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ABSTRACT

lason - Ioannis Panagos, Ph.D., Department of Computer Science and Engineering,
School of Engineering, University of Ioannina, Greece, 2025.

Lightweight Methods and Models for Practical Visual Speech Recognition from Video
Sequences.

Advisor: Christophoros Nikou, Professor.

Visual Speech Recognition (VSR) is a computer vision problem that aims to decode
spoken words of one or more speakers from visual media without the presence of
sound. Applications of VSR are found in numerous domains, with profound impacts
on various aspects of everyday life. A notable application lies in the field of accessibility
in medicine, where a VSR system can assist individuals with speech impairments,
significantly enhancing their quality of life. Other applications include, but are not
limited to, video captioning, and personal security systems, each with their own value.
While recently there has been a steady increase in research interest regarding VSR, the
issue of practicality has not been adequately explored. More specifically, the proposed
models and methods often fail to consider the computational costs associated with
their architectures, which severely limits or outright prevents their applicability in
real-world scenarios.

In this dissertation, we focus on addressing this oversight by developing light-
weight and efficient end-to-end models for practical Visual Speech Recognition of
isolated words. To realize this objective, we explore a multitude of approaches to
reduce network size and complexity using a wide variety of methods. Owing to these
reduced hardware requirements, such models can be applied to a broader range of
applications and cover a sizable amount of practical real-life scenarios, offering a
series of benefits. The fundamental design of a VSR system follows a two-step struc-

ture that employs expensive components such as deep convolutional neural networks

Xi



with large hardware overheads that are prohibitively expensive to deploy. Our goal is
reducing these resource requirements while maintaining acceptable recognition rates.
To that end, we first employ techniques that exploit efficient formulations and low-
cost operations to shrink model sizes without severely compromise performance. We
replace the standard, resource-intensive components in existing networks with more
efficient ones, achieving significant reductions in model parameter counts as well
as in computational complexity. Moreover, we design a lightweight temporal block
blueprint that is flexible in its design and can be adapted to the resources at hand
and use it to develop highly-efficient networks with minimal hardware demands.
Next, we shift our attention to a more holistic approach, by designing a lightweight
VSR model using efficient components. A systematic study is conducted evaluating
multiple networks and structures for visual feature extraction as well as sequence
modeling. We select the best-performing components and combine them in a unified
end-to-end architecture that achieves very high recognition accuracy while being
compact, outperforming all other lightweight approaches in the literature. Finally,
using this model as a baseline, we explore techniques to improve its performance
without raising its complexity, attempting to bridge the gap with larger models. To
that end, we incorporate channel attention in its temporal blocks to enhance feature
representation, while we refine its training process by introducing regularization that
allows the networks to learn more descriptive features from the data. Finally, we
combine these additions to achieve significant recognition uplifts without affecting

the network overhead.
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EXTETAMENH IIEPIAHWH

[aowy - Twévyne [lavéayog, A.A., Tunuo Myyovixeoy H/Y xor ITAnpogopixng, IToAvte-
yvLx ZyoAy, [oavemotuio lwovvivey, 2025.

Amodotixég Mébodor xor MovtéAa yia E@oppdoiun Omtixy Avayvoplon OutAiog
and Axorovbieg Bivteo.

EmiBAénwv: Xptotdpopog Nixov, Kabnymtis.

H «Omtixf Avoyvopromn Opiog» (OAO) eivar évo vTo-TPOBANULO TOL XAESOUL TG
UTTOAOYLOTLXNG OPOOTG TTOV OTTOOXOTIEL GTYY ATTOXWOLXOTOINON OULALaG EVOS 1] TtEQLO-
OOTEPWY OULANTWY OE OTTTLXE UECO XwPEIg TNV Topovoio yov. Mali pe Ty «Axov-
ot Avoryvoplon Optiiog» (AAO) 71 omolor amoteAel To owioToLyo LTO-TTEOBANUL
IOV OLPOPAL LOVO OXOLOTIXO LDALXO, OTTWG YLOL TTAPADELYLOL MY OYPOUPNOELS, OL VO o-
TE€G LTTOXATNYOPLES ATt TILOLY TO TTLO YEVLXO TTPOBANUA TNG «AvoryvepLong OptAlog»
(AO). Tty edixn TEPITTWON TOL Vol oA ATTOETICETOL OO Lo OTCTLXT] ARG %ot
ULOL OXOVGTIXY] CLUVLOTWON, YLOL TNV AVOYVWELOT TNG OULAlog LTTopEl vor EQoPUOOTEL
o pébodog (OAO A AAO), oAAd xar ovvdvooTixég péfodor ToL YENOLLOTTOLOVY
%ol TLG 0V0 OLVLOTWOES. L& OUTN TNV TEPITTWOY, oL pébodol avTég apopody To
LTO-TPOPATLA TG «OTTLX0-AxovoTtixig Avaryvwplong Outiiog» (OAAO) xar expe-
TAAAEVOVTOL CUUTIANPWULOTIXG TOY YO XOL TNV ELXOVAL.

Kébe vmo-mpéBAnuor tng AO éxel mpaxtixég e@opp.oYés o TANHog TEayLoTL-
%WV TEOPANUATWY TTOL GLYAYTWVTAL OE EVOL ELPV PACUO TOUEWY NG xoOnueELVOTY-
toc. o mopddetypa, ovotiuota yioo AAO €@popudlovTol EXTEVOS Al TAXTOOOUES
TPoBoAYg PBilvteo dmov dNULOLEYOVY LTOTLTAOLG OTTd TOV MO KE AVTOUATO TEOTTO
(xwpic avbpdd vy TtapépfBoon). Acbeveic Tou avtipetwilovy SLOXOAES ETTLXOLYL-
viog 0mwg advvopio optAlog Hmopoly vo emw@eAnfody oe peydio Bobud amd éva
oVvotua OAO ov avayvwellel opLtAlor oTtd TLG XLYNOELG TWY YELALWOY YwpEig Myo. Emt-
TIAE0V €QopoYEG TToL aEllel va avapepBoly TteptAauBdvouy Tovg TopElS TNG TTPOCTW-

TN oo@EAeLoc (T0.). OTTLXOL xWBLXOL OE POENTEC GLOXEVEC KoL GAAEC TIAXTPOPILES

xiii



AAMNAETTISPUONC), TNG KOVWILXAS ao@BAcLag (.. EAEYYOS OE dMUOGLOLS YWEOLC),
™Y PNPLoToinon TAAXLOTEPOL OTITLXO-OXOVGTLXOD LALXOU ot SLHTNEYVOY TNG TO-
ALTLOTLXNG XANPOVOULAG, xabwg %ot TtoloTixég BeAtiwoelg oe Hopufidn spyaotaxd
meptféArovta. Kot tar 00 uo-mpoAquoata cuvovtoldy eQopuoYES oty Puyorywyio
%ol TG PnELoxéc oLVESPLES YLOL TNY AVLTOULATY TOEXYWYY LVTTOTITAWY 1 TNV XOTo-
YOO TwY oL{NTHOEWY OANG %o o éEuTva omitia (TT.). SLdPoPOL TOUOTLOUOL
OLOXEVWY PESW MMTLXGY EVTOAWY). Ot cuvdvoaotixéc wébodol yioo OAAO propody
VO AELTOVPYNOOLVY OE TEPLTTWOELS TTOAVTPOTULXWY OESOUEVWY avoryvwpilovtog TNy
OpLALaL XAvovTog VoMY LETOED TG XEMNomMs Bivteo N Myov avdAoyo pe TG cuvHn-
XEC.

H ovvtpimtiny mAstodneio tng €psvvag vt AO sotidler otny Axovotixy] Avo-
YVoeLon OutAlog AGYw TOAAXTAWY ToEoyOvTwy. ApyLxd, Tor SESOREVO MOV Eivol
eLVXOAGTEPAL 0TV emeEgpyaoion Toug amd Ta PBivteo xabwg Tar dedTePRL Elvarl TTLo TTO-
AOTTAOx e (0TtTLéC SLaoTdoeLg aAAG %o YpovLxn Stdpxeta), dedopévou 6Tt éva Bivteo
amoteAel 0Ty ovotlo Yt axoAovbian amd ewxdveg Tov ovoyetilovtat. [lopdAAnia, 7
Oy Avayvopton OutAiog eivot Evo To dVoX0A0 TEOBATLO, SLOTL 1 OTTTLXY] TTANEO-
@oplo. TTov oyeTileTOL UE TNV OULALO Elvo TTEPLOPLOUEYT O GUYXPNON KE TOoV TYO. [tox
TOPASELYUA, TTOAES AEEELG e EVTEAMG OLAPOPETIXO VONULOX TTOOAYOVTOL ATTO OTTTLUA
TIOPOWUOLES KLYNOELS TWV YELALWY, YEYOVOS TOL elvot LOLALTEQO EUPOVES YLOL UEPLYE
obppwva. TToAAEg Qopég, o TANOLYTIXGG pLag AEENG oty AYYALxN YAWooo TPOEP-
YETOL OTtO TV TTPOSHNHN EVOG XATAANTIXOV «S» TO 0TOL0 OVOXOAX SLoxplveTol OTTd
ptae oxohovbior etxdvwy xwpeic Mxo. O avbpdmivog Tapdyovtog %ot oL LOLALTEPOTNTES
oL %&b outAnTy (TT.%., TTEOPOPE) Elvort GAAN ULa GLUYLOTWON TTOL UTTOPEL VO ETTY-
PEQOEL TOL ATIOTEAEGUOTAL TNG OLVOLYVWPLOMG, TO OTOLO Eivol €val {NTNLOL TTOL OLPOPE
xor Ty AAO. 2ETig TOPOTAVEW TEPLTTWOELS, 1] KXOVOTLXY] YOYVWPLOY] ETTLTUYYAVEL
XOADTEQO ATTOTEAECUOTO. GUYXPLTLXA UE TNV OTTLXY, M OTtola otottel TTOAAOUG OLtanbé-
OLLLOVG DTTOAOYLOTLXOVG TTOPOVES YL TNV YENON OTTALTNTLXWY oAyoplbuwy. H motdtrtoa
™G xovog Tou Bivteo emiong emNEEALEL TNV TEALXY] avoryvewpLom xabwe topdyovteg
0TS N AVEALOY, TO YPWWUa, N avtifeon N kot oTIXéS aTtéAeleg oTo Plvteo Pmopovy
vou 03MNYNo0LY O E0PAAREVO aTtoTEAETuaTa. TéNog, Oev TPEmeL var topaAnpbel To
YeYOVOS Ttwg Tar dtobgapor dedopéva elvor xaBopLoTixng onuooilog YLo. TNV oVa-
TTVEN Té€TOLWY UEDBBWY, %ot YeEVLXA, GOVOAX SESOUEVWY MOV EIVOL TTILO TTPOGLTA YLO
gpevva, xobwg vITdEYEL LeYoAbTEPOG SLtabéatog dyxog, SLopotpalovTol ELXOAGTEQN

AOYW peYEHoLg XAAGL O LTTOPOVY YO YOPOXTNELOTOVY UE UEYOADTEQY] TAYVTNTO XOL
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axpifeta amt ot Tor oOVOAX dedopévwy pe Bivieo (ywpic o). Map dia avtd, 1 on-
unootor xow ot epoaproyés g OAO dey mpémetl var mopopeAnfody SLott amoteAel Ty
povodixy emtAoyn Yt AO o tepLmToeLg Tov Sev eivol SLYOTY N XAUTOYEOPT] YOV
(1. 0 xAeLoTd rLARAGPOTA TOPaxoAovBnone (CCTV)), émov vrdpEye: BGpvPog 7
EAV YLOL XATTOLOY AGYO TO MMTLXO LEPOS EVOHG PLVTED BEV XATOYQAPTXE.

To mpdéPAnuo tng AO drepevvdtor yiow LEPLXES OEXAETIEG, WOTOCO TTPOGPOTO TTO-
POTNEELTAL EVOL AVOVEOUEVO EPEVLYNTLXO EVOLOPEPOY TTOL OYETLLETAL AUECH UE TNV
TPO030 TNG pnyovixng Labnong. Tavtdypova, 1 evpeior drabeotpdTnTor LEYAANG XAL-
pnoxog Baocwy dedopévmwy Tov TepLAaUBavouy Mo 1/xot Bivteo eméTpeday TNV avd-
TuTEN o exmaldevon opyttextovixwy yioe AAO, OAO 7 xow cvvdvacud Tovg. Avtt-
TPOOWTELTIXEG YAWOOoEG elval M AyyAun xo n Kuwvelixn xabddg mpdxeton yioe dvo
KEYGA TTANOY] OULANTEY TTAYXOOULWG, OV XL DTTAPYOLY %Ol ULXPOTEQO GUVOAX 3ES0-
UEVWY UE TEPLOPLOUEVT] YENOLLOOTNTO YLat GAAEG YAWooes. Ol Tohondtepeg ebodol
YOVOLLOTTOLOVOAY TLOPOAOOCLAXES TEYVLXES VTTOAOYLOTIXNG OpONG XL eTeEgpyaaiog
ELXOVOG UE OTOTEASOUO OL TtapoYOUeEVOL aAydptbuol va elvar oyetixd omAol xot
OPXETA TTEPLOPLOULEVOL OGOV OLPOPAL TNV OVOYVWPELGY. AUTO OQELAGTOY GTYY LTTOAOYL-
OTLXY] LXOVOTNTO TWY UOVTEAWY OAAG XL otny Otabeotpotro Twy dedouévwy, 300
OLYLOTWOEG TTOL TTAEOY JEY ATTOTEAOVY TLEPLOPLOTLXOVES TTLOAYOVTES YLO TNV OVATTTUEY
©nebodwv.

H ovvniiopévn mpooéyyion mov axoiovbeitor amd v PLpAoypoapio yioo xébe
TOTo AO ywpilel To TEORANUa o S0 ATAODGTEPA LTTO-TPORANUATO TTOL ElvaL EL-
XOANOTEQO OTYY ETLALOY. Apytxd cEQYOVTAL SLOXPLTIXA YUEAXTNELOTIXA OTtd TNV El-
0030 TOL OTTOLOL OTY] GLYEYELX TPOPOSOTOVYTOL OE €V 0XOAOLOLaXS LOVTEND TO OTTOlO
LOVTEAOTTOLEL TLG AAANAETILOPAOELS XL AAANAOEEXPTNOELG TOVG GTO TESLO TOL XPGVOL
Yt TN Stapxeta g oaxorovbiog. H mpooéyyion awty €yl ovuvavtnost LeYdAn emLtu-
¥low 0TO CLUYXEXPLLEVO TTPOPANUO XaL EXEL TTETVYEL TTOAD XAAQ ATTOTEAECULOTO. OE OAEG
TLg xatnyopieg AO. Xdppuwva pe Ty €pevva pog oty oxetixn PiAtoypapio, dAeg
oL OMUOGCLEVTELG TTAE0V YPMOLLOTIOLOVY 0YLTEXTOVIXES Bootouéveg oe Pabetd wédbnon
%ot ZoveAxtixd Nevpwvixd Aixtoo ylor TLg LOLOTNTEG TOVG VO EEAYOLY OVOTTOPXOTA -
oclg amd ™V €L0080 AAAGR TNV XoVOTNTE TOLG Vo eQapudlovtol o LeYAAo TAN00G
dedopévwy. Mo ™y emteEepyaoio Tng axolovbiog, LEyEL Tor TEAELTALO D YpOVLOL ETTO-
vaanmtixéc dopéc (LSTM, GRU) amoteAodooy o Bootxd (LOVTEAX, UE ULOL TTROTIUNON
mpog tow GRU. Avtéc ot Sopég elyav oppipuepn oxedioopd, dniadn Adupovay ooy

elood0 ™y axolovbion 3V0 POPESG, RAVOVLXA %Ol XEOVLXA ovTECTEOUUEVT. [lop‘OAo
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TTOL Y PYOLLOTIOLOVVTAL AXOWUY), EYOVY GTUILOXA OVTLXOTAOTAOEL OTTH OLEYLTEXTOVIXES
Boaotopéveg ot Xpovixa XvveAxtixd Aixtoo, mov Paoilovtor Ty Asttovpylon TNg
OLYEALENG 070 TTEDLO TOUL XPOVOL XAl GYEOLALOVTOL UE TPOTO TTOL OEV ETULTPETEL UEA-
AovTLxY] TTANPOQOPLa Yo ENEEGLEL TNY TEEXOLOO XPOYLXY] OTLYUN OE WULor axolovbio.
To Xpovixd ZoveAxtixd Aixtuo eTTLTUYYAYOLY VPNAES ETTLEOOELS EVE TTOLPOLOLALOLY
gL%ONGTEPY (artd TNV dmodr BeAtiotomoinong) xar Yeyopltepy Stadixooion exTto-
dcvomg o€ oVYXENOY UE TLG ETOVOANTITIXES OOUES EVE UELWVOLY TNV UTTOAOYLOTLXY
TIOAVTTAOXOTNTAL XA OTNY ATTAGTNTO TNG OLVEALENS. OL TapdyovTeg avTol €ovy oUL-
VELOQEPEL OE L0 OUYEYWG OWEAVOUEVY] YENON XEOVIXWY XUVEAXTIXWY ATOWY OE
onpoatevoetg yroo AO.

‘Otwg mpoavapeéphnxe, o oxedraouds evog cvotiuatog yia OAO eivor ptae duoxo-
A6Tepn drodixaaio art 6Tl Yiow AAO opod 1 Lop@n Twy GESOUEVMY XOL OL TTPOXANOELS
TOL TPEOPBANUOTOG TPETEL Yo ANBPOLY LTT OYY], XKoL ATTALTWVTOL LOYVEES KO TTOAOX-
TTAOXEG OPYLTEXTOVLXES WLE ETTOOXY] LTTOAOYLOTLXY] LoyV. Katd ovvémeia, toe ovoTh-
nota yioe AAO elvar amAobotepo 660V oopPd TNV TOALTTAOXOTYTO. evBoppivovTog
™V Toyelor TPG0d0 NG €pevvag, eved Tow ot Ebodol yioe OAO Topovatalovy LPMAES
OTTOLTNOELG OE VTTOAOYLOTLXOVG TTOPOUG XOL GUYVEL ELVOLL OTTAYOPEVTIXES OTOY OLPOPE
T0 %x60706 exmaidevorng. Katomiy evdeAeyodg avarvorng tng PLpioypapiog yra OAO
AEEEWY NG AyYAuYg YAWOoOS SLamlotwinxe Twe eve 1 axpiBelo TG avoryvweLong
BeATLOVETOL, TA TTPOTELYOUEVOL LOVTEAD OLVEYWS UEYAAWVOLY ot Uéyebog xal ToAL-
TAOXOTNTOL, PO XOL OE ATTOLTNOELG DALXOV. 'Eval LeLtovEXTNUO TETOLWY LOVTEAWY ElvoL
OTL M EQOPLOYT TOLG TtEPLOPLlETOL OE TLYOTXES EPYROTNELOL UE ETTAPXES LTTOAOYLOTL-
%x00G TTOPOVG TOL JEV AVTLXATOTTTOLLOVY TIPOYUATIXA TEVAQLOL XOL OEV TTPOGPEPOLY
T TTAEOVEXTALOTA TOUG.

X%0TOG AVTNG NG OLaTELPYG elval 0 oYeESLHOUOG, N OVATTTUEY] o v EXTIUNON
atodoTxwy UeBOdwY pe drayetplopes amattioelg o€ LALXS Lo e@apudotun Omtixn
Avayvopron OutAiog, divovtag ERQaoy atny axplBn oavayvwpLom AEEEWY O TEOYLO-
Txég ovvnixeg, YwElg TV xENOoM Nxov. O nébodol Tov avamrtdocovton Bactilovtol o
opyrtextovixég Babetdig pabnong xow og TeXVLXES TTOL ATTOOKOTTOVY TNV UELWOT TOV
ueyéboug Ty SXTOWY %ol TOL XOOGTOVG EXTEAEGNG TOVG, UELDYOVTOG ETOL TLG OTTOLTY-
OELG OE TTOPOLG ETILTPETTOVTOS TIEPLOCOTEPES EPAPUOYES 0 TTANDOG aevapiwy GTToL oL
Stabéatpol mopot eivar tepoptopévol. OL Texvixég oL e@oppolovtol TepLlAauBdvouy
uetwon peyébovg xot TOALTAOKOTNTOG AN %O OYEOLAOWUO EVOS OAOXANOWUEVOL

LOVTEAOL ULXPOV LTTOAOYLGTLXOU XOGTOVG oL VPNANG LXOVOTNTOG OVOYVWOPELONG ATTO
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Bivteo. o v BeAtiwon xow avéAvon Twv pebddwy Tpaypoatoroleitor TAnbog met-
QOUATWY XL LEAETWY YLO TOY TTPOGOLOPLOUO TWY BEATLOTWY TTOEUUETOWY YWELG Vo
QLEAVETAL 7] TTOAVTTAOXOTNTO TV SXTOWY. OL GPYLTEXTOVLXES TTOL AVATTTUCCOVTOL
ETLTUYYXAVOLY UEYEAN axPIBELO oVOYVWPELONG TTOL CLYAYVWLLETOL TTOAD UEYAAVTEQO
©¢ TPOg To PEYEDOG oL TNY LTTOAOYLGTLXY] TTOALTTAOXGTN T LOVTEAD TNG BLBALoypo-
plog.

H mpwtn mpooéyyion mov eEetalovpe expetoarredetor to yvopevo Kronecker
Yioe vou TETOYEL Uelwon Ttov peyéboug dtav spapudletal oc emtimeda evOg VELPWYL-
%00 dwxtdov. ITto ovyxexpipéva, Ta Bapy evidg emimédov vTOAOYI{OVTOL LE YEVOM
evig abpolopatog yvopévwy Kronecker putxpdtepwy mvaxw®y, UELOVOVTOS ETOL TLG
OTTOLTOOUEVES TTOPAUETOOVS YwPLlg vou emnpedlovtot ol Staotdoets. To TAnbog twy
6pwvy Tov abpoiopatog amotedel LIEP-TaPdpeTEOS (0pileTton amd Tov YEHRoTN) KoL
0LOLOOTIXA EAEYYEL TN pelwon Tov peyEébovg Tov dxTOOL. Xe Lot OAOXANPWUEYY
opyLttexTovLxy] avtixabiotodpe xdlbe emimedo TANPOLG GVVSEGNG KAl CLVEANLENG UE
ovtioToly o ETITESO TTOL Y PNOLULOTIOLOVY TNV TTUPATIAVE TEYYLXY], ETULTUYYAVOVTOG O
LOVTIXEG UELWOELS 0TO ULEYEDHOG XL TTOAYUATOTIOLOOUE TELPAUOTH OTO LEYOADTEQO
oUVOAO 3ESOUEVMY YLOL AVOYVWOPELON AEEEWY NG aryYALxg YAWooag. TTapdAAnia, avor-
Abovpe Ty emtidpaon o xdbe ovvioToo Tov dLXTOOL GOV CPoPd To HEYebog Ko
™V atOS007Y], TUPATNEWYTOS WS YL TTEPLOGOTEPOVS GPOLS 0To Gbpoloua, ETLTLY-
YOvETOL LEYOADTEQT CUUTILEDY] UE EVOL VTG TOLYO OVTLXTUTIO GTNY TTOLOTNTOL OLVOLYVW-
potong. I'evixévovtag, epoapudlovpe v Ol texvixn oc éva LovtéAo yioae AAO xon
eTLTUYY&VOLPE UElwar Tov peYéboug xata 90% pe pwovo 0.5% mTwor oty axpiBeto
OVOYVWPLOTG.

21N ovvéYELo OXOAOLOOVPE Lal EVOAAOXTLXY] TTPOTGEYYLOY M OTTOLOL EAPEVVEL GYL
wovov 1o péyeog aAAd xaL To LTTOAOYOTIXO XOGTOG TWY LOVTEAWY. AUTO ETTLTUYYO-
VETOL OE €Yo UTTAOX TIOL AELTOLEYEL o SVO0 OTAdLR, TTPWTO EAYOVTAL XE&TTOLOL OLOK-
XOLTLXEL YOPOXTNELOTIXA LE ULXPOTEPY] BLAOTNAOY OO TNV ELCOJO XOL OTY CLVEYELO
pLor GUVEALEN «xaTté-BAaboc» Tor PLATEAEEL YWELXA, ONULOVEYWYTOGS ETOL EVOL VEO OET.
"Enterta, tor 300 EgwELoTd 0T CLYEVWYOVTOL WOTE 1 €E030G Vo EYEL (OLEG OLAOTATELS
KE TNV €l0030 GO0V aPOPA TO XAVAALA. ‘Evog unyoviopdg Tpoooyng ELOAYETAL GTO
WUTTAOX YLot Vo BEATLOOEL TNV ETTLB00T XAADTTTOVTOG (Lot odVVOULL L TVG TNG rebddov.
Me avtd tor pmAox ovTixofLoTOOUE To OTPWUOTO CUVEALENG OE ULl OLOYLTEXTOVLXY
UELDOVOYTOGS €TOL TO CLVOALXO OG0 TOG. ETLTtAgoy, oyedtalovpe utor oetpd omtd Xpovixd

YoveAxtixd Aixtoa Boaotopéva og Evar TOAD artod0oTixd UTTAOX TO OTTOLo YwELleL TNV
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€{0030 o€ dVO TUNULOTO XoL EQAPUOLEL EEXWELOTES AstTovpYieg oTo xabéva. To véo
WTTAOX ELVoil EVEALXTO OGOV OUPOPA TO TYEDLAGILO KO TNY TTOPAUETOOTTOLNGY), ETTLTOE-
TOVTOG TNV OVATTTUEY TTANOOLG LOVTEAWY E YOUNAY] TTOALTTAOXO TN T XOL SLYXTOTYTOL
YL EQUPUOYEG OE TEPLTTWOELG [LE Alyoug dtabéatpovg époue. Ta amoteAéopoto TG
©nebddov oty avoryvwpLon optAlog vTOSELXVOOLY Lo LElwon ato Uéyebog xoL Twy
OTTOLTOVUEVWY VTTOAOYLOUWY TWY LOVTEAWY TTOL oY YLleL To T5% ywplic vor emnpedlet
oEYNTLXE TLG ETILOOOELG.

H emdpevn mpooéyylon pag amoTeAsl Yl O OQOLELXY] TTPOCEYYLOY OTTOL EVOL
evtalo povtéro oyedialetor eE‘apyng we oxomd Ty amddoon xot v enidoon. [
™Y EYW YN aVOTTOEUOTACEWY ATd TNV {6050, SOXLULALOVTOL SLAPOPOL TTOOXTLUE KO
OLUTIOYY BIXTLOL UE ULXPEG UTTALTNOELG OE TTOPOLG aTtd TNy BLAtoypapion Tng LTTOAO-
YLoTLXNG 6p0oTG, XoBG VTA T LOVTEAR ELPOVILOVY XOAEG SLVATOTNTES YEVIXEVONG
4Ty YENOLULOTTOLOVYTOL YLOL oVTO TOY oX0To. Tow povtéda axoiovbody mAnbog oyxe-
SLUOTIXWY PLAOCOQLWV: UMYAVLOULOVS TTPOCOY NS, TTAPAAANAES GLVENEELS, EVPECT OlO-
yLTEXTovXg .o 't v povtedomoinom tng axoAovbiog, we Baon yonotporolodue
Evar amAd Xpovixd LUVEALXTIXO AXTUO X0l OVOTTTOOOOLUE JLAPOPO VTTOAOYLOTLYA
UTTAOX e (ixp0 x00tog Bootouévol ae otxthopop@io douwy tng PLpAoypapiog. To
LOVTEAQL E TNY XOAVTEPY oxplfetor avaryvwpLong yio xabe mepimtworn cvvdvalovtol
OE Lo EVLOLOL OPYLTEXTOVLXY] TTOL oLYXEIVETOL HE TNV PLBAtoypapior xaL ETLTUYYAVEL
TaPOUOLEG ETULIOCELS 0TO 1/3 TwV TOPOPETPWY Xot 1/5 Tov LTTOAOYLETLX0D XEGTOVG,
EVE T TOYpOove. EETEPVA OAeg Tig awvtioTolxeg (UE UIXEEC ATTOLTACELS O TTOPOLC)
nebddovg g BiAtoypapiog. Emimpdoheta, avaAdovpe TLE LTTEP-TTOPUUETPOVS YLO
x0fe oLYLOTWOA TOL LOVTEAOL YLO VO AVOOELEOVUE TNV [BEATLOTN OLOYLTEXTOVLXY.

TEAOG, XONOLULOTTOLWV TG TO TOPATIAVE EVLALO LOVTENO, eEeTdlovpe LeBOSoLE BeA-
Tlworng g axpiBelag avoyvwpLong Tov YwEls vor oVENCOLUE TNV TTOALTTAOXOTNTO.
[Mpdta, etodyovpe punyavlopolds TPoooyng o€ xdbe umAox tov axolovbioxod Xpovt-
%00 XuveAxtixod Awxtdov ot omolol enmAoLTIOVY Tl EEAYOUEVOL EVOLAUETO YOO~
xTNELoTLXd Yior xABe xop€ oY axoAovbio, evioydoOVTOG TO ONUAVTIXOTEQO XOVAALO
xo TepLopilovtog tor ALydtepo amopaityto. Aoxtpndloviol SLooPETIXOL UNYAVLOLOL
amd Ty PBLpAtoypapion 0ol LTOGTOVY TLG KATAAANAEG TPOTTOTTOLNOELS YLOL VO AEL-
TOVPYNOOLY OTO TPEYOV TPOBANUe. ‘Eretta, BeAtiwvovpe tnv emeEepyootinn Loyd
TOU OLYTOOV UELWYOVTOG TO QPOLYOUEVO TNG DTTO-EXTTOLOELGYG TTOL TTOPATNPELTOL ATOWY
eXTTOLOEVOLUE €var OLXTLO TEPLOPLOUEVYS TTOALTIAOXOTNTAG OE UEYAAO TAM0og Oe-

SOUEVWLY, YPVNOLLOTOLWVTNG TNV TEYYLXY] XAVOVLXOTIOLNOYNG TOL QPOLPEL TuYOLO K&~
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TTOLOVG YEVPWVYES TOL SLXTVOL XATA TNV exToldevon. Kabwe mpoywped 1 Stadixacio
EXTTOLOELONG EQPUPUOCOVIE ULOL OTTAY] AN OLTTOTEAECUOTLXY] OTOATYYLXY] LTTOAOYL-
opob g ThovdTTog apaipeong evog vevpwva avdAoyo pe Ty Tpoodo. [Mo Tig
uebddovg Tpoooyng, dteEdyovpe TAN00G TTELPAUATWY Yo TNY eEoxPiBwon TwY xoAD-
TEQPWY TOPOPETOWY, OAAA ol TNg O€omg oty omola etodyovtol 0To PTTAOX, xobwg
QLTY] EMNEEALEL OE TIOLOL YHPOXTNPLOTLXA EQAOUOLOVTAL, EVE YLOL TYV XOVOVLXOTO(MO,
eketdlovpe OLépopeg oTpaTNYL*ES. O oLVOATUOG TwY dVO TEYVLXWY ATTOSELXVOETOL
WG ELVAL TTILO ATTOTEAECULOTIXOG aTtd TNV Xabe plor Egxwplotd xow BEATLOVEL OPUETA
TLG ETULOOOELS YWPLS VO EMNEEGLEL TNY TTOALTTAOXOTNTO.

H Statpln ohoxAnpwvetal Ue puLor GOVTOUT TTEPLYQOPY] TWY CUUTIEQOUCULETWY TTOV
TPOEXLVYPOY OO %AOE TPOGEYYLON, CLINTWYTOG T ATTOTEAEOUATN, TO OPEAN OAAG
xor TG advvopieg g xabe pebddov xow mbavég eEnynoelg xow AVoeLg yiow xabe
pLoe. KAetvovtog, avopépovtol YeEVIXES 0OMYLES YLOL AVATTTLEY ATTOSOTLXWY LOVTEAWY

xo0g xo Thavég xatevbdvoelg Yo peAlovTinn €pevva.
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CHAPTER 1

INTRODUCTION

1.1 Speech Recognition
1.2 Research Contributions

1.3 Thesis Structure

This thesis focuses on the problem of speech recognition (SR), which is the general
process of extracting speech from a source signal of one or more speakers, formed by
either isolated words or complete sentences. It is a widely-researched computer vision
problem with rich history that has been under active research for decades and has
recently received increased interest. Advances in deep learning research and progress
in computer hardware are the predominant contributing factors for its resurgence as a
prominent computer vision area of interest, leading to a plethora of research efforts in
the last decade alone. Another contributing factor is the broader availability of large-
scale corpora, either uni- (e.g., video-only) or multi-modal (audio-visual content),

that have enabled training and scaling architectures based on deep-learning models.

1.1 Speech Recognition

Given a source signal that may or may not contain a speech segment, speech recog-
nition can be categorized into two subsets depending on the modality of signal: audio

speech recognition, or ASR for audio signals, and visual speech recognition, or VSR for



video sources. These distinct cases involve signals that are oftentimes referred to as
uni-modal, since only one modality is present in the source data, either audio or video.
In the special case where a signal carries both an auditory and a visual component,
one can apply any form of recognition procedure to decode speech, including a com-
bination of techniques for each modality. This process is more generally known as
audio-visual speech recognition, or AVSR and takes advantage of both data modalities
in a complementary fashion, exploiting the distinct strengths of each technique to
alleviate their weaknesses, enhancing the overall result. While some common aspects
are shared between ASR and VSR, there are also some significant differences that set
them apart.

Greater amounts of research effort have focused on ASR than VSR, mainly due to
the simplicity of the audio modality compared to video due to the lower dimensions
of the input, but also partially due to the amounts of labeled data available, since
annotating audio is an easier task compared to video without sound. Another notable
aspect that led to this gap in research is the resource cost in terms of computation that
is required to process the data. Compared to an audio-only track, a video segment
is more demanding on resources depending on its spatial dimensions (resolution).
Recognizing speech from processing large video signals in an automated fashion was
only made possible in the last few years with the development of powerful hardware
accelerators and deep learning models that could take advantage of them.

VSR uses a video source without an audio track as its input with the aim of
decoding speech exhibited by one or more targets in the video. In contrast to ASR,
relying on visual cues to recognize speech is a more challenging process which in-
volves more sophisticated and powerful architectures in order to produce accurate
results. In addition, visual ambiguities between words that are produced from visu-
ally similar or identical mouth movements can cause erroneous results. For instance,
some consonants share the same visual pattern while being part of words with com-
pletely different meanings, or a plural version of a word includes a suffix that is
hard to distinguish using only the visual information. The human factor needs to
be considered as well, in cases of individual speech patterns and variations which
might complicate decoding accuracy. The visual quality of the input also plays an
important role in the final output, since the resolution of video, color settings (e.g.,
contrast or saturation), or visual artifacts can cause mis-classified predictions or even

missed words, dramatically affecting results.



Even though these factors greatly affect the overall performance of a video-only
speech recognition system and need to be taken into account at the design stage,
they do not apply to audio sources apart from variations in dialects and accents,
since the audio cues (that are usually non-visual) greatly contribute to successful
predictions. Thus, for the speech recognition task, audio signals are more suitable
and are generally preferred. However, while clean audio tracks offer better results
than visual media when it comes to recognizing speech, the audio stream might not
always be available (e.g., in CCTV or other surveillance footage) and the presence of
noise significantly affects ASR accuracy (e.g., crowded environments or background
ambient noise), while the efficacy of a VSR system remains unaffected. In this case, a
combined approach (AVSR) is preferred over one that utilizes a single modality due
to its robustness to various occlusions that affect the recognition performance of one
modality.

Applications of SR in real-world problems cover a wide span of domains with
numerous benefits. A notable application with profound impact is found in medical
assistance, where a SR system can be utilized to provide assistance for patients that
are speech-impaired or are suffering from an inability to communicate effectively.
In the same spirit, various instances of existing accessibility platforms (e.g., mobile
devices and human-and-machine interaction interfaces) can be enhanced with the
addition of a SR system, improving the everyday lives of many individuals.

In entertainment, SR systems have also seen widespread adoption by various
video hosting platforms for automatic generation of video transcriptions. Another
application in this industry is found in the archiving and digitization of older films,
where SR methods have been employed to generate subtitles without relying on a
human expert. More recently, software offering all forms of SR (audio and/or visual)
has been used extensively to assist digital content creators and other individuals,
streamlining the process of adding captions to videos, increasing user outreach and
interaction.

Another domain that can greatly take advantage of SR systems is that of personal
security, where they can be utilized to enhance crime prevention or mitigation opera-
tions (e.g., large crowd surveillance in public spaces such as airports or conferences).
For individuals, spoken or silent passwords can add an additional layer of security
when interacting with a device in a crowded or potentially unsafe environment. In

forensics, VSR systems can be utilized to detect face forgeries or computer-generated



content by detecting inconsistencies in speech patterns.

The emerging domains of smart connectivity and Internet-of-Things can add
quality-of-life improvements by incorporating forms of SR that will enable users
to control appliances in smart homes or directly affect the behavior of self-driving
vehicles (e.g., by voice commands). In an increasingly digital world, where reliance
on machines and interfaces for interaction is constantly increasing, applications of SR
methods can be beneficial and will be even more important and wide-spread in the

near future.

1.2 Research Contributions

The complexity of the dimensions associated with the spatio-temporal input of video
data used in VSR (or AVSR) translates into a more challenging task, compared to
ASR which processes a simpler signal, and as a result, larger models and more data
are necessary to train and deploy accurate visual speech recognizers. Additionally,
more information relevant to speech is carried by audio rather than video, demand-
ing powerful models with sufficient representation capabilities to develop VSR-specific
architectures in order to extract meaningful information from the data. Simultane-
ously, in the pursuit of performance, network size and complexity for VSR have seen
a consistent upward trend as more powerful and complex architectures comprised of
several modules are proposed, limiting potential applications of these models in some
scenarios that might require low latency for processing and recognition. A significant
majority of the use cases discussed earlier impose several requirements for effective
operation that can only be satisfied by lightweight and compact architectures with
reduced complexity.

The goal of this dissertation involves developing lightweight architectures with low
computational overhead that efficiently and accurately tackle the problem of visual
speech recognition of isolated words in video sequences, enabling application and
deployment in a wide array of scenarios. This can be achieved by following several
approaches, for instance, reducing the size of the model, which impacts memory
requirements during loading of weights and running inference, its computational
complexity, affecting latency, or both, regulating energy consumption and operational

CcOst.



To that end, we tackle the problem of practical VSR following several approaches,
and exploring a multitude of techniques that envelop different aspects regarding
lightweight model design and training. Our methods are based on deep learning
with a focus on reducing model size and complexity, designing practical architec-
tures that benefit from low sizes in terms of required parameters as well as reduced

computational complexity, making them ideal for various practical applications.

1.3 Thesis Structure

This dissertation is split into 7 chapters, and is structured as follows:

Chapter 2 offers a comprehensive and detailed analysis of the literature on visual
speech recognition of isolated words from the deep learning perspective, covering all
published works that utilize such methods, with emphasis on the most-researched
language, which at the time of writing is English. Other languages are not neglected,
and are given their own sub-section where datasets are presented. We perform a
broad taxonomy of related works according to the method followed, outlining the
evolution of VSR research.

Chapter 3 explores network compression as a means to reduce overall model
size, creating compact architectures with a wide range of applications. A technique
that leverages a sum of Kronecker products is employed in the main components of
an end-to-end VSR system to achieve significant reductions in trainable parameters,
creating models with vastly reduced size and requirements. Extensive experiments
and ablative studies showcase that significant reductions in model sizes are possible
with minimal penalties in performance, even at high compression rates.

An additional method that also reduces network complexity is presented in Chap-
ter 4. We adopt an established architecture and use cost-efficient modules in place
of standard layers in a customized CNN for visual feature extraction and in the
Temporal Convolution Networks (TCN) used for sequence modeling. Furthermore,
we propose several TCN-based models with very low computation overhead using a
temporal block design that applies computations in one part of the input. Our models
are several times more lightweight than other related works and can be adapted for
applications in cases with severe hardware restrictions.

A more holistic approach follows at Chapter 5 where a compact yet powerful



end-to-end architecture for word VSR is proposed, considering all aspects of model
design for this task. For visual feature extraction, we benchmark a multitude of light-
weight convolutional networks from the computer vision literature. A standard TCN
architecture is employed for sequence modeling and different temporal blocks based
on efficient structures are developed and evaluated. We combine both components
in an end-to-end unified model that surpasses all other lightweight VSR networks
in performance while being less demanding in resources, measured in model size as
well as computational complexity.

Chapter 6 builds on the previous one by investigating methods to improve its
recognition performance without causing noticeable increases in its overhead. Channel
attention modules are added in the sequence modeling component of the architecture
and their effect on improving accuracy is evaluated. Next, regularization in the form of
dropout is introduced during training, resulting in a zero cost improvement in overall
performance. The best-performing approach for dropout application in the compact
model is discovered after exploring and comparing several strategies. A wide range of
experiments shows that combining both channel attention and regularization brings
the most benefit.

Finally, insights on lightweight network design for practical VSR applications,

potential directions for future work and closing remarks are offered in the Conclusion.



CHAPTER 2

RELATED WORK ON VISUAL SPEECH

REcoGNITION

2.1 Brief Overview of Earlier Works
2.2 Deep Learning Methods and Algorithms for Visual Speech Recognition

2.3 Datasets

The task of visual speech recognition has been under active research for a few decades.
In this chapter we provide a comprehensive analysis of related works in the literature
for single word visual speech recognition (VSR) including published methods and
datasets. Due to the rapid advances of machine learning research, recently-proposed
works utilize a wide array of deep-learning methods exploiting their inherent advan-
tages and increased efficacy as opposed to earlier works that relied on hand-crafted
features and algorithms. Another significant factor is the emergence of freely-available
large-scale datasets that enable the training of deep architectures and have led to sig-
nificant performance improvements over the years, as automated methods of VSR far
exceed the recognition rates of human professionals.

The predominant strategy to tackle the problem employs a sequence of steps which
splits the complex task into a series of sub-tasks that are easier to manage. Speech
recognition systems typically follow the above multi-step pipeline which generally
begins with a face detection operation that aims to localize the area surrounding the

mouth of the speaker. This area is subsequently extracted so that the following steps
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Image (or Sequence)

—

Visual Feature
Extraction

Target Word / Digit / Phrase / Sentence

Figure 2.1: General multi-step pipeline followed by speech recognition works in the
literature. Commonly-used methods to handle each step are shown in the right, with
deep-learning architectures colored in green and previously-used methods in blue.

Image best viewed in color.

will operate on an image patch of the input which is offers two advantages: a) smaller
spatial dimensions which translates to reduced computation (compared to using the
entire input image), and b) it contains all relevant information about speech. After
the mouth area has been located and isolated, feature extraction takes place, where
meaningful higher dimensionality representations of the input are generated and
processed. Finally, sequence modeling handles the temporal relations of the extracted
features across time and ultimately the outcome (either a sentence, phrase, digit, or
word) is generated by classification, concluding the process. A high level depiction of
the general speech recognition sequence followed by works in the literature is shown
in Figure 2.1.

While our focus lies on deep-learning based methods, we do not neglect to outline



a brief overview of works published before the deep-learning boom.

2.1 Brief Overview of Earlier Works

Earlier approaches to the problem relied on image transform techniques such as
Active Appearance Models (AAM) [1, 2] or Discrete Cosine Transform (DCT) [3] for
extracting features, while Hidden Markov Models (HMM) were the prevailing algorithm
for classification of these features into alphabets or digits in limited vocabularies
[4]. Such approaches were constricted in their generalization to recognition of more
complex structured speech units and as a result very few works focused solely on
single word recognition [5, 6]. For a more comprehensive review of older methods
applied to the task of visual speech recognition, the reader is referred to [7].

A limitation of these earlier methods was the low availability of large-scale datasets
with rich vocabularies and a sufficient amount of samples to enable more applications.
Another issue was the hardware limitations at that time which prevented fully taking
advantage of these resource-intensive algorithms, two issues that have since been

alleviated.

2.2 Deep Learning Methods and Algorithms for Visual Speech

Recognition

More recently, advances in machine learning research as well as progress in hardware
capabilities have led to the development of very capable architectures (e.g., convo-
lutional neural networks) that have achieved significant results in several computer
vision tasks such as image classification, multi-object tracking, etc. Coupled with the
availability of public large-scale datasets for (audio-)visual speech recognition, re-
cently proposed machine learning-based methods developed for this task typically
favor such newer architectures instead of older, more constrained ones, benefiting
from the improved hardware capacity and the amount of available training data.
The typical end-to-end method follows the same multi-step pipeline described
previously where the task of visual speech recognition is split into a sequence of

several smaller sub-tasks, each handled in a sequential fashion, by one or more sub-



modules which nowadays employ deep learning models and techniques. Adoption
of such architectures has been gradually increasing as research has progressed and
performance has improved. Some of the earlier works combined neural networks for
feature extraction with HMM-based classifiers, e.g., [8, 9, 10] and [11] were some of the
first works that proposed to exploit the capabilities of Convolutional Neural Network
architectures for feature extraction purposes while still using HMMs for classification.

Following an extensive examination of the published literature on VSR, to the best
of our knowledge, CNNs are invariably used for visual feature extraction purposes
and are adopted by virtually all recently published works, while the models employed
for sequence modeling have been a topic of research with various architectures being
used. We therefore offer a general taxonomy of published works that leverage deep
learning models and techniques into four broad categories, according to the method
used for sequence modeling: LSTM-based, GRU-based, TCN-based, and methods that
employ other deep learning-based models.

One of the most popular designs for speech recognition is the combination of a
CNN and a bidirectional RNN [12], where the CNN handles feature extraction and
the recurrent architecture classifies the sequence. While these component choices are
typically used for their relative simplicity with respect to their performance, other
methods such as Auto-encoders and Deep Belief Networks (DBN)s have also been em-
ployed for both sub-tasks.

[8] propose to apply a CNN network instead of a traditional hand-crafted ap-
proach, taking advantage of the favorable properties of CNNs such as the utilization
of GPU acceleration and the ability to learn from large amounts of available data. The
proposed system uses a 7-layer CNN following the AlexNet architecture [13] trained on
images of the speaker’s mouth area and a HMM with Gaussian mixture observation
model which treats the generated outputs as feature sequences. Since the dataset does
not contain a sufficient amount of data to ensure generalization to data other than the
six different speakers it depicts, an independent CNN is prepared for each speaker to
improve the overall performance. In contrast, a single common HMM model is used
for isolated word recognition.

The same authors explore audio-visual speech recognition in [9]. The proposed
architecture utilizes two feature extractors processing inputs of synchronized audio
signal and lip region image sequence pairs. A deep denoising auto-encoder [14] is

used for audio feature extraction, by filtering out the effect of background noise
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from deteriorated audio features, while a CNN-derived architecture [13] recognizes
phoneme labels from images of lips to generate visual features. The auto-encoder
is trained to predict noise-robust clean audio features from samples that have been
artificially generated by various strengths of Gaussian noise. The CNN is trained
with mouth area image frames in combination with corresponding phoneme labels.
For data augmentation, random shift and rotation is applied to the original images
of the dataset. Finally, a multi-stream HMM with Gaussian mixture integrates the
acquired audio and visual HMMs independently trained with their respective features
to perform the recognition.

Takashima et al. [10, 15] opt for a different CNN architecture called Convolutive
Bottleneck Network (CBN) [16] which combines convolution and pooling layers with
a Multi-Layer Perceptron (MLP). While a single layer is used for convolution and
pooling, the MLP consists of three fully-connected layers, where the second layer has a
reduced amount of units and functions as a "bottleneck”, aggregating the information
and acting as a compact feature descriptor, akin to approaches such as PCA. The
application is audio-visual word recognition, therefore two distinct CBNs are used, one
applied to each modality. For the audio signals, mel-spectrogram maps are obtained,
while for the visual signals, a lip image is extracted using a Constrained Local Model
[17] and interpolated to fill the sampling discrepancy between the features. The CBNs
are trained separately and the bottleneck features from both networks are used as
inputs of the HMM. The audio CBN outputs phoneme labels corresponding to the
input mel-maps and the label data is obtained by forced alignment using the HMM
from the speech data.

The same CBN architecture is adopted in [11]. Different than the previous work
[10], however, rather than using a static image as input, a dynamic feature of lip im-
ages is calculated using the current and its neighboring frames instead. The dynamic
feature represents a difference image and provides a more efficient representation
of the input by reducing adverse impacts of the background in the image quality,
such as shaking, blurring or pose variations. Two variants of the CNN are tested,
with varying sizes of feature maps and Convolution-Pooling operation blocks. For
data pre-processing, grayscale images of lips are first extracted from the input im-
ages using a face alignment model [17], then up-sampled via spline interpolation to
increase their spatial dimensions. The CBNs that process the dynamic features to

output phoneme labels are trained on the up-sampled images. Then, the bottleneck
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visual features of the trained CBN, which contain the aggregated information from
the input, are used to train a HMM for speech recognition. At test stage, a similar

setup is followed, where the bottleneck features are used as input to the visual HMM.

2.21 LSTM-based Methods

One of the earliest works proposing the use of LSTMs instead of HMMs for word-
level speech recognition is found in [18]. The authors propose a pipeline comprised
solely by neural network structures, in a unified model trained by back-propagation,
removing the need for manual feature extraction. Their approach uses a feed-forward
neural model to extract features automatically, replacing earlier, non-neural network
methods and LSTM layers as sequence classifiers, instead of HMM-based speech
recognizers. An advantage of LSTMs compared to simple recurrent architectures is
their ability to overcome issues regarding the exploding or vanishing values of the
gradients during training. The proposed method is applied to the task of single
word classification and evaluated against a traditional classifier which uses a Support
Vector Machine (SVM) with non-neural network-based feature extraction methods
([19] and [20]). The best performing model uses one feed-forward layer followed by
two recurrent LSTM layers with 128 units in each cell.

Chung and Zisserman [21, 22] design several deep network architectures for word
recognition. They use the VGG-M model [23] as a baseline network due to its per-
formance and running speed. A 3D convolution operator is added at the beginning
of the base VGG-M architecture in order to handle the dimensions of the video input
(H x W x T) and experiment with four model setups where information fusion is per-
formed at different feature levels. In a 3D convolution operation, the convolutional
and pooling filters operate and move along all three dimensions of the input. An
additional architecture is designed where fusion is achieved by including two LSTM
layers after the convolutional network. With the exception of the fifth architecture, all
other network designs do not utilize an additional module for sequence classification.

The same authors propose a network for audio-visual speech recognition follow-
ing an encoder-decoder design using deep learning components [24]. The encoder
consists of a convolutional module based on the VGG-M architecture [23] generating
image features for every time-step and a recurrent module (LSTM) that produces the

fixed dimensional state vector. The decoder module uses an LSTM with added dual
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attention mechanism [25]. The entire model is trained using a progressive learning
strategy whereby at the initial stages of the training single word examples are used
and as the network trains the sequence length grows. The short sequences are gen-
erated from longer sentences in the dataset. This training strategy improves the rate
of convergence and reduces over-fitting, raising the final performance.

An end-to-end system for word-level classification is proposed in [26] where
the authors combine a residual network [27] with a bidirectional LSTM. As the first
component of their end-to-end system, they design a novel spatio-temporal front-end
module which is a small neural network utilizing a 3D convolution, Batch Normal-
ization and Rectified Linear Unit activation. Finally, a 3D pooling layer (maximum
pooling applied at each dimension) reduces the spatial size of the extracted 3D fea-
ture maps. The front-end applies a spatio-temporal convolution to the input frame
stream, the 34-layer residual network is applied to every time step, one feature-map
per time-step progressively lowering the spatial dimensions and finally, two stacks
of two bi-directional LSTMs (one stack per direction) are applied and the outputs of
the final LSTMs are concatenated.

The same authors propose a method that extracts deep word embeddings [28] to
summarize the information that is relevant to the task of speech recognition, while
discarding irregularities such as speaker variation, pose orientation and illumination
conditions. Building on their previous work ([26]), they adopt the same model ar-
chitecture consisting of a spatio-temporal convolution layer, a residual network and
a BLSTM with a few modifications to extract the embeddings. More concretely, they
replace the 34-layer network with a smaller variant using only 18 layers, reducing
the overall parameters, while a pooling layer aggregates the temporal information
and extracts a single embedding per video and for regularization, dropout and batch
normalization are added to the BLSTM. Word boundaries are also included as an
additional feature and fed to the back-end. The generalization effectiveness of the
produced embeddings is evaluated on words that are unseen during the training
process. For this task, the LRW dataset [21] is split into two disjoint sets (of 350
and 150 words), where the first set is used for training. Embeddings are obtained for
the remaining 150 unseen words, which are then modeled using Probabilistic Linear
Discriminant Analysis (PLDA) [29] enabling class estimation.

An audio-visual speech recognition method which combines residual networks

equipped with spatio-temporal input layers and bidirectional LSTMs is presented
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in [30]. The authors perform audiovisual experiments using both intermediate and
late integration, as well as several types and levels of environmental noise, and note
improvements over the audio-only network, even in the case of clean speech. A
detailed analysis on the utility of target word boundaries, as well as on the capacity
of the network in modeling the linguistic context of the target word is also provided.
As a front-end, the model utilizes a modified 18-layer residual network [31], in which
the first spatial (2D) layers are replaced with their spatio-temporal (3D) equivalents
and the original average pooling layer is replaced by a fully-connected layer. A two
layer BLSTM designed without peepholes, an average pooling layer which aggregates
information across time-steps, a fully-connected and a Softmax layer comprise the
architecture’s back-end.

A novel three-part deep network for automatic speech recognition was proposed
in [32]. The hybrid architecture combines deep convolutional neural networks with
attention-enhanced recurrent models to better model the hidden correlations of the
spatio-temporal information while using the attention mechanism to weigh each key-
frame according to its importance. A VGG-19 network is selected as a convolutional
feature extractor for its robustness to noise and visual distortions, while an Attention-
LSTM [33] models the long-term dependencies within the data sequence. The atten-
tion mechanism functions as a focusing signal, emphasizing the important information
in the sequence. An experimental audio-visual dataset was constructed for the pur-
poses of evaluating the proposed model, containing data from 6 different persons
that were not native English speakers, while the audio data was used to accurately
separate the video stream containing only the spoken word. The vocabulary involves
the numbers from 0 — 9 in the English language, each pronounced up to 100 times
by every speaker.

Word-level speech recognition for the German language was explored in [34].
Several convolutional neural network (CNN)-derived architectures, including a spatio-
temporal CNN, an LSTM and a hybrid architecture combining both in a two-stage
network were trained and evaluated on a dataset containing words in German. Two
experimental setups were used, where the first corresponds to seen speakers, i.e.,
appearing on the training and testing sets, while in the second some speakers ap-
pear only on the testing set. Each model was trained with the former setup and the
best-performing one was selected for evaluation on the latter setup. Hyper-parameter

tuning for all models was performed via Grid Search, controlling aspects of the con-
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volution layer such as kernel size, as well as aspects of the training process such as
learning rate and initialization functions. The final hybrid architecture consists of 3
LSTM layers with 256, 128 and 128 hidden units respectively. Methods to improve
regularization such as dropout were added to increase accuracy and of the three
architectures, the two-stage network achieved the highest result.

Convolutional LSTMs are first explored for visual speech recognition by Courtney
and Sreenivas in [35]. The Convolutional LSTM [36] maintains the original LSTM
formulation [37] that uses several gates to control the flow of information across its
cell, however it substitutes the matrix multiplication operations with convolutions
retaining the spatial information across the sequence length. In contrast to 3D con-
volutions that have access only to a limited temporal amount of the input sequence,
the convolutional LSTM is not hampered by this limitation. The authors design two
architectures derived from convolutional neural networks ([23] and [31]) by replac-
ing certain layers with convolutional LSTMs in order to take advantage of temporal
information at several spatial scales. Redundant LSTM layers are then replaced by
typical 2D convolutions in order to reduce the overall computation costs without com-
promising performance. The proposed models are evaluated for word-level speech
recognition and pre-training in large-scale sentence-level datasets is found to improve
accuracy.

In [38], a novel lip-reading model which captures not only the nuance between
words, but also styles of different speakers is presented. It uses a two-branch multi-
grained spatio-temporal network to model the speaking process. First, both frame-
level fine-grained features and short-term medium-grained features are extracted by
the visual front-end of the network, which are then combined to obtain discrimi-
native representations for words with similar phonemes. The fine-grained features
extractor adopts a residual network architecture, while the medium-grained relies on
a previously proposed model using dense connections [39]. A bidirectional convolu-
tional LSTM [36] augmented with temporal attention aggregates the spatio-temporal
information in the entire input sequence, capturing coarse-grained patterns of each
word for added robustness to various conditions such as speaker identity and lighting
variations. By making full use of the information from different levels of granularity
in a unified framework, the model is not only able to distinguish words with similar
pronunciations, but also becomes robust to appearance changes.

An application of visual speech recognition in a unconstrained driving scenario
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that constitutes an application in real-world conditions is proposed in [40]. The
authors design a recognition pipeline to recognize words from various speakers inside
a car cabin that could represent commands to an automated system that assists with
or even drives the vehicle. The recognition pipeline consists of a Convolutional Neural
Network (CNN) followed by a BLSTM and a Fully-Connected Network (FCN) with a
plain attention mechanism [41]. After mouth detection has been performed and the
area has been cropped, the CNN consisting of 18 residual layers encodes the images
into visual representations which are then fed to the BLSTM to encode the entire
sequence with a many-to-one mapping. The encoded sequence is finally mapped to
a word category with the two-layer FCN. Two protocols evaluating the generalization
capabilities of the pipeline are devised whereby in the beginning of the training
process some samples of each word are not used and later all samples are used while
some speakers are excluded, facilitating a realistic scenario of adaptation to new users.

The authors of [42] propose a novel model for word-level classification. A Convo-
lutional Auto-Encoder architecture [43] are used for feature extraction from the frames
of the video sequence followed by an LSTM where its output is converted to probabil-
ities for word classification. As a baseline for comparisons, the authors first pre-train
a convolutional neural network model with the objective of image classification on a
dataset containing images that may or may not depict human lips. After pre-training,
they modify the CNN for feature extraction by removing the classifier at the top and
“freezing” its weights (i.e., preventing further updates) while the LSTM is trained.
Their proposed model replaces the CNN with a Convolutional Auto-Encoder (CAE)
which is similarly trained in two phases. In the first phase, images containing lips
are used to train only the CAE with the objective of input reconstruction. Once this
process finishes, the convolutional decoder part of the CAE is discarded and the
remaining part (the convolutional encoder) is paired with the LSTM. The second
training phase involves using the encoder of the CAE as a feature extractor to train
the LSTM.

A two-stream lipreading model is presented in [44] focusing on recognizing the
word being spoken given only the video but not the audio. The presented architecture
relies on a two-stream deep 3D convolutional neural network structure that expands
on shallow 3D CNNs, taking advantage of grayscale video and optical flow. For the
grayscale video the mouth region is extracted and the optical flow is pre-computed.

Each stream is used as input to a separate deep 22-layer network using 3D convo-

16



lutional layers, 3D max pooling layers and a series of 3D inception modules [45]
and then the produced features are concatenated and used as input in a two-layer
bidirectional LSTM. At the last layer of the latter, the features are concatenated from
two directions, averaged along the temporal dimension before being passed through
a linear layer to map the score for each word. The networks used are trained in two
rounds, first by expanding pre-trained weights into three dimensions and then by
pre-training on a large-scale video dataset [45].

An end-to-end method for speaker-independent speech recognition is proposed in
[46]. In order to improve model generalization to unseen speakers for more practical
applications, the authors propose decoupling content from motion information so that
the learned representations more descriptive and related to speech instead of appear-
ance. A two-stream architecture is employed where one stream ingests frames related
to motion, while the other handles the content so that two distinct representations are
produced independently. In order to create motion-related frames, pixel-wise subtrac-
tion of neighboring frames is applied to the input. The two-stream network consists
of two identical stacks of feed-forward layers with added dropout for regularization
that are then concatenated into a single joint representation and subsequently used
as input in a final LSTM layer. The outputs of the LSTM are masked allowing only
the last frame of the sequence to be used by a Softmax function for word-level recog-
nition. Experiments with varying amounts of training data corresponding to source
and target speakers are conducted to evaluate the speaker-agnostic model.

A simple DenseNet-based [47] architecture for Mandarin visual speech recognition
is proposed in [48]. The problem is segmented into two distinct steps, the first aiming
to produce a Hanyu Pinyin sequence from the input, then the final Chinese character
sequence is obtained with a deep neural network model. Two models are proposed,
each handling a different step. The first sub-network employs a spatio-temporal (3D)
convolution and 121-layer DenseNet feature extractor, while a BLSTM with residual
structure [49] utilizes the shallow features. The shortcut connections allow for infor-
mation propagation across the several layers of the BLSTM. A linear and Softmax
layer are added at the top to obtain character probabilities. In the subsequent step,
the goal of transforming the Hanyu Pinyin sequence to Chinese characters is realized
by a stack of blocks containing multi-head attention and feed-forward layers, as in
[50]. The sub-networks are trained separately and later unified and evaluated on

word- and sequence- level classification.
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Fusion strategies for effective audio-visual word-level recognition are explored
in [51]. Several architectures for fusing clean video with noisy audio are evaluated,
namely, intermediate fusion, where two single-modality sub-networks comprised of
fully-connected layers are used and their outputs are concatenated and fed to a block
of fully-connected layers with an LSTM for sequence modeling and fixed-weight fusion,
where an LSTM follows each sub-network and concatenation is performed at the logit
level. Further, two variants of a new fusion method are introduced where in the first
variant, the sub-networks for each modality are initially trained, then frozen and
used to train another network on joint audio-visual classification, while in the second
variant, the same network architectures are used with the only difference being the
training process is performed end-to-end, training all networks simultaneously. The
sub-networks for single-modality tasks follow [52], with two fully-connected layers
and all LSTMs use 128 neurons, regardless of where they are applied (depending
on the fusion strategy). The last frame of the LSTM output is used for training and
back-propagation by masking the remaining frames, since the task is world-level
recognition and a 51-neuron linear layer assigns probabilities to each class.

In [53], a novel method to learn speaker-agnostic visual representations is pro-
posed. The method aims to learn disentangled and unbiased visual features from the
data without associations to specific appearance characteristics. This can benefit the
generalization of the model since it reduces biases towards the training dataset as
well and enables learning from lower amounts of available data. Towards this goal,
the training process involves disentangling the speaker identities from the lip move-
ments by leveraging large quantities of unlabeled audio-visual data. This is achieved
by using two latent vectors to represent the identities and movements, modeling the
training objective as a speech prediction task, where a video encoder network [26]
predicts the corresponding audio by learning only the speech-relevant features from
the disentangled representations. The visual features are extracted and clustered into
groups and then replaced by the closest cluster centroid, a process that removes
data-specific information such as speaker identities. Meanwhile, a speaker embed-
ding network [54] pre-trained on the task of speaker verification extracts information
about the speaker identities. After the training process, the visual encoder is used
for feature extraction in the task of word-level visual speech recognition on several
datasets.

A visual speech recognition method tailored to medical applications in the Malay-
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alam language using deep networks is proposed in [55]. The method involves visual
feature extraction via a deep convolutional neural network (CNN) and a sequence
classifier using a Bidirectional LSTM. Contrary to other works that employ several
pre-processing steps in order to reduce the spatial dimensions of the datasets while
retaining as much information about the mouth area as possible, the authors do not
use any form of cropping or re-scaling other than normalizing the video duration us-
ing external manual software. The CNN, following the architecture of [56], is applied
to the raw video data which is converted into an image sequence ranging from 30
to 90 frames. The final feature vector for all frames is obtained from the last pooling
layer and fed to the BLSTM with 200 hidden unis with an additional dropout layer
for regularization, before classification. The method was evaluated on the proposed
dataset containing medical words in Malayalam in two settings involving speaker-
dependency, as well as in an external speech recognition corpus.

A different approach to conventional recognition from frontal images of the speaker
was proposed in [57]. Rather than using frontal images of the face, a wearable neck-
lace with a built-in infra-red (IR) camera was used to capture images of the speak-
ers’ neck and face from below, presenting a realistic non-intrusive application of a
recognition system that can utilize only the video stream. An end-to-end architecture
combining a convolutional network with a recurrent sequence model was developed
for silent word-level speech recognition. For visual feature extraction, an 18-layer
residual network is employed. The extracted features are subsequently padded to an
appropriate fixed size and fed to a single-layer unidirectional LSTM with 128 hidden
units. The final prediction is obtained by a fully-connected layer superseding the
LSTM. Dropout with a probability of 50% is added to avoid over-fitting. To increase
the overall model’s robustness to noise, spatial augmentations such as random affine
transformations such as rotation and scaling are applied. In addition, frame split-
ting and randomly shifting are used to create new samples as a form of temporal
augmentation to improve the network’s resilience to temporal variances. The pro-
posed method was evaluated on a user study featuring 54 English and 44 Chinese
commands, respectively.

A visual speech recognition system for the Arabic language is proposed in [58].
The authors evaluate three different deep-neural-network-derived architectures to
design a robust system that performs best. The first architecture involves only con-

volutional neural network components and consists of a stack of spatio-temporal
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(3D) convolution and pooling layers, whereby the filters progressively increase as the
feature resolution is lowered by the pooling operations. At the top of this network,
fully-connected layers with Dropout are used to associate the features with words at
the output. The second model utilizes time-distributed layers, that apply a different
stack of convolution and pooling operations at each time step, with an LSTM se-
quence model to process the extracted features considering the order of the sequence.
In contrast to the previous architecture, this model is shallow, using only a single
convolution operation per frame. Finally, the third model builds upon the second
one, replacing the LSTM layer with a Bidirectional variant (BLSTM) for improved
performance. Evaluation is performed in two modes, using RGB and grayscale data,
and the CNN architecture is found to outperform the other two. Finally, to overcome
prediction difficulties of the different models, a majority voting scheme is devised
where the input is pre-processed into RGB and grayscale and fed to all three archi-
tectures (i.e., 6 models in total). The chosen output is calculated by considering the
predictions and confidence of each model.

Turkish visual speech recognition is explored in [59]. The authors use the common
two-step deep learning network design (convolutional-derived feature extractor and
recurrent sequence-to-sequence model), where several architectures are evaluated in
order to find the best performing model. While in all experiments, the sequence
classification part remains the same and uses a BLSTM with 2,000 hidden units to
increase its performance due to the dataset size, a wide array of convolutional neural
networks are tested for feature extraction. These models include deep convolutional
architectures, such as AlexNet [13], VGG-16 [60], residual 18- and 50-layer variants
[31], as well as more lightweight networks such as Xception [61], ShuffleNet [62] and
NASNet [63] and their parameter values are all initialized using pre-trained weights.
Several evaluation protocols are used during training and testing in order to evaluate
the models’ performance and generalization to unseen speakers, including randomly
and manually varying which speakers’ data are used.

Ivanko et al. [64] apply visual speech recognition in the real-world scenario of
driver assistance. In order to effectively discard redundant data from the video seg-
ment, a two-stage data pre-processing pipeline is employed where in the first stage,
audio is extracted from the source video file and a voice activity detection mod-
ule is used to spot speech regions even under adverse (noisy) conditions. At the

second stage, region-of-interest areas are extracted after the mouth region has been
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detected and the images are converted into grayscale, normalized and aligned using
the histograms. The proposed end-to-end architecture consists of an 18-layer resid-
ual network with Squeeze-and-Excitation attention [65] blocks, followed by two BLSTM
networks. During training, mixup [66] with a probability of 40% and a mixing co-
efficient between 30 — —70% is used for regularization and label smoothing is applied
for the frames’ labels if mixup was not activated for those particular frames. Apart
from visual speech recognition, the method is employed in a system that assists in
driving by recognizing visual commands from the driver.

An end-to-end speech recognition model intended for industrial applications, such
as interaction with robotic interfaces in acoustically noisy conditions, is proposed in
[67]. The model follows the standard approach of a two-stage feature-extraction and
sequence-modeling architecture design. Since the model is intended to be deployed
in real-world conditions, an automatic pre-processing pipeline is applied where the
mouth region is automatically detected and cropped [68], then converted to grayscale
and finally normalized and aligned using histograms. In a similar fashion to [64],
data augmentation techniques such us mixup [66] with variable merging ratio and label
smoothing are also employed for increased robustness to realistic scenarios. The end-
to-end model involves a residual network with channel attention [65] and a spatio-
temporal initial layer, which is a commonly-followed architectural choice (e.g., [69,
70]) to extract visual features, while a 2-layer Bidirectional LSTM with 512 neurons is
employed as the sequence modeling unit. Dropout is added after the residual network
as well as in each BLSTM for regularization.

In [71], a multi-modal approach exploiting complementary information from both
modalities for speech recognition is proposed. The input sequence is separated into
the two streams (video and audio), and both modalities undergo a pre-processing
step which for the visual stream splits the sequence into a series of lip region images,
while log-Mel spectrogram data is extracted from the audio signal. Each stream is
normalized and fed to a respective deep-learning feature extraction module for fur-
ther processing. In order to improve the overall network performance, experiments
to select an optimal model and fusion strategy were conducted. Several candidate
deep networks were considered for each stream and the best-performing was chosen.
Similarly, multiple information fusion strategies were explored, including fusing the
different modalities at the prediction-, feature- and model-level. Overall, the fusion

mechanism employs a fully-connected network that receives the outputs of each fea-
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ture extractor, which are fused by concatenation, and then makes a word prediction.
An end-to-end shared training schedule is followed to benefit the joint learning of
both modalities [72].

In [73], the authors propose a method that leverages visemes, which are groups of
phonetically similar lip shapes, to improve performance in word- as well as sentence-
level speech recognition in the Persian language. As a sequence of visemes can cor-
respond to several words hampering the accuracy of the model and extracting the
information in those visemes can increase its robustness by producing more descrip-
tive video features. The method is used to fine-tune the visual extraction component
of a two-stream model [74] by taking advantage of the corresponding visemes. Model
training uses a viseme-to-character transformation instead of the typical character
prediction which can suffer from inherent language-specific biases, which is expected
to be more discriminative for the task of speech recognition. First, the phoneme
sequence is obtained for each video, then it is mapped to a viseme sequence and
provides a stronger representation than character-level fine-tuning. The visual fea-
tures are encoded by a fully-connected and BLSTM network to obtain a hidden state
vector which is then passed to a decoder with two LSTMs with attention. In order to
evaluate the effectiveness of the method, the fine-tuned model is tested on a different
language than the one it was trained on.

A novel model for Mandarin Chinese visual speech recognition is proposed in [75].
The authors design an end-to-end deep network combining several architectures and
mechanisms that follows the standard multi-part paradigm. First, for visual feature
extraction, a spatio-temporal convolutional neural network is used, followed by an
LSTM-derived encoder-decoder architecture [76] with 3 layers and 256 cells each, that
transforms the lip features into textual representations. An attention model assigns
weights to the encoded sequence, focusing on the more important features. Word
embeddings are mapped into learnable vectors with an embedding model [77] and acts
as a character decoder. A novel Mandarin Chinese sentence-level dataset is constructed
to train and evaluate the proposed model. Finally, an additional evaluation of the
method is performed on the word-level datasets LRW [21] and LRW-1000 [39].

An audio-visual method for speech recognition was proposed in [78]. The method
operates in with separate as well as a multi-modal inputs, adapting to various ap-
plication scenarios. In the case of audio-only inputs, an acoustic model with two

fully-connected layers followed by a CNN with 1-dimensional convolution, pooling

22



and normalization layers generates acoustic features, while for video-only inputs,
the model used for visual extraction utilizes two LSTM layers with 128 units each.
Three fully-connected layers are added after every uni-modal feature extractor for
classification. When used with multi-modal inputs, the video stream is split into two
modalities and pre-processed to obtain MFCC features from the audio stream and
grayscale outer lip area for the video stream which are then input to their respective
models. Fusion of the two modalities is performed by concatenation of the feature
maps extracted from the first fully-connected layer of the audio network and the first
LSTM layer of the visual network, respectively. An additional three fully-connected
layers follow, the outputs of which are concatenated as well in order to integrate the
information.

A large study evaluating a series of deep convolutional neural networks for visual
speech recognition of isolated words in the Greek language is conducted in [79]. The
authors collect a novel corpus comprising representative commonly-spoken words
and develop several deep architectures personalized for each speaker in the dataset.
Various networks from the image classification literature are evaluated, including the
InceptionV3 [80], VGG-16 [60], ResNet-50 [31] and MobileNetV2 [81] architectures,
along with customized convolutional networks and recurrent layers (LSTMs). The
training procedure involves using pre-trained CNNs with or without the LSTMs, as
well as further training on the proposed dataset following a transfer learning scheme.
The experimental evaluation shows that the customized architecture that combines
a 3D convolutional model with an Bidirectional LSTM sequence classifier with 512
hidden unit size yields the best results. Finally, a generalized model using data from
all speakers is trained on a subset of the corpus consisting of the most frequent words
among speakers.

In [82], a driver assistance system using audio-visual speech recognition to recog-
nize commands is introduced. The model operates on a bi-modal fashion, using inputs
from two different streams, which are then temporally fused. Audio features are ex-
tracted from a series of spectrograms using an 18-layer residual architecture adapted
to audio data (2D convolution operations substituted by 1D equivalents), while for
visual feature extraction, the pre-trained model proposed in [71] is used. The latter
architecture first applies a standard 18-layer residual network (with 2D convolutions)
to the input, then feeds the visual representations to a Bidirectional LSTM network

for sequence processing. The spatio-temporal fusion strategy involves combining the
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features from each separate modality at the temporal level rather than common ap-
proaches such as simple feature concatenation or cross-modal attention. This way,
information about the context is preserved and the issue of synchronization between
the two modalities is alleviated. Furthermore, a regulated Transformer-derived [50]
network with an encoder-decoder structure uses the fused features in an iterative
process to first initialize and subsequently refine its weights through fully-connected
and self-attention layers. A multi-prediction strategy where predictions obtained from
several model iterations for each instance of the input are considered, is employed
to improve performance. The method is evaluated on two corpora, for audio-visual
command recognition in a driving context on RUSAVIC [83] and for world-level

speech recognition on LRW [21].

2.2.2 GRU-based Methods

Petridis et al. [84] propose an end-to-end architecture for audio-visual speech recogni-
tion that relies on residual networks and Bidirectional Gated Recurrent Units (BGRU)s
and consists of two streams, one for each input modality (audio and video), extracting
the features directly from the data. Each stream, apart from the convolutional feature
extractor, uses two BGRUs with 1024 cells instead of LSTMs and the visual compo-
nent employs the previously proposed 3D front-end and 34-layer residual network
following the work of [26]. For the audio stream, a simple 18-layer residual network
with 1D convolution layers is used. The outputs of each stream are fused in a stack
of two additional BGRUs, incorporating sequence information from both modalities.
Each stream is first trained independently and then unified in a single architecture to
train the entire model in an end-to-end fashion. The method is evaluated for word-
level speech recognition on the LRW dataset [21] with isolated modalities as inputs
as well as their combination.

Speech recognition for word- and sequence-level Chinese Mandarin is explored
in [85]. The authors propose a Cascade Sequence-to-Sequence Model that exploits
language tonality when predicting sentences by using syntax as well as visual infor-
mation to model tones, which modity the pitch of the spoken language to convey
different meanings. The task is divided into three sub-tasks and thus the overall
model combines three separate sub-networks which are jointly trained where each

sub-network is dedicated to a sub-task. The first sub-network is used to predict a
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pinyin sequence, which is related to mouth movement, from the video and follows
an attention-based sequence-to-sequence architecture with an encoder and decoder
[86]. The next sub-network predicts tonality, which can reduce viseme ambiguities by
leveraging the pinyin information produced by the first sub-network and the input
video with a dual attention mechanism [24]. Finally, the last sub-network combines
the video input alongside the outputs of the previous sub-nets to predict a Chi-
nese character sequence with a triplet attention mechanism. All sub-networks use a
two-layer BGRU with a cell size of 256 as encoder and a two-layer standard (uni-
directional) GRU with a cell size of 512 as decoder. To improve learning, curriculum
learning [24] and scheduled sampling [87] are employed.

Yang et al. [39] introduce a novel dataset for word-level speech recognition of
Chinese words and perform a quantitative evaluation of three types of deep neural
network models with different components used for word recognition. The evalu-
ated models follow different architectures of previous works and include a fully-
two-dimensional convolutional model with LSTMs ([22]), an architecture with 3D
convolutional layers as a feature extractor and a sequence classifier ([88]), as well as
a network that utilizes a combination of both designs ([26]). Following the archi-
tectural designs of [88] and [26], the authors propose combining 3D convolutions
with dense connections [47] in a fully-three-dimensional residual model for feature
extraction, replacing the standard 2D counterparts for image classification. For se-
quence modeling, the same structure of 2-layer Bidirectional GRUs as in previous
works is adopted, keeping the comparison between the different architectures fair.
The fully-three-dimensional dense model is evaluated on the newly-proposed dataset.

In [89], the authors present a framework for training visual speech recognition
models that are unaffected by the pose of the speaker. They propose using a 3D
morph-able model [90] to generate synthetic data of facial images in arbitrary poses
from a source image depicting only the frontal pose. Their synthetic data augments
existing datasets using only frontal views of the speaker and circumvents the costly
and time-consuming process of annotating ground truth data. The network archi-
tecture ingests the mouth region of interest (ROI) image inputs consists of a 3D
convolutional block performing spatio-temporal convolution, followed by a residual
network [31] for automatic feature extraction and a 2-layer BGRU to model the se-
quence. The authors opt for the smaller (18-layer) network due to its faster training

duration and equal performance to the larger 34-layer one. Their method achieves
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significant improvements in cases where extreme poses (over 45 degrees in yaw and
pitch) are present.

Zhang et al. [91] investigate whether regions in the face other than the mouth area
can be exploited in order to improve the performance of visual speech recognition
systems. Citing psychological studies on human perception where it is suggested
that humans recognize speech by relying on more facial information rather than
just the mouth area, the authors study the performance impact of four manually-
selected regions when used as inputs on several speech recognition models ([26,
30, 88]). These regions include information from areas other than the mouth (e.g.,
the cheeks), that is potentially beneficial to recognition, but is overlooked by the
standard practice of cropping only the mouth area. They propose using Cutout [92]
as a simple augmentation strategy that partially occludes regions in the images during
training, encouraging the models to focus more on the remaining areas. Their findings
demonstrate that including extra-oral regions of the face as input data during training
can yield stronger features, thus boosting performance.

In [93], a method that takes into account parts of lip images for increased ro-
bustness is proposed. The method leverages parts of the lip image that correspond
to different speech-related characteristics to reduce speaker-dependence. A 34-layer
residual network with a spatio-temporal layer is used as the feature extractor, while
a 2-layer BGRU with 512 units is utilized as the sequence model. The visual features
are split into three parts according to the lip structure and each part is fed into a
sequence model so as to obtain independent temporal representations of each area.
Learning is modeled with a joint loss that takes into account each part and enables
the end-to-end training of the entire architecture. An audio-visual framework utilizes
the above network as its visual feature extractor alongside a parallel audio branch
that follows [84] and two BGRUs with 1024 units each fuse the obtained features.
Furthermore, the model is evaluated on a subset of LRW [21] with fewer classes to
simulate practical applications in industrial scenarios.

The authors of [94] propose a novel pseudo-convolutional policy gradient (PCPG)
based method to train visual speech recognition models. This policy aims to alle-
viate two problems in traditional training process of sequence-to-sequence models:
a) teacher exposure bias and b) inconsistencies between the optimization target and
the final evaluation metric. Character error rate is introduced as a form of training

reward which optimizes the model together with the original discriminative target.
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Simultaneously, a pseudo-convolutional operation is performed on the reward and
loss dimension, generating a robust reward and loss for the whole optimization of the
model. They base their architecture in an encoder-decoder scheme following previ-
ous designs [84]. The encoder contains a spatio-temporal network, a residual feature
extractor and a bidirectional GRU, while the pseudo-convolutional decoder uses a 2-
layer GRU which is regarded as an agent with the ground truth as the environment.
During training, the agent takes into account the old state observed from the time
steps and takes an action to output a new character or word to obtain a new state, so
that both states and the environment contribute to the reward together for choosing
the action. Finally, the reward is fed to the PCPG module to generate the final loss
when passed to the agent.

[95] propose an audio-visual fusion method using spatio-temporal graph convolu-
tional networks (ST-GCN)s [96]. A hybrid visual extraction network utilizing a dual-
branch structure combines the properties of GCNs which can exploit the relationships
among key points of the lip shape, with the traditional neural network-extracted
visual representations. In that network, the graph branch, utilizing a ST-GCN and
BGRU, extracts additional shape-based features related to the lip area augmenting
the discriminative high-level visual features obtained by the other branch, which
employs a 34-layer residual and 2-layer BGRU combination. To improve the expres-
siveness of the model by fusing the information from both modalities, the output
of the visual network is mixed with the features extracted from an audio stream
with the use of a novel attention-based bidirectional fusion module that consists of a
synchronization block and a 2-layer BGRU. The synchronization block uses a series
of convolutions and attempts to align the features from each modality reducing the
temporal asynchrony between them that hampers recognition performance.

In [97] the authors aim to improve representation learning by introducing mu-
tual information constraints during training. Constraints are enforced on both the
local feature level enhancing fine-grained movements at each time step and on the
global sequence level encouraging the model to learn latent patterns. Combining these
constraints aims to enhance the relations of the features with the speech content im-
proving the effectiveness of the representation and the robustness to noise produced
from the change of pose, lighting conditions, speaker appearance and speaking speed.
The model used in this work follows the same feature extraction network as in previ-

ous works (e.g.[SO]), while for the back-end a 3-layer BGRU to capture and classify
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the latent patterns of the sequence. The local mutual information maximization acts
on patches of the feature maps produced by the convolutional extractor, while the
global mutual information maximization acts on the representations obtained by the
BGRU.

Xiao et al. [98] propose a two-stream network trained in a self-supervised manner
to learn the deformation flow between adjacent frames in a sequence, which directly
captures the motion information within the lip region. The lip movements during
speaking are modeled as a sequence of apparent deformations in the lip region. The
learned deformation flow is generated by feeding the source and target images in
a encoder-decoder module (using a residual network) and is then combined with
the original grayscale frames in the two-stream network to perform speech recogni-
tion. The architecture uses two branches, both following [26] with gated recurrent
units instead of LSTMs, however the first branch employs 2D convolutions for the
deformation stream instead of 3D ones, which are used in the second branch. The
two-stream network is trained using a novel bidirectional knowledge distillation [99]
loss, enabling the simultaneous exchange of information between the two branches
which are trained jointly during the learning process.

[100] propose an audio-enhanced multi-modality speech recognition model with
the goal of enhancing the audio quality in noisy environment scenarios where the
impact of audio information in the overall recognition quality is reduced. Their model
uses two sub-networks, each fulfilling a different role; one sub-network enhances the
visual representation by learning to separate a speaker’s voice from the background
noise, while the other performs multi-modal speech recognition. Similar to their other
work ([101]), their visual feature extraction network uses a pseudo-three-dimensional
residual network [102] architecture and for recognition, the element-wise attention
GRU [103] is chosen for its effectiveness over long sequences. In the visual speech
enhancement sub-network, visual and audio features are extracted from the mouth
region of interest (ROI) and magnitude spectrograms of the audio, respectively. The
extracted features are fused by concatenation and fed to the GRU and the resulting
enhancing attention mask is multiplied with the original noisy spectrograms.

The authors of [104] propose a method to alleviate issues related to the synchro-
nization of the audio and video data in multi-modal speech recognition systems.
Rather than following the standard approach that modifies the sampling rate of one

modality to match the other one which can miss inter-modal relations, they propose a
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method that aligns the features to generate new aligned audio-visual sequences which
can be used as input features by the sequential models (e.g., BGRUs). The method
applies an iterative procedure of mutual attention steps, where features from one
modality guide the alignment process of the other one and vice versa, without being
mixed in the process. The method relies on a modified Transformer encoder [50] using
a stack of multi-head attention and fully-connected feed-forward layers with added
sinusoidal positional embeddings that encode information about the positions of the
features within the sequence. The whole model involves one branch for each modal-
ity, following commonly-used architectures ([31]) and BGRUs for sequence modeling.
After features for each modality have been obtained, mutual attention aligns them
and two BGRUs fuse the aligned features before final classification into words.

In [105], a hybrid fusion method is proposed to increase robustness in audio-
visual speech recognition by exploiting the complementary nature of both modalities.
The hybrid fusion method takes advantage of feature fusion, which utilizes the varia-
tions between frames of different modalities for a more discriminative representation
and decision fusion, which determines how to optimally combine the different modal-
ities under noisy conditions. First, audio and video features are extracted from audio
waveforms and mouth region of interest (ROI) sequences by two separate deep net-
works. Then an audio-visual fusion network using a lightweight residual architecture
projects audio and video features into a common latent space, discovering the inter-
nal correlations between the different modalities and an audio-visual BGRU models
the joint sequence. Finally, a decision fusion module fully utilizes those correlations
by examining the outputs produced by the audio, video and fusion encoders. A
two-step training procedure is followed, where each sub-network is first trained sep-
arately, then the unified model is fine-tuned in an end-to-end process with a joint
loss function that optimizes the robustness of learning joint representations across
both modalities.

Similarly, a feature fusion network for audio-visual speech recognition that extends
single-stage approaches is presented in [106]. An additional early feature fusion stage
is added, allowing the network to benefit from fusion at different stages. The model
utilizes three separate streams and a late audio-visual feature fusion part, integrating
the complementary features of each stream and increasing the model’s robustness to
noisy scenarios. The video stream ingests frames and utilizes a previous architecture

[84] with an added spatio-temporal non-local block [107] at the beginning which
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captures long-range features of lip frames, while the audio stream receives audio
corrupted by random babble noise. The features obtained by the residual networks
in each uni-modal stream are concatenated and fed to the third stream for early-stage
fusion with a two-layer BGRU. Finally, the fused features along with each uni-modal
stream’s BGRU outputs are concatenated and combined with two additional BGRUs
for late-stage fusion. A three-phase training process is employed, where in the first
stage only the three distinct streams are trained independently, then their weights are
frozen while the late-stage feature fusion part is trained separately and finally the
unified network is fine-tuned in an end-to-end manner.

In [108], a method to improve the feature extraction capabilities of the spatio-
temporal (3D) layer commonly adopted by speech recognition works is proposed.
The authors introduce a Temporal Shift Module (TSM) [109], that extracts spatio-
temporal features by shifting the feature map channels along the time dimension, to
two different deep convolutional neural network architectures. The first architecture
consists of an 18-layer residual network using only 2D convolutions, without the
spatio-temporal first layer, while the second architecture uses a combination of 3D and
2D convolutions, which is a common design principle in the literature (e.g., [110, 91]).
For both setups, the sequence modeling network is a 2-layer BGRU with 1024 hidden
units. Since the TSM could potentially lower the spatial feature extraction capability
of the 2D CNN due to the amount of channel shifting, the authors experiment with
several variables that control the amount of shifting and the modules are inserted into
each residual block, to preserve the representation strength of the networks. Moreover,
the authors study the influence of the amount of shifting and data sampling interval,
which controls the temporal density of the frames used as the input to the model.

In a similar fashion, Li et al. [111] also propose enhancing the convolutional
extractor with additional temporal capabilities without introducing much computa-
tional overhead via the Temporal Shift Module (TSM) [109]. The TSM shifts parts of
the feature channels forwards and backwards in the temporal dimensions, mixing the
information of the current frame with that of its neighboring frames and capturing
contextual information about the speech pattern. The authors use the popular setup
of an 18-layer residual network with a spatio-temporal first layer to keep running
costs low and add this module in each residual block to enable the convolution op-
erations to extract spatial features between sequential frames. A possible limitation

whereby some correlations and relationships between these sequential frames could
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be ignored by the temporal module is alleviated by the introduction of a channel
attention mechanism [65] that re-calibrates the channel activations at the end of the
residual block to filter the useful features. The sequential model that follows the
enhanced feature extractor is a simple 3-layer BGRU with 1024 units.

Self-supervised learning with a proxy task is proposed in [112]. This task guides
the learning of semantic visual features from unlabeled data. The purpose of the task
is to seamlessly exploit the semantic correlations between the audio and video modal-
ities. In order to jointly learn temporal and cross-modal semantic correspondences
from the unlabeled data, a multi-task framework is presented where a novel proxy
task guides two simultaneous predictive coding sub-tasks, each involving predicting
target latent features from the given input by learning its context vectors. For the
intra-modal predictive coding task, the model learns to predict future samples from
the past ones and vice versa, while in the cross-modal sub-task the objective is to
predict latent features for one modality using the other. A pair of residual encoders
generates latent features for audio and video, using 18 and 34 layer architectures, re-
spectively, while the context vectors are learned from the input using three different
GRUs (audio-only, video-only and audio-visual). Fully-connected layers are finally
used to decode the feature embeddings from the outputs of the GRUs, following [113].
As the focus lies in visual representation learning, after the self-supervised training
stage the audio encoder is discarded and the method is evaluated on the visual speech
recognition downstream task.

The authors of [69] propose a pipeline for visual speech recognition by incorpo-
rating various training strategies to gain as much improvement as possible, without
resorting to significant architectural changes of the model. Several factors are con-
sidered, including the scheduling scheme of the learning rate during training, how
the dataset is pre-processed and the choices for different sub-networks used in the
final model. Variations of convolutional and recurrent neural networks are considered
for feature extraction and sequence classification, respectively. For data augmentation,
mixup [66] is employed to reduce over-fitting. Word boundaries [30] are also included
which improve performance. Their final model which performs best consists of a 3D
convolutional layer, followed by a residual network with four Squeeze-and-Excitation
[65] modules for the front end and a 3-layer BGRU for the back end.

[114] explore large-scale visual speech recognition in the Russian language. The

authors propose a novel dataset consisting of 235 words and use it to evaluate sev-
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eral deep-learning-based published works from the literature [39, 98, 110, 69, 115].
Among those, most are evaluated on the LRW [21] dataset, while [115] is evaluated on
the related task of action recognition and adapted to the current task of VSR follow-
ing principles from [26] and [116]. The evaluation involves using pre-trained weights
as well as training the models from scratch on the newly-proposed dataset and [39]
is found to outperform the other methods. Selecting this model, an ablation analy-
sis is presented where several training tricks, such as label smoothing [80] and data
augmentation techniques such as CutOut [92] are examined to increase performance.
Furthermore, a novel architecture derived from [69] and involving split-attention
[117] is proposed and evaluated on LRW.

Another application to the medical domain is presented by Sen et al. [118], where
the authors design a personalized network for a patient suffering from a neuro-
degenerative disease that results in the progressive loss of motor neurons that control
voluntary muscles and ultimately the loss of voice. Since collecting and annotating
enough data to train a personalized deep neural network is a time-consuming pro-
cess, a pipeline for creating personalized datasets for such applications using a set of
unique words in a one-shot scenario is proposed. First, a set of unique real examples
is gathered from the patient as well as three additional speakers that include sign
language and deaf users that also mouth the words. A lip synchronization network
[119] generates speaker-specific synthetic examples and text-to-speech techniques are
employed to augment the one-shot data. For speech recognition, an established back-
bone network [69] is used and trained on a combination of synthetic and real data
using a novel Variational Encoder to bridge the distribution gap between the different
forms of data.

Distillation is proposed in [120] as an effective method to improve recognition
performance by taking advantage of audio data to alleviate some ambiguities of vi-
sually confusing phonemes which are produced by similar mouth movements. In
order to transfer more diverse features from the audio teacher to the video network,
the proposed method incorporates sequence- and frame-level distillation considering
partial as well as overall information about the entire sequence. Since the features
from the different modalities correspond to unequal sequence lengths, a Gaussian-
shaped weighted average is used to learn a mapping between them using a normal
distribution that does not hamper efficiency, compared to more expensive mecha-

nisms like attention. Audio samples are extracted from the dataset and augmented to
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create more training examples and used to train the audio model, which consists of
three residual blocks, a fully-connected and a BGRU layer. After the teacher model
has been pre-trained, it provides an additional training signal via distillation to the
visual-only student model, which follows the architecture of [69].

In [121] a multi-modal framework that can utilize both audio and video inputs
with the goal of augmenting the lip visual information by recalling corresponding
speech audio data from its saved memory is proposed. The authors adopt a multi-
modal memory network [122] that stores source-key and target-value memories, each
containing pairs of encoded audio-visual features. In order to allow the framework to
recall the saved modality (target) by utilizing the stored memory of the other (source),
they propose a method to associate between the memory buffers, thus allowing the
recalled (multi-modal) information to complement the input (uni-modal) at inference
time. The proposed framework maintains separate latent-space representations for
each modality and is able to use a multi-modal representation for the input even
if one modality is not available. A baseline architecture [84] is combined with the
proposed memory network and trained in an end-to-end manner, while evaluation
is carried out on two uni-modal downstream speech-related vision tasks, namely
isolated word recognition and silent-video speech reconstruction.

In [123] a robust algorithm for visual speech recognition is designed. The proposed
pipeline involves a series of steps pertaining to the utilization of the data which in-
cludes the processes of acquisition, processing and classification. In the pre-processing
stage, the mouth region is first extracted from each frame and color information is
removed to keep the number of features low, followed by a lip detection operation
carried out by a hybrid active contour approach [124, 125] utilizing a novel edge de-
tection function optimized for lip images. Due to the flexibility of the mouth feature,
a robust parametric model [126] composed of cubic curves is selected to represent a
precise contour of the mouth area. The pre-processed data is fed to a four-stage neu-
ral network architecture combining spatio-temporal convolutional neural networks
with a stack of two Bidirectional Gated Recurrent Units of decreasing hidden unit
size, global average pooling and classifier. Apart from visual speech recognition, the
architecture is evaluated on the downstream task of lip segmentation.

The authors of [70] introduce a novel dataset for daily Mandarin conversations as
well as a system for robust visual speech recognition with the goal being the appli-

cation in a medical environment. The dataset contains 1000 videos from 10 distinct

33



speakers and each video is recorded in a controlled environment where the speaker
is facing the camera. The video quality is high, featuring a frame rate of 30 frames
per second with a spatial resolution of 1920 x 1080 pixels. To increase the size of the
dataset, face landmarks are extracted and various spatial transformations are applied
resulting in a total of 10.000 samples, segmented in a 7 : 2 : 1 split corresponding to
training, testing and validation sets, respectively. The proposed recognition system in-
cludes a spatio-temporal convolution layer, an 18-layer residual network augmented
with Squeeze-and-Excitation blocks [65] and a global average pooling layer to extract
features which are then fed to a module with a 3-layer Bidirectional GRU followed
by a series of 1D convolution layers.

In [127], Slow-Fast networks [128] are employed for speech recognition. The au-
thors note some key difficulties when applying Slow-Fast networks on the domain of
speech recognition and propose methods to alleviate these issues. A dual-stream net-
work is proposed that captures subtle lip motion features by exploiting a Slow-Fast
structure where the two streams extract dynamic as well as static features. In order
to better exploit the information in lip motion sequences, two sampling methods are
devised that complement each stream, improving its feature extraction capabilities.
The dual-stream network follows the Slow-Fast Net architecture, implemented with
an 18-layer residual network with an added Temporal Shift Module [109] in each resid-
ual block, while for sequence modeling a typical 3-layer BGRU setup is used. When
combining the streams, two fusion strategies, early and late, are considered where in
the former the feature vectors are concatenated before being input to the BGRU. In
contrast, for late fusion, each stream is considered independently and the features are
fused after sequence modeling.

In [129], the authors explore an alternative approach to automatic visual speech
recognition by using data provided by event cameras [130]. An event camera produces
data at a higher temporal resolution compared to a traditional (RGB)-type camera. A
novel multi-grained network with two branches, low-rate and high-rate, operating on
data of different frame rates is proposed. The branches enable the network to perceive
features of different temporal resolutions taking advantage of the properties of both.
While architecturally the branches consist of a spatio-temporal layer and several
residual blocks, the high-rate branch uses fewer convolution filters to keep the amount
of computations manageable. Due to the different feature granularities of the two

branches, a message flow module is proposed to allow feature communication between
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them, fusing the information with an attention map. The message flow module is
added after each pair of residual blocks, fusing the information at several spatio-
temporal scales. A Bidirectional GRU receives the fused output of the last message
flow module to model the sequence. The method is evaluated on test samples of a
novel event-driven dataset, according to three protocols: 25 frequently mis-classified
word pairs from LRW [21], 50 randomly selected words from LRW and on the
combination of both sets.

A novel method using 3D convolutional vision transformers is proposed in [131].
In a Convolutional Vision Transformer (CVT) [132], convolution projection operations
are added to the original vision transformer [133] in order to model the local spatial
context of the input without considering the temporal dimension information. The
authors combine a 3D convolution neural network with the CVT backbone aiming
to extract representations from local features (adjacent frames) as well as from global
ones (long-distance frames). Spatio-temporal representations are obtained from the
input by the 3D CNN which are then fed to a CVT backbone extracting both global
and fine-grained feature information utilizing the self-attention mechanism and con-
volution operations respectively. A Bidirectional Gated Recurrent Unit (BGRU) with
1024 hidden unit size models the video sequence.

In [134], the authors present an application of an audio-visual speech recognition
system in a virtual aquarium setting. A wireless head microphone records user audio
that is then fed to a speech recognition API transforming the list of spoken words
into vectorized representations. Simultaneously, a frontal camera captures the mouth
movements and extracts a frame sequence that is used as input to a deep network
architecture to obtain visual features. For the extractor model, the authors propose
a novel architecture that combines a typical 3D spatio-temporal network as its first
layer with a 3D dense block architecture [47], where each convolution layer is re-
placed by a 3D equivalent operation and a final multi-scale 3D network. The latter
utilizes a multi-branch design, where three parallel branches receive the same input
and their outputs are concatenated in order to extract features at different scales
containing information of several granularities. Each branch combines a stack of
convolution—normalization—non-linear activation layers with a spatial attention module
[135] that enhances the more important channels for improved performance. Dropout
[136] and its spatial derivative [137] are included, each in one branch to prevent over-

fitting. A sequence processing module with two Bidirectional GRUs follows after the
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feature extractor and finally a fully-connected layer receives the merged features from
both the audio and visual representations. The method is trained and evaluated on a
held-out dataset containing a set of 54 words including control commands, numbers,
emotions as well as nouns related to aquatic animals.

In [138], deformation flows driven by the audio signal are explored. The pro-
posed method utilizes the audio modality to guide the flow generation process, fo-
cusing more on the speech-relevant information rather than the visual elements. A
three-component pipeline trained by a three-step process is proposed where the de-
formation flow guided by the audio is first generated by a network, then fed to a
flow-based visual recognition model and finally to another network that recognizes
the speech. The first network to be trained is the flow generator, which uses a bi-
modal design where two convolutional encoders extract features from each modality
and a deconvolution decoder fuses the information to produce the deformation flow
which contains speech-related lip movement. Then, the generated flows are used to
train the flow-based visual model and finally, this model functions as a teacher net-
work in a knowledge distillation framework transferring the information from the audio
to the student model which performs the speech recognition. After the training phase,
the flow-related networks (generator and recognizer) are discarded and the distilled
student is evaluated.

The authors of [139] propose a visual speech recognition model to assist religious
practitioners and researchers of the Arabic language. They design a uni-modal net-
work for word-level classification relying only on the input video stream. A two-stage
model architecture is adopted that uses a 18-layer residual network with a spatio-
temporal first layer for feature extraction, combined with a Bidirectional GRU [140]
using 3 layers. In addition, they introduce a novel dataset containing digits as well
as words in order to evaluate their proposed model via a transfer learning scheme
where the model’s weights are initialized from pre-trained values on the LRW [21]
dataset and trained further. Data augmentation in the form of horizontal flipping
and affine transformations are applied to increase the dataset size. During training,
scheduling the learning rate according to a cosine schedule [69] is also employed.
Apart from the word-level task, the model is also evaluated on single or disjoint letter
recognition.

The authors of [141] introduce a novel framework for silent speech interactions in

mobile devices relying on visual speech recognition. The framework combines con-
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trastive and few-shot learning strategies in order to learn robust representations via
self-supervision and to seamlessly adapt to unseen examples. A pre-trained encoder-
decoder architecture following [69] is employed as the model and fine-tuned with
a contrastive learning objective [142] in order to learn an embedding space between
the samples. To evaluate the model, a customized corpus was designed containing
words as well as phrases related to mobile phone interaction commands. Further-
more, a mobile application was developed enabling command customization via a
keyword spotting method that detects new keywords from the lip movements. An
incremental learning scheme was introduced enabling the continuous improvement
of classification accuracy as more samples are provided. The overall framework was
evaluated on a user study involving pre-defined commands in English as well as in
an unrestricted language scenario.

Sun et al. [143] proposed a mobile system for silent speech recognition following a
different approach. The system leverages a built-in microphone and speaker from an
earphone to detect the ear canal deformations that occur during speaking by analyzing
ultra-sound signals. The in-ear speaker transmits audio in the ear canal which is then
reflected backwards and captured by the microphone and subsequently synchronized
to obtain clear reflection signals. A segmentation algorithm detects the deformation
events according to the short-term energy variation and ear canal deformation features
are extracted with a combination of a Transfer Function (TF) and Continuous Wavelet
Transform (CWT) containing complementary aspects of different granularities. A two-
channel hierarchical neural network aggregates the two distinct features by employing
a stack of GRUs [144] for the former and a lightweight convolutional architecture
derived from [145] for the latter, which are then concatenated to fuse the information.
In order to avoid the time-consuming process of gathering and annotating large
amount of ground truth data required to train deep networks, as well as to increase
the model’s robustness to noise, the authors apply several augmentation techniques
for the different features (TF and CWT). While jittering is used to add noise to the
original data for the TF features, time warping, masking and time-frequency masking
are employed for the CWT. The method is evaluated on two datasets covering letter-
and word-level recognition tasks.

In [146], a bimodal noise-resistant system combining several input methods is in-
troduced. An automated interface recognizes word lists from an audio stream which

are then converted into vectorized representations with a pre-trained word embed-
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ding deep model [77]. For recognition utilizing only the video stream, a convolutional
network with two branches receives an image and its corresponding spectrogram
for robustness to noisy environments. This network utilizes a dense spatio-temporal
CNN with spatial attention [135] and a 2-layer Bidirectional GRU. The first compo-
nent extracts discriminative visual features from the input by leveraging the spatial
attention module to focus on the information with the strongest spatial correlations
while the BGRU facilitates the fusion of information between the different modalities.
A previously-published dataset [134] was used to evaluate the proposed method in
controlled conditions. In addition, experiments where noise was added into the au-
dio input simulating realistic applications were performed to evaluate the method’s
robustness to noise.

Similar to some previous works (e.g., [108, 111, 127]), Temporal Shift Modules (TSM)
[109] for visual speech recognition are revisited in [147]. The authors expand on the
original module by introducing separate channel shifting ratios, allowing for a more
refined information exchange between channels within the same residual block, which
in turn enables efficient temporal interactions between neighboring frames. The model
proposed in [148] that uses a spatio-temporal 18-layer residual network with a DC-
TCN is employed as the baseline and the authors add the improved TSM at the
beginning of each residual block to extract temporal information. In the improved
TSM, a shifting ratio that varies according to the residual block stage is chosen that
causes the least amount of feature loss. Moreover, the global average pooling layer that
comes after all residual blocks in the visual feature extraction network is replaced by
a 3D convolution layer that expands the effective receptive field of the architecture,
harmonically integrating feature information from different temporal dimensions.
Another architectural change compared to the baseline is replacing the DC-TCN for
sequence modeling with a 3-layer Bidirectional GRU and adding a channel attention
mechanism [65].

A dual-stream speech recognition approach combining several architectural inno-
vations is proposed in [149]. The model adopts a two similarly-structured networks
comprised of a 3D convolution, residual network and Temporal Shift Modules [109] in
a dual pathway SlowFast [128] architecture. The slow path adds a second 3D con-
volution after the residual network, while the fast one utilizes a pooling operation
instead. The residual blocks in each CNN are augmented with attention modules in

the form of Temporal Shift Modules with varying shifting ratios following [147] as
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well as Squeeze-and-Excitation [65]. In order to effectively combine the spatial informa-
tion of different granularities obtained by the two pathways, two fusion methods are
investigated. The first method fuses features by concatenating each pathway across
the channel dimension and then using a Bidirectional GRU with three layers of 1024
hidden units, while the second method adds two BGRU models, one for each path.
The end-to-end model is evaluated for word recognition in two languages, English
[21] and Chinese [39].

A novel architecture following the typical three-step design for VSR is introduced
in [150]. For visual feature extraction, the authors employ a standard 34-layer resid-
ual network, where the first layer is a 3D convolution, followed by normalization,
non-linear activation and pooling layers. The residual blocks are augmented with a
novel spatial attention method that uses parallel execution paths, adopting design ele-
ments from [65] and [135]. For sequence modeling, a Bidirectional GRU is combined
with a Mamba [151] model that employs selective attention mechanisms for improved
information extraction and both networks receive the visual features. Contrary to the
standard approach in the VSR literature that converts color images to grayscale to
be used as inputs, this method operates on the original (RGB) images instead and
uses the conversion to grayscale as an additional augmentation technique during
training. The network is trained with focal loss [152] rather than the commonly-used

Cross-Entropy to handle imbalances between the dataset classes.

2.2.3 TCN-based Methods

The authors of [153] explore a self-supervision strategy to learn audio-visual embed-
dings without labeled data since collection and annotation of training datasets is an
arduous and time-consuming task. To learn meaningful embeddings, the task is mod-
eled as a cross-modal retrieval problem, where input in one domain guides a process
of finding the most relevant sample in another domain. A novel self-supervised train-
ing method is proposed where the network learns cross-modal embeddings by being
trained for unlabeled multi-way matching by leveraging similarity-based methods
and multi-class loss functions, rather than the typical pair-wise ones. A two-stream
network is used where a visual stream component is paired with an audio coun-
terpart that extracts multiple features to facilitate the one-to-many feature matching

task. The network learns to minimize the embedding distance between the audio and
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video, encouraging a low distance for a matching pair to be far from all negative
(non-matching) pairs. The method is evaluated on the audio-visual synchronization
task which requires time-aligned modalities, on cross-modal biometrics (e.g. [154]),
as well as on the downstream task of word-level visual speech recognition.

A visual speech recognition model aiming to improve on previous works is pre-
sented n [110]. The authors address the limitations of models using bidirectional
gated recurrent units (e.g., [84]) by replacing those units with Temporal Convolutional
Networks (TCN) [155] which are sequential models making use of 1D temporal con-
volutions receiving a time-indexed sequence of feature vectors as input and mapping
it into another such sequence, preserving the initial sequence length. The authors
propose a variant of the vanilla TCN network, called Multi-Scale TCN (MS-TCN) uti-
lizing three parallel branches in each block, where each branch uses a different kernel
size providing the network with several receptive fields. Each branch splits the in-
put and operates on a subset and their outputs are concatenated, effectively fusing
the information from multiple temporal scales, allowing the network to better model
sequences, compared to the original architecture. They also simplify the training pro-
cedure by adopting a cosine scheduler [156] to anneal the learning rate allowing the
model to be trained from scratch in one stage. The whole architecture consists of a
standard residual network where the first layer is substituted by a 3D convolution
(instead of the standard 2D), followed by their proposed Multi-Scale TCN and finally
a Softmax layer. To reduce the training times, they pre-train on a subset of the 10%
hardest words of a dataset, which they claim allows for faster training and even yields
a small performance improvement while adding a minimal training overhead.

An application of visual speech recognition in the medical domain is presented in
[157], where the goal is to recognize spoken words from patients. A novel end-to-end
two-phase deep learning model is proposed utilizing convolutional and Temporal
Convolution Networks (TCN) for increased performance compared to RNNs. An 18-
layer residual network is employed as the feature extractor and a fully-connected
layer is used to lower the feature dimension before the TCN. The architecture of the
latter consists of 15 layers, each utilizing convolutions with kernel size equal to 9
with a dilation rate of 2 for a large receptive field compared to the typical approach
that uses kernel sizes of 3 or 5, allowing the network to exploit more features from
the sequence. The residual network’s weights are initialized by pre-trained values

and are fine-tuned on a subset of randomly selected words from the LRW dataset
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[21] before training on the Greek Words Medical dataset. An additional comparison
between the TCN and the LSTM model for sequence classification is performed and
the TCN is found to achieve higher accuracy.

Chen et al. [158] propose a novel deep learning architecture using hierarchical pyra-
midal convolutions [159], replacing the standard layers. These modules apply kernels
of different increasing spatial sizes (e.g., 3, 5, 7, 9) encouraging multi-scale process-
ing during the feature extraction as each kernel extracts feature maps of a different
context leading to improvements over the model’s ability to discover fine-grained lip
movements. Their novelty includes local and global feature maps which are utilized
with a hierarchical connection, where the local feature map is used as a part of the
output as well as an input for the global feature extraction. A consensus method using
self-attention [50] is also employed (in place of average pooling) to merge information
from all time steps within a sequence focusing on frames that are more relevant to the
annotated word than those that are not. Their architecture follows a previous work
[110] that uses pyramidal convolutions in the residual network and the self-attention
after the MS-TCN, taking advantage of the combination of both proposed novelties
to improve its classification capabilities.

A novel end-to-end network module is designed in [160] where spatio-temporal
(3D) and spatial (2D) convolutions are alternated to learn effective features from the
data. Since the module consists of a sequence of both spatio-temporal and spatial
convolutions, it takes advantage of the properties of each type learning the data
relations in the temporal dimension. Conversion components from each convolution
type (3D to 2D and vice versa) are added in order to enable the 2D convolution
to operate on the feature maps and to restore their temporal relations. The module
produces a sequence-to-sequence mapping with the original length preserved, by
first applying a 3D convolution, a conversion from 3 to 2 dimensions, followed by a
series of 2D convolutions, an inverse (2 to 3 dimensions) conversion and a final 3D
convolution. The module can be inserted into existing architectures and the authors
experiment with several front-end setups including using the module exclusively or
combining it with a residual architecture, while for sequence modeling they employ
a Multi-Scale TCN [110].

Audio-visual complementary data is exploited in a self-supervised manner by
Sheng et al. [161]. The authors propose a framework combining contrastive with

adversarial training that takes advantage of information from both modalities of the
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input data producing more discriminative visual representations for speech-related
downstream tasks such as visual speech recognition. For contrastive learning they
design a novel loss where the objective is to discern real from noise samples during
training, while for adversarial learning they propose two pretext tasks to encourage
the disentanglement of the representations from information related to identity and
modality. As for the network architectures, a simple 34-layer residual model with the
standard 3D spatio-temporal block is used for encoding the visual information and the
VGG-M [23] is used as an audio encoder. Multi-Scale TCNs [110] are adopted (one per
network encoder) to aggregate speech information from the extracted representations.
The effectiveness of the method is evaluated on the downstream tasks of word and
sentence-level visual speech recognition.

Dense connections [47] were added to the temporal blocks used in the MS-TCN
model in [162] with the aim of overcoming drawbacks of the previous architecture
[110]. These connections allow a convolution layer to receive inputs from all its pre-
vious layers within the same block. Additionally, the new dense temporal blocks
incorporate convolutions of several kernel sizes with a varying dilation rate per con-
volution in each block, as opposed to the previous multi-scale design [110] that uses
the same hyperparameters for the convolutions within the block. Channel attention
in the form of Squeeze-and-Excitation (SE) blocks [65] is added at the start of each
block for increased performance. This model, named Densely Connected TCN (DC-
TCN) utilizes these temporal dense blocks for enhanced expressive capability since
each layer has access to the receptive sizes of all previous temporal convolutions and
is able to use more information from different effective receptive fields.

Spatio-temporal Graph Convolutional Networks are introduced in [163] to explic-
itly model the mouth contour deformations that contain semantic information about
speech. A two-stream sub-network is designed to produce representations from the
input via two separate streams of different granularities. The first sub-network uti-
lizes a typical spatio-temporal convolutional neural network with a 3D convolution
and a residual architecture to extract global motion features from the input, while the
other sub-network leverages computed landmark key points from the face to exploit
local information from around the lip area. A novel adaptive graph convolution net-
work building on [164] takes into account the landmarks along with encoded features
related to local motion and coordinates to model their semantic spatio-temporal re-

lationships. The extracted representations from both streams are added and fed to a
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sequence modeling network that takes the form of two distinct structures, depending
on the task at hand and maps the fused features to natural language. The method
is evaluated on two visual speech recognition problems, at sentence and word-level,
where a Transformer [50] architecture and a Multi-Scale TCN [110] network are used,
respectively.

The capabilities of TCN networks for VSR are extended in [165]. A drawback of the
original design related to the limited receptive field of the temporal convolution layers
in the early stages of the network is noted and a series of architectural modifications
are proposed to address it. Due to the small kernel size used by the TCN, its ability
to extract time-relevant information over long intervals is hampered and a multi-
dilation design scheme is proposed to effectively combine data from several time
scales. Building upon the TCN architecture of [110], for the various branches with
different kernel sizes for the convolution operation, two sub-branches with different
dilation rates are used in each temporal block. This formulation is applied only to the
early stages of the network, while the original dilation rate is kept in the later stages,
which have adequate receptive fields. Self-attention is added after each temporal
convolution block to better utilize the implicit inter-relations of the lip movements
and positions in each sequence. To accelerate the training process, a mini dataset
comprising the 50 hardest words of LRW [21] was created to evaluate the models.

In [166], the authors propose a novel model to tackle two inherent challenges
of the task of visual-only speech recognition due to the insufficient information re-
lated to lip movement and the produced speech. The proposed architecture involves
a double-stream network augmented with a novel multi-head visual-audio memory
module that saves cross-modal information in order to model the relationships be-
tween the audio and video representations. For the visual front-end, the common
residual spatio-temporal and BLSTM combination is used, while the audio front-end
is designed with two convolution layers and one residual block. The back-end follows
the MS-TCN [110] and is augmented with the proposed visual memory module ap-
plied at four different levels to extract the relevant context at several temporal scales.
The network is trained with audio-visual datasets in an end-to-end fashion, while
during inference only visual input is used and the model recalls the inter-modality
relations from the memory module and extracts the relevant information, using audio
to complement the visual representations.

A novel two-branch network for Cantonese visual speech recognition is proposed
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by Xiao et al. [167]. The global branch extracts coarse information from the whole
lip area, while the local branch captures subtle fine-grained details regarding motion
and deformations. The proposed model extracts features using a standard spatio-
temporal layer followed by an 18-layer residual CNN, which are then fed to the
double-branch sequential network. Each separate branch receives the feature map
produced by the residual network and while the local branch splits the features into
three parts according to the real space (i.e., center area, left and right of the lip),
the global branch leaves them unchanged. MS-TCNs [110] are used in both branches
with the difference being the local branch using three, one for each area of the lip, to
the global branch’s one, in order to capture temporal variations in the appearance of
each lip area that occur during the sequence. A bidirectional knowledge distillation loss,
akin to [98], is employed to jointly train both branches and increase performance.

A collaborative learning approach, where two network branches work in combi-
nation to complement each other’s weaknesses is proposed in [168]. A two-branch
model is designed to take advantage of the information in a lip image from several
spatial dimensions. In contrast to using the whole image of the mouth area which con-
tains global, coarse-grained information, splitting the image in small-sized segments
can convey local, fine-grained information that is typically ignored. A commonly-
used spatio-temporal residual network is first applied to the image input to extract a
compact feature map, which is then fed to the two different branches. The extracted
features are used without any pre-processing by one branch to model the whole lip
area encapsulating global spatial information while for the other branch, they are split
in three chunks guided by the corners of the mouth area in order to model more
localized information. A fusion module is added in the part-branch to adaptively
weigh the partial features according to their affinity to those of the global branch
[169]. The two branches are trained jointly with collaborative learning (e.g., [170]),
where each branch provides an additional supervised signal to the other, enhancing
its own representation ability in a similar manner to knowledge distillation but without
the need for a pre-trained teacher model.

Akin to [91], Zhang et al. [171] propose a network that leverages multiple views
(spatio-temporal and spatial) of the input to produce more powerful visual repre-
sentations. To that end, a two-stream network is used to integrate the multi-view
features of the input that contain representative information about the lip appearance

and shape. A spatial-only (2D) and a spatio-temporal feature map are extracted by
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the the spatial view and the spatio-temporal view streams, respectively, which follow
residual architectures. In addition, local heat-maps are predicted using a regression
model [172] and utilized along the global 2D features by a spatial graph model in
order to learn the lip topology and position-specific relationships between the lip
landmarks. Two sequential models using the MS-TCN architecture are added after
the spatio-temporal branch and the output of the graph convolution, modeling the
long-time context of the sequence and integrating the shape-related information of
the lip area, respectively. A decision-level fusion method integrates both streams by
weighing the two branches and the optimal weight is learned during training on
out-of-dataset samples.

In [173], the authors propose an audio-visual representation learning approach
that exploits the compounding information in multi-modal data. A fusion module
based on a stack of a single hidden-layer Perceptron and twelve multi-head atten-
tion Transformer blocks models the long-term context dependencies of the data. The
multi-modal alignment information is preserved by concatenating the audio and vi-
sual embeddings in the feature dimension. The embeddings are extracted from two
modality-specific networks, following the architectures from [174] and [110], respec-
tively, then down-sampled to the same length and masking [175] is applied before
fusion to encourage cross-modal learning. At test time, the modality that is not rel-
evant to the task at hand can be masked out in the fusion module, allowing the
model to be applied to problems of a single modality. The method is evaluated on
speech recognition using one or two modalities after pre-training is completed on
audio-visual data.

Yang et al. [176] introduce architectural changes in a sequence modeling network
commonly-used in previous works to better handle noise present in the input data.
The initial architecture follows the standard spatio-temporal convolution and 18-layer
residual network and the Multi-Scale Temporal Convolution (MS-TCN) model [110]
with a Multi-Head Visual Memory module [166]. A Temporal Shrinkage unit designed
to filter noise channels according to a learnable hyper-parameter threshold combines
a Residual Shrinkage Building Unit [177] with 1D dilated convolutions to extract
temporal features. A residual network is also added to the unit before the pooling
operation to retain spatio-temporal relationships between the data. To alleviate the
potential information loss that occurs when average pooling is used to fuse features

across the temporal dimension, after the MS-TCN, the authors employ a NetVLAD
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[178] layer that clusters and weighs the extracted features according to the distance
between them and the cluster center. The entire network is evaluated on LRW [21] as
well as a custom dataset of Chinese words, without and with various levels of noise.

A novel network utilizing deformable convolutions and temporal attention for
speech recognition is proposed in [179]. The authors incorporate deformable 3D
convolutions in a residual block structure aiming to extract more accurate spatial
information from the input lip area. In a deformable convolution [180], each sam-
pling point in the kernel has a variable location which corresponds to the input, as
opposed to the standard design where the convolution locations are fixed. Positional
offsets representing these variable locations are first learned using a standard con-
volution network and then used to generate new sampling grids from the original
ones which comprise the deformable kernel. Furthermore, in order to model corre-
lations between the spatial and temporal aspects of a sequence focusing on the more
important information, a channel-temporal attention block is proposed. This block
uses two components, a Squeeze-and-Excitation [65] network which weighs the spatial
information along the channel dimension and a query-key-value formulation which
attends to the sequence in the temporal dimension. Two designs of the block are pro-
posed, where in the first, both components are applied to the input in parallel, while
in the second the temporal attention is performed sequentially after the spatial. The
deformable 3D convolution block is added in an 18-layer residual convolutional neu-
ral network, while the channel-temporal attention block is added in the Multi-Scale
TCN architecture [110]. The method is evaluated on speech recognition in English
[21] and Mandarin Chinese [39].

Training strategies that improve the achieved performance of speech recognition
models are investigated in [148]. The authors conduct an analysis evaluating the
impact of several data augmentation techniques, spatial as well as temporal, that
are commonly used by previous speech recognition works (e.g. [110, 69, 162]) on
accuracy. They conclude that the most optimal settings for data augmentation include
mixup [66], where new training examples are generated by a linear combination of two
input samples and Time Masking [181], where in each training sequence an amount of
frames is masked (in this case replaced) by the sequence mean. These techniques are
then utilized to train a spatio-temporal residual and ensely-connected TCN (DC-TCN)
[162] network backbone. Finally, word boundary indicators [30], self-distillation [182]

and pre-training on larger audio-visual datasets (either self- or fully-supervised) are
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found to provide an additional benefit, further improving recognition performance.

A framework for improving cross-language representations for speech recogni-
tion is proposed in [183]. The authors redesign the spatio-temporal layer that is
commonly found in the speech recognition literature in order to facilitate learning of
more descriptive spatio-temporal representations, by changing its formulation with
a 3D reconstructed kernel [116]. Two design choices for this network component
are explored in order to reduce the overall computation cost of this module. As
a way to enhance the sequence modeling capabilities of the network by including
more short-term spatio-temporal information from the input, a block consisting of
multiple 3D reconstruction kernels is added to the feature extraction component of
a previous architecture ([110]), while the network used for sequence modeling re-
mains unchanged. A curated dataset containing a balanced amount of samples from
LRW [21] and LRW-1000 [39] is created for evaluating the cross-language learning
capabilities of the proposed architecture.

A method for speech recognition of mandarin is proposed in [184]. Using a resid-
ual network as a computationally intense baseline for feature extraction, the authors
replace it with an alternative model that is more lightweight [185]. This architecture
leverages grouped convolutions (where the operations are applied to parts of the in-
put) to reduce complexity and channel shuffling as a means to mix information from
the different groups without using costly operations. This network greatly reduces
the computational cost of the overall architecture as it is combined with an already
lightweight temporal convolution network that follows the standard architecture of
[155]. To improve the feature extraction performance, an attention module perform-
ing spatial as well as channel attention [135] is added to the network. The module
first computes weights for the channel dimension, uses them to recalibrate the in-
put and subsequently computes spatial attention weights which are used to scale the
overall output.

Similar to [166], Yeo et al. [186] present lip-audio memory in multiple temporal
scales to enhance lip-related movement information. The memory module leverages
audio signals (both short- and long-term) to generate features from multiple tempo-
ral scales, while simultaneously storing an alignment between the visual and audio
features. To assist in the feature generation, a temporal audio model is proposed to
capture contextual information from a sequence of audio features. By sharing the

temporal information as the visual feature, a time-alignment is possible between the
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different modalities, producing an accurate mapping in the memory module. The
multi-temporal lip-audio memory network follows [166] enhancing the architecture
with an additional audio temporal model [187] and treats the mapping between
visual-to-audio as a one-to-many alignment where one lip movement corresponds to
several audio representations. The memory network is added at different stages of
the ensely-connected TCN [162] which is employed as the baseline.

In [188], the authors investigate visual speech recognition on subjects with an
occluded face (wearing a mask). To that end, they collect a novel dataset including
images of masked speakers and to facilitate accurate learning, since the most relevant
information is occluded they augment it with images of unmasked speakers. In order
to crop the relevant area in the input image that contains the localized lip region of
interest (ROI) several landmark detection models are evaluated, including taking into
account only the eyes, adding other regions of the face, or using 68-point model that
considers the whole face. The extracted ROIs are fed to a visual speech recognition
architecture that follows the design of [110] with a 3D convolution and residual
feature extractor and Multi-Scale TCN sequence classifier. The model weights were
initialized in the LRW [21] corpus and fine-tuned on the proposed dataset according
to several setups where either masked, unmasked or an aggregation of all images
were used for training as well as testing. For each setup, a speaker-independent
cross-validation scheme was followed, where images corresponding to one of the 20
speakers in the dataset was held out and used to test the remaining 19.

Chen et al [189] introduce several forms of attention to a Temporal Convolution
Network. Since the task of visual speech recognition is highly sensitive to both the
spatial and the temporal aspects of lip movements, a novel module is designed to
leverage attention mechanisms across the temporal, channel and spatial dimensions
of the data, compared to a more standard approach that applies a single form of at-
tention. The module enables the network to focus more on the spatial attributes of the
lip shape as well as the temporal relations of the visual features across the length of
the sequence through these three supplementary attention mechanisms. Several archi-
tectural designs related to the positions of each type of attention modules within the
network are considered and the best-performing is found to be the one where chan-
nel and spatial attention supersede the temporal attention. The overall architecture
follows the typical architectural design of two main components, where the feature

extractor is a spatio-temporal layer and an 18-layer residual network equipped with
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the proposed attention mechanism to extract more discriminative features, while for
the sequence modeling back-end the ensely-connected TCN [162] is used. The model
is evaluated in word-level speech recognition in both English and Chinese [39].

Class-incremental learning, where the goal is to enrich a previously-trained net-
work with knowledge about new classes without losing any stored information, is
explored in [190]. A novel two-stage deep neural network is proposed that simultane-
ously incorporates new knowledge while retaining already-learned class information.
While in the first stage a commonly-used spatio-temporal residual network with 18
layers is employed, for the second stage a dual sequence modeling back-end is added
to facilitate the incremental learning process. The multi-step training process of [191]
is followed, where the source dataset is split into disjoint subsets which are used to
train the model in a sequential manner. After completing each subset, the weights
of both back-ends are aggregated and stored in one back-end in order to retain the
learned temporal information. A novel knowledge distillation [99] variation is proposed
to enhance the transfer of stored knowledge from the back-end with aggregated infor-
mation into the one that is currently trained on the new data. The proposed method
is evaluated on an incremental learning scenario that resembles real-world applica-
tions using training and testing samples from LRW [21] and LRW-1000 [39] on a
subset of the total categories of the datasets.

Huang et al. [192] propose a method to improve the performance of the stan-
dard 18-layer residual network that is used for visual feature extraction. The method
involves using a two-branch temporal module [193], where one branch collects long-
term temporal feature dependencies by operating on the channel-level, while the other
focuses on location-sensitive information by enhancing features. A convolution op-
eration aggregates the temporal information obtained from both branches, allowing
the network to leverage features of different temporal scales, increasing its robust-
ness. The module is placed into each residual block between the convolution layers
to recalibrate and enhance the intermediate feature maps that are calculated at each
spatial scale as the architecture gradually re-scales the input. The improved residual
network is combined with a Densely-Connected TCN [162] and a classification head
for VSR of isolated words.

The authors of [194] offer an approach that combines key frames with long range
data dependencies during temporal modeling of the sequence with the goal of reduc-

ing incorrect classifications of similar words. To that end, they introduce two modules
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that form the core of a building block which is used to construct an architecture based
on a TCN with dense connections [162]. The first module extracts multi-scale features
with different temporal granularities by utilizing two TCN blocks, each using a differ-
ent set of convolutions, utilizing smaller kernel sizes for more local information and
larger ones for a broader receptive field. The extracted features are subsequently fed
to an adaptive feature fusion module where attention weights are calculated and used
to dynamically re-weigh the importance of each type of feature. Finally, all features
are fused together via a summation operation with the input, mixing all information.
A sequence of these two modules consists of a single block and the authors retain
the dense connectivity of the original architecture, where each dense block consists
of four such sub-blocks.

More recently, [195] proposed a method to adapt speech recognition to unknown
speakers for more practical applications. Compared to traditional adaptation tech-
niques where costly fine-tuning operations are required, the proposed method does
not introduce significant computational overheads and can be incorporated into ex-
isting architectures in a plug-and-play manner. In order to better adapt to the new
speakers, the method utilizes the appearance as well as the temporal aspect of the
lip movement and involves adding a series of components in a baseline two-stage ar-
chitecture. In the first stage where the visual features are extracted by a deep neural
network, decomposition matrices are introduced to the convolution layer to adapt to
the new speaker’s visual characteristics. After the pooling operation of the network
and before the sequential model, a parameter-efficient adapter module [196] enhances
the spatio-temporal learning of the features. Finally, a novel adaptive weight mod-
ule is added to the output of the sequential model for temporal adaptation of the
speaker’s unique talking habits.

Chen et al. [197] propose frameworks that exploit viseme' sub-words for enhanced
speech recognition generalization. Their approach involves breaking down each word
into a sequence of viseme sub-words and modeling the associations between corre-
sponding frames and visemes, weighing the impact of every specific frame on the

final decoded word. The decomposition from word labels to a sequence of sub-word

A viseme is defined as a speech unit with identical appearance during pronunciation and comprises
one or more phonemes (their acoustic equivalent), e.g., ”p”, ”b”” and "m” share the same lip movements
and constitute a unique viseme [198, 199]. Several viseme-to-phoneme mappings exist in the literature,

examples of a such can be found in [200] and [201].
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visemes is achieved by a Gaussian mixture model and a Hidden Markov Model system
using lip embeddings obtained by a pre-trained deep architecture ([158]). A hybrid
framework utilizing multi-task learning is introduced where a standard end-to-end
method is combined with the proposed sub-word approach in a unified two-branch
model. The hybrid framework takes advantage of the complementary nature of both
aspects during joint training to improve recognition performance in cases of speaker
head movements. In addition, a collaborative framework utilizes a temporal mask
module to capture word and state interactions in order to model the hierarchical
relationships of words and their decomposed sub-words. The module operates be-
tween the two branches and filters irrelevant visual representations that correspond
to noise or silence according to a balancing threshold. The proposed frameworks are
evaluated on the LRW [21] and LRW-1000 [39] using several architectures following
[108] and [162] for visual feature extraction and sequence modeling respectively.

The authors of [202] introduce a model to alleviate difficulties with feature ex-
traction from the input by considering global features that might affect recognition
output. Two apparent shortcomings of typical architectures are highlighted: the over-
sight of global interactions by the residual network due to a limited receptive field
and a design limitation of TCN variants that overlooks continuous information at the
local level due to the use of dilated convolutions. With these in mind, they propose
a new framework for word VSR that aims to address both issues. First, a global
context [203] block is inserted at the residual architecture incorporating global cues
into the block and is utilized as an attention mechanism. Then, the authors redesign
the popular Multi-Scale TCN block [110] that uses several different kernel sizes with
a double branch design where one branch uses dilated convolutions while the other
uses regular convolutions. The inclusion of non-dilated operations allows the captur-
ing of temporally sequential information, increasing the representational capabilities
of the network. Several experiments regarding the fusion of the two branches are
made and an early fusion approach is found to perform best.

[204] introduce an end-to-end cross-modal framework for visual speech recogni-
tion that utilizes audio to supervise the visual component during training. A double
learning objective is proposed to enhance the representation capabilities of the net-
work. The standard recognition loss is paired with an audio reconstruction loss which
aligns each video frame with a number of quantized audio tokens. This combina-

tion allows for a more accurate detection of distinct homophenes, which are visually
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similar lip movements that correspond to different phonemes and are typically hard
to distinguish. An encoder generates a sequence of quantized audio tokens in an
auto-regressive manner, while a linear projection layer is inserted after the visual
representation module. The latter adopts an architecture consisting of a 3D convo-
lution layer, an 18-layer residual convolutional network and a Transformer encoder,
similar to previous works [166, 186]. Several models are trained with the proposed
method and evaluated on the tasks of word- as well as sentence-level speech recog-
nition.

Gu and Jiang [205] propose a model that exploits complementary information
from the asymmetric nature of the mouth lip area, that regards an image as two
distinct parts separated vertically at the middle. They use a shared-weight double-
stream network which has shared weights, allowing it to learn identical information
from the two halves. After extracting short-term features with a 3D CNN network,
they are then divided in two parts and each half is ingested by one network stream.
The core component of this network is a modified residual block where an attention
mechanism [65] is added at the end to comprise the redundancy-aware operation,
filtering excess information with the help of a soft threshold function. In addition,
the authors propose a module to recombine information from both feature halves,
inserting this module after each pair of residual blocks. This module utilizes a cross-
attention calculation of each feature half, facilitating interactions and information
sharing between them. For temporal processing of the extracted features, they are
merged with a concatenation operation and inserted to a typical Multi-Scale TCN
[110] followed by an average pooling operation, a fully-connected layer and a Softmax
activation function.

The authors of [206] propose a five-step method for efficient fusing of comple-
mentary features. First, the mouth region of a video frame is cropped and used to
compute landmarks corresponding to the lip area. The model consists of two input
streams, one utilizing a 3D convolution and residual network architecture to extract
visual features from the image, while the other makes use of two graph attention
network layers [207] and a transformer encoder to produce geometric features ac-
cording to the landmarks. To fuse the extracted heterogenous features, a multi-head
cross-attention mechanism aggregates the outputs of the two streams, combining the
complementary information of pixels and landmarks. For the final computation step,

a Multi-Scale TCN [110] is added at the end of the architecture for sequence decoding.
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The method is evaluated on the task of isolated word VSR using an English and an
Arabic dataset.

A novel framework leveraging synthetic data is proposed in [208]. The method
performs data augmentation by combining audio samples with facial images using
a generative model to create a set of videos that contain realistic natural variations.
Each image is paired with five different audio clips and used to generate animated
frames that are used as additional training data. During training, viseme classification
is employed as an additional learning task to improve the model’s capability to
distinguish between different mouth shapes. The model architecture follows [148] and
adds an extra execution branch after the temporal convolution network to facilitate
training of the new task. This branch uses an attention mechanism for the embedding
and is combined with the standard branch for the final classification features.

A spatio-temporal feature fusion network aimed at modeling short-term temporal
dependencies between proximate frames is proposed in [209]. Building on the core
of the 18-layer residual network, the refined architecture reduces the overall depth
and incorporates spatial as well as temporal features, the former extracted with the
original residual block and the latter with two novel modules. The first temporal
module captures the connections of close frames and utilizes several depth-wise 3D
convolutions with dilation, extracting short-term features. The second captures more
global features by enhancing channel information with a 3D Squeeze-and-Excitation
[65] operation. Temporal fusion is achieved by multiplying the extracted features
from the temporal modules with the residual of the input, while for spatio-temporal
feature combination all features are added together with the input. Attention pooling
is added to the Densely-Connected temporal convolution network of [148] which is
used as a sequence model, in order to re-weigh the contribution of time-steps to the
overall result.

Zhang et al. [210] propose two methods to improve performance and general-
ization of visual speech recognition applications. First, a novel data augmentation
strategy is proposed where the original audio clip is split into sub-sequences and
then time masking [148] is applied to each sub-sequence with randomized proper-
ties. Time masking replaces a randomly selected number of consecutive frames of
a sequence with a mean frame, which is calculated from the sequence itself. The
authors then propose a novel end-to-end model that allows for easier capturing of

long-range temporal dependencies. It retains the 3D convolution sub-network at the
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beginning but removes the standard 18-layer residual network, replacing it with a
customized block that combines a shifted window (Swin) transformer [211] with dense
layers [47], connected laterally. The Swin transformer computes self-attention within
local windows and alternates their arrangements in consecutive blocks to introduce
connections between adjacent windows. Each dense layer contains three convolution
operations. The extracted features are then processed further by a Densely-Connected
TCN [148] and the proposed model is evaluated for both English and Chinese word
visual speech recognition.

Bai et al. [212] develop a performance enhancing module to improve the feature
extraction capabilities of an existing VSR network. A 3D convolution sub-network
using two depth-wise convolutions with different spatial and temporal scales is con-
structed. The output of each convolution is fed to a spatio-temporal attention mecha-
nism that utilizes pooling operations applied in parallel, then concatenates the results
and applies convolutions with sigmoid activation functions. The attention-weighed
features from each depth-wise convolution are then further pooled, concatenated and
fed through another convolution and sigmoid activation for further refinement to
obtain the final attention weights. The module is integrated in a standard residual
network at each stage and an ablation study is performed to determine the best-
performing configuration showcasing that 5 modules bring the most benefit for per-
formance with a small increase in parameters and network overhead. A Densely-
Connected Temporal Convolution Network [162] is employed for temporal sequence
modeling and the architecture is completed with a classifier.

A similar approach [213], introduces a novel network for improving the perfor-
mance of a temporal convolution baseline used for sequence modeling. The densely-
connected multi-dilation CNN proposed in [214] is used as the baseline and the au-
thors remove the stem layer while adding temporal convolutions to its architecture,
in order to adapt the network to the task of visual speech recognition. Observing that
naively combining dense connections with convolutions of a fixed dilation is an issue,
the authors design a multi-dilation network aggregating information from several
receptive fields without overlaps or gaps during feature calculation. The architecture
is organized in blocks comprised of an amount of sub-blocks, where each sub-block
contains a number of densely-connected temporal convolution layers with varying
dilation rates, while the blocks also utilize dense connections and aggregate the infor-

mation. A 3D convolution and 18-layer residual network are used to extract features
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from the input.

2.2.4 Other Approaches

Visual speech recognition for the Czech language is explored in [215], where con-
trary to other works, depth sensor data is also taken into account. Several feature
extraction techniques are evaluated, including traditional methods such as Active
Appearance Models, Discrete Cosine Transform, Spatio-temporal Local Binary Pat-
terns [216], Spatio-temporal Histogram of Oriented Gradients [217] as well as a Deep
Learning model with stacked spatio-temporal convolution, max pooling and non-
linear activation layers. All traditional methods are applied on a mouth region of
interest which is optimally selected according to landmark configurations that per-
form best, while the deep learning model operates on square images of the input
that cover the mouth area. For the deep learning model, two training configura-
tions are compared: pre-training on an external dataset and fine-tuning on the Czech
dataset for transfer learning. A depth-based spatio-temporal model is also developed
and trained from scratch only on the Czech dataset. While the focus of the work is
sentence-level recognition, the models are also evaluated on the word-level task to
optimize the hyper-parameters.

A Convolutional Neural Network-based model without any recurrent architectures
for sequence modeling is introduced in [218]. The authors design a twelve-layer
CNN comprised of stacks of convolution, activation and pooling layers for end-to-
end feature extraction. An additional two layers of batch normalization are added
to stabilize the training procedure by reducing speaker variances related to speech
(e.g., accent, tonality) and to the image quality (e.g., lighting, resolution). In each
video sequence, the lip regions from every frame are extracted using a face detection
model and then concatenated to form a single image resembling a mosaic of lips
from the entire sequence and the model is trained on this image. Since this input
formulation does not constitute a sequence (only the spatial information is retained),
the output classes for speech recognition are obtained with two fully-connected layers
with dropout that are added after the CNN. The method is evaluated on phrase as
well as word recognition.

Zhang et al. [219] propose a system that aims to solve two drawbacks of other ap-

proaches: neglecting the short-range temporal dependencies which are critical when
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producing a mapping from lip images to visemes and discarding local spatial infor-
mation due to a global average pooling operation. A novel convolutional block called
Temporal Focal block to describe short-range dependencies is proposed and used as
a building component in a larger model and follows a simple design with a sin-
gle branch of two convolutions, layer normalization [220] and rectified linear unit
activation. In order to fuse features at multiple scales, the authors experiment with
several branches of convolutions with different kernel sizes and shortcut connections
and local self-attention is adopted to capture long-range temporal dependencies. A
spatio-temporal fusion module that aims to maintain the local spatial information
while simultaneously reducing the feature dimensions is also proposed. This module
uses high-dimensional spatio-temporal features into low-dimensional temporal ones
without discarding important local spatial information. The temporal fusion model
applies a spatial pooling operation across the entire spatial dimension which extracts
a small feature map from each spatial feature and then reshapes them. The features
are then fed into a stack of temporal convolutions to enhance communication be-
tween time steps and to control the number of output channels. The authors employ
their newly-proposed fusion module in their approach to replace the global average
pooling operation that is typically used by other works in the literature. Their model
uses lip image sequences as input and outputs sequences of characters. To extract
visual features, a convolutional feature extractor model consisting of two 3D convo-
lution layers and a 18-layer residual network is used. Each 3D convolution layer is
followed by a max-pooling layer while some of the stride operations in the residual
network are removed in order to significantly reduce the overall training time.
SpotFast networks are proposed in [221] as a novel deep learning architecture
for word-level speech recognition based on a network that utilizes a temporal win-
dow as a ”spot pathway” and all frames as a “fast pathway”, based on the SlowFast
networks [128] that are used for video recognition with modifications for this task.
Word boundary information is used by the former pathway (spot) which is a tem-
poral window centered at the keyword-spotted frame, while context before or after
the keyword is implicitly modeled by the latter (fast). Both pathways are fused via
lateral connections, using a convolution fusion with additional adaptive average pool-
ing to temporally reshape the features from all frames into a fixed-length temporal
window. The convolution fusion consists of a dual two-layer 1D temporal convolu-

tion aggregating the temporal information on each pathway. A 6-layer transformer
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encoder is placed on top of each pathway to further learn features for classification.
Lateral connections are then added to all layers of both transformer encoders from
the all frame pathway to the temporal window pathway. Each transformer encoder
is memory-augmented at the penultimate layer [222] to increase the capacity and
stabilize training.

A two-stage multi-modality audio-visual speech recognition model is presented
in [101]. In the first stage, the target voice is separated from background noises with
help from the corresponding visual information of lip movements, making the model
‘listen’ clearly. At the second stage, the different modalities (audio and video) are
combined to further improve the recognition rate of the model. The multi-modality
network consists of two sub-networks: an audio enhancement network that receives
image frames and audio signals as inputs and outputs the enhanced magnitude spec-
trograms while filtering the noisy ones and a two-stream speech recognition network.
The former uses temporal convolutions [155] and an element-wise attention GRU
[103], while for the latter the authors build a fully 3D CNN network [102] instead
of the common 3D module and 2D residual network combination used in previous
works.

Cross-modal self-supervision is proposed in [223] where the goal is to learn rep-
resentative speech and speaker features in the individual modalities without having
access to any form (manual or automatic) of annotated data. A novel training strat-
egy is proposed where the objective is to learn embeddings that are discriminative for
both the primary cross-modal task and for secondary uni-modal downstream tasks.
A two-stream network with two sub-networks is used where the audio stream model
receives mel-filterbank features of speech segments and the video stream model in-
gests a video depicting a cropped face. Both sub-networks follow the VGG-M [23]
architecture with modifications depending on the task at hand. The training func-
tion optimizes cross-modality metrics as well as intra-modality class separation by
encouraging the relative distance between corresponding pairs of audio and video to
be closer than the non-corresponding pairs, while also penalizing the distance be-
tween same-modality inputs which are close to each other, helping the network to
learn more discriminative embeddings. The method is trained on the tasks of audio-
visual synchronization and cross-modal biometric matching which serve as proxies
and is evaluated on the downstream tasks of visual speech recognition and speaker

verification.
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Multi-lingual visual speech recognition is explored in [224] where the authors note
the similarities between movement patterns of the mouth in human spoken languages
despite the obvious differences in their rules and grammar. A multi-lingual learning
framework is proposed where phonemes related to the lip movements rather than the
alphabet are introduced as modeling units that guide the learning process of different
languages and then a novel model learns the rules for each language from the data.
The model architecture follows an encoder-decoder design, where a spatio-temporal
CNN and stacked self-attention [50] blocks encode the input sequence, while for the
decoder a two-branch transformer architecture is used. Since similar phonemes lead
to similar visual patterns regardless of language, the objective of the model is to learn
the composition rules of each language by utilizing its bidirectional context. An extra
task of predicting the language identity is introduced in the learning process which
improves language-specific capabilities.

A novel network utilizing Transformers for word-level speech recognition is pro-
posed by Huang et al. [225]. The model leverages a deep convolutional network with
a self-attention Transformer encoder-decoder structure [50] for word-level speech
recognition without relying on any audio information. The Transformer architecture
is selected over RNN-based derivatives (e.g., BGRUs) due to its low simplicity which
facilitates a faster training process. For feature extraction, the overall structure uses a
VGG-16 model [60], where in order to save time from training the model from scratch,
its parameters are initialized from pre-trained weights. A dimensionality reduction
operation down-samples the spatial dimensions of the extracted features before feed-
ing them to the Transformer model for training. For sequence encoding and decoding,
a standard Transformer architecture with an equal number of attention heads for both
components is used.

Multi-lingual speech recognition is explored in [226]. Noting the lack of sufficient
training resources for languages other than a select few, the authors aim to exploit
existing knowledge from a transfer learning standpoint in order to build a system
that is language-independent. To that end, they generate a small-scale dataset com-
prised of samples from larger datasets in three different languages, which serves as a
benchmark for knowledge transferring. Its vocabulary size is normalized by selecting
an equal subset of words from the three source datasets that are classified as easy
or hard, keeping the difficulty of the samples balanced. A ratio of 8 : 1 : 1 is set

for the training, validation and testing subsets, respectively. Two deep learning vi-
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sual speech recognition architectures are evaluated: a convolutional model with dense
connections [26] and an auto-encoder with soft-attention [50], both making use of
a 34-layer residual network. For sequence recognition, while the first architecture
uses a bidirectional RNN, the second one relies on the attention mechanism and two
fully-connected layers. Two training setups are devised, where in the first one an
English dataset [21] is used to pre-train networks that are subsequently fine-tuned in
other language datasets ([227] and [39]) and in for the second setup the multi-lingual
dataset is used instead.

Ren et al. [228] explore a cross-modal distillation scheme where the audio signal is
used to pre-train a network acting as a teacher which then transfers its knowledge to
a student (video-only) network in the distillation process [99], since audio recognition
tends to perform better than its vision counterpart when the goal is speech recognition.
Due to the inherent domain gap in the modalities of audio and video which can
potentially hamper training by applying distillation naively, the authors employ a
network that utilizes signals of both modalities as well as their combination to act as
the teacher providing a more complete training signal for the student. Furthermore,
during the training process, the teacher network is regularized with feedback from the
student, guided by two pre-trained modality-specific “tutor” networks. A curriculum
learning strategy [229], where the dataset difficulty gradually ramps from easier to
harder samples up as training progresses, is employed to improve convergence.

In a similar fashion, [230] combine cross-modal distillation with a novel unsuper-
vised domain adaptation [231] method using out-of-class data. Since audio contains
more relevant information about speech than video without sound, an audio-based
recognition network is used as the teacher for the unlabeled adaptation data as it
contains more descriptive representations and can provide a better supervisory sig-
nal during training. The adaptation data is an additional training set used to adapt
a pre-trained model of a different domain to a new one, especially in cases where
collecting and annotating a sufficient amount of new data is not feasible. To allow
the use of unknown class data (out-of-vocabulary words), the intermediate output
of the teacher network, which contains implicit representations about the data (e.g.,
sub-class), is used in the distillation process. Both models share a two-part structure
consisting of a stack of convolution layers that encode the input data and a classifier
layer to obtain the probabilities of words. A three-step training adaptation procedure

is performed where the audio model is trained in advance on the task of word-level
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recognition using audio data. With the fixed parameters of the audio model as the
teacher network, the visual model is trained with an additional distillation loss and
finally, the visual model is adapted to the unknown class data.

A memory network that can augment a speech recognition model with rich repre-
sentations from audio data is proposed in [232]. The purpose of the memory network
is to memorize corresponding audio features and complementary speech-related in-
formation during the training stage by leveraging the audio-visual features of lip
movements. A key-value formulation is used, where audio representations related to
a specific video feature are extracted from the audio track and saved in the audio-value
memory, while the location of those representations within the module is stored in
the video-key memory. To train the model, a synchronized (identical temporal recep-
tive fields) double-stream network is used, where a feature extractor corresponds to
each modality (audio and video) and both outputs are fed to the visual-audio mem-
ory module which has a double objective to memorize as well as match the pair of
inputs. The saved memory feature is then concatenated with the visual features and
fused via a fully-connected layer before being fed to a sequence modeling network to
make predictions. At the inference stage, the audio-only stream is not used and by
using uni-modal (video-only) inputs, the corresponding audio features are recalled
to enrich the visual representations by accessing the stored video-key memory.

An alternative approach is introduced in [233], where the goal is to improve the
generalization of baseline word recognition models by applying principles of infor-
mation theory. The authors propose a novel training-time-only temporal masking
module [234] that learns a latent encoding from the original input to the target
which maximizes the compression of the former and the expressiveness of the latter.
The temporal mask module is introduced after the feature extraction stage and before
sequence classification, operating on the concatenation of the feature maps from dit-
ferent temporal receptive fields which holds information of several temporal scales.
This module acts as an information bottleneck and is trained alongside the other com-
ponents of the architecture, compressing the extracted visual features by selectively
filtering those of a low importance score that is learned from the data and keeping
the more salient ones. At test time this module is removed, thus it does not incur an
additional computational overhead to the overall model. The rest of the architecture
is comprised of a spatio-temporal residual network with channel attention [69] with

one of several sequence-to-sequence models including a 3-layer BGRU, a MS-TCN or
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a Transformer.

In [235], a novel audio-visual fusion approach is introduced. In order to effec-
tively fuse the two different modalities, incorporating aspects of both, the authors
propose a method that exploits a Siamese neural network [236] with shared weights
along with feature masking and polynomial sampling. Two encoders are utilized and
their outputs which have the same number of feature maps are fed to the Siamese
network which is composed of two fully-connected layers with shared weights and
enables the seamless integration of the information from the audio modality to the
video by learning the correlations between the heterogenous modalities without in-
troducing noise. Two masking matrices of equal dimensions as the feature maps are
initialized with standard normal distribution values and are multiplied value-wise
with the feature matrices to obtain the masked results that are then applied as the
input for the subsequent polynomial sampling. As opposed to simple concatenation
which would double the channel dimension, random binomial sampling of the fea-
tures is performed and retains the original feature map dimension functioning as an
additional regularized during training.

Pan et al. [237] propose leveraging non-labeled data of a single modality to im-
prove performance. The authors use models that are pre-trained in uni-modal data
through self-supervision. The overall architecture involves two sub-networks, one for
each modality, with different front-ends relevant to the task, while the back-ends
have the same design. More specifically, for the audio modality, the front-end follows
[174] which is commonly used for speech recognition tasks, whereas for the video
modality, a contrastive learning model [238] pre-trained on images is employed af-
ter substituting its first layer with a spatio-temporal network. Both modalities use
the same architecture for their back-end components, which consists of 1D convo-
lutional layers applied to the time dimension combined with Transformer encoder
layers for temporal modeling of each single modality. A fusion module concatenates
the features from each modality after normalization and a similar 1D convolution
and Transformer encoder layer network is used to fuse the features together. Two
decoders are trained simultaneously based on the output of this fusion module. The
overall model training is conducted in a multi-stage fashion where each uni-modal
front-end is pre-trained through self-supervised learning and then the audio network
is trained in an audio-only setting, while the video network is trained at word-level

video clips. Finally, the audio-visual model is be trained after the modality-specific
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models have converged.

A cross-modal framework is proposed in [239] where the authors aim to exploit
the language-related information present in multi-modal data to improve audio-visual
speech recognition performance. This framework leverages feature disentanglement
learning strategies via a novel linguistic module that extracts and transfers knowledge
across modalities through cross-modal mutual learning. Pairs of encoder-decoders are
employed for each distinct modality (i.e., video and audio) and feature type (i.e., iden-
tity, linguistic) and the cross-modal linguistic module utilizes a modality-invariant
code-book [240] and a speech recognizer producing the linguistic representations and
speech recognition, respectively. The module is able to extract linguistic and iden-
tity information from cross-modal input data into modality-agnostic representations
regardless of the source modality. Apart from speech recognition, this information
can be utilized in a way that affects the audio-visual data output depending on the
subject’s identity as well as on the linguistic context and for this reason the proposed
framework is evaluated speech recognition as well as speech synthesis.

Similarly, Akman et al. [241] propose a dilated convolutional neural network
model for word recognition inspired by the Temporal Convolutional Network [155]
architecture. Following design principles introduced by the TCN, the proposed CNN-
derived model contains 5 residual blocks with two convolution layers and distinct
dilation rates that affect the receptive field of each operation. In the first and last
block of the model, a dilation rate of 1 for both convolutions is used to preserve
the low- and high- level features respectively. Identity shortcuts are added at every
block in order to facilitate an easier training process for deep networks. With the
exception of the first block where the input is passed through a convolution layer
with a dilation rate of 1 before being added to the residual pathway of the block, a
simple summation is performed for all other blocks, similar to [31]. Spatial dropout is
added at every block after each convolution operation to avoid over-fitting. A novel
dataset is constructed from YouTube videos containing balanced samples of daily
words and phrases and used to train and evaluate the proposed architecture.

Yu et al. [242] approach audio-visual recognition using Liquid State Machines
(LSM) [243]. The LSM is a three-layer architecture that is well-suited to sequential
problems of a spatio-temporal nature. The first layer functions as the input layer
and is sparsely connected to the intermediate layer which is called the liquid layer

and is the central component to the LSM. This layer acts a filter that transforms
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the input to non-linear patterns of higher dimension producing a response for each
input that constitutes a liquid state. The final readout layer consists of spiking neurons
[244] and transforms this response into a feature vector. A novel bi-modal spiking
neural network architecture is proposed where the input is first transformed into a
sequence of events in order to be processed by the model. One LSM per modality
is used to extract features from the input and a soft fusion method [245] combines
the information by re-weighting each modality with an attention mechanism [246].
Apart from recognition using clean data, the method’s robustness is validated in
experiments where extra noise is added to the raw audio data.

A novel method to improve model generalization to unseen examples is proposed
in [247]. Since adapting to new speakers that are not present on the training dataset
is particularly difficult for visual speech recognition models due to a sensitivity to
appearance and particular movements of the lip, the method involves introducing
non-zero padding values into the convolution operations of the feature extractors in
existing architectures. Instead of the conventional approach which inserts zeros, the
added padding represents an additional input that interacts with the kernel filters
during the encoding of the visual features without having to add extra parameters
or to modify the existing weights. The model can then be adapted to the new data
by using the pre-trained weights and fine-tuning on a new dataset. Moreover, the
learned padding values can be inserted into other architectures without the need to
re-train the networks. To showcase the method, the LRW [21] dataset is used to
create two non-overlapping splits with added speaker information.

The authors of [248] propose a customized architecture for speaker independent
speech recognition applications. The proposed system follows a lightweight design
inspired by 3D convolutional neural network designs used in action recognition [249],
that consists of stacked spatio-temporal convolution, normalization and non-linear
activation layers, where despite the convolution filters gradually increasing, the kernel
sizes remain static with a stride of 1. A pooling layer is added to retain relevant
information from the feature maps while reducing the spatial dimensions and the
amount of computation required. In contrast to previous works that utilize recurrent
or temporal networks for sequence modeling (e.g., [106, 162]) after the visual feature
extraction process, the authors opt for a more compact design, adopting a simple fully-
connected layer with 32 units and dropout instead. The proposed recognition system

is trained and evaluated on a novel dataset of high quality recordings of speakers
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uttering words. After training, the model’s weights are exported to a portable format
for evaluation by a mobile application.

Different than previous approaches, [250] explore quantum machine learning in a
privacy protection setting with applications in visual speech recognition. A multi-step
pre-processing procedure involves extracting filterbank features and video grayscale
data from each modality and subsequently splitting them into patches that are en-
coded into initial quantum states using a gate. Further transformations are performed
by a privacy-enhancing randomly-generated quantum circuit that divides the input
into patches to generate quantum-privatized data. A novel metric that measures inter-
and intra-class similarities between data in order to evaluate the privacy-preserving
capabilities of different methods is proposed. The metric is used to measure the ro-
bustness of the proposed method against two types of privacy attacks on the down-
stream task of visual speech recognition. Noise is added to corrupt the original audio
stream, while the video stream is not degraded. An experimental evaluation show-
cases that some information loss is inevitable, however, the quantum-based privacy-
preserving method retains relevant visual feature information for downstream tasks
such as speech recognition while being more resistant to privacy attacks.

Extending their previous work ([247]), the authors explore several prompting
strategies, which involve input-level modifications of the data, in [251] as an effective
method to adapt a pre-trained model for a different task or data distribution. The
first strategy consists of adding speaker-specific perturbations in the form of a matrix
of same spatial dimensionality as the source frame to all frames in the sequence that
is input to a convolutional neural network (CNN), in order to increase the network’s
adaptability to unseen speakers. The second strategy applies different padding values
to the convolution operation within the CNN’s intermediate layers to enable adapting
networks of large architectures where input prompting might not succeed. The final
strategy concatenates the encoded visual features that are produced by the CNN with
a prompt of the same shape, in the temporal dimension before proceeding with the
sequence model. The three strategies can be utilized in combination for visual speech
recognition purposes and do not require additional layers, adaptation networks or
extra fine-tuning of the source weights, as only the prompts are tuned when adapting
the model to unseen speakers.

An approach using graph convolutional networks (GCN) is proposed in [252].
Different from previous works using GCNs (e.g., [95] and [163]), this method uti-
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lizes point clouds instead of standard images as inputs. Compared to using whole
images in a GCN framework, point clouds avoid redundant computations related
to pre-processing and inference, while offering robustness to dataset biases such as
speaker appearance distribution. In addition, GCNs can benefit from point cloud data
by learning correlations between points other than the mouth area. First, landmark
detection is used to extract point cloud data which is subsequently normalized and
aligned with a fixed reference point. Input points are selected either by representative
regions of interest corresponding to different areas of the face, or by selecting a subset
of the entire point cloud. The adaptive graph convolutional network [253] is used
to encode the point cloud information spatially by learning a set of adjacency matri-
ces and TCN layers with additional residual connections [254] encode the temporal
evolution of each node in the graph.

A cross-modal language modeling framework for sequence- and word- level speech
recognition that includes two components is proposed in [255]. The visual component
comprises a deep convolutional (CNN) model for feature extraction and a single de-
coder architecture for generating texts without requiring an encoder. The CNN model
extracts multiple lip representation sub-spaces corresponding to frame features origi-
nating from different convolution layers within. It combines a stack of residual blocks
with local attention modules that re-calibrate the generated representations at each
block to adjust its final output, taking into account the diverse information. Weighted
averaging determines the contribution of each local attention module, inspired by
[50], to the final output. For decoding, a standard Transformer decoder is employed
[50] to generate the transcripts. The training strategy resembles multi-task learning
and pre-trains the visual components separately. First the decoder is pre-trained for
character generation and then it contributes in the pre-training of the visual feature
extractor. After both modules have been trained, cross-modal language modeling or
cold fusion [256] can be applied to fine-tune the model for speech recognition tasks
in an end-to-end fashion.

Akin to [226], cross-language speech recognition is explored in [257]. The authors
propose a method where generalized language-agnostic knowledge that is learned
during training is exploited to improve performance on datasets with fewer samples,
e.g., for under-represented languages. Two deep architectures utilizing a common
spatio-temporal residual network extractor, with Bidirectional GRUs and Multi-Scale

TCNs, following [69] and [110] respectively, are employed as baselines for their ex-
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periments. In order to facilitate cross-language knowledge transfer, an adversarial
domain adaptation framework is adopted. More specifically, source and target image
pairs corresponding to two different languages are used as inputs for feature ex-
traction and the visual representations obtained by the residual network are fed to a
compact TCN-derived language discriminator model. The latter aims to encourage the
network to align feature-space representations corresponding to similar words from
the two languages. Since adapting to an under-represented language could be ham-
pered by over-fitting due to a smaller size dataset, several regularization techniques
are applied.

An approach utilizing Spiking Neural Networks (SNNs) for event-based speech
recognition is proposed in [258]. Event cameras record the variations in each pixel’s
brightness values focusing on the foreground only, while their fine-grained temporal
resolution allows capturing a substantial amount of data that can contain implicit
lip movements, both properties that favor these cameras for the task. The operation
of SNNs resembles that of biological neuron activations [259] and the processing
of spatio-temporal data of fits with the event-based cameras’ method of function.
In order to overcome some of the challenges involved in incorporating SNNs in a
speech recognition framework that involve filtering the data due to their amount and
distinguishing between visually similar words, the authors propose a novel spatio-
temporal attention block to focus on features relevant to the lip movement. The block
is comprised of two distinct branches, for spatial and temporal attention, where each
branch undertakes a different role, the former localizes the important spatial patterns,
while the latter evaluates their importance with regard to movement. The outputs of
both branches are then fused to form a complete representation that combines at-
tributes from both attention mechanisms. The SNN-derived architecture is trained
with a triplet loss [260] which leverages a triplet group that consists of three items, an
anchor, a positive and a negative item, encouraging an increased distance between
positive and negative pairs, which enhances the model’s robustness to visually similar
samples. During training, three parallel architectures with shared weights are trained,
while at inference only one is utilized. The proposed method is evaluated in a speech
recognition dataset captured using an event camera [129].

Extending their previous work ([250]), the authors of [261] propose an approach
that combines classical neural networks with quantum machine learning. A hybrid

speech recognition network preserves user privacy by adopting the Differentially-
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Private Stochastic Gradient Descent [262] algorithm for training, which adds Gaussian
noise into the computed gradients for each mini-batch. While for feature extraction,
the typical 18-layer residual network with the 3D convolution is used, a Variational
Quantum Circuit [263] handles the temporal sequence modeling, replacing other ar-
chitectures (e.g., TCN, RNN). This circuit uses projection-valued encoding and measure-
ment [264] to convert the data into a quantum representation allowing for improved

recognition performance and scalability to large numbers of quantum bits.

2.2.5 Works most Related to this Thesis

We dedicate this subsection to recent works in the literature that propose methods
developed with goals that closely align with the objectives of this dissertation, i.e.,
lightweight and practical visual speech recognition of isolated words. The aim of
these works can be broadly defined as improving efficiency, which can be achieved
through several approaches such as reducing the computation resources required
by the employed models, shrinking the network size in terms of parameters, low-
ering the memory access cost of the network components and generally producing
architectures that achieve faster inference speeds for VSR. Lightweight models ex-
hibit desirable properties such as improved training or inference running times and
offer a broader range of applications as more devices are able to utilize them due to
the reduced hardware costs. Moreover, a favorable indirect outcome of developing,
training and deploying such models is the reduction of energy expenditure and car-
bon emissions which are topics of ever-increasing importance in a modern industrial
world. By including these publications in their own subsection, we present the status
of the literature on this specific domain, identifying oversights and potential areas for
improvement.

One of the earlier works on this topic can be found in [265], where the authors
propose taking advantage of Hahn moments to reduce computation costs. To that end,
they insert a Hanh-based layer in the beginning of a CNN architecture to extract
a mixture of Hahn moments which are subsequently used in the CNN, which also
functions as a dimensionality reduction mechanism. Hahn moments are a set of
orthogonal moments based on discrete Hahn polynomials defined over the image
coordinate space and have the ability to hold and extract salient information from

the image without redundant computations as they do not require any form numerical
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approximation. An additional benefit lies in their flexibility to capture global or local
characteristics of the image, improving the quality of the extracted features. A simple
CNN-only architecture is designed, without using any type of sequential network
keeping the overall complexity and computation overhead low. Since the first layer
computes the Hahn moments, the input to the CNN is a matrix of these moments
instead of an image. The architecture is evaluated in word and digit recognition.

In [266], the proposed models are designed with mobile devices in mind. The
authors first use depth-wise separable [61] convolutions in the 3D convolution module
to reduce the parameter count and computational complexity without significantly af-
fecting accuracy. In order to reduce memory access costs and keep model sizes low, the
authors also design a mobile-friendly convolutional module using the low-parameter
depth-wise convolution with residual connections and propose an architecture using
stacks of this module that can be scaled with respect to its depth according to user
demand. For temporal modeling, the authors note that the components based on re-
current architectures which are used by previous works (e.g., BLSTM [30], or BGRU
[97]) are rather memory-intensive and performance unfriendly. For these reasons,
they forego using these components in their method, opting for a simpler temporal
convolution-based architecture instead.

A web application for automatic visual speech recognition for the Japanese lan-
guage at the word-level is proposed in [267]. The application is tailored to smart
devices, i.e., computers, portable tablets and mobile phones and it circumvents the
need for powerful hardware since it offloads the processing to the server. Affine trans-
formations for scale and rotation are applied to normalize the facial feature points
reducing differences in the distance between the camera and face, the camera shake
and the head movement, based on the detected facial feature points of both eyes. For
feature extraction, the authors follow an approach that uses only the motion-based
features obtained by subtraction between the current frame and the next one at each
of 20 feature points near the lip area after normalization, as that approach is fast
to calculate and does not compromise accuracy. For the recognition process, a GRU
[140] is employed since in their experiments it outperforms the LSTM.

Several techniques for practical speech recognition models are proposed by Ma
et al. [268]. In order to significantly reduce the computation costs of their previ-
ous work(s) ([110, 84]), the authors propose replacing the standard convolutions in

the temporal convolution layer of the TCN backbone with depth-wise separable [61]
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convolutions that are more efficient, producing a lightweight temporal convolution
architecture called Depthwise Separable Temporal Convolutional Network (DS-TCN). In
addition, they replace the standard residual network used for feature extraction with
the much more lightweight ShuffleNetV2 architecture [185] which reduces the over-
all computation costs by a significant factor. A variation of knowledge distillation [99]
where a larger model, called the teacher model adds an additional supervisory signal
besides the dataset in the process of training a smaller model, called the student model
is employed for model training. In this variation [182], both networks have the same
architecture and in the next training iteration, the student model becomes the teacher
and is used to train a new network (the new student).

Voutos et al. [269] propose a uni-modal speech recognition network for medical
patients deployed in a mobile application. Personalized recordings are first collected
from a patient in a controlled environment, then annotated and adjusted to remove
imperfections such as noise. The pronounced words were selected so as to cover all
phonemes in the Greek language. A data pre-processing step extracts the relevant
video frames and the corresponding isolated area of the lip from each frame using
a pre-defined mask. The architecture involves a sequence-to-sequence recurrent net-
work that is trained on a subset of the extracted frames for the task of word prediction
and evaluated on a disjoint testing set. The overall model is comprised of three LSTM
layers starting with 256 hidden units for the first layer and halved for each subsequent
one and two fully-connected layers with a final Softmax activation function to obtain
the word class probabilities. Post-training, the architecture was exported to a mobile
format for integration in practical applications.

In a similar fashion to [266], Wisesa et al. [270] develop a novel model for visual
speech recognition with low complexity for deployment in limited resource devices.
Since the goal is application in low complexity or constrained hardware, the authors
focus on developing lightweight models with minimal computation costs. Drawing
inspiration from [69], two end-to-end variants are designed, both using a ShuffleNetV2
[185] network without the last convolution block to lower complexity and while
the first variant uses a Bidirectional Gated Recurrent Unit as the sequence encoder,
the second replaces it with a Transformer module that performs slightly better at a
smaller parameter size. The models are trained following the settings from [69] and
the standard pre-processing steps of previous works, which includes conversion to

grayscale to reduce complexity as well as mouth area region of interest (ROI) cropping
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to lower the input spatial dimensions while simultaneously discarding redundant
information from the frames of the sequence.

Bulzomi et al. [271] propose an efficient end-to-end neuromorphic model for
word-level speech recognition. Different from previous approaches using convolu-
tional deep learning architectures, their method utilizes Spiking Neural Networks (SNNs)
[272] due to their energy efficiency and low latency, both favorable factors for real-
time applications. SNNs simulate biological neuron activations by emitting voltage
’spikes” and operate on data captured from event-based cameras that record events
such as pixel-level changes in brightness which may occur at irregular time intervals,
allowing for lower power consumption compared to traditional video cameras which
record whole frames at a fixed rate. In practice, due to the non-differentiable spiking
operation of the SNN, it is approximated through surrogate activation functions that
allow training of the network during gradient back-propagation. Their model follows
the design of [129] with a residual network backbone which is subsequently modified
with a spiking architecture [273], while the Gated Recurrent Unit (GRU) that extracts
temporal information in the original architecture is removed. Several surrogate acti-
vation functions are tested as well as layer substitutions for the removed GRU and
all models are evaluated on the DVS-Lip [129] dataset which contains event-based
speech data.

An efficient model for deployment in devices with limited storage capacity and
computational resources was developed in [274]. More specifically, the authors de-
velop an efficient channel attention module which is then inserted in several bottle-
neck blocks of a lightweight network baseline [275] achieving parameter reduction
without compromising accuracy. Following the design of [276], the module consists
of a pooling layer, 1D convolution operation with a channel-adaptive kernel size and
a non-linear activation function and the generated attention weights are multiplied
with the input feature map. A Gated Recurrent Unit (GRU) is selected as the sequence
modeling network over the LSTM and BGRU variants for its comparable performance
and simpler structure. For the purposes of evaluating the newly-proposed model, a
dataset containing digit utterances from 10 speakers was created. In order to increase
the robustness of the model and to simulate applications in real-world conditions,
speaker recordings were obtained by cameras set up in multiple angles. The pro-
posed efficient network is evaluated and compared to other lightweight architectures

([275, 81]) on the task of single word speech recognition.
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More recently, a large study of deep learning architectures was conducted [277]
where the authors explored a wide range of models across several representative
datasets for word-level visual speech recognition. The authors evaluate the perfor-
mance of various convolutional and transformer-based networks used in both compo-
nents of the system, i.e., feature extraction and sequence modeling. For the former, the
authors experiment with the typical 3D convolution sub-network commonly found in
other speech recognition works (e.g., [69, 162, 268]) combined with the standard [31]
and wide [278] residual networks, as well as EfficientNet [279], while for the latter,
MS-TCN [110] and Transformers [50] are used. Besides the convolutional architec-
tures, Vision [133] and Video Vision Transformers [280] are also explored. All models
are trained with the same data augmentation settings that include RandAugment [281]
which selects a data augmentation method from a pool of possible options randomly
and mixup [66], which generates random image pairs from the training data with a
fixed weight that controls the amount of mixing.

The authors of [282] extend their previous work [131] by proposing a more
lightweight approach. Following the same transformer-based architecture, a more
compact model is obtained after a series of steps that are applied to the original
model. First, weight transformation [283] and parameter sharing are introduced to
the transformer components. More specifically, linear layers are inserted in the Multi-
Head Self-Attention block, while a depth-wise convolution is added in a Multi-Layer
Perceptron. In addition, parameter sharing [283] is applied across the transformer
blocks excluding the newly-added and normalization layers. Next, training with a
distillation objective is performed in order to transfer knowledge from the larger pre-
trained models to the final, smaller ones. A triplet loss utilizing the sum of three
distinct distillation methods is used, taking into account predictions as well as the
transformer self-attention and hidden states. The first method leverages the typical
distillation loss [99], while the others leverage the various components to improve
performance, since both networks utilize transformer blocks [283]. Furthermore, data
augmentation and other techniques are applied during training to enhance accuracy.
The compact models are evaluated in English as well as Chinese word recognition
tasks.

[284] propose a lightweight visual feature extraction network utilizing the Swin
Transformer [211] rather than a residual network. A Swin Transformer block applies

self-attention in local windows that are shifted across the image pixels to facilitate
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information exchange. The authors adopt the hierarchical model of [211] and perform
a few modifications to adapt it to the task of speech recognition. To capture more
global information regarding the lip movements, a large initial patch size is used.
Also, to avoid any potential drops in accuracy, the last stage is removed and replaced
by a 1D convolutional attention module which contains feed-forward layers, a multi-
head self-attention mechanism and a 1D convolution followed by a normalization
layer in order to enhance feature expression along the temporal axis. The modified
four-stage architecture is employed as a visual feature extraction unit and combined
with sequential models and the overall model is evaluated on two datasets for word-
level VSR and one dataset for sentence-level VSR. In the first two cases, for processing
of the extracted features, the TCN with dense connections [148] and a bi-directional
GRU is used, while in the last case, the authors employ a Conformer encoder [285]. A
variant intended for real-world applications where future frames are not available for
computations is created by removing the self-attention layer in the last stage, yielding

a slightly more lightweight model with a small degradation in performance.

2.3 Datasets

In this Section, we overview datasets published exclusively for the task of single word
visual speech recognition over the years. This work focuses on the English language,
mainly due to the amount of the available data, since in order to train powerful
deep models, a significant amount of data is required, especially as the size of the
model increases. An additional factor is the popularity of the language, which is
worldwide and as a result most published methods for word-level VSR use English
datasets, allowing for a fair comparison. As the focus of this dissertation is recognition
of spoken English words, we devote the first subsection to datasets specifically in
English. For the sake of completeness, datasets intended solely for word recognition
purposes for other languages are also included and grouped in a separate subsection.
As a special case, multi-lingual datasets G.e., containing more than one language) are

included in a separate subsection.
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2.3.1 Datasets for the English LLanguage
Lip Reading in the Wild (LRW) dataset

Prior to the release of the Lip Reading in the Wild (LRW) corpus [21], the available
datasets were rather limited in terms of samples and vocabulary. As of this writing,
LRW remains the largest dataset for single word speech recognition of the English
language. This dataset contains a rich vocabulary of more than 500 distinct words,
spoken by more than 1,000 speakers. Variants (e.g., singular and plural) of the same
word are also included in this vocabulary adding an additional layer of difficulty
to the dataset since they lead to ambiguities in predictions for some words. This
is due to the fact that compared to audio, the video information does not assist in
distinguishing the word variant and mis-classifications can occur as one word can be
mistaken for another.

Owing to the fact that the video sequences were recorded from television shows,
a significant amount of visual variation in both the speakers depicted as well as
the scene backgrounds is noticeable. For the same reason, the video quality is high
and the lighting conditions are adequate without dark spots or visual occlusion of
the speakers’ faces or mouth area. The scene backgrounds vary widely depending
on the program that was recorded and there are multiple head pose angles for the
different speakers. Having several views of the head pose and angle leads to an
increased training robustness as opposed to datasets that depict the person from
a single angle (typically from the front). Examples of images from the dataset are
shown in Figure 2.2.

The LRW dataset is split into three smaller, unequal subsets: the train set, the
validation set and the test set, shown in Table 2.1. Each particular subset contains
an amount of non-overlapping video segments and each segment depicts a single
speaker for a duration of 29 frames at a fixed frame rate of 25FPS featuring a spatial
resolution of 256 x 256. For each video, one word utterance occurs in the middle of the
sequence. The majority of the samples in the dataset are used for training purposes
with the training subset containing a total of 488.766 samples numbering between
800 to 1.000 sequences for each spoken word. The remaining two subsets, used for
validation and testing respectively, contain equally 25.000 samples each, with 40 to 50
sequences for every word. All video segments (train, validation and testing) amount

to a total length of 173 hours, of which 157,5 correspond to the training set.
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Figure 2.2: Sample images from the LRW dataset.

All works presented in later chapters of this dissertation involve this dataset, using

its aforementioned splits for training, validation and testing.

DVS-Lip

DVS-Lip was introduced in [129]. To the best of our knowledge, this is the only
dataset for word-level recognition using event-based data. An event camera that si-
multaneously outputs an event stream alongside intensity images is used to collect the
data. The vocabulary is sourced from LRW [21] by selecting the 25 most frequently
mis-classified word pairs (e.g., million—billion) as well as a random selection of 50
other words, resulting in a combined total of 100 different words. The videos feature
40 distinct speakers in an indoor scene reading sequences of words that are then

subsequently split accordingly to the audio data so as to produce samples containing
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Table 2.1: Dataset split details for the LRW dataset.

Split Samples Sequences/word Hours
Train 488.766 800 — 1000 157,50
Validation 25.000 50 8,05
Test 25.000 50 8,05

only a single word. The final dataset contains a total of 19.871 valid word samples,
split into two non-overlapping splits with 14.896 samples from 30 speakers for train-
ing and 4.975 from the remaining 10 for testing, respectively. The dataset can also
be divided into two parts depending on the word source, where the former con-
tains 7.441 training and 2.493 testing samples of mis-classified pairs and the second

contains 7.455 training and 2.493 testing samples of the random words.

AusTalk

The AusTulk corpus [286] is a large audio-visual dataset covering several recognition
tasks. Its content is diverse, comprising words, digits as well as sentences pronounced
by Australian speakers. Recordings were performed in several locations across Aus-
tralia, featuring a wide variety of up to 1.000 geographically diverse speakers, that
are not necessarily native. The total length of the collected audio-visual data is 3.000
hours. As annotation is an expensive and time-consuming process, considering the

size of the dataset, only a subset of the total data was annotated manually.

MODALITY

The MODALITY database was introduced by Czyzewski et al. [287] to assist with the
development of audio-visual speech recognition systems. Recordings of 35 speakers
uttering sentences or isolated words are included. In order to evaluate visual speech
recognition performance under noisy conditions, for some recordings, acoustic back-
ground noise, such as traffic sound was simulated. The videos were captured at 100
FPS frame rate with a resolution of 1920 x 1080 using a setup with two stereo RGB
(color) cameras. Each speaker was recorded using the RGB cameras from a slight
angle providing multi-view data that can also be used to retrieve 3D depth data.
Furthermore, for some speakers an additional depth camera was used, providing 3D

depth data that can also be utilized in other tasks. The language selection simu-
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lates voice control scenarios where a command would be spoken to a device, thus it
includes 182 unique words. The vocabulary consists of numbers, names of months
and days as well as a set of verbs and nouns mostly related to controlling computer
devices. In order to facilitate word- as well as sentence- level recognition, apart from
the isolated words, a set of 42 sentences containing all words in the vocabulary was
also uttered by the speakers. Overall, 31 hours of recordings were obtained and for

every utterance manual annotation was applied.

MIRACL-VC

The MIRACL-VC [288] corpus contains depth as well as color images that can be
used for other tasks apart from speech recognition, such as face detection, biometric
estimation, etc. Another aspect of this corpus is that its vocabulary covers two tasks:
word as well as phrase recognition. For each task of the dataset, 15 speakers utter
a set of either 10 words or phrases for 10 iterations, resulting in total 3.000 word
and phrase data, that is split equally. In addition, 2D images and depth maps were
acquired with a Kinect sensor at a frame rate of 15. As it contains both word and
phrase data, MIRACL-VC has been used to evaluate methods focusing on either word-

or sentence-level speech recognition.

LIPSFUS

Different than other datasets, LIPSFUS [289] is an audio-visual neuromorphic corpus
collected using a set of Address-Event-Representation sensors and tools. The data is col-
lected from Neuromorphic Sensors [290, 291] that generate spike information encoded
and maintain the synchronization of the different modalities. Recordings take place
in a quiet, noise-isolated environment and a noisy one, where background noise is
present with similar lighting conditions for both environments. The speakers consist
of 22 persons of 5 different nationalities, in the ages between 6 and 61 years. As for
the vocabulary of the corpus, it includes spoken digits, robotic commands, as well
as words sourced from online challenges and other datasets ([21]) and each person
pronounces each word in an isolated way (i.e., not as part of a sentence that is later

cropped).

76



LIPAR

The LIPAR corpus was created to evaluate the proposed system of [248]. The au-
thors used the MIRACL-VC [288] dataset as a reference, following its data collection
principles, however, the repetitions per word were reduced and depth images were
omitted (not collected). High definition recordings depicting the frontal view of 35
speakers each uttering 10 words were recorded in a controlled environment with ad-
equate lighting conditions. Depending on the speaker’s talking speed, each recorded
sequence spans 50 — 69 frames corresponding to an average duration of 1,2 seconds.
The videos were split to frames and the regions of interest covering the lip area are
cropped according to landmarks relevant to the lips that are automatically calculated
after a face detection step. The cropped images are then converted into grayscale for
reducing the amount of required parameters by the model and normalized using the
global contrast normalization technique. Finally, additional frames are inserted into

sequences to match a set length.

CRSS-4ENGLISH-14

The CRSS-4ENGLISH-14 audio-visual corpus was introduced in [292]. Recordings
were conducted in a controlled environment (sound booth) with sufficient illumi-
nation conditions using several microphones and cameras. Background uniformity
was achieved with a green screen that was placed behind each speaker. The cor-
pus contains several modes of speech, including continuous sentences, short phrases,
numbers, as well as single words. An additional, smaller, audio-only subset was col-
lected where an audio device was used for background noise playback during each
recording, simulating real-world conditions such as crowded spaces. The amount of
speakers is 442 with several English accents and around 30 minutes of data corre-
spond to each speaker. Transcription was performed manually. A subset of the corpus

containing recordings of 105 speakers was used to evaluate the methods proposed in
[292].

Other

A novel dataset for the purpose of evaluating a multi-modal recognition system in
a virtual aquarium environment was constructed in [134]. It has a vocabulary of 54

words that includes 20 control commands, 15 words related to aquatic organisms, 11
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numbers from zero to ten and 8 words conveying an emotional response. The data
was gathered from 40 participants with an average age of 29 years using a head-
mounted camera. Each word utterance was repeated 100 times in a sequence and the
final video was split into frames corresponding to each word. A total of 216.000 video
clips with audio were collected at a frame rate 30 with a resolution of 640 x 480. A
ratio of 7 : 3 was used to divide the dataset into training and validation sets and the
samples for each set were selected manually.

In order to evaluate their proposed silent speech interaction framework, the au-
thors of [141] introduced an in-the-wild dataset that simulates interactions between
a mobile phone and a human user. The vocabulary covers 25 voice commands as
well as casual expressions in English ranging from simple words to small phrases.
Several recordings were performed with mobile phone cameras in various environ-
ments such as indoor and outdoor featuring a wide range of lighting conditions, scene
backgrounds as well as speaker posture and orientation relative to the camera. A dif-
ference with other datasets is that some samples were recorded while the speaker
was walking, resembling a more realistic scenario. The videos were collected from
11 speakers over 7 recording sessions so as to include the aforementioned conditions
and each utterance was repeated 5 times. In total, 9.625 samples at 30 FPS frame rate
with a resolution of 1920 x 1080 comprise the dataset.

[78] proposed a small-scale dataset containing a vocabulary of 9 randomly-selected
words to evaluate their method in three modality settings that include the isolated
modalities as well as the combination of both. The dataset was recorded in a controlled
environment using a video recorder with a resolution of 1920 x 1080. The videos
depict variable light conditions and average a duration of 1,6 seconds per utterance
at a frame rate of 60 FPS, corresponding to 80 — 100 frames per video. Overall, 80
sequences were captured from 16 different speakers between the ages of 18 and 30
and each utterance was repeated 5 times. A pre-processing step temporally cropped
the videos to 1 second duration and halved the frame rate (to 30). The corpus was
partitioned in training and validation sets according to a 3 : 1 ratio and the validation

set was used to evaluate the proposed method.
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2.3.2 Datasets in Other Languages
Greek

Kastaniotis et al. [40] published a dataset containing image sequences of Greek words
in an unconstrained driving scenario in order to facilitate a practical application of
speech recognition in a real-world task. The sequences are recorded using differ-
ent mobile phones mounted inside several cars and depicts either the driver or the
passenger over multiple views and lighting conditions, which represents a possible
use-case by an automatic system. The vocabulary size is 50 words related to everyday
driving, such as commands or locations, uttered by 10 persons and each word is re-
peated 5 times by each speaker, resulting in an average sequence length of 44 frames
at a 25 frame-per-second rate. This dataset, to our knowledge, is one of the first
publicly available datasets for word-level speech recognition in the Greek language
targeting a real-world application.

Another word-level dataset in Greek with a practical application is introduced in
[157] in the context of the medical domain. In this dataset, the frontal cameras of
mobile phones are used to record sequences of patients uttering a pre-defined set
of words without a particular order. No occlusions of the speaking face are present
and other constraints, such as lighting or pose are not enforced in order to keep the
dataset naturally varied (i.e., in-the-wild), simulating real conditions. Adding to this,
the spatial video resolution varies depending on the phone camera characteristics and
the frame rate stands between 25 and 29. The vocabulary size is 10, since the selected
words are related to the medical domain, with 3 — 10 repetitions per word and the
speakers are also 10.

More recently, the MobLip [79] dataset for visual speech recognition in the Greek
language was released. A unique one-minute utterance containing the most preva-
lent words in the Greek language was spoken by 30 speakers and recorded at 30
frames-per-second. The annotations were created manually by linguistic experts that
highlighted the starting and ending times of each word within the sequence. These
boundaries were then converted to frame indices and as certain words (e.g., pro-
nouns) corresponded to fewer frames than others, the sampling rate was modified
accordingly. 55.275 images were gathered, encompassing a total of 3.685 words. Since
each uttered sequence contains more than one instances of certain words, the cor-

responding frames are used as a validation subset consisting of 4.425 samples. The
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MobLip dataset was used to evaluate a wide array of deep convolutional architectures

for speech recognition.

Chinese (Mandarin)

The LRW-1000 [39] is a large-scale benchmark dataset for isolated word speech
recognition in-the-wild scenarios containing 1.000 classes, where each class corre-
sponds to the syllables of a Mandarin word composed of one or several Chinese
characters. The dataset takes into consideration the practical applications of this task
in real-world scenarios and includes a diversity of speech modes and visual condi-
tions, including resolution variations, changes in lighting and individual character-
istics related to pose, age, gender and appearance, since the samples are collected
from more than 2.000 distinct speakers. Similar to LRW [21], the samples are col-
lected from TV programs, featuring a wide variety of scenery, however, in contrast
to LRW, the video resolution is not fixed, providing more natural conditions. After
data curation, the total number of samples is 718.018, with over 1 million Chinese
character instances including 286 Chinese syllables. The above factors contribute to
the challenging nature of the dataset as it corresponds to challenges encountered in
practical conditions.

In [176], the MCLR-100 dataset for Mandarin Chinese was introduced. This corpus
contains a vocabulary of 100 Chinese words and is developed with mobile devices in
mind. The videos are captured by a head-mounted camera from 50 different speakers
spanning a wide age range 20 to 60. The spoken words are instructions and each is
uttered within a 2 second time span. The resulting video length is 60 frames and
the lip area is localized in a 480 x 640 pixel region. In total, 50.000 RGB audio-visual
samples are collected and each class contains 500 examples.

[184] released the Databox mandarin-only word dataset for the study of visual
speech recognition of the Chinese language. The authors avoid choosing mandarin
characters with very similar lip movements and collect simple utterances from every-
day scenarios. The words are uttered by 80 volunteers and consist of a limited vo-
cabulary of 20 simple words. Each volunteer repeats the words ten times, producing

an overall of 16.000 video clips.
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Chinese (Cantonese)

The CLRW [167] dataset is a corpus containing words in Cantonese, which, although
is a Chinese dialect spoken primarily in south-eastern China, differs grammatically
and phonetically from Mandarin. Data is collected from various video sources such as
websites and TV, at 25 FPS with several resolution scales and subsequently filtered,
keeping only single-speaker clips. Audio is synchronized with the video using a
deep network [293] and annotated using an audio transcription service before being
manually verified for correctness. After these steps, landmarks of the face are extracted
and are used to normalize that area before obtaining the regions of the mouth. Due
to the video source diversity, the dataset covers a wide gamut of speakers, pose,
backgrounds and image conditions at about 65 hours of data. The 800 most frequent

word classes are kept, averaging 500 samples each.

German

The DLIP word-level dataset in German was proposed in [34]. 10 utterances were
repeated by 15 different speakers in a controlled environment without background
noise. The word selection was influenced by the popularity of each word and covers
nouns, verbs and adjectives. In total, 1.800 short-length videos (0,56 — 2,37 seconds)
were recorded at a frame rate of 30 FPS with a resolution of 640 x 480. A pre-
processing step includes detection of the face and the mouth area followed by a
cropping operation and a conversion to grayscale. From the resulting data, two subsets
for seen and unseen speakers were created. In the former subset, every speaker
appears in all splits (training, validation and testing), while in the latter, all videos
from 11 speakers are used for training and the remaining videos (corresponding to
4 speakers) are chosen for validation and testing, evenly split by speaker. In order
to increase the size of the dataset, augmentation methods such as horizontal flipping,
blurring, equalizing and adding noise were applied to every frame in each sequence.

More recently, the GLips (German Lips) dataset was presented by Schwiebert et
al. [294] as a large-scale corpus for the German language. Over 1.000 videos are
collected from an online source containing clips of parliamentary sessions along with
their respective subtitle files. The data is pre-processed with a two-step pipeline,
where the first step involves extracting the separate modalities of the clips (video

and audio) with the appropriate transcription, as well as manually inspecting the
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text files and removing additional words not present in the video. A phonological
transcript is created and used to synchronize the audio file with its corresponding
text transcription with a web service. The aligned audio file is then used to guide the
extraction of the related video from the original sequence. Face detection is applied
only to a segment of the entire frame as the camera capturing the speaker is static
and centered. Although the audio and video files are synchronized, they are stored in
separate files to facilitate several applications of speech recognition (e.g., video-only).
The total number of videos is 250.000 depicting approximately 100 distinct speakers
with a vocabulary of 500 words and 500 instances of each. The format of the dataset
follows LRW, i.e., a video resolution of 256 x 256 at 25 FPS, allowing for seamless

transfer learning applications.

Russian

LRWR was released by Egorov et al. [114] for in-the-wild word-level speech recogni-
tion for the Russian language. Samples were collected from various Russian-speaking
YouTube channels boasting a wide selection of speakers with different characteristics,
appearance and speaking speeds covering multiple topics. Moreover, various envi-
ronments with diverse conditions and camera angles are depicted. A filtering process
discards videos where more than one speaker appears on the frame and a 1.500-
word vocabulary of the most frequent words is prepared according to an automated
transcription of 50 hours of collected samples. After the filtering process, face detec-
tion is performed and extracted landmarks normalize the video before cropping the
lip region. An additional refinement step balances the resulting dataset by excluding
multiples of the same word that appear in the transcription. Overall, the final dataset
contains 235 words from 135 speakers with over 117.500 samples and 500 examples

per word, which are split in 450 for training and 50 for testing purposes.

Czech

The TULAVD dataset [215] is a moderately-sized Czech language dataset featuring
data from 54 different speakers, covering an age range from 20 to 70. The dataset
covers the word- as well as sentence- level speech recognition tasks with 50 isolated
words and 100 sentences corresponding to each task, respectively. The phonetic bal-

ance of the selected samples was taken into account and the sentences were divided
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into two equal groups (50 each) where the first group contains common sentences
(spoken by all speakers), while the second group contains speaker-specific ones. The
recordings were performed in an office environment, so lighting conditions are ad-
equate. In contrast to other datasets, TULAVD includes RGB-D data from a depth

sensor (Microsoft Kinect), which is fully synchronized with the video stream.

Bengali

The BenAV [295] dataset is, to our knowledge, the first audio-visual dataset with
sequences of words in the Bengali language. It is collected via a multi-step procedure
comprised of six steps. Random but common short everyday words described in a
50-word vocabulary of 3 — 4-Bengali-character words are selected and them grouped
into five 10-word batches and assigned to 5 individuals for recording. The batches
are distributed in a balanced manner among speakers aged between 21 and 35 that
utter their assigned words 40 times in a home environment. Then, videos with in-
sufficient lighting, resolution, occlusions or unsteady recordings are discarded and
the remaining videos are processed into a fixed resolution, bit-rate and frame rate.
Segments are cropped from the processed videos and finally, after visual inspection,
the cleanest examples comprise the dataset, which spans 7,3 hours, containing 128
speakers with 350 — 600 utterances per word for a total of 26.300.

Another dataset for the Bengali language was published in [296]. Similar to Be-
nAV, the dataset is aimed at the task of word-level recognition. Its vocabulary numbers
12 words from three distinct categories: words that are commonly-spoken, words that
have phonetically similar beginning and ending, and words that are rarely-spoken.
4.800 videos were captured using web cameras, with lengths varying from 1,6 to 3,5
seconds. A three-stage pre-processing method is used to produce the final dataset
that includes video conversion to images, cropping of the mouth area to reduce the
dimensions and keep sizes low and frame-rate normalization. The resulting dataset

contains about 76.800 images.

Turkish

A dataset for Turkish was published in [59]. Similar to works for other languages, the
word selection involves short videos of commonly-spoken words. The source videos

are captured by a mobile phone camera in a controlled environment, meaning that all
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clips feature the same ambient and lighting characteristics. To correct deviations in
the camera angle during recording, after cropping the mouth area from the obtained
frames the cropped images were rotated accordingly, creating additional samples that
enrich the dataset with a form of augmentation for added robustness. The vocabulary
numbers 111 words spoken 15 times each by 24 different speakers and the video
resolution is set to a fixed 1920 x 1080 at a frame rate of 30. For the training split,
videos from 18 speakers are selected and the remaining are used for testing.

For the purposes of evaluating a novel deep convolutional neural network archi-
tecture for the task of visual speech recognition in Turkish, [241] collected a corpus
containing words as well as phrases. Three classes are used for each category, cover-
ing expressions used in daily communication. Short clips containing the target words
or phrases in the vocabulary were cropped by videos from the YouTube platform and
the corresponding frames where the target occurs were extracted. The data is collected
in such a way as to keep the data distribution of the classes balanced while depict-
ing various speaker appearances. Pre-processing involves in multiple steps, starting
with conversion to grayscale, followed by face detection and lip area isolation using
landmark points and concludes with scaling to an appropriate size that represents
enough visual information to keep computation costs manageable without compro-
mising accuracy. The total number of samples is 1.390, split into subsets for training,
validation and testing with a 4.67 : 1 : 1 ratio.

More recently, Berkol et al. [297] introduced another dataset for the Turkish lan-
guage, sourced from YouTube videos. Compared to [59], this dataset offers a large
variety of backgrounds and speakers, since the videos are obtained from several
YouTube channels with different topics. The vocabulary contains common words
and phrases, each appearing in over 200 instances from several speakers with distinct
characteristics related to age and appearance. Initially, 2.335 instances of videos were
captured using screen recording software and split into frames. The resulting frames
were manually inspected and in cases where more than one face appeared on the
video it was cropped out, leaving only the speaking person while trying to preserve

as much of the background as possible.

Arabic

The AVAS dataset [298] is, to our knowledge, the first published audio-visual dataset

for speech recognition applications in Arabic. The dataset contains a total of 36 words
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and 13 phrases that are commonly-spoken and cover all phonemes of the language.
Videos as well as static images of 50 speakers aged 18 — 60 were captured using
multiple fixed angles, resulting in various poses of the speakers’ heads, as well as
complex backgrounds and illumination variations. The recordings were completed in
two sessions, allowing for changes in speaker appearance and illumination conditions
via spotlights. In addition to the visual data, which sports a 640 x 480 spatial reso-
lution at 30 FPS, corresponding audio files are also provided separately and digitally
enhanced.

Another dataset for Arabic called AVSD was released in [299]. It contains 1.100
videos with a vocabulary of 10 isolated words used for daily communication. The data
was recorded in an indoor environment using mobile phone cameras and the speaker
selection includes males and females aged between 11 and 24. Each word utterance
was repeated 5 times by every speaker in order to obtain different variations of each
word. The videos were recorded in a 1920 x 1080 resolution at a fixed frame rate of
30 and depict each speaker from the frontal view. Post-recording, the obtained data
was inspected and imperfections were manually rectified. Ground truth annotation
and cropping of the square mouth region was also manually performed, resulting in
a final resolution of 32 x 32.

[58] introduced a word-level dataset of their own for the Arabic language. 1.051
videos without sound are collected from 73 native Arabic speakers aged 18 — 21,
uttering common Arabic words. Each word of the 10-word vocabulary was uttered
by each speaker at least once, considering the differences of each person regarding
appearance characteristics, talking speed, lip deformations and cadence. In addition,
a high variability in scene backgrounds, lighting conditions, camera distance and
hardware properties are present in the videos, improving the generalization of the
dataset. While the frame rate of every video is fixed at 30, there is no fixed resolution
for all videos.

The AQAND [139] corpus was introduced to assist in Arabic language research
applications. It consists of around 16 hours of RGB videos in 1920 x 1080 resolution
recorded at a frame rate of 30, numbering 10.490 samples. Videos of 22 speakers
whose ages ranged from 20 to 59 were collected in an indoor environment using
digital cameras from three different angles, providing multiple views of the speakers.
The vocabulary contains 10 isolated words, as well as 43 letters including single and

disjoint ones and each utterance is thrice repeated. Variations between the speakers as
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well as the utterances are also present, reducing the overall bias of the dataset. Post-
recording verification was performed manually to ensure the target word or letter
is present, while the video length varies between 2 to 10 seconds, standardized to a
precise number of frames equal to 60, 80, or 300, depending on its length. The final
dataset contains videos of the cropped lip regions, which are extracted after being
localized through a sequence of mouth-face-lip detection steps.

Another dataset for the Arabic language was published in [300]. The vocabulary
contains 20 isolated words (digits, weekdays and other common words) in modern
classical Arabic, which is used daily. 40 participants were sat frontally across a camera
and uttered 20 words each and all recordings were made in the same laboratory
environment using a static camera. One video per speaker at a source resolution of
1920 x 1080 with a frame rate of 25 per second was collected and subsequently split
into sub-segments with a duration of one second per word. The produced dataset
was used to evaluate a method for visual speech recognition as well as another for
viseme prediction.

Daou et al. introduced a large-scale in-the-wild corpus for Arabic in [206]. Several
stages were involved in the collection and preparation of the dataset, beginning with
gathering a diverse set of videos of Arabic speakers from the YouTube platform.
Then, a HOG-based detection algorithm identified changes in scene and used as a
guide to split the videos. Face detection and tracking was applied to each frame
and those containing multiple speakers were filtered. After a manual inspection for
further data cleaning, the Vosk? speech recognition system was employed to create
annotations. The videos were divided into short clips, each containing a single word
utterance and resized to a size of 256 x 256 followed by cropping of the speaker’s
face. The resulting dataset contains a vocabulary of 100 words from a total of 36
distinct speakers, with different articulation speeds, tonalities, face pose variation and
backgrounds. 200 repetitions of each word are present, distributed to 20.000 videos,
each with a 1,2 second duration and 25 frame-per-second rate. A split of 80 — 10 — 10

is set for training, validation and testing.

https://alphacephei.com/vosk/
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Persian

A dataset for recognizing Persian words was proposed in [301]. The authors used
a streaming website of Persian videos to collect samples depicting various lighting
conditions and speaker poses from several sources such as TV shows, movies and
interviews. 205 hours of videos are gathered using a multi-step process regarding
video source selection, where interviews are preferred since they often clearly depict
the person speaking. After face detection and tracking have been applied, the audio
stream is used to determine the active speakers and to filter videos where voices
of multiple speakers overlap. Then, an automated speech recognizer creates an ap-
proximation of the transcription and the 500 most frequent words are used to split
the videos, preserving the appropriate clips and maintaining a varied vocabulary.
Finally, face identities are automatically extracted and manually inspected to ensure
that the dataset is speaker-independent. The resulting dataset contains 30 hours of
data, at a frames-per-second rate of 25, with a spatial resolution of 224 x 224. The
overall amount of speakers is 1.800 with 244.000 videos of which 233.000 are used for

training and validation and 11.000 for testing.

Malayalam

A medically-oriented audio-visual dataset of words in the Malayalam language, which
is spoken in southern India, is published in [55]. The samples are collected from 2
speakers (male and female) each uttering a word related to the medical domain (e.g.,
fever, allergy) for 100 repetitions resulting in a total of 2.000 videos. Emphasis is
given in the facial characteristics of the speaker during the word utterance as the
face can convey additional information about the speech and can assist in linguistic
analysis applications. The video resolution is fixed at 1280 x 720 with a frame rate of

29.9 FPS.

Romanian

[227] presented the LRRo corpus for the Romanian language, with two distinct subsets,
Wild LRRo, an in-the-wild variant designed for more practical applications and Lab
LRRo, recorded in a lab environment with more accurate data. For the former, raw
videos were downloaded from YouTube and depict recordings of TV shows using

natural speech, while for the latter, the data was captured in a controlled environment.
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The video segments were split into images and the annotation process was completed
manually as well as with the assistance of automatic tools for data processing and
filtering, ensuring that a balanced selection of speakers of multiple appearances is
present. For the Wild LRRo subset, due to the diversity of the data sources, large
variations of lighting conditions and pose occur while the vocabulary numbers 21
words uttered from 35 different speakers, for a total of 1.100 instances over 21 hours
of source data. In contrast, for the Lab LRRo subset, only pose variations of the

speaker are present, with a larger vocabulary of 48, 19 speakers and 6.400 instances.

Tibetan

A speech recognition corpus called TLRW-50 for the Tibetan language is proposed in
[302]. It features frontal views of 20 different speakers with a word vocabulary of 50
classes, selected from the most commonly-spoken words. Recordings were performed
by a mobile phone in a controlled environment with adequate illumination and each
word pronunciation was repeated three times. The isolated words were segmented
from the video stream and each individual sample was saved for further processing,
resulting in 6.000 video samples. A final 100 x 50-pixel image sequence is generated
after detecting the speaker’s face and cropping the mouth area. Data augmentation
techniques such as mirroring, random rotation, cropping and noise, among others,

are employed to increase the sample size, which totals 720.000 lip images overall.

Japanese

In [188], the authors investigate visual speech recognition on subjects wearing a mask
(i.e., with an occluded face). The applied task is word-level recognition and for that
purpose, the authors collect a novel dataset that includes images of masked speakers.
The pre-processing procedure mirrors that of non-occluded (i.e., without wearing a
mask) speakers. More concretely, the first step is face detection, where several methods
such as HoG, Haar-Like features or a deep neural network are employed and the best-
performing one is chosen. Then, landmarks of the face are automatically calculated
and utilized to extract the lip region of interest. 15 common Japanese words were
selected as the vocabulary and uttered by 20 speakers while wearing a variety of
masks that included different shapes, fabrics and colors. In total, 5.400 images of

masked faces were gathered under variable background and lighting conditions and
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augmented with an additional 4.500 unmasked samples from a different dataset.

Indonesian

The authors of [303] presented a new dataset in Indonesian for visual speech recog-
nition applications, called IndoLR. The vocabulary of words consists of commonly-
used daily words in Indonesian. Five women and three men, all with different lip
shapes spoke four phrases and ten words in front of a camera with a 480p resolution
(640 x 480). 30 samples of the same word are collected per person, while for the
phrases 50 samples were gathered, totaling 2.400 and 1.600 respectively and collec-
tively they are called the IndoLR (Indonesian Lip-Reading) dataset. The lip region
was detected using the MediaPipe framework?. The dataset was used to evaluate two
proposed deep learning methods for visual speech recognition of words and phrases.

Another Indonesian dataset was introduced in [150]. The authors utilize a self-
developed automated dataset generating tool that, given a target language and dic-
tionary, automatically obtains and annotates videos from the YouTube platform that
conform to the Creative Commons license. Videos depicting scenes of news or dis-
cussions were collected using the tool and pre-processed to detect the active speaker
in cases of multiple ones, in order to create the in-the-wild dataset called IDLRW.
The vocabulary consists of 100 distinct words and over 48.000 video samples, each
containing an utterance of a single word, typically lasting below 1 second in duration
with the majority being 3 — 5 character words. The resolution is set to 224 x 224 and

the dataset splits follow a 7 : 2 : 1 ratio for training, validation and testing subsets.

2.3.3 Multi-Lingual datasets

The vVISWa [304] corpus was collected for multi-view isolated and continuous word
speech recognition in three languages. Although the context is Indian, the recordings
contained cover the English, Hindi and Marathi languages. It contains recordings
of 58 different speakers captured from the front, side and 45deg angles, a process
that took place in a controlled environment resulting in clear images with sufficient
illumination without reflections and other occlusions. The vocabulary of the corpus
is varied, containing names of cities, colors, months, numerals, fruits as well ass

daily communication words for all three languages. A single continuous recording

3https://github.com/google-ai-edge/mediapipe
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in 720 x 576 resolution at a frame rate of 25 FPS was performed for each speaker,
where the target words were uttered for 10 repetitions. In total, 278.360 samples
were collected from native speakers with an additional 9.000 samples obtained from
non-Native speakers uttering a set of numerals in all three languages. Furthermore,
a subset containing recordings where the speakers applied red fluorescent color to
their lips was collected in order to facilitate applications in tasks other than speech
recognition, e.g., in tracking or mouth deformations.

A multi-language dataset combining samples from LRW-1000 [39] and LRW [21]
was introduced in [183] aiming to facilitate cross-language learning for speech recog-
nition tasks. A curated selection of samples from both source datasets was selected
according to scene consistency, which encourages learning of speech-specific features
instead of appearance characteristics. Pre-processing in the form of mouth area crop-
ping guided by landmarks of the face is applied only to LRW, as the cropped regions
are already contained in LRW-1000. Since the goal is applying models trained in
this corpus to multi-lingual scenarios, for the two language categories offered (i.e.,
English and Chinese), 100 classes are used for each, with over 80,000 total samples,
balanced between the languages. The dataset is divided into three temporally-disjoint
subsets following a 9.5 : 1 : 1 split for training, validation, test, respectively.

The LRRo [227] corpus was combined with LRW [21] and LRW-1000 [39] to
form a multi-lingual subset called LRM [226] for the purpose of evaluating transfer
learning in multiple languages. Composed of the union of each respective subset of
the source languages, it contains 75.191 utterances of 141 unique words. Experimen-
tal results using this dataset in a multi-lingual training strategy showed that it can
improve the performance of models in each source language.

Contrary to standard datasets containing images of the frontal views of the speak-
ers’ faces, Zhang et al. [57] constructed a different corpus for the purposes of eval-
uating a smart necklace in realistic scenarios. The novel dataset contains images of
the neck and face captured by a built-in infra-red (IR) camera positioned under
the chin area that records deformations of the neck and face shapes during speech.
The vocabulary contains commands and digits in the English and Chinese (Man-
darin) languages, numbering 54 and 44, respectively, uttered by 20 speakers wearing
the sensor. The captured images are pre-processed to remove visual artifacts such
as clothing reflections from background lights by producing differential images of

adjacent frames as well as color and brightness masks to separate foreground from
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background. Affine transformations are applied to correct changes in rotation and
orientation that occur due to sensor movement and finally a 192 x 144 rectangle is

used to crop the image which is centered at the chin position.
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CHAPTER 3

ReEpucING THE SiZE oF EXISTING

ARCHITECTURES

3.1 Background — Temporal Convolution Networks

3.2 Parameterized Hypercomplex Multiplication Layers
3.3 Visual Speech Recognition Networks

3.4 Experiments

3.5 Discussions

3.6 Conclusion

As mentioned in the literature overview (see Chapter 2), most published works for
visual speech recognition focus on improving final word accuracy without taking into
account practical aspects such as model latency, severely limiting their applications
in time-critical scenarios. As a result, the proposed models tend to be sizable and
cumbersome, requiring a significant amount of parameters to operate at high accuracy,
which in turn demands powerful hardware for training and evaluation, restricting
their applicability in controlled environments where hardware is not a concern, e.g.
computation clusters.

Research towards improving the efficiency of existing methods or designing light-
weight and practical models for visual speech recognition is scarce in comparison.

One approach to developing lightweight architectures for speech recognition involves
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techniques that reduce the size of existing network models, thus enabling their deploy-
ment in a broader range of hardware devices with different computational capabilities
and allows for a wider adoption in various real-life conditions, as opposed to limiting
their application in controlled environments.

Neural network compression has been studied extensively by the literature and
several strategies have been proposed, including quantization, where the network’s
weights and/or activations are converted from 32-bit floating point into representa-
tions of fewer bit-depths (e.g., 16-bit or 8-bit integers), low-rank adaptation, where
trainable decomposition matrices of lower ranks are inserted in the network and
trained instead, or pruning, where parameters are removed from the model according
to a criterion.

Another similar approach to compression is knowledge distillation [99] where a
larger network is used as an additional supervisory signal during training of a smaller
one, effectively transferring its “knowledge* to a more compact architecture. The
end goal of distillation is the same as network compression, although it is achieved
by a different approach, since during distillation two networks and therefore more
hardware resources are required.

To the best of our knowledge, apart from a few approaches that adopt distilla-
tion techniques [268, 282] with the specific goal of shrinking network sizes, no other
technique for network compression has been explored in the context of visual speech
recognition. In this Chapter, we present an approach that adopts Parameterized Hy-
percomplex Multiplication (PHM) layers to compress existing architectures that are
powerful but large, effectively reducing their hardware demands measured in com-
putational complexity and storage space. In order to obtain a better understanding
and insight on how the PHM layers affect several attributes of the models, including
performance and compression, we conduct an extensive array of ablative experiments
on various components of the architectures. Our results showcase that significant
compression is achievable for a minor accuracy penalty, enabling a broader range of

applications in hardware-constrained scenarios.
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3.1 Background — Temporal Convolution Networks

In this Section, background on Temporal Convolution Networks [187, 155] is provided
since they form the core sequential processing module of all methods presented in
this dissertation.

The TCN is a fully-convolutional network, meaning it only uses convolutional and
pooling layers as its building blocks, allowing for a more streamlined training process
compared to recurrent architectures, such as the LSTM [37]. Following the architec-
tural design of Time-Delay Neural Networks [305], it is a sequence-to-sequence model
that takes advantage of 1-dimensional (1D) temporal causal convolutions applied in
the temporal dimension of its input. In a causal convolution, the output at time-step ¢
is convolved only with elements from time-step ¢ and earlier, preventing information
leakage. For visual speech recognition the TCN uses causal convolutions, but it can
function in a non-causal manner for other tasks that do not impose such limitations.
A drawback when dealing with sequences of very high length is the limited effec-
tive receptive field of the convolution operations, which is handled by progressively
increasing the dilation rate for the deeper layers, allowing them to include a wider
“view” of the input in each calculation without raising the kernel size to prohibitive
numbers that would introduce complexity and implementation issues. Despite the
simplicity of its design, the TCN has been shown to perform exceptionally well in the
task of VSR and a multitude of variants based on the basic TCN structure have been
proposed and widely adopted, effectively replacing recurrent neural networks for
sequence processing, obtaining state-of-the-art results, while being computationally
more efficient. The TCN is illustrated in Figure 3.1.

The Multi-Scale TCN (MS-TCN) is a variant proposed in [110] that aims to enhance
its effectiveness by taking advantage of short and long term information within a
sequence. In this variant, rather than using one convolution as in the original design
([155]), each block is split into branches that employ convolutions with different
kernel sizes, providing the block with several receptive fields (see Figure 3.2(b)).
Each convolution in a branch uses C'/b kernels, where C refers to number of channels
and b is the amount of branches. Their outputs are concatenated, effectively fusing
information from multiple temporal scales and retaining the original input channel
dimensions. Thus, the multi-scale architecture of the blocks allows the MS-TCN to

better model sequences, compared to the vanilla TCN architecture.
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Figure 3.1: Illustration of a Temporal Convolution Network (TCN) that uses 4 compu-
tation stages and 1D convolutions with a kernel size of 3. The dilation factor doubles
at each stage, starting from 1, allowing the later stages to process information from

more distant time steps. Left - non-causal TCN. Right - causal TCN.

Dense connections [47] were added to the MS-TCN architecture in [162] with the
aim of overcoming drawbacks of the previous design. These connections allow a con-
volution layer to receive inputs from all preceding layers within the same block. This
architecture retains the existing multiple-kernels-per-block design paradigm and in-
corporates manually set dilation rates in each block, as opposed to the previous design
that uses the same convolution hyper-parameters (kernel size, stride and dilation) for
all convolution layers within each block. Channel attention in the form of Squeeze-
and-Excitation (SE) modules [65] is added before the first convolution of each block to
improve performance. This model, named Densely Connected TCN (DC-TCN) utilizes
these dense blocks for enhanced expressive power since each layer has access to a
wider amount of information obtained by the effective receptive sizes of all previous

temporal convolutions.
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Figure 3.2: (a) Regular TCN block using two 1D convolutions and a residual connec-
tion. (b) MS-TCN block. Two groups of three separate kernel sizes are used and their
results are concatenated. The DC-TCN model adds Squeeze-and-Excitation modules
before the first set of convolutions (one module per layer) and connects several such

blocks with dense connections.

3.2 Parameterized Hypercomplex Multiplication Layers

Parameterized Hypercomplex Multiplication (PHM) layers were proposed in [306] as a
trainable network component that can replace the typical fully-connected layer found
in various neural network architectures such as the Multi-Layer Perceptron (MLP)
[307], the Long Short-Term Memory network (LSTM) [37] or the Transformer [50].

A fully-connected layer transforms its input € R%" to an output y € R%" via a

matrix multiplication and a bias offset:

y=WTx+ b, (3.1
where, W € Ré%n*dout gnd p € R%= are the weight matrix and the bias vector, respec-
tively.

A PHM layer retains the same notation but calculates the weight matrix W as a

summation of Kronecker products between a set of learned matrices:
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din o dout . .
where, A; € R™" and S; € R+ *"%" are parameter matrices, n is a hyper-parameter

defined by the user with n € Z-; that determines the number of matrices to be
summed and the dimensions d;,, d,,: are divisible by n.

The value of hyper-parameter n determines the amount of parameter sharing
within these layers and consequently controls the final layer size without altering its
output dimensionality. Due to the Kronecker product, PHM layers allow reusing of
weight parameters within the same layer leading to an overall reduction in required
trainable parameters for networks that utilize them, effectively lowering overall net-
work sizes.

The Kronecker product between any two matrices A € R™*" and S € RP*9,

indicated here by the symbol ®, is a block matrix that is defined as:

AuS ... ApS
AS=| + . 1 | eR™M (3.3)
AmS ... AnS

where A;; refers to the element at the i row and ;™ column of the matrix A. Us-
ing the Kronecker product in this fashion, it effectively enables reducing the number
of required parameters of the layer by a factor ~ 1/n compared to the standard
fully-connected layer, while keeping the same functionality and dimensions, allow-
ing for straightforward integration in existing architectures by simply replacing each
desired layer. An example of a Kronecker product between two matrices is shown in
Figure 3.3.

An extension of PHM layers, called Parameterized Hypercomplex Convolution (PHC)
layers was introduced in [308], where the same layer formulation (Equation 3.2)
is applied to the filters of convolution layers. More specifically, the operation of a

standard convolution layer is defined as:

y=Wxz+0, (3.4)

where the output y € R?*! of dimension ¢ is produced by a convolution operation (x)
of the c-channel input z € R™¢ with the weight matrix W € R>*¥**F of k x k-sized

filters and of output dimension d.
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Figure 3.3: Depiction of a Kronecker product between two matrices A and S. The
result is a matrix with greater spatial dimensions, while the sum of parameters from
A and S is smaller than that of W. PH layers exploit this principle to drastically
reduce the required parameters of a layer. The parameter sharing occurs since matrix

S participates in several calculations when obtaining matrix .

Analogous to PHM layers, A, € R™™ and S, € R#>*5%*kxk The matrices 4; and
S; are learned during training using standard back-propagation. Typically, in a con-
volutional neural network, ¢ and d assume large values compared to the filter size
k x k (where k is typically in the single digits, e.g., 3,5,7 and ¢,d in the hundreds).
Reducing c and d by a factor of n, depending on user setting, achieves a significant
reduction of required parameters for convolution layers, which are a rather expensive
component in convolutional neural networks.

The authors of [308] also demonstrate that for certain values of n, PHC layers can
learn the convolution rules from the data for various domains, such as real (n = 1)

or quaternion (n = 4).

3.3 Visual Speech Recognition Networks

The architectures used for VSR follow the standard two-component design, where
a convolutional neural network architecture extracts visual representation features
from the input sequence and a sequential model processes the temporal aspect of the
extracted features.

As a convolutional feature extractor, we use the 18-layer residual network (ResNet)

as proposed in [31], where the very first three-layer block (2D convolution, normal-
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ization and pooling) is replaced an equivalent one with three-dimensional operations
[26] to improve the model’s extraction performance for the task and the final fully-
connected layer that normally performs classification is removed. More specifically,
since the input sequence constitutes a volume with a dimensionality of T'x H x W, (a
sequence with a length of T frames, each with a spatial size of H x W pixels), the very
first layer uses a 3D convolution operation, with a kernel size of 5 x 7 x 7, followed by
3D batch normalization for training stability, a non-linear activation function (e.g., a
Rectified Linear Unit) and a 3D max pooling operation which reduces the final spatial
dimension to half, keeping computation requirements low. The 3D convolution func-
tions similarly to its 2D equivalent, however in this operation, the filters slide along
all three dimensions. A stride of 1 x 2 x 2 is used in order to further reduce the spatial
dimensions of the input (as the first value corresponds to the time dimension). The
remainder of the CNN consists of a sequence of four residual blocks following the
standard design as proposed in [31] that uses two stacks per block, with each stack
consisting of 2D convolution, batch normalization and non-linear activation layers.
In addition, each block increases the output channels of the convolution layers (ker-
nel size of 3), while a stride of 2 down-scales the feature maps. An average pooling
operation is added at the very end to further condense the spatial information.

The extracted features obtained by the CNN of first stage are fed to a sequential
model based on a Temporal Convolution Network (TCN) [155], to model the temporal
inter-dependencies of the entire sequence. In this Chapter, we use two architectures
derived from TCNs, the Multi-Scale-TCN [110] and Densely-Connected-TCN [162],
described previously in Section 3.1. At the top of the entire network, a Softmax
layer is added to predict the single spoken word from the video input. The overall

architecture is depicted in Fig. 3.4.

3.4 Experiments

3.4.1 Dataset Pre-processing

We use the Lip Reading in the Wild (LRW) dataset [21] to train and evaluate our
models. A detailed overview of the LRW corpus is provided in Chapter 2 under

Section 2.3, therefore here we only describe the pre-processing steps performed on
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Figure 3.4: The architecture of the end-to-end model used in this Chapter. An 18-
layer residual network extracts features, while sequence modeling is performed using
a TCN variant and the final classification is obtained using a Softmax layer. PHM
layers are added in the residual and temporal convolution networks, replacing the

original.

the raw data before training.

We apply a multi-step procedure of processing that is used by previous works
(e.g., [110, 162]) and is outlined below: First, a face tracking network is used to
detect the face in an image and landmarks are computed using a face alignment
network. Then, a mean face shape serves as a guide to remove size and rotation
differences and to keep images uniform throughout the training set. Cropping the
mouth regions of interest with a 96 x 96 bounding box follows and the final frame is
converted to gray scale and normalized by subtracting the mean and dividing by the
standard deviation of the training set. The first two steps of this procedure serve to
align the data, keeping the mouth area as close to the center of the image as possible,
while the final step simplifies it by reducing the channels from RGB to gray, as there
seems to be no difference in performance when using RGB images instead of gray
[110].

3.4.2 Training Setup

All model weights are initialized from random values (no pre-trained models are
used) and trained in an end-to-end manner. The total number of training epochs is
set to 100 and after each epoch the model is validated using the LRW validation set
and a checkpoint of the weights is saved. At the end of training, the best-performing
checkpoint is evaluated on the LRW test set. The optimizer used is AdamW [309]
without any warm-up steps and the loss function to be optimized during training is

the standard Cross-Entropy loss:
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c
l=-— Zyz log (i), (3.5)
i=1

where, in our case, C' = 500 which are the classes of the LRW dataset, y; represents
the ground truth class label and §; is the network prediction.

A batch size of 32 is used for all training experiments, this way each experiment
can be completed using a single graphics processing unit with at least 11G B of video
memory, which is sufficient for storing the gradients for back-propagation. When
using the Densely-Connected TCN sequence model, the initial learning rate is set to
0.0003, while for the Multi-Scale TCN model it is increased to 0.003, as we found this
offers an overall accuracy improvement of about 1%. Setting the initial learning rate
to a higher value leads to an inability of convergence, while reducing it below 0.0003
reduces the convergence time and results in lower overall accuracy at the end of the
100 epochs. During training, the learning rate is annealed using a cosine scheduler,

which at the end of every epoch scales (or decays) its value according to:

i L, ; Tur
= 777171177, + 5(77;1% - 777171”1,) (1 + cos < T 77)) ) (36)

i
where 7. and i’ are ranges for the learning rate and 7,,, measures elapsed epochs
since the last “restart”, updated at each batch iteration ¢. The value of T simulates a
warm restart once that number of epochs have elapsed, as 7; = T.,, and cos(m) = 0.
In our experiments, we follow [110] which does not use warm restarts, so 7; is always
set at the maximum number of epochs for the training run, as this scheme was found

to work best. Therefore, the above equation simplifies to:

2 max

where 7, Mmin,» Nmae Tefer to the current, minimum and maximum values of the

1 Tcur
Nt = Nmin + _<77max - 77mm) (1 4+ cos (ﬂ'T )) R (37)

learning rate, respectively, while 7;,, and 7T,,,, measure the number of iterations.
Since in our case we set the minimum and maximum values for the learning rate at

0 and 1 respectively, we finally have:

1 h
== |1+ cos P , (3.8)
2 max_epoch

with epoch referring to the current epoch in the training process (and the value
max_epoch corresponds to the total epochs that we set for each experiment. This

annealing rate is applied after every epoch.
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First, we train the models with regular layers to serve as the baselines for our
comparisons. Then, without changing their architecture, we replace all respective
convolution layers in the CNN and TCN components with their Parameterized Hy-
percomplex (PH) counterparts, which include PHM and PHC layers and begin train-
ing using new randomly-initialized weights. This training procedure is repeated for
several values of the hyper-parameter n to obtain models with varying amounts of
compression offering different degrees of compromise between accuracy and model
size. A detailed list of all hyper-parameters that are used for all experiments can be
found in Table 3.1.

For improved regularization and to increase the robustness of the models, during

training, the following data augmentation methods are performed:

* MixUp [66], where new training examples and their corresponding targets are

constructed by linearly combining existing ones.

* Random spatial cropping to 88 x 88 as well as random horizontal flipping, the

latter occurring with a probability of 0.5.

* Variable length augmentation [110] where temporal cropping is randomly ap-

plied to each sequence prior and after the target word boundaries.

Regarding the audio data, each segment is normalized to zero mean and standard
deviation of 1, to account for variations in different levels of loudness between the
speakers. Babble noise at several Signal-to-Noise levels (chosen randomly for each
batch) is also added.

All experiments are conducted using the PyTorch! framework on an NVIDIA RTX
2080 Ti dedicated graphics processor. Pseudo-random generator seeds are manually
set to 1 for PyTorch, as well as for Python’s and Numpy’s random libraries, it is therefore
possible, that a different seed could produce a higher or lower final accuracy. The
CUDNN back-end “benchmark” flag is also set to True. Parameter counts on all tables

are obtained using the torchinfo? library.

'https://pytorch.org/
2https:// github.com/TylerYep/torchinfo
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Table 3.1: Training hyper-parameters used in our experiments. The optimizer em-
ployed is AdamW.

Category Hyperparameter | Value
Learning rate 0.0003
b 0.9

Optimizer settings
B 0.999
Weight decay 0.01
Rate schedule cosine

Scheduling Maximum epochs | 100
Batch size 32
Mixup «o 0.4

Regularization
DC-TCN dropout 0.2

3.4.3 Evaluation

All models are evaluated on the LRW [21] test set. As input, a cropped center patch
of 88 x 88 is used for each image. The performance index for scoring is top-1 accuracy,
measured as the percentage of correct word classifications. Model size refers to the
trainable parameter count, measured in millions. The models are compared against
other single word VSR methods from the literature and the results are presented in
Table 3.2.

As an additional comparison, we compare our most compact methods with related
works from the literature that focus on developing low-resource models for practical
VSR applications. We consider as “low-resource” all models below 10 million overall
parameters and as “very-low-resource” all models below 5. The results are presented
in Table 3.3.

Following, since applicability of the compressed models is the overall goal, we offer
a practical evaluation of our proposed models which showcases tangible results in
conditions resembling real-world scenarios, i.e., application in a device. We evaluate
the running times using CPU and GPU with regards to model size and accuracy in
Table 3.4.
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Table 3.2: Evaluation of our methods on the LRW test set. We compare our method
with recent works from the literature. In works where multiple models were pro-
posed, we report the values obtained by the best performing model. Our models

are highlighted. SE denotes Squeeze-Excitation blocks and 1 indicates that higher is

better.
Method ‘ Parameters (x10°) | Accuracy 1
3D conv. + ResNet-18 + MS-TCN [110] 36.4 85.3%
3D conv. + SE-ResNet-18 + 3-layer B-GRU [69] 59.4 88.4% !
Alternating ALSOS + ResNet-18 + MS-TCN [160] 41.2 87.0%
3D conv. + ResNet-18 + MS-TCN + KD? [268] 36.4 88.5%
Vosk + 3D conv. + SE-ResNet-18 + 2-layer B-LSTM [64] 50.0* 88.7%
3D conv. + ResNet-18 + DC-TCN [148] 52.5 90.4%
3D conv. + ResNet-18 + MS-TCN [277] 36.0 87.4%
3D conv. + ResNet-18 + DC-TCN + MTLAM [186] 67.0* 91.7%
3D conv. + ResNet-18 + MS-TCN 36.4 87.2%
3D conv. + ResNet-18 + MS-TCN, (PH layers, N=2) (ours) 18.3 86.5%
3D conv. + ResNet-18 + MS-TCN, (PH layers, N=4) (ours) 9.4 85.0%
3D conv. + ResNet-18 + MS-TCN, (PH layers, N=8) (ours) 4.9 84.2%
3D conv. + ResNet-18 + MS-TCN, (PH layers, N=16) (ours) 2.8 83.0%
3D conv. + ResNet-18 + DC-TCN 52.5 89.3%
3D conv. + ResNet-18 + DC-TCN, (PH layers, N=2) (ours) 26.7 89.1%
3D conv. + ResNet-18 + DC-TCN, (PH layers, N=4) (ours) 13.8 88.4%
3D conv. + ResNet-18 + DC-TCN, (PH layers, N=8) (ours) 7.4 87.4%
3D conv. + ResNet-18 + DC-TCN, (PH layers, N=16) (ours) 4.8 86.5%
3D conv. + ResNet-18 + DC-TCN, (PH layers, N=32) (ours) 9.9 87.8%
3D conv. + ResNet-18 + DC-TCN, (PH layers, N=64) (ours) 33.7 88.8%
! Using word boundary information 2 KD-Knowledge Distillation * our implementation

3.4.4 Detailed Parameter Analysis

We provide a detailed overview of the parameter savings achieved per network com-
ponent as a result of substituting standard convolution and linear with PH layers
(PHC and PHM, respectively), for the networks using the DC-TCN as a sequence
model. We report measurements for the models reported in Table 3.2 that use PHM
layers in the SE modules, as well as for the models from the ablative analyses of
Tables 3.7 and 3.9. We also report the model sizes in Bytes when the weights saved

to disk, as such a value is important when considering device restrictions such as
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Table 3.3: Low-resource comparison between recent works from the literature. The
evaluation metric is word accuracy on the LRW test set. Parameter counts are shown

as reported in each respective paper. Proposed models are highlighted as “(ours)”.

Resource Setting Method Parameters (x10°) ‘ Accuracy 7
MobiVSR-1 [266] 4.5 72.2%
ViViT + RA [277] 3.9 75.6%
ShuffleNetV2 (0.5x) + TCN [268] 2.9 79.9%

“Very Low” (< 5M) | ShuffleNetV2 (1x) + TCN [268] 3.8 82.7%
ResNet18 + MS-TCN, N=16 (ours) 2.8 83.0%
ResNet18 + MS-TCN, N=8 (ours) 4.9 84.2%
ResNet18 + DC-TCN, N=16 (ours) 4.8 86.5%
MobiVSR-2 [266] 5.2 73.0%
MobiVSR-3 [266] 5.9 73.4%
MobiVSR-4 [266] 6.6 74.0%

“Low” (< 10M)

ResNet18 + MS-TCN, N=4 (ours) 9.4 85.0%
ShuffleNetV2 (1x) + DS-MS-TCN [268] 9.3 85.3%
ResNet18 + DC-TCN, N=8 (ours) 7.4 87.4%
ResNet18 + DC-TCN, N=32 (ours) 9.9 87.8%

Table 3.4: Practical evaluation of our methods presented in Table 3.2. Model size refers
to the total parameter size when saved to disk. Reported runtime is in milliseconds
(ms) and measurements are obtained with the Pytorch profiling tool using a 29-frame
gray-scale video sequence input of 88 x 88 averaged across 20 runs. The GPU used
is a NVIDIA RTX 2080 Ti, while the CPU is an Intel Xeon 3204. |,1 indicate that

lower and higher is better, respectively.

Method | Size (MB) | Runtime (GPU) | | Runtime (CPU) | | Accuracy 1
3D conv. + ResNet-18 + MS-TCN 139 111 955 87.2%
3D conv. + ResNet-18 + MS-TCN, (PH layers, N=2) 70 13.2 1005 86.5%
3D conv. + ResNet-18 + MS-TCN, (PH layers, N=4) 36 141 1155 85.0%
3D conv. + ResNet-18 + MS-TCN, (PH layers, N=8) 19 16.2 1625 84.2%
3D conv. + ResNet-18 + MS-TCN, (PH layers, N=16) 11 20.2 1590 83.0%
3D conv. + ResNet-18 + DC-TCN 201 26.5 1100 89.3%
3D conv. + ResNet-18 + DC-TCN, (PH layers, N=2) 103 29.2 1225 89.1%
3D conv. + ResNet-18 + DC-TCN, (PH layers, N=4) 54 31.0 1375 88.4%
3D conv. + ResNet-18 + DC-TCN, (PH layers, N=8) 29 34.7 1805 87.4%
3D conv. + ResNet-18 + DC-TCN, (PH layers, N=16) 19 37.3 2310 86.5%

storage, amount of memory and bandwidth.
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Table 3.5: Detailed parameter analysis per model component. Percentage reductions
are calculated from the "Standard” model. In this table, the parameters for the ResNet-
18 include the 3D convolution and batch normalization layers. Total size includes both
components as well as the Fully-Connected layer used as classifier at the end of the
network. The ”SE with PHM” column denotes whether PHM layers were used in the
SE module.

Parameters (x10°)
Model SE with PHM Size (MB) Accuracy 1
ResNet-18 DC-TCN Total

Standard layers - 11.18 40.53 52.54 201 89.3%

PH layers, N=2 5.60 (-49.9%) | 20.28 (-49.9%) | 26.72 (-49.1%) | 103 (-48.7%) | 89.1% (-0.2%)
PH layers, N=4 2.81 (-74.8%) | 10.17 (-74.9%) | 13.82 (-73.6%) | 54 (-73.1%) | 88.4% (-0.9%)
PH layers, N=8 1.42 (-87.2%) | 5.18 (-87.2%) | 7.44 (-85.8%) | 29 (-85.5%) | 87.4% (-1.9%)
PH layers, N=16 ’ 0.80 (-92.8%) | 3.21 (-92.0%) | 4.84 (-90.7%) | 19 (-90.5%) | 86.5% (-2.8%)
PH layers, N=32 0.99 (-91.1%) | 8.11 (-80.0%) | 9.94(-81.0%) | 39 (-80.5%) | 87.8% (-1.5%)
PH layers, N=64 5.18(-53.6%) | 27.73 (-31.5%) | 33.74 (-35.7%) | 134 (-33.3%) | 88.8% (-0.5%)
PH layers, N=2 5.60 (-49.9%) | 22.31 (-44.9%) | 28.75 (-45.2%) | 111 (-44.7%) | 88.8% (-0.5%)
PH layers, N=4 2.81 (-74.8%) | 13.21 (-67.4%) | 16.85 (-67.9%) | 65 (-67.6%) | 87.7% (-1.6%)
PH layers, N=8 B 1.42 (-87.2%) | 8.69 (-78.5%) | 10.95 (-79.1%) | 43 (-78.6%) | 86.6% (-2.7%)
PH layers, N=16 0.80 (-92.8%) | 6.73 (-83.3%) | 8.36 (-84.0%) | 33 (-83.5%) | 86.2% (-3.1%)
PH ResNet, N=2 - 5.60 (-49.9%) | 38.50 (-5.0%) | 44.94 (-14.4%) | 179 (-10.9%) | 89.3% (+0.0%)
PH DC-TCN, N=2 v 11.18 (£0.0%) | 20.28 (-49.9%) | 32.30 (-38.5%) | 129 (-35.8%) | 88.5% (-0.8%)
PH ResNet, N=16 - 0.80 (-92.8%) | 37.01 (-8.6%) | 38.64 (-26.4%) | 154 (-23.3%) | 89.6% (+0.3%)
PH DC-TCN, N=16 v 11.18 (£0.0%) | 3.21 (-92.0%) | 15.23 (-71.0%) | 60 (-70.1%) | % 87.2(-2.1%)

3.4.5 Audio Speech Recognition

Furthermore, we use PH layers on the audio recognition model proposed in [110]
to evaluate their performance in the same task for a different type of sequential
input. This model shares some architectural similarities with the ones used for the
VSR (see Section 3.3), namely it follows a two-component design, with an 18-layer
residual network superseded by a Multi-Scale TCN and Softmax at the end to obtain
the output word, since the goal (word recognition) has not changed. Due to the
nature of the audio signal, the residual network of this model utilizes 1D convolution
layers instead of the typical 2D and the 3D convolution at the front of the model is
removed, while the Multi-Scale TCN is unchanged. The training setup is the same
as in Section 3.4, where the standard model is trained first, followed by training the

models with PH layers for several values of the n hyper-parameter. In line with the
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previous experiments, the training process is end-to-end with a random initialization
of weights and the learning rate used is 0.003, which offers a final accuracy bonus of
0.5% compared to using an initial lower learning rate. The results after training for a
maximum of 100 epochs and a comparison with other works from the literature for

audio-only data are shown in Table 3.6.

Table 3.6: Audio speech recognition evaluation on the LRW test set. The network
architecture used is a (1D) ResNet-18 and MS-TCN. Size refers to the network size

measured in millions of parameters (x10°) and 1 indicates that higher is better.

Method Size | Accuracy 1
1D ResNet-18 + BGRU [104] 15.2* 96.7%
BLSTM + BLSTM [30] 12.4%* 97.9%
2D ResNet-18 [71] 11.6 92.2%
VGG-16 [71] 14.9 92.0%
1D ResNet-18 + MS-TCN [110] | 29.0 98.9%
PH layers, N=2 14.5 98.7%
PH layers, N=4 7.2 98.5%
PH layers, N=8 3.6 98.3%
PH layers, N=16 1.8 98.2%

* our implementation

3.4.6 Ablation Studies

The DC-TCN architecture takes advantage of channel attention in the form of Squeeze-
and-Excitation (SE) [65] modules. A SE module first generates a global embedding of
the input and then captures channel-wise dependencies with an MLP network, two
fully-connected layers and a non-linear activation function. Global average pooling is
used to aggregate feature maps across their spatial dimensions. The MLP network is
comprised of two fully-connected layers in a bottleneck design where the first layer
reduces the input channels and the second layer subsequently restores them to the
initial amount, while a non-linear activation function is applied between them. A
fixed ratio (hyper—parameter) determines the intermediate channel dimensions, with
higher ratios providing more computation savings. Finally, a Sigmoid function acts

as a gating mechanism to capture channel-wise dependencies and its activations are
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used to rescale the initial feature maps. These modules are added in the beginning
of each dense block, before the convolution operations (see Figure 3.2 (b)) and en-
able the network to selectively enhance its more useful features while suppressing
other, less-effective ones. An illustration of the Squeeze-Excitation module is shown

in Figure 3.5.

Cx1x1 C'x1x1 Cx1x1

S e

Figure 3.5: The Squeeze-and-Excitation module that is added at each block in the

DC-TCN model in our experiments. (' refers to the reduced amount of channels,

which is determined by a ratio provided as a hyper-parameter.

Since the DC-TCN uses four dense blocks of three multi-branch layers and each
layer in turn contains three SE modules (one per different kernel size), there are a
total of 36 SE modules, which amount to a non-trivial percentage of parameters in
the overall architecture. We experiment with removing the PH layers from the SE
modules specifically (keeping the standard ones) to evaluate whether the reduced
network capacity in this component which may affect the channel attention process
causes the observed drop in accuracy (Table 3.2). Training hyper-parameters remain

as before (refer to Table 3.1 for details). The results are shown in Table 3.7.

Table 3.7: Ablative analysis of omitting parameterized hypercomplex layers in the
channel attention mechanism within the DC-TCN architecture. In these models, the
3D convolution layer uses standard convolutions. Evaluation is performed on the

LRW test set. 1 indicates that higher is better.

Model Parameters (x10°) | Accuracy 1
Standard layers 52.5 89.3%
PH layers, N=2 28.7 88.8%
PH layers, N=4 16.8 87.7%
PH layers, N=8 10.9 86.6%
PH layers, N=16 8.3 86.2%
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We also experimented with using parameterized hypercomplex layers for the 3D
convolution at the first stage of the network as well and include these results in
Table 3.8. We use the same architecture as the one reported in the previous abla-
tion study, (Table 3.7), meaning that the SE modules in the DC-TCN use standard
fully-connected layers. Substituting this layer with a PH equivalent requires an ad-
ditional step of data pre-processing due to the dimensions of the non-hypercomplex
3D convolution originally used in the network. More specifically, the input tensor
undergoes a channel dimensionality expansion so that it matches with the layer. We
experimented with two different expansion methods: filling all the additional dimen-
sions with zeros (channel padding with zeros) and with repeating the values of the
single dimension (since the images are converted to gray-scale) as many times as
required; the former yielded a +1.0% increase in overall accuracy compared to the
latter. While performance is comparable to not including these layers in the first
step and higher in some cases (see Table 3.2), a drawback of this setup is the ad-
ditional computational overhead introduced by this extra pre-processing step which
slows down runtime due to the required calculations and memory. We use the same

training hyper-parameters of Table 3.1 as in the previous ablation study.

Table 3.8: Impact of using the PHC layer in the 3D convolution of the VSR model
using the DC-TCN. All convolution layers in the building blocks (3D convolution,
ResNet-18 and DC-TCN) of the architecture have been substituted with PH layers.

Evaluation is performed on the LRW test set. 1 indicates that higher is better.

Network Parameters (x10°) | Accuracy 1
Standard 52.5 89.3%
PH layers, N=2 28.7 88.4%
PH layers, N=4 16.8 88.3%
PH layers, N=8 10.9 86.6%
PH layers, N=16 8.3 87.0%

Finally, we explore how these models function when we omit parameterized hy-
percomplex layers in one of their major components, i.e., the convolutional feature
extractor or the sequence processing model. This comparison allows for a better un-
derstanding of how the PH layers affect model performance as its representation

capacity is altered by compressing individual components. Furthermore, we can in-
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vestigate where we can obtain the most benefit from using these layers depending on
the available resources, which can affect deployment strategies. For this comparison,
we use the baseline VSR architecture with the DC-TCN as a sequence model, for the
least and most compact models of our experiments, i.e., with the hyper-parameter
n set to 2 and 16, respectively. In the cases where PH layers are used in the DC-
TCN, they are used in the SE attention mechanism as well, in line with the initial
experiments reported in Table 3.2. Again, to keep comparisons meaningful, we do
not change any training hyper-parameter (see Table 3.1 for details) that might affect

the result. The results are tabulated in Table 3.9.

Table 3.9: Ablative analysis on using PH layers only in one component of the en-
tire architecture. Percentages in parentheses are calculated by comparing with the

baseline. Evaluation is performed on the LRW test set. 1 indicates that higher is

better.
Network Parameters (x10°) | Accuracy 1
Standard 52.5 89.3%
N=2, PH ResNet 44.9 89.3%
N=2, PH DC-TCN 32.3 88.5%
N=16, PH ResNet 38.6 89.6%
N=16, PH DC-TCN 15.2 87.2%

3.5 Discussions

3.5.1 Accuracy-Compression Trade-off

From the experimental evaluation (Table 3.2), substituting standard layers (linear or
convolutional) with Parameterized Hypercomplex (PH) counterparts leads to a signif-
icant parameter reduction coupled with a minor accuracy loss. The hyper-parameter
n determines the amount of compression achieved by using these layers with larger
values of n achieving high parameter savings at a corresponding accuracy reduction
as network size shrinks. The degradation in VSR performance is arguably the result
of reduced network capacity, as for this task and dataset larger models tend to per-

form better. We note that even at high compression rates (n = {8,16}), our models
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perform similarly to other larger architectures (e.g., [160, 277]) but at a fraction of
overall network size. Raising the value of n higher offers diminishing returns in terms
of compression as the dimensionality of matrix A in the PH layers increases and so
do the parameters required, explaining the larger model sizes (for n = {32,64}) as
well as the recovering of accuracy. When comparing our most compact models with
other low-parameter networks proposed in the literature, our compressed models
outperform all other works in both the under 10M and 5M parameter settings, which
demonstrates our models’ superiority for resource-constrained applications.

Surprisingly, not using PH layers in the SE module causes a further minor degra-
dation in the final accuracy, ranging from 0.3% — 1.1%, a result suggesting that these
networks do not benefit from additional parameter capacity in the attention mecha-
nism and that the convolution layers are mostly responsible for the overall perfor-
mance of the architecture (Table 3.7). This also indicates that the networks learn to
model the data more efficiently when parameters are restricted in the SE module as
well and that using PH layers in this component is beneficial for performance.

Considering the effect of PH layers on the overall performance when used in the
3D convolution as well, an additional minor accuracy drop occurs (see Table 3.8),
which, as noticed previously, can be attributed to the reduced network capacity and
supported by the observation that smaller networks generally perform worse. Since
this convolution’s output filters are few, it does not require a large amount of parame-
ters and very little savings in terms of network size can be gained when this particular
component uses PH layers. This slight degradation in network performance becomes
more evident as n and therefore compression of the overall network is increased. This
layer uses very few filters when compared to the other components (e.g. convolutions
in the later blocks of the residual network), resulting in some accuracy recovery at
n = 16 as this value actually slightly increases the total parameters of this layer. It
should be noted that this minor increase is not noticeable in the overall parameter
count (millions) of the entire model.

Moreover, when PH layers are used only in one of the two main components
of the overall architecture (either the deep convolutional visual feature extraction
network or in the temporal convolution model used for sequential processing), we
do not achieve the same parameter savings as when both components use these
layers, which is to be expected. Surprisingly, when PH layers are used only in the

residual network, the overall accuracy is not hampered and it actually improves in
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the case where n = 16, suggesting that this component is over-parameterized for this
dataset, and also that the DC-TCN, in the presence of a "weaker” convolutional feature
extractor, learns to model the data more efficiently, a result that draws parallels to the
ablative study on the SE attention modules. At the same time, the DC-TCN with PH
layers has a more profound impact on accuracy, which we attribute to the significant
compression achieved, as this network occupies the majority (~ 77.1%) of the overall
parameters of the model. These results indicate that using PH layers can offer a cost-
less improvement in accuracy alongside a modest network compression and is ideal
when the available hardware capabilities permit it.

Further experimentation can be performed by carefully tuning every layer in either
network by choosing higher values of n for layers that have high dimensionality, for
instance, the deeper layers in the residual network that use convolutions with more
output filters. Choosing an appropriate value for the hyper-parameter n on a per-layer
basis is possible and we believe would lead to even greater model compression with
a correspondent accuracy trade-off. Such a process with a goal of higher parameter
savings or a size-to-performance compromise depending on the the use-case would
require either a substantial number of experiments set manually or costly automated
techniques (i.e., network-assisted) to achieve and is outside the scope of this Chapter,
but can be explored in the future.

Finally, in the case of audio speech recognition, the accuracy lost due to net-
work compression is much less pronounced (< 1.0%), where our model with n = 16
requires a miniscule fraction of the initial network size (6.2%) for nearly identical
performance (98.9% vs 98.2%) which also out-performs other approaches from the
literature that are several times larger in size. This observation suggests that due to
the reduced dimensionality of the audio modality as well as the relevant simplicity of
the dataset with regards to its audio data (i.e., uncomplicated words and absence of

noise), large models are not necessary for achieving high audio recognition accuracy.

3.5.2 PH Layers’ Effect on Computation

We should mention a current limitation of PH layers which lies in the implementations
rather than the theoretical background. While training our models, we discovered
that although the use of such layers can achieve significant savings in model sizes, it

causes a slight increase in memory demands for the intermediate calculations of the
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sum factor. This effect is more pronounced at higher values of n which governs the
dimensions of matrices A and S as well as the amount of components in the sum (see
Equation 3.2) and also depends on the total number of layers in the overall network.

However, the evaluation presented in Table 3.4 showcases that in practice, the
penalty in latency due to the computational overhead of the PH layers is not a sig-
nificant factor. More specifically, when using a graphics accelerator, the difference
in running speeds is negligible (< 11 milliseconds), even at the higher compression
rates. On the contrary, this effect is more noticeable when inference is executed in a
CPU.

We speculate that this is caused by the fact that graphics processing units are heav-
ily optimized specifically for convolutions and matrix multiplications either through
software libraries or via specialized hardware (such as Tensor cores), while a CPU
can not take advantage of multiple cores the same way a GPU can for the same ben-
efit. The current implementations of the Kronecker product do not seem to utilize
parallelization or other linear algebra optimizations, unlike convolutions, that could
potentially solve these latency issues. Hardware-specific solutions as well as software
optimizations would enable real-world applications of these layers in devices with

low memory footprint.

3.5.3 Comparison with Other Compression Methods

As mentioned previously, this approach falls under the general area of network com-
pression where several other techniques have been proposed. Compared to other
approaches such as knowledge distillation or model pruning, we can note various
benefits of our method. Unlike distillation, where a trained teacher model is typically
required to train the student and needs to be trained first, parameterized hypercom-
plex layers have no such requirement, simplifying the training process and lowering
its computational demands, as only one model is necessary. Moreover, training with
distillation is often not as straightforward, since the temperature hyper-parameter T'
needs careful tuning, not to mention additional loss factors that are often necessary
to adapt the student to the teacher. Balancing the distillation loss with the overall
loss factor is also an issue that is not straightforward.

Following, in contrast to pruning methods, a significant difference is that the re-

sulting models actually demonstrate reduced parameter sizes, rather than inducing

114



sparsity by zeroing the pruning parameters, which retains the original model sizes.
The reduced size allows for applications by devices with hardware limitations such
as memory and storage. Simultaneously, some pruning approaches rely on a sparsity
budget which determines the overall model compression. Setting an overly aggressive
budget could potentially significantly lower overall performance, while a conservative
one might not result in a meaningful compression. In this way, the benefit of these
layers lies in their flexibility when setting the hyper-parameter n (which functions
as a “compression budget”) and can strike a balance between performance and com-
pression. Adding to this, an additional limitation of model pruning presents itself in
the inability of frameworks to fully take advantage of sparse tensors and operations,
which ultimately does not offer an additional benefit at runtime. In contrast, our
compressed models exhibit very similar running speeds compared to the baselines
even at very high compression rates, as shown in Table 3.4.

In terms of results, to the best of our knowledge, no works exploring pruning
techniques in the context of visual speech recognition have been published, therefore
more studies are needed to accurately compare these two approaches. In the case of
distillation, our models outperform methods such as [268], where the authors apply
several iterations of distillation, which is a rather time-consuming process and re-
quires an already trained model that performs well. In contrast, our method follows
the straightforward standard training procedure for supervised learning. Overall, our
results inspire confidence in the capabilities of hypercomplex layers for model com-
pression as the accuracy trade-off is minor compared to the achieved reduction in
model sizes, which does not overly affect runtime. From a theoretical, as well as
a practical standpoint, hypercomplex layers demonstrate strong potential for practi-
cal visual as well as audio speech recognition and pose a viable alternative to other

compression methods.

3.6 Conclusion

In this Chapter, we explored how Parameterized Hypercomplex Multiplication layers
can be utilized to develop lightweight models for the task of visual speech recogni-
tion. These layers achieve sizable network compression through parameter savings by

exploiting a sum of Kronecker products that retain the original layer dimensionality
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while sharing parameters, effectively shrinking the size of the network, depending on
user demands. We proposed taking advantage of these layers by replacing standard
network components in established architectures for the task of single word visual
speech recognition. Extensive experimentation was conducted for several compression
rates and evaluation was carried out on the largest public dataset of isolated English
words. Our results showcase that when these layers are used in place of their standard
counterparts in a VSR architecture, significant reduction in model size is achievable
for a minor accuracy trade-off. When compared to other works in the literature, our
models require fewer parameters to operate for comparable accuracy, especially for
audio-only recognition. At the same time, our more lightweight models outperform
other works with similar amounts of parameters. Future work includes exploring
automated hyper-parameter tuning strategies as well as training and initialization

schemes to further improve performance and compression.
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CHAPTER 4

UtiLizing CosT-EFrFiciENT COMPONENTS

4.1 Methodology
4.2 Proposed Model
4.3 Experiments
4.4 Ablation Studies

4.5 Conclusion

While model compression is a successful approach to reduce existing network sizes,
in practice we find that deploying the final models offers little additional benefit
in terms of running speeds. This observation stems from the absence of specialized
hardware implementations that are able to take advantage of the compressed net-
works, especially in the case of PH layers that rely on the calculation of a Kronecker
product, which might not be optimized. A similar effect can be noticed in the case of
network pruning, where the induced sparsity is not exploited by the existing imple-
mentations and does not improve the running speeds of the resulting models since
they maintain a high weight or neuron dimensionality (with large amounts of zeros).
Specific software and hardware is required to fully utilize the compressed models
with PH layers, as the required calculations involve a computation of a summation
factor, which complicates memory requirements, especially with larger values of n
that controls the amount of operands to be summed as well as the dimensions of the

matrices that interact in the computations.
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Considering the above, in this Chapter, we explore a different approach to model
compression which encompasses utilizing components that achieve a two-fold effect,
model compression as well as reduction in required computations. Our goal is to
not only develop more compact models with reduced size, but also to enable more
applications in real-world scenarios by deployment in devices with limited hardware
capabilities. A pre-requisite for the latter is manageable computational overhead,
which is typically measured in floating point operations and is used as an evaluation
metric for networks in various computer vision tasks. In fact, as storage tends to be
cheaper than available computation capacity, especially in cases of GPUs, developing
lightweight architectures that can be effectively utilized by even CPUs is of paramount
importance, as it can facilitate an even wider adoption and decouple the demand for
large hardware clusters.

To that end, we develop lightweight architectures for visual speech recognition,
by taking advantage of cost-efficient neural network modules that lower the overall
computation costs. We design deep neural networks by utilizing cost-effective network
components that take advantage of operations with low computational overhead.
Our proposed models benefit from low sizes in terms of required parameters as
well as reduced computational complexity, making them ideal for various practical
applications. We conduct an extensive experimental analysis which showcases that
our models feature greatly reduced hardware demands, without compromising their
accuracy.

In summary, our contributions are the following;:

* We employ Ghost modules in a unified word VSR architecture by replacing the
standard convolutions in its components (visual feature extractor and sequence
model) in order to reduce its overall computational overhead. Using Ghost
modules, we further reduce the running costs of two established temporal con-
volution architectures that are used for sequence modeling, resulting in models
that are even more lightweight than their standard versions and achieve compa-
rable accuracy. The final architecture still performs very competitively compared
to the original, while being less demanding in resources, measured in terms of

model parameters and computational overhead.

e We also design a temporal block architecture, named Partial Temporal Block, that

splits the input volume in two parts and applies separate operations in each
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part. Using this component as a building block, we follow three methods from
the literature and develop highly efficient temporal convolution networks for

sequence classification aimed at applications with very low resources.

¢ We perform extensive experiments on the largest publicly-available dataset for
English words and our results showcase strong visual speech recognition per-
formance. Simultaneously, our proposed models are practical in terms of hard-
ware demands, as showcased in a detailed ablative analysis, allowing for several

applications by devices with varying computation capabilities.

4.1 Methodology

4.1.1 Ghost Modules

Ghost modules were proposed in [275] as a component that takes advantage of “cheap
operations” to reduce its computation cost compared to the standard convolution
layer. A Ghost module achieves low resource overhead in two steps. First, a regular 1x
1 convolution generates a set of feature maps from the input. A fixed ratio determines
the number of channels in the generated feature maps, controlling the computation
cost of the component. Typically, the ratio is set to 0.5 meaning that channels in the
produced feature maps equal half of the input volume’s channels.

A “cheap operation” utilizes these intermediate feature maps to produce an ad-
ditional set with the same channel size. The role of the cheap operation can be
undertaken by any lightweight function; in the Ghost module, a depth-wise convo-
lution with a kernel size of 3 x 3 is used. This convolution operates on each filter
and processes the spatial information it contains, while preserving the amount of
channels. Finally, the two distinct feature maps are concatenated along the channel
dimension, meaning that the output volume matches the input’s channels.

Compared to the standard convolution operation, this formulation reduces the
total amount of computation required since the initial 1 x 1 convolution generates
a feature map with fewer channels and the depth-wise operation, which is much
cheaper computationally, is also applied on this volume rather than the whole input.
By preserving the original output size of a convolution layer, a Ghost module can act

as a drop-in replacement for that layer to reduce the computational overhead in a
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network architecture. The operations of the Ghost module can be summarized as:

X1 = non — linearity(normalization(Convyx1(X))) (4.1)
Xy = non — linearity(normalization(DConvsx3(X1))) (4.2)
Out = concatenation([ X1, Xa)), (4.3)

where X refers to the input volume and DW Conv to the depth-wise convolution.

In the Ghost module, Batch Normalization is used and non-linearity is handled by
a rectified linear unit (ReLU) layer, although any function can be used (e.g., ReLUS,
SiLU, etc.). Its hyper-parameters include input and output channels, cheap operation
(depth-wise convolution) kernel size as well as a factor that controls the amount
of intermediate channels produced by the point-wise convolution which ultimately
governs the amount of computation reduction. The Ghost module is depicted in
Figure 4.1(a).

Computational Complexity of Ghost Modules

Assuming a regular 2D convolution with a kernel size of k, C; input and C, output
channels respectively, when applied to an input volume with spatial dimensions of

H; x W, it produces an output volume of H, x W, x C, with a computational cost of:
H, W,-C;-C,-k-k. (4.4)

In contrast, a depth-wise convolution uses one filter per input channel (also called
input depth) and costs:
Hy, W, -C;-k-k. (4.5)

From the above two equations, it can be seen that the depth-wise convolution reduces
the computational costs when replacing a standard convolution with the same hyper-
parameters.

The depth-wise convolution only spatially filters the input channels without com-
bining them, unlike the standard convolution, therefore, it is typically followed by an
additional layer that performs this linear combination through a regular convolution
using a kernel size of 1 x 1, which is also known as a point-wise convolution, with a
computational cost of:

H-W-C-C,, (4.6)
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for an input feature map of dimensions H x W x C;, that will be transformed into an
output feature map of dimensions H x W x C,. Parameter-wise, the regular convolution
requires C;-C, - k- k trainable parameters, whereas depth-wise and point-wise require
C; -k -k and C; - C,, respectively. This combination is called a depth-wise separable
convolution and is the cornerstone of several lightweight model designs, e.g., [61,
310, 81] etc.

The computation costs associated with the Ghost module using a cheap operation
with a kernel size of £ on an input volume with C; channels, producing an output of

dimensions H, x W, x C, are:

%(HO-WO~Ci-k-k)+(s—1)%(H0-Wo-k-k)—%(Ho-Wo-k-k)(Ci+(s—1)). (4.7)

When substituting a regular convolution layer with the Ghost module using a cheap
operation with the same kernel size (e.g. 3 x 3), the theoretical speed-up that can be

achieved is:
H, W,-C;-C,-k-k s-C;

C(H, W, k-k)Cit(s—1) Cits—1 "

In these two equations, s represents the ratio of the block, which practically controls

(4.8)

the output of the initial 1 x 1 convolution as well as that of the subsequent cheap
operation, since at the end of the block, the outputs are concatenated, matching the

original output dimension.

4.1.2 Ghost Module V2

A drawback related to the representation capabilities of the Ghost module arises from
the fact that the initial 1 x 1 convolution reduces the feature map channel dimension-
ality (to half) in order to keep the costs of the module low. Subsequently, the second
(3 x 3 depth-wise) convolution operates on a sub-set of the input feature map and
might miss some spatial relationships that would otherwise be captured by operating
on the full input volume. Since half of the final feature map in the output of the
Ghost module is produced from the 1 x 1 convolution without any spatial interac-
tion between the pixels, the performance of the module is hampered. To alleviate
this weakness, the authors of [311] propose an enhancement called DFC attention
which aims to exploit long-range spatial information, augmenting the Ghost mod-
ule’s intermediate features with richer representations that were lost by the original

design.
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The DFC attention module aims to improve representation capabilities by exploit-
ing spatial information through attention. It utilizes two fully-connected layers which
are applied to the input features in a sequential manner, spanning both the vertical
and horizontal directions and aggregating the features in each direction. By operat-
ing sequentially on the two different directions instead of simultaneously on a square
area, the computational complexity of the attention module is kept low.

Initially, the input feature map is spatially down-sampled both vertically and
horizontally with a pooling operation which shrinks the spatial dimensions by half.
Since the subsequent layers operate on feature maps of smaller size, the required
computations are reduced significantly. Then, the fully-connected layers are applied in
a sequential manner, first the vertical (column-wise) layer, followed by the horizontal
(row-wise) layer. Finally, the produced feature map passes through a function to
scale its values in the (0, 1) range, producing an attention map and an up-sampling
operation restores the original spatial dimensions. The following equations show the

DFC module’s operations on an input volume X:

X; = pooling(X) (4.9)

Xy = normalization(Convyx1(X1)) (4.10)
X3 = normalization(Convyx5(Xa2)) (4.11)
X4 = normalization(Convsyx1(X3)) (4.12)
X5 = non — linearity(Xy) (4.13)

The DFC module is implemented with a pooling operation that averages the
values, while the non-linearity at the end is handled by a Sigmoid function. Adding
DFC attention to the Ghost module incurs an increase in parameter size due to the
additional convolutions but only a slightly higher computation cost in FLOPs. More
specifically, this component’s complexity is O(H? - W + H - W?), where H and W are
the dimensions of the weight matrices for each fully-connected layer that operates in a
single dimension of a feature map with spatial dimensions of H x W. By substituting
the fully-connected layers with two depth-wise convolutions of kernel sizes 1 x Ky
and Ky x 1, the complexity further reduces to O(Ky - H - W + Ky - H-W). In
contrast, operating on a square patch requires a complexity of O(H? x WW?), which
is prohibitively expensive since it scales quadratically as it relies on the dimensions

of the intermediate feature maps. The Ghost V2 module which includes the original
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with the addition of DFC attention is depicted in Figure 4.1(c).
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Figure 4.1: Illustration of the Ghost modules. BN indicates the Batch Normalization
operation, ReLLU indicates the Rectified Linear Unit function, DW refers to the depth-wise
convolution, while o is the logistic Sigmoid and © is the element multiplication sign.
(a) Original Ghost Module. (b) DFC attention. (¢) Ghost Module with DFC attention.

4.1.3 Partial Temporal Block

Reducing the size of the input feature map and operating on the result is an effective
approach to reduce the computational overhead of a network component that has
been followed by several lightweight networks (e.g., [61, 310]). Within a network
block, using the initial layer to reduce the channel dimension of an input volume and
applying the subsequent layers in the smaller output allows controlling the amount
of calculations and enables the development of lightweight network components with
low operating costs. An additional operation, commonly the final one in a block,
restores the channel dimension to match that of the input, usually in order to facilitate
a residual connection. This design is known as a bottleneck, since the intermediate
feature maps have a lower number of channels.

A similar approach [185, 312, 313] splits the input feature map across the channel
dimension in two parts according to a fixed ratio and applies two separate branches of
computation, one in each part. The operations in either branch can have any form, for

instance, in [313] a regular convolution followed by two point-wise layers is applied
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on one branch, while the second branch leaves the input unchanged. To form the
output, the results of each separate branch are merged along the channel dimension
via concatenation.

Inspired by the practicality and results of methods following this paradigm (e.g.,
[185, 313]), we design the Partial Temporal Block, a 1D equivalent which follows the
same principle. Our block allows for a wide network design flexibility as it can be
tailored to each specific application constraints (e.g., hardware capabilities, dataset
availability and size) and can even be part of a search space, in order to automatically
obtain the most optimal setup (e.g., via a NAS method), depending on the problem.

For an input volume X, the operations of the partial block can be summarized as:

X1, Xo = channel — split(X)
F(Xy)
G(X2)
X, = concatenation([Xs, X4])

Xout - Xc + X, (414)

where the channel split operation divides the input in two parts along the channel
dimension according to a fixed ratio, /' and G can be any type of operation, including
sequences of layers and the final concatenation merges the output of each branch
in the channel dimension. A skip connection adding the input is also included to
facilitate easier training of deep architectures. The block architecture is depicted in
Figure 4.2 (a).

Furthermore, following the designs of [185] and [313], we design two additional
lightweight partial temporal blocks that require few parameters and have very low
computational overhead in terms of FLOPs. Their operations as used within our
proposed block are depicted in Figure 4.2 (b) and (c). We note that, for the Shuf-
fleNet [185] block design, a channel mixing operation is added at the very end (after
concatenation and addition), while for the FasterNet [313] block design, the MLP
network is applied after concatenation of the branches but before adding the input

to the concatenated tensor via the skip connection.
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»PD C

Figure 4.2: Block designs used in the proposed Partial Temporal Block. (a) Block
architecture, where C' represents the amount of channels of the input volume to
each component and C’ is determined by a hyper-parameter. (b) ShufleNet block
architecture. (c¢) FasterNet block components. “DW” and “PW” indicate depth-wise
and point-wise convolutions. “BN” is the Batch Normalization layer and “Act” is an

activation function (e.g., ReLU).

4.2 Proposed Model

The architecture of our proposed model follows the two-step design (feature extrac-
tion and sequence modeling) paradigm for the VSR task and its structure is depicted
in Figure 4.3. For feature extraction and sequence modeling, we employ lightweight
models based on Ghost modules to greatly reduce network overhead and keep com-
putations at an affordable level. In addition, we utilize our proposed partial temporal
blocks in TCN-based architectures building practical models suitable for scenarios
with limited resources or low-powered hardware. At the end of the entire network, a
fully-connected layer maps the output channels of the sequential model to the classes
of the dataset (500 in our case) and a Softmax layer predicts the single spoken word

from the video input.

4.2.1 Feature Extraction Model

3D spatio-temporal sub-network. Due to the dimensionality of the input sequence,

which consists of a 3D volume 7' x H x W (T frames of dimensions H x W), at the
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Figure 4.3: Overview of the architecture used for visual speech recognition. We add
Ghost modules in the feature extraction network and experiment with a customized
architecture. For the sequence model, we employ TCN variants with Ghost modules
and our proposed Partial Temporal Block. The Softmax function is used as the clas-

sifier. The overall system outputs a spoken word.

beginning of the feature extraction networks we add a layer stack composed of a
3D convolution, batch normalization, non-linear activation and pooling layers. A 3D
convolution’s filters operate and move along all three dimensions and the same is
true for the pooling operation within this sub-network. In our architecture, the kernel
size of this convolution is set to 5 x 7 x 7, with 5 corresponding to the time dimension
and the output has 64 channels. The form of operation that sub-samples the spatial
information selected is average pooling. This sub-network is a widely-used choice in
the literature as its computational overhead with regards to its performance benefit
is quite low due to the small dimensions of the produced feature map.

Ghost-ResNet. Next in the architecture is a CNN visual feature extractor which outputs
high-level representations of the input sequence, containing spatial information about
the mouth area and both modules comprise the first stage of the overall end-to-end
model. We design a customized residual network derived from the original [31] that
is widely adopted by other works in the visual speech recognition literature. It follows
the same 18 layer structure organized in four stages, where the output channels double
at each stage, starting from 64. In each stage, the base network uses two residual
blocks, each containing two stacks of 2D convolution, normalization and non-linear
layers and the input is connected with the output through a skip connection. Since
the later blocks have a high dimensionality, we employ the original Ghost module and
the improved variant with DFC attention to improve the networks’ efficiency. Without
changing its structure, the lightweight Ghost modules are used in place of the standard
convolutions in each residual block, greatly diminishing the computation overhead
of the entire network. A comparison showcasing the parameter and computation

reductions obtained by utilizing the Ghost modules is provided in a later Section.
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4.2.2 Sequence Modeling Networks

The extracted features that are obtained by the convolutional networks in the first
stage are fed into a sequential model which serves as the second stage of the over-
all visual speech recognition network. The model’s architecture is derived from the
Temporal Convolution Network that is widely adopted in the literature for visual speech
recognition, replacing older recurrent models such as the LSTM or RNN, due to its
lower computational overhead and smoother training process that offer state-of-the-
art performance [155].

Ghost TCNs. In this Chapter, we use the architectures of Multi-Scale (MS) and Densely-
Connected (DC) TCNs, as proposed in [110] and [162], respectively. Both of these
architectures share some common characteristics, including the use of 1D standard
convolutions and are designed with four temporal blocks, with each block using three
parallel connections with two stacks of 1D convolution, batch normalization and non-
linear activation layers. While the MS-TCN uses a dilation rate that is scaled according
to the block index and shared by all convolutions within each block, the DC-TCN opts
for fixed dilation rates for each convolution in all blocks. Due to the high costs of
these models, we replace both layer stacks in each temporal block with our proposed
lightweight layers using Ghost modules instead, to produce more efficient networks
with reduced parameters and computation costs. To adapt the Ghost modules to 1D
feature maps, we apply small modifications to the convolution and normalization
layers. In these networks, as the inputs and the generated feature maps are all one-
dimensional, the previously-mentioned DFC attention module cannot be utilized since
it operates on two dimensions, therefore we only adopt the original Ghost modules
without the DFC attention mechanism. We employ both TCN architectures in our
experiments to evaluate the performance of Ghost modules in distinct network setups
with different model size and performance.

Partial TCNs. Moreover, using our proposed Partial Temporal Block as the basic
component in a TCN architecture, we design lightweight sequence-to-sequence mod-
els with very low computation requirements that are ideal for low resource scenarios.
As a baseline model, we employ the standard Temporal Convolution layer [155] as
the core of our block, applied in one branch. This layer uses a sequence of 1D causal
convolutions with batch normalization and non-linear activation functions, repeated

twice. The other branch uses no operations, greatly reducing the computational over-
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head of the block. The overall architecture is comprised of four stages, where each
stage is one Partial Temporal Block with an increasing dilation rate that is used in the
non-point-wise convolutions. This way, the entire network is especially lightweight
in terms of hardware requirements (a detailed parameter analysis will be provided
below). Moreover, we design two additional lightweight TCNs based on [185] and
[313] (see Figure 4.2 (b) and (c)) that are also comprised of four main stages and

have very low computational overhead measured in model parameters and FLOPs.

4.3 Experiments

4.3.1 Training Setup

All models are trained from randomly initialized weights on the LRW training set (see
Chapter 2). We train for a total of 80 epochs with AdamW [309], using a batch size of
32. An initial learning rate of 0.0005 with a cosine annealing schedule is used, without
any warming up period. To prevent over-fitting, weights are decayed by 0.0001 and
dropout is added to the TCN layers for all models with a probability of 0.2. During
training, spatial cropping and flipping are randomly applied, as well as MixUp [66]
and variable length augmentation [110]. After each epoch, the model’s weights are
evaluated on the LRW validation set and the best performing checkpoints are saved

to be evaluated on the test set after finishing all epochs.

4.3.2 Results & Discussion

Our proposed models are evaluated in the LRW test set and a comparison with other
models from the literature is provided in Table 4.1. The metric used to evaluate the
methods is word accuracy, measured as a percentage of correct word predictions. We
also include size and model complexity measurements, more specifically, the amounts
of total network parameters and Floating Point OPerations (FLOPs), as these values
are useful to gauge the overall practicality of the methods when considering several
applications. More detailed, per-model overviews are provided in Tables 4.5 and 4.6.
As in the previous Chapter, PyTorch was used to develop all models and torchinfo was
employed to obtain measurements regarding model size and complexity.

Our experimental evaluation showcases that utilizing the Ghost modules on each
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Table 4.1: Experimental evaluation on the LRW test set and comparison with recent
methods from the literature. Results are sorted by computational complexity. “FLOPs”
refers to Floating Point OPerations, “(G)” indicates that the model is using Ghost

modules. Models proposed in this Chapter are highlighted.

Method (Models used) FLOPs (x10°) Parameters (x10%) Acc. 1 (%)
ShuffleNet v2 (1x) + MS-TCN [268] 2.23 28.8 85.5
ResNet + MS-TCN [110] 10.31 36.4 85.3
MobiVSR-1 [266] 11.0 4.50 72.2
ResNet + DC-TCN [162] 10.64 52.54 88.3
ResNet + DC-TCN [148] 10.64 52.54 90.4
ResNet + 3xBi-GRU [69] 10.54 59.5 88.4
ResNet + 2xBi-LSTM [64] 10.24 50.07 88.7
DenseNet + 3xBi-GRU [39] 26.12 14.31 83.0
ResNet (G) + MS-TCN 2.31 25.58 87.16
ResNet (G) + MS-TCN (G) 1.78 14.29 86.24
ResNet (G) + DC-TCN 2.67 41.77 88.72
ResNet (G) + DC-TCN (G) 2.03 27.04 88.17
ResNet (G V2) + MS-TCN 2.53 26.86 88.42
ResNet (G V2) + MS-TCN (G) 2.00 15.57 86.16
ResNet (G V2) + DC-TCN 2.88 43.05 88.52
ResNet (G V2) + DC-TCN (G) 2.25 28.32 87.98
ResNet + MS-TCN (G) 9.76 25.06 87.87
ResNet + DC-TCN (G) 10.01 37.81 89.10

component of the architecture (feature extraction or sequence model) bestows a no-
ticeable improvement in computation requirements, since the cheap operations in the
Ghost module are much more efficient than the regular convolutions in the origi-
nal networks. In addition, we gain significant savings in model sizes by lowering
parameter counts leading to more compact final models, allowing for applications
in a broader range of devices as network size is essential for energy savings due to
mMemory access COsts.

Simultaneously, a minor accuracy drop occurs arguably due to the reduced rep-
resentation capabilities of the Ghost module, which is a drawback also mentioned

in [311]. Nevertheless, the residual convolutional network [31] equipped with Ghost
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modules still performs rather well, being highly competitive with larger networks and
it surpasses other works while being more lightweight in terms of both parameter size
and computation. Employing Ghost V2 modules in the residual architecture causes
an increase in model parameters due to the design of DFC attention which uses
two additional convolution layers (see Equation 4.9). However, this added amount
is offset when combined with a TCN variant that also uses the Ghost module as
its building block, so the overall parameter count drops and is still lower than the
baseline network.

The Ghost V2 module provides a minor accuracy improvement when combined
with a MS-TCN and with a DC-TCN with Ghost modules, falling behind the original
Ghost module in other setups. The improved performance over the original Ghost
module can be explained by the larger network size, due to the design of this block
which is less efficient in terms of model size and FLOPs. We observe that when using a
densely-connected (DC-TCN) [162] sequence model, it outperforms the original only
when Ghost modules are also used in the TCN. These results indicate that due to the
low spatial dimension of the input, the DFC attention is underutilized in some cases
and provides a benefit when combined with a highly efficient sequential model.

A more evident benefit of these modules is the considerable reduction in FLOP
count when used in the feature extraction network, which can be more preferable
than parameter savings in some scenarios (e.g., for hardware with adequate memory
but a low-power processing unit). Depending on the available resources of a device,
a model where only one component utilizes Ghost modules can be used to suit the
application.

When using Ghost modules in the Temporal Convolution Network variants, the
already lightweight TCNs are made even more compact by further reducing their size
and FLOPs. More concretely, when replacing the standard convolution layers with
Ghost modules in the MS-TCN model, we notice a reduction in overall GFLOPs by
0.53, while the parameter count drops by about 11.2 million. Similarly, in the TCN
variant with dense connections, using Ghost modules reduces the total parameter
count by around 35%, while the computation cost drops by 0.6 GFLOPs, yet the model
still maintains a high recognition accuracy. Table 4.5 shows a more comprehensive
comparison of hardware requirements per network component when using the Ghost

modules.
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4.3.3 Partial TCNs

We evaluate the Temporal Convolution Network variants on LRW when using our
proposed Partial Temporal Block as their core component. For brevity, we name
these network variants as Partial TCNs (P-TCN). As mentioned previously (see Sub-
section 4.1.3), we employ three architectures from the literature ([155, 185, 313])
within our block. When combined with the residual network with Ghost modules,
highly lightweight models can be produced that still achieve strong accuracy. The

results are shown in Table 4.2.

Table 4.2: Experimental evaluation on the LRW test set for our methods using the
proposed Partial Temporal Block. In these experiments, the kernel size for all convo-
lution operations that are not point-wise is shown. “FLOPs” refers to Floating Point
OPerations and parameters are measured in millions (x10°). “(G)” indicates that the

model is using Ghost modules.

Method FLOPs (x10?) Parameters Accuracy 1 (%)
ResNet + P-TCN (Temporal block, k=7) 9.59 22.80 85.29
ResNet (G) + P-TCN (Temporal block, k=5) 3.27 11.22 83.05
ResNet + P-TCN (ShuffleNet block, k=5) 9.20 13.85 84.44
ResNet (G) + P-TCN (ShuffleNet block, k=3) 3.05 5.50 81.93
ResNet + P-TCN (FasterNet block, k=3) 9.36 20.56 87.03
ResNet (G) + P-TCN (FasterNet block, k=3) 3.20 12.23 86.48

4.4 Ablation Studies

We perform an ablation analysis experimenting with the channel ratio used in the
partial temporal block within the TCN-based sequence models. This parameter con-
trols the balance between the channels of each computation branch when splitting
the input feature map. In this experiment, we use the FuasterNet [313] formulation
(Figure 4.2 (¢)) as the core of our Partial Temporal Block, since it outperforms the
other two methods. In this setup, one branch has no calculations and therefore no
computations, meaning that the ratio controls the amount of calculations per block;
a higher ratio provides more channels to the resource-intensive branch, increasing

overall performance at the cost of overhead and vice-versa. For feature extraction,
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we employ two CNNs: the standard 18-layer residual model [31] and the lightweight
version with Ghost modules. We train all models with the procedure mentioned in

Subsection 4.3.1 and the results are shown in Table 4.3.

Table 4.3: Ablation analysis on the channel ratio in the partial block. Evaluation is
performed in the LRW test set. “FLOPs” refers to Floating Point OPerations (x10?).

Parameters are shown in millions (x10°%).

Method ratio FLOPs Param. Accuracy 1 (%)

0.25  9.30 18.9 85.21
ResNet + P-TCN (FasterNet block) 0.5 9.32 19.5 85.37

0.75  9.36 20.5 87.03

0.25  3.14 10.6 82.30
ResNet (G) + P-TCN (FasterNet block) 0.5 3.16 11.2 85.40

0.75  3.20 12.2 86.48

Using a higher ratio, as one would expect, leads to greater overall recognition
accuracy, since, after splitting the input tensor, the branch that performs calculations
receives a larger volume and operates on a higher percentage of the input, exploiting
information from more channels. This is accompanied by a slightly higher FLOP
and parameter count of the TCN-based models, which is not significant, especially
when using the Ghost module, which greatly shrinks the overall costs. Increasing
the ratio from 0.25 to 0.75 only adds 0.05 GFLOPs and 1.6 million parameters while
raising accuracy by 1.82% to 4.18%, depending on the feature extraction model. The
highest ratio (0.75) allows the CNN with Ghost modules to achieve large accuracy
gains, surpassing several networks that are much more expensive.

We also perform an additional experiment where we increase the kernel size of
the convolutions in each block, in order to provide the network with a larger effective
receptive field and tabulate the results in Table 4.4. For this experiment, we evaluate
the Temporal [155] and ShuffleNet [185] architectures in our block and set the ratio to
0.75 as it offers the best performance for a negligible impact in computation overhead.
As before, we keep the previous training settings.

Generally, using a larger kernel size improves recognition accuracy while slightly
raising computation overhead due to the amount of calculations required by the larger

kernel. We note however, that this does not apply to all cases, for instance when using
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Table 4.4: Ablation analysis on the kernel size used in the branch that performs
operations in the Partial Temporal Block. Evaluation is performed in the LRW test
set. “FLOPs” refers to Floating Point OPerations (x10%). Parameters are shown in

millions (x10°). “(G)” indicates that the model is using Ghost modules.

Method kernel size FLOPs Param. Acc. 1 (%)

3 9.30 16.31 82.75
9.43 19.55 83.78

ResNet + Partial TCN (Temporal block)

7 9.59 22.80 85.29
9 9.80 26.04 84.10
3 3.14 7.98 81.19
5 3.27 11.22 83.05
ResNet (G) + Partial TCN (Temporal block)
7 3.44 14.46 82.64
9 3.64 17.71 83.07
3 9.20 13.84 83.65
5 9.20 13.85 84.44
ResNet + Partial TCN (ShuffleNet block)
7 9.20 13.86 84.13
9 9.20 13.87 83.37
3 3.05 5.50 81.93
5 3.05 5.52 81.92
ResNet (G) + Partial TCN (ShuffleNet block)
7 3.05 5.53 81.57
9 3.05 5.54 81.68

the ShuffleNet block a larger kernel size than 5 (e.g., 7,9) does not improve accuracy
and in fact hampers performance when the residual network with Ghost modules is
used. For a more clear overview of the complexity that each component adds to the
overall measurements, the reader is referred to Section 4.4.1.

As for the TCN using the Temporal block [155], it scales better with a larger
kernel size, improving its performance, compared to the ShuffleNet block, however,
this network’s FLOPs and parameters increase at a much higher rate since it uses
regular convolutions. The same diminishing effect in accuracy gains is noticed for the
largest kernel sizes. Similar to the results shown in previous tables (e.g., Table 4.1),
when Ghost modules are used in the convolutional feature extraction network, signif-
icant reductions in computation and sizes are gained, while the final accuracy suffers

slightly.
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4.4.1 Parameter Analysis

In addition, we tabulate all measurements related to network size and complexity
for all proposed architectures in this Chapter in Tables 4.5 and 4.6, showcasing the
efficiency gained by using Ghost modules and our proposed Partial Temporal Block

when designing lightweight networks.

Table 4.5: Detailed parameter analysis per network component. The proposed Partial

TCN using the FasterNet block is also added for comparison.

Model FLOPs (x10%) Parameters (x10°)
ResNet 8.29 11.16
ResNet (Ghost module) 0.31 (-96%) 0.39 (-96%)
ResNet (Ghost V2 module) 0.52 (-93%) 1.67 (-85%)
MS-TCN 1.12 25.17
MS-TCN (Ghost module) 0.59 (-47%) 13.88 (-44%)
DC-TCN 1.47 41.36
DC-TCN (Ghost module) 0.84 (-42%) 26.63 (-35%)
Partial TCN (FasterNet block, 0.25 ratio) 0.12 7.80
Partial TCN (FasterNet block, 0.5 ratio) 0.15 8.39
Partial TCN (FasterNet block, 0.75 ratio) 0.18 9.38

As mentioned previously, the feature extraction networks that employ Ghost mod-
ules achieve significant savings in both size and computation compared to the stan-
dard 18-layer residual [31] architecture. In both cases of Ghost modules, computation
complexity reduces by 93% to 96%, while parameter count drops by 85% to 96%.
Due to the added computation, the architecture using the Ghost V2 module requires
slightly more FLOPs and parameters than the original Ghost module. For the se-
quence models, a more modest reduction in size and overhead (up to 44% and 47%
respectively, in the case of the MS-TCN) is achieved, since the original architectures
are already quite lightweight. Due to the added complexity of the DC-TCN network,
the reductions are lower than in the other architectures, but still significant overall.

Finally, the TCN-based architectures using our proposed Partial Temporal Block
become even more lightweight regardless of block design. These variants require a
fraction of resources compared to all other architectures and scale favorably with the

ratio and kernel size hyper-parameters. Overall, the FasterNet [313] block design is
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the better choice for our proposed Partial Temporal Block, compared to the other
two, as it maintains a very low FLOP and parameter overhead across all channel
ratios and with the highest ratio amount (0.75) it outperforms several larger models
as well as the other Partial TCN variants. The ShuffleNet [185] design also maintains
extremely low FLOP and parameter measurements but falls behind the other designs
in performance mainly due to the rather low parameter count. When combined with
the Residual network with Ghost modules, it forms a highly compact overall model
at around 5.5 million parameters that is more suitable for hardware with very low
capabilities, with corresponding performance. The Temporal block design represents
a middle ground between the two previous architectures, surpassing the ShuffleNet
design, while also maintaining low FLOPs as we increase the kernel size, but this

block has high parameter counts.

Table 4.6: Size and complexity analysis of the TCN variants using our proposed
Partial Temporal Block for different core components and kernel sizes. Evaluation is
performed in the LRW test set. “FLOPs” refers to Floating Point OPerations (x10?),
while parameters are measured in millions (x10°). The ratio for the channel split
used in all models in this table is set to 0.75 as it is the most resource-intensive

amount.

Block ShuffleNet Temporal

Kernel size

FLOPs 0.34 0.12
3 Parameters 1.20 3.80
FLOPs 0.35 0.25
° Parameters 1.20 6.18
FLOPs 0.35 0.42
’ Parameters 1.21 8.52
FLOPs 0.36 0.62
) Parameters 1.21 10.87

4.4.2 Limitations

A current drawback of the Ghost V2 module lies in the DFC attention and its design

which employs two convolutions in two directions (vertical and horizontal). This
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prevents its exploitation by the temporal networks which utilize 1D convolutions
and for this reason in our models its use is limited in the residual convolutional
architecture which serves as a feature extractor. A possible explanation is that the
DFC attention was originally designed for images of higher dimensions (224 x 224)
and its use is sub-optimal in out architecture due to the fact that the 3D convolution
and pooling block at the beginning of the overall model reduce the spatial dimensions
of the feature map. The additional down-sampling (see Section 4.1.1, Equation 4.9) of
the (already low-dimension) feature map removes much of the information contained
and hinders the module’s ability to exploit it, however the added computations and
network capacity help recover some performance as seen when combined with a
TCN that also uses Ghost modules. We believe that removing the pooling operations
altogether could possibly improve the overall performance and plan on investigating
this in the future.

Another limitation that should also be mentioned can be observed in Table 4.4,
where we increase the size of the convolution kernels that are used in each Partial
Temporal Block. A larger kernel size has a greater receptive field, since more neigh-
boring locations of the feature map are taken into account during calculations. In the
case of sequential data (i.e., also in our case), this translates into a wider “view” of the
sequence time-steps. It is expected that as the receptive field increases, so does per-
formance, with larger kernels offering more benefits, since more information is taken
into account. However, in our experiments this is not the case, for example when
using the ShuffleNet block, a kernel size greater than 5 does not lead to further accu-
racy gains. We believe this to be due to the dilation amount used by the convolutions
in the TCN architecture, which increases at every stage of the network. At the later
stages of the TCN, the high amounts of dilation may cause the convolution layers to
miss significant short-term information from the sequence as they become influenced
by frames that are further away in the sequence that potentially contain information
that is not relevant to the current time-step and acts as noise. It is also possible that
the extremely low parameter count of this architecture is another limiting factor that
prevents learning. An experimental validation of the above claims as well as tweaks

in the architecture to recover performance are also left as future work.
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4.5 Conclusion

In this Chapter, we proposed taking advantage of low-cost components to develop
lightweight architectures for practical visual speech recognition (VSR) applications.
Using the recently proposed Ghost modules where an amount of the channels within
are calculated with cost-efficient operations, we developed low-resource models for
VSR of isolated words. We replaced the standard convolution operations with Ghost
modules in the visual extraction and sequence modeling networks creating compact
and efficient alternatives that showcase significantly lowered computational resource
requirements. Their reduced overhead enables a multitude of applications in several
scenarios where speed of operation is critical and hardware resources are constrained.
Evaluation on the largest single word speech recognition dataset showed that our
models outperform other lightweight architectures while demanding fewer compu-
tational resources measured in FLOPs. Simultaneously, the achieved accuracy of the
models is competitive with other architectures that are much larger in terms of model
size and complexity. Moreover, we proposed a component called “Partial Temporal
Block™ for building ultra-lightweight sequential models intended for devices with
very limited hardware capabilities, such as [oT and edge devices. This block splits
the computation path in two branches and can be customized to fit each use case
according to the task and available resources.

Future work includes addressing the weaknesses outlined in this Chapter, i.e.,
taking advantage of DFC attention via architectural tuning and addressing the lower
performance of the larger kernel size convolutions when used with our proposed Par-
tial Temporal Block. We also intend to expand the block’s capabilities by exploring
automated techniques for optimal operation selection, or by introducing other effi-
cient channel attention methods to increase performance. Finally, specialized training
strategies exploiting the latest augmentation and weight averaging approaches are

also planned.

137



138



CHAPTER DO

DESIGNING PRACTICAL ARCHITECTURES

5.1 Model Structure
5.2 Experimental Setup
5.3 Ablation Studies

5.4 Conclusion

The methods presented in the previous two Chapters revolve around reducing an ex-
isting network’s hardware demands, measured by requirements on system resources
such as available memory capacity, processing speed, storage space, etc. So far, the
architectures that were employed were based on established models from the pub-
lished VSR literature with high recognition rates. A common outcome of our experi-
ments is lower performance, which is a direct result of reducing the representational
capacity of the initial networks. We observe that adopting models from the VSR liter-
ature without considering their architecture (layers, components and overall design)
is a sub-optimal strategy from a practical perspective, since these networks were de-
signed to improve recognition performance without any hardware constraints. As a
result, the employed networks might not be well-adapted to a strict resource budget,
which is implicitly enforced by using lightweight components and this is another
contributing factor for the lowered recognition rates achieved by the final networks.
Using or developing specialized lightweight architectures can potentially mitigate this

performance-to-complexity compromise, achieving higher recognition rates.
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Following this rationale, in this Chapter, we design lightweight architectures that
still perform competitively with other, more cumbersome ones while being much
less demanding on system resources. To that end, we develop end-to-end models
for word VSR that are practical in terms of model size and computation complexity
measured in parameter counts and Floating Point OPerations (FLOPs) respectively.
We explore practical, low-cost networks for feature extraction and sequence modeling
by analyzing their hardware overhead and recognition performance, adopting the
most effective components in an end-to-end architecture. Our proposed models have
low demands in hardware resources while achieving high word recognition accuracy
and can be deployed in a wide range of devices to cover more applications and use
cases in real-life scenarios. Extensive experimentation on the largest publicly available
corpus for word-level VSR without using any audio data showcases the effectiveness
of our compact models in visual speech recognition of isolated words.

Our contributions are three-fold:

* We explore several lightweight convolutional neural networks from the image
classification literature as feature extractors and benchmark their performance
when used in a VSR architecture for word recognition. Since this component is
responsible for a significant amount of computation of the overall end-to-end
architecture, by selecting a robust yet compact model we can achieve savings
in model size and computational complexity, without severely compromising

performance.

e We apply the same process to the sequential model that is used to further
transform the extracted features, as this component is crucial for strong VSR
performance. By adapting various network building blocks to an equivalent
one-dimensional causal design, we replace the standard block within a vanilla
temporal convolution network to improve its sequence modeling capabilities

while keeping size and complexity at affordable levels.

e With insights gathered from the above experiments, we design lightweight yet
powerful unified architectures and validate their capabilities by performing sev-
eral experiments and ablation studies on the largest publicly-available dataset

for recognition of English words without using any additional training data.
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5.1 Model Structure

We employ the ubiquitous multi-step design that is an established approach with
proven results and is adopted by virtually all works in the published VSR literature.
Rather than attempting to solve the entire problem at once, it is decomposed into
smaller tasks that are easier to manage by separate modules. This offers a high degree
of design flexibility, since each sub-task has a different objective and a specialized
architecture that performs best for the particular sub-task may be chosen.

This design can be summarized as:

f = Feature_extraction(i)
s = Sequence_modeling(f)

o = Classi fication(s), (5.1)

where ¢ represents the input sequence and o is the output word of the network. A

depiction of the above can be seen in Figure 5.1.

3D Conv + CNN }——>» TCN ——»{Classifier —>» "Great"

Image sequence Feature extraction Sequence modeling Classification Spoken word

Figure 5.1: Design overview of the general VSR pipeline with mutliple sub-tasks,
where the most suitable model handles each sub-task. In this Chapter, we explore
several lightweight CNNs and efficient block designs for the TCN while Softmax is

used for classification.

The high-level overview of a VSR system in Eq. 5.1 outlines three distinct steps
when processing an input sequence. The first two are often handled by neural net-
work models as they offer strong performance for these two tasks. Simultaneously,
these are the most computationally intense modules in the entire architecture. When
designing a lightweight VSR system, component selection plays a crucial role as their
size and structure (i.e., amount of blocks and operations used, including other hyper-
parameters) determine the computational overhead of the overall architecture.

In the following Subsections, we construct a multitude of architectures utilizing a
variety of lightweight networks for the task of feature extraction and then develop

various efficient block designs for the task of sequence modeling, corresponding to
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each sub-task. We benchmark these architectures on the LRW test set, finding the
optimal ones for this dataset that perform best while being lightweight in terms
of resources (FLOPs and network parameters) and then combine them in unified

models.

5.1.1 Visual Feature Extraction

The visual feature extraction step involves spatial processing of the input sequence,
generating a set of intermediate representations with a high channel dimensionality.
The convolutional networks employed in this step are designed in stages, where
the operations in each stage gradually reduce the spatial size of the input while
simultaneously increasing the channel dimension.

Since our focus is developing lightweight end-to-end architectures for isolated
word VSR, we experiment with several lightweight models proposed in the image
classification literature, since we find that these networks tend to perform well as
feature extractors. This selection of networks covers a diverse range of approaches
in terms of network and block design and can indicate which lightweight model is
more suited to the task of feature extraction in the context of visual speech recognition.

More specifically, we experiment with the following networks:

* MobileNetV2 [81] was selected for its high performance and low computation
cost. It utilizes an inverted residual block design that shifts the connectivity of
shortcuts and utilizes a point-wise convolution to increase the amount of chan-

nels, as opposed to a standard residual block.

* MobileNetV4-S [314] is a recently-proposed model resulting from a Neural Ar-
chitecture Search (NAS) process, meaning that its structure was searched auto-
matically using an algorithm rather than being manually-designed. MobileNetV4
incorporates a series of innovations regarding block design and was selected to
explore the performance and adaptability of an architecture for image classifi-
cation that was searched with an objective that balances the trade-off between

latency and performance.

e EMO-1M [315] introduces a building block based on the inverted residual de-

sign of MobileNetV?2 that is combined with a self-attention mechanism.
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* Next, we also choose InceptionNeXt-A [316], which combines modern block de-
sign principles [317] with three parallel depth-wise convolutions inspired by
the Inception [80] block. To keep computation overhead manageable, the block
splits its input to equal parts applies each convolution to a different chunk,

retaining a skip connection and concatenates the outputs.

e Finally, StarNet-050 [318] presents an alternative approach to efficient network
design by adopting the (element-wise) multiplication operator to combine high

dimensional features within a building block.

As in the previous Chapters of this dissertation, each CNN is superseded by a
small stack of 3D convolution, Batch Normalization and non-linear activation layers,
which serves as a spatio-temporal processing unit extracting more short-term depen-
dencies from the input. This convolution uses a 3D kernel shape of (3,5,5), where 3
corresponds to the temporal dimension and 5,5 to the spatial, with an output of 32
channels and its computational overhead is marginal compared to the other compo-
nents of the overall pipeline. Using this small stack is common practice for the task
of VSR, e.g., [28, 110, 162], where an additional pooling layer is added to further
reduce the spatial dimensions keeping computations low. We find that when using
lightweight networks, the pooling layer does lower the network size and computa-
tional complexity, but significantly harms recognition performance and for this reason

we do not use this layer.

5.1.2 Sequence Modeling Network

The sequence modeling network ingests the features produced by the previous step for
further processing by modeling the temporal aspect of the input sequence. The goal is
discovering the inter-relationships that exist between features across the length of the
sequence, since during complex speech (words, phrases and sentences) the movements
of the mouth follow sequential patterns of motion. Capturing this information can
lead to higher accuracy when making a prediction.

Related research in the VSR literature has demonstrated that improving the se-
quence modeling network can bring significant benefits in word recognition perfor-
mance, as seen by the improvements obtained by the works of e.g., [110] and [162],

where the same visual feature extractor network is used. The higher performance
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obtained can be attributed to replacing recurrent networks with TCN-based models
and then modifying the temporal convolution blocks with more powerful designs,
since the other components remain unchanged. In a similar fashion, we aim to de-
velop a lightweight and powerful sequence modeling network that keeps the overall
computation at affordable levels while raising accuracy. For this reason, we adopt
the TCN formulation as the backbone structure for sequence modeling and explore
several block designs borrowed from lightweight CNNs. To adapt these blocks to our
task of VSR, we convert all 2D layers (i.e., convolution and normalization) to 1D.

More specifically, we use:

e The Linear block [319] which utilizes two depth-wise convolutions with a point-

wise in-between which is used to fuse the information from the channels,

e the Fused MB block [320] that relies on a regular convolution to expand the

channel dimensionality and a point-wise convolution to mix the channels,

e the Inverted Residual block [81], that reverses the order of operations of the Linear
layer (i.e., uses a depth-wise convolution between two point-wise ones) and has
been a popular building block in several lightweight architectures, e.g., [63, 279]
as well as a starting point for other efficient blocks, e.g. [145, 317, 321, 314].

¢ The recently-proposed UIB block, introduced in [314], which is an advanced
and flexible efficient block that is employed on the MobileNetV4 family of models
[314].

* The also recently-proposed CIB block [321], representing advances in convolution-
based lightweight blocks for compact networks and is the basic building block
of the YOLOv10 backbone [321],

e And finally, the Star block (variant V), proposed in [318] that exploits the mul-

tiplication operation to explore how this approach performs for the task of VSR.

Diagrams showing the structures of these blocks are shown in Figure 5.2.
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Figure 5.2: Structural illustration of the lightweight building blocks that were used in
this Chapter. Convolution and Batch Normalization layers were converted to 1D. Cj,,
Cesp and C,,,; refer to input, expanded and output channels within a block. Layers in
gray coloring (in UIB) are optional and activated by hyper-parameters. (X) denotes

element-wise multiplication (Hadamard product).
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5.2 Experimental Setup

5.2.1 Dataset & Preprocessing

The models proposed in this Chapter are trained and evaluated on the LRW [21]
dataset, which is currently the largest openly-available corpus for visual speech recog-
nition of English words in-the-wild. For more details on LRW, the reader is referred
to the datasets Section in Chapter 2.

For pre-processing, a series of steps are performed on the raw data. After detecting
the speaker’s face in each frame, a face alignment network is employed to compute
Rol landmarks. Then, normalization of the images occurs by removing variations
of size and rotations using a mean face shape. A bounding box of shape 96 x 96
crops the region around the speaker’s mouth area, which is further normalized by
mean and standard deviation and finally converted to gray scale to remove color,
resulting in a simpler (from a computational standpoint) final image. This procedure
is typically employed by works in the literature that are trained on the LRW dataset
(e.g., [110, 162]).

5.2.2 Training Setup

We follow the training setup of the previous Chapter, reviewed here. All network
weights are initialized randomly without using any pre-trained checkpoints and all
models proposed in this Chapter use the following configuration. The LRW training
set is used and after each epoch the model is validated on the validation set. We
train for a fixed amount of 80 epochs in total, saving the best-performing (in the
validation set) checkpoint. At the end of training, the best-performing weights are
loaded and the model is evaluated on the LRW test set. Stochastic Gradient Descent
with an initial learning rate of 0.02 is used to update the weights. A decay factor of
0.0001 is applied to all weights to prevent over-fitting. The GPUs used to train and
evaluate the models are Nvidia RTX 2080Ti with 11 GB of VRAM, therefore we use
a batch size of 32 which allows fitting an entire model to a single GPU. The learning
rate scheduling followed is cosine annealing, which has been found to perform very
well for this dataset (refer to Subsection 3.4.2 in Chapter 3). We also use the same

training-time augmentations as in the previous Chapter.
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5.2.3 Evaluation and Discussions

In keeping up with the structure of Section 5.1, the results and discussions presented
herein follow the same order, beginning with the feature extraction experiments and
followed by an evaluation of the temporal convolution blocks. To measure parameter
and Floating Point OPerations (FLOPs), the torchinfo' python package is used. All
measurements are obtained using a single sequence as the input (29 frames with
88 x 88 resolution), to simulate applying the architecture to a video of the LRW test
set in an in-the-wild scenario, providing an accurate representation of real-world
resource requirements. In addition, all models are trained using the same setup as

described in Section 5.2.2.

Feature Extraction

To benchmark the lightweight feature extractors, we employ a simple TCN-based
sequential model following the architecture of [155]. This model is structured in 4
stages, each containing a block with a sequence of temporal convolution, batch nor-
malization and rectified linear unit as an activation functions, repeated twice. The
kernel size for all convolutions is set to 3 while the input and output channels are
set to 512. The dilation rate used by both convolutions in each block is exponentially
increased at every stage (to 25%9¢), beginning from 1. To keep comparisons fair and
meaningful, we use this TCN sequence model in combination with each lightweight
feature extraction network discussed earlier, creating different end-to-end architec-
tures. As a baseline for comparison, we use an 18-layer residual network [31] (also
using this TCN configuration), which is favored by many VSR works for its strong
performance (e.g., [28, 110, 162]) at the cost of very high complexity (compared to
the lightweight networks). Results are presented in Table 5.1.

Unexpectedly, the lightweight feature extractors achieve lower complexity and
model size at the cost of performance. The MobileNetV4-S [314] model is the strongest
performer over all the lightweight architectures at 84.8% accuracy, 2.9% lower than
the baseline. While its network size is smaller than other models, e.g., InceptionNext-
A [316], its complexity in terms of FLOPs is the highest following the baseline, which
is arguably the reason it achieves a higher accuracy. A similar behavior can be noted
for the EMO-1M [315] and StarNet-050 [318] models, which are close in recognition

"https://github.com/TylerYep/torchinfo
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Table 5.1: Benchmark results of lightweight feature extractors on the LRW test set
compared against the much larger and more expensive residual network baseline.

Each model is combined with a 4-layer TCN.

FLOPs (x10%) Params (x10°) Accuracy

Model

Total (CNN) Total (CNN) T (%)
ResNet baseline (18-layer) [31]  31.2 (30.8) 17.7 (11.1) 87.7
MobileNetV2 [81] 0.9 (0.5) 8.5 (1.9) 82.9
MobileNetV4-S [314] 1.9 (1.5) 7.7 (1.2) 84.8
InceptionNext-A [316] 0.8 (0.4) 9.6 (3.0) 83.1
EMO-1M [315] 1.4 (1.1) 7.8 (1.2) 83.6
StarNet-050 [318] 0.7 (0.4) 7.0 (0.4) 82.7

accuracy with similar parameter counts and slightly lower complexity (FLOPs). The
InceptionNext-A model measures higher in parameters compared to the others due
to its multi-convolution design which nevertheless keeps the operations rather low,
which could be a reason for its performance, similarly to the StarNet-050 model.
All lightweight feature extractors reduce the overall size by an amount ranging
from 8.1 (45%) to 10.7 (60%) million parameters. A more remarkable improvement lies
in the overall computational complexity of the models, which is explained by the more
efficient block designs and amounts to a 94% reduction in the case of MobileNetV4-S
(the highest FLOP count and performance among the lightweight models) and 98%
for StarNet-050 (which achieves the lowest results in both metrics). The remaining
models in our experiments still achieve reductions > 95% in complexity. For the
purposes of this Chapter, the MobileNetV4-S model achieves the highest accuracy
over the other lightweight models, 1.2% higher than EMO (which comes second in
performance) at very similar FLOP and parameter counts and will be used as the

feature extractor in the following experiments.

Temporal Convolution Blocks

Having benchmarked the lightweight networks for visual feature extraction, we shift
our attention to the sequence modeling component of the architecture. All experiments
in this Subsection use a unified model that combines a MobileNetV4-S, which is

the best-performing lightweight feature extractor, with a TCN-based architecture that
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employs a customized temporal convolution block described in detail in Section 5.1.2.
The comparison is shown in Table 5.2 and demonstrates how the different lightweight
block designs perform in the task of VSR of isolated words when combined with a
low-resource convolutional feature extractor. Simultaneously, it showcases which of
the blocks can be used to recover some performance that is lost due to using smaller

networks, creating an architecture that is compact but performs competitively.

Table 5.2: Benchmark results of using different temporal block configurations with the
MobileNetV4-S feature extraction architecture on the LRW test set compared against
the baseline TCN.

FLOPs (x10%) Params (x10°) Accuracy

Temporal Block
Total (TCN) Total (TCN) 1T (%)

TCN block (baseline) [155] 1.9 (0.2) 7.7 (6.2) 84.8
Linear [319] 1.7 (0.03) 2.5 (1.0) 83.5
FusedMB [320] 2.1 (0.5) 16.1 (14.6) 86.8
Inverted Residual [81] 1.8 (0.1) 5.6 (4.2) 83.4
CIB [321] 1.7 (0.1) 5.7 (4.2) 86.7
UIB [314] 1.9 (0.2) 9.8 (8.4) 86.8
Star-V [318] 2.0 (0.3) 14.0 (12.6) 88.1

In this evaluation, we can see that the Linear [319] and Inverted Residual [81]
blocks cause a drop of 1.3% — 1.4% in performance, arguably the result of reducing
the network parameters, since the FLOPs are largely unaffected (0.1 — 0.2 GFLOP
reduction). Of these two blocks, the former (Linear) is more efficient and suitable for
very low resource scenarios, reducing the baseline parameters by more than 3x and
achieving a slightly higher accuracy than the Inverted Residual. The FusedMB [320]
block performs similarly to the CIB [321] and UIB [314] blocks with nearly the same
accuracy, however it uses a regular convolution which, when combined with a high
expansion ratio, raises the overall parameters and complexity of the network (more
than 2x that of the baseline). The CIB block reduces both FLOPs and parameters
and simultaneously raises the accuracy by 1.8%, which can be attributed to its more
modern design and can be considered as an upgrade to the standard TCN without any
drawbacks and is also a strong candidate when designing a lightweight solution. The

UIB block performs identically to the FusedMB but is a preferable choice as it is more
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efficient regarding parameters (by about 39%) as well as FLOPs (0.2 fewer GFLOPs)
and when compared to the standard TCN block it raises the parameter count by 2.1 M
and accuracy by 2.0%, results that can be explained by its modernized design, similar
to CIB. Nevertheless, the CIB block is a more efficient choice than UIB as it almost
matches its performance (0.1% difference), but with fewer GFLOPs and parameters
(0.2 and 4.1M).

In these experiments, the best performing design is the Star-V [318] block, which
surpasses the standard TCN by 2.7% accuracy at the cost of a larger size (1.8x more
parameters) due to the large kernels used by its convolutions. Even so, the computa-
tional overhead of this model is maintained at manageable levels (0.1 GFLOPs more
than the baseline), since the convolutions used are depth-wise. The combination of a
TCN with Star-V blocks and a MobileNetV4-S feature extractor achieves the highest
accuracy in this comparison, 0.4% more than the much larger and computation-heavy
residual network (of Table 5.1) while being 10 million parameters smaller and having
an impressive 15.65x fewer FLOP count.

Next, we perform another round of benchmarking of the lightweight feature ex-
tractors as well as the larger ResNet from the previous Section by combining them
with a TCN using the best-performing temporal block (Star-V) and tabulate the results
in Table 5.3.

Table 5.3: Combining the TCN with Star block (variant V) with other visual feature

extraction networks. Measurements (FLOPs and parameters) include both compo-

nents.
Temporal Block FLOPs (x10°) Params (x10%) Acc. 1 (%)
ResNet (18-layer) [31] 31.3 24.0 90.0
MobileNetV2 [81] 1.0 14.8 87.0
InceptionNext-A [316] 0.9 15.9 86.6
EMO-1M [315] 1.6 141 86.7
StarNet-050 [318] 0.9 13.3 87.0

Compared to the standard TCN design used to benchmark the feature extrac-
tors (Table 5.1), using the Star-V block can raise performance by up to 4.3% while
only adding 0.2 GFLOPs which is the case for StarNet-050 [318], making this com-

bination ideal for situations with rather constrained computational capabilities (e.g.,
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edge devices). We observe a similar outcome for all other lightweight models, where
non-trivial raises in accuracy are achieved, showing that using this block can recover
lost performance with a minimal impact on computation. Invariably, the number of
parameters is increased due to the design of the Star-V block (see Figure 5.2), as
explained previously, representing a trade-off with the improvement in network ac-
curacy which some applications might find an acceptable compromise. When paired
with the larger and more powerful 18-layer residual network it achieves a 2.3% im-
provement over the standard TCN, reaching a 90.0% recognition accuracy. These
results also show that the Star-V block scales well with all networks regardless of
their size and complexity and establish it as a powerful building component for a

sequence modeling network when designing efficient end-to-end models for VSR.

5.2.4 Comparison With Other Methods

Finally, we compare our best-performing model with other approaches from the
literature on the task of word-level VSR on the LRW dataset. Since we do not use
additional training data, word boundaries or audio cues, for a fair comparison, we
compare with models that meet these criteria. The reasoning behind this choice is that
using additional training data such as extra datasets or video sequences is not feasible
for several languages taking into account the additional effort required to collect and
annotate the data, not to mention the additional training time which can be a factor
in some applications. Similarly, word boundaries indicate the frame where the word
is present in the video clip, which is additional information that is not available in-
the-wild and thus does not reflect real-world conditions. As for audio, while some
works utilize the audio stream in architectures that leverage both audio and video
modalities, we consider it out of scope as we develop a video-only approach since
the audio is not always available (e.g., in silent footage). For each method, we also
include size and computational complexity measurements, providing a more complete
comparison between the different models.

Compared to other methods from the VSR literature, our model achieves slightly
lower recognition performance, which is a consequence of its smaller size and com-
plexity. Since most architectures in this comparison utilize a residual network baseline,
our model costs 5x fewer FLOPs, as it uses the much smaller MobileNetV4-S feature

extraction network, which also saves about 10 million parameters. Simultaneously, the
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Table 5.4: Comparison of our method (highlighted) with recent works from the word

VSR literature.

Model architecture FLOPs (x10°) Params (x10°) Accuracy 1 (%)
ResNet + MS-TCN [110] 10.31 36.4 85.3
ResNet + DC-TCN [162] 10.64 52.54 88.3
ResNet (G) + MS-TCN (G) (Chapter 4) 1.78 14.29 86.24
ResNet (G) + DC-TCN (G) (Chapter 4) 2.03 27.04 87.58
ResNet (G) + DC-TCN (Chapter 4) 2.67 41.77 88.72
ResNet + DC-TCN (G) (Chapter 4) 10.01 37.81 89.10
ShuffleNet v2 (1x) + MS-TCN [268] 2.23 28.8 85.5
ResNet + 3xBi-GRU [69] 10.54 59.5 88.4
ResNet + 2xBi-LSTM [64] 10.24 50.07 88.7
MobileNetV4 + TCN (Star-V block) 2.03 14.0 88.1

TCN with Star-V blocks is much more compact than the recurrent architectures or
the larger TCN variants that use multiple convolutions per block. The model of [268]
is comparable in overhead to our models but is surpassed in accuracy, while being
more than double in overall size and the same applies to the lightweight networks
that were proposed in the previous Chapter. In fact, regarding parameter counts,
our end-to-end model is the smallest one in this comparison and also the most effi-
cient in terms of complexity, yet in spite of its small size, it falls behind some of the
larger models by only about 1.0% accuracy. These results demonstrate our proposed
model’s strong performance at minimal size and network complexity, attributes that

make it an ideal choice for applications where a highly efficient model is needed.

5.3 Ablation Studies

5.3.1 Star blocks

The work of [318] introduces several variants for the Star block with similar architec-
tural designs and common characteristics. All blocks start and end with a depth-wise
convolution operation and include point-wise convolutions that expand and sub-
sequently restore the input channels according to a fixed expansion rate. Another

similarity is the use of the RELUG6 function for non-linearity and the multiplication
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operation for feature mixing:

ReLU6(z) = min(max(0,z),6) (5.2)

This function is widely employed in lightweight networks as it empirically per-
forms better than ReL.U under low-precision conditions [322].

The reader is referred to the Supplementary material of [318] for more details on
the architectures of each Star block variant. In our case, we convert each variant to
1D for use in the TCN and train separate models, presenting the results in Table 5.5.

A MobileNetV4-S is used for feature extraction.

Table 5.5: Ablation study on the architecture of the Star block used in the TCN model.

For size and complexity, only the TCN is measured.

Block FLOPs (x10°) Parameters (x10°) Accuracy 1 (%)

Star-1 0.36 12.6 87.9
Star-I1 0.36 12.6 87.0
Star-1II1 0.73 25.2 88.1
Star-1V 0.36 12.6 87.9
Star-V 0.36 12.6 88.1

The best-performing designs of the Star block are variants III and V, achieving
the same accuracy, while variants I and IV are following closely. In this comparison,
variant II achieves the lowest performance at 87.0%, which is still higher than the
other lightweight blocks in Table 5.2. In terms of complexity and parameters, since
all variants share a similar architecture, we notice identical measurements in FLOPs
and parameters with the exception of variant III, which applies an additional point-
wise convolution after expanding channels, causing the increase in parameters and
FLOPs. Given these measurements, the best choice for the task of VSR is variant V,

which achieves the highest performance while being as efficient as the other variants.

5.3.2 Architecture configuration

The previous experiments used a temporal convolution network with a four-stage
design and 512 channel outputs. This amount of stages is used, to the best of our

knowledge, by virtually all works in the VSR literature that employ a TCN model for

153



sequence modeling, since they typically adopt the models of [110] or [162] that are
also four-stage architectures. Similarly, convolutional networks (e.g., ResNets [31],
MobileNets [81]) also commonly use four stages in their designs. Regarding the
amount of channels in each block, the use of 512 is empirical, striking a balance
between complexity, size and accuracy. In Table 5.6 we show the results of an abla-
tion study on the stages and channels of the TCN, experimenting with architectures
that are shallower (fewer stages with more channels per stage to compensate) or
deeper (more stages with fewer channels, respectively). As before, a MobileNetV4-S

is used for feature extraction.

Table 5.6: Ablation study on the configuration of the TCN architecture. For size and

complexity, only the TCN is measured.

Configuration FLOPs Params Accuracy
Stages ; Channels / stage (x10°)  (x10°) 1 (%)
2; 1024 0.51 17.8 86.0
3 ;768 0.53 18.5 87.2
4 ; 512 0.36 12.6 88.1
6 ; 256 0.18 6.4 87.6
8; 128 0.10 3.4 86.2

This ablation study showcases that a network with four stages and 512 channels
is the best approach for the task of VSR as this configuration out-performs all other
setups. Making the network shallower by reducing the number of stages gradually
degrades performance as more stages are required to process the information, while
compensating by increasing the channels of the convolution operations in each tem-
poral block leads to an increase in network overhead. Similarly, making the network
deeper by adding stages also lowers its performance (albeit by a lower amount than
removing stages), which can be caused by two factors: lowering the amount of chan-
nels per layer, thus hampering the expressiveness of the network and its ability to
capture information and impeding backward gradient flow during training since the
back-propagation path becomes longer. The deeper networks perform marginally bet-
ter than the very shallow ones, while being much more efficient in terms of overhead
and are suitable for special cases with high resource restrictions.

A key attribute of the TCN design is the dilation factor used in each convolution
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which increases with every block. It is therefore possible that in the case of shallow
networks (dilation= {1, 2}) this rate is rather low and could be another cause for the
lowered performance since the second block does not process a broader amount of
information, potentially missing key temporal relationships from neighboring frames.
For the deeper networks, the later stages employ high rates of dilation (since it is
doubled at every block) which allows them to cover temporally distant information
that might be irrelevant to the current frame. Investigating these hypotheses is left as

future work.

5.3.3 Block Hyperparameters

As an additional ablative study, we investigate how parameter selection for some
block designs affects the model’s computational overhead and recognition perfor-
mance. This allows us to fine-tune each block according to specific conditions and
requirements, since for instance some applications might benefit from a temporal
block design other than Star-V due to hardware factors, therefore it is worth consid-
ering alternative architectures for such cases. We use the next three best-performing
blocks after Star-V, which are FusedMB [320], CIB [321] and UIB [314], that achieve
comparable accuracy on LRW (around 86.7%) as shown in Table 5.2. For FusedMB,
we modify the kernel size used in the first convolution and activate or deactivate the
Squeeze-Excitation (SE) [65] attention module that the block utilizes, while for CIB
we only experiment with the kernel size which is shared by all convolution layers
in the block. Regarding UIB, its structure allows for additional convolution layers
that can be added (see Figure 5.2(d)), allowing for a greater design flexibility than
FusedMB, we therefore enable all extra convolutions and change the kernel sizes,
to investigate how the added receptive fields affect performance. Since these blocks
follow an inverted residual philosophy, the expansion ratio is a hyper-parameter that
controls the module’s capacity and overhead. The architecture setup of the TCN in
our models uses 4 computation stages with 512 channels used as inputs to each stage,
so in order to avoid an excessive increase in computational complexity due to using
a high expansion ratio, we use a value of 2 for both blocks. For visual feature ex-
traction, we employ the MobileNetV4-S network and the whole end-to-end model is

trained with the same settings as all previous experiments. The results are presented
in Table 5.7.
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Table 5.7: Hyper-parameter study for two temporal block designs derived from
FusedMB and UIB. A kernel size of 0 indicates that a particular convolution layer is
disabled. For size and complexity, we measure only the TCN component. Results are

on the LRW test set.

Method Hyper-parameter(s) Value FLOPs (x10°) | Params (x10°) | Accuracy 1 (%)
Baseline Kernel size 3 229 6.29 84.86
3;2; v 292 10.49 86.39
3; 2; — 290 8.40 86.45
FusedMB [320] | Kernel size, expansion, SE [65]
5, 2; v 524 14.69 86.86
5; 2; — 522 12.59 86.65
3; 2 122 4.24 86.26
CIB [321] Kernel size, expansion
5; 2 123 4.26 86.79
3,3,0; 2; ReLU 122 4.23 84.42
3.5,0; 2; ReLU 122 4.24 84.25
5,3,0; 2; ReLU 122 4.24 84.96
5,5,0; 2; ReLU 123 4.24 84.42
3,3.3; 2; ReLU 122 4.24 84.88
UIB [314] Kernel size, expansion, activation
3.5.3; 2; ReLU 123 4.25 85.00
5,5,3; 2; ReLU 123 4.25 85.09
5,3,5; 2; ReLU 123 4.25 85.27
5,5,5; 2; ReLU 123 4.26 85.03
7.0,0; 4; GeLU 244 8.42 86.89

These results showcase that FusedMB is robust to hyper-parameter selection and
achieves a consistent accuracy benefit over the standard TCN. However, the maxi-
mum recognition rate of the models using this block still trails below that of Star-V.
Regarding overhead, the kernel size is the most significant factor affecting the block’s
parameter size and complexity, as going from a kernel size 3 to 5 almost doubles both
FLOPs and total parameter counts. The addition of a SE module to this block seems
to benefit a larger kernel size, increasing accuracy by 0.31%, but actually causes a
minor drop in performance when the kernel size is smaller. Simultaneously, the SE
module hardly affects the block’s overhead and can be beneficial in some instances.
The high parameter size of this block is a direct result of using a standard convolu-
tion, seeing that UIB and CIB that employ depth-wise convolutions amount to fewer
parameters as well as reduced processing.

The lightweight design of CIB is a better performing choice than FusedMB, while
also being much more efficient in both metrics. In fact, for a kernel size of 5, it
surpasses all FusedMB setups, at fractions of hardware requirements; achieving re-

ductions around 57—76% FLOPs and 49—71% parameters, depending on the setup. A
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higher kernel size for this block leads to greater performance, raising the recognition
rate by 0.53% without affecting its overhead. Compared to the other two methods,
this module provides the best performance-to-size ratio as it achieves nearly the same
accuracy with specific UIB and FusedMB configurations, making it an ideal choice
for certain scenarios with severe hardware limitations. CIB outperforms the baseline
TCN at a very compact size, reducing both FLOPs and parameters and as mentioned
previously (Subsection 5.2.3), it can replace the baseline block without any draw-
backs.

For UIB, introducing an additional convolution at the beginning of the block
(using only the second convolution between the point-wise convolutions equates the
block to an Inverted Residual one [81]) with higher accuracy over the baseline TCN,
but falls behind other options (and in this case the FusedMB block). Activating
all convolutions in this block further improves accuracy, with the best option being
a 5,3,5 kernel size setup for the three convolutions. The number of convolutions
and their kernel size has little effect on overall parameters or FLOPs, since these
convolutions are depth-wise and rather low in complexity. With three convolutions,
this block resembles CIB in its structure and differs only in the amount of non-linear
activation functions; in CIB they are used after every convolution operation, while in
UIB the first and last depth-wise convolutions with the last point-wise do not use
any. Still, the results of this block are consistently behind FusedMB, Star-V and CIB
by varying amounts in the 1—2% range. Another difference is the choice of activation
function, with UIB using the rectified linear unit (ReLU) and CIB opting for SiLU
(sigmoid linear unit) instead. It is possible that the difference in performance between
these two blocks is the result of a combination of these two factors, which is further
reinforced by the fact that UIB with a Gaussian linear unit (GeLU) function obtains a
better recognition rate. The choice of non-linear activation function remains an open
problem and warrants further investigation.

As an additional experiment, we adopted the hyper-parameter settings of the
block used in [317], which incorporates modern practices for block design and note
that it achieves higher accuracy than all other UIB setups and slightly higher than
FusedMB (only by 0.03%) while being less resource-intensive than the latter. This
special case employs only one convolution operation with a high kernel size and
an expansion ratio of 4, which causes the increase in overhead over the other UIB

setups. This result, leads us to believe that this hyper-parameter is the most impacttful
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for recognition performance and is a probable explanation for the improved results,
considering that the best-performing block (Star-V) uses an expansion ratio of 6 and
that we also obtain similar results regardless of kernel size and setup (a phenomenon
not entirely limited to the UIB block). We also believe that it is possible to further
improve performance for both these blocks by using a higher ratio than the current
value of 2, which acts as a limiter for representational capacity. This will inevitably
cause an increase in network overhead, which will be mostly evident in parameter

counts, similarly to Star-V. Further experiments are required to verify these claims.

5.4 Conclusion

In this Chapter, we presented a systematic approach into designing lightweight archi-
tectures for practical visual speech recognition applications. A VSR system predicts
spoken words from the input sequence in two distinct computation steps, visual fea-
ture extraction and temporal sequence modeling, each handled by a different com-
ponent. For visual feature extraction, we benchmarked several lightweight models
from the image classification literature, finding that significant reductions in FLOPs
(> 94%) and parameter counts (> 45%) are achievable, compared to the expensive
baseline network, at the cost of lowering recognition accuracy. For modeling the
temporal aspect of the extracted features, a multitude of efficient designs were ex-
plored as temporal block replacements in a standard TCN model, taking advantage
of its favorable properties and high performance for the task of VSR. Our findings
show that when an efficient feature extraction model is combined with a robust se-
quence model, significant gains in accuracy are possible, mitigating the losses that
occur from lowering the network capacity. We also observe that the Star block which
takes advantage of the Hadamard product is a very strong performer in the task of
single word VSR, demonstrating impressive performance at low network overhead,
that also scales favorably with larger networks. Our most efficient model combines
a MobileNetV4-S with a four-stage TCN using Star-V blocks and is very competi-
tive with other much larger methods from the VSR literature. The ablation studies
performed indicate that while the kernel size of the convolutions and the expansion
ratio used in the lightweight temporal block designs can both impact overall per-

formance, the latter is a more significant hyper-parameter as it governs the capacity
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of the block and subsequently its performance and resource overhead. Future work
involves exploring techniques to further improve recognition accuracy, bridging the

performance gap with larger models.
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CHAPTER O

ImprovVING LicHTWEIGHT VSR

PERFORMANCE

6.1 Methodology
6.2 Experimental Evaluation
6.3 Ablation Studies

6.4 Conclusion

The previous chapters presented approaches for practical isolated word VSR that in-
volved reducing the hardware overhead of the models in terms of size and complexity,
where the focus was primarily directed to the employed models, their components
and their overall architecture. These reductions were achieved by adopting various
strategies such as compression (Chapter 3) to shrink network sizes, using cost-efficient
modules (Chapter 4) to lower complexity or designing lightweight end-to-end models
(Chapter 5) toward both these objectives.

In this Chapter, we consider an alternative approach that involves improving an
existing lightweight network’s recognition performance without causing significant
changes (i.e., raises) in its overhead. Different from the previous chapters, we shift our
focus on exploring methods and techniques aimed at enhancing the representational
capabilities of an established lightweight end-to-end network. The machine learning

and computer vision literature offers a wide selection of methods specifically aimed
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at improving network performance, one of the most widely-used being the addition
of attention modules to an existing network. These modules typically operate on the
channel dimension of the feature maps produced by the network’s blocks and are
designed to not be highly demanding in resources, making them suitable for our
purposes.

We use the model proposed in the previous Chapter which was developed with
practical applications in mind and serves as a baseline model for our experiments. We
explore channel attention modules that are added to the sequential modeling com-
ponent, complementing the already impressive performance achieved by the Star-V
blocks. Furthermore, we introduce training-time regularization in the form of dropout
following two strategies regarding its application to the model. A benefit of this tech-
nique is that it does not affect the overhead of the model, improving its recognition
rate at no extra cost in terms of resources. Finally, we combine the best-performing
attention module and dropout strategy in a unified model and compare our results

with other lightweight methods from the VSR literature.

6.1 Methodology

As a baseline architecture, we employ the end-to-end model of the previous Chapter,
which represents a strong end-to-end baseline for practical VSR of isolated words
with low computational complexity and high recognition performance.

The unified architecture is comprised by a series of networks, each fulfilling a
different objective. The first network is a small spatio-temporal stack consisting of
a 3D convolution, normalization and non-linear activation layers. It is a lightweight
component, since the kernel size and output channels of the 3D convolution are set to
3,5,5 and 32 respectively. Following, for visual feature extraction, the MobileNetV4-S
[314] network is employed, which is a recently-proposed lightweight model derived
from a novel two-phase Neural Architecture Search (NAS) process combined with
an efficient inverted bottleneck block that improves performance. Next, for sequence
modeling, the unified architecture is called Star-TCN and uses a TCN variant with
an upgraded temporal block that employs a structure derived from the Star-V block
[318]. It leverages the expressiveness and implicit high dimensions allowed by the

use of the Hadamard product (point-wise multiplication operation between Tensors)
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Figure 6.1: Overview of the end-to-end VSR model used in this work. An attention
method as well as regularization techniques are added to the sequence modeling
component. We experiment with several channel attention methods from the literature
and various strategies for adjusting the regularization amount. The input is a video

sequence and the output is the prediction of the spoken word.

with the efficiency of depth-wise convolutions in a design that is lightweight yet still
achieves high performance. The Star-TCN is structured in 4 main computation stages
with one Star-V block comprising each stage and 512 channels are used as inputs to
each block, representing a balance between word recognition performance and model
complexity. At the end of the entire architecture, a fully-connected layer is added
and classification is performed using the Softmax function. Figure 6.1 illustrates an

overview of the entire model.

6.1.1 Incorporating Attention Mechanisms

Attention mechanisms have been proposed as methods or components that improve
the representational capabilities of deep neural networks across various tasks, allow-
ing them to capture contextual properties from the input as well as to emphasize
relationships between feature maps or channels that are more influential for better
performance at each task. Another design objective often taken into consideration
when designing such mechanisms is maintaining the existing computation levels or
adding minimal additional overhead to the base networks, which aligns with the
goals of this work.

We adopt several attention mechanisms from the computer vision literature that
operate on the channel dimension of a feature map, enabling seamless incorporation
in the existing TCN architecture discussed previously. In fact, the only structural
modification required lies within the temporal block, without any other changes to
the TCN itself, allowing for straightforward development and testing of a multitude

of setups. More specifically, we employ:
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Squeeze-Excitation (SE) [65] which utilizes an MLP and a gating unit to calculate
the importance of each channel and re-weigh it accordingly to its contribution.
It offers a strong attention mechanism in a compact package with proven results

in several computer vision tasks.

Efficient Channel Attention (ECA) [276] that follows the same philosophy as
Squeeze-Excitation but maintains a lower computational overhead by utiliz-
ing a single convolution layer to model the channel interactions of the feature

map.

Next, Shift-and-Balance Attention (SBA) [323] which proposes regulating the im-
pact of the attention branch on the feature map by a learnable scaling factor

that controls and balances the attention and feature map branches.

Skip-Squeeze-and-Excitation (SSE) [324], that similarly to ECA, avoids increasing
the complexity of the base network by employing a single fully-connected layer
rather than an MLP.

We also use Convolutional Block Attention Module (CBAM) [135], which is an-
other widely-used attention method with strong performance. It operates on

the channel and spatial dimensions of the feature map in a sequential manner.

Finally, Gated Channel Transformation (GCT) [325] that also aims to reduce the
number of parameters and complexity by employing simple operations to embed

and normalize each channel before applying a gating mechanism.

Structurally, the attention modules are illustrated in Figure 6.2 and implementa-

tion details with specific hyper-parameters for each module are provided in Table 6.1.

6.1.2 Introducing Regularization

Regularization refers to any approach that aims to improve a network’s generalization

capabilities by minimizing its performance discrepancy between training and test sets,

a phenomenon that is known as over-fitting. Methods for regularization have been

a topic of research interest by the machine learning community and follow a broad

range of strategies, some with specific applications. The case where a model cannot

sufficiently model the training data due to limited representational capacity or an

excessive amount of training samples leading to low overall performance is called
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Method Hyper-parameter

Squeeze-Excitation [65] MLP reduction ratio = 8

Convolutional Block Attention Module [135] | MLP reduction ratio = 16

Gated Channel Transformation [325] Normalization = L,
Skip-Squeeze-Excitation [324] Output scaling amount = 1
Shift-and-Balance Attention [323] MLP reduction ratio = 2, gate = Sigmoid
Efficient Channel Attention [276] kernel size = (log.C + 1)/2

Table 6.1: Implementation details for the attention modules used in this work. C'

implies input channels, which are set to 512 for all modules.

under-fitting. Given that the methods proposed in this dissertation exhibit behavior
that leads us to believe this to be the case, we study regularization as a method to
reduce its effect.

A rather popular method employed for regularization that has stood the test of
time is dropout. During training, at the forward propagation stage, dropout deac-
tivates neurons by setting their connections to zero with probability p that is also
known as dropout rate. The remaining (non-zero) connections are then scaled accord-
ingly using a coefficient. This can be seen as a form of noise injection that encourages
the network to avoid overly depending on specific hidden units, reducing outliers and
produces a different neural network at each training pass, functioning as an implicit
ensemble of models. While initially intended as a tool to mitigate over-fitting in neu-
ral networks, [326] has shown that dropout, when applied with a scheduling strategy

that dynamically adjusts its value can also be effective for instances of under-fitting.

6.2 Experimental Evaluation

For all experiments, the trained models are evaluated on the LRW test set [21]. The
scoring method is word recognition accuracy expressed as a percentage of correct
predictions. We also report network size and computational complexity measured in
parameters and Floating Point OPerations, respectively, in order to provide a clear
overview of each model’s requirements and overhead in terms of hardware. Such

measurements are valuable when considering the application of a model in practical
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Figure 6.2: The attention modules employed in this Chapter.

scenarios with realistic conditions such as resource constraints.

The training strategy remains the same as in the previous Chapter, the optimizer
used is Stochastic Gradient Descent, with an initial learning rate of 0.02, annealed by
a cosine schedule (see Equations 3.6 and 3.8 in Chapter 3). For more details, refer

to Subsection 5.2.2 in the previous Chapter.
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6.2.1 Attention Modules

First, we evaluate the effect of each different attention module on the baseline model,
which comprises a MobileNetV4-S feature extractor with a TCN that employs temporal
blocks based on the Star-V design. While all methods explored in this work operate on
the channel dimension of the feature maps, their structures differ, providing valuable
insights as to which approach is more effective when combined with an end-to-
end lightweight model for VSR. The results are tabulated in Table 6.2 and use the
hyper-parameters shown earlier in Table 6.1. Ablative studies on the values of these
hyper-parameters as well as the location within the Star-V blocks that the attention

methods are integrated are performed in a later Subsection.

Accuracy Model size | Complexity

Model

1 (%) (x10°) (FLOPs x10°)
MobileNetV4 + TCN (Star-V block) (Chapter 5) 88.1 14.0 2.03
MobileNetV4 + TCN (Star-V block) + SE [65] 88.4 (+0.03) | 14.3 (+0.3) | 2.03 (+0.00)

MobileNetV4 + TCN (Star-V block) + CBAM [135] 87.9 (—0.02) | 14.2 (+0.2) | 2.03 (+0.00)
MobileNetV4 + TCN (Star-V block) + GCT [325] | 88.2 (+0.01) | 14.1 (+0.1) | 2.03 (+0.00)
MobileNetV4 + TCN (Star-V block) + SSE [324] | 88.5 (+0.04) | 15.1 (+1.1) | 2.04 (4+0.00)
MobileNetV4 + TCN (Star-V block) + SBA [323] | 88.2 (+0.01) | 15.1 (+1.1) | 2.04 (4+0.01)
MobileNetV4 + TCN (Star-V block) + ECA [276] | 88.6 (+0.05) | 14.0 (+0.0) | 2.03 (+0.00)

Table 6.2: Evaluation of different attention modules combined with the base model
on the LRW test set. For network measurements, a single 29-frame sequence of size 88
by 88 pixels is used. Size and complexity measurements are for the whole end-to-end

model.

In terms of accuracy, GCT [325] and SBA [323] offer the least amount of improve-
ment, with GCT being much more efficient in terms of network parameters, adding
0.1M to the total count, while SBA adds 1.1M. In fact GCT is the most economical
of all the benchmarked attention modules, followed closely by CBAM [135] and SE
[65]. The best performance gain is obtained by the use of the ECA module [276],
which also does not raise the parameter or FLOP counts. Even with four such layers
(one at each block) in the TCN, it uses a regular convolution layer that operates on
the pooled input feature map (with a dimension size of 1), without changing its size,

which is a negligible cost. SSE [324] is the next best-performing option, being 0.1%
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lower than ECA, but with 1.1M additional parameters and 0.01 more GFLOPs. The
performance of the model with the SE reaches 88.4% with the module adding +0.3%,
with only 0.3M more parameters.

Our results show that apart from CBAM, all other attention modules are beneficial
for model accuracy, ranging from 0.1% to 0.5% and are rather lightweight, adding
a negligible amount of FLOPs to the overall computation cost, which is a total frac-
tion of network FLOPs. Of these methods, ECA is the best performance-enhancing
option, which is simultaneously the most efficient. Including an attention module to
the architecture of the previous Chapter can be seen as a performance upgrade at no
extra computation cost when introducing some of the attention modules in our com-
parison. CBAM brings the least amount of improvement and actually lowers overall
performance, an effect for which we offer two possible explanations. First, the mod-
ule’s design is more suitable for CNN applications, since the use of a spatial attention
sub-module employs a convolution with a large kernel size (7) that fails to provide
the same benefit for sequential data as it includes more time-steps in its calculation,
potentially adding noise from features that are temporally distant. It is also possible
that the weight initialization of the model is the cause of this result. We are planning
on investigating this in the future by using a smaller kernel size in this block and
conducting more experiments with different pseudo-random generator seeds which

affect weight initialization.

6.2.2 Comparison With Other Methods

Since our goal is to not only improve recognition performance, but also to keep the
overall overhead of the network at manageable levels, we choose ECA as the attention
method to include in the architecture, as it out-performs the other methods without
raising complexity. We then introduce regularization in the form of dropout after each
temporal block in the TCN structure and train the end-to-end model with attention
from the beginning, again using randomly initialized weights. For dropout, we use
two approaches: a constant probability that stays static throughout the whole training
process and a schedule that adjusts the dropout rate as training progresses. The rea-
soning behind using a dynamic rate for dropout is that it reflects the change in training
dynamics as more epochs are completed and the network’s training progresses while

the learning rate is annealed to lower amounts. Adjustments to dropout probability
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during training can be accomplished in various ways and an ablation study is per-
formed in a following Subsection. After training two structurally identical end-to-end
models with different dropout strategies, we compare them with other lightweight

methods from the literature on VSR and show the results in Table 6.3.

Model Accuracy | Model size | Complexity
T (%) (x10% | (FLOPs x107)
ShuffleNet v2 + MS-TCN * [268] 85.5 28.8 2.23
ShuffleNet v2 + DS-MS-TCN * [268] 85.3 9.3 1.26
ResNet-18 + MS-TCN * [268] 87.9 36.4 10.3
ResNet (G) + MS-TCN (G) (Chapter 4) 86.2 14.2 1.78
ResNet (G) + DC-TCN (G) (Chapter 4) 87.5 27.0 2.03
ResNet (G V2) + MS-TCN (G) (Chapter 4) 86.1 15.5 2.00
ResNet (G V2) + DC-TCN (G) (Chapter 4) 87.9 28.3 2.25
MobileNetV4 + TCN (Star-V block) (Chapter 5) 88.1 14.0 2.03
MobileNetV4 + TCN (Star-V block) + ECA + Dropout (p = 0.05) 88.92 14.0 2.03
MobileNetV4 + TCN (Star-V block) + ECA + Late dropout (p = 0.1,e = 60) 88.93 14.0 2.03

Table 6.3: Comparison of our lightweight models with added attention module and
regularization with other practical methods from the VSR literature. Evaluation is
performed on LRW. Models marked with * are trained using knowledge distillation
methods. For dropout, p is the probability and e indicates the epoch number of

activation.

Our lightweight models with the ECA module and dropout regularization dur-
ing training achieve the highest recognition rates on LRW over all other lightweight
architectures. Compared to the networks proposed in [268], our models consistently
out-perform them regardless of feature extraction network used, even for the much
larger residual network with nearly 5x more FLOPs. The Depthwise-Separable TCN
proposed in that work is more efficient than our architecture in terms of size and
complexity but falls behind in accuracy due to its reduced capacity, while the regu-
lar MS-TCN costs close to 2x the parameters of our model and 10% more FLOPs.
Furthermore, those models are trained with a knowledge distillation method that
requires additional training of a teacher model, which is a more time-consuming
process than standard neural network training that is employed in this Chapter and
might be a limiting factor in situations where a lightweight solution is required in a
timely manner. When compared to our proposed lightweight models from Chapter 4,

the networks presented in these experiments are similar in complexity but are smaller
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in size and perform better.

6.3 Ablation Studies

We perform a series of ablation studies intended to provide more insights and under-
standing into how each module impacts overall performance and which choices are
more important from that perspective. We apply each method on the baseline TCN
with Star-V temporal blocks and to keep comparisons fair, we use the same training

settings for all experiments, as described previously.

6.3.1 Attention Module Location and Hyperparameters

Since the attention modules operate on the resulting feature maps produced in the
intermediate layers of the sequential modeling network, their location influences net-
work performance and should be considered when incorporating these modules in
the base architecture. We experiment with several possible locations within each tem-
poral block, illustrated in Figure 6.3 and the results of each location are reported in
Table 6.4. In these experiments, we employ the Squeeze-Excitation attention module

[65] with an MLP reduction ratio of 4.

Module Location | Accuracy T (%)
None 88.12

"’ 88.21 (+0.09)

2’ 88.09 (-0.03)

'3 88.02 (~0.10)

‘4’ 88.31 (+0.19)

5’ 87.74 (—0.38)

Table 6.4: Effect of attention module location on performance. An illustration of each

location is provided in Figure 6.3.

We observe that attention location has a tangible impact on accuracy, with posi-
tions “1” and “4” offering the greatest benefit. Apart from these two, all other positions

negatively affect model accuracy, indicating that attention methods are sensitive to
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Figure 6.3: Possible locations (marked in red) for the attention modules within the
Star-V block. The optional 1D convolution in the left is used to downsample the
inputs in case where there is a mismatch between input and output and the same

applies to location “5”. (;, indicates the input channel dimension of the block.

their location within the Star-V block. Positions “2” and “3” slightly lower perfor-
mance and seem to hamper the block’s representational capacity as they are applied
“within” the MLP network (between FC layers). The last position which is a typi-
cal placement for SE blocks in the computer vision literature has the most adverse

effect on accuracy in the case of Star-V block, causing a 0.38% drop, while the first
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position raises it by 0.09%. This indicates that recalibrating the channels before the
block’s operations are applied is more favorable than using the attention module for
that purpose at the end of the block. More surprisingly, the fourth position performs
best, showing that an even better approach is to apply an attention module to the
skip connection that is a direct pathway from the input to the output of this block.
This way, the attention operates on the unchanged inputs and the resulting weighed
features are not mixed with the operations of the Star-V block, preventing any pos-
sible interference of the attention module with the Hadamard product, a reasoning
that is further reinforced if we consider that in positions “1” and “4” obtain the best
performance.

Moving on, using location “4” as the place of attention and layer integration,
we provide all hyper-parameter values used in our experiments when determin-
ing the best-performing attention modules. While not all methods share the same
hyper-parameters, a common one among them is a reduction ratio which controls the
MLP dimensions and subsequently its representational capacity and computational
overhead. For the methods that use this hyper-parameter ([65], [135]), we compare
different values, while [323] is also parameterized by a non-linear activation func-
tion, which directly impacts how the feature maps are scaled (e.g., Sigmoid will only
output values in the range (0, 1), while tanh allows negative values up to —1 that
can effectively invert some values). For this method, the MLP reduction ratio is set
to 2, as it was found to perform best (not included in the next table for brevity).
Other hyper-parameters include kernel size ([276]), with similar effects, normalization
function ([325]) which does not affect model size and output scaling for [324], which is
a simple multiplication operation of a scalar with a Tensor. The results are outlined
in Table 6.5.

From the above results, we observe that hyper-parameter selection can have a
noticeable impact on overall performance while hardly affecting network overhead
for all attention methods, regarding FLOP counts. For SE and CBAM, two methods
that utilize a reduction ratio for the MLPs, higher values cause a smaller increase in
parameters without raising complexity. In the case of SE, the best-performing reduc-
tion ratio is 8 or 16 as the difference in accuracy is negligible. Simultaneously, both
these reduction ratios add only 0.1 million parameters to the TCN and for the latter,
negligible complexity. Including the SE in the Star-V blocks is a no-cost improvement

for performance. In contrast, for CBAM, any amount of MLP reduction ratio does
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Method Hyper-parameter(s) | Value(s) | FLOPs (M) | Params (M) | Accuracy 1 (%)
Base TCN model (without attention) — — 366 12.6 88.12
367 13.1 88.31 (+0.19)
Squeeze-Excitation [65] MLP reduction ratio 8 367 12.8 88.41 (4+0.29)
16 366 12.7 88.40 (+0.28)
1 371 14.7 87.66 (—0.46)
2 368 13.6 87.67 (—0.45)
Convolutional Block Attention Module [135] MLP reduction ratio 4 367 13.1 87.82 (—0.30)
367 12.8 87.53 (—0.59)
16 367 12.7 87.91 (~0.21)
Ly 366 12.6 87.94 (—0.18)
Gated Channel Transformation [325] Normalization
Ly 366 12.6 88.25 (+0.13)
1 367 13.6 88.56 (+0.44)
Skip-Squeeze-Excitation [324] Output scaling amount
2 367 13.6 88.03 (—0.09)
Tanh 367 13.6 87.96 (—-0.16)
Sigmoid 367 13.6 88.27 (+0.15)
Shift-and-Balance Attention [323] function ReLU 367 13.6 87.98 (—0.14)
Softmax 367 13.6 88.12 (£0.00)
Linear 367 13.6 88.18 (+0.06)
3;1 366 12.6 88.45 (+0.33)
Efficient Channel Attention [276] Kernel size; Channels 5;1 366 12.6 88.66 (+0.52)
71 366 12.6 88.63 (+0.51)

Table 6.5: Effect of different values for hyper-parameters of each attention module.

For FLOPs and Parameters we only measure the TCN model.

not offer a positive impact and in fact lowers the recognition rate. The highest re-
duction ratio adds only 0.1 million parameters (similar to SE) and performs best for
this attention module, indicating that limiting the capacity of this module implicitly
lowers its impact and degradation of accuracy. For GCT, using L, normalization is
a better choice than L;, which has a minor negative effect on word recognition. The
simplicity of this module regarding its operations (it does not use any convolution
layers) is highlighted as it does not affect the TCN’s FLOPs or parameters in any way.
Similarly, the output scaling rate for SSE performs better at 1 (no scaling), providing
a +0.5% bonus, while a higher scaling ratio works against performance. The absence
of a reduction ratio for this module (since it uses one single convolution layer, rather
than the typical two that comprise MLPs), allows it to maintain a higher parameter
count than SE but achieves a slightly better recognition rate. The activation function
employed in SBA plays an important role as some functions degrade accuracy, with
Sigmoid being the most suitable option for this dataset. Having no activation function

(as denoted by “Linear”) actually outperforms the remaining functions, showing that
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some non-linearities are not suitable for this block and hamper its performance. Fi-
nally, for ECA, any size of the convolution kernel offers a benefit for accuracy, with 5
being the best choice, surpassing both 3 and 7, albeit the latter by a slight margin. The
lightweight design of this module adds a fraction of parameters (which is negligible
in the overall count), since its convolution is applied on 1 channel which is the result
of a pooling operation. This module is the most efficient in this list, achieving the

largest increase in accuracy without affecting the size or complexity of the model.

6.3.2 Dropout Amount and Scheduling

Regarding regularization, its effects on the overall accuracy of the trained model
cannot be neglected. A dropout probability that is too high would lead to a large
percentage of neurons being disabled at every training iteration, potentially hampering
the network’s learning process by overly restricting the network. On the contrary, a
very low probability might not affect the training process (as much as desired) and not
produce a meaningful result, i.e. improve the network’s generalization. We therefore
study the impact of dropout on final performance, taking into account several factors.
First, the values used in some published works in the VSR literature that employed
dropout in the TCN serve as good indicators that have been tested in the LRW dataset,
albeit with different networks. Next, we also consider the size of the dataset itself, with
regards to the representational capacity of the models in our architecture. Since the
networks employed in this work are much smaller than those typically used in the
literature we use more conservative values for dropout, in order to prevent excessive
under-fitting. Table 6.6 showcases the results.

Our experiments show that a very small amount of dropout is enough to offer
a small gain to overall accuracy, at no extra cost since the network size remains the
same. Compared to other published models from the literature that employ relatively
high dropout probabilities (e.g., 0.2 is used in [110, 162, 194, 213] and as high as
0.5 in [165]), we find that for our lightweight TCN, smaller values perform better,
with a value of 0.05 to 0.1 being the best choice. We observe that for higher values
of dropout probability, performance starts to degrade, which is not unexpected and
reinforces our claims in the earlier discussion.

The above experiments use a dropout rate that remains non-changing during

training. A logical choice is to adjust the probability of dropout as training progresses,
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Dropout p | Accuracy 1 (%)
0.0 88.12
0.05 88.26 (+0.14)
0.1 88.24 (+0.12)
0.2 88.00 (—0.12)
0.25 87.68 (—0.44)

Table 6.6: Ablation study on the amount of dropout added to the layers of the TCN.
The strategy used is constant rate throughout training. We use the baseline end-to-
end model without any additional components such as attention methods. Results

are on the LRW test set.

akin to learning rate scheduling. We therefore experiment with dropout strategies
borrowed from [326] that have shown potential for performance improvement by
employing a dropout schedule that activates at certain epochs and modifies the prob-
ability. As in the above experiments, we use the baseline end-to-end network without
any attention modules. The results are shown in Table 6.7.

Our study showecases that regularization strategies should be applied in a careful
manner as smaller networks are more sensitive to noise. When the dropout probability
is rather low at 0.05, the “Early” strategy that keeps it activated until the specified
epoch is finished, is actually detrimental to performance and a similar effect happens
when we use a higher rate at 0.1. This suggests that for lightweight networks the
early epochs of training are rather important for final performance and that using
dropout during these epochs harms the overall capabilities of the network. This
claim is reinforced by the results for the “Late” strategy that activates dropout after
the target epoch is reached, allowing the network to train for a few epochs without
regularization. In this strategy, a higher value for dropout does improve accuracy, if
activated near the final epochs of training (e.g., after epoch 40), while the opposite
happens for a smaller dropout value. A probable explanation is that a larger value
assists the network in generalization by forcing adaptation after some features have
been learned, but a smaller dropout probability does not activate as often and acts as
noise, disrupting the learning process. Another supporting result of this assumption
is the model behavior when dropout is activated after epoch 20, where the drop rate

of 0.1 prevents learning of more fine-grained features as it acts on the model for
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Dropout schedule | Probability | Epoch | Accuracy 1 (%)

No dropout - - 88.12
5 88.06 (—0.06)
0.05 10 88.06 (—0.06)
20 88.08 (—0.04)
Early
5 87.97 (—0.15)
0.1 10 87.77 (—0.35)
20 88.09 (—0.03)
20 88.14 (+0.02)
0.05 40 88.09 (—0.03)
60 87.88 (—0.24)
Late

20 88.08 (—0.04)
0.1 40 88.12 (£0.00)
60 88.28 (+0.16)

Table 6.7: Ablation study on the scheduling strategy for the dropout rate during
training. A “late” schedule enables dropout after a certain epoch, while the “early”
schedule deactivates it after that epoch, indicated in the third column. Results are on
the LRW test set.

longer, but 0.05 is not as counter-productive to the learning process.

6.3.3 Combination of Methods

Finally, we offer a complete ablative study that highlights the importance and effect of
each particular module on the final performance of the model, combining all previous
methods discussed in this Chapter.

While each method in isolation provides a small benefit for overall performance,
our results reveal that a combination of methods is the best approach, allowing the
end-to-end model to reach a recognition level that is higher than using each method
individually. The effects of regularization have a positive impact not only on the
baseline model, but also on the one using ECA modules. This synergistic effect occurs
for both dropout application strategies, as each one contributes to a higher accuracy

without any additional overhead, suggesting that the regularization effect of dropout

176



Method Accuracy 1 (%)
Base model (MobileNetV4-S + Star-V block TCN) 88.12

+ Dropout p = 0.05, no schedule 88.26 (+0.14)
+ Dropout p = 0.1, late (e = 60) 88.28 (+0.16)
+ ECA attention (kernel size = 5) 88.66 (+0.54)
+ Dropout p = 0.05 + ECA (kernel size = 5) 88.92 (+0.80)
+ Dropout p = 0.1, late (e = 60) + ECA (kernel size = 5) | 88.93 (+0.81)

Table 6.8: Ablation study on the different performance-improving methods consid-

ered in this Chapter. Results are on the LRW test set.

enhances learning regardless of model size and complexity. For this architecture, the
late activation strategy slightly outperforms using a static dropout rate (by 0.01%),
with and without the use of an attention module, although the difference between

these two is negligible.

6.4 Conclusion

In this Chapter, we explored methods for improving the recognition performance of
a lightweight VSR end-to-end network for isolated words. These networks tend to
employ resource-saving components with weaker representational capacity, and as
a result achieve lower accuracy than larger architectures. An existing architecture
was employed and augmented with channel attention modules that were designed to
improve performance without adding significant overhead to network size and com-
plexity. Several such modules were introduced in the temporal blocks of the sequence
modeling component and experiments in the largest dataset for word recognition in
English were performed. Next, regularization in the form of dropout was added dur-
ing training of the model to facilitate enhancing the learning process and to reduce
the amount of under-fitting. Rather than keeping the dropout probability for the
whole training duration static, scheduling strategies that modify the dropout rate ac-
cording to the current epoch were investigated. Ablation studies were carried out to
determine the most optimal locations and hyperparameters for the attention module

as well as the values and thresholds for dropout and its scheduling strategies. Our
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results demonstrate that without increasing the network’s computational overhead,
incorporating an attention module and introducing regularization bring small im-
provements in recognition accuracy, however, careful selection of hyperparameters
is important. When combined, these two methods cumulatively uplift performance,

achieving significant raises.
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CHAPTER 7

CONCLUSION

7.1 Insights
7.2 Future Work

7.3 Concluding Remarks

This dissertation focuses on the task of visual speech recognition (VSR) from a practi-
cal perspective. Applications of VSR are found in numerous domains covering several
facets of every day life and can offer significant, even life-changing benefits for a great
number of people. The overwhelming majority of research in the literature for this
task is aimed at improving recognition rates, disregarding the resource overhead of
the oftentimes complex models that are proposed. This in turn effectively prevents
further exploitation in realistic scenarios since the hardware requirements can only
be met in specific conditions, typically in high compute environments. In contrast, the
methods proposed in the previous Chapters represent several approaches towards the
goal of developing lightweight and practical models for VSR with broad application
potential. The resulting models have low hardware requirements, enabling deploy-
ment in a wide spectrum of scenarios by more energy-efficient devices. These factors
are gaining increasing importance as energy consumption is becoming a concern that
affects a great number of individuals at a global scale. The main contributions of this
thesis are summarized as follows.

Chapter 2 presents a comprehensive review of the literature on VSR of isolated

words in the English language, covering over 140 published works with a basis in
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deep learning methods. A common methodology shared by all methods is splitting
the problem in two smaller tasks: visual feature extraction and sequential modeling.
Since CNNs are invariably employed for the former, we offer a basic taxonomy of
works according to the model used for the latter task. The review also underscores
that a disproportionate amount of published works focuses on the topic of practical
VSR, which serves as a motivation of this dissertation. In the last part of the chapter
we also present a through analysis of published datasets for isolated word VSR,
categorized by language, that includes technical information about the samples for
more than 30 datasets.

In Chapter 3 we explored a network compression technique to lower an existing
architecture’s overall size and memory footprint. We replace standard convolution
and fully-connected layers in the base models with equivalent layers that exploit a
sum of Kronecker products to produce their weight matrices used in calculations. The
use of Kronecker product in this fashion allows using matrices of smaller dimensions,
achieving significant parameter savings. A user-defined hyper-parameter specifies the
number of Kronecker products to be summed and ultimately controls the amount
of parameter reductions, or network compression. Our experiments show that large
reductions in model sizes are possible but there is a small penalty in recognition
rate, which becomes more pronounced at higher rates of compression due to the
reduction in network capacity. An ablative analysis explores the impact of using
parameter-saving layers in the different components of the end-to-end architecture.

In the same spirit, in Chapter 4 we presented a different method for network
compression which also reduces computational overhead of the unified architectures.
This method involves a module that generates intermediate feature maps of smaller
dimensions and then applies an inexpensive operation on that result. This module
is used in place of standard convolutions in both components of a two-stage VSR
design, creating cost-efficient networks with reduced requirements. Furthermore, we
proposed a temporal block design called Partial Temporal Block that splits the input
feature maps in two parallel computation branches across the channel dimension.
This block is highly customizable, allowing different operations to be applied in each
branch, and can considerably lower the overhead of a network. Using our block as
a core component in a TCN, we evaluate three lightweight designs from the liter-
ature developing sequence modeling networks that are rather compact and low in

complexity.
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A systematic approach is followed in Chapter 5 where rather than using an ex-
isting network, we investigate a multitude of structures to develop a lightweight and
powerful end-to-end architecture. Adopting the ubiquitous two-step pipeline that is
typical for VSR, we first explore convolutional neural networks for extraction of visual
features from the input. We benchmark several lightweight CNN-based models from
the image classification literature that cover various approaches for network design,
finding the one that performs best for the task. Next, using that model for visual
feature extraction, we design TCN-based sequential models that utilize a variety of
temporal block structures. We adapt the two-dimensional blocks to the 1D sub-task
of sequential modeling for use in our TCNs by converting the appropriate opera-
tions, creating various networks with distinct block design philosophies, that are also
benchmarked. The most performant components for both sub-tasks are employed
in a unified model that far surpasses other lightweight networks from the literature
in all measurement indices, being smaller in size, lighter in overhead and achieving
word accuracy that is comparable to other, much larger models.

Finally, using our end-to-end model as a baseline, in Chapter 6 we explore meth-
ods to enhance its capabilities while maintaining its computational complexity at
manageable levels. A mechanism that aligns with this objective is channel atten-
tion, therefore we add such methods to the temporal blocks of the TCN model that
is used for sequence modeling. We employ several attention mechanisms from the
computer vision literature that are adapted where necessary to operate on the channel
dimension of the visual features that are fed to the TCN. In addition, we introduce
regularization to the unified model during training in the form of dropout added after
each temporal block to improve the overall recognition rates without any additional
cost in model overhead. Rather than using a constant rate throughout the duration
of training, several strategies that modify the dropout probability are investigated.
Ablative experiments show the optimal location and hyperparameters for the atten-
tion mechanisms as well as the dropout scheduling strategy that is most beneficial
for performance. A combination of channel attention and regularization is shown to

provide the largest increase in accuracy.
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7.1 Insights

The insights gained from the work carried out in this dissertation regarding light-
weight and practical model design for VSR highlight a few key aspects that should
be taken into account when designing such systems where the aim is a practical ap-
plication. First and foremost, the two-stage design is a tried and tested method for
the task of VSR that has stood the test of time and currently is the most efficient
approach for practical networks. This design also applies if the objective is solely
obtaining a high recognition rate, i.e., without considering the computational costs.
Since the most resource-heavy component is typically the visual feature extraction
network, a lightweight end-to-end system should employ a cost-effective model and
several lightweight models from the computer vision literature have been shown to
perform well regardless of their compact size and are strong candidates for this pur-
pose. Similarly, the sequence modeling component is an essential part of the overall
architecture and TCN-based models are currently the most suitable choice as they
offer strong performance with low hardware demands, compared to RNNs. More-
over, their structure has a high design flexibility that allows designing customized
models tailored to the available resources. An inevitable result of designing practical
networks with reduced hardware demands is a reduction in network capacity due
to the lightweight operations and smaller sizes, which translates into a degradation
of performance, however this effect can be mitigated with various methods, such as
using a high-performance TCN-based model, or introducing attention methods and
regularization to improve recognition performance. Naturally, the impact on perfor-
mance is greater the more compact a model becomes and more often than not, a
compromise between accuracy and size has to be made, nevertheless, as research

progresses, the gap between compact and larger networks is becoming narrower.

7.2 Future Work

A few notable limitations are underlined at each Chapter, which serve as motivation
for future research directions. Improving the accuracy of our lightweight models is a
priority, since from our experiments it is evident that the lighter and more practical
networks fall behind the larger ones in terms of performance. While this is not unex-

pected, we believe that extending our proposed models with more, newer architectures
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or devising more specific training strategies can aid our efforts towards bridging that
gap. Expanding the principles of this work to phrase- or sentence-level VSR is also
an interesting direction as these models are hampered by the same constraints dis-
cussed in Chapter 2, namely, deployment difficulties due to the considerable size and
complexity of the involved architectures. Recognition of structured speech remains
an open problem that comes with its own set of challenges and expands the benefits
of VSR in a broader scope of communication. Enabling more applications of VSR
will assist individuals and offer more services in scenarios that are not satisfied by

decoding isolated words.

7.3 Concluding Remarks

In closing, we discuss the ethics of VSR technology, and SR in general, which can be
used for either benevolent or malevolent purposes. A valid concern is that VSR sys-
tems can be used to violate the privacy of users through surveillance, which applies to
all forms of VSR, but is especially applicable to more sophisticated recognition systems
that are able to decode structured speech such as phrases or sentences. Currently, the
methods for VSR are limited in their applications due to a few factors, mainly by
data availability and method generalization. The available datasets typically contain
videos of a low spatial resolution and are overall constrained both in the number of
samples and the richness of vocabulary, preventing training of highly capable (more
realistic) recognizers. Presently this is not a concerning issue, however in the future
it will become a more pressing matter, given that the daily rates of data recording
and technological progress are constantly increasing. Furthermore, the performance
of current VSR methods is evaluated on curated data depicting unobstructed views of
speakers in semi-controlled conditions that can be regarded as ideal and deteriorates
rapidly with variations of speaker appearance, head pose and other occlusions (e.g.,
wearing masks), making it an unlikely vector for malicious intent, when compared
to ASR. Indeed, the latter is more likely to be utilized for eavesdropping or surveil-
lance purposes, since the performance of VSR is closely dependent on video quality,
while ASR is unaffected. Preventative legislative measures and frameworks have to be
developed in a timely manner, laying the groundwork for future regulations regard-

ing all forms of SR to protect the privacy of individuals, mitigating potential risks.
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In closing, we believe that the benefits of VSR far outweigh any potential malicious

application and that it will be used for good rather than harm.
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