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Περίληψη

Στην παρούσα εργασία μελετώνται θεωρητικά διαδικασίες μονοφωτονικής διέγερσης και

φωτοϊονισμού από μία αρχική κατάσταση προς τελικές καταστάσεις Stark του ατόμου του

Υδρογόνου υπό την παρουσία ομογενούς ηλεκτρικού πεδίου (πρόβλημα Coulomb-Stark). Η

διέγερση επιτυγχάνεται μέσω μιας παλμικής, μονοχρωματικής φωτεινής δέσμης, δεδομένης

συχνότητας και χρονικού προφίλ. Συγκεκριμένα, επιλύεται η χρονικά εξαρτημένη εξίσωση

Schrödinger (TDSE), όπου, η ολική Χαμιλτονιανή, αποτελείται από τον όρο που περιγράφει

το ατομικό υδρογόνο σε ομογενές ηλεκτρικό πεδίο, και τον όρο της αλληλεπίδρασής του

με τη φωτεινή δέσμη. Για την αλληλεπίδραση αυτή χρησιμοποιείται η διπολική προσέγγι-

ση. Το χωρικό τμήμα της Χαμιλτονιανής εκφράζεται σε ημιπαραβολικές συντεταγμένες,

που αντανακλούν τη συμμετρία του προβλήματος και επιτρέπουν τον χωρισμό μεταβλητών.

Καταλήγουμε έτσι σε ένα σύστημα εξισώσεων μίας μόνο χωρικής συντεταγμένης, το οποίο

διακριτοποιείται στον χώρο και στον χρόνο και επιλύεται αριθμητικά. Εφόσον η χωρική λύση

εκτείνεται σε ένα πεπερασμένο πλέγμα, ιδιαίτερο βάρος δίνεται στην αποφυγή των ανακλάσε-

ων που προκύπτουν συνήθως στις διαδικασίες αριθμητικής επίλυσης της TDSE . Ο κώδικας

που έχει αναπτυχθεί, χρησιμοποιεί τη λύση του συστήματος και υπολογίζει την πυκνότητα

ρεύματος πιθανότητας στη θέση ενός εικονικού ανιχνευτή όπου και συλλέγει σωρρευτικά

το σήμα αυτό. Στην περίπτωση ενός «παλμού» laser με σταθερό χρονικό προφίλ το σήμα

αναμένεται να σταθεροποιείται και το αποτέλεσμα της προσομοίωσης συγκρίνεται επιτυχώς

με γνωστές λύσεις της βιβλιογραφίας, είτε για διαδιασίες ιονισμού στο συνεχές είτε ιονισμού

μέσω του φαινομένου σήραγγας. Τέλος, διερευνώνται και χρονικά προφίλ που αντιστοιχούν

σε τυπικότερες περιπτώσεις παλμών laser.
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Abstract

In the present work, we present the theoretical investigation of single-photon exci-
tation and photoionization processes out of an initial state to Stark final states of the
Hydrogen atom in the presence of a homogeneous electric field (Coulomb-Stark prob-
lem). The excitation is achieved by means of a pulsed, monochromatic light beam, of
given frequency and time profile. Specifically, the time-dependent Schrödinger equation
(TDSE) is solved, where the total Hamiltonian consists of the term describing the atomic
hydrogen in a homogeneous electric field, and the term of its interaction with the light
beam. The latter is considered in the dipole approximation is used. The spatial part of
the Hamiltonian is expressed in semi-parabolic coordinates, which reflect the symmetry
of the problem and allow the separation of variables. We thus end up with a system of
equations of a single spatial coordinate, which is discretized in space and time and solved
numerically. Grid endpoints can act as artificial reflecting boundaries, so specialized tech-
niques that suppress this numerical artifact had to be invoked. The code that has been
developed uses the solution of the system and calculates the probability current density
at the location of a virtual detector where it collects this signal cumulatively. For the
case of a time profile of a laser “pulse” constant in time, where the signal is expected to
attain a steady state, the solution is successfully compared with known solutions in the
literature, either for ionization processes in the continuum or ionization through the tun-
neling effect. Finally, time profiles that correspond to more typical cases of laser pulses
are also investigated.
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1. Introduction

Atomic photoionization is a process of fundamental importance. In particular, studies
of near-threshold atomic photoionization in the presence of a static (dc), homogeneous
electric field (Stark effect), are exceptionally interesting. Hence, a lot of theoretical
[1],[2] [3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14] and experimental [2],[15],[16] work was
and still is devoted nowadays to the spectroscopy of the Stark structure (total ionization
cross sections). However, the rich phenomenology of near-threshold atomic photoioniza-
tion is predominantly imprinted on the produced flux of slow (meV) electrons (differen-
tial cross sections). The projection of this flux on a two-dimensional position sensitive
detector (PSD) provides photoelectron momentum distributions transversely to the dc
field [17],[18],[19],[20],[21]. The latter are related to the wave functions of continuum
[22],[23],[24],[25] and resonant [17],[19],[24],[25],[26],[27],[28],[29] atomic Stark states and
can be manipulated via the polarization of the ionizing laser radiation [30]. Furthermore,
these distributions are related to electron dynamics. While dynamical effects were probed
in the past by a limited number of direct time domain measurements [31],[32],[33] such
effects were more recently experimentally studied by means of spectral domain, "spectro-
scopic" procedures [21],[34],[35][36].

Such experimental data on electron dynamics require for their interpretation the so-
lution of the time-dependent Schrödinger equation (TDSE), the necessary tool to con-
struct the probability current density. Since TDSE has analytical solutions rarely and
only in very simple cases, it is solved numerically with the assistance of dedicated com-
putational methods, even for the simple hydrogen atom. There are a few theoretical
time-domain studies dealing with the characteristics of the outgoing photoelectron flux
on near-threshold atomic photoionization and for either hydrogen or multielectron atoms
[14],[24],[27],[32],[33],[37][38],[39]. More recently, important work was published for near-
threshold photodetachment in the presence of both a dc field and a slowly varying THz
field [40],[41],[42]. Given the complexity of the numerical solution of TDSE even for the
simple hydrogen atom and in a dc field only, the inclusion of a terahertz pulse to pho-
toionization calculations is by no means trivial.

In fact, the present work is motivated by the desire to overcome the difficulties en-
countered in earlier theoretical time domain efforts where only the dc field was included
[43],[44]. By successfully tackling these cases one can be more optimistic for the more
challenging cases where the dc field is accompanied by a THz pulse (in our lab’s plans for
the near future). Therefore, the present study aims to numerically solve TDSE, simulat-
ing single-photon, near-threshold photoionization of the hydrogen atom in the presence
of a dc field (Coulomb-Stark potential).

Certainly, the time-independent solution of the Coulomb-Stark problem cannot be
handled perturbatively near the ionization threshold. Further, contrary to the earlier

1



TDSE solutions, we avoid here the use of spherical coordinates. Instead, we employ a
semi-parabolic coordinate system that is better adapted to the symmetry of the problem,
while being computationally advantageous. Additionally the TDSE is solved by a novel
and by all accounts more accurate computational method. To further increase accuracy,
special attention is given to the spatial distribution of the grid points, making use of the
underlying physics.

In the following chapters we first discuss and set up (in Chapter 2) the relevant theo-
retical background and equations for the time-independent Coulomb-Stark problem along
with the TDSE model and equations for single-photon ionization out of an initial atomic
state. In Chapter 3 we provide details on the implementation and computational pro-
cedures followed for solving these TDSE equations and obtaining the outgoing electron
wavepackets. In Chapter 4 we present and discuss the results of our calculations and
their comparison with earlier steady state solutions. Finally, we present our conclusions
and propose possible improvements and directions of further work.
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2. Theory

As discussed in the Introduction, the present work is devoted to single-photon atomic
ionization processes in a static electric field from an initial state ψi. More specifically, we
are primarily interested in the hydrogenic dynamics of differential ionization cross sec-
tions. In the steady-state limit, the ionization processes are traditionally handled by the
Fermi’s Golden Rule [45]. This correlates ψi, to the wave function ψ+

out of the outgoing
(ionized) electron wave. One inconvenience of the Fermi’s Golden Rule however, is that
ψ+

out is not uniquely defined [46]. Furthermore, its most frequently adopted asymptotic
(large distance) form is that of a Coulomb-modified plane wave. This assumption though
fails here due to the presence of the static electric field.

As a remedy to the problem, scattering theory notions are adopted and the ionization
is examined here as a half-collision process. In this treatment, the key observable is the
probability current density that directly depends on ψ+

out, which is uniquely provided by
the solution of the TDSE. Thus, the treatment of either steady state or time-dependent
situations is straightforward and unified.

As mentioned above the solution of the TDSE for the hydrogenic (and non-hydrogenic)
Stark problem was also reported in the past. In earlier works spherical coordinates were
the standard and the TDSE was solved via the split-operator method [39]. There are
three novelties that make this work unique. First, the employment of semi-parabolic
coordinates, a system that better suits the symmetry of the physical problem at hand.
Second, the TDSE is solved by a different and to the best of our knowledge more efficient
and faster method [47]. Third, a spatial grid uniquely adapted to the peculiarities of the
potential at hand, allows the coverage of large spatial distances with fewer mesh points.
These three informed decisions allowed for significant improvements in the numerical algo-
rithms with shorter execution times, relaxing computational requirements and increasing
the accuracy of the solution. More details on how these choices are advantageous will be
revealed in the chapters to come.

2.1. The time-independent Schrödinger equation for the Coulomb - Stark
problem

The interaction of an atom with a homogeneous and static electric field F is known as
the Stark effect. A somewhat detailed presentation of the stationary states can serve as
a valuable prelude to the hydrogenic Stark effect’s dynamics (Coulomb-Stark problem).
Let’s assume that the external electric field of strength F is oriented along the positive z
axis (F = Fz). The Schrödinger equation for this system is written as (in atomic units

3



-a.u.-, ℏ = me = e = (4πε0)−1 = 1) 1

[
−1

2∇2 + UCS(r) − E
]
ψ = 0, (2.1)

where UCS the Coulomb-Stark potential,

UCS(r) = −Z

r
+ Fz, (2.2)

E the energy, Z the nuclear charge (for Hydrogen Z = 1) and r =
√
x2 + y2 + z2. From

Eq. (2.2) it becomes obvious that the system does not possess the spherical symmetry
of the Coulomb field due to the existence of the homogeneous external electric field. A
cut of the UCS potential along z-axis is depicted in Fig. 1. We may observe that the
static electric field term "bends" the Coulomb potential in the negative direction of z.
Two characteristic energies are noted in the figure. The zero-field ionization threshold in
the absence of the electric field corresponding to E = 0, and the so-called saddle point
energy Esp that represents the field-induced lowering of the ionization limit. It is given
by [2],

Esp = −2
√
ZF. (2.3)

Fig. 1. A cut of the UCS(r) potential surface along the z-axis. The saddle point energy Esp is
represented by the horizontal red dashed line.

In this work we are particularly interested in the energy range Esp ≤ E ≤ |Esp|.
Equation (2.1) is separable in semi-parabolic coordinates which reflect the symmetry of
the problem [6]. They are associated with the Cartesian coordinates as follows :

χ = [r + z]1/2 ≥ 0, υ = [r − z]1/2 ≥ 0 and ϕ = tan−1
(
y

x

)
. (2.4)

1Atomic Units (a.u.) are used throughout this study, unless stated otherwise.
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Eqs. (2.4) show that χ and υ have dimensions of [length]1/2. This is quite beneficial for
numerical computations over large distances. For example, υ = 200 a.u. corresponds to
a macroscopic length of ≈ 2 µm. In semi-parabolic-coordinates, the wavefunction can be
written as:

ψ(r) = (2πχυ)−1/2X(χ)Y (υ)eimϕ, (2.5)

where m = 0,±1,±2, ... is the magnetic quantum number, which is a good quantum
number (contrary to the orbital angular momentum quantum number ℓ, which is not
[1]). Substituting equation (2.5) in (2.1), allows for the separation of variables leading to
two ordinary differential equations, one for each of the wavefunctions X and Y :[

−1
2
d2

dχ2 + UX,eff (χ) − 2Z1

]
X(χ) = 0, UX,eff (χ) = 4m2 − 1

8χ2 + F

2 χ
4 − Eχ2

[
−1

2
d2

dυ2 + UY,eff (υ) − 2Z2

]
Y (υ) = 0, UY,eff (υ) = 4m2 − 1

8υ2 − F

2 υ
4 − Eυ2

(2.6)

where the separation constants Z1 and Z2 obey the relation:

Z1 + Z2 = Z. (2.7)

The χ coordinate is loosely associated with a direction transverse to the electric field
F. The X(χ) wavefunction is bounded at large distances (see Fig. 2), as suggested by
it’s χ → ∞ asymptotic form derived from Eq. (2.6) [6],

Xχ→∞(χ) → 1
χ

exp
[
−F 1/2

3 χ3 + E

F 1/2χ

]
, (2.8)

so X(χ → ∞) → 0. For fixed sets of E,F and m, the desired behavior is achieved via the
quantization of Z1. Hence, Z1 takes now a set of discrete values Zn1,|m|

1 and n1 = 0, 1, 2, ...
corresponds to the number of nodes of Xn1,|m|. On the other hand, at small values of χ,
the term 4m2−1

8χ2 dominates. This term can be either a centrifugal (|m| > 0) or a centripetal
one (m = 0). Again from Eq. (2.6) we find,

Xχ→0(χ) = AX(E)χ|m|+ 1
2 (1 + ...), (2.9)

where AX(E) is an energy-dependent, and by definition positive, normalization constant,
determined by the normalization condition for the wavefunction X,

∫ ∞

0
dχXn1,|m|(χ)Xn′

1,|m|(χ) = δn1n′
1
. (2.10)

The υ coordinate is approximately associated with the direction parallel to the electric
field F. As in the χ direction, the 4m2−1

8υ2 term dominates in the vicinity of the origin and
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Fig. 2. The effective potentials UX,eff(χ) and UY,eff(υ), with the wavefunctions X(χ) and Y (υ)
and their eigenvalues 2Z

n1,|m|
1,2 , for F = 808 V/cm, E/|Esp| = −0.9565, and m = 0. (a, b)

The n1 = 0 case, for which 2Z0,0
2 lies above the barrier of UY,eff(υ) and Y00 is a continuum

wave function. (c, d) The n1 = 2 case, for which 2Z2,0
2 lies slightly below the barrier. For

this particular energy, Y20 corresponds to a quasibound state (resonance) where the electron is
trapped within the inner well. For n1 > 2, 2Z

n1,|m|
2 also lies below the barrier, but these states

do not necessarily correspond to resonances, and the amplitude of Yn1,|m| within the inner well
is negligible [19].

it can be shown that Y (υ) has a similar behavior with X(χ) in Eq. (2.9) that is,

Yυ→0(υ,E) = AY (E)υ|m|+ 1
2 (1 + ...), (2.11)

where the energy-dependent normalization factor AY is by definition positive. As for the
large distance asymptotics, the wavefunction takes the form [6],

Yυ→∞(υ) → 1
υ

sin
[
F 1/2

3 υ3 + E

F 1/2υ + ϕ0

]
, (2.12)

with ϕ0 being a constant phase. Equation (2.12) reveals an oscillatory behavior and
hence, the unbound character of Y along the υ-coordinate. A careful look to the F 1/2

3 υ3

term in the argument of the sine function shows that at large υ the Y function oscillates
at a frequency that is continuously and rapidly increasing with υ. The latter argument
justifies why the numerical calculation of Y (υ) at large distances is considered extremely
challenging requiring specialized numerical techniques [6].

The normalization factors AX and AY are quite useful for characterizing a state (or
channel) ||m|, n1⟩ for fixed F, |m| and given E, because they provide the, so-called, "Den-
sity of States" (DOS). The latter represents the probability to find the electron near the
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nucleus and is given by [10],

DOS(|m|, n1, E) = A2
X,n1,|m|A

2
Y,n1,|m|. (2.13)

The energy dependence of DOS is better understood when we examine the E > 0 and
E < 0 cases separately.

Fig. 3. Energy variation of A2
X , DOS and Z1 for the m = 0, n1 = 38 channel for Z = 1 and

F = 1 kV/cm.

Beginning with the E > 0 range, Fig. 3, shows the computed behavior of Z1(E),
DOS and A2

X for Z = 1, m = 0 and n1 = 38. Clearly, AX , and consequently DOS as
well, become negligible when Z1(E) < 0 (while A2

Y acquires a constant non-zero value).
This Z1 < 0 energy range is denoted as range “[3]” in Fig. 3. In this range the specific
||m|, n1⟩ state does not practically contribute to any aspect of the Physics of the Stark
effect, and it is characterized as a closed channel. In fact, the same happens in the
range Z1 > Z, but, as deduced by the behavior of AX and DOS, it is now the AY factor
that becomes negligible. This Z1 > Z range, denoted as range “[1]” in Fig. 3, also signals
a closed channel. Hence, a channel is closed for all positive energies where either Z1 > Z

or Z1 < 0 holds. On the contrary, a channel is characterized as open within the energy
range for which 0 ≤ Z1(E) ≤ Z (range “[2]” in Fig. 3, that corresponds, of course, to a
given range of the quantum number n1, for fixed |m|). Moreover, the boundary between
regions [1] and [2] (Z1 = Z) is called the channel opening, while the border between
regions [2] and [3] (Z1 = 0) the channel closing. Note finally that all positive energy open
channels are continua (continuum channels) since the electron escapes freely from the

7



atom because the potential UY,eff (υ) does not support bounded motion in the E > 0
range.

The above division to open and closed ||m|, n1⟩ channels holds also for the negative
energies. Now, the open channel range “[2]”, is divided into two sub-regions, say [2a] and
[2b] (see Fig. 4). The division point corresponds to the channel-specific threshold energy
EF,thr

n1,|m|, which is the root of equation [12],[24],

EF,thr
n1,|m| = −2

[
Z2
(
EF,thr

n1,|m|, F
)
F
]1/2

. (2.14)

While both 2Zn1,|m|
2 and the top of the barrier of the potential UY,eff (υ) change with the

energy, for E > EF,thr
n1,|m| the channel eigenvalue 2Zn1,|m|

2 lies always above the barrier’s top.
Thus, this channel is a continuum one (see Fig. 2(b)). On the other hand, for E < EF,thr

n1,|m|

(and, of course, Z1 < Z, that is, within the [2a] range of Fig. 4) the eigenvalue 2Zn1,|m|
2

lies below the barrier’s top.

Fig. 4. Energy variation of A2
X , DOS and Z1 for the m = 0, n1 = 20, channel for Z = 1 and

F = 1 kV/cm.

In this [2a] range AY and consequently DOS shows a series of sharp “spectral lines” (Fig.
4). The factor AY acquires quite high values on the lines, while it becomes negligibly
small in between them. The origin of these intense lines is the following: For E < 0, the
potential UY,eff (υ) forms an inner well between the origin and the location of the top
of the barrier. The well supports its own quasi-bound level eigenvalues which, however,
do not necessarily coincide with the 2Zn1,|m|

2 = 2
(
Z − 2Zn1,|m|

1

)
values imposed in the

computation of the wavefunctions Y . Very high values of AY occur whenever 2Zn1,|m|
2

8



coincides with one of the eigenvalues supported by UY,eff (υ) and the electron is trapped
within the inner well (see Fig. 2(d)). When this happens, we refer to them as quasi-
bound or resonant channels (or states) or simply resonances where, particularly for
the hydrogenic Stark effect, the electron may escape from the atom solely via tunneling
(Fig. 2(d)). Finally, the states in range [2a] of Fig. 4 whose energy lies in between
resonances are not particularly important for the description of the Stark effect and, as
said above, correspond to very small AY values. They are to be named hereafter simply
as non-resonant channels. As a first example of the above definitions, consider the
energy E = +0.5|Esp| for m = 0 and F = 1 kV/cm, where the criterion 0 ≤ Z1 ≤ Z = 1
is fulfilled for 14 ≤ n1 ≤ 53, where all these n1 values correspond to open, continuum
channels. All other channels are closed. As a second example, consider the energy E =
−0.9564|Esp| for m = 0 and F = 808 V/cm, where the open channels (0 ≤ Z1 ≤ Z = 1)
correspond to 0 ≤ n1 ≤ 25. Channels, n1 = 0 and n1 = 1 are continua, n1 = 2 is
a resonant channel with a relatively high value of AY while the rest of them are non-
resonant with practically negligible AY factors.

2.2. Description of atomic ionization: The time-dependent Schrödinger
equation and the probability current density for an effective two-level
system

The study of the interaction of an atomic system with radiation and the associated
dynamics requires the solution of the TDSE,

i
∂Ψ
∂t

= ĤΨ, (2.15)

where the Hamiltonian Ĥ is composed by two parts, as

Ĥ = Ĥ(r) + V̂ (r, t). (2.16)

The time-independent part, Ĥ(r), refers to the atomic system, as well as possibly to
terms related to the interaction of this system with static external fields. In the present
work it is given by

Ĥ = −1
2∇2 + UCS(r). (2.17)

The time-dependent part is here the interaction term between the atom and the radiation
field. By adopting the dipole approximation [45], this term is written as,

V̂ (r, t) = ε · rE0G(t)(eiωt + e−iωt), (2.18)

9



where E0 is the field amplitude and G(t) its time envelope whose amplitude is restricted
within the [0, 1] interval.

The interaction of an atomic system with radiation may lead to coupling within a small
subgroup of the atomic states, a necessary and sufficient condition for the physical process
at hand. Along these lines, the presently examined single-photon ionization process may
be described by an effective two-state model, comprising of an initial state ψi of energy
Ei and a final state of an outgoing (Stark) wavepacket ψ+

out of energy E. The two states
are connected by the laser field, whose frequency is given by

ω = E − Ei. (2.19)

Using first order perturbation theory and the work of Ref. [39], we write the wavefunction
Ψ(r, t) of Eq. (2.15) as,

Ψ(r, t) = ψi(r)e−iEit + ψ+
out(r, t)e−iEt, (2.20)

where it is implied that ψ+
out ∝ E0.

The initial state ψi can be either the ground or a low excited state of hydrogen. Such
states exhibit short spatial extend and, due to the Coulomb field dominance near the
origin, remain practically unaffected by the static electric field, as long as the field’s
strength is kept relatively low. Therefore, the electric field can be neglected in the
calculation of the wavefunction of ψi. Nevertheless, it will be assumed here that it is, to
a good approximation, an eigenstate of the Hamiltonian (2.17), that is,

Ĥψi ≈ Eiψi. (2.21)

Inserting Eqs.(2.16) -(2.21) to Eq. (2.15) we arrive at,
(
i
∂ψ+

out

∂t
+ Eψ+

out

)
e−iωt =

Ĥψ+
oute

−iωt + E0ε · rG(t)
(
ψi(eiωt + e−iωt) + ψ+

out(1 + e−2iωt)
)
. (2.22)

Keeping only the first-order terms with respect to E0, (and remembering that ψ+
out ∝ E0)

Eq. (2.22) simplifies as follows,
(
i
∂

∂t
+ E

)
ψ+

out = Ĥψ+
out + ε · rE0G(t)(e2iωt + 1)ψi. (2.23)

Furthermore, the rapidly oscillating term e2iωt can be dropped, since its contribution
averages to zero. This is the rotating wave approximation (RWA) [48]. This does not
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hold true for the envelope G(t), which is assumed in this work to be slowly varying as
compared to 1/ω. Let us finally define the so-called, source term,

S(r, t) ≡ ε · rE0G(t)ψi(r), (2.24)

where, for convenience, we set hereafter E0 = 1. Then, the TDSE takes the form:(
i
∂

∂t
− [Ĥ(r) − E]

)
ψ+

out(r, t) = S(r, t), (2.25)

which from now on, it will be called as TDSE-S ( Time Dependent Schrödinger Equation
with a Source) and its solution is at the core of the present work. In earlier works [19]
Eq. (2.25) was solved for a radiation field characterized by an envelope constant in time,
G(t) = 1, ∀ t. In this case, the time derivative in Eq. (2.25) vanishes and a steady state
is reached. The steady state version of Eq. (2.25) is written as,

[Ĥ(r) − E]ψ+
out(r) = −ε · rψi(r) (2.26)

and its solution is briefly presented in the Appendix.
Of interest in any photoionization calculation and/or experiment is the outgoing flux

of the produced electrons. In this work we consider photoionization as a half collision
process [17],[19], and this flux is obtained via the electron probability current density.
The latter is defined as:

J(r, t) = − 1
2i
[
ψ+

out∇
(
ψ+

out

)∗
−
(
ψ+

out

)∗
∇
(
ψ+

out

)]
, (2.27)

and can be calculated once the TDSE-S is solved and ψ+
out is known. Note that the

outgoing wavepacket ψ+
out in Eq. (2.27) must be necessarily complex, since otherwise the

probability current is zero.

2.3. Time-discretization of the time-dependent Schrödinger equation with
a source

In the absence of analytical solutions for the TDSE-S we need to discretize the time
and calculate ψ+

out at each time step [49]. By adopting a time grid of step ∆t and deploying
the, so-called, short time propagator in (2.25) [39], we obtain,

ψ+
out(r, t+ ∆t) =

(
1 − i∆t

2 [Ĥ − E]
)

(
1 + i∆t

2 [Ĥ − E]
)ψ+

out(r, t) + i∆t
2
(
1 + i∆t

2 [Ĥ − E]
)(S(r, t) +S(r, t+ ∆t))

(2.28)

11



or (
1 + i

∆t
2 [Ĥ − E]

)
ψ+

out(r, t+ ∆t)

=
(

1 − i
∆t
2 [Ĥ − E]

)
ψ+

out(r, t) + i
∆t
2 (S(r, t) + S(r, t+ ∆t)) , (2.29)

that is the equation whose solution is required.
As a first step for solving Eq. (2.29), an appropriate matrix representation is to be

chosen, for its spatial part. Then, in Eq. (2.29) the operators
(
1 + i∆t

2 [Ĥ − E]
)

and(
1 − i∆t

2 [Ĥ − E]
)

will be square matrices and everything else will be column vectors. At
each time step the solution for ψ+

out(r, t + ∆t) is to be obtained, that will subsequently
replace ψ+

out(r, t) in (2.29) and the solution will advance in time iteratively. By keep-
ing the time-step constant, matrix

(
1 + i∆t

2 [Ĥ − E]
)

inversion and its multiplication by(
1 − i∆t

2 [Ĥ − E]
)

are executed only once irrespectively of the number of iterations in-
volved. To make the numerical computation easier and less time consuming we adopt
the idea of Ref. [47], according to which a new wavefuction is defined as:

W (r, t+ ∆t) = ψ+
out(r, t+ ∆t) + ψ+

out(r, t) (2.30)

and Eq. (2.29) takes the form,
(

1 + i
∆t
2 (Ĥ − E)

)
W (r, t+ ∆t) = 2ψ+

out(r, t) + i
∆t
2 (S(r, t) + S(r, t+ ∆t)) , (2.31)

where the multiplication of the two matrices is replaced by the multiplication of a ma-
trix with a number. Now, (2.31) is solved for W (r, t + ∆t) and at each time iteration
ψ+

out(r, t+ ∆t) is recovered by means of Eq. (2.30).

2.4. Time Dependent Schrödinger Equation with a Source for the Coulomb-
Stark problem in semi-parabolic coordinates

The symmetry considerations discussed in section 2.1 apply also to the Coulomb-Stark
TDSE-S. Therefore, semi-parabolic coordinates are to be employed here as well, in which
the initial hydrogenic wavefunction can be expressed as,

ψi(r) = (2πχυ)−1/2Xi(χ)Yi(υ)eimiϕ, (2.32)

either with or without the presence of the static electric field [1], and where mi is the
magnetic quantum number of ψi. As for the excited, outgoing, final state wavepacket, it

12



is written as,

ψ+
out(r, t) = (2πχυ)−1/2 ∑

n′
1,m′

Xn′
1,|m′|(χ)y+

n′
1,m′(υ, t)eim′ϕ. (2.33)

Note that the wavefuctions Xi in Eq. (2.32) and Xn1′,|m′| in (2.33) are standard known
solutions of Eq. (2.6) discussed in section 2.1. Moreover, the time-dependence in Eq.
(2.33) is attached solely to the wavefunctions y+

n′
1,m′ of the υ coordinate, along which

ionization is allowed. Similarly, for the W (r, t) in Eq. (2.31) we have:

W (r, t) = (2πχυ)−1/2 ∑
n′

1,m′

Xn′
1,m′(χ)wn′

1,m′(υ, t)eim′ϕ, (2.34)

where
wn′

1,m′(υ, t+ ∆t) = y+
n′

1,m′(υ, t+ ∆t) + y+
n′

1,m′(υ, t). (2.35)

Inserting Eqs. (2.32)-(2.35) into TDSE-S Eq. (2.31) we arrive at,

(2πχυ)−1/2[
∑

n′
1,m′

eim′ϕXn′
1,|m′|wn′

1,m′(υ, t+ ∆t)+

+ i∆t
2(χ2 + υ2)

∑
n′

1,m′

eim′ϕXn′
1,|m′|

(
−1

2
d2

dυ2 + UY,eff (υ) − 2(Z − Z
n1,|m′|
1 )

)
wn′

1,m′(υ, t+ ∆t)]

= 2(2πχυ)−1/2 ∑
n′

1,m′

eim′ϕXn′
1,|m′|y

+
n′

1,m′(υ, t) + i
∆t
2 (S(r, t) + S(r, t+ ∆t)) .

(2.36)
Now, inserting the expression for the source, acting with

∫∞
0 dϕ e−imϕ

2π
and with

∫∞
0 dχXn1,|m|,

we arrive at,
∑
n′

1

[
Kn1,n′

1
+ υ2δn1,n′

1

]
wn′

1,m(υ, t+ ∆t)+

i
∆t
2
∑
n′

1

δn′
1,n1

[
−1

2
d2

dυ2 + 4m2 − 1
8υ2 − F

2 υ
4 − Eυ2 − 2(Z − Z

n1,|m|
1 )

]
wn′

1,m(υ, t+ ∆t) =

2
∑
n′

1

[
Kn1,n′

1
+ υ2δn1,n′

1

]
y+

n′
1,m(υ, t) − i

∆t
2 (G(t) +G(t+ ∆t)) gm

n1(υ),

(2.37)
where

Kn′
1,n1 = Kn1,n′

1
≡
∫ ∞

0
Xn1,|m|χ

2Xn′
1,|m|dχ (2.38)

and
gm

n1(υ) = Yi(υ)
∫ ∞

0
dχXn1,|m|Xi(χ)(χ2 + υ2)

∫ 2π

0
dϕ
ei(mi−m)ϕ

2π ε · r. (2.39)
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This is the system of equations to be solved with the initial condition,

y+
n′

1,m(υ, t = t0 = 0) = 0, ∀ n′
1,m, (2.40)

where the initial time t0 is set here t0 = 0, so there is initially no population in any state
other than the initial one. Important note, the equations that constitute the system
are orthogonal with respect to the magnetic quantum number m, so for every value of
|m| the equations are solved separately. The function gm

n1(υ) originates from the spatial
part of the source term, and is subjected to selection rules emerging from the ϕ-angle
integral in (2.39). Note here that for odd values of m, the change m → −m leads to a
simultaneous change of sign for the function gm

n1(υ) and the wavefunction y+
n′

1,m(υ, t). As
for the constants Kn1,n′

1
, they couple the equations of the system (2.31). It turns out

that these coupling constants are quite important for n1 = n′
1 ± 1 and become practically

negligible for |n′
1 − n1| < 3, and can be safely neglected thus leading to a sparse coupling

matrix representation in the system (2.31). On the other hand, if a steady state is
established, in which the wavefunction wn′

1,m′(υ, t) remains constant in time so

wn′
1,m′(υ) = 2y+

n′
1,m′(υ) and G(t) = G(t+ ∆t) = 1, (2.41)

the system of equations decouples and each equation for a given value of n1,[
−1

2
d2

dυ2 + UY,eff (υ) − 2(Z − Z
n1,|m|
1 )

]
y+

n1,m(υ) = −gm
n1(υ), (2.42)

is solved individually (see Appendix).
Finally, since, as mentioned earlier, the electron remains bounded along the χ-direction

and the ionized electron flux can emerge solely along the υ coordinate, the electron prob-
ability current density needs to be calculated on the surface of a paraboloid of constant
υ = ῡ at each time t and writes,

Jῡ(ϕ, χ, t) = J · eυ = − 1
2i

1
[χ2 + υ2]1/2

[
ψ+

out

∂(ψ+
out)∗

∂υ
− (ψ+

out)∗∂ψ
+
out

∂υ

]∣∣∣∣∣
υ=ῡ

, (2.43)

with eυ the unit vector along the υ-coordinate. Equation (2.43) can be put in a more
compact form,

Jῡ(ϕ, χ, t) = − 1
[χ2 + υ2]1/2 Im

[
ψ+

out

∂(ψ+
out)∗

∂υ

]∣∣∣∣∣
υ=ῡ

. (2.44)

Assuming the outgoing wavepacket ψ+
out in (2.33) is known, we insert it to Eq. (2.44) and

finally get,
Jῡ(ϕ, χ, t) = − 1

2πχυ[χ2 + υ2]1/2
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Im
 ∑

n′
1,n1,m′,m

ei(m′−m)ϕXn′
1,|m′|(χ)Xn1,|m|(χ)y+

n′
1,m′(υ, t)

∂

∂υ

(
y+

n1,m(υ, t)
)∗
∣∣∣∣∣∣

υ=ῡ

. (2.45)

Equation (2.45) may provide the cumulative signal Jtot recorded over time by a virtual
detector located at ῡ = υdet. Hence,

Jtot(ϕ, χ) =
∫ tmax

0
dt′Jυdet

(ϕ, χ, t′)), (2.46)

where tmax is not necessarily infinite, but large enough for the transients to disappear and
for Jυdet

to stop evolving with time. So it represents the total signal flux accumulated
at the detector position throughout the system’s temporal evolution. Finally, the total
cross section can be defined as

σtot =
∫ tmax

0
dt′
∫
Jυdet

(ϕ, χ, t′)dS, (2.47)

where dS = χυ [χ2 + υ2]1/2
dχdϕ is the surface element on the υ-paraboloid. Thus, Eq.

(2.47) depicts the integration of Jυdet
(ϕ, χ, t) over the whole surface of the detector and

over the full temporal evolution of the ionization process.
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3. Implementation and numerical methods

3.1. Discrete Variable Representation

The manipulations presented in the previous chapter allow the spatial dimensionality
reduction from 3D to 1D (Eqs. (2.37)-(2.39)). While the υ coordinate extends over the
[0,∞) interval, in practice we need to set a finite upper bound υmax. Furthermore, for the
spatial part of the system (2.37) (or any other similar system), a function basis must be
selected that leads to a given matrix representation. Here we choose the Discrete Variable
Representation (DVR) [50], due to the simplicity it offers in the representation of the
operators present in our equations. As it is implied by it’s name, DVR is a discretized
coordinate representation over a given spatial grid, and the DVR basis functions are
eigenfunctions of the coordinate operators. For a radial coordinate basis, say |xi⟩, scalar
potential operators Û are approximated by diagonal matrices

⟨xi| Û |xj⟩ = U(xi)δij, i, j = 1, 2, 3, ..., N,

where N is the number of grid-points, while the kinetic energy matrix T̂ = 1
2

d2

dx2 in
coordinate space is approximated by a square and symmetric N ×Nmatrix:

Tij = ⟨xi| T̂ |xj⟩ = Tji, i, j = 1, 2, 3, ..., N. (3.1)

By implementing an expansion over a given complete basis set, the kinetic energy matrix
elements, become,

Tij =
∑
m,n

⟨xi|m⟩ ⟨m| T̂ |n⟩ ⟨n|xj⟩ . (3.2)

In the above equation, |m⟩ and |n⟩ are state vectors of the chosen set, whose selection
is in principle arbitrary. Here we employ a variant of DVR called Fourier Grid Method
(FGM) [51], in which a Fourier basis is selected, which is associated to an even number
N of plane waves in momentum space. These waves correspond to N discrete values
of momentum. As a result, in the limit of infinite number of grid points N → ∞, the
elements Tij are written as [52],

Tii = π2

6∆x2

Tij = (−1)i−j 1
∆x2

1
(i− j)2 , i ̸= j.

(3.3)

Note, however, that FGM can only be applied to equidistant grids (constant ∆x). De-
spite their simplicity and ease of use, these grids can result in inaccurate solutions in
Coulomb-like potentials [53]. This well-documented shortcoming is further discussed in
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the following section along with standard methods used to alleviate the problem.

3.2. Space discretization and variable mapping

To construct an equidistant grid over the interval [0, υmax], in order to utilize the
FGM, each point should be described by

υi = (i− 1)∆υ, i = 1, 2, 3, ..., N, (3.4)

with the step of size,
∆υ = υmax

N − 1 . (3.5)

Introducing (3.5) to (3.4) we get the form,

υi = υmaxxi, (3.6)

where the points xi are given by,

xi = i− 1
N − 1 , i = 1, 2, 3, ..., N, (3.7)

and refer to an equidistant discretization of the dimensionless variable x ∈ [0, 1]. In fact,
the discrete version of (3.6) can be associated to a continuous transformation of the form,

υ(x) = υmaxx. (3.8)

Initial tests with this grid (3.6) quicly verified results from earlier studies, constant step
grids can lead to inaccurate solutions [54]. The reason for this inefficiency is briefly the
following: The solution of the Schrödinger (or of a Schrödinger-like) equation oscillates
with a de Broglie wavelength that depends on the potential energy (here UY,eff (υ) of Eq.
(2.6)). On the other hand, an accurate solution needs to guarantee an approximately
equal number of points per wavefunction oscillation, a condition hardly achievable with
constant spatial step. Many authors have shown that the problem worsens for Coulomb-
like long-range potentials [53], with the present case of a static electric exacerbating the
problem.

The preceding discussion underlines the need to bridge the gap between FGM’s re-
quirement for constant ∆x = 1

N−1 and the physical problem that calls for an adaptive
∆υ. This is possible through a, generally non-linear, variable transformation (mapping)
υ ↔ x. Thus, Eq.(3.8), which is a linear transformation needs to be generalized to,

υ(x) = υmaxh(x), (3.9)
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where h(x) is a mapping function to be discussed in detail shortly. However, like the vari-
able x, the function h(x) is restricted to the interval [0, 1] with h(0) = 0 and h(1) = 1. It
is a continuous, monotonous function, preferably differentiable up to at least third order.

Thus, the so-called mapped-FGM begins by defining the Jacobian dυ/dx of the trans-
formation υ → x, which, using Eq. (3.9), is given by,

dυ

dx
= υmax

dh

dx
= υmaxh

′(x) = υmaxj(x), (3.10)

where j(x) stands for a dimensionless Jacobian. Next, by following Refs. [51],[53],[55],[56]
we also define the auxiliary functions Λ and λ, such that,

w(υ, t) = [j(x)]1/2Λ(x, t),

y+
out(υ, t) = [j(x)]1/2λ(x, t). (3.11)

The two functions are related by,

Λn1,m(x, t+ ∆t) = λn1,m(x, t+ ∆t) + λn1,m(x, t). (3.12)

Then, the system (2.37) is transformed to the following one,

∑
n′

1

[
Kn1,n′

1
+ υ2

maxh
2(x)δn1,n′

1

]
υ2

maxj
2(x)Λn′

1,m(x, t+ ∆t)+

i
∆t
2
∑
n′

1

δn′
1,n1

[
−1

2
d2

dx2 + s(x) + υ2
maxj

2(x)[UY,eff (x) − 2(Z − Z
n1,|m|
1 )]

]
Λn′

1,m(x, t+ ∆t) =

2
∑
n′

1

[
Kn1,n′

1
+ υ2

maxh
2(x)δn1,n′

1

]
υ2

maxj
2(x)λn′

1,m(x, t)−

− i
∆t
2 υ2

maxj
3/2(x) (G(t) +G(t+ ∆t)) gm

n1(x),
(3.13)

where the function s(x) arising in (3.13) is given by,

s(x) = 3
8

(
j′(x)
j(x)

)2

− j′′(x)
4j(x) . (3.14)

In (3.13) we consider λ(x, t) as a known vector, and we solve iteratively for Λ(x, t).
Similarly with (2.40), the initial condition is,

λn′
1,m(υ, t = t0 = 0) = 0,∀ n′

1,m. (3.15)

The definitions (3.11) eliminate the first-order spatial derivative in the transformed sys-
tem of Eq. (3.13). A very advantageous condition, for this particular term would have
been assymetric making the numerical solution of (3.13) a lot harder to get. Finally, after
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discretization using the equidistant point grid of (3.7), and recalling that (3.13) is solved
at each new time step tn+1 = t0 + (n+ 1)∆t, the system (3.13) takes the following matrix
form, [

υ2
maxq j2 + i

∆t
2 H

]
Λ(n+1) =

2υ2
maxq j2λ(n) − i

∆t
2 υ2

max[G(n) +G(n+1)]j3/2gm. (3.16)

Both q and H are square matrices composed by the N × N square matrices qn1,n′
1 and

Hn1,n′
1 , respectively, each one of the form,

q =

· · · n′
1 = n1 − 1 n′

1 = n1 n′
1 = n1 + 1 · · ·

... · · · · · · · · · · · · · · ·
n1 − 1 · · · q n1−1, n1−1 q n1−1, n1 q n1−1, n1+1 · · ·
n1 · · · q n1, n1−1 q n1, n1 q n1, n1+1 · · ·

n1 + 1 · · · q n1+1, n1−1 q n1+1, n1 q n1+1, n1+1 · · ·
... · · · · · · · · · · · · · · ·

(3.17)

and

H =

· · · n′
1 = n1 − 1 n′

1 = n1 n′
1 = n1 + 1 · · ·

... · · · · · · · · · · · · · · ·
n1 − 1 · · · H n1−1, n1−1 0 0 · · ·
n1 · · · 0 H n1, n1 0 · · ·

n1 + 1 · · · 0 0 H n1+1, n1+1 · · ·
... · · · · · · · · · · · · · · ·

(3.18)

with elements

q
n1,n′

1
ij = δij

[
Kn1,n′

1
+ υ2

maxh
2(xi)δn1,n′

1

]
, i, j = 1, 2, ...N (3.19)

and

H
n1,n′

1
ij = δn1,n′

1

[
Tij + δij

(
s(xi) + υ2

maxj
2(xi)[UY,eff (xi) − 2(Z − Z

n1,|m|
1 )]

)]
, i, j = 1, 2, ...N.

(3.20)
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In Eq. (3.20) the elements of the kinetic energy matrix Tij are given in (3.3). Similarly,
the vector Λ(n+1) is constructed by N × 1 vectors Λ(n+1)

n1 as,

Λ =

· · · · · ·

n1 − 1 (Λ n1−1)(n+1)

n1 (Λ n1)(n+1)

n1 + 1 (Λ n1+1)(n+1)

· · · · · ·

, (3.21)

with elements (Λn1,i)(n+1), i = 1, 2, ...N . The same stands for the vectors λ(n) and gm.
It should be mentioned that Eq. (3.16) contains also the diagonal N ×N matrices j2 and
j3/2, multiplied by qn1,n′

1 , and by gm, respectively.
Finally, by defining the matrices,

A =
[
υ2

maxq j2 + i
∆t
2 H

]
(3.22)

and
b(n) =

[
2υ2

maxq j2λ(n) − i
∆t
2 υ2

max[G(n) +G(n+1)]j3/2 gm

]
, (3.23)

the problem is reduced to the solution of a linear system,

AΛ(n+1) = b(n), (3.24)

with the initial conditions mentioned earlier. Matrix q and vector gm are calculated only
once for all values of n1 and n′

1 and all points of the spatial grid for all time steps. The
same holds for the Hamiltonian matrix H (where the only difference for the different
values of n1 is the separation constant Zn1,|m|

1 ).

3.3. The mapping function

For reasons to be explained in the next chapter, the number of spatial grid points N
cannot exceed 2000-2500 in our calculations. These points are to be distributed within
the [0, υmax] interval. Additionally, for field strengths of interest of the order of 1 kV/cm,
−Fυ4/2 is the dominant term of the potential UY,eff already for υ ≈ 150-250 au (1.2-3.3
µm). This spatial extent in the υ-coordinate, the potential UY,eff at hand, and the mod-
est number of grid points that can be allocated to the spatial solution calls for a judicious
point redistribution through the mapping function h(x).

It is frequent to base the selection of h(x) on either semi-classical arguments [51],[54]
or "simple" educated guesses [57]. Combining the best of the two approaches, the most
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convenient ones are of the form h(x) = xk , that were employed mainly [53] for potentials
exhibiting an asymptotic Coulomb tail at large distances. Furthermore, these transfor-
mations were used over the full spatial range (i.e. from the origin to large distances) with
a single k value. Attractive potentials demand a dense grid near the origin, so a large k
is required (k ≥ 2 or 4 etc). In this case, the grid is sparse at large distances. Repulsive
potentials can be handled adequately even with k = 1 at short distances, but as they will
become attractive at some point this option leads to degrading accuracy, making k ≥ 2
a wiser choice.

In our case, the potential UY,eff has certain particularities that make the employment
of single k over the whole [0, υmax] range prohibitive. First, depending on the value of
|m|, it may be attractive or repulsive near the origin. Second, for negative energies a
barrier is formed requiring special treatment, particularly when 2Z2 lies below this bar-
rier (tunneling phenomena). Third, at large distances there is no decaying Coulomb tale,
but a dominant −Fυ4/2 term leading to a continuously decreasing de Broglie wavelength
(or, classically speaking, an increasing kinetic energy) as the distance from the origin in-
creases. Such long-range behavior calls for a progressively denser grid near υmax, instead
of a sparse one (that is, for example, k < 1).

Optimal mapping is not a well-posed problem and the search for a better one is an
ongoing project. In the present work we take care of the first and the third of the above
issues, knowing that our solution may not be optimal for the second issue concerning
“under-the-barrier” situations.

Hence, we propose the following piecewiese mapping function,

h(x) =


pAx

kA when 0 < x ≤ xA

hAB(x) when xA ≤ x ≤ xB

pB(xkB − 1) + 1 when xB ≤ x < 1

. (3.25)

The form pAx
kA in (3.25) ensures that h(0) = 0. Accordingly, the form pB(xkB − 1) + 1

ensures that h(1) = 1. The point xA corresponds to the location υA after which the
centrifugal/centripetal term of UY,eff has completely decayed. For x ≤ xA we choose
kA=4 for m=0 and kA = 2 for |m| > 0. Accordingly, for negative energies xB corresponds
to the point υB where the maximum of the barrier is located.
For the positive energies, where there is no barrier formation, xB marks the full dominance
of the −Fυ4/2 term. In both cases, semi-classical arguments [51] suggest that, for x ≥ xB,
kB = 1/3. Once the connection between the points xA and xB with the points υA and υB

is made the pA and pB parameters in Eq. (3.25) are expressed through them as follows:

x = xA : υA = υ(xA) = υmaxh(xA) ⇒ pA = x−kA
A

υA

υmax

(3.26)
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Fig. 5. The effective potential UY,eff (υ), for |m| = 0, F = 808 V/cm, E = −0.964|Esp|,
xA = 0.11, xB = 0.35, υdet = 110 a.u.. υmax = 120 a.u., υA = 3.59 a.u. and υB = 69.26 a.u.

and
x = xB : υB = υ(xB) = υmaxh(xB) ⇒ pB = 1

xkB
B + 1

(
υB

υmax

− 1
)
. (3.27)

The connection function hAB(x) or any other relevant function in Eq. (3.25) relates
xA to υA and xB to υB, but depends on xA,B parametrically. There are, in fact, several
different procedures to follow for obtaining all these functions over the full interval [0, 1].
The most straightforward is to express h(x) within the interval [xA, xB] as a seven-degree
polynomial that is differentiable up to third order and determine the polynomial’s coeffi-
cients by a matching procedure to the forms of Eq. (3.25) and their derivatives at xA and
xB. This way a relatively smooth h(x) function is produced, but at the cost of a rapidly
varying function s(x) (Eq.(3.14)), irrespective of the choices of xA, xB.

Another possibility that we examined is based on the smoothness of the product
j2(x)UY,eff (x) appearing in Eq. (3.13). Unfortunately, also this method resulted, under
certain conditions, to functions s(x) and/or h(x) that were not smooth. Therefore, our
presently adopted methodology uses as the first and main criterion the smoothness of the
function s(x). Specifically, s(x) is expressed within the interval [xA, xB] as a fifth-degree
polynomial whose coefficients are determined by matching it to the forms for x ≤ xA and
x ≥ xB. For these two ranges both forms of h(x) in Eq. (3.25) lead to,

s(x) = k2 − 1
8x2 , (3.28)

with the appropriate value of either kA or kB. Note that Eq. (3.28) does not contain the
constants pA, pB. Then, a smooth trial st(xA, xB, x) function is obtained that depends
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parametrically on xA, xB. This trial function is used for solving the differential equation

η′′ − 2st(xA, xB, x)η = 0, (3.29)

from which we get the dimensionless jacobian function,

j(x) = 1
η2(x) , (3.30)

which, along with the matching conditions,

j(xA) = υA

υmax

kA

xA

= 1
η2(xA) (3.31)

and
j(xB) = kB

1 − υB

υmax

1 − xkB
B

xkB−1
B = 1

η2(xB) (3.32)

determines j(x) and from it the function h(x) within the [xA, xB] interval as,

h(x) = h(xB) − h(xA)∫ xB
xA

dx′

η2(x′)

∫ x

xA

dx′

η2(x′) + h(xA),

xA ≤ x ≤ xB,

h(xA) = υA

υmax

, h(xB) = υB

υmax

(3.33)

and, consequently, overall space. Nevertheless, this procedure does not guarantee the
smoothness of either j(x) or h(x). In practice, an arbitrary value of xA is chosen, and
xB is then varied until a smooth overall h(x) function is obtained within a predefined
tolerance. Unfortunately, quite frequently j(x) is continuous but not smooth and the j′(x)
and j ′′(x) functions are discontinuous. It should be noted that neither of the two functions
is required individually, only their combination in s(x) which is smooth by construction.
Finally, the optimal choice of xA, is made by minimizing the error of the electron current
density, by comparing the solution of the TDSE-S with the known steady state solution
discussed in the Appendix. Details and examples on the optimization procedure are given
in the next chapter.

3.4. Avoiding reflections at the spatial boundary: The mask method and
function

A common problem that occurs in the numerical solution of TDSE is that of the
boundary conditions. Specifically, by imposing a finite [0, υmax] spatial range, one is
implicitly enclosing the computed traveling wavepacket within an infinite potential well.
While this possesses no problem at υ = 0, the "wall" at υ = υmax causes an artificial
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reflection of the wavepacket. This problem is frequently rectified by either absorbing
[49],[58] or transparent [47],[59] boundary conditions. Both cases are sensitive to the
momentum content of the wavepacket. As a result, reflection suppression is not perfect
or constant as a function of momentum. To avoid such complications, the methodology
of Ref. [39] is adopted, a spatial mask function that multiplies the ongoing wavefunction
after each time step. The aim of the mask is to sufficiently attenuate the wavefunction
close to the υ = υmax boundary (adequately distant from the detector) in a way that at
the boundary there is effectively no reflection.

Many different versions of the mask function were studied, the initial one being [39],

m(x) =

1 if 0 ≤ x < xcut

1 − f
(

x−xcut

xmax−xcut

)2
if xcut ≤ x ≤ xmax

. (3.34)

The variable x, which appears in the mask, is the dimensionless coordinate x ∈ [0, 1],
see Eq. (3.7), f is a scale parameter that quantifies the attenuation, xcut is the mask’s
starting point (corresponding to υdet) and xmax = 1 is the last spatial grid point (υmax).
A similar function (4th power), was also investigated in the one-dimensional case of a free
wavepacket. It was found that for f ∈ [0.1, 0.6] the attenuation is practically independent
of the initial momentum of the wavepacket. Both of these options work satisfactorily but
after some experimentation we concluded that the form,

m(x) =


1 if 0 ≤ x < xcut

1 + f
(

−12
(

x−xcut

2(xmax−xcut)

)2
+ 16

(
x−xcut

2(xmax−xcut)

)3
)

if xcut ≤ x ≤ xmax

, (3.35)

exhibits a better performance and it is shown in Fig. 6 with the usually employed
parameters f = 0.8, xcut = 0.8.

Let us now discuss in more detail the parameter f . Evidently, for f = 0 there is no
mask and reflection occurs. In fact, reflection appears even for f = 1, since then the mask
itself functions as a "wall". As discovered by experimentation, apart from these extreme
values, the masking effect is quite insensitive to f , and despite m(x) being a spatial
function, its reflection suppression capability is enhanced by repeatability of action. In
other worlds, f is associated to the number of time steps (= tmax/∆t). Hence, if the
number of time-steps is high enough, the number of multiplications of the wavefunction
by the mask is also high, and even a mask with a small scale parameter f can, efficiently,
minimize the reflection. As a rule of thump, 1000 time steps is a safe lower limit.

An example is given in Fig. 7, where we can see the |m,n1⟩ = |0, 0⟩ channel at
E = −0.967|Esp|, for two cases where tmax is the same. In the first case the number of
steps is 5000, and in the second 200.
We can testify the absence of reflection in 7(a), when the number of time steps is large.
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Fig. 6. The mask function of Eq. (3.35) for f = 0.8 and xcut = 0.8.

(a) (b)

Fig. 7. The time signal at υdet = 160 a.u. (υmax = 200 a.u.), for the channel |m = 0, n1 = 0⟩
at energy E = −0.967|Esp|, with f = 0.8 and G(t) being a bell-shaped pulse of 0.36 ps duration.
In both cases tmax = 20 · 106 a.u. and (a) 5000 time steps (∆t = 4000 a.u.) and (b) 200 time
steps (∆t = 105 a.u).

In contrast, in 7(b), the non-physical reflection by the "wall" at υ = υmax is present and
manifests itself as the oscillation that appears at the right "tail" of the signal and is caused
by quantum interference between the original outgoing wavepacket and the reflected one.
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4. Results and discussion

4.1. Preliminary tests and remarks

Due to the n1 −n′
1 coupling in Eqs. (2.37)-(2.38), the dimensions of the system (3.24)

are D×D, with D = M ×N , N the number of spatial grid points and M the number of
n1-channels included in the calculation. Our computational capabilities allow for a maxi-
mum total dimension D = 10000. As for M , only the open channels need to be included.
In fact, by examining the AY values of each channel, M may, in principle, be reduced
further. This assumption is, of course, to be verified later in this chapter. To understand
its impact, however, consider the example given at the end of section 2.1, where for an
energy E = −0.9564|Esp|, the number of open channels is 26. Already this is a great
simplification with respect to the TDSE-S solution in spherical coordinates [39],[43],[44]
where M was of the order of 400 channels (corresponding to different values of orbital
angular momentum quantum numbers). Nevertheless, it turns out that AY values are
important only for n1 = 0 − 3, so M can be reduced to 4. Thus, in the above example,
for D ≈ 10000 and M = 4 we have N ≈ 2500. The latter is the maximum number of
spatial grid points to be distributed in the interval [0, υmax].

As already mentioned, a constant time-step greatly accelerates the temporal evolution
loop, the D-matrix inversion (Eq. (3.24)) is performed only once before hand. Further-
more, after some experimentation, it was found that, if one deals solely with continuum
states with quite short ionization times, tmax = 20 · 106 a.u. and 5000 time-steps are
sufficient for accurate results. On the contrary, resonances with large relaxation times
require typically tmax = 108 a.u. and 10000 time steps. These numbers are well within
the computational capabilities of a typical desktop PC, e.g. 5000 time-steps are typically
performed within a few minutes.

Time envelope function G(t) can take on a number of forms. The most common one
writes,

G(t) = 1
2

Erf

√

2 ln(2)
trise

(t− tstart)
− Erf


√

2 ln(2)
tfall

(t− tstop)
 . (4.1)

As Fig. 8 shows this function rises from 0 to 1 within trise, this rise being centered at tstart,
where G(tstart) = 0.5. Subsequently, G(t) drops from 1 to 0 within tfall, while this fall is
centered at tstop, where again G(tstop) = 0.5. In this work trise = tfall. The Full Width
at Half Maximum (FWHM) of this pulse is τ (FWHM)= tstop − tstart ≥ (trise + tfall)/2.
If tstop − tstart > (trise + tfall)/2 then a flat top pulse is produced, that is shaped like a
trapezoid. If, on the other hand, tstop − tstart = (trise + tfall)/2, a bell-shaped pulse is
obtained that resembles a gaussian one. For bell-shaped pulses, G(t) a Gaussian-type

26



form is used alternatively:

G(t) = Exp
[
−4 ln(2)

(
t− tc
τ

)2]
. (4.2)

In (4.2) τ is the FWHM and tc is the center of the pulse. Finally, if

Fig. 8. The time envelope of Eq. (4.1) with tstart = 5 · 105 a.u., tstop = 9 · 105 a.u. and
trise = tfall = 105 a.u.

tstop − tstart >> tmax (last temporal grid point) then the pulse only rises but never falls
within the calculated time interval, thus allowing a constant energy supply to the system
and the simulation of steady state situations. The latter cases are are available in the
literature [19], and may serve as benchmarks for our method.

Throughout this work, field strength is set to F = 808 V/cm and m = 0 identical to
the values adopted in experimental and theoretical projects investigating near-threshold
resonances and continuum states of the hydrogen atom [19],[27]. The same states are
also studied in this work allowing for a direct comparison with the available literature.
Further, it is convenient for the upcoming discussion to introduce the reduced energy
variable,

ε = E/|Esp|, (4.3)

instead of the absolute energy E measured with respect to zero-field limit.
We select the static field axis z as the quantization axis and assume linearly polarized

exciting radiation with the polarization vector ε parallel to the field direction (ε//F).
For this a.k.a π-polarization the dipole operator writes,

ε · r = z = χ2 − υ2

2 . (4.4)
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Insertion of operator (4.4) to Eq. (2.39) leads to the selection rule ∆m = 0, and, therefore,
the initial and final state must have the same magnetic quantum number. Furthermore,
we restrict the present study to m = 0 initial and final states (computationally the most
challenging ones). In this case, g0

n1 is given by,

g0
n1(υ) = 1

2Yi(υ)
[
C(1)

n1 − υ4C(2)
n1

]
, (4.5)

where C(1)
n1 and C(2)

n1 are constants which are defined as,

C(1)
n1 ≡

∫ ∞

0
dχXn1,0(χ)Xi(χ)χ4

C(2)
n1 ≡

∫ ∞

0
dχXn1,0(χ)Xi(χ).

(4.6)

and are calculated numerically for each value of n1.

We employ hydrogen field-free initial states (m = 0), specifically either the n = 1
ground state or the n = 2 first excited one (assuming it has been populated by some
means e.g. laser excitation [27]). Specifically, in semiparabolic coordinates the ground
state’s Xi and Yi components are written as [19],

Xi(χ) = 2Zχ1/2 e− Zχ2

2 ,

Yi(υ) = Zυ1/2 e− Zυ2

2 ,

(4.7)

while the respective components of the superposition 2−1/2[|2s⟩ + |2pm=0⟩] [19] employed
in this work (identical to the one found in experimental [27] or theoretical works [60]) are
given by,

Xi(χ) = Zχ1/2 e− Zχ2

4 ,

Yi(υ) = 2−3/2Zυ1/2
(
1 − Z

2 υ
2
)
e− Zυ2

4 ,

(4.8)

As a fitting end to this section let us discuss in some detail the mapping method and its
parameter selection that was briefly introduced in the previous chapter. The procedure is
as follows: Beginning with a smooth function s(x) (Eq. (3.14)) and once a pair of kA and
kB is selected, a value is given to xA. Then xB is scanned within the interval (xA, 1) until
a smooth h(x) mapping function (Eq. (3.25)) is obtained within a pre-specified tolerance.
When the optimum xB is obtained for a given value of xA, the probability current density
at υdet computed by solving TDSE-S under steady state conditions is compared with the
corresponding Time-Independent Steady State (TISS) solution of the Appendix. Finally,
the optimum value of xA is determined by minimizing the difference between the two
calculations. Figure 9 shows the variation of Error (defined in the graph’s legend) as
a function of xA for several kA, kB pairs. In all cases the calculation is carried out on a
5000-point time grid, a spatial grid of 2000 points, υdet = 160 a.u. and υmax = 200 a.u.
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Fig. 9. Comparison between the TDSE-S and the TISS results for the parameter xA, with
ε = −0.9564, |m| = 0, F = 808 V/cm for different values of kA and kB. The difference is
calculated at each grid point as [JT DSE(xi)2 − JT ISS(xi)2]1/2. Those differences squared are
summed, and the square root of this sum is the Error.

Evidently kA = 4 is a better choice than kA = 2 (rather expected since m = 0). Surpris-
ingly, the kA = 4, kB = 1 combination gives the lowest minimum Error. The difference
from the kA = 4, kB = 1/3 pair, however, is practically insignificant, and, at present, we
choose this latter pair in accordance with WKB arguments.

In connection with Fig. 5 it is noteworthy that the x-scale is connected to the υ-scale
in a highly nonlinear manner. For example, the optimum xA for the kA = 4, kB = 1/3
pair acquires the quite large value of xA = 0.11, which results to an almost identical signal
with xA = 0.14 that gives the minimum Error ,while the xB − xA distance appears to
contract the υA-υB one. More importantly, however, this optimization of the spatial grid
while it is based on the steady state solution, it is expected to be valid for any excitation
time profiles G(t), such as the bell-shaped ones.

4.2. Steady state TDSE-S solutions

As it was mentioned earlier the TISS solutions are very important as they allow us
to test the validity of our method. For the steady state solution, G(t) has the functional
form of Eq.(4.1) with τ ≥ tmax. This form simulates a constant energy flow to the system
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and if this happens for a sufficient amount of time, (larger than the state’s lifetime)
temporal evolution disappears and the steady state is reached.

4.2.1. The m = 0 non-resonant case

A typical negative non-resonant energy, near the ionization threshold, is ε = −0.951
with its TISS solution documented in the literature [19]. As discussed earlier, a necessary
first step before we start crunching numbers, is to identify the channels that will have an
appreciable contribution to the end result. From Table 1 it can be concluded that the
channels n1 = 0 and n1 = 1 are continua, as their respective eigenvalue 2Z2 is greater than
the maximum of the potential. All other channels are non-resonant and only n1 = 2, 3
seem to have a non-negligible AY value. So, only the first 4 channels (n1 = 0, 1, 2, 3) seem
to contribute significantly and should be taken into account for the calculation.

Furthermore, the maximum time tmax, that is required to reach the steady state is
20 · 106 atomic units of time (≈ 0.12 ns).

Table 1. Computed nodal values for the case Z = 1, m = 0, F = 808 V/cm and ε = −0.951.

n1 Z1 AX AY 2Z2 − Umax
Y,eff

0 0.0194677 0.279246 1.00008 0.152289
1 0.0586083 0.280338 1.00063 0.0740075
2 0.0980513 0.281403 0.395047 −0.00487852
3 0.13779 0.282442 0.00398385 −0.0843566
4 0.177819 0.283457 0.0000803132 −0.164415
5 0.218133 0.284448 3.83664 × 10−7 −0.245042
6 0.258725 0.285417 1.01127 × 10−8 −0.326226

· · · · · · · · · · · · · · ·

The temporal evolution of the total signal on the detector (ε = −0.951) is presented in
Fig. 10.

It is evident that the system follows the behavior of the source, which continuously
provides energy throughout the entire process. The beating structure is produced by
the interference of the |0, n1⟩ channels. Each channel has a non-zero reflection coefficient
when it reaches the potential barrier and each reflected wave oscillates with a different
de Broglie wavelength, so the resulting interference, has this peculiar form. To better
understand what happens lets observe each of the contributing channels separately. The
continuum channels n1 = 0 and n1 = 1, due to their large value of AY are the most suit-
able to examine. We expect that for continuum channels, such as those two, the reflection
from the barrier will be less intense, as the difference 2Z2 − Umax

Y,eff becomes higher. An
example is presented in Fig. 11. In this graph the eigenvalue 2Z2 of the channel is much
higher than the barrier’s top Umax

Y,eff , hence the reflection coefficient is almost zero, much
like its classical analog. For the energy under study however, we observe a non-negligible
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Fig. 10. Total detector signal vs time for the non-resonant case ε − 0.951, F = 808 V/cm and
m = 0, using the channels n1 = 0, 1, 2, 3.

(a) (b)

Fig. 11. (a) Channel’s |0, 0⟩ time signal for ε = −0.3, F = 808 V/cm and m = 0, with
2Z2 − Umax

Y,eff = 1.79795. (b) Channel’s |0, 0⟩ time signal for ε = −0.951, with 2Z2 − Umax
Y,eff =

0.152289.

percentage of reflection, since the eigenvalues of the continuum channels are much closer
to the maximum value of the potential. The total detector signal versus time for the
same energy can be seen in 12(a) and in 12(b), respectively, for n1 = 0 and n1 = 1. The
signal of n1 = 1 has a more intense oscillatory behavior, as was expected, because the
eigenvalue 2Z1,0

2 has a value that is closer to the potential’s maximum, than 2Z0,0
2 . The

interference of these channels appears in 12(c). If we also include n1 = 2 channel then,
we get the result of Fig. 10. Incorporating channel n1 = 3 has no noticeable effect to the
total signal, since its AY value is significantly smaller than the others.

Finally, the total cumulative signal for different coupled channels, appears in Fig. 13
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(a) (b)

(c)

Fig. 12. Total detector signals vs time for the non-resonant case (ε = −0.951, F = 808V/cm,
m = 0) and for the channels (a) n1 = 0, (b) n1 = 1 and (c) n1 = 0, 1.

alongside the TISS results. It is worth mentioning that the TISS results include all the
26 open channels, which are produced by the program.

(a) (b)

Fig. 13. (a) The cumulative signal at the detector (ε = −0.951, F = 808 V/cm and m = 0)
for different coupled channels alongside the TISS result (b) Magnification of (a)

We can now conclude that incorporating only 4 channels in the calculation is a valid
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approximation, since, they can accurately reproduce the TISS results. In the magnified
view of Fig. Fig. 13(b) there is graphical evidence of the insignificant changes to the
signal between 3 and 4 coupled channels. This, however, was expected as the factor AY

for the |0, 3⟩ channel is three orders of magnitude smaller than that of the |0, 0⟩ and |0, 1⟩
channels.

4.2.2. The m = 0 resonant case

By far, the most interesting and intriguing cases are the resonances. With the pa-
rameters of section 4.1, a resonance exists at ε = −0.9564. As a preview of what follows,
these unique cases require special treatment, as their numerical solutions with the pro-
posed method do not present the kind of accuracy the non-resonant cases enjoyed.

The first step, as before, is to decide which channels should be included in the TDSE-S
solution. Based on Table 2, the first two channels (n1 = 0, 1) are continua and must be
included in the calculation. Channels n1 ≥ 3 are non-resonant with very small values of
AY and we keep only n1 = 3. The most important channel, however, is n1 = 2. It’s a
resonant channel, testified by the sharp increase in the value of AY and its long lifetime
as it will be shown shortly. Once again, we use four channels with n1 = 0, 1, 2, 3. We

Table 2. Computed nodal values for the case ε = −0.9564.

n1 Z1 AX AY 2Z2 − Umax
Y,eff

0 0.0195225 0.279637 0.999663 0.131579
1 0.0587714 0.280721 1.04948 0.0530811
2 0.0983212 0.281779 6.25222 −0.0260184
3 0.138165 0.282812 0.00166875 −0.105707
4 0.178298 0.283820 0.0000131222 −0.185973
5 0.218714 0.284805 1.6814 × 10−7 −0.266804
6 0.259407 0.285769 1.26734 × 10−9 −0.348191

· · · · · · · · · · · · · · ·

still aim at reaching the steady state, so we will use the time envelope G(t) of Eq. (4.1),
again with τ ≥ tmax but this time tmax = 108 a.u. or ≈ 2.42 ns. The maximum time
of the calculation, has been significantly increased in comparison with the non-resonant
case. This is dictated by the large lifetime that characterizes a resonant energy. The time
signal of the virtual detector can be seen in Fig. 14.

The initial surge on the recorded signal subsides with time and eventually reaches its
steady state value. This signal is again a result of interference between the four channels,
though closer inspection of the individual contributions (Fig. 15) helps identify n1 = 2
as the main contributor.

Continuum channels, n1 = 0, 1 (Figs. 15(a) and 15(b)), exhibit the same signal
structure as in the non-resonant case. Channel n1 = 3 (Fig. 15(d)) has an almost
negligible contribution to the total detector signal, as was expected by its AY . As for
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Fig. 14. The signal over time at the detector for ε = −0.9564, F = 808 V/cm and m = 0
using the channels n1 = 0, 1, 2, 3.

(a) (b)

(c) (d)

Fig. 15. Detector’s signal vs time for the energy ε = −0.9564, F = 808 V/cm, m = 0 and for
the channel (a) n1 = 0, (b) n1 = 1, (c) n1 = 2 and (d) n1 = 3.
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the channel n1 = 2, its signal alone is 3× more intense than the signal of the second in
contribution channel, n1 = 0. In addition, the form of Fig. 15(c) is almost identical with
Fig. 14, a fact that again attests the resonance domination.

Now, the cumulative (temporal integration) signal on the detector vs the x ∝ ρ-
coordinate is presented in figure 16, again alongside the TISS solution.

Fig. 16. Comparison of the TDSE-S (calculated using the channels n1 = 0, 1, 2, 3) and the
TISS results for ε = −0.9564, F = 808 V/cm and m = 0.

In this case the results exhibit significant differences, that can be attributed to the
complex nature of the resonance. Nevertheless, the quality characteristics are present.
There are 3 local maxima at approximately the expected places. One could expect that
by increasing the numerical precision (i.e more spatial points) the time dependent curve
will approach the TISS one. As stated earlier, improving the spatial mesh is constrained
by the available computational resources. A quick calculation can be enlightening. In
Fig. 16 we used 2000 grid points with 4 active channels (n1) leading to a square D matrix
of size 8000 by 8000 filled with complex numbers for an approximate size of 1GB. If we
increase the spatial precision 5-fold that would swell the D-matrix size to a whopping
size of 25 GB. As a result the computational power to handle such matrices is enormous.
To further illustrate the significance of the number of grid points we can easily go the
other way, lowering to 500 points per channel as it is portrayed in Fig. 17.

Now, even the quality agreement degrades. Of course, let’s not forget that spatial
accuracy depends also on the mapping function, the transformation of coordinates that
intelligently redistributes the same number of grid points to locations where they are
most effective in catching the variations of the potential energy. As was mentioned in
chapter 3, when the eigenvalue 2Z2, lies below the barrier, which is formed for ε < 0, the
solution requires special treatment, that is a subject of an ongoing investigation. Despite
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Fig. 17. Comparison of the TDSE-S (calculated using the channels n1 = 0, 1, 2, 3) and the
TISS results for ε = −0.9564, F = 808 V/cm, m = 0 and 500 spatial grid points per channel.

all, our mapping, manages to capture to a certain degree the de Broglie’s wavelength
variations. Specifically, it captures correctly the nodal behavior of the wavepacket at the
resonance and can correctly reproduce the TISS results at energies just above (or below)
of it. To drive the point home, a fairly naive mapping function like h(x) = x2 (used in
the initial tests) leads to a complete washing out of all the quality characteristics, having
no resemblance to the TISS curve.

4.3. TDSE-S solutions for a laser pulse

With the method that was developed throughout the previous chapters, we are able to
solve the TDSE-S, for a variety of time envelopes G(t), provided that it is slowly varying
in comparison with 1/ω. A G(t) that was extensively used in tests is that of a short pulse
with flattened top (a.k.a. trapezoid pulse), as in Fig. 8. This pulse can be described by
equation 4.1. By setting tstop = tmax + 4 · 105 a.u., a pulse of 10 ps is created. Another
example of a pulse is the Gaussian pulse (Fig. 18) with the functional form of Eq. (4.2),
the duration of which, can be controlled directly from τ .

Pulse shaped sources were simulated with the same parameters and energies that
were used in the steady state tests. If by increasing the pulse duration we can match the
steady state results, the method is validated and can be confidently used in analyzing
the temporal dynamics of the driven system.
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Fig. 18. A Gaussian pulse of τ =10 ps (400000 a.u) centered at tc = 2 · 106 a.u..

4.3.1. The m = 0 non-resonant case

We begin, as before, with the non-resonant energy ε = −0.951 and for the trapezoid
pulse. Although the pulse is short-lived we let the TDSE-S follow the system for a long
time, tmax = 20 ·106 a.u. Again, only channels with significant contributions will be kept,
(n1=0,1,2,3).

The detector’s signal, at υdet = 160 a.u, is depicted in Fig. 19. One can easily assign
the double peak structure of the signal to the two continuum channels (n1 = 0, 1) while
the third local maximum is attributed to the n1 = 2 non-resonant channel. A small but
discernible contribution from the n1 = 3 channel can also be identified, its faint signature
justified by the corresponding small value of AY (see Table 1).

The use of pulsed sources (as in the signal of Fig. 19) serves as an excellent tool for
the effectiveness of the adopted masking. The absence of a reflected wave ensures once
again that the mask works as designed.

In Fig. 20 we present in a common plot the cumulative signal on the detector both for
a pulsed and a steady state source. Though the two signals differ, this is to be expected.
By increasing the pulse duration, we can see the pulsed source signal approach the steady
state one.
Specifically, it seems that the steady state is reached even with a pulse of 0.5 ns. So
tmax = 0.5 ns, is also a sufficient amount of time for the solution. The same results can
be produced if we use the Gaussian pulse of equation (4.2).

Again, the steady state is reached with a Gaussian pulse of τ ≈ 0.5 ns. Both pulsed-
source tests provide a further verification of the validity of our methodology. To conclude,
the developed TDSE-S solution, is highly efficient in the energy range ε < −0.9 and for
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Fig. 19. The time signal at the detector (ε = −0.951, F = 808 V/cm, m = 0 and four coupled
channels n1 = 0, 1, 2, 3) for the case of the pulse of Eq. (4.1), with τ ≈ 10 ps.

Fig. 20. The cumulative signal at the detector for ε = −0.951, F = 808 V/cm and m = 0 in
the case of a 10 ps-pulse (Eq. (4.1)), calculated using the channels n1 = 0, 1, 2, 3, alongside the
steady state results.
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(a) (b)

(c) (d)

Fig. 21. The cumulative signal (coupled channels n1 = 0, 1, 2, 3) for ε = −0.951, F = 808
V/cm and m = 0 and for different pulse duration (Eq. (4.1)), τ ≈ (a) 10 ps (b) 0.125 ns (c)
0.25 ns (d) 0.5 ns, compared with the steady state results.

m = 0, as the agreement with the TISS results attested, both with a constant energy
supply and with a pulse of gradually increased duration.

4.3.2. The m = 0 resonant case

The same time envelopes are used for the solution of the TDSE-S and for the resonant
energy, ε = −0.9564. The pulses now last approximately 25 ps (or 106 atomic units of
time) and the system is recorded up to tmax = 108 a.u, due to the greater lifetime, as was
mentioned before. Again we incorporate the four channels identified also in the steady
state case (Table 2) that have the largest AY values, with the resonant n1 = 2 one having
the largest value of all. Every other parameter is fixed as usual.

We start the investigation again from the pulse of Eq. 4.1, with tstart = tstop + 106

a.u. As duly noted before, resonant channels suffer from lower accuracy, that’s why this
time we don’t compare to the TISS signal but to the steady state TDSE-S. Over time,
the detector accumulates the signal of Fig. 23(a).

The observable maxima in the time signal plot, reflect the existence of the three most
dominant channels (n1 =0,1,2) that were taken into account in the TDSE solution. The
time signal is additionally presented in a logarithmic scale, in Fig. 23. The gradual
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(a) (b)

(c)

Fig. 22. Cumulative signal for ε = −0.951, F = 808 V/cm and m = 0 at the detector (coupled
channels n1 = 0, 1, 2, 3) for a Gaussian pulse (Eq. (4.2)) with (a) τ = 10 ps (b) τ = 121 ps (c)
τ =484 ps, compared with the steady state results.

(a) (b)

Fig. 23. (a) The time signal at the detector for the case of a pulse, ε = −0.9564, F = 808
V/cm and m = 0 calculated using the channels n1 = 0, 1, 2, 3. (b) the same signal with (a) in
logarithmic scale.
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reduction in intensity over time reflects the resonance’s lifetime. In order to examine if
the solution for the pulse can rightly reproduce the steady state results, we need to test
the cumulative signal (Fig. 24).

Fig. 24. The cumulative signal for ε = −0.9564, F = 808 V/cm and m = 0 at the detector
for the pulse of Eq. (4.1) (with τ ≈ 10 ps) and for ε = −0.9564, calculated using four channels
(n1 = 0, 1, 2, 3). The steady state results are also present for comparison.

Short pulse duration easily explains the discrepancies with the steady state signal. How-
ever, as in the previous case (ε = −0.951), the results coincide if we increase the width
of the pulse, as in Fig. 25.
We can testify that a pulse of ≈ 2.5 ns, leads the system to a state, that exhibits no
further time evolution.

We arrive at the same conclusions with the Gaussian pulse of Eq. 4.2. Specifically,
we can see that the steady state is reached even for τ = 1.21 ns. So the duration of the
pulse needs to be ≈ 1.5× larger in comparison with the non-resonant energy, reflecting
the larger time of life of the resonant.

The TDSE-S results are reasonable and within our physical intuition, a fact that
proves the consistency of the method. This means that when we finally address the
accuracy issues of the resonant channels, we can be confident for the validity of the
results, coming from the pulse TDSE-S solution.
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(a) (b)

(c) (d)

Fig. 25. The cumulative signal (ε = −0.9564, F = 808 V/cm, m = 0 and the usual four
coupled channels) for the pulse of Eq. (4.1) and for τ ≈ (a) 10 ps (b) 0.5 ns (c) 1.25 ns (d) 2.5
ns
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(a) (b)

(c)

Fig. 26. Cumulative signal for the resonant energy ε = −0.9564, F = 808 V/cm and m = 0
(calculated using n1 = 0, 1, 2, 3) for the Gaussian pulse of Eq. (4.2) with (a) τ = 10ps (b)
τ = 0.24ns (c) τ = 1.21ns.
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5. Conclusions

We have successfully implemented a framework for the numerical solution of the time
dependent Schrödinger equation (TDSE) for the case of near-threshold single-photon ion-
ization of a hydrogen atom in a static electric field. Key novelties of the proposed solution
are the utilization of the short time propagator and semi-parabolic coordinates for the
spatial part. The latter allowed for a great reduction of the dimensionality of the final
linear system to be solved. User-considerate numerical solutions have to use computa-
tional resources efficiently and this was implemented in this work by a carefully selected
variable transformation (mapping) that optimally distributed the points of the spatial
grid.

The computational framework consists of three interlaced autonomous programs, each
with a modular design allowing for easy code optimization. In the first program, station-
ary near-threshold Stark state wavefunctions are computed, for fixed magnetic quantum
number, field strength and energy of interest. This step allows the user to control the
number of states to be included further in the computation and thus determine the dimen-
sionality of the problem. The second program performs the time evolution thus providing
the TDSE’s solution, which is an outgoing, ionizing wavepacket. Additionally, it notably
takes the necessary steps to avoid unphysical reflections at the edge of the spatial grid.
Finally, the third program uses this computed wavepacket to calculate the probability
current density of the photoionized electrons at the surface of a virtual position sensitive
detector.

As a benchmark, the solution of the TDSE for a long, steady state pulse, has been
compared to the known time independent solutions existing in literature and which are
computed by the first program. Both qualitatively and quantitatively, the comparison is
very promising for all energies with the exception of resonances. In these narrow energy
intervals (resonances) quantitative agreement fails, however the basic expected behavior
is still captured by our time-dependent calculation. The discrepancies regarding the res-
onances can be attributed to the existence of turning points in the wavenumber function,
which are absent for the continuum states and are not considered by our mapping scheme.
Finally, reliable results have been also obtained for the case of bell-shaped pulses, and
it has been verified that for long enough pulse duration one recovers the steady state
results.

Our observations so far call for specific further improvements. First, a new mapping
function needs to be designed, that considers the wavenumber function particularities in
the vicinity of resonances. Further, the application of a numerical method that solves
the final linear system without the need of matrix inversion would allow the increase of
spatial mesh points and hence increase the accuracy of the solution. It will also allow
propagating the wavepacket at larger distances than in the present work. Moreover, the
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implementation of THz pulses to the static electric field may be envisioned. Finally, it
would be worth examining the extension of the present code to multiphoton transitions
and multi-electron atoms.
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Appendix: Steady State Solution of the Schrödinger Equation with
a Source

As was mentioned earlier, when the system under study experiences a radiation field
characterized by an envelope constant in time (G(t) = 1, ∀ t), it reaches a steady state.
The TDSE-S that describes the steady state is,

[
−1

2∇2 + UCS(r) − E
]
ψ+

out(r) = −ε · rψi(r), (A.1)

where the assumed form of the outgoing wavepacket is,

ψ+
out(r) = (2πχυ)−1/2 ∑

n′
1,m′

eim′ϕXn′
1,|m′|(χ)y+

n′
1,m′(υ). (A.2)

The Xn1,|m| wavefunctions obey Eq. (2.6) and follow the normalization of Eq. (2.10). By
inserting (A.2) to (A.1), we get,

(y+
n1,m(υ))′′ + k2y+

n1,m(υ) = 2gm
n1(υ), (A.3)

with
kn1,|m|(υ) = [2(2Zn1,|m|

2 − UY,eff (υ))]1/2, (A.4)

and
gm

n1(υ) =
∫ ∞

0
dχXn1,|m|(χ)(χ2 + υ2)χ1/2υ1/2

∫ 2π

0
dϕ

e−imϕ

(2π)1/2ε · rψi(r). (A.5)

Assuming now, without loss of generality, that the initial state ψi is a single state and of
the form of Eq. (2.5), gm

n1 simplifies further as,

gm
n1(υ) = Yi(υ)

∫ ∞

0
dχXi(χ)Xn1,|m|(χ)(χ2 + υ2)

∫ 2π

0
dϕ ε · re

i(mi−m)ϕ

(2π) , (A.6)

with Xi and Yi being the χ and υ component of the initial state, respectively. It can be
shown that the solution of (A.3) writes,

y+
n1,m = −2dn1,m

C2
Y

[Y2(υ) + iY1(υ)]

− 2
C2

Y

[(∫ υi,lim

υ
gm

n1(υ′)Y2(υ′)dυ′
)
Y1(υ) −

(∫ υi,lim

υ
gm

n1(υ′)Y1(υ′)dυ′
)
Y2(υ)

]
, (A.7)

where Y1 and Y2 are the regular and irregular solutions of the Y -component of (2.6) that
is

Y ′′
n1,|m|(υ) + k2Yn1,|m|(υ) = 0, (A.8)
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which can be put in the form of the Milne equation [61],

M′′
n1,|m|(υ) + k2(υ)Mn1,|m|(υ) − 1

M3
n1,|m|(υ) = 0. (A.9)

Then, Y1 and Y2 are given by,

Y1(υ) = CY Yr(υ) = CY Mn1,|m|(υ) sin(θn1,|m|(υ) + ϕn1,|m|)

Y2(υ) = CY Yir(υ) = CY Mn1,|m|(υ) cos(θn1,|m|(υ) + ϕn1,|m|), (A.10)

with
θ(υ) =

∫ υ 1
M2(υ′)dυ

′, (A.11)

while ϕn1,|m| is a constant phase and CY is a (large distance) normalization constant,

CY =
√

2/π. (A.12)

Finally,
dn1,m = ⟨ψi| ε · r |ψF

n1,m⟩ =
∫ ∞

0
Yn1,|m|(υ)gm

n1(υ)dυ, (A.13)

is the dipole transition matrix element between the initial ψi and the final Stark state
ψF

n1,m. Thus, the problem is reduced to the knowledge of the solutions of the homogeneous
equation (A.8) [19].

In (A.7) υi,lim is the coordinate value after which Yi(υ), and consequently gm
n1(υ), have

completely decayed,
g(υ ≥ υi,lim) = 0. (A.14)

Hence, Eq. (A.7) shows that for υ ≥ υi,lim the outgoing wave is given by,

y+
n1,m(υ ≥ υi,lim) = −2dn1,m

C2
Y

[Y2(υ) + iY1(υ)] = −2dn1,m

CY

Mn1,|m|(υ)ei[θn1,|m|(υ)+ϕn1,|m|].

(A.15)
In our computations we always place the detector at a distance υdet ≥ υi,lim for any
employed initial state. Hence, we use (A.15) for obtaining y+

n1,m and the steady state
electron current density, which is given by,

Jῡ(ϕ, χ) = − 1
2πχυ[χ2 + υ2]1/2 Im

 ∑
n′

1,n1,m′,m

ei(m′−m)ϕXn′
1,|m′|(χ)Xn1,|m|(χ)y+

n′
1,m′(υ) ∂

∂υ

(
y+

n1,m(υ)
)∗
∣∣∣∣∣∣

υ=ῡ

,

(A.16)
where by using (A.15), the term y+

n′
1,m′(υ) ∂

∂υ

(
y+

n1,m(υ)
)∗

becomes,

y+
n′

1,m′(υ) ∂
∂υ

(
y+

n1,m(υ)
)∗

=
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4
CY

2dn′
1,m′d∗

n1,mMn′
1,|m′|

[
∂Mn1,m

∂υ
− i

Mn1,m

]
e

i[θn′
1,|m′|(υ)−θn1,|m|(υ)+ϕn′

1,|m′|−ϕn1,|m|]. (A.17)

If the condition υdet ≥ υi,lim does not hold, then one may always use (A.7) which is valid
over all space. In other studies, interested in large distances (υ → ∞), the relation (A.17)
becomes simpler, given that Milne functions for large υ reduce to the WKB form,

Mn1,|m|(υ) = 1
k

1/2
n1,|m|(υ)

, (A.18)

where kn1,|m| is given in (A.4). For υ >>, the term (4m2 − 1)/(8υ2) in UY,eff (υ) can be
neglected and hence,

kn1,|m| ≈
[
Fυ4 + 2Eυ2 + 4Zn1,|m|

2

]1/2
. (A.19)

When υ approaches infinity, even 4Zn1,|m|
2 can be neglected, the Milne functions become

independent of |m|, n1 and the wavenumber becomes progressively large. Then, from Eq.
(A.18), it is evident that as υ increases, Milne functions decrease, the derivative term in
(A.17) can be approximated to zero and Mn1,|m|/Mn′

1,|m′| ≈ 1.
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