

ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΤΑ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Εξατομίκευση Chatbot σε πραγματικά δεδομένα

Στοιχεία φοιτητή:

Μουζάκι Ιωάννης

15ο εξάμηνο – ΑΜ: 1694 – email: thl1816144@uoi.gr

Επιβλέπον καθηγητής: Καρβέλης Πέτρος,

ΔΕΠ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ

Αθήνα, Οκτώβριος, 2025

mailto:thl1816144@uoi.gr

ii

Personalization of a Chatbot using Real Data

iii

Εγκρίθηκε από τριμελή εξεταστική επιτροπή

Άρτα, 14/11/25

ΕΠΙΤΡΟΠΗ ΑΞΙΟΛΟΓΗΣΗΣ

1. Επιβλέπων καθηγητής

Πέτρος Καρβέλης,

2. Μέλος επιτροπής

Αλέξανδρος Τζάλλας,

3. Μέλος επιτροπής

Νικόλαος Γιαννακέας

iv

© Μουζάκι, Ιωάννης, 2025.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

v

Δήλωση μη λογοκλοπής

Δηλώνω υπεύθυνα και γνωρίζοντας τις κυρώσεις του Ν. 2121/1993 περί Πνευματικής

Ιδιοκτησίας, ότι η παρούσα μεταπτυχιακή εργασία είναι εξ ολοκλήρου αποτέλεσμα δικής

μου ερευνητικής εργασίας, δεν αποτελεί προϊόν αντιγραφής ούτε προέρχεται από

ανάθεση σε τρίτους. Όλες οι πηγές που χρησιμοποιήθηκαν (κάθε είδους, μορφής και

προέλευσης) για τη συγγραφή της περιλαμβάνονται στη βιβλιογραφία.

Μουζάκι, Ιωάννης

Υπογραφή

vi

Περίληψη

Η παρούσα εργασία παρουσιάζει την υλοποίηση ενός εκπαιδευτικού chat bot που απαντά

τεκμηριωμένα σε ερωτήματα σχετιζόμενα με το Τμήμα, αξιοποιώντας προσέγγιση

Retrieval Augmented Generation. Αρχικά, πραγματοποιείτε web scraping του ιστότοπου

σε όλα τα τμήματα (ανακοινώσεις, προσωπικό, γραμματεία κ.λπ.) και λήψη – επεξεργασία

των συνημμένων pdf. Τα έγγραφα μετατρέπονται σε καθαρό κείμενο χρησιμοποιώντας

διάφορες τεχνικές. Αφού γίνουν οι απαραίτητες τροποποιήσεις, τα δεδομένα

αποθηκεύονται σε SQLite βάση όπου κατασκευάζονται corpus σε chunks με ευρετήριο

FTS5/BM25 για λεξική αναζήτηση. Παράλληλα, τα ίδια αποσπάσματα υπολογίζονται

embeddings και αποθηκεύονται σε ChromaDB, επιτρέποντας σημασιολογική αναζήτηση.

Η ανάκτηση είναι υβριδική, τα αποτελέσματα από τη λεξική και σημασιολογική

αναζήτηση συγχωνεύονται με Reciprocal Rank Fusion, ενώ χρησιμοποιούνται εργαλεία

για την διατήρηση συμφραζομένων και πηγών. Έπειτα, τα καλύτερα αποτελέσματα

τροφοδοτούν ένα προσεκτικά σχεδιασμένο prompt προς το LLM, το οποίο παράγει

σύντομες και ελέγξιμες απαντήσεις. Η διεπαφή υλοποιείτε σε Gradio, προσφέροντας

ρυθμίσεις παραμέτρων και εξαγωγή συνομιλίας.

Λέξεις κλειδιά: RAG, ChromaDB, Embeddings, LLM, BM25

vii

Abstract

This thesis presents the implementation of an educational chatbot that provides evidence-

based answers to department-related queries using Retrieval-Augmented Generation

(RAG) approach. Firstly, the department website is scraped across all sections

(announcements, staff, secretariat, etc.) and attached PDFs are downloaded and processed.

Documents are converted to clean text using various techniques. After the necessary

preprocessing, the data are stored in an SQLite database, where the corpus is split into

chunks and indexed with FTS5/BM25 for lexical search. In parallel, the same chunks are

embedded and stored in ChromaDB to enable semantic search. Retrieval is hybrid: results

from lexical and semantic search are fused via Reciprocal Rank Fusion, with additional

steps to preserve context and source traceability. The best results then feed a carefully

designed prompt to the LLM, which produces concise, certifiable answers. The user

interface is implemented in Gradio, offering parameter controls and chat exports.

Keywords: RAG, ChromaDB, Embeddings, LLM, BM25

viii

Περιεχόμενα:
Κατάλογος εικόνων: .. ix

Κατάλογος Συντομογραφιών ... x

Γλωσσάριο αγγλικών όρων ... xi

Κεφάλαιο 1 – Εισαγωγή: .. 1

1.1 Γενικό Τεχνολογικό Πλαίσιο .. 1

1.2 Το πρόβλημα και η ανάγκη παρέμβασης .. 1

1.3 Μεθοδολογική Προσέγγιση ... 2

1.4 Σκοπός και Στόχοι της Εργασίας.. 2

Κεφάλαιο 2 – Θεωρητικό Υπόβαθρο ... 3

2.1 Chatbots – Ορισμός και Ιστορική Εξέλιξη ... 3

2.2 Επεξεργασία Φυσικής Γλώσσας και LLMs ... 4

2.3 Chatbots στην Ανώτατη Εκπαίδευση ... 5

2.4 Πλεονεκτήματα και Προκλήσεις .. 6

Κεφάλαιο 3: Ανάλυση και Σχεδίαση Συστήματος ... 6

3.1: Συνοπτική περιγραφή .. 6

3.2: Αρχιτεκτονική συστήματος και βάση δεδομένων ... 7

3.3: Λειτουργικές και μη Λειτουργικές απαιτήσεις ... 8

Κεφάλαιο 4: Υλοποίηση .. 9

4.1: Web scraping: Πώς συλλέγω τα δεδομένα (modules & helpers) .. 9

4.2: Επεξεργασία pdf στο Google Colab .. 12

4.3: Δημιουργία Βάσης Δεδομένων – Σχήμα, εισαγωγή, chunking και FTS5 13

4.4: Ανάκτηση και παραγωγή – Hybrid search, prompt, LLM .. 15

4.5: Εκτέλεση & User Interface – Gradio app, ρυθμίσεις, ροή αιτήματος 17

4.6: Παραδείγματα και Εκτέλεση του έργου .. 19

Κεφάλαιο 5 – Συμπεράσματα και προτάσεις βελτίωσης ... 33

5.1: Περιορισμοί και βελτιώσεις .. 33

5.2: Μελλοντικές ιδέες ... 34

ix

5.3 Συμπεράσματα.. 34

Βιβλιογραφία .. 34

Κατάλογος εικόνων:

Εικόνα 1. ELIZA, το πρώτο ChatBot. .. 3

Εικόνα 2. Λειτουργεία ενός RAG συστήματος. ... 7

Εικόνα 3. Σχεδίαση της Βάσης σε StarUML. .. 15

Εικόνα 4. Πόροι Colab (L4 GPU). ... 20

Εικόνα 5. Φόρτωση εξαρτήσεων. .. 20

Εικόνα 6. Εξαγωγή των δεδομένων από την ιστοσελίδα του τμήματος. ... 21

Εικόνα 7. Λήψη των αρχείων. .. 22

Εικόνα 8. Φόρτωση εξαρτήσεων για τα γλωσσικά μοντέλα. ... 23

Εικόνα 9. Επεξεργασία αρχείων pdf. ... 24

Εικόνα 10. Δημιουργία schema της βάσης. ... 25

Εικόνα 11. Embeddings σε ChromaDB. .. 26

Εικόνα 12. Υβριδική ανάκτηση. .. 27

Εικόνα 13. Εκκίνηση του chatbot. ... 28

Εικόνα 14. Αποθήκευση διαλόγου και εξαγωγή. ... 28

Εικόνα 15. Ερώτηση 1. .. 29

Εικόνα 16. Ερώτηση 2. .. 30

Εικόνα 17. Ερώτηση 3. .. 31

Εικόνα 18. Ερώτηση 4. .. 32

Εικόνα 19. Ερώτηση 5. .. 33

x

Κατάλογος Συντομογραφιών

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

NLP Natural Language Processing

LLM Large Language Model

RAG Retrieval-Augmented Generation

BM25 Best Match 25

FTS5 Full Text Search v5

SQL Structured Query Language

UI User Interface

URL Uniform Resource Locator

PDF Portable Document Format

CSV Comma-Separated Values

YAML YAML Ain't Markup Language

DOM Document Object Model

OCR Optical Character Recognition

GPU Graphics Processing Unit

RRF Reciprocal Rank Fusion

POS Part of Speech

GDRP General Data Protection Regulation

API Application Programming Interface

REST Representational State Transfer

SHA-256 Secured Hash Algorithm

CUDA Compute Unified Device Architecture (Nvidia)

GPT Generative Pre-Trained Transformer

LORA/QLORA Low Rank Adaptation

xi

Γλωσσάριο αγγλικών όρων

Token Μονάδα κειμένου

Tokenization Διαδικασία διάσπασης κειμένου σε tokens

Lemmatization Μετατρέπει την κάθε λέξη στη βασική της

μορφή

Stemming Αποκοπή καταλήξεων

POS tagging

Αναγνώριση γραμματικών κατηγοριών.

Sentiment analysis Ανάλυση συναισθήματος

Embeddings Διανυσματική αναπαράσταση κειμένου για

σημασιολογική αναζήτηση

Vector Search Αναζήτηση με διάνυσμα

Vector Store Αποθήκη διανυσμάτων

Chunking Τεμαχισμός κειμένου σε αποσπάσματα

Overlap Επικάλυψη μεταξύ αποσπασμάτων

Top-k Επιλογή των k κορυφαίων αποτελεσμάτων

Idempotency Κάνει το σύστημα ασφαλές σε

επανεκτελέσεις

Prompt Οδηγίες προς LLM

Token Budgeting Διαχείριση χώρου tokens στο prompt

Neighbor expansion Επέκταση σε γειτονικά Chunks

Diversity Ποικιλία πηγών στο context

Persistent Collection Μόνιμη συλλογή διανυσμάτων

Manifest Συγκεντρωτικός κατάλογος αρχείων

Quality Gates Έλεγχοι ποιότητας

Quality Score Βαθμολογία

Upsert Εισαγωγή ή ενημέρωση εγγραφής στη

βάση

Headless Chrome Εκτέλεση browser χωρίς γραφικό

περιβάλλον

Lazy-Loading / Expanders Τεχνικές φόρτωσης και ανάπτυξης

δυναμικού περιεχομένου

Sentence Transformer Βιβλιοθήκη παραγωγής embeddings

Post-Processing Βήματα καθαρισμού ή μορφοποίησης

1

Κεφάλαιο 1 – Εισαγωγή:

1.1 Γενικό Τεχνολογικό Πλαίσιο

Κάθε τομέας της κοινωνίας, την τελευταία δεκαετία, έχει επηρεαστεί ραγδαία από την

εξέλιξη των τεχνολογιών πληροφορικής και τηλεπικοινωνιών, με κύριο στόχο την

εκπαίδευση. Ο τρόπος ο οποίος οι φοιτητές αλληλοεπιδρούν με το πανεπιστημιακό

περιβάλλον έχει αλλάξει εξαιτίας της συνεχής ψηφιοποίησης υπηρεσιών και διαδικασιών το

οποίο έχει δημιουργήσει νέες απαιτήσεις για πιο γρήγορη και αποτελεσματική πρόσβαση

στην πληροφορία. Η αξιοποίηση σύγχρονων τεχνολογιών κρίνεται απαραίτητη λόγω του

αυξημένου όγκου δεδομένων που διαχειρίζονται οι φοιτητές σε συνδυασμό με τις ανάγκες

επικοινωνίας με τις υπηρεσίες και τους διδάσκοντες. Στο πλαίσιο αυτό, η Τεχνητή

Νοημοσύνη (ΑΙ) και οι κλάδοι της, Μηχανική Μάθηση (ΜL) και η Βαθιά Μάθηση (DL)

,αναδεικνύονται ως ισχυρά εργαλεία που προσφέρουν καινοτόμες λύσεις στις ανάγκες της

εκπαίδευσης.

1.2 Το πρόβλημα και η ανάγκη παρέμβασης

Στα πανεπιστήμια παρατηρούνται σημαντικές δυσκολίες στην άμεση και αξιόπιστη

ενημέρωση των φοιτητών για ακαδημαϊκά θέματα παρά την χρήση ποικίλω ψηφιακών

πλατφόρμων όπως η ιστοσελίδα της σχολής. Οι διοικητικές υπηρεσίες καλούνται να

διαχειριστούν μεγάλο αριθμό αιτημάτων που συχνά επαναλαμβάνονται, όπως ερωτήσεις για

προθεσμία δηλώσεων μαθημάτων. Με την ίδια προοπτική , και οι διδάσκοντες δέχονται

πληθώρα μηνύματα και email για ζητήματα τα οποία θα μπορούσαν να απαντηθούν άμεσα

μέσω ενός αυτοματοποιημένου συστήματος. Λόγω του φόρτου αυτού, το αποτέλεσμα είναι

καθυστερήσεις και επιβάρυνση των υπηρεσιών το οποίο καταλήγει σε δυσαρέσκεια τόσο

από την πλευρά των φοιτητών όσο και από το προσωπικό. Έτσι, πολλοί φοιτητές στρέφονται

σε άτυπα μέσα, όπως ομάδες στα κοινωνικά δίκτυα, όπου η εγκυρότητα της πληροφορίας

συχνά δεν είναι έγκυρη (Winkler & Soellner, 2018). Στο πλαίσιο αυτό, η εργασία προσπαθεί

να αναπτύξει ένα ευφυές σύστημα, chatbot ειδικά σχεδιασμένο για τις ανάγκες που αφορούν

το περιβάλλον του πανεπιστημίου. Ένα τέτοιο σύστημα μπορεί να αποσυμφορήσει το έργο

των διοικητικών υπηρεσιών όπως και τους φοιτητές αφού θα αποτελέσει ένα σημείο άμεσης

και αξιόπιστης πληροφόρησης. Η ενσωμάτωση του chatbot σε πλατφόρμες που

2

χρησιμοποιούνται ήδη όπως η ιστοσελίδα της σχολής, μπορεί να συμβάλλει στην

δημιουργία ενός πιο συνοπτικού και λειτουργικού συστήματος εκπαίδευσης.

1.3 Μεθοδολογική Προσέγγιση

Η ανάπτυξη του συστήματος προϋποθέτει την κατανόηση βασικών αρχών της Τεχνητής

Νοημοσύνης. Έτσι, η ΑΙ ορίζεται ως το επιστημονικό πεδίο που επιδιώκει να κατασκευάσει

μηχανές με δυνατότητες λήψης αποφάσεων και προσαρμογής στη μάθηση, σε βαθμό που

προσομοιάζει την ανθρώπινη νοημοσύνη (Stuart J. Russel & Peter Norvig, 2022).Η

Μηχανική Μάθηση, ως υπό επίπεδο της ΑΙ ,δίνει την δυνατότητα στα συστήματα να

βελτιώσουν την απόδοση τους μέσω της εμπειρίας, χρησιμοποιώντας δεδομένα για να

ανιχνεύσουν πρότυπα και να κάνουν προβλέψεις (Moors et al., 2015). Τέλος, η Βαθιά

Μάθηση, με την βοήθεια πολύ επίπεδων νευρωνικών δικτυών, καθιστά εφικτή την

κατανόηση πολύπλοκων δεδομένων, όπως η φυσική γλώσσα και η επεξεργασία εικόνας. Για

αυτό τον λόγο, θεωρείται καταλυτής για την πρόοδο συγχρόνων chatbots (Baldi &

Sadowski, 2016).

1.4 Σκοπός και Στόχοι της Εργασίας

Η ανάπτυξη της συγκεκριμένης διπλωματικής εργασίας δεν προορίζεται μόνο στην

αποτύπωση σύγχρονων τάσεων και βιβλιογραφίας γύρω από τα chatbot, αλλά προχωρά στην

υλοποίηση ενός συστήματος το οποίο θα αξιολογηθεί από φοιτητές και τις διοικητικές

υπηρεσίες και θα προσφέρει χρήσιμα συμπεράσματα για τους περιορισμούς και της

δυνατότητες της τεχνολογίας αυτή. Η εργασία δεν μένει σε θεωρητική διάσταση, αλλά

προσπαθεί να αποδείξει στην πράξη ότι η Τεχνητή Νοημοσύνη μπορεί να βελτιώσει την

καθημερινή φοιτητική εμπειρία, προσφέροντας ένα άμεσο, δια δραστικό και

αποτελεσματικό μοντέλο επικοινωνίας.

3

Κεφάλαιο 2 – Θεωρητικό Υπόβαθρο

2.1 Chatbots – Ορισμός και Ιστορική Εξέλιξη

Τα chatbots, η αλλιώς συστήματα συνομιλίας , τα οποία ορίζονται ως προγράμματα

υπολογιστών που έχουν δημιουργηθεί για να αλληλοεπιδρούν με τον χρήστη μέσα από τη

φυσική γλώσσα η οποία μπορεί να είναι είτε γραπτή είτε σε προφορική μορφή. Ο βασικός

στόχος τους είναι, να μιμηθούν την ανθρώπινή συμπεριφορά και να προσφέρουν χρήσιμες

πληροφορίες , καθοδήγηση ή υποστήριξη σε διάφορους τομείς, από την εξυπηρέτηση

πελατών μέχρι και την εκπαίδευση. Η ιδέα του συστήματος αυτού δεν είναι καινούρια αφού

ήδη από την δεκαετία του 1960 παρουσιάστηκε το ELIZA , που δημιουργήθηκε από τον

Joseph Weizembaum στο MIT. To ELIZA επιχειρούσε να προσομοιάσει ένα

ψυχοθεραπευτή χρησιμοποιώντας κανόνες αντιστοίχισης λέξεων – κλειδιών,

αποδεικνύοντας ότι ακόμα και απλοί αλγόριθμοι έχουν δυνατότητα ενός ‘έξυπνου’ διαλόγου

(Joseph Weizenbaum, 1966).

Εικόνα 1. ELIZA, το πρώτο ChatBot.

Στη συνέχεια, ακολουθήσε το PARRY στην δεκαετία του 1970, το οποίο ο ρόλος του ήταν

να αναπαραστήσει τη συμπεριφορά ενός ανθρώπου με παρανοϊκή διαταραχή. Το PARRY

ήταν πιο πειστικό αφού χρησιμοποιούσε συνθέτες στρατηγικές διαλόγου κάτι το οποίο το

ELIZA δεν έκανε. Με την πάροδο του χρόνου, τα chatbots συνέχισαν να εξελίσσονται, αλλά

παρέμειναν περιορισμένα στις δυνατότητες τους διότι στηρίζονταν κυρίως σε κανόνες (rule

4

-based systems).Η μεγάλη ανάπτυξη ήρθε με την πρόοδο της Μηχανικής Μάθησης

(Mechine Learing- ML) και υστέρα της Βαθιάς Μάθησης (Deep Learning - DL). Τα πολλά

επίπεδα νευρωνικών δικτυών και η δυνατότητα χειρισμού μεγάλου όγκου δεδομένων

επέτρεψαν στην κατασκευή των chatbots, που βοήθησαν τα συστήματα αυτά όχι απλώς να

ακολουθούν προκαθορισμένους κανόνες αλλά να μπορούν να ‘μαθαίνουν’ τα μοτίβα της

γλώσσας. Στη δεκαετία του 2010, με την εμφάνιση των Μεγάλων Γλωσσικών Μοντέλων

(Large Language Models - LLMs) , όπως το GTP, τα μοντέλα αυτά απέκτησαν την

ικανότητα κατανόησης και δημιουργίας της φυσικής γλώσσας (Vaswani et al., 2023). Στη

σύγχρονη εποχή, τα chatbots αποτελούν ώριμη τεχνολογία με εφαρμογές που αγγίζουν ένα

ευρύ φάσμα τομέων. Ειδικότερα στην εκπαίδευση, χρησιμοποιούνται για να διευκολύνουν

τη πρόσβαση στις πληροφορίες, για να ενισχύσουν την επικοινωνία με τα πανεπιστήμια

αλλά και για να παρέχουν εξατομικευμένη υποστήριξη μάθησης (Winkler & Soellner,

2018). Τα πειραματικά στάδια της δεκαετίας του 1960 έως και τα σημερινά LLMs,

καθρεπτίζει την πορεία της Τεχνητής Νοημοσύνης και την αλληλεπίδραση της με τις

ανάγκες τις εκπαίδευσης και της κοινωνίας.

2.2 Επεξεργασία Φυσικής Γλώσσας και LLMs

Η επεξεργασία της Φυσικής Γλώσσας (Natural Language Processing- NLP) καθίσταται ως

ένας από τους σημαντικότερους κλάδους της τεχνητής Νοημοσύνης, με κύριο στόχο την

ανάπτυξη μεθόδων και αλγορίθμων που επιτρέπουν στους υπολογιστές να κατανοούν, να

ερμηνεύουν και να παράγουν την ανθρώπινη γλωσσά. Η NLP, συνδικάζει γλωσσολογικές

θεωρίες με στατιστικά και μαθηματικά δεδομένα. Έτσι, έχει βρει εφαρμογή σε μεγάλο

πλήθος καθημερινών τεχνολογιών, από τα συστήματα αυτόματης μετάφρασης έως και τα

chatbots τα οποία χρησιμοποιούνται στην εκπαίδευση (Jurafsky & Martin, n.d.). Ένας από

τους πιο βασικούς τρόπους επεξεργασίας και ανάλυσης κειμένου είναι το tokenization ,

δηλαδή η διάσπαση μιας πρότασης σε μικρότερα τμήματα (tokens). Ανάλογα με την

εφαρμογή, τα tokens μπορεί να είναι λέξεις, μικρότερές λέξεις αλλά και χαρακτήρες.

Σήμερα, τα γλωσσικά μοντέλα χρησιμοποιούν συχνά μικρότερες λέξεις (sub tokenization),

η οποία βοηθά στην κατανόηση πολλών και αγνώστων λέξεων. Για παράδειγμα, η λέξη

‘ανθυγιεινός’ μπορεί να χωριστεί σε μικρότερες λέξεις (‘ανθ΄’,’υγιειν’,’ος’), κάτι το οποίο

επιτρέπει το μοντέλο να αναγνωρίσει το νόημα ακόμα και αν δεν έχει δει ποτέ αυτή την

λέξη. Στη συνέχεια, έχουμε τη διαδικασία της lemmatization το οποίο συνδέει κάθε λέξη με

τη βασική μορφή (λήμμα). Έτσι, οι διαφορετικές μορφές μιας λέξης ομαδοποιούνται,

μειώνοντας την πολυπλοκότητα των δεδομένων. Σε γλώσσες όπως η ελληνική, που κατέχει

5

πλούσιο λεξιλόγιο είναι ιδιαίτερα σημαντικό διότι μια λέξη μπορεί να εμφανιστεί σε πολλές

κλιτικές μορφές. Η lemmatization εξασφαλίζει την ορθή γλωσσική επεξεργασία και αυξάνει

την αξιοπιστίας ανάλυσης σε αντίθεση με το steming που αφαιρεί καταλήξεις χωρίς την

γλωσσική ακρίβεια (Manning et al., n.d.). Με την μέθοδο του part – of – speech tagging

(POS tagging) επιτρέπεται η αναγνώριση της γραμματική κατηγορίας κάθε λέξης μέσα σε

μια πρόταση. Για παράδειγμα, η λέξη ‘διαβάζει’ αναγνωρίζεται ως ρήμα, ενώ η λέξη

‘διάβασμα’ ως ουσιαστικό. Η πληροφορία αυτή, είναι ιδιαίτερα σημαντική καθώς βοηθά

στη κατανόηση της συντακτικής δομής και την αυτόματη μετάφραση ή την εξαγωγή

κείμενων σε εφαρμογές. Στα LLMs, η POS ανάλυση ενσωματώνεται έμμεσα με την

εκπαίδευση ,κάτι που εξακολουθεί να αποτελεί κρίσιμο στάδιο σε πολλές εφαρμογές NLP.

Επιπλέον, μια από της σημαντικότερες εφαρμογής της NLP είναι η sentiment analysis.

Μέσα από τους αλγορίθμους , δίνεται η δυνατότητα να προσδιοριστεί αν ο τόνος του

κειμένου είναι θετικός, αρνητικός ή ουδέτερος Για παράδειγμα, μια αξιολόγηση από έναν

φοιτητή όπως, ‘Το μάθημα ήταν ευχάριστο’ αναγνωρίζεται ως θετικό, σε αντίθεση με την

πρόταση ‘Η επικοινωνία με τον καθηγητή ήταν δύσκολη’ που ταξινομείται ως αρνητική.

Με την ανάλυση του συναισθήματος δίνεται η δυνατότητα από τις υπηρεσίες να

αντιλαμβάνονται τις αντιδράσεις των φοιτητών και να προσαρμόζουν ανάλογα την

υποστήριξη που παρέχουν. Έτσι, τα πανεπιστημιακά chatbots, έχουν ιδιαίτερη σημασία και

αξία. Στα πρώτα συστήματα NLP οι τεχνικές tokenization, lemmatization και POS tagging

υλοποιούνται ξεχωριστά με συμβολικούς ή στατικούς αλγορίθμους. Τα σύγχρονα LLMs σε

αντίθεση, ενσωματώνουν μεγάλο ευρέως αυτών των κανόνων στην εκπαίδευση,

μαθαίνοντας έμμεσα τους κανόνες γλωσσών. Αυτό οδηγεί σε μια πιο ‘φυσική’

αλληλεπίδραση όπου τα chatbots μπορούν να ανταποκρίνονται με αυξημένο επίπεδο

κατανόησης και προσαρμοστικότητας (Vaswani et al., 2023).

2.3 Chatbots στην Ανώτατη Εκπαίδευση

Η χρήση των chatbots στην ανώτατη εκπαίδευση μπορούν να συμβάλλουν στην βελτίωση

της ακαδημαϊκής εμπειρίας για τους φοιτητές όσο και την διευκόλυνση των διοικητικών

διαδικασιών. Τα συστήματα αυτά, μπορούν να προσφέρουν άμεση πληροφορία στους

φοιτητές σχετικά με τα προγράμματα σπουδών, προθεσμίες και εγγραφές ,μειώνοντας τον

φόρτο των διοικητικών υπηρεσιών μέσα από τις τεχνικές NLP και LLMs (Stuart J. Russel

& Peter Norvig, 2022). Έχει εφαρμοστεί με επιτυχία και για ακαδημαϊκή υποστήριξη, όπως

φανερώνεται από το παράδειγμα του Jill Watson στο Georgia Institute of Technology των

ΗΠΑ, που λειτούργησε και ως εικονικός βοηθός σε διαδικτυακά μαθήματα (Watson et al.,

6

n.d.). Μέσω των sentiment analysis ,μπορεί να προσφερθεί και ψυχολογική υποστήριξη κάτι

το οποίο δεν αντικαθιστά τους ειδικούς αλλά λειτουργεί ως επιπλέον παράγοντας (Vaidyam

et al., 2019).

2.4 Πλεονεκτήματα και Προκλήσεις

Σημαντικά οφέλη προσφέρει η χρήση του chatbot στην ανώτατη εκπαίδευση. Διευκολύνει

τους φοιτητές να έχουν πρόσβασή σε πληροφορίες, με άμεσες απαντήσεις για ακαδημαϊκά

και διοικητικά ζητήματα με χρονική διαθεσιμότητα 24 ωρών (Okonkwo & Ade-Ibijola,

2021). Παράλληλα, τα chatbots μπορούν να χρησιμοποιηθούν και να λειτουργήσουν ως

συμπληρωματικά εργαλεία μάθησης, όπως καθοδήγηση στη μελέτη, γεγονός που ενισχύει

την εξατομίκευση της εκπαιδευτικής εμπειρίας (Winkler & Soellner, 2018). Ωστόσο, η

ενσωμάτωση αυτών των τεχνολογιών συνοδεύεται με πολλαπλές προκλήσεις . Μια βασική

πρόκληση είναι η ακρίβεια των απαντήσεων, καθώς τα γλωσσικά μοντέλα δεν είναι

αλάνθαστα και μπορούν να εμφανίσουν παραπλανητικές απαντήσεις. Μια επιπλέον

πρόκληση είναι η προστασία προσωπικών δεδομένων και στη συμμόρφωση με το GDPR,

καθώς τα συστήματα αυτά ενδέχεται να επεξεργαστούν ευαίσθητα στοιχεία φοιτητών

(Floridi et al., 2018). Συνεπώς, υπάρχουν προκλήσεις που σχετίζονται με την συμμόρφωση

και αποδοχή των χρηστών, καθώς υπάρχουν φοιτητές και διδάσκοντες οι οποίοι εκφράζουν

επιφυλάξεις και την δυσαρέσκεια τους σχετικά με την παιδαγωγική αξία των chatbos

(Zawacki-Richter et al., 2019). Τέλος, ενώ τα chatbots αποτελούν καινοτόμο εργαλείο για

πανεπιστήμια, η επιτυχής αξιοποίηση τους απαιτεί ισορροπία αναμεσά στα πλεονεκτήματα

και τους κίνδυνους που κατέχουν.

Κεφάλαιο 3: Ανάλυση και Σχεδίαση Συστήματος

3.1: Συνοπτική περιγραφή

Ο στόχος του συστήματος είναι ένα εκπαιδευτικό chatbot για την ιστοσελίδα και τα

μαθήματα του Τμήματος, που απαντά σε ερωτήσεις φοιτητών, διδασκόντων είτε και της

γραμματείας αξιοποιώντας RAG (Retrieval Augmented Generation): αντλεί αποσπάσματα

από το επίσημο υλικό (σελίδες ,ανακοινώσεις, έγγραφα PDF) και συνθέτει απαντήσεις με

παραπομπές στα εκάστοτε URLs ή pdfs. Η αρχιτεκτονική είναι υβριδική, συνδυάζει λεκτική

ανάκτηση πληροφορίας μέσω BM25 πάνω σε FTS5/SQLite και σημασιολογική με

embeddings χρησιμοποιώντας το μοντέλο intfloat/multilingual-e5-large (huggingface) και

αποθήκευση σε ChromaDB, ενώ η τελική απάντηση παράγεται από το ελληνικό γλωσσικό

7

μοντέλο LLM ilsp/Llama-Krikri-8b-instruct. Η προσωρινή διεπαφή προς τον χρήστη

υλοποιείτε με Gradio ChatInterface για απλό και καθαρό User Interface.

3.2: Αρχιτεκτονική συστήματος και βάση δεδομένων

Η αρχιτεκτονική του συστήματος αποτελείτε από 5 διακριτά στάδια, (α) συλλογή του

περιεχομένου με web scraping από τις ενότητες του ισότοπου (ανακοινώσεις, δράσεις,

γραμματεία, μαθήματα, προσωπικό κ.λπ.) και λήψη των αρχείων pdf, εκ των οποίων

καθαρίζονται από html σε text αρχεία και δημιουργούνται πίνακες CSV για την καλύτερη

οργάνωση και ιχνηλασιμότητα των δεδομένων, (β) μετατροπή των αρχείων pdf σε text

αρχεία, (γ) αποθήκευση και δεικτοδότηση στην βάση (SQLite) με δημιουργία

corpus_chunks πάνω στα οποία χτίζεται FTS5 (που περιέχει BM25) ώστε να πετύχουμε την

λεκτική αναζήτηση (SQLite), (δ) ανάκτηση των δεδομένων με υβριδική αναζήτηση

(Microsoft_Hybrid_Search) που συνδυάζει BM25 και σημασιολογική αναζήτηση μέσω

embeddings που αποθηκεύονται σε ChromaDB (ChromaDB) και (ε) σύνθεση της

απάντησης από το LLM (GeeksForGeeks).

Εικόνα 2. Λειτουργεία ενός RAG συστήματος.

 Τα δεδομένα χωρίζονται σύμφωνα με τις ενότητες του τμήματος ανακοινώσεις, δράσεις,

γραμματεία κ.λπ. Η κάθε ενότητα αποθηκεύεται αρχικά σε ξεχωριστό φάκελο, όπου υπάρχει

ένας φάκελος με τα text αρχεία και ένα CSV αρχείο pages.csv, το αρχείο αυτό περιέχει

χρήσιμες στήλες για την καθοδήγηση και οργάνωση των δεδομένων (ενδεικτικές στήλες:

url, title, text_path, chars,doc_links,follow_links) . Τα pdf αρχεία καταγράφονται στο

φάκελο pdfs, αφού γίνουν οι απαραίτητες μετατροπές δημιουργούμε έναν φάκελο

8

pdf_processed ώστε να διατηρείται ξεκάθαρη συσχέτιση μεταξύ ενοτήτων και εγγραφών.

Παράλληλα, δημιουργούμε ένα επιπλέον CSV αρχείο που καθοδηγεί όλες τις ενότητες με

τα καθαρισμένα αρχεία στο file_manifest.csv. Στη βάση δεδομένων κάθε ενότητα

αντιστοιχεί σε πίνακα *_pages (π.χ. actions_pages για τις δραστηριότητες του τμήματος),

τα pdfs αποθηκεύονται επίσης με τρόπο ώστε να διατηρείτε η συσχέτιση μεταξύ εγγράφων.

Για το RAG δημιουργούνται corpus_docs ένα ανά σελίδα ή pdf κείμενο και corpus_chunks

όπου τεμαχίζονται ανά περίπου 1000 χαρακτήρες και overlap περίπου 180 χαρακτήρες για

συνοχή (chunking Microsoft, n.d.). Πάνω στα corpus_chunk χτίζεται FTS5 ευρετήριο

(fts_corpus) που παρέχει BM25 για την λεκτική αναζήτηση. Παράλληλα τα ίδια

corpus_chunk κωδικοποιούνται σε embeddings με intfloat/multilingual-e5-large και

αποθηκεύονται σε ChromaDB (persistent collection) (ChromaDB, persistent collection). Η

τελική κατάταξη προκύπτει με Reciprocal Rank Fusion (RRF) ώστε να συνδυάζονται

ισορροπημένα οι λεξικές και σημασιολογικές ενδείξεις (RFF Microsoft). Τα top-Κ

αποσπάσματα περνούν ως context στο LLM, το οποίο παράγει μια σύντομη και

τεκμηριωμένη απάντηση με παραπομπές από τις εκάστοτε πηγές.

3.3: Λειτουργικές και μη Λειτουργικές απαιτήσεις

Λειτουργικές απαιτήσεις:

● Συνομιλία σε φυσική γλώσσα: ερωτήσεις/απαντήσεις στα Ελληνικά και Αγγλικά

όπου χρειάζεται με διατήρηση σύντομου ιστορικού με την δυνατότητα αποθήκευσης

της συνομιλίας.

● RAG ανάκτηση: υβριδική αναζήτηση (λεξική + σημασιολογική) και επιλογή των

top-k αποσπασμάτων.

● Παραπομπές: κάθε απάντηση συνοδεύεται από τουλάχιστον ένα url ώστε ο χρήστης

να μπορεί να επαληθεύει την απάντηση.

● Διαχείριση αβεβαιότητας: στη περίπτωση έλλειψης πηγής ή χαμηλής συνάφειας, το

σύστημα εμφανίζει σαφές μήνυμα.

● Ρυθμίσεις από UI: παραμετροποίηση k, n_lex, n_sem, w_sem, temperature.

Μη λειτουργικές απαιτήσεις:

● Ακρίβεια: ≥70% χρηστική ορθότητα σε σετ απαντήσεων με 30 ερωτήσεις.

● Χρόνος απόκρισης: 6-15 δευτερόλεπτα end-to-end (αναζήτηση+LLM) σε GPU

περιβάλλον.

9

● Προσβασιμότητα: UI φιλικό προς το χρήστη.

Κεφάλαιο 4: Υλοποίηση

4.1: Web scraping: Πώς συλλέγω τα δεδομένα (modules & helpers)

Στόχος και αρχές σχεδίασης:

Το web scraping μετατρέπει την ιστοσελίδα του τμήματος σε εύκολα αναζητήσιμα αρχεία

με πλήρη ιστορικό. Αυτό τηρείτε σύμφωνα με τις εξής αρχές: (α) αναπαραγωγιμότητα

δηλαδή όλα τα αρχεία έχουν ίδια δομή εξόδου ανά εκτέλεση. (β) ιχνηλασιμότητα,

δημιουργείτε ένα CSV αρχείο ανά ενότητα. (γ) ανθεκτικότητα διότι υπάρχει κοινό

περιβάλλον περιήγησης, χειρισμός expanders και lazy-loading, έλεγχοι για κενές σελίδες.

(δ) καθαρότητα περιεχομένου μέσω της αφαίρεσης θορύβου.

Ροή εκτέλεσης:

Το app.py λειτουργεί ως σημείο εκκίνησης του συστήματος: φορτώνει τα αρχεία YAML

ανά ενότητα (π.χ. students.yaml, actions.yaml κ.λπ.), δημιουργεί ένα κοινό headless Chrome

και για κάθε ενότητα καλεί τη συνάρτηση run_sections() του αντίστοιχου module (π.χ.

students.py, staff.py κ.λπ.). Κάθε εκτέλεση παράγει έξοδο σε φάκελο της ενότητας μέσα

στον τρέχοντα φάκελο run, όπου αποθηκεύονται το pages.csv με τα μεταδεδομένα και

αρχεία pages/<sha256>.txt με καθαρό κείμενο. Όπου απαιτείται δημιουργούνται

εξειδικευμένα αρχεία csv (π.χ. announcements.csv, items.csv, lessons_plan.csv)

Υποδομή προγράμματος πλοήγησης (Selenium/Chrome):

Το browser.py δίνει ενιαία συμπεριφορά κατά την εκτέλεση του αρχείου. Λειτουργεί χωρίς

γραφικό περιβάλλον (headless), καθορισμένο user-agent(Chrome/Mozilla), γλώσσα,

χρονικά όρια (timeouts) και μέγεθος παραθύρου. Παρέχει βοηθητικές συναρτήσεις όπως

goto(), wait_css(), wait_xpath για αναμονές, scroll_lazyload() για φόρτωση δυναμικού

περιεχομένου, expand_common() για άνοιγμα επέκταση σε παρεμφερές συνδέσμους κ.α.

Με αυτό το τρόπο όλα τα υποσυστήματα έχουν σταθερή και προβλέψιμη συμπεριφορά, ενώ

μειώνονται οι τυχαίες αστοχίες κατά την εκτέλεση.

Εξαγωγή από Document Object Model σε κείμενο:

10

Το extract.py αναλαμβάνει τον καθαρισμό και την απόδοση του περιεχομένου. Με την

ExtractConfig ορίζουμε ποιο είναι το κύριο περιεχόμενο (keep_selector), ποια τμήματα

αφαιρούνται (drop_selector), αν θα διατηρηθούν πίνακες (keep_tables). Η sanitize_dom()

απομακρύνει τα στοιχεία προς απόκρυψη(π.χ. κεφαλίδα, μενού πλοήγησης, υποσέλιδο,

πλαϊνές στήλες κ.α.), η extract_main_node() εντοπίζει το «πλουσιότερο» κόμβο με βάση το

μήκος του κειμένου και η inner_text() αποδίδει το περιεχόμενο των βασικών στοιχείων

(όπως επικεφαλίδες h1-h4, παράγραφοι, λίστες, πίνακες κ.α.) σε καθαρό κείμενο. Αν το

keep_tables=true, οι πίνακες μετατρέπονται σε απλό Markdown. Η

collect_attachments_and_links() συγκεντρώνει απόλυτους συνδέσμους εγγράφων

(pdf,doc,xls,ppt κ.λπ.) και συνδέσμους προς άλλες σελίδες html. Η extract_content()

επιστρέφει της στήλες για το pages.csv και τα αρχεία text στην pages/*.txt.

Κοινό schema εξόδου:

Για κάθε ενότητα, παράγεται ένα pages.csv με στήλες url, title, text_path, chars, text_hash,

doc_links, follow_links και ένα αρχείο κειμένου (text) ανά σελίδα. Με αυτό το ενιαίο σχήμα,

οι επόμενες επεξεργασίες γίνονται ομοιόμορφες όπως η φόρτωση σε βάση δεδομένων,

αναζήτηση πλήρους κειμένου FTS5, υπολογισμός των embeddings.

Scoping συνδέσμων και περιορισμοί:

Η ανίχνευση είναι αυστηρά οριοθετημένη ώστε να μένουν στο πεδίο του τμήματος: με τα

allow_prefixes επιτρέπουμε μόνο συγκεκριμένα μονοπάτια, ενώ με τα deny_patterns

αποκλείουμε ανεπιθύμητα μονοπάτια. Παραμένουμε στον ίδιο τομέα, με εξαίρεση ειδικές

αφετηρίες για την γραμματεία. Τέλος, εφαρμόζουμε ελέγχους για τις σελίδες με κενό

περιεχόμενο μέσω λίστας ενδεικτικών φράσεων («Η σελίδα δεν βρέθηκε» κ.α.). Όλοι αυτοί

οι περιορισμοί καταγράφονται στα YAML αρχεία ανά ενότητα, ώστε κατά την εκτέλεση να

παραμένει καθαρή και πλήρως εντός του ορισμένου πεδίο το περιεχόμενο που ανακτητέ

(GeeksForGeeks_yaml, n.d.).

Ενότητες – κοινή λογική & ιδιαιτερότητες:

Όλες οι ενότητες μοιράζονται την ίδια ροή, διαβάζουν τις ρυθμίσεις τους, ανιχνεύουν μόνα

τα επιτρεπτά μονοπάτια, φορτώνουν την ιστοσελίδα με κοινό περιβάλλον περιήγησης,

καθαρίζουν το DOM ώστε να εξάγουν κείμενο και συνδέσμους. Κάθε ενότητα παράγει

συγκεκριμένα αποτελέσματα για την διασφάλιση της ίδιας δομής εξόδου, ιχνηλασιμότητα

11

και σταθερή συμπεριφορά του έργου. Κάποιες ενότητες, πέρα από το αρχείο pages.csv και

τα text αρχεία δημιουργούν κάποια επιπλέον βοηθητικά αρχεία.

Ενότητα ανακοινώσεων: announcements.csv, το αρχείο αυτό περιέχει πληροφορίες όπως

ημερομηνίες, κατηγορίες, συνημμένα.

Ενότητα δράσεις: items.csv, το αρχείο είναι παρόμοιο με το αυτό των ανακοινώσεων.

Ενότητα μάθημα: δημιουργούνται 2 επιπλέον αρχεία το lessons_plan.csv όπου

περιγράφονται τα μαθήματα ανά εξάμηνο και εκπαιδευτικό πρόγραμμα σπουδών και το

lessons_details.csv όπου υπάρχει πλήρης περιγραφή ανά μάθημα.

Λήψη συνημμένων PDF:

Ως post-processing βήμα, ο download_attachments.py σαρώνει όλα τα pages.csv των

ενοτήτων, εντοπίζει τα doc_links και κατεβάζει όλα τα αρχεία που έχουν κατάληξη .pdf.

Κατά την εκτέλεση, για να λειτουργεί σαν κανονικός browser, στέλνει αναγνωριστικό user-

agent και σελίδα προέλευσης (Referer), λαμβάνει αρχικά τα cookies, αν αποτύχει

ξαναδοκιμάζει και ελέγχει επαναληπτικές διευθύνσεις (http  → https, με ή χωρίς www)

για απευθείας συνδέσμους. Κάθε αρχείο αποθηκεύεται προσωρινά, υπολογίζεται το

αποτύπωμα sha-256 και στη συνέχεια μετονομάζεται σε <sha>.pdf. Τα αποτελέσματα

καταγράφονται στο file_manifest.csv με πεδία url, file_path, sha_256, content_type, bytes,

source_section, source_page_url, status, error_detail, first_seen_at, finename_hint. Το

manifest λειτουργεί ως γέφυρα προς το επόμενο στάδιο που επεξεργαζόμαστε τα pdf αρχεία

και για την συσχέτιση μεταξύ των σελίδων - αρχείων κατά την εισαγωγή στην βάση.

Γιατί αυτή η προσέγγιση δουλεύει:

Διαχωρίζει τη λογική από τις ρυθμίσεις και επιβάλλει ενιαία έξοδο. Πρώτον, η συντήρηση

γίνεται μέσω YAML, δηλαδή αλλάζουμε selectors χωρίς να τροποποιούμε κώδικα Python.

Δεύτερον, το κοινό σχήμα εξόδου επιτρέπει ομοιόμορφη εισαγωγή στην βάση, αναζήτηση

πλήρους κειμένου (FTS5) και υπολογισμό των embeddings χωρίς ιδιαίτερους

μετασχηματισμούς. Τρίτον, τα τεκμήρια βελτιώνουν την ανάκτηση τόσο σε κλασικές

μεθόδους (BM25) όσο και σε νευρωνικές (dense retrieval) (Cohere, n.d.). Τέταρτον,

διατήρηση πλήρη ιχνηλασιμότητα δεδομένων (doc_links → downloader →

file_manifest.csv →PDF → Text → DB), ώστε κάθε αποτέλεσμα να μπορεί να αποδοθεί

στην πηγή του. Τέλος, το σύστημα αντέχει σε εύθραστα περιβάλλοντα διεπαφής χάρης στον

12

χειρισμό expanders και lazy_loading και, όπου απαιτείται, στην εκτέλεση JS(JavaScript)

(π.χ. στις ανακοινώσεις).

4.2: Επεξεργασία pdf στο Google Colab

Σε αυτό το στάδιο μετατρέπουμε όλα τα αρχεία PDF σε καθαρά αρχεία κειμένου text,

παράγουμε μεταδεδομένα (manifest) και εφαρμόζουμε οπτική αναγνώριση χαρακτήρων

OCR για σελίδες που έχουν εικόνες. Το αποτέλεσμα είναι ενιαίο, ομοιόμορφο σύνολο

κειμένων έτοιμο για εισαγωγή στη βάση. Η διαδικασία εκτελείται στο Google Colabs (L4

GPU) για ταχύτερη επεξεργασία, ιδίως στο σκέλος του OCR μοντέλων.

Εκτέλεση και ρυθμίσεις:

Το πρόγραμμα είναι το 00_pdf_processed.py και δέχεται βασικά ορίσματα, --input_dir

(φάκελος με τα pdf αρχεία), --output_dir (φάκελος αποτελεσμάτων), --ocr_model_id (OCR

μοντέλο), καθώς και –dpi, --min_char, --min_greek_ratio για τη καλύτερη ποιότητα(quality

gates). Στο ξεκίνημα δημιουργείτε η ρύθμιση RunConfig και γίνεται μια φορά η

αρχικοποίηση του OCR μοντέλου ώστε να αποφεύγεται τα επαναλαμβανόμενα κόστη

φόρτωσης μοντέλου. Στο τέλος, γράφεται συγκετρωτικό manifest.csv με τα μεταδεδομένα

όλων των pdf αρχείων.

Για κάθε pdf αρχείο ακολουθείτε μια αρχή: πρώτα δοκιμάζεται PyMuPDF text extraction,

αν η σελίδα είναι image-only (δηλαδή δεν έχει κάποιο κείμενο), περνάμε σε OCR. Πιο

συγκεκριμένα:

Βήμα 1 (PyMuPDF): Χρησιμοποιούμε page.get_text(“text”), σε περίπτωση που επιστρέψει

μικρό κείμενο, περνάμε σε εναλλακτική ανά block extraction όπου ταξινομούμε κατά (x,y)

και ενώνουμε το κειμένο ανά block, έπειτα εφαρμόζεται clean_text(), για τους απαραίτητους

καθαρισμούς.

Βήμα 2 (OCR): Αν η σελίδα δεν περιέχει κείμενο, τότε τη μετατρέπουμε σε εικόνα και

εφαρμόζουμε OCR με το μοντέλο της Qwen2.5-VL (μέσω transformers) (Souvik Mandal

and Ashish Talewar and Paras Ahuja and Prathamesh Juvatkar, n.d.). Χρησιμοποιούμε

παραστατικό όριο tokens με βάση την ανάλυση της εικόνας (περίπου 900-1200). Το

αποτέλεσμα, περνάει σε clean_text() και καταγράφουμε πόσες σελίδες επεξεργάστηκε.

13

Μετά από κάθε σελίδα, εφόσον υπάρχει Cuda, γίνεται torch.cuda.empty_cache() για να

διατήρειτε σταθερή η μνήμη. Στο τέλος του εγγράφου, συντίθεται full_text με σαφή

διαχωριστικά σελίδων (--Σελίδα[i]--).

Quality gates και φίλτρα:

Στο παραγόμενο full_text υπολογίζονται δείκτες ποιότητας. Greek_ratio ποσοστό

ελληνικών χαρακτήρων, είναι χρήσιμο για να διασφαλίσει αρχεία που έχουν θόρυβο είτε

λανθασμένο OCR. Min_chars ελάχιστος αριθμός για να θεωρηθεί αξιοποιήσιμο κείμενο. Αν

κάποιος δείκτης δείξει χαμηλότερο αριθμό από το όριο, ορίζεται μια στήλη στο manifest:

skip_from_db = True. Επιπλέον, υπολογίζεται δείκτης quality score για συγκριτική

αξιολόγηση.

Outputs ανά pdf:

Για κάθε αρχείο παράγονται, Text: output_dir/txt/<sha256>.txt, με σελιδοδείκτες.

Metadata(json): output_dir/meta/<sha256>.json, που περιλαμβάνει file, pages, is_schedule,

ocr_pages, text_chars, Greek_ratio, quality_score, skip_from_db. Manifest.csv:

output_dit/manifest.csv συνοψίζει τα μεταδεδομένα και εκτυπώνει μικρή αναφορά (όπως

πόσα επεξεργάστηκαν, πόσα ήταν image – only κ.λπ.).

Γέφυρα προς την βάση δεδομένων:

Στο στάδιο της δημιουργίας της βάσης ενοποιηούμε τα αποτελέσματα των προηγούμενων

βημάτων. Διαβάζουμε τόσο το file_manifest από την λήψη συνημμένων όσο και το

output_dir/manifest.csv από την επεξεργασία. Με αυτά καταχωρούμε όλα τα pdf αρχεία στο

πίνακα pdf_files και για κάθε σελίδα του ιστότοπου δημιουργούμε τη σύνδεση της με τα

αντίστοιχα pdf στον πίνακα page_pdf_links. Αφού ολοκληρωθεί η συσχέτιση σελίδας – pdf,

παράγουμε τα corpus_docs (έγγραφα) και corpus_chunks (τμήματα κειμένου) που θα

χρησιμοποιηθούν στην αναζήτηση.

4.3: Δημιουργία Βάσης Δεδομένων – Σχήμα, εισαγωγή, chunking και FTS5

Το build_ditbot_database.py ενοποιεί τα outputs του web scrapping και pdf processed σε

μια SQLite. Εισάγει από τα pages.csv όλων των ενοτήτων στους πίνακες *_pages (π.χ.

actions_pages, students_pages κ.λπ.) και φτιάχνει ενιαίο pages_registry. Απο τα

anouncements.csv, items.csv και lessons_plan.csv γεμίζει τους αντίστοιχους πίνακες.

14

Επιπλέον, δημιουργείται ένας πίνακας instructor_courses_fact όπου χρησιμοποιείται για την

άμεση συσχέτιση μαθημάτων και καθηγητών. Τα pdf φορτώνονται από τα αρχεία

file_manifest.csv - manifest.csv στο πίνακα pdf_files και συνδέονται με σελίδες μέσω

pages_pdf_links. Κατόπιν δημιουργούνται corpus_docs (σελίδα ή pdf) και corpus_chunks

με τεμαχισμό περίπου 1000 χαρακρτήρων και overlap περίπου 180 χαρακτήρων. Πάνω στα

chunks χτίζεται FTS5 (fts_corprus) για BM25 λεξική αναζήτηση. Παράλληλα, σε δεύτερο

βήμα, υπολογίζονται τα embeddings για τα ίδια chunks με το μοντέλο intfloat/multilingual-

e5-large (με χρήση GPU) μέσω SentenceTransformer, σε συστάδες των 2000. Πιο

συγκεκριμένα, τα embeddings παράγονται για κάθε corpus_chunk και εγγράφονται στην

ChromaDB σε παρτίδες 2000 εγγραφών ανα συναλλαγή (upsert). Η επιλογή του μεγέθους

της παρτίδας επιλέχθηκε ως συμβιβασμός απόδοσης και σταθερότητας για να μειώνει τις

κλήσεις προς τον vector store, χωρίς να επιβαρύνει υπερβολικά την μνήμη ή να προκαλέσει

timeouts. Τα embeddings αποθηκεύονται σε ChromaDB με ID = chunk_id και πλούσιο

metadata (doc_id, section, best_url, offsets, text_hash) ώστε τα αποτελέσματα να φαίνονται

άμεσα με τις πηγές. Η ομοιομορφία που εφαρμόζεται στο chunking για FTS5 και για τα

embeddings εξασφαλίζει ότι δύο κανάλια επιστρέφουν συγκρίσιμες μονάδες κειμένου. Όλα

τα paths είναι σχετικά και τα κείμενα - αρχεία ταυτοποιούνται με hashes για idempotency.

Το αποτέλεσμα είναι ένα ενιαίο, ιχνηλάσιμο RAG corpus έτοιμο για υβριδική ανάκτηση:

(α) λεξικό κανάλι αναζήτηση πάνω στη SQLite και (β) σημασιολογικό κανάλι (ChromaDB

+ e5-large). Στο επόμενο στάδιο 4.4 τα δύο κανάλια συγχωνεύονται με Reciprocal Rank

Fusion, ώστε η τελική ανάκτηση να συνδυάζει λέξεις κλειδιά για την ακρίβεια και

εννοιολογική κάλυψη.

15

Εικόνα 3. Σχεδίαση της Βάσης σε StarUML.

4.4: Ανάκτηση και παραγωγή – Hybrid search, prompt, LLM

Για την παραγωγή απαντήσεων με υψηλή κάλυψη και ακρίβεια, το σύστημα εφαρμόζει

υβριδική ανάκτηση που συνδυάζει τα δύο κανάλια (βλ. 4.3): (α) το λεξικό με BM25/FTS5,

όπου εκτελείται ασφαλές Match στον fts_corpus, και (β) το σημασιολογικό (vector search),

όπου το ερώτημα κωδικοποιείται με e5-large και αναζητείται στη συλλογή της ChromaDB.

Στη συνέχεια, τα δύο rankings συγχωνεύονται με Reciprocal Rank Fusion (RRF), με

ρυθμιζόμενο βάρος στο σημασιολογικό κανάλι (w_sem). Κατόπιν εφαρμόζεται neighbor

expansion ([± 1] γειτονικό chunk του ίδιου εγγράφου για διατήρηση πλαισίου) και diversity

(όριο chunks ανά έγγραφο ώστε να μην κυριαρχεί μία μόνο πηγή). Το αποτέλεσμα είναι τα

k αποσπάσματα που τροφοδοτούν την παραγωγή.

Σύνθεση context:

Για κάθε επιλεγμένο chunk_id ανακτώνται τα μεταδεδομένα (section, title, best_url) και το

αντίστοιχο κείμενο. Έπειτα συντίθεται ένα σύντομο context (περίπου 300-600 χαρακτήρες

ανά απόσπασμα), κομμένο σε πλήρεις προτάσεις και ταξινομημένο με βάση τη RRF

16

κατάταξη. Αν το όριο των tokens το απαιτεί, κάνουμε trimming και αφαιρούμε διπλότυπα.

Σε περίπτωση που τα ευρήματα είναι οριακά, το σύστημα σηματοδοτεί χαμηλή εμπιστοσύνη

ώστε η παραγωγή να παραμείνει συντηρητική.

Βάρη/Παράμετροι της υβριδικής ανάκτησης:

n_lex: Πόσα κορυφαία αποτελέσματα κρατάμε από το λεξικό κανάλι (BM25/FTS5) πριν τη

συγχώνευση, Όσο μεγαλύτερο n_lex, τόσο μεγαλύτερη κάλυψη έχουμε σε λέξεις κλειδιά

αλλά πιθανόν περισσότερο θόρυβο.

n_sem: Πόσα κορυφαία αποτελέσματα κρατάμε απο το σημασιολογικό κανάλι

(embeddings/Chroma) πριν την συγχώνευση. Όσο μεγαλύτερο n_sem, καλύτερη

εννοιολογική κάλυψη αλλά αυξάνει το κόστος ελέγχου.

w_sem: Βάρος του σημασιολογικού καναλιού κατα τη συγχώνευση RRF. Υψηλότερος

δείκτης, δίνει προτεραιότητα στην νοηματική ομοιότητα έναντι των ακριβών όρων.

k: Τελικός αριθμός αποσπασμάτων που θα περάσουν στο prompt. Μικρότερα k, μπορεί να

χάνει πλαίσιο αλλά με μεγαλύτερο k μπορει να γεμίσει άσκοπα το prompt.

rrf_k: Σταθερά εξομάλυνσης της RRF στον τύπο :(1 / rrf_k + rank). Μεγαλύτερο rrf_k

μαλακώνει τις διαφορές μεταξύ θέσεων και δίνει πιο ισορροπημένη συγχώνευση.

neighbor_radius: Πόσοι γείτονες (chunks) του ίδιου εγγράφου θα προστεθούν γύρω από τη

κάθε εύρεση. Αυξάνοντας το δείκτη παίρνεις περισσότερο πλαίσιο και καταναλώνετε

περισσότερα tokens.

diversity_cap_per_doc: Μέγιστος αριθμός chunks ανά εγγραφο. Αποτρέπει να κυριαρχήσει

μία πηγή στο context.

Παραγωγή (prompt → LLM):

Το prompt οργανώνεται σε τρία μέρη: System , Context, User. Το System, ορίζει κανόνες

συμπεριφοράς, απαντά αποκλειστικά βάσει του παρεχόμενου context, δηλώνει αβεβαιότητα

όταν οι πηγές δεν επαρκούν και παραθέτει σαφείς παραπομπές. Το Context, περιλαμβάνει

τα επιλεγμένα αποσπάσματα σε σειρά κατάταξης μαζί με μεταδεδομένα και urls για

επαλήθευση. To User, είναι το αρχικό ερώτημα του χρήστη που τηρείται αυτούσιο ώστε το

μοντέλο να στοχεύσει ακριβώς στο ζητούμενο. Αφού γίνουν οι απαραίτητοι έλεγχοι,

17

εφαρμόζεται token budgeting, αν ξεπεράσει το όριο tokens, συντομεύονται τα αποσπάσματα

ή αφαιρούνται τα χαμηλότερα στην κατάταξη αναζήτησης. Το μοντέλο παραγωγής είναι το

ilsp/Llama-KriKri-8b-Instruct (Dimitris Roussis and Leon Voukoutis and Georgios

Paraskevopoulos and Sokratis Sofianopoulos and Prokopis Prokopidis and Vassilis

Papavasileiou and Athanasios Katsamanis and Stelios Piperidis and Vassilis Katsouros,

n.d.), στην έξοδο γίνεται καθαρισμός τυχόν θορύβων και τυποποίηση των παραπομπών.

Αβεβαιότητα και ασφάλεια:

Όταν το recall είναι χαμηλό, το σύστημα επιστρέφει επιφυλακτικό μήνυμα ή παραθέτει μόνο

σχετικές πηγές. Δεν παράγει εικασίες εκτος του διαθέσιμου context.

Οφέλη:

Η RRF συνδυάζει την ακρίβεια της BM25 και τη νοηματική κάλυψη των embeddings, το

πειθαρχημένο prompt οδηγεί σε σύντομες και επαληθεύσιμες απαντήσεις. Τέλος, τα

ρυθμιζόμενα βάρη επιτρέπουν να προσαρμόζεται η συνεισφορά κάθε καναλιού στις ανάγκες

του εκάστοτε ερωτήματος.

4.5: Εκτέλεση & User Interface – Gradio app, ρυθμίσεις, ροή αιτήματος

Το app_gradio.py λειτουργεί ως κέλυφος που ενώνει τα στάδια προετοιμασίας και

παραγωγής: φορτώνει τους πόρους (βάση δεδομένων, embeddings, μοντέλο), προβάλλει ένα

απλό Chat UI και κατευθύνει το αίτημα από την είσοδο μέχρι την τελική απάντηση. Κατά

την εκκίνηση γίνεται ανάγνωση των ορισμάτων (διαδρομή της βάσης, φάκελος Chroma,

όνομα συλλογής, μοντέλο για embeddings και LLM), δημιουργείται ένα αντικείμενο

ρυθμίσεων που ακολουθεί η αρχικοποίηση δύο βασικών συνιστωσών: του HybridSearcher

(απο το hybrid_search.py), που ανοίγει τη βάση, συνδέεται στο persistent συλλογη της

Chroma και φορτώνει το encoder e5-large για κωδικοποιηση queries, και του LLM pipeline

(απο το generator.py), που φωρτονει το LLM με τον αντίστοιχο tokenizer. Στη συνέχεια

χτίζεται το περιβάλλον Gradio: ενα πλαίσιο συνομιλίας με πεδίο εισαγωγής και μια πλευρική

στήλη με sliders για τις παραμέτρους ανάκτησης (k,n_lex,n_sem κ.λπ.) και παραγωγής

(max_tokens, temperature).

http://generator.py/

18

Η βασική ροή ενεργοποιείται κάθε φορά που ο χρήστης πατά Send. Το callback respond()

προσθέτει το μήνυμα στο ιστορικό και καθαρίζει ελαφρά το input. Έπειτα καλεί το

HybridSearcher με τις τρέχουσες τιμές των sliders. Εκεί, εκτελείται η υβριδική αναζήτηση

(βλ. 4.4), επιστρέφοντας μια λίστα από επιλεγμένα chunk_id. Με τα επιλεγμένα

αποτελέσματα, το respond() συνθέτει το context που θα τροφοδοτήσει το μοντέλο. Για κάθε

chunk_id ανακτά από τη βάση το κείμενο του και τα μεταδεδομένα του και παράγει σύντομα

αποσπασματα (βλ. 4.4). Στο επόμενο βήμα, το respond() χτίζει το prompt σε τρία τμήματα(

System => Context => User). Το System κλειδώνει τους κανόνες, το Context συγκεντρωνει

τα αποσπάσματα που επιλέχθηκαν απο την RRF κατάταξη με τις αντίστοιχες πηγές. Το User

περιέχει αυτούσια το ερώτημα. Τέλος γίνεται έλεγχος αν το σύνολο των κανόνων και του

context ξεπερνούν το όριο για να γίνουν οι απαραίτητες αλλαγές (βλ. 4.4). Η παραγωγή

γίνεται μέσω του LLM pipeline του generator.py, το οποίο έχει ήδη φορτωθεί κατα την

εκκίνηση. Η κλήση generate() λαμβάνει το τελικό prompt και τις ενεργές ρυθμίσεις εξόδου

(max tokens, temperature) και επιστρέφη το καθαρό κείμενο της απάντησης. Στη συνέχεια,

εφαρμόζεται ελαφρύ post-processing ώστε τα αποτελέσματα να είναι άμεσα αναγνώσιμα

(μείωση θορύβου). Μαζί με το κείμενο, προβάλλονται οι παραπομπές, έτσι ο χρήστης

μπορεί να επαληθεύσει κάθε ισχυρισμό ακολουθώντας τον σύνδεσμο στην πρωτογενή

σελίδα ή στο αντίστοιχο pdf (βλ. 4.3).

Η διαχείριση δομημένων ερωτημάτων (π.χ. “ποιος διδάσκει το Χ”, “σε ποιο εξάμηνο το Υ”)

γίνεται πριν την υβριδική διαδικασία: το response() ζητά από τον HybridSearcher ανίχνευση

αν στο ερώτημα υπάρχουν λέξεις όπως “μάθημα, εξάμηνο, διδάσκει”, όπου εντοπιστεί,

εκτελούνται άμεσες SQL κλήσεις στους σχετικούς πίνακες της βάσης (π.χ.

instructor_courses_fact, lessons_plan) και σχηματίζει structured context χωρίς RAG. Η

επιλογή αυτή μειώνει τον χρόνο απόκρισης και τον κίνδυνο ασάφειας, αφού η απάντηση

προκύπτει από τους επίσημους πίνακες αντί για αποσπάσματα. Αν αυτή η διαδικασία

αποτύχει, τότε λειτουργεί με την υβριδική αναζήτηση χρησιμοποιώντας RAG.

Κατά την συνεδρία, το Gradio διατηρεί το ιστορικό διαλόγου και τις τελευταίες ρυθμίσεις

έτσι ώστε κάθε νέο μήνυμα να συνεχίζει ομαλά τη ροή (Gradio, n.d.). Παρέχεται ακόμη

εξαγωγή σε Txt αρχείο, ώστε ο χρήστης να αποθηκεύσει άμεσα τη συζήτηση με τις

παραπομπές της.

Σε επίπεδο ανθεκτικότητας και χειρισμού αβεβαιότητας, όταν το recall είναι χαμηλό ή τα

αποτελέσματα ασθενή, το σύστημα προτιμά συντηρητική έξοδο με σύντομο

http://generator.py/

19

προειδοποιητικό μήνυμα (βλ. 4.4). Αν αποτύχει κάποια εξάρτηση, επιστρέφει ευγενές

μήνυμα και διατηρείται ότι έχει ήδη ανακτηθεί, ώστε ο χρήστης να έχει πρακτική αξία ακόμη

και σε σενάρια σφάλματος.

Τέλος, αξίζει να επισημανθεί οτι το app_gradio.py συγκεντρώνει την ευθύνη της διεπαφής

και του προσανατολισμού κλήσεων, ενώ η ουσία της αναζήτησης και παραγωγής παραμένει

στους άλλους κώδικες. Αυτό σημαίνει ότι μελλοντικές βελτιώσεις, όπως προσθήκη άλλου

LLM, διαφορετική στρατηγική συγχώνευσης, νέα φίλτρα μπορούν να ενσωματωθούν χωρίς

αλλαγές στη ροή του UI. Ομοίως, η ίδια υπηρεσία μπορεί να ενσωματωθεί σε άλλο REST

endpoint διατηρώντας το ίδιο μοτίβο : δίνεις ερώτημα + ρυθμίσεις => παίρνεις απάντηση +

παραπομπές. Με αυτή την οργάνωση, η εκτέλεση μέσω Gradio παραμένει προβλέψιμη,

ρυθμίσιμη και επεκτάσιμη. Ο χρήστης ελέγχει τη συμπεριφορά με απλά sliders, το σύστημα

φροντίζει την ποιότητα και κάθε απάντηση συνοδεύεται με τις πηγές του. Σε συνέχεια του

προβλήματος που παρουσιάζεται (βλ. 1.2), αυτό ακριβώς επιδιώκει το εκπαιδευτικό

chatbot: σύντομες και αξιόπιστες απαντήσεις με σαφείς παραπομπές, μέσα από ροή που

σέβεται τους περιορισμούς των μοντέλων και παρέχει στον χρήστη ουσιαστικό έλεγχο.

4.6: Παραδείγματα και Εκτέλεση του έργου

Ως τεκμηρίωση της end-to-end ροής, από την συλλογή περιεχομένου (web scraping) και τη

μετατροπή των PDF σε κείμενο, έως την ενοποίηση σε βάση, τη δημιουργία embeddings, την

υβριδική ανάκτηση και το περιβάλλον διεπαφής – Παρατίθενται ενδεικτικά στιγμιότυπά από Google

Colab και Gradio.

Εκτέλεση ροής:

1. Πόροι Colab: επιβεβαίωση διαθέσιμης RAM : 53 GB – GPU 22.5 GB – Disk 112.6 GB.

20

Εικόνα 4. Πόροι Colab (L4 GPU).

2. Εγκατάσταση requirements και φόρτωση κλειδιού:

Εικόνα 5. Φόρτωση εξαρτήσεων.

3. Web scraping: εκτέλεση του app.py με sections & configs για πλοήγηση, εξαγωγή κειμένου

και συλλογή συνδέσμων (βλ. 4.1).

21

Εικόνα 6. Εξαγωγή των δεδομένων από την ιστοσελίδα του τμήματος.

4. Λήψη συνημμένων: εκτέλεση του download_attachments.py αποθήκευση των pdf

και δημιουργία file_manifest.csv (βλ. 4.1)

22

Εικόνα 7. Λήψη των αρχείων.

5. Λήψη επιπλέον βιβλιοθηκών απαραίτητες για την εκτέλεση των μοντέλων.

23

Εικόνα 8. Φόρτωση εξαρτήσεων για τα γλωσσικά μοντέλα.

6. Preprocess των αρχείων pdf: εκτέλεση 00_pdf_processors.py (βλ. 4.2).

24

Εικόνα 9. Επεξεργασία αρχείων pdf.

7. Δημιουργία σχήματος Βάσης Δεδομένων: εκτέλεση build_ditbot_database.py

(βλ.4.3).

25

Εικόνα 10. Δημιουργία schema της βάσης.

8. Υπολογισμός embeddings και αποθήκευσε σε ChromaDB: εκτέλεση

build_embeddings_to_chroma.py (βλ.4.3).

26

Εικόνα 11. Embeddings σε ChromaDB.

9. Έλεγχος hybrid search: εκτέλεση hybrid_search.py, επιστροφή των κορυφαίων

αποτελεσμάτων (βλ. 4.4).

27

Εικόνα 12. Υβριδική ανάκτηση.

10. Εκκίνηση Gradio: εκτέλεση του app_gradio.py (βλ.4.5).

28

Εικόνα 13. Εκκίνηση του chatbot.

11. Εξαγωγή διαλόγου σε αρχείο.

Εικόνα 14. Αποθήκευση διαλόγου και εξαγωγή.

29

Παραδείγματα διαλόγου:

Εικόνα 15. Ερώτηση 1.

30

Εικόνα 16. Ερώτηση 2.

31

Εικόνα 17. Ερώτηση 3.

32

Εικόνα 18. Ερώτηση 4.

33

Εικόνα 19. Ερώτηση 5.

Σύμφωνα με τα παραπάνω παραδείγματα, τεκμηριώνεται πρακτικά το pipeline: ομοιόμορφη

συλλογή και καθαρισμός εγγράφων (βλ. 4.1 – 4.2), ενοποιημένη βάση και υπολογισμό embeddings

(βλ.4.3), υβριδική ανάκτηση με RRF και φίλτρα (βλ.4.4) και παρουσίαση απαντήσεων στο Gradio

με παραπομπές και δυνατότητα εξαγωγής.

Κεφάλαιο 5 – Συμπεράσματα και προτάσεις βελτίωσης

5.1: Περιορισμοί και βελτιώσεις

Η λύση βασίστηκε εξ΄ ολοκλήρου σε δωρεάν εργαλεία-μοντέλα και υποδομές (με εξαίρεση

το google colabs), κάτι που έθεσε φυσικά όρια σε latency, context window και γλωσσική

ρευστότητα. Υπάρχουν εμπορικά LLMs και επαγγελματικού rerankers/vector stores που

πιθανότατα θα βελτίωναν την ακρίβεια και ταχύτητα (Vellum.ai, n.d.). Τα PDFs χαμηλής

ποιότητας παραμένουν μια πρόκληση, ωστόσο το OCR μοντέλο βελτιώνει, αλλά δεν λύνει

πλήρως τα προβλήματα. Επιπλέον, το chunking επηρεάζει άμεσα την ποιότητα διότι μικρά

34

chunks κόβουν τα συμφραζόμενα και τα μεγάλα “φουσκώνουν” το prompt. Παρά τους

περιορισμούς, η υλοποίηση δείχνει ότι με προσεκτική μηχανική RAG μπορείς να πετύχεις

χρήσιμες απαντήσεις σε δωρεάν περιβάλλον.

5.2: Μελλοντικές ιδέες

Πιθανές κατευθύνσεις θα μπορούσε να ήταν η συνεχή ενημέρωση των δεδομένων και

ανίχνευση αλλαγών, ώστε να εισάγονται μόνο νεότερα ή τροποποιημένα στοιχεία. Θα

μπορούσε επίσης να προστεθεί ενσωμάτωση των email της γραμματεία, ώστε να

καλύπτονται πιο έγκαιρα οι πληροφορίες. Η αξιολόγηση με feedback χρηστών θα μπορούσε

να τροφοδοτεί αυτόματη βελτίωση παραμέτρων και prompts. Τέλος, το fine-tuning θα

μπορούσε να εξελιχθεί από παραδείγματα σε LoRa/QLoRa με συστηματική μέτρηση

ακρίβειας και καθυστέρησης.

5.3 Συμπεράσματα

Εν κατακλείδι, το έργο έδειξε ότι ένα προσεκτικά σχεδιασμένο RAG μπορεί να μετατρέψει

έναν χαοτικό ιστότοπο σε αξιόπιστες απαντήσεις. Το όφελος δεν είναι μόνο τεχνικό, αλλά

φοιτητές και προσωπικό θα μπορούν να βρίσκουν γρηγορότερα τη σωστή πληροφορία, με

σαφείς παραπομπές. Υπάρχουν βελτιώσεις να γίνουν, ιδίως σε OCR, chunking και

αξιολόγηση, αλλά η κατεύθυνση είναι ξεκάθαρη.

Βιβλιογραφία

Baldi, P., & Sadowski, P. (2016). A Theory of Local Learning, the Learning Channel, and the

Optimality of Backpropagation. https://doi.org/10.1016/j.neunet.2016.07.006

ChromaDB. (n.d.-a). ChromaDB. Retrieved October 9, 2025, from

https://docs.trychroma.com/docs/embeddings/embedding-functions

ChromaDB. (n.d.-b). Persistent Client. Retrieved October 9, 2025, from

https://docs.trychroma.com/docs/run-chroma/persistent-client

35

Cohere. (n.d.). Dense Retrieval. Retrieved October 9, 2025, from https://cohere.com/llmu/dense-

retrieval

Dimitris Roussis and Leon Voukoutis and Georgios Paraskevopoulos and Sokratis Sofianopoulos

and Prokopis Prokopidis and Vassilis Papavasileiou and Athanasios Katsamanis and Stelios

Piperidis and Vassilis Katsouros. (n.d.). Llama-Krikri-8B-Instruct. Retrieved October 9, 2025,

from https://huggingface.co/ilsp/Llama-Krikri-8B-Instruct

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin,

R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People—An Ethical

Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations.

Minds and Machines, 28(4), 689–707. https://doi.org/10.1007/s11023-018-9482-5

GeeksForGeeks. (n.d.). Retrieval-Augmented Generation. Retrieved October 9, 2025, from

https://www.geeksforgeeks.org/nlp/what-is-retrieval-augmented-generation-rag/

GeeksForGeeks_yaml. (n.d.). How Can YAML Be Utilized In Ansible Playbooks For Automation

And Orchestration ? Retrieved October 9, 2025, from

https://www.geeksforgeeks.org/devops/how-can-yaml-be-utilized-in-ansible-playbooks-for-

automation-and-orchestration/

Gradio. (n.d.). Gradio App. Retrieved October 9, 2025, from

https://www.gradio.app/docs/gradio/interface

huggingface. (n.d.). Multilingual-E5-large. Retrieved October 9, 2025, from

https://huggingface.co/intfloat/multilingual-e5-large?

Joseph Weizenbaum. (1966). ELIZA—a computer program for the study of natural language

communication between man and machine. https://dl.acm.org/doi/10.1145/365153.365168

Jurafsky, D., & Martin, J. H. (n.d.). Speech and Language Processing An Introduction to Natural

Language Processing, Computational Linguistics, and Speech Recognition with Language

Models Third Edition draft.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & Mcclosky, D. (n.d.). The

Stanford CoreNLP Natural Language Processing Toolkit.

Microsoft, chunking. (n.d.). Chunk large documents for vector search solutions in Azure AI Search.

Retrieved October 9, 2025, from https://learn.microsoft.com/en-us/azure/search/vector-search-

how-to-chunk-documents

36

Microsoft, R. (n.d.). Relevance scoring in hybrid search using Reciprocal Rank Fusion (RRF).

Retrieved October 9, 2025, from https://learn.microsoft.com/en-us/azure/search/hybrid-search-

ranking

Microsoft_Hybrid_Search. (n.d.). Hybrid search using vectors and full text in Azure AI Search.

Retrieved October 9, 2025, from https://learn.microsoft.com/en-us/azure/search/hybrid-search-

overview

Moors, K., Sorée, B., & Magnus, W. (2015). Modeling surface roughness scattering in metallic

nanowires. https://doi.org/10.1063/1.4931573

Okonkwo, C. W., & Ade-Ibijola, A. (2021). Chatbots applications in education: A systematic review.

In Computers and Education: Artificial Intelligence (Vol. 2). Elsevier B.V.

https://doi.org/10.1016/j.caeai.2021.100033

Souvik Mandal and Ashish Talewar and Paras Ahuja and Prathamesh Juvatkar. (n.d.). Nanonets-

OCR-s. Retrieved October 9, 2025, from https://huggingface.co/nanonets/Nanonets-OCR-s

SQLite. (n.d.). SQLite FTS5 Extension. Retrieved October 9, 2025, from

https://www.sqlite.org/fts5.html#the_bm25_function

Stuart J. Russel, & Peter Norvig. (2022). Artificial Intelligence A Modern Approach Fourth Edition.

http://aima.cs.berkeley.edu/

Vaidyam, A. N., Wisniewski, H., Halamka, J. D., Kashavan, M. S., & Torous, J. B. (2019). Chatbots

and Conversational Agents in Mental Health: A Review of the Psychiatric Landscape. In

Canadian Journal of Psychiatry (Vol. 64, Issue 7, pp. 456–464). SAGE Publications Inc.

https://doi.org/10.1177/0706743719828977

Vaswani, A., Brain, G., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,

& Polosukhin, I. (2023). Attention Is All You Need.

Vellum.ai. (n.d.). LLM Ranking. Retrieved October 9, 2025, from https://www.vellum.ai/llm-

leaderboard?utm_source=google&utm_medium=organic

Watson, J., Goel, A. K., & Polepeddi, L. (n.d.). A Virtual Teaching Assistant for Online Education.

https://www.class-central.com/report/mooc-stats-2016/

Winkler, R., & Soellner, M. (2018). Unleashing the Potential of Chatbots in Education: A State-Of-

The-Art Analysis. Academy of Management Proceedings, 2018(1), 15903.

https://doi.org/10.5465/ambpp.2018.15903abstract

37

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research

on artificial intelligence applications in higher education – where are the educators? In

International Journal of Educational Technology in Higher Education (Vol. 16, Issue 1).

Springer Netherlands. https://doi.org/10.1186/s41239-019-0171-0

