate for replacing silicon in future nanoelectronics. A lot of other techniques

for fabricating graphene have also been developed, like epitaxial growth on silicon

carbide [5], on metal substrates [6] or by cutting carbon nanotubes [7, 8].

The theoretical study of graphene, through well known quantum methods of solid

state physics has revealed some extraordinary effects never encountered in conven-

tional systems before. Its underlying honeycomb lattice structure leads to special
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2 Chapter 1. Introduction

quantum interference effects inducing localization of wavefunctions at the edges of

graphene called edge states[10][11]. Moreover, they contribute to energies near the

Fermi level, being strongly dependent on the edge morphology. It is clear that the

electronic properties of graphene are extremely sensitive to the choice of boundary

conditions. The study of these topological effects and their role in the electronic prop-

erties of graphene is very important for its incorporation in nanoelectronics. The the-

oretical study has also revealed the relativistic nature of electrons close to the Fermi

energy, opening an interdisciplinary field of relativistic solid state physics[1,11]. The

relativistic nature of electrons for over half a century was known for graphite which

consists of many layers of graphene stacked together[11]. At the Fermi level the

electrons in graphene behave as free relativistic massless particles described by the

Dirac equation. This is called the Dirac point. From this point of view graphene can

be used as an effective model for studying quantum electrodynamics, with obvious

advantages for relativistic quantum experiments like the small space dimensionality

required.

Fractals and chaos on the other hand are well established phenomena in classical

non-linear dynamical systems. Their existence in the quantum world has been stud-

ied extensively during the last decades, mainly in low-dimensional disordered systems

known as mesoscopic systems. They lie between the microscopic and the macroscopic

scale[12]. The nature of Quantum Chaos is not related to dynamical evolution, but

with the statistical properties of the energy spectrum. The disordered quantum sys-

tems have been shown to obey the same universal laws as Quantum Chaos They are

described by a mathematical theory of fully random matrices, which became known

as Random Matrix Theory(RMT)[12,13,14].

On the other hand, signs of the fractal geometry have been shown to exist in
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the quantum world, e.g. the electron wavefunctions of disordered two dimensional

mesoscopic systems[15,16,17,18]. The fractal nature of wavefunctions close to the

metal-insulator transition(MIT) is well known[19,20]. Exactly at the transition point

they are characterized by non trivial critical scaling behavior, they are complex ob-

jects known as multifractals described by a whole spectrum of fractal dimensions. The

wavefunctions below the (MIT) show a diffusive behavior, with the corresponding en-

ergy levels obeying the universal laws of RMT as in Quantum Chaos. For sufficiently

large enough disorder, above the transition point, quantum destructive interference

effects lead to Anderson localization[21].

Graphene is the first real 2D metal ever made, it offers a great opportunity for test-

ing the well established phenomena of Quantum Chaos and Fractals, which were usu-

ally studied through the 2d-system known as two dimensional electron gas(2DEG)[22].

Moreover, the confined nature of the experimentally produced finite graphene systems

like flakes, with strongly topology dependent electronic properties, pose important

questions about their role in the nature of quantum chaos and fratal states. Quan-

tum chaos near the Dirac point is also expected to address relativistic issues. It

has been studied experimentally by Ponomarenko and his colleagues [23] obtaining a

chaotic nature described by the Dirac equation. They are commonly known as Dirac

billiards, proposed by Berry and Mondragon [24]. Theoretical calculations by L.

Huang et. al. [25] in graphene billiards predict a different quantum chaotic behavior

when compared to the experimentally obtained, while other theoretical calculations

in weakly disordered graphene with periodic boundary conditions [26] have shown rel-

ativistic chaotic nature independent of the sample size. For strong disorder Anderson

localization[21], always prevails.

In this thesis we study the fractal nature of wavefunctions and the chaotic behavior
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of the energy levels in disordered graphene near the Dirac point. Firstly, we check

the existence of fractal states at the Fermi level in the presence of disorder. The

study is carried out in conjunction with the well-known behavior of other conventional

disordered materials. Then we address the following question, how the unconventional

topology of graphene affects this fractal nature for confined structures? Do edge

states survive with disorder and how it can be combined with the fractal nature of

the wavefunctions? We study also the role of edge states in the quantum chaotic

behavior of graphene near the Dirac point, through the statistical properties of the

energy levels.

In chapter two we give a brief introduction of graphene, analyzing in detail its

unconventional electronic properties via a simple tight binding model introduced in

the appendix. This model allows to derive its relativistic band structure and the

topological electronic properties, like edge states.

In chapter three, after a brief introduction to fractals, we study in detail the

fractal properties of the wavefunctions of disordered graphene, in conjunction with

other systems like the square lattice and the chain. We also show important symmetry

properties for disordered graphene such as chiral symmetry.

In chapter four, after a brief introduction to Quantum chaos, we compare the quan-

tum chaotic nature of disordered graphene with a square lattice having on-diagonal

short-range disorder.

In chapter five we present our conclusions. In the Appendix we discuss the tight

binding model, for various types of lattices in order to determinate their electronic

properties.
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Chapter 2

Graphene

2.1 Introduction

Graphene is a monolayer of carbon atoms arranged in a honeycomb lattice structure.

It was fabricated, for the first time in 2004 by the Manchester group of A. Geim and

K. Novoselov[1,2]. They have been awarded the Nobel prize in physics for 2010. This

one atom thick material is the first real 2d metal ever made. It is a basic candidate

for replacing silicon[15] and is expected to have a major impact in nanotechnology

and nanomaterials since it can been produced very easily[16]. It’s extraordinary

electronic properties involve relativistic band structure and topology dependent effects

like electronic edge states whose existence depends strongly on the choice of boundary

conditions.

In the tight binding formalism(see Appendix) graphene has a unit cell which

consists of two carbon atoms A and B as can be seen in Fig. 2.1.

7



8 Chapter 2. Graphene

Figure 2.1: Graphene has characteristic honeycomb lattice structure.

The distance between neighbouring carbon atoms is acc = 0.142nm. The ma-

jor difference with a square lattice is the presence of two instead of one atoms in

graphene’s unit cell. In order to describe the honeycomb lattice structure we can

define two basis vectors −→a1 and −→a2

−→a1 =
a
√

3

2
x̂+

a

2
ŷ

−→a2 =
a
√

3

2
x̂− a

2
ŷ

which connect adjacent unit cells, a = |a1| = |a2| =
√

3acc. Using −→a1 ,−→a2 , we can

easily construct the whole honeycomb lattice by repeating the unit cell of the two

carbon atoms A and B. This is done for the dimer in the Appendix, write down the

Schrodinger difference equations corresponding to the two different carbon atoms in

the unit cell and apply Bloch’s theorem.
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Figure 2.2: Unit cells of the honeycomb lattice.

As seen in Fig. 2.2 type A atom belonging to the central unit cell is connected

with three type B atoms. One of those atoms is part of the same unit cell while the

other two belong to the unit cells on the left, described by the vectors −−→a1 and −−→a2 .

So the tight binding equation centered on atom A inside the central unit cell by using

the Bloch’s theorem (see Appendix) becomes

EΨA = −t(exp(−i
−→
k 0) + exp(−i

−→
k −→a1) + exp(−i

−→
k −→a2))ΨB ⇒

⇒ EΨA = −t(1 + exp(−i
−→
k −→a1) + exp(−i

−→
k −→a2))ΨB.

The corresponding equation is for the B atom

EΨB = −t(1 + exp(i
−→
k −→a1) + exp(i

−→
k −→a2))ΨA.

This system of two equations with two unknowns ΨA,ΨB can be written in a matrix

form as  0 f1(
−→
k )

f ∗
1 (
−→
k ) 0


 ΨA

ΨB

 =

 E 0

0 E


 ΨA

ΨB

⇒ HΨ = EΨ (2.1)
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where f1(
−→
k ) = −t(1 + exp(−i

−→
k −→a1) + exp(−i

−→
k −→a2)). So the graphene hamiltonian

can be written as a two dimensional matrix

H =

 0 f1(
−→
k )

f ∗
1 (
−→
k ) 0

 , (2.2)

whose eigenvalues are

E = ±
√∣∣∣f1(−→k )

∣∣∣2 = ±
∣∣∣f1(−→k )

∣∣∣ =

= ±

∣∣∣∣∣1 + exp(−ikx
√

3

2
a)(exp(iky

a

2
) + exp(−iky

a

2
))

∣∣∣∣∣ = ±

∣∣∣∣∣1 + 2 exp(−ikx
√

3

2
a) cos(ky

a

2
)

∣∣∣∣∣ =

= ±
√

(1 + 2 cos(kx
3

2
acc) cos(iky

a

2
))2 + 4 sin2(kx

3

2
acc) cos2(ky

a

2
) =

= ±

√
1 + 4 cos2(kx

√
3

2
a) cos2(iky

a

2
) + 4 cos(kx

√
3

2
a) cos(ky

a

2
) + 4 sin2(kx

√
3

2
a) cos2(ky

a

2
) ⇒

E±(kx, ky) = ±t

√
1 + 4 cos(

aky
2

) cos(

√
3akx
2

) + 4 cos2(
aky
2

), kx, ky ∈ [−π, π]. (2.3)

Eq. (2.3) is the energy dispersion relation of graphene plotted in Fig. 2.3. The energy

dispersion is consisted of two branches, for positive and negative energies respectively.

They touch at six K points, known as valleys, lying on the corners of the first brillouin

zone which has the form of a hexagon(see Fig 2.4). The Fermi level is at zero energy,

making graphene a zero gap semiconductor. The energy dispersion has a cone like

structure at those six K points with the energy being proportional to the absolute

value of the wavevector
−→
k ,
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Figure 2.3: Energy dispersion of graphene. The six K points corresponding to zero
energy can be distinguished, the two K,K ′ are non-equivalent
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Figure 2.4: Contour plot of the energy dispersion of graphene. The points along the
lines have equal energies so that different lines correspond to different energies.The
sik K points can be distinguished along with the first Brillouin zone which has the
form of a hexagon.
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Figure 2.5: Real and reciprocal space of graphene.

Figure 2.6: The two non-equivalent K points of graphene.

E =
t
√

3a

2

∣∣∣−→k ∣∣∣ . (2.4)

The linear energy relation of Eq. (2.4) resembles relativistic massless particles de-

scribed by the Dirac equation.

The reciprocal space of graphene can be described by the the two reciprocal lattice

vectors
−→
b1 = 2π

a
√
3
x̂ + 2π

a
ŷ ,

−→
b2 = 2π

a
√
3
x̂− 2π

a
ŷ. As seen in Fig 2.6 by using

−→
b1 and

−→
b2

it is possible to make a transition from one of the six K points only to two others
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-3 -2 -1 0 1 2 3
E

0

0,1

0,2

0,3

0,4

0,5
ρ(

Ε
)

0 0,05 0,1 0,15 0,2 0,25
E

0

0,01

0,02

0,03

0,04

0,05

ρ(
Ε

)

ρ(Ε)∼0.21Ε

Figure 2.7: Density of states of graphene for t = 1 and a = 1.

which implies that only two of them are non-equivalent. We choose those points to be

K(0, 4π
a
√
3
) and K ′(0,− 4π

a
√
3
). They are sufficient in order to reproduce the remaining

four K points and consequently the first brillouin zone of graphene.

The density of states of graphene is shown in Fig 2.7. It extends in the energy

interval −3t to 3t since in the honeycomb lattice structure every site is connected

with it’s three nearest neighbours. We observe that it is singular at −1t and 1t and

that it increases linearly at zero energy, in the six Dirac cones. We can prove this

by using the definition for the density of states Eq. (A.4) and the polar coordinates

dkxdky = kdkdky as follows

ρ (E) =
1

(2π)2

∫
dkx

∫
dkyδ (E − E (k)) =

1

(2π)2

∫ 2π

0

dθ

∫ ∞

0

kdkδ

(
E − t

√
3a

2
k

)
=
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2

3π(at)2

∫ ∞

0

kdkδ (E − k) =
2

3π(at)2
E

⇒ ρ (E) =
2

3π(at)2
E. (2.5)

A very important remark is that energy dispersion Eq. (2.3) does not have the

simple form of the square lattice dispersion relation Eq. (A.18) where energy is split

in two equal terms corresponding to the x and y spatial directions respectively. In

the square lattice the two spatial directions are equivalent, being an isotropic model.

We can represent graphene by it’s topologically equivalent brickwall lattice model

shown in Fig. 2.8. It is obtained by removing every second bond along one of the

spatial directions of the square lattice. The tight binding hamiltonian of the brickwall

lattice is the same as graphene’s and consequently the dispersion Eq. (2.3) holds. It

clearly introduces a spatial anisotropy which makes the two spatial directions non-

equivalent.

A brickwall lattice has also another feature mixing of kx, ky directions reflected

in Eq. (2.3). A simple way to introduce spatial anisotropy in a square lattice model

would be to assume different hoppings along the x and y directions, respectively. The

corresponding square lattice dispersion relation becomes

E(kx, ky) = −2tx cos(kx) − 2ty cos(ky),

split in two inequal terms due to the introduced anisotropy. This lattice however

does not mix kx, ky and thus preserves the independency of the two spatial direc-

tions. Therefore, anisotropy and direction mixing are two mechanisms both present

in graphene which play an important role in its peculiar electronic properties.

The eigenvectors of the graphene hamiltonian Eq. (2.2) can be obtained by solving
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Figure 2.8: A brickwall lattice.
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the system of linear equations

 −E f1(
−→
k )

f ∗
1 (
−→
k ) −E


 ΨA

ΨB

 = 0,

for the eigenvalue E+ = t

√
f1(

−→
k )f ∗

1 (
−→
k ) we get the equation

−t
√
f1(

−→
k )f ∗

1 (
−→
k )ΨA + tf1(

−→
k )ΨB = 0 ⇒ ΨB =

f ∗
1 (
−→
k )√

f1(
−→
k )

ΨA

so that the corresponding eigenvector can be written in the form

ΨE+ = ΨA

 1

f∗
1 (

−→
k )√

f1(
−→
k )


and the normalization gives

∣∣ΨE+

∣∣2 = 1 as

ΨE+ =

√√√√ 1

1 +
∣∣∣f1(−→k )

∣∣∣
 1

f∗
1 (

−→
k )√

f1(
−→
k )

 .

Following the same procedure for energies E− = −t
√
f1(

−→
k ) ∗ f ∗

1 (
−→
k ). the eigenvectors

of Eq. (2.2) can be written in a general form as

ΨE± =

√√√√ 1

1 +
∣∣∣f1(−→k )

∣∣∣
 1

± f∗
1 (

−→
k )√

f1(
−→
k )

 (2.6)

which gives the amplitudes on A and B atomic sites. From Bloch’s theorem ampli-
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tudes on all the other unit cells will be given by ΨE± multiplied by a phase factor

exp
(
i
−→
k
−→
R
)

depending on the position
−→
R = n−→a1 + m−→a2 of each unit cell. We can

interpret this factor as simply the product of two traveling waves along the two spa-

tial directions exp(ikxx), exp(ikyy) as in the case of the square lattice model, with

variables x and y denoting the coordinates of each unit cell this time.

The interesting point here is that for positive energies E+ the amplitudes on B

type sites differ by just a minus sign from the corresponding amplitudes for negative

energies E−. This fact along with the symmetric spectrum around zero energy are

both consequence of a general property called chiral symmetry, which characterizes

the so called bipartite lattices. The chiral symmetry combined with the fact that

the unit cell of graphene consists of two atoms is to a great extent responsible for its

highly unconventional electronic properties.

2.2 Relativistic effects

One of the most remarkable things about graphene is that electrons with energies

near the Fermi energy Ef = 0 can be effectively described by the Dirac equation for

free massless particles[1,3,4]. Close enough to the six K points of the first brillouin

zone the band structure of graphene has a cone like form and the energy near there

is proportional to the absolute value of the wavevector
−→
k

E = ±~vf
∣∣∣−→k ∣∣∣ , (2.7)
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where vf = 106m
s

is the fermi velocity of electrons. Energy-momentum relation for

relativistic massless particles has the form

E2 =
√
c2p2 +m2c4 ⇒ E = ±cp⇒ E = ±~ck.

The speed of light c is replaced by the fermi velocity of electrons vf , so that they

behave like photons with a modified universal constant vf instead of c. The velocity

vf has a very high value, notably higher than any conventional semiconductor. It is

not however high enough comparable with the actual speed of light c = 3x108m
s

, so it

is not essential using the Dirac equation to describe electron motion in graphene. We

shall see that the Dirac equation is simply reproduced by the tight binding Schrodinger

equation near the Fermi energy. This makes graphene a very useful effective model

for studying relativistic massless particles. Both the discrete tight binding and the

continuous Dirac approach can be used to study graphene near the Fermi energy,

with the Dirac approach being more favorable for analytical calculations.

Let’s see how the dispersion relation Eq. (2.3) is linearized close to the Fermi

energy. It is enough to linearize at one of the six K points say K1(0,
4π
3a

). We must

first deal with the term f1(
−→
k ) = −t(1 + exp(−i

−→
k −→a1) + exp(−i

−→
k −→a2)) in Eq. (2.2).

We can make a small variation from
−→
K1 via

−→
k =

−→
K1+

−→
δk. The direction of

−→
δk doesn’t

play any role because of the cone like band structure at this point. We can write

f1(
−→
k ) = −t(1 + exp(i

−→
K1

−→a1) exp(i
−→
δk−→a1) + exp(i

−→
K1

−→a2) exp(i
−→
δk−→a2))

because δk is small we can write exp(i
−→
δk−→a1) = 1 + i

−→
δk−→a1 . Also

−→
K1

−→a1 = −
−→
K1

−→a2 = 2π
3
.
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Substituting in the previous relation we get

f1(
−→
k ) = −t(1+(−1

2
+i

√
3

2
)(1+i

−→
δk−→a1)+(−1

2
−i

√
3

2
)(1+i

−→
δk−→a2)) = −

√
3a

2
(iδkx+δky).

For convenience we can move the origin of our coordinate system on K1(0,
4π
3a

) mea-

suring this way the wavevector
−→
k from K1 replacing

−→
δk with

−→
k . So the Hamiltonian

of graphene close to the Fermi energy Ef = 0 can be written in the form

Hk1 = −t
√

3a

2

 0 ikx + ky

−ikx + ky 0

 .
Using also the realistic value of the hopping t = 2.8eV for graphene and the value of

the lattice constant a = acc
√

3 = 0.246nm we can replace t
√
3a
2

with ~vf and write,

Hk1 = −~vf

 0 ikx + ky

−ikx + ky 0

 .
The eigenvalues of Hk1 reproduce the linear dispersion relation (2.4)

|Hk1 | =

∣∣∣∣∣∣∣
−E −~vf (ikx + ky)

−~vf (−ikx + ky) −E

∣∣∣∣∣∣∣ = E2−(~vf |ikx + ky|)2 = 0 ⇒ E = ±~vf
∣∣∣−→k ∣∣∣ .

In order to be able compare with the Dirac Hamiltonian we have to rotate the original

coordinate system ninety degrees anti-clockwise transforming the coordinates as x→

y and y → −x resulting in kx → ky and ky → −kx. The Hamiltonian of graphene
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then transforms to

Hk1 = ~vf

 0 kx − iky

kx + iky 0

 . (2.8)

It can be written in a more compact form via the Pauli matrices σi as

Hk1 = ~vf−→σ
−→
k ,

while its eigenvectors are of the form of (2.6) with f1(
−→
k ) = kx− iky, each component

corresponds to the two type of atoms A and B.

Following the same procedure for the other non equivalent K point, K2(0,−4π
3a

)

we obtain a hamiltonian of the form

Hk2 = −~vf

 0 kx + iky

kx − iky 0

 .
We can also write it in a compact form similar to the previous one as

Hk2 = −~vf−→σ ∗−→k .

Its eigenvectors are the complex conjugate of the ones corresponding to K1 due to a

difference π in their phases.

The Dirac equation for relativistic quantum particles can be cast in the same form

as the Schrodinger equation HΨ = EΨ, with H replaced by the four by four matrix

HD =

 mc2I c−→σ −→p

c−→σ −→p mc2I

 .
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For massless particles, like photons, the Dirac hamiltonian becomes

HD =

 0 c−→σ −→p

c−→σ −→p 0

 = ~c

 0 −→σ
−→
k

−→σ
−→
k 0


and using the fact that

−→σ
−→
k = σxkx + σyky =

 0 kx − iky

kx + iky 0


we can write

HD = ~c



0 0 0 kx − iky

0 0 kx + iky 0

0 kx − iky 0 0

kx + iky 0 0 0


.

In order to compare with the Hamiltonian of graphene near the Fermi energy we

have to rearange its elements and write it us

HD = ~c



0 kx − iky 0 0

kx + iky 0 0 0

0 0 0 kx − iky

0 0 kx + iky 0


.

This is a block diagonal matrix with both blocks having the same form. The block
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diagonal Dirac Hamiltonian can be written as

HD = ~c

 H
′
D 0

0 H
′
D


with

H
′

D = ~c

 0 kx − iky

kx + iky 0

 .
These parts actually describe particles and antiparticles, becoming equivalent in the

massless case.The eigenvectors of each part are known as spinors and consist of two

components corresponding to the two different spin orientations, up and down, of

the described massless particle. The derived Dirac hamiltonian derived is exactly the

hamiltonian of graphene Eq. (2.8) at K1(0,
4π
3a

) if we just replace the speed of light c

by the fermi velocity of electrons vf . In order to reproduce the graphene Hamiltonian

of graphene at K2(0,−4π
3a

) we have to make a different rearangement of the Dirac

Hamiltonian resulting in

HDIRAC = ~c

 0 kx + iky

kx − iky 0

 .
The speed of light c in this case is replaced by −vf denoting massless fermions mov-

ing in the transverse direction of those at K1(0,
4π
3a

), known as holes. So the two

nonequivalent Dirac K points K1 and K2 correspond to electrons moving in trans-

verse directions, electrons and holes respectively, each described by the Dirac equation

for free massless particles with the speed of light c being replaced by the fermi velocity

of electrons vf .
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2.3 Electronic properties of Graphene structures

Graphene can be cut experimentally in various shapes, for example long strips called

ribbons[8,9,10] or nanometer sized confined structures known as flakes[11]. The elec-

tronic properties of those systems can be understood theoretically by applying the

appropriate boundary conditions on an infinite sheet made of graphene.

2.3.1 Edge States

Edge states in graphene nanostructures were first discovered by the pioneering theo-

retical work of M. Fujita et al[5] and have been observed experimentally[7]. Imagine a

semi-infinite sheet of graphene(see Fig 2.9) extending to infinity in the y direction and

is semi infinite in the x direction. We observe a zigzag like orientation along the top.

Figure 2.9: A semi infinite graphene sheet with one zigzag edge.
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It can be viewed as an infinite sequence of horizontal zigzag chains each denoted by

an index m=0,1,2,.. .It has just one edge with a zigzag like orientation. Equivalently

It can be also split in vertical chains of infinite length (shadowed parts in Fig 2.9) to

apply Bloch’s theorem(see Appendix). Because of the sublattice chiral symmetry the

corresponding wavefunctions for energy E = 0 have zero amplitudes on all the sites

belonging to one of the sublattices A or B(see Chapter three). Assuming that the

amplitude is zero for the B sublattice the tight-binding equations for the first zigzag

chain (m=0) and n,n+ 1 unit cells, with E = 0 become (k is along the y direction)

0 = −t(exp(ik(n− 1)) + exp(ikn))ΨA + Ψx

0 = −t(exp(ik(n+ 1)) + exp(ikn))ΨA + Ψy

⇒

⇒
Ψx = −2tΨA cos(k

2
) exp(ik

2
) exp(ikn)

Ψy = −2tΨA cos(k
2
) exp(−ik

2
) exp(ikn)

.

The amplitude Ψz belonging to the chain with m = 3 on the unit cell n can be easily

calculated via

Ψx + Ψy + Ψz = 0 ⇒ Ψz = −2tΨB cos2(
k

2
) exp(ikn).

For different values n give the amplitudes on A type atoms along the m zigzag chain

are given according to the Bloch’s theorem. We can continue for the rest of the zigzag

chains and the corresponding propability for sites lying on the m zigzag chain away

from the zigzag like top (m = 0) are

|Ψm
A |

2 = 4Ψ2
A cos2m(

k

2
). (2.9)
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Figure 2.10: A zigzag edge breaks the periodicity of graphene. B sites missing along
the edge.

For k = π this is non-zero only on the first zigzag chain (m = 0). This gives a

special edge state with zero energy and a corresponding wavefunction completely

localized at the zigzag edge of the semi infinite graphene sheet (m = 0). For k < π

we have cos(k
2
)2 < 1 and the wavefunction propability penetrates inside the sheet

with decaying amplitude
(
cos2(k

2
)
)m

as the value of m increases, resulting again in

edge states with zero energy, but with a smaller degree of localization. Note that

we have not taken into account the analytical form for the graphene wavefunction

(2.6). This is due to the fact that by forming a zigzag edge we have broken the A−B

sublattice symmetry, since for every edge site A it’s counterpart site B belonging to

the same unit cell is missing as can be seen in Fig. 2.10. This breaks the periodicity

of the system destroying the validity of the wavefunction Eq. (2.6) and the dispersion
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relation Eq. (2.3).

Edge states are a consequence of the special morphology of the honeycomb lattice

which favors quantum destructive interference for zero energy. The honeycomb lattice,

every site connected to three others, and as a result the tight binding equation written

for each site will have four components. For zero energy the number of components

reduces to three (one is multiplied by zero) giving an equation like the one used to

derive Eq. (2.9). The corresponding equations for a zigzag edge be interpreted as the

sum of two incident waves coming from the two A atoms belonging to the n− 1 and

n, unit cell respectively. They interfere with each other giving an outgoing wave at x.

In the equation used to derive Eq. (2.9) we can see that the different phase factors

exp(ik
2
) and exp(−ik

2
) for the amplitudes Ψx and Ψy give a destructive interference

effect for Ψz. For k = π complete destructive interference occurs with wavefunctions

that have non-zero amplitude only at the edge of the graphene sheet. For example

the tight-binding equation for the B type atom inside the n unit cell for k = π gives

Ψx = −t(exp(i(πn− π)) + exp(iπn))ΨA.

This is the sum of two waves with a phase difference π canceling with each other.

A very important feature of graphene is that the existence of edge states depends

on the orientation of the boundaries. For example we could take an infinite graphene

sheet and cut it on a direction rotated by 30 degrees compared to the previous case

a sheet with a zigzag edge. The sheet is again semi-infinite but with a different edge

orientation , called armchair. The armchair edge preserves the A − B symmetry

unlike the zigzag sheet shown in Fig. 2.12. The wavefunctions of the semi-infinite

system with an armchair edge will have the form of Eq. (2.6) multiplied by a factor
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Figure 2.11: Two ways of cutting graphene in order to obtain a zigzag or an armchair
edge.

concerning of a running wave in x direction and a standing wave in the y direction

where the hardwall boundary conditions are applied, giving

ΨE± =

√√√√ 1

1 +
∣∣∣f1(−→k )

∣∣∣
 1

± f∗
1 (

−→
k )√

f1(
−→
k )

 exp(ikxx) sin(kyy),

x and y being are the coordinates of each unit cell. It is evident from this form that

edge states are absent for the armchair boundary morphology.

2.3.2 Nanoribbons(GNR)

Graphene nanoribbons(GNR) are infinitely long strips of graphene. They have been

produced experimentally[8,9,10]. Their electronic properties are well known[5,6]. The

destructive interference mechanism of the honeycomb lattice plays an important role
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Figure 2.12: A semi infinite piece of graphene with an armchair edge.

in their electronic properties, contributing zero-energy edge states when zigzag edges

are present (see section 2.3). The exact edge orientation (zigzag or armchair) of a

GNR plays a definite role in their semi-conducting behavior.

Consider the GNR shown in Fig. 2.13. It is formed by applying hardwall boundary

conditions on an infinite graphene sheet along the vertical x spatial direction and it

has two zigzag like edges. It is called a zigzag ribbon. In Fig. 2.13 the number of

horizontal zigzag chains is even the structure is symmetric along the x axis. If the

number of zigzag chains is odd the resulting ribbon structure is not symmetric, giving

an antizigzag ribbon (see Fig. 2.14). As stated already the inclusion of zigzag edges

breaks the A−B periodicity, so that the allowed energies of those ribbons can not be

directly derived from the dispersion relation of graphene Eq. (2.3). However, we can

calculate the allowed energies, called band structure(see Appendix), by using Bloch’s

theorem. In Fig. 2.13 we can see the unit cell (shadowed area) the ribbons is a chain.

Consider a zigzag GNR consisting of two horizontal zigzag chains shown in Fig. 2.15.

the tight-binding equations for atoms belonging in the nth unit cell are



30 Chapter 2. Graphene

Figure 2.13: A zigzag ribbon.The shadowed area denotes its unit cell.

Figure 2.14: An antizigzag ribbon for N=3 zigzag chains.

Figure 2.15: A zigzag ribbon for N=2.
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EΨn
1 = −t(Ψn

2 + Ψn+1
2 )

EΨn
2 = −t(Ψn

1 + Ψn−1
1 + Ψn

3 )

EΨn
3 = −t(Ψn

4 + Ψn−1
4 + Ψn

2 )

EΨn
4 = −t(Ψn

3 + Ψn+1
3 )

via the Bloch’s theorem (see Appendix) we can write Ψn
j = exp(ikn)Ψj, j = 1, 2, 3, 4.

and substituting in the equations we get

EΨ1 = −tΨ2(1 + exp(ik))

EΨ2 = −t(Ψ1(1 + exp(−ik)) + Ψ3)

EΨ3 = −t(Ψ4(1 + exp(−ik)) + Ψ2)

EΨ4 = −tΨ3(1 + exp(ik)).

We solve this system of equations which is equivalent to obtaining the eigenvalues of

the matrix(k is along the longitudinal directions)

H =



0 ta 0 0

ta∗ 0 t 0

0 t 0 ta∗

0 0 ta 0


,

where a = 1+exp(ik). This is the tight-binding Hamiltonian of a linear chain with



32 Chapter 2. Graphene

-3 -1,5 0 1,5 3

k

-3

-2

-1

0

1

2

3

E

Figure 2.16: Band structure of a zigzag ribbon with two zig-zag chains and hopping
t = 1.

modified hoppings connecting adjacent unit cells (see Appendix). Its eigenvalues are

E = ±1

2
t(1 ±

√
9 + 8 cos(k)),

plotted for t = 1 in Fig. 2.16. It consists of four bands equal to the number of atoms

inside the unit cell of the GNR. The two bands, valence and conduction respectively,

closer to zero energy, touch each other near k = π and k = −π forming two small flat

bands. Those states with zero energy, make the zigzag GNR a zero gap semiconductor.

We can follow the same procedure for GNRs consisting of more than two horizontal

zigzag chains and calculate their band structure numerically. For example for a ribbon
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Figure 2.17: Band structure of a zigzag ribbon with six atoms in the unit cell.

with three horizontal zigzag chains and consequently six atoms inside its unit cell the

corresponding Hamiltonian becomes

H =



0 ta 0 0 0 0

ta∗ 0 t 0 0 0

0 t 0 ta∗ 0 0

0 0 ta 0 t 0

0 0 0 t 0 ta

0 0 0 0 ta∗ 0


.

Its band structure is plotted in Fig. 2.17. Using this method we can calculate the
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Figure 2.18: Band structure of a zigzag ribbon with ten atoms in the unit cell.

band structure of any zigzag or antizigzag GNR. In Fig. 2.18 and 2.19 we plot the

band structure for different ribbon widths and t = 1, denoted by the number of atoms

inside the unit cell.

As we increase the number of zigzag chains the band structure becomes denser

in the energy interval [−3, 3], reproducing gradually the energy dispersion of infinite

unbounded graphene projected in the ky plane. However the major difference with

infinite graphene is the presence of two zero energy flat bands encountered in both Fig.

2.18 and Fig. 2.19. Their corresponding wavefunctions are edge states, localized at

the edges of the GNRs. They have non-zero amplitudes only on the zigzag terminated

edges in analogy with a semi infinite graphene sheet with one zigzag edge for k =
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Figure 2.19: Band structure of a zigzag ribbon with fifty inside the unit cell.
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Figure 2.20: The gap at k = 2π
3

for a zigzag GNR versus its length denoted by
the number of horizontal zigzag chains N . As seen in the inset were we plot the
logarithms, it decays as 1

N
as N is increased.

π,−π. For k ̸= π,−π the edge states penetrate inside the GNRs, with decaying

amplitude for k ̸= π,−π along the flat bands. The two lower bands closer to zero,

valence and conduction, to whom the flat bands belong, begin to touch each other at

two k points, which gradually approach k = 2π
3

and k = −2π
3

. The width of the flat

bands increases as the size becomes larger.

This behavior can be seen in Fig. 2.20 where we plot the energy difference of the

valence and conduction bands at k = 2π
3

versus the length of the GNR. In the limit

N the flat bands extend in the areas [−π, −π
−2π

3
] and [ −π

−2π
3
− π]. So even at the infinite

width limit, the two flat bands and consequently zero energy edge states are always
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Figure 2.21: An armchair GNR with N = 7. The shadowed area denotes its unit cell.

present for zigzag GNRs. The zigzag GNRs behave as zero gap semiconductors. In

general, zigzag edges play an important role in the semiconducting behavior of any

bounded graphene system contributing edge states at the Fermi level[12,13,14].

Another simple case of GNRs can be formed by cutting graphene in a direction

rotated by thirty degrees, compared to the direction used to produce zigzag or an-

tizigzag ribbons (see Fig. 2.12). The resulting GNRs will have a completely different

electronic behavior. They are called armchair since both their edges follow an arm-

chair orientation. An armchair ribbon along with it’s unit cell is shown in Fig. 2.21.

The band structure in this case can be derived analytically from Eq. (2.3). The

width of the ribbon is equal to (N + 1)a
2

where N is the number of sites along any

vertical zigzag chain, that is half the number of sites inside each unit cell. The

wavevector ky will take discrete values according to the simple formula (hard wall

BC)

ky =
πj

(N + 1)a
2

, j = 1, 2, ..., N,
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Figure 2.22: Band structure of an armchair GNR with six atoms inside its unit
cell(N=3). There is a gap at the Fermi energy Ef = 0.

in complete analogy with a finite 1d chain. Substituting in Eq. (2.3) we get the

dispersion relation of armchair GNRs

E±(kx, j) = ±t

√
1 + 4 cos(

πj

N + 1
) cos(

√
3akx
2

) + 4 cos2(
πj

N + 1
), j = 1, 2, ..., N

The band structure of armchair ribbons of increasing width is shown in Fig.

2.22,Fig. 2.23 and Fig. 2.24. All the curves have been multiplied by the length

of the unit cell 3acc =
√

3a in order to scale the first brilouin zone from −π to π with

a = 1 and k = kx).

Armchair GNRs show a completely different semi-conducting behavior compared
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Figure 2.23: Band structure of an armchair GNR with ten atoms inside its unit
cell(N=5).There is no gap at the Fermi energy according to Eq. (2.10).
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Figure 2.24: Band structure of an armchair GNR with sixty atoms inside its unit
cell(N=30). There is a gap at the Fermi energy, which decreases with increasing
width.
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Figure 2.25: Band structure of an armchair GNR with one hundred atoms inside its
unit cell(N=50). There is no gap at the Fermi energy.



42 Chapter 2. Graphene

to the zigzag or antizigzag ones. Specifically the value of N determinates whether

they behave as zero-gap or as conventional semiconductors. This behavior can be

understood by setting the derived energy dispersion relation for hardwall BC along

the y direction, equal to zero at kx = 0 where the valence crosses the conduction band

for zero-gap GNRs. We obtain

1 + 4 cos(
πj

N + 1
) + 4 cos2(

πj

N + 1
) = 0 ⇒ 1 + 4x+ 4x2 = 0 ⇒ x = −1

2
⇒

⇒ cos(
πj

N + 1
) = −1

2
⇒ πj

N + 1
=

2π

3
⇒ N =

3

2
j − 1, j = 1, 2, ...

N is integer only for even values of j = 2n, n = 1, 2, .... taking values

N = 3n− 1, n = 1, 2, ... (2.10)

For the N values of Eq. 2.10 valence and conduction bands touch each other at

k = 0, contributing zero energy states resulting in zero-gap semiconducting GNRs.

The armchair GNRs behave as conventional semiconductors for every other value

of N since there is a gap at the fermi energy. As the width is increased the gap

decreases reproducing gradually the energy dispersion of an infinite graphene sheet

projected in the kx direction this time. It is clear that armchair oriented edges can

either contribute zero energy states at k = 0 or leave a gap at the fermi level. At the

limit of infinite ribbon width the armchair edges do not affect the band structure,

unlike the zigzag edges which contribute two flat bands of zero energy states. The

wavefunctions of armchair GNRs will have the same form as those corresponding to
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a semi infinite graphene sheet with an armchair edge,

ΨE± =

√√√√ 1

1 +
∣∣∣f1(−→k )

∣∣∣
 1

± f∗
1 (

−→
k )√

f1(
−→
k )

 exp(ikxx) sin(kyy),

The ky takes discrete values according to the formula

ky =
πj

(N + 1)a
2

, j = 1, 2, ..., N,

multiplied by the normalization factor
√

2
(N+1)a

2
. Edge states clearly do not exist for

armchair GNRs.

2.3.3 Flakes

Graphene can be also cut in confined structures known as flakes[11]. They are can

be studied theoretically by applying hardwall boundary conditions on an infinite

graphene sheet. Flakes are usually characterized by high degree of edge irregular-

ity[12,14,18], mixing the two possible edge types, zigzag and armchair. A third type

of edge, known as dangling bond or Klein edge[15] also appears. In this case every

atom is connected by a single bond only. An example of a circular graphene flake

can be seen in Fig. 2.26 where we can clearly distinguish the three different type of

edges.

It is interesting to see how the exact edge morphology affects the electronic prop-

erties of graphene flakes, for example whether edge states exist or not in these finite

systems[12,13,14,18]. Moreover, edge states have been shown to play an important

role in the chaotic behavior of graphene flakes[18].
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Figure 2.26: A quarter of a circular graphene flake. The three different type of edges,
zigzag(Z), armchair(A) and Klein(K) can be distinguished.

We can choose the simplest possible example of a confined graphene system a flake

with regular edges, in a square shape shown in Fig. 2.27. This system has a quite

regular edge morphology with two parallel zigzag oriented edges the two other being

armchair. It can be characterized by its width w = Nc

2

√
3 and its linear scale length

L = Nsc−1
2

, where Nc is the number of horizontal zigzag chains and Nsc the number

of sites along each chain. We choose the aspect ratio w/L ≈ 1.

In analogy with the ribbons already studied we expect the zigzag edges to con-

tribute edge states with zero energy. We check this by plotting the wavefunction

propability for different energies of the square sample consisting of 1760 sites. A

wavefunction corresponding to zero energy is shown in Fig. 2.28. This is an edge

state to a great extent localized at the zigzag oriented edges of the sample. This

type of wavefunction exists also for energies different than zero, an example shown

in Fig. 2.29. They are characterized by a smaller degree of localization than the



2.3. Electronic properties of Graphene structures 45

Figure 2.27: A square graphene flake.
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Figure 2.28: Wavefunction propability corresponding to E = 0 for a square flake
of graphene consisting of 1760 sites. For simplicity the honeycomb lattice sites are
arranged on a square lattice. The wavefunction is shown to be localized at the zigzag
edges of the sample.
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Figure 2.29: Wavefunction propability corresponding to E ≈ 0.0026 for a square sam-
ple consisting of 1760 sites. The wavefunction localized at the zigzag edges penetrates
more inside the sample.
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zero energy edge states. The presence of edge states at non-zero energies is an extra

feature compared with the zigzag GNRs. In that case edge states exist only for zero

energy and their degree of localization is determined by the value of the wavevector

k along the direction of the GNR which is infinite.

The edge states create degeneracy at the Fermi level which introduces a small

peak at the otherwise zero density of states ρ(E) at E = 0. The height of the

ρ(E) decreases with increasing size, and diminishes gradually, recovering the linear

ρ(E) ∼ E law for large L, as shown in Fig. 2.30. In the inset the number of zero

energy edge states for |E| < 10−3 increases linearly with L. The ρ(0) is this number

divided by the total number of states N(0)
L2 which is approximately L2, giving the 1

L

decay shown. A similar behavior forρ(0) is encountered for zigzag GNRs[5] or flakes

of various formations[12,14,18].

We can consider a more complicated flake edge morphology and see how it affects

the electronic properties of graphene at the Fermi level. A general way of doing this is

by cutting graphene in a circular form by keeping the carbon atoms whose coordinates

fulfill the following condition[18]

√
x2 + y2 ≤ r,

where r is the radius of the circular flake. An example of this condition applied

on graphene can be seen in Fig. 2.26 where the three possible types of edges are

encountered. This condition was applied on a topologically equivalent brickwall lattice

instead of honeycomb, resulting in a graphene flake with a non circular but a general

highly irregular edge[18]. We also restrict ourselves to a quarter of the circular flake

only for symmetry reasons. We plot the wavefunctions corresponding to different
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Figure 2.30: Density of states of a square sample of graphene as a function of it’s
linear length scale L for energies |E| < 10−3. In the inset we show also the number
of states that fullfill this condition.
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Figure 2.31: Wavefunction propability distribution corresponding to E ≈ 0 for a
quarter of a circular brickwall lattice flake consisting of 2095 sites. For plotting sim-
plicity the brickwall lattice sites are arranged on a square lattice. The wavefunction
is mostly localized along the circular edge of the flake and also along the lower edge.
From Fig. 2.26 both have zigzag type of edges

energies shown in Fig. 2.31, Fig. 2.32 and Fig. 2.33.

Even in this case of highly irregular edge morphology which mixes zigzag, armchair

and klein edges, the edge states survive for zero energy with wavefunctions remaining

localized at the boundaries of the flake as shown in Fig. 2.31. Due to irregularity

edge states appear at higher energies even for energies at the order of magnitude 10−1

than in the square geometry of Fig. 2.27. Edge states with non zero energy[12,18]

are shown in Fig2.32 and Fig. 2.33. In Fig. 2.34 the behavior of the density of

states at E = 0 is more abrupt, because of the irregular flake edge morphology which

introduces some kind of weak disorder.

In general the presence of zigzag edges at the boundaries of any finite graphene
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Figure 2.32: Wavefunction propability distribution corresponding to E ≈ 0.0015 for
a quarter of a circular brickwall lattice flake consisting of 2095 sites. The brickwall
lattice sites are arranged on a square lattice. The wavefunction is again mostly
localized along the circular edge of the flake and the lower zigzag edge.
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Figure 2.33: Wavefunction propability distribution corresponding to E ≈ 0.122 for
a quarter of a circular brickwall lattice flake consisting of 2095 sites. The brickwall
lattice sites are arranged on a square lattice. The wavefunction is localized along the
circular edge of the flake but at a smaller degree compared to zero energy edge states.
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Figure 2.34: Density of states of a quarter of brickwall circle as a function of it’s
linear length scale L for energies |E| < 10−3. Inset shows the corresponding number
of zero energy states.
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system affects to a great extend its electronic properties contributing edge states at

the fermi level, making these systems behave as zero-gap semiconductors[12,13,14,18].

2.4 Conclusions

Graphene’s linear dispersion near the Fermi energy along with the fact that its unit

cell consists of two atoms makes electrons behave as relativistic massless particles

described by the Dirac equation. This is combined with the chiral sublattice symme-

try and the spatial anisotropy giving the highly unconventional electronic properties

of graphene. Moreover, the special honeycomb lattice structure favors destructive

interference effects which give zero energy edge states. In this thesis their existence

is examined for various structures. The edge states exist for zigzag or antizigzag

nanoribbons(GNRs) and flakes of different boundary arrangements e.g square and

circular flakes mixing zigzag and armchair edges. It is shown that they strongly af-

fect the electronic properties of graphene near the Fermi level, having consequences

on their semiconducting behavior.
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Chapter 3

Fractal States in Disordered

Graphene

3.1 Introduction

3.1.1 Fractals

There is a wide variety of objects encountered in nature that the usual Euclidean

geometry fails to describe. These objects usually have extraordinary properties like

self-similarity which attract people’s attention. Fractal geometry was discovered for

the first time by Benoit B. Mandelbrot[1] as a convenient way of characterizing those

properties and can be used to describe these non Euclidean objects. The important

property of every fractal object, self-similarity has to do with scaling invariance mean-

ing that the object has the same structure on every possible order of magnitude. In

rough terms if we were using a magnifying glass to examine it we would observe the

same structure no matter of the zooming factor of the glass. This important property

55
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Figure 3.1: The Koch curve.

Figure 3.2: The steps to construct the Koch curve.

can be understood by a simple example usually used to introduce fractals, the Koch

curve shown in Fig. 3.1 The steps in order to construct it are shown in Fig. 3.2. At

the initial step n = 0 we take a line segment of length one and divide it into three

equal ones. Then we add another segment forming the structure shown at step n = 1

and after repeating the same procedure for every different line segment this time we

get the structure at step n = 2.

After infinite repetitions of this procedure we get the Koch curve. It’s impossible,

however, to draw the actual curve since the structure at step n = 1 is infinitely

repeated at each order of magnitude resulting in the extraordinary property of a
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line of infinite length enclosed in a finite space, a fact that owns it’s existence to

selfsimilarity. The structure shown in Fig. 3.1 is not the actual Koch curve it is

just the result of repeating the construction procedure a finite number of times,

this is called a prefactal. Koch curve is a very characteristic example of a fractal

object with an Euclidean dimension DT = 1 also known as topological dimension.

In general all one dimensional fractals characterized by self similarity have another

common characteristic, infinite length.

In order to discriminate between fractals we can use scaling theory. By scaling

we mean to examine how a quantity changes as we vary for example the system size.

A common way is to examine how the length of the fractal curve(L) changes as we

change the length of the ruler used to measure it. This can be easily accomplished

for the Koch curve by the help of the steps used to construct it. For a ruler of length

l = 1 we would simply measure a curve length L = 1 . As can be understood from

steps n = 1 and n = 2 for l = 1
3

the length becomes L = 4l = 4
3

while for l = 1
9

,L = 16l = 16
9

and so on.

In general the length of the curve will be given by L = 4nl where 4n is the number

of segments and l = 1
3n

the corresponding ruler length at each step. By writing

n = − ln(l)
ln(3)

we get

L = exp

(
− ln (4)

ln (l)

ln (3)

)
exp (ln (l)) = exp

(
ln (l)

(
1 − ln (4)

ln (3)

))
= l1−

ln(4)
ln(3) ⇒

L = l1−df . (3.1)

The exponent df = ln(4)
ln(3)

∼ 1.2618 is the fractal dimension of the Koch Curve,

different from it’s topological dimension DT = 1 . Examples of objects having the



58 Chapter 3. Fractal States in Disordered Graphene

same topological and fractal dimensions df = DT are common Euclidean shapes like a

line, a square or a cube with dimensions df = 1, 2, 3 respectively. An other alternative

way of obtaining the fractal dimension is box counting. This is achieved by trying

to cover the Koch curve with a finite number of line segments or boxes N and then

examine how this number scales with the their length l. As stated already N = 4n

and l = 1
3n

at each step of the Koch curve construction resulting in

N = 4− ln(l)
ln(3) = exp

(
− ln (4)

ln (l)

ln (3)

)
= l−

ln(4)
ln(3) ⇒

N = l−df , (3.2)

with df = ln(4)
ln(3)

∼ 1.2618 the fractal dimension. The scaling rate is obviously

constant so it is enough to consider only two sets of points (l, N) for example (1, 1)

and
(
1
3
, 4
)

in order to calculate the scaling exponent d = ln(4)−ln(1)
ln(3)−ln(1)

= ln(4)
ln(3)

,which is a

convenient way of calculating the fractal dimension of such simple objects. In general

the fractal dimension characterizes the scaling behavior related with self-similarity,

denser fractal objects will have higher fractal dimension.

3.1.2 Multifractals

Fractals can exist also in the quantum world[7,8,9,10]. Well-known examples are

the wavefunctions of electrons in the presence of disorder, at the metal-insulator

transition for example in disordered mesoscopic systems[11,12,13]. In the case of

graphene the geometric support of the wavefunctions is a honeycomb lattice. They

can be multifractal objects [3,4,5] and define a whole spectrum of fractal dimensions.
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This spectrum of dimensions is

Dq = − 1

q − 1
lim
L→∞

ln
∑N

i=1

(∣∣Ψi

∣∣2)q
ln  L

, q ∈ [−∞,∞] , (3.3)

where
∣∣Ψi

∣∣2 is the propability for the electron being at site i of the supporting

lattice also called measure in the multifractal formalism. L is the linear length scale

characterizing the size of the system and N the total number of sites. N ∼ LD

in general where D is the space dimension of the lattice, being two (D = 2) for

both honeycomb and square. Every fractal dimension Dq, q ∈ [−∞,∞], describes a

different scaling behavior of the multifractal wavefunction. Compared with the Koch

curve we follow an inverse approach for obtaining the scaling rates, by increasing the

linear size L(scale). The fractal dimension D0, coincides with the space dimension of

the supporting lattice. The fractal dimension, for q = 2

D2 = − lim
L→∞

ln
∑N

i=1

∣∣Ψi

∣∣4
lnL

. (3.4)

This is called the correlation dimension and describes the scaling of the quantity∑N
i=1

∣∣Ψi

∣∣4, known as the inverse participation ratio

IPR =
N∑
i=1

∣∣Ψi

∣∣4. (3.5)

IPR characterizes the localization properties of a wavefunction. An extended wave-

function which has equal amplitudes Ψi = 1√
N

on all the lattice sites IPR =
∑N

i=1

(
1√
N

)4
=∑N

i=1
1
N2 = 1

N
goes to zero as N → ∞, being inversely proportional to the number of

lattice sites. In the opposite case, a completely localized wavefunction on one lattice

site has IPR = 1 .
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So the calculation of the inverse participation ratio gives a rough estimation about

a wavefunction’s degree of localization. The scaling of IPR with the system size gives

information about the self-similar nature of a wavefunction in analogy with the simple

fractals, where there is only one scaling dimension characterizing the structural scale

invariance. For an extended wavefunction with equal propability
∣∣Ψi

∣∣2 on all the sites

from Eq. (3.3) all Dq coincide in the fractal dimension of the supporting lattice which

is two in the case of graphene or the square lattice and one for a linear chain. The

simple fractal objects are a special case of multifractals, when the measure is equally

distributed over the geometric support. If the wavefunction is completely localized

then D2 = 0. Non integer values of D2 imply multifractal wavefunctions.

3.2 Chiral Symmetry

Chiral lattice symmetry[6] plays an important role in the electronic properties of

graphene. It is also related with the fractal nature of wavefunctions. Specifically it

is responsible for multifractal wavefunctions for the midband states of a disordered

square lattice[8,9] and of small length chains. Chiral symmetry has to do with a

mirror symmetry present.

Consider a square lattice with zero potential on all its sites split into two sublat-

tices A and B as shown in Fig. 3.3. We clearly see connections only between sites

belonging to the two different sublattices. The chiral symmetry implies that one sub-

lattice is the mirror image of the other. A square lattice can be thought consisting of

two identical layers one of A and the other of B atoms, with every atom on each layer

being connected with four atoms of the other, mirrored one. The honeycomb lattice

of graphene preserves chiral symmetry. The only difference is the lattice connectivity,
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Figure 3.3: Square lattice represented as two sublattices A and B.
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Figure 3.4: The honeycomb lattice can be represented also as two interconnected
sublattices A and B.

for the honeycomb lattice is three(Fig. 3.4) instead of four for the square. Both the

square and honeycomb lattices belong to a general class called bipartite lattices. In

general, a lattice is bipartite if it can be made to consist of two sublattices A and B,

with nonzero hoppings connecting only A sites and B sites.

The chiral symmetry remains for off-diagonal disorder which means random con-

nections(hoppings) between the two A,B sublattices. The diagonal disorder is when

site potentials are random. In the absence of diagonal disorder the Hamiltonian of a

bipartite lattice can be written in the A-B basis as

H =

 0 HAB

H+
AB 0

 , (3.6)

where HAB contains the hoppings between the two sublattices. The chiral symmetry

of H can be expressed by the anti-commutation relation [H, σ3] = 0 ,where σ3 is

the pseudospin matrix

 1 0

0 −1

. Let’s assume we have a state with energy E
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and wavefunction Ψ =

 ΨA

ΨB

, so that HΨ = EΨ . By using the above anti-

commutation relation we easily prove that Hσ3Ψ = −σ3HΨ = −Eσ3Ψ meaning

that there is also a state corresponding to energy −E with wavefunction σ3Ψ = 1 0

0 −1


 ΨA

ΨB

 =

 ΨA

−ΨB

. Therefore for a bipartite lattice energies always

appear in pairs E,−E with corresponding wavefunctions Ψ, σ3Ψ. and the chiral

symmetry manifests itself as a symmetric energy spectrum around zero.

The chiral symmetry allows to write the Schrodinger equation for the square of

the Hamiltonian

H2Ψ = E2Ψ ⇒

 HABH
+
AB 0

0 H+
ABHAB


 ΨA

ΨB

 = E2

 ΨA

ΨB

⇒

HABH
+
AB = E2ΨB

H+
ABHAB = E2ΨA

.

The eigenvalues of H can be obtained by diagonalizing either HABH
+
AB or H+

ABHAB

which are of reduced size (by half) compared to H. For zero energy E = 0

 ΨA

ΨB

 =

 ΨA

−ΨB

⇒

 ΨA ̸= 0

ΨB = 0

the wavefunctions have zero amplitudes on one of the sublattices (A or B). For NA

number of sites for sublattice A andNB number of sites for sublattice B withNA > NB

, it can be proven[6] that there are at least NA − NB states corresponding to zero

energy, having zero amplitudes on the sublattice with the smallest number of sites
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(B in this case). If NA = NB + 1 at least one zero energy state always will be present

in the middle of the energy spectrum. This is easily understood if we think that the

total number of sites is N = NA + NB, consequently the corresponding number of

energies is odd, combined with the presence of a symmetric spectrum around zero.

The wavefunction of this E = 0 state will have zero amplitudes on sites of the B

sublattice. In order to prove this we can write down the tight binding equations for

E = 0

HΨ = 0 ⇔

 0 HAB

H+
AB 0


 ΨA

ΨB

 = 0 ⇔

 HABΨB = 0

H+
ABΨA = 0

(3.7)

The term HABΨB = 0 is a system of NA linear homogeneous independent equations

with NB unknowns, it’s actually the set of Schrodinger equations centered on all the

A type atoms. On the other hand the term H+
ABΨA = 0 on the other hand is a system

of NB equations with NA unknowns. There is also one more equation obtained by the

normalization condition for the wavefunction, namely

NA∑
|ΨA|2 +

NB∑
|ΨB|2 = 1. If

we assume that ΨA = 0 then the system of equations H+
ABΨA = 0 is trivially satisfied

while HABΨB = 0 is only satisfied when ΨB = 0 since the number of equations

is larger than the number of unknowns in this case, resulting in a zero amplitude

wavefunction as the only possible solution. Assuming on the other hand that ΨB = 0

equations HABΨB = 0 are trivially satisfied while equations H+
ABΨA = 0 along the

normalization condition

NB∑
|ΨA|2 = 1 will allow us to calculate the amplitudes ΨA.

3.3 Lattices with off-diagonal disorder

Multifractal wavefunctions are almost exclusively encountered in disordered quantum

systems under certain conditions[7,8,9,10,11,12]. Their multifractal nature is charac-
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terized by non-trivial scaling behavior described by the spectrum of fractal dimensions

(Eq. (3.3)).

Disorder which might own it’s existence to high impurity concentration in realis-

tic systems, can be simulated easily in the tight binding framework by introducing

random parameters,like random on-site potential or random hopping propability be-

tween the different sites of the lattice called off-diagonal disorder. These disordered

systems follow a class of universal behaviors independent of the underlying details,

like the lattice morphology for instance.

A characteristic example is Anderson localization[2] occurring when there is enough

randomness of the disordered parameters present or if the dimensionality is low. For

1d and 2d systems, a linear chain and a square lattice for example all states for every

allowed energy and all possible strengths of disorder exhibit Anderson localization.

The corresponding wavefunctions become localized at a certain space and their ampli-

tude decays exponentially exp
(
−1

ξ
|r|
)

at distance r from its maximum characterized

by the localization length ξ.

There is an exception to this universal behavior however, which is disordered

systems that preserve the chiral symmetry[6,8,9], introducing random hoppings only

between the two underlying sublattices, preserving this way the mirror symmetry

of each other. We study the fractal nature of the wavefunctions belonging to mid-

band states for systems that preserve the chiral symmetry, graphene with off-diagonal

disorder in conjunction with a square and a chain also with off-diagonal disorder.
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Figure 3.5: a linear chain represented as two sublattices A and B

3.3.1 Linear chain

The simplest model with off-diagonal disorder is a linear chain with random nearest

neighbour hoppings called off-diagonal disorder. Again this lattice can always be

represented by two interconnected sublattices A and B being the mirror image of

each other. If the number of sites is odd there is always a state corresponding to

zero energy at the middle of the otherwise symmetric energy spectrum of this system.

There is a convenient way of calculating the wavefunction of this state. Consider the

chain labeled as shown in Fig. 3.5 with Ψj denoting the amplitude on site j of the

B sublattice and tj, tj′ the random hoppings, the amplitudes on A sublattice are all

equal to zero. Writing down the Schrodinger equations centered on all the B sites

where the wavefunction amplitude is zero we get the amplitude on site j of the B

sublattice

Ψj = (−1)j−1 tj−1tj−2...t1
t′j−1t

′
j−2...t

′
1

(3.8)

and the zero energy wavefunction without the need of diagonalizing the corresponding

Hamiltonian. The Schrodinger tight binding equations for the sites of the B sublattice

can be also written in a general recursive form as

Ψjtj+Ψj+1t
′
j = 0, j = 1, 2, ..., N−1 ⇒ |Ψj+1| =

∣∣∣∣Ψj
tj
t′j

∣∣∣∣⇒ ln |Ψj+1| = ln |Ψj|+
[
ln |tj| − ln

∣∣t′j∣∣]

The logarithm of the amplitude at distance r (one unit of r is two lattice spacings
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long in this case) from the site with amplitude Ψj will be

ln |Ψj+r| = ln |Ψj| +
r∑[

ln |tj| − ln
∣∣t′j∣∣]⇒ ln |Ψj+r| − ln |Ψj| =

r∑[
ln |tj| − ln

∣∣t′j∣∣]
quantity g(r) = ln |Ψj+r| − ln |Ψj|describes the behavior of the wavefunction as we

move away from a starting site j. We expect it to oscillate abruptly due to the

introduced disorder, we can get an average estimation however by simply calculating

the variance

< (∆g(r))2 >=<

(
∆

(
r∑

j=1

[
ln |tj| − ln

∣∣t′j∣∣]
))2

>

The hoppings tj, tj′ for j = 1, 2, ..., N −1 are random variables which can be obtained

by a specific propability distribution P (t) characterized by the strength of disorder

W . We can also consider them as completely uncorrelated meaning that the random

value of one doesn’t depend in any way on the values of the other hoppings. For off-

diagonal disorder we can choose a special propability distribution called logarithmic

ensuring that all hoppings take positive non-zero values replacing|t| with t while

the propabilities of the logarithms for the random numbers obtained P (ln t) become

equal. The exact form of the propability P (t) that satisfies the above requirements

can be easily obtained as follows. Consider that ln t belongs to the interval
[
−W

2
, W

2

]
resulting in the so called box distribution P (ln t) = 1

W
The required distribution can

be calculated as

P (t) dt = P (ln t) d ln |t| =
P (ln t)

t
dt⇒

P (t) =
1

Wt
, t ∈

[
exp

(
−W

2

)
, exp

(
W

2

)]
(3.9)

This is the so called logarithmic propability distribution. The term
[
ln |tj| − ln

∣∣t′j∣∣]
now, is a random variable also with zero mean value and finite variance, as long as
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the random hoppings tj, tj′ follow the logarithmic distribution. This is very easy to

prove, take for example the mean value

< ln t− ln t′j >=< ln t > − < ln t >

< ln t >=

∫ e
W
2

e−
W
2

ln tP (ln t) dt =

∫ e
W
2

e−
W
2

ln t
1

Wt
dt =

1

W

∫ W
2

−W
2

ln td ln t =
1

W

∫ W
2

−W
2

xdx = 0

< ln t− ln t′j >= 0

while for the variance we have(X = ln tj − ln t′j )

variance =< (X− < X >)2 >=< X2 > − < X >

since < X >= 0 the variance becomes

σ2 =<
(
ln tj − ln t′j

)2
>=< ln2 tj > + < ln2 t′j >

< ln2 t >=

∫ e
W
2

e−
W
2

ln2 tP (ln t) dt =
1

W

∫ W
2

−W
2

x2dx =
W 2

12

so that the variance of
[
ln tj − ln t′j

]
becomes equal to W 2

6
. Returning to the equation

for g(r) now due to the fact that the different terms inside the sum are independent

random variables we can use the basic property V ar
(∑N

i=1Xi

)
=
∑N

i=1 V ar (Xi) and

write

< (∆g(r))2 >=
r∑
<
(
∆
([

ln |tj| − ln
∣∣t′j∣∣]))2 >

as proved above ∆
([

ln |tj| − ln
∣∣t′j∣∣]) = W 2

6
independent of r so that the required
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variance of the wavefunction amplitude at distance r from the starting site j becomes

< (∆g(r))2 >=
W 2

6
r ∼ r ⇒

√
< (∆g(r))2 > ∼

√
r

Since g(r) = ln |Ψj+r| − ln |Ψj| this implies that the amplitude of the wavefunction

corresponding to zero energy decays in average as

exp
(
−λ

√
r
)

(3.10)

at distance r from it’s maximum value with λ ∼ W 2[8]. Despite the fact we have

used a specific propability distribution for the random hoppings the obtained result

is independent of the distribution’s exact form as long as it has zero mean value and

finite variance. The decay behavior is also essentially different and slower from the

pure exponential decay exp
(
−1

ξ
|r|
)

characterizing localized wavefunctions.

The problem described is a characteristic example of a random walk process. The

term ln |cj| can be interpreted as the starting position of the walker while the role of

the additional random displacement at each iteration is played by the random variable[
ln |tj| − ln

∣∣t′j∣∣] with mean value and finite variance. The average distance x of the

walker from his starting position after r iterations will be x ∼
√
r a diffusive behavior

similar to the one derived for the amplitudes of the zero energy wavefunction.

We can also verify the above result numerically[8] by using Eq. (3.8) in order

to calculate the amplitudes Ψj. First we have to consider a chain of finite size with

N number of sites and then apply the normalization condition
∑N

j=1 Ψj = 1. Then

we can check the validity of Eq. (3.10) by calculating the average of the correlation
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Figure 3.6: The square of the correlation function g(r) ploted as a function or corre-
lation distance r for a chain of N = 2001 sites varying j in the interval for different
stenghts of disorder W and 10000 realizations. The analytical result is reproduced.

function g(r) = [ln |Ψj+r| − ln |Ψj|] over the different j sites of the chain and over

different realizations of the random hoppings, varying also the correlation distance

r. Below we show the result of this procedure for a chain of N = 2001 sites with j

chosen for sites belonging to the middle part of the chain in order to eliminate the

edge scattering effects introduced by the system’s boundaries

As seen in Fig. 3.6 g(r) appears to be in average analogous to r in complete agree-

ment with the behavior obtained analytically. In Fig. 3.7 the propability distribution

of the correlation function is plotted for different disorder strengths W
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Figure 3.7: Propability distribution of g(r) for correlation distance r = 25 , 10000

realizations, fit with gauss distribution P (g) = 1√
2πσ2 exp

[
− (g−<g>)2

2σ2

]

All curves follow the gaussian form a direct consequence of the special form of

the wavefunction amplitude Eq. (3.8). It’s logarithm can be written as ln |cj| =

(ln tj−1 + ln tj−2 + ...+ ln t1) −
(
ln t′j−1 + ln t′j−2 + ...+ ln t′1

)
a sum of N − 1 inde-

pendent random variables. According to the central limit theorem of statistics the

propability distribution of ln |cj| approaches the Gaussian form as the number of the

summed random variables increases (N → ∞). The increasing also of the disorder

strength W leads to the broadening of the Gaussian distribution expressed through

the increasing of it’s variance σ2.

The linear chain with off-diagonal disorder is the simplest disordered tight binding
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model for which multifractal wavefunctions exist. The logarithm of the wavefunction

amplitude for the midband states corresponding to zero energy at each site, undergoes

a random walk, leading to the power law decay of Eq. (3.10) which is different from

Anderson exponentially localized states. The scaling of the inverse participation

ratio, IPR =
∑N

i=1

∣∣Ψi

∣∣4, with the system size N the length of the chain, gives the

characteristic correlation dimension D2. This can be accomplished easily, the chiral

symmetry is preserved for off-diagonal disorder and using Eq. (3.7) we calculate the

wavefunction amplitudes. We then plot the logarithm of the average < IPR >, taken

over different realizations as a function of ln (N). The result is shown in Fig. 3.9 for

different strengths of disorder W . The whole propability distributions of ln (IPR)

are shown in Fig. 3.8.

The expected power law decay Eq. (3.10) for the E = 0 wavefunction leads

to zero amplitude at large distances(r) with a decay slower than exponential. The

fractal dimension D2 of this power-law localized wavefunction will eventually be zero,

that is the fractal dimension of a point. Accordingly, we expect the scaling rate

of ln (< IPR >) vs ln (N), for any disorder strength W , to approach zero for large

enough chain lengths as confirmed in Fig. 3.9. For small lengths, however, we observe

linear scaling, indicating the existence of a fractal dimension D2 which decreases as

the strength of disorder W is increased. Small values of W result in values for D2

close to the integer dimension of a line indicating a wavefunction extended along the

chain. As we increase W the D2 approaches non integer values indicating that the

E = 0 wavefunction has a multifractal form.

A typical multifractal wavefunction can be seen in Fig. 3.10. We notice immedi-

ately the signs of self similarity ,characteristic of fractal objects. As seen in the inset

where log-linear plot is used, the propability amplitude fluctuates wildly along the
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Figure 3.8: Propability distributions of ln (IPR) at E = 0 for a chain with off-diagonal
disorder, W = 1 and 50000 realizations.
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Figure 3.9: The scaling of IPR with the system size N for a chain at E = 0 averaging
over 10000 realizations for different strenghts of disorder W . The fractal dimension
D2 exists only for small sizes and diminishes as the disorder increases.
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Figure 3.10: Plot of the propability |Ψ|2 for the chiral multifractal wavefunction at
E = 0 for a chain of 5001 sites and disorder strength W = 0.5. The plot is done for
sites at the range [1250, 2250]. In the inset logarithmic scale is used.
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Figure 3.11: D2 as a function of the off-diagonal disorder with strength W , for a zero
energy chiral wavefunction of a chain.

chain, while on the other hand it shares the properties of both, extended and local-

ized wavefunctions. For example, it is localized along different isolated regions in the

chain, expected to lead to extreme sensitivity of the system’s transport properties like

conductance depending on the choice of boundary conditions. Therefore, although

the power law decay localizes the wavefunctions, a fractal nature is encountered when

we examine small enough regions (scales) of the chain. These regions reduce in size

if the disorder is increased and the wavefunction becomes more power-law localized.

In Fig. 3.11 we show the behavior of D2 with increasing W . The D2 approaches

asymptotically zero as W increases.
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3.3.2 Square lattice

We can can easily apply the multifractal method on a square lattice model with off-

diagonal disorder in order to check the existence of midband multifractal states. We

consider again the hopping as uncorrelated real random variables distributed in the

logarithmic form Eq. (3.9) with W denoting the strength of the disorder. The chiral

symmetry is preserved since there are two identical underlying sublattices, one being

the mirror image of each other.

For convenience we can choose a square sample with N = L2 number of sites

reducing this way the scaling parameters to just the linear length scale L. By de-

manding it also to take odd values only so that N is also odd we ensure the presence

of at least one zero energy state in the middle of the energy spectrum of this system.

The scaling of IPR with L will give the fractal dimension D2 of this midband state.

For this calculation we use the system described by Eq. (3.7), the amplitudes lie on

sites of the A sublattice. The wavefunction has zero amplitude on the sites of the B

sublattice, which has the smallest number of sites. In Fig. 3.13 we have studied the

scaling of two different quantities. The first is the geometric mean exp(< ln(IPR) >)

while the second is the arithmetic mean < IPR > of IPR. For the geometric mean

it is enough to plot < ln(IPR) > as a function of ln(L) in order to get it’s scaling

dimension D2 and for the arithmetic mean we plot ln < IPR > as a function of ln(L).

The two curves are shown in Fig. 3.14. They imply that the studied zero energy

midband state undergoes an interesting crossover. For example, for low values of

disorder W = 0.1, the value D2 is close to two meaning that the wavefunction is

completely extended. For large enough disorder, for example W = 50, the value of

D2 is close to zero, and clearly the wavefunction becomes localized. For intermediate
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Figure 3.12: Distribution of ln(IPR) for strength of disorder W = 1 and different
lenght scales L using 10000 realisations.
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Figure 3.13: Scaling with L of two different quantities the geometric and the arith-
metic mean of IPR , for disorder strength W = 1 and 10000 realizations. The curves
allow us to calculate the fractal dimensions D2 describing the scaling of both those
quantities.
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Figure 3.14: Fractal dimension D2 as a function of the disorder strength W for both
the arithmetic and the geometric mean of IPR.
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Figure 3.15: A multifractal wavefunction propability at E = 0 for a square lattice of
linear length L = 81 with 6561 sites for off-diagonal disorder strength W = 1.

values of disorder the wavefunction has a non integer fractal dimension D2 between

two and zero indicating a typical multifractal distribution.

The amplitude |Ψ|2 seen in Fig. 3.15 fluctuates wildly with signs of self-similarity,

a characteristic example of a multifractal wavefunction. It can be understood from

the point of view of phase transitions. There is a continuous second order phase

transition in the asymptotic limit W = 0 only, the extended-chaotic phase occurring

in the asymptotic limit W = 0, for 0 < W < ∞ the state is fractal and Anderson

localization occurs in the asymptotic limit( W → ∞). This is implied in Fig. 3.14

by the two scaling factors for the geometric and arithmetic mean as defined above.

We clearly see that the two values of D2 differ only for the fractal phase, while they

coincide for the two other limiting phases. We can interpret their difference as some

kind of order parameter that takes values from zero to some finite value as W increases
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and the system jumps from one ordered state for small W to a more disordered one

for large W . The two exponents become equal at the asymptotic limit.

3.3.3 Graphene

In order to check if midband multifractal wavefunctions exist in graphene with off-

diagonal disorder we study also a square honeycomb lattice sample. This system (see

Fig2.26) can be characterized by, the number of horizontal zigzag chains, Nc, and the

number of sites on each one of those Nsc . The lattice has N = NcNsc sites, width

w = Nc

2

√
3 and length L = Nsc−1

2
, both in units of a =

√
3ac−c. As in the previous case

of the square lattice we require Nc and Nsc to be both odd in order for N to become

odd. We also require that w
L
≃ 1 to be talking about square graphene samples.

The Hamiltonian studied has again the chiral form (3.6), with the hopping ele-

ments given by logarithmic distribution Eq. (3.9). This graphene sheet will have two

parallel boundaries containing only zigzag edges and two other also parallel bound-

aries containing only armchair edges. As in the case of zigzag graphene ribbons we

expect the presence of zigzag edges to contribute edge states with zero energy. This

results in high degeneracy at E = 0, increasing with the size of the graphene sample.

In order to calculate the amplitudes on A type sites of graphene We use Eq. (3.7).

The IPR allows to study the fractal properties for one of those degenerate states. A

very fundamental question we address is about the role of the destructive interference

mechanism of the honeycomb lattice in this disordered graphene system, for example

to see if edge states survive in this case.

As seen in Fig. 3.18 the conclusions derived for the square-lattice E = 0 state,

hold also for the corresponding graphene E = 0 state . Their main difference is that
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the midband state with zero energy has fractal dimension D2 ranging from one to

zero. This clearly indicates a wavefunction that remains localized along a line in

space even in the presence of disorder and has a fractal structure characterized by the

linear dependance of ln (IPR) on ln (L). This line corresponds to the zigzag edges of

the graphene sheet and resembles the behavior of D2 for the midband wavefunction

of small length chains with off-diagonal disorder seen in Fig. 3.11. So even in the

presence of off-diagonal disorder zero energy edge states survive in graphene. In other

words the destructive interference mechanism, due to the special morphology of the

honeycomb lattice structure, giving edge states with zero energy, is not destroyed

by the introduced disorder which preserves chiral symmetry of the two underlying

sublattices.

3.4 Conclusions

The wavefunctions of graphene at the Dirac point are shown to be fractal as long as

the disorder preserves the chiral sublattice symmetry. This is common behavior for

off-diagonal disorder encountered also in the square lattice and small length chains.

In the case of a square lattice the fractal dimension D2 ranges from two to zero as

the disorder increases. For the graphene sample with off-diagonal disorder fractal

states are also edge states and the value of the scaling dimension D2 ranges from one

to zero. This shows that the destructive interference mechanism in the honeycomb

lattice of graphene survives in the the presence of off-diagonal disorder.
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Chapter 4

Quantum Chaos in Disordered

Graphene

4.1 What is Quantum Chaos

4.1.1 Introduction

Chaos in the quantum world is completely different from the classical deterministic

chaos. Classically chaotic systems are characterized by increased sensitivity to ini-

tial conditions, leading to extreme unpredictability expressed through an exponential

growth of the error described by the distance between two chaotic orbits in their

phase space. The unpredictability is characterized by a Lyapunov exponent from the

exponential growth rate of the error. In classical dynamical systems chaos occurs

even for a small number of degrees of freedom, with an essential condition for chaos

the presence of the non-linearity in the deterministic equations.

In the quantum world the Schrodinger equation i θ
θt

Ψ(x, t) = HΨ(x, t) is linear,

89
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Figure 4.1: Two billiards of circular and stadium shape . The classical motion is
periodic for the circular one, while it is chaotic for the stadium.

therefore the classical sense chaos is excluded. Quantum chaos is not related with

dynamical evolution, instead, it is encountered in the the statistical properties of the

eigenvalue energy spectrum. However, there is a strong relation between the classical

and quantum manifestation of chaos acting as a bridge between the two worlds. A

very striking example appears in systems commonly referred to as billiards[1]. For

example, the circular billiard shown in Fig. 4.1 with a classical particle like a ball

moving freely inside, by allowing elastic scattering with the walls. It can be proven[1]

that the ball will follow a completely predictable orbit characterized by zero Lyapunov

exponent. This result is related with the number of conserved physical quantities in

conjunction with the number of the spatial degrees of freedom. Because of the elastic

scattering the absolute value of the momentum is conserved after each scattering

event which is equivalent to the conservation of the energy, while we can easily prove

that the angular momentum is also conserved. The number of degrees of freedom

(two) is equal to the number of conserved physical quantities.

In the quantum case a particle, e.g an electron, can be enclosed in this billiard

geometry. The obtained energy eigenvalues for the quantum system will be distributed

as completely random variables with zero spacing between successive energy levels

having propability one. This surprising fact can be expressed through the Poissonian
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Figure 4.2: The Poisson, semi-poisson and Wigner distributions, characterizing inte-
grable, semi-integrable and chaotic quantum systems respectively.

form

P (S) = exp (−S) , (4.1)

which gives the propability of the spacing S between sucessive energy levels S =

Ej − Ej−1. It is plotted in Fig. 4.2. The circular billiard is a characteristic example

of a classically integrable system desplaying a non-cahotic quantum behavior.

Quantum Chaos occurs for more complex billiard geometries. We can consider

the case of a classical particle enclosed in a stadium, shown in Fig. 4.1. This is

characteristic non-integrable classical system, with the orbits of the enclosed particle

being completely chaotic, having non zero Lyapunov exponent[1] leading to unpre-
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dictability. The corresponding quantum system shows a statistical behavior of the

eigenvalues completely different from the randomly distributed levels of the circular

billiard[2,3]. The propability distribution P (S) for the spacing of successive energy

levels will follow a form known as Wigner[5]

P (S) =
π

2
S exp

(
−π

4
S2
)
, (4.2)

plotted in Fig. 4.2. This gives zero propability to zero spacing S and a linear law

for small S. It, somehow, means that the levels communicate with each other, this

effect is called level-repulsion. This is in sharp contrast to what is happening for

the uncorrelated random levels in the circular billiard. Moreover, the corresponding

wavefunctions will have a characteristic structure with scars (concentrated ampli-

tudes) where the periodic orbits of the chaotic classical system occur[3], in contrast

to the perfect ballistic wave states for the integrable systems.

In general, there is a widely accepted conjecture[7,8,9,12] that quantum systems

displaying classically integrable behavior, like the circular billiard, are expected to

follow a universal behavior for their energy level statistics conveniently expressed

through the Poissonian form of P (S). For quantum systems whose classical counter-

parts display classically chaotic behavior, like the stadium billiard, P (S) will follow

universal Wigner statistics.

4.1.2 Random matrix theory

The Wigner distribution can be in general derived by the random matrix theory(RMT)

[4,9], which has to do with the statistical properties of the eigenvalues of full infinite

dimensional random matrices. These matrices can be regarded as hamiltonians of
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disordered quantum systems with most of their possible symmetries being broken.

There are, however, some basic symmetries preserved even in the case of completely

chaotic systems. Time-reversal symmetry is the most fundamental one. H must be

real[8] when time-reversal symmetry is preserved. The real time reversible hamiltoni-

ans of RMT are characterized by a definite statistical behavior of their energy levels,

they show level-repulsion as in the case of the stadium billiard. This is clearly ex-

pressed through the special form of the nearest level spacing distribution P (S) which

has the Wigner form π
2
S exp

(
−π

4
S2
)
. The unique behavior of the time reversible

hamiltonians of RMT, can be derived in the simple case of a two dimensional real,

random, Hamiltonian[8]

H =

 H11 H12

H12 H22

 ,
where we have taken account hermicity. We can also consider all the elements

H11, H22, H12 as uncorrelated random variables with a propability distribution of the

typical gaussian form W (x) ∼ exp (−x2). The difference between its eigenvalues is

E2 − E1 =

√
(H11 −H22)

2 + 4H2
12,

the terms x = H11 − H22 and y = 4H12 are again uncorrelated random variables

distributed in the gaussian form, so that we can write the spacing between the two

energy levels of the random Hamiltonian as

S = E2 − E1 =
√
x2 + y2.

The propability distribution of this spacing S can be derived from the following
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formula

P (S) =

∫ ∫
dxdyW (x, y) δ

(
S −

√
x2 + y2

)
,

which gives P (S) if we know the propability distribution of each random variable.

In our case we have two random variables described by the propability W (x, y) ∼

exp [−A (x2 + y2)] and we need to derive the propability distribution of their function

S =
√
x2 + y2 . In polar coordinates x = rdrdθ,r =

√
x2 + y2 we have

P (S) =

∫ ∫
rdrdθ exp

(
−Ar2

)
δ (S − r) = 2πS exp

(
−AS2

)
,

An important remark is that P (S) is a statistical measure of the fluctuations of

the S around its mean value < S > which does’t hold any information about the

chaotic nature of a quantum system. For convenience we require that < S >=∫
SP (S) dS = 1, along with the normalization condition

∫
P (S) dS = 1 gives the

Wigner distribution of Eq. [4.2].

In general the basic symmetries present in the systems described by the RMT the-

ory enable us to categorize them into three basic universality classes, characterized by

a level-repulsion between their energy levels. The ensemble of real symmetric random

matrices which preserve the time reversal symmetry is called the gaussian orthogonal

ensemble(GOE) and is characterized by P (S) ∼ S for small energy differences S.

When the time reversal symmetry is broken, e.g. in the presence of a magnetic

field, the corresponding ensemble, called gaussian unitary (GUE), consists of com-

plex hermitian random matrices. It is characterized by a universal level-repulsion of

P (S) ∼ S2 when S → 0 . This behavior can be derived again by considering the



4.1. What is Quantum Chaos 95

simple case of a two dimensional complex random matrix

H =

 H11 H12

H∗
12 H22

 .
The spacing between its eigenvalues now becomes

S = E2 − E1 =

√
(H11 −H22)

2 + 4Real (H12)
2 + 4Im (H12)

2,

S depends on three uncorrelated random variables this time x = H11 − H22, y =

2Real (H12) and z = 2Im (H12) so that we can write

S =
√
x2 + y2 + z2.

If we calculate P (S) assuming that x, y, z are distributed in a typical gaussian form as

in the gaussian orthogonal ensemble, by using also the spherical coordinates dxdydz =

r2 sin θdrdθdϕ,r =
√
x2 + y2 + z2

P (S) =

∫ ∫
dxdyW (x, y, z) δ

(
S −

√
x2 + y2 + z2

)
=

=

∫ ∫
drdθdϕr2 sin θ exp

(
−Ar2

)
δ (S − r) =

= 4πS2 exp
(
−AS2

)
.

By taking account the conditions
∫
P (S) dS = 1 and < S >=

∫
SP (S) dS = 1

we derive another type of Wigner distribution 32
π2S

2 exp
(
− 4

π
S2
)
, characterizing the

gaussian unitary ensemble, with an increased level of repulsion P (S) ∼ S2 for S → 0.
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There is also a third universality class characterizing the so called gaussian sym-

plectic ensemble which consists of full random matrices that preserve the time reversal

symmetry but have spin orbit coupling. This ensemble shows a universal level of re-

pulsion P (S) ∼ S4 for S → 0.

Therefore, the chaotic nature of quantum systems can be found by fully random

matrices which form the three elementary ensembles of RMT according to the ba-

sic symmetries present. All quantum chaotic cases show a universal level-repulsion

between their energy levels

P (S) = Sβ, S → 0,

where β = 1, 2, 4 is called the universal class index, denoting orthogonal, unitary and

symplectic universality classes, respectively.

4.2 Quantum chaos in disordered tight binding lat-

tices

The universality classes of quantum chaos are also encountered in systems described

by the tight binding model in the presence of disorder, like graphene or a square

lattice. They are closely related with the localization properties of the corresponding

wavefunctions. Such behavior is well known for the energy levels of a cubic lattice

with on-site potential disorder denoted by the strength W [10,11,12], by introducing

random variables on the diagonal matrix elements of the corresponding Hamiltonian.

The levels show the typical characteristics of repulsion described by the Wigner dis-

tribution for P (S) with universality class index β = 1. They are correlated having

overlapping wavefunctions that diffuse in space, characterized by infinite localization
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length. The corresponding chaotic wavefunctions are randomly fluctuating.

In the cubic lattice when the randomness on the diagonal exceeds a certain limit,

that is for W > Wc ≈ 16.5, where Wc is known as the critical point, then Anderson

localization mechanism occurs[6] leading to localized wavefunctions with their finite

localization length decreasing further as W is increased. The energy levels on this

localized regime behave as completely uncorrelated random variables described by

the Poissonian form of P (S). That is resemble quantum systems that are classically

integrable like the circular billiard (see Eq. (4.1)). The corresponding wavefunction

are non-overlapping concentrated on sites suggested by the localization length. At

the critical point Wc, where the transition between the chaotic and localized regime

occurs, the propability distribution of the spacing between successive levels P (S) is

known to follow a form 4S exp (−2S) called semi-poisson[10,11]. This intermediate

distribution is characterized by a behavior intermediate between the Poisson and the

Wigner, for small is analogous to S similar to Wigner, while for large S it decays with

a Poissonian rate as exp (−2S). The semi-poisson distribution characterizes quantum

systems that are classically semi-integrable, e.g a trigonal irrational billiard. The

corresponding wavefunctions are multifractal sharing the properties of both extended

and localized states with their amplitude wildly fluctuating in space (see Chapter

two). For one and two-dimensional tight binding models with diagonal disorder, e.g.

a linear chain or a square lattice, the critical value of Wc = 0 implies that P (S) for the

energy levels always follows the Poisson form with the wavefunctions being localized

for any finite value of the disorder strength W .

The above results are valid in the limit of infinite system size only. In practice

we can use numerical methods, like diagonalization, for finite systems and via scaling

reproduce the chaotic behavior of the infinite systems. We can verify for example,



98 Chapter 4. Quantum Chaos in Disordered Graphene

that the distribution of spacings P (S) for a finite linear chain approaches gradu-

ally the Poisson form as the disorder strength W is increased. For a square lattice

with on-diagonal disorder, however, P (S) gives an almost scale and disorder invariant

Wigner form, as long as we stay at the chaotic region for disorder W under WC . The

scale invariance of P (S) also indicates multifractality of the corresponding wavefunc-

tions[13]. As we increase the size the expected Poisson form is indeed, approached

extremely slowly, it is obtained for very large sizes. In other words it is difficult to

detect Poisson in practice for moderate values of W because of the large localization

lengths of the corresponding wavefunctions.

In confined graphene systems recent experiments[16] ,pose the fundamental ques-

tion about its chaotic nature. It is of great importance to see the role of edge states

in the presence of disorder.

4.2.1 Square Lattice

In a finite square lattice sample with on-diagonal disorder quantum chaos occurs. We

can show this by studying the statistics of just one spacing between two successive

energy levels, at the the middle of the energy spectrum. We have done this for the

simplest possible flake form, that is a square. The results are shown in Fig. 4.3.

We carried out the calculations for the distribution P (S), by demanding that the

mean value of the spacings is < S >= 1, obtained for different sizes and values of the

disorder strength W . Clearly P (S) follows a form close to Wigner, almost invariant

under scaling, consistent with the multifractality of the wavefunctions corresponding

to the two energy levels. The form of P (S) is Wigner-like for every value of disorder

strength W (W < 1), showing that the system remains at the chaotic region for
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Figure 4.3: The distribution of the level spacing between two successive positive mid-
band energy levels of a square lattice for different strengths of disorder W ,50000
realizations and different sizes. We plot also the Poisson[4.1] and Wigner[4.2] distri-
butions. All the curves stay near the Wigner distribution showing the typical chaotic
behavior derived by RMT for β = 1.
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the disorder values. In order to be able to study the statistical behavior of the level

spacings including more energy levels than two near zero energy we have to ensure that

the mean value of the spacings < S >= 1. In this case we must apply a method called

unfolding ensuring that the mean value becomes one and the fluctuations around this

value which characterize quantum chaos. Our results are consistent with the presence

of a chaotic region which crosses over to localized only for very large size.

There is a continuous crossover between the two different, chaotic and localized

regions, a behavior known as crossover. For weak disorder there is a typical chaotic

behavior where the energy levels show a considerable repulsion without ever crossing,

well described by the Wigner form of P (S) shown in Fig. 4.3. Despite the fact that

for an infinite square lattice there is a trivial transition point at Wc = 0, localized

wavefunctions exist for every non-zero disorder and every possible energy. The wave-

functions of the studied finite square lattice, however, look extended due to the finite

system size. They display a chaotic region for sizes below the localization length. For

large disorder strengths the energy levels gradually begin to fluctuate wildly resulting

in high possibility of both crossings and large spacings, resembling the behavior of an

ensemble of uncorrelated random numbers described by the Poisson P (S).

4.2.2 Graphene

We have studied the level-spacing distribution near E = 0 for a finite square hon-

eycomb lattice representing a graphene flake. The obtained results are similar those

found in [17]. In particular the distribution of the spacing between two successive

levels is shown in Fig. 4.4. The P (S) between two successive positive levels stays near

the semi-poisson distribution for all the sizes and weak disorder strengths studied.
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Figure 4.4: The distribution of the spacing between two successive midband energy
levels of a square graphene flake for different strengths of disorder W ,100000 realiza-
tions and different sizes. All the curves stay near the Semi-poisson distribution for
all weak W and sizes.
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Figure 4.5: E ≈ 0.014 wavefunction propability distribution of a square graphene flake
with on-diagonal disorder (W = 0.5) consisting of 2840 sites. The honeycomb lattice
sites are arranged on a square lattice. The wavefunction is shown to be localized at
the zigzag edges of the flake.

This is a weakly chaotic behavior non existent in the square lattice with on-diagonal

disorder. For higher disorder strengths we expect the usual Poisson distribution of

P (S) to be recovered, since Anderson localization mechanism prevails as for the square

lattice. The Wigner distribution is not encountered at the Dirac point of graphene

for the square flake geometry studied.

This weakly chaotic behavior is closely related with the localization properties

of the wavefunctions. In graphene the edge states exist even in the presence of on-

diagonal disorder, arising from the destructive interference mechanism of the honey-

comb lattice. In order to verify this assumption in Fig4.5 we have plotted a wave-

function near the Dirac. Edge states are intermediate case between the diffusive

wavefunctions of the disordered square lattice, that give chaotic behavior, and the
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Figure 4.6: The the level spacing distribution between two successive energy levels
at E = 0.4 of a square graphene flake for different strengths of disorder W ,50000
realizations and different sizes. The typical chaotic Wigner like behavior is recovered
since edge states are absent.

localized states occuring in disordered 2d systems when the disorder strength be-

comes sufficiently large. They are approximately extended along the edge, without

penetrating in the internal region of the flake. If this is combined with the diffusive

mechanism of quantum chaos gives chaotic edge states and a form of P (S) intermedi-

ate between the Wigner distribution characterizing repelled extended wavefunctions,

and the Poisson distribution related with localized wavefunctions. According to this

analysis we expect the propability distribution of spacings P (S) for levels higher in

the energy spectrum of graphene where edge states are absent to recover the usual

chaotic behavior described by the Wigner form of P (S). This is shown in Fig. 4.6 for
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two successive energy levels at E = 0.4. The typical chaotic behavior corresponding

to diffusive wavefunctions encountered in the square lattice is recovered. The form of

P (S) is Wigner like for the all weak disorder strengths and flake sizes studied.

4.3 Conclusions

Disordered Graphene flakes show a new quantum chaotic behavior not encountered in

conventional disordered 2d systems like a square lattice. The propability distribution

of spacings P (S) near the Dirac point of graphene with on-diagonal disorder follows

approximately the semi-Poisson distribution indicating a weakly chaotic behavior,as

obtained in [17], intermediate between the typical chaotic behavior encountered in

a square lattice with on-diagonal disorder, described by the Wigner form of P (S),

and the Poissonian form of P (S) characterizing Anderson localization. This special

chaotic behavior is strongly related with edge states present in graphene systems. For

weak disorder the honeycomb lattice destructive interference mechanism of graphene

survives giving edge states near the Dirac point, extended approximately along the

edge of the finite graphene system, leading to the weakly chaotic behavior shown.
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Chapter 5

Conclusions

The honeycomb lattice structure of graphene has important properties like chiral sym-

metry and spatial anisotropy. These are responsible for the highly topology dependent

electronic properties shown. Graphene is also characterized by extreme sensitivity to

boundary conditions. The underlying destructive interference mechanism plays a def-

inite role. Its existence is due to the fact that the honeycomb lattice has every site

connected to its three nearest neighbours. For finite systems with edges this mech-

anism leads to wavefunctions localized at the boundaries. These are well known as

edge states and their existence is dependent on the morphology of the boundary. The

so called zigzag type of edges contributes edge states near the Fermi energy for any

confined graphene system. The other possible type of edge, armchair does not give

edge states and consequently, the semiconducting behavior remains intact. We have

demonstrated edge states in various systems, semi-infinite graphene sheets, zigzag

nanoribbons, and flakes of square and circular formations where there exists mixing

of zigzag and armchair edges.

We show how the topology sensitive electronic properties of graphene play an

107
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important role in the fractal nature of the wavefunctions at the Dirac point. In

the presence of off-diagonal disorder which preserves the chiral sublattice symmetry,

the mechanism leading to edge states survives. The wavefunctions located at the

boundaries of finite systems resemble the fractal states for small length chains with off-

diagonal disorder. This is clearly indicated by the scaling dimension D2 taking values

from zero to one, instead of going from zero to two as for the midband multifractal

wavefunctions of a square lattice with off-diagonal disorder. Zero value of D2 means

Anderson localization, D2 ≈ 0 means edge states and D2 ≈ 2 fully chaotic, diffusive

or ballistic states.

We have shown also that the destructive interference mechanism plays an impor-

tant role in the quantum chaotic behavior of disordered graphene. The energy levels

at the Dirac point for square samples with on-diagonal disorder show a statistical

behavior not encountered in conventional 2d-systems, like the square lattice. The

form of the spacing distribution P (S) is intermediate Semi-Poisson like, indicating

a weakly chaotic behavior. This remains for many successive energy levels near the

Dirac point where edge states exist for pure graphene. We argue that this behavior

is due to the underlying mechanism of edge states which survives even in the pres-

ence on-diagonal disorder. It is clearly indicated by the comparison of the statistical

behavior for the midband energy levels to a disordered square lattice, for which edge

states are absent. For the latter case the well known Wigner like chaotic form for

P (S) is obtained.

Therefore,in both, off-diagonal and on-diagonal disorder, the destructive inter-

ference mechanism of the underlying honeycomb lattice of graphene prevails giving

midband edge states, heavily affecting the fractal nature of the wavefunctions and

the chaotic behavior of graphene. This mechanism is of extreme importance for the
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construction on graphene based nanoelectronics. The weakly chaotic behavior at

the Dirac point, implies a semi-metallic behavior intermediate between metals and

insulators.





Appendix A

Lattice representation (tight

binding method)

A.1 Introduction

Tight binding is a method widely used in condensed matter physics for modeling

electronic quantum properties of various crystal lattice structures. The wavefunction

of an electron inside a periodic lattice structure can be expressed as a superposition

in the lattice site basis. In this sense the wavefunction for one electron can be written

as a linear combination of the atomic site orbitals denoted by | n > as

| Ψ >=
N∑

n=1

Ψn | n > (A.1)

where N is the total number of atoms and Ψnthe amplitude coefficients. The tight

binding approximation is based on the simple assumption that each atomic orbital

is strongly localized on the corresponding site position. | n > denotes the positions
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Figure A.1: An infinite linear chain.

of each atom in the lattice. The propability amplitude for finding the electron in

position −→r would be < r | Ψ >=
∑N

n=1 Ψn < r | n >= Ψn . This is obviously

non-zero only if there is an electron in the atomic position. In this case electrons are

tightly bound in each atomic site which defines the term tight binding.

In otherwords, tight binding model is a discretization of real space into lattice

site points where the atoms lie. The tight binding Hamiltonian can be derived by

descretizing the Schrodinger equation in the lattice points. A simple continuous model

of a particle in one dimension in the presence of a potential V (x) is described by the

Schrodinger equation

HΨ(x) = EΨ(x) ⇒ − ~2

2m

θ2Ψ(x)

θx2
+ V (x)Ψ(x) = EΨ(x)

We can easily transform this system into a set of discrete spatial points within

distances equal to the lattice constant a,forming this way a chain extending from −∞

to ∞ which can be seen in FigA.1 The position x in this case takes discretized values

x = na, n ∈ Integer [−∞,∞] while the second derivative − ~2
2m

θ2Ψ(x)
θx2 assuming that a

is small can be written as

θ2Ψ(x)

θx2
|x=na→

1

a

(
θΨ(x)

θx
|x=(n+ 1

2)a −
θΨ(x)

θx
|x=(n− 1

2)a

)
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The first derivatives at points x =
(
n+ 1

2

)
a and x =

(
n− 1

2

)
a are

θΨ(x)

θx
|x=(n+ 1

2)a→
1

a
(Ψ((n+ 1) a) − Ψ(na))

θΨ(x)

θx
|x=(n− 1

2)a→
1

a
(Ψ(na) − Ψ ((n− 1)a))

and the second derivative is

θ2Ψ(x)

θx2
|x=na→

1

a2
(Ψ((n+ 1) a) − 2Ψ(na) + Ψ ((n− 1)a))

so that the difference tight binding equation for the chain becomes

−t [Ψ ((n+ 1) a) + Ψ ((n− 1)a)] + (V (na) − 2t) Ψ(na) = EΨ(na)

with t = ~2
2ma2

. Although in the derivation we have assumed that the lattice spacing

a is infinitesimally small ,this model can be easily generalized for any value of a. For

simplicity we choose a = 1, and write

−t [Ψn+1 + Ψn−1] + (Vn − 2t) Ψn = EΨn (A.2)

The discretized Scrodinger equation HΨ = EΨ can be written also in matrix form as

⇒



... −t 0 0 0

−t Vn−1 − 2t −t 0 0

0 −t Vn − 2t −t 0

0 0 −t Vn+1 − 2t −t

0 0 0 −t ...





...

Ψn−1

Ψn

Ψn+1

..


= E



...

Ψn−1

Ψn

Ψn+1

..


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The tight binding matrix H is written in the| n >orbitals basis which is exactly the

discretised space. We see that neighbouring orbitals or sites, communicate via off-

diagonal hopping terms −t while in the diagonal there is an on site term Vn − 2t .

In our calculations we usually neglect the extra diagonal term −2t because it just

shifts the whole energy spectrum by a constant factor. This result can be easily

extended to more dimensions two and three and different lattice types, so that we

can derive their electronic properties like the band structure, the density of states or

the wavefunctions.

A.2 1d tight-binding lattices

A.2.1 Infinite systems

The tight-binding difference equation for an an infinite linear chain is

−t [Ψn+1 + Ψn−1] + VΨn = EΨn

considering the on-site potential Vj = V constant for all the sites of the chain. We

can solve this equation in order to obtain the energies and the wavefunctions of this

system by assuming a simple solution in the form of a plane wave Ψn = exp(ikn).

−t [exp(ik) + exp(−ik)] + V = E ⇒

E = V − 2t cos(k) (A.3)

This is the dispersion relation of the infinite linear chain with nearest neighbor hop-

ping −t and constant potential V Eq. (A.3). It gives continuous energy values in the
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Figure A.2: The energy dispersion of a linear chain with hopping t = 1.

interval [V − 2t, V + 2t]. For k ∈ [−π, π] which defines the first brillouin zone, there

is double degeneracy, E(k) = E(−k). It is plotted in Fig. A.2 for V = 0 and t = 1.

The eigenvector corresponding to energy E(k) expressed in the lattice site basis

| n > is

| Ψk >=
∞∑

n=−∞

exp(ikn) | n >

A basic quantity characterizing the electronic properties of a quantum system is

the density of states ρ(E). It is defined for a finite system as

ρ(E) =
1

N

∑
k

δ(E − E(k)) (A.4)

where N is the total number of states of the system. It is constructed by the sum
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of individual delta functions localized around each allowed energy E(k). The ρ(E)

gives the number of states which have a specific energy E and the density of states

at this energy if we include the normalization factor 1
N

. For an infinite chain, since

k takes continuous values in the interval [−π, π] , we can derive ρ(E) by calculating

the integral

ρ(E) =

∫ π

−π

δ(E − E(k))dk

excluding the normalization term since N → ∞ in this case. by using dispersion

relation Eq. (A.3) we have

dE

dk
= 2t sin(k) ⇒ dk =

dE

2t sin(k)
⇒ dk =

dE

2t
√

1 − cos2(k)
⇒ dk =

dE√
4t2 − (E − V )2

By substituting dk into the integral and using the property of delta function
∫∞
−∞δ(x−

a)f(x)dx = f(a) we get

ρ(E) =

∫ V+2t

V−2t

δ(E − E(k))
dE(k)√

4t2 − E(k)2
=

1√
4t2 − (E − V )2

while using also the normalization condition
∫ V+2t

V−2t
ρ(E)dE = 1 we get the result for

the density of states

ρ(E) =
1

Π

1√
4t2 − (E − V )2

(A.5)

It is symmetric around V and is defined only when | E−V |≤ 2t since the density of

states must be a real function. This is of course due to the fact that energies belong

in the interval [V − 2t, V + 2t]. It is also singular at E = V − 2t and E = V + 2t .It

is plotted in Fig. A.3 for t = 1 and V = 0.
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Figure A.3: The density of states ρ(E) of a linear chain with t = 1.

Figure A.4: Finite linear chain consisted on N atomic sites.

A.2.2 Finite systems with boundary conditions

In finite 1d systems formed by implying various types of boundary conditions we have

hard wall boundary conditions whose equivalent model in continuous space would be

an infinite quantum well. This type of boundary conditions requires the wavefunction

of the electron to be zero at sites where the chain is terminated. The resulting system

will be a finite chain of N sites shown in Fig. A.4 An important remark here is that

we require the wavefunction to be zero at sites zero and N + 1 which seem to lie

outside the chain. Those actually belong to the chain but the propability of finding

the electron there is zero so we don’t need to include them in the the total number
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of sites. With the lattice being terminated at those sites solution of the tight binding

equation must be in the form of a standing wave. This wave must have zero amplitude

on x = 0. The only possible form fulfilling this condition is Ψk
x = A sin(kn) while the

boundary condition at n = N + 1 gives

ΨN+1 = A sin(k(N + 1)) = 0 ⇒ k =
jπ

N + 1
, j = 1, 2, .., N (A.6)

Note that in the derivation of k we have excluded negative values of j so that it takes

discrete values between zero and π only. Dispersion relation Eq. (A.5) becomes

Ej = V − 2tcos

(
jπ

N + 1

)
(A.7)

This gives discrete energy values in the interval [V − 2t, V + 2t]. As N → ∞ this

set of energies becomes denser until it finally reproduces the positive part k ∈ [0, π]

of the first brillouin zone of the infinite chain. Negative values of j in the definition

of k would give states that belong to the negative part of this brillouin zone. These

states would have energies E−j = Ej and corresponding wavefunctions related with

those for positive values of j by just a phase factor ψ−j
n = −ψj

n.

Eigenvectors for this system are in the form of (A.1)

| k >= A
N∑

n=1

sin(
jπ

N + 1
n) | n >

The factor A can be calculated by the normalization condition for the wavefunction

< k | k >= 1 ⇒ A2

N∑
n=1

sin2(
nπ

N + 1
n) = 1
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the sum can be written also as
∑N+1

n=0 sin2( jπ
N+1

x) since the wavefunction is zero for

n = 0 and n = N + 1 .When N → ∞ this can be approximated by an integral with

L = N + 1 being the actual length of the chain

∫ L

0

sin2(
jπ

L
n)dn =

L

jπ

∫ jπ

0

sin2(x)dx =
L

jπ

∫ jπ

0

1 − cos(2x)

2
dx =

L

2

the normalization condition becomes then

A2L

2
= 1 ⇒ A =

√
2

L

as we would expect for an 1d infinite well of length L. So the normalized eigenvector

is

| Ψj >=

√
2

N + 1

N∑
n=1

sin(
jπ

N + 1
n) | n > (A.8)

We can also calculate the density of states of this system assuming it is large

enough N → ∞. In order to do this we can consider a small energy window dE

and count the number of states dN (don’t confuse with total number of sites) inside

it. This is in principle the same as definition (A.4) when dE → 0. By using also

dispersion relation (A.7) we get

ρ(E) =
dN

dE
=
dN

dk

1
dE
dk

=
1

2t sin(k)
=

1

2t
√

1 − cos2(k)
=

1√
4t2 − (E − V )2

dN
dk

gives us the number of states inside a windowdk in k space. It is also obvious

From (A.6) that there is always only one state corresponding to a specific k so that

dN
dk

=1 . The normalization condition
∫ V+2t

V−2t
ρ(E)dE = 1 makes the derived relation

for ρ(E) the same as (A.5).
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Figure A.5: A finite periodic linear chain consisted on N sites.

We now examine the case of periodic boundary conditions. In order to form a

system of this kind we just take the 1d-finite chain discussed and connect it’s edge

sites one and N with a hopping. This way we form a closed chain as shown in Fig.

A.5.

In this case the wavefunctions must be in the form of running waves. We choose

the form Ψ(n) = A exp(kn) and apply the right conditions as before

Ψ1 = ΨN+1 ⇒ exp(ikN) = 1 ⇒ k =
2πj

N
, j ∈ [1, 2, .., N ] (A.9)

The resulting dispersion relation

Ej = V − 2t cos

(
2πj

N

)
(A.10)

gives again discrete energy values in the interval [V −2t, V +2t]. An important remark

here is that this energy spectrum has double degeneracy. For j = N − j

EN−j = −2t cos

(
2π − 2πj

N

)
= −2t cos

(
2πj

N

)
= E(j)
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When N is even we only need values of j = 1, 2, ..., N/2 − 1 which give N − 2 states

with double degeneracy. There are also two non degenerate states for j = N/2 and

j = N with their corresponding energies E(N/2) = V − 2t and E(N) = V + 2t .

For N odd j = 1, 2, ..., (N − 1)/2 gives N − 1 states with double degeneracy. The

remaining state is for j = N with energy E(N) = V + 2t.

Eigenvectors are again in the form of (A.1)

| k >= A
N∑

n=1

exp(i
2πj

N
n) | n >

The factor A is easily calculated from the normalization condition < Ψj | Ψj >= 1

as in the case of hardwall boundary conditions when N → ∞

< Ψj | Ψj >= A2

∫ N

0

1dn = A2N = 1 ⇒ A =

√
1

N

So the resulting eigenvectors are

| k >=

√
1

N

∑
exp(i

2πj

N
n) | x > (A.11)

Another interesting case is the interaction of this system with a magnetic field.

Consider the closed 1d chain enclosing a magnetic flux as shown in Fig. A.6 We

know from the Aharonov-Bohm effect that a full turn around this enclosed magnetic

flux will change the phase of the wavefunction by a factor 2π Φ
Φ0

with Φ0 = hc
e

. For

our system this implies that the wavefunction at site one should be equal to the

wavefunction at site N + 1 multiplied by a factor exp(i2π Φ
Φ0

) which gives us the
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Figure A.6: A finite periodic linear chain consisted on N sites enclosing a magnetic
flux Φ.

condition

Ψ(1) = exp(i2π
Φ

Φ0

)Ψ(N+1) ⇒ 1 = exp[i(kN+2π
Φ

Φ0

)] ⇒ k =
2π(j − Φ

Φ0
)

N
, j ∈ [1, 2, .., N ]

(A.12)

so the dispersion relation in this case becomes

E(j) = V − 2t cos

(
2π(j − Φ

Φ0
)

N

)
(A.13)

with the corresponding wavevectors

| Ψj >=

√
1

N

∑
exp(i

2π(j − Φ
Φ0

)

N
n) | n > (A.14)

A.3 2d tight-binding lattices

We will now study some two-dimensional tight-binding models . Those are used for

the modeling various layer structures in condensed matter physics like graphene that

have attracted a lot of attention lately in the concept also of nanoeletronics.
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A.3.1 Square Lattice

The simplest example of a two-dimensional crystal is the square lattice, shown in Fig.

A.7

Figure A.7: Square lattice structure

As we see every site has connections with it’s four nearest neighbours via hoppings

−t . In analogy with the linear chain , the Schrodinger equation now becomes( see

Fig. A.8)

−t [Ψx,y+1 + Ψx,y−1 + Ψx+1,y + Ψx−1,y] + VΨx,y = EΨx,y

where we have included the two extra hoppings in the y direction. We can solve it

easily by assuming a solution of the simple form Ψx,y = exp(ikxx) exp(ikyy) where

kxand ky are the projections of wavevector
−→
k in x and y axis respectively. Dispersion
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Figure A.8: One atomic site of the square lattice connected with it’s four nearest
neighbours

relation becomes in this case

−t [exp(iky) + exp(−iky) + exp(ikx) + exp(−ikx)] + V = E ⇒

E(kx,ky) = V − 2t cos(kx) − 2t cos(ky) (A.15)

This gives continuous energy values in the interval [V −4t, V +4t]. It also depends

on two parameters, so we need a 3d plot in order to visualize it, it is shown in Fig.

A.9. E(kx,ky) for t = 1 and V = 0 as a function of kx, ky ∈ [−π, π] which define the

first brillouin zone

As we see in the first brillouin zone has the form of a square. The lines in Fig.

A.10 characterize points that have the same energy giving infinite degeneracy for

all energies apart from the minimum and maximum values Emax = 4, Emin = −4.

Clearly the first brillouin zone crosses the zero energy plane through four lines that

form a square. For those lines

E(kx,ky) = 0 ⇒ cos(kx) = − cos(ky) ⇒ kx = π − ky
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Figure A.9: Energy dispersion of a square lattice.
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Figure A.10: Contour plot of the energy dispersion of a square lattice.
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The part of the zone that lies inside this square corresponds to negative energies

with one pair of kx, ky = 0 giving the minimum value Emin = E(0, 0) = −4. The re-

maining points of the zone that lie outside this square correspond to positive energies.

For this region there are four degenerate states for different pairs of kx, ky having all

the maximum energy value Emax = E(π, π) = E(−π, π) = E(−π,−π) = E(π,−π) =

4.

We can find the density of states of this system from (1.4) by calculating the

integral in analogy with the infinite 1d-chain

1

2π2

∫ π

−π

dky

∫ π

−π

dkxδ(E−E(kx, ky)) =
1

2π2

∫ π

−π

dky

∫ π

−π

dkxδ((E+2t cos(kx))−(−2t cos(ky)) =

=
1

2π2

∫ π

−π

dky

∫ π

−π

dx
1

−2t
√

1 − (x−E)2

4t2

δ(x− (−2t cos(ky)) =

=
1

2π2

∫ π

−π

dky
1√

4t2 − (E + 2t cos(ky))2
=

1

2(πt)2

∫ π

0

dky
1√

1 − (E
2t

+ cos(ky))2

For energies E ̸= 0 it can be proven that this has the form of a complete elliptic

integral of the first kind K(x)=
∫ π

2

0
dθ 1√

1−x2 sin2(θ)
where x =

√
1 − E2

16t2
. At E = 0 the

density of states is singular and decays with a logarithmic law log( 16
|E|). It is plotted

in Fig. A.11.

The next thing we can do is apply hardwall boundary conditions in both spatial

directions xand y in analogy with the 1d chain. Consider a finite square lattice with

a total number of NxM sites. An example with N = 4 and M = 4 is shown in Fig.

A.12. The wavefunction must be zero on the sites where the lattice is terminated. So

it must be of the form of a standing wave as in the 1d case Ψ(x, y)=Asin(kxx) sin(kyy).
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Figure A.11: The density of states ρ(E) of a square lattice for hopping t = 1.

Figure A.12: Square lattice with hardwall boundary conditions.
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This form fulfills the conditions Ψ(0, y) = Ψ(x, 0) = 0 while we must have also

ΨN+1,y = A sin(kx(N + 1)) sin(kyy) ⇒ kx =
jπ

N + 1
, j = 1, 2, ..., N

ΨM+1 = A sin(kxx) sin(ky(M + 1)) ⇒ kx =
jπ

M + 1
, j = 1, 2, ...,M

Both kxand ky take discrete values between zero and π. Dispersion relation (A.5)

becomes

E(l, j) = −2t cos(
jπ

N + 1
) − 2t cos(

lπ

M + 1
) (A.16)

As we increase the number of sites in both directions N→ ∞ and M → ∞ this set

of energies becomes denser reproducing the positive part kx ∈ [0, π] and ky ∈ [0, π] of

the first brillouin zone of the infinite system.

The corresponding eigenvectors are found easily by using the wavefunction of a

finite chain

| Ψ >=
2

N + 1

N∑
x=1

M∑
y=1

sin(kxx) sin(kyy) | x, y > (A.17)

Another interesting case is applying hardwall boundary conditions only in one

spatial direction y for example. In this case we can form a infinitely long strip of

square lattice as shown in Fig. A.13. This strip commonly referred to as wire or

ribbon is a useful structure for modelling various transport problems. It’s dispersion

relation is of course

E(kx,l) = −2t cos(kx) − 2t cos(
lπ

M + 1
) (A.18)

For every value of l we can plot E as a function of kx. In this way we form the band

structure of this semi-infinite system which is plotted in Fig. A.14. We can see that
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Figure A.13: Square lattice ribbon.
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Figure A.14: The band structure a an infinite wire.
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all the curves resemble the band structure of the 1d-infinite chain. This is because

this system is actually constructed of N infinite chains connected with each other via

a constant hopping t. This is obvious also from Eq. (1.19) since for a definite value

of l this is just the dispersion relation Eq. (1.7) with k = ky and V = −2t cos( lπ
M+1

).

Those bands are also knows as channels in transport theory.

A.4 Bloch’s theorem in tight binding

A very fundamental theorem in solid state physics is the Bloch’s theorem. It allows

us to calculate the wavefunction of an electron inside a periodic structure, like the

lattices already discussed. Consider a continuous system with a periodic potential

V (−→r ). Bloch’s theorem states that the wavefunction Ψ(
−→
r) of an electron inside this

system can be simply written as

Ψ(
−→
r) = u(

−→
r) exp(i

−→
k −→r )

where u(
−→
r) is a periodic function with the periodicity of the potential V (−→r ) and

exp(i
−→
k −→r ) the wavefunction of a free electron. So the wavefunction of an electron

inside a periodic system is just the wavefunction of a free electron modified by the

system’s periodicity. We can easily apply this result on a simple tight binding lat-

tice with zero on-site potential. Function u(
−→
r) in this case simply discretizes the

free electron wavefunction exp(i
−→
k −→r ), a result we have already used in the previous

chapters. Bloch’s theorem may not look very useful in this trivial case however it is

very important for calculating more complex periodic structures.

Consider for example an 1d infinite chain with a unit cell consisting of two atoms
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Figure A.15: A linear chain with a unit cell consisting of two atoms.

A and B with different potentials VA and VB on each, shown in Fig. A.15. The

Schrodinger difference equations for the nth unit cell are

(E − VA)Ψn
A = t(Ψn

B + Ψn−1
B )

(E − VB)Ψn
B = t(Ψn

A + Ψn+1
A )

we can use the Bloch’s theorem by taking account the periodicity of the lattice which

is two times the lattice spacing a = 1 and write amplitudes Ψn
A and Ψn

B as

Ψn
A = ΨA exp(ikn)

Ψn
B = ΨB exp(ikn)

substituting on the difference equations we get

(E − VA)ΨA = tΨB(1 + exp(−ik))

(E − VB)ΨB = tΨB(1 + exp(ik))
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Figure A.16: A linear chain with a unit cell consisting of three atoms.

now we can solve this system of equations in order to get it’s eigenvalues

∣∣∣∣∣∣∣
E − VA −t(1 + exp(−ik))

−t(1 + exp(ik)) E − VB

∣∣∣∣∣∣∣ = 0 ⇒ E2−E(VA+VB)+VAVB−2(1+cos(k)) ⇒

⇒ E± =
(VA + VB) ±

√
(VA − VB)2 + 8(1 + cos(k))

2

So the band structure of this periodic system is consisted of two energy bands.

Their number is equal to the number of atoms inside the unit cell which is a general

rule for those kind of systems.

We can easily extend this method on a system with more than two atoms inside

it’s unit cell. For example in the case of three atoms which is shown in Fig. A.16.

in analogy with the previous system we would have to solve the following system of

equations

(E − VA)ΨA = t(ΨB + ΨC exp(−ik))

(E − VB)ΨB = t(ΨA + ΨC)

(E − VC)ΨC = t(ΨB + ΨA exp(ik))
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the 3x3 matrix whose determinant will give us the eigenvalues of the system is

∣∣∣∣∣∣∣∣∣∣
E − VA t exp(−ik)

t E − VB t

exp(ik) t E − VC

∣∣∣∣∣∣∣∣∣∣
This is actually the Hamiltonian of an 1d closed chain enclosing a magnetic flux.

The original periodic system is formed by infinitely repeating it’s unit cell. This

is equivalent to connecting it’s edge sites A and C and then applying a magnetic

field through it which introduces a phase factor in the wavefunction according to the

Aharonov-Bohm effect.





SÔnoyh

'Ena apì ta pio endiafèronta jèmata sth sÔgqronh fusik  eÐnai oi nanoepist mec,

oi opoÐec qtÐzoun to upìbajro gia thn katanìhsh twn jemeliwd¸n arq¸n thc nanoh-

lektronik c. To grafènio apì thn paragwg  tou to 2004 èqei gÐnei èna apì ta kÔria

antikeÐmena thc èreunac ston tomèa twn nanoepisthm¸n. EÐnai to pr¸to disdi�stato

mètallo pou fti�qjhke potè kai oi hlektronikèc idiìthtec tou, prosfèroun èna eurÔ

pedÐo gia efarmogèc kai gia jemeli¸dh jewrhtik  èreuna. Sthn paroÔsa diatrib  me-

let�me tic hlektronikèc idiìthtec twn grafenÐou parousÐa ataxÐac, h opoÐa apoteleÐ

enan anapìfeukto par�gonta se k�je mesoskopikì sÔsthma. H melèth twn sqetik¸n

fainomènwn gÐnetai mèsw kajierwmènwn mejìdwn thc mesoskopik c fusik c, ìpwc h

morfoklasmatik  gewmetrÐa kai to kbantikì q�oc. Autì mac epitrèpei na melet soume

thn allhlepÐdrash thc gnwst c hlektronikhc sumperifor�c tou kajaroÔ grafenÐou,

me ta fainìmena di�qushc kai entopismoÔ pou eis�gei h ataxÐa.

To grafènio, to pr¸to disdi�stato mètallo pou fti�qjhke potè, eÐnai èna eniaÐo

str¸ma atìmwn �njraka pukn� paketarismèna se mia dom  plègmatoc ker jrac. To

grafènio par�qjhke gia pr¸th for� to 2004, sto Manchester apì thn om�da tou A.

Geim kai K. Novoselov[1,2], mèsw mhqanik c apolèpishc apì grafÐth. Touc aponem -

jhke to brabeÐo Nìmpel Fusik c to 2010. To grafènio èqei exairetikèc idiìthtec oi

opoÐec den sunantiìntai se sumbatik� ulik�, ìpwc, meg�lh euelixÐa, uyhl  kinhtikìth-

ta hlektronÐwn me taqÔthtec kont� sthn enèrgeia Fermi pou plhsi�zoun thn taqÔthta

tou fwtìc c, polÔ uyhlìterh apì opoiond pote sumbatikì hmiagwgì. MporeÐ na kopeÐ

se makrìstenec tainÐec gnwstèc wc nanotainÐec grafenÐou (GNR) [3],   se periori-

smènec domèc gnwstèc wc nif�dec [4], kajist¸ntac to enan exairetikì upoy fio gia
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thn antikat�stash tou puritÐou sta mellontik� nanohlektronik�. Pollèc �llec teqni-

kèc paragwg c tou grafenÐou èqoun anaptÔqjeÐ epÐshc, ìpwc h epitaxiak  an�ptuxh se

karbÐdio tou puritÐou [5], p�nw se metallikì upìstrwma [6]   me thn kop  nanoswl nwn

�njraka [7,8].

H jewrhtik  melèth tou grafenÐou, mèsa apì gnwstèc mejìdouc thc kbantik  fu-

sik c stere�c kat�stashc èqei apokalÔyei merikèc exwpragmatikèc sumperiforèc oi

opoÐec oudèpote sunantiìntai se sumbatik� sust mata. H kuyeloeid c dom  plègma-

toc tou grafenÐou odhgeÐ se fainìmena kbantik c sumbol c prokal¸ntac entopismì

twn kumatosunart sewn sta �kra susthm�twn apì grafènio [10, 11]. Epiplèon, autèc

oi katast�seic �krwn suneisfèroun enèrgeiec kont� sto epÐpedo Fermi , kai exart¸ntai

se meg�lo bajmì th morfologÐa twn akr¸n. EÐnai safèc ìti oi hlektronikèc idiìthtec

tou grafenÐou eÐnai exairetik� euaÐsjhtec sthn epilog  twn sunoriak¸n sunjhk¸n. H

melèth aut¸n twn topologik¸n fainomènwn kai o rìloc touc stic hlektronikèc idiot -

tec tou grafenÐou eÐnai polÔ shmantik  gia th sumperÐlhyh tou grafenÐou ston tomèa

thc nanohlektronik c. H jewrhtik  melèth èqei apokalÔyei epÐshc th sqetikistik 

fÔsh twn hlektronÐwn kont� sthn enèrgeia Fermi , anoÐgontac ètsi to diepisthmonikì

pedÐo thc sqetikistik c Fusik c Stere�c Kat�stashc [1,11]. H sqetikistik  fÔsh twn

hlektronÐwn gia perissìtero apì misì ai¸na  tan gnwst  gia ton grafÐth o opoÐoc

apoteleÐtai apì poll� str¸mata grafenÐou stoibagmèna mazÐ [11]. Sto epÐpedo Fermi

ta hlektrìnia sto grafènio sumperifèrontai wc eleÔjera sqetikistik� �maza swmatÐdia

ta opoÐa perigr�fontai apì thn exÐswsh Dirac . Autì onom�zetai shmeÐo Dirac . Apì

aut n thn �poyh to grafènio mporeÐ na qrhsimopoihjeÐ wc èna apotelesmatikì montè-

lo gia th melèth thc kbantik c hlektrodunamik c, me profan  pleonekt mata gia thn

diexagwg  sqetikistik¸n peiram�twn kbantik c ìpwc oi mikrèc diast�teic tou q¸rou

pou apaiteÐtai.
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Ta morfoklasmatik� antikeÐmena kai to q�oc apì thn �llh pleur� eÐnai kal� e-

draiwmèna fainìmena ston tomèa twn mh grammik¸n dunamik¸n susthm�twn. H Ôparx 

touc ston kbantikì kìsmo èqei melethjeÐ ekten¸c kat� tic teleutaÐec dekaetÐec, kurÐwc

se qamhl c di�stashc �takta susthm�ta gnwst� wc mesoskopik�. Aut� brÐskontai

metaxÔ thc mikroskopik c kai thc makroskopik c klÐmakac [12]. H fÔsh tou Kbanti-

koÔ Q�ouc den èqei na k�nei me dunamik  exèlixh, all� me tic statistikèc idiìthtec tou

energeiakìu f�smatoc. Ta �takta kbantik� sust mata èqoun apodeiqjeÐ ìti upakoÔ-

oun touc Ðdiouc nìmouc me touc sumpantikoÔc nìmouc tou KbantikoÔ Q�ouc. Oi nìmoi

autoÐ perigr�fontai apì mia majhmatik  jewrÐa twn pl rwc tuqaÐwn mhtr¸n, h opoÐa

katèsth gnwst  wc Random Matrix Theory (RMT) [12,13,14].

Apì thn �llh pleur�, endeÐxeic thc morfoklasmatik c gewmetrÐac èqoun apodeiqjeÐ

ìti up�rqoun ston kìsmo thc kbantik c mhqanik c, p.q. stic kumatosunart seic twn

hlektronÐwn �taktwn disdi�statwn mesoskopik¸n susthm�twn [15,16,17,18]. H mor-

foklasmatik  fÔsh twn kumatosunart sewn kont� sth met�bash met�llou-monwt 

(MIT) eÐnai gnwst  [19,20]. Akrib¸c sto shmeÐo met�bashc oi kumatosunart seic qa-

rakthrÐzontai apì mh tetrimènh krÐsimh sumperifor� klim�kwshc, eÐnai polÔploka anti-

keÐmena gnwst� wc polumorfoklasmatik� kai perigr�fontai apì èna olìklhro f�sma

morfoklasmatik¸n diast�sewn. Oi kumatosunart seic k�tw apì to (MIT) deÐqnoun

mia sumperifor� di�qushc, me ta antÐstoiqa epÐpeda thc enèrgeiac na upakoÔoun touc

sumpantikoÔc nìmouc thc RMT ìpwc kai to Kbantikì Q�oc. Gia arket� meg�lo bajmì

ataxÐac, p�nw apì to shmeÐo met�bashc, katastrofik� fainìmena kbantik c sumbol c

odhgoÔn se entopismì Anderson [21].

To grafènio wc to pr¸to pragmatikì disdi�stato mètallo pou ègine potè, prosfè-

rei mia monadik  eukairÐa gia th dokim  twn kajierwmènwn fainomènwn tou kbantikoÔ

q�ouc kai thc morfoklasmatik c gewmetrÐac, ta opoÐa sun jwc melet¸ntai mèsw dis-
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di�statwn susthm�twn, gnwst� wc 2d Electron Gas (2DEG) [22]. Epiplèon, lìgw tou

periorismènou qarakt ra twn peiramatik� parag¸menwn susthm�twn grafenÐou ìpwc

oi nif�dec, me thn topologÐa na paÐzei kajoristikì rìlo stic hlektronikèc touc idiì-

thtec, tÐjontai shmantik� erwt mata sqetik� me to rìlo thc topologÐac sth fÔsh tou

kbantikoÔ q�ouc kai sthn polumorfoklasmatik c fÔshc twn kumatosunart sewn. To

kbantikì q�oc kont� sto shmeÐo Dirac anamènetai epÐshc na jèsei sqetikistik� jèma-

ta. 'Eqei melethjeÐ peiramatik� apì ton Ponomarenko kai touc sunerg�tec tou [23]

anakalÔptwntac mia qaotik  fÔsh perigr�fìmenh apì thn exÐswsh Dirac . Aut� ta

sust mata eÐnai koin¸c gnwst� wc mpili�rda Dirac , ta opoÐa eqoun protajeÐ apì touc

Berry kai Mondragon [24]. JewrhtikoÐ upologismoÐ apì touc L. Huang [25] se mpili�r-

da grafenÐou problèpoun mia diaforetik  kbantik  qaotik  sumperifor� se sÔgkrish

me thn peiramatik , en¸ �lloi jewrhtikoÐ upologismoÐ se graf nh me mikr  ataxÐa me

periodikèc oriakèc sunj kec [26] èqoun deÐxei sqetikistik  qaotik  fÔsh anex�rthth

apì to mègejoc tou deÐgmatoc. Gia isqur  ataxÐa o entopismìc Anderson [21], p�nta

epikrateÐ.

Sthn paroÔsa diatrib  melet�me th morfoklasmatik  fÔsh twn kumatosunart -

sewn kai thn qaotik  sumperifor� tou enèrgeiakoÔ f�smatoc se �takta sust mata

grafenÐou kont� sto shmeÐo Dirac. Se pr¸th f�sh, elègqoume thn Ôparxh twn mor-

foklasmatik¸n kumatoshnart sewn sto epÐpedo Fermi, parousÐa ataxÐac. H melèth

diex�getai se sunduasmì me th gnwst  sumperifor� �llwn sumbatik¸n �taktwn uli-

k¸n. Sth sunèqeia, apeujÔnoume to ex c er¸thma, p¸c h antisumbatik  topologÐa

tou grafenÐou ephre�zei ton morfoklasmatikì qarakt ra gia periorismènec domèc, oi

katast�seic akr¸n epibi¸noun parousÐa ataxÐac kai p¸c mporeÐ auto na sunduasteÐ

me th morfoklasmatik  fÔsh twn kumatosunart sewn? Melet�me, epÐshc, ton rìlo

twn katast�sewn �krwn sthn kbantik  qaotik  sumperifor� twn grafenÐou kont� sto
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shmeÐo Dirac, mèsw twn statistik¸n idiot twn tou energeiakoÔ f�smatoc.

Sto deÔtero kef�laio dÐnoume mia sÔntomh eisagwg  tou grafenÐou, analÔontac

leptomer¸c tic antisumbatikèc hlektronikèc idiìthtec tou, mèsw enìc aploÔ montèlou

isqur c dèsmeushc to opoÐo eis�getai sto pros�rthma. To montèlo autì mac dÐnei

th dunatìthta na melet soume thn sqetikistik  fÔsh thc diaspor�c enèrgeiac kai tic

hlektronikèc idiìthtec oi opoÐec exart¸ntai se meg�lo bajmo apì thn topologÐa, ìpwc

oi katast�seic �krhc.

Sto trÐto kef�laio, met� apì mia sÔntomh eisagwg  sth morfoklasmatik  gewme-

trÐa, melet�me leptomer¸c tic morfoklasmatikèc idiìthtec twn kumatosunart sewn se

domèc grafenÐou me ataxÐa, se sunduasmì me �lla sust mata ìpwc to tetr�gwno plèg-

ma kai thn grammik  alusÐda. Parousi�zoume epÐshc shmantikèc idiìthtec summetrÐac

gia to grafènio me ataxÐa ìpwc h katoptrik  summetrÐa.

Sto tètarto kef�laio, met� apì mia sÔntomh eisagwg  sto kbantikì q�oc, sugkrÐ-

noume thn kbantik  qaotik  fÔsh �taktwn dom¸n grafenÐou me èna tetr�gwno plègma

me ataxÐa mikr c embèleiac.

Sto pèmpto kef�laio parousi�zoume ta sumper�smat� thc melèthc. Sto pros�r-

thma suzht�me to montèlo isqur c dèsmeushc, gia di�forouc tÔpouc plegm�twn, etsi

¸ste na kajorisoume tic hlektronikèc idiìthtec touc.

H kuyelwt  dom  plègmatoc tou grafenÐou èqei shmantikèc idiìthtec ìpwc kato-

ptrik  summetrÐa kai qwrik  anisotropÐa. Autèc eÐnai upeÔjunèc gia tic upodeiknuìme-

nec exart¸menec apì thn topologÐa hlektronikèc idiìthtec. To grafènio qarakthrÐze-

tai epÐshc apì akraÐa euaisjhsÐa stic sunoriakèc sunj kec. O mhqanismìc kbantik c

sumbol c diadramatÐzei kajoristikì rìlo. H Ôparx  tou ofeÐletai sto gegonìc ìti

to plègma ker jrac èqei k�je �tomo sundemèno me touc treic kontinìterouc geÐtonèc

tou. Gia peperasmèna sust mata, o mhqanismìc autìc odhgeÐ se kumatosunart seic
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entopÐsmènec sta ìria. Autèc eÐnai gnwstèc wc katast�seic �krhc. H Ôparxh touc

exart�tai apì th morfologÐa twn orÐwn. H legìmenoc tÔpoc �krwn zigzag sunisfèrei

enèrgeiec kont� sto epÐpedoFermigia opoiod pote periorismèno sÔsthma grafenÐou. O

�lloc pijanìc tÔpoc �krhc,armchair , den sunisfèrei katast�seic sto epÐpedo Fermi.

DeÐqnoume tic katast�seic �krhc se di�fora sust mata, hmi-�peira fÔlla grafenÐ-

ou, nanotainÐec kai nif�dec se tetr�gwnouc kai kuklikoÔc sqhmatismoÔc ìtan up�rqei

an�meixh akm¸n zigzag kai armchair.

Dèiqnoume epÐshc ìti oi euaÐsjhtec stic sunoriakèc sunj kec hlektronikèc idiì-

thtec tou grafenÐou diadramatÐzoun shmantikì rìlo sthn morfoklasmatik  fÔsh twn

kumatosunart sewn sto shmeÐo Dirac. ParousÐa ataxÐac ektìc thc diagwnÐou h opoÐ-

a diathreÐ thn katoptrik  summetrÐa twn dÔo upoplegm�twn tou plègmatoc kerÔjrac

tou grafenÐou, o mhqanismìc pou odhgeÐ stic katast�seic �krhc epibi¸nei. Oi kuma-

tosunart seic brÐskontai sta ìria twn peperasmènwn susthm�twn kai moi�zoun me tic

morfoklasmatikèc kumatosunart seic gia alusÐdec mikroÔ m kouc me ataxÐa ektìc thc

diagwnÐou. Autì upodhl¸netai saf¸c apì th di�stash klim�kwshc D2 h opoÐa lamb�-

nei timèc apì to èna sto mhdèn, antÐ apì to dÔo sto mhdèn kaj¸c aux�netai o bajmìc thc

ataxÐac. Autì sumbaÐnei kai gia tic morfoklasmatikèc kumatosunart seic sto kèntro

tou energeiakoÔ f�smatoc gia èna tetr�gwno plègma me ataxÐa ektìc thc diagwnÐou.

Mhdenik  tim  tou D2 upodhl¸nei entopismì Anderson, D2 ≈ 1 shmaÐnei katast�seic

�krhc kai D2 ≈ 2 pl rwc qaotikèc, di�qutec   ballistikèc kumatosunart seic.

O mhqanismìc katastreptik c sumbol c diadramatÐzei epÐshc shmantikì rìlo sthn

kbantik  qaotik  sumperifor� tou grafenÐou me ataxÐa. Ta epÐpeda thc enèrgeiac,

sto shmeÐo Dirac gia tetr�gwna deÐgmata me ataxÐa epÐ thc diagwnÐou emfanÐzoun mia

statistik  sumperifor� h opoÐa den apant�ntai se sumbatik� disdi�stata sust mata,

ìpwc to tetr�gwno plègma. H katanom c diasthm�twn metaxÔ diadoqik¸n epÐpedwn
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enèrgeiac P (S) èqei mÐa endi�mesh morf  kont� sthn katanom  Semi-Poisson, upodei-

knÔontac mÐa asjen¸c qaotik  sumperifor�. Aut  h sumperifor� paramènei gia poll�

diadoqik� epÐpeda enèrgeiac kont� sto shmeÐo ìpou oi katast�seic �krhc up�rqoun gia

kajarì grafènio. UposthrÐzoume ìti aut  h sumperifor� ofeÐletai ston mhqanismì

katast�sewn �krhc o opoÐoc epibi¸nei akìma kai me thn parousÐa at�xÐac epÐ thc dia-

gwnÐou. Autì upodhl¸netai saf¸c apì th sÔgkrish me thn statistik  sumperifor� gia

t� epÐpeda enèrgeiac sto kèntro tou energeiakoÔ f�smatoc se èna tetr�gwno plègma

me ataxÐa epÐ thc diagwnÐou, gia to opoÐo oi katast�seic �krhc apousi�zoun. Gia thn

teleutaÐa perÐptwsh, h gnwst  qaotik  sumperifor� qarakthrizìmenh apì thn morf 

Wigner gia to P (S) anadÔetai.

Wc ek toÔtou, kai stic dÔo peript¸seic ataxÐac, ektìc kai epÐ thc diagwnÐou, o

kbantikìc mhqanismìc katastreptik c sumbol c tou plègmatoc kerÔjrac tou grafe-

nÐou epibi¸nei dÐnontac katast�seic �krhc sto epÐpedo Fermi, ephre�zontac shmantik�

th morfoklasmatik  fÔsh twn kumatosunart sewn kai thn qaotik  sumperifor� twn

epipèdwn enèrgeiac gia to grafènio me ataxÐa. O mhqanismìc autìc eÐnai exairetik c

shmasÐac gia thn kataskeu  nanohlektronik¸n basismènwn sto grafènio. H asjen¸c

qaotik  sumperifor� sto shmeÐo Dirac, sunep�getai mÐa hmi-metallik  sumperifor�

endi�mesh metaxÔ met�llwn kai monwt¸n.
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