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Abstract

One of the most intriguing subject in modern physics is nanoscience, building the
background for understanding the fundamental principles of nanoelectronics. Graphene
since its fabrication in 2004 has become one of the main subjects of research in
nanoscience. It is the first 2d metal ever made, it has extraordinary electronic prop-
erties and offers a vast field for applications and fundamental theoretical work. In
this thesis we study the electronic properties of graphene in the presence of disor-
der, which is an inevitable factor in every mesoscopic system. We accomplish the
study of related phenomena through well established methods of mesoscopic physics,
like Fractals and Quantum Chaos. This allows us to study the interplay between
the well-known electronic behavior of pure graphene, and the diffusive or localization

phenomena introduced by the disorder.
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Chapter 1

Introduction

Graphene, the first 2D metal ever made, is a single layer of carbon atoms densely
packed in a honeycomb lattice structure. Graphene was fabricated for the first time
in 2004 by the Manchester group of A. Geim and K. Novoselov [1, 2], via mechani-
cal exfoliation of graphite. They were awarded the Nobel prize for Physics in 2010.
Graphene has extraordinary properties never encountered in conventional materials
before, such as, great flexibility and high electron mobility with electron velocities
near the Fermi energy approaching the speed of light ¢, much higher than in any con-
ventional semiconductor. It can be cut into long strips known as graphene nanorib-
bons [3] or confined structures known as graphene flakes [4] making it an excellent
candidate for replacing silicon in future nanoelectronics. A lot of other techniques
for fabricating graphene have also been developed, like epitaxial growth on silicon

carbide [5], on metal substrates [6] or by cutting carbon nanotubes [7, 8.

The theoretical study of graphene, through well known quantum methods of solid
state physics has revealed some extraordinary effects never encountered in conven-

tional systems before. Its underlying honeycomb lattice structure leads to special
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quantum interference effects inducing localization of wavefunctions at the edges of
graphene called edge states[10][11]. Moreover, they contribute to energies near the
Fermi level, being strongly dependent on the edge morphology. It is clear that the
electronic properties of graphene are extremely sensitive to the choice of boundary
conditions. The study of these topological effects and their role in the electronic prop-
erties of graphene is very important for its incorporation in nanoelectronics. The the-
oretical study has also revealed the relativistic nature of electrons close to the Fermi
energy, opening an interdisciplinary field of relativistic solid state physics[1,11]. The
relativistic nature of electrons for over half a century was known for graphite which
consists of many layers of graphene stacked together[11]. At the Fermi level the
electrons in graphene behave as free relativistic massless particles described by the
Dirac equation. This is called the Dirac point. From this point of view graphene can
be used as an effective model for studying quantum electrodynamics, with obvious
advantages for relativistic quantum experiments like the small space dimensionality

required.

Fractals and chaos on the other hand are well established phenomena in classical
non-linear dynamical systems. Their existence in the quantum world has been stud-
ied extensively during the last decades, mainly in low-dimensional disordered systems
known as mesoscopic systems. They lie between the microscopic and the macroscopic
scale[12]. The nature of Quantum Chaos is not related to dynamical evolution, but
with the statistical properties of the energy spectrum. The disordered quantum sys-
tems have been shown to obey the same universal laws as Quantum Chaos They are
described by a mathematical theory of fully random matrices, which became known

as Random Matrix Theory(RMT)[12,13,14].

On the other hand, signs of the fractal geometry have been shown to exist in



the quantum world, e.g. the electron wavefunctions of disordered two dimensional
mesoscopic systems[15,16,17,18]. The fractal nature of wavefunctions close to the
metal-insulator transition(MIT) is well known[19,20]. Exactly at the transition point
they are characterized by non trivial critical scaling behavior, they are complex ob-
jects known as multifractals described by a whole spectrum of fractal dimensions. The
wavefunctions below the (MIT) show a diffusive behavior, with the corresponding en-
ergy levels obeying the universal laws of RMT as in Quantum Chaos. For sufficiently
large enough disorder, above the transition point, quantum destructive interference

effects lead to Anderson localization[21].

Graphene is the first real 2D metal ever made, it offers a great opportunity for test-
ing the well established phenomena of Quantum Chaos and Fractals, which were usu-
ally studied through the 2d-system known as two dimensional electron gas(2DEG)[22].
Moreover, the confined nature of the experimentally produced finite graphene systems
like flakes, with strongly topology dependent electronic properties, pose important
questions about their role in the nature of quantum chaos and fratal states. Quan-
tum chaos near the Dirac point is also expected to address relativistic issues. It
has been studied experimentally by Ponomarenko and his colleagues [23] obtaining a
chaotic nature described by the Dirac equation. They are commonly known as Dirac
billiards, proposed by Berry and Mondragon [24]. Theoretical calculations by L.
Huang et. al. [25] in graphene billiards predict a different quantum chaotic behavior
when compared to the experimentally obtained, while other theoretical calculations
in weakly disordered graphene with periodic boundary conditions [26] have shown rel-
ativistic chaotic nature independent of the sample size. For strong disorder Anderson

localization[21], always prevails.

In this thesis we study the fractal nature of wavefunctions and the chaotic behavior



4 Chapter 1. Introduction

of the energy levels in disordered graphene near the Dirac point. Firstly, we check
the existence of fractal states at the Fermi level in the presence of disorder. The
study is carried out in conjunction with the well-known behavior of other conventional
disordered materials. Then we address the following question, how the unconventional
topology of graphene affects this fractal nature for confined structures? Do edge
states survive with disorder and how it can be combined with the fractal nature of
the wavefunctions? We study also the role of edge states in the quantum chaotic
behavior of graphene near the Dirac point, through the statistical properties of the

energy levels.

In chapter two we give a brief introduction of graphene, analyzing in detail its
unconventional electronic properties via a simple tight binding model introduced in
the appendix. This model allows to derive its relativistic band structure and the

topological electronic properties, like edge states.

In chapter three, after a brief introduction to fractals, we study in detail the
fractal properties of the wavefunctions of disordered graphene, in conjunction with
other systems like the square lattice and the chain. We also show important symmetry

properties for disordered graphene such as chiral symmetry.

In chapter four, after a brief introduction to Quantum chaos, we compare the quan-
tum chaotic nature of disordered graphene with a square lattice having on-diagonal

short-range disorder.

In chapter five we present our conclusions. In the Appendix we discuss the tight
binding model, for various types of lattices in order to determinate their electronic

properties.
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Chapter 2

Graphene

2.1 Introduction

Graphene is a monolayer of carbon atoms arranged in a honeycomb lattice structure.
It was fabricated, for the first time in 2004 by the Manchester group of A. Geim and
K. Novoselov|1,2]. They have been awarded the Nobel prize in physics for 2010. This
one atom thick material is the first real 2d metal ever made. It is a basic candidate
for replacing silicon[15] and is expected to have a major impact in nanotechnology
and nanomaterials since it can been produced very easily[16]. It’s extraordinary
electronic properties involve relativistic band structure and topology dependent effects
like electronic edge states whose existence depends strongly on the choice of boundary

conditions.

In the tight binding formalism(see Appendix) graphene has a unit cell which

consists of two carbon atoms A and B as can be seen in Fig. 2.1.

7
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Figure 2.1: Graphene has characteristic honeycomb lattice structure.

The distance between neighbouring carbon atoms is a.. = 0.142nm. The ma-
jor difference with a square lattice is the presence of two instead of one atoms in
graphene’s unit cell. In order to describe the honeycomb lattice structure we can

define two basis vectors a_1> and a_%

- a\/gA a_.
ar = —= + Y
— a\/gA a .
ay = —1T — —
2 5 29
which connect adjacent unit cells, a = |a;| = |as| = V/3ae. Using ai,a3, we can

easily construct the whole honeycomb lattice by repeating the unit cell of the two
carbon atoms A and B. This is done for the dimer in the Appendix, write down the
Schrodinger difference equations corresponding to the two different carbon atoms in

the unit cell and apply Bloch’s theorem.
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Figure 2.2: Unit cells of the honeycomb lattice.

As seen in Fig. 2.2 type A atom belonging to the central unit cell is connected
with three type B atoms. One of those atoms is part of the same unit cell while the
other two belong to the unit cells on the left, described by the vectors —ai and —a3.

So the tight binding equation centered on atom A inside the central unit cell by using

the Bloch’s theorem (see Appendix) becomes

=
)
=
sy}

I

EV, = —t(exp(—i?()) +exp(—i K a}) + exp(—i

=]
S
=
w

= BV, = —t(1+exp(—i k aj) + exp(—i

The corresponding equation is for the B atom
— —
BV =—t(1+exp(ik ai) +exp(i k a3))¥ 4.

This system of two equations with two unknowns W4, Wg can be written in a matrix
form as

) L\ E 0 Uy
= = HV = EV (2.1)

) 0 Uy 0 B || Up
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- — —
where fi(k) = —t(1 + exp(—ik aj) + exp(—i k a3)). So the graphene hamiltonian

%
0 k
H= R Hlk) , (2.2)
(k) 0
whose eigenvalues are
— |2 —
B=1/|a(F)| =+ |a(F)| =

=+ 1+ 2exp(—ikx§a) cos(kyg) =

2 Y2

1+ exp(—ikxﬁa)(exp(ik . exp(—ikyg))‘ =+

a):

3 3
- j:\/(l +2 cos(k:xiacc) cos(@'kyg))2 + 4sin2(k;x§acc) cosZ(k:y§

= :I:\/l + 4(3082(]%?@) cos2(z'k:yg) + 4cos(kz§a) cos(k:yg) + 4sin2(k93§a) COSQU{Zyg) =

V3ak,
2

Ey(ky, ky) = it\/l + 4cos(a7ky) cos( )+ 4c032(azﬁ), ky, ky € [—m,m]. (2.3)

Eq. (2.3) is the energy dispersion relation of graphene plotted in Fig. 2.3. The energy
dispersion is consisted of two branches, for positive and negative energies respectively.
They touch at six K points, known as valleys, lying on the corners of the first brillouin
zone which has the form of a hexagon(see Fig 2.4). The Fermi level is at zero energy,
making graphene a zero gap semiconductor. The energy dispersion has a cone like
structure at those six K points with the energy being proportional to the absolute

%
value of the wavevector k ,
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Figure 2.3: Energy dispersion of graphene. The six K points corresponding to zero
energy can be distinguished, the two K,K’ are non-equivalent
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Figure 2.4: Contour plot of the energy dispersion of graphene. The points along the
lines have equal energies so that different lines correspond to different energies.The
sik K points can be distinguished along with the first Brillouin zone which has the
form of a hexagon.
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Real Space Reciprocal Space

KV}K
K ﬂ}_anr

a4/3

Figure 2.6: The two non-equivalent K points of graphene.

E

_ 13 7| (2.4)

2

The linear energy relation of Eq. (2.4) resembles relativistic massless particles de-

scribed by the Dirac equation.

The reciprocal space of graphene can be described by the the two reciprocal lattice

- ~ ~ T ~ —~ . . . T -
vectors by = 227 + 20y | by = 227 — 275 As seen in Fig 2.6 by using b; and by
a3 aY aVv3 aY

it is possible to make a transition from one of the six K points only to two others
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Figure 2.7: Density of states of graphene for ¢t =1 and a = 1.

which implies that only two of them are non-equivalent. We choose those points to be
K (0, ;17”5) and K'(0, —;‘77%). They are sufficient in order to reproduce the remaining

four K points and consequently the first brillouin zone of graphene.

The density of states of graphene is shown in Fig 2.7. It extends in the energy
interval —3t¢ to 3t since in the honeycomb lattice structure every site is connected
with it’s three nearest neighbours. We observe that it is singular at —1¢ and 1¢ and
that it increases linearly at zero energy, in the six Dirac cones. We can prove this
by using the definition for the density of states Eq. (A.4) and the polar coordinates
dk,dk, = kdkdk, as follows

. 1 2T o0 t\/ga
o(E) = (2W>2/dk,ﬁ/dky5(E—E(k>)= (%)2/0 de/o kdko (E— ; k) _
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2 o0 2
3 (at)? /0 kdko (B —k) = 37T(6Lt)2E
= p(B) = o (it)QE. (2.5)

A very important remark is that energy dispersion Eq. (2.3) does not have the
simple form of the square lattice dispersion relation Eq. (A.18) where energy is split
in two equal terms corresponding to the x and y spatial directions respectively. In
the square lattice the two spatial directions are equivalent, being an isotropic model.

We can represent graphene by it’s topologically equivalent brickwall lattice model
shown in Fig. 2.8. It is obtained by removing every second bond along one of the
spatial directions of the square lattice. The tight binding hamiltonian of the brickwall
lattice is the same as graphene’s and consequently the dispersion Eq. (2.3) holds. It
clearly introduces a spatial anisotropy which makes the two spatial directions non-
equivalent.

A brickwall lattice has also another feature mixing of k,, k, directions reflected
in Eq. (2.3). A simple way to introduce spatial anisotropy in a square lattice model
would be to assume different hoppings along the x and y directions, respectively. The

corresponding square lattice dispersion relation becomes

E(ky, ky) = —2t, cos(k,) — 2t, cos(ky),

split in two inequal terms due to the introduced anisotropy. This lattice however
does not mix k,, k, and thus preserves the independency of the two spatial direc-
tions. Therefore, anisotropy and direction mixing are two mechanisms both present

in graphene which play an important role in its peculiar electronic properties.

The eigenvectors of the graphene hamiltonian Eq. (2.2) can be obtained by solving
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the system of linear equations
_>
—-E  fi(k) W4
_>
fi(k) —E Up

for the eigenvalue E, =t fl(?) fl*(?) we get the equation

%
i LRV + L (B )Up =0 = Wy = L’2%
fi(k)

so that the corresponding eigenvector can be written in the form

1
Vg =V
R I (0

fi(k)

and the normalization gives ‘\I/ E +’ =1 as
U L !
E+ — * ?
b ‘fl( g )‘ \/flf(l(k)%

Following the same procedure for energies £_ = —t\/ fi(k) = fi( k). the eigenvectors

of Eq. (2.2) can be written in a general form as

1 1

e o
1+‘f1(k‘)‘ + fi(k)

V fi(k)

Uy, = (2.6)

which gives the amplitudes on A and B atomic sites. From Bloch’s theorem ampli-
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tudes on all the other unit cells will be given by Wy, multiplied by a phase factor
exp (@?ﬁ) depending on the position ﬁ — naj + mas of each unit cell. We can
interpret this factor as simply the product of two traveling waves along the two spa-
tial directions exp(ik,x), exp(ik,y) as in the case of the square lattice model, with

variables x and y denoting the coordinates of each unit cell this time.

The interesting point here is that for positive energies E, the amplitudes on B
type sites differ by just a minus sign from the corresponding amplitudes for negative
energies E_. This fact along with the symmetric spectrum around zero energy are
both consequence of a general property called chiral symmetry, which characterizes
the so called bipartite lattices. The chiral symmetry combined with the fact that
the unit cell of graphene consists of two atoms is to a great extent responsible for its

highly unconventional electronic properties.

2.2 Relativistic effects

One of the most remarkable things about graphene is that electrons with energies
near the Fermi energy E; = 0 can be effectively described by the Dirac equation for
free massless particles[1,3,4]. Close enough to the six K points of the first brillouin
zone the band structure of graphene has a cone like form and the energy near there

%
is proportional to the absolute value of the wavevector k

E = +hv, )?( (2.7)



2.2. Relativistic effects 19

where vy = 10°2 is the fermi velocity of electrons. Energy-momentum relation for

relativistic massless particles has the form

E? =\/2p + m2ct = E = +cp = FE = +hck.

The speed of light ¢ is replaced by the fermi velocity of electrons vs, so that they
behave like photons with a modified universal constant vy instead of c. The velocity
vy has a very high value, notably higher than any conventional semiconductor. It is
not however high enough comparable with the actual speed of light ¢ = 3X108%, so it
is not essential using the Dirac equation to describe electron motion in graphene. We
shall see that the Dirac equation is simply reproduced by the tight binding Schrodinger
equation near the Fermi energy. This makes graphene a very useful effective model
for studying relativistic massless particles. Both the discrete tight binding and the
continuous Dirac approach can be used to study graphene near the Fermi energy,

with the Dirac approach being more favorable for analytical calculations.

Let’s see how the dispersion relation Eq. (2.3) is linearized close to the Fermi
energy. It is enough to linearize at one of the six K points say K(0, é—’g) We must
first deal with the term fl(?) = —t(1+ exp(—i?a_{) + exp(—i?a_g)) in Eq. (2.2).
We can make a small variation from I—(_i via ? = lz) —i—(%. The direction of (% doesn’t

play any role because of the cone like band structure at this point. We can write

= — —

fi(k) = —t(1 4+ exp(iKiai) exp(iéza_f) + exp(iKya3) exp(i%a_%))

— —
because 0k is small we can write exp(i%a_f) =1+ Z(%H Also Kia; = — K a3 = 2.
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Substituting in the previous relation we get

W)= —t<1+(—%+¢§)(1+i%a)+(—%—z@)uﬂ%a—g)) _ —@(iékfréky).

fi( 5

For convenience we can move the origin of our coordinate system on K;(0, £*) mea-
— —
suring this way the wavevector k£ from K, replacing (% with k. So the Hamiltonian

of graphene close to the Fermi energy F; = 0 can be written in the form

Hyy = ==%
—iky+k, O

Using also the realistic value of the hopping ¢t = 2.8¢V for graphene and the value of

the lattice constant a = a..v/3 = 0.246nm we can replace @ with hvy and write,

0 iky + K,
szl = —hvf

—iky + ky 0
The eigenvalues of Hy, reproduce the linear dispersion relation (2.4)

—-F —hvs(itk, + k —
H,, | = s 2 — B (hu; ]ikx+ky])2:0:>E:ihvf’k’.
—hvs(—ik, + ky) —-F
In order to be able compare with the Dirac Hamiltonian we have to rotate the original

coordinate system ninety degrees anti-clockwise transforming the coordinates as © —

y and y — —x resulting in k, — k, and k, — —k,. The Hamiltonian of graphene
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then transforms to

0 ky—ik,
Hkl = th . (28)
ke +ik, 0O

It can be written in a more compact form via the Pauli matrices o; as

Hk1 = h’l]f??,

%
while its eigenvectors are of the form of (2.6) with fi( k) = k, —ik,, each component

corresponds to the two type of atoms A and B.

Following the same procedure for the other non equivalent K point, K5(0, —g—g)

we obtain a hamiltonian of the form

0k +ik,
Hk2 = —hvf

ky —ik, 0

We can also write it in a compact form similar to the previous one as
_>
Hy, = —hv; 0" k.

Its eigenvectors are the complex conjugate of the ones corresponding to K7 due to a

difference 7 in their phases.

The Dirac equation for relativistic quantum particles can be cast in the same form

as the Schrodinger equation HV = EV, with H replaced by the four by four matrix

mc? c??

P mcl

Hp =
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For massless particles, like photons, the Dirac hamiltonian becomes

_)
0 o7 0 Tk
HD = = he N
ey 0 Tk 0
and using the fact that
— 0 ky — ik
Tk = 0uky + oyky, = !
by + ik, 0
we can write
0 0 0 ky — ik,
0 0 ky + ik, 0
HD = hc
0 ky — ik, 0 0
by + ik, 0 0 0

In order to compare with the Hamiltonian of graphene near the Fermi energy we

have to rearange its elements and write it us

0  hkp—ik, 0 0
ke +ik, 0 0 0
HD = he
0 0 0 ky—ik,
0 0  ky+ik, 0

This is a block diagonal matrix with both blocks having the same form. The block
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diagonal Dirac Hamiltonian can be written as

/

H 0
HD = he b
0 Hp
with
) 0 ky — ik,
Hp = he
ke + ik, 0

These parts actually describe particles and antiparticles, becoming equivalent in the

massless case. The eigenvectors of each part are known as spinors and consist of two

components corresponding to the two different spin orientations, up and down, of

the described massless particle. The derived Dirac hamiltonian derived is exactly the

hamiltonian of graphene Eq. (2.8) at K1(0, é—g) if we just replace the speed of light ¢

by the fermi velocity of electrons v¢. In order to reproduce the graphene Hamiltonian
4

of graphene at K3(0,—37) we have to make a different rearangement of the Dirac

Hamiltonian resulting in

0 ky+ik,
Hprrac = he

ky — ik, 0
The speed of light ¢ in this case is replaced by —v; denoting massless fermions mov-
ing in the transverse direction of those at K(0, é—’;), known as holes. So the two
nonequivalent Dirac K points K; and K, correspond to electrons moving in trans-
verse directions, electrons and holes respectively, each described by the Dirac equation
for free massless particles with the speed of light ¢ being replaced by the fermi velocity

of electrons vy.
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2.3 Electronic properties of Graphene structures

Graphene can be cut experimentally in various shapes, for example long strips called
ribbons|8,9,10] or nanometer sized confined structures known as flakes[11]. The elec-
tronic properties of those systems can be understood theoretically by applying the

appropriate boundary conditions on an infinite sheet made of graphene.

2.3.1 Edge States

Edge states in graphene nanostructures were first discovered by the pioneering theo-
retical work of M. Fujita et al[5] and have been observed experimentally[7]. Imagine a
semi-infinite sheet of graphene(see Fig 2.9) extending to infinity in the y direction and

is semi infinite in the z direction. We observe a zigzag like orientation along the top.

(o0
-1

5
g

A
/‘“-.

L~

L~

y (0]
n nt+l1
A A
m=0 /él X B B
m=1 P
m=2

0D —e——

Figure 2.9: A semi infinite graphene sheet with one zigzag edge.
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It can be viewed as an infinite sequence of horizontal zigzag chains each denoted by
an index m=0,1,2,.. .It has just one edge with a zigzag like orientation. Equivalently
It can be also split in vertical chains of infinite length (shadowed parts in Fig 2.9) to
apply Bloch’s theorem(see Appendix). Because of the sublattice chiral symmetry the
corresponding wavefunctions for energy E = 0 have zero amplitudes on all the sites
belonging to one of the sublattices A or B(see Chapter three). Assuming that the
amplitude is zero for the B sublattice the tight-binding equations for the first zigzag
chain (m=0) and n,n + 1 unit cells, with £ = 0 become (k is along the y direction)

0 = —t(exp(ik(n — 1)) + exp(ikn)) ¥4 + ¥,
=

0 = —t(exp(ik(n + 1)) + exp(ikn))VU 4 + VU,

» = —2tW 4 cos(%) exp(i%) exp(ikn)
=

v
U, = —2tW 4 cos(%) exp(—i%) exp(ikn)
The amplitude ¥, belonging to the chain with m = 3 on the unit cell n can be easily

calculated via

k
U, +0, +V,=0= V", =-2tUp COSQ(§) exp(ikn).

For different values n give the amplitudes on A type atoms along the m zigzag chain
are given according to the Bloch’s theorem. We can continue for the rest of the zigzag
chains and the corresponding propability for sites lying on the m zigzag chain away

from the zigzag like top (m = 0) are

k
|07 = 402 cost(g). (2.9)
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Figure 2.10: A zigzag edge breaks the periodicity of graphene. B sites missing along
the edge.

For k = 7 this is non-zero only on the first zigzag chain (m = 0). This gives a
special edge state with zero energy and a corresponding wavefunction completely
localized at the zigzag edge of the semi infinite graphene sheet (m = 0). For k < 7
we have cos.(g)2 < 1 and the wavefunction propability penetrates inside the sheet
with decaying amplitude (0032(5))7” as the value of m increases, resulting again in
edge states with zero energy, but with a smaller degree of localization. Note that
we have not taken into account the analytical form for the graphene wavefunction
(2.6). This is due to the fact that by forming a zigzag edge we have broken the A— B
sublattice symmetry, since for every edge site A it’s counterpart site B belonging to

the same unit cell is missing as can be seen in Fig. 2.10. This breaks the periodicity

of the system destroying the validity of the wavefunction Eq. (2.6) and the dispersion
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relation Eq. (2.3).

Edge states are a consequence of the special morphology of the honeycomb lattice
which favors quantum destructive interference for zero energy. The honeycomb lattice,
every site connected to three others, and as a result the tight binding equation written
for each site will have four components. For zero energy the number of components
reduces to three (one is multiplied by zero) giving an equation like the one used to
derive Eq. (2.9). The corresponding equations for a zigzag edge be interpreted as the
sum of two incident waves coming from the two A atoms belonging to the n — 1 and
n, unit cell respectively. They interfere with each other giving an outgoing wave at x.
In the equation used to derive Eq. (2.9) we can see that the different phase factors
exp(i%) and exp(—i%) for the amplitudes ¥, and ¥, give a destructive interference
effect for ¥,. For kK = m complete destructive interference occurs with wavefunctions
that have non-zero amplitude only at the edge of the graphene sheet. For example

the tight-binding equation for the B type atom inside the n unit cell for k£ = 7 gives

U, = —t(exp(i(mn — 7)) + exp(imn))V 4.

This is the sum of two waves with a phase difference 7 canceling with each other.

A very important feature of graphene is that the existence of edge states depends
on the orientation of the boundaries. For example we could take an infinite graphene
sheet and cut it on a direction rotated by 30 degrees compared to the previous case
a sheet with a zigzag edge. The sheet is again semi-infinite but with a different edge
orientation , called armchair. The armchair edge preserves the A — B symmetry
unlike the zigzag sheet shown in Fig. 2.12. The wavefunctions of the semi-infinite

system with an armchair edge will have the form of Eq. (2.6) multiplied by a factor
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Figure 2.11: Two ways of cutting graphene in order to obtain a zigzag or an armchair
edge.

concerning of a running wave in x direction and a standing wave in the y direction

where the hardwall boundary conditions are applied, giving

1 1
Vp, = | ——= o exp(ik,x) sin(kyy),
L |A(E)) N
1

x and y being are the coordinates of each unit cell. It is evident from this form that

edge states are absent for the armchair boundary morphology.

2.3.2 Nanoribbons(GNR)

Graphene nanoribbons(GNR) are infinitely long strips of graphene. They have been
produced experimentally[8,9,10]. Their electronic properties are well known[5,6]. The

destructive interference mechanism of the honeycomb lattice plays an important role



2.3. Electronic properties of Graphene structures 29

(8 =8 2= =8 L=l
\____/ X 7 \ V4 X 7
= = == =
X = = = [ =

Figure 2.12: A semi infinite piece of graphene with an armchair edge.

in their electronic properties, contributing zero-energy edge states when zigzag edges
are present (see section 2.3). The exact edge orientation (zigzag or armchair) of a

GNR plays a definite role in their semi-conducting behavior.

Consider the GNR shown in Fig. 2.13. It is formed by applying hardwall boundary
conditions on an infinite graphene sheet along the vertical x spatial direction and it
has two zigzag like edges. It is called a zigzag ribbon. In Fig. 2.13 the number of
horizontal zigzag chains is even the structure is symmetric along the x axis. If the
number of zigzag chains is odd the resulting ribbon structure is not symmetric, giving
an antizigzag ribbon (see Fig. 2.14). As stated already the inclusion of zigzag edges
breaks the A — B periodicity, so that the allowed energies of those ribbons can not be
directly derived from the dispersion relation of graphene Eq. (2.3). However, we can
calculate the allowed energies, called band structure(see Appendix), by using Bloch’s
theorem. In Fig. 2.13 we can see the unit cell (shadowed area) the ribbons is a chain.
Consider a zigzag GNR consisting of two horizontal zigzag chains shown in Fig. 2.15.

the tight-binding equations for atoms belonging in the nth unit cell are
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Figure 2.13: A zigzag ribbon.The shadowed area denotes its unit cell.

Figure 2.14: An antizigzag ribbon for N=3 zigzag chains.

n-1 n nt+l
1 1 1
j\i\i\i
3 -1 3 13
4 4 4

Figure 2.15: A zigzag ribbon for N=2.
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EU" = —(Uh + whth)

EVY = —t(U] + Wt 4+ 0h)
BV = —t(V} + W) + U1

BV = —t(Wy 4+ U5t

via the Bloch’s theorem (see Appendix) we can write W% = exp(ikn)¥;, j =1,2,3,4.

and substituting in the equations we get

EV, = —tWy(1 + exp(ik))

EWy = —t(W;(1 + exp(—ik)) + Us)

EVs = —t(Wy(1 + exp(—ik)) + ¥s)

B, = —t,(1 + exp(ik)).

We solve this system of equations which is equivalent to obtaining the eigenvalues of

the matrix(k is along the longitudinal directions)

0 ta 0 O
ta* 0 ¢t 0
H = ,
0 t 0 ta*
0 0 ta O

where a = 1+exp(ik). This is the tight-binding Hamiltonian of a linear chain with
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Figure 2.16: Band structure of a zigzag ribbon with two zig-zag chains and hopping
t=1.

modified hoppings connecting adjacent unit cells (see Appendix). Its eigenvalues are
1
E = i§t(1 + /9 + 8cos(k)),

plotted for t = 1 in Fig. 2.16. It consists of four bands equal to the number of atoms
inside the unit cell of the GNR. The two bands, valence and conduction respectively,
closer to zero energy, touch each other near £ = m and k£ = —x forming two small flat
bands. Those states with zero energy, make the zigzag GNR a zero gap semiconductor.
We can follow the same procedure for GNRs consisting of more than two horizontal

zigzag chains and calculate their band structure numerically. For example for a ribbon
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Figure 2.17: Band structure of a zigzag ribbon with six atoms in the unit cell.

with three horizontal zigzag chains and consequently six atoms inside its unit cell the

corresponding Hamiltonian becomes

H =
0O 0 ta O t 0
O 0 0 ¢t 0 ta
0O 0 0 0 ta* O

Its band structure is plotted in Fig. 2.17. Using this method we can calculate the
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Figure 2.18: Band structure of a zigzag ribbon with ten atoms in the unit cell.

band structure of any zigzag or antizigzag GNR. In Fig. 2.18 and 2.19 we plot the
band structure for different ribbon widths and ¢ = 1, denoted by the number of atoms

inside the unit cell.

As we increase the number of zigzag chains the band structure becomes denser
in the energy interval [—3, 3], reproducing gradually the energy dispersion of infinite
unbounded graphene projected in the k, plane. However the major difference with
infinite graphene is the presence of two zero energy flat bands encountered in both Fig.
2.18 and Fig. 2.19. Their corresponding wavefunctions are edge states, localized at
the edges of the GNRs. They have non-zero amplitudes only on the zigzag terminated

edges in analogy with a semi infinite graphene sheet with one zigzag edge for k =
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Figure 2.19: Band structure of a zigzag ribbon with fifty inside the unit cell.
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10 20 30 40 50 60 70 80 90 100

Figure 2.20: The gap at k = %’T for a zigzag GNR versus its length denoted by
the number of horizontal zigzag chains N. As seen in the inset were we plot the

logarithms, it decays as % as N is increased.

m,—m. For k # m,—m the edge states penetrate inside the GNRs, with decaying
amplitude for k # 7, —m along the flat bands. The two lower bands closer to zero,
valence and conduction, to whom the flat bands belong, begin to touch each other at
two k points, which gradually approach k = 2?” and k = —%”. The width of the flat

bands increases as the size becomes larger.

This behavior can be seen in Fig. 2.20 where we plot the energy difference of the

valence and conduction bands at k£ = %’r versus the length of the GNR. In the limit

N the flat bands extend in the areas [—7, =% and [ =& — 7]. So even at the infinite

—2T 2T

width limit, the two flat bands and consequently zero energy edge states are always
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width

Figure 2.21: An armchair GNR with N = 7. The shadowed area denotes its unit cell.

present for zigzag GNRs. The zigzag GNRs behave as zero gap semiconductors. In
general, zigzag edges play an important role in the semiconducting behavior of any

bounded graphene system contributing edge states at the Fermi level[12,13,14].

Another simple case of GNRs can be formed by cutting graphene in a direction
rotated by thirty degrees, compared to the direction used to produce zigzag or an-
tizigzag ribbons (see Fig. 2.12). The resulting GNRs will have a completely different
electronic behavior. They are called armchair since both their edges follow an arm-

chair orientation. An armchair ribbon along with it’s unit cell is shown in Fig. 2.21.

The band structure in this case can be derived analytically from Eq. (2.3). The

width of the ribbon is equal to (N + 1)§ where N is the number of sites along any

vertical zigzag chain, that is half the number of sites inside each unit cell. The
wavevector k, will take discrete values according to the simple formula (hard wall
BC)

ky, = W—j,j =1,2,..,N,
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Figure 2.22: Band structure of an armchair GNR with six atoms inside its unit
cell(N=3). There is a gap at the Fermi energy E; = 0.

in complete analogy with a finite 1d chain. Substituting in Eq. (2.3) we get the

dispersion relation of armchair GNRs

. e
Ey(ky,j) = it\/l + 4cos(N7Tj_ 1) cos(\/g; ) + 4 cos?(

=1,2,...N
N_'_l)?j » = )

The band structure of armchair ribbons of increasing width is shown in Fig.
2.22 Fig. 2.23 and Fig. 2.24. All the curves have been multiplied by the length
of the unit cell 3a.. = v/3a in order to scale the first brilouin zone from —7 to 7 with
a=1and k = k,).

Armchair GNRs show a completely different semi-conducting behavior compared
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Figure 2.23: Band structure of an armchair GNR with ten atoms inside its unit
cell(N=5).There is no gap at the Fermi energy according to Eq. (2.10).
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Figure 2.24: Band structure of an armchair GNR with sixty atoms inside its unit
cell(N=30). There is a gap at the Fermi energy, which decreases with increasing
width.
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to the zigzag or antizigzag ones. Specifically the value of N determinates whether
they behave as zero-gap or as conventional semiconductors. This behavior can be
understood by setting the derived energy dispersion relation for hardwall BC along
the y direction, equal to zero at k, = 0 where the valence crosses the conduction band

for zero-gap GNRs. We obtain

1+ 4 cos(

) 9, TJ 2 1
4 —)=0=>1+4 dr*=0=>20r=— =
N+1)+ COS(N+1) + 4z + 4z x 5
] 1 ] 2m 3. ,
_ L T UN=2i1j=12 .
N1 T 2T N1 3 o) T TS

= cos(

N is integer only for even values of j = 2n,n = 1,2, .... taking values

N=3n-1n=12,.. (2.10)

For the N values of Eq. 2.10 valence and conduction bands touch each other at
k = 0, contributing zero energy states resulting in zero-gap semiconducting GNRs.
The armchair GNRs behave as conventional semiconductors for every other value
of N since there is a gap at the fermi energy. As the width is increased the gap
decreases reproducing gradually the energy dispersion of an infinite graphene sheet
projected in the k, direction this time. It is clear that armchair oriented edges can
either contribute zero energy states at k = 0 or leave a gap at the fermi level. At the
limit of infinite ribbon width the armchair edges do not affect the band structure,
unlike the zigzag edges which contribute two flat bands of zero energy states. The

wavefunctions of armchair GNRs will have the same form as those corresponding to
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a semi infinite graphene sheet with an armchair edge,

1 1
— w7

1+
V f1(k)

Vg, = exp(ik,x) sin(kyy),

The k, takes discrete values according to the formula

mj _
ky=-——"——,7=12,...,.N,
YO (N+1)L J
multiplied by the normalization factor ( Nfl)g. Edge states clearly do not exist for
2

armchair GNRs.

2.3.3 Flakes

Graphene can be also cut in confined structures known as flakes[11]. They are can
be studied theoretically by applying hardwall boundary conditions on an infinite
graphene sheet. Flakes are usually characterized by high degree of edge irregular-
ity[12,14,18], mixing the two possible edge types, zigzag and armchair. A third type
of edge, known as dangling bond or Klein edge[15] also appears. In this case every
atom is connected by a single bond only. An example of a circular graphene flake
can be seen in Fig. 2.26 where we can clearly distinguish the three different type of
edges.

It is interesting to see how the exact edge morphology affects the electronic prop-
erties of graphene flakes, for example whether edge states exist or not in these finite
systems[12,13,14,18]. Moreover, edge states have been shown to play an important

role in the chaotic behavior of graphene flakes[18].
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Figure 2.26: A quarter of a circular graphene flake. The three different type of edges,
zigzag(Z), armchair(A) and Klein(K) can be distinguished.

We can choose the simplest possible example of a confined graphene system a flake
with regular edges, in a square shape shown in Fig. 2.27. This system has a quite
regular edge morphology with two parallel zigzag oriented edges the two other being
armchair. It can be characterized by its width w = NT 3 and its linear scale length
L = %, where N, is the number of horizontal zigzag chains and N,. the number

of sites along each chain. We choose the aspect ratio w/L =~ 1.

In analogy with the ribbons already studied we expect the zigzag edges to con-
tribute edge states with zero energy. We check this by plotting the wavefunction
propability for different energies of the square sample consisting of 1760 sites. A
wavefunction corresponding to zero energy is shown in Fig. 2.28. This is an edge
state to a great extent localized at the zigzag oriented edges of the sample. This
type of wavefunction exists also for energies different than zero, an example shown

in Fig. 2.29. They are characterized by a smaller degree of localization than the
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Figure 2.29: Wavefunction propability corresponding to £ =~ 0.0026 for a square sam-

ple consisting of 1760 sites. The wavefunction localized at the zigzag edges penetrates
more inside the sample.
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zero energy edge states. The presence of edge states at non-zero energies is an extra
feature compared with the zigzag GNRs. In that case edge states exist only for zero
energy and their degree of localization is determined by the value of the wavevector

k along the direction of the GNR which is infinite.

The edge states create degeneracy at the Fermi level which introduces a small
peak at the otherwise zero density of states p(E) at £ = 0. The height of the
p(E) decreases with increasing size, and diminishes gradually, recovering the linear
p(E) ~ E law for large L, as shown in Fig. 2.30. In the inset the number of zero

energy edge states for |E| < 1073 increases linearly with L. The p(0) is this number

N(0)
2

1

divided by the total number of states which is approximately L?, giving the I

decay shown. A similar behavior forp(0) is encountered for zigzag GNRs[5] or flakes

of various formations[12,14,18].

We can consider a more complicated flake edge morphology and see how it affects
the electronic properties of graphene at the Fermi level. A general way of doing this is
by cutting graphene in a circular form by keeping the carbon atoms whose coordinates

fulfill the following condition[18§]

VP <,

where r is the radius of the circular flake. An example of this condition applied
on graphene can be seen in Fig. 2.26 where the three possible types of edges are
encountered. This condition was applied on a topologically equivalent brickwall lattice
instead of honeycomb, resulting in a graphene flake with a non circular but a general
highly irregular edge[18]. We also restrict ourselves to a quarter of the circular flake

only for symmetry reasons. We plot the wavefunctions corresponding to different
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Figure 2.30: Density of states of a square sample of graphene as a function of it’s
linear length scale L for energies |E| < 1073. In the inset we show also the number
of states that fullfill this condition.



2.3. Electronic properties of Graphene structures 49

0.16
0.14
0.12

01
0.08
0.06

002 4 R
B LZINXARTS 7
A
S e e
e e s
LR

—
L2222 7
IWp A7 LR
CCRINCTEE%
I SAEATS
TR o5 R T TAZS S
R S S nss

Figure 2.31: Wavefunction propability distribution corresponding to £ ~ 0 for a
quarter of a circular brickwall lattice flake consisting of 2095 sites. For plotting sim-
plicity the brickwall lattice sites are arranged on a square lattice. The wavefunction
is mostly localized along the circular edge of the flake and also along the lower edge.
From Fig. 2.26 both have zigzag type of edges

energies shown in Fig. 2.31, Fig. 2.32 and Fig. 2.33.

Even in this case of highly irregular edge morphology which mixes zigzag, armchair
and klein edges, the edge states survive for zero energy with wavefunctions remaining
localized at the boundaries of the flake as shown in Fig. 2.31. Due to irregularity
edge states appear at higher energies even for energies at the order of magnitude 10~*
than in the square geometry of Fig. 2.27. Edge states with non zero energy[12,18]
are shown in Fig2.32 and Fig. 2.33. In Fig. 2.34 the behavior of the density of
states at E = 0 is more abrupt, because of the irregular flake edge morphology which

introduces some kind of weak disorder.

In general the presence of zigzag edges at the boundaries of any finite graphene
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Figure 2.32: Wavefunction propability distribution corresponding to £ ~ 0.0015 for
a quarter of a circular brickwall lattice flake consisting of 2095 sites. The brickwall
lattice sites are arranged on a square lattice. The wavefunction is again mostly
localized along the circular edge of the flake and the lower zigzag edge.
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Figure 2.33: Wavefunction propability distribution corresponding to F ~ 0.122 for
a quarter of a circular brickwall lattice flake consisting of 2095 sites. The brickwall
lattice sites are arranged on a square lattice. The wavefunction is localized along the
circular edge of the flake but at a smaller degree compared to zero energy edge states.
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Figure 2.34: Density of states of a quarter of brickwall circle as a function of it’s
linear length scale L for energies |E| < 1073. Inset shows the corresponding number
of zero energy states.
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system affects to a great extend its electronic properties contributing edge states at

the fermi level, making these systems behave as zero-gap semiconductors[12,13,14,18].

2.4 Conclusions

Graphene’s linear dispersion near the Fermi energy along with the fact that its unit
cell consists of two atoms makes electrons behave as relativistic massless particles
described by the Dirac equation. This is combined with the chiral sublattice symme-
try and the spatial anisotropy giving the highly unconventional electronic properties
of graphene. Moreover, the special honeycomb lattice structure favors destructive
interference effects which give zero energy edge states. In this thesis their existence
is examined for various structures. The edge states exist for zigzag or antizigzag
nanoribbons(GNRs) and flakes of different boundary arrangements e.g square and
circular flakes mixing zigzag and armchair edges. It is shown that they strongly af-
fect the electronic properties of graphene near the Fermi level, having consequences

on their semiconducting behavior.
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Chapter 3

Fractal States in Disordered

Graphene

3.1 Introduction

3.1.1 Fractals

There is a wide variety of objects encountered in nature that the usual Euclidean
geometry fails to describe. These objects usually have extraordinary properties like
self-similarity which attract people’s attention. Fractal geometry was discovered for
the first time by Benoit B. Mandelbrot[1] as a convenient way of characterizing those
properties and can be used to describe these non Euclidean objects. The important
property of every fractal object, self-similarity has to do with scaling invariance mean-
ing that the object has the same structure on every possible order of magnitude. In
rough terms if we were using a magnifying glass to examine it we would observe the

same structure no matter of the zooming factor of the glass. This important property

%)
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Figure 3.1: The Koch curve.

n=0

n=2

Figure 3.2: The steps to construct the Koch curve.

can be understood by a simple example usually used to introduce fractals, the Koch
curve shown in Fig. 3.1 The steps in order to construct it are shown in Fig. 3.2. At
the initial step n = 0 we take a line segment of length one and divide it into three
equal ones. Then we add another segment forming the structure shown at step n =1
and after repeating the same procedure for every different line segment this time we
get the structure at step n = 2.

After infinite repetitions of this procedure we get the Koch curve. It’s impossible,
however, to draw the actual curve since the structure at step n = 1 is infinitely

repeated at each order of magnitude resulting in the extraordinary property of a
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line of infinite length enclosed in a finite space, a fact that owns it’s existence to
selfsimilarity. The structure shown in Fig. 3.1 is not the actual Koch curve it is
just the result of repeating the construction procedure a finite number of times,
this is called a prefactal. Koch curve is a very characteristic example of a fractal
object with an Fuclidean dimension D = 1 also known as topological dimension.
In general all one dimensional fractals characterized by self similarity have another
common characteristic, infinite length.

In order to discriminate between fractals we can use scaling theory. By scaling
we mean to examine how a quantity changes as we vary for example the system size.
A common way is to examine how the length of the fractal curve(L) changes as we
change the length of the ruler used to measure it. This can be easily accomplished
for the Koch curve by the help of the steps used to construct it. For a ruler of length

[ = 1 we would simply measure a curve length L = 1 . As can be understood from

1

stepsn =1 and n = 2 for [ = % the length becomes L = 4] = % while for [ =

L =16l = 19—6 and so on.
In general the length of the curve will be given by L = 4" where 4" is the number

of segments and | = 3% the corresponding ruler length at each step. By writing

In(1)
In(3)

n=— we get

L=1"1%. (3.1)

In(4)
In(3)

The exponent dy = ~ 1.2618 is the fractal dimension of the Koch Curve,

different from it’s topological dimension Dy = 1 . Examples of objects having the
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same topological and fractal dimensions dy = Dy are common Euclidean shapes like a
line, a square or a cube with dimensions dy = 1,2, 3 respectively. An other alternative
way of obtaining the fractal dimension is box counting. This is achieved by trying
to cover the Koch curve with a finite number of line segments or boxes N and then
examine how this number scales with the their length [. As stated already N = 4"

and [ = 3% at each step of the Koch curve construction resulting in

N = 47112((?) = exp (— In (4) In (l)> = lf% =

N=1"%, (3.2)

In(4)
In(3)

constant so it is enough to consider only two sets of points (I, V) for example (1,1)

Wlth df =

~ 1.2618 the fractal dimension. The scaling rate is obviously

1

(4)—In(1) _ In(4)
In(3

(3)=In(1) ~ In(3) ,which is a

and (é, 4) in order to calculate the scaling exponent d = E
convenient way of calculating the fractal dimension of such simple objects. In general
the fractal dimension characterizes the scaling behavior related with self-similarity,

denser fractal objects will have higher fractal dimension.

3.1.2 Multifractals

Fractals can exist also in the quantum world[7,8,9,10]. Well-known examples are
the wavefunctions of electrons in the presence of disorder, at the metal-insulator
transition for example in disordered mesoscopic systems[11,12,13]. In the case of
graphene the geometric support of the wavefunctions is a honeycomb lattice. They

can be multifractal objects [3,4,5] and define a whole spectrum of fractal dimensions.
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This spectrum of dimensions is

N 2\ ¢
D — 1 i In} i, (|\Ijl‘ > el | (3.3)
q= q_ngfolo L q 00, 00, .

where ‘\I!@|2 is the propability for the electron being at site ¢ of the supporting
lattice also called measure in the multifractal formalism. L is the linear length scale
characterizing the size of the system and N the total number of sites. N ~ LP
in general where D is the space dimension of the lattice, being two (D = 2) for
both honeycomb and square. Every fractal dimension D,, ¢ € [—00, 00|, describes a
different scaling behavior of the multifractal wavefunction. Compared with the Koch
curve we follow an inverse approach for obtaining the scaling rates, by increasing the
linear size L(scale). The fractal dimension Dy, coincides with the space dimension of
the supporting lattice. The fractal dimension, for ¢ = 2

In S |
Dy = — lim %
L—oo InL

(3.4)

This is called the correlation dimension and describes the scaling of the quantity

Zfi1|‘1’z

4 . S .
, known as the inverse participation ratio

N
IPR=""|w,[" (3.5)
i=1

I PR characterizes the localization properties of a wavefunction. An extended wave-

VN VN

Zi]il ﬁ = % goes to zero as N — oo, being inversely proportional to the number of

4
function which has equal amplitudes ¥; = —= on all the lattice sites /PR = ZZ]\LI <L> =

lattice sites. In the opposite case, a completely localized wavefunction on one lattice

site has IPR=1.
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So the calculation of the inverse participation ratio gives a rough estimation about
a wavefunction’s degree of localization. The scaling of IPR with the system size gives
information about the self-similar nature of a wavefunction in analogy with the simple
fractals, where there is only one scaling dimension characterizing the structural scale
invariance. For an extended wavefunction with equal propability ’\I/Z|2 on all the sites
from Eq. (3.3) all D, coincide in the fractal dimension of the supporting lattice which
is two in the case of graphene or the square lattice and one for a linear chain. The
simple fractal objects are a special case of multifractals, when the measure is equally
distributed over the geometric support. If the wavefunction is completely localized

then Dy = 0. Non integer values of Dy imply multifractal wavefunctions.

3.2 Chiral Symmetry

Chiral lattice symmetry[6] plays an important role in the electronic properties of
graphene. It is also related with the fractal nature of wavefunctions. Specifically it
is responsible for multifractal wavefunctions for the midband states of a disordered
square lattice[8,9] and of small length chains. Chiral symmetry has to do with a
mirror symmetry present.

Consider a square lattice with zero potential on all its sites split into two sublat-
tices A and B as shown in Fig. 3.3. We clearly see connections only between sites
belonging to the two different sublattices. The chiral symmetry implies that one sub-
lattice is the mirror image of the other. A square lattice can be thought consisting of
two identical layers one of A and the other of B atoms, with every atom on each layer
being connected with four atoms of the other, mirrored one. The honeycomb lattice

of graphene preserves chiral symmetry. The only difference is the lattice connectivity,
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Figure 3.3: Square lattice represented as two sublattices A and B.
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Figure 3.4: The honeycomb lattice can be represented also as two interconnected
sublattices A and B.

for the honeycomb lattice is three(Fig. 3.4) instead of four for the square. Both the
square and honeycomb lattices belong to a general class called bipartite lattices. In
general, a lattice is bipartite if it can be made to consist of two sublattices A and B,

with nonzero hoppings connecting only A sites and B sites.

The chiral symmetry remains for off-diagonal disorder which means random con-
nections(hoppings) between the two A, B sublattices. The diagonal disorder is when
site potentials are random. In the absence of diagonal disorder the Hamiltonian of a

bipartite lattice can be written in the A-B basis as

0 Hgap
H = | (3.6)

Hi, 0

where H 4p contains the hoppings between the two sublattices. The chiral symmetry

of H can be expressed by the anti-commutation relation [H,o3] = 0 ,where o3 is

1 0
the pseudospin matrix . Let’s assume we have a state with energy F

0 —1
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Y

A

and wavefunction ¥ = , so that HV = EW¥ . By using the above anti-
Up

commutation relation we easily prove that Hos¥V = —o3HV = —FEo3V meaning

that there is also a state corresponding to energy —F with wavefunction o3V =

1 0 Wy WA
= . Therefore for a bipartite lattice energies always

0 -1 Up —Up

appear in pairs F, —F with corresponding wavefunctions ¥, o3W¥. and the chiral

symmetry manifests itself as a symmetric energy spectrum around zero.

The chiral symmetry allows to write the Schrodinger equation for the square of
the Hamiltonian
HipH}p 0 Uy Uy

= F? =

H*V = B°U =

HupH}p = E?Up
HigHap = E?U 4
The eigenvalues of H can be obtained by diagonalizing either HapH {, or HzHap

which are of reduced size (by half) compared to H. For zero energy E =0

Ty Wy Ty #0
=
\I/B —\I/B \I/BZO

the wavefunctions have zero amplitudes on one of the sublattices (A or B). For N4
number of sites for sublattice A and Ng number of sites for sublattice B with N4 > Np
, it can be proven[6] that there are at least N4 — Np states corresponding to zero

energy, having zero amplitudes on the sublattice with the smallest number of sites
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(B in this case). If Ny = Np+1 at least one zero energy state always will be present
in the middle of the energy spectrum. This is easily understood if we think that the
total number of sites is N = N4 + Np, consequently the corresponding number of
energies is odd, combined with the presence of a symmetric spectrum around zero.
The wavefunction of this £ = 0 state will have zero amplitudes on sites of the B

sublattice. In order to prove this we can write down the tight binding equations for

0 H v HapWUp =0
HU =0 & A8 Yloosd TR (3.7)

Hi, 0 Up Hip¥a=0

The term H gWp = 0 is a system of N4 linear homogeneous independent equations
with Np unknowns, it’s actually the set of Schrodinger equations centered on all the
A type atoms. On the other hand the term H},W¥ 4 = 0 on the other hand is a system
of N equations with N4 unknowns. There is also one mjsre equatiorjlv obtained by the
normalization condition for the wavefunction, namely EA: W Al° + EB: |Up> = 1. If
we assume that W4 = 0 then the system of equations H 5 W 4 = 0 is trivially satisfied
while HygVp = 0 is only satisfied when Wz = 0 since the number of equations
is larger than the number of unknowns in this case, resulting in a zero amplitude
wavefunction as the only possible solution. Assuming on the other hand that ¥z = 0
equations HapW¥p = 0 are trivially satisfied while equations H{,¥ 4 = 0 along the

Np
normalization condition Z |W 4[> = 1 will allow us to calculate the amplitudes W 4.

3.3 Lattices with off-diagonal disorder

Multifractal wavefunctions are almost exclusively encountered in disordered quantum

systems under certain conditions(7,8,9,10,11,12]. Their multifractal nature is charac-
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terized by non-trivial scaling behavior described by the spectrum of fractal dimensions

(Eq. (3.3)).

Disorder which might own it’s existence to high impurity concentration in realis-
tic systems, can be simulated easily in the tight binding framework by introducing
random parameters,like random on-site potential or random hopping propability be-
tween the different sites of the lattice called off-diagonal disorder. These disordered
systems follow a class of universal behaviors independent of the underlying details,

like the lattice morphology for instance.

A characteristic example is Anderson localization[2] occurring when there is enough
randomness of the disordered parameters present or if the dimensionality is low. For
1d and 2d systems, a linear chain and a square lattice for example all states for every
allowed energy and all possible strengths of disorder exhibit Anderson localization.
The corresponding wavefunctions become localized at a certain space and their ampli-
tude decays exponentially exp <—%|T|> at distance r from its maximum characterized

by the localization length &.

There is an exception to this universal behavior however, which is disordered
systems that preserve the chiral symmetry|[6,8,9], introducing random hoppings only
between the two underlying sublattices, preserving this way the mirror symmetry
of each other. We study the fractal nature of the wavefunctions belonging to mid-
band states for systems that preserve the chiral symmetry, graphene with off-diagonal

disorder in conjunction with a square and a chain also with off-diagonal disorder.
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Figure 3.5: a linear chain represented as two sublattices A and B

3.3.1 Linear chain

The simplest model with off-diagonal disorder is a linear chain with random nearest
neighbour hoppings called off-diagonal disorder. Again this lattice can always be
represented by two interconnected sublattices A and B being the mirror image of
each other. If the number of sites is odd there is always a state corresponding to
zero energy at the middle of the otherwise symmetric energy spectrum of this system.
There is a convenient way of calculating the wavefunction of this state. Consider the
chain labeled as shown in Fig. 3.5 with ¥; denoting the amplitude on site j of the
B sublattice and ¢;,?; the random hoppings, the amplitudes on A sublattice are all
equal to zero. Writing down the Schrodinger equations centered on all the B sites
where the wavefunction amplitude is zero we get the amplitude on site j of the B

sublattice
j—1 tj_ltj_g .
t;_lt;_Q .

U, = (1) (3-8)

and the zero energy wavefunction without the need of diagonalizing the corresponding
Hamiltonian. The Schrodinger tight binding equations for the sites of the B sublattice

can be also written in a general recursive form as

. t:
Uit 40t =0, =1,2, ., N=1= |V, | = \pj#

J

The logarithm of the amplitude at distance  (one unit of r is two lattice spacings

—In|t]]



3.3. Lattices with off-diagonal disorder 67

long in this case) from the site with amplitude ¥; will be

r

I W =In [W;] + > Inft;] = In |t]] = In [U,| = In ¥ = [In|t;] — In [£]]

quantity g(r) = In|V,;,| — In |¥;|describes the behavior of the wavefunction as we
move away from a starting site j. We expect it to oscillate abruptly due to the
introduced disorder, we can get an average estimation however by simply calculating

the variance

< (Ag(r))? >=< <A (Z [In [¢;] — In ‘t;{})) >

j=1
The hoppings t;,t; for j = 1,2,..., N —1 are random variables which can be obtained
by a specific propability distribution P(t) characterized by the strength of disorder
W . We can also consider them as completely uncorrelated meaning that the random
value of one doesn’t depend in any way on the values of the other hoppings. For off-
diagonal disorder we can choose a special propability distribution called logarithmic
ensuring that all hoppings take positive non-zero values replacing|t| with ¢ while
the propabilities of the logarithms for the random numbers obtained P (Int) become
equal. The exact form of the propability P(t) that satisfies the above requirements

can be easily obtained as follows. Consider that Int belongs to the interval [—%, %]
resulting in the so called box distribution P (Int) = % The required distribution can
be calculated as

P(#)dt = P (Int)dn |t] = 2000

Pt) = %,t e {exp (—%) exp (%)} (3.9)

This is the so called logarithmic propability distribution. The term [In|t;| — In ‘t;”

dt =

now, is a random variable also with zero mean value and finite variance, as long as
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the random hoppings ¢;,t; follow the logarithmic distribution. This is very easy to

prove, take for example the mean value

< lnt—lnt;. >S=<Int>—<Int >

N
w‘%

e w

w
N 1 1 [z 1 [z
<Int >:/6 VglntP(lnt)dt:/eVglntmdtzw/vglntdlntzw/ xdxr =0

wfE

< lnt—lnt; >=10

while for the variance we have(X = Int; —Int} )
variance =< (X— < X >’ >=< X?> - < X >
since < X >= ( the variance becomes

0% =< (Int; —Int)* >=< In?t; > + < In*¢ >

w w
ez 1 2z W2
2, o 2 E— e = —
<In t>—/e%1n tP(Int)dt = /Wx dx 15

2

so that the variance of [ln t; —In tﬂ becomes equal to WTQ. Returning to the equation
for g(r) now due to the fact that the different terms inside the sum are independent

random variables we can use the basic property Var <Zf\i1 Xl-) = 3N Var (X;) and

write

T

< (Ag(r)*>= 3" < (A([lnft;] - |t5]]))* >

as proved above A ([ln t;| — In ‘t;”) = WTQ independent of r so that the required
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variance of the wavefunction amplitude at distance r from the starting site j becomes

W2
< (Ag(?“))2 >= 77“ ~T =

< (Ag(r)* >~ r

Since g(r) = In|¥; ,| — In|V¥;| this implies that the amplitude of the wavefunction

corresponding to zero energy decays in average as

exp (—AVT) (3.10)

at distance r from it’s maximum value with A ~ W?[8]. Despite the fact we have
used a specific propability distribution for the random hoppings the obtained result
is independent of the distribution’s exact form as long as it has zero mean value and
finite variance. The decay behavior is also essentially different and slower from the

pure exponential decay exp (—%|r|> characterizing localized wavefunctions.

The problem described is a characteristic example of a random walk process. The
term In |¢;| can be interpreted as the starting position of the walker while the role of
the additional random displacement at each iteration is played by the random variable
[In [¢;] — In ‘t;H with mean value and finite variance. The average distance x of the
walker from his starting position after r iterations will be x ~ /r a diffusive behavior

similar to the one derived for the amplitudes of the zero energy wavefunction.

We can also verify the above result numerically[8] by using Eq. (3.8) in order
to calculate the amplitudes V;. First we have to consider a chain of finite size with
N number of sites and then apply the normalization condition Zjvzl V; = 1. Then

we can check the validity of Eq. (3.10) by calculating the average of the correlation
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Figure 3.6: The square of the correlation function g(r) ploted as a function or corre-
lation distance r for a chain of N = 2001 sites varying j in the interval for different
stenghts of disorder W and 10000 realizations. The analytical result is reproduced.

function g(r) = [In|V;;,.| — In|¥;|] over the different j sites of the chain and over
different realizations of the random hoppings, varying also the correlation distance
r. Below we show the result of this procedure for a chain of N = 2001 sites with j
chosen for sites belonging to the middle part of the chain in order to eliminate the

edge scattering effects introduced by the system’s boundaries

As seen in Fig. 3.6 g(r) appears to be in average analogous to r in complete agree-
ment with the behavior obtained analytically. In Fig. 3.7 the propability distribution

of the correlation function is plotted for different disorder strengths W
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Figure 3.7: Propability distribution of g(r) for correlation distance r = 25 , 10000
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realizations, fit with gauss distribution P(g) = \/%02 exp

All curves follow the gaussian form a direct consequence of the special form of
the wavefunction amplitude Eq. (3.8). It’s logarithm can be written as In|c;| =
(Int;oy +Int; o+ ... +Inty) — (Int)_, +Int) ,+ ... +Int}) a sum of N — 1 inde-
pendent random variables. According to the central limit theorem of statistics the
propability distribution of In |¢;| approaches the Gaussian form as the number of the
summed random variables increases (N — o00). The increasing also of the disorder
strength W leads to the broadening of the Gaussian distribution expressed through

the increasing of it’s variance o?.

The linear chain with off-diagonal disorder is the simplest disordered tight binding
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model for which multifractal wavefunctions exist. The logarithm of the wavefunction
amplitude for the midband states corresponding to zero energy at each site, undergoes
a random walk, leading to the power law decay of Eq. (3.10) which is different from
Anderson exponentially localized states. The scaling of the inverse participation
ratio, [PR = Zi]\il‘\h{ﬂ‘, with the system size NV the length of the chain, gives the
characteristic correlation dimension D,. This can be accomplished easily, the chiral
symmetry is preserved for off-diagonal disorder and using Eq. (3.7) we calculate the
wavefunction amplitudes. We then plot the logarithm of the average < I PR >, taken
over different realizations as a function of In (). The result is shown in Fig. 3.9 for
different strengths of disorder W. The whole propability distributions of In (I PR)

are shown in Fig. 3.8.

The expected power law decay Eq. (3.10) for the £ = 0 wavefunction leads
to zero amplitude at large distances(r) with a decay slower than exponential. The
fractal dimension Dy of this power-law localized wavefunction will eventually be zero,
that is the fractal dimension of a point. Accordingly, we expect the scaling rate
of In(< IPR >) vs In (), for any disorder strength W, to approach zero for large
enough chain lengths as confirmed in Fig. 3.9. For small lengths, however, we observe
linear scaling, indicating the existence of a fractal dimension D, which decreases as
the strength of disorder W is increased. Small values of W result in values for D,
close to the integer dimension of a line indicating a wavefunction extended along the
chain. As we increase W the D, approaches non integer values indicating that the
E = 0 wavefunction has a multifractal form.

A typical multifractal wavefunction can be seen in Fig. 3.10. We notice immedi-

ately the signs of self similarity ,characteristic of fractal objects. As seen in the inset

where log-linear plot is used, the propability amplitude fluctuates wildly along the



3.3. Lattices with off-diagonal disorder 73

0,8

P(In(IPR))

o
~

0,2

In(IPR)

Figure 3.8: Propability distributions of In (I PR) at E = 0 for a chain with off-diagonal
disorder, W =1 and 50000 realizations.
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Figure 3.9: The scaling of I PR with the system size N for a chain at ' = 0 averaging
over 10000 realizations for different strenghts of disorder W. The fractal dimension
D, exists only for small sizes and diminishes as the disorder increases.
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Figure 3.10: Plot of the propability |¥|? for the chiral multifractal wavefunction at
E = 0 for a chain of 5001 sites and disorder strength W = 0.5. The plot is done for
sites at the range [1250,2250]. In the inset logarithmic scale is used.
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Figure 3.11: D5 as a function of the off-diagonal disorder with strength W, for a zero
energy chiral wavefunction of a chain.

chain, while on the other hand it shares the properties of both, extended and local-
ized wavefunctions. For example, it is localized along different isolated regions in the
chain, expected to lead to extreme sensitivity of the system’s transport properties like
conductance depending on the choice of boundary conditions. Therefore, although
the power law decay localizes the wavefunctions, a fractal nature is encountered when
we examine small enough regions (scales) of the chain. These regions reduce in size

if the disorder is increased and the wavefunction becomes more power-law localized.

In Fig. 3.11 we show the behavior of Dy with increasing W. The D, approaches

asymptotically zero as W increases.
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3.3.2 Square lattice

We can can easily apply the multifractal method on a square lattice model with off-
diagonal disorder in order to check the existence of midband multifractal states. We
consider again the hopping as uncorrelated real random variables distributed in the
logarithmic form Eq. (3.9) with W denoting the strength of the disorder. The chiral
symmetry is preserved since there are two identical underlying sublattices, one being

the mirror image of each other.

For convenience we can choose a square sample with N = L? number of sites
reducing this way the scaling parameters to just the linear length scale L. By de-
manding it also to take odd values only so that N is also odd we ensure the presence
of at least one zero energy state in the middle of the energy spectrum of this system.
The scaling of I PR with L will give the fractal dimension D, of this midband state.
For this calculation we use the system described by Eq. (3.7), the amplitudes lie on
sites of the A sublattice. The wavefunction has zero amplitude on the sites of the B
sublattice, which has the smallest number of sites. In Fig. 3.13 we have studied the
scaling of two different quantities. The first is the geometric mean exp(< In(/PR) >)
while the second is the arithmetic mean < I PR > of IPR. For the geometric mean
it is enough to plot < In(/PR) > as a function of In(L) in order to get it’s scaling

dimension Dy and for the arithmetic mean we plot In < IPR > as a function of In(L).

The two curves are shown in Fig. 3.14. They imply that the studied zero energy
midband state undergoes an interesting crossover. For example, for low values of
disorder W = 0.1, the value D is close to two meaning that the wavefunction is
completely extended. For large enough disorder, for example W = 50, the value of

D5 is close to zero, and clearly the wavefunction becomes localized. For intermediate
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Figure 3.12: Distribution of In(IPR) for strength of disorder W = 1 and different
lenght scales L using 10000 realisations.
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Figure 3.13: Scaling with L of two different quantities the geometric and the arith-
metic mean of I PR , for disorder strength W = 1 and 10000 realizations. The curves
allow us to calculate the fractal dimensions Dy describing the scaling of both those
quantities.



80 Chapter 3. Fractal States in Disordered Graphene

@0 <In(IPR)>
G-© In(<IPR>)

05+

Figure 3.14: Fractal dimension D, as a function of the disorder strength W for both
the arithmetic and the geometric mean of I PR.
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Figure 3.15: A multifractal wavefunction propability at F = 0 for a square lattice of
linear length L = 81 with 6561 sites for off-diagonal disorder strength W = 1.

values of disorder the wavefunction has a non integer fractal dimension D, between

two and zero indicating a typical multifractal distribution.

The amplitude |\IJ|2 seen in Fig. 3.15 fluctuates wildly with signs of self-similarity,
a characteristic example of a multifractal wavefunction. It can be understood from
the point of view of phase transitions. There is a continuous second order phase
transition in the asymptotic limit W = 0 only, the extended-chaotic phase occurring
in the asymptotic limit W = 0, for 0 < W < oo the state is fractal and Anderson
localization occurs in the asymptotic limit( W — oo). This is implied in Fig. 3.14
by the two scaling factors for the geometric and arithmetic mean as defined above.
We clearly see that the two values of Dy differ only for the fractal phase, while they
coincide for the two other limiting phases. We can interpret their difference as some

kind of order parameter that takes values from zero to some finite value as W increases
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and the system jumps from one ordered state for small W to a more disordered one

for large W. The two exponents become equal at the asymptotic limit.

3.3.3 Graphene

In order to check if midband multifractal wavefunctions exist in graphene with off-
diagonal disorder we study also a square honeycomb lattice sample. This system (see
Fig2.26) can be characterized by, the number of horizontal zigzag chains, N,, and the
number of sites on each one of those N,. . The lattice has N = N.N,. sites, width
w = NT\/g and length L = %, both in units of @ = V/3a._.. Asin the previous case
of the square lattice we require N, and N,. to be both odd in order for N to become
odd. We also require that ¥ ~ 1 to be talking about square graphene samples.

The Hamiltonian studied has again the chiral form (3.6), with the hopping ele-
ments given by logarithmic distribution Eq. (3.9). This graphene sheet will have two
parallel boundaries containing only zigzag edges and two other also parallel bound-
aries containing only armchair edges. As in the case of zigzag graphene ribbons we
expect the presence of zigzag edges to contribute edge states with zero energy. This

results in high degeneracy at £/ = 0, increasing with the size of the graphene sample.

In order to calculate the amplitudes on A type sites of graphene We use Eq. (3.7).
The I PR allows to study the fractal properties for one of those degenerate states. A
very fundamental question we address is about the role of the destructive interference
mechanism of the honeycomb lattice in this disordered graphene system, for example
to see if edge states survive in this case.

As seen in Fig. 3.18 the conclusions derived for the square-lattice E = 0 state,

hold also for the corresponding graphene E = 0 state . Their main difference is that
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Figure 3.16: The distribution of In(IPR) with w=1 for different lentgh scales L for
500000 realisations.
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Figure 3.17: The scaling of two different quantities discussed in the text, with w=1
for 500000 realizations.The curves give us the fractal dimensions Dy describing their
scaling.
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Figure 3.18: Fractal dimension D, as a function of the disorder strength W for the

geometric < In(IPR) > and arithmetic mean In(< IPR >), in the case of both
square and honeycomb lattices.
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the midband state with zero energy has fractal dimension D, ranging from one to
zero. This clearly indicates a wavefunction that remains localized along a line in
space even in the presence of disorder and has a fractal structure characterized by the
linear dependance of In (/PR) on In (L). This line corresponds to the zigzag edges of
the graphene sheet and resembles the behavior of Dy for the midband wavefunction
of small length chains with off-diagonal disorder seen in Fig. 3.11. So even in the
presence of off-diagonal disorder zero energy edge states survive in graphene. In other
words the destructive interference mechanism, due to the special morphology of the
honeycomb lattice structure, giving edge states with zero energy, is not destroyed
by the introduced disorder which preserves chiral symmetry of the two underlying

sublattices.

3.4 Conclusions

The wavefunctions of graphene at the Dirac point are shown to be fractal as long as
the disorder preserves the chiral sublattice symmetry. This is common behavior for
off-diagonal disorder encountered also in the square lattice and small length chains.
In the case of a square lattice the fractal dimension D, ranges from two to zero as
the disorder increases. For the graphene sample with off-diagonal disorder fractal
states are also edge states and the value of the scaling dimension Dy ranges from one
to zero. This shows that the destructive interference mechanism in the honeycomb

lattice of graphene survives in the the presence of off-diagonal disorder.
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Chapter 4

Quantum Chaos in Disordered

Graphene

4.1 What is Quantum Chaos

4.1.1 Introduction

Chaos in the quantum world is completely different from the classical deterministic
chaos. Classically chaotic systems are characterized by increased sensitivity to ini-
tial conditions, leading to extreme unpredictability expressed through an exponential
growth of the error described by the distance between two chaotic orbits in their
phase space. The unpredictability is characterized by a Lyapunov exponent from the
exponential growth rate of the error. In classical dynamical systems chaos occurs
even for a small number of degrees of freedom, with an essential condition for chaos

the presence of the non-linearity in the deterministic equations.

In the quantum world the Schrodinger equation i2W(z,t) = H¥(x,t) is linear,

89
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Figure 4.1: Two billiards of circular and stadium shape . The classical motion is
periodic for the circular one, while it is chaotic for the stadium.

therefore the classical sense chaos is excluded. Quantum chaos is not related with
dynamical evolution, instead, it is encountered in the the statistical properties of the
eigenvalue energy spectrum. However, there is a strong relation between the classical
and quantum manifestation of chaos acting as a bridge between the two worlds. A
very striking example appears in systems commonly referred to as billiards[1]. For
example, the circular billiard shown in Fig. 4.1 with a classical particle like a ball
moving freely inside, by allowing elastic scattering with the walls. Tt can be proven|[1]
that the ball will follow a completely predictable orbit characterized by zero Lyapunov
exponent. This result is related with the number of conserved physical quantities in
conjunction with the number of the spatial degrees of freedom. Because of the elastic
scattering the absolute value of the momentum is conserved after each scattering
event which is equivalent to the conservation of the energy, while we can easily prove
that the angular momentum is also conserved. The number of degrees of freedom
(two) is equal to the number of conserved physical quantities.

In the quantum case a particle, e.g an electron, can be enclosed in this billiard
geometry. The obtained energy eigenvalues for the quantum system will be distributed
as completely random variables with zero spacing between successive energy levels

having propability one. This surprising fact can be expressed through the Poissonian
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semi

Poisson

Figure 4.2: The Poisson, semi-poisson and Wigner distributions, characterizing inte-
grable, semi-integrable and chaotic quantum systems respectively.

form

P(S) = exp (—S), (4.1)

which gives the propability of the spacing S between sucessive energy levels S =
E; — E;_;. It is plotted in Fig. 4.2. The circular billiard is a characteristic example

of a classically integrable system desplaying a non-cahotic quantum behavior.

Quantum Chaos occurs for more complex billiard geometries. We can consider
the case of a classical particle enclosed in a stadium, shown in Fig. 4.1. This is
characteristic non-integrable classical system, with the orbits of the enclosed particle

being completely chaotic, having non zero Lyapunov exponent[1] leading to unpre-
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dictability. The corresponding quantum system shows a statistical behavior of the
eigenvalues completely different from the randomly distributed levels of the circular
billiard[2,3]. The propability distribution P (S) for the spacing of successive energy

levels will follow a form known as Wigner[5]
P(S) = gSeXp (—ZSQ> , (4.2)

plotted in Fig. 4.2. This gives zero propability to zero spacing S and a linear law
for small S. It, somehow, means that the levels communicate with each other, this
effect is called level-repulsion. This is in sharp contrast to what is happening for
the uncorrelated random levels in the circular billiard. Moreover, the corresponding
wavefunctions will have a characteristic structure with scars (concentrated ampli-
tudes) where the periodic orbits of the chaotic classical system occur[3], in contrast
to the perfect ballistic wave states for the integrable systems.

In general, there is a widely accepted conjecture[7,8,9,12] that quantum systems
displaying classically integrable behavior, like the circular billiard, are expected to
follow a universal behavior for their energy level statistics conveniently expressed
through the Poissonian form of P (5). For quantum systems whose classical counter-
parts display classically chaotic behavior, like the stadium billiard, P (.S) will follow

universal Wigner statistics.

4.1.2 Random matrix theory

The Wigner distribution can be in general derived by the random matrix theory(RMT)
[4,9], which has to do with the statistical properties of the eigenvalues of full infinite

dimensional random matrices. These matrices can be regarded as hamiltonians of
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disordered quantum systems with most of their possible symmetries being broken.
There are, however, some basic symmetries preserved even in the case of completely
chaotic systems. Time-reversal symmetry is the most fundamental one. H must be
real[8] when time-reversal symmetry is preserved. The real time reversible hamiltoni-
ans of RMT are characterized by a definite statistical behavior of their energy levels,
they show level-repulsion as in the case of the stadium billiard. This is clearly ex-
pressed through the special form of the nearest level spacing distribution P(.S) which
has the Wigner form 7.Sexp (—%Sz). The unique behavior of the time reversible
hamiltonians of RMT, can be derived in the simple case of a two dimensional real,

random, Hamiltonian|§]

H— Hll H12 7

H12 H22

where we have taken account hermicity. We can also consider all the elements
Hyy, Hy, Hi5 as uncorrelated random variables with a propability distribution of the

typical gaussian form W (z) ~ exp (—z?). The difference between its eigenvalues is

By — By = \/(Hyy — Hyn)? + 482,

the terms © = Hy;; — Hyy and y = 4H,, are again uncorrelated random variables
distributed in the gaussian form, so that we can write the spacing between the two

energy levels of the random Hamiltonian as

S:EQ—Elz\/I'Q—i-yQ.

The propability distribution of this spacing S can be derived from the following
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formula

P(S)://dxdyW(x,y)a(S—\/m),

which gives P(S) if we know the propability distribution of each random variable.
In our case we have two random variables described by the propability W (z,y) ~

exp [—A (2 + y?)] and we need to derive the propability distribution of their function

S = \/x? + y? . In polar coordinates x = rdrdf,r = \/m we have
P(S) = //rdrdQ exp (—Ar?) 6 (S —r) = 2nSexp (—AS?),

An important remark is that P (S) is a statistical measure of the fluctuations of
the S around its mean value < S > which does’t hold any information about the
chaotic nature of a quantum system. For convenience we require that < S >=
[ SP(S)dS = 1, along with the normalization condition | P (S)dS = 1 gives the

Wigner distribution of Eq. [4.2].

In general the basic symmetries present in the systems described by the RMT the-
ory enable us to categorize them into three basic universality classes, characterized by
a level-repulsion between their energy levels. The ensemble of real symmetric random
matrices which preserve the time reversal symmetry is called the gaussian orthogonal

ensemble(GOE) and is characterized by P (S) ~ S for small energy differences S.

When the time reversal symmetry is broken, e.g. in the presence of a magnetic
field, the corresponding ensemble, called gaussian unitary (GUE), consists of com-
plex hermitian random matrices. It is characterized by a universal level-repulsion of

P(S) ~ 5% when S — 0 . This behavior can be derived again by considering the
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simple case of a two dimensional complex random matrix

Hll H12
H =

Hi, Ha

The spacing between its eigenvalues now becomes

S = E2 — E1 = \/(Hll — H22)2 —+ 4Real (H12)2 + 4Im (H12)2,

S depends on three uncorrelated random variables this time x = Hyy — Hoo, y =

2Real (His) and z = 2I'm (Hi5) so that we can write

S =+x2+y?+ 22

If we calculate P (S) assuming that x, y, z are distributed in a typical gaussian form as

in the gaussian orthogonal ensemble, by using also the spherical coordinates drdydz =

r?sin Odrdfde,r = /22 + y? + 22
P(S)= //dmdyW(a:,y,z)(S (S_ \/m> _

= //drd6d¢r2 sinfexp (—Ar?) 6 (S —r) =
= 4715% exp (—AS2) :

By taking account the conditions [P (S)dS =1 and < S >= [SP(S)dS =1
we derive another type of Wigner distribution 2252 exp (—25%), characterizing the

gaussian unitary ensemble, with an increased level of repulsion P (S) ~ S? for S — 0.
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There is also a third universality class characterizing the so called gaussian sym-
plectic ensemble which consists of full random matrices that preserve the time reversal
symmetry but have spin orbit coupling. This ensemble shows a universal level of re-
pulsion P (S) ~ S* for S — 0.

Therefore, the chaotic nature of quantum systems can be found by fully random
matrices which form the three elementary ensembles of RMT according to the ba-
sic symmetries present. All quantum chaotic cases show a universal level-repulsion

between their energy levels

P(S)=5%8 =0,

where § = 1,2, 4 is called the universal class index, denoting orthogonal, unitary and

symplectic universality classes, respectively.

4.2 Quantum chaos in disordered tight binding lat-

tices

The universality classes of quantum chaos are also encountered in systems described
by the tight binding model in the presence of disorder, like graphene or a square
lattice. They are closely related with the localization properties of the corresponding
wavefunctions. Such behavior is well known for the energy levels of a cubic lattice
with on-site potential disorder denoted by the strength W[10,11,12], by introducing
random variables on the diagonal matrix elements of the corresponding Hamiltonian.
The levels show the typical characteristics of repulsion described by the Wigner dis-
tribution for P (S) with universality class index § = 1. They are correlated having

overlapping wavefunctions that diffuse in space, characterized by infinite localization
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length. The corresponding chaotic wavefunctions are randomly fluctuating.

In the cubic lattice when the randomness on the diagonal exceeds a certain limit,
that is for W > W, = 16.5, where W, is known as the critical point, then Anderson
localization mechanism occurs[6] leading to localized wavefunctions with their finite
localization length decreasing further as W is increased. The energy levels on this
localized regime behave as completely uncorrelated random variables described by
the Poissonian form of P (S). That is resemble quantum systems that are classically
integrable like the circular billiard (see Eq. (4.1)). The corresponding wavefunction
are non-overlapping concentrated on sites suggested by the localization length. At
the critical point W, where the transition between the chaotic and localized regime
occurs, the propability distribution of the spacing between successive levels P (5) is
known to follow a form 4S5 exp (—25) called semi-poisson[10,11]. This intermediate
distribution is characterized by a behavior intermediate between the Poisson and the
Wigner, for small is analogous to S similar to Wigner, while for large S it decays with
a Poissonian rate as exp (—25). The semi-poisson distribution characterizes quantum
systems that are classically semi-integrable, e.g a trigonal irrational billiard. The
corresponding wavefunctions are multifractal sharing the properties of both extended
and localized states with their amplitude wildly fluctuating in space (see Chapter
two). For one and two-dimensional tight binding models with diagonal disorder, e.g.
a linear chain or a square lattice, the critical value of W, = 0 implies that P(S) for the
energy levels always follows the Poisson form with the wavefunctions being localized
for any finite value of the disorder strength W.

The above results are valid in the limit of infinite system size only. In practice

we can use numerical methods, like diagonalization, for finite systems and via scaling

reproduce the chaotic behavior of the infinite systems. We can verify for example,



98 Chapter 4. Quantum Chaos in Disordered Graphene

that the distribution of spacings P (S) for a finite linear chain approaches gradu-
ally the Poisson form as the disorder strength W is increased. For a square lattice
with on-diagonal disorder, however, P(S) gives an almost scale and disorder invariant
Wigner form, as long as we stay at the chaotic region for disorder W under W¢. The
scale invariance of P(9S) also indicates multifractality of the corresponding wavefunc-
tions[13]. As we increase the size the expected Poisson form is indeed, approached
extremely slowly, it is obtained for very large sizes. In other words it is difficult to
detect Poisson in practice for moderate values of W because of the large localization
lengths of the corresponding wavefunctions.

In confined graphene systems recent experiments[16] ,pose the fundamental ques-

tion about its chaotic nature. It is of great importance to see the role of edge states

in the presence of disorder.

4.2.1 Square Lattice

In a finite square lattice sample with on-diagonal disorder quantum chaos occurs. We
can show this by studying the statistics of just one spacing between two successive
energy levels, at the the middle of the energy spectrum. We have done this for the

simplest possible flake form, that is a square. The results are shown in Fig. 4.3.

We carried out the calculations for the distribution P(S), by demanding that the
mean value of the spacings is < S >= 1, obtained for different sizes and values of the
disorder strength W. Clearly P(S) follows a form close to Wigner, almost invariant
under scaling, consistent with the multifractality of the wavefunctions corresponding
to the two energy levels. The form of P(S) is Wigner-like for every value of disorder

strength W (W < 1), showing that the system remains at the chaotic region for
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Figure 4.3: The distribution of the level spacing between two successive positive mid-
band energy levels of a square lattice for different strengths of disorder W 50000
realizations and different sizes. We plot also the Poisson[4.1] and Wigner[4.2] distri-
butions. All the curves stay near the Wigner distribution showing the typical chaotic
behavior derived by RMT for § = 1.
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the disorder values. In order to be able to study the statistical behavior of the level
spacings including more energy levels than two near zero energy we have to ensure that
the mean value of the spacings < S >= 1. In this case we must apply a method called
unfolding ensuring that the mean value becomes one and the fluctuations around this
value which characterize quantum chaos. Our results are consistent with the presence

of a chaotic region which crosses over to localized only for very large size.

There is a continuous crossover between the two different, chaotic and localized
regions, a behavior known as crossover. For weak disorder there is a typical chaotic
behavior where the energy levels show a considerable repulsion without ever crossing,
well described by the Wigner form of P(S) shown in Fig. 4.3. Despite the fact that
for an infinite square lattice there is a trivial transition point at W, = 0, localized
wavefunctions exist for every non-zero disorder and every possible energy. The wave-
functions of the studied finite square lattice, however, look extended due to the finite
system size. They display a chaotic region for sizes below the localization length. For
large disorder strengths the energy levels gradually begin to fluctuate wildly resulting
in high possibility of both crossings and large spacings, resembling the behavior of an

ensemble of uncorrelated random numbers described by the Poisson P(S).

4.2.2 Graphene

We have studied the level-spacing distribution near £ = 0 for a finite square hon-
eycomb lattice representing a graphene flake. The obtained results are similar those
found in [17]. In particular the distribution of the spacing between two successive
levels is shown in Fig. 4.4. The P(S) between two successive positive levels stays near

the semi-poisson distribution for all the sizes and weak disorder strengths studied.
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Figure 4.4: The distribution of the spacing between two successive midband energy
levels of a square graphene flake for different strengths of disorder W ;100000 realiza-
tions and different sizes. All the curves stay near the Semi-poisson distribution for
all weak W and sizes.
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Figure 4.5: F ~ 0.014 wavefunction propability distribution of a square graphene flake

with on-diagonal disorder (W

0.5) consisting of 2840 sites. The honeycomb lattice

sites are arranged on a square lattice. The wavefunction is shown to be localized at

the zigzag edges of the flake.

This is a weakly chaotic behavior non existent in the square lattice with on-diagonal

disorder. For higher disorder strengths we expect the usual Poisson distribution of

since Anderson localization mechanism prevails as for the square

Y

P(S) to be recovered

lattice. The Wigner distribution is not encountered at the Dirac point of graphene

for the square flake geometry studied.

This weakly chaotic behavior is closely related with the localization properties

of the wavefunctions. In graphene the edge states exist even in the presence of on-

diagonal disorder, arising from the destructive interference mechanism of the honey-

comb lattice. In order to verify this assumption in Fig4.5 we have plotted a wave-

Edge states are intermediate case between the diffusive

function near the Dirac.

wavefunctions of the disordered square lattice, that give chaotic behavior, and the
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E2 - E1 around 0.4 W = 0.5, 1.0-50000runs

—— Wigner
Poisson
— Semi
O——o0 4539
o—0 10395
15066

Figure 4.6: The the level spacing distribution between two successive energy levels
at £ = 0.4 of a square graphene flake for different strengths of disorder W ;50000
realizations and different sizes. The typical chaotic Wigner like behavior is recovered
since edge states are absent.

localized states occuring in disordered 2d systems when the disorder strength be-
comes sufficiently large. They are approximately extended along the edge, without
penetrating in the internal region of the flake. If this is combined with the diffusive
mechanism of quantum chaos gives chaotic edge states and a form of P(S) intermedi-
ate between the Wigner distribution characterizing repelled extended wavefunctions,
and the Poisson distribution related with localized wavefunctions. According to this
analysis we expect the propability distribution of spacings P(S) for levels higher in
the energy spectrum of graphene where edge states are absent to recover the usual

chaotic behavior described by the Wigner form of P(S). This is shown in Fig. 4.6 for
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two successive energy levels at £ = 0.4. The typical chaotic behavior corresponding
to diffusive wavefunctions encountered in the square lattice is recovered. The form of

P(S) is Wigner like for the all weak disorder strengths and flake sizes studied.

4.3 Conclusions

Disordered Graphene flakes show a new quantum chaotic behavior not encountered in
conventional disordered 2d systems like a square lattice. The propability distribution
of spacings P(S) near the Dirac point of graphene with on-diagonal disorder follows
approximately the semi-Poisson distribution indicating a weakly chaotic behavior,as
obtained in [17], intermediate between the typical chaotic behavior encountered in
a square lattice with on-diagonal disorder, described by the Wigner form of P(\5),
and the Poissonian form of P(S) characterizing Anderson localization. This special
chaotic behavior is strongly related with edge states present in graphene systems. For
weak disorder the honeycomb lattice destructive interference mechanism of graphene
survives giving edge states near the Dirac point, extended approximately along the

edge of the finite graphene system, leading to the weakly chaotic behavior shown.
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Chapter 5

Conclusions

The honeycomb lattice structure of graphene has important properties like chiral sym-
metry and spatial anisotropy. These are responsible for the highly topology dependent
electronic properties shown. Graphene is also characterized by extreme sensitivity to
boundary conditions. The underlying destructive interference mechanism plays a def-
inite role. Its existence is due to the fact that the honeycomb lattice has every site
connected to its three nearest neighbours. For finite systems with edges this mech-
anism leads to wavefunctions localized at the boundaries. These are well known as
edge states and their existence is dependent on the morphology of the boundary. The
so called zigzag type of edges contributes edge states near the Fermi energy for any
confined graphene system. The other possible type of edge, armchair does not give
edge states and consequently, the semiconducting behavior remains intact. We have
demonstrated edge states in various systems, semi-infinite graphene sheets, zigzag
nanoribbons, and flakes of square and circular formations where there exists mixing

of zigzag and armchair edges.

We show how the topology sensitive electronic properties of graphene play an
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important role in the fractal nature of the wavefunctions at the Dirac point. In
the presence of off-diagonal disorder which preserves the chiral sublattice symmetry;,
the mechanism leading to edge states survives. The wavefunctions located at the
boundaries of finite systems resemble the fractal states for small length chains with off-
diagonal disorder. This is clearly indicated by the scaling dimension Dy taking values
from zero to one, instead of going from zero to two as for the midband multifractal
wavefunctions of a square lattice with off-diagonal disorder. Zero value of Dy means
Anderson localization, Dy ~ 0 means edge states and Dy = 2 fully chaotic, diffusive

or ballistic states.

We have shown also that the destructive interference mechanism plays an impor-
tant role in the quantum chaotic behavior of disordered graphene. The energy levels
at the Dirac point for square samples with on-diagonal disorder show a statistical
behavior not encountered in conventional 2d-systems, like the square lattice. The
form of the spacing distribution P(S) is intermediate Semi-Poisson like, indicating
a weakly chaotic behavior. This remains for many successive energy levels near the
Dirac point where edge states exist for pure graphene. We argue that this behavior
is due to the underlying mechanism of edge states which survives even in the pres-
ence on-diagonal disorder. It is clearly indicated by the comparison of the statistical
behavior for the midband energy levels to a disordered square lattice, for which edge
states are absent. For the latter case the well known Wigner like chaotic form for
P(S) is obtained.

Therefore,in both, off-diagonal and on-diagonal disorder, the destructive inter-
ference mechanism of the underlying honeycomb lattice of graphene prevails giving
midband edge states, heavily affecting the fractal nature of the wavefunctions and

the chaotic behavior of graphene. This mechanism is of extreme importance for the
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construction on graphene based nanoelectronics. The weakly chaotic behavior at
the Dirac point, implies a semi-metallic behavior intermediate between metals and

insulators.






Appendix A

Lattice representation (tight

binding method)

A.1 Introduction

Tight binding is a method widely used in condensed matter physics for modeling
electronic quantum properties of various crystal lattice structures. The wavefunction
of an electron inside a periodic lattice structure can be expressed as a superposition
in the lattice site basis. In this sense the wavefunction for one electron can be written

as a linear combination of the atomic site orbitals denoted by | n > as
N
(U >=) "V, [n> (A1)
n=1

where N is the total number of atoms and ¥,the amplitude coefficients. The tight
binding approximation is based on the simple assumption that each atomic orbital

is strongly localized on the corresponding site position. | n > denotes the positions
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Figure A.1: An infinite linear chain.

of each atom in the lattice. The propability amplitude for finding the electron in
position 7 would be < 7 | ¥ >= S W, < | n >= ¥, . This is obviously
non-zero only if there is an electron in the atomic position. In this case electrons are

tightly bound in each atomic site which defines the term tight binding.

In otherwords, tight binding model is a discretization of real space into lattice
site points where the atoms lie. The tight binding Hamiltonian can be derived by
descretizing the Schrodinger equation in the lattice points. A simple continuous model
of a particle in one dimension in the presence of a potential V' (x) is described by the
Schrodinger equation

B 0PV(x)

2m  Gx?

HY(z) = E¥Y(z) = + V(2)¥(z) = E¥Y(2)

We can easily transform this system into a set of discrete spatial points within
distances equal to the lattice constant a,forming this way a chain extending from —oo

to oo which can be seen in FigA.1 The position z in this case takes discretized values

x = na,n € Integer [—oo, o] while the second derivative —%929\1;(;6)

assuming that a

is small can be written as

620 () 1 /0V(x)
g et o (G Lmtortge = bt
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The first derivatives at points x = (n + %) a and x = (n — %) a are

and the second derivative is

o) L W+ 1)) — 28(na) + U (0 — 1)a)

so that the difference tight binding equation for the chain becomes
—t[U((n+1)a) + ¥ ((n—1)a)] + (V(na) — 2t) ¥(na) = E¥(na)

with ¢ = 5 T’fag Although in the derivation we have assumed that the lattice spacing

a is infinitesimally small ,this model can be easily generalized for any value of a. For

simplicity we choose a = 1, and write

t[Uyy + U]+ (V, — 26) U, = ET, (A.2)

The discretized Scrodinger equation HV = EW can be written also in matrix form as

[ —t 0 0 o ][ ] [ ]
—t V-2t —t 0 0 U, U,
=1 0 —t v, — 2t —t 0 v, | =F| U,
0 0 —t Ve =2t —t || U Uy
0 0 0 —t 11 | I |
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The tight binding matrix H is written in the| n >orbitals basis which is exactly the
discretised space. We see that neighbouring orbitals or sites, communicate via off-
diagonal hopping terms —t¢ while in the diagonal there is an on site term V,, — 2¢ .
In our calculations we usually neglect the extra diagonal term —2¢ because it just
shifts the whole energy spectrum by a constant factor. This result can be easily
extended to more dimensions two and three and different lattice types, so that we
can derive their electronic properties like the band structure, the density of states or

the wavefunctions.

A.2 1d tight-binding lattices

A.2.1 Infinite systems

The tight-binding difference equation for an an infinite linear chain is

—t[ Uiy + Uy 4]+ VO, = BT,

considering the on-site potential V; = V' constant for all the sites of the chain. We
can solve this equation in order to obtain the energies and the wavefunctions of this

system by assuming a simple solution in the form of a plane wave ¥,, = exp(ikn).
—t [exp(ik) + exp(—ik)]| +V = E =

E =V —2tcos(k) (A.3)

This is the dispersion relation of the infinite linear chain with nearest neighbor hop-

ping —t and constant potential V' Eq. (A.3). It gives continuous energy values in the
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Figure A.2: The energy dispersion of a linear chain with hopping ¢t = 1.

interval [V — 2¢,V + 2t]. For k € [—m, 7] which defines the first brillouin zone, there

is double degeneracy, F(k) = E(—k). It is plotted in Fig. A.2 for V=0 and ¢t = 1.

The eigenvector corresponding to energy F(k) expressed in the lattice site basis
| n > is

o0

| Up >= Z exp(ikn) | n >

A basic quantity characterizing the electronic properties of a quantum system is

the density of states p(E). It is defined for a finite system as

p(E) = - " 6(E — B(k) (A1)

where N is the total number of states of the system. It is constructed by the sum
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of individual delta functions localized around each allowed energy E(k). The p(E)
gives the number of states which have a specific energy F and the density of states
at this energy if we include the normalization factor % For an infinite chain, since
k takes continuous values in the interval [—, 7] , we can derive p(E) by calculating

the integral

E) = [ a(E — B

excluding the normalization term since N — oo in this case. by using dispersion

relation Eq. (A.3) we have

E E FE E
d—z%sin(k)idk}:—q = dk = d = dk = d
dk 2t sin(k) 2t1/1 — cos?(k) Va2 — (E-V)?

By substituting dk into the integral and using the property of delta function ffoooé (x—

a)f(x)dx = f(a) we get

e dE(k) 1
HE)= |, O = B = s

V42t

while using also the normalization condition [, )" p(E)dE = 1 we get the result for

the density of states
1 1

A T BTy e

(A.5)

It is symmetric around V and is defined only when | E — V' |< 2t since the density of
states must be a real function. This is of course due to the fact that energies belong
in the interval [V — 2¢,V + 2t]. It is also singular at E =V — 2t and E =V + 2¢ .1t

is plotted in Fig. A.3fort=1and V = 0.
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08 H
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0 1 2 3 N-1 N N+I

Figure A.4: Finite linear chain consisted on N atomic sites.

A.2.2 Finite systems with boundary conditions

In finite 1d systems formed by implying various types of boundary conditions we have
hard wall boundary conditions whose equivalent model in continuous space would be
an infinite quantum well. This type of boundary conditions requires the wavefunction
of the electron to be zero at sites where the chain is terminated. The resulting system
will be a finite chain of N sites shown in Fig. A.4 An important remark here is that
we require the wavefunction to be zero at sites zero and N + 1 which seem to lie
outside the chain. Those actually belong to the chain but the propability of finding

the electron there is zero so we don’t need to include them in the the total number
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of sites. With the lattice being terminated at those sites solution of the tight binding
equation must be in the form of a standing wave. This wave must have zero amplitude
on x = 0. The only possible form fulfilling this condition is ¥* = Asin(kn) while the

boundary condition at n = N + 1 gives

Uy =Asin(k(N+1)=0=Fk = j=12.,N (A.6)

Note that in the derivation of £ we have excluded negative values of j so that it takes

discrete values between zero and 7 only. Dispersion relation Eq. (A.5) becomes

Vs

This gives discrete energy values in the interval [V — 2t,V 4 2t]. As N — oo this
set of energies becomes denser until it finally reproduces the positive part k& € [0, 7]
of the first brillouin zone of the infinite chain. Negative values of j in the definition
of k would give states that belong to the negative part of this brillouin zone. These
states would have energies £_; = E; and corresponding wavefunctions related with

those for positive values of j by just a phase factor ¢,/ = —J.

Eigenvectors for this system are in the form of (A.1)

gm

N
E>=A i
| k> ;SID(N—l—ln) | n >

The factor A can be calculated by the normalization condition for the wavefunction

N
<k|k:>:1:>AQZsin2( n)=1
n=1

nm
N +1
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N+

the sum can be written also as} ') sin®(:Z=x) since the wavefunction is zero for

=0 N+1

n=0and n=N+1.When N — oo this can be approximated by an integral with

L = N + 1 being the actual length of the chain

L . jT jT
L [’ L [771— 2
/ Sin%%n)dn = — sin?(z)dx = Mdm =
0

L
T Jo Jm Jo 2 2

the normalization condition becomes then

I 5
P E Y
5 — 7 i3

as we would expect for an 1d infinite well of length L. So the normalized eigenvector

N .
2 g
U, >= 4/ —— 1 A8
| U, > \/N+1nglsln(N+1n)|n> (A.8)

We can also calculate the density of states of this system assuming it is large

18

enough N — oo. In order to do this we can consider a small energy window dFE
and count the number of states dN (don’t confuse with total number of sites) inside
it. This is in principle the same as definition (A.4) when dE — 0. By using also

dispersion relation (A.7) we get

_dN _dN 1 1 1 1

E)=E = dk 2 7 otsin(k)  2t/T — cosP(k) /A — (B V)2

% gives us the number of states inside a windowdk in k space. It is also obvious

From (A.6) that there is always only one state corresponding to a specific k so that

V42t

4N _1 . The normalization condition fv_2t

dk

for p(E) the same as (A.5).

p(E)dE = 1 makes the derived relation
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Figure A.5: A finite periodic linear chain consisted on N sites.

We now examine the case of periodic boundary conditions. In order to form a
system of this kind we just take the 1d-finite chain discussed and connect it’s edge
sites one and N with a hopping. This way we form a closed chain as shown in Fig.

AL,

In this case the wavefunctions must be in the form of running waves. We choose

the form W(n) = Aexp(kn) and apply the right conditions as before

.
U, = Unyy = exp(ikN) =1 = k = %‘j,j €[1,2,..,N] (A.9)

The resulting dispersion relation

o
E; =V —2tcos (%) (A.10)

gives again discrete energy values in the interval [V —2¢, V +2¢]. An important remark

here is that this energy spectrum has double degeneracy. For j = N — j

21y

2mg ,
En_; = —2tcos (27r — W) = —2t cos (T) = E(j)
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When N is even we only need values of j = 1,2,..., N/2 — 1 which give N — 2 states
with double degeneracy. There are also two non degenerate states for j = N/2 and
j = N with their corresponding energies E(N/2) = V — 2t and E(N) =V + 2t .
For N odd j = 1,2,....,(N — 1)/2 gives N — 1 states with double degeneracy. The

remaining state is for j = N with energy EF(N) =V + 2¢.

Eigenvectors are again in the form of (A.1)

N :
2
|E>=A g exp(i%‘]n) | n >

The factor A is easily calculated from the normalization condition < ¥; | ¥; >=1

as in the case of hardwall boundary conditions when N — oo

N
1
<\Ilj|\I/j>:A2/ 1dn:A2N:1:>A:\/N
0

So the resulting eigenvectors are

| kb >= \/ Zexp z—n )|z > (A.11)

Another interesting case is the interaction of this system with a magnetic field.
Consider the closed 1d chain enclosing a magnetic flux as shown in Fig. A.6 We
know from the Aharonov-Bohm effect that a full turn around this enclosed magnetic
flux will change the phase of the wavefunction by a factor 271'(1% with &y = % For
our system this implies that the wavefunction at site one should be equal to the

wavefunction at site N + 1 multiplied by a factor exp(ich}%) which gives us the
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Figure A.6: A finite periodic linear chain consisted on N sites enclosing a magnetic
flux ®.

condition

¢ o
U(l) = exp(i27rq) JW(N+1) = 1= exp[i(kN—i—Qﬂa)] = k=
0 0

so the dispersion relation in this case becomes
2r(j — 2
E(j) =V — 2tcos (M> (A.13)

with the corresponding wavevectors

E7ESy Zexp(iwn) In> (A.14)
N N

A.3 2d tight-binding lattices

We will now study some two-dimensional tight-binding models . Those are used for
the modeling various layer structures in condensed matter physics like graphene that

have attracted a lot of attention lately in the concept also of nanoeletronics.
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A.3.1 Square Lattice

The simplest example of a two-dimensional crystal is the square lattice, shown in Fig.

AT

Figure A.7: Square lattice structure

As we see every site has connections with it’s four nearest neighbours via hoppings
—t . In analogy with the linear chain , the Schrodinger equation now becomes( see
Fig. A.8)

—t [\I[x,y+1 + \I]J:,y—l + ‘;[Ix—i—l,y + lIJ:I:—l,y] + V\Ija:,y = E\Ilcc,y

where we have included the two extra hoppings in the y direction. We can solve it
easily by assuming a solution of the simple form ¥, , = exp(ik,z)exp(ik,y) where

_)
kyand k, are the projections of wavevector k in x and y axis respectively. Dispersion
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(x,y+1)

(x,y)

(x-Ly)@- 9 @(x+1y)

(x.y-1)

Figure A.8: One atomic site of the square lattice connected with it’s four nearest
neighbours

relation becomes in this case

—t [exp(iky) + exp(—ik,) + exp(ik,) + exp(—ik,)| +V = E =

E(ky k,) =V —2tcos(k,) — 2t cos(ky) (A.15)

This gives continuous energy values in the interval [V —4¢, V +4t]. It also depends
on two parameters, so we need a 3d plot in order to visualize it, it is shown in Fig.
A9. E(kyky) for t =1 and V = 0 as a function of k., k, € [—m, 7] which define the

first brillouin zone

As we see in the first brillouin zone has the form of a square. The lines in Fig.
A.10 characterize points that have the same energy giving infinite degeneracy for
all energies apart from the minimum and maximum values E,,., = 4, E,n = —4.
Clearly the first brillouin zone crosses the zero energy plane through four lines that

form a square. For those lines

E(ky k,) = 0= cos(k;) = —cos(ky) = k, =7 — k,
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Figure A.10: Contour plot of the energy dispersion of a square lattice.
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The part of the zone that lies inside this square corresponds to negative energies
with one pair of k;, k, = 0 giving the minimum value E,,;, = £(0,0) = —4. The re-
maining points of the zone that lie outside this square correspond to positive energies.
For this region there are four degenerate states for different pairs of k., k, having all
the maximum energy value F,,,, = F(r,7) = E(—7,7) = E(—7,—7) = E(m, —7) =

4.

We can find the density of states of this system from (1.4) by calculating the

integral in analogy with the infinite 1d-chain

1

52 dk/ dk0(E—E(ky, ky)) / dk;/ dk,0((E+2t cos(k,))—(—2t cos(ky)) =
T

27r2/ dk / dx 0 E)Qé(x—(—Ztcos(ky)):

Tz

1 _ / dk, =
27r2 \/4t2 (E + 2t cos(ky)) 2(mt)? \/1 — + cos(ky))?

For energies F # 0 it can be proven that this has the form of a complete elliptic

integral of the first kind K (x fo d@m where x = /1 — At E = 0 the

16152

density of states is singular and decays with a logarithmic law log( It is plotted

\E’I)
in Fig. A.11.

The next thing we can do is apply hardwall boundary conditions in both spatial
directions zand y in analogy with the 1d chain. Consider a finite square lattice with
a total number of NxM sites. An example with N =4 and M = 4 is shown in Fig.
A.12. The wavefunction must be zero on the sites where the lattice is terminated. So

it must be of the form of a standing wave as in the 1d case V(z, y)=Asin(k,x) sin(k,y).
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Figure A.11: The density of states p(E) of a square lattice for hopping ¢ = 1.

Figure A.12: Square lattice with hardwall boundary conditions.
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This form fulfills the conditions ¥ (0,y) = ¥(z,0) = 0 while we must have also

Uity = Asin(ka(N + 1)) sin(kyy) = ky = 22— j=1,2,..,N
’ N +1

v Asin(kya) sin(hy (M + 1)) = ky = 2" j = 1,2, .., M
= MKy mn T = s = Ly4y ey

M+1 S r)s y V1 J

Both kyand k, take discrete values between zero and m. Dispersion relation (A.5)
becomes

Jm
N+1

E(l,j) = —2tcos( ) — 2t cos( ) (A.16)

As we increase the number of sites in both directions N— oo and M — oo this set
of energies becomes denser reproducing the positive part k, € [0, 7] and k, € [0, 7] of

the first brillouin zone of the infinite system.

The corresponding eigenvectors are found easily by using the wavefunction of a

finite chain

N M
2 . .
| U >= o1 E E sin(k,x) sin(kyy) | z,y > (A.17)

z=1 y=1

Another interesting case is applying hardwall boundary conditions only in one
spatial direction y for example. In this case we can form a infinitely long strip of
square lattice as shown in Fig. A.13. This strip commonly referred to as wire or
ribbon is a useful structure for modelling various transport problems. It’s dispersion

relation is of course

lm

E(k, 1) = —2tcos(k,) — 2t cos(M 1

) (A.18)

For every value of [ we can plot F as a function of k,. In this way we form the band

structure of this semi-infinite system which is plotted in Fig. A.14. We can see that
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00 —eljesssssss———— ()

Figure A.13: Square lattice ribbon.

Figure A.14: The band structure a an infinite wire.
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all the curves resemble the band structure of the 1d-infinite chain. This is because
this system is actually constructed of N infinite chains connected with each other via

a constant hopping ¢. This is obvious also from Eq. (1.19) since for a definite value

of [ this is just the dispersion relation Eq. (1.7) with k = k, and V = —2¢ cos( MZL)

Those bands are also knows as channels in transport theory.

A.4 Bloch’s theorem in tight binding

A very fundamental theorem in solid state physics is the Bloch’s theorem. It allows
us to calculate the wavefunction of an electron inside a periodic structure, like the
lattices already discussed. Consider a continuous system with a periodic potential
V(7). Bloch’s theorem states that the wavefunction \I/(r—)> of an electron inside this
system can be simply written as
\If(r—)> = u(r—)> exp(z’??)

where u(r_)> is a periodic function with the periodicity of the potential V(7) and
exp(i??) the wavefunction of a free electron. So the wavefunction of an electron
inside a periodic system is just the wavefunction of a free electron modified by the
system’s periodicity. We can easily apply this result on a simple tight binding lat-
tice with zero on-site potential. Function u(r—)> in this case simply discretizes the
free electron wavefunction exp(i??), a result we have already used in the previous

chapters. Bloch’s theorem may not look very useful in this trivial case however it is

very important for calculating more complex periodic structures.

Consider for example an 1d infinite chain with a unit cell consisting of two atoms
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Figure A.15: A linear chain with a unit cell consisting of two atoms.

A and B with different potentials V4 and Vg on each, shown in Fig. A.15. The

Schrodinger difference equations for the nth unit cell are

(B —Va) ¥y = (P + V5"

(E = Vp)Wp = (W) + W5

we can use the Bloch’s theorem by taking account the periodicity of the lattice which

is two times the lattice spacing a = 1 and write amplitudes ¥’} and U’ as

U = WU 4 exp(ikn)

V% = Ugexp(ikn)

substituting on the difference equations we get

(E — VA)‘IIA = t\I/B(l + exp(—z’k))

(E — Vi)Up = tUz(1 + exp(ik))
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Vj‘ VB Vc Vj‘ VB Vv Vj‘ VB Vc
------ ® o o (& o o 0 o o
n-1 n n+l

Figure A.16: A linear chain with a unit cell consisting of three atoms.

now we can solve this system of equations in order to get it’s eigenvalues

E—-Vy —t(1 + exp(—ik)) )
=0= E°—E(Va+Vp)+VaVp—2(14cos(k)) =
—t(1 + exp(ik)) E—Vg

(Va+Vg) £1/(Va— V)2 +8(1 + cos(k))
2

= FEL =

So the band structure of this periodic system is consisted of two energy bands.
Their number is equal to the number of atoms inside the unit cell which is a general

rule for those kind of systems.

We can easily extend this method on a system with more than two atoms inside
it’s unit cell. For example in the case of three atoms which is shown in Fig. A.16.
in analogy with the previous system we would have to solve the following system of

equations

(E - VA)\IIA = t(\I/B + \I/C exp(—ik))
(E—Vg)Up = t(VU 4+ U¢)

(E - Vc)\l’c = t(\I/B + \I’A exp(z'k:))
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the 3x3 matrix whose determinant will give us the eigenvalues of the system is

E—Vy t exp(—ik)

exp(ik) t E—Ve

This is actually the Hamiltonian of an 1d closed chain enclosing a magnetic flux.
The original periodic system is formed by infinitely repeating it’s unit cell. This
is equivalent to connecting it’s edge sites A and C' and then applying a magnetic
field through it which introduces a phase factor in the wavefunction according to the

Aharonov-Bohm effect.






>0vodn

‘Eva and ta mo evigépovta Jéuata 6T oY yeovn Quotxy| elval oL VAVOETIGTHUES,
ol onofeg ytilouv 0 UTEBalpo Yol TNV XATAVONCT TWV VEUEAWOWY AP WY TNG VOVOT)-
hextpovixfc. To ypagévio and tny mopaywyr| Tou To 2004 €yel yiver éva amod Tar x0plal
avTXElEVA TN £pEUVOC GTOV TOUEN TV VavoemoTu®Y. Elvar 1o mpoTo diodidotato
HETOALO TTOU QT UNXE TOTE XU Ol MAEXTPOVIXES IOTNTES TOV, TEOOGHPEPOLY EVa EVED
Tedlo Yo eapuoYEs xou yia Yeueiwon Yewpntiny| épeuva. XNy nopoloo dlotpldY| Ue-
AETAPE TIC NAEXTPOVIXEG WOLOTNTES TWY Ypageviou mapoucia ataliug, 1 omola amotehel
EVOY AVOTOPEUXTO TUPAYOVTA OE xGVE Uecooxomind cuotrua. H uedétn twv oyetxnody
QUYOPEVWY YIVETOL UECK XANEQWUEVKDY UEVOOWY TNG HECOOXOTIXNC PUOLXNG, OTWS )
HOPWOXAICUATIXT YEWUETEIA ot TO XBavTind Ydoc. Autd UaC ERITRENEL VoL UEAETHOOUYE
TNV AAATAETOPUOT TN YVWOTAG NAEXTEOVIXTG CUPTERLPORdS Tou xaldapol ypageviou,
E TOL QUUVOUEVA DSy UOTS %ol EVTOTIOUOU Tou ElodyeL 1) ataio.

To ypagévio, T0 TeWTO dLloddoTUTO YETaALO TouU YTy dnxe ToTE, bvan €va eviafo
OTPOUA aTOUWY dvlpoaxa Tuxve TaxeTaplouéva o wa dour) Théyuatog xepridpag. To
Yeopévio mopdydnxe yio tpwtn @opd to 2004, oto Manchester and tny oudda tou A.
Geim xau K. Novoselov[1,2], uéow pnyovixfc arokémone and yeagitn. Touc anovepr-
Ve 1o Bpafeio Nouneh Puowric 1o 2010. To ypapévio €yel e€oupeTinéc WOLOTNTES Ot
oToleg BEV GUVAVTIOVTAL GE GUUBATXXE VRIS, 6Twe, UEYAAT euehi&io, LPnhY xvnTixdTn-
oL AEXTEOVIWY PE Toy OTNTES XoVTd oTNY evépyela Fermi mou mAncidlouy tny Tory dTnTal
TOU QWS ¢, TOAD LYNAGTERT and omolYONTOTE GUUBATIXO TUYwYO. Mrogel va xonel
O€ UOXPOCTEVES TAVIEC YVWOTEC W¢ VavoTuvieg ypapeviou (GNR) [3], 1| OE TEELOPL-

OUEVES DOUES YVWOTES WG VLPADES [4], xadioT®VTaC TO EVay EEMUPETIXG uTodghHPIo Yia



NV AVTIXATdoTaor Tou Tupttiou ota uehhoviixd vavoniextpovixd. 1IohAEg dhheg teyvi-
*EC TopAYWYHS Tou Ypageviou Eyouy avartiydel enlong, 6nwe 1 emtadiony| avdntulr oe
xopBidto Tou Tupttiou [5], Ve o€ PETOAAXG UTGGTEWUA [6] 1 UE THY XOTH VAVOOWAHVGDV

dvipaxa [7,8].

H Yewpntixd, uehétn tou ypageviou, HEca amd YVWOTEG UEVHO0US TNG XPovTiny Gu-
oxc OTEPEdS XATAoTAONG EYEL AmOXUNDPEL UEQIXES ECWTRAYUNTIXES CUUTEQLPORES Ot
omoiec oudEnoTe cuvavTIoVTL o cuUBaTixd cucsTAuata. H xudehoedric dour TAéypo-
TOG TOUu Ypageviou odnyel oe Qouvoueva xBavTixfic CUUBOAAGC TEOXANWYTAS EVIOTIOUO
TV XUPOTOCUVARTACE®Y OTa dXpol CLCTNUATWY and yeapévio [10, 11]. Emnmiéoy, autée
Ol XATAOTAUCELG dXPWY CUVELGPEQOUY EVEPYELES XOVTA 070 eninedo Fermi , xou edoptddvtan
o€ peydho Baduod T popgoloyio Twv axpwv. Eivow cagéc 6Tt ot nhextpovixés 1otoTnTES
Tou Ypageviou ebvor e€atpeTind evaioUnTEC OTNY EMAOYY| TWY GuVOpLaX®Y GUVINXGY. H
UEAETY) QUTWY TWY TOTOAOYIXWY PUVOUEVLY XL O POAOS TOUG GTIC NAEXTRPOVIXES WOOTH-
TEC TOL Ypageviou elvar TOA) oyt Yoo T cuprepiAndn Tou Yeageviou oTov Topéa
¢ vavoriextpovixfic. H dewpntiny) pyerétn €yer amoxalider enlong tn oyeTunoTxy
@UoT TV NhexTEoviwy x0vTd oty evépyeta Fermi , avolyovtag €16t T0 SlEmOTHUOVIXG
nedio tne oyetiotixrc Puorc Lrepedc Katdotaong [1,11]. H oyetxiotind glon twy
NAEXTEOVIWY Yid TEQIGGOTEPO ATO WGH AUOVA HTAV YVWGTY| Ylot TOV Ypapltn o omolog
anoteheitan and TOAG otpouaTe Yeogeviou otoBayuéva pall [11]. Xto eninedo Fermi
TOL NAEXTPOVIAL GTO YPAUPEVIO GUUTERLPEPOVTAL W¢ EAelTEpa Ty ETLNGTING duala cwuaTidLL
o omola Teptypdpovton and tny e&loworn Dirac . Autéd ovoudleta onuelo Dirac . Ané
auTAY TNV drodn o Ypupévio uropel va yenowonotniel wg £vo amOTEAEOUATIXG LOVTE-
Ao Yo T UEAETT TS ABavTXAC NAEXTRPOOUVOIXTC, UE TEOYUVY TAEOVEXTAUATA YIo TNV
OLECAY YT OYETIXOTIXWOY TEWUUATOY XBOVTIXNAC OTWS Ot UXEES DLUCTATELS TOU Y WEOU

Tov amotteiTat.



To poppoxhacuaTxd avTixelueva xaL 10 Ydog amd TNy dAAT Theupd elvon xahd e-
OPAULWUEVOL (PULVOUEVO GTOV TOUEN TWV UY) YRUUUIXWY SUVOIX®Y cuoTrudtwy. H Ornopdh
T0Ug 0TOV *(BavTind %600 Eyer ueheTniel extevag xatd Tig TeheuTaleg dexaeties, xupiwg
O YAUNAAG OLAGTAONG GTAXTA CUCTNUAT YVWOTE g Uecooxomixd. Autd Peioxovtal
HETOEY TS Wxpooxomixic xou TN paxpooxomxic xhipaxac [12]. H @born tou KBavti-
%00 Xdoug Oev €yel va xdver pe duvaixy) e€EAET, ahhd UE TIC OTATIOTIXES WOLOTNTES TOU
evepyelaxou gdoyatoc. To droxta xBovtind cuothuata €youy anodetyVel 6Tt uTaxol-
0uV ToUg (BLlOUC VOUOUS UE TOUG CUUTAVTIXOUS Yopoug Tou KBavtixod Xdoug. O vouot
autol TEpLYpdpovToL and Wi pordnuotin Yewpla Twv TAewS TUY WY UnTe®Y, 1 ontola
xotéotn Yvwoth we Random Matrix Theory (RMT) [12,13,14].

A6 Ty dAAn TAEURA, EVOEIZELS TNE HOPPOXAACHATIXAS YEWUETRlS €Y0UY amodeLy Vel
OTL UTEEYOLY OTOV XOGUO TNG HBAVTIXAG UNYAVIXAG, T.Y. OTIC XUUATOCUVIRTACELS TRV
NAEXTEOVIWY ETOXTOV BLOBIEOTATWY PECOOKOTXWY GLOTNUdTLY [15,16,17,18]. H pop-
POXNACUATIXY] PUCT] TWV XUPATOCUYUPTACEWY XOVTA OTY UETABACT PETIANOU-PHOVOLTN
(MIT) eivan yvwot# [19,20]. Axpicdc oo onueio petdBouong oL xupatoouvapTRoELS Y-
paxTnEllovTon and un TETPUEVY Xplowy) GUUTERLPORE XAMUAXMGNC, EVOL TOADTAOXA OV TL-
AelUEVA YVWOTY ¢ TONULORQOXNJCUOTIXG X0 TEQLYRAQOVTAL Amd Vo OMOXAPO YAoUd
HoppoxhoouaTixmy Sactdoewy. Ot xupatoouvapthoes xdtw and to (MIT) detyvouv
Lol CUUTERLPORE OLdyuoTS, UE To avTioTotya EMINEdA TNG EVEPYELIG VoL UTEXOVOUY TOUG
ouumavTixolg vopoug e RMT onwe xon to KBavtind Xdog. o cpxetd peydho Podud
atadiog, Tdvw and To onueio YETIPacne, xaTacTEoPIXd Qorvoueva xBavTtixhc GUUBoATS
0dnyolyv oe evtomoyd Anderson [21].

To Ypagevio wg TO TE®TO TEAYUATING DIOOUCTATO UETAAAO TOU EYIVE TOTE, TEOGPE-
PEL Lol povodixt| euxonplol Yot 1 003U TV XANECOUEVOY QUVOUEVWY TOU X[BayTixo0

YAOUS X TNG HopPOXAUCUATIXNS YEwUETRiag, Ta omola cuvAlng pekeT@vTon PEcw Olo-



SLAOTUTOV CUOTIUATLY, YVwoTd we 2d Electron Gas (2DEG) [22]. Emnhéov, Mdyw tou
TEPLOPLOUEVOU YUEAXTHON TWV TELQUHATIXG TURAYWHUEVWY CUCTAUATWY YRAUPEVIOU TS
oL VLPAdES, UE Ty TomoAoyio va mailel xadoptoTind pOhO GTIC NAEXTEOVIXES TOUS WOLO-
™NTES, TiovTon onuavTind epwTAUATA GYETIXd Ue To pbAo TG ToTohoYlug ot GUGT TOU
(PovTinod ydoug xo oTNY TOMUOPPOXRACUATIXAS POOTS TWY XUPATOCLYIPThoEWY. To
xPavtind ydog xovtd oto onpelo Dirac avopéveton eniong va Véoel oyetinotind Vépoa-
to. ‘Eyet yehetnel nepapatind and tov Ponomarenko xat toug ouvepydteg tou [23]
AVOUXOADTTWVTAG Lol YooTixY) QUoT) Teptypdpouevn and tny eélowon Dirac . Autd ta
GUOTAMATA EvaL XOWVKSG YVWO TS w¢ umAdpoa Dirac , To onola eyouy mpotadel and toug
Berry ot Mondragon [24]. Oewpnrixof urohoytopol and touc L. Huang [25] oe unthidie-
oo yeapeviou TEOBAETOUV Uil SLaQORETXT XBavTiny YA0TIXT) CUUTERLPORA GE GUYXELOT
UE TNV TERoPTIXY, EVE dAAoL VewpnTixol unoloyiopol oe Ypaghvy ue wxpr atalio Ue
TepLodixée oplaxéc ouviixes [26] éyouv dellel oyetuaoTinh yootxh @lor aveldptnty
and o péyedog tou delypatoc. o woyupr| atalia o eviomioudc Anderson [21], mévTa

emxpaTet.

Y1y mopoloo SLoTEUST) UEAETAUE T1) HORQOXAJCUITINY QUCT, TWV XUPATOCUVIRTH-
OEWY XU TNV YUOTIXY) CUUTEPLPORA TOU EVERYELOXOU QACUNTOS OF STUXTO CUCTAUNTI
Ypageviou xovtd oo ornuelo Dirac. Ye mpwtn @dor, eréyyoupe Ty Omapdr TwV Yop-
POXNACUATIXWDY HUPATOOTVARTHCERY 070 eninedo Fermi, mogovota ataliag. H pehétn
OleEdyETOU GE GUVOUOOUO UE TN YVWOTY GUUTEQLPORY JAAWY CUUBATIXWY ATOXTWY UAL-
X0V, XN cuvéyewr, ancudivoupe To €CNg EpWTNUA, TS 1 avTioupPatixy Tomohoyia
TOU Ypueviou ETNEEICEL TOV LOPPOXNACUATIXG YOQUXTAPI YO TEQIOPIOUEVES DOPES, Ot
XATACTAOELS axp®V emMPBIOVOLUY Tapoucia atadiag xou TKS UTOPEl AUTO Vo GUVOUAGTEL
UE TN Wopgoxhaouatixy) QUoT TwyV xudatoouvoapThocwy; Meletdue, enlong, tov poho

TWY XATACTACEWY IXpwY GTNV ABAVIIXY| YAOTIXT) GUUTEPLPORU TV YPUPEVIOU XOVTd GTO



onuelo Dirac, y€ow TV OTATIOCTIXGOV IBOTATWY TOU EVEQYELAXOU QAGUATOC.

10 0elTEQO QIO BivouE Wl cUVTOUY EloAaYwYY) Tou Yeageviou, avahloviag
AETTOUEPWS TIG AVTICUUPATIXES TAEXTPOVIXES WOLOTNTES TOU, UEGW EVOC AThOU HOVTEAOU
1oy LETC OEopEUCTS To omolo elsdyeTal 610 mpocdptnua. To povieho autd pog divel
T BUVITOTNTA VO UEAETACOUNE TNHY OYETLXOTIXT UOT TNG DLIOTIORAS EVEQYELIS Ol TIG
NAEXTEOVIXES WOLOTNTES Ot oTtoleg e€0pTOVTAL € Yeydho Baduo and Tnv Tomohoyia, 6TKS
Ol XUTAOTACEL dxENS.

210 1plto AEPIAMO, UETA amd UL GUVTOUY| ELCAYWYY| OTY) HOPPOXAACUANTIXY YEWUE-
Tplol, UEAETAUE AETTOPEPOC TIC LOPPOXRACUATIXES IDLOTNTES TWY XUPATOCUVARTHCEWY OE
dopEg Yeapeviou e atalia, o€ GUYBLACUOS UE GANN CUCTARATA OTWS TO TETEAYWVO TAEY-
po xon TV ypopuxh akuoida. Ilapoucidlouye enlong onuaviixéc GTNTES GuUPETPlug
Y10 TO YRUPEVIO PE aToEld OTIWS 1) XUTOTTEWXTY) CUMUETE(L.

210 TETOPTO xePdA0, PETE antd pia cOVTOUT ElcaywYY| 0To xBavtixd ydog, cuyxpl-
VOUUE TNV xPBavTixy] YoaoTxh QUcT ATaxTwY DouwY YRopeViou UE €Va TETPAYWVO TAEYUY
pe atagla pxehc epféretag.

Y10 TéUnTO %EPIANO TUPOUCLECOUUE TO CUUTERIOUATE TNG UEAETNS. XT0 TPoodip-
o oLUCNTAUE TO HOVTENO Loy LETC BEGUEUOTC, Yol DIdPOPOUS TUTOUE TAEYUATWY, ETOL
OOTE Vo xJOPLOOUUE TIC AEXTPOVIXES WOLOTNTES TOUG.

H xudehoth doury ThEYUaToc Tou Yeapeviou €yel ONUAVTIXES WOLOTNTES OTWE XOUTO-
TTEW CUUMETElA Xou ywpewxh avicoTporia. AuTtéc elvon UTEOVUVES Yio TIC UTODEIXVUOUE-
veg eCUpTMUEVES amd TNV Tomoroyia nAexTeovixég wioTnTeg. To ypapévio yapaxtneile-
T enlong amd axpaio evancUnoio oTig cuvoptaxés cuviixes. O unyoavionds xBavtixhc
ouufBoiic dradpauatiCer xadopiotind pdho. H Omapl# tou ogelheton oT0 YEYOVOHS OTL
10 TAEYUA xepUpag €yEl xGUE dTOUO GUVDEUEVO UE TOUS TEEIC XOVTIVOTEQOUS YEITOVES

Tou. [l TEMEQAGUEVA GUGTHUATA, O PNYAVIOUOS AUTOS 0DNYEL GE XUUATOGUVIRTY|GELG



evtoniouéveg ota pla. AuTég ebvan YVwoTég wg xataotdoelg dxprng. H Umapln toug
eCopTdTon omo T popporoyia Twy oplwv. H Aeyduevoc Tinog dxpwy zigzag cuvic@épet
evépyeleg xovTd oTo eninedolFermiyia onotodrnote teploplouévo olotnua yeagpeviou. O
drhog mavog TOTog dxeng,armchair , 0ev cuvic@Epet xatactdoelg oto eninedo Fermi.
Aefyvouue TIC XOTACTACES AXpTE OF DldQopd CUCTAUATY, Ti-delpd QUL YEUPEV(-
0U, VaVOTAViES XL VIPADES OE TETPAYWVOUS Xl XUXAX0US OYNUATIOUOUS OTAY UTAQYEL
oVAUELELY) oy zigzag ot armchair.

Aéuyvoupe eniong 6Tl ot eUAlGUNTES OTIC GLVOPLIXES GUVITAXES NAEXTEOVIXES LOLO-
TNTES TOU Ypopeviou dladpouatiCouy onuavTixd poho GTNY LOLPOXAACUATIXT QOO TLY
xupatoouvapThoewy oto onpeto Dirac. IMapoucio atadlag extdc tng dywviou 1) omoi-
o Oatneel TNy xatonTEw| cudpeTeio TwY 800 UTOTAEYUATOY Tou TAEYUUTOg XEPUlpag
TOU YPUPEVIOU, 0 UnNYAVioludg Tou odnYel OTIC xUTAOTAOELS dxprng emPBLnver. Ot xupo-
TOGUVAPTAHCELC BploxovTal 6T OGPl TWY TETEPACUEVMY GUOTNUATWY X0l UOLALOoUY UE TIg
HORPOXNACUATINES XUPATOCUVIPTHCELS Yia AhUGIDES ol Uhxoug e atadia eEXTOS TG
olorywviou. Autd UTOBNAGYETUL CUPKS ard TN ddoTaoT) xhudxwons Dy 1 onofa Aaud-
VEL TIES amo TO €Val 6TO UNdEY, avtl amd To 600 6o UNdév xadwe auidveton o Badudg Tng
atogioag. Autod cuyPalvel xaL Yol TIC LOPPOXNACUATIXES XULATOCUYUPTACEL, OTO XEVTPO
TOU EVERYELXOU QACUATOC Yol Vo TETPAYwVOo TAEYHo e atadio exTOC TNE Blarywviov.
Mndevixr, Twy) Tou Dy unodnimver eviomioyd Anderson, Dy ~ 1 ornuaivel xatacTtdoeig
doepng xon Do =2 2 TR0 YooTIXES, DAY UTES 1) BOAMOTIXES XUPATOCUVAPTHOEL.

O unyavioude xatactpentixfic oupfolrrc dadpauatilel eniong onuavtixd pdro GTny
xPovtiny| yootiy) cupmeplpopd Tou yeageviou ue atalia. To eninedo tng evépyetog,
oto onueio Dirac yio tetpdywva delypoata ye atalio enl tng diaywviou eugpavilouv Wia
OTUTIOTIXT, CUUTERLYOPA 1) oTtofa BEV amayTaVTAL O oUUBATIXG SIEDACTATO CUCTARATA,

6Twe To TeETPdywvo mAéyua. H xatavourc Swaotnudtwy Yetall Slaboyix@y eRinedny



evépyetog P(S) éyer plo evdidueon wopp| xovtd otny xatavopr; Semi-Poisson, unodet-
2xv0oVTaG ol aoVEVME YA0TIXT) CUUTERLPORE. AUTH| 1) CUUTERLPOEA TUPAUUEVEL VLol TOAAY
OLod0y I ETUTEDN EVEQYELIC XOVTE GTO OTUEID OOV OL XATACTACELS dXETG UTAOYOUY Yo
xodapd ypagévio. Trootneiloupe 6Tl auTY 1 CUUTERLPOPE OPEIAETAL GTOV UNYAVICUO
AATAOTACEWY dxEng 0 oTolog ETMBLAOVEL oxxdua xaL Ue TNV mapoucio atdiiaug enl Tng dlo-
Ywviou. Autd UTOBNAGVETAL CAPAOS Antd TN GUYXEION UE TNV OTATIOTIXT) GUUTEQLPORY Yid
T& enineda evEPYELIC 0TO XEVTPO TOU EVERYELIXO) QUCUITOS OF €V TETPAYWVO TAEYUN
pe atagfio enl tng draywviou, Yo To onofo ol xatacTdoEelg dxprg arnouctdlouy. T Ty
TEAEUTALA TEPIMTWOT), 1) YVWOTH Yo0TiXY) CUUTERLPORY YopaxTNEILOUEVY] and TNV Uop®T
Wigner yia 10 P(S) avadietou.

Q¢ ex T00TOU, XAt OTIC BUO TEQIMTWOES atadiug, eXTOC xou eni TN Otarywviou, o
ABAVTIXOC UNYAVICHOS XATUACTRERTXAG CUUBOANG TOU TAEYHUTOS XEEUVPASC TOU YpuPE-
viou emBuwvel divovtog xataoTdoels dxpng oto eninedo Fermi, ennpedlovtac onuavtixd
TV HOPPOXAACPATIXNY PUCT] TWV XUUATOCUVIOTACEWY X0 TNHY YAOTIXY| CUUTEPLPORY TWV
eTTEOWY EVEQYELC Yiot To Ypaévio ue atodia. O unyaviouds autog efvon eCotpetinhc
ONUACEAS Y10l TNV XATAGKEUT VAVOTIAEXTEOVIXGWY Bactopévwy oo yYeapévio. H aclevig
YooT cuuTepLpopd oto ornuelo Dirac, cuvemdyeton uio NU-PETHAMXY, CUUTERLPOES

EVOLAUEDT) HETUEY UETAAAWY XAl LOVWTHVY.
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