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Abstract 

 

Autonomous cyber-physical microsystems (µCPS) promise long-horizon sensing, inference, 

and actuation with minimal maintenance, yet their feasibility is governed less by average 

harvested power than by the dynamics and losses of the power path and by bursty, deadline-

driven workloads observed through sparse telemetry. This thesis develops a principled 

framework that converts diffuse environmental energy into predictable service. First, it 

introduces macroscopic, loss-aware models that map incident source flux to usable electrical 

power through realistic conversion, storage, and protection, explicitly accounting for cold-

start energy, quiescent drains, leakage, equivalent series resistance, and undervoltage 

hysteresis. These models define mission-level autonomy metrics—energy neutrality over a 

horizon and survivability within protection bounds—that guide both design and evaluation. 

Second, it presents DREAM (Dynamic Rest & Energy-Aware Management), a runtime that 

uses low-cost observables (primarily storage-voltage trajectories and discrete protection 

events) to orchestrate rest, energy aggregation, and execution of high-crest-factor tasks 

(sensing, computation, communication) so that deadlines are met without inducing 

brownouts. Third, it proposes a trace-driven sizing methodology that selects harvester 

technology/area, storage type/capacity, and converter modes to meet mission-level energy 

and service constraints over stated horizons with quantifiable confidence under realistic 

temporal variability in sources and networks. Validation across representative case studies 

demonstrates sustained service with materially fewer brownouts and improved predictability 

versus battery-only baselines and controllers that optimize average power without explicit 

deliverability or protection modeling. The results provide designers with a credible path from 

environmental energy fluxes to system-level performance guarantees for maintainable, 

sustainable, and trustworthy µCPS.   

 

Keywords: energy harvesting; energy-neutral operation; runtime power management; 

trace-driven harvester sizing; cyber-physical microsystems 
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Περίληψη 

 

Η διατριβή πραγματεύεται τον σχεδιασμό και τη λειτουργία αυτόνομων κυβερνοφυσικών 

μικροσυστημάτων που τροφοδοτούνται από συγκομιδή ενέργειας, επιδιώκοντας να 

μετατρέψει στοχαστικές και χαμηλής στάθμης ροές ισχύος σε προβλέψιμη υπολογιστική και 

επικοινωνιακή υπηρεσία με τεκμηριωμένες εγγυήσεις ουδετερότητας ενέργειας και 

βιωσιμότητας. Η πρακτική πρόκληση δεν συνίσταται στον μέσο ρυθμό παροχής ισχύος, 

αλλά στη χρονική δομή της ενεργειακής αλυσίδας, στις απώλειες μετατροπής και διανομής, 

και στους περιορισμούς παραδοτέας ισχύος κατά τη στιγμή εκτέλεσης κορυφωμένων 

φορτίων. Ενεργοβόρες μεταβάσεις —όπως ενεργοποίηση υποσυστημάτων 

ραδιοεπικοινωνίας, προθέρμανση αισθητήρων και εγγραφές σε μη πτητική μνήμη— 

επιβάλλουν αυστηρές στιγμιαίες απαιτήσεις που δεν περιγράφονται επαρκώς από αναλύσεις 

μέσων τιμών. Ως εκ τούτου, υιοθετείται μια κόμβο‑κεντρική και απωλειο‑ευαίσθητη 

θεώρηση, όπου η ενέργεια αντιμετωπίζεται ως πρωτογενής πόρος υπό περιορισμούς 

απόδοσης, προστασίας και αποθήκευσης. 

Η θεωρητική θεμελίωση βασίζεται σε μακροσκοπικά μοντέλα ροής ισχύος από την πηγή 

έως το φορτίο μέσω ρεαλιστικής μετατροπής, αποθήκευσης και προστασίας. Η ισχύς που 

διατίθεται στην είσοδο της αλυσίδας μετά την αντιστοίχιση και τη συλλογή παριστάνεται 

ως PH(t), ενώ το συνολικό ενεργειακό κόστος των λειτουργιών —λήψη μετρήσεων από τους 

αισθητήρες, τοπική επεξεργασία, επικοινωνία και ψευδοσταθερές καταναλώσεις— ως PL(t). 

Η αποθηκευμένη ενέργεια Ε(t) παρακολουθείται μέσω της τάσης αποθήκευσης Vstore(t), ενώ 

οι αποδόσεις εισόδου και εξόδου, μαζί με όρους διαρροών και quiescent drains, 

ενσωματώνονται ρητά ώστε να αποδοθεί η πραγματική συμπεριφορά της αλυσίδας. Τα 

κυκλώματα προστασίας ορίζουν επιτρεπτή ζώνη λειτουργίας· η υπέρβαση των ορίων οδηγεί 

σε διακοπές (UVLO) και σε ανεπιθύμητες επανεκκινήσεις. Σε αυτό το πλαίσιο, ορίζονται 

δύο μετρικές αποστολής: η ουδετερότητα ενέργειας σε συγκεκριμένο ορίζοντα, όπου η 

συγκομιδή και η αποθήκευση ισοσκελίζουν το κόστος μετά τις απώλειες, και η βιωσιμότητα, 

δηλαδή η διατήρηση της τροχιάς Ε(t) εντός των ορίων προστασίας με διασφαλισμένη 

δυνατότητα εκτέλεσης κορυφωμένων εργασιών χωρίς κατάρρευση τάσης. Η εστίαση 

μετατοπίζεται έτσι από την αθροιστική ενέργεια στην πραγματική δυνατότητα παράδοσης 

ισχύος τη δεδομένη στιγμή, η οποία αποδεικνύεται καθοριστική για την αξιοπιστία της 

υπηρεσίας. 
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Οι πηγές διάχυτης ενέργειας —φωτοβολταϊκά σε εσωτερικούς χώρους, θερμικές κλίσεις 

χαμηλού ΔT, μηχανικοί κραδασμοί και περιβαλλοντικό RF— χαρακτηρίζονται από υψηλή 

χρονική μεταβλητότητα με διαστήματα πλατό και υφέσεων. Η εργασία προσδιορίζει 

προσεκτικά τη χαρτογράφηση από τη φυσική ροή Φ(t) στη χρήσιμη ισχύ PH(t), 

λαμβάνοντας υπόψη ψυχρή εκκίνηση, περιορισμούς αντιστοίχισης/MPPT, δυσανεξία σε 

πολύ μικρές τάσεις ανοικτού κυκλώματος (ιδίως σε TEG) και βραχύβια παράθυρα ενέργειας 

σε κραδασμούς ή RF. Αναδεικνύεται ότι η πολυτροπική σύζευξη πηγών αυξάνει τη 

συχνότητα ευκαιριών συγκομιδής, υπό την προϋπόθεση ότι ελέγχεται η προσθήκη 

ψευδοσταθερών καταναλώσεων και οι αλληλεπιδράσεις ελέγχου μέσω προσεκτικού OR-

ing, κοινής μετατροπής όπου είναι εφικτό και σωστής ρύθμισης υστερήσεων και 

κατωφλίων. 

Στο επίπεδο αρχιτεκτονικής, προτείνεται ένας συμπαγής αλλά εκφραστικός αγωγός ισχύος: 

αντιστοίχιση/ανορθωτές/MPPT, μετατροπείς DC‑DC, υποσύστημα αποθήκευσης 

(υπερπυκνωτές, μικρο‑μπαταρίες ή υβριδικές λύσεις) και διανομή με προστασίες. Ο 

διαχωρισμός μονοπατιού ψυχρής εκκίνησης από το μονοπάτι κανονικής λειτουργίας 

επιτρέπει αφύπνιση υπό δυσμενείς συνθήκες και, στη συνέχεια, λειτουργία υψηλότερης 

απόδοσης μόλις συσσωρευθεί επαρκής ενέργεια. Η αποθήκευση αναλύεται ως μηχανισμός 

με χρονικά εξαρτώμενη δυνατότητα παράδοσης ισχύος: η στρογγυλή απόδοση, οι διαρροές 

και η ωμική συμπεριφορά (ESR) προσδιορίζουν την άμεση ικανότητα υποστήριξης φορτίων 

με υψηλό crest factor, ιδίως σε εκπομπές δεδομένων μεγάλης πυκνότητας. 

Η διαχείριση ισχύος στο χρόνο εκτέλεσης στηρίζεται σε φειδωλή αλλά επαρκή παρατήρηση: 

μετρήσεις Vstore σε χαμηλούς ρυθμούς και αξιοποίηση συμβάντων από τα κυκλώματα 

προστασίας. Για τον περιορισμό του κόστους τηλεμετρίας εφαρμόζονται σχήματα 

event‑driven ενημέρωσης. Στο φορτίο υιοθετείται παρτιδοποίηση διεργασιών ώστε να 

μειώνεται ο αριθμός αφυπνίσεων και να ελαχιστοποιούνται μεταβατικές δαπάνες: 

προηγείται δειγματοληψία και τοπική επεξεργασία, ακολουθεί συγκέντρωση δεδομένων και 

έπειτα πραγματοποιείται ενιαία μετάδοση σε κατάλληλα διαμορφωμένα ενεργειακά 

παράθυρα. Οι πολιτικές επικοινωνίας ευθυγραμμίζονται με την ενεργειακή κατάσταση 

μέσω προσαρμογής του μεγέθους payload, των παραμέτρων MAC/PHY και του χρονισμού, 

ώστε να περιορίζεται ο on‑air χρόνος για τη δεδομένη ποιότητα ζεύξης και να αποφεύγονται 

αποτυχημένες επαναλήψεις. 
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Κεντρική συμβολή αποτελεί το DREAM (Dynamic Rest & Energy‑Aware Management), 

ένα ελαφρύ εκτελεστικό υπόστρωμα που μεταχειρίζεται την ενέργεια ως πόρο πρώτης 

τάξης. Το DREAM οργανώνει τη λειτουργία σε δύο καταστάσεις: ανάπαυση‑συσσώρευση, 

κατά την οποία αυξάνεται το ενεργειακό απόθεμα, και συμπαγή εκτέλεση εργασιών (burst 

execution), όπου ολοκληρώνονται δεσμευμένες λειτουργίες αίσθησης, υπολογισμού και 

επικοινωνίας με σεβασμό στα όρια παραδοτέας ισχύος και στις προθεσμίες. Η προσέγγιση 

βασίζεται σε υδατοσήματα αποθήκευσης, τμηματοποίηση μεγάλων κορυφών σε υπο‑bursts 

με ενδιάμεση επαναφόρτιση και ευθυγράμμιση με αναμενόμενα πλατώ συγκομιδής βάσει 

απλών χρονικών προτύπων. Η πειραματική αξιολόγηση καταδεικνύει σημαντική μείωση 

brownouts, σταθερότερη ποιότητα υπηρεσίας και εξάλειψη φαύλων κύκλων 

επανεκκινήσεων και ανεπιτυχών ραδιοδοκιμών. 

Συμπληρωματικά, προτείνεται ιχνο‑καθοδηγούμενη μεθοδολογία διαστασιολόγησης. Με 

αντιπροσωπευτικά ίχνη πηγών και φορτίων, τα μετρημένα μοντέλα μετατροπέων και 

αποθήκευσης αναπαράγουν την πραγματική ροή ενέργειας, επιτρέποντας να 

προσδιοριστούν τεχνολογίες και εμβαδά συλλεκτών, τύποι και χωρητικότητες 

αποθήκευσης, κατώφλια και υστερήσεις προστασίας, καθώς και περιοχές λειτουργίας 

μετατροπέων που ικανοποιούν τις μετρικές αποστολής με ποσοτικοποιημένη εμπιστοσύνη. 

Όταν τα ίχνη είναι περιορισμένα, χρησιμοποιούνται συνθετικά μοντέλα χαμηλής 

πολυπλοκότητας που διατηρούν κρίσιμες χρονικές στατιστικές (μήκη πλατώ και υφέσεων), 

αποφεύγοντας τα σφάλματα τόσο των αναλύσεων μέσων τιμών όσο και των 

υπερσυντηρητικών περιβλημάτων. 

Η εμπειρική επικύρωση διεξάγεται σε κόμβους φωτοβολταϊκής ενέργειας εσωτερικού 

χώρου και σε συστήματα θερμοηλεκτρικής συγκομιδής χαμηλού ΔT, καθώς και σε 

πρωτότυπα με αναλυτική τηλεμετρία της κατάστασης του DREAM. Τα αποτελέσματα 

επιβεβαιώνουν ότι, υπό αντίστοιχους μέσους προϋπολογισμούς, η προτεινόμενη προσέγγιση 

επιτυγχάνει βιώσιμη υπηρεσία με σαφώς λιγότερα επεισόδια υποτάσεως, βελτιωμένη 

προβλεψιμότητα εκτέλεσης εργασιών και ανθεκτικότητα σε παγίδες ψυχρής εκκίνησης. 

Αναδεικνύεται επίσης η σημασία μετατροπέων πολύ χαμηλής τάσης για boot‑strap 

εκκινήσεις και η χρησιμότητα συσσώρευσης πριν από κορυφωμένες μεταδόσεις δεδομένων.  

Η προτεινόμενη προσέγγιση είναι σκόπιμα μακροσκοπική, ώστε να παραμένει πρακτική. 

Δεν απαιτεί επίπονη ηλεκτρική ταυτοποίηση εξαρτημάτων· επαρκούν αξιόπιστες μετρήσεις 

quiescent και διαρροών και ιχνοσύνολα με ρεαλιστική χρονική ποικιλία. Το τίμημα της 
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φειδωλής παρατήρησης είναι ευρύτερες αβεβαιότητες, οι οποίες αντιμετωπίζονται με 

ασφαλείς ζώνες λειτουργίας και προσαρμοστικά υδατοσήματα. Σε εφαρμογές υψηλής 

κρισιμότητας (π.χ. ιατρικές), οι τελετουργίες ασφάλειας και οι ενημερώσεις πρέπει να 

ομαδοποιούνται σε ήδη αφυπνισμένα χρονικά παράθυρα και να προβλέπεται ενεργειακή 

εφεδρεία για λειτουργίες ασφαλούς αποτυχίας. 

Συνοψίζοντας, η διατριβή εισφέρει ένα συνεκτικό πλαίσιο που συνδέει τις ροές 

περιβαλλοντικής ενέργειας με εγγυήσεις επιπέδου συστήματος για κυβερνοφυσικούς 

κόμβους χαμηλής ισχύος. Τα απωλειο‑ευαίσθητα μοντέλα επιτρέπουν σχεδίαση με ρητές 

μετρικές ουδετερότητας και επιβιωσιμότητας· το DREAM ενορχηστρώνει, με ελάχιστη 

τηλεμετρία, την εναλλαγή συσσώρευσης και συμπαγών εκτελέσεων χωρίς επεισόδια 

υποτάσεως· και η ιχνο‑καθοδηγούμενη διαστασιολόγηση επιλέγει συλλογή, αποθήκευση 

και προστασία που εξασφαλίζουν αυτονομία με μετρήσιμη εμπιστοσύνη. Η κεντρική θέση 

είναι σαφής: η στιγμιαία δυνατότητα παράδοσης ισχύος είναι ισοδύναμης σημασίας με το 

μακροπρόθεσμο ενεργειακό ισοζύγιο και, με προσεκτικά σχεδιασμένα παρατηρήσιμα 

σήματα, τα µικροσυστήματα μπορούν να λειτουργούν προβλέψιμα και αξιόπιστα σε 

απαιτητικά περιβάλλοντα για εκτεταμένους ορίζοντες λειτουργίας. 

 

  

Λέξεις κλειδιά: συγκομιδή μικροενέργειας, δυναμική διαχείριση ισχύος, ενεργειακή 

ουδετερότητα, διαστασιολόγηση συλλεκτών, κυβερνοφυσικά μικροσυστήματα 
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Nomenclature 

Term Definition 

A (area) Effective collector aperture (for minimum-area sizing). 

Aϕmin(T) 
Availability of Φ above threshold ϕmin over window T 

(fraction). 

Brownout 
Hysteretic undervoltage region where loads are shed until 

recovery. 

Cold-start 
Bring-up from discharged store once (VCS, ECS) criteria are 

met. 

CPS Cyber-physical system. 

DVFS Dynamic Voltage and Frequency Scaling. 

E(t) Stored energy state. 

ECS Start-up energy budget to reach regulation. 

Ee,λ(λ,t,n) Spectral irradiance at the POA (optical). 

Ein Charge-packet energy used in RTE/dwell relations. 

ET Environmental energy over window T (harvesting potential). 

heff(t) Effective heat-transfer coefficient (thermal coupling). 

Ileak(V,T) Leakage current model used to parameterize Pleak. 

MPPT Maximum Power Point Tracking (input control). 

n Unit normal of the plane of array. 

OCV Open circuit voltage. 
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Term Definition 

OVP Over-Voltage Protection. 

PH(t) 
Harvested power referred to the input/storage side (post 

input-path losses). 

PL(t) 
Aggregate load power (sense + compute + comms + 

quiescent). 

PMIC / PMU Power Management IC / Unit. 

POA Plane-of-Array (irradiance at device plane). 

Pq(t) Quiescent power of conversion/protection blocks (loss). 

Pleak(t) Storage leakage/self-discharge power (loss). 

Qp(·) p-th percentile operator (e.g., Q5, Q50, Q95 of ET). 

Rail sequencing / power-

good 

Enable/disable order and status signaling for survivable 

operation. 

RF Radio Frequency. 

RTE Round-trip efficiency. 

SIMO Single-Inductor Multiple-Output (regulator topology). 

SoC State of Charge. 

T Generic window horizon used for ET/availability/sizing. 

TL,cycle Load cycle period in duty-cycled workload abstraction. 

TSI Total Solar Irradiance. 
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Term Definition 

u(t) External stimulus to the harvester (e.g., irradiance level). 

UVLO Undervoltage Lockout (with hysteresis). 

VCS Cold-start Threshold Voltage. 

Vstore(t) Storage voltage (proxy for stored energy). 

{τk} Task set with per-task energy cost ek and deadline dk. 

ΔT(t) Temperature difference across an interface (thermal). 

Λ Optical spectral band of interest (e.g., 300–1200 nm for PV). 

Πb(t), Φb(t) Band-integrated vibration/RF measures over band b. 

Φ(t) 
Environmental energy flux at point of use (e.g., W·m⁻² for 

optical). 

Φmin Source-side threshold defining “usable” Φ (units of Φ). 

ηch, ηdis Charge/discharge multipliers for DC-boundary RTE. 

ηdc(u,x) DC conversion efficiency vs. operating point. 

ηH(u,x) Harvester efficiency vs. stimulus u and internal state x. 

ηin(t) Input-path efficiency (source/front-end → store side). 

ηout(t) Output-path efficiency (store → rails). 

   



   

15 

 

1 Introduction 

Autonomous cyber-physical microsystems (µCPS) are increasingly embedded in natural, 

urban, and industrial environments to perceive context, execute local inference, and actuate 

with minimal human oversight. Their practical value—whether in long-horizon 

environmental monitoring, building automation, logistics, or clinical wearables—hinges on 

the ability to operate predictably under tight energetic constraints. While algorithmic 

advances and low-power hardware have reduced per-operation cost, field deployments 

routinely reveal that energy acquisition, storage, and delivery remain the dominant 

determinants of feasibility and quality of service. Battery-centric designs face recurring 

maintenance, supply-chain, and environmental burdens; simply appending harvesters is 

insufficient because ambient sources are variable, the power path is lossy, and high crest -

factor tasks (e.g., radio bursts, sensor warm-ups) can induce brownouts despite adequate 

average energy. These observations motivate a holistic treatment of energetics that spans 

source characterization, loss-aware power-path modeling, storage dynamics, and runtime 

scheduling. 

This thesis addresses that need by developing a loss-aware, node-centric framework that 

turns diffuse environmental energy into predictable service for sensing, computation, and 

communication. It combines: (i) a macroscopic, store-side model that captures conversion 

losses, storage dynamics, and protection behavior; (ii) a runtime scheduler that enforces 

window-based energy neutrality and survivability using minimal telemetry; and (iii) a trace-

driven sizing methodology that maps mission requirements into concrete design choices for 

sources, storage, and thresholds. 

These contributions are validated on representative µCPS case studies spanning indoor 

photovoltaic, low-ΔT thermoelectric, and mixed-source deployments. Replay of measured 

and synthesized traces demonstrates that loss-aware modeling and runtime control 

substantially reduce brownouts and improve availability compared to baseline duty-cycling 

and average-power sizing, even under weak and intermittent sources. 

1.1 Background and motivation 

These microsystems integrate sensing, low-power compute, and short-range/LPWAN 

radios. In field deployments, feasibility and quality of service are primarily constrained by 

energetics rather than functionality. Variability in energy acquisition, conversion losses, 

storage leakage/quiescent draws, and high-crest-factor loads (e.g., radio bursts, sensor 
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warm-ups, flash writes) cause deadline misses and brownouts despite adequate average 

harvested power. 

Scaling batteries or deepening sleep extends lifetime but preserves logistics, environmental 

cost, and safety risks. Adding a harvester is not a drop-in fix: indoor light, low-grade thermal, 

and weak vibration sources are intermittent and low density; interfaces introduce cold-start 

limits, MPPT overheads, diode/converter drops, leakage, and protection thresholds that can 

gate operation. Consequently, average-power reasoning is insufficient without accounting 

for the lossy power path and the timing structure of work. 

At a high level, we take a node-centric, loss-aware, timing-sensitive view: each microsystem 

sees stochastic input power, a leaky store, a conversion/protection stack, and a bursty task 

set with deadlines. Mission outcomes are formalized in terms of energy balance and 

protection limits and achieving them requires co-design of hardware sizing and runtime 

policies that schedule activity in concert with energy availability. A precise abstraction and 

notation are given in the problem statement of this chapter and in Chapter 2. 

High-fidelity telemetry and model-predictive control are often impractical at microwatt 

scales. Practical systems regulate on sparse observables—primarily storage-voltage 

trajectories and protection events—while shaping rest and activity to meet QoS with 

negligible overhead. This motivates a runtime that admits, defers, or aggregates work based 

on store state and recent protection behavior, and a trace-driven sizing flow that links 

environmental variability, power-path losses, and workload timing to concrete guarantees. 

1.2 Overview of diffuse energy sources 

At microsystem scale, environmental energy is low-density and intermittent. Indoors, optical 

flux is orders of magnitude below outdoor insolation and shaped by building geometry and 

occupancy; low-ΔT thermal gradients evolve slowly and are easily flattened by packaging; 

vibration sources are narrowband and site-specific. Rather than tying the thesis to any 

particular device, we treat the environment generically as a time-varying source Φ(t) and 

defer detailed transducer physics to Chapter 3, which supplies device-agnostic envelopes of 

windowed energy over missions of interest. 

1.3 Power management techniques for embedded systems 

Power management in µCPS spans four interacting layers: (i) sensing and actuation front 

ends, whose bias and conditioning costs set a non-trivial energy floor; (ii) the compute 

substrate, where deep-sleep states, DVFS, and peripheral-triggered wake reduce dynamic 



   

17 

 

and static drains; (iii) the communication stack, whose preambles, listen windows, and 

contention behavior often dominate payload energy; and (iv) the power subsystem, where 

conversion, protection, and storage choices shape the admissible power-path trajectories. 

Across these layers, control policies are either reactive—regulating on store proxies and 

protection events—or predictive—admitting work based on short- to medium-horizon 

forecasts. The thesis instantiates these ideas in DREAM, a lightweight runtime that enforces 

window-based energy neutrality and survivability using only storage-voltage trajectories and 

protection events. 

1.4 Challenges and opportunities in diffuse energy utilization 

Diffuse sources exhibit intermittency with structure: plateaus and lulls follow human or 

machine rhythms, so identical averages can yield different outcomes depending on deadline 

alignment. Feasibility is further constrained by a lossy, stateful power path—efficiency 

cliffs, quiescent drains, cold-start budgets, current limits, and protection hysteresis often cap 

deliverability for short bursts. At microwatt scales, observability is sparse because fine-

grained metering can be net-negative; policies must remain stable using only a storage proxy 

and protection events. Finally, scale and integration matter: placement, packaging, and 

parasitics perturb the mapping from environmental flux to harvested power, while EMC and 

analog integrity interact with burst shaping, and aging drifts erode initial margins. 

These constraints also expose opportunities. Workloads can be shaped—batching and 

coalescing sensing, compute, and communication during harvest plateaus—to reduce 

wake/sleep churn, amortize handshakes, and manage crest factor with planned headroom; 

edge inference can trade airtime for local MAC operations under scarcity. Reconfigurable 

power paths and hybrid stores (e.g., supercapacitor – microbattery) improve effective 

deliverability while bounding quiescent losses through staged thresholds and selective front-

end enables. Trace-driven sizing and verification—replaying representative source and 

workload traces through measured converter and storage models—reveals cold-start traps, 

retry storms, and lull-induced depletions, enabling evidence-backed choices of harvester 

area, storage capacity, and thresholds. Finally, lean telemetry contracts and decision-relevant 

specifications (µW-scale efficiencies, quiescent currents, spectra and duty factors) reduce 

design margins and enable portable runtime control. 
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1.5 Problem statement 

We seek to design autonomous cyber-physical microsystems (µCPS) that run on diffuse, 

variable energy while providing predictable service under tight budgets. The core difficulty 

is not average harvested power, but the combination of a lossy, stateful power path and 

bursty, deadline-driven workloads observed only through sparse telemetry. The goal is a 

principled way to size hardware and schedule work so that nodes remain energy-neutral and 

survivable over explicit horizons, meeting application timing/quality constraints without 

high-overhead metering.  

We adopt a node-centric abstraction. Let Φ(t) be incident source flux; PH(t) the conditioned 

electrical power after conversion/protection; E(t) the stored-energy state with measurable 

proxy Vstore(t); and PL(t) the load power of sensing, computing, memory, and 

communication. Conversion/protection are captured by state-dependent efficiencies (ηin, 

ηout), quiescent drains, and thresholds/hysteresis that govern cold-start and UVLO. Storage 

contributes leakage and finite deliverability (ESR, converter current limits). The workload 

is a task sequence {τk} with energy ek, deadlines dk, and crest requirements (peak power or 

minimum headroom during execution). Success is defined by neutrality over a window T 

(harvested-after-losses ≥ costs), survivability (E(t) within protection bounds with burst 

headroom), and predictability (each τk meets dk without violating deliverability constraints).  

The problem is to co-design: (i) harvester/storage sizing and key thresholds, and (ii) a 

runtime admission/timing policy that uses low-cost observables—primarily Vstore(t) and 

discrete protection/status events—to decide when to rest, aggregate charge, and execute 

bursts, explicitly handling cold-start, quiescent drains, converter operating regions, and 

instantaneous deliverability while honoring task deadlines.  

Constraints narrow admissible solutions. Telemetry is scarce (high-rate metering/coulomb 

counting is off-budget). Availability is structured, not white noise (plateaus/lulls from 

occupancy, HVAC, machine timetables, network calendars). Models must be macroscopic 

yet loss-aware, exposing the phenomena that dominate at µW scales while remaining 

tractable for design and control. Verification must be trace-grounded, replaying 

representative source and workload traces through measured converter/storage models to 

surface corner cases (e.g., dawn start-ups, retry storms, lull-induced depletions) that average-

power analyses miss.  
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1.6 Research objectives 

Objective 1 — Loss-aware node model. Formalize a macroscopic, tractable model that 

maps incident flux Φ(t) to conditioned input power 𝑃𝐻 (𝑡)through realistic 

conversion/protection and storage, and represent workloads as deadline-bounded, bursty 

tasks. Establish mission metrics—energy neutrality over explicit horizons and survivability 

within protection bounds—and use them as design targets and evaluation criteria throughout 

the thesis.  

Objective 2 — Decision-relevant source characterization. Provide parsimonious, µCPS-

scale descriptors of diffuse sources (plateau/lull statistics, availability windows) that 

preserve temporal structure and interface non-idealities shaping Φ→𝑃𝐻, avoiding high-

overhead metering.  

Objective 3 — Minimal-telemetry runtime. Develop an admission/timing policy 

(DREAM) that regulates using low-cost observables—principally a store proxy and discrete 

protection events—to decide when to rest/accumulate and when to execute bursts, remaining 

stable across cold-start and efficiency cliffs and coordinating with comms to prevent retry 

storms.  

Objective 4 — Trace-driven sizing. Translate autonomy targets into concrete hardware 

choices (harvester technology/area, storage type/capacity, thresholds/hysteresis, converter 

operating regions) by replaying representative input/load traces through measured 

macromodels to yield quantitative neutrality/survival guarantees and surface corner cases. 

Where traces are scarce, introduce lightweight synthetic generators that preserve mission-

relevant statistics.  

Objective 5 — Empirical validation. Demonstrate practicality on representative µCPS case 

studies with instrumentation limited to low-cost observables, comparing against battery-only 

and average-power controllers that ignore deliverability/protection dynamics, and showing 

sustained predictable service with materially fewer brownouts. 

1.7 Contributions 

1. Loss-aware node model (Chapters 2 and 4). A macroscopic, store-side model for 

energy-autonomous µCPS that captures harvested power, load power, storage 

dynamics, conversion efficiencies, and protection events. The model is explicitly 

parameterized by bench-measurable quantities and supports analysis in terms of 

windowed energy neutrality, survivability, and availability. 
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2. DREAM runtime (Chapter 5). A constant-overhead runtime scheduler that 

operates on fixed-length epochs using only a storage proxy and protection events. 

DREAM enforces window-based neutrality when energy is surplus and switches to 

a survival regime when energy is scarce, guaranteeing a user-defined survival 

horizon under model assumptions. 

3. Trace-driven sizing methodology (Chapter 6). A design methodology that replays 

measured or faithfully synthesized input traces through the loss-aware model to 

determine minimum collector area, storage capacity, and protection thresholds that 

satisfy neutrality, survivability, and availability targets over explicit mission 

windows. 

4. Empirical validation and case studies (Chapter 7). Model-driven and hardware-

in-the-loop experiments on real boards and traces from diffuse sources (indoor PV, 

low-ΔT TEGs, etc.), demonstrating that the proposed framework improves autonomy 

and service availability compared to existing energy-neutral duty-cycling and naive 

sizing approaches. 

1.8 Novelty and positioning 

Energy-harvesting micro–cyber-physical systems (µCPS) have been studied from a variety 

of angles, including energy-neutral duty cycling, harvester-aware control, intermittent-

computing abstractions and storage sizing techniques. Existing approaches typical ly make 

at least one of the following assumptions: (i) the energy chain is ideal or only partially 

accounts for losses; (ii) controllers have access to rich telemetry (e.g. harvester output and 

per-subsystem power metering); or (iii) design-time sizing and runtime policies are treated 

as largely separate problems. This thesis departs from these assumptions by adopting a store-

centric perspective and using it consistently across modelling, runtime control and design-

time sizing. 

• 1. Node-centric, loss- and protection-aware model 

A first contribution is a node-centric model of the energy chain that is explicitly loss- and 

protection-aware and is formulated at the energy store interface. Instead of assuming ideal 

harvest, conversion and storage, the model incorporates: 

• conversion losses (harvester, DC–DC and regulation stages), 
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• storage non-idealities (charge/discharge efficiency, leakage, rate-dependent 

behavior), 

• and protection mechanisms (UVLO, OVP and related protection thresholds and 

hysteresis). 

By working at the store interface, the model aligns with what is practically observable and 

controllable on µCPS nodes: storage voltage, energy content and protection events. This 

contrasts with much prior work that either abstracts away the energy chain behind an 

idealized battery model or focuses on harvester-side behavior without fully propagating 

losses and protections to the node-level energy budget. The model introduced here is 

therefore tailored to the realities of low-power µCPS, where losses and protections are not 

second-order effects but dominant determinants of deliverable energy and system 

availability. 

• 2. Minimal telemetry runtime (DREAM) 

A second contribution is the DREAM runtime, which implements energy-aware control 

using only storage-side telemetry and a constant, hardware-friendly overhead. DREAM 

does not assume access to detailed harvester measurements or per-subsystem power 

metering. Instead, it bases its decisions on: 

• the instantaneous or filtered state of the energy store (e.g. storage voltage as a proxy 

for stored energy), and 

• protection events and thresholds (e.g. UVLO triggers, minimum reserve margins). 

Within this constrained telemetry budget, DREAM enforces window-based neutrality and 

survivability objectives, by modulating the timing and intensity of workload execution. The 

policy alternates between accumulation and active phases according to explicit energy 

windows and reserves, rather than relying on implicit safety margins or average-power 

arguments. 

In contrast, many existing controllers either (i) require richer measurement infrastructure 

that is often unavailable or too costly on resource-constrained µCPS nodes, or (ii) operate 

with simple threshold policies that do not tie back to a formal model of  neutrality and 

survivability. The novelty here lies in demonstrating that such guarantees can be approached 
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using only store-centric measurements and a lightweight runtime that is compatible with 

typical embedded platforms. 

• 3. Trace-driven sizing tied to runtime guarantees 

A third contribution is a trace-driven sizing methodology that is explicitly tied to the 

runtime’s guarantees and uses the same store-centric, loss-aware formalism. Instead of sizing 

storage and protection thresholds based on average harvested power or static safety factors, 

the proposed methodology: 

• uses measured or realistic Φ(t) traces of net inflow/outflow at the store, 

• evaluates energy-neutrality and survivability over explicit time windows, and 

• derives storage capacity and threshold configurations through inclusion-style 

arguments on these windows. 

This trace-driven approach directly accounts for the temporal structure of harvested energy 

and load, the non-idealities of the energy chain and the protection behavior of the node. It 

thereby avoids common pitfalls such as underestimating cold-start requirements, ignoring 

protection-induced outages or overestimating effective capacity due to unmodelled losses. 

While trace-based evaluation has been used in prior work, it is typically employed as a post 

hoc validation tool, or is not systematically linked to runtime policies and protection 

mechanisms. In this thesis, trace-driven sizing is positioned as a design-time counterpart 

to DREAM: both analysis and runtime decisions are expressed in terms of the same node-

centric quantities and window-based metrics. 

• 4. Unified perspective and scope 

The final aspect of novelty is the unified perspective that spans modelling, runtime and 

design-time analysis. The same store-centric, loss- and protection-aware formalism: 

• defines the metrics of interest (neutrality, survivability, availability), 

• underpins the DREAM runtime’s control decisions, 

• and drives the trace-based sizing and evaluation of real µCPS nodes. 
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This avoids the fragmentation often seen in the literature, where idealized models are used 

for design, different abstractions are used for runtime control and yet another set of 

assumptions underlies evaluation. By maintaining a single, explicit view of the energy store 

and its losses and protections, the thesis provides a coherent framework in which guarantees, 

policies and sizing choices can be compared and reasoned about. 

Within this scope—energy-harvesting, low-power µCPS that operate from non-ideal energy 

chains and expose only store-side telemetry—the framework proposed here therefore 

occupies a distinct position: it offers a practically grounded, analytically explicit and 

implementation-ready path from measured Φ(t) to predictable service, under realistic 

constraints on losses, protections and observability. 

1.9 Organization of the Thesis 

Chapter 2 specializes canonical CPS concepts to microsystem scale and introduces the store-

side energy and timing model and telemetry contract used throughout the thesis. Chapter 3 

characterizes diffuse environmental energy sources via geometry-aware, device-agnostic 

flux models and windowed energy envelopes. Chapter 4 details energy-collection 

architectures and components, embedding non-idealities and protection behavior into the 

loss-aware node model and defining neutrality, survivability, and availability metrics. 

Chapter 5 presents DREAM, the runtime that enforces window-based autonomy using 

minimal telemetry. Chapter 6 develops the trace-driven sizing methodology based on the 

inclusion argument over input traces. Chapter 7 validates the framework on representative 

case studies using measured and synthesized traces. Chapter 8 summarizes the contributions, 

discusses limitations, and outlines directions for future work.  
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2 Fundamentals of cyber-physical systems 

Chapter 2 develops the foundations for cyber-physical microsystems (µCPS) at the node 

scale. The focus is deliberately narrow: a single device that senses or actuates, computes, 

communicates, and must do so from a constrained, often harvested, energy budget. We adopt 

a hardware-first, store-side view of energetics—harvesting, conversion/protection, storage, 

and distribution—and make explicit the signals and constraints that govern feasibility at 

µW–mW power. Intermittent sources, lossy power paths, and protection dynamics 

(UVLO/OVP, inrush limits, ESR-limited droop) determine what work can be performed and 

when. To keep analysis aligned with what embedded runtimes can actually observe, we rely 

on minimal telemetry (store-state proxies and protection events) and on windowed autonomy 

metrics—neutrality, survivability, and availability—over explicit mission horizons. 

This chapter has three roles. First, it specializes canonical CPS formulations to microsystem 

scale, fixing the node as the unit of analysis and clarifying how plant, network, and node 

interact. Second, it introduces a store-side energy and timing model that relates harvested 

power, load power, storage state, and protection logic. Third, it defines the telemetry contract 

between hardware and any runtime or design-time logic, emphasizing minimal observability. 

2.1 From cyber-physical systems to microsystems 

2.1.1 Definition and scope 

Canonical definitions describe a cyber-physical system (CPS) as a tight integration of 

computation, communication, and physical processes, where embedded computers monitor 

and control physical dynamics, usually in feedback, subject to explicit timing and reliability 

constraints [1], [2], [3]. In this thesis we refine that view to the microsystem scale: a cyber-

physical microsystem (µCPS) is a single device that closes a feedback or inference loop with 

its local environment by combining: 

(i) concrete transducers and analog interfaces for sensing and/or actuation, 

(ii) a resource-constrained embedded computing platform, 

(iii) a protocol-bound communication interface, and 

(iv) a lossy power subsystem that harvests, converts, stores, and safeguards energy. 

Conceptually, this is a specialization of the CPS picture—software interacting with a 

physical process in a closed loop—to a node whose behavior is bounded by embodiment 

(packaging, interfaces, conversion paths) and energetics (variability of input power, bursty 

loads, protection thresholds). This specialization is consistent with mainstream CPS 
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definitions and frameworks [1], [2], [3], and fixes the unit of analysis at the node level, which 

is where energy autonomy is ultimately decided. 

Formally, let the plant 𝑃have state 𝑥𝑃(𝑡)and output 𝑦(𝑡). Let the controller 𝐶be realized on 

an embedded hardware–software stack 

𝐸 = ⟨𝐻𝑊, 𝑆𝑊, 𝐼, 𝑂, Π⟩ (2.1) 
 

where 𝐻𝑊and 𝑆𝑊denote hardware and software, 𝐼/𝑂the physical and logical interfaces, 

and Πthe non-functional constraints (timing, memory, and—central here—energy). When a 

communication substrate 𝑁is present, transport delay and loss enter the closed loop. We 

therefore view a microsystem as the triple 

𝒞 = ⟨𝐶, 𝑃, 𝑁⟩ (2.2) 

 

together with its realization on 𝐸. This formulation aligns with CPS treatments that 

emphasize explicit modelling of time, implementation constraints, and the mapping from 

algorithms to embedded platforms [2], [3]. 

By qualifying CPS with microsystem, we restrict scope to devices whose size, mass, and 

energy budgets are tight enough that interface bias currents, radio ramp-up transients, 

conversion inefficiencies, storage leakage, and protection hysteresis materially shape 

feasible schedules. This emphasis reflects the trajectory from wireless sensor networks to 

today’s batteryless and energy-harvesting IoT nodes, where intermittent input power and 

high-crest-factor workloads dominate design choices. Contemporary surveys document the 

centrality of harvesting variability, conversion losses, and storage behavior to node-level 

feasibility and motivate the node-centered perspective adopted here [4], [5]. 

Within this thesis, the microsystem is the unit of analysis. The plant and any network are 

treated as environment coupled through I/O interfaces. Power may be supplied by ambient 

energy and/or a local store; when the thesis later asserts energy autonomy, i t will do so over 

an explicit mission horizon and with respect to the energy required for sensing, computation, 

and communication on the controller platform. This node-wise stance is consistent with CPS 

frameworks that separate conceptual models from realization and assurance, and with recent 

work on intermittently powered, batteryless systems that formalizes autonomy and progress 

in the presence of power failures [3], [6]. 
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2.1.2 Node-centric signals and proxies 

To keep reasoning consistent from sources → power path → runtime → sizing, we fix a 

small set of signals and proxies that will be used throughout the thesis:  

• 𝑃𝐻(𝑡): harvested and conditioned input power at the store interface (after harvester 

and front-end conversion). 

• 𝑃𝐿(𝑡): aggregate load power, including sensing, compute, communication, and 

quiescent drains. 

• 𝐸(𝑡): stored-energy state, with measurable proxy 𝑉store(𝑡)(for capacitive stores the 

mapping is exact up to ESR; for batteries it is approximate and may require auxiliary 

estimation). 

• 𝜂in(𝑡), 𝜂out(𝑡): input/output conversion efficiencies of the power path, capturing 

macroscopic losses such as start-up overheads, quiescent currents, and finite round-

trip efficiency. 

Analyses are expressed on the store side of the power path using these variables, avoiding 

double counting and keeping non-idealities explicit. Over a finite analysis window 𝑇, 

autonomy is characterized by windowed metrics built from 𝑃𝐻(𝑡), 𝑃𝐿(𝑡), and 𝐸(𝑡): 

• neutrality (harvested-after-losses ≥ expended energy over 𝑇), 

• survivability (the trajectory 𝐸(𝑡)remains within protection bounds with headroom 

for bursts), and 

• availability (the fraction of time the node can admit its workload while satisfying 

neutrality and survivability). 

These notions follow system-level treatments of energy-harvesting microsystems and 

intermittent computing, which stress realistic windows, conversion and storage losses, and 

bursty workloads rather than long-horizon averages [4], [5], [7]. 

2.1.3 Microsystem architecture 

At the scale of a single node, a cyber-physical microsystem is a concrete integration of four 

interacting subsystems: 

(i) sensing/actuation interfaces, 

(ii) a resource-constrained computing platform, 

(iii) a short-range communication interface, and 

(iv) a lossy power subsystem that conditions harvested or stored energy. 
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This partition is conventional in surveys of sensor/IoT node hardware and is the level at 

which implementation choices most strongly constrain feasibility under energy autonomy 

[4], [5], [8]. In subsequent sections we treat these subsystems through the lens of the node-

centric signals above: sensing and actuation as contributors to 𝑃𝐿 (𝑡); compute and 

communication as bursty, deadline-constrained workloads; and the power subsystem as the 

mechanism that maps environmental flux into 𝑃𝐻(𝑡), 𝐸(𝑡), and protection events that gate 

operation. 

The remainder of the chapter builds on this foundation. Section 2.2 introduces the detailed 

node-level energy and timing model; Section 2.3 discusses telemetry and observability 

constraints; and Section 2.4 uses representative application domains to illustrate how these 

abstractions manifest in practice and motivate the runtime and sizing strategies developed in 

later chapters. 

2.2 Node-level energy and timing model 

The abstractions in § 2.1 fix the microsystem as the unit of analysis and identify the key 

store-side signals: harvested power 𝑃𝐻 (𝑡), load power 𝑃𝐿(𝑡), stored-energy state 𝐸(𝑡)(with 

proxy 𝑉store(𝑡)), and conversion efficiencies 𝜂in (𝑡), 𝜂out(𝑡). This section turns those signals 

into an explicit energy–timing model for a node. The aim is not to capture every circuit-level 

detail, but to obtain a compact, implementation-aware contract that is realistic for energy-

harvesting microsystems and batteryless devices [4], [5], [9], [10]. 

Under this model, feasibility and autonomy over a finite mission horizon are judged by 

whether the node can realize its workload schedule within the constraints of the energy 

balance, protection mechanisms, and limited observability. 

2.2.1 Power and energy model 

A cyber-physical microsystem can be viewed as an energy-processing system that 

transforms ambient or supplied power into useful work (sensing, computation, 

communication) while incurring conversion, leakage, and quiescent losses [4], [5], [9], [10]. 

At the store interface we write, at macroscopic time scales, 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝜂in(𝑡) 𝑃𝐻 (𝑡) −

1

𝜂out (𝑡)
 𝑃𝐿(𝑡) − 𝑃leak (𝑡) (2.3) 

where: 

• 𝐸(𝑡) is the energy in the storage element(s); 
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• 𝑃𝐻(𝑡) is the conditioned input power delivered to the store after harvester and front-

end conversion; 

• 𝑃𝐿(𝑡) is the aggregate load power drawn by sensing, computing, communication, and 

quiescent drains; 

• 𝑃leak (𝑡) models self-discharge and parasitic currents (e.g., supercapacitor leakage, 

bias currents in front-end circuits) [4], [5], [11], [12], [13]; 

• 𝜂in(𝑡) and 𝜂out (𝑡)encode input and output path efficiencies, including start-up 

overheads, finite round-trip efficiency, and state-dependent behavior of converters 

[9], [10], [14], [15]. 

In practice, 𝐸(𝑡)is not directly measured. Instead, the runtime observes proxies such as 

capacitor voltage, ADC’d battery voltage, or coulomb-counted SoC [11], [12], [13], [16], 

[17]. For capacitive stores, 𝐸(𝑡) can be recovered from 𝑉store(𝑡) up to ESR and non-

idealities. For batteries or hybrid stores, SoC is estimated using model-based observers or 

coulomb counters, with non-negligible uncertainty [11], [12], [13], [15], [16], [17]. DREAM 

therefore treats 𝐸(𝑡) as a latent variable and uses 𝑉store(𝑡) and event-level telemetry as 

stateful proxies, as detailed later. 

On the load side, it is convenient to decompose 

𝑃𝐿 (𝑡) = 𝑃sen (𝑡) + 𝑃cmp(𝑡) + 𝑃rad(𝑡) + 𝑃q (𝑡) (2.4) 

where 𝑃sen (𝑡) captures transducer and front-end consumption (including bias and 

acquisition), 𝑃cmp (𝑡) the digital computing core, 𝑃rad(𝑡) the radio, and 𝑃q (𝑡) all quiescent and 

housekeeping drains (e.g., RTCs, reference circuits, always-on regulators). Surveys of node 

architectures and low-power MCU platforms stress that 𝑃q (𝑡) and wake-up overheads can 

dominate long-term energy use if left unmanaged [8], [14], [18]. 

Protection constrains the admissible energy trajectory. Undervoltage lockout (UVLO), over-

voltage protection (OVP), current limits, and brownout detection define a safe operating 

envelope 

𝐸min ≤ 𝐸(𝑡) ≤ 𝐸max (2.5) 

within which control logic and data retention remain reliable [9], [10], [16], [19]. If 𝐸(𝑡) 

falls below the lower bound, the node is reset or held off; if it exceeds the upper bound, input 

is curtailed or dissipated to protect the store. These mechanisms effectively induce a state-



   

29 

 

dependent on/off gating of 𝑃𝐿(𝑡), which is captured in later runtime and sizing analyses via 

inclusion arguments on admissible schedules. 

Within a finite analysis window 𝑇, we use three windowed notions that recur throughout the 

thesis: 

• Neutrality: net harvested energy after conversion minus net expended energy is non-

negative over 𝑇. 

• Survivability: the energy trajectory 𝐸(𝑡)respects protection bounds (and retains 

headroom for mandated bursts) throughout 𝑇. 

• Availability: the fraction of time over 𝑇during which the node can admit its workload 

without violating neutrality or survivability. 

These definitions echo system-level treatments of energy harvesting nodes and intermittent 

computing, which emphasize finite windows, conversion and storage losses, and bursty 

loads over simple long-term averages [4], [5], [6], [7], [9], [10]. 

2.2.2 Timing and workload characteristics 

Time is the binding resource that couples computation, communication, and energetics. Even 

in small µW–mW nodes, tasks are typically constrained by deadlines, periods, and protocol 

windows rather than pure throughput [20], [21]. 

We model the microsystem workload as a set of tasks {𝜏𝑘}, each characterised by: 

• an arrival pattern (periodic, sporadic, or event-triggered), 

• a worst-case execution-time and associated energy cost (𝐶𝑘 , 𝑒𝑘 ), 

• a relative deadline 𝑑𝑘, 

• and, for communication tasks, a set of admissible transmission windows imposed by 

the link layer or MAC protocol. 

Event-driven workloads are bursty by design: sensing and inference are concentrated into 

short intervals, often aligned with physical events or network schedules, followed by long 

idle intervals [20], [21]. Experiments on synchronous transmissions, low-power wireless 

stacks, and time-sensitive networking consistently show that these bursts have high crest 

factors (peak-to-average ratios), and their timing is tightly constrained by slot boundaries 

and rendezvous schedules [20], [21], [22], [23]. 

Intermittent power introduces a distinct temporal failure mode: power failures act as a non-

preemptive, state-losing “scheduler” if not explicitly managed [6], [7]. Intermittent 
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computing work formalizes progress and correctness under such failures, typically by 

assuming an abstract power-failure model and providing software techniques (check-

pointing, idempotent tasks, energy-aware scheduling) that tolerate them [6], [7]. In this thesis 

we adopt a complementary stance: we treat intermittent power as a property of the energy 

trajectory 𝐸(𝑡) and design runtimes and sizing methods that avoid or bound such failures 

within the hardware-imposed envelope (§ 3–§ 6), rather than absorbing them purely in 

software. 

For the purposes of DREAM and the accompanying sizing framework, it is sufficient to 

assume that: 

1. Each task 𝜏𝑘  has a well-defined energy cost envelope 𝑒𝑘  under the target platform 

and operating points (e.g., DVFS settings). 

2. Tasks interact with the power path only through their contribution to 𝑃𝐿(𝑡) and 

through induced timing choices (e.g., when radios are turned on). 

3. Protocols such as TSCH, BLE, or LPWAN impose hard and soft time windows, 

which the scheduler must respect while ensuring that the necessary energy packets 

are available at the appointed instants [20], [21], [22], [23]. 

These assumptions allow us to couple the energy balance and the workload at the coarse 

time scales relevant to neutrality and survivability, while still capturing the tight coupling 

between event timing and energy availability. 

2.2.3 Telemetry and operating constraints 

Telemetry in a cyber-physical microsystem is sparse by necessity. Nodes rarely carry high-

resolution energy metering; instead, they expose a small number of signals that reflect their 

energetics only indirectly: digitized store voltage, selected status bits (e.g., UVLO/OVP 

flags), possibly a coulomb-counter register, and a few performance counters [4], [5], [9], 

[15], [17]. These observables define the information contract between the physical node and 

any runtime or sizing logic. 

We therefore partition observability into three classes: 

1. Continuous proxies, such as 𝑉store(𝑡) sampled at low rate, which provide coarse 

information about 𝐸(𝑡) but are affected by load-induced droop, ESR, and non-linear 

SoC relationships [11], [12], [13], [16]. 

2. Event-level telemetry, such as UVLO trips, brownouts, resets, and over-current flags, 

which encode safety violations and hard failures. These events are central to our 
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trace-driven sizing and validation methods because they directly reflect breaches of 

survivability at the store [9], [16], [19]. 

3. Self-metering mechanisms, such as smart coulomb counters and hybrid PMUs that 

can track net energy flow or SoC within known error bounds [15], [17]. These offer 

richer information but at the cost of area, power, and complexity, and are therefore 

not always present. 

Any runtime that seeks to guarantee timing or energy properties must be correct under this 

limited observability and robust to the associated uncertainties [4], [5], [9]. In DREAM, this 

is addressed by (i) expressing guarantees with respect to observable proxies rather than 

unobservable internal variables, and (ii) designing sizing and runtime policies that operate 

with uncertainty bands on 𝐸(𝑡) derived from 𝑉store(𝑡) and event statistics rather than 

requiring exact state knowledge. 

When explicit self-metering is employed—for example, closing the loop between design-

time sizing and deployment-time behavior must be integrated into this contract: its own 

consumption belongs in 𝑃q (𝑡), its quantisation and drift define additional uncertainty, and 

any guarantees must hold under these observability constraints [15], [17]. 

Throughout this thesis, the runtime is assumed to have access to a deliberately minimal set 

of node-level telemetry signals: (i) the storage voltage 𝑉store(𝑡), sampled no faster than the 

main control loop; (ii) discrete under- and over-voltage protection events originating from 

the power-path hardware; and, optionally, (iii) a low-rate, low-precision estimate of net 

charge flow into and out of the store. No per-subsystem power metering, high-rate current 

probing, or harvester-side sensing beyond these signals is assumed. All algorithms and 

guarantees in later chapters are enforced under this telemetry contract. 

2.3 Representative application domains 

The node-centric abstractions above are general, but concrete design choices are always 

shaped by application context. This section briefly reviews representative cyber-physical 

domains and explains how their domain-level requirements map to node-level energetics, 

timing, and autonomy constraints. The focus is on highlighting the energy-autonomy hook 

in each case, rather than providing an exhaustive survey. 

2.3.1 Infrastructure-scale power systems 

Power-system CPS bind physical grid dynamics to cyber functionality such as state 

estimation, protection, and control. Recent surveys emphasize multi-domain modelling that 
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simultaneously captures continuous-time power flows, discrete cyber logic, and the 

communication network [24]. Co-simulation frameworks such as HELICS and integrated 

transmission–distribution platforms enable detailed studies of coupled electromechanical 

and ICT dynamics, including latency, packet loss, and control interactions across scales [25], 

[26], [27]. 

From this system-level vantage point, the microsystem appears at the grid edge: micro-

phasor measurement units (µPMUs), substation monitors, and low-voltage IoT nodes push 

high-value measurements into the CPS [28], [29], [30], [31]. Their workloads are shaped by 

grid-side requirements (synchro phasor sampling, event detection, alarms) and by backhaul 

or LPWAN constraints. When these nodes are powered by constrained or harvested 

energy—e.g., in retrofit deployments or remote assets—the deliverability of time-

synchronized measurements and alarms hinges on whether the lossy power path and storage 

can support bursty reporting and over-the-air updates within neutrality and survivability 

margins. 

Thus, even though the overall CPS spans transmission to distribution, our analysis observes 

it through the lens of an edge microsystem whose energetics must be provisioned to uphold 

the timing and reliability contracts implied by protection and monitoring schemes. 

2.3.2 Industrial and building systems 

Industrial and building automation environments are canonical facility-scale CPS: they 

integrate occupancy sensing, HVAC control, lighting, safety, and security functions, often 

under explicit comfort and energy-efficiency objectives [32], [33]. Digital twin approaches, 

model-based control, and AI-driven optimization increasingly shape the supervisory layer, 

while the field layer is populated by large numbers of embedded nodes—access sensors, 

thermostats, IAQ monitors, asset trackers—connected via short-range wireless or fieldbuses 

[32], [33], [34]. 

The three-level view (field, automation, management) makes explicit how dynamics at each 

layer couple: physical processes (thermal mass, occupancy, daylight) evolve slowly but with 

significant variability; automation controllers enforce control policies subject to timing and 

quality-of-information constraints; management functions aggregate data and coordinate 

optimization across zones and systems [32], [33]. 

Microsystems at the field layer are where these guarantees must be realized under tight 

energy budgets. Battery-powered or energy harvesting nodes are expected to last years 
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without maintenance yet must honor strict wake-window schedules for BLE, 802.15.4e 

TSCH, or proprietary LPWAN links [22], [34]. Security standards such as ISA/IEC 62443 

further require resilience under disturbance and attack, including fail -safe behavior and 

secure reconfiguration [32], [35]. All these requirements translate into constraints on 𝑃𝐿(𝑡), 

required duty cycles, and reserve energy for rare but critical events (alarms, rekeying, 

firmware updates). 

In this context, the node-centric energy model provides a way to reason about whether 

proposed control and communication schedules are feasible under energy autonomy, rather 

than merely under idealized assumptions about battery capacity. 

2.3.3 Medical & wearables 

Clinical cyber-physical systems couple body-proximate sensing and actuation with data 

processing and clinical decision-making, often under stringent safety and regulatory 

constraints [36], [37], [38], [39], [40]. Wearable and implantable devices increasingly 

operate battery-free or with aggressively minimized batteries, relying on energy harvesting 

and wireless power transfer to achieve long-term autonomy while maintaining sensing 

fidelity and connectivity [36], [37]. 

At the system level, medical CPS integrate sensors, gateways, clinical backends, and human 

operators. At the microsystem level, feasibility reduces to whether a node can:  

• acquire physiological signals with adequate sampling and quality, 

• process and compress or classify data locally, 

• transmit events, alarms, or streams within protocol-imposed windows, 

• and uphold safety-critical behaviors (e.g., alarm delivery, actuator failsafe) under 

worst-case energy conditions [38], [41]. 

Regulatory guidance highlights cybersecurity, resilience, and lifecycle considerations for 

medical devices, including legacy systems [39], [40]. Many of these translate into additional 

energy demands—for secure communication, logging, or integrity checks—that must be 

budgeted alongside nominal sensing and communication. 

The node-centric power and timing model allows us to integrate these requirements as 

additional tasks 𝜏𝑘with their own energy and deadline parameters, and to ask whether the 

resulting schedule is sustainable under realistic 𝑃𝐻(𝑡), 𝐸(𝑡), and protection dynamics—

rather than in an idealised, always-powered regime. 
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2.3.4 Environmental & agricultural sensing 

Environmental and agricultural observatories are canonical long-lived deployments where 

energy autonomy is a primary design objective. Weather stations, soil-moisture nodes, and 

greenhouse monitors typically operate in remote or hard-to-service locations, often powered 

by small solar panels or indoor photovoltaics [4], [5], [42], [43]. Data are conveyed to 

backends over LPWANs such as Lora WAN, often under duty-cycle constraints and in the 

presence of interference [42], [43]. 

At the system level, these CPS support resource management, yield optimization, and 

environmental monitoring. At the microsystem level, feasibility again reduces to whether 

the node can maintain required sensing cadence and reporting freshness under highly 

variable 𝑃𝐻 (𝑡), with sufficient reserve for maintenance operations such as key updates, 

firmware refreshes, and calibration [42], [43], [44]. 

Recent work on self-powered wireless sensor networks for sustainable agriculture 

emphasizes the coupling between deployment geometry, link budget, and energy budget: 

path loss and shadowing determine required transmit power and airtime; these, combined 

with sensing and processing costs, define the long-term energy demand that must be matched 

by harvested energy and storage [44]. 

The greenhouse and field deployments considered in later chapters are direct instantiations 

of this pattern: DREAM and the trace-driven sizing framework are used to validate that 

node-level neutrality, survivability, and availability can be guaranteed across a growing 

season under realistic light and temperature patterns. 

2.3.5 Robotics & autonomous agents 

Autonomous vehicles, UAVs, and mobile robots are cyber-physical systems in which 

perception, planning, and control are tightly coupled with physical motion and 

communication [63]. System-level studies focus on safety under corner cases, environmental 

shift, and complex interactions with infrastructure and other agents [45], [46], [47]. 

Within these systems, platform-level microsystems include perception nodes (e.g., camera 

or LiDAR processing modules), communication modules (e.g., 5G NR V2X OBU/RSU 

nodes), and embedded controllers for actuators. These nodes face stringent real -time and 

reliability requirements, but also increasing pressure to reduce size, weight, and power—

especially in UAVs and small robots [45], [48], [49]. 
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5G NR V2X and related technologies enable rich cooperative behaviors (platooning, 

cooperative perception, infrastructure-assisted driving), but they also introduce demanding 

communication and security workloads [64], [65]. Energy-aware path-planning and mission-

planning schemes explicitly account for limited on-board energy stores and recharge 

opportunities, particularly for UAVs [48], [49]. 

In this context, the microsystem energy-timing model applies at two levels: 

1. On-board nodes that must schedule compute- and communication-intensive tasks 

under limited local energy (e.g., in small UAVs or battery-constrained roadside 

units). 

2. Infrastructure nodes (e.g., roadside V2X units) that may be partially or fully powered 

by harvested energy or constrained feeds yet must maintain high availability and 

predictable latency. 

Our focus in this thesis remains on the second class—embedded nodes with constrained 

energy—but the same abstractions could be used to reason about energy-aware scheduling 

and autonomy margins in mobile platforms. 

2.4 Summary and outlook 

This chapter specialized general CPS notions to the microsystem scale, fixing the node as 

the unit of analysis. Starting from canonical CPS definitions, we introduced cyber-physical 

microsystems (µCPS) as devices that couple sensing, computation, communication, and a 

lossy power subsystem to interact with their local environment under tight energy 

constraints. By treating plant and network as environment and focusing on the realization of 

the controller on an embedded platform, we obtained a node-centric view that makes 

embodiment and energetics explicit. 

Building on this, we established a store-side energy model in terms of harvested power 

𝑃𝐻(𝑡), load power 𝑃𝐿(𝑡), stored-energy state 𝐸(𝑡)(with proxy 𝑉store(𝑡)), and state-dependent 

conversion efficiencies 𝜂in(𝑡), 𝜂out (𝑡). Protection mechanisms such as UVLO, OVP, and 

current limits define a feasible energy envelope, within which the node can admit its 

workload. Over finite analysis windows, we expressed energy autonomy through neutrality, 

survivability, and availability, and linked these notions to the timing and structure of 

workloads: task sets {𝜏𝑘}with deadlines, bursty execution, and protocol-imposed 

communication windows. 
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We also clarified the telemetry contract between the physical node and any runtime or sizing 

logic. Rather than assuming rich metering, we deliberately constrained observability to 

realistic signals: coarse store-voltage traces, event-level telemetry (e.g., brownouts, UVLO 

trips), and, where available, lightweight self-metering. This sparse information is what later 

chapters will use for validation, adaptation, and trace-driven sizing, and it motivates an 

emphasis on robustness to uncertainty in 𝐸(𝑡). 

Finally, representative CPS domains—power systems, industrial and building automation, 

medical and wearable devices, environmental and agricultural sensing, and robotics and 

autonomous agents—were revisited through this node-centric lens. In each case, system-

level requirements such as latency, reliability, safety, or regulatory compliance manifest at 

the edge as constraints on node-level energetics and timing: required sensing and actuation 

cadences, communication obligations, and reserve energy for rare but critical events. These 

examples justify the focus on energy-autonomous microsystems and show that the adopted 

abstractions are broad enough to cover diverse application contexts. 

The remainder of the thesis builds directly on this foundation. Chapter 3 characterizes 

diffuse environmental energy Φ at the point of use, providing device-agnostic, statistically 

explicit envelopes that bound what is environmentally achievable over deployment 

windows. Chapter 4 instantiates the loss-aware node model in concrete energy-collection 

architectures and components, making non-idealities and protection dynamics explicit and 

formalizing neutrality, survivability, and availability on the store side. Chapter 5 introduces 

DREAM, an energy-aware runtime that regulates bursty workloads using minimal telemetry 

under this model. Chapter 6 develops a trace-driven design methodology that maps mission-

level autonomy targets into concrete choices of harvesting, storage, and thresholds. Chapter 

7 applies the framework to representative µCPS case studies using measured and synthesized 

traces, and Chapter 8 consolidates the results, positions them with respect to the state of the 

art, and outlines directions for future work. 
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3 Diffuse energy sources 

Chapter 3 introduces diffuse environmental energy as the variable Φ, defined as the time-

varying energy content available to a microsystem at its point of use. Here, Φ is treated as a 

stochastic field in time (and, where relevant, space) whose realizations capture both 

magnitude and intermittency of ambient sources such as indoor light, small thermal 

gradients, low-level vibrations, and opportunistic RF. Our focus is strictly on energy 

characteristics—not device behavior—so that Φ can serve as a neutral input to sizing, 

verification, and policy analyses independent of any particular transduction pathway. 

We formalize Φ through descriptors that preserve their variability across operational 

horizons. Core measures include cumulative energy over a window 𝐸𝑇 =  ∫ 𝛷(𝜏)
𝑡+𝑇

𝑡
𝑑𝜏; 

intensity distributions and exceedance probabilities P(Φ>ϕ); duty-weighted availability 

(fraction of time above a practical threshold); and temporal structure (autocorrelation, 

diurnal/weekly seasonality, calm-duration statistics, and rare-event tails). Because 

deployments often face strong context dependence, we also emphasize spatiotemporal 

heterogeneity (e.g., room-to-room or facade orientation effects), co-variates (temperature, 

occupancy, weather), and non-stationarity (long-term drifts). Throughout, units and 

normalization are chosen to reflect energy at the point of use (e.g., J·m⁻² over a surface, J 

over a placement, or J·m⁻³ when volumetric flux is relevant), with clear aggregation windows 

that match operational duty cycles. 

 

Figure 3.1 Taxonomy of diffuse environmental energy 
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To structure the discussion of Φ, we categorize diffuse environmental energy into 

mechanical, radiative, and thermal domains, each with context-dependent sub-classes whose 

temporal statistics govern availability and cumulative energy ET. Figure 3.1 provides the 

taxonomy used throughout this chapter to report distributions, duty-time availability, calm 

durations, and other descriptors of Φ. 

The remainder of the chapter provides empirically grounded envelopes for Φ in common 

settings (indoor/outdoor, static/mobile, human-occupied/unattended), specifies data-

collection practices for constructing Φ(t) with minimal bias, and presents summary stat istics 

(quantiles, reliability at specified percentiles, and worst-case calms) suitable for assessing 

energy availability and harvesting potential in a technology-agnostic manner. The result is a 

consistent, statistically explicit representation of environmental energy that can be consumed 

by subsequent methodology without presupposing any harvester characteristics. 

These descriptors are chosen specifically so that the runtime and sizing methods in Chapters 

5–7 can operate on storage-side energy envelopes and availability statistics, rather than 

device-specific harvester models. 

3.1  Definition of energy flux “Φ”  

Φ denotes the time-varying energy content available from diffuse environmental sources at 

the point of use. It is defined independently of any transduction mechanism or device 

characteristics. Unless otherwise specified, Φ is expressed as an energy flux with units 

appropriate to the domain of interest, e.g. J·m⁻²·s⁻¹ for optical irradiance reaching a surface, 

J·s⁻¹ for site-specific availability at a placement, or J·m⁻³·s⁻¹ when volumetric fields are 

relevant. For a mission horizon 𝑇, the windowed environmental energy per unit area is 

𝐸Φ(𝑇) = ∫ 𝛷(𝑡)𝑑𝑡
𝑡0+𝑇

𝑡0

(3.1) 

For periodic or cyclostationary processes, 𝑡0is chosen to align with a representative cycle; 

for non-stationary processes, 𝐸Φ (𝑇)is evaluated over shorter windows that tile the mission. 

These windowed energy envelopes are consumed directly in Chapter 6 for trace-driven 

sizing, where they define the environmental “budget” against which neutrality and 

survivability are judged. 
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3.1.1 Aggregation and normalization of Φ 

In micro-systems, Φ is observed over centimeter-scale supports and short operational 

windows, so aggregation must preserve the fine temporal structure and the precise geometry 

of the measurement site. We define the cumulative micro-energy over a window T as 

𝐸𝑇(𝑡) = ∫ 𝛷(𝜏)𝑑𝑡
𝑡+𝑇

𝑡
, reported either per placement (J over T) or per area when a receiving 

surface is explicit (J·cm⁻² over T). The associated window average  𝛷𝑇(𝑡) = 𝐸𝑇 (𝑡) 𝑇⁄  is 

computed over windows aligned to the system’s duty rhythms—tens of seconds to minutes 

for task bursts, one day for diurnal structure, and multi-day horizons for resilience analysis. 

Minute-scale windows are recommended for indoor and human-activity–driven 

environments, where sub-hour variability is pronounced and coarse averaging inflates 

apparent availability; contemporary indoor-photovoltaic (IPV) and wearable-energy 

literature consistently documents this fine-scale fluctuation [50], [51], [52].  

Normalization is stated with equal care. For radiative Φ, values are normalized to the 

projected area of the sensor plane and reported with the plane’s orientation and tilt; for 

vibration or motion-dominated fields, Φ is given per placement with the dominant axis of 

motion noted; and for RF, Φ we specify the monitored bands and report band-limited flux 

density so that comparisons are spectrally commensurate. Recent advances in IPV metrology 

emphasize that small changes in spectral content, geometry and measurement protocol can 

bias inferred energy content, which motivates explicit reporting of geometry, spectral 

window, and sampling settings alongside ET and 𝛷(𝑡). In RF campaigns, city and home-

scale studies show order-of-magnitude variation across bands and locations, reinforcing the 

need to publish the sweep configuration (RBW/VBW, dwell) used to estimate Φ. [51], [53], 

[54].  

Data screening precedes aggregation to avoid bias in micro-campaigns. We remove specular 

spikes and shadowing gaps from indoor light records, enforce axis consistency and saturation 

checks in motion/vibration logs, and, for RF, ensure that repeated surveys use identical 

spectral settings so that differences in ET reflect the environment rather than instrumentation. 

The IPV community has converged on protocols that control spectral invariance and 

temporal stability of the light source, reducing artefacts in the low-illuminance regime 

relevant to microsystems; adopting these controls when constructing Φ helps maintain 

comparability across sites and studies. [51], [55].  
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Because Φ often follows building schedules and human routines, we publish conditioned 

composites rather than a single unconditional average: diurnal profiles (hour-of-day 

means/quantiles) and schedule-conditioned statistics (e.g., business hours versus off-hours, 

occupied versus unoccupied). Wearable and kinetic-energy reviews report clustered activity 

with long calms, so we accompany ET and 𝛷(𝑡) with calm-duration distributions and 

availability curves defined against a small context-specific threshold ϕmin. This pairing—

percentile envelopes of ET over 24 h and distributions of calm lengths on the minute scale—

adequately captures both the central tendency and the risk posed by low-energy intervals in 

micro-energy settings. [52], [56].  

Finally, each dataset is accompanied by a succinct normalization record describing the 

window set TTT, sampling cadence and completeness rule, geometric conventions 

(area/volume/placement and orientation), and site metadata (height or body location, 

occlusions, nearby fixtures). Recent IPV inter-comparisons across metrology institutes 

illustrate how such metadata underpin reproducible cross-study synthesis at low power levels 

typical of microsystems [51], [55]. 

3.1.2 Availability, exceedance and calm durations 

In micro-energy settings, availability expresses the fraction of time that the diffuse energy 

field Φ(t) remains above a practically meaningful threshold ϕmin within a window T. We take 

ϕmin to reflect usable energy at the point of use (e.g., a lux-to-irradiance level corresponding 

to non-negligible power density, or a band-limited RF flux floor), not any particular device 

threshold. Availability is then 

𝐴ϕmin(𝑇) =
1

𝑇
𝑚𝑒𝑎𝑠 {𝜏 ∈ [𝑡, 𝑡 + 𝑇): 𝛷(𝜏) ≥ 𝜑𝑚𝑖𝑛} (3.2) 

reported alongside T and the sampling cadence. This metric is sensitive to the strong sub-

hour structure typical of indoor light and human-activity–driven environments; minute-scale 

or finer sampling avoids biasing Aϕmin(T) upward by smoothing short calms. Empirical 

indoor campaigns that map illuminance and spectra across offices, corridors and meeting 

rooms consistently show extended plateaus near zero interspersed with schedule- and 

occupancy-driven bursts—an archetype of availability that motivates percentile reporting 

rather than single averages [57], [58].  
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Because design decisions hinge on how often higher energy levels occur, we complement 

availability with exceedance probabilities P(Φ>ϕ) and the quantile function Qp(Φ). These 

capture rare but consequential periods, whether bursts or near-dark calms. Full-year indoor 

monitoring studies that log daily yields under realistic building use show exactly these tails: 

most days comfortably exceed modest energy needs, yet a small number of days each year 

fall short even for background overheads—evidence that low-percentile behavior, not the 

mean, governs survivability planning [57], [58].  

For microsystems that experience long inactive stretches, the distribution of calm durations 

is an equally important descriptor. We define calms as maximal contiguous intervals with 

Φ(τ)<ϕmin and summarize their statistics via percentiles 𝐿𝑝
𝑐𝑎𝑙𝑚  over the horizons of interest 

(e.g., minutes to hours). In body-worn and activity-proximate contexts, human-motion–

linked sources exhibit clustered episodes with heavy-tailed gaps; reviews of wearable-

context micro-energy repeatedly document this intermittency, reinforcing the need to publish 

calm-duration distributions alongside Aϕmin(T) [52], [56].  

RF-dominated environments display analogous behavior. Recent ambient electromagnetic 

wave surveys that measure power density across indoor, outdoor and basement spaces report 

order-of-magnitude swings with building use, attenuation and band selection; in such cases 

exceedance curves across bands (rather than a single aggregated number) more truthfully 

represent the resource available to microsystems. Complementary campus-scale 

measurements aimed at low-power applications reach similar conclusions and explicitly 

connect availability to feasible duty-cycled operation [59].  

Finally, because Φ(t) is non-stationary and often exhibits “energy-on/energy-off” regimes, 

availability and exceedance naturally interface with intermittent-operation thinking: systems 

run opportunistically during on-periods and preserve state across off-periods. The 

intermittent-computing literature formalizes this reality and motivates reporting 

conservative, low-percentile envelopes of availability and calms so that algorithmic and 

sizing choices are anchored to the tails rather than the mean [60]. 

3.1.3 Temporal structure 

The diffuse energy field Φ(t) encountered by microsystems is rarely white or stationary; it 

exhibits short-term correlation, multi-scale seasonality (daily, weekly, sometimes monthly), 

and clustered “on/off” regimes. We therefore characterize temporal structure with three 
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complementary views: (i) dependence at short lags, via the autocorrelation function and 

decorrelation time; (ii) periodic components, via seasonal–trend decomposition; and (iii) 

intermittency, via statistics of inter-event times and calm/burst clustering. 

At short lags, we use the sample autocorrelation ρΦ(τ) to estimate a decorrelation time τd 

beyond which ∣ρΦ(τ)∣ falls below a small threshold (e.g., 0.1). This separates rapid 

fluctuations from slower drivers and guides the minimum sampling cadence needed to avoid 

aliasing in micro-energy records. Standard time-series texts formalize the link between ρΦ(τ) 

and spectrum, allowing us to cross-check τd against observed power at diurnal or sub-diurnal 

frequencies [61]. In office interiors, light exposure often shows strong persistence during 

occupied periods with abrupt changes at schedule boundaries; post-occupancy light-

dosimetry and illuminance studies confirm pronounced within-day structure and between-

day variation shaped by human behavior and controls (Hartmeyer et al., 2024; Jang et al., 

2024). Similarly, structural vibrations in buildings display persistent bands around natural 

modes excited by traffic or rail transients, with stability punctuated by timetable-driven 

events [62], [63]. 

To extract periodic structure, we decompose Φ(t) into seasonal, trend, and remainder 

components using robust STL-type procedures. For micro-energy, single-season STL is 

often insufficient because both daily and weekly cycles are present; modern multi -seasonal 

extensions (e.g., MSTL) and STL hybrids provide stable separation of these cycles even 

under volatility [64], [65]. The seasonal component S(t) captures regular patterns (workday 

lighting schedules, commuter-driven vibration epochs), the trend C(t) captures slow drift 

(e.g., daylight season), and the remainder ε(t) aggregates idiosyncratic variability. Indoor 

environmental measurements in living labs demonstrate that even adjacent rooms can exhibit 

weak cross-correlation in illuminance and occupancy, underscoring the need to model 

seasonal structure per placement rather than at building level [66]. 

Beyond smooth seasonality, intermittency is a defining property at micro scales. We model 

event times—entries into an “energy-above-threshold” state—as a point process and analyze 

inter-event time distributions. Bursty temporal networks commonly exhibit fat-tailed inter-

event times and residual correlation even after de-seasoning; these behaviors are well 

documented and provide principled metrics for quantifying clustering [67], [68], [69]. For 

Φ, this implies that high-energy episodes (e.g., meetings with lights at full output, trains 

passing beneath an over-track structure, or a Wi-Fi band becoming busy) tend to arrive in 
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trains separated by heavy-tailed calms—precisely the pattern observed in ambient vibration 

campaigns and indoor lighting usage studies [62], [70]. 

Ambient RF environments also vary across bands and time. Longitudinal multi -country 

assessments report statistically significant trends and intra-day variation in RF-EMF levels 

across microenvironments; within-band exceedance curves change with traffic and network 

configuration, reinforcing the need to analyze Φ(t) with band-resolved seasonality and burst 

metrics [71], [72], [73]. Where high-resolution time series are available, decorrelation times 

in the order of minutes are typical indoors, with extended tails during night-time or off-hours. 

In reporting practice, we therefore pair (a) decorrelation time τd and spectral summaries to 

set defensible sampling cadences; (b) multi-seasonal decomposition to expose 

diurnal/weekly structure; and (c) burst metrics—inter-event distributions, burst-train counts, 

and calm-duration percentiles—to quantify intermittency. These descriptors remain 

deliberately technology-agnostic: they characterize the temporal scaffolding of Φ that any 

micro-scale methodology must respect. 

3.1.4 Spatiotemporal heterogeneity and co-variates 

At micro scale, Φ(r,t) is strongly conditioned by where a node sits and what the surrounding 

environment is doing. Even within a single room, illuminance and spectral composition 

change markedly with distance to fenestration, shading state, and the observer’s orientation; 

controlled field studies show that local viewing direction and window proximity 

significantly alter the incident light field, which explains the large between-placement spread 

routinely observed in office interiors [74], [75]. In open-plan offices the gradient from the 

facade to core zones persists even under modern shading or light-shelf strategies, and small 

differences in layout or luminous ceiling design can shift the entire distribution of indoor 

optical Φ at the desk scale [75], [76]. These spatial effects are not merely architectural 

artefacts; they induce order-of-magnitude differences in cumulative micro-energy over daily 

windows, so reporting Φ without a precise geometric description of placement risks non-

reproducible comparisons.  

Mechanical environments display analogous heterogeneity. Ambient vibration campaigns 

reveal location-dependent spectral signatures shaped by structural modes, transmission 

paths, and nearby excitations; floors above rail tunnels, for example, exhibit stable bands 

with episodic bursts synchronized to timetable events, while nominally similar residential 
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shells can show very different baseline levels once external noise sources and coupling are 

accounted for [62], [77]. Consequently, the same building can yield distinct Φ envelopes 

across rooms and storeys, and placement metadata (span, bay, distance to major masses or 

supports) becomes as critical for micro-energy characterization as orientation is for indoor 

light.  

Band-limited electromagnetic fields also vary sharply across small distances and usage 

contexts. Multi-site surveys that stratify measurements by microenvironment—offices, 

transport hubs, homes, and outdoor streets—report strong spatial gradients and temporal 

modulation driven by user traffic and network configuration; summarizing RF Φ by band-

resolved exceedance curves is therefore more faithful than a single aggregate level [78], [79]. 

From the perspective of micro-systems, this implies that a shift of only a few meters—or 

even a change from line-of-sight to partial shadow—can re-rank RF bands in terms of usable 

energy content over the same window T.  

Heterogeneity is intertwined with co-variates that imprint structure on Φ over hours to 

seasons. In office and educational settings, lighting schedules, occupancy patterns, and 

shading control policies govern diurnal and weekly cycles, while exterior weather modulates 

the amplitude of the indoor optical field that reaches core areas; reviews of daylighting and 

window effects consistently link these drivers to measurable differences in local light 

exposure and its variability [80], [81]. For mechanical contexts, recurring human activities 

(footfall, doors, elevators) and transport timetables act as deterministic co-variates that 

increase predictability at specific frequencies; for RF, network load and technology mix 

(e.g., Wi-Fi vs. cellular bands) operate as time-of-day covariates that reshape exceedance 

behavior. Where buildings exploit active daylight harvesting, control set-points and sensor 

placement further modulate the residual indoor optical Φ, and recent analytical work 

highlights how these control choices propagate to the energy potentially accessible at micro 

scale [82].  

In practice, characterizing Φ(r,t) for micro-energy therefore requires a site-explicit protocol: 

each record should pair the time series with placement descriptors (coordinates or a 

reproducible sketch, height, orientation, occlusions), note salient co-variates (occupancy 

schedule, shading state, HVAC or network schedules), and, where feasible, provide short 

co-located measurements at adjacent placements to quantify the spatial gradient. This 
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approach recognizes that variability across centimeters to meters is not noise but rather an 

intrinsic property of diffuse environmental energy at the scales relevant to microsystems.  

3.1.5 Percentile envelopes and reliability 

For micro-energy analysis, percentile envelopes condense uncertainty in Φ(t) and its 

windowed integral ET . We report 𝐸𝑝 = 𝑄𝑝(𝐸𝑇) and F̅𝑝(𝑇) = 𝑄𝑝(𝛷𝑇) over horizons T that 

match operation (minutes–hours for tasks; 24 h and 7 d for resilience). In indoor contexts 

the distribution is typically skewed, with a small fraction of days delivering most of the 

energy and a non-negligible tail of low-yield periods; envelopes at conservative percentiles 

(e.g., 5th–10th) therefore provide a more faithful basis for design than means or medians 

alone. Recent full-year monitoring of indoor energy conditions for IoT explicitly 

demonstrates this asymmetry, motivating percentile-based reporting rather than single 

“typical day” summaries [83].  

We pair envelopes with a θ-reliable availability metric, 

𝑅𝜃(𝑇) = 𝑠𝑢𝑝𝑟 ∈ [0,1]: 𝑃(𝐴𝜑𝑚𝑖𝑛(𝑇) ≥ 𝑟) ≥ 𝜃 (3.3) 

so, statements such as “R0.9(24 h)=0.35” can be read as: on at least 90% of days, Φ exceeds 

ϕmin for 35% of the time window. For band-structured fields (notably RF), reliability should 

be reported per band and then aggregated, because tails differ across spectra and micro-

environments; recent surveys emphasize order-of-magnitude differences in available power 

density and duty over common indoor bands, which a single aggregate would hide [84], [85].  

To make reliability risk-aware, we also publish tail-sensitive scalars alongside Ep(T), 

adopting energy analogues of Value-at-Risk and Conditional-Value-at-Risk: 𝑉𝑎𝑅𝜃(𝐸𝑇) =

𝐸1−𝜃 (𝑇) and 𝐶𝑉𝑎𝑅𝜃(𝛦𝛵) = 𝐸[𝐸𝑇  | 𝐸𝑇 ≤ VaRθ]. Contemporary planning literature argues 

for CVaR-type metrics precisely because they penalize rare but severe shortfalls more than 

percentile cut-offs, a consideration that directly aligns with micro-systems that must survive 

infrequent, low-energy stretches [86], [87].  

Finally, envelopes and reliability should be updated as the resource frontier shifts. Rapid 

progress in indoor photovoltaics—both device-level efficiency gains under 100–1000 lux 

and emerging metrology consensus for reproducible indoor testing—changes realistic 

expectations for usable Φ and thus the thresholds ϕmin used in availability definitions. 
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Publishing the chosen ϕmin with a cross-reference to current indoor-PV performance contexts 

preserves comparability across studies and time[88], [89], [90]. 

3.1.6 Uncertainty and estimation 

Quantifying the uncertainty of Φ and its windowed integrals ET is essential at micro scale, 

where centimeter-level placement, minute-level sampling, and local schedules dominate 

variability. Our approach is model-agnostic and emphasizes: dependence-aware resampling 

for distributional summaries; transparent propagation of measurement uncertainty; and 

reproducible handling of gaps and anomalies—framed for indoor optical, vibration/motion, 

and low-grade thermal contexts. 

For time-dependent records, resampling must respect serial correlation and seasonality. We 

use block bootstrap variants (moving, circular, tapered) with block lengths chosen no shorter 

than the empirically estimated decorrelation time, yielding valid confidence intervals for 

Qp(ET), Aϕmin(T) and calm statistics without assuming a parametric model [91]. When daily 

or weekly structure is pronounced, a seasonal/block hybrid (blocks aligned to diurnal/weekly 

cycles) preserves phase relationships and improves low-percentile estimates that drive 

survivability assessments [92]. In practice, we report the block selection rule, sensitivity to 

block length, and the resulting interval estimates alongside point summaries. 

When Φ is derived from calibrated sensors, we propagate measurement uncertainty using 

Monte-Carlo techniques consistent with contemporary metrology guidance. Components 

include calibration and reference traceability, drift, resolution/quantization, alignment and 

cosine errors (for optical), and axis/fixture effects (for vibration). Combined standard 

uncertainty is then mapped through the normalization used for Φ (per placement or per area) 

to obtain uncertainty on ET and availability. Recent indoor-photovoltaic metrology 

highlights the importance of spectral mismatch, source stability and spatial non-uniformity 

at low illuminance; adopting those reporting conventions materially improves uncertainty 

statements for indoor optical Φ [55]. For vibration/motion fields at building or wearable 

scale, uncertainty budgets should document sensor alignment, bandwidth and anti-aliasing, 

mounting repeatability, and temperature dependence, reflecting best practice in structural 

monitoring and kinetic-energy studies [56]. 

Data quality control precedes estimation. For indoor optical series we flag and, where 

appropriate, remove specular spikes and transient shadows; for vibration/motion we enforce 
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axis consistency, clipping checks and stationarity tests per window; for thermal gradients we 

track probe placement, contact quality and lag corrections. Window-level completeness 

thresholds (e.g., ≥90% valid samples) are declared a priori; windows failing  completeness 

are withheld from ET and availability calculations. Missing values are handled with time-

series-aware methods—state-space smoothing or LOESS/ARIMA-based imputation—

paired with flagging so that uncertainty can be widened where imputation occurs [93], [94]. 

We avoid naive interpolation across long calms, which would bias low-percentile envelopes 

upward. 

Finally, all estimates are accompanied by reproducible provenance: calibration certificates 

or references, QC rules and parameters, resampling configuration (block type and length), 

and scripts/notebooks that regenerate intervals and figures. This practice ensures that 

distributional summaries of Φ—especially the tails that govern risk—remain auditable as 

measurement campaigns evolve. 

3.2 Characteristics and energy content of source classes Φ  

We adopt a statistics-first view of Φ(t) to preserve intermittency and tail risk. For each source 

class we concisely report: (i) physical characteristics; (ii) energy content over mission 

windows T; (iii) availability and calm distributions relative to a source-side threshold ϕmin; 

and (iv) the harvesting potential as a conversion-agnostic upper bound.  

3.2.1 Indoor and outdoor optical Φ 

Throughout this thesis, Φ(t) denotes the plane-of-array (POA) irradiance incident at the exact 

plane and location where a harvester would sit, defined in a device-agnostic manner. Let n 

be the unit normal of that plane (a desk plane indoors; a module tilt/azimuth outdoors) and 

Ee,λ(λ, t, n) the spectral irradiance [W·m−2nm−1] measured at that plane. The source-side field 

is the broadband integral 

𝛷(𝑡) = ∫ 𝐸𝑒,𝜆(𝜆, 𝑡, 𝑛)𝑑𝜆
𝛬

[𝑊𝑚−2] (3.4) 

with Λ the application band (PV contexts typically ≈300–1200 nm). This definition contains 

no device weighting (no spectral response, IV curve, thresholds, or MPPT behavior); those 

appear later in the conversion model of Chapter 4. For photon-centric arguments we may 
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also use the co-planar photon-flux density 𝛹(𝑡) = ∫ 𝐸𝑒,𝜆(𝜆, 𝑡, 𝑛)/(ℎ𝑐/𝜆)𝑑𝜆
𝛬

, but the object 

of analysis in Chapter 3 remains the broadband Φ(t). 

Indoors, Φ(t) is the superposition of daylight transmitted through the fenestration system and 

electric-lighting contributions as they actually arrive at the plane of use. The field exhibits 

schedule coupling (occupancy, switching, stepped or continuous dimming) and pronounced 

centimeter-scale heterogeneity caused by luminaire photometry, furnishings, and facade-to-

core gradients. Because geometry and context strongly condition outcomes, every statistic 

reported for Φin(t) is tied to an explicit plane (orientation/tilt), position, and any persistent 

occlude. Typical workplace illuminance targets (e.g., task-plane values around a few 

hundred lux, depending on task and standard) explain the quasi-plateaus commonly observed 

during occupied hours and the extended calms out of hours; these values are context, not  

device assumptions, and serve only to interpret the observed plateaus. 

Outdoors, Φ(t) is governed by solar geometry and meteorology and is properly expressed as 

the sum of beam, diffuse, and ground-reflected components on the plane of array, 

𝛷𝑜𝑢𝑡(𝑡) = 𝐵𝑃𝑂𝐴(𝑡) + 𝐷𝑃𝑂𝐴(𝑡) + 𝑅𝑃𝑂𝐴(𝑡) (3.5) 

each depending on sun position, array orientation (tilt/azimuth or tracking), sky condition, 

and surface albedo; near- and far-shading modify these components as environmental effects 

at the plane, not as “device losses” in this chapter. In practice, POA is either measured with 

a co-planar pyranometer or modelled by transposition from horizontal or normal components 

using sky-diffuse formulations. A recent continuous form of the Perez diffuse sky model 

provides a modern, differentiable transposition that covers both forward and reverse cases, 

making it a suitable bibliographical anchor when we refer to model-based POA construction 

for Φout(t)[95].  

For spectral context in the outdoor case, it is standard to reference the terrestrial AM1.5 

spectrum when discussing device characterization; however, analyses in this chapter always 

use measured (or site-modelled) field spectra/irradiance at the actual plane. The broader 

extraterrestrial irradiance baseline itself has been updated in the satellite era; the 

SORCE/TIM results consolidated a lower total solar irradiance (TSI) value than pre-2000 

conventions, which is relevant when connecting POA models to top-of-atmosphere 
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constraints and helps explain differences among legacy datasets. A concise, post -2010 

anchor for that revision is Kopp and Lean (2011) [96].  

Energy content is summarized consistently across settings using the windowed energy 𝐸𝑇 =

∑ 𝛷(𝑡)𝑡∈𝑇𝑇
𝛥 over mission-relevant horizons T. Because both indoor and outdoor fields are 

intermittent but in different ways—schedule-coupled plateaus and step changes indoors; 

diurnal cycles with sub-minute cloud-edge ramps and heavier upper tails outdoors—we 

report percentile envelopes Q5,50,95(ET) rather than means, and we accompany them with 

availability Aϕmin and calm-duration statistics relative to a source-side threshold ϕmin . 

Evaluating Aϕmin at one-minute cadence captures indoor control transitions and paired with 

minute-scale windows, resolves the short-timescale outdoor variability of interest for buffer 

sizing and control responsiveness. When synthetic or scenario-based Φ(t) traces are needed 

later (e.g., to stress-test scheduling sensitivity at hourly resolution before deploying minute-

scale data), weather-conditioned stochastic models for solar radiation can be used as a 

supplement to measurement; such models have been formulated to reproduce hourly 

dynamics under varying weather regimes and are appropriate to reference in Chapter 6’s 

methodology section, not as a replacement for POA measurements in Chapter 3 [97].  

This device-agnostic, geometry-aware definition of Φ(t) ensures that the brief envelopes 

reported here can be consumed directly by the loss-aware conversion model in Chapter 4 

and, subsequently, by the DREAM scheduling and sizing analyses in Chapters 5–6. 

Outdoors, it aligns with contemporary POA measurement/modelling practice and sky-

diffuse transposition; indoors, it preserves the centimeter-scale heterogeneity and schedule 

dependence that dominate feasibility at low power. By maintaining a single, consis tent 

environmental quantity across both contexts, we avoid double-counting device effects and 

preserve a natural flow from source-side characterization to conversion and autonomy[95]. 

3.2.2 Low-grade thermal Φ 

For low-grade thermal sources we keep the same source-side stance: Φ(t) denotes the thermal 

field at the point of use, independent of any converter. Let ΔT(t)=Thot(t)−Tamb(t) be the 

temperature difference across the intended interface and let heff(t) be the effective heat-

transfer coefficient (lumped conduction–convection coupling through the mounting, 

clothing/insulation, and boundary layers). We define the thermal field as the heat -flux 

density incident on the interface, 
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𝛷𝑡ℎ(𝑡) = ℎ𝑒𝑓𝑓(𝑡)𝛥𝑇(𝑡)[𝑊𝑚−2] (3.6) 

and, when convenient, the windowed thermal energy per unit area over horizon T as 

𝐸𝑇
(𝑡ℎ)

= ∑ 𝛷𝑡ℎ(𝑡)𝛥

𝑡∈𝑇𝑇

(3.7) 

This definition is geometry-aware (through the actual contact and surroundings), device-

agnostic (no Seebeck coefficients, internal resistances, or start-up thresholds), and aligns 

with the recommendation from recent reviews to characterize wearable and built-

environment opportunities via ΔT and effective coupling rather than by device outputs [98], 

[99], [100]. 

In wearable/body-proximate contexts ΔT(t) is driven by metabolic heat and ambient 

conditions, while heff(t) is governed by contact pressure, interface materials (e.g., textile, 

elastomer pads), local airflow, and posture. The dynamics are slow—minute-to-hour time 

constants—because tissue and packaging add thermal capacitance, producing quasi-steady 

plateaus during sustained wear interspersed with drift under activity or environmental 

change. Human-subject and mannequin studies consistently find modest but persistent 

driving ΔT (typically a few kelvin in temperate indoor conditions), with large variability 

attributable to micro-fit and insulation; hence placement repeatability dominates uncertainty 

[101], [102]. In equipment/building-interface contexts (ducts, motor enclosures, piping, 

electronics housings), ΔT can be larger and steadier, while heff depends on mounting 

geometry, insulation, and forced vs. natural convection; here, run-time duty cycles and 

control regimes (e.g., HVAC schedules) imprint a clear temporal structure on Φ th(t) [98], 

[99]. 

Because Φth(t) is low-frequency and intermittency is shaped by usage cycles rather than fast 

transients, minute- and multi-hour windows are the natural scales for energy summarization. 

We therefore report 𝑄5,50,95(𝐸𝑇
(𝑡ℎ)) for T∈{1 h, 4 h, 24 h} to capture session-scale feasibility 

and daily survivability, and we accompany these with availability Aϕmin(T) and calm-

duration statistics defined relative to a source-side threshold ϕmin (e.g., a minimum heat-flux 

density deemed “usable” at the interface). Using percentiles rather than means is crucial, as 

low-percentile days and long calms—caused by cool ambient conditions, poor contact, or 

off-cycles—govern autonomy for ultra-low-power systems [98], [100]. 
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Measurement and normalization remain strictly source-side. Differential sensors (thin-film 

thermopiles, paired thermistors) mounted across the interface record ΔT(t); co-recorded 

context (activity class, clothing/insulation, airflow or fan state) explains much of the 

variance. Estimating heff can be done by brief calorimetric steps or literature-based priors for 

comparable mountings; reporting both ΔT(t) and the assumed heff keeps Φth(t) reproducible 

across sites. Cadences of 10–60s are sufficient for dynamics without injecting noise; 

dependence-aware uncertainty (block bootstrap with blocks longer than the thermal time 

constant) should accompany Qp and availability figures. Device-specific topics—Seebeck 

efficiency, electrical matching, cold-start energy and boost-converter thresholds—are 

deferred to Chapter 4, where the same Φ th(t) drives a loss-aware conversion chain [99], [102]. 

Finally, design implications follow directly from the field statistics. In wearables, autonomy 

is set by the low-percentile 𝐸𝑇
(𝑡ℎ)

 over multi-hour windows and by the distribution of calm 

durations during low-activity or cool-ambient periods; micro-siting (body location) and 

contact engineering often yield larger gains than nominal increases in converter efficiency 

[101], [102]. In equipment/building interfaces, steadier ΔT supports predictable 𝐸𝑇
(𝑡ℎ)

, but 

maintenance and control cycles create structured calms that must be buffered. 

3.2.3 Vibrations Φ 

We retain a source-side stance. For mechanical environments, the field Φ(t) at the mounting 

point is most usefully represented by the vector acceleration time series a(t)=[a x(t), ay(t), 

az(t)] [ms-2] together with its band-resolved spectral density. Device behavior (tuning, 

bandwidth, thresholds) is deferred to Chapter 4; here we characterize the environment itself. 

Let Sa(f; t) denote the one-sided power spectral density (PSD) of the normal-to-mount 

acceleration over short analysis windows anchored at time t. Because harvestable 

mechanical energy for resonant and broadband devices is band-dependent, we will 

summarize the field via band-integrated vibration content 

𝛷𝛣(𝑡) ≡ ∫ 𝑆𝑎(𝑓; 𝑡)𝑑𝑓
𝑓∈𝐵

[(𝑚 𝑠2⁄ )2/𝐻𝑧 ∙ 𝐻𝑧 = (𝑚/𝑠2)2] (3.8) 

for bands B centered on the dominant excitations (e.g., footfall 1–4 Hz; building services 

10–80 Hz; vehicle chassis/engine bands 5–200 Hz). For time-domain summaries over a 

horizon T, we use windowed, band-specific integrals 
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𝐸𝑇
(𝐵)

= ∑ 𝛷𝐵(𝑡)𝛥
𝑡∈𝑇𝑇

(3.9) 

and report percentile envelopes 𝑄5,50,95(𝐸𝑇
(𝐵)). This keeps the description device-agnostic 

(no assumed resonant frequency or damping), yet actionable for Chapter 4, where a 

transducer’s effective band will be mapped onto B. 

In building interiors, ambient vibration is typically narrow-band and location-specific, 

shaped by structural modes, services (HVAC, pumps), and human activity (footfall, 

elevators). Spectra show sharp lines or clusters at modal frequencies with sidebands from 

machinery, while the time series is bursty—clusters of events separated by long calms. 

Footfall-induced responses on floors and walkways concentrate energy between ~1–4 Hz 

with higher harmonics, whereas machinery bays show peaks an order of magnitude higher 

[103]. These properties imply heavy-tailed event distributions and strong diurnal/weekly 

structure in ET(B) [104]. 

On vehicles, ride-induced chassis vibration and engine/road excitations populate low-to-mid 

bands (few Hz up to a few hundred Hz) whose centers and amplitudes vary with speed, 

surface roughness and powertrain order. Standard road roughness spectra (e.g., ISO 8608) 

explain the broad-band content transmitted to sprung masses; engine orders add narrow 

peaks whose frequency scales with RPM. Temporal patterns are sessional (trips/commutes), 

with relatively few calms during motion but extended calms between journeys [105], [106]. 

Walking, running, limb swing and incidental impacts generate clustered, low-frequency 

excitations with large peak-to-rms ratios; the dominant fundamental for gait is typically ~2 

Hz, with substantial energy in the first few harmonics and sporadic higher-frequency bursts 

from impacts. Crucially, activity occurs in sessions, so availability is high during activity 

and near-zero between sessions [52], [107], [108]. 

Because useful content is band-concentrated, a single wideband scalar can be misleading. 

We therefore report, per context and placement, the set {𝑄5,50,95(𝐸𝑇
(𝐵)

)}𝐵  over mission 

windows T (e.g., 1–5 min to capture bursts; 24 h for daily survivability), along with 

availability 𝐴𝜑𝑚𝑖𝑛

(𝐵) (𝑇) computed for a band-specific threshold 𝜑𝑚𝑖𝑛
(𝐵)

 and calm-duration 

distributions. The low-percentile envelopes govern feasibility for autonomy at low duty 
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cycles, since heavy-tailed calms (nights, off-hours, between trips) dominate risk even when 

median activity is favorable [104], [109]. 

Mount tri-axial accelerometers at the intended harvester location and orientation; record axis 

alignment, mounting stiffness, nearby machinery, floor span/bay, and for vehicles the 

seat/frame position and typical speeds. Choose a cadence that resolves the highest band of 

interest with margin (sampling intervals 10–50 ms are typical; faster for powertrain orders). 

Compute PSDs on sliding windows with stated taper and segment length; report center 

frequencies and −3 dB bandwidths of dominant peaks to aid later matching. For human-

motion measurements, note activity labels (walk, run, idle) and session timing. All statistics 

should include dependence-aware uncertainty (e.g., block bootstrap with blocks ≥ the 

longest correlation time in the band) to avoid overconfidence from strongly correlated 

windows [104], [109]. 

Since most energy arrives in bursts near specific bands, feasibility hinges on buffering and 

on aligning a device’s effective band with the environmental peaks. Micro-relocation—

moving a few tens of centimeters on a floor slab or changing from frame to seat-rail in a 

vehicle—can change 𝑄5(𝐸𝑇
(𝐵)) by orders of magnitude due to modal shapes and transmission 

paths. Consequently, a short pre-deployment spectral survey across candidate placements is 

often more impactful than marginal improvements in converter efficiency [103], [105].  

3.2.4 RF Φ 

We define the RF field at the point of use as band-limited power-flux density: for a band 

b=[f1, f2], 

𝛷𝑏(𝑡) = ∫ 𝑆(𝑓, 𝑡, 𝑟)𝑑𝑓
𝑓2

𝑓1

[𝑊𝑚−2] (3.10) 

where S(f, t, r) is the spectral power-flux density incident on the local plane. This is strictly 

source-side (no rectifier thresholds or matching). In practice, you either log Φb(t) with a 

calibrated antenna + receiver (reporting antenna factor, orientation, detector time constants) 

or infer band power at the receiver port and convert to flux with the stated aperture/gain. 

Minute-scale windows capture traffic bursts; 24-hour windows capture diurnal occupancy 

effects, so we report 𝑄5,50,95(𝐸𝑇
(𝑏)) and availability 𝐴

𝜑𝑚𝑖𝑛
(𝛽) (𝑇) per band rather than a single 
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“wideband” number. This avoids masking tails, which differ markedly across Wi -Fi, 

cellular, and broadcast bands[78].  

Three empirical facts shape design. First, levels vary by orders of magnitude across bands 

and micro-sites; moving the antenna tens of centimeters or rotating it can re-rank bands in 

the same room due to line-of-sight and multipath. Second, urban surveys consistently find 

ambient powers that are often sub-µW at the antenna port but occasionally far higher near 

infrastructure—hence the need for per-band, placement-specific envelopes rather than 

generic claims. Third, traffic and scheduling imprint minute-scale bursts and clear daily 

structure, so low-percentile days and long calms often govern autonomy even when medians 

are attractive. These points are well documented in ambient-RF field studies and recent 

surveys [78], [110], [111].  

Concise reading of the literature. Piñuela, Mitcheson and Lucyszyn provide a city-scale 

measurement study of ambient RF levels and harvesting practicality; Sherazi et al. give a 

comprehensive survey of RF energy harvesting models, measured powers, and applications; 

Sharma et al. review techniques for low-power WSNs and emphasize per-band variability 

and duty-cycle effects—exactly the rationale for our band-resolved envelopes. 
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Table 3.1 Source summary of Φ(t) by class 

Source 

class 

Φ(t) Typical magnitude (order) Dynamics/ 

cadence 

Availability signature Windows for 

ET 

Optical 

(indoor) 

Plane-of-array (POA) 

irradiance at device plane 

(daylight + electric light) 

~0.1–10 W·m⁻² in offices Log at 1–5 

s; report at 

1-min 

Moderate in hours, low 

overnight; micro-siting 

and shading dominate 

1 min (bursts), 

24 h (daily) 

Optical 

(outdoor) 

POA irradiance = beam + 

diffuse + ground on module 

plane 

Up to ~1000 W·m⁻² clear sky; 

fast sub-min ramps under 

broken cloud 

Log at 1–

10 s; report 

at 1-min 

Strong diurnal; short 

cloud-edge 

deficits/surpluses 

1 min (ramps), 

24 h (daily) 

Thermal 

(low-grade 

ΔΤ) 

Heat-flux density  

Φth = heffΔT at interface 

Wearables ~1–20 W·m⁻²; 

equipment interfaces often 

higher/steadier 

Log at 10–

60 s 

Slow drifts; sessions & 

HVAC cycles imprint 

structure 

1 h, 4 h, 24 h 

Vibrations Band-integrated vibration 

content 𝛷𝐵 = ∫ 𝑆𝑎(𝑓)𝑑𝑓
𝐵

  

Buildings: ~0.01–0.3 gRMS  in 

modal bands; vehicles/human 

motion: ~0.1–>1 g bursts 

Log at 10–

50 ms; 

report at 1-

min 

Bursty/sessional; heavy-

tailed calms between 

events 

1–5 min 

(bursts), 24 h 

RF Band power - flux density 

𝛷𝑏 = ∫ 𝑆(𝑓)𝑑𝑓
𝑓2

𝑓1
 

Often sub-µW at antenna port; 

can be ≫100 µW near 

infrastructures 

Log at 1 s; 

report at 1-

min 

Band- and site-specific; 

minute-scale traffic 

bursts; clear diurnals 

1 min (bursts), 

24 h 
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3.3 Availability  

Availability quantifies how often the environmental field Φ(t) at the point of use exceeds a 

contextually meaningful source-side threshold ϕmin. For a window T sampled every Δ with 

index set TT, we compute 

𝐴𝜑𝑚𝑖𝑛
(𝑇) =

1

|𝑇𝑇|
∑ 𝛷(𝑡) ≥ 𝜑𝑚𝑖𝑛

𝑡∈𝑇𝑇

(3.11) 

Unlike yield or autonomy (treated later), this chapter keeps Aϕmin strictly device-agnostic: 

the threshold is expressed in the native units of Φ(t) on the same plane of use, and no 

conversion, thresholds, or control losses are folded in. 

To keep Aϕmin  comparable across deployments, three items must be declared alongside the 

number: the geometry/band definition for Φ(t) (e.g., plane-of-array for optical; band limits 

for RF; analysis band for vibration; interface description for thermal), the evaluation cadence 

used to form TT , and the horizon T. A one-minute cadence is a good default because it 

registers indoor lighting steps and outdoor cloud-edge fluctuations while smoothing second-

scale burstiness in RF and mechanical logs that are originally captured faster; the raw data 

may—and often should—be recorded at higher rates, then aggregated to the common minute 

grid for the availability calculation [112]. 

Choosing ϕmin is an environmental decision, not a device setting. A defensible approach is 

to anchor ϕmin to a contextual percentile or use-case requirement that can be stated without 

invoking a converter—for example, a POA irradiance level associated with “usable light” in 

a space, a heat-flux density representing a meaningful body/equipment differential, a 

vibration band power integrated over a declared band, or an RF band power-flux over a 

licensed/unlicensed band. The chosen value must be reproducible from measurements alone 

(no IV curves, no rectifier sensitivities) and should remain fixed when comparing placements 

or days. When a study also reports device results in Chapter 4, that chapter may motivate a 

separate, device-aware threshold; the source-side ϕmin reported here is not retrofitted to 

match it. 

Availability is estimated over at least two horizons. A short window (on the order of minutes) 

answers whether bursts can be supported without long gaps; a daily window (T=24) answers 

whether routine operation can be sustained through typical cycles. These two horizons make 

the statistic informative without duplicating the broader envelope work in §3.2. Uncertainty 
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should be attached to each estimate using dependence-aware resampling—moving-block 

bootstrap or related techniques with blocks longer than the dominant autocorrelation time—

combined in quadrature with measurement components such as calibration and placement 

repeatability [113]. The result is an interval that reflects both sampling variability and 

measurement fidelity, rather than an over-confident single number. 

Interpretation differs from mean-energy summaries. Two deployments can share similar ET 

yet have very different Aϕmin: one with short, frequent excursions above ϕmin, another with 

long calm spells punctuated by rare peaks. The former favors opportunistic policies; the 

latter demands buffering and deferral. This is precisely why availability is reported on a fixed 

cadence and horizon rather than inferred from averages or percentiles of ET. In outdoor 

optical settings, for instance, sub-minute cloud dynamics can depress minute-scale 

availability despite ample daily energy [112]. In RF contexts, traffic scheduling and 

occupancy drive distinct minute-to-hour patterns that a daily mean would obscure [78]. In 

vibration environments, sessional activity creates bands of near-continuous availability 

interleaved with long calms; a band-resolved Aϕmin captures this directly [104]. 

The deliverable of this section is a compact record: for each context and placement, the pair 

of availability values Aϕmin(T) at minute-scale and at 24 h, each accompanied by its threshold 

definition, geometry/band metadata, cadence, and an uncertainty interval. These numbers—

by design—are the only inputs Chapter 4 needs to impose device-side losses and thresholds, 

and they are the statistics that Chapters 5–6 use within DREAM to sequence work and size 

buffers against empirically observed gaps. 

3.4 Harvesting potential 

Harvesting potential is the environmental ceiling: the most energy that any harvester could 

plausibly extract on a given plane and over a stated time window, before device particulars 

enter the picture. We obtain it directly from the measured field Φ(t) by  integrating over a 

horizon T, 

𝐸𝑇 = ∑ 𝛷(𝑡)

𝑡∈𝑇𝑇

𝛥 (3.12) 

and then describing the distribution of ET across comparable windows. Interpreted this way, 

ET is not a promise of yield; it is a clean, device-agnostic bound that later chapters will reduce 

through spectral weighting, thresholds, tracking overheads and storage losses. 
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Because diffuse sources are intermittent and skewed, a single average obscures the design 

reality. We therefore summarize harvesting potential with percentiles of ET—conservative, 

typical and favorable values—computed on two windows that matter for decision-making: 

a minute-scale window for burst feasibility and a 24-hour window for daily survivability. 

Availability from §3.3 complements this view. Availability asks how often the field clears a 

declared environmental level; harvesting potential asks how much energy accumulates when 

we look over the whole window. Two sites can share a similar median ET and yet have very 

different availability if one suffers long calms and the other offers frequent short bursts; 

sizing and scheduling depend on knowing both. 

The definition is uniform across sources, which keeps the chapter coherent. For light, indoors 

and outdoors alike, Φ(t) is the plane-of-array irradiance at the relevant surface. Outdoors, 

this naturally includes beam, diffuse and ground-reflected components and can be obtained 

either by co-planar measurement or by validated transposition from horizontal/normal 

components; using a modern Perez-family formulation maintains continuity across clear and 

overcast conditions without committing to any specific device model [95], [112]. For low-

grade thermal contexts, Φ(t) is the incident heat-flux density heffΔT at the interface, whose 

slow dynamics make multi-hour windows more informative; recent reviews emphasize 

reporting the environmental driver separately from thermoelectric conversion details, which 

we follow here [99]. For mechanical and RF environments, energy is intrinsically band-

conditioned: we compute ET on declared vibration or RF bands, preserving the narrow-band 

or channel structure that later determines which devices can effectively couple to the field 

[78], [104]. 

Uncertainty accompanies every percentile we report. It comes from two places: 

measurement (calibration, geometry and placement repeatability) and temporal dependence 

(adjacent samples are not independent). We therefore combine instrument uncertainties with 

dependence-aware resampling—for example, a moving-block bootstrap with blocks longer 

than the dominant correlation time—so the intervals reflect real variability rather than 

optimistic i.i.d. assumptions [113]. In outdoor optical cases, retaining minute-scale structure 

captures cloud-edge ramps that disproportionately shape the right tail of ET; in RF and 

mechanical cases, minute-scale aggregation smooths sub-second bursts while preserving the 

patterns that matter for buffering and task deferral. 
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The outcome of §3.4 is intentionally compact: for each plane and context we provide minute- 

and day-scale percentile summaries of ET, with explicit geometry/band definitions and 

uncertainty. Chapter 4 then explains the gap between this environmental ceiling and 

deliverable energy by applying spectral response, start-up and threshold effects, maximum-

power-point tracking, impedance and storage losses. Chapters 5–6 rely on both pieces 

together: harvesting potential sets what is even conceivable in a window, while availability 

and conversion losses determine how DREAM schedules work and sizes buffers to meet 

autonomy targets. 

The brief envelopes derived here bound what any transducer could extract at the point of 

use, but they do not yet account for thresholds, start-up energy, impedance matching, storage 

inefficiencies, or tracking overheads. Chapter 4 makes these losses explicit by mapping Φ(t) 

through a calibrated conversion chain, yielding deliverable power-time profiles suitable for 

DREAM’s scheduling and sizing. 
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4 Energy collection architectures and components 

4.1 Introduction 

Energy-autonomous embedded systems depend on a carefully engineered energy-collection 

path that mediates between variable ambient sources and duty-cycled loads. The aim of this 

chapter is to lay the foundations—architectural and model-level—needed to reason about 

that path early in the design, before low-level hardware choices are fixed. We treat sources, 

storage, conversion, and telemetry as one coherent system so that later design decisions can 

be traced to first-order assumptions rather than hidden safety factors. 

Designing for autonomy is difficult because available power is intermittent, non-stationary, 

and often weak, while power-management circuits impose cold-start thresholds, quiescent 

consumption, and MPPT/tracking overheads that erode the harvest. Storage contributes 

leakage and round-trip inefficiency, with usable capacity constrained by voltage limits and 

aging. Methods that match long-term average harvest to long-term average load routinely 

fail in deployment: they ignore variability and conversion losses, leading either to brownouts 

during realistic profiles or to unnecessary over-provisioning. Accordingly, this chapter 

adopts a window-based, loss-aware perspective. We characterize energy exchange over 

analysis windows that capture the dominant rhythms of both input and load (e.g., 

diurnal/seasonal PV, building schedules for indoor nodes), and we express non-idealities 

explicitly via macroscopic parameters (efficiencies and parasitic terms) that can be measured 

or conservatively bounded. 

To anchor terminology and interfaces, Section 4.2 combines two elements: (i) reference 

architectures—an idealized view for upper-bound reasoning and a non-ideal, practice-driven 

view—and (ii) a unified energy-collection model that links those architectures to measurable 

quantities. Treating the architecture and model together avoids duplications and makes every 

diagrammatic choice map to a term in the state equation (e.g., input-path efficiency, 

converter quiescent power, storage leakage, output-path overheads). This coupling also 

clarifies which signals must be surfaced to software and how frequently they need to be 

observed. 

A guiding principle throughout is minimal yet sufficient telemetry. The runtime should 

depend only on what the power path can expose with negligible overhead: a reliable store 

proxy, protection events (power-good/UVLO), and—optionally—one coarse source proxy 
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per harvester for mode selection. Oversensing and high-rate control loops can dissipate a 

non-trivial fraction of the harvested energy and complicate verification; a sparse, well -

chosen contract decouples offline modelling from online scheduling while keeping the 

control surface stable across hardware revisions. 

The scope is intentionally system-level. We do not attempt to catalogue every converter 

topology or chemistry-specific effect. Instead, we abstract their system impacts—efficiency, 

thresholds, leakage, and quiescent currents—so that components can be swapped without 

rewriting the theory. Likewise, load modelling is kept to the granularity needed to represent 

activity states and duty cycles; application specifics (sensor mix, radio protocol, firmware 

structure) are treated as inputs to the same framework. This abstraction preserves generality 

across use cases: indoor environmental tags with sporadic radio bursts, wearables with 

periodic sensing and BLE advertising, or outdoor nodes with diurnal harvesting and multi-

day maintenance. 

Because dimensioning entails project-specific objectives and acceptance criteria, all sizing 

rules and workflows are deferred to Chapter 5 (Design Methodology). There, the 

architecture-aware model from § 4.2 is operationalized into a procedure for parameter 

identification (efficiencies and parasitics), minimum collector aperture and storage capacity 

for a target availability, cold-start/brown-out evaluation, and trace-driven verification with 

sensitivity analysis. Finally, § 4.6 specifies runtime requirements—maintaining a safe store 

band during surplus, guaranteeing survival under energy poverty by adapting duty cycle at 

coarse cadence, tight energy/compute budgets, and clean interaction with protection—so that 

firmware and hardware implement a common, low-overhead contract. 

Organization of the chapter: 

§ 4.2 presents the Reference Architectures + Unified Model. §§ 4.3–4.5 retain the prior 

surveys under new numbering—harvesting & conversion interfaces, storage technologies, 

and power distribution/management. Chapter 6 builds on these foundations to provide the 

design methodology and dimensioning workflow. 

4.2 Reference architectures and energy collection model 

This section consolidates the architectural viewpoint and the analytical model into a single, 

consistent framework. The reference architectures provide the vocabulary for sources, store, 

conversion stages, and loads; the unified model maps each architectural element to explicit 
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terms in the state equation that governs stored energy. Dimensioning rules and workflows 

are deferred to Chapter 6; here we define the variables, assumptions, and performance 

metrics they rely on. 

4.2.1 Reference architectures 

 

Figure 4.1 Ideal architecture 

Figure 4.1 (idealized architecture) portrays the system at its most abstract and lossless, 

making visible only the energy flow between at least two heterogeneous sources, a single 

storage element, a power path, and one or more controlled loads. Think of two different 

sources—say, an indoor PV cell and a vibration harvester—delivering electrical power into 

a common node without contention. The power path is represented by ideal switches that 

never dissipate energy and that instantaneously route power either into the store or toward 

the loads. The storage element is perfect: it has no leakage, no charge–discharge penalty, 

and no voltage-dependent usable capacity; its state can be described by either stored energy 

E or by the store voltage Vstore. The loads are explicitly controlled rather than always-on: the 

runtime can enable or disable them without side effects, and there is only a small quiescent 

background to represent always-on supervision. Under these assumptions, the system’s 

macroscopic behavior reduces to a conservation statement: the rate of change of stored 

energy equals the sum of source powers minus the instantaneous load demand. Over any 

window of time, feasibility becomes a simple energy balance: if the time-integrated 

harvested energy from the two sources (and any additional sources) exceeds the time-
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integrated demand of the controlled loads, the system is energy-neutral. This figure is 

deliberately silent about start-up, thresholds, and converter behaviors; its value is to set a 

clean vocabulary — “at least two sources → power path → store → controlled loads”—and 

to provide an upper bound against which all practical designs must underperform. 

 

Figure 4.2 Non-ideal architecture 

Figure 4.2 (non-ideal architecture) refines the same four constituents while keeping the 

viewpoint macroscopic. The two different sources are now terminated into distinct front 

ends, each represented as a single block that stands in for rectification, impedance 

presentation or MPPT, and voltage conversion. Rather than modelling transistors or control 

loops, the block is parameterized by an average efficiency and by two scalar overheads: a 

static quiescent draw and a tracking penalty associated with following the source’s operating 

point. The power path ceases to be ideal. It includes selection, protection, and regulation on 

both the input and output sides; in the macroscopic description these become an input 

efficiency for each source, an output efficiency that represents delivery from the store to the 

rails, and a small but finite quiescent consumption that persists even when the controlled 

loads are idle. The storage element acquires two aggregate properties that matter at system 

scale: a leakage term that drains energy slowly even when nothing else happens, and a round-

trip efficiency that taxes every charge–discharge cycle. Finally, the controlled loads are still 

actuated by software, but their interaction with the power path is now realistic: some rails 

require sequencing, some loads present inrush or bursty demand, and all of them are bound 

by protection thresholds (e.g., UVLO) that define the safe operating region. Read this figure 
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as a contract: each box contributes either useful energy transfer or one of a small number of 

losses that can be measured once and reused across analyses. 

From the macroscopic perspective, the two figures differ only in whether those aggregate 

loss and threshold terms are set to zero or to their measured values. In the ideal figure, all 

efficiencies are unity and all parasitics vanish; in the practical figure, each source’s front end 

contributes an effective harvested power that is smaller than the raw transducer power by 

exactly the amount lost to quiescent and tracking overheads, and the output side inflates the 

apparent load by the inverse of its delivery efficiency plus its own quiescent draw. The store 

connects the two sides by accumulating the difference and slowly bleeding energy through 

leakage. Importantly, both figures presuppose at least two different sources feeding the same 

store through a power path—this is not an implementation detail but a modelling stance. It 

ensures that heterogeneity is explicit in the architecture and that arbitration across sources is 

part of the macroscopic picture rather than an afterthought. 

Interpreting the diagrams this way yields immediate design consequences without resorting 

to device-level models. If one of the two sources is weak—for example, a low-illuminance 

PV cell—its front end’s static draw can dominate unless it is gated by the power path; Figure 

4.2 makes that interaction visible, and the macroscopic parameters make it quantifiable. If 

the controlled loads exhibit bursts (a radio transmission or a sensor heater), the output side’s 

regulation and the store’s round-trip penalty together determine how much stored energy 

must be available before a burst can be scheduled, even when average neutrality holds. If the 

system must start from an empty store, the presence of thresholds and a finite start -up ladder 

is implied by the non-ideal architecture and must be covered in the methodology; the ideal 

figure deliberately ignores this, which is why it serves as an upper bound rather than a design. 

In short, Figure 4.1 defines the topology and the invariants for “two sources → store → 

power path → controlled loads,” while Figure 4.2 attaches to the same topology just enough 

macroscopic physics—efficiencies, quiescent powers, leakage, and thresholds—to make 

predictions about neutrality, survivability, and availability that match field reality.  

4.2.2 Unified macroscopic model 

This subsection turns the two diagrams into a single state equation that governs the evolution 

of stored energy under heterogeneous inputs and controlled loads. Every system we consider 

contains at least two different sources, a storage element, a power path, and one or more 

loads that software can enable or disable. The modelling stance is macroscopic: we do not 
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track switch nodes or inductor currents; instead, we summarize each block in Figures 4.1–

4.2 by a small set of efficiencies and parasitic terms that are measurable on the bench and 

stable across operating conditions of interest. 

Consider m ≥ 2 sources indexed by i and k loads indexed by ℓ. Each source has an ambient 

stimulus Φi(t)) (irradiance, temperature gradient, vibration level, RF field strength) that 

produces a raw electrical power Pi(t) at its transducer terminals. The power path presents 

each source to the store through a front end Nconv,i that encompasses rectification, impedance 

presentation or MPPT, and voltage conversion. Rather than modelling those circuits 

explicitly, we attribute to Nconv,i an average input-path efficiency ηin,i, a static quiescent draw 

Pq,i, and a tracking penalty Ptrk,i associated with extremum seeking or dithering. The effective 

harvested power from source i is therefore 

𝑃𝑖,𝑒𝑓𝑓 (𝑡) =  𝜂𝑖𝑛,𝑖𝑃𝑖(𝑡) − 𝑃𝑞,𝑖 − 𝑃𝑡𝑟𝑘,𝑖 (4.1) 

These parameters can be allowed to depend on operating point—weak-light versus bright-

light, cold versus hot—without changing the form of the model; in practice they are 

identified as functions or piecewise-constant maps over the relevant ranges. 

The loads together impose an application demand 𝑃𝐿(𝑡) = ∑ 𝑃𝐿,l(𝑡)𝑘
l=1  that is seen by the 

store after the output side of the power path inflates it with delivery losses and adds its own 

housekeeping. The macroscopic representation of that effect is an output-path efficiency ηout  

and a quiescent term Pq,out. Storage leakage appears as an additional drain proportional to the 

instantaneous store voltage. The effective demand becomes 

𝑃req(𝑡) =
𝑃𝐿(𝑡)

η𝑜𝑢𝑡

+ 𝑃𝑞,𝑜𝑢𝑡 + 𝐼leak  𝑉store(𝑡) (4.2) 

Controller overhead can be treated either as part of Pq,out (if it is tied to the power path) or 

absorbed into the load profile (if it scales with application activity). The distinction does not 

alter the algebra; it only changes where the overhead is booked. 

Let E(t) denote the energy stored. The storage element contributes round-trip losses, 

captured by charge and discharge efficiencies ηch and ηdis. Round-trip efficiency (RTE) 

formalizes the net energy penalty of storing and later delivering energy at the same modelling 

boundary used throughout this subsection. Over a matched charge–discharge cycle, with 
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energies measured at the storage element’s DC terminals  𝑅𝑇𝐸 =  𝐸𝑜𝑢𝑡 𝐸𝑖𝑛⁄ , where Ein =

 ∫ 𝑣in(t)𝑖in(t)dt
tc

 and Eout = ∫ 𝑣out(t)𝑖out(t)dt
td

. Within the macroscopic model, DC-

boundary RTE decomposes naturally into direction-specific factors ηch and ηdis, while 

conversion inefficiencies and quiescent draws remain attributed to the input and output 

power paths; this separation avoids double counting when composing sources, storage, and 

loads and is consistent with the loss channels already identified for the non-ideal architecture.  

Because duty cycles in CPS often include idle intervals between charge and discharge, it is 

useful to distinguish an intrinsic DC RTE, ηrt
int  =  ηchηdis, from an effective RTE over a 

cycle that includes a dwell of duration τ. If Pleak(t) denotes the leakage power during the 

dwell (including redistribution effects for EDLC stacks), then for a charge packet of energy 

Ein followed by dwell and discharge, 

𝑅𝑇𝐸𝑒𝑓𝑓 = 𝜂𝑑𝑖𝑠 (𝜂𝑐ℎ  −  
1

𝐸𝑖𝑛
∫ 𝑃𝑙𝑒𝑎𝑘(𝑡)𝑑𝑡

𝜏

0

) (4.3) 

This expression makes explicit that long idle times degrade the apparent round-trip 

performance even when ηch and ηdis  are unchanged. Accordingly, parameter reporting and 

identification should state the measurement boundary, current profile, temperature, and 

dwell time so that neutrality and availability computations later in the chapter operate on 

effective energies rather than idealized ones, matching the window-based, loss-aware stance 

adopted in this chapter. In the regime of interest, a single multiplier ηch on the incoming side 

suffices; if asymmetric behavior is significant, the cycle can be split into charge and 

discharge intervals with the corresponding multipliers applied to each. The state equation 

that results from the non-ideal architecture is 

𝑑𝐸

𝑑𝑡
= ∑ η𝑐ℎ

𝑚

𝑖=1

 𝑃𝑖,eff(𝑡) − 𝑃req (𝑡) (4.4) 

When all efficiencies are unity and all parasitic terms vanish, this reduces to the ideal law of 

Figure 4.1, Ė = ∑ Pi − PLi , which provides the well-known upper bound used for early 

feasibility checks. 

To relate the energy state to a measurable quantity, we use the store voltage. For a 

supercapacitor of capacitance C, E(t) =
1

2
CVstore

2 (t) and Ė = CVstore V̇store; the pair of 
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relations closes the model in terms of voltage. For batteries, E(t) is tied to state-of-charge 

through the device’s open-circuit-voltage curve; an internal-resistance term may be included 

when short bursts dominate the load, but for macroscopic energy accounting the OCV–SoC 

mapping and rate limits are sufficient. In either case, the model is driven by traces of P i(t) 

or, in modalities where an area or coupling factor is the primary design variable, by an 

effective stimulus representation Pin(t) = AηhΦ(t) with A an equivalent aperture and ηh a 

lumped harvester efficiency. Collapsing two heterogeneous sources to a single effective 

input is legitimate for sizing if the downstream scheduler does not rely on their individual 

timing; where arbitration between sources matters, the two Pi,eff terms should be retained 

separately. 

Certain behaviors that are prominent in Figure 4.2 enter the model as constraints rather than 

continuous terms. Cold-start is represented by a threshold voltage VCS and an associated 

start-up energy ECS: the system cannot transition from “off” to “on” until E(t) exceeds the 

energy required to bring up the front ends and the controller; below that boundary, loads are 

disconnected, and the only dynamics are those of trickle charging and leakage. Brown-out 

is represented by hysteretic undervoltage thresholds; when Vstore falls below the lower 

threshold, the loads are shed and PL collapses to its supervisory minimum, only to be re-

enabled once the upper threshold is crossed. In trace-driven simulations this is implemented 

as event logic wrapped around the state equation; the differential model itself remains 

unchanged. 

The identification of macroscopic parameters follows directly from the block meanings. 

Quiescent powers are measured with switching disabled at representative voltages and 

temperatures. Input- and output-side efficiencies are tabulated by sweeping operating points 

and taking the ratio of delivered to received power; the resulting maps are interpolated during 

simulation. Tracking penalties are obtained by comparing harvested power under MPPT 

with the power at a fixed operating point under matched conditions. Leakage is measured by 

holding the store at several voltages and recording the decay rate; an equivalent current 

model Ileak(V,T) is fitted for use in Preq. Start-up energy is integrated along the cold-start 

ladder from a fully discharged state until regulation is established. None of these 

measurements require knowledge of switching waveforms; they are purposefully 

macroscopic, matching the level of the model. 
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The outcome is a compact description in which every box in the non-ideal diagram 

corresponds to a symbol in the equations and every symbol can be tied to a bench 

measurement. In § 4.2.3 the model is placed on a design window and accompanied by 

performance metrics—energy neutrality, survivability with respect to protection thresholds, 

and availability—that Chapter 5 turns into a sizing and verification procedure. 

4.2.3 Design window, traces and signals 

The model is exercised on a finite design window that is long enough to contain the dominant 

rhythms of both the heterogeneous sources and the controlled loads. For outdoor 

photovoltaic input the window must span seasonal variation; for indoor sources tied to 

building schedules or occupancy it should include multiple weekday–weekend cycles; for 

hybrid systems with at least two different sources the window must be long enough for their 

independent fluctuations to fully express. In practice the window is defined by a start time, 

a duration, and a uniform sampling interval.  

𝑊 = [𝑡0,  𝑡0 + 𝑇𝑊], 𝑡𝑘 = 𝑡0 + 𝑘 Δ𝑡,  𝑘 = 0,1, … , 𝑁,        Δ𝑡 =
𝑇𝑊

𝑁
(4.5) 

All signals—source stimuli or powers, store proxies, and load demand—are expressed on 

the same time base so that energy accounting is unambiguous.  

Source traces can be provided either as raw stimuli (irradiance, temperature gradient, 

vibration level, RF field strength) or directly as electrical power at the transducer terminals. 

When stimuli are used, a calibrated transducer model converts them to electrical power 

before the front-end macromodel is applied. The two (or more) sources must remain distinct 

during this step so that policies and source-specific losses can be applied; only later, if the 

scheduler never arbitrates between sources, may an effective single input be formed for 

convenience. Load traces originate from the firmware schedule and from benchtop power 

profiling of each activity state. Bursty behavior such as radio transmissions is represented 

explicitly in the time series rather than smeared as a mean; this preserves the interaction 

between surge currents, output regulation efficiency, and store dynamics. All traces are 

resampled to a uniform cadence by energy-preserving averaging rather than point sampling, 

which avoids spurious neutrality errors when down sampling high-rate logs: 

𝑃[𝑘] =
1

Δ𝑡
∫ 𝑃(τ)

𝑡𝑘+1

𝑡𝑘

 𝑑τ (4.6) 
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Cold-start and protection thresholds enter the simulation as events that gate the continuous 

dynamics rather than as additional differential terms. Below the cold-start energy the 

converters and loads remain disabled; once the store crosses the enable threshold, the front 

ends and rails become available, and the state equation governs the evolution. During brown-

out the loads are shed, and only supervisory consumption remains until the upper hysteresis 

threshold is crossed again. This event logic is applied to the discrete-time traces with the 

same sampling interval used for integration. With the stored energy Ek at instant tk, the 

forward update is: 

𝐸𝑘+1 = 𝐸𝑘 + Δ𝑡 (∑ η𝑐ℎ

𝑚

𝑖=1

 𝑃𝑖,eff[𝑘] − 𝑃req[𝑘]) (4.7) 

with the effective demand seen by the store given by 

𝑃req[𝑘] =
𝑃𝐿[𝑘]

η𝑜𝑢𝑡
+ 𝑃𝑞 ,𝑜𝑢𝑡 + 𝐼leak  𝑉store[𝑘] (4.8) 

Front-end enabling is likewise represented with a binary mask per source; The mask prevents 

the accumulation of quiescent losses for sources that are intentionally disconnected by the 

power path, which is critical when one of the two sources is weak. 

𝑃𝑖,eff[𝑘] = 𝑢𝑖[𝑘](𝜂𝑖𝑛,𝑖  𝑃𝑖[𝑘] − 𝑃𝑞,𝑖 − 𝑃𝑡𝑟𝑘,𝑖), 𝑢𝑖[𝑘] ∈ {0,1} (4.9) 

For capacitive storage, propagating the voltage directly is convenient; Using 𝐸 =
1

2
𝐶𝑉2, the 

consistent closed-form update is: 

𝑉store[𝑘 + 1] = √𝑉𝑠𝑡𝑜𝑟𝑒
2 [𝑘] +

2𝛥𝑡

𝐶
(∑ 𝜂𝑐ℎ 𝑃𝑖,𝑒𝑓𝑓[𝑘] − 𝑃𝑟𝑒𝑞[𝑘]

𝑚

𝑖=1

) (4.10) 

The cold-start and hysteretic brown-out gates are applied as discrete events: 

𝐸𝑘 < 𝐸𝐶𝑆 ⇒ 𝑢𝑖 [𝑘] = 0 ∀ 𝑖, 𝑃𝐿[𝑘] → 𝑃𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑦 , 

𝑉𝑠𝑡𝑜𝑟𝑒 [𝑘] ≤ 𝑉𝑈𝑉𝐿𝑂
− ⇒ 𝑃𝐿 [𝑘] → 𝑃𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑦 , 𝑉𝑠𝑡𝑜𝑟𝑒 [𝑘] ≥ 𝑉𝑈𝑉𝐿𝑂

+ ⇒ 𝑙𝑜𝑎𝑑𝑠 𝑚𝑎𝑦 𝑏𝑒 𝑟𝑒 − 𝑒𝑛𝑎𝑏𝑙𝑒𝑑  (4.11) 

Signal cadence serves two different purposes and must not be conflated. For modelling, the 

integration step is chosen small with respect to the store’s time constant and the fastest burst 
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features in the load so that numerical error remains negligible; this step can be arbitrarily 

fine because it is computed offline. For runtime telemetry, the sampling rate is chosen 

coarsely enough that the average cost of sensing and decision making is negligible compared 

to the median harvested power. A single reliable store proxy and protection events suffice 

for most schedules; optional source proxies may be logged for diagnostics or mode hints, 

but they do not change the correctness of the energy accounting. 

Missing data and outliers in measured traces are handled conservatively. When a source 

measurement is absent, interpolation is performed only over gaps short relative to the store 

time constant; longer gaps are filled with lower confidence bounds so that feasibility is not 

overstated. Load traces are always kept non-negative and aligned to activity start and end 

timestamps. All timestamps are normalized to a single time zone and clock epoch so that the 

composition of sources and loads is well-defined at every sample. 

4.2.4 Definitions 

The model is evaluated on a design window long enough to reveal the joint variability of at 

least two heterogeneous sources and the controlled loads. Within that window we use three 

system-level metrics that are defined purely at the macroscopic level and do not depend on 

circuit detail. The first is energy neutrality, which compares the energy effectively 

harvested after input-path and storage losses to the energy effectively demanded once 

output-path losses and leakage are accounted for. Writing the two window energies as 

integrals of the powers introduced in §4.2.2 gives 

𝐸𝑊
𝑖𝑛 = ∫ ∑ 𝜂𝑐ℎ

𝑚

𝑖=1𝑊

 𝑃𝑖,eff(𝑡) 𝑑𝑡, 𝐸𝑊
𝑟𝑒𝑞 = ∫ 𝑃req(𝑡)

𝑊

 𝑑𝑡 (4.12) 

Neutrality holds if and only if the harvested energy meets or exceeds the requirement on the 

same window, 

𝐸𝑊
𝑖𝑛  ≥  𝐸𝑊

𝑟𝑒𝑞 (4.13) 

It is often convenient to track the instantaneous deficit—the algebraic difference between 

effective demand and effective harvest—because it reveals when the store must discharge. 

Using the same macroscopic terms, the deficit is 
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δ(𝑡) = 𝑃req (𝑡) − ∑ η𝑐ℎ

𝑚

𝑖=1

 𝑃𝑖,eff(𝑡) (4.14) 

Neutrality over the window corresponds to a non-positive time integral of δ(t); however, we 

postpone any use of the cumulative deficit for sizing to Chapter 5. 

The second metric is survivability, which formalizes the requirement that the system remain 

within its protection limits throughout operation. In continuous time this demands that the 

store voltage never crosses the brown-out threshold and that any upper limits (for example, 

over-voltage protection on supercapacitors) are respected. Expressed as inequalities on the 

store proxy, the constraint reads 

𝑉min  ≤  𝑉store(𝑡)  ≤  𝑉max for all 𝑡 ∈ 𝑊 (4.15) 

where Vmin and Vmax represent the effective lower and upper bounds implied by UVLO/OVP 

settings and safe operating limits. In the trace-driven replay this condition is enforced by the 

event logic of §4.2.3; here it serves as the formal definition against which trajectories are 

judged. 

The third metric is availability, the fraction of the window during which every required load 

is powered without violating the survivability condition. Because the loads are controlled, 

availability is sensitive not only to energy balance but also to the timing of bursts relative to 

the store dynamics and to protection hysteresis. Using the indicator of successful service and 

safety, the definition over a window of duration ∣W∣ is: 

𝑛𝑎𝑣 =
1

|𝑊|
∫ 1 𝑎𝑙𝑙 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑙𝑜𝑎𝑑𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑛𝑑 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑠𝑡𝑜𝑟𝑒 (𝑡) ≤ 𝑉𝑚𝑎𝑥𝑑𝑡

𝑊

(4.16) 

This metric is agnostic to the specific duty-cycling policy; it credits time only when the loads 

are enabled and the store remains inside the safe band. Chapter 5 turns these definitions into 

computable tests on measured or synthetic traces and shows how neutrality, survivability, 

and availability jointly determine the minimal collector aperture and storage capacity for a 

given design target. 

4.2.5 Cold-start, Brown-out and survivability aspects 

The unified model must be complemented by event constraints that capture how the system 

transitions between “off,” “start-up,” “normal,” and “survival” operation. These constraints 
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are macroscopic and apply to any system composed of at least two heterogeneous sources, a 

storage element, a power path, and controlled loads. 

Cold-start is a boundary in state space rather than an ordinary loss term. While the store 

energy remains below the start-up requirement, front-end converters and application rails 

cannot be brought under control, and only passive charging through the weakest permissible 

path is possible. We represent this by a gating condition on energy and voltage: conversion 

and controlled loads may be enabled only once the stored energy exceeds the cold-start 

energy and the store voltage exceeds the enable threshold, 

𝐸(𝑡) ≥ 𝐸CS , 𝑉store(𝑡) ≥ 𝑉CS (4.17) 

The cold-start requirement itself aggregates the work needed to charge the start -up buffer 

from its “dead” state to the regulator enable threshold and to power any digital bring-up; a 

convenient lower bound, useful for trace-based checks, is 

𝐸CS ≥
1

2
 𝐶buf(𝑉en

2 − 𝑉dead
2 ) + 𝐸boot,ctrl + 𝐸boot,conv (4.18) 

In replay, the start-time is the first instant at which both inequalities are satisfied; prior to 

that moment the effective powers in the state equation are evaluated with all converters 

disabled and only leakage and passive input paths active. 

Brown-out is the dual constraint that governs safe shut-down and prevents oscillation under 

energy poverty. The power path enforces a hysteretic undervoltage-lockout, with a lower 

threshold at which loads are disconnected and an upper threshold at which they may be re-

enabled. We write this as 

𝑉store(𝑡) ≤ 𝑉UVLO
−   ⇒  loads off, 𝑉store(𝑡) ≥ 𝑉UVLO

+   ⇒  loads may be enabled (4.19) 

Within the dead band between 𝑉𝑈𝑉𝐿𝑂
−  and 𝑉𝑈𝑉𝐿𝑂

+  the scheduler must refrain from wake-ups 

that would immediately violate protection; the event logic in §4.2.3 enforces this during trace 

replay and underpins the survivability criterion defined in §4.2.4. 

Survival operation formalizes the guarantee that, when inputs remain weak for an extended 

period, the system can continue in a minimal service mode for a prescribed horizon. Let 

Psurv(t) denote the demand of this mode after delivery losses and housekeeping are accounted 

for. A sufficient condition for a survival horizon Tsur beginning at time t is that the usable 
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energy above the lower protection bound covers the cumulative requirement of the horizon. 

In continuous time this is expressed as: 

∫ (
𝑃surv (τ)

η𝑜𝑢𝑡
+ 𝑃𝑞,𝑜𝑢𝑡 + 𝐼leak  𝑉store(τ)) 𝑑τ

 𝑡+𝑇sur

𝑡

≤ 𝐸(𝑡) − Emin, (4.20) 

where Emin is the energy corresponding to the lower voltage limit. For a capacitive store 

𝐸𝑚𝑖𝑛 =
1

2
 𝐶 𝑉𝑚𝑖𝑛

2  and 𝐸(𝑡) =
1

2
𝐶 𝑉store

2 (𝑡) so the right-hand side reduces to the band of usable 

energy between the instantaneous voltage and the protection floor. This condition does not 

prescribe how the scheduler chooses epoch lengths or task subsets; it simply states the 

macroscopic energy feasibility of surviving for Tsur without violating the hysteretic bounds. 

The design methodology in Chapter 5 turns this inequality into concrete rules for choosing 

survival cadence and for proving that the chosen cadence respects the protection hysteresis 

for the measured traces. 

4.2.6 Telemetry and control interfaces 

The unified model relies on a small set of runtime signals and actuators; the contract here 

states exactly what must be exposed by the power path so that software can operate correctly 

without incurring significant energy overhead. The goal is not to re-enumerate losses or 

restate the state equation, but to specify how measurements and commands map to the 

macroscopic quantities already defined, and how they should be timed and interpreted in a 

system that includes at least two heterogeneous sources, a storage element, a power path, 

and controlled loads. 

At the core of the interface is a single store proxy. For capacitive storage this is the store 

voltage Vstore sampled at a cadence slow relative to the store’s time constant, yet fast enough 

to resolve the largest expected bursts of load activity. For batteries the proxy should be a 

temperature-aware SoC estimate derived from an OCV–SoC map or from coulomb counting 

corrected by periodic rest measurements; whichever proxy is used, the firmware must treat 

it as the state variable of the macroscopic model. The accuracy requirement is modest: 

absolute errors that translate into energy uncertainty small compared to the energy swing 

between the protection thresholds are sufficient, because the model’s role is to steer timing 

and duty cycle, not to regulate a fixed voltage. 
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Protection events provide the second pillar of the interface. The power path must generate 

edge-triggered notifications when the store crosses the hysteretic undervoltage bounds and, 

where present, any over-voltage or temperature protection limits. These events have 

semantic priority over telemetry samples: they may immediately pre-empt scheduled activity 

by forcing loads off at the lower bound and authorizing re-enable at the upper bound. In 

trace-based replay they appear as instantaneous gates on the load series; at runtime they are 

delivered through an interrupt or wake-up source with debounce and monotonic sequence 

numbers so that no transition is missed when the controller is sleeping. 

Optional source proxies complete the measurement side. Each enabled source may export a 

single scalar that is monotonically related to its instantaneous capability—fractional open-

circuit voltage for PV, settled input current or equivalent Seebeck estimate for TEG, rectified 

envelope for RF, and stroke-synchronous charge for vibration. These proxies are not 

required for correctness of the energy accounting, which already incorporates input -side 

losses, but they do enable simple policies such as preferring the stronger source when both 

are available or throttling MPPT cadence under slowly varying stimuli. In multi-source 

systems these readings must be tagged with the identity of the source and with the enable 

state from the selection network so that the scheduler never mistakes a disabled input for a 

weak one. 

On the actuation side the contract consists of rail enables, source selection, and coarse MPPT 

hints. Rail enables are level-sensitive controls that connect loads to their regulators; their 

semantics respect the protection gates, meaning asserts below the lower threshold remain 

latched off until the upper threshold is crossed. Source selection is expressed as a mask over 

the input network; it is the software-visible counterpart of the ui mask used in the model and 

exists to avoid accumulating quiescent losses from inactive front-ends when one of the two 

sources is weak. MPPT hints are advisory toggles that reduce tracking cadence or fix the 

operating point during periods when the store is far from its limits; they are optional because 

their effect is captured at macroscopic level by the tracking penalty term yet exposing them 

allows the scheduler to trade a small loss in instantaneous harvest for a reduction in overhead 

when input change slowly. 

Cadence and budgeting bind the contract to the energy model. Telemetry sampling must be 

paced so that its average power cost, plus the amortized cost of decision logic and 

housekeeping, is negligible compared to the median harvested power; in practice this means 
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sampling on the order of the store’s electrical time constant in quiescent conditions and 

temporarily increasing cadence only around expected bursts or near protection thresholds. 

Anti-aliasing is achieved by averaging over windows commensurate with the sampling 

interval rather than by impulsive reads, aligning the runtime measurements with the energy-

preserving resampling used offline. Slope limiting on the scheduling variables (for example, 

a maximum change in sleep interval per update) further prevents chatter induced by 

measurement noise without requiring any change to the underlying model. 

To remain portable across hardware revisions, the interface must be versioned and self-

describing. Each measurement record includes a timestamp on the common epoch used by 

trace replay, a source or rail identifier where applicable, and an indication of val idity when 

the system is in start-up or brown-out states. Each actuator acknowledges with its effective 

state and, for selections that can be pre-empted by protection, with the reason code of the 

pre-emption. Temperature is logged at the same cadence as the store proxy whenever battery 

SoC estimation depends on it; otherwise, it can be sampled more sparingly and only when 

the controller is awake for other reasons. 

Finally, the controller’s own energy must be booked consistently. If rail enables and source 

selection are considered part of the power-distribution domain, their quiescent and dynamic 

costs belong with the output-side housekeeping; if they scale with application duty cycle, 

they may instead be folded into the load profile. Either choice is acceptable as long as it is 

applied uniformly in both runtime accounting and offline replay. With this contract, the 

architecture–model pair of § 4.2 can be exercised by software with minimal overhead, and 

Chapter 5 can layer a design methodology on top without depending on circuit-level detail. 

4.3  Energy harvesting and conversion systems 

4.3.1 Ambient energy sources 

For design, PV sources behave approximately as current-sourced nonlinear devices whose 

MPP requires impedance presentation near R_MPP and low ripple at the source terminals; 

indoor operation additionally demands ultra-low-leakage VOC sampling and spectrum-

aware MPPT. General irradiance characteristics are summarized in Chapter 3. 

At electrical timescales a TEG is well-approximated by a Thevenin source (Voc, Ri); 

however, optimal loading depends on the coupled thermal network, so MPPT cadence must 
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be slow relative to thermal time constants. General ΔT availability is summarized in Chapter 

3. 

Vibration and triboelectric harvesters. Mechanical harvesters produce AC outputs with high 

source impedance and a narrowband response centered at the mechanical resonance. 

Delivered power depends on the vibration spectral density and coupling. Rectification 

strategy and, in some regimes, synchronized charge extraction strongly affect the usable 

energy. 

Far-field RF (special cases). At practical ranges, available power is typically in the 

micro-watt regime and depends on frequency allocation, antenna gain, and environment. RF 

is therefore considered only in proximity scenarios or as a supplemental source. 

4.3.2 Transducer characteristics and source models 

For design, each transducer can be represented by a compact equivalent model that captures 

the dominant physics over the intended operating range. Photovoltaic (PV) devices are well 

described by the single-diode I-V model with series and shunt parasitics; the maximum-

power point (MPP) varies with irradiance and temperature and often lies near a fixed fraction 

of the open-circuit voltage under outdoor conditions [114], [115]. These characteristics 

motivate maximum-power-point tracking (MPPT) and place requirements on input 

impedance and ripple [116], [117]. Thermoelectric generators (TEGs) admit a Thevenin 

representation with open-circuit voltage proportional to the Seebeck coefficient and 

temperature difference, and an internal resistance set by leg geometry; the optimal electrical 

loading depends on the coupled thermal network rather than on simple resistance matching 

[118], [119]. Vibration harvesters are conveniently modelled as single-degree-of-freedom 

resonant systems with electromechanical coupling; piezoelectric devices appear as high-

impedance AC current sources with parallel capacitance, while electromagnetic devices 

appear as AC voltage sources with series inductance and resistance [120], [121], [122], 

[123]. Interface circuits that employ synchronous charge extraction (e.g., SSHI/DSSH) 

modify the effective electrical damping and can increase harvested energy under resonant 

excitation [124]. These abstractions permit prediction of input power versus operating point 

and specify the constraints. 
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4.3.2.1 Photovoltaic transducers 

A crystalline-silicon or thin-film photovoltaic module is well described by the single-diode 

model with series and shunt parasitics. In the following figure, the equivalent circuit is 

shown.  

 

Figure 4.3 Photovoltaic transducer equivalent model 

The output current of such a module is calculated as: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 (𝑒
𝑉+𝐼𝑅𝑠

𝑛𝑉𝑇 − 1) −
𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ

(4.21) 

Where I and V are the terminal current and voltage, Iph is photo-generated current 

(approximately proportional to irradiance and weakly dependent on temperature), Is is diode 

saturation current, Rs and Rsh are series and shunt resistances, n is the ideality factor, and 

VT=kT/q the thermal voltage. The MPP (VMPP, IMPP) satisfies ∂(VI)/ ∂V = 0 and varies with 

irradiance and temperature though Iph, Is and the parasitics. For crystalline modules outdoors, 

Vmpp is typically 70-80% of Voc; at low-lux indoor conditions this fraction is lower and more 

spectrum sensitive [115], [116], [117]. 

From input-converter perspective, the key requirement is to present an effective input 

impedance that places the module at. Or sufficiently near, the MPP. A useful proxy is the 

MPP resistance 

𝑅𝑚𝑝𝑝 ≜
𝑉𝑚𝑝𝑝

𝐼𝑚𝑝𝑝
= (

𝑑𝐼

𝑑𝑉
)

−1

(4.22) 

Ripple on V or I reduces harvested power due to convexity of the P-V curve; hence, MPPT 

sampling and converter switching should be duty-cycled so that induced ripple and 

overheads remain negligible relative to harvested power [116], [117]. 
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Parameter identification. The set {Isc, Voc, FF, αT(∙)}  can be extracted from I-V sweeps 

under representative irradiance and temperature; when detailed first are required, one-diode 

parameters {Is, n, Rs, Rsh} can be obtained by two-slope or least-squares procedures [114]. 

The empirical fill-factor graphs and expressions of Green are often useful for quick checks 

and sensitivity analysis [115]. 

4.3.2.2 Thermoelectric generators 

At electrical timescales, a TEG module is well represented by a Thevenin source

 

Figure 4.4. Equivalent of thermoelectric module 

with open-circuit voltage and internal resistance: 

𝑉𝑜𝑐 = 𝑎𝑁𝛥𝛵, 𝑅𝑖 = 𝑅𝑙𝑒𝑔𝑠(𝑇) (4.23) 

where α is Seebeck coefficient per thermocouple, N the number of thermocouples, ΔT=Th-

Tc is the temperature difference across the module, and Ri the temperature-dependent 

electrical resistance of the legs. The terminal equation is: 

𝑉 = 𝑉𝑜𝑐 − 𝐼𝑅𝑖 = 𝑎𝑁𝛥𝛵 − 𝐼𝑅𝑖 (4.24) 

So that, for a load RL, 

𝐼 =
𝑅𝑖

𝑅𝑖 + 𝑅𝐿
, 𝑃𝐿 = 𝐼2𝑅𝐿 =

𝑉𝑜𝑐
2

(𝑅𝑖 + 𝑅𝐿)2 𝑅𝐿 (4.25) 

 

 If ΔT were fixed, the electrical power delivered to a load RL would be maximized at Rl=Ri 

with  

𝑃𝐿,𝑚𝑎𝑥 =  
𝑉𝑜𝑐

2

4𝑅𝑖

(4.26) 
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In practice, electrical loading perturbs the thermal gradient. A standard lumped model writes 

the heat rates at the hot and cold junctions as: 

𝑄ℎ = 𝑎𝑇ℎ𝐼 − 
1

2
𝐼2𝑅𝑖 + 𝐾𝛥𝛵 (4.27) 

𝑄𝑐 = 𝑎𝑇𝑐 𝐼 − 
1

2
𝐼2𝑅𝑖 + 𝐾𝛥𝛵 (4.28) 

With thermal conductance K (including leg conduction and parasitics). Eliminating Qh-Qc 

gives the operating-point dependence of the gradient 

𝛥𝛵 = 𝛥𝛵0 − 𝛩𝑡ℎ (𝛱𝐼 − 
1

2
𝐼2𝑅𝑖) (4.29) 

Where ΔΤ0 is the open-circuit gradient set by boundary conditions, 𝛱 = 𝛼𝛵̅ is the Peltier 

coefficient at average temperature 𝑇̅ = (𝑇ℎ + 𝑇𝑐)/2, and Θth is the effective thermal 

resistance of the contacts and environment. Because ΔΤ now depends on I, the power-

maximizing RL generally deviates from the naïve match RL=Ri; the optimum should be found 

numerically from measured K, Θth and α.  

The instantaneous electrical output and efficiency are: 

𝑃𝑒 = 𝐼𝑉 = 𝐼(𝛼𝑁𝛥𝛵 − 𝐼𝑅𝑖), 𝜂 =
𝑃𝑒

𝑄ℎ

(4.30) 

Using the standard material figure of merit 

𝑍 =
𝛼2

𝑅𝑖 𝐾
, 𝑍𝑇 = 𝑍𝑇̅ (4.31) 

An upper-bound (idealized contacts) for conversion efficiency is  

𝜂𝑚𝑎𝑥 =
𝛥𝛵

𝑇ℎ

√1 + 𝑍𝑇̅ − 1

√1 + 𝑍𝑇̅ +
𝑇𝑐

𝑇ℎ

(4.32) 

With 𝑇̅ = (𝑇ℎ + 𝑇𝑐 )/2. Current density that maximizes local efficiency follows the 

“compatibility factor” formulations; 1-D, 
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𝑠 =
√1 + 𝑍𝑇 − 1

𝛼𝑇
(4.33) 

Which guides spatially varying designs and indicates that constant-property legs are 

generally sub-optimal over large temperature spans. [118], [119]. 

Converter implications. 

Two practical consequences follow for the input power stage: 

i. At small ΔΤ, the available Voc may lie below the cold-start threshold of the 

downstream converter, requiring staged start-up or charge-pump assistance 

ii. Because the effective source resistance seen by the converter depends on ΔΤ and 

contact quality, aggressive perturb-and-observe tracking should be bandwidth-

limited to avoid exciting thermal transients. 

The pair (Voc, Ri) can be measured by open-circuit and small-signal tests across controlled 

ΔΤ; the Seebeck coefficient follows the slope of Voc versus ΔΤ. Thermal contact resistances 

can be estimated from transients to heat-flow steps. 

4.3.2.3 Vibration and triboelectric transducers 

A broad class of vibration harvesters is well approximated by a single-degree-of-freedom 

mass–spring–damper system with electromechanical coupling [120], [121], [122], [123]. For 

base acceleration y(t), relative displacement x, mass m, mechanical damping cm, stiffness k, 

and coupling coefficient θ, the linearized dynamics yield  

mẍ + ctẋ + kx = −mÿ, 𝜔0 = √
k

m
,   Q =

mω0

ct

(4.34) 

where ct=cm+ce  includes electrical damping ce  induced by the transducer and load. Under 

stationary base excitation with acceleration spectral density Sa(f), the average extractable 

power increases with both Q and the product of mechanical and electrical damping; 

maximum occurs when electrical damping matches mechanical damping (load matching)  

[120]. Piezoelectric harvesters are well represented electrically by an AC current source in 

parallel with a capacitance Cp; electromagnetic harvesters map to an AC voltage source with 

series inductance and resistance[121], [122]. Rectification (full-bridge vs synchronous) and 
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synchronous charge-extraction (SSHI/DSSH) alter the effective ce and can increase energy 

per cycle [122], [124]. 

Triboelectric nanogenerators (TENGs). TENGs convert mechanical motion to electricity 

via contact electrification and electrostatic induction. Four canonical modes exist—contact–

separation, lateral sliding, single-electrode, and freestanding—and device output scales with 

interfacial area, surface charge density and relative speed. TENGs present ultra-high internal 

impedance (MΩ–GΩ), high voltages and low currents, producing bursty waveforms; 

consequently, the front-end must minimize leakage, rectify with very low bias, and avoid 

loading that collapses surface charge density. 

 

Figure 4.5 Triboelectric generator equivalent circuit 

For rotational stimuli, rotating TENGs (R-TENGs) exploit sliding or non-contact operation 

to trade off charge density against wear. A comprehensive review by Segkos et al details 

operating principles, impedances, waveform characteristics and design strategies, including 

hybrid EMG–TENG combinations and charge-pumping interfaces that are directly relevant 

to impedance presentation and matching at the power path[125]. Building on this, Bardakas 

et al demonstrate a rotational–linear TENG (RL-TENG) that converts rotation into contact–

separation motion using ZnO-on-Kapton tribolayers, documenting load-sweep methodology 

and measured outputs that can be reused for sizing and verification[126]. In parallel, 

Anastasopoulos et al. report flexible triboelectric tactile sensors, underscoring the dual role 
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of TENG structures as both harvesters and self-powered sensors and the need for high-

impedance readout/rectification for repeatability[127]. 

4.3.2.4 Far-field RF rectennas 

An RF energy harvester (rectenna) comprises an antenna, an impedance-matching network, 

a nonlinear rectifier, and a smoothing/output network. In line-of-sight, narrowband 

conditions the received power is well approximated by Friis’ transmission relation[128]: 

𝑃𝑟𝑥 = PtGtGr (
λ

4πR
)

2

LpolLsh (4.35) 

where Pt is transmit power, Gt and Gr are the transmitter/receiver gains, λ is the wavelength, 

R the separation, and Lpol,Lsh capture polarization/mismatch and shadowing/fading. 

At the rectifier input, the RF-to-DC efficiency depends strongly on input level in the 

nanowatt–microwatt regime relevant to ambient harvesting [129]: 

ηrect(Prf) =
Pdc

Prf

(4.36) 

A small-signal expansion of a diode around a bias V0 (self-bias if no DC source) with 

vd(t)=V0+vrf(t) yields  

id(t) ≈ Ise
V0

nVT (1 +
vrf(t)

nVT

+
vrf

2(t)

2(nVT)2
) − Is (4.37) 

so that the rectified DC component (time-average over a carrier period) scales as 

Idc ≈ Ise
V0

nVT
⟨vrf

2⟩

2(nVT)2
(4.38) 

This square-law behavior at low power motivates (i) impedance matching at the intended 

level to maximize vrf; (ii) exploiting waveforms with higher crest factor where permissible; 

and (iii) careful co-design with the subsequent DC–DC stage, whose input impedance fixes 

the rectifier’s operating point[129], [130]. 

Because the rectifier input impedance Zin(Prf, T) varies with power and temperature, 

narrowband high-Q matching maximizes peak efficiency only over a limited dynamic range. 

Broadband networks reduce sensitivity to level/frequency drift at some cost in peak 
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efficiency. The impact of mismatch can be expressed through the power transmission 

coefficient [131]: 

LΓ = 1 − |Γ|2,   Γ =
Zin − Z0

Zin + Z0

(4.39) 

So even modest errors in Zin near threshold translate into superlinear losses in Pdc via the 

quadratic dependence on vrf. 

Ambient field surveys provide realistic Prx distributions in indoor/urban environments—

typically tens of nW to a few µW at the antenna port—together with system-level 

efficiencies achieved with practical antennas and rectifiers. These data are essential f or 

budgeting cold-start, storage pre-charge, and duty-cycling policies[130]. When the rectified 

node must cold-start a downstream converter, the rectenna’s smoothed output must reliably 

exceed the converter’s start-up threshold VCS under worst credible incident fields; staged 

start-up or charge-pump assistance may be required in the sub-µW regime [129], [130]. 

4.3.3 Input power-conditioning and maximum power point tracking  

Input power conditioning (IPC) mediates between an intermittent transducer and an energy 

store or load by shaping electrical boundary conditions at the source terminals, providing 

rectification and voltage/current conversion, and executing a maximum power point tracking 

(MPPT) policy that is net-energy positive under ultra-low-power constraints. In autonomous 

nodes, the IPC must (i) maintain the source near its instantaneous maximum-power point 

(MPP), (ii) guarantee cold-start from the weakest credible stimulus, and (iii) limit quiescent 

overheads so that control consumes significantly less energy than it enables. This section 

formalizes these roles, then tailors MPPT choices to photovoltaic (PV), thermoelectric 

(TEG), vibration/triboelectric, and far-field RF harvesters. 

Roles, losses and control cadence 

The power–voltage characteristic P(v) = v i(v) of most harvesters is locally concave around 

the MPP; hence ripple in terminal voltage produces a Jensen-type penalty that depresses 

average power. Input networks and control laws should therefore be designed to constrain 

the ripple magnitude Δv relative to the local curvature of P(v), while recognizing that further 

attenuation increases component size and quiescent loss. Because environmental dynamics 

vary widely—milliseconds for vibrational strokes, seconds for PV irradiance ramps, minutes 



   

84 

 

for thermal drifts—the tracker’s update period must be chosen from measured source time 

constants, rather than fixed a priori. As a rule-of-thumb for low-power nodes, the MPPT 

update period is set between one-fifth and one times the dominant source time constant, with 

additional event-driven acceleration when a fast proxy (e.g., a rectified envelope) indicates 

a step change. 

Cold-start can dominate feasibility. Typical switch-mode converters require hundreds of 

millivolts to oscillate; dim-light PV, small-ΔT TEGs, and weak RF produce less. Practical 

IPCs therefore adopt staged start-up (passive rectification into a reservoir followed by a self-

oscillating step-up that hands over to a synchronous converter once a UVLO threshold is 

crossed) or specialized cold-start ICs that exploit transformers and charge-pumps designed 

for tens of millivolts. 

MPPT strategies: selection and net-power optimality 

While many algorithms converge to the MPP on paper, few are competitive when 

measurement, computation, and actuation energy are accounted for. Four strategies are 

broadly useful: 

i. Fractional open-circuit/short-circuit sampling. For PV, regulating v ≈ k VOC or i ≈ 

k ISC (with k characterized for the cell and spectrum) yields good results indoors and 

under quasi-stationary conditions. The method requires sparse, low-leakage 

sampling of VOC or ISC and minimal arithmetic, which benefits tiny budgets [132], 

[133], [134]. 

ii. Perturb-and-observe (P&O) with adaptive step size. Classical hill-climbing is 

attractive for its simplicity; adaptive step rules reduce limit-cycle loss and accelerate 

recovery after disturbances [135]. 

iii. Incremental conductance. Estimating di/dv and solving dP / dV=0 provides better 

behavior during irradiance ramps than fixed-step P&O, at the cost of additional 

sensing [132], [134]. 

iv. Proxy-based extremum seeking. When direct v–i measurement is expensive or ill-

posed (e.g., in high-impedance triboelectric and RF rectifiers), a correlated proxy—

charge per stroke, rectified DC level, envelope power—can be optimized by slow 

hill-climbing across discrete settings[111], [136], [137]. 
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In all cases, the net-power condition must hold: average harvested power with MPPT minus 

without MPPT must exceed the tracker’s own consumption integrated over its duty cycle. 

When this is violated (very low input, very slow dynamics), freezing a recently optimal set-

point or reverting to fractional sampling is preferable. 

Photovoltaic harvesters (outdoor and indoor) 

A voltage-programmed boost or buck-boost converter that enforces a panel-side set-point 

decouples the PV from the storage bus and provides a natural handle for MPPT. Outdoors, 

incremental-conductance or P&O with adaptive steps at 1–5 Hz is sufficient to follow 

temperature drift and cloud edges without exciting undesirable ripple. Indoors, where 

spectral composition and irradiance are comparatively stable but absolute power is tiny, 

fractional-VOC with very sparse sampling (e.g., 0.1–0.5 Hz) is often net-positive relative to 

more elaborate schemes; the sampling network must exhibit picoampere leakage to avoid 

biasing VOC on small cells [133], [134]. 

Commercial power-management ICs provide useful reference designs. Ultralow-power PV 

front-ends (e.g., TI BQ25570, ADI ADP5091, ST SPV1050) integrate programmable MPPT 

set-points, VOC sampling timers, and cold-start paths; their data emphasize the practical 

trade-offs among sampling cadence, input ripple, and quiescent current, which closely mirror 

the analytical considerations above [138], [139], [140]. 

Thermoelectric generators 

Unlike PV, a TEG’s electrical loading perturbs the thermal field through Peltier and Joule 

effects; the optimal operating point depends on the coupled electro-thermal network rather 

than a fixed internal resistance. Accurate control therefore benefits from input-current 

regulation (which sets electrical damping) combined with slow MPPT (periods of tens of 

seconds) so that measurements reflect the settled thermal state. Analytical and experimental 

studies show that the MPP occurs at a load ratio that varies with ΔT and heat-sink 

characteristics, not simply RL=Ri [141], [142]. In very low ΔT regimes, cold-start is the 

bottleneck; transformer-based step-ups designed for ~20–30 mV enable self-start and then 

hand over to a higher-efficiency synchronous path [143]. A PV-style fast hill-climber is 

inappropriate here—it injects oscillations into the thermal plant and overestimates power by 

sampling during transients. Instead, use averaged measurements and conservative step sizes, 

or lock-in techniques that estimate the gradient with tiny, slow dithers [142]. 
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Vibration and triboelectric harvesters 

Resonant piezoelectric harvesters resemble high-impedance AC current sources shunted by 

the piezo capacitance. The rectifier and IPC define the electrical damping seen by the 

mechanical resonator; “tracking” is therefore equivalent to matching electrical to mechanical 

damping. Beyond simple diode-bridge + DC–DC, synchronous switch harvesting families 

(e.g., SSHI) flip the piezo voltage at displacement extrema, boosting extracted charge per 

cycle and lifting conversion efficiency at low excitation [136], [144]. In practice, the 

controller adjusts a small set of discrete parameters—switching instants, effective input 

resistance—to maximize the average rectified current over hundreds of cycles. Because 

stroke energy is packetized, stroke-synchronous updates (every few to few-dozen cycles) are 

effective and energy-cheap. 

Triboelectric nanogenerators (TENGs) exhibit mega- to giga-ohm source impedances and 

very high open-circuit voltages. IPC must therefore minimize leakage, use charge-

conserving interfaces, and optimize charge-per-stroke rather than instantaneous power. 

MPPT via classical v–i sensing is rarely meaningful; timing control and surface-charge 

preservation dominate performance. Reviews of TENG physics and power conditioning 

emphasize that a small set of discrete interface choices (full-wave vs. Bennet doubler, 

synchronous charge extraction, buffered charge pumps) cover most operating regimes; 

trackers need only explore across a slow schedule of those choices [145]. 

Far-field RF rectennas 

At nanowatt-to-microwatt inputs, rectifier efficiency and input impedance are strongly 

amplitude-dependent. The effective “MPP” is therefore inseparable from impedance 

matching and waveform design. Two practical levers are (i) adaptive matching networks that 

hill-climb among a small set of impedances using the rectified DC as a proxy, and (ii) 

multisine excitations (when the transmitter is controllable) that exploit diode nonlinearity to 

raise conversion efficiency at low input levels[137]. In ambient scenarios with unknown, 

fading sources, low-rate (sub-Hz) proxy optimization is sufficient because channel 

coherence times are long relative to IPC dynamics; faster updates only waste energy. 

Measurements in urban/office environments quantify realistic RF power densities and 

demonstrate that rectifier-aware matching dominates yield at the tail of the distribution 

[111]. 
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4.3.4 Multi-source energy collection architectures 

Multi-source energy collection (MSEC) addresses the intermittency and low power density 

of individual transducers by combining heterogeneous ambient sources—typically light 

(PV), thermal gradients (TEG), mechanical vibration (piezo/tribo), and RF—into one power-

delivery subsystem. Properly architected MSEC can increase average harvested power, 

extend autonomy during source outages, and improve reliability through source diversity 

and intelligent power routing (e.g., source selection, time-sharing, or concurrent harvesting). 

Recent surveys emphasize that benefits accrue only if the electronics decouple each source’s 

optimum operating point (e.g., MPPT set-points) from the load’s instantaneous needs, while 

minimizing quiescent losses and cross-regulation between channels [146], [147], [148]. 

Architectural families 

i. Front-end combining with shared conversion 

The lightest-weight MSEC class uses passive or low-overhead front-end “combining” (e.g., 

diode OR, switched networks) to funnel multiple rectified sources into a shared DC-DC 

stage and storage element. This minimizes silicon area and control complexity but  sacrifices 

independent MPPT and can incur diode/switch conduction losses. For ultra-low-power 

nodes where every nanowatt matters, quiescent draw in the shared stage often dominates, so 

simple combiners are preferred only when source impedances and dynamics are similar 

[147]. 

ii. Multi-input power converters 

Modern MSEC increasingly uses multi-input converter topologies that provide explicit ports 

per source with coordinated control. Two broad categories are common: 

Single-inductor, time-multiplexed interfaces (MISIMO/SI-MISO). These share one inductor 

across multiple inputs/outputs using fast scheduling. Notable techniques include event -

driven MPPT with decoupled load regulation [149], cycle-by-cycle source tracking with 

adaptive peak-inductor-current control [150], and reversely-polarized energy recycling with 

automatic source selection for triple-source operation [151]. Such controllers reduce 

switch/inductor count and silicon area and have demonstrated high peak efficiency across 

μW–mW regimes in scaled CMOS; however, they require careful arbitration to suppress 

cross-regulation and preserve each source’s MPPT window [147], [149], [151]. 
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Multi-port (often isolated) converters. Where power levels and voltage ratios are higher—

or where bidirectionality to hybrid storage is desired—multi-port boost/bridge topologies 

dominate. These allow simultaneous energy flow from several sources and to multiple 

storage elements (battery/supercapacitor), while maintaining port-level control. Recent 

designs show modular multi-input bidirectional converters for microgrids and EV fast-

charging DC links, highlighting trade-offs among device stress, component count, and 

control complexity [152], [153], [154]. Although aimed at higher power, their principles 

(port decoupling, concurrent MPPT, prioritization logic) directly inform low-power MSEC 

[146]. 

iii. PMIC-centric dual-source managers 

Commercial PMICs increasingly expose two dedicated harvester inputs with built -in MPPT 

and a regulated application rail. Analog Devices’ LTC3331 integrates an energy-harvesting 

AC/DC + buck front-end with a battery-fed buck-boost, an input prioritizer, and a 10-mA 

shunt charger, enabling seamless switchover between harvested energy and a rechargeable 

cell at sub-μA quiescent levels [155]. More recently, e-peas’ AEM13920 adds two 

independent harvester ports (e.g., PV, TEG, RF, pulsed kinetic) with concurrent energy 

extraction, cold-start near 275 mV/5 μW, and a regulated buck output—substantially 

lowering integration effort for dual-source IoT nodes[156]. 

Control and power-path strategies 

Source arbitration and MPPT. The controller determines whether to time-share a single 

inductor among sources (MISIMO) or to truly combine sources simultaneously (multi-port). 

Event-driven scheduling and per-port hysteretic comparators[149] allow fast context 

switches with minimal cycle overhead, while CCST [150] locks the active port to its 

instantaneous MPPT. For triple-source systems, automatic mode selection and energy-

recycling paths expand usable input ranges[151]. These mechanisms are key to preventing 

the “tug-of-war” that otherwise occurs when sources with disparate impedances share 

passives. 

Hybrid storage and load support. MSEC often complements a rechargeable battery with 

a supercapacitor to buffer burst loads and improve cycle life. A recent ultra-low-power 

CMOS supercapacitor storage unit demonstrates how careful regulation around an 

unregulated DC-DC output can sustain operation during source-poor intervals and protect 
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storage elements [157]. In higher-power contexts, bidirectional multi-port converters 

manage energy exchange between batteries and supercaps while tracking multiple sources 

[152], [153]. 

Minimal telemetry for modelling and control. The energy-collection subsystem exposes 

only three state proxies used later by §4.5 and Chapter 5: (i) a store-state proxy (the storage 

voltage Vstore  and, where applicable, a temperature-compensated SoC estimate); (ii) a per-

source input-power proxy suitable for extremum seeking (e.g., fractional VOC sampling for 

PV, settled input current for TEG, stroke-synchronous rectified charge for vibration/TENG, 

and rectified DC level for RF); and (iii) power-good/UVLO events that govern cold-

start/brown-out arbitration. Telemetry cadence follows source dynamics (sub-Hz for 

PV/TEG/RF; stroke-synchronous for vibration/TENG) and is duty-cycled such that average 

telemetry power remains below ~1–5% of the median harvested power over the design 

window. These signals form the contract consumed by the runtime scheduler in Chapter 5. 

4.4 Energy storage technologies 

This chapter surveys the electrochemical storage options that underpin autonomy and 

reliability in cyber-physical systems. It focuses on the two workhorse classes—secondary 

batteries and electrochemical capacitors (supercapacitors)—linking their mechanisms to 

practical performance, temperature limits, ageing, and safety, and establishing a comparative 

basis for later design choices [158]. 

4.4.1 Secondary batteries vs supercapacitors 

Electrochemical storage is the constraining element of most cyber-physical systems (CPS): 

it sets the bounds on autonomy, burst capability, lifetime, and safety. In practice, CPS rely 

on two technology classes with complementary strengths: secondary batter ies, which 

provide high specific/volumetric energy for sustained operation, and electrochemical 

capacitors (supercapacitors), which provide low-impedance buffering for short, high-crest-

factor events. Section 4.4.1 examines these classes from a mechanistic and performance 

standpoint—how their physics maps to system-level behavior—before later sections address 

hybridization and state estimation. 
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Figure 4.6 Accumulator technologies Power density vs Energy density 

For consistency, devices are compared on: (i) energy and power metrics (Wh·kg⁻¹, Wh·L⁻¹, 

W·kg⁻¹), (ii) impedance/ESR and burst response, (iii) temperature windows and charge 

constraints, (iv) ageing modes (calendar vs cycle; self-discharge for capacitors), and (v) 

safety envelopes under abuse. Emphasis is placed on chemistries and formats commonly 

used in CPS—notably NMC/NCA, LFP, and LTO-anode lithium-ion for batteries, and 

EDLC/pseudocapacitive devices for capacitors. Subsection 4.4.1.1 details the secondary 

batteries and their characteristics, while 4.4.1.2 treats supercapacitors; overlap is minimized 

so the two can be read as complementary parts of a single design framework. 

4.4.1.1 Secondary batteries 

This subsection surveys rechargeable (secondary) battery technologies that are actually used 

in cyber-physical systems (CPS)—embedded sensor/actuator nodes, wearables, industrial 

controllers and gateways—focusing on operating mechanism, practical performance 

(energy/power density, efficiency), usable temperature windows, ageing behavior and 

safety. In contemporary CPS, four chemistries dominate in practice: lithium-ion layered-

oxide systems (NMC/NCA, typically in pouch/“Li-polymer” or cylindrical formats), 

lithium-iron-phosphate (LFP), lithium-titanate-oxide (LTO-anode) variants, and nickel–

metal hydride (NiMH). Sealed lead–acid (VRLA/AGM) remains common at the 

infrastructure edge (cabinets/gateways with float charge). Emerging options (e.g., sodium-

ion) are noted briefly for context but are not yet the default choice in deployed CPS. In 
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practice, round-trip efficiency (RTE) is not a constant but varies with current rate, voltage 

window or state-of-charge, temperature, and ageing, and its architectural impact is coupled 

to the non-ideal power path. For lithium-ion cells operated at moderate rates and within their 

nominal thermal window, coulombic efficiency is high, yet the energy RTE is lower because 

discharge occurs at a reduced average voltage relative to charge; under high-crest-factor 

workloads the combination of output-side delivery losses and the store’s own round-trip 

penalty sets the minimal pre-burst energy required even when average neutrality holds.  

By contrast, electrochemical double-layer capacitors (EDLCs) can be highly efficient over 

short bursts dominated by ESR, but their effective RTE over application-relevant intervals 

becomes explicitly time-dependent because idle leakage and charge redistribution reduce the 

recoverable energy; consequently, deep-sleep autonomy is leakage-limited rather than cycle-

wear-limited. Any comparative statement must therefore specify both the measurement 

boundary (DC-level storage versus bus-level conversion included) and the cycle’s time 

structure to avoid conflating storage physics with converter housekeeping and to ensure that 

sizing and scheduling decisions reflect the true macroscopic losses used elsewhere in the 

model.  

Lithium-ion layered-oxide systems 

Graphite and layered-oxide couples, notably LiNixMnyCozO₂ (NMC) and LiNiCoAlO₂ 

(NCA), dominate compact CPS (wearables, portable nodes) because they offer high 

gravimetric/volumetric energy and are available in thin pouches (“Li-polymer”) and 

cylindrical 18650/21700 cells. The faradaic intercalation mechanism provides cell-level 

≈150–260 Wh kg⁻¹ with chemistry- and loading-dependent specific power; the stable 

operating window is typically 2.7–4.2 V per cell [159], [160], [161]. 

In CPS, these cells are usually charged CC–CV to 4.20 V (sometimes 4.10–4.15 V to extend 

life), with end-of-charge taper cut-offs of C/10–C/20. Internal resistance and kinetic 

polarization rise with C-rate and at low temperature, so high-crest-factor bursts (radios, 

motors) are often current-limited or buffered (by decoupling capacitors or, where 

appropriate, supercapacitors—treated later in § 4.4.1.2). Round-trip coulombic efficiency is 

high at moderate rates, but even 0.1 % inefficiency integrates to significant loss over long 

sleep horizons, which matters for maintenance intervals [161]. 
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Calendar ageing accelerates at high SoC and high temperature via SEI/CEI growth and 

electrolyte oxidation; cycle ageing intensifies with deep/high-rate cycling and at low-

temperature charge where lithium plating can occur. Storage near mid-SoC and charge-

voltage ceilings below 4.2 V are widely used levers to extend life (Keil & Jossen, 2017; 

Birkl et al., 2017; Attia et al., 2020). Low-temperature operation (sub-zero) depresses power 

and usable capacity; charge at ≤0 °C is often prohibited unless pre-heated [162]. 

Ni-rich layered oxides achieve high energy but narrow abuse margins at high SoC; 

meticulous protection (cell-level guardianship ICs, pack fusing, thermal design) is standard. 

Comparative tests show higher thermal-runaway onset and lower peak pressures for LFP 

than for NMC; layered oxides therefore demand conservative limits [160], [163]. 

Where compactness and autonomy dominate (wearables, mobile nodes), NMC/NCA are the 

default due to energy density and ubiquitous supply chains. Designers trade a fraction of 

nameplate energy for life by lowering the charge ceiling and by smoothing bursts. 

Lithium-ion layered-oxide systems 

LiFePO₄ couples a graphite (or occasionally hard-carbon) anode to an olivine phosphate 

cathode. The flat 3.2–3.3 V plateau, excellent thermal stability, and long cycle life make LFP 

a workhorse for industrial/outdoor CPS where safety and life outrank maximal energy [160], 

[161]. 

Typical cell-level energy density is ≈90–160 Wh kg⁻¹, lower than Ni-rich layered oxides, but 

power capability is strong, and the plateau simplifies regulation. Standard charge limits at 

3.60–3.65 V per cell reduce oxidative stress; discharge cut-offs around 2.5–2.8 V preserve 

life. 

LFP is comparatively tolerant of elevated temperature and overcharge; the cathode’s benign 

oxygen chemistry reduces thermal-runaway propensity. Low-temperature power is still 

limited by graphite kinetics; cycle life can exceed 2000–5000 cycles at moderate depth of 

discharge with appropriate thermal management [160], [161]. 

In fielded industrial nodes/gateways (smart metering, roadside cabinets, remote telemetry) 

where abuse tolerance, predictable voltage, and long life trump the last joule of energy 

density, LFP is often preferred. 
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Lithium-titanate-oxide (LTO-anode) lithium-ion 

Replacing graphite with Li₄Ti₅O₁₂ (LTO) raises anode potential to ≈1.55 V vs Li/Li⁺, 

eliminating most lithium-plating risk and enabling “zero-strain” insertion with minimal SEI 

growth. The result is exceptional cycle life, fast-charge acceptance, and low-temperature 

power, at the cost of lower energy density (cell nominal ≈2.3–2.4 V with LFP or LMO 

cathodes) [159], [161]. 

LTO cells tolerate high C-rates and maintain usable power down to −20 °C or below, where 

graphite-anode LIBs struggle. Practical energy density is often 50–90 Wh kg⁻¹, but cycle life 

can reach >10 k cycles at moderate depth of discharge. Elevated anode potential and robust 

interphases yield excellent abuse tolerance. 

In harsh-environment CPS (cold climates, high-rate pulsed actuation, frequent charge-

discharge from intermittent harvesters) where service life and cold-start are decisive, LTO 

is a strong fit despite lower energy. 

Nickel-metal hydride 

NiMH pairs a NiOOH positive with a hydrogen-absorbing alloy negative in an aqueous KOH 

electrolyte. Gravimetric energy (≈60–120 Wh kg⁻¹ at cell level) trails LIB, but NiMH offers 

robust safety, good low-temperature discharge power, and benign failure modes (no 

flammable organic electrolyte) [164]. 

Self-discharge is higher than LIB, though “low-self-discharge” (LSD) variants mitigate it. 

Charge management commonly uses −ΔV, ΔT/dt, and temperature caps rather than CC–CV 

to a defined potential. Cycle life of 500–1000 cycles is typical under moderate depth of 

discharge. 

NiMH persists in safety-critical or cost-sensitive CPS where aqueous chemistry and simple 

charging are desirable, and in modular packs require 1.2 V cells for straightforward series 

stacking. 

Sealed lead-acid (VRLA/AGM) 

VRLA (AGM/gel) immobilizes the sulfuric acid electrolyte and recombinants gases, 

enabling sealed operation. Although gravimetric energy is low (≈30–50 Wh kg⁻¹), VRLA 
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remains common in infrastructure CPS (edge servers, cabinets, telecom gateways) where 

float charging, surge currents, and low cost dominate [165], [166]. 

Life is sensitive to temperature (grid corrosion) and depth of discharge (sulfation); AGM 

supports better high-rate performance; gel variants improve deep-discharge tolerance. 

Mature recycling is a sustainability advantage. 

For stationary CPS power buffers/UPS with float service, VRLA provides predictable 

behavior and lowest installed cost per Wh, with straightforward logistics. 

Sodium-Ion 

Sodium-ion batteries preserve the “rocking-chair” architecture of Li-ion while substituting 

Na⁺ carriers to improve materials security and cost resilience. Techno-economic analysis 

indicates that—despite lower gravimetric energy than state-of-the-art Li-ion—SIBs can be 

cost-competitive in stationary and other volume-tolerant applications under plausible 

learning curves and commodity-price trajectories, which aligns well with CPS roles such as 

edge gateways, cabinets and UPS-backed controllers [167].  

On the anode side, hard carbon (HC) remains the workhorse. Recent synthesis connects HC 

microstructure (closed-pore fraction, micro/mesoporosity, precursor chemistry) to initial 

Coulombic efficiency, plateau capacity and rate capability, providing design rules (e.g., 

heteroatom doping, pore-architecture control) that are now delivering application-level gains 

[168]. Electrolyte engineering (solvent/salt blends and SEI-forming additives) co-optimized 

with HC has materially improved sub-zero kinetics, shrinking SIB’s historic cold-

temperature penalty—salient for outdoor CPS [169].  

For cathodes, two families dominate. Prussian blue/white analogues (PBA/PW) combine 

open 3D frameworks with manufacturability; current work targets vacancy and water 

management to stabilize capacity and enable fast charging [170]. In parallel, layered oxides 

(P2/O3, including high-entropy and anion-redox designs) are advancing through 

compositional and structural tuning to mitigate phase transitions and oxygen-redox 

instabilities, pushing SIB performance toward LFP-class use cases [171].  

Industrialization has accelerated and now spans grid storage, mobility pilots and 

manufacturing build-outs. In Qianjiang, Hubei, the first 50 MW/100 MWh SIB BESS 

entered service in July 2024, evidencing bankable stack integration [172]. CATL launched 
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the Naxtra sodium-ion brand with mass production slated for December 2025, signaling tier-

1 supply readiness [173]. In mobility, Yiwei/JAC began serial production (Jan 2024) and 

exports (Feb 2024) of sodium-ion EVs—modest volumes, but proof of pack-level 

BMS/thermal feasibility [174]. In Europe, Northvolt + Altris validated ~160 Wh kg⁻¹ SIB 

cells for ESS (Nov 2023), while in North America Natron Energy announced a US$1.4 bn, 

~24 GWh yr⁻¹ plant in North Carolina targeting data-center/industrial power niches [175], 

[176]. Collectively, these signals reduce adoption risk for CPS in stationary/edge roles and 

foreshadow broader availability across prismatic (and emerging cylindrical) formats.  

Quantum batteries  

Quantum batteries are prototype devices that store energy in quantum states (e.g., excitations 

of molecules, spins or superconducting circuits) and may exhibit collective quantum 

effects—such as entanglement and superabsorption—that in principle allow faster charging 

power than classical analogues. Recent reviews and proof-of-concept experiments (e.g., 

superabsorption in organic microcavities) show rapid theoretical progress and first 

demonstrations, but present platforms require specialized photonic/cavity or cryogenic 

hardware, suffer decoherence-limited retention, and are not electrochemical drop-ins for 

CPS. Consequently, they are out of scope for deployed CPS design; at most, they merit a 

brief outlook note rather than inclusion alongside secondary batteries or 

supercapacitors[177], [178], [179]. 

Table 4.1 Battery characteristics per technology 

Chemistry Nominal 

voltage 

(Volt) 

Voltage 

range 

(Volt) 

Gravimetric 

energy (Wh 

kg-1) 

Cycle life to 

80% 

Operating 

temperature 

(oC) 

Li-Po 3.6-3.7 2.7-4.2 150-260 500-1500 -20+60 

LiFePO4 3.2-3.3 2.5-3.65 90-160 2000-5000 -20+60 

LTO 2.3-2.4 1.8-2.8 50-90 5000-10000 -30+60 

NiMH 1.2 1.0-1.5 60-120 500-1000 -20+60 

VRLA/AGM 2 1.75-2.45 30-50 300-700 -20+50 

SIB 3 2.0-3.8 90-160 1000-3000 -20+60 
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4.4.1.2 Supercapacitors 

Supercapacitors employed in CPS fall into two principal categories, distinguished by their 

charge-storage mechanism and, consequently, by voltage limits, leakage behavior, ageing 

modes and frequency response. Presenting them separately avoids conflating purely 

electrostatic storage with surface-redox contributions. 

Electrochemical double-layer capacitors (EDLC) 

EDLCs store charge electrostatically by forming an electric double layer at the interface 

between an electronically conductive porous electrode (typically activated or carbide-

derived carbon) and an ionically conductive electrolyte [180]. Capacitance scales with 

accessible surface area and pore architecture; equivalent series resistance (ESR) is set by 

ionic transport in the electrolyte, electronic pathways in the carbon/tabs, and interconnects. 

Organic electrolytes (acetonitrile or propylene carbonate based) provide ~2.7–3.0 V per cell 

and thus dominate compact CPS; aqueous systems are limited to ~1 V per cell but offer 

excellent low-temperature behavior and benign safety; ionic liquids extend the voltage 

window (≥3.2 V per cell) and high-temperature stability at the cost of low-temperature 

transport [181], [182]. 

Over an operating window Vmin → Vmax, stored energy is 𝐸 =
1

2
𝐶(𝑉𝑚𝑎𝑥

2 − 𝑉𝑚𝑖𝑛
2 ), so state of 

energy is quadratic in voltage; under a step current, terminal voltage exhibits an ohmic jump 

I Rtot followed by a linear ramp I/C. In the frequency domain, EDLCs show near-constant-

phase behavior across decades before rolling off at a corner set by ion transport in the 

smallest pores; compact distributed-RC or fractional-order models reproduce this cheaply in 

embedded code[182]. 

Because storage is electrostatic, cycle endurance is exceptional (10⁵–10⁶ shallow cycles are 

routine). Reliability is dominated by self-discharge (open-circuit voltage decay) and slow 

drifts in ESR/effective capacitance. OCV decay is a superposition of charge redistribution 

in hierarchical pores (multi-/stretched-exponential kinetics) and activation-controlled 

leakage through side reactions/impurities, with clear Arrhenius temperature acceleration 

[183]. Engineering strategies such as ion-transport confinement in gel/solid-state electrolytes 

demonstrably suppress leakage and extend hold-time, trading some rate capability [184]. 

Sub-nanometer pores commensurate with ion size can boost capacitance via partial 

dissolution and confinement; simulations and in-situ studies link high capacitance to these 
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pore-level effects, underscoring why pore-size distribution matters as much as total surface 

area for CPS parts targeting minimal volume [182], [185]. 

 

Figure 4.7 Electric Double Layer Capacitor 

Pseudocapacitors 

Pseudocapacitors add fast, surface-confined faradaic reactions (or shallow intercalation) that 

remain capacitive on practical time-scales, increasing areal capacitance while preserving low 

impedance. Representative materials include MnO₂, Nb₂O₅, conducting polymers, and 

MXenes (2D carbides/nitrides such as Ti₃C₂Tₓ). While devices are often paired with the same 

electrolytes as EDLCs, their differential capacitance Cd(V) can vary with potential as redox 

states are accessed; in MXenes, finite electronic density of states introduces quantum-

capacitance limitations near the Fermi level [186], [187], [188], [189]. 

The quadratic energy relation still holds with the effective C(V ,T), but voltage-dependent 

Cd means hold-time prediction in CPS benefits from characterizing C over the intended 

window and temperature. Frequency response can remain quasi-capacitive over a broader 

band than EDLCs due to rapid surface redox, which is advantageous for burst spectral 

content extending into higher frequencies. 

Compared with EDLCs, pseudocapacitive electrodes introduce material-specific 

degradation (e.g., dissolution/structural change for MnO₂, volumetric strain for polymers, 
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surface termination evolution for MXenes). Device designs mitigate these via coatings, 

conductive scaffolds and electrolyte optimization; nevertheless, leakage and parameter drift 

remain the primary constraints on long idle horizons in CPS [186], [187]. 

In both categories, C and ESR must be specified together because transient droop scales with 

both; converter efficiency vs input voltage should be characterized across Vmin → Vmax ; 

and, in series stacks, balancing is essential because leakage/capacitance dispersion drives 

unequal cell voltages and over-voltage can trigger electrolyte decomposition and gas 

evolution. Empirical studies on micropower energy-harvesting supplies confirm that, when 

operated within a constrained window, supercapacitors deliver high burst efficiency with 

minimal conversion overhead, while leakage dictates deep-sleep autonomy [182], [190]. 

4.4.2 Hybrids and selection criteria 

Hybridizing a secondary battery with a supercapacitor lets cyber-physical systems (CPS) 

decouple average-energy supply from burst-power delivery, lowering battery RMS and peak 

current (hence temperature and ageing drivers) while preserving high crest-factor capability 

and efficient energy-harvesting interfaces [182], [191]. In practice the battery services the 

low-frequency (mean) component of the load and sets autonomy; the supercapacitor services 

the high-frequency transients and accepts intermittent inflows with minimal loss, so battery 

C-rate, overpotential and heat generation during bursts are suppressed [190], [191]. 

Three interconnection patterns occur. Passive hybrids place a supercapacitor across the DC 

bus: they are simple and reliable, but the battery still sees some high-frequency current and 

energy use in the capacitor is not actively scheduled. Semi-active hybrids insert a 

bidirectional DC–DC converter on one branch (commonly the supercapacitor), enabling 

power-split control, pre-charge, and bus regulation over a wide capacitor voltage swing. 

Fully active hybrids use converters on both branches to optimize battery stress and 

conversion efficiency at the cost of complexity and quiescent overhead [191], [192]. These 

topologies—well studied at traction scale—translate cleanly to embedded CPS provided 

converter quiescent current and supercapacitor leakage are explicitly budgeted [182], [192]. 

Sizing follows the load spectrum. The supercapacitor stack is dimensioned from the burst; 

the battery from the mean energy and permitted C-rate. For a burst energy ΔE delivered 

while the capacitor swings from V1 to V2, the required capacitance is 
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Creq =
2ΔE

V1
2 − V2

2
(4.40) 

and the ESR-induced step droop is 𝛥𝑉𝐸𝑆𝑅 = 𝐼𝑝𝑘𝑅𝑡𝑜𝑡. For near-constant-power bursts P of 

duration τ, the terminal voltage evolves as 𝑉(𝜏) ≈  √𝑉1
2 − 2𝑃𝜏/𝐶, from which admissible 

duty cycles follow for a given droop budget [182]. Series cell count is set by the bus 

requirement and per-cell ceiling 𝑉𝑚𝑎𝑥: 𝑁𝑠 = [𝛼𝑉𝑚𝑎𝑥,𝑏𝑢𝑠/𝑉𝑚𝑎𝑥,𝑐𝑒𝑙𝑙 ] with a derating α>1 for 

balancing tolerance and ageing. Once the burst is assigned to the supercapacitor, the battery 

can be selected at a lower design C-rate, reducing heat and ageing [191]. 

Energy-management strategies range from frequency-shaping (low-pass the battery current; 

high-pass to the capacitor) and rule-based peak-shaving (reservoir thresholds with 

hysteresis) to optimal control (Pontryagin/MPC) that trades converter loss against battery 

degradation. At CPS power levels, rule-based schemes often suffice when converter 

efficiency vs input voltage is characterized across the full capacitor window, while structured 

loads (e.g., periodic radio TX windows) benefit from predictive pre-charge of the capacitor 

to minimize bus droop and idle loss [191], [192]. 

A practical constraint for embedded nodes is that deep-sleep autonomy is leakage-limited 

rather than cycle-wear-limited. Supercapacitor OCV decay comprises charge-redistribution 

in hierarchical pores plus activation-controlled leakage with clear Arrhenius temperature 

acceleration; both must be included in hold-time budgets along with converter quiescent 

current [182], [183]. Empirical micropower studies show that, inside a constrained voltage 

window with low ESR, the burst path is highly efficient and battery stress is reduced, but the 

idle horizon is ultimately set by leakage and quiescent drains—hence the importance of 

electrolyte choice (organic vs aqueous vs ionic liquid) and, where suitable, gel/solid-state 

confinement to suppress leakage [184], [190]. 

When series-stacking capacitors to reach bus voltage, cell-to-cell dispersion in leakage and 

capacitance leads to unequal voltage sharing; balancing (passive for simplicity or active for 

efficiency) is therefore mandatory to prevent over-voltage decomposition, gas evolution and 

swelling [181], [182]. Converter interaction also matters: wide input swings require 

characterizing efficiency vs input voltage across Vmin → Vmax, and undervoltage thresholds 

should reflect the quadratic SoE of capacitors to avoid marooning useful energy at the low 

end [182]. 
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An alternative to explicit two-device hybrids is the lithium-ion capacitor (LIC), which pairs 

a battery-like anode (often pre-lithiated carbon) with an EDLC-type cathode. LICs extend 

energy beyond EDLCs while retaining low impedance and fast charge acceptance, 

simplifying boards where moderate energy and high bursts are required; current reviews 

cover pre-lithiation methods, electrode choices and performance envelopes [193], [194]. 

4.4.3 State-of-charge (SoC) estimation 

This subsection gives a concise, implementation-oriented account of SoC (and, for 

capacitors, SoE) estimation suited to cyber-physical systems (CPS) with duty-cycled 

workloads, modest microcontroller resources, and long idle intervals. We separate (i) 

rechargeable batteries—where the key challenge is tracking charge and slowly drifting 

model parameters—and (ii) supercapacitors, where energy is quadratic in voltage and long-

idle behavior is set by redistribution and leakage. A short note maps these methods to fuel-

gauge PMICs commonly used in real designs. 

Batteries: practical SoC estimation with light models 

A robust baseline for single-cell Li-ion in CPS is coulomb counting corrected by an OCV 

model: integrate current to track charge, then re-anchor to a temperature-indexed open-

circuit-voltage curve during quiescent intervals to arrest drift from sensor offset and clock 

error. This baseline is widely recommended in the BMS literature because it is 

computationally light yet markedly improves long-idle accuracy when compared with pure 

coulomb counting, provided the OCV(SoC, T) map is accurate and voltage plateaus (e.g., 

LFP) are handled carefully. [195], [196], [197]  

For bursty loads and varying temperature, a 1-RC equivalent-circuit model (ECM) with an 

extended/unscented Kalman filter (EKF/UKF) materially improves fidelity at MCU-friendly 

cost. The filter estimates SoC while adapting ohmic resistance R0 and a polarization branch; 

adding slow states for usable capacity Quse (SoH) and R0 captures ageing. Scheduling small 

identification pulses (tens to hundreds of milliseconds) during idle windows stabilizes 

parameter tracking. Numerous studies document EKF/UKF performance across chemistries 

and profiles, and recent reviews synthesize best practice and pitfalls (noise tuning, 

observability on flat OCV regions, temperature coupling). [196], [197], [198], [199], [200] 

For resource-constrained CPS and energy harvesting nodes, simple yet well-calibrated 

voltage-based SoC approximations can be competitive when paired with temperature 
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awareness and empirically derived curves. Buchli’s work in WSNs shows that lightweight 

OCV-based estimators—augmented by occasional current/temperature—achieve >95 % 

accuracy under realistic workloads without heavy models, and his doctoral thesis places such 

estimators in an end-to-end energy-neutral design framework [201], [202]. These results 

justify a tiered approach: start simple; add ECM+EKF only when bursts/temperature 

dynamics demand it.  

Minimal recipe (batteries). (1) High-resolution voltage, current, temperature sensing with 

bias calibration; (2) coulomb counter + temperature-indexed OCV re-anchoring after defined 

rests; (3) optional EKF/UKF on a 1-RC ECM for bursty profiles; (4) slow states for Quse(t) 

and R0(t) to follow ageing; (5) explicit charge derating below 0 °C to avoid plating artefacts 

that corrupt the model. [196], [197] 

Supercapacitors: SoE-first with leakage-aware tracking 

For EDLC-type supercapacitors operated between Vmin and Vmax, 

𝐸 =
1

2
𝐶(𝑉𝑚𝑎𝑥

2 − 𝑉𝑚𝑖𝑛
2 ) (4.41) 

So, state-of-energy (SoE)—not SoC—is the natural quantity; it is quadratic in voltage. In 

practice, effective capacitance C(V,T) and ESR R(T) should be identified online, and long-

idle behavior must include charge redistribution (multi-exponential) and activation-

controlled leakage (Arrhenius). Lightweight observers combine: (i) small scheduled pulses 

to estimate C and ESR; (ii) idle-period fitting of V(t) to update leakage parameters, yielding 

accurate hold-time predictions for deep sleep. When leakage dominates autonomy, gel/solid-

state electrolytes help at some cost to low-temperature transport. [182], [183], [184]  

Where capacitor dynamics are non-ideal, Kalman-family observers on distributed-RC 

models have been demonstrated to track internal states and SoE with good accuracy over 

wide operating windows, reinforcing that estimator complexity can remain modest while 

capturing key physics.[203], [204]  

Minimal recipe (supercapacitors). (1) Compute SoE from voltage; (2) identify C/ESR via 

brief, safe excitations; (3) maintain a two-time-scale leakage model from sleep telemetry to 

forecast hold-time; (4) if series-stacked, include cell-level monitoring/balancing to avoid 

over-voltage divergence during charge or thermal excursions.[182], [183] 
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Fuel-gauge PMICs: mapping methods to practice 

It is appropriate to cite representative fuel-gauge ICs to show how these estimators are 

deployed in silicon: 

• Analog Devices MAX17260 (ModelGauge™ m5 EZ): single-cell Li-ion gauge 

combining coulomb counting with a dynamic battery model and temperature 

compensation; designed for very low quiescent current and minimal host 

configuration while reporting SoC/remaining time/SoH. [205]  

• Texas Instruments BQ27441-G1 (system-side Impedance Track™): adapts an 

internal model to ageing and temperature, providing SoC/SoH with low host burden 

and clear integration guidance in the TRM. [206]  

Mentioning such parts (briefly) grounds the section: both families implement the “coulomb-

count + model correction” paradigm described above, with embedded parameter adaptation 

to mitigate drift and ageing. 

4.4.4 Battery management system requirements 

This subsection consolidates practical design rules for integrating secondary batteries and 

supercapacitors in cyber-physical systems (CPS), with emphasis on protection, 

thermal/voltage derating, balancing, leakage budgeting, and verification. The aim is to 

translate the mechanisms and estimation methods of §§4.4.1–4.4.3 into implementable 

requirements that meet safety and compliance constraints while preserving autonomy and 

burst capability. 

To support verification and field diagnostics, the battery-management and supervisory 

firmware should accumulate direction-tagged charge and discharge energies, ∫v(t) i(t) dt, at 

the DC storage boundary and co-log temperature and the idle interval between directions. 

Pairing a charge packet with its subsequent discharge after a dwell of duration τ\tauτ yields 

an in-situ estimate of the effective round-trip efficiency and the dwell leakage; these 

quantities furnish acceptance checks against the chapter’s windowed neutrality and 

survivability criteria and expose impedance growth as a systematic RTE drift under fixed 

operating conditions. The required instrumentation is already implied by the platform 

interface—a single store proxy sampled at coarse cadence together with hysteretic protection 

events—and can be implemented with negligible overhead, because measurements occur at 

the cadence used by the epoch-based runtime (DREAM) rather than continuously; the same 
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logs are consumed by the scheduler to keep field behavior aligned with the macroscopic 

accounting used for design. 

The first principle is operating-point derating matched to chemistry. For lithium-ion 

batteries, sustained operation near the upper cut-off voltage accelerates SEI/CEI growth and 

electrolyte oxidation, so it is common to cap charge at 4.10–4.15 V for layered-oxide cells 

and 3.60–3.65 V for LiFePO₄, trading a few percent of energy for reduced calendar kinetics 

and thermal stress [160], [161]. Low-temperature charge should be curtailed or preceded by 

pre-heat because graphite-anode systems approach the plating regime below 0 °C, which 

both degrades the cell and corrupts SoC inference; LTO-anode variants are more tolerant but 

still merit current derating (Hu et al., 2019). For supercapacitors, voltage derating per cell is 

the primary life lever: running organic-electrolyte EDLCs below their nominal ceiling 

reduces the rate of over-voltage-triggered side reactions and gas evolution; temperature 

derating further limits leakage growth, which otherwise dominates deep-sleep autonomy 

[182]. 

Protection architectures should enforce over-voltage/under-voltage, over-current and over-

temperature limits in hardware. Single-cell Li-ion packs typically combine a dedicated 

protector (or gauge-with-protections) with a host-side supervisor that honors 

charge/discharge inhibit signals and derates set-points with temperature. In multi-cell stacks 

(more typical for gateways and cabinets), cell balancing prevents divergence: passive shunts 

are simple and predictable for long-life, low-C-rate systems, whereas active balancing can 

recover energy at the cost of control complexity. The same principle extends to series-

stacked EDLCs, where dispersion in leakage and capacitance yields unequal voltage sharing; 

balancing is not optional—without it, one cell will over-voltage under charge or at elevated 

temperature. Because EDLC hold-time is intrinsically leakage-limited, balancing networks 

and supervisory electronics must be included in the quiescent-drain budget [182], [184]. 

Thermal design couples directly to safety and lifetime. Ni-rich layered-oxide cells deliver 

high energy density but exhibit narrower abuse margins at high state of charge; comparative 

sealed-enclosure experiments show earlier runaway and higher pressures for NMC than for 

LFP under equivalent stimuli, reflecting the latter’s benign oxygen chemistry [160], [163]. 

Practical CPS enclosures should therefore provide localized thermal paths away from heat -

sensitive components, avoid insulating foams around cells or capacitors, and provide venting 

or pressure relief where applicable. For supercapacitors, although thermal-runaway 
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mechanisms of lithium-ion do not apply, over-voltage and high-temperature storage still 

cause gas generation, dry-out and ESR rise; mechanical allowances for swelling and 

controlled ambient exposure are prudent [182]. 

A verification plan suitable for CPS should combine electro-thermal characterization, burst-

response testing, and long-idle leakage/redistribution profiling. Electro-thermal 

characterization measures OCV–SoC maps, R0R_0R0 and one-RC polarization time 

constants (for batteries) and CCC/ESR vs temperature (for EDLCs), preferably in a 

controlled chamber across the intended range. Burst-response tests replay real duty cycles 

(sensor warm-up, RF TX/RX windows, actuator inrush) and confirm that bus droop and 

thermal rise respect budgets; hybrids should show reduced battery RMS and peak currents 

when the supercapacitor branch is active [191]. Long-idle profiling measures open-circuit 

decay at two or more temperatures over hours–days; fitting a two-time-scale model (short-

term redistribution plus temperature-activated leakage) yields predictive hold-time 

parameters for deployment [183], [184]. These validated models should then be embedded 

into the SoC/SoE estimator (§4.4.3) so that supervisory decisions (pre-charge, derating, 

duty-cycle scheduling) use measured device behavior rather than generic assumptions. 

Finally, component choices should be estimator-aware. Battery fuel-gauge PMICs that 

implement coulomb-count + model correction (e.g., MAX17260 ModelGauge m5 EZ; TI 

bq27441-G1 Impedance Track) reduce firmware burden and provide temperature-aware 

SoC and remaining-time estimates at very low idle current; however, their configuration 

must reflect the measured OCV map and capacity at the chosen charge ceiling, and their 

quiescent draw must be included in idle budgets. For supercapacitors, the supervisory MCU 

can maintain SoE from voltage while periodically re-identifying CCC/ESR via safe micro-

pulses and updating leakage parameters from sleep telemetry; if series-stacked, simple per-

cell monitors (divider + MUX) greatly improve observability and balancing effectiveness. 

4.5 Power distribution and management strategies 

Energy-autonomous microsystems must convert irregular, low-level harvested inputs into 

stable, application-grade supply rails with minimal overhead. Building on the loss-aware 

architecture of §§4.2–4.4, this section formalizes how the power path is realized in practice 

(source selection, protection, start-up, and delivery to the store) and how regulation and 

voltage domains are organized for mixed digital/analog/radio loads. The emphasis is on 
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quiescent-power budgets, survivability under brown-out, and rail sequencing that preserves 

both energy efficiency and signal integrity. 

Recent advances enable multi-rail delivery at ultra-low power without duplicating 

magnetics, notably single-inductor multiple-output (SIMO) and single-input/multi-output 

variants with control schemes that suppress cross-regulation and support deterministic 

power-up sequencing—features that map directly to the availability and survivability metrics 

defined earlier. These architectures will be referenced for selecting regulators and scheduling 

rail enables in energy harvesting nodes [147], [207].  

On the load side, domain partitioning is paired with dynamic techniques (power gating, 

DVFS, and duty-cycling) to minimize both static and dynamic consumption while respecting 

analog/RF noise constraints and protection hysteresis; this section states implementable rules 

so that runtime (cf. Chapter 5, DREAM) can actuate them with negligible telemetry overhead 

[208], [209].  

Finally, because many harvesters operate near converter thresholds, we summarize cold-start 

and UVLO/OVP strategies that guarantee controlled bring-up from a discharged store and 

safe fallback during energy poverty, along with selection guidance for EH-oriented PMICs. 

The discussion is grounded in recent reviews of IoT energy harvesting power paths and cold-

start circuits[210], [211].  

4.5.1 Power path 

The power path mediates energy between heterogeneous sources, the storage element, and 

regulated rails while enforcing cold-start and brown-out constraints with negligible 

overhead. Behaviors are formalized as event gates around the system state (enable/disable 

governed by explicit inequalities on store energy/voltage and hysteretic protection 

thresholds), and the runtime consumes a minimal contract—one store proxy and per-rail 

power-good/UVLO signals—to avoid measurement overhead and policy oscillations. 

At the µW–mW scale, passive diode OR-ing is inefficient; MOSFET-based ideal-diode and 

power-multiplexer controllers reduce forward drop to tens of millivolts, provide active 

reverse-current blocking, and implement deterministic break-before-make source selection, 

which directly supports survivability and availability under source switchover. These 

controllers are therefore preferred for source OR-ing or prioritization ahead of downstream 

regulation [212], [213], [214], [215], [216], [217].  
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Cold start is treated as a boundary condition: until the stored energy and voltage exceed start-

up requirements, only a passive, current-limited charging path is permitted; supervisory logic 

and the first regulation stage draw from a small start-up buffer, and the main conversion is 

enabled only once explicit inequalities are satisfied with hysteresis to prevent chatter. Recent 

reviews emphasize the centrality of cold-start circuits and tabulate strategies and budgets for 

ultra-low-power harvesters [210]. Concrete implementations that embed this behavior 

appear in monolithic PMUs for indoor PV—with start-up, OVP and output switching 

integrated [15]—and in system-level PMCS designs for solar-assisted embedded vision, 

where a dedicated input power switch and low-power sleep path realize controlled bring-up 

[218].  

Undervoltage lockout and over-voltage protection require explicit hysteresis so that a lower 

trip disconnects loads and disables nonessential conversion, and an upper re-arm authorizes 

recovery only after the store replenishes. Application notes quantify how divider networks 

and comparator hysteresis avoid bounce under finite source impedance, and how soft -start 

limits inrush to protect the cold-start budget [19], [219].  

Finally, because multi-rail embedded nodes demand deterministic rail sequencing and 

minimal cross-regulation, the regulation stage coupled to the power path should support 

ordered power-up and low quiescent draw; recent SIMO architectures explicitly implement 

power-up sequencing for IoT multi-rail loads [207], aligning the regulator’s behavior with 

the power-path enable logic described above.  

4.5.2 Regulation and voltage domains 

Regulation and voltage domains in a CPS must deliver application-grade rails with 

deterministic behavior under the event gates defined earlier, because control loops, sensing 

chains, and radio links impose hard bounds on start-up ordering, rail droop, phase noise, and 

timing jitter. In practice this means enables are slaved to hysteretic protection thresholds 

from the power path, while the runtime (DREAM) only observes a store proxy and per-rail 

power-good/UVLO events; all other policy remains local so that deadlines and quality-of-

service (QoS) guarantees are preserved even under energy scarcity. Recent CPS-oriented 

studies link energy management to real-time guarantees and reliability, reinforcing this 

separation of concerns [220].  
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Partitioning follows noise sensitivity and task criticality. Digital compute and radio baseband 

typically use high-efficiency switching conversion, whereas precision analog front-ends, 

PLL/VCOs, and RX paths require rails with high power-supply rejection and low integrated 

noise; modern guidance and measurements show that correctly-compensated LDOs provide 

broadband PSRR when paired with low-parasitic capacitors and verified on dedicated 

benches. These choices localize conducted and radiated noise away from time-critical 

sensing and estimation tasks in CPS [221], [222].  

Rail sequencing must be explicit so that actuators and radios never see back-bias or latch-up 

during bring-up; processor and memory vendors prescribe order, ramp rates, and inter-rail 

delays, and platform notes show that improper sequencing causes inrush, reliability 

degradation, and timing faults—failure modes that manifest as missed deadlines in closed-

loop CPS. Practical patterns use regulator enable chains and power-good interlocks, or PMIC 

sequencers, to generate deterministic edges consumed by the runtime [223].  

Quiescent current dominates deep-sleep autonomy in event-driven CPS. Always-on domains 

should collapse to one housekeeping rail and use ultra-low-IQ buck conversion; recent 

devices such as the TPS62840 achieve ~60 nA IQ (≈120 nA in 100 % mode) while 

maintaining clean switching for radios when preceded or followed by modest filtering or a 

short post-LDO. This allows sensors and time-based to remain alive without compromising 

availability metrics [224].  

Sharing magnetics through single-inductor multi-output regulation reduces size and idle loss 

for multi-rail nodes, provided cross-regulation is controlled and power-up is deterministic. 

Contemporary SIMO designs for IoT introduce constant charge-transfer and built-in 

sequencing, while cross-regulation analyses quantify coupling mechanisms and mitigation 

in SIDO/SIMO topologies—properties directly mapped to CPS survivability because they 

bound rail interference during task preemption and radio bursts. Where an RF rail demands 

tighter noise than SIMO can deliver, a dedicated converter with a post-LDO remains 

appropriate [207], [225].  

Dynamic techniques operate within domains under real-time constraints. DVFS reduces 

dynamic power roughly with V2f and is effective when transitions are scheduled at phase 

boundaries of the control workload; recent embedded/CPS literature reports significant 

energy savings when DVFS is coordinated with timing analysis, while also noting reliability 
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and scheduling implications that justify keeping protection events outside of software 

control. For intermittently powered devices, DVFS policies must account for buffer voltage 

and convert efficiency, a point highlighted in recent work on energy-harvesting CPS [208], 

[220], [226].  

For noise-critical rails, a measurement-driven recipe is preferred: choose regulators with 

documented high-frequency PSRR and low output-noise density; verify with vendor test set-

ups; and, if a switching precursor is used, adopt low-noise buck stages (e.g., Silent 

Switcher® families or low-ripple architectures) plus gentle slew/soft-start so that bring-up 

does not inject broadband energy into sensing bands. These practices preserve estimation 

accuracy and RF sensitivity in CPS while avoiding static losses associated with stacked 

LDOs [227], [228].  

It is useful to anchor the partitioning to common rail levels in contemporary platforms. 

FPGA/processor cores operate near 0.9–1.2 V (e.g., Artix-7 VCCINT ≈0.9–1.0 V with 

explicit sequencing constraints), auxiliary rails around 1.8 V, and I/O banks select among 

LVCMOS standards at 1.2/1.5/1.8/2.5/3.3 V as per JESD8; DDR5 memories standardize 

VDD = VDDQ = 1.1 V with a 1.8 V pump rail (VPP); mainstream MCUs remain single-

supply 1.8–3.6 V. In Wi-Fi/BT SoCs such as the ESP32 family, a 3.3 V external rail typically 

feeds on-chip regulators that derive ~1.1 V core and segregated always-on domains for RTC 

and wake logic; this naturally suggests a “3.3 V system + local core generation” pattern with 

strict brown-out thresholds and RTC retention during deep sleep. Ultra-low-power MCUs 

such as TI’s MSP430 are natively single-supply (≈1.8–3.6 V) with internal core regulation 

and supply-voltage supervisors; frequency limits track VDD, so DVFS reduces to discrete 

operating-point choices constrained by that curve. Across these devices, the prevailing levels 

motivate a practical topology: an efficient buck (or SIMO stage) to generate 3.3 V and 1.8 

V trunks, selective post-LDOs for noise-critical analog/RF rails, and explicit sequencing so 

core-domain rails precede or track I/O and memory rails. This mapping keeps CPS sensing, 

control, and radio chains within their noise and timing budgets while minimizing static loss 

[229], [230], [231], [232], [233], [234], [235]. 

The resulting regulator set, and domain plan expose to software only the small interface 

already defined: a coarse-cadence store proxy and per-rail events for enable/UVLO. With 

this contract, DREAM can schedule domain enables, power-gating, and DVFS points in 
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constant time while protection gates retain priority, ensuring that control-loop deadlines and 

CPS QoS are satisfied even when harvested power fluctuates. 

The conversion model provides deliverable energy trajectories and constraint sets (start -up, 

ramp, storage limits). Chapter 5 embeds these into DREAM, which schedules rest phases 

against ET, Aϕmin and Rθ to meet autonomy targets with stated confidence and derives 

minimal storage and buffer requirements for each deployment scenario. 
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5 Energy-Aware runtime power management 

5.1 Introduction 

Runtime power management for energy-autonomous cyber-physical microsystems departs 

fundamentally from classical low-power design. In battery-dominated systems the 

manager’s role is to throttle consumption against a fixed energy budget; under diffuse and 

intermittent ambient inputs, it must instead orchestrate consumption and opportunistically 

align it with time-varying harvest while preserving survivability. This chapter develops a 

runtime viewpoint and translates it into concrete scheduling policies and system contracts 

suitable for untethered microsystems operating on heterogeneous sources (e.g., photovoltaic, 

thermoelectric, vibrational, RF). Building directly on the loss-aware architecture and 

macroscopic energy model established in Chapter 4, we treat the energy path (sources → 

conversion → storage → distribution) and the software scheduler as a single closed loop 

with explicit constraints and measurable proxies. In particular, the runtime will reason over 

the stored-energy state, cold-start/brown-out thresholds, and the neutrality–survivability–

availability triad of performance metrics defined previously, rather than ad-hoc voltage or 

duty-cycle heuristics.  

The operating context is characterized by three features. First, stochastic supply: ambient 

power exhibits strong non-stationarity (diurnal/seasonal PV, occupancy-driven indoor light, 

slow thermal drifts, bursty mechanical excitation). Second, packetized demand: application 

workloads are a mix of quiescent supervision and crest-factor bursts (sensing, computation, 

radio), whose timing can often be deferred or coalesced without violating task-level 

constraints. Third, non-ideal power paths: conversion inefficiencies, quiescent draws, 

storage leakage, and protection hysteresis impose state-dependent losses and gating events 

that materially affect feasibility. A correct runtime must therefore (i) maintain operation 

within protection limits under uncertainty, (ii) adapt load timing and intensity to the 

instantaneous and forecasted energy state, and (iii) do so with overheads that are provably 

negligible relative to the harvested power on the design window.  

We organize the design space into two algorithmic families that will be made precise in §5.2: 

reactive managers, which regulate on measured store proxies and protection events with 

minimal look-ahead, and predictive managers, which incorporate short- to medium-horizon 

forecasts of harvest and/or load to schedule discretionary work. Reactive policies offer 

robustness and tiny overheads and are indispensable near cold-start or under prolonged 
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energy poverty. Predictive policies can materially increase task availability and quality-of-

service when inputs or workloads exhibit exploitable temporal structure, provided that 

forecasting and planning remain net-energy positive [236], [237], [238]. 

To unify these strands, §5.3 introduces DREAM (Dynamic Rest & Energy-Aware 

Management), a runtime framework that couples a minimal telemetry contract to a two-mode 

scheduler. In survival mode, DREAM enforces invariants that guarantee adherence to the 

brown-out hysteresis while servicing a minimal task set at a provable cadence. In 

opportunistic mode, it exploits surplus by stretching sleep intervals down, coalescing bursts 

to reduce delivery losses, and admitting optional tasks under an energy-neutrality test 

computed on a sliding window. Mode transitions are triggered by thresholds on a single store 

proxy (e.g., Vstore for capacitive stores or SoC for batteries), augmented by edge-triggered 

protection events from the power path; no high-rate sensing is required. The framework is 

parameterized only by macroscopic quantities identified once per platform-conversion 

efficiencies, quiescent currents, leakage, start-up energy—so it remains portable across 

hardware revisions. 

Methodologically, this chapter makes three contributions. First, it formalizes the runtime 

problem against the unified model of Chapter 4: the state equation for stored energy, event 

logic for cold-start/brown-out, and window-based metrics (neutrality, survivability, 

availability) become explicit constraints for scheduling. Second, it provides net -power-

positive decision rules for both reactive and predictive regimes, including sufficiency 

conditions under which forecasting is beneficial once its sensing/compute overheads are 

debited to the energy budget [238], [239], [240]. Third, it defines a telemetry and control 

interface—one reliable store proxy, protection events, and optional coarse source proxies—

that is sufficient to implement DREAM with bounded overhead and without application-

specific tuning. 

The remainder of the chapter proceeds as follows. Section 5.2 surveys and systematizes 

reactive and predictive power-management algorithms for environmentally powered nodes, 

clarifying their assumptions, stability properties, and overheads in the ultra-low-power 

regime [236], [241]. Section 5.3 instantiates these concepts in DREAM, states operating 

assumptions and notation, and derives policy tests that map directly to measurements 

available at runtime. Collectively, these results close the loop between the loss-aware energy 



   

112 

 

path and software scheduling, enabling principled autonomy for diffuse-energy 

microsystems rather than heuristic tuning. 

5.2 Power management algorithms 

This section systematizes the algorithmic landscape for runtime energy management in 

energy-harvesting microsystems. We adopt a two-axis taxonomy: (i) reactive controllers that 

regulate on measured energy-store proxies and protection events using thresholding, 

hysteresis, or event-driven duty-cycling; and (ii) predictive controllers that incorporate 

short-horizon forecasts of harvest and/or load to solve admission, pacing, and burst -

coalescing decisions under an energy-neutrality constraint. The survey emphasizes stability, 

and survivability guarantees near cold-start, the net-energy positivity of any estimation or 

planning overheads, and the minimal telemetry required to implement each class in ultra-

low-power regimes. We link these design choices to hardware realities—conversion 

inefficiencies, leakage, and quiescent losses—and to application-level QoS via admission 

control and task slack management. Representative exemplars span perpetual -system 

runtimes, energy-aware admission/duty-cycling, and information-theoretic formulations that 

clarify when look-ahead is provably beneficial. The resulting synthesis provides the 

comparative backdrop against which §5.3 instantiates DREAM’s two-mode scheduler and 

its sufficiency conditions for safe opportunism [242], [243], [244], [245]. 

5.2.1 Reactive 

• Hibernus (reactive save–restore on brown-out). 

Balsamo et al. introduce Hibernus, a minimalist, event-driven supervisor that guarantees 

brown-out–safe operation by coupling dual store-voltage watermarks with a single-shot state 

checkpoint and deep sleep on imminent undervoltage. By triggering exclusively on low-rate 

store proxies and protection events (comparator interrupts), Hibernus avoids continuous 

metering and complex forecasts, yielding microcontroller-class overheads that are negligible 

on harvested budgets. Its principal contribution is a reactive invariants design: pre-empt 

before protection trips, resume only above a hysteretic upper bound, and touch non-volatile 

memory at most once per outage. The approach sets a clear baseline for survivability near 

cold-start and during prolonged energy poverty, though it is conservative under surplus 

because it lacks admission granularity across optional tasks. [246]. 

• QuarkOS (ultra-fine fragmentation under intermittent power). 
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Zhang et al. argue that forward progress on micro-powered sensors is best secured by 

fragmenting software into ultra-short, idempotent quanta that fit within volatile energy 

“packets.” QuarkOS pioneers this micro-tasking stance, combining aggressive duty-cycling 

with power-failure–tolerant execution that simply resumes at the next boot. The key insight 

is that when outages are frequent and unpredictable, reacting with fine granularity and 

atomic commits outperforms heavier checkpointing or prediction. Limitations include 

restricted expressiveness for complex I/O atomicity and potential overheads from very fine 

partitioning, which later systems address [247].  

• Intermittent computation without hardware support (OSDI’16) 

Van der Woude and Hicks formalize intermittent execution on commodity microcontrollers 

without specialized hardware or restart recovery. They present a software-only runtime that 

ensures crash consistency by constraining how state is read/written across task boundaries, 

and by committing only at well-defined points that tolerate abrupt power loss. The 

contribution is a practical recipe for reactive robustness—use brown-out events to pre-empt, 

and structure all progress as idempotent task completion—together with evidence that 

correctness and acceptable overheads are achievable in real applications. The work catalyzed 

a family of intermittent-operating systems and clarified where reactive control ends and 

programming model support must begin [248]. 

• Alpaca (task-atomic intermittent execution without checkpoints) 

Maeng, Colin and Lucia remove explicit checkpoints by framing the programming model 

around idempotent, task-atomic units whose side effects are committed only upon successful 

completion; partial work is discarded automatically on the next power-up. Alpaca 

exemplifies reactive design at the language/runtime boundary: it needs no forecasts, relies 

on store proxies and protection hysteresis to pace progress, and achieves low energy/time 

overhead by avoiding repeated NVM writes. Its guarantee—monotone progress in the 

presence of arbitrary outages—makes it a strong fit for battery-less nodes, though the 

strictness of task idempotence requires disciplined application structuring [249].  

• Coala (dynamic task-based intermittent execution). 

Majid et al. extend the above by reactively adapting task granularity at run time—splitting 

or fusing tasks based on recent energy availability and power-on durations. This keeps 
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execution quanta aligned with the ambient energy packets without any explicit harvest 

forecasting. The system also prioritizes tasks under energy scarcity while preserving forward 

progress guarantees. The main value is empirical: dynamic granularity reduces wasted 

partial work and improves effective throughput on harvested power; the trade-off is added 

runtime complexity that must remain net-energy positive [250]. 

• ReplayCache (volatile caches for energy-harvesting systems). 

Zeng et al. show that conventional volatile caches can be made reactively persistent by 

logging cache-line fills/evictions and replaying them after a power failure, thereby avoiding 

wholesale checkpointing of memory hierarchies. The method triggers on power events and 

low-rate proxies (no forecasting), bringing a key subsystem into the intermittent-computing 

fold with modest area/energy overheads. This expands the reactive toolkit beyond 

scheduling into memory-system design, though, as with any logging, pathological burst 

patterns can stress the log unless sized with care [251].  

• Ocelot (automatic freshness and I/O consistency). 

Surbatovich et al. address a subtle failure mode in intermittent systems: stale or inconsistent 

inputs/outputs after outages. Ocelot wraps I/O and dependent computations in automatically 

inferred atomic regions, revalidating input freshness and either committing or rolling back 

upon restoration. The runtime remains purely reactive—no prediction, only event-driven 

checks tied to power-loss recovery—and provides strong semantic guarantees with low 

programmer burden. Its benefits are most pronounced in sensing/actuation pipelines; the cost 

is additional metadata and validation work that must be kept tiny under scarce energy [252].  

• Write-Light Cache (reducing writing energy in intermittent contexts). 

Choi et al. propose a write-light volatile cache design that reduces the energy and time 

overhead of persistence-related writes—critical when power cycles are frequent. While 

architectural in focus (ISCA), the contribution is squarely reactive in spirit: anticipate brown-

outs and minimize the footprint of state that must be stabilized across them. The design 

complements ReplayCache-like logging by cutting write amplification, thereby improving 

the viability of more capable memory subsystems on harvested budgets [253].  

• Wake-up receivers + harvesting (radio/sensing gating as reactive policy). 
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Ait Aoudia et al. empirically demonstrate that combining wake-up receivers (WURs) with 

energy harvesting enables large reductions in idle energy by reactively gating high-draw 

radios until an external trigger arrives or the store surpasses a watermark. This is a 

quintessential reactive peripheral policy: it requires only coarse store telemetry and event 

interrupts, yet it unlocks order-of-magnitude lifetime improvements in duty-cycled IoT 

nodes. The approach is immediately practical and orthogonal to core execution models but 

relies on WUR sensitivity/selectivity commensurate with the application environment  [254].  

• Capacity over capacitance (store-aware invariants and sizing). 

Jackson, Adkins and Dutta argue—via analysis and SenSys evaluation—that right-sizing 

energy capacity and thresholds in view of leakage, conversion losses and protection 

hysteresis can improve reliability more than naively adding capacitance. The work reframes 

reactive watermarks as store-aware invariants derived from macroscopic platform 

parameters (quiescent currents, delivery efficiency, leakage), providing a principled basis 

for admission/hibernate levels. It also cautions against over-provisioning that bloats 

quiescent losses—an insight we adopt when parameterizing thresholds [255].  

• Reactive task schedulers for battery-less IoT (per-task watermarks). 

Sabovic et al. present an energy-aware task scheduler for battery-less devices that attaches 

per-task admission tests to a store proxy (voltage/SoC) and re-queues tasks when conditions 

degrade. The design is resolutely reactive—no look-ahead—yet achieves high service ratios 

by prioritizing essential tasks and exploiting momentary surpluses. Their results quantify a 

sweet spot where simple gating and priority rules deliver most of the benefit of heavier 

planners, provided the workload is packetized and dependencies are encoded [256]. 

• DVFS + duty-cycling as reactive knobs; survey evidence. 

Khriji et al. synthesize post-2012 evidence that dynamic voltage/frequency scaling 

combined with classical duty-cycling remains a reactive mainstay for low-power nodes, 

provided control cadence is slow and telemetry minimal. The review’s relevance here is 

twofold: it highlights how tiny control loops must be to stay net-energy positive on harvested 

budgets, and it enumerates pitfalls (e.g., chatter near thresholds) that our own policies avoid 

through hysteresis and slope limiting [209]. 
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5.2.2 Predictive 

• Online EH prediction with sliding-window models. 

Cammarano, Petrioli and Spenza develop lightweight online predictors tailored to 

environmentally powered nodes, combining persistence/EMA baselines with seasonal 

components and adaptive windowing to track diurnal structure. They embed the predictor 

into an energy-neutral controller that scales activity, so planned consumption matches 

expected inflow over a near-term horizon. The key result is that even simple, well-tuned 

models yield material availability gains over purely reactive policies, provided sensing and 

model-updating costs are kept net-energy positive [240].  

• ASARIMA: adaptive seasonal ARIMA for harvested power 

Li and Han propose ASARIMA, an adaptive scheme that re-weights and re-parameters 

SARIMA models to cope with changing irradiance regimes (clear vs. cloudy) and slow 

seasonal drift. On representative solar traces, ASARIMA improves short-horizon forecasts 

and stabilizes duty-cycling decisions by producing less biased next-interval energy 

estimates. The contribution is a principled statistical alternative to black-box learning that 

remains interpretable and MCU-friendly [257].  

• Q-learning for prediction under regime shifts 

Kosunalp frames energy prediction as a reinforcement-learning problem in which a Q-

learner selects among candidate predictors (or parameterizations) based on recent error and 

reward signals. This meta-predictor adapts across regimes without explicit weather labels, 

enabling controllers to be more aggressive when forecasts are reliable and conservative 

otherwise. The approach highlights that adaptivity in the choice of predictor can matter as 

much as the model class itself [258].  

• Edge LSTM for short-term irradiance 

Pi, Jin and Chen implement multichannel LSTM models that fuse local irradiance and 

auxiliary signals to forecast minute-scale solar power on edge hardware. Compared to linear 

baselines, the LSTM reduces RMSE and enables higher admission rates for deferrable tasks 

without increasing brown-out risk—so long as model evaluation costs are budgeted. The 
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work shows that compact deep models can be viable on microcontroller-class or embedded 

edge platforms [259].  

• Cloud-cover–assisted harvest prediction 

Renner demonstrates that incorporating coarse cloud-cover forecasts into local time-series 

models reduces day-ahead and intra-day error, particularly during fast-changing conditions. 

This exogenous-data assimilation is low overhead (few bytes per update) yet yields clearer 

admission signals for forecast-aware schedulers. Methodologically, it motivates blending 

global meteorological cues with local energy traces in simple controllers [260].  

• Energy management patterns across predictive controllers 

Ashraf et al. survey prediction-informed energy managers and distill design patterns: match 

control cadence to source periodicity, use sliding energy budgets, and explicitly account for 

sensing/compute overheads. Their synthesis provides actionable guidance on when look-

ahead yields net benefit—e.g., under diurnal solar with moderate variability—and when 

reactive fallbacks dominate. These patterns underpin robust implementations on real EH 

nodes [261].  

• Robustness analysis and design guidelines 

Stricker, Gupta and Thiele analyze how forecast error, storage inefficiency, and model 

mismatch propagate through predictive controllers, offering robustness conditions and 

tuning rules. They recommend conservative baselines plus opportunistic “spending” only 

within confidence bounds, effectively bridging predictive and safety-first control. The result 

is a principled recipe for uncertainty-aware duty-cycling on intermittent supplies [262].  

• Uncertainty-aware prediction and control on battery-less IoT 

Yamin et al. present a pipeline that quantifies prediction uncertainty and feeds it into 

admission control for capacitor-powered devices. By executing optional work only when 

confidence intervals indicate surplus harvest, they improve availability while keeping 

brown-out incidence low. The study provides empirical evidence that explicit uncertainty 

treatment outperforms point-forecast controllers under volatility [263]. 

• Optimal scheduling for battery-less devices with forecasts 
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Delgado, Famaey and Mercelis formulate forecast-informed task scheduling as an 

optimization problem that enforces energy-neutral operation with minimal deadline 

violations. They demonstrate that small-horizon solvers (dynamic programming/MILP 

variants) are feasible on EH-class platforms when problem structure is exploited, and they 

quantify the useful look-ahead beyond which added horizon brings little benefit. This 

clarifies when MPC-like planning pays off [264].  

• Harvest prediction for WSN deployment planning 

Janković, Žemaitis and Navickas evaluate practical predictors for node-level harvested 

energy and show which features and horizons matter most for WSN duty-cycling. Their 

results inform both runtime policy (horizon selection) and pre-deployment sizing 

(panel/storage choices) when long local traces are unavailable. It is a deployment-focused 

complement to embedded prediction work [265]. 

• Predictive energy-aware routing (PEAR) over 6TiSCH 

Jecan et al. move beyond single nodes and use per-node energy forecasts to shape routing, 

MAC duty-cycling, and transmission pacing. By steering traffic toward nodes predicted to 

have surplus and throttling drains on predicted-poor nodes, PEAR improves network lifetime 

and latency under ENO constraints. This generalizes node-level prediction to network-level 

resource allocation [266].  

• Predictive energy-management units (EMU) on real devices 

Rajappa et al. build a microcontroller-class EMU that executes daily solar prediction and 

sets next-day duty targets, reporting negligible energy overhead and stable operation across 

seasons. Their engineering contribution is a reproducible, end-to-end controller that 

integrates prediction, budgeting, and actuation with clear interfaces to the application. It 

demonstrates practicality on industrial IoT hardware [267].  

• LT-ENO: long-term energy-neutral operation 

Buchli et al. (SenSys’14) combine capacity planning with long-horizon predictive control to 

maintain energy neutrality across seasons, markedly reducing duty-cycle variance over 11-

year solar traces. The runtime scales activity based on astronomical irradiance models and 
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storage constraints, explicitly accounting for round-trip inefficiency and self-discharge. LT-

ENO is the canonical long-horizon predictive baseline for solar-powered nodes [268].  

• Minimum energy-utilization guarantees 

Follow-up work establishes optimal policies that guarantee minimum energy utilization 

under uncertainty, extending LT-ENO’s guarantees and clarifying how to allocate energy 

while preserving neutrality. These results give theoretical footing to budget-based admission 

policies commonly used in practice. The emphasis is on provable guarantees rather than 

heuristic tuning [269], [270].  

• Capacity planning without long local traces 

Buchli et al. (EWSN’14) show how to size harvesting and storage using astronomical models 

and coarse location inputs, eliminating the need for site-specific long-term traces. This 

planning step conditions the effectiveness of any predictive runtime by ensuring that 

neutrality targets are actually attainable. It couples naturally with LT-ENO controllers 

deployed afterward [271].  

• PreAct: predictive control under time-varying utility 

Geissdoerfer et al. extend predictive energy management to time-varying utility: they track 

desired utility profiles (e.g., weekend priorities) while staying energy-neutral, using a low-

cost predictor and PID-style controller. PreAct explicitly incorporates inefficiencies and 

uncertainty and demonstrates microjoule-scale daily overhead on MSP-class MCUs. It 

evidences that modest look-ahead plus uncertainty handling can yield tangible QoS gains 

[272].  

5.3 Energy-Aware runtime system management 

5.3.1 DREAM - Dynamic Rest & Energy-Aware Management 

DREAM is the runtime duty-cycle scheduler that implements, in the deployed node, the 

control logic implied by the unified energy model introduced earlier in this chapter. Its task 

is to choose the next sleep interval at the end of each epoch so that, when harvested power 

is sufficient, the storage element exhibits no long-term drift over representative windows, 

and, when conditions deteriorate, the node remains operative for a configured survival 

horizon without breaching protection limits. DREAM therefore sits exactly at the boundary 
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between modelling and hardware: it reads the storage proxy and protection events exported 

by the power path and emits an actuation decision—principally the next sleep time and the 

enable state of the rails—that is consistent with the macroscopic accounting used by the 

chapter’s analysis.  

The algorithm operates on an epoch abstraction. Each epoch has duration 𝑇𝑒(𝑛) = 𝑇𝑎𝑐𝑡 +

𝑇𝑠(𝑛), where Tact  is the fixed active time determined by the application, and Ts(n) is the 

sleep time selected by DREAM for the subsequent epoch. Active and sleep powers are 

treated as profiled constants of the deployed firmware image; this mirrors the chapter’s 

deliberate separation between offline characterization and online control . By confining itself 

to these coarse-grained quantities, the scheduler matches the scale at which energy 

accumulates in storage and avoids the measurement overheads and modelling fragility that 

accompany fine-grain telemetry. 

The only mandatory measurement is a store-state proxy sampled once per epoch. For 

capacitive storage this is the terminal voltage, mapped to energy through 𝐸 =
1

2
𝐶𝑉2; for 

batteries it is an SoC estimate that may incorporate temperature compensation. DREAM 

does not depend on dense source or load sensing, nor on predictions of future input. Instead, 

it enforces the chapter’s windowed criteria using the most recent proxy  sample, the fixed 

active time, and the profiled powers. Protection is represented as event-gated hysteresis—

cold-start and undervoltage/over-voltage thresholds—that pre-empt ordinary operation; the 

scheduler’s decisions are always subordinate to these gates. In particular, it must not 

schedule a wake that would immediately re-enter a forbidden region, and it only re-arms 

loads once the upper threshold is crossed. 

Two complementary control objectives guide the selection of Ts. In energy-surplus 

conditions the goal is neutrality: the algorithm corrects the store deviation measured at the 

end of the current epoch by adjusting the next sleep time so that the expected net change 

over the following epoch cancels that deviation. Under the steady-input-between-epochs 

approximation used throughout the chapter, this rule admits a closed form that depends only 

on the last proxy measurement and the profiled parameters. In energy-poor conditions the 

goal is survival: if the incoming energy cannot amortize the cost of the next active phase, 

DREAM switches policy and chooses a cadence that guarantees operation for at least a target 

horizon Tsur within the usable energy band defined by the lower protection threshold. This 
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survival cadence can be computed once upon entry to scarcity and, if desired, re-evaluated 

each epoch to exploit incidental input without departing from constant-time operation. 

The metrics established earlier—energy neutrality on windows, survivability with respect to 

protection, and availability as the fraction of time the load is safely powered—provide the 

acceptance criteria against which DREAM’s behavior is judged. Neutrality requires that the 

storage trajectory close each representative window without negative drift; survivability 

requires that the proxy remain within the admissible band; availability is maximized subject 

to these constraints. By basing decisions on a single proxy and event-gated protection, 

DREAM renders these metrics checkable both in offline trace replay and online, while 

keeping runtime overhead negligible relative to typical harvested power levels. 

Adopting an epoch-based controller is not merely an implementation convenience. It aligns 

the controller’s temporal granularity with the physics of the storage element and with the 

communication and sensing patterns of the application, for which work is naturally 

organized in bursts separated by quiescent intervals. This choice also yields deterministic 

computational cost. The algorithm maintains only two mutable quantities—the last sleep 

time and the last energy estimate—and applies constant-size arithmetic at each epoch 

boundary. No forecasting, optimization loops, or sliding histories are required. The 

simplicity of the state and update law, limits failure modes eases formal reasoning about 

behavior under protection events and facilitates deployment on microcontrollers with severe 

energy and memory budgets. 

Practical considerations arising from evaluation inform two further aspects of the design. 

First, measurement noise at the proxy and small, rapid fluctuations in the store can induce 

oscillatory adjustments to the sleep time if unconstrained. DREAM therefore applies 

bounded updates and recommends platform-level clamps for the minimum and maximum 

sleep interval; these clamps are chosen to respect watchdog servicing, data freshness 

requirements, and connectivity needs of the application. Second, while the algorithm is 

indifferent to the presence or absence of per-source telemetry, it allows such proxies to be 

ingested for diagnostics or to break ties when multiple schedules satisfy the neutrality or 

survival objectives; correctness, however, never depends on them. 

Finally, the scope of DREAM is deliberately narrow. It does not perform maximum-power-

point tracking, source arbitration, or calendar-time scheduling online. Those choices are 
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captured in the chapter’s unified model via efficiencies, masks, and the definition of 

representative windows, and they are exercised during offline sizing and verification. This 

separation of concerns preserves the clarity of the runtime policy, keeps its costs fixed and 

small, and ensures that the algorithm’s guarantees—neutrality under surplus and a quantified 

survival horizon under scarcity—rest on a small, explicit set of assumptions that are satisfied 

by the platform interface defined in the earlier sections of the chapter. 

Concretely, DREAM pursues the following design objectives: 

1. Energy neutrality (surplus): drive the expected store drift over representative 

windows toward zero by selecting Ts consistent with the measured epoch-level 

energy change and an online estimate of input power. 

2. Survivability (scarcity): when input is insufficient to amortize the active load, 

schedule sleeps to meet a user-defined minimum survival time without violating 

lower energy bounds. 

3. Safety under protection: honor cold-start enable and brown-out hysteresis at all 

times, including deep-sleep re-arming and safe re-entry to normal operation. 

4. Minimal telemetry and compute: rely on a single proxy sample per epoch and 

constant-time arithmetic; avoid dense sensing and long-horizon forecasting. 

5. Portability: express control in macroscopic quantities (epoch energies/powers) so 

that characterization and operation remain robust across hardware revisions and 

storage technologies. 

5.3.2 Operating assumptions and notation 

DREAM operates on a minimal runtime contract: a single, reliable store-state proxy sampled 

once per epoch (supercapacitor voltage or battery SoC) and edge-triggered protection events 

(cold-start enable and hysteretic UVLO/OVP). Decisions are taken at epoch boundaries 

using macroscopic energy accounting consistent with the chapter’s loss-aware model, 

avoiding dense telemetry or long-horizon forecasting.  

Operating assumptions. Execution proceeds in epochs composed of a fixed active interval 

and a sleep interval chosen by the runtime.  
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Figure 5.1 Two-state operation 

Active and sleep powers are treated as profiled constants of the firmware build. The proxy 

sample is the only mandatory measurement; optional per-source signals are advisory and do 

not affect correctness. Protection events pre-empt scheduling and gate rail enables; the 

scheduler must not issue a wake that would immediately violate hysteresis. This stance keeps 

per-epoch compute and sensing overheads negligible on MCU-class platforms. 

Notation. Let n index epochs and let DREAM select the next sleep Ts(n+1) at the end of 

epoch n. The epoch duration is: 

𝑇𝑒 (𝑛) = 𝑇act + 𝑇𝑠(𝑛) (5.1) 

For supercapacitor stores the energy state is derived from the measured terminal voltage; 

batteries use a temperature-aware SoC map. The supercapacitor relation is: 

𝐸(𝑛) =
1

2
𝐶 𝑉2(𝑛) (5.2) 

Per-epoch accounting follows the discrete balance: 

Δ𝐸(𝑛) = 𝐸(𝑛) − 𝐸(𝑛 − 1) = 𝐸in(𝑛) − 𝐸out (𝑛) (5.3) 

with harvested and consumed aggregates: 

𝐸in(𝑛) = 𝑃in(𝑛) 𝑇𝑒 (𝑛) (5.4) 

𝐸out (𝑛) = 𝐸act + 𝑃sleep  𝑇𝑠(𝑛), 𝐸act = 𝑃act  𝑇act (5.5) 

Combining these equations gives, for supercapacitors, the measurable form used 

operationally: 
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Δ𝐸(𝑛) =
1

2
𝐶[𝑉2(𝑛) − 𝑉2(𝑛 − 1)] (5.6) 

An online estimate of the average harvested power over epoch n follows by rearranging (Eq. 

5.1)–(Eq. 5.5); this estimator is evaluated once per epoch from boundary measurements (Eq. 

5.7): 

𝑃in (𝑛) =
Δ𝐸(𝑛) + 𝐸act + 𝑃sleep  𝑇𝑠(𝑛)

𝑇act + 𝑇𝑠(𝑛)
(5.7) 

Protection and bands are represented by admissible store limits [ELB,EUB] (or equivalently 

[Vmin, Vmax]) and hysteretic thresholds for cold-start and brown-out (𝑉𝐶𝑆 , 𝑉𝑈𝑉𝐿𝑂
↓ , 𝑉𝑈𝑉𝐿𝑂

↑ ). All 

scheduling decisions are subordinate to these event gates; crossings authorize, or forbid load 

enables, and the controller remains quiescent inside the dead band.  

The symbols and identities above are the sole primitives consumed by the controller. They 

map one-to-one to the flowchart’s formulas and state transitions and will be invoked directly 

in §5.3.3 to derive the neutrality law and in §5.3.4 to construct the survival cadence under 

scarcity. 

5.3.3 Neutrality control law (energy surplus) 

Neutrality seeks a zero net drift of the store between consecutive epochs. Using the per -

epoch balance with the harvested-power estimate, the standard one-step persistence 

Pin(n+1) ≈ Pin(n) = Pin, the sleep for the next epoch is chosen so that ΔE(n+1)=0. The 

resulting closed-form update is : 

𝑇𝑠(𝑛 + 1) =
(𝑃𝑖𝑛 − 𝑃𝑎𝑐𝑡)𝑇𝑎𝑐𝑡

𝑃𝑖𝑛 − 𝑃𝑠𝑙𝑒𝑒𝑝

(5.8) 

This expression is evaluated at the end of epoch n using P in. It is feasible only when the 

denominator is positive, i.e., when the average harvested power exceeds the background 

draw Psleep. In practice, Ts(n+1) is bound to the platform’s admissible range [𝑇𝑠
𝑚𝑖𝑛 , 𝑇𝑠

𝑚𝑎𝑥] 

and constrained to be non-negative; if Pin ≤ Psleep or the denominator is near zero, neutrality 

is deemed infeasible and the scarcity policy of §5.3.4 is invoked. 

To suppress limit cycles due to measurement noise and quantization, a first-order smoothing 

and clamping step is applied to the raw update Ts* from (Eq. 5.8). With w ∈ (0,1), the 

implementation uses: 
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𝑇𝑠(𝑛 + 1) ← 𝑐𝑙𝑖𝑝(𝑤𝑇𝑠
∗ + (1 − 𝑤)𝑇𝑠(𝑛), 𝑇𝑠

𝑚𝑖𝑛, 𝑇𝑠
𝑚𝑎𝑥) (5.9) 

All scheduling remains subordinate to protection gates (cold-start enable and UVLO 

hysteresis): if a gate asserts, the controller refrains from issuing wakes until the re -arm 

threshold is crossed. Computational cost is constant - time per epoch, as the realization 

depends only on the two boundary proxy samples, the profiled load parameters, and the last 

sleep value. 

5.3.4 Survival control law (scarcity) 

When the estimated input cannot amortize the next active phase, neutrality is infeasible, and 

the scheduler must guarantee operation for at least a configured horizon Tsur while respecting 

the lower admissible store limit ELB. Let E0 denote the store energy at the instant of entering 

scarcity; epochs retain the same fixed active duration Tact, and the runtime seeks a sleep Ts 

that satisfies the survival constraint over the window [0, Tsur]. 

To guard against optimistic measurement noise and short-lived bursts, the controller uses a 

conservative input-power surrogate obtained by scaling the online estimate with a 

confidence factor ρ∈(0,1]: 

𝑃in
sur = ρ 𝑃in(𝑛) (5.10) 

Under the macroscopic balance, the total energy after N equal epochs is 

𝐸(𝑁) = 𝐸0 + 𝑁[(𝑃in
sur − 𝑃sleep ) 𝑇𝑠 + (𝑃in

sur − 𝑃act ) 𝑇act ] (5.11) 

with 𝑁 =
𝑇sur

𝑇act+𝑇𝑠
. Enforcing E(N)≥ELB and solving at equality for the smallest admissible Ts 

yields the closed-form survival cadence: 

𝑇𝑠
⋆ = −𝑇act

(𝐸0 − 𝐸LB) + 𝑇sur  (𝑃in
sur − 𝑃sleep )

(𝐸0 − 𝐸LB) + 𝑇sur  (𝑃in
sur − 𝑃act )

(5.12) 

The implementation clamps Ts* to the platform bounds [𝑇𝑠
𝑚𝑖𝑛 , 𝑇𝑠

𝑚𝑎𝑥] and to non-negativity. 

Feasibility depends on the sign of the denominator in (Eq. 5.12): if (𝐸0 − 𝐸𝐿𝐵) +

𝑇𝑠𝑢𝑟(𝑃𝑖𝑛
𝑠𝑢𝑟 − 𝑃𝑠𝑙𝑒𝑒𝑝) > 0, the left-hand side of the survival inequality increases with Ts, and 

the minimal feasible sleep is precisely Ts*  after clamping. If the denominator is non-

positive, increasing sleep does not buy safety; the controller must then select the boundary 

that maximizes survivability (typically 𝑇𝑠 = 𝑇𝑠
𝑚𝑎𝑥) and check the residual deficit. When 
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even continuous sleep cannot sustain the store — i.e., 𝑃𝑖𝑛
𝑠𝑢𝑟 ≤ 𝑃𝑠𝑙𝑒𝑒𝑝 𝑎𝑛𝑑 (𝐸0 − 𝐸𝐿𝐵) <

𝑇𝑠𝑢𝑟(𝑃𝑠𝑙𝑒𝑒𝑝 − 𝑃𝑖𝑛
𝑠𝑢𝑟) — the policy escalates to deep sleep; the expected time-to-threshold 

under sleep-only drain is: 

𝑇deep ≈
𝐸0 − 𝐸LB

 𝑃sleep − 𝑃in
sur  

 for 𝑃in
sur < 𝑃sleep (5.13) 

 

Survival mode is re-evaluated at each epoch boundary using updated E0 ← E(n) and 𝑃𝑖𝑛
𝑠𝑢𝑟 , 

so that incidental improvements in input shorten the cadence back toward neutrality as soon 

as feasible. All actuation remains subordinate to protection gates: if undervoltage asserts 

during scarcity, wake-ups are inhibited until the re-arm threshold is crossed, at which point 

(Eq. 5.12) is re-applied. 

5.3.5 Mode selection and protection logic 

At the end of each epoch the scheduler chooses the next operating mode by combining the 

store state with the online input-power estimate, while always honoring protection gates. 

 

Figure 5.2 DREAM state diagram 



   

127 

 

Neutrality is attempted only when it is both feasible and safe. Feasibility is encoded by the 

predicate Fneu(n), which requires harvested power to exceed the background draw and the 

store to lie within admissible limits: 

ℱ𝓃𝑒𝓊(𝑛) : (𝑃in(𝑛) > 𝑃sleep )  ∧  (𝐸LB < 𝐸(𝑛) ≤ 𝐸UB) (5.14) 

Safety is enforced through a protection gate predicate G(n) that captures cold-start enable 

and hysteretic undervoltage; when this gate is asserted, no wake is permitted regardless of 

computed cadences: 

𝒢(𝑛)  : (𝑉(𝑛) ≤ 𝑉UVLO
↓ )  ∨  (𝑉(𝑛) < 𝑉CS) (5.15) 

Given these predicates, the mode for the next epoch is selected as follows: deep sleep when 

protection asserts; survival when neutrality is unsafe or infeasible and the estimated input 

cannot amortize the active phase; neutrality otherwise: 

𝑚𝑜𝑑𝑒 (𝑛 + 1) = {

𝐷𝑒𝑒𝑝𝑆𝑙𝑒𝑒𝑝, 𝒢(𝑛),                                                                                        

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙, ¬𝒢(𝑛) ∧ (𝐸(𝑛) ≤ 𝐸𝑆𝑜𝐶,𝑑𝑒𝑠 ∨ ¬ℱ𝓃𝑒𝓊(𝑛)) ∧ (𝑃𝑖𝑛(𝑛) ≤ 𝑃𝑎𝑐𝑡),

𝑁𝑒𝑢𝑡𝑟𝑎𝑙𝑖𝑡𝑦, ¬𝒢(𝑛) ∧ ℱ𝓃𝑒𝓊(𝑛)                                                                 

        (5.16)  

Re-entry from a protected state requires clearing the hysteresis margin and cold-start 

threshold; only then is the computed cadence applied, with platform bounds encoding 

watchdog servicing and data-freshness constraints: 

𝑅𝑒 − 𝑎𝑟𝑚:    𝑉(𝑛) ≥ 𝑉𝑈𝑉𝐿𝑂
↑ ∧ 𝑉(𝑛) ≥ 𝑉𝐶𝑆 , 𝑇𝑠(𝑛 + 1) = 𝑐𝑙𝑖𝑝(𝑇𝑠

∗(𝑛 + 1), 𝑇𝑠
𝑚𝑖𝑛 , 𝑇𝑠

𝑚𝑎𝑥) (5.17) 

This logic ensures that scheduling decisions remain energy-aware and protection-safe: 

neutrality holds the store steady when possible; survival guarantees a configured horizon 

when input is insufficient; and deep sleep preserves the store through enforced brown-out or 

cold-start conditions. 

5.3.6 Online parameter identification 

The runtime requires two load aggregates: the active-phase energy Eact for the fixed 

application workload, and the low-power draw Psleep that accrues during rest. Both can be 

identified on the target platform using brief experiments that read only the store proxy at 

epoch boundaries. 
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In the supercapacitor case, operate in a short window where harvested input is negligible, so 

that per-epoch energy decrements reflect the load alone. Run three consecutive epochs with 

fixed Tact and two distinct sleep durations X and Y in epochs n and n+1. The discrete 

balances become: 

𝐸act + 𝑃sleep  𝑋 =
1

2
𝐶[𝑉2(𝑛 − 1) − 𝑉2(𝑛)] (5.18) 

𝐸act + 𝑃sleep  𝑋 =
1

2
𝐶[𝑉2(𝑛) − 𝑉2(𝑛 + 1)] (5.19) 

Eliminating Eact yields a closed-form estimate for the background draw, 

𝑃sleep =

1
2 𝐶[𝑉2(𝑛 − 1) − 2𝑉2(𝑛) + 𝑉2(𝑛 + 1)]

 𝑌 − 𝑋 
(5.20) 

after which the active energy follows directly from any one balance, e.g. 

𝐸act =
1

2
𝐶[𝑉2(𝑛 − 1) − 𝑉2(𝑛)] − 𝑃sleep  𝑋 (5.21) 

With Psleep known, a short run with Ts=0 provides Eact per epoch from a single energy drop 

and thus the active power, 

𝑃act =
𝐸act

𝑇act

≈

1
2 𝐶[𝑉2(𝑘) − 𝑉2(𝑘 + 1)]

 𝑇act  
 with 𝑇𝑠 = 0 (5.22) 

On battery platforms, replace the supercapacitor mapping with the SoC-to-energy relation; 

when the estimator exposes usable state of energy or a calibrated capacity Emax, use 

ΔΕ(𝑛) ≈ Emax[𝑆𝑜𝐶(𝑛) − 𝑆𝑜𝐶(𝑛 − 1)] (5.23) 

and substitute ΔE(⋅) for the voltage-squared differences in (5.18) – (5.19). If truly negligible 

input cannot be guaranteed, alternate the two sleep settings in quick succession so that 

average input remains approximately constant over the pair; subtracting the two balances 

then cancels the common input term to first order. Repeating the triplet experiment for 

several (X,Y) pairs and averaging the resulting estimates reduces noise. Leakage and 

regulator housekeeping are, by construction, absorbed into Psleep; when leakage varies with 
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voltage, conduct the experiment inside the intended operating band so that the identified 

values reflect the region where the scheduler will regulate. 

5.3.7 Complexity, memory footprint, and overhead 

DREAM is engineered for constant-time operation per epoch. At each epoch boundary the 

runtime executes a fixed, bounded arithmetic pipeline: one proxy acquisition; one energy-

difference computation (for supercapacitors, a squared-voltage difference scaled by 
1

2
𝐶; for 

batteries, a SoC difference scaled by capacity/SoE map); one harvested-power estimate 

using the rational form of (Eq. 5.7); one sleep-time update from the neutrality or survival 

law (Eqs. 5.9/5.12); optional first-order smoothing and clamping; and a small set of 

comparisons for mode selection and protection gates. None of these steps depends on history 

length or input rate, so the time complexity is O(1) per epoch. Even with modest noise-

handling—e.g., a two-sample moving average or a single-epoch outlier guard—the window 

is fixed and the bound remains O(1). 

The arithmetic cost is dominated by at most two divisions along the hot path (one for the 

input-power estimate, one for the sleep update); all other operations are additions, 

multiplications, and comparisons. This makes latency predictable on MCU-class targets. If 

a hardware FPU is unavailable, the formulas admit straightforward fixed-point (Q-format) 

implementations with pre-scaled constants and saturation, preserving numerical stability 

within the operating band while further tightening worst-case latency. 

The mode-selection logic of §5.3.5 adds only a handful of predicate evaluations for 

feasibility and protection; this is branch-only work with no iterative search. The online 

identification procedure in §5.3.6 is also constant-time when invoked (two discrete balances 

and a closed-form 2×2 solve). Because identification is run infrequently (e.g., at 

commissioning or on long intervals to track drift), its cost is amortized over many epochs 

and does not affect steady-state timing. 

The memory footprint is similarly bounded. The controller maintains only the last proxy 

sample and energy estimate, the current Ts, and the identified/profiler parameters (Eact, 

Psleep), plus platform constants (capacitance or SoE mapping handles, admissible 

energy/voltage limits, watchdog and freshness bounds, hysteresis thresholds). This is a 

constant number of scalars, implying space complexity O(1) with no dynamic allocation, 

buffers, or queues. 
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Energy overhead is limited to the proxy read and the brief end-of-epoch compute. Because 

the sampling rate is one read per epoch and the arithmetic is constant-size, the control energy 

is negligible relative to application activity and background leakage across both surplus and 

scarcity conditions. Overhead remains stable as conditions vary: scarcity changes only the 

scheduled cadence, not the amount of computation per boundary. Latency and real -time 

behavior are governed by two external tunables — Tact (the minimum service quantum) and 

the clamping bounds [𝑇𝑠
𝑚𝑖𝑛, 𝑇𝑠

𝑚𝑎𝑥]. Provided these are respected, DREAM’s timing is 

deterministic: the update executes once at the boundary, and the device then remains in a 

low-power state for the scheduled rest without intermediate intervention. 

Finally, portability follows from the macroscopic formulation. All quantities are either 

directly measured at epoch boundaries or identified in situ with brief experiments; no 

converter-level waveforms, current sensors, or vendor-specific APIs are required. The same 

implementation carries across storage technologies and hardware revisions by adjusting only 

configuration constants and the proxy-to-energy relation at build time. 

5.3.8 Flowchart-based realization 

This subsection instantiates the control laws of §§5.3.3–5.3.5 as a compact, per-epoch 

routine. At each epoch boundary, the controller samples the store proxy, forms the epoch 

energy increment, estimates the average harvested power, selects the mode (neutrality or 

survival) subject to protection gates, computes a candidate sleep Ts*, applies smoothing 

and platform clamps, and commits the schedule only if re-arm thresholds are cleared. The 

routine is single-pass and constant-size, inheriting the O(1) time/space properties of §5.3.7. 

DREAM ALGORITHM 

Input: Tact, Eact, Psleep, bounds {𝑇𝑠
𝑚𝑖𝑛 , 𝑇𝑠

𝑚𝑎𝑥 },  

            thresholds {VCS, VUVLO↑, VUVLO↓} or {ELB, EUB}, 

            smoothing weight w ∈ (0,1), survival horizon Tsur 

State:  last proxy sample (Vprev or SoCprev), last energy Eprev, 

            last sleep Ts, current mode. 

1 Acquire proxy sample at end of epoch n: V or SoC 

2 Compute ΔE from proxy difference; update E(n) 

3 Estimate Pin(n) using ΔE, Eact, Psleep, Tact, Ts 

4 Evaluate protection gate G(n). If asserted → DeepSleep; skip to step 9 

5 Test neutrality feasibility: Pin(n) > Psleep and ELB < E(n) ≤ EUB. 

   If true → compute Ts* via neutrality (ΔE target 0); go to step 7 

6 Scarcity path:  

   - If Pin(n) ≤ Pact or E(n) ≤ desired band → compute Ts* via survival  

     (with conservative Pin surrogate if configured). 

   - Else → neutrality as in step 5 
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7 Smooth and clamp: Ts ← clip(𝑤 ∙ 𝑇𝑠
∗  +  (1 −  𝑤) ∙ 𝑇𝑠  , 𝑇𝑠

𝑚𝑖𝑛  , 𝑇𝑠
𝑚𝑎𝑥) 

8 If protection re-arm conditions not met (e.g., V < VUVLO↑ or V < VCS), force DeepSleep 

9 Persist minimal state: {proxy sample, E(n), Ts, mode};  

10 Schedule sleep Ts 
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Figure 5.3 DREAM flowchart 
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5.3.9 Limitations and extensions 

DREAM is deliberately macroscopic and reactive: it regulates via a single store proxy and 

per-epoch aggregates, forecasting only one-step persistence of harvested power. This 

minimizes sensing/compute cost but bounds performance. With structured inputs (e.g., 

diurnal cycles or periodic loads), neutrality can converge conservatively and survival may 

select safe, sub-optimal cadences. Averaging over power, rather than fine-grain currents, 

also misses sub-epoch transients (e.g., brief regulator sweet spots or input surges). 

Practical proxies add error: supercapacitor voltage and battery SoC drift with temperature, 

bias, leakage, and housekeeping currents; online identification (§5.3.6) reduces but does not 

remove bias, so operating near protection limits can force conservative scheduling. DREAM 

further assumes workload stability across epochs; abrupt changes (firmware, rare heavy 

tasks) stale Eact, temporarily degrading neutrality until re-identified. 

Protection handling is simple and event-driven—safe and deterministic, but excluding 

aggressive recoveries (staged rail re-enables, speculative wake-ups under rising input). 

DREAM omits MPPT, multi-source arbitration, and task-level admission control, presuming 

these are handled by the power path and that active workload quanta have externally defined 

freshness/latency. 

Extensions that retain O(1) control include: (i) opportunistic, budgeted prediction (bounded-

order smoothing for Pin or time-of-day bias with RTC); (ii) adaptive identification 

(periodic/triggered two-point updates on ΔE to track temperature/aging drift); (iii) multi-

band objectives (bias neutrality toward a preferred sub-band for QoS headroom via a small 

offset); and (iv) a coarse load-shedding tier before deep sleep for heterogeneous loads, using 

constant-size comparisons. 

In sum, DREAM trades predictive optimality for robustness, portability, and negligible 

overhead. Where needed, the above extensions add performance while preserving its 

essentials: constant-time epoch arithmetic, a single reliable proxy, and strict adherence to 

protection gates. 

5.3.10 Summary 

This subsection consolidated a lightweight runtime for energy harvesting nodes that 

regulates at epoch boundaries using a single store proxy and macroscopic energy accounting. 

After stating provenance and the control problem, §5.3.2 fixed the operating assumptions 
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and notation; §5.3.3 derived the neutrality law that nulls store drift under surplus; §5.3.4 

constructed a survival cadence that guarantees a configured horizon under scarcity; §5.3.5 

formalized mode selection and protection gating; §5.3.6 detailed an on-device identification 

of the load aggregates Eact and Psleep; §5.3.7 established constant-time and constant-space 

bounds; and §5.3.8 mapped the formalism to an executable flowchart. §5.3.9 discussed 

limitations and extensions, outlining bounded-complexity enhancements that preserve 

determinism and minimal overhead. 

Collectively, these elements yield a controller whose decisions are traceable to measurable 

quantities, whose compute and memory costs are fixed and small, and whose safety is 

enforced by explicit protection predicates. The separation of concerns—loss-aware 

modelling at design time and constant-size control at runtime—enables portable deployment 

across storage technologies and hardware revisions while meeting neutrality and 

survivability objectives with negligible overhead. To situate the proposed runtime within the 

literature, Table 5.1 compares representative reactive and predictive managers against 

DREAM. We report only salient characteristics and the most informative deltas, using one 

umbrella row where multiple papers form a coherent family. 
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Table 5.1 Energy management algorithms comparison table 

  

Work Year Type Core characteristics  Differences vs. DREAM Advantages of DREAM 

Hibernus 2015 Reactive Brown-out–safe save/restore with 

dual watermarks; single checkpoint 

on undervoltage 

Coarse global gating; no energy-

neutral windowing or survival 

horizon 

Prediction-free epoch control with explicit neutrality in 

surplus and guaranteed survival cadence under scarcity 

Alpaca 2017 Reactive Task-atomic, idempotent execution 

without checkpoints 

Programming/runtime model; not 

an energy scheduler 

Drops cleanly beneath DREAM’s epoch timing; DREAM 

supplies neutrality/survival with constant-time updates 

Coala 2020 Reactive Dynamic split/merge of tasks based 

on recent energy 

Adapts task granularity, not sleep 

timing vs. budgets 

Regulates epoch sleep to meet budgets; can co-exist to 

exploit energy packets more efficiently 

Ocelot 2021 Reactive Automatic I/O freshness and crash-

consistent atomic regions 

Semantics layer; no energy 

budgeting 

Provides the energy policy while Ocelot safeguards I/O 

correctness within epochs 

Per-task 

watermark 

scheduler 

2022 Reactive Event-driven per-task thresholds; 

priority and re-queue 

Lacks global neutrality test; local 

thresholds only 

Adds explicit neutrality window + survival mode with a 

single store proxy 

Capacity over 

capacitance 

2019 Reactive Store sizing and invariant thresholds 

beat raw capacitance 

Design guidance; not an online 

scheduler 

Operationalizes these invariants into per-epoch decisions 

with tiny, fixed overhead 

Cammarano et 
al. 

2016 Predictive Sliding-window/seasonal predictors 
with ENO control 

Requires forecast maintenance / 
tuning 

Attains neutrality/survival without forecasting or model 
upkeep 

ASARIMA 2022 Predictive Adaptive seasonal ARIMA for 

harvested power 

Statistical model fitting and 

parameter adaptation on device 

Forecast-free, interpretable control; deterministic MCU 

cost per epoch 

LT-ENO 
family 

2014–
2019 

Predictive Long-horizon neutrality via 
astronomical models; theoretical 

utilization guarantees 

Day-scale planning loop and 
offline sizing assumptions 

Purely online, solver-free neutrality correction; portable 
across platforms with minimal telemetry 

PreAct 2019 Predictive Utility-aware predictive control with 
uncertainty handling (PID-style) 

Needs forecasts, utility profiles, 
and uncertainty pipeline 

Delivers robust autonomy with no exogenous inputs and 
one store-proxy measurement per epoch 



  

136 

 

6 Design methodology for energy autonomous embedded 

microsystems 

6.1 Scope, assumptions and notation 

This chapter builds directly on the unified, loss-aware node model already introduced: the 

environmental input is represented as a time series Φ(t); conversion through the input path 

yields conditioned electrical power at the storage interface; the storage state is tracked as 

energy E(t) with a store-voltage proxy Vstore(t); the demand is the aggregate load power PL(t); 

and non-idealities enter through macroscopic parameters—conversion efficiencies, 

quiescent drains, leakage, equivalent series resistance (ESR), and protection thresholds with 

hysteresis. No new symbols are introduced unless explicitly defined locally. Throughout, we 

treat inputs and workloads as traces rather than relying on closed-form irradiance formulae, 

and we fold device-level effects into the effective input power so that sizing proceeds without 

double counting losses. This stance is intentionally technology-agnostic and aligns with the 

loss-aware, window-based perspective established earlier.  

Feasibility is enforced over a design window W = [t0, t0+TW] chosen to capture the dominant 

rhythms of both input and load (e.g., diurnal/seasonal structure for outdoor deployments or 

occupancy-driven patterns indoors). Long-term viability requires that stored energy does not 

drift across repeated windows, which is expressed by an energy-neutrality condition on the 

same window once conversion losses, quiescent terms, and leakage are included. The prior 

chapter formalized this window selection process and its neutrality check; we adopt that 

formalism here without re-introducing new notation.  

Design targets are expressed through three mission-level metrics used both for sizing and 

for verification. First, neutrality compares harvested-after-losses to demanded-after-losses 

on W and precludes cumulative deficits. Second, survivability requires that trajectories 

remain within the admissible store band implied by UVLO/OVP and safe operating limits; 

in practice, this is enforced as inequalities on the store proxy. Third, availability measures 

the fraction of W during which required loads are served while survivability holds; its value 

depends not only on energy balance but also on the timing of bursts relative to storage 

dynamics and protection hysteresis. These metrics were defined precisely in the modelling 

chapters and are used here as constraints and evaluation criteria.  
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Two additional considerations are treated explicitly in this methodology because they 

dominate behavior at the microwatt–milliwatt scale. The first is transient deliverability: burst 

events must not violate rail-droop limits set by storage ESR and converter current capability, 

a constraint that couples burst envelopes to the admissible operating band [VL,VH]. The 

second is cold-start and brown-out behavior: bring-up from a discharged store and fallback 

under energy poverty are governed by hysteretic thresholds and start-up energy budgets; 

these appear as state-space boundaries rather than ordinary loss terms and are checked 

alongside neutrality and availability during trace replay.  

Finally, all guarantees are grounded in evidence from trace-driven replay through calibrated 

macromodels. Modelling cadence is chosen small relative to the storage time constant and 

the fastest burst features, whereas runtime telemetry remains sparse by design to maintain 

negligible overhead while preserving correctness of the energy accounting. The remainder 

of this chapter operationalizes these assumptions into sizing rules for the harvester and the 

accumulator, deliverability and protection checks, and a reproducible workflow with 

sensitivity analysis. 

6.2 Input traces and window selection 

All sizing and verification in this chapter proceed from time-series traces rather than closed-

form irradiance models. The environmental input is supplied as an electrical-power trace at 

the storage interface (i.e., after conversion/protection), and the workload is supplied as a 

load-power trace that preserves burst structure; macroscopic non-idealities (conversion 

efficiencies, quiescent draws, leakage) are folded into these traces so that energy accounting 

is performed on the same side of the power path without double counting. This node-centric 

stance matches the architecture established earlier—harvested power PH(t), load power PL(t), 

stored energy E(t) with a measurable proxy Vstore(t), and state-dependent efficiencies—

keeping the model lightweight while capturing the losses that dominate at the µW–mW 

scale. 

The design window W=[t0, t0+TW] is chosen to capture the slowest rhythms that materially 

shape deficits. When input and load periods are commensurate, TW is taken as their least 

common multiple; when they are not, TW spans a long representative horizon so that all 

patterns affecting feasibility are included. For outdoor photovoltaics, pronounced 

seasonality makes the maximum repetition time Tcycle≈1 year, and sizing should cover a full 

year to include worst-case seasons. Regardless of the domain, the fundamental requirement 
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is no drift in stored energy across repeated windows: each W should close with a non-

negative change in the state of charge when losses are included, and in steady operation the 

expected drift is set to zero. 

Neutrality on a window is evaluated by the input-side balance already defined in the thesis: 

harvested-after-losses versus demanded-after-losses over W. Using the macroscopic terms 

introduced previously, the window energies are written as integrals of the corresponding 

powers; neutrality holds if and only if the harvested energy meets or exceeds the requirement 

on the same window. This alignment of sides (both referred to the input path) prevents 

double counting and ensures that storage terms enter once, via the accumulator contribution. 

Because feasibility depends on temporal structure, not just averages, traces must be prepared 

with care. For modelling/replay, the integration step is chosen small relative to the storage 

time constant and the shortest burst features, so numerical error remains negligible; for 

runtime telemetry, a much coarser cadence is admissible to keep sensing overhead 

negligible. Measured traces are screened and synchronized: timestamps are normalized to a 

single time zone and epoch; short gaps (relative to the store constant) may be interpolated, 

while long gaps are conservatively filled with lower confidence bounds so feasibility is not 

overstated. Load traces remain non-negative and aligned to activity boundaries. These 

practices make the ensuing neutrality and availability checks evidence-bearing rather than 

optimistic.  

This trace-driven stance is deliberate. Replaying representative input and load windows 

through measured converter and storage macromodels surfaces cold-start traps, lull-induced 

depletions, and retry storms that average-power analyses miss; it also yields defensible 

harvester area/gain, storage capacity, and threshold placements. Where measured traces are 

scarce, lightweight synthetic generators that preserve plateau lengths, lull distributions, and 

other mission-relevant temporal statistics can still guide design effectively—provided their 

windowing matches the chosen TW.  

Finally, because the thesis already formalizes Φ(t) and the conversion from incident flux to 

input-side electrical power, Chapter 6 does not re-derive early irradiance equations; instead, 

it consumes the input-side power trace Pin(t) produced by those definitions and applies the 

window-based neutrality test above. This preserves consistency with your earlier modelling 

while keeping the methodology focused on design windows, replay, and sizing. 
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6.3 Harvester sizing from window neutrality 

This section determines the minimum collector aperture Amin that closes the energy balance 

over a representative window W = [t0, t1], while also exposing the instantaneous power 

deficit and cumulative energy deficit used later in verification.  

Methodology 

This section formalizes a window-based, source-agnostic model for energy-autonomous 

embedded systems. The model couples (i) a compact description of the ambient input power, 

(ii) a possibly intermittent application load, and (iii) macroscopic conversion and storage 

efficiencies. From these ingredients we derive closed-form conditions for energy-neutral 

operation and sizing rules for both the harvester (collector area) and the accumulator (storage 

capacity) under an availability target. 

Approach for harvester sizing 

i) Operating point dependence 

In the macroscopic, loss-aware model, efficiencies may depend on the operating point rather 

than being constant. We therefore write 

𝜂𝐻 = 𝜂𝐻(𝑢(𝑡), 𝑥(𝑡)), 𝜂𝑑𝑐 = 𝜂𝑑𝑐 (𝑃𝑟𝑎𝑖𝑙 (𝑡), 𝑉𝑖𝑛(𝑡), 𝑉𝑜𝑢𝑡(𝑡), 𝑥(𝑡)) (6.1) 

where u(t) denotes the external stimulus seen by the harvester (e.g., intensity, frequency, 

gradient, field strength) and x(t) collects internal conditions (e.g., temperature, bias, mode). 

The effective powers are 

𝑃𝑖𝑛,𝑒𝑓𝑓(𝑡) = 𝜂𝐻(∙)𝑃𝑟𝑎𝑤(𝑡), 𝑃𝑟𝑒𝑞 ,𝑠𝑡𝑜𝑟𝑒(𝑡) =
𝑃𝐿(𝑡)

𝜂𝑑𝑐 (∙)
+ 𝑃𝑞,𝑜𝑢𝑡 (6.2) 

Harvesters and conversion paths often exhibit different efficiencies across operating regimes 

(e.g., low vs. high stimulus level, off-resonance vs. on-resonance, light-load vs. heavy-load 

converter modes). Representing ηH and ηdc as operating-point–dependent functions 

captures these effects without changing the form of the energy balance. 

ii) Application load 

Let PL(t) denote the instantaneous application power. When the workload is structured as 

repeating intervals (PLi, TLi), PL(t) is periodic with cycle TL,cycle. The mean load over a cycle 

is obtained by averaging PL(t) on TL,cycle (Eq. (6.3)). This abstraction accommodates duty-
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cycled sensing, sporadic communications, and burst compute phases without fixing 

implementation details: 

𝑃𝐿,𝑎𝑣𝑔 =
1

𝑇𝐿,𝑐𝑦𝑐𝑙𝑒
∫ 𝑃𝐿(𝑡)𝑑𝑡

𝑇𝐿,𝑐𝑦𝑐𝑙𝑒

0

=
∑ ∙ 𝑃𝐿𝑖 ∙ 𝑇𝐿𝑖𝑖

∑ 𝑇𝐿𝑖𝑖

(6.3) 

iii) Heteroperiodic inputs and analysis window 

When input power and load have different periods (e.g., diurnal PV vs. weekly maintenance 

bursts), they must be treated as independent time series. Energy balance is then enforced 

over a window W that captures both rhythms. If the periods are commensurate, W is set to 

their least common multiple; otherwise, W spans a sufficiently long horizon so that all 

patterns that materially affect energy are included. For outdoor PV, strong seasonality 

dictates Tcycle≈1 year; therefore, W should cover a full year for sizing with respect to worst-

case seasons. The fundamental requirement is that the store’s state‐of‐charge (SoC) at the 

end of each W does not drift downward, ensuring long-term survivability. 

iv) Electrical power at the input stage 

The harvested electrical power delivered by the input stage is modeled as:  

𝑃𝑖𝑛 (𝑡) = 𝜂𝐻 ∙ 𝐴 ∙ 𝛷(𝑡) (6.4) 

where A is the collector area and ηH∈(0,1) is the macroscopic input-side efficiency 

(transducer + front-end). For Φ(t) one may use Eq. (3) (or the detailed Eq. (1)/(2) when 

needed). This abstraction folds ripple and tracking losses into ηh for sizing purposes and 

keeps the model lightweight. 

v) System lifetime 

The total lifetime of the system, Tlife, defines the total time specified for the system to be 

operational. The energy analysis will be performed in a smaller (more representative) 

window. However, it is important that the system should not allow an energy deficit to 

accumulate over time because at some point the system will shut down. 

vi) Maximum repetition time 

Tcycle is defined as the largest repeating cycle that affects the available input Φ(t).  The choice 

of Tcycle is influenced by the form of energy at the system input. 
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In the case of outdoor photovoltaics, the power flow has a 24-hour form. However, the power 

flow changes significantly due to seasonality. Therefore, in this case, Tcycle = 1 year is 

selected. 

vii) Output energy calculation 

The energy required for the load (at its input) is defined as: 

𝐸𝑜𝑢𝑡,𝑊 = ∫ 𝑃𝐿(𝑡)𝑑𝑡
𝑊

0

= 𝑃𝐿,𝑎𝑣𝑔 ∙ 𝑊 (6.6) 

The energy required by the system, considering the efficiency of the individual systems, is 

defined as: 

𝐸𝑟𝑒𝑞,𝑊 = ∫
𝑃𝐿(𝑡)

𝜂𝑑𝑐
𝑑𝑡 =

𝑃𝐿,𝑎𝑣𝑔 ∙ 𝑊

𝜂𝑑𝑐

𝑊

0

(6.7) 

Where ηdc is defined as the total power efficiency of the system. ορίζεται η συνολική 

απόδοση διαδρομή της ισχύος στο σύστημα. 

𝜂𝑑𝑐 = 𝜂𝑃𝑀𝑈 × 𝜂𝑃𝑃 × 𝜂𝑠𝑡𝑜𝑟𝑒  (≤ 1) (6.8) 

viii) Energy balance 

Define the output-side demand referred to the input side as 

𝑃out (𝑡) ≜  
𝑃𝐿(𝑡)

η𝑑𝑐(𝑡)
 +  𝑃𝑞 ,out(𝑡) (6.9) 

and define the charge power seen at the input side of the storage path as 

𝑃charge(𝑡)  ≜  
1

η𝑐ℎ(𝑡)
(𝐸̇(𝑡) + 𝑃leak(𝑉store(𝑡))) (6.10) 

Then the node balance at the input side is 

 𝑃in(𝑡)  ≥  𝑃out(𝑡)  +  𝑃charge(𝑡) (6.11) 

(with equality when there is neither protection-driven shedding nor deliberate dumping). 

Over any analysis window W=[t0,t1], define 
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𝐸in  ≜  ∫ 𝑃in(𝑡)
𝑡1

𝑡0

 𝑑𝑡, 𝐸load ≜ ∫ (
𝑃𝐿(𝑡)

η𝑑𝑐(𝑡)
+ 𝑃𝑞 ,out(𝑡)) 𝑑𝑡

𝑡1

𝑡0

(6.12) 

The accumulator (input-side) term is 

𝐸acc ≜ ∫ 𝑃charge(𝑡)
𝑡1

𝑡0

 𝑑𝑡 =
1

η𝑐ℎ
eff

(Δ𝐸 + ∫ 𝑃leak (𝑉(𝑡))
𝑡1

𝑡0

 𝑑𝑡) (6.13) 

with ΔE=E(t1)−E(t0). The window balance becomes 

 𝐸in  ≥  𝐸load + 𝐸acc   (6.14) 

which guarantees the storage level over W does not decrease (or increases by ΔE if 

targeted). 

ix) Calculation of minimum collector surface area 

Assume the raw input scales with the area A, so 𝑃raw(𝑡) = 𝐴 𝜙(𝑡). Over a window W=[t0,t1] 

with ΔE=E(t1)−E(t0), enforcing energy neutrality with storage losses gives the required 

minimum area below. 

𝐴𝑚𝑖𝑛 ≥

𝛥𝐸𝑡𝑎𝑟𝑔𝑒𝑡 + ∫ (
𝑃𝐿(𝑡)
𝜂𝑑𝑐(𝑡) + 𝑃𝑞,𝑜𝑢𝑡 + 𝑃𝑙𝑒𝑎𝑘(𝑉(𝑡))) 𝑑𝑡

𝑡1

𝑡0

𝜂𝑐ℎ ∫ 𝜂𝐻(𝑡)𝛷(𝑡)𝑑𝑡
𝑡1

𝑡0

(6.15) 

Approach for accumulator sizing 

i) Period separation 

We divide the period under consideration Ts into: 

• Operational (up) time Top ->System is operating 

• Blackout time Tblk -> System is not operating 

With 

𝑇𝑠 = 𝑇𝑜𝑝 + 𝑇𝑏𝑙𝑘 (6.16) 

We define 

𝑛𝑎𝑣 =
𝑇𝑜𝑝

𝑇𝑠
 ∈  [0,1] (6.17) 
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ii) Energy balance equation 

Defining R(t) as 

𝑅(𝑡) =
𝑃𝐿 (𝑡)

𝜂𝑑𝑐
(6.18) 

We consider the accumulated energy 𝐸(𝑡) ∈  [0, 𝐶] (𝐽), where C the maximum usable 

capacity. 

𝑑𝐸

𝑑𝑡
= {

𝜂𝑐ℎ (𝑃𝑖𝑛(𝑡) − 𝑅(𝑡)), 𝛼𝜈 𝑃𝑖𝑛 ≥ 𝑅 (𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔)

𝑃𝑖𝑛(𝑡) − 𝑅(𝑡)

𝜂𝑑𝑖𝑠
, 𝛼𝜈 𝑃𝑖𝑛 < 𝑅 (𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔)

(6.19) 

Where ηch και ηdis the charging and discharging performance of the energy storage device. 

The system reaches saturation at the limits E=0 and E=C. (When the storage device is full, 

the system rejects the excess energy ). 

iii) Calculating Ein (for given Α) 

On the collector’s side, it is calculated as: 

𝐸𝑖𝑛 = ∫ 𝑃𝑖𝑛(𝑡) = ∫ 𝜂𝐻 ∙ 𝐴 ∙ 𝛷(𝑡)𝑑𝑡
𝑡0+𝛥

𝑡0

𝑡0+𝛥

𝑡0

(6.20) 

The energy required by the system (on the same side) is: 

𝐸𝑟𝑒𝑞(𝛥) = ∫ 𝑅(𝑡)𝑑𝑡
𝑡0+𝛥

𝑡0

= ∫
𝑃𝐿 (𝑡)

𝜂𝑑𝑐
𝑑𝑡

𝑡0+𝛥

𝑡0

(6.21) 

The local deficit is calculated as: 

𝐸𝑑𝑒𝑓 = max{0, 𝐸𝑟𝑒𝑞 − 𝐸𝑖𝑛 } (6.22) 

 

iv) Minimum C to avoid blackouts (with empty accumulator) 

We define the net balance at time t as : 

𝛿(𝑡) = 𝑃𝑖𝑛(𝑡) − 𝑅(𝑡) (6.23) 

• δ(t)>0: surplus->accumulator charging 

• δ(t)<0: deficit->accumulator discharging 
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We define the cumulative difference as: 

𝑆(𝑡) = ∫ (𝛲(𝑡) − 𝑃𝑖𝑛(𝜏))𝑑𝜏, 𝑆′(𝑡) = 𝑅(𝑡) − 𝑃𝑖𝑛 (𝑡), 𝑆(0) = 0
𝑡

0

(6.24) 

• When the system has a deficit (R>Pin), S(t) rises 

• When the system has a surplus (R<Pin), S(t) falls 

 

With initial charge SoC(0)=0 ⇒ E(0)=0, the stored energy is : 

𝐸(𝑡) = 𝛱[0,𝐶](𝐸(0) − 𝑆(𝑡)) = 𝛱[0,𝐶](−𝑆(𝑡)) (6.25) 

Where Π[0,C](x)=min{C, max{0,x}} is the saturation at [0,C]. 

• If at that moment S(t) is positive, then -S(t)≤0⇒E(t)=0 (empty accumulator) 

• If S(t) is negative, then -S(t)>0 ⇒ E(t)>0 

Definition of blackout 

The blackout index is defined as: 

𝑏(𝑡) = 1(𝐸(𝑡) = 0 ∧ 𝑅(𝑡) > 𝑃𝑖𝑛(𝑡)) = 1(𝐸(𝑡) = 0 ∧ 𝑆′(𝑡) > 0) (6.26) 

In other words, we have a blackout when: 

• The accumulator is empty E(t)=0 

And 

• At that moment there is energy deficit (R>Pin, so S’>0) 

The total blackout time Ts is: 

𝑇𝑏𝑙𝑘 = ∫ 𝑏(𝑡)𝑑𝑡
𝑇𝑠

0

(6.27) 

And the availability: 

𝑛𝑎𝑣 = 1 −
𝑇𝑏𝑙𝑘

𝑇𝑠

(6.28) 

We want the following to always hold true for some initial E(0)=E0: 
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0 ≤ 𝐸(𝑡) = 𝐸0 − 𝑆(𝑡) ≤ 𝐶   ∀  𝑡 ∈ [0, 𝑊] (6.28)  

This is equivalent to two inequalities: 

𝐸0 ≥ max
𝑡

𝑆(𝑡)  (𝑛𝑜𝑡 𝑡𝑜 𝑓𝑎𝑙𝑙 𝑏𝑒𝑙𝑜𝑤 𝑧𝑒𝑟𝑜) (6.29𝑎) 

𝐶 ≥ 𝐸0 − min
𝑡

𝑆(𝑡) (𝑛𝑜𝑡 𝑡𝑜 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑜𝑣𝑒𝑟 𝐶) (6.29𝑏)   

For minimum C, we take the smallest possible Ε0, i.e. E*0=max S then: 

𝐶𝑚𝑖𝑛 = max 𝑆 − min 𝑆 (6.30) 

With this choice, the minimum value of E(t) becomes exactly zero (when S=maxS) and the 

maximum becomes Cmin (when S=minS). 

𝐶𝑚𝑖𝑛 = max
𝑘

𝑆[𝑘] − min
𝑘

𝑆[𝑘] (6.31) 

𝐸0
∗ = max

𝑘
𝑆[𝑘] (6.32) 

Distinct form (discrete time, steps of Δt) 

Let the analysis horizon be [0, 𝑇𝑠]and define discrete time steps 

𝑡𝑘 = 𝑘 Δ𝑡, 𝑘 = 0,1, … , 𝐾, 𝑇𝑠 = 𝐾 Δ𝑡 (6.33) 

Let 

• 𝑃in[𝑘] be the input (harvested) power referred to the storage side, 

• 𝑅[𝑘] be the required power at the same side (load demand plus losses), and 

• 𝐶 be the maximum usable energy of the accumulator. 

1. Instantaneous net balance (power deficit/surplus) 

𝛿[𝑘] = 𝑅[𝑘] − 𝑃in[𝑘] (6.34) 

o 𝛿[𝑘] > 0: deficit ⇒ accumulator discharging 

o 𝛿[𝑘] < 0: surplus ⇒ accumulator charging 

2. Cumulative energy difference (surplus/deficit) 

𝑆[𝑘] = ∑ 𝛿[𝑛] Δ𝑡

𝑘

𝑛=0

(6.35) 
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When the system has a deficit ( 𝑅[𝑘] > 𝑃in[𝑘]), 𝑆[𝑘]increases; when it has a surplus, 𝑆[𝑘] 
decreases. 

3. Stored energy with saturation 

For an initial energy 𝐸[0] = 𝐸0 , the stored energy is 

𝐸[𝑘] = Π[0,𝐶](𝐸0 − 𝑆[𝑘]) (6.36) 

where 

Π[0,𝐶](𝑥) = min{𝐶,   max{0, 𝑥}} (6.37) 

enforces the physical limits of the accumulator. 

In the special case of an initially empty store, 𝐸0 = 0, so 

𝐸[𝑘] = Π[0,𝐶](−𝑆[𝑘]] (6.38) 

4. Blackout indicator and availability 

A blackout occurs at step 𝑘when 

o the accumulator is empty: 𝐸[𝑘] = 0, and 

o There is an energy deficit: 𝛿[𝑘] > 0. 

Define the blackout indicator 

𝑏[𝑘] = {
1,          if 𝐸[𝑘] = 0 and 𝛿[𝑘] > 0
0,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

(6.39) 

The total blackout time over the horizon is 

𝑇blk = ∑ 𝑏[𝑘] Δ𝑡

𝐾

𝑘=0

(6.40) 

and the availability is 

𝑛av = 1 −
𝑇blk

𝑇𝑠

(6.41) 

Ignoring any upper capacity limit, the stored energy evolves as 𝐸[𝑘] = 𝐸0 − 𝑆[𝑘]. To avoid 

blackout we need 𝐸[𝑘] ≥ 0for all 𝑘, which implies 

𝐸0 ≥ 𝑆[𝑘]∀𝑘   ⟹   𝐸0
∗ = max 𝑆[𝑘]

𝑘
(6.42) 
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When the accumulator has a finite usable capacity 𝐶and the initial energy is not fixed, the 

stored energy must remain in [0, 𝐶]. This requires that the entire excursion of the cumulative 

deficit can be embedded within the interval [0, 𝐶], which leads to the minimum capacity 

𝐶min = max 𝑆[𝑘]
𝑘

− min 𝑆[𝑘]
𝑘

(6.43) 

Intuitively, 𝐸0
∗ captures how much pre-charge is needed to survive the worst cumulative 

deficit, while 𝐶min captures how much capacity is needed to ride out both deficits and 

surpluses without hitting empty or full. 

The expressions for 𝐸0
∗ and 𝐶min characterize, respectively, the minimum initial energy and 

the minimum capacity required to avoid blackout over a given horizon when both can, in 

principle, be chosen freely. In practice, however, many deployments start from a nearly 

empty store and rely on future harvested energy to build up their state of charge. It is 

therefore useful to specialize these general results to the important case of an initially empty 

accumulator and study how the blackout-free regime and availability depend on the chosen 

capacity. 

Minimum C to avoid blackouts (empty accumulator) 

We define the energy in the accumulator when it is full as (from equation 23):  

𝐸(𝑡) = 𝛱[0,𝐶](𝐶 − 𝑆(𝑡)) (6.44) 

Solving C as a function of a goal nav
* 

For C2≥C1 applies: 

𝛱(𝐶2 − 𝑆) = 𝛱(𝐶1 − 𝑆) ⇒ 𝐸𝐶2 (𝑡) ≥ 𝐸𝑐1 (𝑡)∀𝑡 (6.45) 

So, the nav(C) is a non-decreasing function of C. 

We define: 

𝐶∗(𝑛𝑎𝑣
∗ ; 𝐴) = inf  {𝐶 ≥ 0 ∶  𝑛𝑎𝑣(𝐶; 𝐴) ≥ 𝑛𝑎𝑣

∗ } (6.46) 

Due to monotonicity, you can reliably find it by bisecting in C. 

If the goal is nav=1 in a full window W, so that it never empties: 
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𝐸(𝑡) = 𝐶 − 𝑆(𝑡) > 0 ∀ 𝑡 ∈ [0, 𝑊] ⟺ 𝑆(𝑡) < 𝐶 ∀ 𝑡 (6.47) 

Therefore, it is necessary: 

𝐶 ≥ 𝑆𝑚𝑎𝑥,, 𝑆𝑚𝑎𝑥 = max
𝑡∈[0,𝑊]

𝑆(𝑡) (6.48) 

Energy upper limit on availability (for any C) 

The maximum energy that can be given to the load in 𝑇𝑠 𝑖𝑠 ≤ 𝐶 + ∫ 𝑃𝑖𝑛 𝑑𝑡
𝑇𝑠

0
 

The energy required for 100% uptime is ∫ 𝑅𝑑𝑡
𝑇𝑠

0
 

So: 

𝑛𝑎𝑣(𝐶) ≤ min(1,
𝐶 + ∫ 𝑃𝑖𝑛 𝑑𝑡

𝑇𝑠

0

∫ 𝑅𝑑𝑡
𝑇𝑠

0

) (6.49) 

Effect of Α 

Increase in Α ⇒ increase in Pin ⇒ decrease in S’(t) = R - Pin ⇒ the S(t) is lower everywhere 

⇒ 

• Smaller Smax ⇒ smaller C for nav = 1 

• Smaller fluctuations ⇒ smaller C* (nav
*; A ) for any target 

Is 2 x C sufficient; 

It depends on the value of C calculated in d.iv: 

• If we used range Civ=max S – min S: 

With a full start, the smallest number Smax ≤ Civ is sufficient. 2 x C is conservative. 

• If we used the maximum deficit from zero start Dmax = max S: 

For a full start, C ≥ Smax = Dmax for nav = 1 in the cycle is sufficient. The «2 x Dmax» is not a 

general rule. In some profiles it is an exaggeration, in others it may not be enough when 

considering a larger horizon or when energy neutrality is required in successive cycles. 

 

Best practice: 
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• For nav = 1 in a full cycle with SoC(0) = 100%: 

Creq = Smax and we also check that S(W) ≤ 0 to ensure that the system is viable in repetitions. 

• For a general target nav
* < 1: 

We find C*(nav
*; A) by dichotomy (since nav(C) is monotonic)  
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7 Case studies and experiments 

Chapter 7 grounds the thesis in model-driven and empirical evidence. Section 7.1 develops 

a parameterized Simulink model of an energy-harvesting autonomous sensor that is 

instantiated from an actual system and was used to evaluate the operation of DREAM, 

capturing harvester, storage, and load dynamics under realistic inputs. Section 7.2 presents 

three research projects as case studies, demonstrating how the methodology transfers across 

distinct hardware, workloads, and deployment contexts, and analyzing the resulting 

performance and trade-offs. Section 7.3 reports a targeted experiment on thermoelectric 

generators at low temperature differentials (ΔT), characterizing conversion efficiency, start-

up behavior, and stability, and relating the findings back to the model and controller 

behavior. Together, these components provide convergent validation of DREAM’s 

practicality and limits, and yield guidance for sizing and control in real deployments. 

7.1  Energy balance modeling techniques for embedded systems 

7.1.1 Purpose 

This subsection introduces a parameterized MATLAB/Simulink model that emulates the 

end-to-end operation of an energy-harvesting autonomous sensor and embeds the DREAM 

controller in the loop. The model is instantiated from an actual system: all key parameters 

(harvester/converter characteristics, protection thresholds, storage limits, and load profiles) 

are derived from measurements on the reference platform. By mirroring the real power 

path—harvester → conversion & protection → storage → load—the model enables 

controller-in-the-loop studies in which DREAM’s decisions act on the same signals (e.g., 

power-good, UVLO/OVLO, store proxy) available on hardware. 

The scope is twofold. First, the model supports design-space exploration and sensitivity 

analysis without obscuring effects from cycle-accurate device physics: converters are 

captured with macroscopic efficiency, cold-start behavior, and quiescent drains; storage 

follows an energy-centric representation 𝐸 =
1

2
𝐶𝑉2; the workload is profiled as active 

quanta and radio bursts. Second, it provides a repeatable evaluation harness for DREAM, 

exercised under controlled ambient traces and perturbations to examine neutrality targets, 

survival behavior, and protection compliance before (and alongside) laboratory trials. 
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7.1.2 Reference hardware and measured parameters 

The Simulink model is anchored to the evaluation setup exactly as it was built: the energy 

input is a measured power trace Pin(t)in milliwatts/microwatts; there is no modeled power 

path or converter, and thus no efficiencies, quiescent drains, cold-start, or UVLO behavior. 

Storage is a single ideal supercapacitor of capacitance C; leakage, ESR, voltage derating, 

and temperature effects are intentionally excluded. The load is realized as a resistor network 

that the MCU switches between two discrete operating states—ACTIVE and LPM—so that 

instantaneous consumption follows Pload (t) = V2(t)/Rwith Requal to the branch in use. The 

DREAM controller runs on the MCU; at each epoch boundary the MCU samples the 

capacitor voltage V(t)as the sole proxy for stored energy, updates DREAM’s recurrence, 

schedules a fixed-duration active burst, and then sleeps for the computed interval before 

repeating. 

All parameters used in simulation are taken directly from this setup unless explicitly varied 

for sensitivity analysis. The input block consumes the recorded Pin(t)at its native sampling 

interval Δtand reproduces the trace verbatim. The storage block integrates net power into the 

capacitor state using the relations E(t) =
1

2
CV2(t)and 

dE

dt
= Pin (t) − Pload (t), which yield 

dV

dt
= [Pin(t) − Pload (t)]/[C V(t)]. The load block implements the two modes by selecting 

either a low resistance for ACTIVE or a much higher resistance for LPM; if the low-power 

mode was effectively off in hardware, the model sets the branch open so that Plpm = 0. The 

controller block executes DREAM with tunable survival horizon H, smoothing weight w(if 

used), a minimum sleep floor, and an epoch timer that defines the cadence of active bursts 

and sleep intervals; these timings mirror the firmware configuration. 

For reproducibility, the baseline instantiation records the provenance of each quantity: the 

power trace is measured under the intended environmental conditions and imported 

unchanged; the capacitance Cis taken from the component used on the bench (optionally 

verified by a simple charge–discharge slope); the resistances defining ACTIVE and LPM 

are the installed values as measured with a DMM at room temperature; the active-burst 

duration and epoch timing are those executed by the MCU firmware during the experiments. 

Because the model omits any conversion stage, protection appears only as reporting 

thresholds [Vmin , Vmax]against the capacitor voltage rather than enforced cutoffs. This 

minimalist mapping isolates the interaction between DREAM’s scheduling decisions and 

the store–load dynamics, allowing the evaluation to focus on controller behavior under a 
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known input power profile without confounding effects from conversion losses or protection 

hysteresis. 

7.1.3 Model architecture 

The model consists of four blocks connected by one power signal and one voltage signal, 

plus a discrete control line; it is organized for inspection and traceability rather than device-

level detail. The top-level diagram wires the four elements of the minimal system. Energy 

In (DC Bus) injects the measured harvested power trace onto the bus. The Charge block is 

the ideal supercapacitor connected to the same node. The MCU reads the capacitor/bus 

voltage and runs DREAM; on each epoch it sets the digital enable line EN that drives Load, 

which applies the resistor corresponding to ACTIVE or LPM to the bus (Vin). The single 

bus node therefore closes the loop: input power charges the capacitor; the MCU observes 

the resulting voltage and schedules ACTIVE/LPM; the load’s draw, in turn, shapes the bus 

voltage trajectory. 

 

Figure 7.1 Simulation model (top level) 

This subsystem feeds the model with the measured harvested power trace and enforces any 

optional physical caps specific to the transducer. The trace enters at left and is routed to a 

scope (“Power, Vbus”) for verification. The function block “Power_limit_by_TEG” accepts 

the commanded operating voltage v (bus voltage) and the raw input u (trace power) and 

outputs a bounded input power consistent with low-ΔT TEG behavior (e.g., non-negative, 

limited by the module’s 𝑉–𝐼 characteristic around its operating point). The selected output 

then drives the DC bus through a controlled source, with the bus voltage fed back to the 

limiter and logged. This block is where the recorded 𝑃in(𝑡)enters the simulation and, if 
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desired, is constrained by device-level feasibility before being integrated by the storage 

model. 

 

Figure 7.2 Energy Input block 

The diagram shows the ohmic load that the MCU enables via a single digital line EN. The 

supply node “Load VCC” fans out to two grounded branches: RLPM1 (low-power mode) and 

RTx (active mode). A controlled switch selects which branch is connected; when EN=0 the 

circuit sinks through RLPM1 (very high resistance, emulating sleep draw or OFF if taken 

→∞), and when EN=1 it sinks through RTx (low resistance, emulating ACTIVE power). 

Instantaneous consumption follows 𝑃load (𝑡) = 𝑉load
2 /𝑅with 𝑅 ∈ {𝑅LPM, 𝑅act}. This block 

provides the only path from the storage node to ground and therefore sets the epoch’s active-

burst power versus the background draw in sleep. Parameters extracted from this schematic 

are 𝑅act, 𝑅LPM(or OPEN), and the EN polarity. 

 

Figure 7.3 Load simulation block 

This subsystem implements the discrete controller that schedules ACTIVE/LPM. The 

central MATLAB Function block (tsleep_energy_management_fcn) receives the current 
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capacitor voltage Vcap (via the “uC I/O” block), the previous sleep duration (t sleep_prev), and 

the configured survival horizon (tsurvival). An interrupt trigger marks epoch boundaries; on 

each trigger the function computes the next sleep time t sleep_int and updates internal state 

outputs (Vold_out, tsurvival_out). A Pulse generator produces the fixed-duration ACTIVE burst 

(period/dc) and drives the digital control line to the load. “Memory register #1–#3” hold the 

minimal history DREAM needs (previous sleep, previous voltage, last decision), ensuring 

constant-time updates. This block therefore realizes the controller-in-the-loop evaluation: 

read Vcap→ update DREAM → emit next sleep Tsand the ACTIVE pulse. 

 

Figure 7.4 Microprocessor simulation block 

7.1.4 Simulation configuration and run procedure 

Each simulation run is defined by four user-set parameters: capacitor start voltage 𝑉init, 

survival time Tsurvival (the horizon DREAM must guarantee), the input-power profile 

𝑃in(𝑡)(selected trace and any scaling), and the simulation duration 𝑇sim. After setting these, 

the simulation is started with these initial values and DREAM enabled on the MCU block. 

The controller samples the capacitor voltage at epoch boundaries, computes the next sleep 

interval, and the load follows the issued ACTIVE/LPM schedule. During the run we observe 

the system in real time via scopes (voltage trajectory, mode flag, and sleep sequence) to 

qualitatively assess behavior under the chosen configuration. 

To ensure the reliability of our experiment, we conducted several trials under varying 

conditions to evaluate the algorithm’s performance. During the trials, we monitored the 
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board’s behavior and recorded the data generated by the system. The results of our 

experiment demonstrated that the algorithm performed efficiently, and the board functioned 

reliably under different scenarios.  

7.1.5 Simulation examples 

Reporting thresholds 𝑉min =  2.2V and 𝑉max =  3V are monitored (not enforced), with 

controller bounds 𝑇𝑠
min =  20s to avoid oversampling and 𝑇𝑠

max =  5000s for deep sleep. 

• Example A (Charging circle) 

The capacitor is initialized just above 𝑉min. At 𝑡 = 0, the measured input power is present, 

so the store voltage 𝑉𝐶(𝑡) rises monotonically with a concave-down envelope. Because 

DREAM samples 𝑉𝐶  as the sole proxy for state of charge, the very low initial voltage yields 

a large, computed sleep time 𝑇𝑠 (0) to conserve energy. As 𝑉𝐶  increases, DREAM 

progressively shortens 𝑇𝑠, allowing more frequent ACTIVE bursts while preserving the 

configured survival horizon Tsurvival. After a brief transient, the system reaches a quasi-

steady regime in which average input and average load powers balance: 𝑉𝐶(𝑡) flattens, and 

𝑇𝑠 converges to the configured minimum sleep (a small floor used to avoid oversampling 

and unnecessary wakeups). No threshold crossings or chatter are observed, indicating stable 

operation in a charging/neutral state with a fixed duty cycle. 

• Example B (Discharge/Survive circle) 

The capacitor begins near 50% SoC and the system charges normally until t = 10 ks. During 

this interval, VC(t)rises and DREAM correspondingly decreases Ts, mirroring Example A. 

At t = 10 ks the input power is forced to zero and remains off until t = 30 ks. Immediately 

after the cut, DREAM reacts by lengthening Tsto maintain the survival horizon H; ACTIVE 

events become sparse and VC(t)decays smoothly but remains above Vminfor the required 

time. When input resumes at t = 30 ks, the controller shortens Tsagain to rebuild headroom 

while still guaranteeing that the node can survive at least 25 ks should another outage occur. 

As the run proceeds, the accumulated deficit and conservative pacing eventually drive the 

system to the controller’s maximum sleep limit; by t = 65 ks the node enters deep sleep 

(LPM/OFF held), and VC(t) asymptotically approaches its floor without oscillation. 
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Figure 7.5 (top) Capacitor voltage (bottom) Calculated sleeptime 
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Figure 7.6 (top) Capacitor voltage (bottom) Calculated sleeptime 

 



  

158 

 

Simulation outputs were compared against laboratory recordings on the same setup. 

Agreement is assessed on (i) the capacitor-voltage envelope 𝑉𝐶(𝑡), (ii) timing and duration 

of ACTIVE bursts, and (iii) the sleep-time sequence {𝑇𝑠}. Runs are accepted when 𝑉𝐶(𝑡) 

stays within ±20 mV of the measured envelope, ACTIVE timing matches within one epoch, 

and {𝑇𝑠} follows the same trend (monotone decrease/ increase and final plateau). (§7.2.1) 

The model deliberately omits converter/power-path losses and protection hysteresis and 

treats the supercapacitor as ideal (no leakage/ESR). The load is a two-state resistive 

abstraction. These simplifications isolate DREAM’s scheduling decisions and the store–load 

interaction under a known 𝑃in(𝑡). 

7.2 Research projects 

This section evaluates the proposed power management techniques together with the design 

methodology introduced in Chapter 6 across three prototypes that represent distinct 

operating envelopes: (i) a state-of-the-art power-supply module designed and implemented 

for energy-autonomous nodes, (ii) an autonomous weather station capable of reading the 

nearby electric field, and (iii) an autonomous steel-stress sensor for naval applications. Using 

the experimental setup of §7.1, we quantify energy neutrality and survivability (time outside 

protection bounds). For each prototype we perform trace-driven replay and in-situ tests, 

compare against battery-only and naïve harvesting baselines, and monitor the contribution 

of the runtime policies. The Chapter 6 methodology is referenced throughout to clarify 

architectural choices and implementation trade-offs. 

7.2.1 Perpetual power supply-PERPS 

Our objective in PERPS was to design and construct a low-power energy-harvesting power 

supply for embedded systems. The power supply should be capable of harvesting energy 

from different sources with high efficiency. PERPS served as the seed project for the work 

in this thesis: it informed the design methodology of Chapter 6 and provided the first 

deployment target for the DREAM runtime algorithm, which was later generalized to the 

other prototypes. 

Designing an ultra-low-power energy-harvesting supply is intrinsically complex due to cold-

start requirements, widely varying source impedances/voltages, leakage and self -

consumption constraints, and the need to buffer burst loads while maintaining regulated 

delivery. Figure 7.7 summarizes the chosen architecture: a single ambient source—
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photovoltaic (PV), thermoelectric module (TEM), triboelectric nanogenerator (TENG), or 

piezoelectric (PZ)—is connected to the harvester front-end. Harvested energy is stored in 

the accumulator, which buffers short-term power imbalance, while the harvester regulates 

the output node Vout to a configurable setpoint. Only one source is present at the input at any 

given time; source selection is therefore external to the module. This partitioning isolate 

source-specific conversion from energy storage and from the regulated output, simplifying 

control while preserving flexibility in the target application. 

 

Figure 7.7 Power supply architecture 

 

Figure 7.8 PERPS board 
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Figure 7.8 shows the PERPS board. It follows an Arduino-Uno “shield-style” layout so it 

can sit on top of a common microcontroller board or be used on its own. The connectors are 

arranged to make wiring straightforward: one input for the chosen energy source, terminals 

for the accumulator, and a regulated 𝑉out  for the load. Key points are labeled for easy probing 

during experiments, but detailed component information is intentionally omitted. 

We validated PERPS in a representative deployment powering a low-power XBee 

sensing/telemetry node. The energy source was a small indoor photovoltaic (PV) cell placed 

under the room’s lamps; the power path followed the architecture of Figure 7.1, with the 

harvester regulating 𝑉out  and buffering surplus energy in the accumulator. In the original 

demonstration, the chosen PV cell provided ample headroom and the system operated 

perpetually (energy-neutral with positive storage drift over a 24-hour cycle). Despite the 

absence of a formal methodology at the time, perpetual operation was achieved because both 

the PV cell and the storage capacitor were deliberately oversized. 

 

Figure 7.9 (left) Device test in the lab (right) Demo device in situ 

We apply retroactively the Chapter 6 window-neutrality method to a concrete indoor-light, 

always-on scenario with the following parameters (all powers referred to the input/storage 

side of the power path): 

• Lighting: 150–250 lux, approximately constant (24/7). 
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• Load (periodic): Active power 𝑃𝐴 = 42.9 mW for 𝑡𝐴 = 0.19 s once every 𝑇 =
600 s; sleep power 𝑃𝑆 = 0.009 mW otherwise. 

• Harvester: a-Si PV with an empirically measured maximum-power output 𝑃mpp =

0.432 mW at 200 lx for an aperture area A = 41.6 cm2 

• Power path: effective DC-path efficiency 𝜂𝑑𝑐 ∈ [0.70, 0.85]over the realized 

operating region. 

• Accumulator: supercapacitor 5 F, operated in the window 2.7 V → 2.2 V. 

The mean load over one 10-minute cycle is: 

𝑃𝐿 =
𝑃𝐴𝑡𝐴 + 𝑃𝑆 (𝑇 − 𝑡𝐴)

𝑇
=

42.9 ∙ 0.19 + 0.009 ∙ (600 − 0.19)

600
𝑚𝑊 = 22.58𝜇𝑊  

The energy per cycle: 𝐸cycle = 𝑃̄𝐿𝑇 = 0.01355J. The incremental TX-over-sleep energy is 

𝐸𝑏𝑢𝑟𝑠𝑡 = (𝑃𝐴 − 𝑃𝑠)𝑡𝐴 = 8.15𝑚𝐽. 

Usable supercapacitor energy in the 2.7→2.2 V window is 𝐸𝑢𝑠𝑎𝑏𝑙𝑒 =
1

2
𝐶(𝐶𝑚𝑎𝑥

2 − 𝐶𝑚𝑖𝑛
2 ) =

1

2
∙ 5(2.72 − 2.52) = 6.125𝐽. The small-signal voltage droop during the 0.19s transmission 

is 𝛥𝑉 =
𝐸𝑏𝑢𝑟𝑠𝑡

𝐶𝑉𝑎𝑣𝑔
=

8.15

5∙2.45
= 0.66𝑚𝑉, which is negligible for deliverability. 

From the 200lux measurement 𝑝𝑃𝑉,200 =  𝑃𝑚𝑝𝑝 /𝐴𝑝𝑣 = 0.432𝑚𝑊/41.6𝑐𝑚2 =

10.385𝜇𝑊/𝑐𝑚2 at MPP.  

With constant lighting, neutrality reduces to mean powers: 

𝐴𝑚𝑖𝑛 =
𝑃𝐿
̅̅ ̅

𝜂𝑑𝑐 𝑝𝑃𝑉
=

22.58

10.38 ∗ 0.8
= 2.71𝑐𝑚2 

The time to rase the supercapacitor from 2.2 V→ 2.5 V while operating: 

𝑡 =
𝐸𝑢𝑠𝑎𝑏𝑙𝑒

𝑃𝑠𝑢𝑟𝑝𝑙𝑢𝑠
 = 

6.125𝐽

0.35𝑚𝑊
= 6.1ℎ 

Applying the methodology clarifies the sizing margins and shows that the original design 

was conservatively over-provisioned. Using the measured 𝑃mppdensity at 200 lx (about 

10.4μW/cm2) and accounting for 𝜂dc, the same accumulator would permit a PV area 

roughly ~16× smaller while maintaining perpetual operation under the same lighting and 

usage conditions. If ambient illumination were reduced or became more variable, the 
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methodology would either select a modestly larger PV device or retain the smaller cell and 

adapt the telemetry cadence via DREAM to remain energy-neutral. 

7.2.2 Electric Field over Seas-EFOS 

EFOS targeted the development of an autonomous coastal weather station capable of 

measuring the ambient electric field using a rotating field-mill sensor.  

 

Figure 7.10 (left) EFOS concept design (right) Pilot device 

The principal objective was the realization of a resilient power subsystem that could harvest 

energy from heterogeneous sources, integrate a state-of-the-art triboelectric nanogenerator 

(TENG), and supply a regulated high-voltage path for the field-mill motor while maintaining 

stable rails for digital control and low-noise analog sensing. Deliberate right-sizing of the 

harvesters and the accumulator was outside the scope of this demonstrator; the emphasis was 

placed on architectural integration, cold-start capability, and survivability under 

intermittency. 

The power supply follows a modular, source-decoupled topology.  
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Figure 7.11 EFOS power supply architecture 

Each energy source—photovoltaic, TENG, thermoelectric, and vibration—interfaces to the 

system through a dedicated harvester front-end that performs rectification, impedance 

presentation, and, where appropriate, simple MPPT-like regulation. By isolating sources at 

the front-end, the design prevents back-drive and contention when one source is dominant 

or when others are quiescent. The conditioned outputs of the harvesters are then combined 

through a common buffer node that absorbs bursty or high-crest-factor inflows without 

imposing cross-coupling penalties. This buffer feeds a single battery-charger stage that 

manages the electrochemical store, exposing clear thresholds for cold-start, charge 

acceptance, and over-/under-voltage protection. 

Downstream of the store, three independent DC/DC converters generate the rails required 

by the station. The first rail supplies the microcontroller and communications, prioritizing 

low quiescent consumption and good transient response during duty-cycled activity. The 

second rail biases the sensors and analog front-end of the electric-field readout chain; this 

path is treated as noise-sensitive, with sequencing and local decoupling to prevent coupling 

from digital bursts and motor events. The third rail is dedicated to the field-mill motor/driver 

and is allowed to operate at a higher instantaneous power level, with inrush control and 

undervoltage lockout to avoid brown-outs that could corrupt ongoing measurements. This 

separation of rails is central to maintaining measurement integrity while guaranteeing 

deliverability for the motor’s spin-up, which otherwise represents the most demanding 

transient in the system. 



   

164 

 

 

Figure 7.12 EFOS prototype 

Additive manufacturing was used to design and fabricate a custom enclosure that integrated 

three outdoor-rated photovoltaic cells, each mounted on a distinct facet so that the array 

sampled different azimuths and captured incident light under varying ship headings and 

seasons. The printed geometry incorporated precise cell recesses, cable management 

channels, and gasketed interfaces for weather protection, while allowing rapid iteration of 

tilt and spacing to reduce mutual shading and improve structural rigidity with minimal mass. 

This enclosure was installed as part of the EFOS prototype on a research vessel operating in 

the Mediterranean Sea, where it experienced continuous vibration, salt-laden air, and wide 

temperature and irradiance swings. The assembly remained fully functional for more than 

six months at sea, after which it was removed intact and returned to the lab for post -

deployment evaluation. 
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Figure 7.13 Installation of EFOS system 

Unfortunately, the sizing methodology outlined in Chapter 6 could not be applied to EFOS. 

The deployment did not yield the continuous, source-resolved power measurements required 

to construct representative duty-cycle traces and energy windows; as a result, neither 

harvester apertures nor accumulator capacity could be right-sized from data. Any sizing 

would therefore have been speculative, and the system is reported as an integration prototype 

rather than an optimized design. 

7.2.3 Autonomous Multifunctional Stress Assessment Sensors for Naval Applications-

AMSA 

The AMSA project addresses long-duration monitoring of stress in ship steel structures by 

integrating a proprietary anisotropic magneto resistive sensor into a compact node designed 

for autonomous operation. Energy autonomy shaped every architectural choice so that 

sensing fidelity and reporting cadence could be preserved without manual intervention. 

The delivered platform adopts a harvesting path centered on a single power-management IC 

that accepts multiple energy inputs concurrently and manages storage and regulation. Two 

independent sources feed this controller so that available ambient energy can be aggregated 

rather than alternated, while the storage element at the controller’s output provides both 

energy buffering and burst current. The functional organization is summarized in Figure 

7.15, which illustrates a single-PMIC, dual-source topology capable of simultaneous 

harvesting into a common accumulator and regulated output. 
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Figure 7.14 AMSA architecture 

Electrical realization follows directly from this organization. The schematic implements per-

input conditioning for the two sources, the battery interface with protection and chemistry-

appropriate charge termination, and the regulated system rail that powers the sensing front-

end and communications. Care is taken to minimize quiescent draw in the quiescent state 

while ensuring adequate transient response during active intervals. This connectivity is 

shown in Figure 7.13, which preserves the one-PMIC philosophy while exposing clear test 

points for source characterization and storage health. 

 

Figure 7.15 AMSA Harvester schematic 



   

167 

 

 

Figure 7.16 AMSA Board 

The pilot devices were deployed on representative steel structures and benefited from 

enclosures produced via 3D printing, which enabled protective cases with complex 

geometries tailored to the mounting surfaces and cable exits. This approach allowed tight  

integration of the sensing head and harvesting surfaces while providing mechanical 

robustness and environmental shielding appropriate to shipboard conditions.  
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Figure 7.17 AMSA pilot devices 

A supervisory routine governs the node’s duty cycle at runtime, adapting the sleep interval 

to the available energy and the state of storage so that operation remains self-sustaining 

without altering the sensing chain or communications stack. 

In this case we deployed the design methodology retroactively as well. We consider the 

following parameters for the system. 

• Lighting: 200 lux, approximately constant (24/7). 

• Load (periodic): Active power 𝑃𝐴 = 163 mW for 𝑡𝐴 = 1.825 s once every 𝑇 =
600 s; sleep power 𝑃𝑆 = 0.4125 mW otherwise. 

• Harvester: a PV cell with an measured output power of 10.4μW/cm2 

• Power path: effective DC-path efficiency 𝜂𝑑𝑐 ∈ [0.8]over the realized operating 

region. 

Accumulator: a LiFEPO4 battery with rated capacity of 1800mAh, operating in the 

window 3.0 V → 3.6 V. 

By applying the equation 6.15 for the PV sizing, we calculate the required aperture of the 

PV cell. For a 10-minute cycle we set Δ𝐸target = 0, 𝑃𝑞 ,out = 0, and take leakage as already 

counted inside 𝑃𝐿(𝑡). Indoor PV density is constant Φ(𝑡) = Φ = 10.4 𝜇W/cm2; combined 

harvester/charging efficiency is 𝜂ch 𝜂𝐻 = 0.8. 

Active:𝑃𝑎 = 163 mW,𝑡𝑎 = 1.825 s→𝐸𝑎 = 𝑃𝑎 𝑡𝑎 = 0.082632 mWh. 

Sleep: 𝐼𝑠 = 0.15 mA at 𝑉 ≈ 3.3 V→ 𝑃𝑠 = 0.495 mW; sleep time 𝑇 − 𝑡𝑎 = 598.175 s→ 
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𝐸𝑠 = 0.082249 mWh. 

So, 

∫ 𝑃𝐿(𝑡)𝑑𝑡 = 𝐸𝑐𝑦𝑐 = 𝐸𝑎 + 𝐸𝑠𝑙𝑒𝑒𝑝 =  0.164881𝑚𝑊ℎ = 0.59357𝐽 

𝜂𝑐ℎ ∫ 𝜂𝐻𝛷(𝑡)𝑑𝑡 = 0.8 ∙ 𝛷 ∙ 𝛵 = 0.8 ∙ (10.4 × 10−6𝑊/𝑐𝑚2) ∙ 600𝑠

= 4.992 × 10−6𝐽/𝑐𝑚2  

So, 

𝐴𝑚𝑖𝑛 ≥
0.59357𝐽

4.992 ×  10−3 = 118.9𝑐𝑚2  

For the accumulator sizing, we size the accumulator for (1) TX burst support and (2) blackout 

autonomy. Depth-of-discharge limit DoD = 80% and regulated rail ≈ 3.3 V. 

The burst energy in the active interval: 

𝐸𝑏𝑢𝑟𝑠𝑡 = 𝐸𝛼 =  0.082632𝑚𝑊 = 0.297 

The average burst current is 

𝐼𝑏𝑢𝑟𝑠𝑡,𝑎𝑣𝑔 =
𝑃𝛼

𝑉
=

163𝑚𝑊

3.3𝑉
= 49𝑚𝐴 

For ta=1.825s. A LiFEPO4 cell easily sources this. The minimum theoretical battery capacity 

set purely by burst energy is tiny. 

𝐶𝑚𝑖𝑛,𝑏𝑢𝑟𝑠𝑡 =
𝐸𝑏𝑢𝑟𝑠𝑡

𝑉
∙

1

3600
∙

1

𝐷𝑜𝐷
=

0.000082632𝑊ℎ

3.3𝑉
∙

1

0.8
= 31𝜇𝐴ℎ. 

In practice, if we just ensure adequate low-ESR decoupling at the rail to limit droop during 

the ~1.8s burst, the battery will handle the energy. 

For the blackout autonomy, we consider a 10-minute cadence with average load power  

𝑃𝐿 =
𝐸𝑐𝑦𝑐

𝑇
= 0.989𝑚𝑊 
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The daily average energy Eday = 0.989mW x 24h=0.02374Wh. The daily charge at 3.3V is: 

𝑄𝑑𝑎𝑦 =
0.02374

3.3
= 7.2𝑚𝐴ℎ/𝑑𝑎𝑦. 

The required accumulator for N dark days can be calculated by: 

𝐶𝑟𝑒𝑞(𝑁) =
𝑄𝑑𝑎𝑦𝑁

0.8
 

e.g. 𝐶req(1) = 9.0 mAh, 𝐶req(3) = 27.0 mAh, 𝐶req(7) = 63.0 mAh, 𝐶req(30) = 270 mAh. 

In the final prototype the installed PV area was slightly below the minimum predicted by 

Eq. (6.16), placing the node in a mild energy-deficit regime at the original 10-minute 

cadence. Rather than alter the hardware, the supervisory algorithm (DREAM) compensated 

in situ by lengthening the sleep interval to 13.24 minutes. This adaptive duty-cycle change 

reduced the average load to match the available harvest, restoring energy neutrality and 

enabling perpetual operation under the same indoor illumination. 

7.3 Low-ΔΤ thermoelectric generator evaluation 

7.3.1 Objective and scope 

The objective of this work is to design and validate an automated experimental platform for 

the low-ΔT characterization of thermoelectric modules (TEMs), with controlled temperature 

differentials to approximately as low as 2 °C across the device. Unlike the extensively 

studied large-ΔT regime, small (to very small) temperature differences remain 

comparatively underexplored; the present setup targets this gap by enabling precise thermal 

control and high-fidelity electrical measurements relevant to near-isothermal operation. 

The scope of Section 7.3 is to describe the mechanical, thermal, electrical, and software 

elements of this setup; detail the operating procedure used to generate stable ΔT ≥ 2 °C; and 

define the measurement outputs—𝑉OC, 𝐼SC, 𝑅int, and 𝑃MPP—that will be used to evaluate 

TEM performance in the low-ΔT regime. 

7.3.2 Experimental apparatus 

The thermal subsystem was designed to establish and maintain small, well -controlled 

temperature differentials across the TEM while minimizing lateral gradients and ambient 

drift. Heating of the hot face was provided by a bank of four 10 W MICA ceramic resistors 

powered by a laboratory DC supply. Their distributed placement and low thermal inertia 
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enabled fine power trimming and uniform heat flux at the module interface, which is 

essential when operating in the 2–8 °C differential range. The cold face was actively 

refrigerated using a Peltier device operated conservatively to support low-ΔT studies. 

Because the Peltier’s effective thermal resistance is low and its operation adds heat to its 

own hot junction, a forced-convection heat sink was attached to that side to evacuate the 

additional load and stabilize the cold-side temperature during steady operation. The 

assembled sandwich of spreaders–TEM–spreaders is shown outside the enclosure in the 

following image. 

 

Figure 7.18 Sandwich formation 

To promote isothermality, 0.5 cm-thick aluminum plates were used as spreaders on both 

sides of the TEM. These plates increased in-plane thermal conductance and suppressed local 

hot and cold spots, improving the fidelity of the applied differential at the active junctions. 

Industrial-grade PT100 RTDs (readable to two decimal places) were embedded in shallow, 

machined recesses in the plates so that, upon assembly, the plates mated flush with the TEM 

in a sandwich configuration without sensor-induced gaps. The measured face temperatures 

are denoted 𝑇hot and 𝑇cold , and the working differential is defined as 

Δ𝑇 = 𝑇hot − 𝑇cold  

To reduce parasitic losses to the environment and improve repeatability, the assembled 

sandwich was housed in a custom 3D-printed enclosure, shown in the following figures. 
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Figure 7.19 3D printed case 

The case was fabricated from PETG, selected for its higher thermal durability and 

dimensional stability under modest temperature rise compared with common PLA filaments. 

By shielding the stack from ambient drafts and limiting direct radiative and convective 

exchange, the enclosure helped maintain stable boundary conditions at low Δ𝑇while 

accommodating cable feedthroughs and mounting features for the spreaders and heat sink. 

The electrical output of the TEM was routed to a custom perfboard that consolidated 

measurement and loading functions. The circuit topology of the perfboard—comprising the 

open-circuit voltage path to a precision DMM, the short-circuit current path through a 

calibrated ammeter/shunt, and a variable load implemented via a high-power 

potentiometer—is depicted in Figure 7.19, while the assembled perfboard hardware is shown 

in Figure 7.20. This arrangement enabled measurement of 𝑉OC and 𝐼SC and a continuous load 

sweep to locate the maximum power point (MPP) by trimming the potentiometer while 

logging voltage and current. 

 

Figure 7.20 Perfboard circuit 
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Figure 7.21 Assembled perfboard 

All hardware—power supplies for the resistor bank and the Peltier, measurement 

instruments, and safety interlocks—was controlled by a LabVIEW supervisory program 

implementing dual PID loops. The hot-side loop modulated the resistor power to track 𝑇hot,set, 

and the cold-side loop modulated the Peltier input current to track 𝑇cold,set. Within this 

configuration the platform can establish and hold Δ𝑇 ≈ 2 ∘𝐶 at the lower limit; the results 

reported in this study focus on Δ𝑇 = 2-8 ∘𝐶. A photograph of the complete experimental 

arrangement, including the enclosure, heatsink, wiring, and instrumentation, is provided in 

Figure 7.21. 

 

Figure 7.22 Complete setup 
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7.3.3 Control and user interface 

All thermal and electrical subsystems were coordinated through a LabVIEW™ supervisory 

program that provides closed-loop temperature regulation and integrated data acquisition. 

The graphical user interface (GUI), shown in Figure x, allows the operator to set independent 

temperature setpoints for the hot and cold faces. Setpoints can be adjusted on-the-fly while 

the system is running; the control loops track the updated targets without requiring a restart. 

The GUI continuously displays the key electrical observables at the TEM—voltage, current, 

instantaneous power, and inferred resistance—alongside real-time plots of the measured hot- 

and cold-side temperatures. For completeness, the voltages delivered by the laboratory 

power supplies to the heater bank and to the Peltier stage can also be visualized, enabling 

the user to correlate actuator effort with thermal response. 

The underlying control logic, summarized in Figure x, implements two independent 

feedback loops. The hot-side loop reads the corresponding PT100 sensor and modulates the 

resistor-bank supply to track 𝑇hot,set, while the cold-side loop reads the cold-face PT100 and 

modulates the Peltier input to track 𝑇cold,set. Temperature, actuator commands, and TEM 

electrical measurements are time-stamped and logged for post-processing and for 

constructing the 𝑉–Δ𝑇 and 𝑃–Δ𝑇 curves reported later 
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Figure 7.23 TEM evaluator GUI 
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Figure 7.24 LabView block diagram 
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7.3.4 Metrics 

The platform reports both thermal-control quality indicators and device-level electrical 

figures of merit, each computed from the synchronized data streams acquired during steady 

operation and during controlled load sweeps. Thermal performance is summarized by the 

commanded face temperatures 𝑇hot and 𝑇cold and by their difference Δ𝑇 = 𝑇hot − 𝑇cold. 

Electrical characterization begins with the open-circuit voltage 𝑉OC and the short-circuit 

current 𝐼SC, obtained by switching between the corresponding measurement paths. In the 

low-Δ𝑇 linear regime, the effective module Seebeck coefficient is estimated as 𝛼eff =

𝑉OC/Δ𝑇; when multiple Δ𝑇 levels are available, 𝛼eff is more robustly obtained from the slope 

of a least-squares fit of 𝑉OCversus Δ𝑇. The internal electrical resistance of the device is 

inferred from the Thevenin relation as 𝑅int ≈ 𝑉OC/𝐼SC. An independent estimate is obtained 

from the slope of the 𝐼–𝑉 characteristic recorded during load sweeps, and the two values are 

compared as a consistency check. 

Load sweeps are performed by trimming the potentiometer while logging voltage and current 

at the module terminals; instantaneous electrical power is computed as 𝑃 = 𝑉𝐼 and mapped 

to the corresponding load resistance 𝑅𝐿 = 𝑉/𝐼. The maximum power point is defined by 

(𝑉MPP, 𝐼MPP) with 𝑃MPP = 𝑉MPP𝐼MPP. Under an ideal Thevenin model, 𝑅𝐿  at MPP equals 

𝑅int, and 𝑉MPP ≈ 𝑉OC/2, 𝐼MPP ≈ 𝐼SC/2, yielding 𝑃MPP ≈ 𝑉OC𝐼SC/4. Departures from these 

equalities quantify non-idealities such as contact resistances, temperature drift during the 

sweep, or weak nonlinearity at the smallest Δ𝑇. 

We report 𝑉OC(Δ𝑇), 𝐼SC(Δ𝑇), and 𝑃MPP(Δ𝑇); when 𝑅intis approximately constant over 2-

8oC, 𝑃MPP exhibits the expected near-quadratic scaling with Δ𝑇. Each curve includes 

uncertainty bands obtained by propagating the measurement errors of temperature, voltage, 

and current, and repeatability is summarized by the spread of repeated runs at fixed Δ𝑇. 

Together, the principal metrics are 𝑅int, 𝑉OC(Δ𝑇), 𝐼SC(Δ𝑇), and 𝑃MPP(Δ𝑇). 

7.3.5 Results 

The high-ΔT reference (commercial module) demonstrates substantially larger terminal 

levels than those observed under near-isothermal operation: both the voltage at maximum 

power (𝑉MPP) and the corresponding maximum power (𝑃MPP) are markedly higher when the 

temperature differential is large. This reference behavior, shown in Figure 7.25, provides 

scale for interpreting the low-ΔT results that follow. 
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Figure 7.25 Marlow TG12-6 output in high ΔΤ 

In contrast, when the temperature differential is constrained to 2–8𝑜C, the measured 𝑉MPP 

and 𝑃MPP are greatly reduced but remain well behaved and monotonic with Δ𝑇. For the first 

device (TEM-A), 𝑉MPP increases steadily with Δ𝑇, and 𝑃MPP rises smoothly across the range; 

the same qualitative trends are observed for the second device (TEM-B), with absolute levels 

shifted relative to TEM-A. These datasets are presented in Figure 7.26 (TEM-A) and Figure 

7.27 (TEM-B). 

 

Figure 7.26 Marlow TG12-6 output in low ΔΤ 
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Figure 7.27 ATS-TEC40-39-004 output in low ΔΤ 

Despite the much lower outputs than in high-ΔT operation, both devices deliver sufficient 

power in the ΔT = 2–8 °C window to run an embedded node under an appropriate energy 

budget (e.g., duty-cycled sensing, intermittent radio). In this regime the open-circuit voltage 

and the operating voltage at maximum power are very small, so practical deployments 

require ultra-low-voltage energy harvesters—of the type discussed in the previous chapter—

capable of cold start and efficient boost at millivolt-level inputs. Consistent with the manual, 

conversion efficiency drops sharply as ΔT decreases (5.03% at ΔT = 180, 2.42% at ΔT = 

60), and our end-to-end measurements on the target platform show only 0.41% at ΔT = 8, 

reflecting realistic coupling and conversion losses. These figures tighten the neutrality 

margin at modest ΔT and increase the likelihood of survival-mode operation unless 

workloads are derated or additional headroom is provisioned.  
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8 Conclusion and future directions 

Chapter 8 consolidates the thesis’ technical results into a coherent narrative and translates 

them into design guidance. We first recapitulate the main findings—environmental energy 

characterization, loss-aware power-path modelling, the DREAM runtime, and trace-driven 

sizing—emphasizing the guarantees each provides and the evidence supporting them. We 

then articulate the contributions relative to the state of the art, discuss practical implications 

and limitations, and chart specific directions where the approach can be extended. The goal 

is to leave the reader with a concise, actionable picture of what is now possible for 

energy-autonomous µCPS and what remains to be done.  

8.1 Summary of findings 

This thesis advanced a node-centric, loss-aware framework that makes energy-autonomous 

operation of micro-scale cyber-physical systems (µCPS) predictable rather than best-effort. 

Beginning from a principled definition and characterization of diffuse environmental energy 

Φ as observed at the point of use, we established decision-relevant descriptors (windowed 

energy envelopes, availability above source-side thresholds, calm-duration statistics) that are 

independent of any particular transduction pathway and preserve the temporal structure that 

matters for design and control. These descriptors provide conservative, evidence-bearing 

bounds for what is even conceivable in a deployment window. 

Building on this environmental ceiling, we introduced a unified energy-collection 

architecture and macroscopic model that explicitly represent non-idealities across the power 

path—converter operating regions and efficiencies, cold-start energy, protection thresholds, 

storage leakage and round-trip penalties, and output-path overheads. Treating sources, 

conversion, storage, and controllable loads as a closed loop with measurable proxies yields 

tractable state equations in the space of stored energy and enables reasoning on the same 

side of the power path for both harvest and demand. This stance avoids double counting and 

aligns design-time modelling with runtime observability. 

From this model, the thesis delivered two complementary artifacts. First, DREAM (Dynamic 

Rest & Energy-Aware Management), a runtime that regulates work at epoch boundaries 

using sparse, low-cost telemetry (primarily a reliable store proxy and protection events). 

DREAM provides: (i) an explicit neutrality law that nulls drift under surplus; (ii) a survival 

cadence that guarantees a configured horizon under scarcity; (iii) mode selection and 



   

181 

 

protection gating that bound behavior across cold-starts and brown-outs; and (iv) 

constant-time, constant-space control contracts that are portable across storage technologies 

and hardware revisions. Collectively, these properties replace ad-hoc duty-cycle heuristics 

with interpretable, evidence-tracing decisions. 

Second, a trace-driven sizing methodology operationalized the model into concrete hardware 

choices—harvester technology and area, storage type and capacity, thresholds and 

hysteresis, and converter operating regions. The method replays representative input  and 

load traces through measured macromodels to close the energy balance over 

deployment-relevant windows, quantify survivability and autonomy margins, and surface 

corner cases (e.g., dawn start-up, lull-induced depletion, retry storms) that average-power 

analyses miss. Where measured traces are scarce, lightweight synthetic generators that 

preserve mission-relevant temporal statistics offer a practical surrogate without biasing 

neutrality checks. 

The approach was validated through case studies and experiments spanning simulation and 

hardware prototypes. Results demonstrated that, even under weak and intermittent sources 

(e.g., low-ΔT thermoelectric operation), the proposed architecture and runtime can sustain 

predictable service with materially fewer brown-outs than battery-only baselines or 

managers that ignore conversion losses and protection dynamics. The overall outcome is a 

principled path from environmental fluxes to system-level guarantees, enabling 

maintainable, sustainable µCPS deployments. 

The guarantees provided in this thesis remain bounded by the traces and models used: they 

assume reasonably stationary statistics of the harvested energy over the mission horizon, do 

not account for rare catastrophic faults or hardware aging, and do not claim optimality of 

DREAM beyond the invariants we prove for windowed neutrality and survival. 

8.2 Contributions to the field 

The thesis contributes: 

1. A device-agnostic formalization of diffuse environmental energy Φ for µCPS 

design. The definition and accompanying statistics (percentile envelopes of 

windowed energy, availability above practical thresholds, calm-duration 

distributions) create a neutral interface between environmental measurement and 

subsequent sizing and control, independent of specific transducers or circuits. 
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2. A unified, loss-aware energy-collection model and architectural vocabulary. By 

coupling reference architectures with a macroscopic state equation in stored-energy 

space, the work makes explicit the role of cold-start, thresholds, leakage, and 

efficiency plateaus, and identifies the minimal telemetry that the power path must 

expose for sound runtime control. 

3. DREAM: a constant-overhead runtime with neutrality and survival guarantees. 

DREAM’s epoch-based regulation uses only low-cost observables, achieves 

neutrality under surplus, and enforces a survival cadence under scarcity, providing 

interpretable control with bounded compute/memory costs suitable for 

microcontrollers. 

4. A trace-driven, window-neutrality sizing methodology with quantitative 

guarantees. The method closes the energy balance on the input/storage side using 

measured or faithfully synthesized traces, producing concrete harvester area, storage 

capacity, and threshold settings that meet autonomy targets with stated confidence 

while revealing critical corner cases. 

5. Evidence of practicality across representative µCPS. Through simulation models, 

hardware prototypes, and comparative baselines, the thesis shows that a loss-aware, 

telemetry-sparse approach improves autonomy and predictability without 

burdensome sensing or complex forecasting. 

Taken together, these contributions reframe energy autonomy from a component-level 

efficiency pursuit to a system-level guarantees problem with clear contracts between 

hardware, firmware, and measurement practice. 

8.3 Recommendations for future work 

The results point to several avenues where focused effort can yield outsized gains:  

1. Tighter integration of conversion control and runtime policy. Present 

implementations treat MPPT/boost/buck control as largely independent of 

DREAM’s epoch timing. Joint design—in which converter set-points and mode 

changes are co-scheduled with epoch decisions—could recover additional margin, 

especially in millivolt-level thermoelectric and low-illuminance indoor-PV regimes. 
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2. Deliverability-aware sizing beyond energy neutrality. The current methodology 

guarantees energy balance and survival over windows; future work should embed 

burst deliverability constraints explicitly (e.g., radio TX/RX spikes, sensor 

warm-ups) in the sizing objective, capturing ESR, converter current limits, and 

transient impedance effects so that worst-case crest factors are provably admissible. 

3. Formal robustness under non-stationarity. While percentile envelopes and calm 

statistics address variability, systematic drifts (seasonality shifts, occupancy changes, 

aging) motivate robust counterparts—e.g., distributionally robust neutrality tests, 

adaptive survival horizons, and online identification of efficiency/ leakage 

parameters that preserve guarantees under slow change. 

4. Multi-source coordination and hybrid storage. Extending the model to cover 

concurrent heterogeneous harvesters with shared constraints (e.g., indoor PV + 

vibration) and hybrid stores (supercapacitor + rechargeable micro-battery) would 

enable cross-domain arbitration, prioritize sources by marginal round-trip efficiency, 

and mitigate cold-start traps. 

5. End-to-end verification toolchain. A practical outcome is a reference 

implementation that ingests environmental/ load traces, identifies macromodel 

parameters from lab measurements, runs window-neutrality/survivability checks, 

and emits firmware-level configurations (epoch length, thresholds, survival cadence) 

together with guarantees. Packaging this flow as an open tool would accelerate 

adoption and facilitate reproducible evaluation. 

6. Telemetry contracts and standards. The runtime’s minimal-telemetry stance 

suggests a small, standard interface—store proxy characteristics, protection event 

semantics, and optional source proxies—between power-management hardware and 

firmware. Defining and standardizing this interface would improve portability across 

vendors and platforms. 

7. Application-specific studies at scale. Larger deployments in buildings, logistics, 

and environmental monitoring can probe model fidelity under operational diversity, 

quantify maintenance savings versus battery-centric designs, and surface new edge 

cases for the sizing and runtime policies. 
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8.4 Emerging trends and future research directions 

Several technological and methodological currents align with and extend the thesis:  

• Ultra-low-voltage conversion and cold-start innovations. Advances in sub-50 

mV cold-start, nano-ampere quiescent controllers, and SIMO architectures can 

materially expand the feasible envelope for low-ΔT thermoelectrics and indoor-PV. 

Co-design with DREAM can translate these gains into longer survival and smaller 

stores. 

• Energy-proportional radios and sensing front-ends. Radios that expose 

energy-aware MACs, hardware pacing for preamble sampling, and wake-on-pattern 

receivers reduce crest factors and align communication bursts with harvest. Similar 

trends in sensors (e.g., duty-proportional analog front-ends) simplify deliverability 

guarantees. 

• Learning-light controllers with guarantees. Lightweight, certification-friendly 

learning modules (e.g., bandit-style epoch tuning, robust regression on efficiency 

proxies) can adapt parameters without violating safety predicates. The objective is 

not forecast accuracy per se, but guarantee-preserving adaptation under slow drift. 

• Trace ecosystems and benchmarks. Public corpora of µCPS-scale environmental 

and load traces—measured with protocols that preserve spectral/temporal fidelity 

and accompanied by geometry/context metadata—would enable fair comparisons 

of sizing and runtime policies, and de-risk transfer across sites. 

• Sustainable materials and circular design. As autonomy improves, the bill of 

materials can pivot away from large primary cells toward recyclable stores and 

small secondary chemistries, aided by right-sizing from window neutrality. 

Life-cycle analyses under realistic duty/harvest profiles can quantify environmental 

benefits. 

• Security and trust under intermittent power. Guarantee-preserving power 

contracts can simplify secure boot, key retention, and privacy-sensitive sensing 

under brown-out dynamics, motivating research at the intersection of energy-aware 

control and system security. 



   

185 

 

 

By elevating environmental characterization, loss-aware modelling, and minimal-telemetry 

runtime control to first-class citizens—and by validating the approach with trace-driven 

sizing and representative prototypes—the thesis turns ambient energy from a convenience 

into a design foundation. The proposed framework equips designers to build µCPS that are 

not merely efficient but predictable in the wild, and it opens clear paths for community 

contributions in modelling, tooling, hardware co-design, and large-scale evaluation.  
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Author’s publications 

1. Naskari, V.; Doumenis, G.; Masklavanos, I. Irradiance Non-Uniformity in LED Light Simulators. 

Information 2023, 14, 316. https://doi.org/10.3390/info14060316 

2. I. Masklavanos, V. Naskari, C. Koutsos, F. Vartziotis, G. Doumenis, S. Siskos, A. Bardakas, A. 

Segkos, C. Tsamis, C. Papakis and G. Koukas, "Design of an Autonomous Wireless Electric Field 

sensor for maritime applications: the EFOS project", Edge Intelligence 2023, Emerging Tech 

Conference 

3. G. Doumenis, V. Naskari, E. Hristoforou, P, Pattakos, G. Stamou, C. Papakis and I. Masklavanos, 

"Design of an Autonomous, Multi-functional Stress Assessment Sensor for Naval Applications: the 

AMSA project", Edge Intelligence 2023, Emerging Tech Conference 

4. K. Tsiapali, S. Katsikas, A. Sakellariou. G. Doumenis and I. Masklavanos, "Self -powered IoT 
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