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ABSTRACT

Gravity was the first of the fundamental interactions to be studied, yet it remains the least
understood. In the 17th century, Isaac Newton formulated his law of universal gravitation.
Although Newton’s law could predict how gravity behaved, it offered no explanation for the
mechanism behind the attraction of two bodies across empty space. This mystery persisted for
centuries until 1915, when Albert Einstein reimagined gravity itself not as a force, but as the
curvature of spacetime caused by mass and energy. Despite the successes of General Relativ-
ity, numerous alternative theories have since emerged in attempts to modify Einstein’s theory.
Lovelock’s theorem provided a theoretical foundation for this pursuit by constraining the possi-
ble forms of such modifications. Among the simplest of these is the introduction of a scalar
field, leading to the class of models known as scalar—tensor theories. Scalar-tensor theories
can describe both the early inflationary phase of the universe, where a scalar field drives the
inflationary expansion, and the late-time accelerated expansion, where the scalar field provides
an alternative to the cosmological constant in ACDM. In the 1970s, Lovelock and Horndeski

formulated the most general scalar—tensor theory in four dimensions.

In this thesis, we study modified theories of gravity using invariant variational principles. In
Chapter 2, we apply the methodology originally employed by Horndeski to a simpler model of
gravity, whose Lagrangian involves the metric, its first and second derivatives, and a scalar field
along with its first derivative. In Chapter 3, we examine the modern formulation of Horndeski’s

theory, its re-emergence in physics, and derive the corresponding field equations.
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Chapter 1. Introduction

Chapter 1

Introduction

1.1 Mathematical Preliminaries

Within the framework of the General Theory of Relativity (GR), gravity ceases to be un-
derstood as a force and is instead conceived as a consequence of the geometry of spacetime.
To better comprehend this concept, it is essential to define certain mathematical entities first, in
order to describe a curved spacetime. The branch of mathematics that studies these properties
is known as Differential Geometry, and the tools required to describe gravity will be introduced

in this section [1], [2].

1.1.1 Tensors

A key benefit of classical vector analysis is its ability to represent geometric and physical
relationships compactly, independent of any coordinate system. However, the traditional notion
of a vector can be restrictive. While a vector in three-dimensional space is fully described by
three components relative to a chosen coordinate system, many physical and geometric quantities
demand more than three components for their complete characterization (Inertia tensor of a rigid
body I;;, Electromagnetic field tensor Fyy). Tensor calculus offers a natural extension to address
these more complex cases. Moreover, a proper description of nature should not depend on
the coordinate system chosen for representation. Mathematically, this is achieved by expressing
physical laws in terms of tensorial quantities. Tensors are a generalization of vectors and dual
vectors. The components of a tensor can be determined once a specific basis is chosen for the

vectors on which the tensor acts.
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In a coordinate transformation:

= (x") (1.1.1)

the components of a vector transform as

- oxt
AH = v 1.1.2
o ( )
Similarly, for the components of a dual vector, the transformation rule is
_ oxY
u= 8)E”Av' (1.1.3)

Generalizing this, the components of a tensor of rank (k,p)-which we will hereafter equate

with the tensor itself-follow the transformation law

AMIH--- (_g) o oxt itz dite dx™ Jx™ dx* Mo A ( 5)
Vv vp X = IxM gxrz oxrx dxV1 dxv2 ax"p 17 Tp )

(1.1.4)

The way in which a tensor transforms under a change of coordinates ensures that any tensorial
relation remains independent of the coordinate system in which it is expressed. Consequently,
any equation describing a fundamental law of nature must be a tensorial equation. Otherwise,
it would only hold in a specific reference frame and would change under a transformation to

another frame.

An important extension of the concept of tensors is the introduction of relative tensors![3].
This significance arises from the fact that the integral of a scalar does not qualify itself as
a scalar.” To ensure that an integral over a given region remains invariant under arbitrary
coordinate transformations, it is necessary for the integrand to be a relative scalar, commonly

referred to as a scalar density.

In general, a set of n**P functions

ARIGE, (%)

constitutes the components of a relative tensor field of type (k,p) and weight w if, under the

coordinate transformation (1.1.1), these functions transform according to the following relation

XM gt gxvi ox"p
! M, () (1.15)

T7 OxM OxHx 9 m 9x

A A —c
A l’Fl..’.ch(x )

where B = det(%) is the Jacobian of the transformation. Similarly, a scalar function w(x*)

'In physics, the term “tensor density” is common. Here we use the more general mathematical term “relative tensor,” of
which tensor densities are a special case.

2In physics, it is frequently needed to deal with invariant integrals in order to construct actions of physical theories such as
General Relativity and Electromagnetism.
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is said to represent a relative scalar field of weight w, if under the coordinate transformation

(1.1.1), the transformation of this function is given by
y(xY)=B"y(x"). (1.1.6)

A relative scalar of unit weight is called a scalar density. To highlight the significance of the

concept, we present the following example. For the integral of a scalar function f(x*),
I:/f(x”)dxl...dx",
the corresponding value of the integral in the X-coordinate system is expressed as
f:/f()?“)Bildxl .dx"

where f(x*) is the transformation of f(x*). The B~! term appears due to the transformation
properties of the volume element. On the other hand, if the integrand f(x*) happens to be a

scalar density, then it follows immediately from the transformation (1.1.6) that
FE)B ! = f(xt)
and if this is substituted, one obtains
/ F#)dR . .dx = / FO)dx! . dx”

which ensures that the integral achieves the desired invariance.

1.1.2 The Metric Tensor

In physics, particularly in differential geometry and GR, the metric, is defined as a (0,2)-
type tensor on a manifold. The metric provides a means of measuring distances on the manifold
and encapsulates all the information about the geometry of the space. By selecting a specific
basis, the components of the metric can be represented as a symmetric n X n matrix, where
n=dim(M) is the dimension of the manifold M. The metric must only satisfy the following

conditions:

* Symmetry:

8uv = 8vu
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* Non-degeneracy:

det(guv) # 0

The requirement of non-degeneracy allows us to define the inverse metric, as the matrix gy is

invertible. We denote the inverse metric as gV, and it satisfies the relation

gungp = 6[1)-

Similarly, g"V can be considered as the components of a symmetric (2,0)-type tensor. Using
the metric and the inverse metric, we can raise and lower indices of vectors and tensors as
follows

X, = gleV
XH* =g"x,.

To gain a clearer understanding of the concepts discussed above, we will now present a few
simple examples of manifolds. In a three-dimensional Euclidean space with Cartesian coordi-

nates (x,y,z), the metric takes the form

1 0 0
g,uv—5uv— 01 0
0 0 1

and the line element, which represents the infinitesimal distance between two points in the
space, is given by

ds® = dx* +dy* +dz*.

For the same three-dimensional Euclidean space, performing a coordinate transformation

(6,3,2) = (r,0,9)

where

x=rsinfcos¢, y=rsinfsing, z=rcosH,

the line element becomes

ds® = dr* 4 r*d6” + r* sin® 0d §?
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and the components of the metric are

1 0 0
Suv=1,0 r 0
0 0 r*sin’6

Although the components of the metric in the two previous cases are different, the space and

its properties remain the same.

Another example of a manifold is the Minkowski spacetime of the Special Theory of Rela-
tivity (SR). In this case, the space is pseudo-Euclidean, and by choosing a suitable Cartesian

coordinate system (¢,x,y,z) for its description, the metric takes the following form

1000
o 100
e = 01 0

0 00 1

The line element, corresponding to the infinitesimal distance between two events on the mani-
fold, is given by
ds* = —di* +dx* +dy* + dZ

or equivalently

ds* = na[;dxadxﬁ.

Both examples above describe flat spaces. In the first example of three-dimensional Euclidean
space, the metric is positive definite, and the corresponding manifold is Riemannian. In the
second case, Minkowski space serves as an example of a Lorentzian manifold, where the metric
is not positive definite. The negative sign associated with the time coordinate ensures that the
spacetime interval ds” is invariant under Lorentz transformations. From these examples, we see
that the metric essentially provides a way to connect the physical distances between “points”

on a manifold to the variations in the coordinates used to describe the manifold.

After formulating the Special Theory of Relativity in 1905, Einstein aimed to reconcile grav-
ity with the principles of SR. This led to General Relativity (GR), where spacetime is modeled
as a Lorentzian manifold. The properties of spacetime are also described by a metric. However,
in this case, the metric does not necessarily have the form of the Minkowski metric. The space

ceases to be flat, and the line element takes the general form

ds* = guydx*dx".
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The deviation from the flat-space metric arises from curvature. This curvature gives rise to
the physical phenomena we interpret as gravity. However, as discussed above, the form of the
metric depends on the choice of the coordinate system. Therefore, the metric alone is not a
reliable criterion for determining the curvature of a manifold. In the following, we will see that
the appropriate way to describe the curvature of a manifold is through the Riemann Curvature

Tensor.

1.1.3 Covariant Derivative

In an arbitrary manifold, the concept of differentiation is different from the usual one, as
defining a derivative requires, in some way, the comparison of vectors or tensors in general,
which are defined on different tangent and cotangent spaces of the manifold. Therefore, to
define the derivative, we need a way of relating these different spaces. There are various def-
initions of differentiation, which use different methods to connect the tangent spaces. In this

subsection, we will present the covariant derivative [1].

In general, if we try to differentiate a vector or a tensor field in the usual way
dvat (x)

we can see that under general coordinate transformations (1.1.1), this object ceases to be a

tensor. Indeed, we have the relation

c U G M c 251
a‘_}a#(x):ax 0 (8x )>_8x ox o J0x° 0%k

o axo \ o P ) T 55 90 77 T 9% a0 ©

and comparing with the general tensor transformation relation (1.1.4), we see that the sec-
ond term, which contains second derivatives, breaks the tensorial character. For transformations
where the second derivative vanishes, then this object would indeed be a tensor. This is the
case in SR where transformations are restricted to Poincaré (Lorentz boosts, rotations, and trans-
lations), which is why there is no issue with differentiating tensors. This reflects the fact that
SR operates in flat spacetime, where a single global tangent space suffices, and no additional
structure is needed for differentiation. On the other hand, in general spaces with curvature, the
definition of different tangent spaces at each point of the manifold is required, and these spaces
must somehow be related. The definition of the covariant derivative requires the introduction of

an additional structure on the manifold, known as an affine connection. The covariant derivative
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is typically defined as

Veej= w;k(x)ei,

where the coefficients a);k represent the connection and e; is an arbitrary vector base. In gen-
eral, the choice of connection on a manifold is arbitrary (but it must be chosen in such a way
that various compatibility conditions are satisfied). Each different choice of connection leads to
a different definition of the covariant derivative. With any given connection, we can associate a
tensor called the torsion tensor. The torsion tensor captures the antisymmetry of a connection

in its lower indices. In a coordinate basis, it is defined by
Ho_ ol I
T, = Wyp — Wpy.

In the case of General Relativity, we make a specific choice of connection known as the

Levi-Civita connection which, is characterized by two fundamental properties:

* Absence of torsion:
The torsion tensor vanishes (T vp = 0), implying the connection coefficients are symmetric
in their lower indices:

u

n
0"y =0y

This symmetry is essential for locally reducing to Cartesian coordinates (where a)"fp =0)

in small spacetime regions.

e Metric compatibility:

The covariant derivative of the metric vanishes:
Voguv =0, Vg’ =0.

This ensures that inner products are preserved under parallel transport.

It is customary, when using the coordinate basis, to denote the connection coefficients by Ff,lp,
called the Christoffel symbols. Due to the torsion-free property of the Levi-Civita connection,

these symbols are symmetric in their lower indices:
u u
Iy, =Tpy.

However, F“fp is not a tensor. Under a coordinate transformation ¥* =x*(xV), it transforms as:

po QXA OR L, 00 ox O
HA T 05k Ozt 9xP % 9xH 9ih Ix¥IxC



Chapter 1. Introduction

The non-tensorial character of the connection is necessary. It is essentially a controlled “break-
ing" of the tensorial behavior in such a way that makes the covariant derivative itself a tensorial
quantity. Based on the above, the covariant derivative acts on vector and dual vector fields as
follows:

V¥ =9uVY +T, VP (1.1.7)

for a vector field VY, and

VyAy = auAv - FeuAp (1.1.8)

for a dual vector field A,. These definitions extend to arbitrary (k,p)-tensors via the Leibniz
rule, with a +I" term for each upper index and a —I" term for each lower index. For scalar

fields defined on a manifold, the covariant derivative reduces to the usual partial derivative:
Vu® =9, ® (1.1.9)

For the Levi-Civita connection, we can derive a relationship between the metric and the
Christoffel symbols by enforcing metric compatibility (Vpguy =0) and the torsion-free condition

(Fﬁv = l"%ﬂ). Starting from the covariant derivative of the metric:

Vpguv = apguv - rg,ug)tv - nggul =0.

Cyclically permuting the indices p,u,v, we obtain two additional equations
Viugvp = ugvp —Thygrp —Thogya =0
u8vp u8vp uv8aip up8va

vapu = avgpu - F&pg/lu - F\};ugpl =0.

Combining these, yields the following result
Voguv —Vugvp — Vv&pu = Ipguv — dugvp — dv&pu + 28)Lprﬁv =0
which can be recasted as
glprﬁv = % (augvp +dvgpu — apguv) .
Multiplying both sides by gP9, we get

1
gpaglprﬁv = Bfrﬁv = Qgpa (Qugvp +vgpp — Ipguv)
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and, the Christoffel symbols are given by

1
ng = Egpc (augvp +ovgpu — apguv) . (1.1.10)

This shows that the connection is completely determined by the metric and its first derivatives.

1.1.4 Geodesic Equation

We now consider a curve on a manifold parameterised by A given by x*(A). Then, a vector
VH is said to be parallel transported along a curve [1], if its direction remains unchanged as it

progresses along the curve. In more precise terms,

dxt

—V,VV =0, 1.1.11
dr - * ( )
which can be thought of as projecting the covariant derivative V,V" along the direction of the

dxt
tangent vector to the curve ar

If the vector is itself the tangent vector such that VV = %, then the condition for parallel

transport becomes
>V, dx*dx°®

W—'_ ”Gﬁﬁ: (1112)

This is the geodesic equation, which determines the motion of objects in a curved space in

3

the absence of external forces.” Geodesics are the ‘“straightest possible” paths in curved space,

generalizing the notion of straight lines in Euclidean geometry. It can also be derived by min-

imising the action of a free particle in a curved space, given by the integral of the proper time

S:/dr.

dt* = —guydx*dx".

along the path of the particle

where,

It can be observed that (1.1.12) recovers the conventional concept of straight lines when the
connection coefficients correspond to the Christoffel symbols in Euclidean space. In this case,

it is possible to select Cartesian coordinates in which the Christoffel symbols vanish (1"“1(7 =0),

3When external forces are present, additional terms appear on the right-hand side of the equation to describe the specific
Lo v d T
da? o dx dA —

interaction. For example, electromagnetic forces introduce a term proportional to the field strength tensor
(q/m)F}(dx* [dA).
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leading to the reduction of the geodesic equation to that of a straight line.

1.1.5 The Riemann Curvature Tensor

The connection contains information about curvature, but only in an indirect way. By itself,
the connection is insufficient to describe the geometric notion of curvature, since it is not a
tensorial quantity. This means that it will change depending on the coordinate system used
even for the same space. The mathematical object that describes the curvature of a manifold is
the Riemann curvature tensor, and it is defined as follows [1]

[V, Vy]VP :R’LWV}L. (1.1.13)

This quantity is directly related to how the components of a vector will change when it is
parallel transported around a closed curve in the manifold. In the case of a flat space, parallel

transporting around a closed curve does not affect the components of a vector, and therefore,

0
Rluv

=0. Expanding (1.1.13), we obtain the well-known expression for the curvature tensor
Vi, Vy]VP =V, (VyVP) =V (V,VP) =
[V, Vy VP = 9u(VyVP) = T4 (VaVP) + T (VyVO) = 0y (VuVP) + 5, (VAVP) —~Th6(V,uVO)

substituting the covariant derivatives in the parentheses based on (1.1.7), we are left with

Vi, Vy VP = 9y (947 +T06VO) —Th, (VP +T% VO)
O (JVF +ThoV) +Tho (V7 +T5, V)

Ty (93VP +T5,V) =T (3uVo +TG, V).

Simplifying the terms, the first and fifth term cancel out, because partial derivatives commute
dudy = dydy. Taking into account the terms that cancel out and renaming some indices A <+ &

in the two terms where V* appears, we arrive at the following relation

A A A A
Vs VoIVP = (3uTf6 = 0T + 1%, Tho = 1%, Tho ) VO = (Thy = Thy ) (911 +1%,v°).

Using the definition of the torsion tensor 7 and noting that the terms in the last parentheses

can be written as the covariant derivative of the vector VP according to the definition (1.1.7),

10
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we are led to
[V, Vy VP = (aurﬁ(, — 0T +T%,Thy rﬁlrﬁc> VO —TAV,VP. (1.1.14)

However, as mentioned before, for the choice of the Levi-Civita connection, the torsion ten-
sor vanishes. Finally, by comparing with (1.1.13), we obtain the final result for the Riemann
curvature tensor

RP oy = 9uTh6 = T + 17, Ty — T4, Tho (1.1.15)

From (1.1.15), the Riemann curvature tensor satisfies the following symmetries*:

Rpcmv = —Rapuv
Rpouv = —Rpovy

Rpcuv = Ruvpc

along with the cyclic identity:
Rpouv +Rpuve +Rpvop = 0.
Another important property that the curvature operator satisfies, is the Bianchi identity:
ViRpouv +VuRpsva +VvRpory = 0. (1.1.16)

The Riemann curvature tensor fully encodes the geometric curvature of a manifold. By contrac-

tion, one obtains the Ricci tensor Ry, a simpler but equally important quantity tensor
Roy = Rpapv,
which expands explicitly as:
A A
Roy = pIPvo =W I gp +T",oI7)  — T 6T . (1.1.17)
Finally, contracting the indices of the Ricci tensor, we can obtain the scalar curvature
R=g" Ryy. (1.1.18)

We can also define the Einstein tensor starting from the Bianchi identity and using the proper-

ties of the curvature tensor. Multiplying (1.1.16) by gHP, we get

gup (V)LRpcmv + V,uRpcM + Vvac)Ly) =0.

“4In n dimensions, these symmetries reduce the Riemann tensor from n* to ﬁnz (n? — 1) independent components.

11
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Exploiting the metric compatibility condition Vg =0, we simplify this to
ViRoy + ViR —VyRs; =0.
Contracting with g and using R = g*VRyy yields
ViRh, +VuR* .~V R=0.
The second term is simplified as follows

A
ViR vi = Vu(8"°Rov)

= VIJR'MV’
where we used the properties of the Riemann tensor. Substituting, we get
ViR*, —VyR+ VR, =2V,R*, -V, R=0=

1
Vyu (R“V — 255‘16) =0.

Finally, multiplying by g"°, we obtain
1
Vu (gVGR”v — 2gvc5\‘fR> =0=
wo _ L uo
The expression within the parentheses is known as the Einstein tensor

1
G[JV =Ruv— EguvR

(1.1.19)

(1.1.20)

and is symmetric. As shown above, we have essentially demonstrated that the Einstein tensor

satisfies the relation

V,G*Y =0.

(1.1.21)

Einstein’s fundamental insight was that the geometry of spacetime directly depends on its

energy content. In GR, the spacetime metric g,y is dynamically determined by the distribution

of matter and energy. All information about the energy is contained within a symmetric (0, 2)-

tensor Ty, called the energy-momentum tensor instead of a mass density scalar function p(x)

as in Newtonian gravity. With this reasoning, the field equations of gravity should take the

form

A}LV == KT“V

12
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where Ay, must be some symmetric second-rank tensor and k is a constant of proportionality.
Based on the earlier discussion about curvature, the Riemann curvature tensor is the most suit-
able choice to describe the geometry of space. However, this cannot be done, as it is a (1, 3)
tensor. Therefore, the next logical choice would be the Ricci tensor, which seemingly satisfies
all the conditions. Indeed, Einstein’s first attempt to formulate the gravitational field equations
had the following form

Ryy = xTyy.

The problem with the Ricci tensor choice is that, although the conservation of energy requires
that
V. T* =0.

Something similar, as we showed, does not hold in general for the Ricci tensor.
\Y ”R“" #0.

A better choice for the tensor Ayy, which ultimately turned out to be the correct one, is the
Einstein tensor Gy, as it is a symmetric linear combination of the Ricci tensor R,y and the
metric gy, and as we have shown, it satisfies (1.1.21). Therefore, the correct form of Einstein’s
field equations is

GIJV == KT'uv.

The constant x is determined by requiring that General Relativity reduces to Newtonian gravity

in the weak-field limit. This analysis yields the value
Kk =8nG

where G is Newton’s gravitational constant. The final form of the field equations resulted from
Einstein’s sustained theoretical work spanning nearly a decade. The critical breakthrough came
in mid-1912 when Einstein recognized the fundamental role of the metric tensor in describing
gravity. Following this realization, Einstein began a rigorous study of differential geometry with
Marcel Grossmann’s guidance, who introduced Einstein to Ricci and Levi-Civita’s work on ten-
sor calculus [4]. This process was not without its challenges and revisions. A prime example
is the Entwurf theory [5], an early, mathematically incomplete attempt at a theory of gravity in

collaboration with Grossman.

13
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1.2 Einstein Field Equations

1.2.1 Einstein-Hilbert Action

Like every fundamental physical interaction, gravity can also be described through an action.
The action from which the field equations are derived using the calculus of variations must
remain invariant under coordinate transformations. Otherwise, the resulting laws would depend
on the reference frame chosen in each case. The simplest scalar quantity that can be con-
structed from the metric gyv and its derivatives is the Ricci scalar R, which is derived from
the curvature tensor. Since gravity is understood as a manifestation of spacetime curvature, it is
reasonable to expect that the action will incorporate the curvature tensor in some form. Based
on this reasoning, the simplest choice of action is the Einstein-Hilbert action, first proposed in

1915 by David Hilbert [2]. Its form is given by

1
Spy = —/ d*x\/—gR (1.2.1)
2K Ju

where k = 87G. The term d*x,/—g is the invariant volume element, where g denotes the
determinant of the metric tensor, and M is the region of spacetime over which the integral
is evaluated. It is straightforward to see from the definitions of the Riemann curvature tensor
RP ouvs the Ricci tensor Raﬁ, the Ricci scalar R, and the Christoffel symbols l““f)L that the
Einstein-Hilbert action contains derivatives of the metric g,y up to second order. The field

equations can be derived by considering a variation of the metric

8uv — 8uv +5guv

for which we assume that both the variation and its first derivative vanish on the boundary of
M.

Sguv om = 9(5guv) om =0. (1.2.2)

Finally, by setting the variation of the action 85 =0, we will arrive at the field equations of

gravity. Expressing the Ricci scalar using (1.1.18), we obtain

S8SEH = i/M\/—gRﬁ(\/—g)d4x+/M5g”VRuV\/—gd4x+/A./Ig”v5Ruv\/—gd4x. (1.2.3)
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It is convenient to use 8g*¥ instead of Ogyy. These, of course, are not independent, they are
related by the well-known relation’

g"gpy =85 (1.2.4)

The variation of the first term 8,/—g can be easily computed by considering the identity, ac-

cording to which, for a square invertible matrix, the following holds

5(det(A)) = Tr(A~'8A).

det(A)

Then, for the metric, we have

1
0(vV—8)=77—=06(-¢) = —EVngWSg“V. (1.2.5)

Based on the above, (1.2.3) can be written as

. 1 1 )
SSEn = e /Md xv/—g <Ruv - 2Rguv> gt + ﬂ/M\/—gd xg"V SRy (1.2.6)

Finally, we compute the variation of the Ricci tensor. Essentially, we will show that the term
in the second integral of (1.2.6) is a total derivative and does not contribute to the final result.

To proceed, we first derive the variation of the Christoffel symbols. From (1.1.10) we get
1 1
5F§ﬁ = 5581” (aocgﬁv +8ﬁgocv - avgaﬁ) + Eguv (aocégﬁv + aﬁ 08av — 8v58aﬁ) .
Using Equation (1.2.4) for the first term and the definition of the Christoffel symbols, we obtain

1
6rgﬁ = 5g“V (0aBgpy +Ipd8av —IvOgap) —&"P 8gpol g (1.2.7)

We can substitute the terms in parentheses using the covariant derivatives
Vu8guy = 0ad8uv —Thedgg, — Ty
aO8uv aO8uv na98pyv vaO8up-

Thus, for the terms with partial derivatives in the parentheses of (1.2.7), we have the following
expressions

20885y = Vabgpy +r‘;ﬁ 8gpv + Ty 85,
aﬁagav = Vﬁagav JFr‘gwstgpv +ng5gapa

*avago:ﬁ = *Vvagaﬁ *F€a5gp;3 *F€B5gocp-

5One can show by considering the variation of this equation that
8(8"")gpv +8"0gpy =0=

8gon = —8pveaudeh’.
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Substituting we get

1
51"’;,3 = Eguv (Va5gﬁv +r‘zcﬁagpv +Vﬁ58av +rga5gpv *Vvégaﬁ> *g“”5gpal"g[; =

1
5Fﬁ3 = Eguv (Vtxsgﬁv"‘vﬁ&gav —VVSgaﬁ) _,_W_gﬂpg ol gp-

Renaming the summed indices in the third term, o,p — p,v, we observe that the second and

third terms cancel, leading to the final result for the variation of the Christoffel symbols
1
61"§[3 = Egﬂv (Vabgpy +Vpdgay — VvOgap) - (1.2.8)
Next, we compute the variation of the Riemann tensor,

(1.1.15) = 8R}, 5 = 98T, 5 — 9p STy + 8T g 5y + T8 gy — TG, Ty — 10,6155, (1.2.9)

Following our earlier treatment of metric derivatives, we now express the partial derivatives of
the Christoffel symbols in terms of covariant derivatives of the Christoffel symbols® using the
relation

V8T = 0y8l g, + o8l — 10,80 s — 758 00
With this approach, the first two terms of (1.2.9) can be written as follows
wo_ u u u u
8v5ra[5 = Vvéraﬁ —Fvg5l"gﬁ +rgvarcﬁ +FSB5FM

and

—0pdTGy = —Vpdlgy + 15,81, —Tos0 ey — g, 6 50

Thus, substituting these expressions, we see that the terms with the products I'ST" cancel out,

and the final result for the variation of the Riemann tensor is
T i n
5Ravﬁ = VVSFaB —VpéTgy.
By summing over the indices p and v, we find the variation of the Ricci tensor
_ n n
ORup = VMSFaﬁ —Vpgélay

therefore,

ga55Raﬁ = gaﬁvu5fgﬁ —gaﬁVBSFﬁH.

61t is worth noting that, although the Christoffel symbols are not tensors, their variation 8T transforms as a tensor.
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Finally, by renaming the indices B,y — u,p in the second term, we get
8PSR,p =V, (gaﬁérgﬁ fg”aﬁl—‘gp) — VA" (1.2.10)

where,

AP = goP 51“% —gHa8Th,.

Substituting this into the second integral of (1.2.6), we obtain
S8SEH = i/ d*xv/—g (R —le 5g’“”'+i/ d*x/—gV  A*
2k Ju oY g eRy 2k Ju He

The second integral contains a total derivative. Therefore, using Stokes’ theorem, this term
reduces to a boundary contribution when integrated, which can be neglected, according to the
assumption that the partial derivative of the variation g,y vanishes at the boundary of the
region

| |
— [ eV Aty = 7% ARGY,.
ZK/M SR = o Fow H

The requirement that the variation of the action vanishes leads to Einstein field equations in

vacuum
1 1
OSgH = % /Md4xv -8 (Ruv - 2Rguv> 5" =0=

1
Ry — 5 Ry =0. (1.2.11)

Equivalently, by introducing the Einstein tensor Gy, the gravitational field equations take the
following form

Gy =0.

1.2.2 Complete Field Equations

As introduced at the beginning of this section, the Einstein-Hilbert action represents the sim-
plest choice of action we can make. More generally, the complete action includes additional

contributions from matter fields and the cosmological constant A.

1 "
S:—/ d*x/=g(R —2A) + Sy, (1.2.12)
2K Ju

where

sz/ d4x\/—g£m.
M
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In this case, the variation of the action is given by

SS:L/ SR\/fgd4x+i/ RS(\/fg)d‘lel/ A5\/fgd4x+/ 8(v/—gLm)d*x.
2K Jm 2k Jm KJm M

Based on the calculations for the Einstein-Hilbert action, the expression above can be rewritten

as follows
1 1 1
88 = 7 /Md4xx/jg (Ruv - ZRguv) oM + Tk /MA\/ —gguvﬁguvd4x+/1‘/[5(v —gLw)d*x,

which simplifies to

1 1
3= 3¢ J v (R“v—zRgunguv) 68"+ | 8(v=gLn)d'x=

1 1 2 6(v/—8Lm)
S 4. o | = _ - _ 2 9\Vv T8~ m) uv _
0SS = 2/Md x\/—g {K (Ruv 2ngv —I—Aguv) + N ogty =0,
and as a result

1
Ryy — EguVR'i'AguV = kTyuv, (1.2.13)

where T,y is the energy-momentum tensor introduced in the first section, which is related to

the energy and pressure of matter, and is defined as

2 S(V—=8Lm)

RN T

Lovelock showed [6], [7] that a linear combination of the Einstein tensor Gy and the met-
ric guy represents the most general symmetric second-rank tensor that is divergence-free and
can be constructed from the metric and its derivatives up to second order. Thus, (1.2.13) gives
the most general modification of Einstein’s equations in a four-dimensional space. The FEinstein
field equations unveil a multitude of extraordinary phenomena, such as the gravitational deflec-
tion of light, black holes and the Universe’s expansion.” In addition, gravitational waves are
a natural consequence of Einstein’s field equations. The existence of gravitational waves was
verified directly for the first time by the LIGO team [8] on September 14, 2015. The cosmo-
logical constant A was introduced by Einstein himself in an attempt to create static models of
the universe, which, however, proved to be unstable. This was, of course, before the expansion
of the universe was experimentally confirmed in 1929 by Edwin Hubble. Subsequently, until the
1990s, the idea of the cosmological constant was largely abandoned by most physicists. How-
ever, with the discovery of the accelerated expansion of the universe in 1998, the cosmological

constant returned to prominence.

"It is interesting to note that the first mention of an astronomical object resembling the concept of what we now call “black
hole" came in 1784 by John Michell. Michell theorized that, if a star were sufficiently massive and compact, its gravitational pull
would be so strong that not even light could escape from it. He referred to these objects as "dark stars". Michell’s "dark stars"
were an early precursor to the concept of black holes, although his analysis was based on Newtonian physics.
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1.2.3 Boundary Contributions and the Gibbons-York-Hawking Term

As discussed above, when the Einstein-Hilbert action variation is considered, surface contri-
butions are encountered that must vanish for the action to be stationary. These surface contri-
butions contain the variation of the metric §g, as well as the variations of the derivatives of
the metric, 6(dg). Setting 6g =0 on the boundary is insufficient to eliminate all surface contri-
butions. It is therefore necessary to fix both the metric and its derivatives on the boundary, as
done in the previous section, though this can be a somewhat restrictive condition. The boundary
value problem arises, because General relativity exhibits the distinctive feature that the Einstein-
Hilbert action includes terms involving second derivatives of the dynamical variable, the metric
tensor. These second derivatives do not introduce higher-order equations of motion due to the
specific structure of the Einstein-Hilbert action, wherein boundary terms encapsulate the second-
derivative contributions. To address this issue and formulate a well-posed variational principle,
it is necessary to incorporate additional boundary terms into the Einstein-Hilbert action. These
terms preserve the consistency of the theory without modifying its fundamental physics. Gib-
bons, Hawking, and York (GHY) suggested adding a term proportional to the trace of the
extrinsic curvature of the boundary K [9], [10]. With this modification, the action takes the

form

1 1
5027/ d4x\/—7gR—|—77{ ek \/|h|d%y (1.2.14)
2K Jm K Jom

Based on the findings of the preceding section, the boundary term of the Einstein-Hilbert action

can be written as follows

V—gd*xV A“:]{ AdY :]{ At ny |h|2 d
/M 8 u o U oM u| \ y
where ny is the unit normal to JOM, h is the determinant of the induced metric and

+1 if ¥ is timelike,
e=nkn, =
—1 if X is spacelike.

Considering that 6g"Y =0 at the boundary, we proceed to compute A ny
1
5Tl = 58" (aasgvﬁ +9pSgay — av(sgaﬁ)

1
5F§ﬁ|aM = Egﬁv (aaagvﬁ Jra/i 08av — avagaﬁ)

Using (1.2.10),

Ao = 5 [ (abgup + IpS8av — v Sgap ) 8 — 8 (Dubgvp + I Sgay — A Sgap ) 8™

N =
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swapping V <> o in the second term and performing some minor computations, we arrive at

Aulon =8 (3u88up — %u630p )

where the inverse of the metric is®

g% = en®nP + noP.
Combining the above results

Ay lom = (Sn“nﬁ Jrhaﬁ) (8a5g“3 foSgaﬁ)n“

= (enanﬁaa5guﬁ - enanﬁauégaﬁ +haﬁ8a5guﬁ —haﬁ8ﬂ5gaﬁ)nu.

By renaming indices on the first term and noting that since 8g*F =0 at the boundary, the

tangential derivatives of the metric also vanish h®? 8a6g”ﬁ =0, we arrive at the following result
Ay loy = —haﬁaﬂ5ga,3n“.
Taking this into account, the variation of the gravitational action is
08 = /M (Ruv - %g,uvR> 5g“v¢fgd4x—.éMsh“ﬁaﬂégaﬁnwm%fy. (1.2.15)

To offset the second term, it is necessary to incorporate a boundary term into the gravi-
tational action. This boundary term, which should be added to the Einstein-Hilbert action, is
not uniquely defined. The most widely adopted boundary term, which ensures that the action

remains diffeomorphism invariant and well-posed, is the Gibbons-Hawking-York term
1 13
Scuy = Efglﬂh‘zd y.
One can see that the variation of this term leads to the desired result [11]
K= haB (8ﬁna —Tgﬁn,l)
therefore,
5K = — 1B ST LB (958 g0+ O — duBgap )1 = ~hBnt, 8
K=-h Faﬁnl = —Eh ( B gua+ o g“l} —Ou gaﬁ)n = ih n-oy gaﬁ

which proves that indeed the G.H.Y term cancels the boundary terms that arise from the varia-

8Where hqp is the induced metric of the hypersurface.
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tion of the Ricci Tensor. Before the formal proposal by Gibbons, Hawking, and York, Einstein
himself introduced a boundary term in 1916 [12]. He utilized a Lagrangian denoted as H,
which is first order in derivatives of the metric, thereby eliminating the necessity to fix the
derivative of the metric at the boundary

H=_g" (r;arﬁv‘ﬁ — rﬁvrgﬁ)

H differs from R by a total derivative
H=R-V,A!

where A* :go‘“Fg P g“ﬁrgﬁ. This form of the Lagrangian, which is referred to as the gamma-
gamma Lagrangian yields the same equations of motion as the Einstein-Hilbert action upon

variation, but lacks the clear geometric interpretation of the Ricci scalar.

1.3 Cosmology

1.3.1 FLRW Metric

The distribution of galaxies and, more generally, cosmological structures around us appears
isotropic on scales larger than approximately 100 Mpc, suggesting that spacetime possesses
spherical symmetry. Combining this observational finding with the Copernican principle, which
posits that we do not have a privileged position in the universe, requires that the spatial metric
be homogeneous and isotropic. This limits the variety of permissible geometries to being flat
k=0, a sphere with positive spatial curvature k = +1, or a hyperboloid with constant negative

spatial curvature k = —1. The general spatial metric is given by:

d¥? = a(1)? [ + 7 (d6? +sin? 9d¢2)} .

1 —kr?

The metric for a four-dimensional space with constant spatial curvature can be readily expressed

in the following form:

dr?
1 —kr?

ds? = —di* + d*(1) [ +r° (d62+sin26d¢2)] ) (1.3.1)
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The FLRW metric, initially introduced by the Soviet mathematician Alexander Friedmann
in 1922 [13], [14].is the unique metric of a homogeneous and isotropic space with a time
coordinate ¢, and is therefore useful for describing the Universe on the largest scale. The only
dynamical quantity that appears in the FLRW metric is the scale factor a(¢), which is deter-
mined by solving the Einstein field equations. The coordinates (¢,r,0,¢) are called comoving
coordinates. Two objects at rest in different spatial comoving coordinates remain at those co-
ordinates (under the influence of cosmic expansion alone) at all times. The physical distance

between two bodies at different comoving coordinates depends on the scale factor.

L]

(0,00 (1,0} (0,0 1.0 (0,0 (1,00

» time

Figure 1.1: The comoving coordinates remain constant during cosmic expansion. However, the
physical distance between two points increases [18].

1.3.2 The Hubble-Lemaitre Law

The redshift of astronomical spectra was first observed in 1912 by Vesto Slipher. At that
time, the interpretation of this phenomenon differed significantly from our modern understand-
ing. Notably, most of the scientific community believed our Galaxy constituted the entire uni-
verse. The term ‘“nebulae” was used to describe any extended luminous celestial object beyond
stars, whereas today it specifically refers to gas and dust clouds. The nature of redshifted
objects remained unclear - whether they belonged to our Galaxy or were separate “island uni-
verses” (a term coined by Immanuel Kant). This debate was resolved in 1923 when Edwin
Hubble measured Cepheid variable distances to the Andromeda “nebula,” proving these were

independent galaxies beyond our Milky Way.

9FLRW metric was later independently developed by Georges Lemaitre in 1927 [15] . In 1935, Robertson and Walker further
demonstrated that the FLRW metric uniquely characterizes a spacetime that is both spatially homogeneous and isotropic [16],
[17]. Their result was a geometric one and did not depend on the equations of general relativity, which both Friedmann and
Lemaitre implicitly assumed.
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In 1929, Hubble examined the relationship between redshift z and galaxy distances d. Recall

that redshift is defined as:
/’Lobs - A'emit
Af:mit

Z

For relativistic sources moving at velocity u, the special relativistic Doppler effect gives the

redshift z as:
14u/c
1—u/c

I+z=

For u < ¢, we can Taylor expand to first order yielding
u
7= —.
c

Knowing the distances d of 24 galaxies, Hubble observed that there appears to be a linear
relationship between the recession velocity of the galaxies and their distances. This relation can
be expressed as

cz=Hd or u=Hd. (1.3.2)

This same relation had been derived two years earlier, in 1927, by Georges Lemaitre [15].
The above equation constitutes the well-known Hubble-Lemaitre law, and the quantity H is re-
ferred to as the Hubble parameter.! Note that H is not a constant, but rather evolves over
time. The present-day value of H (like other time-dependent cosmological parameters) is de-
noted with a subscript zero as Hy, and is referred to as the Hubble constant. It should be
clarified that the term recession velocity refers to the rate at which galaxies move away from
us due to the homogeneous and isotropic expansion of the universe, and not to their peculiar
velocities. Furthermore, due to the assumptions used in deriving Hubble’s law, we understand
that this relation is an approximation and holds only for galaxies with u < c. Hubble originally
estimated the Hubble constant to be Hy = 500kms~!'Mpc~!, a value significantly higher than

current measurements, as he underestimated the distances to nearby galaxies.

101¢ should be noted that Hubble never interpreted equation (1.3.2) as evidence for the expansion of the universe.
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Figure 1.2: The velocity—distance diagram presented in Hubble’s publication [19].

The Hubble parameter is defined in terms of the scale factor as:

H(t)=—=. (1.3.3)

While the Hubble parameter H(r) measures the instantaneous expansion rate, the deceleration
parameter ¢(t) reveals whether this expansion is accelerating or slowing down. The deceleration

parameter is defined in terms of the scale factor and its derivatives as follows:

The parameter’s name and negative sign convention were established during an era when the
prevailing view held that the expansion of the universe was decelerating (i < 0). This picture
changed when, in 1998 the accelerated expansion of the universe (d > 0) was experimentally
observed by two independent research teams: the High-Z Supernova Search Team and the Su-
pernova Cosmology Project [20], [21]. These two teams used Type Ia supernovae (SN Ia) to
measure the parameter. These are stars that belong to the category of white dwarfs and are
in binary systems. As these stars gain mass from their companion star, their mass increases
and exceeds the Chandrasekhar limit (1.44M.), causing them to explode. The intensity of this
phenomenon is such that for a few days after the explosion, the brightness of such a star can
surpass that of an entire galaxy. Despite the rarity of these explosions, the High-Z Supernova
Search Team managed, through observations of 27 SNe Ia to measure the cosmological param-
eters (Ho, 0, A0, go) and also give an estimate for the age of the universe (r =14.24+1.7
Gyr). The observations ruled out the cases of zero cosmological constant Qs =0 and decel-

erating expansion go > 0 with great statistical significance. The value of the Hubble constant
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resulting from these data is Hy = (65+7) km s~! Mpc~!.

1.3.3 Friedmann-Raychaudhuri Equations

As previously discussed, the evolution of the scale factor a(r) is determined by solving the
Einstein field equations. In this section, we derive the field equations for a universe that evolves

with time, described by the FLRW metric [22]. Starting from the Einstein field equations,

1
Ryv — EguvR+Aguv = KTyy

and multiplying by g*, we obtain
1
g Ry — Eg}““guvRJrAg’l“guv = kTuvg™.

Thus,
1
M—§&R+Mﬁzxm7

setting A =V, we obtain

R =4A —«T. (1.3.4)

Substituting (1.3.4) into the initial field equations and performing some algebraic manipulations,

we arrive at

1
The following analysis is based on this equation. First, we compute the components of the
FLRW metric and the corresponding Christoffel symbols. From the line element (1.3.1), we

find:

=102 8 720

2 2
= t =
822 a ( )r ) g Z(I)rz

20072 oin2
=a“(t)r sin“ 0, ==\
833 2 8 a2(t)rtsin’ @
Subsequently, using the definition (1.1.10), we can compute the non-zero components of the

Christoffel symbols:
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. ) .
a ar arr
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Next, we compute the components of the Ricci tensor. Using the definition of the curvature

tensor (1.1.15) and contracting the first and second indices, we have
Ruy =915, — T+ 10T 56 —ThelS,. (1.3.6)

By utilizing the non-zero Christoffel symbols and metric components, it can be shown that
only the diagonal elements of the Ricci tensor are non-zero. After substituting the Christoffel

symbols and performing straightforward calculations, we obtain the non-zero elements of the

Roo = -3 (a> )
a

i a\? 1
Ry = +2<> 4 2k—
a

Ricci tensor:

a 1 —kr?’

. L\ 2
Ry = 1* <a+2<a) +2k>,
a a
i a\?
Ry3 = r? <+2(> —|—2k> sin’ 6.
a a

The scalar curvature is then given by:

R=6 a a\’ k 1.3.7

We now have almost all the necessary tools to solve the field equations and determine the
time evolution of the scale factor a(¢). The final step is to find the appropriate form for the
energy-momentum tensor 7,y,. Approximately, we assume that the universe contains a uniform
background of matter within which galaxies behave as particles in a perfect fluid. In this case,

the energy-momentum tensor is given by:

Ty = (p +P)uuuv + P8uv (1.3.8)
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where p and p are the energy density and pressure of the fluid, respectively. Choosing the rest

frame of the fluid simplifies our analysis since, in this frame, the fluid 4-velocity vector is
u =(1,0,0,0).
Thus, only the diagonal components of 7y contribute, with the following values

Too=p, Tu=pgu, Tn=pgn, T=pg:.
Additionally, we can easily compute the trace of T
T =guTH =—p+3p.
Now, we can solve the field equations. From (1.3.5), for pu # v, all terms vanish, and the

non-zero equations are

1
Roo = ¥ (Too - 2gooT) +Agoo,

1
Ri=xK <Tii - zgiiT> + Agii-
Due to the homogeneity and isotropy of the FLRW metric, the three spatial equations are equiv-
alent. Thus, we obtain only two independent equations for u,v=0 and u,v=1,2,3

1
Roo =« <Too — 2g00T> +Agoo =

a 4G A
-—=—— =. 1.3.
C=— 5 (p3p) (1.39)

Similarly, for the spatial components

1
R =K<Tn—2g11T) + Ag1,

after some algebraic manipulations, we get

i

By substituting the term from equation (1.3.9) and performing a few algebraic steps, we

arrive at the following equation

N 2
a 8nG Ak
Z) =222 - 1.3.1
<a) 3 PT3— 2 (1.3.10)
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Equations (1.3.9) and (1.3.10) are known as the Lemaitre-Friedmann equations. If we set the

cosmological constant A =0, we obtain

N2
a 8nG k

<a) = Tpfﬁ (1.3.11)

a 4nG

P ——T(p+3p). (1.3.12)

From equation (1.3.12), we observe that a positive spatial acceleration (i > 0) in the FLRW

metric requires p +3p <0.

1.3.4 Cosmological Fluid Components-Evolution equation

The Friedmann equation alone is not sufficient to determine the scale factor a(z). We need
an additional equation that describes how energy density p evolves as a function of time ¢ or

the scale factor a(r). This equation will be derived from the energy conservation condition
VuTH =0.

For v =0, we have

ouTH + T, TP+ T , TPH =0

considering that only diagonal components of T*V are non-zero, and given that for u #0 and

p #0, after some straightforward calculations we derive
. a
p+3a(p+p):0. (1.3.13)

Equation (1.3.13) is known as the fluid equation, and given that the different components of

the cosmological fluid do not interact with each other,!!

it is satisfied independently for each
component. The equations (1.3.11), (1.3.12), and (1.3.13) form a system of three differential
equations involving the unknown quantities a, p, and p. However, only two of these equations
are independent, as differentiating equation (1.3.11) with respect to time and substituting the

fluid equation leads to the acceleration equation (1.3.12).

The final equation we need to add is the equation of state of the fluid, which relates the

energy density to the pressure:

11 Although matter and radiation interacted in the early universe, this assumption is reasonable for most of the evolution of the
universe.
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p=pp).

Knowing this, allows us to solve equation (1.3.13) to find the function p = p(a). Subsequently,
using the Friedmann equation, we determine a(¢) by applying an appropriate boundary condi-
tion. Typically, we use the present value of the scale factor, assuming that a(fg) = 1. In standard
cosmology, each component of the cosmological fluid is assumed to satisfy an equation of state
of the form

p=wp (1.3.14)

where w is a dimensionless parameter with a value range —1 <w < 1 and is typically treated
as constant. Substituting the equation of state into the fluid equation (1.3.13), we obtain the

density evolution

__Po
P=Aimw:

(1.3.15)

Thus, the value of the equation-of-state parameter w determines how the fluid evolves over time.
We now have all the necessary equations to compute the evolution of the universe through
the scale factor a(t). However, as previously discussed, the solutions depend critically on the

composition of the cosmological fluid. The primary cases are:

* Non-relativistic matter (w =0, p =0): Includes baryonic matter (p,) and cold dark matter
(Pam), with negligible pressure. Observations indicate that dark matter dominates the mass
content of the universe, interacting via gravity. From equation (1.3.15), the energy density

evolves as

Pm (l) = Pm,0 a73 (t)

or equivalently, in terms of redshift z (using a(ty) =1)
Pm(z) = Pmo(1 +Z)3-

* Relativistic matter (w = %, p= %p): Includes photons, neutrinos, and other relativistic

particles. Their energy density scales as

pr(t) = pr,()a_4(t)

or

pr(Z) = pr,O(l +Z)4.

The dominant contribution comes from CMB photons. The additional (1+z) factor (be-

yond (1+z)%) arises from cosmological redshift.
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* Cosmological constant A (w= —1, p= —p): Represents dark energy with constant energy
density
dpa

— =0 = = constant.
i PA

The presence of such a type of matter can lead to an accelerated universe expansion due
to the negative pressure that characterizes it (1.3.12). Current observations suggest A to

dominate the cosmological fluid composition today.

The relative dominance of different cosmological fluid components has evolved with the scale
factor a(t), defining distinct cosmic epochs. In the early universe (a(t) < 1), radiation (p, o<a™%)
dominated. As expansion progressed, matter (p,, o< a—>) became dominant around Zeq = 3400,

driving structure formation. In the current epoch (a(f) ~ 1), dark energy (pp = const.) prevails.

1.3.5 Cosmological Parameters

In the previous section, we demonstrated that by determining just a few basic quantities and
using the equations we have already derived, we can calculate how the universe evolves- in
other words, the scale factor a(t). Specifically, the parameters that need to be determined to

compute the scale factor are the following:

pm,Oa pr,()v pA~

Typically, in cosmology, instead of working with these parameters directly, we use the dimen-

sionless density parameters defined as:

pi(t) (1.3.16)

where the index i denotes the different components of the cosmological fluid. These parameters
are used, in part, because they result in equations with simpler form. For example, starting
from the Friedmann equation (1.3.10) and dividing by H?, we obtain

8nG A k
=3y P +P0)+ 35505 ~ e

which can be rewritten as

1= Q1) + Q. (1) + Qalt) + i, (1) (1.3.17)
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where, we used the curvature density parameter defined as:

)= — (1.3.18)

(1.3.19)

From the definition of Q4 and equation (1.3.16), we derive the following expression for the

energy density of the cosmological constant

A tant
= —— = constant.
PA= 872G

Furthermore, from definition (1.3.18), we see that a positive curvature constant (k > 0) corre-
sponds to a negative curvature density parameter, while a negative curvature constant (k < 0)

corresponds to a positive curvature density parameter.

Equation (1.3.17) holds for all cosmic time t. We can distinguish the following cases:

Qu+Q+Qy<1=Qr>0, k=-—1 (open universe)
Qn+Q,+QA=1=Q,=0, k=0 (flat universe)

Qn+Q,+QA>1=Q, <0, k=41 (closed universe)
From the above, we see that for a cosmological model to be flat, it must satisfy:
Qun+Q,+Q4=1 (1.3.20)

Using equation (1.3.16), one can determine the energy density required for a flat Universe

with k=0. This is known as critical density and is given by

3H(t)?

Peit = 826G

From this equation, we can calculate the required total energy density for a flat universe given
a specific value of the Hubble parameter. Observations indicate that in our universe the value

of the total energy density is very close to critical.

Based on all the considerations mentioned above, we can rewrite the Friedmann equation
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(1.3.10) in the following form

8nG k
(1) = =3~ (pr> 20

l

H3.

H(1)

_Sﬂ'G Pm,0 Pro A _ k 1
T3 \B30) " ) 86 @) 2(1)

Using the definitions of the density parameters,

H2

e Qa3+ Q00 * + Q0+ Qa2 (1.3.21)
0

Alternatively, using the redshift relation a(t) = (1 +z)~! with the boundary condition a(fp) = 1,

we can express this equation in terms of redshift
H*(2) = H [Quno(1+2)° + Q0(1+2)* +Qr 0+ Quo(1+2)7] .

Following the derivation of the Hubble parameter H in terms of density parameters, we can
similarly relate the deceleration parameter g to density parameters using the acceleration equa-
tion (1.3.12). Dividing by H> = (%)2 yields

aid 4nG adi 18nG

Using the characteristic equation-of-state parameters w; for the various components of the cos-
mological fluid along with the definition of the deceleration parameter g, we arrive at the fol-
lowing equation

q(t) = = (Qu+2Q, —2Q4). (1.3.22)

1.4 Modifications of Gravity

General Relativity has established itself as an extraordinarily successful model of gravity and
cosmology. It is in remarkable agreement with a wealth of Solar System precision tests, such
as gravitational redshift, gravitational lensing of light from distant background stars, anomalous
perihelion precession of Mercury, Shapiro time-delay effect, and Lunar laser experiments [23].
Despite the significant success of General Relativity, a multitude of theories emerged to develop

a more unified version shortly after its publication in 1915:
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* Weyl’s Unified Theory (1918), introducing non-metricity to unify gravity and electromag-

netism
» Kaluza-Klein Theory (1921), extending GR to higher dimensions
* Eddington’s Affine Gravity (1924), treating the connection as fundamental

* Cartan’s Torsion Theory (1922-1925), enriching spacetime geometry with torsion.

While these early theories addressed theoretical unification, modern motivations stem from cos-
mological observations. The Universe is homogeneous and isotropic in cosmological scales and
is described by the FLRW metric (1.3.1). The ACDM model (the standard model of cosmol-
ogy), is based on the premise that GR describes gravity in cosmological scales and that dark
matter and dark energy A, account for the majority of the Universe’s energy density. To date,
these dominant constituents have only been detected indirectly through their gravitational ef-
fects.!> This discrepancy can be resolved by either introducing exotic forms of energy-matter
beyond the Standard Model, or modifying GR itself in cosmological regimes. However, the sit-
uation is also unsatisfactory from a theoretical standpoint. GR is a classical theory, whereas the
standard model is a quantum field theory. As such, we expect Einstein’s theory to break down
at very high energies close to the Planck scale, where higher order curvature terms can no
longer be neglected. Although we still do not have a physically and mathematically consistent
theory of quantum gravity, both theory and observations suggest that GR might have significant

corrections in the strong gravity regimes.

1.4.1 Ways to modify GR

General Relativity is based on very solid mathematical and physical foundations. This, how-
ever does not mean that the Einstein-Hilbert action is the only action constructed from the met-
ric guy that results in the Einstein equations. In four dimensions, the most general Lagrangian

is the following [3]

1
L=ay=gR—2Ay/=g+Be" P R\ Ropos +1v/—8 <2R2 — 4R, R +Ruvp;LR“VM> :

A variational analysis reveals that the final two terms do not contribute to the field equa-

tions. In general, Lovelock’s theorem establishes that the FEinstein field equations (1.2.13) are

12For example, if one tries to understand the galactic rotation curves, which remain flat far away from the galactic center, using
GR, a significant amount of dark matter is needed.
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the unique second-order local equations of motion for a metric tensor in four dimensions. How-

ever, this uniqueness holds only under specific conditions:

1. Second-order equations of motion

2. No additional fields beyond the metric
3. General covariance

4. Locality

5. Four-dimensional spacetime.

In arbitrary D-dimensions, Lovelock derived the most general symmetric, divergence-free second-
rank tensor depending only on the metric and its first two derivatives and showed that the
Einstein-Hilbert action is no longer unique [6]. This leads to a generalization of the Einstein-

Hilbert action through the Lovelock densities:

(h) _ i Mi-Mop plity - pHon—1H2k
LY = 2h 6\’1""’2/1 RV1 V2 RVZh—IVZh

where O represents the generalized Kronecker delta. Lovelock theories are straightforward ex-

tensions to GR. They appear as a sum of terms increasing in curvature order
L=alo+BL+yLy+-

In this framework, the L© and L) terms reproduce the cosmological constant A and the

standard Einstein-Hilbert action, whereas L® gives the Gauss-Bonnet invariant

Lo=v=gA Li=y-gR Ly=v-g(R ~4RuR" +Ryyp; R*"PH).

The complete Lovelock Lagrangian can be expressed as a sum

k
L=Y L™
h=0

that has maximal order k determined by the spacetime dimension

-l

and ¢, are constant coefficients. D denotes the dimension of spacetime. For spacetime dimen-
sions satisfying i = D/2, the Lovelock density reduces to a topological invariant that does not

contribute. Lovelock theories possess two particularly attractive features as extensions of GR:
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* They maintain second-order field equations (avoiding Ostrogradsky instabilities)

* They automatically reduce to standard GR in D =4 dimensions.

However, it is known that in these theories, gravity does not propagate at the speed of light.

Instead, the speed depends on the curvature of the spacetime.

In light of Lovelock’s theorem, we may construct alternative relativistic gravity theories

through the following approaches:

* Higher-than-second-order derivatives of the metric

* Fields other than the metric (additional dynamical fields)
* Non-Riemannian geometries (torsion, non-metricity)

* Breaking local Lorentz invariance

* Non-locality

» Extra spacetime dimensions (D > 4).

These six directions are not independent of each other. Many theories emerging from one ap-

proach admit equivalent descriptions using other modification frameworks.

Since Lovelock’s theorem restricts pure metric modifications, the simplest extension introduces
an additional scalar degree of freedom. Theories involving a scalar field together with the
metric are called Scalar-Tensor theories. The prototype of scalar-tensor theories is Brans-Dicke
theory [24]:

Sip = 155 | /=5 (0R~ 50,090 ) + (s

where, ¢ is a scalar field and ® is the only parameter of the theory and it is called the Brans-
Dicke parameter.'> Comparing Brans-Dicke theory with the standard Einstein- Hilbert action we
find that this model can be considered as a theory with a varying gravitational constant G,sy,
defined by

1

Getr = ry

Since solar system tests imply extreme values for @, Brans-Dicke theory is not considered as

a viable alternative to General Relativity. Despite that, it serves as a model theory within the

13¢ is not present in the matter action S,,, therefore it is not coupled to the matter, but it is nonminimally coupled to gravity.
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more general class of theories that include a scalar field. Scalar-tensor theories can describe
both the early inflationary phase of the universe, where a scalar field (inflaton) drives the in-
flationary expansion and the late-time accelerated expansion, where the scalar field provides an
alternative to the cosmological constant in ACDM. In the 1970s, Lovelock and Horndeski con-
ducted a systematic study of scalar-tensor theories expanding upon Rund’s earlier work, leading
Horndeski to formulate their most general version in four dimensions. This thesis will inves-
tigate Horndeski gravity as an extension to GR. Chapter 2 presents its theoretical foundations,

while Chapter 3 explores its re-emergence in modern physics.
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Chapter 2

Invariant variational principles for
Scalar-Tensor field theories

In this chapter we study a Lagrangian density that depends on both the metric tensor gy, its
first and second derivatives and a scalar field ¢, and the field’s first derivative as a simpler
case to demonstrate the methods employed by Horndeski for the formulation of the most gen-
eral Lagrangian that gives rise to second order equations. The analysis of Sections (2.1)-(2.4)
follows [25], [26] and it is heavily based on work done by H. Rund, D. Lovelock and G.

Horndeski. At the end of this chapter we review Horndeski’s theory of gravity.

2.1 Transformations

Our objective is to construct an action based on a Lagrangian density L of the following
form

L(guv:9p&uv,;9pdoguv.: 939 0) (2.1.1)

that exhibits invariance under arbitrary coordinate transformations
=i (x").
The action of the theory has the following form

S= /L(guv;apgwﬁpc%guv,;¢;<9u¢) d*x
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and the field equations corresponding to L are defined by

0 oL 0 oL oL
vy =2 | %= 2 - , 212
0= 575 3~ 30 (G0~ o @12

8( oL ) JL (2.1.3)

EL)=—=—F)—=—

B=50G0.0)) " 36
where the first is obtained from the action through a variation with respect to the metric and
the second by a variation with respect to the scalar field. If the action is to be invariant under

arbitrary coordinate transformations, then L has to be a scalar density, that is, that L satisfies

L (8200812010082 9:0x0) = BL(8uv:0p8uv: 9p0sguv: ¢:9u0) (2.1.4)

where B is the Jacobian

axH

In the subsequent analysis, we will derive several identities related to the Lagrangian and its
derivatives. These identities restrict the structure of L. To simplify the calculations, we denote

partial differentiation by a comma in this chapter. We also adopt the following standard notation

I pwvo_ L e 9L g L, 0L

A“V = ’ ) =35 -
aguv &guvp aguv,po 20 a‘P,u

We note that the first three terms are symmetric in (i,v) and the third is also symmetric in

(p,0). Using this notation equations (2.1.2), (2.1.3) can be reformulated as

d d .
1y (ry — uv.p _ 1V.po) _ ARV
EF(L) = dxP (A 8x"A ) AT
E(L) = i(A“) - P
OxM '

We also define the transformation matrix and its derivatives in the following manner

2 3
oxH " o°xH and B 0 xH

KT oxKk’ KA oxhoxk’ kAT QxT it 9xk

Next, we compute the transformations of the scalar field as well as the transformations of

the metric and their derivatives

0(x) = (%), @.15)
) a9()
On¥) =05 = om o

$u=B;dy. (2.1.6)
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The metric tensor transforms as

Zuv = BUBY gps. 2.1.7)

Similarly, for the second derivative of the scalar field, we obtain the following result

G FOW 0P 0 (07 0 N P ax 0¥ 3 (07
MV 05V oxh T oxY oxP \ dxt 9xO ' ) T oxv oxt %P T 9xv oxP \ dxn ) T
P uv(X) = BYBG0.6p + By 0.0 (2.1.8)
For the first derivative of the metric we find
~ B J B Ixt 9 [ 0x° Ix¥ _ ox* 9x% xK 9 ox*t 9 [ 9x° Ix*
Suvo = 35 80 = 550 5. \ o 9 8% ) = 9w o o 0. %* H 80X 5. \ ot o
Zuvp = BABSBY g 1 + 8oxBSyBY + goxBY,BY. (2.1.9)

Utilizing this result, we can determine the transformation of the second derivative of the metric

as follows

) P i 9,
Buvpr = 3 (Guv.p) = P [BpBgBﬁgGM +8oxBpBy +goxByp Bl | =

g/.tv,pr = B%B%Bnggomla +gm<7)L (3273335 +BﬁcB5Bﬁ +357353£ +ngBSB% +B§pBgB%)

+gox (BEPTB§ +BG,BY, +BY,.BS +Bf”35p) . (2.1.10)

Using the transformations (2.1.5)-(2.1.10) one can determine the tensorial character of the

derivatives of L. For example differentiating (2.1.4) with respect to ¢, we find

oL JL -

This indicates that & is a scalar density. Similarly, by differentiating equation (2.1.4) with
respect t0 @, guvp, guv, and guvps, one can conclude that AY:PY is a tensor density, as is
A", In contrast, A*Y and A"V do not represent tensorial quantities. Nevertheless, Rund has
demonstrated that by suitably combining these quantities with the Christoffel symbol, one can

construct the following tensor densities [27]

[THV:P = ARVP +F‘;1A“V"" +21—~I;AA0'v.pk +2F<V;/1A“G’pl> @.1.11)
TI*Y = ARV +F’,;‘,<A""*'“+F;KAPWT
-l-l"g,( (HPV,K _ Fggprré _ r‘f;éATWKé _ rzéArpx.g)

+TY, (HP# — 5 APRTE T AT rg‘éATP="¢) : 2.1.12)
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We note that both of these tensors are symmetric in the first two indices. Using IT*V and
[T*Y:» Rund showed that the Euler-Lagrange equations corresponding to (2.1.1) can be written

as

EMV(L) = — (vpch#V’P" —V,IIHVP +H“V), (2.1.13)
E(L) = VA" — . (2.1.14)

Based on the earlier observations regarding the tensorial nature of the Lagrangian’s derivatives,
it is evident that the original form of the Euler-Lagrange equations involves terms that are not

tensorial. In contrast, Rund’s formulas are manifestly tensorial.

In the calculations that follow, we will make extensive use of the identity transformation. It
is therefore important to note that, in the case of the identity transformation, the following

properties hold:

o LS pH _pl
i =xt, By, =08,, Byp=Byps=0.

2.2 Invariance Identities

In this section we derive the invariance Identities associated with the Lagrangian (2.1.1). To
achieve this we differentiate L with respect to the Jacobian matrix BY along with its deriva-
tives Bf,‘p and Bﬂpc, while utilizing the transformations derived in the previous section. As we
demonstrate, these Invariance Identities impose severe restrictions on L, which will be crucial
in Section (2.4), where we construct the most general form of the Lagrangian (2.1.1) in 4 di-
mensions that results in equations of motion that are second-order in the derivatives of both the

metric g,y and the scalar field ¢.

2.2.1 First Invariance Identity

We differentiate equation (2.1.4) with respect to B’\fp(,. Noting that the right-hand side is

independent of Bf,‘pc, we find

oL 9Iguv OL 9Zuv,p oL 9dguvps OJIL 0¢ oL d¢yu

9guv OB 5 Zuvp IB% s IZuvps OBhs IO IBL o 90, OB} s
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Using the notation we introduced and the fact that B“fpc appears only in the transformation of

the second derivative of the metric, we obtain

0 — AMV:PO

9B [gm (BZpoBz +B;’§B€p6>} :
Bvé

Utilizing the symmetry of B’{,‘PCy with respect to all its lower indices,! we deduce that

. 1
0= AnvPo | cgBror (ofl 6762 + o 5167 + of 833 + ol 687 + 8f 6162 + 8L 8757

1
+ c8xBL O] (55@?52 + 808180 + 656188 + 855788 + 558158 + 555353)] .

Finally, using the y,v symmetry of A*VPY for the second term, we find
AHvPog, BT (80 8163+ 688180 + 806785 + L5180 + 8P 5180 +608155) =0
811Dy |\ Ou Op Oy 1 9 Op p Ou9O¢ 5 Op Oy p OOy o OuOp .

This equation is valid for arbitrary transformations, making use of the identity transformation’
yields
e ( ABTYS | ABTSY | AYTBS | ASTYB 4 ASTBY Ayrﬁﬁ) —0

By employing the symmetries of A*Y:P® with respect to both pairs of its indices, we derive
the First Invariance Identity:

AFVPO L AHPVO 4 AOPY — ), (2.2.1)

This identity imposes significant constraints on the Lagrangian and will be used frequently in
the following calculations. We note that since A*YP°® is a tensor density, the identity holds for
arbitrary coordinate system. Using (2.2.1), it can be readily shown that A*YP° also exhibits the

following symmetry

AHVPO _ _AHPVO _ AUGVP _ _ APHVG _ AGHVP
— APOVH L APVHO | AGPHV | ACV,Hp

—2APOVH _i_AVP#G _‘_AVG#P

— DQAPOVH _ AVHPO

which implies that
AKVPO _ APOVHL (2.2.2)

1px —_ Rk | K K K K K K
B#PO' - B(upo‘) — 6 (Bﬂpo' +BHUP +BP#0' +B°’P# +BP0'# +BO’#P)

2 At this point we can drop the bar of A#VPC,
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In summary, we have established the following symmetries

ARVPO — AVILPO — AHVOP — APOLLY. (2.2.3)

2.2.2 Second Invariance Identity

In order to derive the second invariance identity we differentiate (2.1.4) with respect to B“fp.

As in the previous case, the right-hand side contains no explicit dependence on B’\fp. Therefore

al_, ag_'uv ai ag-‘u\)p &Z aguv7pg @ a¢ i%_, 3@1 _
98uv OB,  Oquvp By, Jquvpo IBy, 99 9By IPu IBj,

Using the notation we introduced and the fact that B"fp appears only in the transformation of

the derivatives of the metric we obtain

_ o _ J
0= AHVP 5 (g#v’p) +Auv,pcm <g“v.p6) ) 2.2.4)
By By

We will evaluate each term in the expression individually. For the first term, using the trans-

formation laws established at the beginning of the chapter, we obtain

- d -
AHV-P (g ) — AHV:P
A uv.,p

8Bﬁy

JoB%

lgGKB’v‘B;{p +g6,(BfLB’§p] )
By

Changing the indices of the first term and using the symmetry of A*Y:P we get

Ao [2g0u (BY, )| = A7 san o (08 + 8 87) =
By
AHVP 5 (gﬂ\hp) — [\,UVyPgGABg (5‘[/3 5g+5£ 53’) ) (2.2.5)
By

For the second term of (2.2.4), using the transformation for the second derivative of the metric

yields

_ d - d
ARVPO T (8uv.po) = A“”"’—aB,1 [gm,a (3563535‘ + B} BBy + BB} By;+ B}, B\ BG +Bg35p3g) +...
By By

A

Here, we have omitted terms that, after differentiation, yield linear contributions to Bﬂv,

as

these terms do not contribute once the identity transformation is imposed at the end of the
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calculation. By renaming the indices (p <> ©), in the fourth and fifth terms we get

- 0
A#wpcaz%i[gxna(ZBchﬁBg%ZBZBﬁaBg)%gKLaBZBﬁBgG]
Y

Exchanging (x <> 7) and (u <> Vv) in the second term of the parenthesis we obtain

- d 1-
A00 e (4BEoBIBY ) + suraBiBEBE ] = 37 [gccaBiBEoF (6 61+ 58 )
By

+exeadf BEBS (8560 +8087) | =
1-
AP (4g; . BB (8861 +088)) + e a BLBS (F 04 + 5557 ) | (2.2.6)

where we have renamed (o <> k) for the last result.

Combining the previous results, (2.2.4) yields
AUV, o sBsY | sBsY l‘uv‘pc Tpk [ sBSY Bsy kpt [ SBSY Bsy
0= Al0 gy B (8061+8F 1) + A2 gy BBy (88 81 + 8581 )+ n BEBY (85 81+ 8057 |-

Following the approach used in the derivation of the first invariance identity, we apply the

identity transformation
1
0=AR"Pg,, 89 (5§ 51+8F 53) 4 ARYPO {2g117K5$5; (5,5 EYS 5,3) +38xe S8 0] (5}3 5+ 88 5g) ]

1
=28vp (Aﬁv’py-ﬂ\""‘pﬁ) +58uv.a (A“"MJFA“VW) + (AMBAY_FAM/«,I?).

We can simplify this further by the use of a locally inertial frame at an arbitrary spacetime

point P. This is defined as the coordinate frame {x*} satisfying:

aguv

guv(P) = Nuv,

Making use of the above and the tensors we indtroduced in the previous section (2.1.11),(2.1.12),which

are now simplified since in this coordinate system A*Y:P =TIV we obtain
gng“B’y+guzA”y’ﬁ 0= guAH“B’Y‘FguAH“y’ﬁ —0.
Therefore, we have established the following result
TP 4 TIHPY = . 22.7)

Despite the fact that we used a specific coordinate system in order to derive this result, due
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to the tensorial character of ITHV:P, this equation is valid for all coordinate systems. Given the

symmetry properties of IT*Y:P it is straightforward to show that

TIHVP — [IVEP — _TIVPH — TPV — _TTHVP

which implies

*v* =0 (2.2.8)

which is the Second Invariance Identity. As a direct consequence of this result we have es-
tablished that there can not exist a Lagrangian density which does not depend on the second

derivative of the metric, guvpo given by

L=L(guv:8uv.p:9:9.u)

If this were the case, then A*VP° =0 and by virtue of equations (2.1.11) and (2.2.8), we

would have

TTHVP = ARVP —

which implies
oL 0

Iguvp
This result holds special significance for the framework of general relativity. Any invariant vari-
ational principle that is to yield the field equations must be of the second kind, meaning it
must depend on the second derivative of the metric. In general, of course, such field equations
would be of the fourth order. However, for the special case of the Einstein-Hilbert Lagrangian,
the second derivatives in the Ricci scalar R are arranged in a way that they appear as a to-
tal divergence. As a result, the boundary terms absorb these second derivatives and do not

contribute to the equations of motion.

As a consequence of the second invariance identity the Euler-Lagrange equations (2.1.13)

can be further simplified as follows

EMV(L) = — (VpVGA“V’pG + H“") . (2.2.9)
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2.2.3 Third invariance Identity

For the final invariance identity we differentiate (2.1.4) with respect to BY. Noting that
oB 13
o o)
oB} A
13
—1 $ . . . . A
where (B )/l is the inverse of the transformation matrix By

(B_1>i3¢ =55,

The differentiation yields

NS, w8y | xuvp98uvp | = Iguvps | - 00 -, 99
B(B 1 L=A" H +Auv,p uv.p +Auv,pc uv,p +&® —|—A“ ;.U.
( >7L aBél 832 aBg 832 aBj;1

In this case, only the fourth term does not contribute. Each of the remaining terms is evaluated

independently?

Ay L, 0 A
Mo =N 5 (Blow) =Raao..
£ ¢
v 98uy <y O A
A ey _ juv 9 (o BPBO) = AMVg, (8P 85 BS + 6955 B
) 7 \8paBubBy po “a CuBy O NV Bu )
2 ()~ )

~uvp O8uvp _ ruvp 9 5 £ 3 £
AHV’PW = AP @ (gcx,rBﬁBsB; +.. ) =A"VPgsrr (5{% BEB; + 650y BﬁB; + 85 5ZB§BE),

e WBuvps P) i
oo Bonman _junoo O (o npngal ) = AP0, o (BEBTBSO0SE + DSBS
g 4

+ BEBYBGSTSS + BLBIBESKSS ).

Taking into account the results derived above, we arrive at

B(B);L=A"Pog s (BngB;;‘ 5P 55 + BEBIBA 5385 + BSBYBE 585 + BLBIBL5) 85 )
+ AP g o (87 8T BEBE + 85 57 BYBY + 8587 BYBY )
+ARY gog (65 5B+ 555535)

+A%0,.

3Where again we omit the terms that won’t contribute at the end of the calculations when we impose the identity transforma-
tion.
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Applying the identity transformation yields

SSL=ARVPO g s (5;555555 55 + 5557585755 + 515358 5785 + 575%58 5555)
NP g (87058185 + 5N 8785 + 8767 8557
AR g,m(af(sﬁ 50 + 695 5;3)

+AS 9,
which simplifies to

SIL =A% g o+ A g s+ AP s+ AP gy
+ AS “Te T AG&’TgaiL,r + AGK’égO'KJL

FACg o+ AP g, + AR
Renaming the indices in the second, fourth, sixth, and eighth terms leads to the following

5fL = ZAKrﬁ'aggm',a)L =+ 2AK§’aTgK)L,ar + 20 K.Tgl KT

F AT g d 20055+ ARG

Exchanging the indices (@ <> x) and using the first invariance identity for the first term we

arrive at

5;%[‘ = 2RS0T (gvdk,ar + gar,xl) + 2A° K’Tg)LK.,T

+AGK’530'K,1 +2A§687LO' +A§ ¢,7L' (2.2.10)

Our goal is to express the right-hand side of this equation in terms of tensorial quantities. The
idea being that if the final result is expressed in terms of tensorial quantities then it holds for
arbitrary coordinate systems. To achieve this we will try to express the first term that involves
the second derivatives of the metric, and A%9g;, in terms of the Riemann tensor, AHVPC
(which as we noted is tensorial) and Rund’s tensor IT*V. At last, we will work in locally

inertial coordinates, where the first derivative of the metric vanishes.

At the spacetime point P of the locally inertial frame the Riemann tensor becomes

Ripax = (gﬂc.,la +8ra,tx — 8Ax,ta — gra,lk) .

| —

46



Chapter 2. Invariant variational principles for Scalar-Tensor field theories

Multiplying with AX-2?
AK&,M’R _ 1 Aké,ar Aké,ar . Aké,om: _ Ak-ﬁ,af 2211
thak = 5 8o +8hra,tx 8k, ta 8rodKk . (2.2.11)

Using the following identity that allows us to exchange one index of each pair of A*Y:PO,

when it is contracted with any symmetric tensor ayy
pu,ov 1 pu,ov pv,ou 1 po. UV
auvA ’ = Eaﬂv (A ’ + AFY" ) = _Eauvl\ ’
we can reformulate the first two terms as

Axé,ar Amyéa

1
8tk = ignc,la

1
AK‘:"O”gla,rK = - igla,rKAKT7§a-

Substituting into (2.2.11), we obtain

1 1 1 1
AK€7aTRrAaK = _Zgrx,la/\m£a - Zgla,rrc/\m‘éa - Eg)LK,rocAké’aT - Egra,lx/\m:’ar~

By renaming (& < k) in the terms with the % factor and with the use of the first invariance
identity
3
AKé’aTRTl(ZK = *ZAM’&X (grk,la Jrglamc) . (2.2.12)

Following this, we focus on the fourth term of (2.2.10). At the spacetime point P using Rund’s

tensor (2.1.12) we obtain

AN =TS — rﬁv"p/\ué,vp _ Fﬁv)pAu)L,vp =

1 1
AéE _ A A , A,
N =T — S PN (g5 0+ 8upup — Suvip) — 58P A (8upvp + 8upup — Suv.p)
(2.2.13)

where we have used

1

2 2

Duvp =58 P (guﬁ,w) +8vBup — guv,ﬁp)»
3 _ 1

Livp = ng (guﬁ,Vp +8vBup — guv,ﬁp)

for the second term of the first parenthesis of (2.2.13). With the help of the identity introduced
previously, we interchange p with v and then proceed to rename the two indices. We proceed

similarly for the third term of the same parenthesis.

1 1
AH&vagvﬁ#p = Agu’ngvB,up = *EAév.“pgvﬁ7up = 7§A€'u’vpglvlﬁ,vp
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where for the last result we have exchanged indices u,v. Similarly

1

1
*A”’:’Vpguv,ﬁp — 5Aép,uvguv’ﬁp _ EAmpvgvaw

Thus, the first parenthesis of (2.2.13) takes the following form

1
*ZAﬂé’ngw (guB.vp Jrgvp-ﬁﬁ)

Following a similar approach, for the second parenthesis of (2.2.13) we find for the second and

third terms

ABA VP — _lAlv,up — _lAM,v
2 2

8vB.up = 8vB.up = P8up.vp:

_AMAVP lAlP#V
2

[N
8uv.pp = 8uv.pp = EA“ PV v up-

Substituting the results into (2.2.13)

1 1
AP =T - Zgw/\”g’v’) (g#ﬁ,w +gVP1Nﬁ) - ZgéﬁAM’vP (gﬂﬁ,w) +gVP1H3)

using (2.2.12)
1 1
A)Lé = Hlﬁ + gglﬁAvpéﬂRvau 4 5ggﬁAVPJLNRPBvu

and multiplying with g; ;g°%

we get
1 1
AKS — 1176 + gAVp’gﬂRvaugkﬁ + ggéﬁA"”v"“Rpﬁw.
Multiplying again with g,; and then renaming the indices (k <> 6) we end up with

1 1
801 AT = goa 18 + S AP Ry vy + AP Ry g8 g (2.2.14)

Substituting (2.2.14), and using the identity (2.2.12), (2.2.10) yields

8 2 2
L= *gAM’E Repo +286211%° + gAVp’éuRpAvu + gAvP’G“Rpﬁ,vugéﬁgox +ASY, =

2
87 L= —2A%EKR o+ 2851175 + gAvp’G“Rpﬁvugéﬁgcx +A%9;

where we have renamed the indices of the third term to obtain the last result. Subsequently,

multiplying with g**, we obtain
2
XL = —2ATERR X oo+ 20TXS + gAVPv%#RT%‘ v+ &FNG . (2.2.15)

Throughout the rest of this section we simplify (2.2.15) to derive the final expression for the
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identity. Utilizing the fact that the left-hand side of the equation is symmetric in &,x, we can

accordingly express the right-hand side as follows
2 2
OAOTEKR X ot gAvacuRTEW + gMAS $; = COAOTAKR &t gAwo,éuRT%w —|—gl‘§/\x¢7k.
Renaming the indices of the fist term, this yields

2 2
—2AVP"5”RPZW _ gAvp-,éuRvau — _gAvp,qupéw _gfleé $a +g’1‘5A7‘¢,,1 CDAXTHKR =

3
AYPIRR,S = AYPSHRZ 3 (g“A%m — gMAS ¢’l). (2.2.16)
Substituting into (2.2.15)
2 1
XL = DAPTERR X 4 oI gAVP,éﬂRpxw +3 (815,\1(,,‘1 _ A %) I
Finally, by renaming «,7,x <> v,p,u in the first term we arrive at the final result
L ex 26 _ 2 avpiup x 3 AN L aéax

This equation is the Third Invariance Identity.* Given the tensorial nature of the quantities in-
volved, the result obtained using a locally inertial frame remains valid in all coordinate sys-
tems. In the following sections, we will use these three identities to derive the most general

Lagrangian of the form (2.1.1) in a four-dimensional space.

Using the third invariance identity (2.2.9) can be rewritten as follows
uv uv.,pc 2 H T0,VA 3 vV _ut 1 u_vt 1 uv
EMY(L) = =V, VARV PO 4 gRo)LrA T+ §A g8 0+ §A g 0r— 78 L. (2.2.18)

This form for the Euler-Lagrange equations is useful due to the fact that the only quantities

required to be evaluated are A*VP°, and A*. For example, in the special case where
L=L(guv:8uv.p:8uv.po)
equation (2.2.17) simplifies to

1 2
Egfé%L — 16 — gAvp-éuRvau

Tt is worth noting the asymmetrical way in which the last two terms appear. These two terms constitute the only difference
between the third invariance identity for the lagrangian (2.1.1) in which our analysis is based and Rund’s original identity for the
simpler case of a lagrangian of the form:

L= L(gyv;guv,p§guv‘po)~
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which matches the result obtained by Rund [3]. For the field equations in this case, we find

2 1
EMV(L) = —V,VeARYPo 1 5R‘:, 2 ATOVE — 5g“VL. (2.2.19)

If we consider, as a special case, the theory

L=g(ar-24)

where o, A are constants, we can derive the corresponding Euler-Lagrange equations by simply
calculating A*Y:P°. Noting that,

R= g”vngRO'upv
and

IRoppy _

1
agrl,xx 8
— (828) + 5700 ) (3r8% + 81 5%) — (8500 + 878%) (558% + 856%) |

(8565 +876%) (850% + 85 6%) + (8587 + 8561 ) (856% + 55 8%)

follows that
ATAKL — _a\/Engllgxx ,gncg/lx ,grxgkx

2

which when substituted to (2.2.19) yields the Einstein field equations with a cosmological term
in vacuum

1
Ruv - Eg‘uvR“FAguv = O.

2.3 Generalized Bianchi Identity

The next step in this analysis is to study the divergence of E*Y(L). We can write the

Euler-Lagrange equations corresponding to (2.1.1) as follows

d d

vy = 2 (Auwp _ Auv,pc) _AHY.
(L) oxP 0x°

At the spacetime point P of our locally inertial coordinates the covariant derivative reduces to

partial, thus
VyE*Y(L) = A*VP PV fA“"*”"ppv fA“VV.

)
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Using the first invariance identity, it becomes apparent that the second term identically vanishes’
VVERY(L) = AMYP 5 — ARV . 2.3.1)

We compute the remaining two terms of the equation. Using (2.1.11), and invoking the second

invariance identity (2.2.8)
AMVP — TP AHV:OK _orE ACVPE QLY ATHPK, (2.3.2)
Utilizing the identity applied in the previous section g,yA°HPY = —%guvA"P=“"

H oV.pK _ THM Vp,0K
g ACV P =TG5 AVPOK,

—ZF(‘;KAG“’pK — FXKAHP,GK.

Thus,
AP = TG AV OK L TG AP OF L T AFPOF, (23.3)

Using this expression, we compute the first term of (2.3.1)
A“v’p7p — —ng,p/\”v’m(—rgkl\“v‘cﬁp+Tﬁx7pAvp’6K+FﬁK/\vp’cK,p+F;K’pA“p’GK+T(V;KA“p’GKYP

and
ARVP oV = _ng,vauv’GK - F’c)rK,pAuv’GK.v - 1—"(JrK,vA#v’mc,p - l—‘lznc/\uv’m(,pv
_|_1—*I~L AVP,O'K' F/J AVp,(FK' l—*ﬂ AVp,O'K' FIJ AVp,GK'
oK,pV +1lo6kp vTloky p» 1ok PV
_;'_ng)vaIJP-,UK + Fék.p/\“pﬁ}c;\’ +Ig AHPJK,P + FXTKAIJP?GK,PV'

oK,V

By appropriately renaming indices, the equation simplifies to
AHle,pV — Fﬁk,pv[\vpp-](—"_r"él(,p AVP’GKN +FﬁK7VAVP,GK,p +FﬁK‘AVp7GK,pV
At the pole of our inertial coordinates system where Fﬁc =0 we obtain

Auv,p’pv — F‘éx,vaV""""+2F’éK,p AVP"”‘,V.

AHVPO L AHPVO L ARGV _ ()
AMEST A AR AR =0 =
3AMES =0 =

uv,pc
A .o’;fv =0
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Substituting the derivatives of the Christoffel symbols, yields

1
Auv’p,pv = EgWLAVp’GK (gck,va +8xh,opv 7g6K,lpV) Jrgul/\pv’(m,v (gO')L,Kp +8xi,op 7gO'K,lp) .
2.3.4)
The first two terms within the second set of parentheses can be expressed using the identity

applied previously, followed by renaming the summed indices as

1 1
APV’GK,V 8od,xp = *EAVQPK,V 8o, xkp = *EAVP’GK,V 8Ap,ox
pv,oK L vk oG 1 vp,0K
AP VExl,op = _EA T v8kdop = _EA " v8ap.ok:
Then, we end up with®
1
A“v7p,pv = *Egulgck,lpv/\vp’ck 7gu/1 (g)LppKJFch,)Lp) APV’GK,V- (2.3.5)

In what follows we use (2.2.10) to calculate A*Y ,. Multiplying with M
géxL _ zgleké,ar <gm’m Jrgm’ml) JFZgMAék’Tg/lx,r JrglecK,égGK’l +2oA%E +g”A5 04

solving for A*¢ and using the inertial coordinate system where the first derivative of the metric

vanishes, we deduce
1
Axg,é = igng,é _g}LXAKE’aT (gkk,afé +ga1,K/l.§) _g)LXAK€7aT7§ (gxl,ocr +goc1:,1d)

1 1 1
—gM ATy e — Eg’l"l\“’égax,ag - gg”/\é,g ¢ — Eg”/\é Ore. (2.3.6)

Using the general expression for the Lagrangian (2.1.1) we can calculate L¢ at the spacetime

point P of our coordinate system
Le=guve A +8uv pg NP+ NP0 gy poe @0+ A G =

gxéL,‘g — glég/xv,pé ARVP L gﬁguv,pcg ARVPO e cpgxé + 0 AM gxé.

Substituting this into (2.3.6) yields

The first two terms of the first parenthesis when contracted with AYP:°% do not contribute due to the first invariance identity
(2.2.1). For example

AVP:OK — _AVOPK

KG,pV
8oL, kpv = =—A*P

VK,G vp,oK __ ACK,V
8oA,kpv —-A pgal,xpv = 8oL, xpv — AP 8o, kpv = A" pgal,xpv =

vp,oK vp,oK
AP 8oL, kpv = —AYP 8oA,kpv
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1 1 I
N ¢ = ST e A S g o AV 4 200 @+WA“

—ghh RSO (gtd.,ocri +gar,1<k§) _gXAAK(:’awa (8xt.00 + 8azxn)

1 1
—gMAERTg) o —M— 58 FN 05— S AT

The last term cancels with the fourth and the first with the eighth by renaming indices, noting

also that AKg’“TgK,ngzo and Aé"‘gmrg =0. We end up with the following result

1 1 1
AX&,& = EgXé:guv,pcé ARVPO ngi ¢,§ (I)_gX)LAKéaTgar,Klé _gleK;aT,é (grck,ar +gar,K7L) - ngx/\g,é ¢,)L-
Substituting this and (2.3.6) into (2.3.1) we get
1 1
VéEX§ = - ngkgax,kpél\gpﬁk *gx)L (g)Lp,cKJrch,hp) Ap&’(m,é - ngf:guv,pcél\uv’po

1 1
- 5896& ¢,§q)+gxlAK€7argar,1d§ +gMCAK5’aT.§ (gkl,ar +gar,1€k) + Eglx/\g,é ¢,)L~

This expression can be simplified further by renaming indices and applying the first invariance
identity
1 1
VEERS = Pt AS 105 — 8500 =

VLB = %gxéq)é (A% —B). 23.7)

Noting that
E(L)=A" )y -2,

we reach the final result

VyERY (L) = %g“vqivE(L). (2.3.8)

This equation is the generalization of the Bianchi Identity for the Einstein Tensor
VuGHY =0.

The Generalized Bianchi Identity constraints the structure of E*Y in two ways. First, it forbids
E"V to depend on third derivatives of the fields since the right-hand side is manifestly up
to second order in derivatives. Secondly, it demands that the divergence is proportional to a
gradient of the scalar field, and the components in any other direction must vanish. In our
case, we will not need to explicitly use this identity to derive the Lagrangian of the theory
however, in the case of Horndeski theory, this identity served as the starting point for the

derivation.
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Before proceeding, we summarize the results from the previous sections. In Sections (2.1)-

(2.3) we showed that for a Lagrangian of the form

L= L(8uv§8uv,p§guv.pc; 0; (Pp)

the following three identities hold for L and the tensors produced by its partial derivatives:

o ALV:PO | AUPVO L AHC.PV _ ()
o TIMV:P —

. %géxL = I1%6 — %A"P=5“Rplw + %glx/\éd),z + %gléqu)’k'
We mentioned that the Euler-Lagrange equations of our Lagrangian can be written as:
s EMV(L)=— (VPVGA“"*P" +H“")
At the end of this section, we showed that these two equations are related by the Generalised

Bianchi identity
1
VyE*Y(L) = Egl“‘v(])yE(L).

2.4 The Lagrangian

In this section, we derive the necessary and sufficient conditions for the Euler-Lagrange equa-
tions to be, at most, second order in both the metric and the scalar field. At the end of the

section we derive the most general Lagrangian of the form (2.1.1) in four dimensions.

2.4.1 Restrictions and Conditions

The Euler-Lagrange equations associated with

L= L(8uv§8uv,p§guv.pc§ 9 ¢p)
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are

These equations are of the form
EX& = Elé (guv§guv,p;guv,p(y;guv,pcﬁguv,po—m;¢;¢,y§¢,uv§¢,uvp) (2.4.1)

E=F (guv§guv,p;guv,pc;gpv,pcd¢;¢,y;¢,yv) (2.4.2)

meaning that, in general, these will be of the fourth order in terms of the metric g,y and third

order in the derivatives of the scalar field ¢. Calculating,

. agaﬁ IAHVK agaﬁ,y JAHVK agaﬁ,yé IAHVE

V(7Y —
EF(L) Ix*  dgup 0x*  dgupy Ox*  dgup.ys
aiq)&'A“"?K 99 o IAHVE
ox* d¢ Ix¥K 9¢q
B i agaﬁ IAHLV:KP agaﬁ,y IAHV-KP N agaﬁ,y& I AMV-KP

ox¥ dxP Bgaﬁ oxP ag(xﬁ,y oxP agaﬁ,ya
87¢ JAHY-EP + P o IAHYKP ARV
dxP  J¢ IxP 9Py

E(L) = 288 ON' | 98apy OA | OBapys N

T ooxt agaﬁ Oxt agaﬁﬁ dxt agaﬁ,yﬁ
5'7(1)31\“ 00 o IA* _
dxt d¢  IxH I¢ 4

At this point, it becomes necessary to define new notation. Following, in the spirit of the above

we introduce:

I )

E = A'uv,KP;aﬁ
&gaﬁ agaﬁ ag#V-"P
ONTR 9 _IL _ jwvwpaby
I8apy  I8apy I8uv.xp
ALVKD _ P oL — ARV.kP;aB.YS
98apys  98ap.ys I8uv.xp
FYNAS _ 0 JdL — AMV.KOB
98ap  98ap I8uv.x
ALK _ p) oL — ARV.KsaB.y
agaﬁ,y agaﬁ’y aguv,vc
DARV:K dJ oL — AMVK0B,YS

agaB.y& B agaﬁ,yé aguv,;c
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and

IA* o JL

— — Aaf
agaﬁ agaﬁ a(]),u
OAH _ Jd JdL _ AmaBY
98apy  98apy IPu
dAH d JL _ By

agaﬁ,yﬁ - agaﬁ,yﬁ &(b#

We also introduce a new tensor density that will prove useful for the calculations that follow

xuv,pc;aﬁﬂé = AHVPOaBYS | AnV.pS:aB.oY 4 AuVpYaB.SC

Using this notation, and by renaming some indices in the third term of the parenthesis, we can

rewrite the above as follows

E*V(L) = gap o AHVKiaB + 2ap yKA“V’K;aﬁ’Y-Fgaﬁ yox (AHVK:(%ﬁ#(S _ AMVKSaBy _ KA (AuvApK;aB,Y$)>

dxP
dAHVK . . .
0 S O R ARV g NMVEPGB g o ARVRPGB
| | GARVEP g (gAY
Kp;af, Kp;oB,yd
—8apyp AP — gap yopi ALY IPEPIO g o) a0 0p oux <8¢)
- (P,apKA”v’Kp;a — @ ap Auv,xp;aﬂ( — A", (2.4.3)
. ) . dAH
E(L) = 8ap,u Au’aﬁ +gaﬁ,y/4 Au’aﬁ’y+gaﬁ7y6y Au’o‘ﬁ’y5 + ¢7#W
JAH
+0au 73(}5 —_ . 2.44)
o

We will identify the terms that involve fourth-order and third-order derivatives of the metric
and the scalar field in equations (2.4.3), (2.4.4). The analysis that follows is similar to [7]. We

can reformulate (2.4.3) as
E#V(L) = _gaﬁ,yap;c/\uv’,(p;aﬁ’yé o ¢7aPKAuv.Kp;a 4 ERY

where

E”v(gocﬁ§gaﬁ,y§gaﬁ,76§gocﬁ,y6p§¢; 0.0; ¢,aﬁ)-

Regarding the scalar field, E#*Y(L) does not contain fourth-order derivatives. In addition there

is only one term that involves the third derivative of ¢. Therefore,
E™Y (L) (4th.g,y) = —8apyspx AV POP 10, (2.4.5)

EMY(L) 3ra,0) = —Oapx AV P (2.4.6)
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The scalar field equation of motion, E(L) does not contain terms involving the fourth derivative
of the metric or the scalar field. There is only one term of third-order derivative of the metric.

Similarrly, we can express (2.4.4) as
E(L)= gaﬁ,y&p/\“;aﬁ’ya +X

where,

X =X(8ap:8ap,y:8apy5:0: 0,059 08)-

Therefore,

E(L)3rd,gyv = gaﬁ,ySuA”;aﬁ'y@ 247

We will examine terms involving third-order derivatives of the metric in the term EMY of EMY
separately as this part demands a more complicated treatment. So far, according to the above,

we have established the following results:

* In order for E*Y(L) to be at most of third order in derivatives of the metric:

ARVKPaBys | Anv.kSiapyp | Auv.kyvep.pd

(2.4.8)
_A'_AIJV,YS;Otﬁ-,Kp +Auv,yp;aﬁ,x5 _"_A[,lv,pﬁ;aﬁ’yc'y: 0,
or equivalently using yHV-<P:eB.18;
Xﬂ":'fp;aﬁ#ﬁ _ _Xaﬁ,xp;uv,yal (2.4.82)

* In order for E*V(L) to be at most of second order in derivatives of the scalar field:

ARV KPS ARV, O | ARVIKOSP — () (2.4.9)

* In order for E(L) to be at most of second order in derivatives of the metric:

AWCBYS | ASiaB.uy | Av:aB.Su _ (2.4.10)
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Before identifying the terms that involve third-order derivatives of the metric in E*Y(L), we

note that the partial derivative of ARV:PX:@B.¥8 4150 contains implicit third order terms
Kp; _ kpsafixE .y
_gocﬁ#)/\”v Kp aﬁ,x = —8aB,p (...+A“V'Kp apixl.v. g%é:‘lll’f—i_"') ,
— G AP ( b ARVEPiKE YA gx&w“) ,

J J K| kp;x &, wA
—0p (aq),\uv, p) ——0, (.__+<puv7 P&y gxé,wM)a

— 8apyp Auv,rcp;ocﬁ.,}tK = —Zap.yp ( . +Auv,rcp;ocﬁ,7;%5~,w glé,WLKJr"') .

Additionally, the third term within the parenthesis of the first line of (2.4.3) can be written as

follows

d . . . : .
~8upyo 7 (Auv,pksaﬁ,75> = —8upyox (gxé,wlp ABV-P 0B, Y828 WA + 8yt vp ABV-PRaB, Y88,y

d

+8yep AMV-PE0B, Y% E +¢p % (Auv,Pk;aﬁ,Yﬁ) + 04 Auv,pm@ﬁ,y&%) )

One can easily show that by index renaming the third-order terms we identified previously can

be written in terms of the following
J uv.pi;af,ys uv.p;of,yé;xE Wi
LIRS (A ' ' )+gx5,wtp/\ ' " 8ap yox
thus, the terms in E*Y(L) that involve the third derivative of the metric are

wap.rd Kk8;0B,
E*Y(L)Gra) = gaﬁﬁg,(/\#vv’f’“ﬁ# —ga&y&d\“v'x afy

d . : .
_2g(xﬁ7751(‘ F (A#V,PK,OcﬁﬂS) + 8ap y5x 8yt yip AMV-PIaB Y8 E WA (2.4.11)

Going forward, we can express the first two quantities in terms of AXV:P¥:0B.Y8  From (2.3.2)

we find:

DAHVK
agaﬁ,y&

— ABV.KaBys _ngAuv,cp;aﬁ,YS _ Zrﬁp,\cvxp;aﬁw _ zr;pAGu,Kp;aBm? =

;a.y8 ,op;aB,y8 kpsaf.ys kpsap,ys
gaﬁ’ﬁ’(/\ﬂv,x,aﬁy — _gaﬁ’y&rgp[\uv op;af,y _Zgocﬁ,yéxrgp/\cv kp;a,y _2gaﬁ,yéxrgp/\6” Kp;aB,y8
Similarly we find

v,k8;aB,y Y af,op,uv,kd
*gaﬁ,yék/\u ' ﬁy*gaﬁ,yékrcrp/\ Prop.u

+2gaﬁ.y8KngA0'ﬁ~7p§ﬂV7K5 4 2gocﬁ,’y51<rgp/\o-a7yp;”v"(6.
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Substituting the above into (2.4.11) we end up with

EMV(L)(Srd) _ gaﬁ’yéKrgpAuv,cp;aﬁ,Ys _ zgaﬁw’(rﬁpl\cv,xp;aﬁ,yé _ 28aﬁ,y§xr<‘;p/\cu«p;aﬁ%
_,_gaﬁﬁxrgp/\aﬁﬁcp;uvﬁkﬁ +2gal3,yﬁxrgp/\6ﬁ7yp;”v”{8 + Zgaﬁ#ékrgpj\camp;uvw
J B8 R IRZ)
_zgaﬁ_’y&gaﬁ_’y&ﬁ (Auv,pmﬁm ) + 8ap gk Byt ip ARVPIBYS2E WA
Employing the symmetries of ARV¥P:®B.¥8  and the definition of yHV:*P:®B18 we can use a
similar identity to the one we used in the derivation of the third invariance identity. Specifically

we have:

. 1 .
xuv,KP,aﬁ#S — ARVKp;aB,Y8

~8apox (Auvﬁkp;aﬁ#fs +Auvﬁp&aﬁ,w+Auv,p%aﬁ’5k)

1
ggaﬁ,y&c =8apB,yéx

Substituting, we obtain

2 a N . .
ey (L) = piap.ys KB YA E YA
Bl () == 38apon g (275D ) + gap ponzepap N PR THEY

ngxav,xp:aﬁ.,yﬁ rgpxcu,rcp;aﬁ,ﬂ ngxcﬁﬂp;uv,w

2 2 2
- ggocﬁ,yb';c _ggocﬁ,y&c +§g(xﬁ,y&<

2 . . .
+ ggaﬁ,yﬁxrgplaa’yp’uv’w - gaﬁy&crgp/\uv’cp’aﬁﬂﬁ +gaB,y5KrgpAaﬁ’6p’”v’K8~

Noting that y“VPx:oB.Y8 s a tensor density we can express the partial derivative in the first

term, using the covariant derivative’

vpxuv,pvcaﬁ,yﬁ :apxuwmaﬁm? + Fﬁlpxlvw;aﬁﬁ _,_rxpxul-,pkzaﬁ#ﬁ
P Akap,yd A aB,yd PIGAB,YS
_H"/lpxuv K0,y +F§px#v,p aB,y +F%px“"’”‘ B,y

B uv.pr;ad,ys T L uv.pkaB,Ad S . 1V, pK;af.yA A uv.pr;af,ys
+F,1,,X +Flpx +F;1pl *FP;LX .

Substituting this into the previous result and after much simplification using the symmetries of

x we end up with the following

2 : : .
E(’“éfd)(L) —__ ggaﬁﬂskvpxuv,pmaﬁmﬁ + 8y 8l yp ABV-PKaf,y8 28 WA (2.4.12)
The second term can be shown that vanishes using (2.4.8) and the fact that gup s, and
gy& yap are symmetric in 7,6,k and W,A,p respectively. To eliminate third-order derivatives

of the metric terms, the above equation must vanish. Thus, we are led to the following:

7Note that the last term of the covariant derivative with the minus sign appears due to the tensor density nature of .
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e In order for E*Y not to have any third-order derivatives of the metric, the Lagrangian

(2.1.1) must satisfy the following
VpxtvPeebr® — (2.4.13)

or equivalently
v, (Auv,pk;aﬁﬂﬁ 1 ARVPEaB.yK +Auv,py;aﬁ,57<> —0.

Notice that both are conditions for the same tensor density. We can re-establish all the condi-

tions for E*Y(L) as follows:

e In order for E*Y(L) to be at most of second order in derivatives of the metric, the
following must hold

Vpxpvﬁpk;aﬁ,yé -0 (2.4.15)

and

x”vvpa;aﬁvyé — _xaﬁ7po-;.uv7y5. (2'4‘16)

2.4.2 Lagrangian density and Euler-Lagrange equations

In this section, we derive the most general Lagrangian of the form (2.1.1) in a four-
dimensional space. By imposing the conditions derived in the previous section, namely (2.4.10)
and (2.4.16), we ensure that the Euler-Lagrange equations are at most second-order in deriva-
tives of both the metric and the scalar field ¢, and thus we obtain the most general Lagrangian

in four dimensions that leads to second-order field equations.

In the case of four-dimensional space, and if x“‘“”’““ﬁ’y‘s satisfies (2.4.16), due to the sym-

metries of the tensor density and dimensional limitations, it follows that®

ALVpOaBYEXE YA _ A clV.pOaB. Y8 XS YA (2.4.18)
where A is a scalar function

A= A(guv§guv,p§guvpa; (]);(P,u)

8 A detailed proof of this can be found in Appendix 3 of [7]. The main idea is that since we work on 4 dimensions, some of
the twelve indices coincide and by applying the symmetry properties, one finds that there exists only one independent component.
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and’
eHpaygvory cOBEA

ghv.poiaB.ydx&.yA _ YYNNINY

Y2 1€ 15 aB PO UV &

is quantity which has the same symmetry properties as AMV:P:@B.Y8XE.¥A  Tn order to inte-
grate (2.4.18) we need more information about the structure of A. Using the symmetries of the
tensor density involved and the restrictions derived in the previous sections one can easily show

that in a four-dimensional space:

ALV-poaB Y8 X8 WA KTEN _ ()

which implies that the scalar function A does not contain g,y ps. Using the second invariance

identity, we can see that

A :A(gpv;(P;‘P,l-l)-

Following this, by considering the transformation of a scalar function ¥ which is a function of
the independent variables guy, ¢, ¢, under arbitrary coordinate transformations it is possible to

show that!?

v=vy(¢,p), where p=g"¢,0,.

Finally, we make use of the so-called property S established by Lovelock [28]. A quantity

Biti2-in-1in-i2p where p > 1, has the property S if it satisfies the following conditions:

(1) It is symmetric in (ipp_1,ip,) for h=1,...,p

(ii) It is symmetric under the interchange of the pair (iji;) with the pair (ip;_1ip;) for h=

2,...,p

(iii) It satisfies the cyclic identity involving any three of the four indices (i1i2)(iop—1i2) for

h=2,...p.

It is often helpful to define a positive integer m defined by

n/2 if n is even
m=

(n+1)/2 if n is odd

Then it can be shown that if B'1"4M+2 enjoys the property S, it vanishes when, M > m. In our

9The symbol e#P°V denotes the four-dimensional permutation symbol, which takes the values 0, 1, or —1. The notation Yuv
indicates symmetrization, meaning Y A*Y = AV + AVE,
nv
10A detailed proof of this can be found in the appendix of [25]. The derivation of this result does not depend on the number of
dimensions and is similar to the derivation of the invariance identities.
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case, as a result of this, in a four-dimensional space (n=4), we obtain

A®Buv.povs 38 _

which implies

Integrating Equation (2.4.18) yields

Auv,pc;aﬁ,yS _ %A((P)guv‘pcr;otﬁ.,)/5;705714//1RWC5A +\Puv,pc;aﬁ,y5 (2.4.19)

where!!
phv.poiaBYS _ \P“V’pa;aﬁ’ys(guw‘l’)-

12

Integrating (2.4.19) two more times'= we end up with an equation for the Lagrangian

4 ) ) 2 .
I — ﬁAguv’pG’a&y&x‘g’wRy/xéiLRyaﬁéRpuva + §T“V’pa’aﬁ7Y5Ryaﬁ5Rpuvo + gﬂv-,PGRpuvc +2

where A =A(¢,p) is a scalar density and E*VPO =EHVPO(g),10;¢ 4) is a tensor density with
the same symmetries as A*Y:P°. At this point our problem has been reduced to finding the
most general form of ‘P“V*P";O‘ﬁ”‘s(gﬂv;m, VPO (guyi0;0,4) and A =A(¢,p). Here, commas
and semicolons are used to denote the relevant symmetries. The classification of such quantities
follows from the work of Lovelock. Detailed calculations for these terms can be found on
lemmas A.5, A.6 of [7] and lemmas A.2 and A.6 of [25] as well as in [3]. For example it can

be shown that if E*Y'P%(g,y;0:04) is a tensor density for which

HV.PO _ EVILPO _ EHV.OP

and

EHVPO | EUPVOE 4 EHOVP _ ()

then for a space with dimension n >3 the following holds

EMVPORypve = aR*Y 0 0y + BR.

Ihguv.po:af.¥d g 3 tensor density with the same symmetry properties as A*V-*%:@B.¥8  Using simmilar arguments it can be
shown that it depends on gy and ¢.

2Note that upon integration of (2.4.19) we make use of a similar technique as the one used in the derivation of the third
invariance identity, in order to express the result in tensorial form in terms of the Riemann tensor.
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Adopting these results, we find

o
L :?(*R’J;G)(*RP?{A)(*RK’L‘,) +0oy/—g (R* —4R"Ryy — R*YP°Ryvpo )
+ o3 (xR o) (xRPTy) + 0un/—gRMV 9 19y + 05\ /R + Ot/ — 8 (2.4.20)

where,

a=ai(9), w=0m(), w=u(), a=o(,p), os=0asP,p), 0 =0ax(.p)

and

\%
R = "V PRyp o

is the dual Riemann tensor. The second and third terms in (2.4.20) arise from the computation

of \Puv,pa;aﬂﬁRmﬁ(nguvo13'

To obtain the final result, we need to apply the conditions derived in the previous section
to our Lagrangian. One can already see that the first term of (2.4.20) leads to terms in the
equations that involve higher derivatives of the metric, therefore we require a; =0. In a similar
way, one concludes that o3 = constant'* and by the use of (2.4.9) or (2.4.10), we get the
second set of conditions below. We show the rest of these calculations in A.l, and note that

as a result of those, we have:

o =0 9% _,

ap
03 = constant 905 _ —la
3 = ap - 2%

Therefore,

as =~ youp +§(9)

This leads us to the final result:

*In a space of four dimensions, the most general Lagrangian of the form L =

L(gﬂv;guv,p;gﬂvypc;(b;¢7u), for which the Euler-Lagrange equations are of second order

3This is a lengthy but straightforward calculation. The main steps are presented in A.2
4These can be proven by either imposing (2.4.15) or by calculating the contributions of these terms in the Euler-Lagrange
equations using (2.2.18).
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in both the metric and scalar field is

L=+v—g (ﬁl (R2 *4R#vRuv *RquGRuva) +B2Guv¢,u ¢,v + ﬁ3R+B4>

+c(xR"po) (xR %) (2.4.21)

where

Bi=p1(9), B2=p29), B3=P3(9), Ps=Pa(d,p), c=constant.

Using Equations (2.3.8), (2.2.18) we calculate the Euler-Lagrange equations
B (BiLi) = 4/ =gBi (VAVIORS 4 VTR0 RL + JREVLTp0 gt V)
— 8"V VR — PV Vo R — vavﬁqu““Vﬁ)
+4v/ =8B! (W Ve RY 490V 9 R™ + I R(GH Vo V9~ V6 V'9)
—§""Vad V5o R —RVap V49 Voo V,;¢R°‘“Vﬁ>
E(BiL1) = —PiL1,

E (L) = =2 B2 | 5 6" (6" VaV50) ~ VaV 0 VEVP9 —2V49 Vg R

2

3 VadVEOR| £ VEVEGVVYY — gV Vg0 VAV

£ Va0 (VHOR™ HVY GRS ) — SVEOVY R~ 1 Vo VIO R

1
~Vad Vo R | 4= /=g B3 | " (Vad V9 577V, Voo

—VadVpoVIVEY) —VHO VY9V V 6+ Vg (VA VA9 + VY VEVHY)

—VEVY§ Ve V9

E(BaLa) = V—=8GP (BVa® Vg +22VaVp9),

E"Y (BsLa) = /=g | BoG" = BVAV' 9 — BIVH0 V" 9+ g (BYVad V9 + Big™ VaVyo)

E(BsL3) = —v/—g B3R,
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E"Y(Bsls) = /¢ a[:j VEOVY$ — ;g“vlh]
92 Bs a 134 s B
E(Bia) =2V | 522t Va0 Vo9 + SV VR 9 VeV

B4 aﬁvv¢ \/7[34

E“V(CLs) =0

E(CLs) =0.

Where a prime denotes differentiation with respect to ¢. These constitute the most general sec-
ond order Euler-Lagrange equations for a Lagrangian of the form (2.1.1) in a four-dimensional

space. Following this analysis for a Lagrangian density of the form

L= L(guvi8uv.p:8uv.po)

which satisfies (2.4.16) in a four-dimensional space leads to

L:

(+R"" por) (<R ) (+R* ) + B/ —8 <R2 —4RMVR,, +R“VP<’RMG)

+ 7(*Ruva)RpGuv +nvV—gR+EV/—¢

|
o

where in this case, a,B,7,n,& are constants. If we restrict ourselves to Lagrangians whose

corresponding equations are of second order!®, we obtain

L=+/—g(nR+&)

where we have used the fact that the second and third terms (Gauss-Bonnet term and Pon-

16 Con-

tryagin density) do not contribute to the Euler-Lagrange equations in four dimensions
sequently, the only second-order Euler-Lagrange equations for a Lagrangian of this form in a

four-dimensional space are Einstein’s field equations with a cosmological term.

I5We can do this by either imposing the conditions derived in the previous section or by simply setting ¢ = 0.
16Notice that in the previous case the Gauss-Bonnet term is no longer topological since it’s coupled to the scalar field.
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2.5 Review of Horndeski Theory of Gravity

The preceding analysis naturally raises the question: What is the most general scalar-tensor
theory in four-dimensional spacetime that yields second-order field equations? Horndeski pro-
vided the answer to this question [29], two years after publishing his result for the most gen-
eral Lagrangian of the form (2.1.1). He generalized his earlier work by constructing the most
general second-order Euler-Lagrange equations in a four-dimensional space, derived from a La-

grangian of the following form
L:L(gﬂv;gllv.,ll;"";guv,l] ...... 1p§¢§¢711§---;¢,1] ....... 1K) (2.5.1)
where p,x >2. The Horndeski Lagrangian has the form!'”:

5 4. oy s
L=/=g|K8}:VyVToRs,' — §IC15%'lnyV” OVsV OV VT + K380 ViV 9R,,'

—4KaBIEV VIOV SV OV VT + (F+2W) ST R M1 +2 (2K — 2K +4pKs) 73V, VA9 V5V 6

—3Q2F +4W' +pK3)V, V7o +2/C86{2V7¢V7L¢V5V’7¢ +{4Ko —p (2F" +4W" 4+ pKg+2Ko) }

(2.5.2)

where p =V, ¢V#¢ and F is given by

F= [{Ki(0:0)~K3(0:p) 20K (0:9) } dp. 253)

The primes and dots denote partial derivatives with respect to ¢ and p, respectively, and

K1,K3,Ks,Ky are arbitrary functions of ¢,p.

2.5.1 An outline of the derivation

The Euler-Lagrange tensors corresponding to (2.5.1) are given by

7Generalised kronecker deltas are defined as
6‘!’111 . 6\611”
Uyt
Oy, = det

My L
6‘/,1 T 6‘/:
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p d d JL
Euv L) = -1 n+l1 e — 2.54
( ) n;()( ) dxh dx 8g”v,1]....1n ( )
K d d oL
E(L) = —1)n+! - 25.
©= L S T 233

It is important to note that, in general, E*V(L) is of 2p-th order in the derivatives of gy, and
(p+x)-th order in the derivatives of ¢, while E(L) is of 2k-th order in the derivatives of ¢
and (p + K)-th order in the derivatives of gyy. To avoid the presence of unphysical degrees of
freedom, one can either impose second-order field equations, or enforce degeneracy conditions
on the Lagrangian (DHOST’s approach!'®). Horndeski’s work focused on the former approach.
An essential part of the derivation is the Generalised Bianchi Identity satisfied by the field

equations of the Lagrangian:
1
VyEM (L) = E(V“(]))E(L) (2.5.6)

While V,E*Y(L) would generally contain third-order derivatives of both the metric g,y and
scalar field ¢, the right-hand side of the Bianchi identity is constrained to at most second-
order derivatives. This requirement forces V,E"Y(L) to maintain second-order behavior, thereby

placing strong constraints on the form of E*Y.

This led Horndeski to consider the following problem: In a four-dimensional space, what is the

most general second-order symmetric tensor A*Y satisfying the following:

* A"V is at most second-order in derivatives of the metric g,y and scalar field ¢
AR = ARV (g08:80B v 8ap.ys: D3 0.y: 0.y5) (2.5.7)
o Its divergence V,A"Y must also be second-order in derivatives, satisfying
VAR = VoA (2.5.8)
where A is a scalar density of the form

A :A(gaﬁ§ga[3,y§gaﬁ,y6§¢§¢,y§¢,y§) (2.5.9)

Therefore, our objective is to devise a tensor AV that satisfies these fundamental requirements.

8Decades after Horndeski’s original construction, it was realized that the requirement of second-order equations could be
relaxed while still avoiding ghosts. This led to the discovery of Degenerate Higher-Order Scalar-Tensor (DHOST) theories [30],
which retain only healthy degrees of freedom by enforcing degeneracy conditions on the Lagrangian, even when field equations
are higher-order.
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Horndeski first constructed the most general tensor AV satisfying the derivative-order constraint,
using generalized Kronecker deltas and relying on the assumption of a four-dimensional space-
time. Then he proceeded to restrict the form of A"V by requiring that the divergence constraint
is satisfied. The tensor obtained following this procedure will be E*Y(L). The final step is to
seek the Lagrangian L that yields as its Euler-Lagrange equations E*Y(L) =0 and E(L) =0.
Following an approach earlier used by Lovelock, Horndeski tried the following as a possible
Lagrangian:

L= gl_LvAIJv

Remarkably, the Euler-Lagrange equations derived from this Lagrangian were found to reproduce
the required structure of both E#Y(L)=0 and E(L) =0 exactly, which is how he arrived at the

Lagrangian (2.5.2).

2.5.2 The construction of A%

Following a similar analysis to that of previous sections, we can establish the following result:

* A symmetric tensor density of the form

ARY :Aﬂv(gaﬁ; 8ap.xs 8ap,kp> 9, ¢K;¢Kp)

will have its divergence, V,A"Y, being at most of second-order in the derivatives of both

guv and ¢ if and only if!®

ARapoBr y guBipoka 4 gukipoaf _

and

ARBr | puBika | quiof _

As was the case in our analysis earlier, these two equation are tensorial. Also, it is clear that

these tensor densities satisfy the requirements of the Property S. In this case using property S

19Here we use the notation introduced in the earlier sections of this chapter.

oA and AMOBK — oAr®
agpo‘,ﬁx ad)ﬁk

AMopofr —
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leads us to the following

0 ( 0AMY

> :Auv;pl,cr;aﬁ,ﬁ -0
agaﬁ,y&

8gpl,0'1:

which when integrated twice with respect to the second derivative of the metric yields
ARV — qluv;aﬁ,ﬁRWﬁs 4 mHY

where Z*V and WHVi%B-Y® are tensor densities that enjoy the property S and are functions of
8uv:9,0p. In order to find the general form of puviaBy8 and EMV. one makes use of the
property S and techniques similar to those employed by Lovelock [7],[28],[31]. The result of

these calculations is

A%B ¢ aﬁySECneReyagvn Voo + 5“B758CRey5§
+ waﬁyés@nevyv‘sq) VeVedVnVed + y/“ﬁy‘segvyv(;q) VeVed (2.5.10)

+ YV, Vs +yoh.

It can be shown that the most general tensor densities of the form
EHL-Hok — @M1k (guv;¢§¢ v)
(k=1,...,4) which satisfy the property S in a space of four-dimensions are given by:

O = /=g (C 18" + Cr9 M1 912)
@uluzusm — \/ng3 (gH1H3gH2H4 +g#1#4gli2l13 _ 2gulﬂzgﬂ3ﬂ4)
+ \/ng4 (¢~,N1 ¢ﬂ3glizli4 + ¢vﬂz¢,ﬂ4gﬂ1ﬂ3
+ ¢~,IJ1 ¢1H4g#2#3 + ¢~,N2¢~H3gﬂlﬂ4

-2 [¢1N1 ¢vll2gﬂ3ﬂ4 + ¢~,N3 ¢.u4gu1uz]>

EH1-He — (CS(b,p(Pﬂ +C6gpc){8mu3u5p8#2ﬂ4ﬂﬁ0
/_g ’
+ gH1IH3 6P gl HalsO + gHiHalsp o M3 He O
1 gHitaliep ghaits 5O }
and
@H1--Hs — G {8ﬂ1ﬂ3ﬂ5ﬂ7 gHaHateHg + gMiH3Hs g oHo M4 He 7
V=8

+ M1l glaHalsts o oHiM3HoHs M2 HaMsHy
+ gH2H3lsHy ol HaHo g + gH2H3 s Hg o1 HaHo 7

+ gH2H3HeH7 ol Hals g + gH2H3HeHg ol HaHs g }
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where Ci,...,C; are arbitrary functions of ¢ and p = ¢,¢,g"". Using these expressions
and considering the symmetries of the Riemann curvature tensor, Horndeski demonstrated
that (2.5.10) can be written as

o ayde 0 pK ays o
A% = /=g <K1 S8 PVOV O R PN+ K8/ 8P R 5

+ K38 e PV, 0 VOO Ry P¥ + Kad (e P VOV, 0 VPV 50 V¥V

+Ks85s 8P VEV,0 VOV 50 + Ked oeg PV, VO VPV VIVep  (25.11)

K785 g% VEV,0 + Kgs"‘gj g PV, 0 VEQ VOV + KogP

€

+ K1V V”«p)

where Kj 10 are arbitrary functions of ¢ and p. We have thus established that in a space

of four dimensions the most general symmetric tensor of the form (2.5.7) which is such that
its covariant divergence is at most of second-order in the derivatives of both g,y and ¢ is
given by (2.5.11). At this point, we know that the symmetric rank 2 tensor densities that
satisfy (2.5.8) for some scalar density A will be contained in (2.5.11). In order to proceed we

need to calculate the divergence of A% and determine the conditions under which this occurs.

These calculations, after much simpliﬁcationzo, yield

VAP =/—¢ (aa;;‘giv% VIV,0 Ry "+ BSRREVIO VIV, Ry P"
— YLV VEVAO V0 VOO Ry PX + e8TIEVIO R, LT VRV, 9 VEV o
+USEIVIO R+ VEEEVIOVEV, 9 VPV 50 VFV 0 (2.5.12)
+208, IV ¢ VOV, 0 VEV,0 +<§V1¢V’LV“¢>
+v—gV99Q
where
(x:2K{—2K3+K5+pK6, ﬁZZKsz{+K3+2pK3,

. . 3 | 1

V:2K5+3K6—3K4+2PK6, a):I'(7—K§+Kg+ng, §:2K9+K10—K§

201n a four-dimensional space the following identities hold that are crucial for this simplification

aBydi o n
1) \% q)REy R

ki _
onikp =0,

SA
§IB1AGo 4y oVIV,OR, =0
oniku ¢ ﬁ‘p 7‘1) SA ’

SeRIL VO OVIV OV V0V 50VHV, 6 = 0.
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and,

’ S
Q =Ki P12V g 9VP Y, 0RsT

(o) ’ (o)
+ (K| — Kg)sgpivivywﬁg’" - 2K35gpiv’t¢v<vl¢vy¢1e5§"

&) 1 5
— KeB[p ViV OR JV Vo0 — S K1 SRy 1P R5 LT

5 1 S
FRISLR 1 SRV 0V 0R 251

. 1,
— 2Ky 810V, 9VAVEGV, VTV 50 + §K45,§giiv’7vﬁ OVPV,OVEV50VV 0

— 2K68L 0V OVEV 9V, VPV 50 VEVeh

+ (K — Ko ) ppiV 1V, 0 VPV 50V Ve + (K — KS)SgSVCVWVnVW

+ K+ pKio +2K10VP 9VI9V V40 + (Kio+ K7)Vy V79,

It is clear that in order for VﬁAO‘B to satisfy (2.5.8) there should exist a scalar density B of

the form

B=B(guvi&uv.p:8uv.po: 91 0.u: Puv)

which such that

V*pB :\/g<a5,‘;‘g§v5¢v"vy¢1e5§" +BEREVIOVIV, PR

— YLV, 9VAVEGV, VO IR  + eSTELEVAOR, BTVFV,6VEV 0 0515,
+uSIVTOR 5O + vég[fgv’lqbvévmvpvsw'fvm

K

+208 IV 9VOV, pVEV 6 + :§V,1¢V°‘V7L¢> .

We need to solve this equation for B. Horndeski showed that (2.5.15) admits a solution if and
only if

and in this case, the solution is

B=0.

As a result, VﬁAo‘ﬁ will be of the form (2.5.8) if and only if the ten scalar functions K;, in-
troduced in (2.5.13) satisfy the following partial differential equations. These equations comprise
a system of eight partial differential equations, among which only six are linearly independent,

as the remaining two can be expressed as linear combinations of the others. The functions Kj,
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must satisfy the following:

4 . . .
Ky = *gKla Ks = 2K3 — 2K| —4pK3, Ko = —4K3,
1 ’ !
K2:§F+W7 K7 =—-2F —4W —pKjy,

Kip= —2F" —4W" — pK§ — 2Kj.

where Ki,Kg,Ko,K3 are functions of ¢ and p, W is an arbitrary function of ¢ and F is given

by the following integral:

=F(¢:p) =Z/ (Ki(¢:p) —K3(9:p) —2pK3(¢:p)) dp

(2.5.16)

Therefore we have established that in four-dimensional space, the most general symmetric tensor

density which is of the form (2.5.7) and its divergence satisfies (2.5.8) is

A% = /g

npxg 8C77

1
K 881% gCPVNV, R PS + <2F+W) 54106 PR, o

+ K385 e PV, VI oRs D" —K 310 g PVIV, VPV VRV g
+ (2K3 — 2K| — 4pK3) as"gfgfﬁvi V,0V1V50

— 4K 8010 g PV 9V OVPV 59V Ve

— (2F' +4W' + pKs) 857 g°PVEV,9

+ K30 PV, 9VE 9V TV 56 + Kog™

— (2F" +4W" + pK} +2Ko) V¥ 9 VP ¢ |

2.5.3 Construction of the Lagrangian

(2.5.17)

The final step in the analysis involves finding a suitable Lagrangian L that yields this tensor

density as its Euler-Lagrange tensor. Lovelock has shown [28], that the Lagrangian that yields
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E*Y =AMV as its equations of motion can be constructed using g,vA*Y. Therefore we find

S 4. oy
8apA”P = /g | Ki Sy VIV oR P — SKi ShoVIVy VPV 50V V¢

K3 8105V, 0V PR PE — 4K S10% V9V 9VPV5VEV e
+(F+2W)S10R £ +2(2Ks — 2K| +4pKs)81 VAV, 0 VTV 50

—3(2F +4W' + pKg)V30 +2Ks 81 V1,0 VEQVTV 50

+4Kg — p(2F" +4W" + pK§ + 2Ko) | -

(2.5.18)

A similar analysis to that performed in Sections (2.1)-(2.2), for the simpler case of a La-

grangian of the form (2.1.1), can also be applied to this case. Consequently, it can be shown

that for a Lagrangian of the form

L=L(8uvi8uv,p:8uv.pcs P PuPuv)-
The Euler-Lagrange equations, using Rund’s tensors, can be expressed as

E®B(L) = —V,VA®B<N L v, 1P _119P,

E(L) = =VpV "1+ VM —¢

where,

JL % Caﬁ _

‘. oL oL
agaﬁ,nK’ 8(])’ a¢70¢/3 7

{% = o TP

nzxﬁ,nx _ =
9.

and,?!

1 1 1
nf = ngﬁrn”nK’a” — R oy mPH — EVQ‘PVﬁC —{Povevee + EgaﬁL

1
OB — > (Caﬁvn(p _¢Byog gnavﬁq))

(2.5.19)

(2.5.20)

(2.5.21)

(2.5.22)

2INote that, there appears to be a mistake in (2.5.21) in [29] that involves the third and fourth terms of this equation.
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Using these and (2.5.16), we find

[ A : (o)
E*P(g,5A7%) = \/g{plq 6§K§§gﬂﬁvkvg¢1¢£§ F 4 pKs 8L PV, 9VToR P

1 49
(2J W) S PR §M — 39p (PK1)BI% g PV V0 VPV 50V Vg

o ars
—4%(p1<3>6§;,7pig€ﬁvy¢v"¢VPV3¢V'<V3¢
+ (20K +6pKs +4p>K3) S P VPV 59 VRV ¢

+ pKs 6‘”5 g PV, OVEOVTIVs0 + (—20 +4W' —p2Ks) 557 g% VeV 9

+ (pKo —2Ko) g%P + (—J" +4W" + 2Ky — 2pKo — p>K}) V*¢VF ¢ (2.5.23)
where,
. J . .
J = /( (pK1) PK3—2Pap(PK3)> de.

Integration by parts has been used to show that
—F +pF =1.
Comparing the equations (2.5.17), (2.5.18) we deduce the Lagrangian:

L:,ﬁ_g{/clég?fvyvnq)ze&”— 5,{?5 NV1OVsVIPVVTH
K3 8126V, 0V PR, T — K3 81°EV, 0V 9V 5V OV V 7o
) A P ()
+(F+2W)8] R 5" +2(2K3 - 2K +4pKs) 8], V,V4 V5V 9 (2.5.24)
—3(2F +4W 4 pKg)V, V79 +2Ks8]0 V,0V V5V 9

+ {40 — p (2F" +4W" + piy +2K) }]

where,
1 3
’Clz/idp7 ’C3:/7dp7
1
K;

’Cs:/*gdpa ’C9:P2/%4P7

W=-W,
and

7= [ 2pK3) dp
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Following the construction of the most general single-scalar—tensor theory yielding second-order
field equations, it is natural to extend the analysis to theories involving multiple scalar fields.
Although several attempts were made, a fully general multi-scalar Horndeski theory had not
been achieved. Notably, Ohashi et al. [32], followed Horndeski’s original derivation and ob-
tained the most general second-order equations of motion for a bi-scalar—tensor theory, but the
corresponding action remained unknown. It was only recently that Horndeski published his bi-
scalar version of the theory, providing the complete formulation [33]. An analogous extension
of gravity theories involves introducing a vector field rather than a scalar field. Motivated by
the earlier work of Horndeski, Deffayet et al. [34] attempted to construct the most general
vector theory on flat spacetime with second-order field equations, referred to as vector-Galileon

theory.
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Chapter 3

Horndeski Theory

3.1 The Rediscovery of Horndeski Theory

For decades, Horndeski’s theory remained obscure, as research focused on simpler scalar-
tensor models. Ironically, Horndeski and Lovelock themselves initially dismissed the theory as
impractical due to its complexity. As Horndeski later remarked, “There were just too many
of them, and they are way too complicated... We wondered who would be crazy enough to
work with such equations. Then crazy showed up!” [35]. The theory’s unexpected revival be-
gan with the Dvali-Gabadadze—Porrati (DGP) model [36], a braneworld model of gravity by
which our observed four-dimensional Universe resides in a larger, five-dimensional space. The
decoupling limit of the DGP model revealed an effective scalar field, m, governed by nontrivial

self-interactions invariant under Galilean symmetry [37]:
n—n+byxt+c

The most general Galileon theory in a four-dimensional flat spacetime, that possesses the

Galilean shift symmetry and is second order in ¢’s equation of motion, is given by

L=ci¢+cX —c3XO9 +caX [(09)* — 9udy 999V 9]

- %Sx [(D¢)3 — 30099, 3,0049% ¢ +2a,i&v¢aval¢ala#¢} :

where X = —%n’”(?#avd) and cy,---,cs are constants. The combination of Galilean symme-
try and the requirement of second-order equations of motion imposes strong constraints on the
allowed Lagrangian terms. Specifically, in a D-dimensional spacetime, the Lagrangian admits
exactly D+1 nontrivial terms of the general form d¢(92¢)" 2 with n=1,---,D+ 1. Notably,

while Galilean-invariant combinations exist for n > D41, just like in Lovelock gravity, these

77



Chapter 3. Horndeski Theory

reduce to boundary terms that vanish in the equations of motion. Introducing gravity requires
promoting the theory to curved spacetime. The naive replacement of partial derivatives with
covariant derivatives d, — V,; in the Galileon Lagrangian introduces higher-derivative terms. To
preserve second-order equations of motion, these terms must be precisely canceled by the addi-
tion of curvature-dependent counterterms such as couplings to R and G,y. The covariantization
of Galileons was achieved by Deffayet [38] who introduced the following Lagrangian that main-

tains second-order equations of motion

L=c10+cX —e3X0 + %X2R+C4X [(06)% = (V. Vv9)?]

+e5X 3Gy (VA9 9) = 2X[(C19)° = 3(06)(VuVa0) (VAVY ) +2(V4V,0) (V¥ V10) (VA V,u9)|

However, the price of maintaining second-order field equations in curved spacetime is the loss
of Galilean symmetry. Further generalization of the theory led to what is known as Generalised

Galileon theory [39]:

5
S = Z/d4x\/—g£i
i=2

EZ = K(¢?X)
L3 =—G3(¢,X)0o
L4=G4(¢,X)R+Gux [(09)> — (Vi Vy9)?]

Ls = Gs(9,X)GuyVH V"¢ — % [(O9)* =3(09)(VuVve)* +2(VuVve)’] (.11

where

(VuVy9)2 =V, V9 VHVY$,

(VuVy0)? =V, V0 V'V V, VHe.

Generalised Galileon theory permits four free functions, G;(¢,X), of ¢ and its canonical kinetic
term X = —%g“"V”q) Vy¢ in the Lagrangian. For the functions G;, we denote their partial

derivatives with respect to ¢ and X by

dG; dG;
Gid’ = ! and GiX = Tle

respectively.

Much like in the covariant Galileon case, the non-minimal couplings to curvature in L4 and
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Ls play the same essential role: they precisely cancel the higher-derivative terms that would
otherwise arise from the non-commutativity of covariant derivatives in the field equations. As
shown in [40] the Generalised Galileons are equivalent to the Horndeski theory. Specifically,
the Lagrangian (3.1.1), can be expressed in the form (2.5.24) by making the following choices

for the free functions Gi:

G2:K9+p/dp(IC§—21C’3/),

Gs = 6(F'+2W') + pKs +4pKsy —/dp (Ks —2K5).
Gy =2(F+2W+pK3),

Gs = —4K;.

In what follows, we will take Horndeski theory to mean the Lagrangian in (3.1.1), which will

serve as the starting point for our calculations.

Horndeski gravity includes the majority of proposed models of dark energy and modified
gravity that have been studied. For example, by making the following choices for the functions

Gil

1. Quintessence:

1
K=X-V(¢), G3=Gs=0, Gi=5.

Quintessence models correspond to a canonical scalar field minimally coupled to gravity,

with potential V(¢), and represent the simplest model of dark energy [41].

2. k-essence:

K=K(¢,X), G3=G5=0, Gs=

1
2
Here, the scalar field has a non-canonical kinetic term K(¢,X), allowing a richer variety

of cosmological dynamics and serving as a generalization of quintessence [42].

3. Non-minimally coupled scalar field:
K=2w(¢p)X-V(p), G3=0, Gs4=F(¢), Gs=0.

In this case, the scalar field couples directly to the Ricci scalar through F(¢)R.
Scalar-tensor theories such as Brans—Dicke gravity, are recovered for the specific choice

F(6)=¢ and V(9) =0.
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In the particular case where G, = —A, G3 = G5 =0, and G4 = ﬁ we recover standard
General Relativity with a cosmological constant. Although the non-minimal coupling to the
Gauss—Bonnet term does not appear explicitly in the standard G; functions, it can nonethe-
less be reproduced within the Horndeski theory'. This requires carefully choosing the functions

Gi(9,X), involving logarithmic forms of the kinetic term, as demonstrated below:

K =8EWX?(3—InX),
G3 =4EB)X(7-3mX),
Gy =4E2X(2—nX),

Gs=—-4EV X,
or, equivalently,
k=EVImX, ki=E@mX, k=0 K =16WX2

where

3.2 Equations of motion

In this section, we present the gravitational and scalar field equations for Horndeski the-
ory (3.1.1). The results are derived so as to reproduce those obtained by Kobayashi et al. [40],

and the detailed calculations are provided in B.1.1, B.1.2.

3.2.1 Gravitational Field Equations

Naturally, the equations of motion for Horndeski theory are quite complicated, yet they can
be derived directly from the standard application of variational calculus. The variation of the

Horndeski action is given by:

5 . 5 .
5 (x/—g Y &) =V lZ Gl 8g" + Y (Pf - 1) 54 (3.2.1)
i i i=2

I'Similarly, one can recover F(R) theories as special cases of Horndeski theory.
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The gravitational field equations are obtained by requiring the variation of the action with re-
spect to the metric to vanish, 6S/0g"” =0, holding the scalar field ¢ fixed. From the general

variation (3.2.1), this immediately yields:

The tensors g{j)v encode the contribution of each Lagrangian £; to the total gravitational field

equations. Their explicit forms are given below. The relatively simple forms for i =2,3 are:

1 1
g,l(LZ\B = _EKleld)VV‘p - EKguw 3.2.2)
1 1
g,l(i3\2 = §G3X|:’¢VIJ¢VV¢ +VuG3Vy) 9 — Egﬂvv,lG3Vl¢. (3.2.3)

Note that the notation V(,G3V,,)¢ indicates symmetrization over the indices p and v. The ex-
pressions for i =4,5 are significantly longer than those for i =2,3. They also contain derivative

couplings to both the Ricci and Riemann tensors. The full form of gﬁ\; is:

Gi) = G4Guy — 1GaxRVu V0 — L Gaxx [(09)? — (VaV50)?| Va9V
—GaxOPVuVy0 + Gax Vi Vud VAV + 2V Gax V3 V(0 V)0
—VAGux V30 VuVy o + guv (Gag9 — 2X Gy )

+ guv{ ~2G10x VA VPO Va9 Vg0 + Gaxx VIVEO VPV, 6 Va9 Vg
+1Gax[(09)* ~ (VaVp0)*] }

+2(GaxRy(u V)9V — V(u Gax V) 019)

— guv (GaxRap VEOVP § — V2 GuxV; 0000) + GaxRyavp VE9VF ¢
—GapVuVy9 — GagpgVudVy +2GasxV* 9V, V(0 V)6

— GaxxVe 9V V9 VP VY, 0. (3.2.4)

The Riemann and Ricci tensors appear as a consequence of third-order covariant derivatives
of ¢ encountered in the variation. These terms are simplified through commutator relations of

covariant derivatives, which convert them into curvature tensors. For example, we have:
Vi, VyIVaVP ¢ = Ruva™ Vi VP — Ry 2P Vo VP9,

1
V*(VeO—0Ve)9 = Ry VOV 9 — 5 VR,

[Vu,Ol¢ =Ruv V' 9.
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As for the Gs contribution, the tensor Qif\z is given by the following expression:

1
Gy = G3xRapV*OVPV (109)0 — GsxRa(uVy) 0V* 909 — 5 GsxRup V9 VP 9V 1V

1
— 5 GsxRuavpV 9VP 9009 + GsxRonp(u (V1) 9V 9V VP9 + V) VA9V e9VPig)

2V (GsxVad) VAV 90010 + 3V, (Gso Vi) 009 — V1 (G Vi, 9) Vs V40
43 [V4(G3oV*0) ~ Va(GsxVp0) V4 VP0] 9,V

E VUGSV OR () — ViuGsGra V04 3V (uGox V)8 [(06)? — (V¥
—V G5B (V)9 +Va(Gsx V@) VOV, 9VFV,

—VPGsx [O0VEV (410 —VaVsoViV 0]V, 0

+ 3VOVaGsx [0VVy0 — VPV, 0V57 9]

-~ %GsxGaﬁVO‘VBq)qu)Vvq) -~ %Gsxmwavmvavm n %GSX(DQ))ZV”VV(;&

+ 1]—265;(;( [(09)° —30¢(VaVg0)* +2(VaVp0)* | ViV, o+ %v’lcscuvvw

1
+guy ( ~ £Osx [(09)* =306 (VaV59) +2(VaV0)’] +V*GsRup VP d
1 1 1 1
- 5v‘)‘(csq,va(p)mp + EV"‘(G5¢,vﬁ<;>)vo,vﬁq> - EV"‘c;swixmp + 5v‘)fasxvﬁxvavﬁ(p
1 1 1
— 3V GsxV10[(09)* — (VaVp9)’] + 5 GsxRap Vo VP 09 - EGSXRWPV“V%V%V’W).

(3.2.5)

As in the fourth part, the variation produces higher-order derivatives of the scalar field. In this
case, however, the terms involve fourth-order covariant derivatives of ¢. These contributions are
likewise reduced to curvature tensors by the use of commutator identities and the relations they
satisfy. The field equations presented in (3.2.2), (3.2.3), (3.2.4), (3.2.5), describe the dynamics
of the gravitational sector. When matter fields are included via a matter action S,, the principle

of least action yields a source term described by the energy-momentum tensor.

3.2.2 Scalar Field Equations

The equation of motion for the scalar field is obtained by requiring the variation of the
action with respect to ¢ to vanish, 8S/8¢ =0, while holding the metric fixed. In this case the

general variation (3.2.1) yields:

5 S S
Zi (Pslb - VMJL) =0 or, equivalently, V* < 2JL> — Z;P‘;’
= = i=
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The contributions for each of the terms of the Lagrangian (3.1.1) are

P = K,, (3.2.6)
P = V,G3VHg, (3.2.7)
Py = GagR+ Gax [(09)* — (VuVy0)?] . (3.2.8)
P = —9,uGsGHY V10 — L Ggx [ (00)° ~ 300 (VuV40) +2(7,99)°), (3:29)

and the currents are

I = Loy V0, (3.2.10)
1) = —Lax V9 + Gax VX +2G3 V0, (3.2.11)
I = —LixVyu +2GaxRuy V"9

—2Guxx (DOVX — V'XV,4Vy0) —2Gagx (O9V, 0 + VX)), (3.2.12)

I = —LsxVud — 2G5 Gy VY 6

—Gsx [GHVVVX + R0V 9 — Ry, VY 9VAV 10 —Ra“ﬁvVV¢V“Vﬁ¢]

+Gsxx Bvﬂx ((09) = (VaV6)*) ~ VuX (O9V,uYV"9 —Vavuw“vw)]

+ Gsgx va ((D¢)2 — (VaVﬁq))z) +0¢VyX — VVXVVV”d)} . (3.2.13)

3.3 Cosmological Background Equations

We consider the case of a flat FLRW spacetime with a lapse function N(¢) described by the
line element

ds* = —N*(1)dr* + a*(t) dx* (33.1)

where a(r) is the scale factor. We assume a homogeneous scalar field, ¢ = ¢(¢) and derive
the background evolution of the Horndeski theory. The following results are necessary for this

analysis:
:2

i aN  a
= a5
N2a aN3+azN2
and . . .
¢ 3H¢ N¢

The details of these calculations can be found in B.2.1, B.2.2, B.2.3.
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3.3.1 Generalised Friedmann Equation

Varying the action with respect to N(¢), and then setting N =1, gives the generalized Fried-

mann equation

where

& =2XKx —K,
& = 6X9HGs3x —2X Gy,
&4 = —6H2G4 —|—24H2X(G4X —|—XG4X)() — 12HX¢G4¢X —6H(]SG4¢,

Es = 2H>X¢(5Gsx +2X Gsxx) — 6H*X (3Gsy +2X Gspx),

H =4, being the Hubble parameter.

3.3.2 Evolution Equation

Variation with respect to a(¢) yields the evolution equation

5
1
= 3a? da

14

where

P, =K,

P3 = —2X(Gsp + $Gsx),

Py =2(3H? +2H)Gy — 12H*X G4y —AHX Gy — SHX Gyx
—8HXXGuxx +2(9 +2H)Gap +4XGapp
+4X (¢ —2H$)Gapx,

Ps = —2X(2H>¢ +2HH $ +3H*§)Gsy —4H>X>$Gsxx

+4HX (X — HX)Gsex +2[2(HX )+ 3H*X]Gs¢ +4HX ¢ Gsp.

(3.3.2)
(3.3.3)
(3.3.4)
(3.3.5)

(3.3.6)
(3.3.7)

(3.3.8)

(3.3.9)
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3.3.3 Scalar Field Equation

Variation with respect to ¢(7)
185

Ep=—--=0
LRPER
gives the scalar-field equation of motion
1d
EE(&J) =P (3.3.10)

where

J = §Kx +6HXGax — 20 G3p +6H>$(Gax +2X Gaxx)
— 12HX Gagx +2H>X (3Gsx +2X Gsxx) — 6H*$(Gsy + X Gspx ), (3.3.11)
Py = Ky —2X(Gapp + §Gagx ) +6(2H? + H)Gay + 6H(X +2HX ) Gagx

—6H*XGspp +2HX §Gspx. (3.3.12)

As expected, all higher-derivative terms cancel, resulting in equations that are at most second
order. The difference with GR is that in the case of Horndeski theory, the scalar field equations
and the evolution equation depend on both H, ¢. This implies a kinetic mixing of gravity and
the scalar field which does not occur in GR [43]. This feature arises once one adds the L3

part of (3.1.1). When matter is included, the background equations take the form
g:_pv P:_pv 84):0;

where p and p denote the energy density and pressure of the matter component, respectively.

Setting G4 = %

< recovers the standard background equations of General Relativity.

3.4 Horndeski after GW

To derive the quadratic actions for scalar and tensor perturbations, it is convenient to employ

the Arnowitt—Deser—Misner (ADM) decomposition

ds* = —N?dt* +y; (dx' + N'dt)(dx) + N’ dt), (3.4.1)
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where N is the lapse function, N is the shift vector, and Y;; is the induced metric on the

spatial hypersurfaces. One then expands the ADM quantities around the FLRW background as
N=1+a, Ni:a,-[i, ’)/,'j:az(l‘)€2§(5,’j+hij+%hikhkj),

where a, B and { describe scalar perturbations, and h;; is the transverse-traceless tensor pertur-
bation. Substituting these expressions into the Horndeski action and expanding to second order
in perturbations, we obtain’

S® = Siorsor + S

scalar®

Since we are interested in gravitational-wave propagation, we focus on the tensor sector, whose

quadratic action is [40]:

1 . Fr -
s g / dtd’xd® [QT i — a—zT(Vhi ,-)2} , (3.4.2)
where
Gr =2 {64 —2XGax — X (H$ Gsx — Gsp) } , (3.4.3)
Fr 22{G4—X(¢Gsx+G5¢)] 34.4)

The propagation speed of the tensor modes is then given by

Ny

&=

ar

or equivalently 6 )
Gy —X(0Gsx + G5¢
2
C, = - .
W G472XG4XfX(H¢G5X*G5¢)

(3.4.5)

The simultaneous detection of GW170817 and its electromagnetic counterpart GRB170817A es-
tablished that the speed of gravitational waves is equal to the speed of light to an extremely
high precision, with deviations constrained to be of order 10~!5 [44]. This constraint rules out
a significant portion of the Horndeski theory. For (3.4.5) to be equal to the speed of light, we
require that

Gix =0, Gs=0.

Consequently, models with Gax #0 or Gs # 0 have been severely constrained. Thus, the viable

2In principle, one may also include vector perturbations. However, in scalar—tensor theories such as Horndeski, these modes
are non-dynamical.
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subclass within Horndeski is described by the Lagrangian

L= G2(¢7X) - G3(¢7X)D¢ +G4(¢)R'

3.5 Kinetic Gravity Braiding

Dark energy can be modeled within scalar field theories of the Kinetic Gravity Braiding
(KGB) type, which do not require a cosmological constant. The general action of the KGB
theory, can be obtained from Horndeski when G, #0, G3 #0, G4 =1/(2k), G5 =0

S:/d“x\/fg[;(R+K(¢,x)—c(¢,x)m¢+ﬁm , (3.5.1)

where K(¢,X) and G(¢,X) are arbitrary functions of the scalar field ¢ and L, is the matter
Lagrangian. This class of models can exhibit many interesting properties, such as attractor

solutions [45]. From sections 3.2.1, 3.2.2, we deduce the equations of motion of the theory
Guy = K (Tlﬁ',)) + T‘ET)) 7 (3.52)
where T‘ET) is the energy-momentum tensor of the matter section and
T;ﬁf) = KxVuoVy@ +guvK +guv V2 GV @ — (VyGV 9 + VGV, 0) — Gx oV, 0Vye.  (3.5.3)
The Scalar field equation is given by

Ky + Vo (Kx V) +2GoxX —2Gp0¢ + Gxg (2XTP +2V 4,9 VFVY OV, 0)
+Gx |~ (09)* + (VuVy0)(VAVY0) + Ruy VA 9V"9 |

— Gxx [(va)(vi) —V VAV VVX] —0. (3.5.4)
For the Friedmann equation, the results from the previous section reduce to
K . . .
H? = g(pm+KX¢27¢)2G¢ +3GX¢3H—K>. (3.5.5)

The shift-symmetric sector of the theory corresponds to the choice G; = G;(X). The presence

of the shift symmetry of the scalar field,

¢ — ¢+c,
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allows the existence of a Noether current, which is given by
JH = (Kx —2Gy — GxO9) VF 9+ Gx VFVY 9V, 0. (3.5.6)
In this case, the scalar field equation (3.5.4) reduces to
vVt =0.

As a subclass of the broader Horndeski framework, KGB models yield second-order field equa-
tions. Moreover, they naturally ensure that gravitational waves propagate at the speed of light.
The KGB framework has been studied in the context of cosmology, including its potential to

alleviate the Hubble tension [46].
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Chapter 4

Summary

In this thesis, we initially investigated the structure of gravitational Lagrangians that depend
on the metric tensor and its first two derivatives, along with a scalar field and its first deriva-
tive. The foundational principle of our analysis is the requirement that the action remains in-
variant under arbitrary coordinate transformations, which forces the Lagrangian to transform as

a scalar density:
z(gx/l§arg1<x;3r3agx/l§¢3§3K€5) :BL<8uv§apguv§apacguv§¢§au¢)-

As we demonstrated, the requirement of invariance severely restricts the possible form of the
Lagrangian. Utilizing this, we constructed tensorial quantities that involve partial derivatives of
the Lagrangian with respect to the metric, its derivatives, the scalar field, and its first derivative,

and we derived the following three invariance identities:

o ARVPO L AHPVO L ALTPV — ()
o TIMVP =0,

. %géxL:Hlé — %A"PaéﬂRle + %glx,\iql +%g15AX¢W

We showed how these identities can be used to identify and restrict the structure of the La-
grangian. In particular, the second invariance identity demonstrates that in order to construct a
Lagrangian for a theory of gravity, the inclusion of second derivatives of the metric is neces-

sary. Furthermore, the third invariance identity provides a practical expression for the equations
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of motion:
uv uv.,pc 2 u T0,vA 3 vV _UT 1 u vt 1 uv

where the only quantities to be evaluated are A*V:P9, and A*. Using the three invariance iden-
tities and the symmetries that A*Y:P°, TI*V:P and IT"V have, we constructed the most general

Lagrangian in four spacetime dimensions

(04}
L :?(*R“,VJG)(*R”%L)(*RK’}W) +0oy/—g (R*—4R" Ryy — R*YP°Ryypo )

+ o3 (xR 56 ) (<RP Gy + 0tan/—gRMY 9 10y + 5.\ /R+ s/ —8 (2.4.20)

where, oq,0n,03, are functions of ¢ and o4, os,04 are functions of ¢ and p. To ensure that
the resulting Euler-Lagrange equations remain second order, we derived a set of conditions on
the tensors yMVPooB.YS and AHV:POX specifying the symmetries they must satisfy under index
permutations. Applying these conditions yields constraints on the free functions of the theory,
namely oq =0, %—Og‘ =0, o3 =constant, and %—OI;"’ = f%a‘;. Consequently, we constructed the most

general four-dimensional Lagrangian whose Euler—Lagrange equations are second order in both

the metric and the scalar field:

L= vV —8 (ﬁl (R2 _4R“VR[LV +RIJVPO-Ruvp6> +ﬁ2Guv¢7# ¢,v + ﬁ3R +ﬁ4>

+c(xRMY ) (xRPC ),

where B,B,,B; are functions of ¢, B4 is a function of ¢,p and c is a constant.

The inclusion of the scalar field introduces additional terms beyond those of General Rela-
tivity. In particular, the Gauss-Bonnet term R — 4R, R*Y + R,ypsR*YP®, which is topological
in 4D, becomes dynamical when coupled to the function f;(¢). The final term, proportional
to the constant ¢, does not contribute to the equations of motion and therefore does not affect
the dynamics. Moreover, by setting B =, = f4 =0 and B3 = 1/2k, the Lagrangian reduces
to standard General Relativity. This work can be extended by incorporating additional scalar
fields in the Lagrangian. This generalization would lead to significantly more complex invari-
ance identities. Furthermore, the results used to constrain the Lagrangian’s form, such as those
based on the work of Lovelock, would need to be appropriately generalized to accommodate
the additional field. Another route to expand on this work would be to study the resulting the-
ory within the Palatini formalism where the metric and connection are treated as independent
variables. A further generalization would be to derive the most general Lagrangian of this form

in a spacetime with torsion.
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In Chapter 3, we discussed the modern formulation of Horndeski theory. Using the calcu-
lus of variations, we reproduced the equations of motion as derived in [40] and demonstrated
how the higher-order derivatives arising in the process can be rewritten in terms of curvature
tensors using commutator relations. We then specialized to a flat FLRW metric and derived
the corresponding cosmological background equations. Furthermore, we analyzed the implica-
tions of recent gravitational-wave observations for Horndeski theory, focusing on the constraints
they impose on the free functions of the theory. In this context, we examined the Kinetic
Gravity Braiding model as a particular subtheory of Horndeski theory, discussing its potential

applications in cosmology.
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Appendices
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Appendix A

Calculations of CH.2

A.1 Conditions

In order for the Lagrangian, (2.4.20) to yield equations of motion that are at most of second
order in derivatives, we impose the identity (2.4.9)!

AK)LArG;p +Akl,rp;6 +AK7L,0'p;T -0

Since we already know that in order for (2.4.20) to be second order in derivatives a; =0, o3 =
¢, we only need to focus our attention on the fourth and fifth terms of the Lagrangian (2.4.20).
Therefore, we consider the following Lagrangian:

L=v/=g( (9, )Ry V"9V 9+ 05(9. p)R), (A1)
and we calculate the partial derivatives

d d

AFLTOP — — (L (A.1.2)
8(qu)) agvd,ra ( )
To proceed, we must first calculate
(A.1.3)
agkk,ra
and IR
_— (A.1.4)
agkk,ro

The Ricci tensor can be expressed as

Rov = 3pTN6 — WTho + T4l , ~Tholh .

Since the last two terms do not contain second-order derivatives of the metric, we omit them
in the following calculations. Therefore,
1
Rov = Egpl (9p9s8vy — Ipdy8ve — IvIogpy + vIy8ap) -
For (A.1.3) we have

ORuyy 1, 0
= IpBugvy — Oy gu — I Ougoy +NIy8up| -
98k ro Zg 8gkl’m[ pOu8vy —OpOy8vu — OvOu8py T Ov xgup}

n fact the identities (2.4.9), (2.4.10) are the same condition. Thus, it is sufficient to impose only one of them.
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Using the following result >

a(aaaﬁgpc) 1 0
= — a a G+a a o +a a G+a a ool
9(9:9mgxr) 4‘9(‘9fangm)[ 98&pc + Fadpgop + Ipdugpo + Ipdugop

we find

aR#v

1 A i N )
%mm)sfﬂﬁ%&@+¥%%$+$%%$+$@g$

- 61559?6\35/? _6;69/}51553 —5,'((55655;3 —6;5;}@353

— OK818782 — 6K8676° — 55818782 — 586587

+ 8058} 8157 + 8\ 8y 8587 + 85 6} 8585 + 5588557 |-

_

Simplifying the above, we obtain

d(R 1
a(g( ;V))Vu¢vv¢ — Z chvl¢VT¢ _'_gKTV}L(Pvﬁ(P
KA,TC
+gko'vl('¢vf¢ +gl‘rvl€¢v6¢
— 28" VOYVTH —28"°VF9V ¢ | . (A.1.5)
Following a similar approach for (A.1.4) we find
AR 1
— Z|pgKC AT 210 KT _ 40T KA A1.6
(8 c0) 4{5' g +287"g g8 ( )
therefore,
0 o
S (@R VH OV o+ asR ) = 5[ g5VE9VT) 4 gX VA4V
agld,rc 4
+g/lo'vk'¢v‘t¢ +gl‘rvl€¢v6¢
_nglVo'(Pv‘E(P_zg‘CﬁvKgbvld)
o
+75 {gkaglr+glcgm’2gm:gkl]' (A.1.7)

Substituting these (A.1.2) can be written as

peeeo = 9O (L)=¢?g1{ o (857V*0V™9 +g VA9V + gOVEGVTY + g VF GV

a(‘P,p) agkk,rc 4 a(¢-,p)
_ 2gK;LVG¢VT¢ _ zgfcfvl((bvl‘p)
Toy J (gxcvl(pvrq) _|_g1crv/1¢vc¢ +glovx¢vr¢ +g},TVK¢VG¢
9(9,)

_nglvﬁ¢Vf¢ _zgfo'vk'd)vlq))

8065

T30,

(2gkcglr+2glﬁg'ﬂ'_4g‘”g’d) } (A.1.8)

2The factor % comes from the symmetrization of g3 ;5.
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Noting that?

905 :8a45 dp  Jdaysd(g"VueVy9) 23064,5
d(9p)  dp I(¢p)  Ip (V) ap

and calculating the partial derivatives for the second parenthesis of (A.1.8) we find

VP

Akl.fc;p _ r4{2%a‘1vp¢( Kcvxd)vfd)—I—gKTV)Lq)VGqﬁ+g}”GVK¢)VT¢)+ngVK¢VG¢

_nglv(T(pv‘E(p _ngcvaq)vl(P)

+oy (gkaglpvr‘l) +gxogrpvl¢ _,'_gm'gkpvad) +gKTngv7L¢
Jrglogkpvrd) Jrgkcgrpvk(]) +gl’ﬂ.g1€pv6¢ +grlgcpvx¢
_2g1('lg6pvf¢ _ 2gK)Lngvﬁ¢ _2gTUgK'pvl¢ _ 2gT0'glva¢)
das

+$Vp¢<4g1«r AT+4g).G KT 8gm’ K)L) (A.1.9)

Using this expression and after some lengthy but straightforward calculations, we find

Akk,rc;p +AK)L,rp;G_|_AKA,cp;r
(9064 KOwA 40T 4P KToA 400 4P Ao T 4P ATTK 470 4 TP
=+ op 285V OVEOVP  +2g TV OV OVP ¢ + 28"V OVTOVP ¢ +2¢*TVEPVO VP ¢
— 4gMVG¢Vf¢VP¢ —28"VEYVI9VP 9 +2g"PVO YVF 9V 4+ 285VF9VP 9V ¢

+28"PVEOVTIVOP —2g A VPOVTHVH —2gPVE VIOV — 2g"PV'€¢V*¢VT¢]

do
(2871)54_0C ) [ngo-glpvr(}ﬁ—I—ZgKTglpVO-(])+2nggAGVT¢+2gTAngVO-¢

74g’dg6pvf¢ 74gklgrpvc¢ +2g1<rglavp¢ +2gflgimvp¢ 74g1dgcrvp¢} } -0

which leads to the following result

(9065 1

A.2 Computation of WHV:Po:0B.Y0 (5 , @)

To compute the term ‘P“va“;“B‘VSRyaﬁng#vg, we utilize the following results from [7].
If duv.inpo.co = Quv.knpo.v(8ap, @) is a tensor and

(buv,xn;po,w = ‘Ppcr,w;uv,vcn = ¢vu,1<n;po.rv = (buv,mc;pa,rm

together with
(buv.m];po,w + ¢,un7v1<;pc,w + ‘P}Lmnv;pmw =0,

and

Ouv.knspo,eo + Puv.kvipont + Puv.kepo,on
+ (Ppcr,rcn;,uv,rv + ¢p6,1<v;,uv,nr + ¢p6,m;uv,vn =0,

then, for spacetime dimension n > 3,

3Note that in the notation used in Chapter 2, p = g"VV, ¢V ¢.
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2n—5)a oo 20 .
¢uv,1<n;pc,mR"“V’7RT""” = ( )%y nipo.ev BV.pOX,TY RFHVIRTPOV,

(2n—3)(n—3)
where

Ouy xknipo,to = glx [guvq)xl,xn;pc,w +g/.LV¢x)L.Kn;p6,w
+guv¢xl,xn;pa,w +8,uv¢x)t,r<n;po,rv
+g,LtV¢x/l,Kn;pa,w +g,uV¢x7L,Kn;pa,rv
+guv¢xl,xn;pc,w]~

Under the same conditions for @yy xn;ps,co We also have

1
gwq&nv,xs;pa,rv = 7an,1<e;pca
n—2
and |
T )
8 ¢mﬂun;lv,po = *ig d’un,xl;po,w
4
+nu5n V _g(gpnguvdo- +8pn€uxic
+8pn€uxic +gpn8uklc)v
where
1
ﬁnv,vcs;pa =1 (gnvgkspc — 28nv8xkepo
1 1 1
— 38nv8kepo — 38nv8kepo — jgnvgkspa)a
and

8xknpo = 8xkn8poc — %(gkcgep +gkpgsc>>

(A2.1)

(A2.2)

(A.2.3)

(A24)

while A and p are functions of ¢. In summary, our approach is as follows. First, we com-
pute Oy kn:po,co and Oy po;kn,cv using the relations (A.2.2)—(A.2.4). We then substitute these
expressions into (A.2.1), and subsequently simplify the result by exploiting the symmetries of

both the Riemann tensor and the tensor ¢uy xn:po,7o. We have

A
Ouv, kn:pe,tv = 8uv 8 x ¢x/1,xn;pcr,w

A A

+8uxg x d)xvﬁln;pc,w +8ung x d)xvﬁkk;pa,w
A A

+8up 8 x (/jxv,rcn;)tc,ru +8uc 8 x ¢xv,xn;pl,w

A A
+8ur8 X‘va,;cn;pc,/lv +T8uvg& %¢xv,xn;po,rk

For the first term we use (A.2.3). The second and the third term can be written as

A 2 1
8" X0y anpo.tv = 78 Xoyrvnpo,to = *Zﬁpmw;vn

and

A I, 1
8 X‘va,;dt;pc,rv = _53 Z(Pxx,v;c;pc,rv = _Zﬁpo,w;vvc

(A.2)5)
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For the rest of the terms we use (A.2.4). We find

1 1 1

Oy, xn:po,tv = Eguvﬁpa,rv;xn - Zguxﬁpc,rv;vn - Zg,unﬁpc,w;vx
1 1
- Zgupﬁxn,va;w - Zguaﬁxn,vp;w
1 1

4gurﬁm7.vv;pc - 4guvﬁxn,vr;pc
+4u/—g [gup (81’1] Exvov T 8un€kvor + 8rk€nvor + gvKEnvcr)

+8uc (grngkvpv + 8vn€xvpr + 8rx€nvpo +gvr<8nvpr)

+ 8urt (gpnngvc +8on€xvup T 8px€nvuo +80K€nvvp)
+8uv (gpnngrcr +8on€xvip T 8px€Envro +gcn<8nv1:p)‘| . (A.2.6)

Similarly we obtain

1 1 1

Ouv.po:xn,to = Eguvﬁkn,rv;pc - 4gupﬁkn,w;vc - 4gu6ﬁm},1v;vp
1 1

4gukﬁpc,vn;w - 4gunﬁp0',vx;w
1 1

gutBpovuikn — ~&uvBpo,vrikn
4 4
+4uy/—g [guK<grogpvnv +8voévnt +8rpEavnu +gvp86vnr)

+8un (grogpvm) + 8vo€pvikt T 8rpEsvkv +gvp£c7v1<r)

+8urc (gxcgpvvn + 8on€vuk T 8pr€ovun +gnp86vv1c)
+8uv (gxagpvrn + 8on€pvrk + 8px€ovin Jﬂ%p&rvm)] . (A2.7)

Note that from the definition of By kepo, the following symmetry holds that can be used in
order to simplify the calculations

ﬁnv,mz;pc = ﬁnv,pc;xs-

97



Appendix A. Calculations of CH.2

Substituting (A.2.6) and (A.2.7) into (A.2.1) yields

(3(1#\/’1(17;‘)0_’71) + 2(1“\/’,)6;,(17&1))RKuvTIR‘EPGU/S

1 1 1

= (zguvﬁpc.rv;xn - Zguxﬁpc,rv;vn - Zgunﬁpc,w;vrc
1 1 1

- Zgupﬁxn,vc;rv - Zgucﬁxn,vp;w - Zgurﬁxn,vv;pa

1
_ 4guvﬁkn,vr;pa) RKUVI pTpOv

+ Uy _g{ 12 [g,up (gTUEKVGD + 8vn€kvor + &rx€nvor +gv1<£nvcr)
+8uoc (grngkvpv + 8vpEkvpr T &rx€nupv +gv1<8nvpr)
+ 8ur (ng]gKVDG + 8on€kvup T 8px€nvuo +gm<8nvvp)

+ 8uv (gpnngrc +8on€kvip T 8px€nvro +gcx"3nv1p) ]

+8 [gmc (gwgpvnv +8vo€pvnr + &rpEovnu +gvp£crvnr)

+8un (grcgpvrcv +8vo€pvir + &rpEovikv +gvp8crvm)
+ 8ur (gxaepvvn + 8&no€pvuk T 8xpEovun +gnp80vm<)

+8uv (gK‘GSpVTT’ + 8no€pvrk T 8xpEovin “"gnpgcvrk)} }RKI'W”RTPGU. (A.2.8)

The expression (A.2.8) can be separated into two distinct contributions. The first three lines,
upon simplification, reproduce the Gauss—Bonnet term in (2.4.21). The remaining lines corre-
spond precisely to the fifth term of (2.4.21). In order to achieve this, we substitute the terms
that involve the tensor B, and use the symmetries of the Riemann tensor. Many of these terms
vanish as a result of these symmetries; for example, the second term vanishes because it is
symmetric in the indices g and k, whereas the Riemann tensor is antisymmetric in the same
indices.

A.3 Equations of Motion
A.3.1 Scalar Field Equations

In the notation used in Chapter 2

E(L)=— (A") - A3.2.1
(L) = 5o (AM) (A32.1)
or equivalently
JdL ( dL )
E(L)y=—=+Vy| ===
=35 Vi 5,0)
* Ly = /—gPi1(¢) (R*—4R*YR,, —RHYPOR,, 5 )
The first term of (A.3.2.1) for this part of the Lagrangian is*
dL,
So = Bl(0)GVa0 V0.
While the second term vanishes:
oL, 0
I(Vud)
Therefore,
Ei(L))=—v/—2Bi(9)G (A3.2.2)

4We denote the Gauss Bonnet term by G
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* Ly = —gB(¢)G""V,0 V0

The first term of (A.3.2.1) is
T B(0)GM V.0V,

The second term is
dL,

(Vo)

(Vo) (V“¢Vﬁ¢>
= B(9) G | 84 Vg0 + 8} Vo |
= 2132((]))(;”0( Va¢.

= Ba(¢) G*F

Thus,

)
Vi (9(VL,12¢)> =2B(9)G**V, Vd +2G**V oV (B2(9)) =

2B2(9)GH*V Vo +2G**V o V10 B (9)

Combining the results above, we find
Ex(L) = V=8G"" [2B:(9)VaV 0 + B3(0)Va V9 |. (A3.2.3)
* Ly=y—ghs(¢)R

For the third part of the Lagrangian, we find

= VaBi0R
and
dLs _0
(Vo)
Substituting into (A.3.2.1) yields
Ez =+/—gB5(9)R. (A3.2.4)

* Ly=/—gBa(¢.p)
For the fourth part of the Lagrangian, we find
oL _ ops
99 99’
and

dLy _dBs dp
A(Vud) ~ Ip I(Vu9)

dfs 0
~ 9p I(Vup)

_ 9B B gH B sk
_%<ga 0o Vpd+g* 613 Va(]))

(8"PVa0 Vo)

_ 9B ©
_2$v 0.
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The second term of (A.3.2.1) is

u(aar) =255 79)

334 dPs
25, VaV 0+ 2744V, ( )
2 2
%’;“ ¢ +2‘9 ﬁ4Vup +2a¢§4 VoV
59 d 92
a[;“ D¢+4aﬁ2“w¢vﬁ¢vﬂvﬁ¢+2a¢§4 Vup VHo.

Substituting into (A.3.2.1) we obtain

2
E(Ly) =+/—g 881;4 ‘9[3“ af“vﬂw%v Vﬁ¢+28¢§4 VeoVEo . (A3.2.5)

The calculations for the equations of motion for the metric g,v, can be obtained using the
results from B.1.1
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Appendix B

Equations of Motion for Horndeski
Gravity

B.1 Equations of Motion

We note here some general results that will be used extensively in the following calculations:
1
6(\/ _g) = ) V _gguv58“v7

1
5X = —EV“(va(PSg'uv,

dG; 1
, — ! — — G — uv
5(Gl(¢ax)) - aX o0X = G1X2Vu¢vv¢5g )
8" g% 8gye = — 5",

VX = —(VE0)V,Vad,

The variation of the Ricci tensor is given by:
SR“GW =06Rsy = Vu(5l““vc) — VV(SFHHG).

This result is sometimes referred to as the Palatini Identity. A more applicable form of this
result for the subsequent calculations is given by:

1
SRy = 5gwﬁ [VaVvgup+VaVudgvp — VuVv8ap — VaVpSguv] -

In the calculations that follow, we will need to simplify terms using commutators of covariant
derivatives. For this reason, we first present some useful results that will be applied repeatedly
throughout the derivation. Starting from the general commutator relation for covariant derivatives
acting on a vector field (1.1.13):

Woca Vu}vv‘l’ = RXa#V)Lq),
we contract the indices @ and v to obtain
[Vy,Vu]VVe = R;vap =Ry, V*9.
Expanding the commutator yields the identity
VyVuV¥o - V06 =R,V 9,
or equivalently

[0,V =Ry V6.

101



Appendix B. Equations of Motion for Horndeski Gravity

Commutators of covariant derivative acting on dual vectors give:
_ o
[Va,VH]Vﬁ(i) - _Rﬁauchﬁ
while for mixed tensors X" v, we have

A A
Vo, VolX*, = RY X7, — Ryp6X",

Using the above we can also prove the following:

VO (VoO—0Va)9 = —R; o VOV 9 — %V;LR
where in the last equality we have utilized the contracted Bianchi identity.
B.1.1 Gravitational Field Equations

* L, =K(¢,X)
We start by considering the simplest term in the Horndeski Lagrangian.
S, = /d“x\/fgl(@,x).

Variation with respect to the metric yields

65 = [ d'x6(v=gK + [ dxy=gs(K) =

1 1
/d4x\/fg <2gﬂvK 2KXV”¢VV¢> Sghv.

Therefore,

1 1
Gﬁfv) = _EKXVMva(b - Egva (B.1.1.1)

* L3=—G3(¢.X)0¢

The action is

Sy = / d*xy/=g(~G3(9,X)09).

Variation with respect to the metric leads to
65 = [ d'x6(v=8)(~Ga09) + [ a'xy/=g8(~Ga) 00 + [ d'xv/=g(~G)8 (" V,iVv0)
= /d4x <;ﬁguv> G;0¢ 5g“v+/d4x\/ng3x (;Vud) Vv D¢) ogh’
—/d4x¢ng3 VaVyo 8ghY —/d4x¢fgg“VG35 (VuVyo). (B.1.1.2)
For the last term, we have
8(VuVy$) = —8Th, Vo6 = —%g“ (Vubgvo +Vvoguos — Vobguv) Vi .

Using this, it can be recast in the following form

1
/d4xv _8G3g'uv§gl(y (Vuagvc + Vvag/.tc - Vc5guv) Vo=
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1
/d x/—gG3g"'g ro (V,u5gvc - 2V638uv> V5.9.

Where, for the last line we have exchanged u <+ v in the first term. Note that in order to
write the result in terms of the variation of the inverse metric, we get an extra minus sign for
each of the terms. The result can be written as

1
/d4x\/ng3 (Vﬂ‘o‘g‘“l + EgﬂvV’1 Sg’“’) V0.

Integrating by parts, discarding the surface term which vanishes under the assumption of van-
ishing variations at infinity, and exchanging A <> v, we obtain

/d x/—g [V“(G3Vv¢) gqux(G3V ¢)]

Substituting into (B.1.1.2) yields

1 1
853 = [ d*xy/=| 58600 + 5GaxVu0V10TI0 — GaV, V19 + Vi (GsV,9)

1 1
- Egqu}”G3V;L¢ —M] ogh’

1 1
§3= /d4x\/ —8 {2G3XV“¢VV¢D¢ +VpG3Vv¢ - Egqu)LG3VA¢ ogh”

Simplifying further,

which yields
1 1
G = 5GsxVudVy9Ip +V(, GV 0 - Egqu;LG3Vl¢. (B.1.1.3)
The need for symmetrization of the second term stems from the fact that the tensor (V,G3)Vy¢
is not manifestly symmetric in g and v, but it is contracted with the symmetric tensor 8gHV,
which is symmetric in ¢ and v. As a result, only its symmetric part contributes to the variation

while the antisymmetric part vanishes. We can therefore replace it with its symmetric part,
VuG3Vy) ¢, without loss of generality.

* L4=Gy(¢,X)R+Gyx [((9)*— (V,Vy9)?]
The action for this part of the Horndenski theory is

Sy = /d4x\/?g[c4(¢,X)R+G4x [(09)* — (VuVvo)?] } (B.1.1.4)

The calculations for L4,Ls are lengthy so we will split them into multiple parts. Variation with
respect to the metric for (B.1.1.4) yields

58y = /'d4x6(\/?g)G4R+ /d4x\/—7g5(G4)R+ /d4x\/—7gG45(R)
+ [ d8(v=g)Gax [(00) ~ (Vu9v9)] + [ d'r/=28(Gax) [(C6) - (VuVv9)’]

+/d xy/—gGax 8 [(3¢)* — (VuVv9)?]. (B.1.1.5)
The first, second, fourth, and fifth terms are straightforward.
/d4x6 8)Gax [(@0)* — (VuVy9)*] = —f/d xv/—88uvGax [(09)* — (VaVp0)*] S5,
[y =58(Gax) (007~ (Vu940)] = 3 [ d'xy/=8Gaxx Vud¥40 [(C6)? - (VaVp0)?] 35"
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/d4x\/ 26(G4)R ——f/d“x«/  (GaxVu9VyoR) Sg,

/d4x5 g)G4R = —f/d xv/—gguvG4RSg"” (B.1.1.6)
We calculate the remaining two terms in detail below. For the third term,
/d4x\/—gG4 OR = /d4x\/—gG4 O(g" Ryuv)
= /d4x\/—gG4g“v5R”v—|—/d4x\/—gG4R”v5g”V. (B.1.1.7)
In contrast to the simple case of Einstein-Hilbert action, where the first integral reduces to a
surface term, the presence of Gs requires computing the full variation. Since this is the first
time we encounter this variation, we compute it below, in detail. Later on, when terms like

these appear in the calculations for Ls, we will substitute the result from the introduction of
this section. Using (1.2.10) for SRMV, we find,

/d4x\/—gG4g’“‘V5R#V = /d4x\/—gG4g“V (V,,SFﬁv - VVSFﬁp) .

Substituting the variation of the Christoffel symbols,

1
5rzv = Egpo (V,LLngc +Vy0guo — VGBguv)

1
8Thp = Qé’po (Vudgop +Vpdgou — Vodgup)

we obtain,
/d4x V—8Gsgh" Bg"“(VpVﬁgm +VoVv8guo — VpVoguv — Vv Vudgep
~VyVp8gou + vvvcagup)} :
Which, after renaming some indices and simplifying, can be reformulated as
/d“x\/fgc4 [y D(8¢4) =V, 0 (864Y)].
We now use integration by parts to shift around the covariant derivatives (discarding the result-
ing boundary terms each time as justified previously). Note that there is no overall sign change

since we perform the integration twice on each term. Also, the order of differentiation on each
term changes (even though, in this case, it makes no difference).

/d“x\/?g {g,wmca - vvv,lcd SgHV. (B.1.1.8)
Now we turn our attention to the last term of (B.1.1.5)
/ d4x\/ng4X5[(D¢) ~ (VuVu9) } [dtxv=gGux [zmw Voo 5gt”
+200 V9oV, 08" —guvO9 V¢ VPSgHY —2V, V0 V9 VP MY
+VuVyo V¢ VPSgHY —2V, VPV, V,0 551" |.
Where we used
) ((Vuva)z) =2VPV, 9V, V088" +2V,V, 9V, 9VP 5" —V, V0V ,0VP SgH",

i) ((D¢)2) =200V, Vy¢ g +200V, ¢V, 08" — gy 9V, 0 VP 5gHY.
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Integration by parts, yields
/d4x vV—8 [ZG4XD¢V“V\,¢ -2V, Gax9Vy ¢ —2G4xV (O9)Vy o
- 2G4X|:|¢Vuvv¢ + 8uv (VPG4XVp (bD‘P + G4XVP (D¢)Vp¢

+G4x(D¢)2> +2(VPGax)Vp V9 Vyo (B.1.1.9)
+ 2G4XD(VN¢)VV¢ + 2G4XVpV,u¢VpVV¢

— (VPGax)VuVvoVpd — Gax VP (VuVy9)V, ¢

— GaxVu Vv —2G4xV, VP9V, VY, ¢} Sgh.

This concludes the variational calculations for the individual terms of (B.1.1.5). The final result
is obtained by summing the contributions from equations (B.1.1.6), (B.1.1.7), (B.1.1.8), (B.1.1.9)
and simplifying the resultant expression.

65:= [ d‘*xﬁ{ — 380G [0 — (VaVp0)*] - 5 Gaxx V9 Vo6 [0 — (VaVp)?

1 1
— 5 GaxVudVvOR ~ SguvGaR + GaRyy + guvIGa ~ Vyu VG

+2Gax ¥V 9 — 200V, Gax Vy§ — 2Gax Vi (09)Vy ¢ — 200 Gax Vi Vv d

+ VP Gax guy Vp 9 00 + Gax VP (09) guv Vo d + Gax guv (06)*

+2(VPGux)VpVyud Vv +2Gax (V) Vv 4+ 2Gix V5 A

- (VPG4X)VuVV¢ Vp¢ - G4XVP(V;LVV¢) VP‘P - G4Xvuvv¢ Uo¢

—vavprp}csg‘”.

The terms that involve third-order covariant derivatives of the metric are arranged in such a
way that they will be replaced using commutators of covariant derivatives acting on vectors or
dual vectors that will eventually reduce to Riemann or Ricci terms.

We can reformulate some of the terms as follows,

—VuVyGy ==V (Vy9Gag + VyXGax)
= —G4¢V“VV¢ — ZVV¢V,JXG4¢X — VV¢VH¢G4¢¢ — V”VVXG4X — VVXVﬂXG4XX
— —GupV Vv +2Gapx VPOV V0V 0 — VOV 1 0Gags + Gax VpVud VPV, 0
+Gax VPO (VuVy V) — Gaxx V¥V V9 VP V4V, 0.

In a similar way, we find,

guv0Gs = —guvGax (VaVp $)* — guv V¥ O(Va9)Gax +28uv VpX VP §Guxy
+2uvVa V29 VEVAO VEOVP ¢ Gaxx + guv (GapDI9 — 2X Gagy)

and

2Gax (O(Vy$) = Vi(09)) Vyd = 2GaxR,, V> 9 Vv h.
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Therefore

65:= | d4x¢fg{ ~ 38 Gax [(09) = (VaVpo)?] - 5 Gaxx V9 ¥y [(00)? — (VaVo )]

1
— 5GaxVudVyOR +GaGyy — guvGax (Va V) — guv V¥ 9 O(Vad)Gax +28uv Vo X VP 9 Gaxy

+8uvVaVi0 VYV VEOVP ¢ Gaxx + guv (Ga9 TP —2XGagg) — GapVu Vo
+2Gapx VOV V0 0Vy0 — Vi OV, 0Gapy + Gax ViV oV V0

+Gax VPO (VuVy V@) — Gaxx VOV Vg VP9V V0

— 2009V, Gax Vy @ +2GaxR,, V* 9V,

+ VP Gax 8uv Vpo Lo + Gax VP(D¢)8#V V¢ + Gux guv (D¢)2

— (V2Gax)VuVy@ V¢ — Gax VA (VyV9) V30 — Gax Vy Vi 9

+2(V,Gax)V* V0 V0 } Sghv.
Simplifying further using

8uvGax VP (6) Vo6 — gy V49 D(Vad) Gax = guvGax V0 (VP (09) ~ O(V9) )
= —guvGax RV 49V,
Gax VP9 (V,vava — VquVvq)) — GuxR%p, Vo d VP9
= GaxRyuavgVOVP 9,

and,
28uvVpX VP Gaxy = —28uyGagpx Vo Vo V9 VP .

We obtain
1
554 = /d4x\/jg{G4GHv — §G4XV/J¢VV¢R

G Va0V [(00)* — (VaV6)?] — Gax ¥V 09
+Gax ViV VAVy0 +2(V;, Gax ) VAV (, 0 V)6
— (VAGax)VuVvd V9 + guy (GagD9 — 2X Gugy)
+8uv [*ZG4¢xVaV3¢Va¢Vﬁ¢

+GaxxVaVy ¢ Vﬁvkq’ vepvhg

+3Gax [(00) ~ (Va¥ 507"
+2[GaxRi V)0V 9 — V(, Gax V1) 009 |
— guv |G R Va0V — V3, Gax V-0 0
+GaxRyuavgVEOVP
—GapVuVvo — GagpVyOVy o
+2Gapx V2OV V(, 0V, 0

- G4XXVOC¢V(XV/1 ¢Vﬁ¢vﬁvv¢ } ogh?
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Requiring 654 =0 yields the final result:
) !
G uv :G4Guv - §G4XVN¢VV¢R

1
= 5GaxxVuoVyo [(09)* = (VaVp9)’] = GaxVu Vo T9
+GaxVaVudV Vo +2(V1Gax)VAV (9 V)0
— (V2Gax)VuVv9 V20 + guv (Gag09 —2X Gy )
+8&uv [_2G4¢Xvavﬁ¢va¢vﬁ¢

+Gaxx VoV 0 VgV V¥ VP g

1

+ §G4X [(D¢)2 —(VaVp ¢)2] }
+2[GaxRy Vo) V409 = V(, Gax V. 609 |
—8uv {G4XRaBVa¢Vﬁ¢ =V Gax V)L(p D¢]
+G4XR/Javﬁva¢Vﬁ¢
—GapVuVvd — Gagy VoV
+2G4px VIOV, V(1 0V) 0
— Gaxx V¥V Vu9VP V5V, 0 (B.1.1.10)

* L5=Gs(0,X)Guy VAV — S [(09)° ~ 3(09)(VuVv6)* + 2(V, V09|

Following the same procedure as for L4, we split the variation of the fifth part of the Horn-
deski Lagrangian into four parts:

5= [ 8(v=0{ 656770 - CX[(00)* - 300) (Vv + 27,7207 |
- vz (%) [0 - 30007207 +29,710) ]
—/d“x\/fgg"é{(mﬁ —3(D¢)(vuvv¢)2+2(vﬂvv¢)3]
+/d4x\/fg6(G5Guvv“vV¢). (B.1.1.11)
The first, and second terms are
/d4x5 {GSGHVV”VVq) Gg" [EORE (D¢)(vﬂvv¢)2+2(vuvv¢)3”

—— [t =g ] GsGupverPo - S [(00) - 300)(TuTp0 R+ 2TaTp0) ] bt
and

- [tz ( %) |@oF 300N TuT 0+ 27,70

= [d' =g X (7,09,0) [<D¢>3 3(D¢)(Vavﬁ¢>2+2<vavﬁ¢>3} 5g".
(B.1.1.12)
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For the third term,

8553 = [ d'x /=g “X6[(00)° ~3(00) (VuVu9)P +2(V, V10|
= /'d“wfg% [8((09)%) = 3(V4Vv6)*8(09) ~ 3(00) 8 ((VuVy6)*) +28((VuVv9)?) |

1 1
— [ d'xv=gGs {—Z(DW (ViVe0 88" +Vud ViSg"’ — Zguy V20 V55

1

2
1

+(00) (VIVVO VaVyud 56 + V2 V10 V0 VA — SV, V0V, 0 VA5 )

1
+ (Vavﬁ¢)2 (Vuvv‘l) 68#‘/ +Vyo Vuag“v - Eguv V¢ Vlag‘w)

—VyVedVuVyo VAVK(j) 0g" —VuVio ViV V9 VFogHY

1
+ Ve Vi@ VEV,0 va’légﬂv}.
Where we our earlier result for §(V,V,9)?) in addition with:

8((VuVy9)?) =3V, Vp V,V, 0 VAVEH SgHY
+3V,VedVEV, 0V, 0 VESgHY
3
A AMTAZY AL Fas

and
8((09)%) = 3(9)* Vu Vv 5"
+3(06)* Vo Vv ogh"
3
—5(09)? guv V29 V551
Integrating by parts we obtain

0853 = /d4x\/jg { %Gsx V¢ Vyo((O9)?) - %gqusx V3oVA(09)%)

— 38y VA Gsx V16 (00— (Va¥p0 ] — JuvGsx(T0)

3 uGsx Vv [(09)° — (Va¥p)?] — 3 Gox Vo0V (Va¥p0)?)

+ 38 Gsx (C9)(Va Vo + 2 Gsx V20V ((VaVp0)?)

— VGsx {Dq) A —V“Vﬁq)VaV”q)] )

—~GsyO(Vv9) Va9 09 — Gsx V*(09) V2 Vv Vu§ ®.LL13)
30V Gsx (00) V900 — V59,0 VEV 9]

+ %Gsx VHO9)VuVy V0 + %G5X(D¢) VAV, V9 V0

£ 2(00) Va6 + Gx VaVy Vi) V¥V Vi

+Gsx VuVio O(VE9) V¢ — Gsy VAVVVK(]) VKV”(]) V,0

1
- EGSX(D‘P) Vavu‘P Vavv‘])} 68”v~

Since all of them are multiplied by the symmetric variation 6gMY, we are free to exchange the
indices U <+ Vv in each expression. Furthermore, because ¢ is a scalar field, the commutator of
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covariant derivatives vanishes, [Vq,Vg],¢ =0, allowing the order of any two covariant deriva-
tives acting on ¢ to be interchanged. Using these observations, we can rewrite the following

terms.
Gsx ViV O(VXQ) V¢ — Gsx VA (TP) V1 V9 Vi 6

= Gsx R VOO VPV, 0V, 0,

%GSX Vu(b Vy [(D‘P)z] = Gsx Vu(b Vv(D¢) Uo,

— 18 Gsr VA9 VM [(00)] = ~ S guvGox V*9TI9 V4 (09),
1

5Gsx Vv Vy [(VaV59)?] +Gsx VaVuVid VEV o0 Vi 6

=—GsxVyo VaVﬁq) VuVaVpd+Gsx VoV Vi VEVa 0 Vyo
= GSXRa)Lﬁu Vv¢ VA(P Vavﬁ¢~

Substituting into (B.1.1.13) we obtain

8553 = [ a5 {Gox V0 V1 (00) 09 ~ S0 Gx V0 00 V3(C9)

1

18V Gsx V30 (06)? — (VaV50)’] — L Gsx(C9)’

+ Vs V0 (D0) ~ (Va¥j0)?]
+GsxRyppu Vv V¢ VEVP

+ 18 Gox(00)(VaVp0)* + 18 Gox V20 VH(VaV0)?)
—VGsx {mp VAV, —VevEg vav,ﬂp} V0
~GsxD(Vv9) V@O + GsxRep VIO VPV, 9V, 0
30 VuGsx [ (00) V416 V5V,0 VPV 9]

4 3Gox VHOI9) VuVu0 V29 + 3 Gsx (09) VAV, V40V
+3G5x(00) V8~ Gsx VAV, 9 VAV,0 V10

1
~ 3G5x(06) VaV,i0 V“Vvq)}. (B.1.1.14)

The fourth term is
8854 = /d“x\/ngs §(GuyVHVY9) +/d4x¢?gGqu”Vv¢ 5(Gs)
_ /d“x\/fg (—;Gsx V0o Gaﬁvavﬁ(p) SgMv
+/d4x\/?gG5 (6Ruv - %guvRaﬁ 5g%F — %g,”g“ﬁ SRyp — %R sg,w> VEVY ¢

+/d4x\/—gG5 Guv 8(g"%g"PVaVi0).
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Using the Palatini identity for the terms that involve the variation of the Ricci tensor we find!

1
5854 = /d4x\/—g Gs { S {VaVv6gﬂﬁ +VaVu8gyp — VuVyd2as — VaVp 3guv} VAV
1 1
- 5é,:mﬁze,wvofvﬁqa Sghv — 5RV“va Sguy

1
- ZD(D gaﬁgpc {VpVﬁSgac + vaochﬁc —VaVg 08poc — vacégaﬁ}
+Gua VvV 5" + G, VPV, 5g¥H

1
- EGuvg”agvﬁg“ (Voc6gﬁo- + Vﬁ 08ac — VcagaB)VA(b

1
—Gsx VuoVyvo GaﬁVaVﬁ(bég”V}.

Simplifying and expressing the equation in terms of the variation of the inverse metric, we
obtain:

1
8854 = /d4x\/—gG5{ —V#Va(vaVa&g“V—l—Eg“vVaVﬁ¢VaVﬁ5g“V
1 \4 1 v 1 1%
+§Vﬂvv¢mag“ —ER”VD(I)&g“ +§Rvﬂvv¢5g#
1 1
+§D¢Vuvv5g“vf§D¢gﬂvD5g“V

1
+2Gya Vy V0 88" + Gov Viud VO 85" — 2 Guy Vo VO 55H"

1

5 Gsx Vid Vv GaBV“V%ég‘”}.

Integrating by parts and discarding the boundary terms yields
1
555,4 = /d4x\/ —8{ VaVy (GSVMVO!‘P) + Eguvvﬁva (GSVaVB‘P)

1 1
+ -0(GsVuVyo) — 5 GsRuwy89 + SGsRV, Vv ¢

—_— N =

1
+ 5V Vu(Gs09) — 58uvD(Gs019) +2GuaVy V9 Gs

1
—V(Vy9Gs) Goy + EV"(G5Guvvc¢)

1
—2G5XVM¢VV¢GaﬁVaVB¢}6g“V (B.1.1.15)

In this part of the variation, fourth-order covariant derivatives of the scalar field naturally arise.
Although their appearance is anticipated, such terms require careful treatment. The standard pro-
cedure involves employing commutators of covariant derivatives to express these contributions in
terms of the Riemann and Ricci tensors, together with their covariant derivatives. The identities
satisfied by these tensors then enable the resulting terms to be simplified. Below, we show how
the terms from (B.1.1.15) are handled. The specific terms we are referring to are as follows.

For §(V¥VV¢):
S(VHVY) = 5(g"*g"P Vo V) = Vo VY 5gHY +VVH ¢ 5g"P

1
- E(g"“‘xgvﬁgl‘F (Vadgpo+Vpdguc —Vobgap) V2 0.
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—VaVy(GsVuV%9) = —VVyGsVu V% — V,Gs O(Vy$) — Vo Gs ViV V49 — Gs VoV Y, V9,
lgquﬁVa(GSV Vo) = 1g,w(V,;Vac;svo‘vﬁq)+G5vﬁm(v5¢)Jrzvo‘(;sm(v“(p))
%D(quvm) ~ (2v2G;s vavuvv¢+lmG5 VaVi9 +GsD(VuVy9)),

%Vv (G50 = 1v VuGsO¢ + = G5V Vu(0¢) + V4 Gs Vi (O9),

1 1
—58uD(Gs09) =~ 8uv (DG5 0¢ +2V¥Gs Vo (0¢) + Gs D(D¢)). (B.1.1.16)

From these, we simplify the following terms and then substitute the combined results back
in (B.1.1.15)
1 1
nh= —GSV(XVVV“V“(]) + EGSD(V;LVV‘P) + EGSVMVV(D¢)a

= %gquS (VBD(Vﬁ(P) - D(D¢)) :

The first one can be written as

1 1
T = Gs < Va VYV + 2 V4VaVyu Vo + 2V,vavava¢>

1 1 1
VaVuVy Ve + = VaV VOV, + = V“([Va,VH]VV¢)+ V.V, V va¢)

(-

G2< VoV Vy V%9 — v (RavauV"dJHVquV“Vaq))

i( VuVaVy V% — Vo, V] (Vy V%) — V& (RcvauV"¢)+VquV°‘Va¢>
i( Ve, Vil (V V“¢)—V“(RGWV%)+Vu([VvaVa]V“¢)>

As for the second, we have
1 1
T, = 5 8uvGs (Vﬁvavav% v“vavﬁvﬁ¢> - fg”VG5( ([va,vﬁw%))
1 1
=~ 3 8uGsV* (R‘jmﬁv%) = S8uvGsV* (RsaV79)
1
= 58uvGs (RaaV“V“¢+V"¢ VaRcoc)- (B.1.1.18)

Where in the first line we exchanged a <+ f after commuting the covariant derivatives.
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Substituting (B.1.1.16), (B.1.1.17), (B.1.1.18), into (B.1.1.15), and simplifying we obtain

5S54 = / d“x\ﬁg{ Vo VyGs Vy Ve — VG5 Gya VA + VOGs Ry VP

1 1

+58uv VpVaGs VVP§ + g4y VEGs R VP 9 + 0G5 VuVyé
1 1

+5VvVuGs 9 — S guy 0G5 09 — V4 Gs Ry, Vv
1 1

+5 V2G5 Guy V' ¢ — 3 Gs guv RO

1
+58uv GsRaaV“V"d)}Sg“V. (B.1.1.19)

During this calculation, we used the contracted Bianchi identity for the covariant derivative of
the Riemann tensor appearing in 77 and T7:

V“Rcva# =VsRyy —VyRoy.
Note that the last two terms of (B.1.1.19) cancel with the contribution arising from the variation

of the first term in (B.1.1.12), f%gqu5GaﬁV°‘Vﬁd) as they can be equivalently expressed as

1 1 1 1 1
EgquSRcaVavc‘P - ZGSguvRD(b = Eg,quSVaVG‘P (Rcra - EgcraR) = EgquSGaovaVGq)

In fact, similar simplifications arise in the derivation of (B.1.1.18). We can re-write some of
the terms of (B.1.1.19) as follows

*%guvDGS 0o = —guv E%(Gswo‘q)) O¢ + %VQGSX VX O¢ + %Gsx O¢ DX}

= 8uv [*%Va(qu,V“q)) O¢ — %VQG5X Vex O + %Gsx 0 (VaVe)?
+%G5x Oo0(VPo) Ve,
%Vvvu@ O¢ = %V#(Gwvvqb) D¢ + %V#(Gsxvvx) O¢. (B.1.1.20)

What remains at this point is to combine the results above and simplify the final expression.
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From (B.1.1.12), (B.1.1.14), (B.1.1.19), (B.1.1.20) we have

855 = [ d'xy/=g{Gsx V.9V, (0)719 — S8 Gax V000V, (09)
1 1
- ngvVAGsxvx(]) [(D‘P)z - (V(XVB(]))Z} - Zgqu5X<D¢)3

+3VuGs Vo0 [(00) ~ (VaVp0)] +GsxRanp, V10V 0v“VPo

1 1
+ ZgquSX(D‘P)(VaVﬁ $)>+ ZgllVGSXVA ¢V1((Vavﬁ 9)%)
—VjGsx [Dwﬁvm - v“v%vavm} Vo

— GsxO(Vy9)Vu$Op + GsxReg VEOVPV, 0V, 0

n %V“gbVQGSX [(an)v“vm - VBV#¢VBVV¢]

1 1
+ EGSXV'1 (O9)VyVyoV; 0+ §G5X(D¢)V7LV#VV¢V,1¢

1
- EGsx(D(p)zV#Vvq) —Gsx V'V, Vi VEV 0V, 0

1
— §G5X(D¢)V(XV#¢V“VV¢ —VaVyGsV V¢ — V,JG5GV,1V)L¢

1
+VGsRyuyp VP 0 + EgquﬁVaG5VaVﬁ¢ +8uvV*GsRasVFP 9

1 1 1
—|—EDGsvuVV¢+§Vﬂ(G5¢Vv¢)D¢+EVM(GSXVVX)D(;)

1 1 1

+8uv [—EV(X(GS(pVa(P)D(b - EvaGSXVaXDQb + EGSXD‘p(VaVB‘p)Z - VleRlyVV(p}

1 A 1 o
+§V1G5Guvv ¢ _EGSXV;L‘PVVQDG@[SV \% ¢

+ %WWM [(06)° =3(09) (VaV0) +2(VaVp9)?|

+guv% [(06)* = 3(09) (VaVp6)* +2(VaV0)*] }. (B.1.1.21)

Reformulating the following terms

1 1
58uGsx 0076 (D(V50) = V(09) ) = S 8uv Gsx 00V 0Ra V9,

Gsx09V,9 (V4(09) ~ D(V49)) = ~GsxO9VudRvaV*9 = ~Gsx D6V, 0Rua V%0,
—VoVyGsV, Vi =~V [G5¢V,J¢} v,V -V, [GSXVuX} vV Ve,
18 G107 ((Va¥p0)?) = 181 Gsx V-0V VPV, V0V 0.
L e VVaG VU‘V%:1 VaGsxVPV*9V X+ i Gsx VgV XVevhe
8uvVpVals 7 8uvValsx B 7 8uvOsx Vg Va
+ 3 8uVa(GipVp0) VOVP 9
= L e VaGs VPVOVEX 1 L Va(Gsg V) VEVPo

1 1
— 58uvGsx (VaV59)’ — S8uvGsx VA VpVa Vi 0VEVPg.
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And combining some of the terms of (B.1.1.21) yields
1 1
S0GsVuVyo +5Gsx VA (O09)VuVy V16 =
1 1
5V (G5¢V’L¢) VuVv6 = 5Va(Gsx Vo) VeV, V6
1
+ 5 GsxVuVuoV 9 (V2 (D) - 0(V20) )
1 o vP 1 A
— —3GsxRagV VPOV, V9 + 5V, (GsgVH9) ViV
1
—5Va(Gsx Vo) VEVEQVLV9,

and
1 1 1
SVu(GsxVuX) 09 + 3 Gsx(00)V,V,u V40V 0 = =2V, Gsx V0| Va V000

1 1
— §G5XV°‘¢V”VVVO,¢D¢ + §G5X(D¢)V,1V”VV¢V’1¢ -

1 1
— 3Vu[G5x V9| Va V900 — S GsxRyavp V0 VP 600,

Substituting in we obtain

1
0S5 —/d4x\/—g{ _GSXD¢VV¢RuaVa¢+§gqu5XD¢VB¢RaBVa¢

8V Gsx V10 [ (00) — (VaVp0)?] + 5 ViuGsx V10 [(00)? — (VVo )]
+ GoxRaapu VvV OVEVP0 4 g, Gox V2 9VVP OV, V0¥ 50

—VGsx {Dwﬁvm — V“V%vavm] Vi +GsxRegVEOVPY 0V 0

+ %v%vaasx [D(])V#Vv(p - Vﬁvuqsvﬁvm] + %vl (qu,vw) AN

2 Va(GsxV50) VEVEOVLVy0 — 1 GrxRag T 90VP 9V, 0

3GV O)VaV 910 — 3Gy Ruars VOVPOTI0 + 3 Gy (T0) ¥,V

1
— GSXVAVVVK(DVKVMDV;L(]) — EGSX(D(j)) VaVuoVeVy 0

~ L8 G [(00)° = 3(00) (Va¥p0) +2(VaV9)’|

~ 2G040 Gap VOVPO + = Gy [(09)° = 3(00)(VuVy9)? +2(VuV9)’ | 9,40%,0

— V. (Gs¢Vu9) Vy V29—V, (Gsx VuX)VyV* ¢ — V,,G5 G, VA 9
1 1
+ VaGSRocpvﬁ Vﬁ(]) + EgquaGSXVﬁXVﬁva(P + Eguvva(GSq)Vﬁ ¢)Vavﬁ¢
1
— 58w GsxV*9VVaV2 9V VP 6 + g1 V¥ GsRap VP
1 1 1
— guv| 5 Va(Gso V*9) 06 + 5 VaGsx VX | + 5 Vu(Gso Vv0) 9

1
gHVV}”GsRMLVvd)JrZV;LGsG”VVAq)}Sg“V. (B.1.1.22)
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Finally, we combine and reformulate the following terms:

1 1
+58uvGsx V0 VIVP 9V, Vo V5 — ~guGsx V4 9 VEVP§ VgV V16

1
= 58w Gsx V'O VIVP O Ry pp VP9,
and

—V;[Gsx VuX]Vy VA9 — Gsx VAV, Vg VEV 19V, ¢
=Va[Gsx V9| VOV VPV, 0+ Gsx VP VOV, ¢ (Vo Vg — V5 V) Vo
=Va[Gsx V59| VOV VPV, 0+ Gsx VP9 VOV VA Ry,

Substituting into (B.1.1.22) and imposing 85 =0 yields’:

1
Giiv = — G500 V(v Ryya V™9 + 58uvGsx 10 VP R V0

L VAGyV (09)> = (Vo Vg0)? + v GV (09)> — (Ve V50)?

78mY sx Va0 |(Le aVpo 5 VuOsx v (Lo aVd
+ GsxRaap(u V) OV OVOVP  — V5Gsy {Dwﬁvm _ vav%vavwﬂ V.9

1

+ GsxRap VA OVP V016 + V0V oGsx [D0Vu Vo — VgV, 6 VPV, 0

1 1 1
+ 5V (G50V*9) VuVy0 — 5 Va(Gsx V0) VEVP OV, V0 — 5 GsxRag VIOV 0V, Vi

1 1
V(u(GsxV0) VaV) 0 06 — 5 GsxRyaorp V49V 0 00 + 5 Gsx (0)*V,u V0

1
Gsx(09) VaVudV V0 — =guyGsx |(00)° = 3(09) (VaV9)? +2(VaVgo)’|

—_ N =N =

1
~ 5G5xVudVu0 VY20 + 15 Gsxx [ (09)° = 3(09) (VuVv9) +2(VuVy6)’ | Vup Vo
~Va(GspV(ud) Vi)V 0 + Vo[ Gsx V9] VIV, VPV, 0
+Gsx VPO V¥ V(, V4O Ryapu) — ViuGs Gy V20 + V*GsRyun)p VP 0

1 1 1
+58uvVaGsx VpX VPV + 221 Va(Gso Vg 9) VIVP 9 — 2 uv GV 9 VAV 6 Rop, VP 6

1 1
+8urVGsRap VP9 — guv [ 5 Vel Gs6V9) 06 + 5 VaGsx VX TIo

1 1
+ 5 V(G50 V1)9) 0 — gV GsRy(, Vo) + EV;LG5GHVV’1¢. (B.1.1.23)

B.1.2 Scalar Field Equations

In this section, we present a detailed derivation of the scalar field equation arising from the
Horndeski action. We employ the generalization of the standard Euler-Lagrange equation for a

scalar field ¢:

dL; dL; dL;

OLi=—L -V = | +VuVy [ =o— B.1.2.1
36 % (a5 e (3w,m07) EA2b

* L2 =K(¢,X)

For the first part of the Horndenski Lagrangian, the third term of (B.1.2.1) vanishes. Therefore

2L, L, X
o2 =55 Vi (35 ) =0 W (K gy ) =0 W ev¥e) =

2 As in the previous cases, symmetrization of the p, v indices is applied where required.
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0Ly, = Ky — VH (*£2XV;L¢>

where
Py =K,
Ji=—LoxVyo (B.1.2.2)
* L3=-G3(9,X)0¢
L5 ( L5 ) ( 0L )
0L3=— -V | =—~ | +VuVy | ==—— B.1.2.3
=99 o)) TG, 129
The first term is or
3 —_— —
For the second term, we have
L3 B 0X B "
W = G3XWD¢ =G3xViol¢ =
—Vu <%> ==V, (Gx V¥ 9[9) = —VF (—L3xV,0)
I(Vuo)
For the final term,
0L3 0
= G———(g*v,V = —GsghV.
I(VaVy0) CICAT)) (g o ﬁ¢) 38

Substituting into (B.1.2.3),

8L3=—G30¢ — V¥ (—L3x V) — VuVy (Gag"Y)
= —G30¢ — V¥ (—L3xVu9) — V¥ (VuX Gax + V9 G3g)
=—VH(G3pVu9) +VuG3pVH ¢ — V* (= L3x V¢ + Gax VX + V0 G3p)
=VuG3gVF —V* [—L3x V¢ + Gax VX +2G39 V9|

where

PY =V,G3y V¢
Iy = —L3xVud + G3x VX +2G3 Vu (B.1.2.4)

* L4=G4(0.X)R+Gux [(09)— (VuVv9)?]

0Ly ( 0Ly ) ( 0Ly >
8Ly=——-V _— ViV | =———— B.1.2.5
=0 ' avee) ) T\ 9V ( )
The first two terms are
88{;4 = GapR+ Gaxy [(09)* — (VuVy9)*],
and 9L 9G. X G X
i _ 7 X 006)> — (VuVy0)?
IVu0) ~ X (0,90 T X (V) ()~ (VuVveY]
= —Gax V'O R— Guxx V"¢ [(09)* — (Vu Vv 9)?]
=—L4xVH9.
Therefore,

0Ly
Vu (amm) = ~Vu(=LaxV"0)
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For the last term

a£4 3 2 2
= Guy=———|(00)" = (V,V .
IV,908) P, vy (07— (VYoo
Using the following results
J o
317 gy (T 0Va¥%0) = 2o
J 2 UV
o,y (VTN =
we find, 5
L
a(vivét(b) = G4X2|:’¢g“'v — 2G4XVIJVV¢.
uVvVyv
Thus,

0Ly
VuVy (awuvvm

— VK {Z(V#Gu)Dq) +2Gax Vy (06) — 2(VyGax )V V¥ — 2Gax V, V, VY 6

) ~V, [Q(VVG4X)D¢ gV +2Gux Vo (09) "V — 2(VyGax ) VHVY 9 — 2Gax V, VAV §

=VH [2V“X GaxxUo +2V”¢ G4x¢|:|¢ +ZG4XV”(D¢) -2V, X G4xxV,JVv¢
— 2V, Gaxs ViV — 2G4XVVV,JV"¢}

Using the methods employed previously in the derivation of the metric equations of motion, the
two underlined terms can be rewritten as follows

2GaxVyu(09) —2GaxVyVu V¥ § = —2Gax Ry, V' ¢
Therefore,
VuVy <aa4) —VH {2G4xx (O VX — VyX V, V¥ 9)
A(VuVy0)
+2Gaxy (0P V9 —Vyd VYY) —2GaxgRuv V" ¢

Substituting these results into (B.1.2.5) yields

8Ls= GugR+ Gaxy [(09)* — (VuVy9)*] — V* [~ LaxVud — 2Gaxx (D9 VuX — VXV, VY )
—2Gux (OO Vo + VuX) +2GaxRuy V' 9
where
Ty = —LaxVyu9 +2Gax Ry V¥ ¢
—2Gaxx (OPVuX — Vo XV, V')
—2Gax (O09Vu 9 +V,X),
Pf = G4pR+ Gapx [(Dd’)z - (Vqu‘P)z} .

(B.1.2.6)

* L5 =Gs(0,X)Gpuy VAVY9 — X [(09)* — 3(09)(Vu V)2 +2(VuVv9)?]

We now consider the variation of the final term in the Horndeski Lagrangian, which can be

written as or or Y
SLs=25 vy (5)+v v (5) B.1.2.7
=26 "\ o)) TV 0@y ®-12.7
The first term is
L G
an = Gsg Gy V¥ — X0 [(D¢)3 —3(00)(V,Vy$)> +2(vuvv¢)3} . (B.1.2.8)
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The second term is

aLs 9 .
59.5) ~ 37,9) (G:Gpa¥*V°0)

193Gy 9X
6 0X 9(Vu9)

[(©0) =3(00) (VuVv) +2(VuVo9)’|

= —Gsx V9 Gpo VPV + %vmp [(D¢)3 —3(0¢)(VyVvo)? +2(vuvv¢)3}

= —LsxV'¢

or equivalently,

aL
~Vy (W) N v/ (—ﬁsxVH(P). (B.1.2.9)

For the last term of (B.1.2.7), we find

dLs  Gsx 0
EICAZ) “TW[@W—3<D¢><vpva¢>2+2<vpva¢>3}
a (o2
g GOV

Utilizing the following results

a(vjw ((09)%) =384 (09)?,
a(vjw) (VpVo0)?) =37V, VPVHY,
a(Vvaq)) (O9) =g"",
a(vav(p) ((VpVe0)?) =2VAVY.
leads to
a(va“ﬁvsvm - [3gw(m¢)2 3" (V,Vo0)? — 6(V*V"9)9 +6VVVP¢VPV"‘¢]

(B.1.2.10)
Substituting (B.1.2.10), (B.1.2.9), (B.1.2.8) into (B.1.2.7)

5L = Gsg Guu VY9 — 22 [(010) = 3(16) (VuVu9)? + 2V, V10
— VH (=LsxVud) + VuVy (GsGHY)

- Vuvv <Géx> |:3guV(|:|¢)2 - 3gyv(vpvc¢)2
—6(VHVY9)Do + 6V"VP¢VPV”¢}
- vu{Gg’(vv 36" (00)” = 38" (V,V60)’

—6(VAVY )T + 6VVVP¢V”V“¢} } -
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Gsxg

8Ls = Gso Gy VI VY9 — Zo |(C19) —3(09) (VuV9)? +2(V, V)’
—VH (=LsxVud) + YV (VvX Gsx GV + V9 G5y G*)

_ e {GSXX %V“X ((09)* = (VpVs0)?)

- (V”VV(]))Dq)VVX+VVVP¢VPV“¢VVX] }

—V“{Gsxq) %Vufi’ ((O9)* = (VpVs9)?)
— (VYY) D9V,0 +VVV,,¢VPV,1¢VV¢} }

- v { G| 194 (@07 - (7,900 )
=Vy (VuV¥6) 00 — (VuV¥9) (Vy(T9))
+VyVYV,0VPV 0 +V"V,,¢VVVPV”¢)] }
By renaming indices and simplifying terms we obtain

8L = Gsy GunV*V*9 — X2 [(019)* = 3(00) (VuV 10 ) + 27,10

— VH (=Lsx Vo) + Vu (VyX GsxGHY + V9 GsyG*Y)

_yH {G5XX [;V”X ((09)* — (VaVp6)?)
— VX (OpV, VY6 - VaVu¢V°‘V“¢>] }

-] G 370 (00 - (VuTp0?) ®.12.11)
+0¢VuX — VVXVVV;AP] }

AR CRACHEIARIY
9y (VaV*9) 09— (Va¥*9) (V+(10))
LV VYV, 0VPY 0 +VVVP¢>V\,V”V”¢} }

The underlined terms can be written as:
V¥ (2Gs5¢Guv V' 9) — VuGsyG*'V 9 + VH (VX Gsx Gy ) (B.1.2.12)
In addition, the terms in the last bracket involving Gsy can be reformulated as:

290 (007 ~ (VpVo0)?) ~ ¥ (VuV"9) 06— (VuV*9) (V(T9)

2
+V VY0 VPV + VYV, 0V, VPV 0
= Vu(VOVdVPVE0) — Vi (VpVed)VPVO —V(V,VY9) O —V,V eV, (Op) (B-12.13)
+0(Vp)VPV L0+ VYV, 0V, (VPV0)
= Raupy V' OVIVP O — RyyOOVY 9 + Ry VY 9VAV 10
where for the last line in detail we have:
Vu(VOV$)O¢ — Vo (VyVE49)O$ = Vu (VO V)9 — V,u (39) 9 — R, V2 909
= _RuvD¢Vv¢7
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O(Vp9)VPVuo -V, VYoV, (O9)
=0(Vy9)V'Vuo — V'V, 9V, (09)
= (VO‘(V(ZVV(D) - VV(VO‘V“(}&))VVV“(}S
= (Va(VvV“gb) - VV(VocVa‘P))VvVMb
=V, Vy|VEOVYV, 0
= Ralavvk(pvvvﬂd’
=RV 9V L9,
and
VYV ¢V VPV 0 =V, V, V9 VPV
=VYVoVy VPV, 0 -V, VsVPOVOV, ¢
=VVyoV\, VPV, 0 -V, V,VPOVYV, ¢
=V'V,0 (VVV“VP(]) — V“VVVP(]))
=VYV,0[Vy,Vyu]VP ¢
plvuv ¢Vvvp¢
auﬁvvvq)vavﬁ(P
Substituting (B.1.2.12), (B.1.2.13) into the previous result (B.1.2.11), leads to

G
8Ls = = VuGsgGM' Vg =~ (06)° =3(09)(VuVy0) +2(VuVyo)?|

- V”{ — Gsy [GHVVVX+RHVD¢VV¢ —R;,\VY OV V0 —Ra#ﬁvV"q)V“Vﬁ(b}
+ v [5VuX (00~ (VaVip0)?) VX (D99, 976 — VoV, 0V V") |
+Gsxo [ Vo (06)2 — (VaVp0)?) +00V,X — vavvvmp}
— LsxVu0— 2G5¢G,WVV¢}
where
P = ~VuGsoGH'Vy0 — L Grox [(00)° ~ 300 (V,910) +2(V,uV,9)°]
Jy = —Gsx [G#VV"X +RyO¢VYd — Ry, VY OVAV 10 —RauﬁVVVQ)V“Vﬁqb}
+Gowe [5VuX (00~ (VaVpb)?) VX (C9V, 96 — VoV, ovev¥g) | (B1219)
+Gsxo { V6 (09)% — (Vo V59)?) +00V,.X — VVXVVVM;)}
— LsxVu9 —2Gs5sGuy V"9
B.2 Cosmological Background Equations

B.2.1 Generalized Friedmann Equation

We derive the generalized Friedmann equations by considering a homogeneous scalar field, ¢ =
¢(r), and varying the action with respect to the lapse function N(r). After performing the
variation, we impose the condition N =1 to obtain the final result. Note that in flat FLRW
spacetime (3.3.1), the following holds:

1
Vog=Na, g0 =—L

N2
d . 6 o
a =N X=3z
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In addition, the following expression are used extensively in simplifying the subsequent calcu-
lations

S H+H?
a

i aN = @&
R=6(— """+ ).
<N2a aN3+N2a2>
« L2 =K(¢,X)

The first part of the Horndenski action in this spacetime is given by

together with,

S) = /d3xdtNa3K(¢,X)
Therefore,
Sy = / d*xdta®K (¢,X)SyN + / dPxdtNa>SyK (9, X).

The variation of the kinetic term OyK(¢,X) is calculated as follows. Since K =K(¢,X) and ¢

2
is unvaried with respect to N, we have SyK = Kx 6yX. Recalling that X = 2‘% in this metric,
we find

SvK(9,X) = Ky Sy (X) = Kx ( 9 ) S TP
N b - X ON — AXON 2N2 - N3 N
Substituting this result back into the variation yields
3.5, 3 Kx9®
6NS2 = /d xdta [K— 7} 6NN
N3
Finally, we impose the condition N(t) =1 which leads
1 oSy
——=—=—-=6=2XKx—-K B.2.1.1
BoN 2 X ( )
* L3=-G3(¢,X)0¢
The action for this part of the Lagrangian is
N
S = / BPxdiNG Gy {—‘P + % - N—f}
Variation of this action with respect to the lapse function N(¢) yields the following:
3H b N 3H b N
Sy = /d3xdta3G [ Nf +]$2 N‘f] 5NN+/d3xdtNa { Nf ]3’2 ¢] SvG3
3H b N
/d3xdtNa3G3 Y [‘P + i - Nf] (B.2.1.2)
Using
Gsx §*
NGy = Gax Sy X = —L‘PSNM
N3
the second term of (B.2.1.2) can be written as
3H¢ N1 Gs
ONS3p = /d3xdtNa3 [— N—;p — % + N(ﬂ X(P oyN (B.2.1.3)
For the final term we have’
' 3H b
5NS373 = /d3xdtNa3G3 6N |:¢ + i — ] /d3xdt —a G3¢7 —2a3G3 ¢ 6NN

/d3xdta G3 (P 6N(d )

3Note that the terms that end up involving N do not contribute to the final result of the variation after setting N=1.
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Integrating by parts the last term can be written as follows

/d3xdta G3 ¢ ( ) /d3 dr — <a G3— 0 >5NN
3 2. O a9 ¢
= ./d xdt |:3a aG3ﬁ + (G3XX+G3¢¢) +d’ G3— :|5NN

Combining the results above and setting N =1 we obtain

65, = [ d'xdra’ [ﬁaﬁﬁ"(ﬁ + 038 —3G3xH® — G3x §7 — 6G5HE — 2636 + 3HETG+

$G3xX + $G3g$ + G3d | SwN.
Therefore .
SySs = / d’xdia® [-3H$G3x §* + ¢°G3g | SuN

from which follows,

1 6553 ;
—— 2 = £, = 6HXPGsx —2XG B.2.14
B3N 7 PG ¥ ( :

o L4=Gy(¢,X)R+Gyx [(06)%— (V,Vv9)?]

The next part of the action when evaluated in this spacetime, takes the form

_aN & )+G4X(6H¢¢ 6H>¢> 6H¢2N)

3
Sy = /d xdtNa® Noa  aN +N2 3 N N N3

6G4(

where we have used . . h o 5
2 ¢ 2N¢o N9 3H ¢
(VuVyo)~ = N NS + N6 + N4

S GHOG 208N OH26? GHON N6
O = 1082080 oG v

N N N N N N
We split the variation of this part of the action into four terms

ONSs = 3NS4_’1 + 5NS4’2 + 5NS4,3 + 51\/5474. (B.2.1.5)

The first term is

. 5 5 in o
3 aN a 6H¢¢ 6H~¢ 6H¢°N
6NS41 —/d xdta 6(;4(]\]2 aN3 +N2a2) G4x( N N — N3 ) OvN.
Setting N=1, we obtain
1 5NS471 i a* . 22
A= —6G4(Z+a—2) ~Gux (6H¢¢ +6H%¢ ) (B.2.1.6)
The second term of (B.2.1.5) is
5 [ Pdina e G aN  d? 5 6HO$ 6H>$> 6HP>N 5 7
NS4727/ xdtNa (meJer 2) v (Ga) + ( N + NN ) w(Gax)

6(_G4X¢2 )(%_ﬂ a? )_G4xx¢2 <6H¢(25+6H2¢2_6H¢2N)

_ 3 3
6NS472 = /d xdta’N N3 N3 +N2612 N3 N N N3

where we used .
Gaxx ¢

5}\] Gyx =— 5NN
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Gax §?
806 =~ 5
Setting N =1, and simplifying we obtain
1 8yS i . .
- g ;]2 6G4x¢2(g+H2>+G4xx¢2<6H¢q)+6H2¢2> (B.2.1.7)

For the third term of the variation we have?

i g %)
_ 3 3 aN a
6NS43 /d xdtNa 6G45N( N aN3+aZNZ)

_ 3 3 d 1 N 2 1

= [ s, L‘sN <N2> o <N3) Ho <NZ>]
3 2y 4 3 5.\ H?

:/d xdt (—12a°Gy) 6NN+/d xdt (—12a°Gy) Nz N

3N dN
+ [ dPxdt(—1865 6NN / Bxdt a*6G,— 6N( dl)

Using integration by parts and simplifying the resulting expression, we obtain
12G4a*i  12a°G4H?
N2 N?
Finally, setting N =1, yields

1 OnSaz3
a3 5NN
For the last part of (B.2.1.5)

6 . . .
SnSaz= / v~ + / dxdi s (362aHGy + > GaFi +a*Gag $H + @ Gax XH ).

= 123G4 — 6H2Gy — 6G4H — 6GagOH — 6Gax X H (B.2.1.8)

N4 N4 N>

24H$¢p 24H?
= /d3xdta3G4X <— f‘P ¢ )6 N
N N4

.. 29 o
5NS4,4 = /d3xdtNa3G4X 5N (6H¢¢ + 6H ¢ — 6H¢ N)

+/d3xdtﬁdf a G4xH(]52) OvN

where we have used integration by parts for the last term of the first line. Setting N =1, and
performing straightforward calculations, we obtain
1 OnSaas
" & SN

= (24H§$ +24H?$*)Gyy — 18H?*Gyx ¢ — 6Gux H$?

—12G4xHP$ — 6H@*GaxxX — 6H§>Gaxy (B.2.1.9)
Combining the results above, (B.2.1.6), (B.2.1.7), (B.2.1.8), (B.2.1.9)

.. .2 ..
£4=—6G, (Z + ZZ) — Gux (6HO$ + 6H2$?) + 6Gix ¢ <Z +H2)

+Gaxx9* (6HY$ +6H*§%) + 12%04 —6H>G4 —6G4H
—6GagOH — 6GaxXH +24 (H$$ + H*$?) Gux
—18H*Gux §> — 6GaxH$> — 12G4x HP P
— 6H$?GaxxX — 6H$>Guxy
The above when simplified yields
1Sy
a® SyN

4Since the first term of the last line does not contribute to the final result after setting N = 1, it is omitted.

=& = —6H>Gy +24HX (Gax + X Gaxx ) — 12HX ¢ Gagpx — 6HPGug (B.2.1.10)
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Appendix B. Equations of Motion for Horndeski Gravity

* L5 =Gs(0,X)Gpuy VA VY9 — X [(09) — 3(09)(Vu V)2 +2(V,uVv9)?]

The final part of the Horndeski action in this spacetime takes the following form,

6iH) 3H>¢ 3H>$ O9H’N¢ 3H?*0%¢ 3H*$’N  H3¢3
GS( Nt TN TTNE T )+G5X( NS N NS )
(3.3.14)

S5 = /dedtNa3

where we have used that in flat FLRW spacetime, the following relations hold’

_Osx
6

2423 2 A3 343
3H¢¢_3H¢N+H¢)

[(00)° = 3(009)(VuV29)* +2(VuV19)?] = Gsx (o> - B =+ 2

and

6iH ¢ N 3H3¢ 3H?$ 9H’N¢
aN* N4 N4 N>
As in the previous calculation, we split the variation of the action into four parts.

GHVV/JVV(]) ==

OnSs = 51\/5571 +6NSS,2+6NSS,3 +5NSS,4 (B.2.1.11)

For the first part,

(6qu5 3HY) | 3H§ 9HN§ ) ey (3H2¢’>2¢' C3HPPN | HP )] SN

Gs\and T e N4 N3 N6 N7 N6

6NS5’1 :/d3xdta3

By setting N =1, we find

188 i . . " o .
— 22 g, (6aH¢—|—3H3¢+3H2¢> —Gsx <3H2¢2¢ +H3¢3) (B.2.1.12)
a’> ON a
For the second part,
6iH¢ 3H>¢ 3H?¢ OH’N¢
_ |3 3
5NS572—/d xdtNa SN(G5)( aN4 + N4 —+ N4 — N
3H*¢*¢ 3H*¢’N  H’¢?
+5N(G5x)< T v A
using
Gsx >
OnGs = — j\’]‘j’ SN
Gsxx §?
ONGsy = — 51);)§¢ SvN
we find after setting N =1
188 6GH ¢> . oo - .
——5 sy = Gsx ( aa¢ +3H3¢3+3H2¢2¢> +Gsxx (3H2¢4¢ +H3¢5) (B.2.1.13)

For the third term of (B.2.1.11) we have

SH2%G  3HAPN | H3$
N6 NT T Ne

5}\155‘3 = /d3xdtNa3G5X 5}\1 (

Using integration by parts for the second term and evaluating the remaining two terms, we find

18H?¢%¢p 6H3¢3 d (Na’Gsx3H?*¢3
5]\/5573 = /d3xdtNa3G5X < N7¢ ¢ — N7¢ ) 5NN+/d3tha <§VX7¢> OvN.

SThe derivation of these relations involves straightforward but lengthy calculations. Therefore, only the resulting expressions
are presented.
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Appendix B. Equations of Motion for Horndeski Gravity

Calculating the derivatives and setting N =1 yields

188 . o . »
—(735—15\}3 — —9HGsx @ —3Gsxx XH*$* —3H>$*Gsxy — 6Gsx HH

—9GsyH*$*¢ + 18H?>$*§Gsy + 6H> > Gsx (B.2.1.14)

For the last term of (B.2.1.11) we have

6iH$ 3H3$ 3H>) 9H?N¢
_ 3 3 -
ONSs.4 = /d xdtNa G55N< N + Vi + R —

24i6H$ 12H3¢  12H? )
/dedta3G5 (— aHg _ ¢_ (])) 5NN+/d3xdti£ (a3G5H2¢) OvN

aN*4 N* N4 N* dt
After computing the derivatives and imposing N =1, the result is

1 68 . i . ) . .
2954 _Go (12030 + 242 HY + 12H2G — 27H3$ — 9H2$ — 1SHH$
a3 SN a

+Gsg (—18XH?) + Gsy (—9XH?9) . (B.2.1.15)
Combining the results (B.2.1.12), (B.2.1.13), (B.2.1.14), (B.2.1.15) we have

_%% — G5 <6qu) +3H¢ +3H2¢') —Gsx 3H*§*¢ —H’$°)
a’ 6N a

6GH §>

+G5x<

—9H?Gsx ¢® —3GsxxXH*$> — 3H?$*Gsxy — 6Gsx HH §*

+3HG + 3H2¢52¢'> +Gsxx (3H29%6 +H§°)
+Gs <I2H3(f) 124%H¢ £ 12026 — 27TH3$ — 9H?$ — 18HH¢)
a
—9GsyH*$*¢ + 18H*$*$Gsx + 6H §°Gsy + Gsg (—18XH?)
+ Gsyx (—9XH2¢)
which when simplified yields

& =2HX (5Gsx +2XGsxx) — 6H*X (3Gsy +2X Gsex ) (B.2.1.16)

B.2.2 Scalar Field Equation

In this section, we derive the scalar field equation of motion for the Horndeski action in flat
FLRW metric.

* L, =K(¢,X)

The action for the first part of the Lagrangian evaluated in flat FLRW spacetime takes the
following form

S, :/d3xdtNa3K(¢,X).
Variation with respect to ¢ of K yields
. 1 X
6¢S2 = /d3xdtNa3KXﬁ5¢¢2+/d3xdtNa3K¢5¢

where we used P
89K = Kx 39X + Ky 8¢ = Kx$— (360) + Ky 399

Using integration by parts and setting N =1, we obtain

5¢52 = /d3xdt <C(11l (aSKXqS) +Na3K¢> 5¢¢
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Therefore,
1 695,

Na® §¢

1d .
o (a @Ky ) =K. (B.2.2.1)

* L3=-G3(¢,X)0¢
The action for the second part of the Lagrangian is

S3 = /d3xdtNa3(fG3) <]$2 - Zi]\g ]1\;]3 ¢)

Variation with respect to ¢ yields

5¢S3:/d3xdtNa3 (85Gs) <1$2+3zav(g ]1\>’3¢> +/d3xdtNa3G35¢ (ﬁﬁ?’;ﬂ; N¢>

/d3xdtNa <G3x¢ (8p9) + G3p 5¢¢> ( ¢ +3a¢) /d3xdtNa G384 ( 0 T 3;‘2)

Note that we omit the term involving N since it won’t contribute when we set N = 1. There-
fore,

5¢S3 = /d3xdta3 ((ﬁGgq) —|—3G3¢H(IS) 5¢¢ +/d3xdta3G3X¢45 % (3¢¢)
+/d3xdt3a3H¢2G3x% (869) +/d3xdta363 8¢
+ / d*xdt3a’G3H 8¢ ¢

In the following calculations, we employ integration by parts to express all variational terms
in the form [(...)85¢ thereby eliminating derivatives of the field variation J,¢ in the action.
Note that the term involving the second derivative of the variation of the scalar field does not
change sign, since we perform integration by parts twice.

/d3xdza3G3X¢¢ (860) = /d3xdt— 3G3X¢¢)6¢¢
/ Erdi3a’HY? ngf(5¢¢ / Erdr & (3a3H¢ Gax ) 89
/d3xdm3G36¢¢3 = /d3xdt@ (a*G3) 840
/ dxdr a¥3G3HS = — / dxde % (3¢°Gat ) 850
Substituting, we obtain
dt

d2 3 d 3
dT‘z (a G3) — E (361 G3H):| 5¢(P

. . d -
8983 = / d*xdr {¢a3G3¢ +3H¢a Gy — — (°Gax §9)
(B.2.2.2)
- (3a’H$*Gsx) +
dr
The term that involves the second derivative can be written as
d . .
/ dxdr (36°HG +aGag6 +Grx69)

In this form, one can easily see that its first and third terms cancel out the third and last term
of (B.2.2.2). Using X :% we end up with

. . d d A
3 3 32, — 3 3 =
/d xdt {(f)a G3p +3Hpa Gsy @ (6a HXng> + & (a G3¢¢)}
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" . d . .
/ d3xdr {2(})51363(1) +6H$a’ Gy — T (6a3HXG3X) + @ Gapp 9% + @ Gagx §X |
Employing X = ¢¢, %2 =X and noticing that
2Xd® G3p¢ +2Xa G3¢x¢ -‘1-661 HGw(i) +2a G2¢¢ = — (Za (])qu)) — 2Xa3G3¢¢ — 2Xa3G3¢X(i5,

we obtain

083 = /ngdt {_ % (6a3HXG3X> + % (2a3¢G3¢) —2Xa’ (G3¢¢ + G3¢x¢')} 8o ¢

Therefore,
1 6853
—— = =0=
a3N 5¢¢
1 d .
3 dt (6613HXG3X 2a ¢G3¢> =-2X (G3¢¢ —|—G3¢X¢> (B.2.2.3)

* L4=G4(¢,X)R+Gux [(39)>— (VuVy9)?]

The action is

& HN H? 6HO$ 6H>¢?
Sy = [ d®xdtNa® |6G4 | —— G .
4 / xdtNa [ 4<N2a +N2>+ 4X< N + N

Variation with respect to ¢ yields
3 s 0 H 3 3 (6HP  6H?¢*
5¢S4 = /d xdtNa’6 m-ﬁ-ﬁ 5¢G4+/d xdtNa N 5¢G4X

N4
6H ¢ N 6H2(f)2> .

- / d3xdtNa3G4X6¢( e 1 (B.2.2.4)
In what follows, we calculate each term individually. We begin with the first term.

a H?
5¢S41 /d xdt Na6 (+Nz) 8¢G4

o 3 3.4 2 g
_/d xdta 6<a +H > (G4¢5¢¢+G4x¢dt (859) )
- / dxdr (60 Gag + 60 H2Gag ) 59
a
d/ i d .
[ 94 3d R T P )
/d xdr (60 Gax ) 649 /d xdr - (68°H2Gaxd ) 89, (B2.2.5)
For the second term of (B.2.2.4) we have

6HOG  GH2
/d3xdtNa3 ( Nfd) + N4¢> 0y Gax

2
*/d3xdta <6H¢¢ 6H¢) (G4X¢5¢¢+G4xx¢ (5¢¢)>

N3 N3
— 3 3174 4 3772 12
= [ d°xdr 6a HQQGaxp +6a"H*0"Gaxg ) 8p 9

d iy d .
- / d3xdt - (6a3H¢2¢G4xx) 8o — / dxdr (6a3H2¢3G4xx) 540 (B.2.2.6)
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For the third term,

6H N 6H2¢2)

/ d3xdtNa3G4X 6¢ ( N N

— /d3xdta3G4X 6H5¢(¢¢'5)+/d3xdm3c4x 6H22¢—jt(5¢¢)
d . d? .
3 3 3 3
—/d xd (6a HG4X¢) 6¢¢+/d xdt (6a HG4X¢)6¢¢
[ d 342 ;
/d xdta(na H G4X¢)5¢¢. (B.2.2.7)

Substituting the results into (B.2.2.4) we find
3 3(4 0 d [ 3d_ . d 3.0
5¢S4 = ./d xdt [651 (a +H ) G4¢ - E <6a aG4x¢) - a (6a H G4x¢>

d
+6a’GaxgH ¢ ¢ + 64’ GaxgH*§* — (66131‘1‘15 ¢’G4xx)]

2

/d3xdt |: 6a3HG4x¢) d2 (6a3HG4x(ﬁ) + % (12a3H2G4x¢) + % <6a3H2¢3G4xx):| 6¢(i)

Using %:H2+H, and calculating the first derivative of the term d—z leads to

89Ss = / dxdra’® lé (2H? + H) Gap +6H (X +2HX) Gagx

1d : ;
— 53 (9121 Gaxx +6H2* Gax — 124°HX Gigx ) | 869
Therefore,
1 654
———=0=
a’ 8¢

1 d . . .
= [a3 (6H§ (Gax +2X Gaxx) — 12HXG4¢X)} =6 (2H? + H) Gag + 6H (X +2HX) Gagx
(B.2.2.8)

* L5=Gs($,X)GyuyVFVY$ — S [(09)3 ~3(0¢) (VuVy9)* +2(VuVy$)?]

The action for the last part of the Horndeski Lagrangian evaluated in flat FLRW spacetime is

6aH$ 3H>¢ 3H>$ 3H?¢%¢p H3¢3
_ 3 3
S5 = /d xdtNa |:G5 ( IN? + N + N + Gsx NG + N6 .

Variation with respect to ¢ yields

66H¢ 3H>¢ 3H?*$ 66H¢ 3H>¢ 3H?*$
_ 3 3 3 3
0S5 _/d xdrNa’ 84 (Gs) ( — 7 + 7 /d xdrNa’Gsd, o N + N

3H2 H3 3H2'2" H3'3
Jr/d3x<ﬂ1\f€i35¢(G5x) <N¢6)¢+ 6 ) /d3xdtNa Gsx 8y (qud)Jr Nf >
(B.2.2.9)

We calculate each line individually. The first line is

WE(SWP) N& dt( ¢¢) N a2

6aH 3H3¢ N 3H*¢
aN* N* N4

o 3 2 g2
5¢s5,]:/d3xd;1va3c5<6“Hd 3H 3H_ d (5¢¢)>

+/d3xdtNa3 <G5X¢%(5¢¢)+G5¢5¢¢) (
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which, after some simple calculations and by performing integration by parts, becomes
d i O .
89S5.1 = / dxdr [— T <6a3G5Ha +3a°H3Gs 4+ 6a°Gsx HY? — +3a>Gsy H> ¢* + 3a3Gst2¢¢>
. a a

a2
+6a3G5¢H¢ +3a3G5¢H3¢+3a G5¢H2¢+ > (30°GsH?) | 8,¢9. (B.2.2.10)

For the second line, we get

3H 3¢2

+/d3xdtNa Gsx 6¢¢ +/d3xdtNa3G5X—5¢(¢ ).

Setting (N =1), after some simple calculations, we obtain the following
89S52 = / dxdt [— T <3a3G5XXH2¢3¢ +a>GsyxH>¢* +3a°Gsx H> ¢* + 6a3G5XH2¢¢>

d2
+3a°GsxyH*$* ¢ + @ Gsx o H> §° + <3a GsxH*¢? )1 8 9. (B.2.2.11)
Substituting equations (B.2.2.6), (B.2.2.7) into (B.2.2.5)
" d . .
8yS5 = — / dxdt = (6a3G5H3 + 662GsHH + 3a°GsH> + 64> Gsy H> ¢
4 603 Gox HETD? + 3a° Gsy H ¢ +§3‘Gs\xﬂim) 50
d . . .
+ / dxdt = (9a3G5H3 +38°GaxXH? + 3> Gsy H?$ +éaé65HH) 890
+ /d3xdt (6a3G5¢H3¢ + 6a3G5¢HH(]S + 3613G5¢H3(]S
+ 3(13G5¢H2(§ + 3(13G5¢XH2(]S2¢ + (13G5)(¢H3¢3> 5¢¢
_ / dxdr S (SaiGsxyqu)id)—i— @ Gsxx H30* +3a°Gsx H? ¢ +M 550
d . . .
+ / dxdr 2 (9a3G5XH3¢2 + 603G HEG + 64 G268
—1-36126“57(7(%124@3;—&- 3a3G5x¢H2¢3> 6¢¢
where we used,
2 d . - .
= (3a Gy H2$? ) -2 (9a3G5XH3¢2 +6a3Gsy HH$? +6a°Gsy H2 9§
+ 3a3G5XXH2X¢2 + 3d° Gsx¢H2¢3)
and, N
X=0¢¢.
Simplifying,
d d .
585 =— /d3xdt = (626577 + 3626587 ) 859 + /d3xdt = (9426577 + 3 GsH$ ) 840

—|—/d3xdt (9a3G5¢H3¢+6a3G5¢HH¢+3a3G5¢H2¢'—|—3a3G5¢XH2¢2¢'+a3G5X¢H3¢3)8¢¢

d . d . d .
(3 3 314 3 3 213 [ 3 342
/d xdt 7 (a GsxxH™ ¢ )5¢¢—|—/d xdt 7 (361 GsxoH™¢ >5¢¢ /d thdt (3a GsxH ¢ )6¢¢
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The underlined terms can be written as

%<3a3G5X¢H2¢3> - %(6a3G5X¢H2X¢)

% (a3GSXXH3¢4) = % (2Xa3H3(2XGsxx))

Also, the second line can be rewritten as
9a°GsgH> ¢ +6a°Gsy HH + 30> Gsy H*$ + 30> Gsox H* §*¢ + > Gsx o H> §°
- % (36124 Gs ) +a*H9* Gsgx —30° GspoH*9*.
Using the above, we find
5955 = / Pt % (6°Gsot%9) + / dxdt (@ GsgxH 6 =30 Gsg o 1H29°

d d d .
- / i 5 (2Xa*H*2XGisxx ) + / dxdi (6a*GsxoH?X¢) — / dxdi (3¢ Gsx?6?) =
_ [ dr 24 3 20y 3
5¢S§ = [ d’xdt a7 a’ (6GsyH ¢ —6GsxH X +6GsyoH 90X —2XH 2X Gsxx

—3a’2XH*Gspy +2a°X Gsx¢H3¢] 8¢ =0.

Therefore,
1 8455 B

=2 =0=
a3 5¢¢
1d . .
= [f <2H3X(3G5X +2XGsxx) — 6H*$(Gsg +XG5X¢)>] = —6XH*Gspp +2XGsxoH>§
(B.2.2.12)

B.2.3 Evolution Equation

In this section, we consider the variation of the Horndeski Lagrangian with respect to the scale
factor a(z), in order to derive the evolution equation in a flat FLRW metric.

* L, =K(¢,X)
The first part of the theory in this spacetime takes the following form:
S5 :/d3xdrNa3K(¢,X).
Variation with respect to a(t) is straightforward,
8482 = / d*xdr3Na*K(¢,X)8a
Setting N =1 we obtain

185,

25, =P =K(9.X) (B.2.3.1)
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* L3=—G3(¢.X)0¢

The action for the second part of the Lagrangian is

" ¢ 3ap N
S3 = / d3xdtNa3(G3)( + N N3 (P
Variation with respect to a(t) yields®

8.8 = / d3xdt3G3Na> ( ]\(’;2 + 355’) Sa+ / dxdtNa® Gy (gs (“) —

s ag L4
/d3xdt3G3Na2 <]\q;2 + Nz¢>5a /d3xdtNa3G3 39 4 5a+/d3xdtNa3G i)f—(fia)
Integrating by parts the last term we find

3a’¢p 9Hpa*> 3aad d 1
_ 3 _ _ 3 — 2 — =
SaS3f/d xdtG3< v TN N )5(1 /d xde (3a G3¢)N8a

/ dxdt [34;311%5 +9G5H$a’ —3CGradd — 6aiGsd — 362639 — 3a°G3p ¢* — 3a263XX¢} Naa
Setting N =1 and simplifying the previous equation we obtain, the following

1 88 )
———=P=-2X . B.2.3.2
32 sa D (G3p +Gsx9) (B.2.3.2)

* L4=G4(0.X)R+Gux [(09)% — (VuVv9)?]

The next part of the theory, evaluated in a flat FLRW spacetime is’

si= [ @rane [o6 i+ yies )+ o (Soe 4580 .

N2q aN* a’N*

Variation with respect to a(t) yields

. .. ) L P i %)
d a 6a 6a a
s4:'/ &’xdt3Na? [6G4 (N2a+N2 2) +Gux ( aﬁf + a21$4 )} 6a+/d3xdtNa 6Gy4 8, [ —+ i 2]

. 22
+/d3xdzNa3G4X S, (6‘“’)"5+ 6a"¢ ) (B.2.3.3)

aN* a’N*

With the first term brought to its final form, we can proceed to calculate the second and third
terms. For the second term, we have

0840 =08421+06S42 (B.2.3.4)
where, ~
654)21 = /d3xdt6Na3G450(ﬁ)

and
2

va)

These two terms are computed individually. For the simpler 554722, we obtain

5S40 = / Pxdt6Na> G,8, (

9The third term is omitted, as it does not contribute when N = 1.
7 As done previously, we omit terms that involve derivatives of N.
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84842 —/d3xdt —~12)Na’ G4( 6a+/d*xdt121va G4—5(dt a)

Using integration by parts, simplifying the first integral, and setting N =1 we obtain

854 = / xdt(—12G4d?) — / Pxdt12 (G4XXad + Gapdad + Gad® + G4aa'> .

It then follows that

1 8aSap
3a> da

= —4G4H* — 4GsxXH — 4G49 §H — 4G4 H* — 4G, 2 (B.2.3.5)
a

Following the same procedure, we compute the remaining term of (B.2.3.4)
5Sua1 = / Pxdi6NaG i(— i)6a+ / PrdiNG6Gs—— L (50) =
421 = AN *N2a dr? B

/d3xdt —6Gydia 5a+/d3xdt—(6G4a )da

where for the last line we have set N = 1. Calculating the derivatives and simplifying, we end
up with

1 8aSapi
342 Sa

= —2G4g —2Gaxx X2 = 2GaxpX ¢ — 2Gax X — GuxXH
— 2G4¢,¢ ¢2 — 2G4¢XX¢ — 2G4¢¢ — 4G4¢ ¢H
— 4Gy XH —4Gu$H —A4G,H? — 4G~ (B.2.3.6)
a

In a similar manner, we decompose the final term of (B.2.3.3) into two parts:

04543 = 045431 + 045432 (B.2.3.7)

where,

6
o) S4 31 = /d xdtNa3G4x5 ( a]gf)
and 5
6a
5‘,54732 = /d3xdtNa3G4x5a(a27]$)4).

For the first integral, we have

699 d
aN* dt

64

848431 = / d*xdr Na®Gyy (_a2N4> Sa+ / d*xdt Na®Gay (8a)

Setting N =1,
/ d*xdt Gaxa (—6a¢$) Sa+ / d*xdt 6a>Gyx o %(551)
- /d3xdt (~6Gayaid) 8a—/d3xdt6%(a2G4X¢(ﬁ) da
= / d*xdt { —6Gaxaad — 6Gixx X dda* — 6Gaxpa*$>$

—6Gaxd®$? — 6Gaxd®d § — 12adG4X¢5¢5] Sa.
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Therefore,

s 08431
3a?2 da

For the second term of (B.2.3.7) we have

= —2G4xHP$ —2GuxxX §§ — 2Guxs$*$ —2Gux $* —2Gax$ ¢ —4HGax$$ (B.2.3.8)

6d2¢2

0,843 = /d3xdtNa3G4X50 (azN“

. ., d
> :/d3xdtG4x(712)d2¢25a+/d3xdtaG4X12a¢2a(5a).
Using integration by parts we obtain

88430 = / d>xdt [— 12Guxd®$? — 12GaxxadX ¢* — 12Gaxpaad® — 12Gaxiad® — 12Gaxd® §* —24G4Xda¢q'5} Sa=

1 8S4m
3a®2 da

= —4GuxH20? — 4G4xx HX §* — 4Gyx o H® — 4G4xg¢2 4G H?$? —8GaxH .
(B.2.3.9)
Combining the results (B.2.3.3), (B.2.3.5), (B.2.3.6), (B.2.3.8), (B.2.3.9) we obtain

188 _
3a2 Sa
VACpdH + 4G ax X H + 4Gy H + TCH2 + 4G4g — 4Gy H? — BGaxXH — 3Gy H.

—AGH 4 4; —2GuxHG P — 2Gaxx X $d —2Gax 9> ¢ — 2Gux $* — 2Gux ¢ ¢M$

—2/%2/4- 2GaxxX*+ 2GuxsX ¢ +2GaxX + AGHXH + 2Gapp ¢* + 2G4pxX 9 +2Gup 9

—4GaxH*§* — 4Guxx HX §* — 4GaxoHP® — 4G4X¢Zg —4GuxH*¢*> —8GuxHP P + 6/%;{
+6G4H? 4+ 6GaxHOP 4+ 6Gax H >

. . . . a . . . .
By substituting the expressions for X, X, and 7 and simplifying, we arrive at

188, , . . .
— 24 P = 2G4(3H? +2H) + 4X Gapy — SHX X Guxx +4X (¢ — 2H)G
3q2 5~ 14T 204(3H+2H) +4X Gugo axx +4X(0 = 2H9)Gaox (B.2.3.10)

+2Gag($ +2HP) — Gax (12H*X +8HX +4HX)
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* L5 =Gs(0,X)Gpuy VA VY9 — X [(09) — 3(09)(Vu V)2 +2(V,uVv9)?]
The final part of the action is
6iad 3¢  3a*¢ 3a20%¢ ¢’
— 3 3
S5 = /d xdtNa {Gs <a2N4 + BN + AN +Gsx W—i— N6 )| (B.2.3.11)
Following the same approach as before, we decompose the variation into three parts

0485 = 0455,1 4 84552 + 84S5 3 (B.2.3.12)

where,

I e A
8.55., = /d3xdt3Na2 {Gs <6aa¢ L0 | 3a ¢) +Gsy <3a¢¢ L0 )] Sa  (B23.13)

a?N*  @3N* ' a?N4 a?N® a3N©

6iad 3d2¢  3a*¢
8,850 = / d*xdtNa’Gsé, <a2 Nq: + 3 N"j +3 N‘Z) (B.2.3.14)

and
3d2 £2 3 a'3 £3
8aS5.3 = /d3xdtNa3Gsx5a (azi’f + a;&) (B.2.3.15)
The first part yields
1 68 i . . o )
il 6G53H¢ +3GsH$ +3H*¢Gs +3GsxH> ¢ + Gsxy H'§’. (B.2.3.16)

For the second term (B.2.3.14) we have
04552 = 845521 + 045522 + 845523

where
8,851 = /d3xdtNa3G5—¢6a aa :/d3xdta3(—12)65¢dd5a—/d3xdt6— @Gsd\ s,
' 4 a? dt a?
3G g
+/d3xdt6— <a ;(Pa) da.
a

Calculating the derivatives, we obtain the following for the second and third terms

a*G . .. . .
/d3xdt6— ( a;‘p“) Sa = /d3xdt6(2ac'iG5¢ +d>GsxX§ +d*Gsy¢° +d*Gsé

@*GsxX ¢ + aGsxxX*pa+ aGsxyX §*a+aGsx X da+aGsx X pa
+aGsxX §éi+ d*Gsg§* + aGsyg ¢ a + aGsyx X §*a+2aGsy §da
+aGsp¢*i+d*Gs$ +aGsy§da+aGsy X §a+aGs ¢ a
+aGs$i+aGsPd+ aGsy§*i+ aGsy X i+ aGspa+ aGs a) da

3 aGspi . 3 o o
d dt6— 55 ) 6a= - dxdt6(aG5¢a+aG5XX¢a+aG5¢¢ a+aG5¢a+aG5¢a>

From which follows
1 &8 521
3a2 Sa

= —4GsOHZ —2HGs02 — 2G5y X~ —2Gsy 92~ — 2G5~ —2Gsd—
a a a a a a
+4H§G5q§ +2H*Gsx X § +2H*Gsp§* + 2H*Gs¢ + 2Gsxx X*H
+2GsxoX2H +2Gsxy XOH + 2Gsxy XGH + 2G5y X §= +2Gisp9 6°H
a
p (B.2.3.17)
+2G5¢X¢2XH +4G5¢¢¢H + 2G5¢¢2; + 2G5¢¢¢H+2G5XX¢H
. . d A d L.d . a
+2Gs 9 H+2Gs¢— +2HGs~ +2qu,¢2Z +2G5x 90X~ +2G5¢—

.. . .. .
+2H*Gsx X § +2H*Gso §* +2H* G5 + 2Gs¢ -~
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Similarly, we find

555 2 = /d3xdtNa G5 3¢ (613)

9G d
—/d3 dt< aj\f’“ )5 +/d3xdtG5 994" —(8a)

dt
3 . (1 3 d ;.2
:/d xdr (9656~ 6a—/d xdt - (9Gsd%) 8a
a
Calculating the derivatives yields

1 5S522
32 Sa

= —3Gs¢H> —3Gss*H* — 3GsxX§H* —3Gss $H* —6G5¢H7 (B.2.3.18)

For the final part of 5S5,2 we have

88523 = / d3xdtNa3G5 ( ) / d*xdt(—6)Gsda*da+ / d3xdza656¢a—(5a)

which, after using integration by parts and evaluating the derivatives, yields

1 6S5 23

37 80 = —2Gs¢H> —2H>Gs¢ —2Gsx X $H — 2Gso§$H —2Gs ¢ H — 2G5¢7 (B.2.3.19)

For the final term of (B.2.3.12), using a similar approach as above, we decompose the variation
into two parts
04853 = 845531+ 0455 32

where,

88531 = | dPxdtd®G 3"52‘}55 & dxdt (—6G )8 Prdt6l (aG
531 = xdta”Gsx — 73 = xdt (—6Gsx§*$a’) Sa— [ d’xdt *(a sx$$a) Sa
from which we obtain
1 5S5’3] . 9o 9 o (3
ol =—2Gsx¢"OH" —2Gsx 9" 9H" —2Gsxx X 9" 9H —2Gsx 9" 9H

3¢ Ba ) (B.2.3.20)
—4Gsx > H —2Gsx ¢ ¢ H — 2G5x¢2¢5;-

As for the second part we have

o (d 3Gsx§’d’ d :
5S5 3 = /d3xdta GSX](€758 <Z3> :/d3xdt (—SJZPa> 561—/d3xdl‘5 (3G5x¢3d2) da
which yields

1 6553

; 5 : o A
32 Sa _G5X¢3H3_GSXXX¢3H2_G5X¢¢4H2—3G5X¢2¢H2—2G5X¢3H; (B2321)
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Combining the above expressions, (B.2.3.16), (B.2.3.17), (B.2.3.18), (B.2.3.19), (B.2.3.20),
(B.2.3.21), we obtain

1 88 i . . . . .
95—; —Gs(6%H F3H2$ ) +3GsxH220 + Gsy H§° — 4Gsy > H?
P . J in e
—2GsxxX§*9H —2Gsxo §°§H — 4Gsx 99 H — 2G5y ¢ 9 H —2Gsx ¢
— Gsx$*H? — GsxxX9°H? — Gsxo 9*H* —3Gsx §* 9 H* — 2G5X¢3Hg
—2GsPH? —2H*G5$ — 2GsxX$H — 2Gsg§ $H-2Gs 9 H
2G50~ —3Gs9H" —3Gss$*H* —3GsxX§H*—3Gs0H*
a

WMM — 2G5 X ¢ —2Gs5p$2"
a a a a a
—/2%62 %4—4 ZGSqS +2H?Gsx X ¢ + 2H G54 §*

H2HPG50 + 2Gsxx X2 H +2Gsx o X $*H +2Gsy X $H +2Gsx X $H

+ 2G5XX¢Z +2Gsp9§°H +2Gsox $*XH +4Gsy § GH + 2G5¢¢23
+2Gsp99H + 2G5XX¢5HW+/ZC5/¢/2 M
+ 2G5¢¢23 + 2G5X¢XZW§ +2H*Gsx X § +2H* G5 9*

All the terms that involve the Gs function cancel. We simplify the rest. For example, for the
terms that involve Gsyx,Gsg,Gspx and Gsy, we have:

Gsxx (—2X¢?¢H — X > H?> +2X>$H) = Gsxx (—2X$*¢H — X $>H* + 2X §*$H) = Gsxx (—4HX>$) ,
Gsox (—2¢°0H — §*H* +4X §°H) = Gsyx (—4XXH —AX*H* +8XXH) = 4HX (X — XH) Gsx,
Gsg <¢2H2 +4¢¢H+2¢2Z> = Gsy (3H$? +4XH +4XH) = Gs, <3H2X+2(XH)> 2,

and
Gso99*2H = 4X9HGsgy.

For the Gsy terms, a lengthy but straightforward calculation shows that
Gsx ( _203HH —203H3 — 3X¢H2) — _2x (2H3¢ FOHHG + 3H2¢') Gsx

Combining these results, we obtain:

1 88 . - . .
3 54 == "X (CHGH2HHG - 3HG) Gsx —4HX Gsn
; d
+4HX (X —HX) Gspx +2 <dt(HX) +3H2X> Gss (B.2.3.22)
+4HX $Gspp.
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